WorldWideScience

Sample records for battery energy storage

  1. Battery energy storage system

    NARCIS (Netherlands)

    Tol, C.S.P.; Evenblij, B.H.

    2009-01-01

    The ability to store electrical energy adds several interesting features to a ships distribution network, as silent power, peak shaving and a ride through in case of generator failure. Modern intrinsically safe Li-ion batteries bring these within reach. For this modern lithium battery applications

  2. Battery storage for supplementing renewable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-01-18

    The battery storage for renewable energy systems section of the Renewable Energy Technology Characterizations describes structures and models to support the technical and economic status of emerging renewable energy options for electricity supply.

  3. ENERGY EFFICIENCY AND ENVIRONMENTALLY FRIENDLY DISTRIBUTED ENERGY STORAGE BATTERY

    Energy Technology Data Exchange (ETDEWEB)

    LANDI, J.T.; PLIVELICH, R.F.

    2006-04-30

    Electro Energy, Inc. conducted a research project to develop an energy efficient and environmentally friendly bipolar Ni-MH battery for distributed energy storage applications. Rechargeable batteries with long life and low cost potentially play a significant role by reducing electricity cost and pollution. A rechargeable battery functions as a reservoir for storage for electrical energy, carries energy for portable applications, or can provide peaking energy when a demand for electrical power exceeds primary generating capabilities.

  4. Battery energy storage market feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, S. [Frost and Sullivan, Mountain View, CA (United States); Akhil, A. [Sandia National Labs., Albuquerque, NM (United States). Energy Storage Systems Analysis and Development Dept.

    1997-07-01

    Under the sponsorship of the Department of Energy`s Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories (SNL) contracted Frost and Sullivan to conduct a market feasibility study of energy storage systems. The study was designed specifically to quantify the energy storage market for utility applications. This study was based on the SNL Opportunities Analysis performed earlier. Many of the groups surveyed, which included electricity providers, battery energy storage vendors, regulators, consultants, and technology advocates, viewed energy storage as an important enabling technology to enable increased use of renewable energy and as a means to solve power quality and asset utilization issues. There are two versions of the document available, an expanded version (approximately 200 pages, SAND97-1275/2) and a short version (approximately 25 pages, SAND97-1275/1).

  5. Battery energy storage market feasibility study

    International Nuclear Information System (INIS)

    Kraft, S.; Akhil, A.

    1997-07-01

    Under the sponsorship of the Department of Energy's Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories (SNL) contracted Frost and Sullivan to conduct a market feasibility study of energy storage systems. The study was designed specifically to quantify the energy storage market for utility applications. This study was based on the SNL Opportunities Analysis performed earlier. Many of the groups surveyed, which included electricity providers, battery energy storage vendors, regulators, consultants, and technology advocates, viewed energy storage as an important enabling technology to enable increased use of renewable energy and as a means to solve power quality and asset utilization issues. There are two versions of the document available, an expanded version (approximately 200 pages, SAND97-1275/2) and a short version (approximately 25 pages, SAND97-1275/1)

  6. Energy storage mechanism for hybrid battery

    Science.gov (United States)

    Feng, Jun; Chernova, Natasha; Omenya, Fredrick; Rastogi, Alok; Whittingham, Stanley

    Many devices require both high energy and high power density, and lithium ion batteries and super-capacitors cannot separately always meet the requirements. In this work, we study the operating mechanism of a hybrid battery, which combines the best properties of batteries and supercapacitors. We analyze the lithium ion storage mechanism using XRD, Raman, TEM and electrochemical measurements. The model system studied combines a non-intercalating carbon black anode with a LiFePO4 cathode. At 50% state of charge, XRD data for LiFePO4 cathode material shows a mixture of LiFePO4 and FePO4, indicating battery reaction. On the other hand, the activated carbon remains structurally unchanged. We also discuss the impact of a range of activated carbon/ LiFePO4 (AC/LFP) ratios. From cyclic voltammetry and charge/discharge results, the system exhibits battery-domain characteristics when the AC/ LFP ratio is below one, but showing more supercapacitor-domain traits when the ratio is higher. Besides, the systems have higher rate capacity at AC/LFP ratio around four as compared to one. This research is supported by NSF under Award Number 1318202.

  7. Economic models for battery energy storage

    International Nuclear Information System (INIS)

    Reckrodt, R.C.; Anderson, M.D.; Kluczny, R.M.

    1990-01-01

    While the technology required to produce viable Battery Energy Storage System exists, the economic feasibility (cost vs. benefits) of building these systems requires justification. First, a generalized decision diagram was developed to ensure that all of the economic factors were considered and properly related for the customer-side-of-the meter. Next, two economic models that had consistently given differing results were compared. One was the McKinney model developed at UM-Rolla in 1987; the second was the SYSPLAN model developed by Battelle. Differences were resolved on a point by point basis with reference to the current economic environment. The economic model was upgraded to include the best of both models based on the resolution of these differences. The upgrades were implemented as modifications to the original SYSPLAN (1986 version) to preserve user friendliness. In this paper four specific cases are evaluated and compared. The results are as predicted, since comparison was made with two known models

  8. Battery Energy Storage Technology for power systems-An overview

    DEFF Research Database (Denmark)

    Chandrashekhara, Divya K; Østergaard, Jacob

    2009-01-01

    the present status of battery energy storage technology and methods of assessing their economic viability and impact on power system operation. Further, a discussion on the role of battery storage systems of electric hybrid vehicles in power system storage technologies had been made. Finally, the paper...... suggests a likely future outlook for the battery technologies and the electric hybrid vehicles in the context of power system applications....

  9. Research on Battery Energy Storage System Based on User Side

    Science.gov (United States)

    Wang, Qian; Zhang, Yichi; Yun, Zejian; Wang, Xuguang; Zhang, Dong; Bian, Di

    2018-01-01

    This paper introduces the effect of user side energy storage on the user side and the network side, a battery energy storage system for the user side is designed. The main circuit topology of the battery energy storage system based on the user side is given, the structure is mainly composed of two parts: DC-DC two-way half bridge converter and DC-AC two-way converter, a control strategy combining battery charging and discharging characteristics is proposed to decouple the grid side and the energy storage side, and the block diagram of the charging and discharging control of the energy storage system is given. The simulation results show that the battery energy storage system of the user side can not only realize reactive power compensation of low-voltage distribution network, but also improve the power quality of the users.

  10. Grid Converters for Stationary Battery Energy Storage Systems

    DEFF Research Database (Denmark)

    Trintis, Ionut

    to hours, rated at MW and MWh, battery energy storage systems are suitable and ecient solutions. Grid connection of the storage system can be done at dierent voltage levels, depending on the location and application scenario. For high power and energy ratings, increase in the battery and converter voltage...... was realized for a 100 kW active rectier to be used in a 6 kV battery energy storage test bench. In the second part, dierent solutions for power converters to interface energy storage units to medium voltage grid are given. A new modular multilevel converter concept is introduced, where the energy storage......-voltage 100 kW bidirectional grid converter, to be used in a high voltage battery energy storage test bench. The control structure proved to be stable without damping. The converter was tested in the test bench and the experimental results are presented. Multilevel converters are replacing the classical two...

  11. Single stage grid converters for battery energy storage

    DEFF Research Database (Denmark)

    Trintis, Ionut; Munk-Nielsen, Stig; Teodorescu, Remus

    2010-01-01

    Integration of renewable energy systems in the power system network such as wind and solar is still a challenge in our days. Energy storage systems (ESS) can overcome the disadvantage of volatile generation of the renewable energy sources. This paper presents power converters for battery energy...... storage systems (BESS) which can interface mediumvoltage batteries to the grid. Converter topologies comparison is performed in terms of efficiency, common mode voltage and redundancy for a 6kV series connected medium voltage batteries with a nominal power of 5MVA to act as a battery charger/discharger....

  12. Third International Conference on Batteries for Utility Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-18

    This is a collection of essays presented at the above-named conference held at Kobe, Japan, from March 18 through 22, 1991. At the utility energy storage session, a power research program plan, operational and economic benefits of BESP (battery energy storage plant), the Moonlight Project, etc., were presented, respectively, by EPRI (Electric Power Research Institute) of the U.S., BEWAG Corporation of Germany, and NEDO (New Energy and Industrial Technology Development Organization) of Japan, etc. At the improved lead-acid batteries session, the characteristics of improved lead-acid batteries, load levelling and life cycle, problems in BESP, comparisons and tests, etc., were presented by Japan, Italy, the U.S., etc. At the advanced batteries session, presentations were made about the sodium-sulfur battery, zinc-bromine battery, redox battery, etc. Furthermore, there were sessions on consumer energy systems, control and power conditioning technology, and commercialization and economic studies. A total 53 presentations were made. (NEDO)

  13. Specific systems studies of battery energy storage for electric utilities

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, A.A.; Lachenmeyer, L. [Sandia National Labs., Albuquerque, NM (United States); Jabbour, S.J. [Decision Focus, Inc., Mountain View, CA (United States); Clark, H.K. [Power Technologies, Inc., Roseville, CA (United States)

    1993-08-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. As a part of this program, four utility-specific systems studies were conducted to identify potential battery energy storage applications within each utility network and estimate the related benefits. This report contains the results of these systems studies.

  14. Battery energy storage systems life cycle costs case studies

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.; Miller, N.F.; Sen, R.K. [SENTECH, Inc., Bethesda, MD (United States)

    1998-08-01

    This report presents a comparison of life cycle costs between battery energy storage systems and alternative mature technologies that could serve the same utility-scale applications. Two of the battery energy storage systems presented in this report are located on the supply side, providing spinning reserve and system stability benefits. These systems are compared with the alternative technologies of oil-fired combustion turbines and diesel generators. The other two battery energy storage systems are located on the demand side for use in power quality applications. These are compared with available uninterruptible power supply technologies.

  15. Battery energy storage market feasibility study -- Expanded report

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, S. [Frost and Sullivan, Mountain View, CA (United States); Akhil, A. [Sandia National Labs., Albuquerque, NM (United States). Energy Storage Systems Analysis and Development Dept.

    1997-09-01

    Under the sponsorship of the US Department of Energy`s Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories (SNL) contracted Frost and Sullivan to conduct a market feasibility study of energy storage systems. The study was designed specifically to quantify the battery energy storage market for utility applications. This study was based on the SNL Opportunities Analysis performed earlier. Many of the groups surveyed, which included electricity providers, battery energy storage vendors, regulators, consultants, and technology advocates, viewed battery storage as an important technology to enable increased use of renewable energy and as a means to solve power quality and asset utilization issues. There are two versions of the document available, an expanded version (approximately 200 pages, SAND97-1275/2) and a short version (approximately 25 pages, SAND97-1275/1).

  16. Battery energy storage market feasibility study - Expanded report

    International Nuclear Information System (INIS)

    Kraft, S.; Akhil, A.

    1997-09-01

    Under the sponsorship of the US Department of Energy's Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories (SNL) contracted Frost and Sullivan to conduct a market feasibility study of energy storage systems. The study was designed specifically to quantify the battery energy storage market for utility applications. This study was based on the SNL Opportunities Analysis performed earlier. Many of the groups surveyed, which included electricity providers, battery energy storage vendors, regulators, consultants, and technology advocates, viewed battery storage as an important technology to enable increased use of renewable energy and as a means to solve power quality and asset utilization issues. There are two versions of the document available, an expanded version (approximately 200 pages, SAND97-1275/2) and a short version (approximately 25 pages, SAND97-1275/1)

  17. Secondary batteries with multivalent ions for energy storage.

    Science.gov (United States)

    Xu, Chengjun; Chen, Yanyi; Shi, Shan; Li, Jia; Kang, Feiyu; Su, Dangsheng

    2015-09-14

    The use of electricity generated from clean and renewable sources, such as water, wind, or sunlight, requires efficiently distributed electrical energy storage by high-power and high-energy secondary batteries using abundant, low-cost materials in sustainable processes. American Science Policy Reports state that the next-generation "beyond-lithium" battery chemistry is one feasible solution for such goals. Here we discover new "multivalent ion" battery chemistry beyond lithium battery chemistry. Through theoretic calculation and experiment confirmation, stable thermodynamics and fast kinetics are presented during the storage of multivalent ions (Ni(2+), Zn(2+), Mg(2+), Ca(2+), Ba(2+), or La(3+) ions) in alpha type manganese dioxide. Apart from zinc ion battery, we further use multivalent Ni(2+) ion to invent another rechargeable battery, named as nickel ion battery for the first time. The nickel ion battery generally uses an alpha type manganese dioxide cathode, an electrolyte containing Ni(2+) ions, and Ni anode. The nickel ion battery delivers a high energy density (340 Wh kg(-1), close to lithium ion batteries), fast charge ability (1 minute), and long cycle life (over 2200 times).

  18. Second International Conference on Batteries for Utility Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-07-24

    This is a collection of essays presented at the above-named conference held at New Port Beach, U.S., from July 24 through 28, 1989. At the utility energy storage session, it is found that the 100kW-capable Na-S battery system of the Kansai Electric Power Company, Inc., works effectively in levelling peakloads at storage efficiency of 70%. A Chino lead-acid battery system is also described. A lead-acid battery system of the BEWAG Corporation of Germany equipped with tubular electrodes is described. For application by the consuming party, system behavior relative to duty cycle control, sudden request for energy storage, power factor, and load adjustment is discussed. Use of a valve-controlled lead-acid battery is introduced, which is to be used as a stand-by system (such as an uninterruptible power supply) or for certain types of cyclic duties. At the 4th session, economic and technical models are exhibited. Computer-aided peakload prediction, battery storage system technology, economic parameters, profitability, etc., are explained for use by the consuming party in a peakload shaving battery system. The Zn/Br battery, redox-flow battery, and other advanced technologies are also presented. (NEDO)

  19. Technoeconomic Modeling of Battery Energy Storage in SAM

    Energy Technology Data Exchange (ETDEWEB)

    DiOrio, Nicholas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dobos, Aron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Janzou, Steven [National Renewable Energy Lab. (NREL), Golden, CO (United States); Nelson, Austin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lundstrom, Blake [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    Detailed comprehensive lead-acid and lithium-ion battery models have been integrated with photovoltaic models in an effort to allow System Advisor Model (SAM) to offer the ability to predict the performance and economic benefit of behind the meter storage. In a system with storage, excess PV energy can be saved until later in the day when PV production has fallen, or until times of peak demand when it is more valuable. Complex dispatch strategies can be developed to leverage storage to reduce energy consumption or power demand based on the utility rate structure. This document describes the details of the battery performance and economic models in SAM.

  20. Energy Scheduling of Battery Storage Systems in Micro Grids

    Directory of Open Access Journals (Sweden)

    Armstorfer Andreas

    2017-07-01

    Full Text Available Microgrids in island mode with high penetration of renewable energy sources in combination with gensets and battery storage systems need a control system for voltage and frequency. In this study the main goal is maximization of the energy feed-in by renewable sources. Therefore it is necessary to keep the State of Energy for the Battery Storage System in a range that the excess energy can be absorbed and used in a later period of the day. In this paper an approach for State of Charge scheduling based on load and generation prediction is described.

  1. Lessons Learned from the Puerto Rico Battery Energy Storage System

    Energy Technology Data Exchange (ETDEWEB)

    BOYES, JOHN D.; DE ANA, MINDI FARBER; TORRES, WENCESLANO

    1999-09-01

    The Puerto Rico Electric Power Authority (PREPA) installed a distributed battery energy storage system in 1994 at a substation near San Juan, Puerto Rico. It was patterned after two other large energy storage systems operated by electric utilities in California and Germany. The U.S. Department of Energy (DOE) Energy Storage Systems Program at Sandia National Laboratories has followed the progress of all stages of the project since its inception. It directly supported the critical battery room cooling system design by conducting laboratory thermal testing of a scale model of the battery under simulated operating conditions. The Puerto Rico facility is at present the largest operating battery storage system in the world and is successfully providing frequency control, voltage regulation, and spinning reserve to the Caribbean island. The system further proved its usefulness to the PREPA network in the fall of 1998 in the aftermath of Hurricane Georges. The owner-operator, PREPA, and the architect/engineer, vendors, and contractors learned many valuable lessons during all phases of project development and operation. In documenting these lessons, this report will help PREPA and other utilities in planning to build large energy storage systems.

  2. Stationary battery storage of energy transition a central component

    International Nuclear Information System (INIS)

    Vetter, Matthias; Lux, Stephan

    2017-01-01

    In a regenerative energy system with strong fluctuations in electricity production, the importance of short-term storage is increasing - on the one hand, in order to optimal need-oriented use of the energy supply, on the other hand, at any time to ensure a high network quality. The present overview of stationary battery storage shows how important it will be especially in the area of larger storage facilities with direct link to regenerative power plants, as a district storage or in the industry. [de

  3. Bidirectional converter interface for a battery energy storage test bench

    DEFF Research Database (Denmark)

    Trintis, Ionut; Thomas, Stephan; Blank, Tobias

    2011-01-01

    This paper presents the bidirectional converter interface for a 6 kV battery energy storage test bench. The power electronic interface consists a two stage converter topology having a low voltage dc-ac grid connected converter and a new dual active bridge dc-dc converter with high transformation...

  4. Batteries for storage of wind-generated energy

    Science.gov (United States)

    Schwartz, H. J.

    1973-01-01

    Cost effectiveness characteristics of conventional-, metal gas-, and high energy alkali metal-batteries for wind generated energy storage are considered. A lead-acid battery with a power density of 20 to 30 watt/hours per pound is good for about 1500 charge-discharge cycles at a cost of about $80 per kilowatt hour. A zinc-chlorine battery that stores chlorine as solid chlorine hydrate at temperatures below 10 C eliminates the need to handle gaseous chlorine; its raw material cost are low and inexpensive carbon can be used for the chlorine electrode. This system has the best chance to replace lead-acid. Exotic alkali metal batteries are deemed too costly at the present stage of development.

  5. Profitability of Residential Battery Energy Storage Combined with Solar Photovoltaics

    Directory of Open Access Journals (Sweden)

    Christoph Goebel

    2017-07-01

    Full Text Available Lithium-ion (Li-Ion batteries are increasingly being considered as bulk energy storage in grid applications. One such application is residential energy storage combined with solar photovoltaic (PV panels to enable higher self-consumption rates, which has become financially more attractive recently due to decreasing feed-in subsidies. Although residential energy storage solutions are commercially mature, it remains unclear which system configurations and circumstances, including aggregator-based applications such as the provision of ancillary services, lead to profitable consumer investments. Therefore, we conduct an extensive simulation study that is able to jointly capture these aspects. Our results show that, at current battery module prices, even optimal system configurations still do not lead to profitable investments into Li-Ion batteries if they are merely used as a buffer for solar energy. The first settings in which they will become profitable, as prices are further declining, will be larger households at locations with higher average levels of solar irradiance. If the batteries can be remote-controlled by an aggregator to provide overnight negative reserve, their profitability increases significantly.

  6. Bidirectional converter interface for a battery energy storage test bench

    DEFF Research Database (Denmark)

    Trintis, Ionut; Thomas, Stephan; Blank, Tobias

    2011-01-01

    This paper presents the bidirectional converter interface for a 6 kV battery energy storage test bench. The power electronic interface consists a two stage converter topology having a low voltage dc-ac grid connected converter and a new dual active bridge dc-dc converter with high transformation...... ratio. The dc-dc converter controls the battery charge/discharge current while the grid converter controls the common dc-link voltage and the grid current. The applied control structures and the hardware implementation of both converters are presented, together with their interaction. Experimental...

  7. Energy storage

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role that energy storage may have on the energy future of the US. The topics discussed in the chapter include historical aspects of energy storage, thermal energy storage including sensible heat storage, latent heat storage, thermochemical heat storage, and seasonal heat storage, electricity storage including batteries, pumped hydroelectric storage, compressed air energy storage, and superconducting magnetic energy storage, and production and combustion of hydrogen as an energy storage option

  8. Mission and status of the US Department of Energy's battery energy storage program

    Science.gov (United States)

    Quinn, J. E.; Hurwitch, J. W.; Landgrebe, A. R.; Hauser, S. G.

    1985-05-01

    The mission of the US Department of Energy's battery research program has evolved to reflect the changing conditions of the world energy economy and the national energy policy. The battery energy storage program supports the goals of the National Energy Policy Plan (FY 1984). The goals are to provide an adequate supply of energy at reasonable costs, minimize federal control and involvement in the energy marketplace, promote a balanced and mixed energy resource system, and facilitate technology transfer from the public to the private sector. This paper describes the history of the battery energy storage program and its relevance to the national interest. Potential market applications for battery energy storage are reviewed, and each technology, its goals, and its current technical status are described. The paper concludes by describing the strategy developed to ensure effective technology transfer to the private sector and reviewing past significant accomplishments.

  9. Flexible Grouping for Enhanced Energy Utilization Efficiency in Battery Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Weiping Diao

    2016-06-01

    Full Text Available As a critical subsystem in electric vehicles and smart grids, a battery energy storage system plays an essential role in enhancement of reliable operation and system performance. In such applications, a battery energy storage system is required to provide high energy utilization efficiency, as well as reliability. However, capacity inconsistency of batteries affects energy utilization efficiency dramatically; and the situation becomes more severe after hundreds of cycles because battery capacities change randomly due to non-uniform aging. Capacity mismatch can be solved by decomposing a cluster of batteries in series into several low voltage battery packs. This paper introduces a new analysis method to optimize energy utilization efficiency by finding the best number of batteries in a pack, based on capacity distribution, order statistics, central limit theorem, and converter efficiency. Considering both battery energy utilization and power electronics efficiency, it establishes that there is a maximum energy utilization efficiency under a given capacity distribution among a certain number of batteries, which provides a basic analysis for system-level optimization of a battery system throughout its life cycle. Quantitative analysis results based on aging data are illustrated, and a prototype of flexible energy storage systems is built to verify this analysis.

  10. Influence of Battery/Ultracapacitor Energy-Storage Sizing on Battery Lifetime in a Fuel Cell Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Schaltz, Erik; Rasmussen, Peter Omand; Khaligh, Alireza

    2009-01-01

    Combining high-energy-density batteries and high-power-density ultracapacitors in fuel cell hybrid electric vehicles (FCHEVs) results in a high-performance, highly efficient, low-size, and light system. Often, the battery is rated with respect to its energy requirement to reduce its volume and mass....... This does not prevent deep discharges of the battery, which are critical to the lifetime of the battery. In this paper, the ratings of the battery and ultracapacitors are investigated. Comparisons of the system volume, the system mass, and the lifetime of the battery due to the rating of the energy storage......, the battery, and the ultracapacitors, are proposed. A charging strategy, which charges the energy-storage devices due to the conditions of the FCHEV, is also proposed. The analysis provides recommendations on the design of the battery and the ultracapacitor energy-storage systems for FCHEVs....

  11. Advanced Redox Flow Batteries for Stationary Electrical Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liyu; Kim, Soowhan; Xia, Guanguang; Wang, Wei; Yang, Zhenguo

    2012-03-19

    This report describes the status of the advanced redox flow battery research being performed at Pacific Northwest National Laboratories for the U.S. Department of Energy’s Energy Storage Systems Program. The Quarter 1 of FY2012 Milestone was completed on time. The milestone entails completion of evaluation and optimization of single cell components for the two advanced redox flow battery electrolyte chemistries recently developed at the lab, the all vanadium (V) mixed acid and V-Fe mixed acid solutions. All the single cell components to be used in future kW-scale stacks have been identified and optimized in this quarter, which include solution electrolyte, membrane or separator; carbon felt electrode and bi-polar plate. Varied electrochemical, chemical and physical evaluations were carried out to assist the component screening and optimization. The mechanisms of the battery capacity fading behavior for the all vanadium redox flow and the Fe/V battery were discovered, which allowed us to optimize the related cell operation parameters and continuously operate the system for more than three months without any capacity decay.

  12. Economic Analysis Case Studies of Battery Energy Storage with SAM

    Energy Technology Data Exchange (ETDEWEB)

    DiOrio, Nicholas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dobos, Aron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Janzou, Steven [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-11-01

    Interest in energy storage has continued to increase as states like California have introduced mandates and subsidies to spur adoption. This energy storage includes customer sited behind-the-meter storage coupled with photovoltaics (PV). This paper presents case study results from California and Tennessee, which were performed to assess the economic benefit of customer-installed systems. Different dispatch strategies, including manual scheduling and automated peak-shaving were explored to determine ideal ways to use the storage system to increase the system value and mitigate demand charges. Incentives, complex electric tariffs, and site specific load and PV data were used to perform detailed analysis. The analysis was performed using the free, publically available System Advisor Model (SAM) tool. We find that installation of photovoltaics with a lithium-ion battery system priced at $300/kWh in Los Angeles under a high demand charge utility rate structure and dispatched using perfect day-ahead forecasting yields a positive net-present value, while all other scenarios cost the customer more than the savings accrued. Different dispatch strategies, including manual scheduling and automated peak-shaving were explored to determine ideal ways to use the storage system to increase the system value and mitigate demand charges. Incentives, complex electric tariffs, and site specific load and PV data were used to perform detailed analysis. The analysis was performed using the free, publically available System Advisor Model (SAM) tool. We find that installation of photovoltaics with a lithium-ion battery system priced at $300/kWh in Los Angeles under a high demand charge utility rate structure and dispatched using perfect day-ahead forecasting yields a positive net-present value, while all other scenarios cost the customer more than the savings accrued.

  13. Energy Storage.

    Science.gov (United States)

    Eaton, William W.

    Described are technological considerations affecting storage of energy, particularly electrical energy. The background and present status of energy storage by batteries, water storage, compressed air storage, flywheels, magnetic storage, hydrogen storage, and thermal storage are discussed followed by a review of development trends. Included are…

  14. Life-cycle energy analyses of electric vehicle storage batteries

    Science.gov (United States)

    Sullivan, D.; Morse, T.; Patel, P.; Patel, S.; Bondar, J.; Taylor, L.

    1980-12-01

    Nickel-zinc, lead-acid, nickel-iron, zinc-chlorine, sodium-sulfur (glass electrolyte), sodium-sulfur (ceramic electrolyte), lithium-metal sulfide, and aluminum-air batteries were studied in order to evaluate the energy used to produce the raw materials and to manufacture the battery, the energy consumed by the battery during its operational life, and the energy that could be saved from the recycling of battery materials into new raw materials. The value of the life cycle analysis approach is that it includes the various penalties and credits associated with battery production and recycling, which enables a more accurate determination of the system's ability to reduce the consumption of scarce fuels. Battery component materials, the energy requirements for battery production, and credits for recycling are described. The operational energy for an electric vehicle and the procedures used to determine it are discussed.

  15. Second life battery energy storage system for enhancing renewable energy grid integration

    DEFF Research Database (Denmark)

    Koch-Ciobotaru, C.; Saez-de-Ibarra, A.; Martinez-Laserna, E.

    2015-01-01

    must be explored especially that large battery energy storage systems are still expensive solutions. Thus, in order to make battery investment economic viable, the use of second life batteries is investigated in the present work. This paper proposes a method for determining firstly, the optimal rating......Connecting renewable power plants to the grid must comply with certain codes and requirements. One requirement is the ramp rate constraint, which must be fulfilled in order to avoid penalties. As this service becomes compulsory with an increased grid penetration of renewable, all possible solutions...... of a second life battery energy storage system (SLBESS) and secondly, to obtain the power exchange and battery state of charge profiles during the operation. These will constitute the cycling patterns for testing batteries and studying the ageing effect of this specific application. Real data from the Spanish...

  16. Modeling of battery energy storage in the National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.; Flynn, W.T.; Sen, R.K. [Sentech, Inc., Bethesda, MD (United States)

    1997-12-01

    The National Energy Modeling System (NEMS) developed by the U.S. Department of Energy`s Energy Information Administration is a well-recognized model that is used to project the potential impact of new electric generation technologies. The NEMS model does not presently have the capability to model energy storage on the national grid. The scope of this study was to assess the feasibility of, and make recommendations for, the modeling of battery energy storage systems in the Electricity Market of the NEMS. Incorporating storage within the NEMS will allow the national benefits of storage technologies to be evaluated.

  17. Profit by storage value analysis of battery energy storage applications; Profit durch Speicherung. Analyse zur Wirtschaftlichkeit von Batteriespeicher-Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Oudalov, A.; Chartouni, D.; Ohler, C.; Buehler, T.; Linhofer, G. [ABB-Forschungszentrum (Switzerland)

    2006-07-01

    Energy storage systems based on batteries can be employed profitably in power systems under specific circumstances. In the following manuscript three potential applications are analysed. It is shown that a battery energy storage system used as a primary reserve is the economically most viable application. (orig.)

  18. The mission and status of the U.S. Department of Energy's battery energy storage program

    Science.gov (United States)

    Quinn, J. E.; Landgrebe, A. R.; Hurwitch, J. W.; Hauser, S. G.

    1985-12-01

    Attention is given to the U.S. Department of Energy's battery energy storage program history, assessing the importance it has had in the national interest to date in industrial, vehicular, and electric utility load leveling applications. The development status of battery technology is also evaluated for the cases of sodium-sulfur, zinc-bromine, zinc-ferricyanide, nickel-hydrogen, aluminum-air, lithium-metal disulfide, and fuel cell systems. Development trends are projected into the foreseeable future.

  19. Energy storage and the environment: the role of battery technology

    Science.gov (United States)

    Ruetschi, Paul

    Batteries can store energy in a clean, convenient and efficient manner. Battery-powered electric vehicles are expected to contribute to a cleaner environment. In today's world, batteries are used everywhere: in electronic watches, pocket calculators, flashlights, toys, radios, tape recorders, cameras, camcorders, laptop computers, cordless telephones, paging devices, hearing aids, heart pacers, instruments, detectors, sensors, memory back-up devices, drug dispensing, wireless tools, toothbrushes, razors, stationary emergency power equipment, automobile starters, electric vehicles, boats, submarines, airplanes and satellites. Worldwide, about 15 billion primary batteries, and well over 200 million starter batteries are produced per year. What is the impact of this widespread use of batteries on the environment? What role can battery technology play in order to reduce undue effects on the environment? Since this paper is presented at a lead/acid battery conference, the discussion refers, in particular, to this system. The following aspects are covered: (i) the three "E" criteria that are applicable to batteries: Energy, Economics, Environment; (ii) service life and environment; (iii) judicious use and service life; (iv) recycling.

  20. Second life battery energy storage system for residential demand response service

    DEFF Research Database (Denmark)

    Saez-de-Ibarra, Andoni; Martinez-Laserna, Egoitz; Koch-Ciobotaru, Cosmin

    2015-01-01

    The integration of renewable energies and the usage of battery energy storage systems (BESS) into the residential buildings opens the possibility for minimizing the electricity bill for the end-user. This paper proposes the use of batteries that have already been aged while powering electric...... vehicles, during their main first life application, for providing residential demand response service. The paper considers the decayed characteristics of these batteries and optimizes the rating of such a second life battery energy storage system (SLBESS) for maximizing the economic benefits of the user...

  1. Smart materials for energy storage in Li-ion batteries

    Directory of Open Access Journals (Sweden)

    Ashraf E Abdel-Ghany

    2016-01-01

    Full Text Available Advanced lithium-ion batteries contain smart materials having the function of insertion electrodes in the form of powders with specific and optimized electrochemical properties. Different classes can be considered: the surface modified active particles at either positive or negative electrodes, the nano-composite electrodes and the blended materials. In this paper, various systems are described, which illustrate the improvement of lithium-ion batteries in term of specific energy and power, thermal stability and life cycling.

  2. Suggested Operation Grid-Connected Lithium-Ion Battery Energy Storage System for Primary Frequency Regulation

    DEFF Research Database (Denmark)

    Stroe, Daniel Ioan; Knap, Vaclav; Swierczynski, Maciej Jozef

    2015-01-01

    there are worldwide demonstration projects where energy storage systems based on Lithium-ion batteries are evaluated for such applications, the field experience is still very limited. In consequence, at present there are no very clear requirements on how the Lithium-ion battery energy storage systems should...... be operated while providing frequency regulation service and how the system has to re-establish its SOC once the frequency event has passed. Therefore, this paper aims to investigate the effect on the lifetime of the Lithium-ion batteries energy storage system of various strategies for re...

  3. Operation of Grid -Connected Lithium-Ion Battery Energy Storage System for Primary Frequency Regulation

    DEFF Research Database (Denmark)

    Stroe, Daniel Loan; Knap, Vaclav; Swierczynski, Maciej Jozef

    2017-01-01

    there are worldwide demonstration projects where energy storage systems based on Lithium-ion batteries are evaluated for such applications, the field experience is still very limited. In consequence, at present there are no very clear requirements on how the Lithium-ion battery energy storage systems should...... be operated while providing frequency regulation service and how the system has to re-establish its SOC once the frequency event has passed. Therefore, this paper aims to investigate the effect on the lifetime of the Lithium-ion batteries energy storage system of various strategies for re...

  4. Investigation of Battery/Ultracapacitor Energy Storage Rating for a Fuel Cell Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Schaltz, Erik; Khaligh, A.; Rasmussen, Peter Omand

    2008-01-01

    Combining high energy density batteries and high power density ultracapacitors in Fuel Cell Hybrid Electric Vehicles (FCHEV) results in a high efficient, high performance, low size, and light system. Often the batteries are rated with respect to their energy requirement in order to reduce...... their volume and mass. This does not prevent deep discharges of the batteries, which is critical to their lifetime. In this paper, the ratings of the batteries and ultracapacitors in a FCHEV are investigated. Comparison of system volume, mass, efficiency, and battery lifetime due to the rating of the energy...... storage devices are presented. It is concluded, that by sufficient rating of the battery or ultracapacitors, an appropriate balance between system volume, mass, efficiency, and battery lifetime is achievable....

  5. A novel iron-lead redox flow battery for large-scale energy storage

    Science.gov (United States)

    Zeng, Y. K.; Zhao, T. S.; Zhou, X. L.; Wei, L.; Ren, Y. X.

    2017-04-01

    The redox flow battery (RFB) is one of the most promising large-scale energy storage technologies for the massive utilization of intermittent renewables especially wind and solar energy. This work presents a novel redox flow battery that utilizes inexpensive and abundant Fe(II)/Fe(III) and Pb/Pb(II) redox couples as redox materials. Experimental results show that both the Fe(II)/Fe(III) and Pb/Pb(II) redox couples have fast electrochemical kinetics in methanesulfonic acid, and that the coulombic efficiency and energy efficiency of the battery are, respectively, as high as 96.2% and 86.2% at 40 mA cm-2. Furthermore, the battery exhibits stable performance in terms of efficiencies and discharge capacities during the cycle test. The inexpensive redox materials, fast electrochemical kinetics and stable cycle performance make the present battery a promising candidate for large-scale energy storage applications.

  6. Nickel-hydrogen battery design for the Transporter Energy Storage Subsystem (TESS)

    Science.gov (United States)

    Lapinski, John R.; Bourland, Deborah S.

    1992-01-01

    Information is given in viewgraph form on nickel hydrogen battery design for the transporter energy storage subsystem (TESS). Information is given on use in the Space Station Freedom, the launch configuration, use in the Mobile Servicing Center, battery design requirements, TESS subassembley design, proof of principle testing of a 6-cell battery, possible downsizing of TESS to support the Mobile Rocket Servicer Base System (MBS) redesign, TESS output capacity, and cell testing.

  7. Financial analysis of utility scale photovoltaic plants with battery energy storage

    International Nuclear Information System (INIS)

    Rudolf, Viktor; Papastergiou, Konstantinos D.

    2013-01-01

    Battery energy storage is a flexible and responsive form of storing electrical energy from Renewable generation. The need for energy storage mainly stems from the intermittent nature of solar and wind energy sources. System integrators are investigating ways to design plants that can provide more stable output power without compromising the financial performance that is vital for investors. Network operators on the other side set stringent requirements for the commissioning of new generation, including preferential terms for energy providers with a well-defined generation profile. The aim of this work is to highlight the market and technology drivers that impact the feasibility of battery energy storage in a Utility-scale solar PV project. A simulation tool combines a battery cycling and lifetime model with a solar generation profile and electricity market prices. The business cases of the present market conditions and a projected future scenario are analyzed. - Highlights: • Generation shifting with batteries allows PV projects to generate additional revenues. • Battery lifetime, lifecycles and price are less relevant than electricity market prices. • Installed battery capacity of up to 50% of the daily PV energy boosts project economy. • A 25% higher premium for energy storage could improve NPV by approximately 65%

  8. Energy storage

    International Nuclear Information System (INIS)

    2012-01-01

    After having outlined the importance of energy storage in the present context, this document outlines that it is an answer to economic, environmental and technological issues. It proposes a brief overview of the various techniques of energy storage: under the form of chemical energy (hydrocarbons, biomass, hydrogen production), thermal energy (sensitive or latent heat storage), mechanical energy (potential energy by hydraulic or compressed air storage, kinetic energy with flywheels), electrochemical energy (in batteries), electric energy (super-capacitors, superconductor magnetic energy storage). Perspectives are briefly evoked

  9. An economic comparison of battery energy storage to conventional energy efficiency technologies in Colorado manufacturing facilities

    International Nuclear Information System (INIS)

    Nataf, Kalen; Bradley, Thomas H.

    2016-01-01

    Highlights: • Energy storage’s and efficiency technologies’ economic payback is compared. • Conventional efficiency technologies have shorter payback for the customers studied. • Hypothetical incentives can lower the payback periods of battery energy storage. - Abstract: Battery energy storage (BES) is one of a set of technologies that can be considered to reduce electrical loads, and to realize economic value for industrial customers. To directly compare the energy savings and economic effectiveness of BES to more conventional energy efficiency technologies, this study collected detailed information regarding the electrical loads associated with four Colorado manufacturing facilities. These datasets were used to generate a set of three scenarios for each manufacturer: implementation of a BES system, implementation of a set of conventional energy efficiency recommendations, and the implementation of both BES and conventional energy efficiency technologies. Evaluating these scenarios’ economic payback period allows for a direct comparison between the cost-effectiveness of energy efficiency technologies and that of BES, demonstrates the costs and benefits of implementing both BES and energy efficiency technologies, and characterizes the effectiveness of potential incentives in improving economic payback. For all of the manufacturing facilities modeled, results demonstrate that BES is the least cost-effective among the energy efficiency technologies considered, but that simultaneous implementation of both BES and energy efficiency technologies has a negligible effect on the BES payback period. Incentives are demonstrated to be required for BES to achieve near-term payback period parity with more conventional energy efficiency technologies.

  10. Super-capacitor and Thin Film Battery Hybrid Energy Storage for Energy Harvesting Applications

    Science.gov (United States)

    Wang, Wensi; Wang, Ningning; Vinco, Alessandro; Siddique, Rashid; Hayes, Mike; O'Flynn, Brendan; O'Mathuna, Cian

    2013-12-01

    This paper presents the design of hybrid energy storage unit (HESU) for energy harvesting applications using super-capacitor and thin film battery (TFB). The power management circuits of this hybrid energy storage unit are proposed to perform "smart" charge/discharge control in order to optimize the HESU from the perspectives of energy loss due to leakage current and equivalent series resistance (ESR). This paper shows the characterizations of ESUs for energy harvesting powered wireless sensor networks (WSN) applications. A new design of power management circuits is proposed in order to utilize the low ESR characteristics of super-capacitor and the low leakage current characteristics of the TFB in the hybrid energy storage. The average power loss due to leakage current is measured at 38μW in the proposed system. When Compared to the super-capacitor energy storage with the similar capacity, the proposed hybrid energy storage unit reduces the leakage power by approximately 45% whilst maintains a similar (<100 mΩ) ESR.

  11. Super-capacitor and Thin Film Battery Hybrid Energy Storage for Energy Harvesting Applications

    International Nuclear Information System (INIS)

    Wang, Wensi; Wang, Ningning; Vinco, Alessandro; Siddique, Rashid; Hayes, Mike; O'Flynn, Brendan; O'Mathuna, Cian

    2013-01-01

    This paper presents the design of hybrid energy storage unit (HESU) for energy harvesting applications using super-capacitor and thin film battery (TFB). The power management circuits of this hybrid energy storage unit are proposed to perform ''smart'' charge/discharge control in order to optimize the HESU from the perspectives of energy loss due to leakage current and equivalent series resistance (ESR). This paper shows the characterizations of ESUs for energy harvesting powered wireless sensor networks (WSN) applications. A new design of power management circuits is proposed in order to utilize the low ESR characteristics of super-capacitor and the low leakage current characteristics of the TFB in the hybrid energy storage. The average power loss due to leakage current is measured at 38μW in the proposed system. When Compared to the super-capacitor energy storage with the similar capacity, the proposed hybrid energy storage unit reduces the leakage power by approximately 45% whilst maintains a similar (<100 mΩ) ESR

  12. Optimal Sizing of a Lithium Battery Energy Storage System for Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Dulout, Jeremy; Jammes, Bruno; Alonso, Corinne

    2017-01-01

    This paper proposes a system analysis focused on finding the optimal operating conditions (nominal capacity, cycle depth, current rate, state of charge level) of a lithium battery energy storage system. The purpose of this work is to minimize the cost of the storage system in a renewable DC micro...

  13. Battery Energy Storage Market: Commercial Scale, Lithium-ion Projects in the U.S.

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, Joyce; Gagnon, Pieter; Anderson, Kate; Elgqvist, Emma; Fu, Ran; Remo, Tim

    2016-10-01

    This slide deck presents current market data on the commercial scale li-ion battery storage projects in the U.S. It includes existing project locations, cost data and project cost breakdown, a map of demand charges across the U.S. and information about how the ITC and MACRS apply to energy storage projects that are paired with solar PV technology.

  14. Energy storage

    Science.gov (United States)

    Kaier, U.

    1981-04-01

    Developments in the area of energy storage are characterized, with respect to theory and laboratory, by an emergence of novel concepts and technologies for storing electric energy and heat. However, there are no new commercial devices on the market. New storage batteries as basis for a wider introduction of electric cars, and latent heat storage devices, as an aid for solar technology applications, with satisfactory performance standards are not yet commercially available. Devices for the intermediate storage of electric energy for solar electric-energy systems, and for satisfying peak-load current demands in the case of public utility companies are considered. In spite of many promising novel developments, there is yet no practical alternative to the lead-acid storage battery. Attention is given to central heat storage for systems transporting heat energy, small-scale heat storage installations, and large-scale technical energy-storage systems.

  15. The joint center for energy storage research: A new paradigm for battery research and development

    International Nuclear Information System (INIS)

    Crabtree, George

    2015-01-01

    The Joint Center for Energy Storage Research (JCESR) seeks transformational change in transportation and the electricity grid driven by next generation high performance, low cost electricity storage. To pursue this transformative vision JCESR introduces a new paradigm for battery research: integrating discovery science, battery design, research prototyping and manufacturing collaboration in a single highly interactive organization. This new paradigm will accelerate the pace of discovery and innovation and reduce the time from conceptualization to commercialization. JCESR applies its new paradigm exclusively to beyond-lithium-ion batteries, a vast, rich and largely unexplored frontier. This review presents JCESR's motivation, vision, mission, intended outcomes or legacies and first year accomplishments

  16. Stand-alone wind system with Vanadium Redox Battery energy storage

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Barote, L.; Weissbach, R.

    2008-01-01

    Energy storage devices are required for power balance and power quality in stand alone wind energy systems. A Vanadium Redox Flow Battery (VRB) system has many features which make its integration with a stand-alone wind energy system attractive. This paper proposes the integration of a VRB system...

  17. Promising future energy storage systems: Nanomaterial based systems, Zn-air, and electromechanical batteries

    Science.gov (United States)

    Koopman, R.; Richardson, J.

    1993-10-01

    Future energy storage systems will require longer shelf life, higher duty cycles, higher efficiency, higher energy and power densities, and be fabricated in an environmentally conscious process. This paper describes several possible future systems which have the potential of providing stored energy for future electric and hybrid vehicles. Three of the systems have their origin in the control of material structure at the molecular level and the subsequent nanoengineering into useful device and components: aerocapacitors, nanostructure multilayer capacitors, and the lithium ion battery. The zinc-air battery is a high energy density battery which can provide vehicles with long range (400 km in autos) and be rapidly refueled with a slurry of zinc particles and electrolyte. The electromechanical battery is a battery-sized module containing a high-speed rotor integrated with an iron-less generator mounted on magnetic bearings and housed in an evacuated chamber.

  18. Approach to Hybrid Energy Storage Systems Dimensioning for Urban Electric Buses Regarding Efficiency and Battery Aging

    Directory of Open Access Journals (Sweden)

    Jorge Nájera

    2017-10-01

    Full Text Available This paper focuses on Hybrid Energy Storage Systems (HESS, consisting of a combination of batteries and Electric Double Layer Capacitors (EDLC, for electric urban busses. The aim of the paper is to develop a methodology to determine the hybridization percentage that allows the electric bus to work with the highest efficiency while reducing battery aging, depending on the chosen topology, control strategy, and driving cycle. Three power electronic topologies are qualitatively analyzed based on different criteria, with the topology selected as the favorite being analyzed in detail. The whole system under study is comprised of the following elements: a battery pack (LiFePO4 batteries, an EDLC pack, up to two DC-DC converters (depending on the topology, and an equivalent load, which behaves as an electric bus drive (including motion resistances and inertia. Mathematical models for the battery, EDLCs, DC-DC converter, and the vehicle itself are developed for this analysis. The methodology presented in this work, as the main scientific contribution, considers performance variation (energy efficiency and battery aging and hybridization percentage (ratio between batteries and EDLCs, defined in terms of mass, using a power load profile based on standard driving cycles. The results state that there is a hybridization percentage that increases energy efficiency and reduces battery aging, maximizing the economic benefits of the vehicle, for every combination of topology, type of storage device, control strategy, and driving cycle.

  19. Lithium ion battery energy storage system for augmented wind power plants

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef

    to their characteristics such as high power, high efficiency, low self-discharge, and long lifetime. The family of the Li-ion batteries is wide and the selection of the most appropriate Liion chemistries for VPPs is one of the topics of this thesis, where different chemistries are compared and the most suitable ones......Future large Wind Power Plants (WPP) will be intended to function like today's conventional power plants seen from the transmission system point of view, by complying with future, more stringent, grid codes and providing ancillary services. This is possible to achieve by integrating WPPs...... with Battery Energy Storage Systems (BESSs) into the so called Virtual Power Plants (VPP). Relatively new energy storage technologies based on Lithium ion (Li-ion) batteries are constantly improving their performance and are becoming attractive for stationary energy storage applications due...

  20. Fundamentals of Using Battery Energy Storage Systems to Provide Primary Control Reserves in Germany

    Directory of Open Access Journals (Sweden)

    Alexander Zeh

    2016-09-01

    Full Text Available The application of stationary battery storage systems to German electrical grids can help with various storage services. This application requires controlling the charge and discharge power of such a system. For example, photovoltaic (PV home storage, uninterruptible power supply, and storage systems for providing ancillary services such as primary control reserves (PCRs represent battery applications with positive profitability. Because PCRs are essential for stabilizing grid frequency and maintaining a robust electrical grid, German transmission system operators (TSOs released strict regulations in August 2015 for providing PCRs with battery storage systems as part of regulating the International Grid Control Cooperation (IGCC region in Europe. These regulations focused on the permissible state of charge (SoC of the battery during nominal and extreme conditions. The concomitant increased capacity demand oversizing may result in a significant profitability reduction, which can be attenuated only by using an optimal parameterization of the control algorithm for energy management of the storage systems. In this paper, the sizing optimization is achieved and a recommendation for a control algorithm that includes the appropriate parameters for the requirements in the German market is given. Furthermore, the storage cost is estimated, including battery aging simulations for different aging parameter sets to allow for a realistic profitability calculation.

  1. Adaptive heat pump and battery storage demand side energy management

    Science.gov (United States)

    Sobieczky, Florian; Lettner, Christian; Natschläger, Thomas; Traxler, Patrick

    2017-11-01

    An adaptive linear model predictive control strategy is introduced for the problem of demand side energy management, involving a photovoltaic device, a battery, and a heat pump. Moreover, the heating influence of solar radiation via the glass house effect is considered. Global sunlight radiation intensity and the outside temperature are updated by weather forecast data. The identification is carried out after adapting to a time frame witch sufficiently homogeneous weather. In this way, in spite of the linearity an increase in precision and cost reduction of up to 46% is achieved. It is validated for an open and closed loop version of the MPC problem using real data of the ambient temperature and the global radiation.

  2. Two-stage energy storage equalization system for lithium-ion battery pack

    Science.gov (United States)

    Chen, W.; Yang, Z. X.; Dong, G. Q.; Li, Y. B.; He, Q. Y.

    2017-11-01

    How to raise the efficiency of energy storage and maximize storage capacity is a core problem in current energy storage management. For that, two-stage energy storage equalization system which contains two-stage equalization topology and control strategy based on a symmetric multi-winding transformer and DC-DC (direct current-direct current) converter is proposed with bidirectional active equalization theory, in order to realize the objectives of consistent lithium-ion battery packs voltages and cells voltages inside packs by using a method of the Range. Modeling analysis demonstrates that the voltage dispersion of lithium-ion battery packs and cells inside packs can be kept within 2 percent during charging and discharging. Equalization time was 0.5 ms, which shortened equalization time of 33.3 percent compared with DC-DC converter. Therefore, the proposed two-stage lithium-ion battery equalization system can achieve maximum storage capacity between lithium-ion battery packs and cells inside packs, meanwhile efficiency of energy storage is significantly improved.

  3. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage.

    Science.gov (United States)

    Zhao, Yu; Ding, Yu; Li, Yutao; Peng, Lele; Byon, Hye Ryung; Goodenough, John B; Yu, Guihua

    2015-11-21

    Electrical energy storage system such as secondary batteries is the principle power source for portable electronics, electric vehicles and stationary energy storage. As an emerging battery technology, Li-redox flow batteries inherit the advantageous features of modular design of conventional redox flow batteries and high voltage and energy efficiency of Li-ion batteries, showing great promise as efficient electrical energy storage system in transportation, commercial, and residential applications. The chemistry of lithium redox flow batteries with aqueous or non-aqueous electrolyte enables widened electrochemical potential window thus may provide much greater energy density and efficiency than conventional redox flow batteries based on proton chemistry. This Review summarizes the design rationale, fundamentals and characterization of Li-redox flow batteries from a chemistry and material perspective, with particular emphasis on the new chemistries and materials. The latest advances and associated challenges/opportunities are comprehensively discussed.

  4. A flexible model for economic operational management of grid battery energy storage

    International Nuclear Information System (INIS)

    Fares, Robert L.; Webber, Michael E.

    2014-01-01

    To connect energy storage operational planning with real-time battery control, this paper integrates a dynamic battery model with an optimization program. First, we transform a behavioral circuit model designed to describe a variety of battery chemistries into a set of coupled nonlinear differential equations. Then, we discretize the differential equations to integrate the battery model with a GAMS (General Algebraic Modeling System) optimization program, which decides when the battery should charge and discharge to maximize its operating revenue. We demonstrate the capabilities of our model by applying it to lithium-ion (Li-ion) energy storage operating in Texas' restructured electricity market. By simulating 11 years of operation, we find that our model can robustly compute an optimal charge-discharge schedule that maximizes daily operating revenue without violating a battery's operating constraints. Furthermore, our results show there is significant variation in potential operating revenue from one day to the next. The revenue potential of Li-ion storage varies from approximately $0–1800/MWh of energy discharged, depending on the volatility of wholesale electricity prices during an operating day. Thus, it is important to consider the material degradation-related “cost” of performing a charge-discharge cycle in battery operational management, so that the battery only operates when revenue exceeds cost. - Highlights: • A flexible, dynamic battery model is integrated with an optimization program. • Electricity price data is used to simulate 11 years of Li-ion operation on the grid. • The optimization program robustly computes an optimal charge-discharge schedule. • Variation in daily Li-ion battery revenue potential from 2002 to 2012 is shown. • We find it is important to consider the cost of a grid duty cycle

  5. NAS battery demonstration at American Electric Power:a study for the DOE energy storage program.

    Energy Technology Data Exchange (ETDEWEB)

    Newmiller, Jeff (Endecon Engineering, San Ramon, CA); Norris, Benjamin L. (Norris Energy Consulting Company, Martinez, CA); Peek, Georgianne Huff

    2006-03-01

    The first U.S. demonstration of the NGK sodium/sulfur battery technology was launched in August 2002 when a prototype system was installed at a commercial office building in Gahanna, Ohio. American Electric Power served as the host utility that provided the office space and technical support throughout the project. The system was used to both reduce demand peaks (peak-shaving operation) and to mitigate grid power disturbances (power quality operation) at the demonstration site. This report documents the results of the demonstration, provides an economic analysis of a commercial sodium/sulfur battery energy storage system at a typical site, and describes a side-by-side demonstration of the capabilities of the sodium/sulfur battery system, a lead-acid battery system, and a flywheel-based energy storage system in a power quality application.

  6. A Grid Connected Photovoltaic Inverter with Battery-Supercapacitor Hybrid Energy Storage.

    Science.gov (United States)

    Miñambres-Marcos, Víctor Manuel; Guerrero-Martínez, Miguel Ángel; Barrero-González, Fermín; Milanés-Montero, María Isabel

    2017-08-11

    The power generation from renewable power sources is variable in nature, and may contain unacceptable fluctuations, which can be alleviated by using energy storage systems. However, the cost of batteries and their limited lifetime are serious disadvantages. To solve these problems, an improvement consisting in the collaborative association of batteries and supercapacitors has been studied. Nevertheless, these studies don't address in detail the case of residential and large-scale photovoltaic systems. In this paper, a selected combined topology and a new control scheme are proposed to control the power sharing between batteries and supercapacitors. Also, a method for sizing the energy storage system together with the hybrid distribution based on the photovoltaic power curves is introduced. This innovative contribution not only reduces the stress levels on the battery, and hence increases its life span, but also provides constant power injection to the grid during a defined time interval. The proposed scheme is validated through detailed simulation and experimental tests.

  7. The Research of Super Capacitor and Battery Hybrid Energy Storage System with the THIPWM

    OpenAIRE

    Jianwei Ma; Shanshan Chen

    2014-01-01

    It has to be considered that dynamic performance of Super Capacitor and Battery hybrid energy storage system is poor and the output waveform of AC voltage distorted seriously. The Third Harmonic Injection PWM (THIPWM) with the three-level inverter, which has a excellent performance to improve the dynamic performance of the super capacitor and battery, gathers information from ends of the DC output voltage or current and the total current of the DC side to solve the problem of unbalanced neutr...

  8. Geometric Process-Based Maintenance and Optimization Strategy for the Energy Storage Batteries

    Directory of Open Access Journals (Sweden)

    Yan Li

    2016-01-01

    Full Text Available Renewable energy is critical for improving energy structure and reducing environment pollution. But its strong fluctuation and randomness have a serious effect on the stability of the microgrid without the coordination of the energy storage batteries. The main factors that influence the development of the energy storage system are the lack of valid operation and maintenance management as well as the cost control. By analyzing the typical characteristics of the energy storage batteries in their life cycle, the geometric process-based model including the deteriorating system and the improving system is firstly built for describing the operation process, the preventive maintenance process, and the corrective maintenance process. In addition, this paper proposes an optimized management strategy, which aims to minimize the long-run average cost of the energy storage batteries by defining the time interval of the detection and preventive maintenance process as well as the optimal corrective maintenance times, subjected to the state of health and the reliability conditions. The simulation is taken under the built model by applying the proposed energy storage batteries’ optimized management strategy, which verifies the effectiveness and applicability of the management strategy, denoting its obvious practicality on the current application.

  9. Research on Energy Storage of Super Capacitor, Accumulator and Lithium Batteries in Distributed Systems

    Directory of Open Access Journals (Sweden)

    WANG Wen-Xing

    2014-06-01

    Full Text Available In order to maintain power quality and system reliability, distributed power supply system must maintain the dynamic balance of power, energy storage systems ensure stable and reliable quality of power supply system. This paper briefly analyzed the current situation and development of energy storage technologies, described the meaning and value of distributed power supply system suitable for ultra capacitors and lithium hybrid energy storage structural studies, more comprehensive descripted common models of the super capacitors, lithium batteries and accumulators illustrate, and compared the advantages and shortcomings.

  10. Integrating a Photocatalyst into a Hybrid Lithium-Sulfur Battery for Direct Storage of Solar Energy.

    Science.gov (United States)

    Li, Na; Wang, Yarong; Tang, Daiming; Zhou, Haoshen

    2015-08-03

    Direct capture and storage of abundant but intermittent solar energy in electrical energy-storage devices such as rechargeable lithium batteries is of great importance, and could provide a promising solution to the challenges of energy shortage and environment pollution. Here we report a new prototype of a solar-driven chargeable lithium-sulfur (Li-S) battery, in which the capture and storage of solar energy was realized by oxidizing S(2-) ions to polysulfide ions in aqueous solution with a Pt-modified CdS photocatalyst. The battery can deliver a specific capacity of 792 mAh g(-1) during 2 h photocharging process with a discharge potential of around 2.53 V versus Li(+)/Li. A specific capacity of 199 mAh g(-1), reaching the level of conventional lithium-ion batteries, can be achieved within 10 min photocharging. Moreover, the charging process of the battery can proceed under natural sunlight irradiation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Simulation of the Interaction Between Flywheel Energy Storage and Battery Energy Storage on the International Space Station

    Science.gov (United States)

    Trouong, Long V.; Wolff, Frederic J.; Dravid, Narayan V.; Li, Ponlee

    2000-01-01

    Replacement of one module of the battery charge discharge unit (BCDU) of the International Space Station (ISS) by a flywheel energy storage unit (FESU) is under consideration. Integration of these two dissimilar systems is likely to surface difficulties in areas of system stability and fault protection. Other issues that need to be addressed include flywheel charge and discharge profiles and their effect on the ISS power system as well as filter sizing for power Ability purposes. This paper describes a SABER based simulation to study these issues.

  12. A Techno-Commercial Assessment of Residential and Bulk Battery Energy Storage

    Science.gov (United States)

    Nadkarni, Aditya

    2013-01-01

    Battery energy storage has shown a lot of potential in the recent past to be effective in various grid services due to its near instantaneous ramp rates and modularity. This thesis aims to determine the commercial viability of customer premises and substation sited battery energy storage systems. Five different types of services have been analyzed considering current market pricing of Lithium-ion batteries and power conditioning equipment. Energy Storage Valuation Tool 3.0 (Beta) has been used to exclusively determine the value of energy storage in the services analyzed. The results indicate that on the residential level, Lithium-ion battery energy storage may not be a cost beneficial option for retail tariff management or demand charge management as only 20-30% of the initial investment is recovered at the end of 15 year plant life. SRP's two retail Time-of-Use price plans E-21 and E-26 were analyzed in respect of their ability to increase returns from storage compared to those with flat pricing. It was observed that without a coupled PV component, E-21 was more suitable for customer premises energy storage, however, its revenue stream reduces with addition to PV. On the grid scale, however, with carefully chosen service hierarchy such as distribution investment deferral, spinning or balancing reserve support, the initial investment can be recovered to an extent of about 50-70%. The study done here is specific to Salt River Project inputs and data. Results for all the services analyzed are highly location specific and are only indicative of the overall viability and returns from them.

  13. Ramping Performance Analysis of the Kahuku Wind-Energy Battery Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, V. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Corbus, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-11-01

    High penetrations of wind power on the electrical grid can introduce technical challenges caused by resource variability. Such variability can have undesirable effects on the frequency, voltage, and transient stability of the grid. Energy storage devices can be an effective tool in reducing variability impacts on the power grid in the form of power smoothing and ramp control. Integrating anenergy storage system with a wind power plant can help smooth the variable power produced from wind. This paper explores the fast-response, megawatt-scale, wind-energy battery storage systems that were recently deployed throughout the Hawaiian islands to support wind and solar projects.

  14. The emerging chemistry of sodium ion batteries for electrochemical energy storage.

    Science.gov (United States)

    Kundu, Dipan; Talaie, Elahe; Duffort, Victor; Nazar, Linda F

    2015-03-09

    Energy storage technology has received significant attention for portable electronic devices, electric vehicle propulsion, bulk electricity storage at power stations, and load leveling of renewable sources, such as solar energy and wind power. Lithium ion batteries have dominated most of the first two applications. For the last two cases, however, moving beyond lithium batteries to the element that lies below-sodium-is a sensible step that offers sustainability and cost-effectiveness. This requires an evaluation of the science underpinning these devices, including the discovery of new materials, their electrochemistry, and an increased understanding of ion mobility based on computational methods. The Review considers some of the current scientific issues underpinning sodium ion batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Primary frequency regulation with Li-ion battery energy storage system: A case study for Denmark

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Ioan; Stan, Ana-Irina

    2013-01-01

    on the results obtained from accelerated lifetime testing. The developed Li­-ion battery lifetime model is later a base for the analyses of the economic profitability of the investment in the Li-ion battery energy storage system (BESS), which delivers the primary frequency regulation service on the Danish...... lifetime, which introduces significant risk into the business model. This paper deals with the investigation of the lifetime of LiFeP04/C battery systems when they are used to provide primary frequency regulation service. A semi-empirical lifetime model for these battery cells was developed based...... electricity market. Moreover, in this paper a possible improvement of the Li-ion BESS energy management strategy is shown, which allows for obtaining the higher NPV....

  16. Life Prediction Model for Grid-Connected Li-ion Battery Energy Storage System: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kandler A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Saxon, Aron R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Keyser, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lundstrom, Blake R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cao, Ziwei [SunPower Corporation; Roc, Albert [SunPower Corp.

    2017-08-25

    Life Prediction Model for Grid-Connected Li-ion Battery Energy Storage System: Preprint Lithium-ion (Li-ion) batteries are being deployed on the electrical grid for a variety of purposes, such as to smooth fluctuations in solar renewable power generation. The lifetime of these batteries will vary depending on their thermal environment and how they are charged and discharged. To optimal utilization of a battery over its lifetime requires characterization of its performance degradation under different storage and cycling conditions. Aging tests were conducted on commercial graphite/nickel-manganese-cobalt (NMC) Li-ion cells. A general lifetime prognostic model framework is applied to model changes in capacity and resistance as the battery degrades. Across 9 aging test conditions from 0oC to 55oC, the model predicts capacity fade with 1.4 percent RMS error and resistance growth with 15 percent RMS error. The model, recast in state variable form with 8 states representing separate fade mechanisms, is used to extrapolate lifetime for example applications of the energy storage system integrated with renewable photovoltaic (PV) power generation.

  17. Aqueous hybrid ion batteries - An environmentally friendly alternative for stationary energy storage?

    Science.gov (United States)

    Peters, Jens F.; Weil, Marcel

    2017-10-01

    Aqueous hybrid ion batteries (AHIB) are being promoted as an environmentally friendly alternative to existing stationary battery technologies. However, no quantification of their potential environmental impacts has yet been done. This paper presents a prospective life cycle assessment of an AHIB module and compares its performance with lithium-ion and sodium-ion batteries in two different stationary energy storage applications. The findings show that the claim of being an environmentally friendly technology can only be supported with some major limitations. While the AHIB uses abundant and non-toxic materials, it has a very low energy density and requires increased amounts of material for providing a given storage capacity. Per kWh of battery, results comparable to those of the alternative lithium- or sodium-ion batteries are obtained, but significantly higher impacts under global warming and ozone depletion aspects. The comparable high cycle life of the AHIB compensates this partially, requiring less battery replacements over the lifetime of the application. On the other hand, its internal inefficiencies are higher, what becomes the dominating factor when charging majorly fossil based electricity, making AHIB unattractive for this type of applications.

  18. Sodium-ion hybrid electrolyte battery for sustainable energy storage applications

    Science.gov (United States)

    Senthilkumar, S. T.; Abirami, Mari; Kim, Junsoo; Go, Wooseok; Hwang, Soo Min; Kim, Youngsik

    2017-02-01

    Sustainable, safe, and low-cost energy storage systems are essential for large-scale electrical energy storage. Herein, we report a sodium (Na)-ion hybrid electrolyte battery with a replaceable cathode system, which is separated from the Na metal anode by a Na superionic conducting ceramic. By using a fast Na-ion-intercalating nickel hexacyanoferrate (NiHCF) cathode along with an eco-friendly seawater catholyte, we demonstrate good cycling performance with an average discharge voltage of 3.4 V and capacity retention >80% over 100 cycles and >60% over 200 cycle. Remarkably, such high capacity retention is observed for both the initial as well as replaced cathodes. Moreover, a Na-metal-free hybrid electrolyte battery containing hard carbon as the anode exhibits an energy density of ∼146 Wh kg-1 at a current density of 10 mA g-1, which is comparable to that of lead-acid batteries and much higher than that of conventional aqueous Na-ion batteries. These results pave the way for further advances in sustainable energy storage technology.

  19. Toward an Aqueous Solar Battery: Direct Electrochemical Storage of Solar Energy in Carbon Nitrides.

    Science.gov (United States)

    Podjaski, Filip; Kröger, Julia; Lotsch, Bettina V

    2018-03-01

    Graphitic carbon nitrides have emerged as an earth-abundant family of polymeric materials for solar energy conversion. Herein, a 2D cyanamide-functionalized polyheptazine imide (NCN-PHI) is reported, which for the first time enables the synergistic coupling of two key functions of energy conversion within one single material: light harvesting and electrical energy storage. Photo-electrochemical measurements in aqueous electrolytes reveal the underlying mechanism of this "solar battery" material: the charge storage in NCN-PHI is based on the photoreduction of the carbon nitride backbone and charge compensation is realized by adsorption of alkali metal ions within the NCN-PHI layers and at the solution interface. The photoreduced carbon nitride can thus be described as a battery anode operating as a pseudocapacitor, which can store light-induced charge in the form of long-lived, "trapped" electrons for hours. Importantly, the potential window of this process is not limited by the water reduction reaction due to the high intrinsic overpotential of carbon nitrides for hydrogen evolution, potentially enabling new applications for aqueous batteries. Thus, the feasibility of light-induced electrical energy storage and release on demand by a one-component light-charged battery anode is demonstrated, which provides a sustainable solution to overcome the intermittency of solar radiation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Higher-capacity lithium ion battery chemistries for improved residential energy storage with micro-cogeneration

    International Nuclear Information System (INIS)

    Darcovich, K.; Henquin, E.R.; Kenney, B.; Davidson, I.J.; Saldanha, N.; Beausoleil-Morrison, I.

    2013-01-01

    Highlights: • Characterized two novel high capacity electrode materials for Li-ion batteries. • A numerical discharge model was run to characterize Li-ion cell behavior. • Engineering model of Li-ion battery pack developed from cell fundamentals. • ESP-r model integrated micro-cogeneration and high capacity Li-ion storage. • Higher capacity batteries shown to improve micro-cogeneration systems. - Abstract: Combined heat and power on a residential scale, also known as micro-cogeneration, is currently gaining traction as an energy savings practice. The configuration of micro-cogeneration systems is highly variable, as local climate, energy supply, energy market and the feasibility of including renewable type components such as wind turbines or photovoltaic panels are all factors. Large-scale lithium ion batteries for electrical storage in this context can provide cost savings, operational flexibility, and reduced stress on the distribution grid as well as a degree of contingency for installations relying upon unsteady renewables. Concurrently, significant advances in component materials used to make lithium ion cells offer performance improvements in terms of power output, energy capacity, robustness and longevity, thereby enhancing their prospective utility in residential micro-cogeneration installations. The present study evaluates annual residential energy use for a typical Canadian home connected to the electrical grid, equipped with a micro-cogeneration system consisting of a Stirling engine for supplying heat and power, coupled with a nominal 2 kW/6 kW h lithium ion battery. Two novel battery cathode chemistries, one a new Li–NCA material, the other a high voltage Ni-doped lithium manganate, are compared in the residential micro-cogeneration context with a system equipped with the presently conventional LiMn 2 O 4 spinel-type battery

  1. Aqueous Lithium-Iodine Solar Flow Battery for the Simultaneous Conversion and Storage of Solar Energy.

    Science.gov (United States)

    Yu, Mingzhe; McCulloch, William D; Beauchamp, Damian R; Huang, Zhongjie; Ren, Xiaodi; Wu, Yiying

    2015-07-08

    Integrating both photoelectric-conversion and energy-storage functions into one device allows for the more efficient solar energy usage. Here we demonstrate the concept of an aqueous lithium-iodine (Li-I) solar flow battery (SFB) by incorporation of a built-in dye-sensitized TiO2 photoelectrode in a Li-I redox flow battery via linkage of an I3(-)/I(-) based catholyte, for the simultaneous conversion and storage of solar energy. During the photoassisted charging process, I(-) ions are photoelectrochemically oxidized to I3(-), harvesting solar energy and storing it as chemical energy. The Li-I SFB can be charged at a voltage of 2.90 V under 1 sun AM 1.5 illumination, which is lower than its discharging voltage of 3.30 V. The charging voltage reduction translates to energy savings of close to 20% compared to conventional Li-I batteries. This concept also serves as a guiding design that can be extended to other metal-redox flow battery systems.

  2. Rocking-Chair Ammonium-Ion Battery: A Highly Reversible Aqueous Energy Storage System.

    Science.gov (United States)

    Wu, Xianyong; Qi, Yitong; Hong, Jessica J; Li, Zhifei; Hernandez, Alexandre S; Ji, Xiulei

    2017-10-09

    Aqueous rechargeable batteries are promising solutions for large-scale energy storage. Such batteries have the merit of low cost, innate safety, and environmental friendliness. To date, most known aqueous ion batteries employ metal cation charge carriers. Here, we report the first "rocking-chair" NH 4 -ion battery of the full-cell configuration by employing an ammonium Prussian white analogue, (NH 4 ) 1.47 Ni[Fe(CN) 6 ] 0.88 , as the cathode, an organic solid, 3,4,9,10-perylenetetracarboxylic diimide (PTCDI), as the anode, and 1.0 m aqueous (NH 4 ) 2 SO 4 as the electrolyte. This novel aqueous ammonium-ion battery demonstrates encouraging electrochemical performance: an average operation voltage of ca. 1.0 V, an attractive energy density of ca. 43 Wh kg -1 based on both electrodes' active mass, and excellent cycle life over 1000 cycles with 67 % capacity retention. Importantly, the topochemistry results of NH 4 + in these electrodes point to a new paradigm of NH 4 + -based energy storage. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Effect of Discharge Rate on Positive Active Material of Lead Carbon Battery for Energy Storage

    Science.gov (United States)

    Chen, Kailun; Liu, Hao; Hu, Chen; Gao, Fei; Yang, Kai; Wang, Hao

    2017-10-01

    Lead carbon battery has been widespread concern with its excellent performance of charge and discharge under High Rate Part State of Charge (HRPSoC) as well as its cycle performance. In this paper, the cycling performance of lead carbon battery for energy storage was tested by different discharge rate. The effects of different discharge rate on the composition and morphology of positive active materials in the cycle was studied by XRD and SEM. The effect of different discharge rate on the ohmic impedance of lead carbon battery was studied by testing Electrochemical Impedance Spectroscopy with different capacity retention rates. The results show that with the increase of the discharge rate, the content of PbO2 in the positive active material increases, the active substance utilization and the particle size of PbO2 crystal declines, and the ohmic impedance of the battery decreases.

  4. Model Predictive Control for Distributed Microgrid Battery Energy Storage Systems

    DEFF Research Database (Denmark)

    Morstyn, Thomas; Hredzak, Branislav; Aguilera, Ricardo P.

    2018-01-01

    -current model and linearized power flow approximations. This allows the optimal power flows to be solved as a convex optimization problem, for which fast and robust solvers exist. The proposed method does not assume that real and reactive power flows are decoupled, allowing line losses, voltage constraints...... feeder, with distributed battery ES systems and intermittent photovoltaic generation. It is shown that the proposed control strategy approaches the performance of a strategy based on nonconvex optimization, while reducing the required computation time by a factor of 1000, making it suitable for a real...

  5. Optimal operation strategy of battery energy storage system to real-time electricity price in Denmark

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Bak-Jensen, Birgitte

    2010-01-01

    Since the hourly spot market price is available one day ahead, the price could be transferred to the consumers and they may have some motivations to install an energy storage system in order to save their energy costs. This paper presents an optimal operation strategy for a battery energy storage...... markets in some ways, is chosen as the studied power system in this paper. Two kinds of BESS, based on polysulfide-bromine (PSB) and vanadium redox (VRB) battery technologies, are studies in the paper. Simulation results show, that the proposed optimal operation strategy is an effective measure to achieve...... system (BESS) in relation to the real-time electricity price in order to achieve the maximum profits of the BESS. The western Danish power system, which is currently the grid area in the world that has the largest share of wind power in its generation profiles and may represent the future of electricity...

  6. Energy Storage Scheduling with an Advanced Battery Model: A Game–Theoretic Approach

    Directory of Open Access Journals (Sweden)

    Matthias Pilz

    2017-11-01

    Full Text Available Energy storage systems will play a key role for individual users in the future smart grid. They serve two purposes: (i handling the intermittent nature of renewable energy resources for a more reliable and efficient system; and (ii preventing the impact of blackouts on users and allowing for more independence from the grid, while saving money through load-shifting. In this paper we investigate the latter scenario by looking at a neighbourhood of 25 households whose demand is satisfied by one utility company. Assuming the users possess lithium-ion batteries, we answer the question of how each household can make the best use of their individual storage system given a real-time pricing policy. To this end, each user is modelled as a player of a non-cooperative scheduling game. The novelty of the game lies in the advanced battery model, which incorporates charging and discharging characteristics of lithium-ion batteries. The action set for each player comprises day-ahead schedules of their respective battery usage. We analyse different user behaviour and are able to obtain a realistic and applicable understanding of the potential of these systems. As a result, we show the correlation between the efficiency of the battery and the outcome of the game.

  7. Grid Inertial Response with Lithium-ion Battery Energy Storage Systems

    DEFF Research Database (Denmark)

    Knap, Vaclav; Sinha, Rakesh; Swierczynski, Maciej Jozef

    2014-01-01

    of this paper is to evaluate the technical viability of utilizing energy storage systems based on Lithium-ion batteries for providing inertial response in grids with high penetration levels of wind power. In order to perform this evaluation, the 12-bus system grid model was used; the inertia of the grid...... was varied by decreasing the number of conventional power plants in the studied grid model while in the same time increasing the load and the wind power penetration levels. Moreover, in order to perform a realistic investigation, a dynamic model of the Lithium-ion battery was considered and parameterized...

  8. Analysis of battery storage in wind-energy systems for commercial buildings

    Science.gov (United States)

    Caskey, D. L.; Broehl, J.; Skelton, J.

    1981-09-01

    The performance of wind energy systems in commercial buildings was analyzed with and without storage to assess the economic value of storage. The SOLSTOR program used in the simulations is briefly described. Life-cycle energy cost and performance measures were calculated for different wind turbine and storage capacity levels. The analyses focused on Dodge City (average wind speed of 5.8 m/s) and Washington, DC (wind speed 2.9 m/s). Levelized system costs are computed for warehouse and office applications. To assess the sensitivity of the system performance measures and cost, two series of sensitivity tests were performed. The first determined the increase in system cost for an increase of storage capacity, and the second examined the effect of doubling the battery cost for the office building application.

  9. Stationary battery storage of energy transition a central component; Stationaere Batteriespeicher der Energiewende eine zentrale Komponente

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, Matthias; Lux, Stephan [Fraunhofer-Institut fuer Solare Energiesysteme ISE, Freiburg (Germany)

    2017-01-15

    In a regenerative energy system with strong fluctuations in electricity production, the importance of short-term storage is increasing - on the one hand, in order to optimal need-oriented use of the energy supply, on the other hand, at any time to ensure a high network quality. The present overview of stationary battery storage shows how important it will be especially in the area of larger storage facilities with direct link to regenerative power plants, as a district storage or in the industry. [German] In einem regenerativen Energiesystem mit starken Fluktuationen der Stromproduktion nimmt die Bedeutung der Kurzzeitspeicherung zu - einerseits, um das Energieangebot bedarfsgerecht optimal zu nutzen, andererseits, um zu jedem Zeitpunkt eine hohe Netzqualitaet zu gewaehrleisten. Der vorliegende Ueberblick ueber stationaere Batteriespeicher zeigt, wie wichtig vor allem der Bereich groesserer Speicher in direkter Koppelung mit regenerativen Kraftwerken, als Quartiersspeicher oder im Gewerbe sein wird.

  10. The hybrid energy storages based on batteries and ultracapacitors for contact microwelding

    Directory of Open Access Journals (Sweden)

    Bondarenko Yu. V.

    2014-08-01

    Full Text Available Micro resistance welding is an effective way to reliably join small-scale parts. It is widely used in electronics and instrument-making. The important particularities of micro resistance welding are pulse character of energy consumption, non-linear load and special form of current pulses. So, these particularities of welding process cause negative influence on the mains. One of the known ways to avoid it is to use autonomous power supplies for micro resistance welding machines. The important task for building autonomous power supplies is to choose effective energy storages, which have high capacity and small internal resistance, and which are capable to be charged and deliver energy to load very quickly. The solution of this task is seen in using hybrid energy storages, which include accumulators and ultracapacitors. The accumulators are able to provide high energy capacitance and the ultracapacitors are able to provide fast energy delivery. The possibility of application of hybrid energy storages, based on accumulator batteries and ultracapacitors, in micro resistance welding machines is confirmed with computer simulation. Two variants of hybrid energy storages are proposed. These hybrid energy storages have high power and dynamic characteristics, which are sufficient to generate current pulses for welding according to necessary settings.

  11. Battery Energy Storage Sizing When Time of Use Pricing Is Applied

    OpenAIRE

    Carpinelli, Guido; Khormali, Shahab; Mottola, Fabio; Proto, Daniela

    2014-01-01

    Battery energy storage systems (BESSs) are considered a key device to be introduced to actuate the smart grid paradigm. However, the most critical aspect related to the use of such device is its economic feasibility as it is a still developing technology characterized by high costs and limited life duration. Particularly, the sizing of BESSs must be performed in an optimized way in order to maximize the benefits related to their use. This paper presents a simple and quick closed form procedur...

  12. Investigation of Synergy Between Electrochemical Capacitors, Flywheels, and Batteries in Hybrid Energy Storage for PV Systems

    International Nuclear Information System (INIS)

    Miller, John; Sibley Lewis, B.; Wohlgemuth, John

    1999-01-01

    This report describes the results of a study that investigated the synergy between electrochemical capacitors (ECs) and flywheels, in combination with each other and with batteries, as energy storage subsystems in photovoltaic (PV) systems. EC and flywheel technologies are described and the potential advantages and disadvantages of each in PV energy storage subsystems are discussed. Seven applications for PV energy storage subsystems are described along with the potential market for each of these applications. A spreadsheet model, which used the net present value method, was used to analyze and compare the costs over time of various system configurations based on flywheel models. It appears that a synergistic relationship exists between ECS and flywheels. Further investigation is recommended to quantify the performance and economic tradeoffs of this synergy and its effect on overall system costs

  13. Investigation of Synergy Between Electrochemical Capacitors, Flywheels, and Batteries in Hybrid Energy Storage for PV Systems

    Energy Technology Data Exchange (ETDEWEB)

    Miller, John; Sibley, Lewis, B.; Wohlgemuth, John

    1999-06-01

    This report describes the results of a study that investigated the synergy between electrochemical capacitors (ECs) and flywheels, in combination with each other and with batteries, as energy storage subsystems in photovoltaic (PV) systems. EC and flywheel technologies are described and the potential advantages and disadvantages of each in PV energy storage subsystems are discussed. Seven applications for PV energy storage subsystems are described along with the potential market for each of these applications. A spreadsheet model, which used the net present value method, was used to analyze and compare the costs over time of various system configurations based on flywheel models. It appears that a synergistic relationship exists between ECS and flywheels. Further investigation is recommended to quantify the performance and economic tradeoffs of this synergy and its effect on overall system costs.

  14. Reactivation of dead sulfide species in lithium polysulfide flow battery for grid scale energy storage.

    Science.gov (United States)

    Jin, Yang; Zhou, Guangmin; Shi, Feifei; Zhuo, Denys; Zhao, Jie; Liu, Kai; Liu, Yayuan; Zu, Chenxi; Chen, Wei; Zhang, Rufan; Huang, Xuanyi; Cui, Yi

    2017-09-06

    Lithium polysulfide batteries possess several favorable attributes including low cost and high energy density for grid energy storage. However, the precipitation of insoluble and irreversible sulfide species on the surface of carbon and lithium (called "dead" sulfide species) leads to continuous capacity degradation in high mass loading cells, which represents a great challenge. To address this problem, herein we propose a strategy to reactivate dead sulfide species by reacting them with sulfur powder with stirring and heating (70 °C) to recover the cell capacity, and further demonstrate a flow battery system based on the reactivation approach. As a result, ultrahigh mass loading (0.125 g cm -3 , 2 g sulfur in a single cell), high volumetric energy density (135 Wh L -1 ), good cycle life, and high single-cell capacity are achieved. The high volumetric energy density indicates its promising application for future grid energy storage.Lithium polysulfide batteries suffer from the precipitation of insoluble and irreversible sulfide species on the surface of carbon and lithium. Here the authors show a reactivation strategy by a reaction with cheap sulfur powder under stirring and heating to recover the cell capacity.

  15. Tunable Reaction Potentials in Open Framework Nanoparticle Battery Electrodes for Grid-Scale Energy Storage

    KAUST Repository

    Wessells, Colin D.

    2012-02-28

    The electrical energy grid has a growing need for energy storage to address short-term transients, frequency regulation, and load leveling. Though electrochemical energy storage devices such as batteries offer an attractive solution, current commercial battery technology cannot provide adequate power, and cycle life, and energy efficiency at a sufficiently low cost. Copper hexacyanoferrate and nickel hexacyanoferrate, two open framework materials with the Prussian Blue structure, were recently shown to offer ultralong cycle life and high-rate performance when operated as battery electrodes in safe, inexpensive aqueous sodium ion and potassium ion electrolytes. In this report, we demonstrate that the reaction potential of copper-nickel alloy hexacyanoferrate nanoparticles may be tuned by controlling the ratio of copper to nickel in these materials. X-ray diffraction, TEM energy dispersive X-ray spectroscopy, and galvanostatic electrochemical cycling of copper-nickel hexacyanoferrate reveal that copper and nickel form a fully miscible solution at particular sites in the framework without perturbing the structure. This allows copper-nickel hexacyanoferrate to reversibly intercalate sodium and potassium ions for over 2000 cycles with capacity retentions of 100% and 91%, respectively. The ability to precisely tune the reaction potential of copper-nickel hexacyanoferrate without sacrificing cycle life will allow the development of full cells that utilize the entire electrochemical stability window of aqueous sodium and potassium ion electrolytes. © 2012 American Chemical Society.

  16. A Statistical Analysis of the Economic Drivers of Battery Energy Storage in Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Long, Matthew; Simpkins, Travis; Cutler, Dylan; Anderson, Kate

    2016-11-21

    There is significant interest in using battery energy storage systems (BESS) to reduce peak demand charges, and therefore the life cycle cost of electricity, in commercial buildings. This paper explores the drivers of economic viability of BESS in commercial buildings through statistical analysis. A sample population of buildings was generated, a techno-economic optimization model was used to size and dispatch the BESS, and the resulting optimal BESS sizes were analyzed for relevant predictor variables. Explanatory regression analyses were used to demonstrate that peak demand charges are the most significant predictor of an economically viable battery, and that the shape of the load profile is the most significant predictor of the size of the battery.

  17. The Research of Super Capacitor and Battery Hybrid Energy Storage System with the THIPWM

    Directory of Open Access Journals (Sweden)

    Jianwei Ma

    2014-02-01

    Full Text Available It has to be considered that dynamic performance of Super Capacitor and Battery hybrid energy storage system is poor and the output waveform of AC voltage distorted seriously. The Third Harmonic Injection PWM (THIPWM with the three-level inverter, which has a excellent performance to improve the dynamic performance of the super capacitor and battery, gathers information from ends of the DC output voltage or current and the total current of the DC side to solve the problem of unbalanced neutral line voltage of three-level inverter .It also keeps super capacitor and battery controlled smoothly during the operation, and reduces the final output waveform distortion index. The simulation results verify the practicality and correctness of the three-level inverter topology and its control algorithm.

  18. A Statistical Analysis of the Economic Drivers of Battery Energy Storage in Commercial Buildings: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Long, Matthew; Simpkins, Travis; Cutler, Dylan; Anderson, Katie

    2016-11-01

    There is significant interest in using battery energy storage systems (BESS) to reduce peak demand charges, and therefore the life cycle cost of electricity, in commercial buildings. This paper explores the drivers of economic viability of BESS in commercial buildings through statistical analysis. A sample population of buildings was generated, a techno-economic optimization model was used to size and dispatch the BESS, and the resulting optimal BESS sizes were analyzed for relevant predictor variables. Explanatory regression analyses were used to demonstrate that peak demand charges are the most significant predictor of an economically viable battery, and that the shape of the load profile is the most significant predictor of the size of the battery.

  19. Case Studies of Energy Storage with Fuel Cells and Batteries for Stationary and Mobile Applications

    Directory of Open Access Journals (Sweden)

    Nadia Belmonte

    2017-03-01

    Full Text Available In this paper, hydrogen coupled with fuel cells and lithium-ion batteries are considered as alternative energy storage methods. Their application on a stationary system (i.e., energy storage for a family house and a mobile system (i.e., an unmanned aerial vehicle will be investigated. The stationary systems, designed for off-grid applications, were sized for photovoltaic energy production in the area of Turin, Italy, to provide daily energy of 10.25 kWh. The mobile systems, to be used for high crane inspection, were sized to have a flying range of 120 min, one being equipped with a Li-ion battery and the other with a proton-exchange membrane fuel cell. The systems were compared from an economical point of view and a life cycle assessment was performed to identify the main contributors to the environmental impact. From a commercial point of view, the fuel cell and the electrolyzer, being niche products, result in being more expensive with respect to the Li-ion batteries. On the other hand, the life cycle assessment (LCA results show the lower burdens of both technologies.

  20. Simulation-based design of energy management system with storage battery for a refugee shelter in Japan

    Science.gov (United States)

    Kaji, K.; Zhang, J.; Horie, H.; Akimoto, H.; Tanaka, K.

    2013-12-01

    Since the massive earthquake hit eastern Japan in March, 2011, our team has participated in the recovery planning for Kesen Association, which is a group of cities in northeastern Japan. As one of our proposals for the recovery planning for the community, we are designing energy management system with renewable energy (RE) and storage batteries. Some public facilities in the area have been used as refugee shelters, but refugees had to put up with life without electricity for a while after the disaster. If RE generator and storage batteries are introduced into the facilities, it is possible to provide refugees with electricity. In this study, the sizes of photovoltaic (PV) appliances and storage batteries to be introduced into one public facility are optimized. The optimization is based on simulation, in which electric energy is managed by charge and discharge of storage battery.

  1. Simulation-based design of energy management system with storage battery for a refugee shelter in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kaji, K.; Zhang, J.; Horie, H.; Tanaka, K. [Department of Technology Management for Innovation, Graduate School of Engineering, The University of Tokyo (Japan); Akimoto, H. [Korea Advanced Institute of Science and Technology (Korea, Republic of)

    2013-12-10

    Since the massive earthquake hit eastern Japan in March, 2011, our team has participated in the recovery planning for Kesen Association, which is a group of cities in northeastern Japan. As one of our proposals for the recovery planning for the community, we are designing energy management system with renewable energy (RE) and storage batteries. Some public facilities in the area have been used as refugee shelters, but refugees had to put up with life without electricity for a while after the disaster. If RE generator and storage batteries are introduced into the facilities, it is possible to provide refugees with electricity. In this study, the sizes of photovoltaic (PV) appliances and storage batteries to be introduced into one public facility are optimized. The optimization is based on simulation, in which electric energy is managed by charge and discharge of storage battery.

  2. Simulation-based design of energy management system with storage battery for a refugee shelter in Japan

    International Nuclear Information System (INIS)

    Kaji, K.; Zhang, J.; Horie, H.; Tanaka, K.; Akimoto, H.

    2013-01-01

    Since the massive earthquake hit eastern Japan in March, 2011, our team has participated in the recovery planning for Kesen Association, which is a group of cities in northeastern Japan. As one of our proposals for the recovery planning for the community, we are designing energy management system with renewable energy (RE) and storage batteries. Some public facilities in the area have been used as refugee shelters, but refugees had to put up with life without electricity for a while after the disaster. If RE generator and storage batteries are introduced into the facilities, it is possible to provide refugees with electricity. In this study, the sizes of photovoltaic (PV) appliances and storage batteries to be introduced into one public facility are optimized. The optimization is based on simulation, in which electric energy is managed by charge and discharge of storage battery

  3. Life Prediction Model for Grid-Connected Li-ion Battery Energy Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kandler A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Saxon, Aron R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Keyser, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lundstrom, Blake R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cao, Ziwei [SunPower Corporation; Roc, Albert [SunPower Corporation

    2017-09-06

    Lithium-ion (Li-ion) batteries are being deployed on the electrical grid for a variety of purposes, such as to smooth fluctuations in solar renewable power generation. The lifetime of these batteries will vary depending on their thermal environment and how they are charged and discharged. To optimal utilization of a battery over its lifetime requires characterization of its performance degradation under different storage and cycling conditions. Aging tests were conducted on commercial graphite/nickel-manganese-cobalt (NMC) Li-ion cells. A general lifetime prognostic model framework is applied to model changes in capacity and resistance as the battery degrades. Across 9 aging test conditions from 0oC to 55oC, the model predicts capacity fade with 1.4% RMS error and resistance growth with 15% RMS error. The model, recast in state variable form with 8 states representing separate fade mechanisms, is used to extrapolate lifetime for example applications of the energy storage system integrated with renewable photovoltaic (PV) power generation.

  4. Optimal Scheduling of a Battery-Based Energy Storage System for a Microgrid with High Penetration of Renewable Sources

    DEFF Research Database (Denmark)

    Dulout, Jeremy; Hernández, Adriana Carolina Luna; Anvari-Moghaddam, Amjad

    2017-01-01

    A new scheduling method is proposed to manage efficiently the integration of renewable sources in microgrids (MGs) with energy storage systems (ESSs). The purpose of this work is to take into account the main stress factors influencing the ageing mechanisms of a battery energy storage system (BES...

  5. Energy Storage

    CSIR Research Space (South Africa)

    Bladergroen, B

    2015-10-01

    Full Text Available will be an important tool in the toolbox of system designers – together with primary energy providers solar PV, wind, biogas and potentially backup through diesel-based generators. Outside the electricity sector, eMobility will largely drive the demand for battery...-to-Fuel is, together with eMobility, the connector between the historically separated electricity and transport sector. Challenge Questions  What will drive the future battery market?  Is energy storage a necessary condition for a large uptake...

  6. Li-O2 and Li-S batteries with high energy storage.

    Science.gov (United States)

    Bruce, Peter G; Freunberger, Stefan A; Hardwick, Laurence J; Tarascon, Jean-Marie

    2011-12-15

    Li-ion batteries have transformed portable electronics and will play a key role in the electrification of transport. However, the highest energy storage possible for Li-ion batteries is insufficient for the long-term needs of society, for example, extended-range electric vehicles. To go beyond the horizon of Li-ion batteries is a formidable challenge; there are few options. Here we consider two: Li-air (O(2)) and Li-S. The energy that can be stored in Li-air (based on aqueous or non-aqueous electrolytes) and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed. Fundamental scientific advances in understanding the reactions occurring in the cells as well as new materials are key to overcoming these obstacles. The potential benefits of Li-air and Li-S justify the continued research effort that will be needed.

  7. Lithium-antimony-lead liquid metal battery for grid-level energy storage.

    Science.gov (United States)

    Wang, Kangli; Jiang, Kai; Chung, Brice; Ouchi, Takanari; Burke, Paul J; Boysen, Dane A; Bradwell, David J; Kim, Hojong; Muecke, Ulrich; Sadoway, Donald R

    2014-10-16

    The ability to store energy on the electric grid would greatly improve its efficiency and reliability while enabling the integration of intermittent renewable energy technologies (such as wind and solar) into baseload supply. Batteries have long been considered strong candidate solutions owing to their small spatial footprint, mechanical simplicity and flexibility in siting. However, the barrier to widespread adoption of batteries is their high cost. Here we describe a lithium-antimony-lead liquid metal battery that potentially meets the performance specifications for stationary energy storage applications. This Li||Sb-Pb battery comprises a liquid lithium negative electrode, a molten salt electrolyte, and a liquid antimony-lead alloy positive electrode, which self-segregate by density into three distinct layers owing to the immiscibility of the contiguous salt and metal phases. The all-liquid construction confers the advantages of higher current density, longer cycle life and simpler manufacturing of large-scale storage systems (because no membranes or separators are involved) relative to those of conventional batteries. At charge-discharge current densities of 275 milliamperes per square centimetre, the cells cycled at 450 degrees Celsius with 98 per cent Coulombic efficiency and 73 per cent round-trip energy efficiency. To provide evidence of their high power capability, the cells were discharged and charged at current densities as high as 1,000 milliamperes per square centimetre. Measured capacity loss after operation for 1,800 hours (more than 450 charge-discharge cycles at 100 per cent depth of discharge) projects retention of over 85 per cent of initial capacity after ten years of daily cycling. Our results demonstrate that alloying a high-melting-point, high-voltage metal (antimony) with a low-melting-point, low-cost metal (lead) advantageously decreases the operating temperature while maintaining a high cell voltage. Apart from the fact that this

  8. Stand-alone wind system with Vanadium Redox Battery energy storage

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Barote, L.; Weissbach, R.

    2008-01-01

    Energy storage devices are required for power balance and power quality in stand alone wind energy systems. A Vanadium Redox Flow Battery (VRB) system has many features which make its integration with a stand-alone wind energy system attractive. This paper proposes the integration of a VRB system...... with a typical stand-alone wind energy system during wind speed variation as well as transient performance under variable load. The investigated system consists of a variable speed wind turbine with permanent magnet synchronous generator (PMSG), diode rectifier bridge, buck-boost converter, bidirectional charge...... controller, transformer, inverter, ac loads and VRB (to store a surplus of wind energy and to supply power during a wind power shortage). The main purpose is to supply domestic appliances through a single phase 230V, 50Hz inverter. Simulations are accomplished in order to validate the stability of the supply....

  9. Grid-Scale Energy Storage Demonstration of Ancillary Services Using the UltraBattery Technology

    Energy Technology Data Exchange (ETDEWEB)

    Seasholtz, Jeff [East Penn Mfg. Co., Inc., Lyons, PA (United States)

    2015-08-20

    The collaboration described in this document is being done as part of a cooperative research agreement under the Department of Energy’s Smart Grid Demonstration Program. This document represents the Final Technical Performance Report, from July 2012 through April 2015, for the East Penn Manufacturing Smart Grid Program demonstration project. This Smart Grid Demonstration project demonstrates Distributed Energy Storage for Grid Support, in particular the economic and technical viability of a grid-scale, advanced energy storage system using UltraBattery ® technology for frequency regulation ancillary services and demand management services. This project entailed the construction of a dedicated facility on the East Penn campus in Lyon Station, PA that is being used as a working demonstration to provide regulation ancillary services to PJM and demand management services to Metropolitan Edison (Met-Ed).

  10. A simplified equivalent circuit model for simulation of Pb-acid batteries at load for energy storage application

    International Nuclear Information System (INIS)

    Zhu, Wenhua H.; Zhu Ying; Tatarchuk, Bruce J.

    2011-01-01

    Highlights: → Pb-acid battery is reexamined in electrode structure and capacitance enhancement. → Pb-acid batteries were tested through the electrochemical impedance at loads. → Electrode behaviors are evaluated by simulation using an equivalent circuit model. → A defective and a failed Pb-acid battery was used in non-destructive analysis. → Potential applications are for power reserve and sustainable electricity storage. - Abstract: Three main types of battery chemistries in consideration for vehicle applications are Pb-acid, nickel-metal hydride, and lithium-ion batteries. Lead-acid batteries are widely used in traditional automotive applications for many years. Higher voltage, high-rate discharge capability, good specific energy, lower temperature performance, lower thermal management requirement, and low-cost in both manufacturing and recycling are the advantages of the rechargeable battery. Disadvantages of the lead-acid battery are: weight concerns of lead metal (lower energy density and lower power density) and limited cycle-life (especially in deep-cycle duties). If two major disadvantages have been significantly changed to a proper state to compete with other battery chemistries, the Pb-acid battery is still a good candidate in considering of cost/performance ratio. The lead-acid battery is always a good power source for fast starting of cold vehicles, for recharging from either a stop-start braking system, or for a charge from the engine itself, which consumes battery energy or stores electricity back into chemical energy. The main reasons for reexamining this battery chemistry are cost-savings and life-cycling considerations upon advances in electrode structure design and enhancement of capacitance behavior inside the battery pack. Several Pb-acid batteries were evaluated and tested through a unique method, i.e., the electrochemical impedance method at different loads, in order to characterize and further understand the improved electrode

  11. A Simple Operating Strategy of Small-Scale Battery Energy Storages for Energy Arbitrage under Dynamic Pricing Tariffs

    Directory of Open Access Journals (Sweden)

    Enrico Telaretti

    2015-12-01

    Full Text Available Price arbitrage involves taking advantage of an electricity price difference, storing electricity during low-prices times, and selling it back to the grid during high-prices periods. This strategy can be exploited by customers in presence of dynamic pricing schemes, such as hourly electricity prices, where the customer electricity cost may vary at any hour of day, and power consumption can be managed in a more flexible and economical manner, taking advantage of the price differential. Instead of modifying their energy consumption, customers can install storage systems to reduce their electricity bill, shifting the energy consumption from on-peak to off-peak hours. This paper develops a detailed storage model linking together technical, economic and electricity market parameters. The proposed operating strategy aims to maximize the profit of the storage owner (electricity customer under simplifying assumptions, by determining the optimal charge/discharge schedule. The model can be applied to several kinds of storages, although the simulations refer to three kinds of batteries: lead-acid, lithium-ion (Li-ion and sodium-sulfur (NaS batteries. Unlike literature reviews, often requiring an estimate of the end-user load profile, the proposed operation strategy is able to properly identify the battery-charging schedule, relying only on the hourly price profile, regardless of the specific facility’s consumption, thanks to some simplifying assumptions in the sizing and the operation of the battery. This could be particularly useful when the customer load profile cannot be scheduled with sufficient reliability, because of the uncertainty inherent in load forecasting. The motivation behind this research is that storage devices can help to lower the average electricity prices, increasing flexibility and fostering the integration of renewable sources into the power system.

  12. Life-cycle energy analyses of electric vehicle storage batteries. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, D; Morse, T; Patel, P; Patel, S; Bondar, J; Taylor, L

    1980-12-01

    The results of several life-cycle energy analyses of prospective electric vehicle batteries are presented. The batteries analyzed were: Nickel-zinc; Lead-acid; Nickel-iron; Zinc-chlorine; Sodium-sulfur (glass electrolyte); Sodium-sulfur (ceramic electrolyte); Lithium-metal sulfide; and Aluminum-air. A life-cycle energy analysis consists of evaluating the energy use of all phases of the battery's life, including the energy to build it, operate it, and any credits that may result from recycling of the materials in it. The analysis is based on the determination of three major energy components in the battery life cycle: Investment energy, i.e., The energy used to produce raw materials and to manufacture the battery; operational energy i.e., The energy consumed by the battery during its operational life. In the case of an electric vehicle battery, this energy is the energy required (as delivered to the vehicle's charging circuit) to power the vehicle for 100,000 miles; and recycling credit, i.e., The energy that could be saved from the recycling of battery materials into new raw materials. The value of the life-cycle analysis approach is that it includes the various penalties and credits associated with battery production and recycling, which enables a more accurate determination of the system's ability to reduce the consumption of scarce fuels. The analysis of the life-cycle energy requirements consists of identifying the materials from which each battery is made, evaluating the energy needed to produce these materials, evaluating the operational energy requirements, and evaluating the amount of materials that could be recycled and the energy that would be saved through recycling. Detailed descriptions of battery component materials, the energy requirements for battery production, and credits for recycling, and the operational energy for an electric vehicle, and the procedures used to determine it are discussed.

  13. Rechargeable Batteries with High Energy Storage Activated by In-situ Induced Fluorination of Carbon Nanotube Cathode

    Science.gov (United States)

    Cui, Xinwei; Chen, Jian; Wang, Tianfei; Chen, Weixing

    2014-06-01

    High performance rechargeable batteries are urgently demanded for future energy storage systems. Here, we adopted a lithium-carbon battery configuration. Instead of using carbon materials as the surface provider for lithium-ion adsorption and desorption, we realized induced fluorination of carbon nanotube array (CNTA) paper cathodes, with the source of fluoride ions from electrolytes, by an in-situ electrochemical induction process. The induced fluorination of CNTA papers activated the reversible fluorination/defluorination reactions and lithium-ion storage/release at the CNTA paper cathodes, resulting in a dual-storage mechanism. The rechargeable battery with this dual-storage mechanism demonstrated a maximum discharging capacity of 2174 mAh gcarbon-1 and a specific energy of 4113 Wh kgcarbon-1 with good cycling performance.

  14. A Low-Cost Neutral Zinc-Iron Flow Battery with High Energy Density for Stationary Energy Storage.

    Science.gov (United States)

    Xie, Congxin; Duan, Yinqi; Xu, Wenbin; Zhang, Huamin; Li, Xianfeng

    2017-11-20

    Flow batteries (FBs) are one of the most promising stationary energy-storage devices for storing renewable energy. However, commercial progress of FBs is limited by their high cost and low energy density. A neutral zinc-iron FB with very low cost and high energy density is presented. By using highly soluble FeCl 2 /ZnBr 2 species, a charge energy density of 56.30 Wh L -1 can be achieved. DFT calculations demonstrated that glycine can combine with iron to suppress hydrolysis and crossover of Fe 3+ /Fe 2+ . The results indicated that an energy efficiency of 86.66 % can be obtained at 40 mA cm -2 and the battery can run stably for more than 100 cycles. Furthermore, a low-cost porous membrane was employed to lower the capital cost to less than $ 50 per kWh, which was the lowest value that has ever been reported. Combining the features of low cost, high energy density and high energy efficiency, the neutral zinc-iron FB is a promising candidate for stationary energy-storage applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Control and management of energy in a PV system equipped with batteries storage

    Directory of Open Access Journals (Sweden)

    Kamal Hirech

    2016-06-01

    Full Text Available In this paper we present a work concerning the conception, implementation and testing of a photovoltaic system that is equipped with a new concept of control and manage the energy in a PV system with a battery storage. The objective is to exploit the maximum of power using Hill climbing improved algorithm that considers optimal electrical characteristics of PV panels regardless of the system perturbation, to manage the energy between blocs of PV system in order to control the charge/discharge process and inject the energy surplus into the grid and also to estimate the state of charge with precision. Moreover, the system guarantees the acquisition and presentation of results on computer, supervision and so on. The results obtained show the robustness of the PV system, good control and protection of batteries under the maximum of energy provided by the PV panels. The state of charge estimation is evaluated by using measured parameters in real time; it shows an improvement of around 5% compared to the conventional technique.

  16. Development method of Hybrid Energy Storage System, including PEM fuel cell and a battery

    Science.gov (United States)

    Ustinov, A.; Khayrullina, A.; Borzenko, V.; Khmelik, M.; Sveshnikova, A.

    2016-09-01

    Development of fuel cell (FC) and hydrogen metal-hydride storage (MH) technologies continuously demonstrate higher efficiency rates and higher safety, as hydrogen is stored at low pressures of about 2 bar in a bounded state. A combination of a FC/MH system with an electrolyser, powered with a renewable source, allows creation of an almost fully autonomous power system, which could potentially replace a diesel-generator as a back-up power supply. However, the system must be extended with an electro-chemical battery to start-up the FC and compensate the electric load when FC fails to deliver the necessary power. Present paper delivers the results of experimental and theoretical investigation of a hybrid energy system, including a proton exchange membrane (PEM) FC, MH- accumulator and an electro-chemical battery, development methodology for such systems and the modelling of different battery types, using hardware-in-the-loop approach. The economic efficiency of the proposed solution is discussed using an example of power supply of a real town of Batamai in Russia.

  17. Rechargeable Metal-Air Proton-Exchange Membrane Batteries for Renewable Energy Storage.

    Science.gov (United States)

    Nagao, Masahiro; Kobayashi, Kazuyo; Yamamoto, Yuta; Yamaguchi, Togo; Oogushi, Akihide; Hibino, Takashi

    2016-02-01

    Rechargeable proton-exchange membrane batteries that employ organic chemical hydrides as hydrogen-storage media have the potential to serve as next-generation power sources; however, significant challenges remain regarding the improvement of the reversible hydrogen-storage capacity. Here, we address this challenge through the use of metal-ion redox couples as energy carriers for battery operation. Carbon, with a suitable degree of crystallinity and surface oxygenation, was used as an effective anode material for the metal redox reactions. A Sn 0.9 In 0.1 P 2 O 7 -based electrolyte membrane allowed no crossover of vanadium ions through the membrane. The V 4+ /V 3+ , V 3+ /V 2+ , and Sn 4+ /Sn 2+ redox reactions took place at a more positive potential than that for hydrogen reduction, so that undesired hydrogen production could be avoided. The resulting electrical capacity reached 306 and 258 mAh g -1 for VOSO 4 and SnSO 4 , respectively, and remained at 76 and 91 % of their respective initial values after 50 cycles.

  18. Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems

    Science.gov (United States)

    Chalk, Steven G.; Miller, James F.

    Reducing or eliminating the dependency on petroleum of transportation systems is a major element of US energy research activities. Batteries are a key enabling technology for the development of clean, fuel-efficient vehicles and are key to making today's hybrid electric vehicles a success. Fuel cells are the key enabling technology for a future hydrogen economy and have the potential to revolutionize the way we power our nations, offering cleaner, more efficient alternatives to today's technology. Additionally fuel cells are significantly more energy efficient than combustion-based power generation technologies. Fuel cells are projected to have energy efficiency twice that of internal combustion engines. However before fuel cells can realize their potential, significant challenges remain. The two most important are cost and durability for both automotive and stationary applications. Recent electrocatalyst developments have shown that Pt alloy catalysts have increased activity and greater durability than Pt catalysts. The durability of conventional fluorocarbon membranes is improving, and hydrocarbon-based membranes have also shown promise of equaling the performance of fluorocarbon membranes at lower cost. Recent announcements have also provided indications that fuel cells can start from freezing conditions without significant deterioration. Hydrogen storage systems for vehicles are inadequate to meet customer driving range expectations (>300 miles or 500 km) without intrusion into vehicle cargo or passenger space. The United States Department of Energy has established three centers of Excellence for hydrogen storage materials development. The centers are focused on complex metal hydrides that can be regenerated onboard a vehicle, chemical hydrides that require off-board reprocessing, and carbon-based storage materials. Recent developments have shown progress toward the 2010 DOE targets. In addition DOE has established an independent storage material testing center

  19. Report on Lithium Ion Battery Trade Studies to Support the Exploration Technology Development Program (ETDP) Energy Storage Project

    Science.gov (United States)

    Green, Robert D.; Kissock, Barbara I.; Bennett, William R.

    2010-01-01

    This report documents the results of two system related analyses to support the Exploration Technology Development Program (ETDP) Energy Storage Project. The first study documents a trade study to determine the optimum Li-ion battery cell capacity for the ascent stage battery for the Altair lunar lander being developed under the Constellation Systems program. The battery cell capacity for the Ultra High Energy (UHE) Li-ion battery initially chosen as the target for development was 35 A-hr; this study concludes that a 19.4 A-hr cell capacity would be more optimum from a minimum battery mass perspective. The second study in this report is an assessment of available low temperature Li-ion battery cell performance data to determine whether lowering the operating temperature range of the Li-ion battery, in a rover application, could save overall system mass by eliminating thermal control system mass normally needed to maintain battery temperature within a tighter temperature limit than electronics or other less temperature sensitive components. The preliminary assessment for this second study indicates that the reduction in the thermal control system mass is negated by an increase in battery mass to compensate for the loss in battery capacity due to lower temperature operating conditions.

  20. Control of a Multi-Functional Inverter for Grid Integration of PV and Battery Energy Storage System

    DEFF Research Database (Denmark)

    Mousazadeh, Seyyed Yousef; Firoozabadi, Mehdi Savaghebi; Beirami, A.

    2015-01-01

    power point tracking (MPPT) of PV array. The power system is 3-phase 4-wires and the DC/AC inverter is chosen 4-leg three phase inverter which has good performance in presence of zero sequence components. Battery energy storage is connected to PV system in common DC bus and a power management strategy......This paper presents a multi-functional control of a DC/AC inverter for Power Quality compensation of nonlinear and unequal local loads and grid integration of hybrid photovoltaic (PV) and battery energy storage systems. Multi-layer neural network estimator and a DC/DC converter are used for maximum...

  1. New Class of Flow Batteries for Terrestrial and Aerospace Energy Storage Applications

    Science.gov (United States)

    Bugga, Ratnakumar V.; West, William C.; Kindler, Andrew; Smart, Marshall C.

    2013-01-01

    Future sustainable energy generation technologies such as photovoltaic and wind farms require advanced energy storage systems on a massive scale to make the alternate (green) energy options practical. The daunting requirements of such large-scale energy systems such as long operating and cycle life, safety, and low cost are not adequately met by state-of-the-art energy storage technologies such as vanadium flow cells, lead-acid, and zinc-bromine batteries. Much attention is being paid to redox batteries specifically to the vanadium redox battery (VRB) due to their simplicity, low cost, and good life characteristics compared to other related battery technologies. NASA is currently seeking high-specific- energy and long-cycle-life rechargeable batteries in the 10-to-100-kW range to support future human exploration missions, such as planetary habitats, human rovers, etc. The flow batteries described above are excellent candidates for these applications, as well as other applications that propose to use regenerative fuel cells. A new flow cell technology is proposed based on coupling two novel electrodes in the form of solvated electron systems (SES) between an alkali (or alkaline earth) metal and poly aromatic hydrocarbons (PAH), separated by an ionically conducting separator. The cell reaction involves the formation of such SES with a PAH of high voltage in the cathode, while the alkali (or alkaline earth metal) is reduced from such an MPAH complex in the anode half-cell. During recharge, the reactions are reversed in both electrodes. In other words, the alkali (alkaline earth) metal ion simply shuttles from one M-PAH complex (SES) to another, which are separated by a metal-ion conducting solid or polymer electrolyte separator. As an example, the concept was demonstrated with Li-naphthalene//Li DDQ (DDQ is 2,3-Dichloro-5,6-dicyano- 1,4-benzoquinone) separated by lithium super ion conductor, either ceramic or polymer (solid polymer or gel polymer) electrolytes. The

  2. Rechargeable Batteries with High Energy Storage Activated by In-situ Induced Fluorination of Carbon Nanotube Cathode

    OpenAIRE

    Xinwei Cui; Jian Chen; Tianfei Wang; Weixing Chen

    2014-01-01

    High performance rechargeable batteries are urgently demanded for future energy storage systems. Here, we adopted a lithium-carbon battery configuration. Instead of using carbon materials as the surface provider for lithium-ion adsorption and desorption, we realized induced fluorination of carbon nanotube array (CNTA) paper cathodes, with the source of fluoride ions from electrolytes, by an in-situ electrochemical induction process. The induced fluorination of CNTA papers activated the revers...

  3. Real-Time Dynamic Simulation of Korean Power Grid for Frequency Regulation Control by MW Battery Energy Storage System

    Directory of Open Access Journals (Sweden)

    Tae-Hwan Jin

    2016-12-01

    Full Text Available The aim of this study was to develop a real-time dynamic simulator of a power grid with power plant and battery model. The simulator was used to investigate the frequency control characteristics of a megawatt-scale high-capacity energy storage system connected to the electric power grid. In this study, a lithium-ion secondary battery was chosen as one of the batteries for a grid-connected model. The dynamics of the model was analysed in both steady and transient states. The frequency control system of the battery model plays a role in regulating the grid frequency by controlling the power of energy storage systems according to process variables and grid frequencies. The power grid model based on the current power network of South Korea, included power plants, substations and power demands. The power supply is classified by the type of turbine generator as thermal, nuclear, hydro power, pumped power storage, combined power plants, and batteries, including high-capacity energy storage systems rated for a maximum of 500 MW. This study deals with an installed capacity of 87.17 GW and peak load of 77.30 GW in the Korean power grid. For 24 hours of operation, the maximum and minimum power outputs were simulated as 61.59 GW and 46.32 GW, respectively. The commercialized real-time dynamic simulation software ProTRAX was used. The simulation was conducted to observe the operation characteristics of the frequency control system during a breakdown of power plants, as well as under governor-free operation, auto generation control operation, and with the battery energy storage system connected. The results show that the model is valid for each power plant breakdown simulation. They also confirm that the output power and frequency controls of the battery operated well during simulations.

  4. Primary Frequency Regulation with Li-Ion Battery Energy Storage System - Evaluation and Comparison of Different Control Strategies

    DEFF Research Database (Denmark)

    Thorbergsson, Egill; Knap, Vaclav; Swierczynski, Maciej Jozef

    2013-01-01

    market. The revenues and degradation of the Lithium-ion batteries are obtained by simulations. Furthermore, an energy management strategy based on variable state-of-charge (SOC) set-point is evaluated. Preliminary, the influence of different state-of-charge levels on the cycle lifetime is estimated...... different degradation levels of the Lithium-ion batteries were observed. Furthermore, it was found that the economic benefits are declining by increasing the batteries' SOC set-point....... devices is becoming more attractive, the aim of this paper is to analyse the viability of providing primary frequency regulation with Lithium-ion based energy storage systems. Three control strategies of the energy storage system are analysed and compared in terms of economic benefits on the Danish energy...

  5. Break-Even Points of Battery Energy Storage Systems for Peak Shaving Applications

    Directory of Open Access Journals (Sweden)

    Claudia Rahmann

    2017-06-01

    Full Text Available In the last few years, several investigations have been carried out in the field of optimal sizing of energy storage systems (ESSs at both the transmission and distribution levels. Nevertheless, most of these works make important assumptions about key factors affecting ESS profitability such as efficiency and life cycles and especially about the specific costs of the ESS, without considering the uncertainty involved. In this context, this work aims to answer the question: what should be the costs of different ESS technologies in order to make a profit when considering peak shaving applications? The paper presents a comprehensive sensitivity analysis of the interaction between the profitability of an ESS project and some key parameters influencing the project performance. The proposed approach determines the break-even points for different ESSs considering a wide range of life cycles, efficiencies, energy prices, and power prices. To do this, an optimization algorithm for the sizing of ESSs is proposed from a distribution company perspective. From the results, it is possible to conclude that, depending on the values of round trip efficiency, life cycles, and power price, there are four battery energy storage systems (BESS technologies that are already profitable when only peak shaving applications are considered: lead acid, NaS, ZnBr, and vanadium redox.

  6. Porphyrin-Based Symmetric Redox-Flow Batteries towards Cold-Climate Energy Storage.

    Science.gov (United States)

    Ma, Ting; Pan, Zeng; Miao, Licheng; Chen, Chengcheng; Han, Mo; Shang, Zhenfeng; Chen, Jun

    2018-03-12

    Electrochemical energy storage with redox-flow batteries (RFBs) under subzero temperature is of great significance for the use of renewable energy in cold regions. However, RFBs are generally used above 10 °C. Herein we present non-aqueous organic RFBs based on 5,10,15,20-tetraphenylporphyrin (H 2 TPP) as a bipolar redox-active material (anode: [H 2 TPP] 2- /H 2 TPP, cathode: H 2 TPP/[H 2 TPP] 2+ ) and a Y-zeolite-poly(vinylidene fluoride) (Y-PVDF) ion-selective membrane with high ionic conductivity as a separator. The constructed RFBs exhibit a high volumetric capacity of 8.72 Ah L -1 with a high voltage of 2.83 V and excellent cycling stability (capacity retention exceeding 99.98 % per cycle) in the temperature range between 20 and -40 °C. Our study highlights principles for the design of RFBs that operate at low temperatures, thus offering a promising approach to electrochemical energy storage under cold-climate conditions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Optimal Sizing and Control of Battery Energy Storage System for Peak Load Shaving

    Directory of Open Access Journals (Sweden)

    Chao Lu

    2014-12-01

    Full Text Available Battery Energy Storage System (BESS can be utilized to shave the peak load in power systems and thus defer the need to upgrade the power grid. Based on a rolling load forecasting method, along with the peak load reduction requirements in reality, at the planning level, we propose a BESS capacity planning model for peak and load shaving problem. At the operational level, we consider the optimal control policy towards charging and discharging power with two different optimization objectives: one is to diminish the difference between the peak load and the valley load, the other is to minimize the daily load variance. Particularly, the constraint of charging and discharging cycles, which is an important issue in practice, is taken into consideration. Finally, based on real load data, we provide simulation results that validate the proposed optimization models and control strategies.

  8. Active and reactive power support of MV distribution systems using battery energy storage

    DEFF Research Database (Denmark)

    Wang, Jiawei; Hashemi Toghroljerdi, Seyedmostafa; You, Shi

    2017-01-01

    shaving and voltage support service from the perspective of Distribution System Operators (DSOs). An active power support algorithm is implemented and the effects of various load profiles as well as different Photovoltaic (PV) penetration scenarios on the operation of BESS and the optimal BESS converter......Adoption of Battery Energy Storage Systems (BESSs) for provision of grid services is increasing. This paper investigates the applications of BESS for the grid upgrade deferral and voltage support of Medium Voltage (MV) distribution systems. A BESS is modelled in Matlab/Simulink to perform peak load...... size for peak load shaving are investigated. The BESS annual lifetime degradation is also estimated using a rainflow counting algorithm. A reactive power support algorithm embedded with Q-U droop control is proposed in order to reduce the voltage drop in a part of 10 kV distribution network of Nordhavn...

  9. Battery energy storage sizing when time of use pricing is applied.

    Science.gov (United States)

    Carpinelli, Guido; Khormali, Shahab; Mottola, Fabio; Proto, Daniela

    2014-01-01

    Battery energy storage systems (BESSs) are considered a key device to be introduced to actuate the smart grid paradigm. However, the most critical aspect related to the use of such device is its economic feasibility as it is a still developing technology characterized by high costs and limited life duration. Particularly, the sizing of BESSs must be performed in an optimized way in order to maximize the benefits related to their use. This paper presents a simple and quick closed form procedure for the sizing of BESSs in residential and industrial applications when time-of-use tariff schemes are applied. A sensitivity analysis is also performed to consider different perspectives in terms of life span and future costs.

  10. Battery Energy Storage Sizing When Time of Use Pricing Is Applied

    Directory of Open Access Journals (Sweden)

    Guido Carpinelli

    2014-01-01

    Full Text Available Battery energy storage systems (BESSs are considered a key device to be introduced to actuate the smart grid paradigm. However, the most critical aspect related to the use of such device is its economic feasibility as it is a still developing technology characterized by high costs and limited life duration. Particularly, the sizing of BESSs must be performed in an optimized way in order to maximize the benefits related to their use. This paper presents a simple and quick closed form procedure for the sizing of BESSs in residential and industrial applications when time-of-use tariff schemes are applied. A sensitivity analysis is also performed to consider different perspectives in terms of life span and future costs.

  11. Design of a Reliable Hybrid (PV/Diesel Power System with Energy Storage in Batteries for Remote Residential Home

    Directory of Open Access Journals (Sweden)

    Vincent Anayochukwu Ani

    2016-01-01

    Full Text Available This paper reports the experience acquired with a photovoltaic (PV hybrid system simulated as an alternative to diesel system for a residential home located in Southern Nigeria. The hybrid system was designed to overcome the problem of climate change, to ensure a reliable supply without interruption, and to improve the overall system efficiency (by the integration of the battery bank. The system design philosophy was to maximize simplicity; hence, the system was sized using conventional simulation tool and representative insolation data. The system includes a 15 kW PV array, 21.6 kWh (3600 Ah worth of battery storage, and a 5.4 kW (6.8 kVA generator. The paper features a detailed analysis of the energy flows through the system and quantifies all losses caused by PV charge controller, battery storage round-trip, rectifier, and inverter conversions. In addition, simulation was run to compare PV/diesel/battery with diesel/battery and the results show that the capital cost of a PV/diesel hybrid solution with batteries is nearly three times higher than that of a generator and battery combination, but the net present cost, representing cost over the lifetime of the system, is less than one-half of the generator and battery combination.

  12. Identifying Potential Markets for Behind-the-Meter Battery Energy Storage: A Survey of U.S. Demand Charges

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, Joyce A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gagnon, Pieter J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mullendore, Seth [Clean Energy Group, Montpelier, Vermont

    2017-08-07

    This paper presents the first publicly available comprehensive survey of the magnitude of demand charges for commercial customers across the United States -- a key predictor of the financial performance of behind-the-meter battery storage systems. Notably, the analysis estimates that there are nearly 5 million commercial customers in the United States who can subscribe to retail electricity tariffs that have demand charges in excess of $15 per kilowatt (kW), over a quarter of the 18 million commercial customers in total in the United States. While the economic viability of installing battery energy storage must be determined on a case-by-case basis, high demand charges are often cited as a critical factor in battery project economics. Increasing use of demand charges in utility tariffs and anticipated future declines in storage costs will only serve to unlock additional markets and strengthen existing ones.

  13. A Power Smoothing Control Strategy and Optimized Allocation of Battery Capacity Based on Hybrid Storage Energy Technology

    Directory of Open Access Journals (Sweden)

    Yong Li

    2012-05-01

    Full Text Available Wind power parallel operation is an effective way to realize the large scale use of wind power, but the fluctuations of power output from wind power units may have great influence on power quality, hence a new method of power smoothing and capacity optimized allocation based on hybrid energy storage technology is proposed in terms of the uncontrollable and unexpected characteristics of wind speed in wind farms. First, power smoothing based on a traditional Inertial Filter is introduced and the relationship between the time constant, its smoothing effect and capacity allocation are analyzed and combined with Proportional Integral Differential (PID control to realize power smoothing control of wind power. Then wavelet theory is adopted to realize a multi-layer decomposition of power output in some wind farms, a power smoothing model based on hybrid energy storage technology is constructed combining the characteristics of the Super Capacitor (SC and Battery Energy Storage System (BESS technologies. The hybrid energy storage system is available for power fluctuations with high frequency-low energy and low frequency-high energy to achieve good smoothing effects compared with a single energy storage system. The power fluctuations filtered by the Wavelet Transform is regarded as the target value of BESS, the charging and discharging control for battery is completed quickly by Model Algorithm Control (MAC. Because of the influence of the inertia and the response speed of the battery, its actual output is not completely equal to the target value which mainly reflects in high-frequency part, the difference part uses SC to compensate and makes the output of battery and SC closer to the target value on the whole. Compared with the traditional Inertial Filter and PID control method, the validity of the model was verified by simulation results. Finally under the premise of power grid standards, the corresponding capacity design had been given to reduce the

  14. Coordinated Control Scheme of Battery Energy Storage System (BESS) and Distributed Generations (DGs) for Electric Distribution Grid Operation

    DEFF Research Database (Denmark)

    Cha, Seung-Tae; Zhao, Haoran; Wu, Qiuwei

    2012-01-01

    This paper describes a coordinated control scheme of battery energy storage system (BESS) and distributed generations (DGs) for electric distribution grid operation. The BESS is designed to stabilize frequency and voltages as a primary control after the electric distribution system enters...

  15. Hybrid battery/supercapacitor energy storage system for the electric vehicles

    Science.gov (United States)

    Kouchachvili, Lia; Yaïci, Wahiba; Entchev, Evgueniy

    2018-01-01

    Electric vehicles (EVs) have recently attracted considerable attention and so did the development of the battery technologies. Although the battery technology has been significantly advanced, the available batteries do not entirely meet the energy demands of the EV power consumption. One of the key issues is non-monotonic consumption of energy accompanied by frequent changes during the battery discharging process. This is very harmful to the electrochemical process of the battery. A practical solution is to couple the battery with a supercapacitor, which is basically an electrochemical cell with a similar architecture, but with a higher rate capability and better cyclability. In this design, the supercapacitor can provide the excess energy required while the battery fails to do so. In addition to the battery and supercapacitor as the individual units, designing the architecture of the corresponding hybrid system from an electrical engineering point of view is of utmost importance. The present manuscript reviews the recent works devoted to the application of various battery/supercapacitor hybrid systems in EVs.

  16. A Novel Degradation Estimation Method for a Hybrid Energy Storage System Consisting of Battery and Double-Layer Capacitor

    Directory of Open Access Journals (Sweden)

    Yuanbin Yu

    2016-01-01

    Full Text Available This paper presents a new method for battery degradation estimation using a power-energy (PE function in a battery/ultracapacitor hybrid energy storage system (HESS, and the integrated optimization which concerns both parameters matching and control for HESS has been done as well. A semiactive topology of HESS with double-layer capacitor (EDLC coupled directly with DC-link is adopted for a hybrid electric city bus (HECB. In the purpose of presenting the quantitative relationship between system parameters and battery serving life, the data during a 37-minute driving cycle has been collected and decomposed into discharging/charging fragments firstly, and then the optimal control strategy which is supposed to maximally use the available EDLC energy is presented to decompose the power between battery and EDLC. Furthermore, based on a battery degradation model, the conversion of power demand by PE function and PE matrix is applied to evaluate the relationship between the available energy stored in HESS and the serving life of battery pack. Therefore, according to the approach which could decouple parameters matching and optimal control of the HESS, the process of battery degradation and its serving life estimation for HESS has been summed up.

  17. A New Battery Energy Storage Charging/Discharging Scheme for Wind Power Producers in Real-Time Markets

    Directory of Open Access Journals (Sweden)

    Minh Y Nguyen

    2012-12-01

    Full Text Available Under a deregulated environment, wind power producers are subject to many regulation costs due to the intermittence of natural resources and the accuracy limits of existing prediction tools. This paper addresses the operation (charging/discharging problem of battery energy storage installed in a wind generation system in order to improve the value of wind power in the real-time market. Depending on the prediction of market prices and the probabilistic information of wind generation, wind power producers can schedule the battery energy storage for the next day in order to maximize the profit. In addition, by taking into account the expenses of using batteries, the proposed charging/discharging scheme is able to avoid the detrimental operation of battery energy storage which can lead to a significant reduction of battery lifetime, i.e., uneconomical operation. The problem is formulated in a dynamic programming framework and solved by a dynamic programming backward algorithm. The proposed scheme is then applied to the study cases, and the results of simulation show its effectiveness.

  18. Energy storage

    International Nuclear Information System (INIS)

    Odru, P.

    2010-01-01

    This book proposes a broad overview of the technologies developed in the domains of on-board electricity storage (batteries, super-capacitors, flywheels), stationary storage (hydraulic dams, compressed air, batteries and hydrogen), and heat storage (sensible, latent and sorption) together with their relative efficiency, their expected developments and what advantages they can offer. Eminent specialists of this domain have participated to the redaction of this book, all being members of the Tuck's Foundation 'IDees' think tank. (J.S.)

  19. Electrochemical and Thermodynamic Study of Electrode Materials on Li-ion Batteries and Aqueous Energy Storage and Conversion Applications

    OpenAIRE

    Seo, Joon Kyo

    2017-01-01

    The energy storage and conversion is one of the key issues for human beings to live sustainably on earth since our living environment has been deteriorating with the development of industrialization. We can alleviate the waste of energy consumption and corresponding environmental pollutions by storing and converting energy efficiently. The electrochemical cells are drawing considerable attention recently as a promising solution. In this thesis, electrode materials for Li-ion batteries and aqu...

  20. NASA's Exploration Technology Development Program Energy Storage Project Battery Technology Development

    Science.gov (United States)

    Reid, Concha M.; Miller, Thomas B.; Mercer, Carolyn R.; Jankovsky, Amy L.

    2010-01-01

    Technical Interchange Meeting was held at Saft America s Research and Development facility in Cockeysville, Maryland on Sept 28th-29th, 2010. The meeting was attended by Saft, contractors who are developing battery component materials under contracts awarded through a NASA Research Announcement (NRA), and NASA. This briefing presents an overview of the components being developed by the contractor attendees for the NASA s High Energy (HE) and Ultra High Energy (UHE) cells. The transition of the advanced lithium-ion cell development project at NASA from the Exploration Technology Development Program Energy Storage Project to the Enabling Technology Development and Demonstration High Efficiency Space Power Systems Project, changes to deliverable hardware and schedule due to a reduced budget, and our roadmap to develop cells and provide periodic off-ramps for cell technology for demonstrations are discussed. This meeting gave the materials and cell developers the opportunity to discuss the intricacies of their materials and determine strategies to address any particulars of the technology.

  1. New Alkali Metal Flow Battery for Terrestrial and Aerospace Energy Storage Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — This seedling task is to develop new lithium-based flow batteries that will provide several fold improvements in specific energy, cost, simplicity and lifetimes,...

  2. Multiple Electron Charge Transfer Chemistries for Electrochemical Energy Storage Systems: The Metal Boride and Metal Air Battery

    Science.gov (United States)

    Stuart, Jessica F.

    The primary focus of this work has been to develop high-energy capacity batteries capable of undergoing multiple electron charge transfer redox reactions to address the growing demand for improved electrical energy storage systems that can be applied to a range of applications. As the levels of carbon dioxide (CO2) increase in the Earth's atmosphere, the effects on climate change become increasingly apparent. According to the Energy Information Administration (EIA), the U.S. electric power sector is responsible for the release of 2,039 million metric tons of CO2 annually, equating to 39% of total U.S. energy-related CO2 emissions. Both nationally and abroad, there are numerous issues associated with the generation and use of electricity aside from the overwhelming dependence on fossil fuels and the subsequent carbon emissions, including reliability of the grid and the utilization of renewable energies. Renewable energy makes up a relatively small portion of total energy contributions worldwide, accounting for only 13% of the 3,955 billion kilowatt-hours of electricity produced each year, as reported by the EIA. As the demand to reduce our dependence on fossils fuels and transition to renewable energy sources increases, cost effective large-scale electrical energy storage must be established for renewable energy to become a sustainable option for the future. A high capacity energy storage system capable of leveling the intermittent nature of energy sources such as solar, wind, and water into the electric grid and provide electricity at times of high demand will facilitate this transition. In 2008, the Licht Group presented the highest volumetric energy capacity battery, the vanadium diboride (VB2) air battery, exceedingly proficient in transferring eleven electrons per molecule. This body of work focuses on new developments to this early battery such as fundamentally understanding the net discharge mechanism of the system, evaluation of the properties and

  3. A Flywheel Energy Storage System Based on a Doubly Fed Induction Machine and Battery for Microgrid Control

    Directory of Open Access Journals (Sweden)

    Thai-Thanh Nguyen

    2015-06-01

    Full Text Available Microgrids are eco-friendly power systems because they use renewable sources such as solar and wind power as the main power source. However, the stochastic nature of wind and solar power is a considerable challenge for the efficient operation of microgrids. Microgrid operations have to satisfy quality requirements in terms of the frequency and voltage. To overcome these problems, energy storage systems for short- and long-term storage are used with microgrids. Recently, the use of short-term energy storage systems such as flywheels has attracted significant interest as a potential solution to this problem. Conventional flywheel energy storage systems exhibit only one control mode during operation: either smoothing wind power control or frequency control. In this paper, we propose a new flywheel energy storage system based on a doubly fed induction machine and a battery for use with microgrids. The new flywheel energy storage system can be used not only to mitigate wind power fluctuations, but also to control the frequency as well as the voltage of the microgrid during islanded operation. The performance of the proposed flywheel energy storage system is investigated through various simulations using MATLAB/Simulink software. In addition, a conventional flywheel energy storage system based on a doubly fed induction machine is simulated and its performance compared with that of the proposed one.

  4. Optimized Sizing, Selection, and Economic Analysis of Battery Energy Storage for Grid-Connected Wind-PV Hybrid System

    Directory of Open Access Journals (Sweden)

    Hina Fathima

    2015-01-01

    Full Text Available Energy storages are emerging as a predominant sector for renewable energy applications. This paper focuses on a feasibility study to integrate battery energy storage with a hybrid wind-solar grid-connected power system to effectively dispatch wind power by incorporating peak shaving and ramp rate limiting. The sizing methodology is optimized using bat optimization algorithm to minimize the cost of investment and losses incurred by the system in form of load shedding and wind curtailment. The integrated system is then tested with an efficient battery management strategy which prevents overcharging/discharging of the battery. In the study, five major types of battery systems are considered and analyzed. They are evaluated and compared based on technoeconomic and environmental metrics as per Indian power market scenario. Technoeconomic analysis of the battery is validated by simulations, on a proposed wind-photovoltaic system in a wind site in Southern India. Environmental analysis is performed by evaluating the avoided cost of emissions.

  5. Assessing the stationary energy storage equivalency of vehicle-to-grid charging battery electric vehicles

    International Nuclear Information System (INIS)

    Tarroja, Brian; Zhang, Li; Wifvat, Van; Shaffer, Brendan; Samuelsen, Scott

    2016-01-01

    A study has been performed to understand the quantitative impact of key differences between vehicle-to-grid and stationary energy storage systems on renewable utilization, greenhouse gas emissions, and balancing fleet operation, using California as the example. To simulate the combined electricity and light-duty transportation system, a detailed electric grid dispatch model (including stationary energy storage systems) was combined with an electric vehicle charging dispatch model that incorporates conventional smart and vehicle-to-grid capabilities. By subjecting smaller amounts of renewable energy to round-trip efficiency losses and thereby increasing the efficiency of renewable utilization, it was found that vehicle-to-grid energy storage can achieve higher renewable utilization levels and reduced greenhouse gas emissions compared to stationary energy storage systems. Vehicle-to-grid energy storage, however, is not as capable of balancing the power plant fleet compared to stationary energy storage systems due to the constraints of consumer travel patterns. The potential benefits of vehicle-to-grid are strongly dependent on the availability of charging infrastructure at both home and workplaces, with potential benefits being compromised with residential charging availability only. Overall, vehicle-to-grid energy storage can provide benefits over stationary energy storage depending on the system attribute selected for improvement, a finding amenable to managing through policy. - Highlights: • Using vehicle-to-grid-based storage increases the efficiency of renewable energy utilization. • Vehicle-to-grid-based energy storage has less overall flexibility compared to stationary energy storage. • The discharge ability of vehicle-to-grid-based provides a significant benefit over one-way smart charging. • Both workplace and home charging are critical for providing vehicle-to-grid-related benefits. • Increasing charging intelligence reduces stationary energy

  6. Optimal Sizing and Placement of Battery Energy Storage in Distribution System Based on Solar Size for Voltage Regulation

    Energy Technology Data Exchange (ETDEWEB)

    Nazaripouya, Hamidreza [Univ. of California, Los Angeles, CA (United States); Wang, Yubo [Univ. of California, Los Angeles, CA (United States); Chu, Peter [Univ. of California, Los Angeles, CA (United States); Pota, Hemanshu R. [Univ. of California, Los Angeles, CA (United States); Gadh, Rajit [Univ. of California, Los Angeles, CA (United States)

    2016-07-26

    This paper proposes a new strategy to achieve voltage regulation in distributed power systems in the presence of solar energy sources and battery storage systems. The goal is to find the minimum size of battery storage and its corresponding location in the network based on the size and place of the integrated solar generation. The proposed method formulates the problem by employing the network impedance matrix to obtain an analytical solution instead of using a recursive algorithm such as power flow. The required modifications for modeling the slack and PV buses (generator buses) are utilized to increase the accuracy of the approach. The use of reactive power control to regulate the voltage regulation is not always an optimal solution as in distribution systems R/X is large. In this paper the minimum size and the best place of battery storage is achieved by optimizing the amount of both active and reactive power exchanged by battery storage and its gridtie inverter (GTI) based on the network topology and R/X ratios in the distribution system. Simulation results for the IEEE 14-bus system verify the effectiveness of the proposed approach.

  7. Development and Implementation of a Battery-Electric Light-Duty Class 2a Truck including Hybrid Energy Storage

    Science.gov (United States)

    Kollmeyer, Phillip J.

    This dissertation addresses two major related research topics: 1) the design, fabrication, modeling, and experimental testing of a battery-electric light-duty Class 2a truck; and 2) the design and evaluation of a hybrid energy storage system (HESS) for this and other vehicles. The work begins with the determination of the truck's peak power and wheel torque requirements (135kW/4900Nm). An electric traction system is then designed that consists of an interior permanent magnet synchronous machine, two-speed gearbox, three-phase motor drive, and LiFePO4 battery pack. The battery pack capacity is selected to achieve a driving range similar to the 2011 Nissan Leaf electric vehicle (73 miles). Next, the demonstrator electric traction system is built and installed in the vehicle, a Ford F150 pickup truck, and an extensive set of sensors and data acquisition equipment is installed. Detailed loss models of the battery pack, electric traction machine, and motor drive are developed and experimentally verified using the driving data. Many aspects of the truck's performance are investigated, including efficiency differences between the two-gear configuration and the optimal gear selection. The remainder focuses on the application of battery/ultracapacitor hybrid energy storage systems (HESS) to electric vehicles. First, the electric truck is modeled with the addition of an ultracapacitor pack and a dc/dc converter. Rule-based and optimal battery/ultracapacitor power-split control algorithms are then developed, and the performance improvements achieved for both algorithms are evaluated for operation at 25°C. The HESS modeling is then extended to low temperatures, where battery resistance increases substantially. To verify the accuracy of the model-predicted results, a scaled hybrid energy storage system is built and the system is tested for several drive cycles and for two temperatures. The HESS performance is then modeled for three variants of the vehicle design, including the

  8. A micro-grid operation analysis for cost-effective battery energy storage and RES plants integration

    International Nuclear Information System (INIS)

    Barelli, L.; Bidini, G.; Bonucci, F.

    2016-01-01

    Penetration of renewable energy is strongly slowed by its characteristic intermittency and fluctuating trend and by the inadequacy of electricity networks. These issues can be addressed through the development of new or improved storage technologies with higher performance, availability, durability, safety and lower costs. In the present work, micro-grids characterized by the presence of different subsections including renewable plants coupled with batteries storage solution are investigated through the development of a suitable code. Several design conditions and features, related to RES plant, storage system and users, were considered in order to realize a sensitivity analysis aimed to examine, on a yearly base and with one minute time step, interactions among the different micro-grid subsections and to identify the best solutions from both economic and energy point of views. - Highlights: • Storage systems coupling to RES plants is investigated for micro-grids. • Interactions between RES plants, storage batteries and users are analyzed. • Self-consumption increases with storage installation. • Investment pay-back analysis is performed varying plant configurations. • Pay-back reduction up to 30–40% for new RES/Storage integrated installations.

  9. An Optimal Control Strategy for DC Bus Voltage Regulation in Photovoltaic System with Battery Energy Storage

    Directory of Open Access Journals (Sweden)

    Muhamad Zalani Daud

    2014-01-01

    Full Text Available This paper presents an evaluation of an optimal DC bus voltage regulation strategy for grid-connected photovoltaic (PV system with battery energy storage (BES. The BES is connected to the PV system DC bus using a DC/DC buck-boost converter. The converter facilitates the BES power charge/discharge to compensate for the DC bus voltage deviation during severe disturbance conditions. In this way, the regulation of DC bus voltage of the PV/BES system can be enhanced as compared to the conventional regulation that is solely based on the voltage-sourced converter (VSC. For the grid side VSC (G-VSC, two control methods, namely, the voltage-mode and current-mode controls, are applied. For control parameter optimization, the simplex optimization technique is applied for the G-VSC voltage- and current-mode controls, including the BES DC/DC buck-boost converter controllers. A new set of optimized parameters are obtained for each of the power converters for comparison purposes. The PSCAD/EMTDC-based simulation case studies are presented to evaluate the performance of the proposed optimized control scheme in comparison to the conventional methods.

  10. Deployment strategy for battery energy storage system in distribution network based on voltage violation regulation

    Science.gov (United States)

    Wu, H.; Zhou, L.; Xu, T.; Fang, W. L.; He, W. G.; Liu, H. M.

    2017-11-01

    In order to improve the situation of voltage violation caused by the grid-connection of photovoltaic (PV) system in a distribution network, a bi-level programming model is proposed for battery energy storage system (BESS) deployment. The objective function of inner level programming is to minimize voltage violation, with the power of PV and BESS as the variables. The objective function of outer level programming is to minimize the comprehensive function originated from inner layer programming and all the BESS operating parameters, with the capacity and rated power of BESS as the variables. The differential evolution (DE) algorithm is applied to solve the model. Based on distribution network operation scenarios with photovoltaic generation under multiple alternative output modes, the simulation results of IEEE 33-bus system prove that the deployment strategy of BESS proposed in this paper is well adapted to voltage violation regulation invariable distribution network operation scenarios. It contributes to regulating voltage violation in distribution network, as well as to improve the utilization of PV systems.

  11. An optimal control strategy for DC bus voltage regulation in photovoltaic system with battery energy storage.

    Science.gov (United States)

    Daud, Muhamad Zalani; Mohamed, Azah; Hannan, M A

    2014-01-01

    This paper presents an evaluation of an optimal DC bus voltage regulation strategy for grid-connected photovoltaic (PV) system with battery energy storage (BES). The BES is connected to the PV system DC bus using a DC/DC buck-boost converter. The converter facilitates the BES power charge/discharge to compensate for the DC bus voltage deviation during severe disturbance conditions. In this way, the regulation of DC bus voltage of the PV/BES system can be enhanced as compared to the conventional regulation that is solely based on the voltage-sourced converter (VSC). For the grid side VSC (G-VSC), two control methods, namely, the voltage-mode and current-mode controls, are applied. For control parameter optimization, the simplex optimization technique is applied for the G-VSC voltage- and current-mode controls, including the BES DC/DC buck-boost converter controllers. A new set of optimized parameters are obtained for each of the power converters for comparison purposes. The PSCAD/EMTDC-based simulation case studies are presented to evaluate the performance of the proposed optimized control scheme in comparison to the conventional methods.

  12. Energy Storage and Retrieval

    Indian Academy of Sciences (India)

    GENERAL I ARTICLE. Energy Storage and Retrieval. The Secondary Battery Route. A K Shukla and P Vishnu Kamath. Harnessing sunlight for the production of electrical energy is an engrossing prospect. The crucial concept underlying the success of solar power stations is energy storage and its retrieval on demand which ...

  13. Large-scale energy storage. Investigating improvements of redox flow batteries

    CSIR Research Space (South Africa)

    Swartbooi, A

    2008-11-01

    Full Text Available and more sustainable energy source. One problem however lies with the intermittent nature of the solar energy source, coupled with a mismatch between generation and use. Redox flow batteries provide a means to bridge the time lag between the availability...

  14. High-performance batteries for electric-vehicle propulsion and stationary energy storage. Progress report, October 1977--September 1978

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, P.A.; Barney, D.L.; Steunenberg, R.K.

    1978-11-01

    The research, development, and management activities of the programs at Argonne National Laboratory (ANL) and at industrial subcontractors' laboratories on high-temperature batteries during the period October 1977--September 1978 are reported. These batteries are being developed for electric-vehicle propulsion and for stationary-energy-storage applications. The present cells, which operate at 400 to 500/sup 0/C, are of a vertically oriented, prismatic design with one or more inner positive electrodes of FeS or FeS/sub 2/, facing electrodes of lithium--aluminum alloy, and molten LiCl--KCl electrolyte. During this fiscal year, cell and battery development work continued at ANL, Eagle--Picher Industries, Inc., the Energy Systems Group of Rockwell International, and Gould Inc. Related work was also in progress at the Carborundum Co., General Motors Research Laboratories, and various other organizations. A major event was the initiation of a subcontract with Eagle--Picher Industries to develop, design, and fabricate a 40-kWh battery (Mark IA) for testing in an electric van. Conceptual design studies on a 100-MWh stationary-energy-storage module were conducted as a joint effort between ANL and Rockwell International. A significant technical advance was the development of multiplate cells, which are capable of higher performance than bicells. 89 figures, 57 tables.

  15. Optimal Scheduling of a Battery Energy Storage System with Electric Vehicles’ Auxiliary for a Distribution Network with Renewable Energy Integration

    Directory of Open Access Journals (Sweden)

    Yuqing Yang

    2015-09-01

    Full Text Available With global conventional energy depletion, as well as environmental pollution, utilizing renewable energy for power supply is the only way for human beings to survive. Currently, distributed generation incorporated into a distribution network has become the new trend, with the advantages of controllability, flexibility and tremendous potential. However, the fluctuation of distributed energy resources (DERs is still the main concern for accurate deployment. Thus, a battery energy storage system (BESS has to be involved to mitigate the bad effects of DERs’ integration. In this paper, optimal scheduling strategies for BESS operation have been proposed, to assist with consuming the renewable energy, reduce the active power loss, alleviate the voltage fluctuation and minimize the electricity cost. Besides, the electric vehicles (EVs considered as the auxiliary technique are also introduced to attenuate the DERs’ influence. Moreover, both day-ahead and real-time operation scheduling strategies were presented under the consideration with the constraints of BESS and the EVs’ operation, and the optimization was tackled by a fuzzy mathematical method and an improved particle swarm optimization (IPSO algorithm. Furthermore, the test system for the proposed strategies is a real distribution network with renewable energy integration. After simulation, the proposed scheduling strategies have been verified to be extremely effective for the enhancement of the distribution network characteristics.

  16. Optimization of Battery Capacity Decay for Semi-Active Hybrid Energy Storage System Equipped on Electric City Bus

    Directory of Open Access Journals (Sweden)

    Xiaogang Wu

    2017-06-01

    Full Text Available In view of severe changes in temperature during different seasons in cold areas of northern China, the decay of battery capacity of electric vehicles poses a problem. This paper uses an electric bus power system with semi-active hybrid energy storage system (HESS as the research object and proposes a convex power distribution strategy to optimize the battery current that represents degradation of battery capacity based on the analysis of semi-empirical LiFePO4 battery life decline model. Simulation results show that, at a room temperature of 25 °C, during a daily trip organized by the Harbin City Driving Cycle including four cycle lines and four charging phases, the percentage of battery degradation was 9.6 × 10−3%. According to the average temperature of different months in Harbin, the percentage of battery degradation of the power distribution strategy proposed in this paper is 3.15% in one year; the electric bus can operate for 6.4 years until its capacity reduces to 80% of its initial value, and it can operate for 0.51 year more than the rule-based power distribution strategy.

  17. Design and Construction of a Test Bench to Characterize Efficiency and Reliability of High Voltage Battery Energy Storage Systems

    DEFF Research Database (Denmark)

    Blank, Tobias; Thomas, Stephan; Roggendorf, Christoph

    2010-01-01

    system efficiency. High voltage batteries may be advantageous for future medium voltage DC-grids as well. In all cases, high availability and reliability is indispensable. Investigations on the operating behavior of such systems are needed. For this purpose, a test bench for high voltage storage systems...... was built to analyze these processes for different battery technologies. A special safety infrastructure for the test bench was developed due to the high voltage and the storable energy of approximately 120 kWh. This paper presents the layout of the test bench for analyzing high voltage batteries with about...... 4,300 volts including all components, the safety requirements with the resultant safety circuit and the aim of the investigations to be performed with the test bench....

  18. Optimal Scheduling of Energy Storage System for Self-Sustainable Base Station Operation Considering Battery Wear-Out Cost

    Directory of Open Access Journals (Sweden)

    Yohwan Choi

    2016-06-01

    Full Text Available A self-sustainable base station (BS where renewable resources and energy storage system (ESS are interoperably utilized as power sources is a promising approach to save energy and operational cost in communication networks. However, high battery price and low utilization of ESS intended for uninterruptible power supply (UPS necessitates active utilization of ESS. This paper proposes a multi-functional framework of ESS using dynamic programming (DP for realizing a sustainable BS. We develop an optimal charging and discharging scheduling algorithm considering a detailed battery wear-out model to minimize operational cost as well as to prolong battery lifetime. Our approach significantly reduces total cost compared to the conventional method that does not consider battery wear-out. Extensive experiments for several scenarios exhibit that total cost is reduced by up to 70.6% while battery wear-out is also reduced by 53.6%. The virtue of the proposed framework is its wide applicability beyond sustainable BS and thus can be also used for other types of load in principle.

  19. Optimal Operation and Management for Smart Grid Subsumed High Penetration of Renewable Energy, Electric Vehicle, and Battery Energy Storage System

    Science.gov (United States)

    Shigenobu, Ryuto; Noorzad, Ahmad Samim; Muarapaz, Cirio; Yona, Atsushi; Senjyu, Tomonobu

    2016-04-01

    Distributed generators (DG) and renewable energy sources have been attracting special attention in distribution systems in all over the world. Renewable energies, such as photovoltaic (PV) and wind turbine generators are considered as green energy. However, a large amount of DG penetration causes voltage deviation beyond the statutory range and reverse power flow at interconnection points in the distribution system. If excessive voltage deviation occurs, consumer's electric devices might break and reverse power flow will also has a negative impact on the transmission system. Thus, mass interconnections of DGs has an adverse effect on both of the utility and the customer. Therefore, reactive power control method is proposed previous research by using inverters attached DGs for prevent voltage deviations. Moreover, battery energy storage system (BESS) is also proposed for resolve reverse power flow. In addition, it is possible to supply high quality power for managing DGs and BESSs. Therefore, this paper proposes a method to maintain voltage, active power, and reactive power flow at interconnection points by using cooperative controlled of PVs, house BESSs, EVs, large BESSs, and existing voltage control devices. This paper not only protect distribution system, but also attain distribution loss reduction and effectivity management of control devices. Therefore mentioned control objectives are formulated as an optimization problem that is solved by using the Particle Swarm Optimization (PSO) algorithm. Modified scheduling method is proposed in order to improve convergence probability of scheduling scheme. The effectiveness of the proposed method is verified by case studies results and by using numerical simulations in MATLAB®.

  20. An improved control method of battery energy storage system for hourly dispatch of photovoltaic power sources

    International Nuclear Information System (INIS)

    Daud, Muhamad Zalani; Mohamed, Azah; Hannan, M.A.

    2013-01-01

    Highlights: • Control of BES for smoothing and hourly dispatch of a PV farm output is developed. • Optimal control strategy for SOC and size of BES are evaluated using GA. • Effectiveness of the control system has been investigated for the case of Malaysia. • The proposed optimal SOC feedback controller has been found effective. • Payback calculations of BES investment is given to highlight the economic benefits. - Abstract: The effects of intermittent cloud and changes in temperature cause a randomly fluctuated output of a photovoltaic (PV) system. To mitigate the PV system impacts particularly on a weak electricity network, battery energy storage (BES) system is an effective means to smooth out the power fluctuations. Consequently, the net power injected to the electricity grid by PV and BES (PV/BES) systems can be dispatched smoothly such as on an hourly basis. This paper presents an improved control strategy for a grid-connected hybrid PV/BES systems for mitigating PV farm output power fluctuations. A feedback controller for BES state of charge is proposed, where the control parameters are optimized using genetic algorithm (GA). GA-based multi objective optimization utilizes the daily average PV farm output power profile which was obtained from simulation using the historical PV system input data of Malaysia. In this way, the optimal size for the BES is also determined to hourly dispatch a 1.2 MW PV farm. A case study for Malaysia is carried out to evaluate the effectiveness of the proposed control scheme using PSCAD/EMTDC software package. Furthermore, the validation of results of the proposed controller and BES size on the actual PV system output data are also given. Finally, a simple payback calculation is presented to study the economical aspects of the BES investment on the proposed mitigation strategy under Malaysian Feed-in Tariff program

  1. An Energy-Based Control Strategy for Battery Energy Storage Systems: A Case Study on Microgrid Applications

    Directory of Open Access Journals (Sweden)

    Rui Hou

    2017-02-01

    Full Text Available Battery energy storage systems (BESSs with proportional-integral (PI control methods have been widely studied in microgrids (MGs. However, the performance of PI control methods might be unsatisfactory for BESSs due to the nonlinear characteristics of the system. To overcome this problem, an energy-based (EB control method is applied to control the converter of a BESS in this study. The EB method is a robust nonlinear control method based on passivity theory with good performance in both transient and steady states. The detailed design process of the EB method in the BESS by adopting an interconnection and damping assignment (IDA strategy is described. The design process comprises three steps: the construction of the port-controlled Hamiltonian model, the determination of the equilibrium point and the solution of the undetermined matrix. In addition, integral action is combined to eliminate the steady state error generated by the model mismatch. To establish the correctness and validity of the proposed method, we implement several case simulation studies based on a test MG system and compare the control performance of the EB and PI methods carefully. The case simulation results demonstrate that the EB method has better tracking and anti-disturbance performance compared with the classic PI method. Moreover, the proposed EB method shows stronger robustness to the uncertainty of system parameters.

  2. Load Frequency Control of Two-Area Network using Renewable Energy Resources and Battery Energy Storage System

    Directory of Open Access Journals (Sweden)

    Norhafiz Bin SALIM

    2017-06-01

    Full Text Available In an interconnected system, the frequency and tie-line power interchange are very susceptible with the diversification of power load demand. Literally, in a multi-area power system, the load frequency control (LFC is substantially aimed to minimise the deviations of these parameters relatively. Knowingly, the power production from renewable energy resources could offer promising solutions despite their intermittency (i.e. photovoltaic/wind generation, hence in this context, a battery energy storage system (BESS is proposed to delineate dynamic response along with grid—connection. This study has proposed LFC with BESS control method to suppress frequency deviations for a power system and being compared with photovoltaic (PV approach. The effectiveness was verified using newly developed AGC30 model of Japanese Power System and was modelled using MATLAB Simulink. Furthermore, an analysis of the tie-line power oscillations also are carried out and comparison analysis demonstrates further the reliability of the proposed model and control methods.

  3. Energy storage

    CERN Document Server

    Brunet, Yves

    2013-01-01

    Energy storage examines different applications such as electric power generation, transmission and distribution systems, pulsed systems, transportation, buildings and mobile applications. For each of these applications, proper energy storage technologies are foreseen, with their advantages, disadvantages and limits. As electricity cannot be stored cheaply in large quantities, energy has to be stored in another form (chemical, thermal, electromagnetic, mechanical) and then converted back into electric power and/or energy using conversion systems. Most of the storage technologies are examined: b

  4. Energy Storage Economics

    Energy Technology Data Exchange (ETDEWEB)

    Elgqvist, Emma M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-07

    This presentation provides an overview on energy storage economics including recent market trends, battery terminology and concepts, value streams, challenges, and an example of how photovoltaics and storage can be used to lower demand charges. It also provides an overview of the REopt Lite web tool inputs and outputs.

  5. Wind-energy storage

    Science.gov (United States)

    Gordon, L. H.

    1980-01-01

    Program SIMWEST can model wind energy storage system using any combination of five types of storage: pumped hydro, battery, thermal, flywheel, and pneumatic. Program is tool to aid design of optional system for given application with realistic simulation for further evaluation and verification.

  6. Simulation of Ni-MH Batteries via an Equivalent Circuit Model for Energy Storage Applications

    Directory of Open Access Journals (Sweden)

    Ying Zhu

    2016-01-01

    Full Text Available Impedance measurement was conducted at the entire cell level for studying of the Ni-MH rechargeable batteries. An improved equivalent circuit model considering diffusion process is proposed for simulation of battery impedance data at different charge input levels. The cell capacity decay was diagnosed by analyzing the ohmic resistance, activation resistance, and mass transfer resistance of the Ni-MH cells with degraded capacity. The capacity deterioration of this type, Ni-MH cell, is considered in relation to the change of activation resistance of the nickel positive electrodes. Based on the report and surface analysis obtained from the energy dispersive X-ray spectroscopy, the composition formula of metal-hydride electrodes can be closely documented as the AB5 type alloy and the “A” elements are recognized as lanthanum (La and cerium (Ce. The capacity decay of the Ni-MH cell is potentially initiated due to starved electrolyte for the electrochemical reaction of active materials inside the Ni-MH battery, and the discharge product of Ni(OH2 at low state-of-charge level is anticipated to have more impeding effects on electrode kinetic process for higher power output and efficient energy delivery.

  7. Power and Energy Management with Battery Storage for a Hybrid Residential PV-Wind System – A Case Study for Denmark

    DEFF Research Database (Denmark)

    Stroe, Daniel-Ioan; Zaharof, Andreea; Iov, Florin

    2018-01-01

    The energy generation paradigm is shifting from centralized fossil-fuel-based generation to distributed-based renewable generation. Thus, hybrid residential energy systems based on wind turbines, PV panels and/or micro-turbines are gaining more and more terrain. Nevertheless, such a system needs...... to be coupled with an energy storage solution, most often a battery, in order to mitigate its power generation variability and to ensure a stable and reliable operation. In this work, two power and energy management strategies for a hybrid residential PV-wind system with battery energy storage were evaluated...

  8. Distributed Demand Side Management with Battery Storage for Smart Home Energy Scheduling

    Directory of Open Access Journals (Sweden)

    Omowunmi Mary Longe

    2017-01-01

    Full Text Available The role of Demand Side Management (DSM with Distributed Energy Storage (DES has been gaining attention in recent studies due to the impact of the latter on energy management in the smart grid. In this work, an Energy Scheduling and Distributed Storage (ESDS algorithm is proposed to be installed into the smart meters of Time-of-Use (TOU pricing consumers possessing in-home energy storage devices. Source of energy supply to the smart home appliances was optimized between the utility grid and the DES device depending on energy tariff and consumer demand satisfaction information. This is to minimize consumer energy expenditure and maximize demand satisfaction simultaneously. The ESDS algorithm was found to offer consumer-friendly and utility-friendly enhancements to the DSM program such as energy, financial, and investment savings, reduced/eliminated consumer dissatisfaction even at peak periods, Peak-to-Average-Ratio (PAR demand reduction, grid energy sustainability, socio-economic benefits, and other associated benefits such as environmental-friendliness.

  9. Optimal Scheduling of a Multi-Carrier Energy Hub Supplemented By Battery Energy Storage Systems

    DEFF Research Database (Denmark)

    Javadi, Mohammad Sadegh; Anvari-Moghaddam, Amjad; Guerrero, Josep M.

    2017-01-01

    systems (ESSs), and heating/cooling devices such as electrical heater, heat-pumps and absorption chillers. The optimal scheduling and management of the examined energy hub assets in line with electrical transactions with distribution network is modeled as a mixed-integer non-linear optimization problem...

  10. Field tests experience from 1.6MW/400kWh Li-ion battery energy storage system providing primary frequency regulation service

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Ioan; Stan, Ana-Irina

    2013-01-01

    Lithium-ion battery energy storage systems (BESSs) represent suitable alternatives to conventional generating units for providing primary frequency regulation on the Danish market. This paper presents aspects concerning the operation of the BESSs in the Danish energy market while providing upwards...... on the BESS demonstrator located in Western Denmark and initial results are introduced and discussed. These measurements can be used to validate models for battery ageing during realistic operation or to develop the diagnostic tools for the BESS....

  11. Fuzzy Logic based Coordinated Control of Battery Energy Storage System and Dispatchable Distributed Generation for Microgrid

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Wang, Chengshan

    2015-01-01

    Microgrid is an efficient solution to integraterenewable energy sources (RES) into power systems. Inorder to deal with the intermittent characteristics of therenewable energy based distributed generation (DG) units,a fuzzy-logic based coordinated control strategy of thebattery energy storage system...... (BESS) and dispatchableDG units is proposed in this paper for the microgridmanagement system (MMS). In the proposed coordinatedcontrol strategy, the BESS is used to mitigate the activepower exchange at the point of common coupling of themicrogrid for the grid-connected operation, and is used forthe...... frequency control for the island operation. Theeffectiveness of the proposed control strategy was verifiedby case studies using DIgSILENT/PowerFactroy....

  12. Battery durability and longevity based power management for plug-in hybrid electric vehicle with hybrid energy storage system

    International Nuclear Information System (INIS)

    Zhang, Shuo; Xiong, Rui; Cao, Jiayi

    2016-01-01

    Highlights: • A novel procedure for developing an optimal power management strategy was proposed. • Efficiency and durability were considered to improve the practical performance. • Three control rules were abstracted from the optimization results with DP algorithm. • The proposed control strategy was verified under different SoC and SoH conditions. • The proposed strategy could further improve the energy efficiency obviously. - Abstract: Efficiency and durability are becoming two key issues for the energy storage system in electric vehicles together with their associated power management strategies. In this paper, we present a procedure for the design of a near-optimal power management strategy for the hybrid battery and ultracapacitor energy storage system (HESS) in a plug-in hybrid electric vehicle. The design procedure starts by defining a cost function to minimize the electricity consumption of the HESS and to optimize the operating behavior of the battery. To determine the optimal control actions and power distribution between two power sources, a dynamic programming (DP)-based novel analysis method is proposed, and the optimization framework is presented accordingly. Through analysis of the DP control actions under different battery state-of-health (SoH) conditions, near-optimal rules are extracted. A rule based power management is proposed based on the abstracted rules and simulation results indicate that the new control strategy can improve system efficiency under different SoH and different SoC conditions. Ultimately, the performance of proposed strategy is further verified under different types of driving cycles including the MANHATTAN cycle, 1015 6PRIUS cycle and UDDSHDV cycle.

  13. The concentration gradient flow battery as electricity storage system: Technology potential and energy dissipation

    Science.gov (United States)

    van Egmond, W. J.; Saakes, M.; Porada, S.; Meuwissen, T.; Buisman, C. J. N.; Hamelers, H. V. M.

    2016-09-01

    Unlike traditional fossil fuel plants, the wind and the sun provide power only when the renewable resource is available. To accommodate large scale use of renewable energy sources for efficient power production and utilization, energy storage systems are necessary. Here, we introduce a scalable energy storage system which operates by performing cycles during which energy generated from renewable resource is first used to produce highly concentrated brine and diluate, followed up mixing these two solutions in order to generate power. In this work, we present theoretical results of the attainable energy density as function of salt type and concentration. A linearized Nernst-Planck model is used to describe water, salt and charge transport. We validate our model with experiments over wide range of sodium chloride concentrations (0.025-3 m) and current densities (-49 to +33 A m-2). We find that depending on current density, charge and discharge steps have significantly different thermodynamic efficiency. In addition, we show that at optimal current densities, mechanisms of energy dissipation change with salt concentration. We find the highest thermodynamic efficiency at low concentrate concentrations. When using salt concentrations above 1 m, water and co-ion transport contribute to high energy dissipation due to irreversible mixing.

  14. The ability of battery second use strategies to impact plug-in electric vehicle prices and serve utility energy storage applications

    Science.gov (United States)

    Neubauer, Jeremy; Pesaran, Ahmad

    The high cost of lithium ion batteries is a major impediment to the increased market share of plug-in hybrid electric vehicles (PHEVs) and full electric vehicles (EVs). The reuse of PHEV/EV propulsion batteries in second use applications following the end of their automotive service life may have the potential to offset the high initial cost of these batteries today. Accurately assessing the value of such a strategy is exceedingly complex and entails many uncertainties. This paper takes a first step toward such an assessment by estimating the impact of battery second use on the initial cost of PHEV/EV batteries to automotive consumers and exploring the potential for grid-based energy storage applications to serve as a market for used PHEV/EV batteries. It is found that although battery second use is not expected to significantly affect today's PHEV/EV prices, it has the potential to become a common component of future automotive battery life cycles and potentially to transform markets in need of cost-effective energy storage. Based on these findings, the authors advise further investigation focused on forecasting long-term battery degradation and analyzing second-use applications in more detail.

  15. A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage

    KAUST Repository

    Pasta, Mauro

    2012-10-23

    New types of energy storage are needed in conjunction with the deployment of solar, wind and other volatile renewable energy sources and their integration with the electric grid. No existing energy storage technology can economically provide the power, cycle life and energy efficiency needed to respond to the costly short-term transients that arise from renewables and other aspects of grid operation. Here we demonstrate a new type of safe, fast, inexpensive, long-life aqueous electrolyte battery, which relies on the insertion of potassium ions into a copper hexacyanoferrate cathode and a novel activated carbon/polypyrrole hybrid anode. The cathode reacts rapidly with very little hysteresis. The hybrid anode uses an electrochemically active additive to tune its potential. This high-rate, high-efficiency cell has a 95% round-trip energy efficiency when cycled at a 5C rate, and a 79% energy efficiency at 50C. It also has zero-capacity loss after 1,000 deep-discharge cycles. © 2012 Macmillan Publishers Limited. All rights reserved.

  16. A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage.

    Science.gov (United States)

    Pasta, Mauro; Wessells, Colin D; Huggins, Robert A; Cui, Yi

    2012-01-01

    New types of energy storage are needed in conjunction with the deployment of solar, wind and other volatile renewable energy sources and their integration with the electric grid. No existing energy storage technology can economically provide the power, cycle life and energy efficiency needed to respond to the costly short-term transients that arise from renewables and other aspects of grid operation. Here we demonstrate a new type of safe, fast, inexpensive, long-life aqueous electrolyte battery, which relies on the insertion of potassium ions into a copper hexacyanoferrate cathode and a novel activated carbon/polypyrrole hybrid anode. The cathode reacts rapidly with very little hysteresis. The hybrid anode uses an electrochemically active additive to tune its potential. This high-rate, high-efficiency cell has a 95% round-trip energy efficiency when cycled at a 5C rate, and a 79% energy efficiency at 50C. It also has zero-capacity loss after 1,000 deep-discharge cycles.

  17. High-performance batteries for stationary energy storage and electric-vehicle propulsion. Progress report, April--June 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-10-01

    Research, development, and management activities of the program on lithium--aluminum/metal sulfide batteries during April--June 1977 are described. These batteries are being developed for electric-vehicle propulsion and stationary energy storage. The present cells, which operate at 400--450/sup 0/C, are of a vertically oriented, prismatic design with a central positive electrode of FeS or FeS/sub 2/, two facing negative electrodes of lithium--aluminum alloy, and an electrolyte of molten LiCl--KCl. Testing and evaluation of industrially fabricated cells is continuing. Li--Al/FeS and Li--Al/FeS/sub 2/ cells from Eagle--Picher Industries and from Gould Inc. were tested. These tests provided information on the effects of design modifications and alternative materials for cells. Improved electrode and cell designs are being developed and tested, and the more promising designs are incorporated into the industrially fabricated cells. Among the concepts receiving major attention are carbon-bonded positive electrodes, scaled-up designs of stationary energy storage cells, additives to extend electrode lifetime, alternative electrode separators, and pellet-grid electrodes. Materials development efforts included the development of a lightweight electrical feedthrough; studies of various current-collector designs; investigation of powder separators; wettability and corrosion tests of materials for cell components; and postoperative examinations of cells. Cell chemistry studies were concerned with discharge mechanisms of FeS electrodes and with other transition-metal sulfides as positive electrode materials. Voltammetric studies were conducted to investigate the reversibility of the FeS/sub 2/ electrode. The use of calcium and magnesium alloys for the negative electrode in advanced battery systems were investigated. 8 figures, 12 tables.

  18. Energy storage

    International Nuclear Information System (INIS)

    Hermans, J.H.W.E.

    1998-01-01

    A brief overview is given of the research activities of the Dutch association for energy distribution companies EnergieNed in the field of energy storage techniques, carried out within the framework of the long-range programme Study and Research (MSO, abbreviated in Dutch)

  19. Optimal Design and Operation Management of Battery-Based Energy Storage Systems (BESS) in Microgrids

    DEFF Research Database (Denmark)

    Anvari-Moghaddam, Amjad; Dulout, Jeremy; Alonso, Corinne

    2017-01-01

    avoiding high price spikes. Moreover, storage devices can be used as an effective mechanism for shaping the daily load curve in order to reduce electricity bills of consumers. In other words, application of ESSs will enable better utilization of distributed energy sources and provide higher controllability...... at supply/demand side which is helpful for load levelling or peak shaving purposes. Last but not least, ESSs can provide frequency regulation services in offgrid locations where there is a strong need to meet the power balance in different operating conditions. Each of the abovementioned applications...

  20. Fault-Tolerant Control for a Flexible Group Battery Energy Storage System Based on Cascaded Multilevel Converters

    Directory of Open Access Journals (Sweden)

    Junhong Song

    2018-01-01

    Full Text Available A flexible group battery energy storage system (FGBESS based on cascaded multilevel converters is attractive for renewable power generation applications because of its high modularity and high power quality. However, reliability is one of the most important issues and the system may suffer from great financial loss after fault occurs. In this paper, based on conventional fundamental phase shift compensation and third harmonic injection, a hybrid compensation fault-tolerant method is proposed to improve the post-fault performance in the FGBESS. By adjusting initial phase offset and amplitude of injected component, the optimal third harmonic injection is generated in an asymmetric system under each faulty operation. Meanwhile, the optimal redundancy solution under each fault condition is also elaborated comprehensively with a comparison of the presented three fault-tolerant strategies. This takes full advantage of battery utilization and minimizes the loss of energy capacity. Finally, the effectiveness and feasibility of the proposed methods are verified by results obtained from simulations and a 10 kW experimental platform.

  1. Optimal Utilization of Microgrids Supplemented with Battery Energy Storage Systems in Grid Support Applications

    DEFF Research Database (Denmark)

    Anvari-Moghaddam, Amjad; Dragicevic, Tomislav; Vasquez, Juan Carlos

    2015-01-01

    in the formulation of the total operating cost but an additional item that takes into account inevitable battery degradation. The speed of degradation depends on battery technology and its mission profile and this effect demands for eventual replacement of the stack. Therefore it can be mapped in additional...

  2. Energy Storage and Retrieval

    Indian Academy of Sciences (India)

    Annual Meetings · Mid Year Meetings · Discussion Meetings · Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 6. Energy Storage and Retrieval The Secondary Battery Route. A K Shukla P Vishnu Kamath.

  3. Application of a LiFePO4 Battery Energy Storage System to Primary Frequency Control: Simulations and Experimental Results

    Directory of Open Access Journals (Sweden)

    Fabio Massimo Gatta

    2016-10-01

    Full Text Available This paper presents an experimental application of LiFePO4 battery energy storage systems (BESSs to primary frequency control, currently being performed by Terna, the Italian transmission system operator (TSO. BESS performance in the primary frequency control role was evaluated by means of a simplified electrical-thermal circuit model, taking into account also the BESS auxiliary consumptions, coupled with a cycle-life model, in order to assess the expected life of the BESS. Numerical simulations have been carried out considering the system response to real frequency measurements taken in Italy, spanning a whole year; a parametric study taking into account different values of governor droop and of BESS charge/discharge rates (C-rates was also performed. Simulations, fully validated by experimental results obtained thus far, evidenced a severe trade-off between expected lifetime and overall efficiency, which significantly restricts the choice of operating parameters for frequency control.

  4. Distributed Control of Battery Energy Storage Systems for Voltage Regulation in Distribution Networks with High PV Penetration

    DEFF Research Database (Denmark)

    Zeraati, Mehdi; Golshan, Mohamad Esmaeil Hamedani; Guerrero, Josep M.

    2018-01-01

    issues of distribution networks. In this paper, the battery energy storage (BES) systems are used in order to solve the voltage rise during the peak PV generation as well as the voltage drop while meeting the peak load. A coordinated control strategy is proposed to regulate the charge/discharge of BESs...... using a combination of the local droop based control method and a distributed control scheme which ensures the voltages of feeder remain within allowed limits. Therefore, two different consensus algorithms are used: The first algorithm determines the BESs participation in voltage regulation in terms......The voltage rise problem in low voltage (LV) distribution networks with high penetration of photovoltaic (PV) resources is one of the most important challenges in the development of these renewable resources since it may prevent the maximum PV penetration considering the reliability and security...

  5. State of Charge Balancing Control of a Multi-Functional Battery Energy Storage System Based on a 11-Level Cascaded Multilevel PWM Converter

    DEFF Research Database (Denmark)

    Wang, Songcen; Teodorescu, Remus; Máthé, Lászlo

    2015-01-01

    This paper focuses on modeling and SOC (State of Charge) balancing control of lithium-ion battery energy storage system based on cascaded multilevel converter for both grid integration and electric vehicle propulsion applications. The equivalent electrical circuit model of lithium-ion battery...... module is established based on the relationship between SOC (State of Charge) and OCV (Open Circuit Voltage) which is obtained from the battery charge and discharge test curves. A hierarchical control structure is proposed to realize different operating modes. The decoupled current control scheme...

  6. Stochastic control of smart home energy management with plug-in electric vehicle battery energy storage and photovoltaic array

    Science.gov (United States)

    Wu, Xiaohua; Hu, Xiaosong; Moura, Scott; Yin, Xiaofeng; Pickert, Volker

    2016-11-01

    Energy management strategies are instrumental in the performance and economy of smart homes integrating renewable energy and energy storage. This article focuses on stochastic energy management of a smart home with PEV (plug-in electric vehicle) energy storage and photovoltaic (PV) array. It is motivated by the challenges associated with sustainable energy supplies and the local energy storage opportunity provided by vehicle electrification. This paper seeks to minimize a consumer's energy charges under a time-of-use tariff, while satisfying home power demand and PEV charging requirements, and accommodating the variability of solar power. First, the random-variable models are developed, including Markov Chain model of PEV mobility, as well as predictive models of home power demand and PV power supply. Second, a stochastic optimal control problem is mathematically formulated for managing the power flow among energy sources in the smart home. Finally, based on time-varying electricity price, we systematically examine the performance of the proposed control strategy. As a result, the electric cost is 493.6% less for a Tesla Model S with optimal stochastic dynamic programming (SDP) control relative to the no optimal control case, and it is by 175.89% for a Nissan Leaf.

  7. Lithium Ion Battery Chemistries from Renewable Energy Storage to Automotive and Back-up Power Applications

    DEFF Research Database (Denmark)

    Stan, Ana-Irina; Swierczynski, Maciej Jozef; Stroe, Daniel Ioan

    2014-01-01

    systems for stationary applications, as well as power source for sustainable automotive and back-up power supply applications. This paper gives an overview of the Li-ion battery chemistries that are available at present in the market, and describes the three out of four main applications (except...... the consumers’ applications), grid support, automotive, and back-up power, for which the Li-ion batteries are suitable. Each of these applications has its own specifications and thus, the chemistry of the Li-ion battery should be chosen to fulfil the requirements of the corresponding application. Consequently...

  8. Valuing the Resilience Provided by Solar and Battery Energy Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, Joyce A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gagnon, Pieter J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mullendore, Seth [Clean Energy Group

    2018-02-05

    This paper explores the impact of valuing resilience on the economics of photovoltaics (PV) and storage systems for commercial buildings. The analysis presented here illustrates that accounting for the cost of grid power outages can change the breakeven point for PV and storage system investment, and increase the size of systems designed to deliver the greatest economic benefit over time. In other words, valuing resilience can make PV and storage systems economical in cases where they would not be otherwise. As storage costs decrease, and outages occur more frequently, PV and storage are likely to play a larger role in building design and management considerations.

  9. Optimal Scheduling for Energy Harvesting Transmitters with Hybrid Energy Storage

    OpenAIRE

    Ozel, Omur; Shahzad, Khurram; Ulukus, Sennur

    2013-01-01

    We consider data transmission with an energy harvesting transmitter which has a hybrid energy storage unit composed of a perfectly efficient super-capacitor (SC) and an inefficient battery. The SC has finite space for energy storage while the battery has unlimited space. The transmitter can choose to store the harvested energy in the SC or in the battery. The energy is drained from the SC and the battery simultaneously. In this setting, we consider the offline throughput maximization problem ...

  10. Power Flow Distribution Strategy for Improved Power Electronics Energy Efficiency in Battery Storage Systems: Development and Implementation in a Utility-Scale System

    Directory of Open Access Journals (Sweden)

    Michael Schimpe

    2018-03-01

    Full Text Available Utility-scale battery storage systems typically consist of multiple smaller units contributing to the overall power dispatch of the system. Herein, the power distribution among these units is analyzed and optimized to operate the system with increased energy efficiency. To improve the real-life storage operation, a holistic system model for battery storage systems has been developed that enables a calculation of the energy efficiency. A utility-scale Second-Life battery storage system with a capacity of 3.3 MWh/3 MW is operated and evaluated in this work. The system is in operation for the provision of primary control reserve in combination with intraday trading for controlling the battery state of charge. The simulation model is parameterized with the system data. Results show that losses in power electronics dominate. An operational strategy improving the energy efficiency through an optimized power flow distribution within the storage system is developed. The power flow distribution strategy is based on the reduction of the power electronics losses at no-load/partial-load by minimizing their in-operation time. The simulation derived power flow distribution strategy is implemented in the real-life storage system. Field-test measurements and analysis prove the functionality of the power flow distribution strategy and reveal the reduction of the energy throughput of the units by 7%, as well as a significant reduction of energy losses in the units by 24%. The cost savings for electricity over the system’s lifetime are approximated to 4.4% of its investment cost.

  11. Low temperature sulfur and sodium metal battery for grid-scale energy storage application

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gao; Wang, Dongdong

    2018-03-27

    A re-chargeable battery comprising a non-dendrite forming sodium (Na)/potassium (K) liquid metal alloy anode, a sulfur and polyacrylonitrile (PAN) conductive polymer composite cathode, a polyethyleneoxide (PEO) solid electrolyte, a solid electrolyte interface (SEI) formed on the PEO solid electrolyte; and a cell housing, wherein the anode, cathode, and electrolyte are assembled into the cell housing with the PEO solid electrolyte disposed between the cathode and anode.

  12. Ultrastable α phase nickel hydroxide as energy storage materials for alkaline secondary batteries

    Science.gov (United States)

    Huang, Haili; Guo, Yinjian; Cheng, Yuanhui

    2018-03-01

    α Phase nickel hydroxide (α-Ni(OH)2) has higher theoretical capacity than that of commercial β phase Ni(OH)2. But the low stability inhibits its wide application in alkaline rechargeable batteries. Here, we propose a totally new idea to stabilize α phase Ni(OH)2 by introducing large organic molecule into the interlayer spacing together with doping multivalent cobalt into the layered Ni(OH)2 host. Ethylene glycol is served as neutral stabilizer in the interlayer spacing. Nickel is substituted by cobalt to increase the electrostatic attraction between layered Ni(OH)2 host and anion ions in the interlayer spacing. Polyethylene glycol (PEG-200) is utilized to design a three-dimensional network structure. This prepared α-Ni(OH)2-20 exhibits specific capacity as high as 334 mAh g-1and good structural stability even after immersing into strong alkaline zincate solution for 20 days. Ni(OH)2 electrode with a specific capacity of 35 mAh cm-2 is fabricated and used as positive electrode in zinc-nickel single flow batteries, which also shows good cycling stability. This result can provide an important guideline for the rational design and preparation of highly active and stable α phase Ni(OH)2 for alkaline secondary battery.

  13. Primer on lead-acid storage batteries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This handbook was developed to help DOE facility contractors prevent accidents caused during operation and maintenance of lead-acid storage batteries. Major types of lead-acid storage batteries are discussed as well as their operation, application, selection, maintenance, and disposal (storage, transportation, as well). Safety hazards and precautions are discussed in the section on battery maintenance. References to industry standards are included for selection, maintenance, and disposal.

  14. Energy Storage Project

    Science.gov (United States)

    Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.

    2011-01-01

    NASA's Exploration Technology Development Program funded the Energy Storage Project to develop battery and fuel cell technology to meet the expected energy storage needs of the Constellation Program for human exploration. Technology needs were determined by architecture studies and risk assessments conducted by the Constellation Program, focused on a mission for a long-duration lunar outpost. Critical energy storage needs were identified as batteries for EVA suits, surface mobility systems, and a lander ascent stage; fuel cells for the lander and mobility systems; and a regenerative fuel cell for surface power. To address these needs, the Energy Storage Project developed advanced lithium-ion battery technology, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiated-mixed-metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety. The project also developed "non-flow-through" proton-exchange-membrane fuel cell stacks. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant--fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments include the fabrication and testing of several robust, small-scale nonflow-through fuel cell stacks that have demonstrated proof-of-concept. This report summarizes the project s goals, objectives, technical accomplishments, and risk assessments. A bibliography spanning the life of the project is also included.

  15. Fuzzy Logic-Based Operation of Battery Energy Storage Systems (BESSs for Enhancing the Resiliency of Hybrid Microgrids

    Directory of Open Access Journals (Sweden)

    Akhtar Hussain

    2017-02-01

    Full Text Available The resiliency of power systems can be enhanced during emergency situations by using microgrids, due to their capability to supply local loads. However, precise prediction of disturbance events is very difficult rather the occurrence probability can be expressed as, high, medium, or low, etc. Therefore, a fuzzy logic-based battery energy storage system (BESS operation controller is proposed in this study. In addition to BESS state-of-charge and market price signals, event occurrence probability is taken as crisp input for the BESS operation controller. After assessing the membership levels of all the three inputs, BESS operation controller decides the operation mode (subservient or resilient of BESS units. In subservient mode, BESS is fully controlled by an energy management system (EMS while in the case of resilient mode, the EMS follows the commands of the BESS operation controller for scheduling BESS units. Therefore, the proposed hybrid microgrid model can operate in normal, resilient, and emergency modes with the respective objective functions and scheduling horizons. Due to the consideration of resilient mode, load curtailment can be reduced during emergency operation periods. Numerical simulations have demonstrated the effectiveness of the proposed strategy for enhancing the resiliency of hybrid microgrids.

  16. Electrochemical Energy Storage Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    This U.S. DRIVE electrochemical energy storage roadmap describes ongoing and planned efforts to develop electrochemical energy storage technologies for plug-in electric vehicles (PEVs). The Energy Storage activity comprises a number of research areas (including advanced materials research, cell level research, battery development, and enabling R&D which includes analysis, testing and other activities) for advanced energy storage technologies (batteries and ultra-capacitors).

  17. The equivalence of gravitational potential and rechargeable battery for high-altitude long-endurance solar-powered aircraft on energy storage

    International Nuclear Information System (INIS)

    Gao, Xian-Zhong; Hou, Zhong-Xi; Guo, Zheng; Fan, Rong-Fei; Chen, Xiao-Qian

    2013-01-01

    Highlights: • The scope of this paper is to apply solar energy to achieve the high-altitude long-endurance flight. • The equivalence of gravitational potential and rechargeable battery is discussed. • Four kinds of factors have been discussed to compare the two method of energy storage. • This work can provide some governing principles for the application of solar-powered aircraft. - Abstract: Applying solar energy is one of the most promising methods to achieve the aim of High-altitude Long-endurance (HALE) flight, and solar-powered aircraft is usually taken by the research groups to develop HALE aircraft. However, the crucial factor which constrains the solar-powered aircraft to achieve the aim of HALE is the problem how to fulfill the power requirement under weight constraint of rechargeable batteries. Motivated by the birds store energy from thermal by gaining height, the method of energy stored by gravitational potential for solar-powered aircraft have attracted great attentions in recent years. In order to make the method of energy stored in gravitational potential more practical in solar-powered aircraft, the equivalence of gravitational potential and rechargeable battery for aircraft on energy storage has been analyzed, and four kinds of factors are discussed in this paper: the duration of solar irradiation, the charging rate, the energy density of rechargeable battery and the initial altitude of aircraft. This work can provide some governing principles for the solar-powered aircraft to achieve the unlimited endurance flight, and the endurance performance of solar-powered aircraft may be greatly improved by the application of energy storage using gravitational potential

  18. Flywheel energy storage; Schwungmassenspeicher

    Energy Technology Data Exchange (ETDEWEB)

    Bornemann, H.J. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany)

    1996-12-31

    Energy storages may be chemical systems such as batteries, thermal systems such as hot-water tanks, electromagnetic systems such as capacitors and coils, or mechanical systems such as pumped storage power systems or flywheel energy storages. In flywheel energy storages the energy is stored in the centrifugal mass in the form of kinetic energy. This energy can be converted to electricity via a motor/generator unit and made available to the consumer. The introduction of magnetic bearings has greatly enhanced the potential of flywheel energy storages. As there is no contact between the moving parts of magnetic bearings, this technology provides a means of circumventing the engineering and operational problems involved in the we of conventional bearings (ball, roller, plain, and gas bearings). The advantages of modern flywheel energy storages over conventional accumulators are an at least thousandfold longer service life, low losses during long-time storage, greater power output in the case of short-time storage, and commendable environmental benignity. (orig./HW) [Deutsch] Als Enegiespeicher kommen chemische Systeme, z.B. Batterien, thermische Systeme, z.B. Warmwassertanks, elektromagnetische Systeme, z.B. Kondensatoren und Spulen, sowie mechanische Systeme, z.B. Pumpspeicherwerke und Schwungmassenspeicher in Frage. In einem Schwungmassenspeicher wird Energie in Form von kinetischer Energie in der Schwungmasse gespeichert. Ueber eine Moter/Generator Einheit wird diese Energie in elektrischen Strom umgewandelt und dem Verbraucher zugefuehrt. Mit der Einfuehrung von magnetischen Lagern konnte die Leistungsfaehigkeit von Schwungmassenspeichern erheblich gesteigert werden. Da in einem Magnetlager keine Beruehrung zwischen sich bewegenden Teilen besteht, wird ein Grossteil der mit dem Einsatz konventioneller Lager (Kugel- und Rollenlager, Gleitlager und Gaslager) verbundenen ingenieurtechnischen und betriebstechnischen Probleme vermieden. Die Vorteile von modernen

  19. Utility battery storage systems. Program report for FY95

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1996-03-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the U.S. Department of Energy`s Office of Utility Technologies. The goal of this program is to assist industry in developing cost-effective battery systems as a utility resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of rechargeable batteries and systems for utility energy storage applications. This report details the technical achievements realized during fiscal year 1995.

  20. Energy storage cells

    Energy Technology Data Exchange (ETDEWEB)

    Gulia, N.V.

    1980-01-01

    The book deals with the characteristics and potentialities of energy storage cells of various types. Attention is given to electrical energy storage cells (electrochemical, electrostatic, and electrodynamic cells), mechanical energy storage cells (mechanical flywheel storage cells), and hybrid storage systems.

  1. Utility Battery Storage Systems Program plan: FY 1994--FY 1998

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    The Utility Battery Storage Systems Program, sponsored by the US Department of Energy (DOE), is addressing needed improvements so that the full benefits of these systems can be realized. A key element of the Program is the quantification of the benefits of batteries used in utility applications. The analyses of the applications and benefits are ongoing, but preliminary results indicate that the widespread introduction of battery storage by utilities could benefit the US economy by more than $26 billion by 2010 and create thousands of new jobs. Other critical elements of the DOE Program focus on improving the batteries, power electronics, and control subsystems and reducing their costs. These subsystems are then integrated and the systems undergo field evaluation. Finally, the most important element of the Program is the communication of the capabilities and benefits of battery systems to utility companies. Justifiably conservative, utilities must have proven, reliable equipment that is economical before they can adopt new technologies. While several utilities are leading the industry by demonstrating battery systems, a key task of the DOE program is to inform the entire industry of the value, characteristics, and availability of utility battery systems so that knowledgeable decisions can be made regarding future investments. This program plan for the DOE Utility Battery Storage Systems Program describes the technical and programmatic activities needed to bring about the widespread use of batteries by utilities. By following this plan, the DOE anticipates that many of the significant national benefits from battery storage will be achieved in the near future.

  2. Federal Tax Incentives for Energy Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Katherine H [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Elgqvist, Emma M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Settle, Donald E [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-16

    Investments in renewable energy are more attractive due to the contribution of two key federal tax incentives. The investment tax credit (ITC) and the Modified Accelerated Cost Recovery System (MACRS) depreciation deduction may apply to energy storage systems such as batteries depending on who owns the battery and how the battery is used. The guidelines in this fact sheet apply to energy storage systems installed at the same time as the renewable energy system.

  3. Renewable energies look for mega-batteries

    International Nuclear Information System (INIS)

    Michaut, Cecile

    2013-01-01

    As the development of wind and photovoltaic energy raises the problem of energy storage because of the intermittent character of these both energies, this article proposes an overview of trends and projects for large scale energy storage. It notably evokes the liquid metal battery project which is expected to be experimented in 2014, and should be able to store 2 MWh for 500 kW. Its operation principle is described. It is inspired by a technique used in aluminium production. It does not need any expensive and fragile separation membrane, it is modular, and it could last about ten years. Two other technologies are then evoked: a sodium-sulphur battery manufactured by NGK in Japan for massive storage, and the lithium-ion battery which is already present in most of electric vehicles. For this last one, energy storage could be an opportunity for manufacturer as the electric vehicle market is not very dynamic

  4. Cooperative Operation of Battery Energy Storage System and Dispatchable Distributed Generations in Microgrid System

    DEFF Research Database (Denmark)

    Zhao, Haoran; Cha, Seung-Tae; Rasmussen, Claus Nygaard

    Microgrid is an efficient solution to the utilization of renewable energy. According to the different operations (grid-connected or islanded), a fuzzy-logic based control strategy between BESS and dispatchable DG units is proposed in this paper, where the BESS plays a key role. The effectiveness...

  5. Capacity Optimization of Renewable Energy Sources and Battery Storage in an Autonomous Telecommunication Facility

    DEFF Research Database (Denmark)

    Dragicevic, Tomislav; Pandžić, Hrvoje; Škrlec, Davor

    2014-01-01

    This paper describes a robust optimization approach to minimize the total cost of supplying a remote telecommunication station exclusively by renewable energy sources (RES). Due to the intermittent nature of RES, such as photovoltaic (PV) panels and small wind turbines, they are normally supported...

  6. Oil drilling rig diesel power-plant fuel efficiency improvement potentials through rule-based generator scheduling and utilization of battery energy storage system

    International Nuclear Information System (INIS)

    Pavković, Danijel; Sedić, Almir; Guzović, Zvonimir

    2016-01-01

    Highlights: • Isolated oil drilling rig microgrid power flows are analyzed over 30 days. • Rule-based diesel generator scheduling is proposed to reduce fuel consumption. • A battery energy storage is parameterized and used for peak load leveling. • The effectiveness of proposed hybrid microgrid is verified by simulations. • Return-of-investment might be expected within 20% of battery system lifetime. - Abstract: This paper presents the development of a rule-based energy management control strategy suitable for isolated diesel power-plants equipped with a battery energy storage system for peak load shaving. The proposed control strategy includes the generator scheduling strategy and peak load leveling scheme based on current microgrid active and reactive power requirements. In order to investigate the potentials for fuel expenditure reduction, 30 days-worth of microgrid power flow data has been collected on an isolated land-based oil drilling rig powered by a diesel generator power-plant, characterized by highly-variable active and reactive load profiles due to intermittent engagements and disengagements of high-power electric machinery such as top-drive, draw-works and mud-pump motors. The analysis has indicated that by avoiding the low-power operation of individual generators and by providing the peak power requirements (peak shaving) from a dedicated energy storage system, the power-plant fuel efficiency may be notably improved. An averaged power flow simulation model has been built, comprising the proposed rule-based power flow control strategy and the averaged model of a suitably sized battery energy storage system equipped with grid-tied power converter and state-of-charge control system. The effectiveness of the proposed rule-based strategy has been evaluated by means of computer simulation analysis based on drilling rig microgrid active and reactive power data recorded during the 30 day period. The analysis has indicated that fuel consumption of

  7. Energy storage. A challenge for energy transition

    International Nuclear Information System (INIS)

    Bart, Jean-Baptiste; Nekrasov, Andre; Pastor, Emmanuel; Benefice, Emmanuel; Brincourt, Thierry; Brisse, Annabelle; Cagnac, Albannie; Delille, Gauthier; Hinchliffe, Timothee; Lancel, Gilles; Jeandel, Elodie; Lefebvre, Thierry; Loevenbruck, Philippe; Penneau, Jean-Francois; Soler, Robert; Stevens, Philippe; Radvanyi, Etienne; Torcheux, Laurent

    2017-06-01

    Written by several EDF R and D engineers, this book aims at presenting an overview of knowledge and know-how of EDF R and D in the field of energy storage, and at presenting the different technologies and their application to electric power systems. After a description of the context related to a necessary energy transition, the authors present the numerous storage technologies. They distinguish direct storage of power (pumped storage water stations, compressed air energy storage, flywheels, the various electrochemical batteries, metal-air batteries, redox flow batteries, superconductors), thermal storage (power to heat, heat to power) and hydrogen storage (storage under different forms), and propose an overview of the situation of standardisation of storage technologies. In the next part, they give an overview of the main services provided by storage to the electric power system: production optimisation, frequency adjustment, grid constraint resolution, local smoothing of PV and wind production, supply continuity. The last part discusses perspectives regarding the role of tomorrow's storage in the field of electrical mobility, for emerging markets, and with respect to different scenarios

  8. Energy analysis of batteries in photovoltaic systems. Part II: Energy return factors and overall battery efficiencies

    International Nuclear Information System (INIS)

    Rydh, Carl Johan; Sanden, Bjoern A.

    2005-01-01

    Energy return factors and overall energy efficiencies are calculated for a stand-alone photovoltaic (PV)-battery system. Eight battery technologies are evaluated: lithium-ion (nickel), sodium-sulphur, nickel-cadmium, nickel-metal hydride, lead-acid, vanadium-redox, zinc-bromine and polysulphide-bromide. With a battery energy storage capacity three times higher than the daily energy output, the energy return factor for the PV-battery system ranges from 2.2 to 10 in our reference case. For a PV-battery system with a service life of 30 yr, this corresponds to energy payback times between 2.5 and 13 yr. The energy payback time is 1.8-3.3 yr for the PV array and 0.72-10 yr for the battery, showing the energy related significance of batteries and the large variation between different technologies. In extreme cases, energy return factors below one occur, implying no net energy output. The overall battery efficiency, including not only direct energy losses during operation but also energy requirements for production and transport of the charger, the battery and the inverter, is 0.41-0.80. For some batteries, the overall battery efficiency is significantly lower than the direct efficiency of the charger, the battery and the inverter (0.50-0.85). The ranking order of batteries in terms of energy efficiency, the relative importance of different battery parameters and the optimal system design and operation (e.g. the use of air conditioning) are, in many cases, dependent on the characterisation of the energy background system and on which type of energy efficiency measure is used (energy return factor or overall battery efficiency)

  9. Two-Stage Battery Energy Storage System (BESS in AC Microgrids with Balanced State-of-Charge and Guaranteed Small-Signal Stability

    Directory of Open Access Journals (Sweden)

    Bing Xie

    2018-02-01

    Full Text Available In this paper, a two-stage battery energy storage system (BESS is implemented to enhance the operation condition of conventional battery storage systems in a microgrid. Particularly, the designed BESS is composed of two stages, i.e., Stage I: integration of dispersed energy storage units (ESUs using parallel DC/DC converters, and Stage II: aggregated ESUs in grid-connected operation. Different from a conventional BESS consisting of a battery management system (BMS and power conditioning system (PCS, the developed two-stage architecture enables additional operation and control flexibility in balancing the state-of-charge (SoC of each ESU and ensures the guaranteed small-signal stability, especially in extremely weak grid conditions. The above benefits are achieved by separating the control functions between the two stages. In Stage I, a localized power sharing scheme based on the SoC of each particular ESU is developed to manage the SoC and avoid over-charge or over-discharge issues; on the other hand, in Stage II, an additional virtual impedance loop is implemented in the grid-interactive DC/AC inverters to enhance the stability margin with multiple parallel-connected inverters integrating at the point of common coupling (PCC simultaneously. A simulation model based on MATLAB/Simulink is established, and simulation results verify the effectiveness of the proposed BESS architecture and the corresponding control diagram.

  10. A Critical Study of Stationary Energy Storage Policies in Australia in an International Context: The Role of Hydrogen and Battery Technologies

    Directory of Open Access Journals (Sweden)

    Jason Moore

    2016-08-01

    Full Text Available This paper provides a critical study of current Australian and leading international policies aimed at supporting electrical energy storage for stationary power applications with a focus on battery and hydrogen storage technologies. It demonstrates that global leaders such as Germany and the U.S. are actively taking steps to support energy storage technologies through policy and regulatory change. This is principally to integrate increasing amounts of intermittent renewable energy (wind and solar that will be required to meet high renewable energy targets. The relevance of this to the Australian energy market is that whilst it is unique, it does have aspects in common with the energy markets of these global leaders. This includes regions of high concentrations of intermittent renewable energy (Texas and California and high penetration rates of residential solar photovoltaics (PV (Germany. Therefore, Australian policy makers have a good opportunity to observe what is working in an international context to support energy storage. These learnings can then be used to help shape future policy directions and guide Australia along the path to a sustainable energy future.

  11. Regenerative flywheel energy storage system. Volume 3: Life cycle and cost-benefit analysis of a battery-flywheel electric car

    Science.gov (United States)

    1980-06-01

    Fabrication of the inductor motor, the flywheel, the power conditioner, and the system control is described. Test results of the system operating over the SAE j227a Schedule D driving cycle are given and are compared to the calculated value. The flywheel energy storage system consists of a solid rotor, synchronous, inductor-type, flywheel drive machine electrically coupled to a dc battery electric propulsion system through a load-commutated inverter. The motor/alernator unit is coupled mechanically to a small steel flywheel which provides a portion of the vehicle's accelerating energy and regenerates the vehicle's braking energy. Laboratory simulation of the electric vehicle propulsion system included a 108 volt, lead-acid battery bank and a separately excited dc propulsion motor coupled to a flywheel and generator which simulate the vehicle's inertia and losses.

  12. Recent advances in energy storage materials and devices

    CERN Document Server

    Lu, Li

    2017-01-01

    This book compiles nine comprehensive contributions from the principle of Li-ion batteries, cathode and anode electrode materials to future energy storage systems such as solid electrolyte for all-solid-state batteries and high capacity redox flow battery.

  13. Battery Technology Stores Clean Energy

    Science.gov (United States)

    2008-01-01

    Headquartered in Fremont, California, Deeya Energy Inc. is now bringing its flow batteries to commercial customers around the world after working with former Marshall Space Flight Center scientist, Lawrence Thaller. Deeya's liquid-cell batteries have higher power capability than Thaller's original design, are less expensive than lead-acid batteries, are a clean energy alternative, and are 10 to 20 times less expensive than nickel-metal hydride batteries, lithium-ion batteries, and fuel cell options.

  14. Contemporary energy storage sources. Energy saving

    International Nuclear Information System (INIS)

    Manev, Veselin

    2011-01-01

    The development of renewable energy system for electricity production is impede because of needs to be stabilized with nearly equivalent installed power of energy storage devices. The development of more electrical energy storage facilities will be extremely important for electricity generation in the future. Using hydro pumping, combined with a long life and fast charge/discharge rate, highly efficient contemporary power energy storage as Altairnano lithium ion battery, currently is seems to be the best solution for fast penetration rate of wind and solar energy systems

  15. NV Energy Electricity Storage Valuation

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

    2013-06-30

    This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

  16. Electricity storage - A challenge for energy transition

    International Nuclear Information System (INIS)

    Bart, Jean-Baptiste; Nekrasov, Andre; Pastor, Emmanuel; Benefice, Emmanuel; Brincourt, Thierry; Cagnac, Albannie; Brisse, Annabelle; Jeandel, Elodie; Lefebvre, Thierry; Penneau, Jean-Francois; Radvanyi, Etienne; Delille, Gautier; Hinchliffe, Timothee; Lancel, Gilles; Loevenbruck, Philippe; Soler, Robert; Stevens, Philippe; Torcheux, Laurent

    2017-01-01

    After a presentation of the energetic context and of its issues, this collective publication proposes presentations of various electricity storage technologies with a distinction between direct storage, thermal storage and hydrogen storage. As far as direct storage is concerned, the following options are described: pumped energy transfer stations or PETS, compressed air energy storage or CAES, flywheels, various types of electrochemical batteries (lead, alkaline, sodium, lithium), metal air batteries, redox flow batteries, and super-capacitors. Thermal storage comprises power-to-heat and heat-to-power technologies. Hydrogen can be stored under different forms (compressed gas, liquid), in saline underground cavities, or by using water electrolysis and fuel cells. The authors propose an overview of the different services provided by energy storage to the electricity system, and discuss the main perspectives and challenges for tomorrow's storage (electric mobility, integration of renewable energies, electrification of isolated areas, scenarios of development)

  17. A design of cascade control system and adaptive load compensator for battery/ultracapacitor hybrid energy storage-based direct current microgrid

    International Nuclear Information System (INIS)

    Pavković, Danijel; Lobrović, Mihael; Hrgetić, Mario; Komljenović, Ante

    2016-01-01

    Highlights: • Battery/ultracapacitor storage is considered for a direct-current microgrid. • Microgrid voltage cascade control system with load compensator is designed. • Current references are allocated so that ultracapacitor takes on transient loads. • Adaptive Kalman filter-based estimator is used for indirect load compensation. • Control strategy has been verified on a downscaled hardware-in-the-loop setup. - Abstract: A control system design based on an actively-controlled battery/ultracapacitor hybrid energy storage system suitable for direct current microgrid energy management purposes is presented in this paper. The proposed cascade control system arrangement is based on the superimposed proportional–integral voltage controller designed according to Damping Optimum criterion and a zero-pole canceling feed-forward load compensator aimed at voltage excursion suppression under variable load conditions. The superimposed controller commands the inner battery and ultracapacitor current control loops through a dynamic current reference distribution scheme, wherein the ultracapacitor takes on the highly-dynamic (transient) current demands, and the battery covers for steady-state loads. In order to avoid deep discharges of the ultracapacitor module, it is equipped with an auxiliary state-of-charge controller. Finally, for those applications where load is not measured, an adaptive Kalman filter-based load compensator is proposed and tested. The presented control strategy has been implemented on the low-cost industrial controller unit, and its effectiveness has been verified by means of simulations and experiments for the cases of abrupt load changes and quasi-stochastic load profiles using a downscaled battery/ultracapacitor hardware-in-the-loop experimental setup.

  18. Seasonal thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

    1984-05-01

    This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

  19. A Micro-Grid Battery Storage Management

    DEFF Research Database (Denmark)

    Mahat, Pukar; Escribano Jiménez, Jorge; Moldes, Eloy Rodríguez

    2013-01-01

    systems under its administration. This paper presents an optimized scheduling of a micro-grid battery storage system that takes into account the next-day forecasted load and generation profiles and spot electricity prices. Simulation results show that the battery system can be scheduled close to optimal...

  20. Energy Storage for Aerospace Applications

    Science.gov (United States)

    Perez-Davis, Marla E.; Loyselle, Patricia L.; Hoberecht, Mark A.; Manzo, Michelle A.; Kohout, Lisa L.; Burke, Kenneth A.; Cabrera, Carlos R.

    2001-01-01

    The NASA Glenn Research Center (GRC) has long been a major contributor to the development and application of energy storage technologies for NASAs missions and programs. NASA GRC has supported technology efforts for the advancement of batteries and fuel cells. The Electrochemistry Branch at NASA GRC continues to play a critical role in the development and application of energy storage technologies, in collaboration with other NASA centers, government agencies, industry and academia. This paper describes the work in batteries and fuel cell technologies at the NASA Glenn Research Center. It covers a number of systems required to ensure that NASAs needs for a wide variety of systems are met. Some of the topics covered are lithium-based batteries, proton exchange membrane (PEM) fuel cells, and nanotechnology activities. With the advances of the past years, we begin the 21st century with new technical challenges and opportunities as we develop enabling technologies for batteries and fuel cells for aerospace applications.

  1. Estimating the Size of the Renewable Energy Generators in an Isolated Solar-Biodiesel Microgrid with Lead-Acid Battery Storage

    Directory of Open Access Journals (Sweden)

    GRAMA Alin

    2015-10-01

    Full Text Available Climate change, fossil fuel decline, expensive power grid extensions focused the attention of scientist in developing electrical power systems that use as primary resources renewable energy generators. Romania has a high renewable energy potential and presents interest in developing renewable energy microgrids using: solar energy, wind energy, biomass Hydro, etc. The paper presents a method of estimating the size of the renewable energy generators in an isolated solar-biodiesel microgrid with lead-acid battery storage. The mathematical model is first presented and then an algorithm is developed to give an estimation of the size of the microgrid. The microgrid is installed in the region of Oradea, Romania. The results are validated through comparison with existing sizing software programs like: PV*Sol and PVSyst.

  2. Lithium batteries and other electrochemical storage systems

    CERN Document Server

    Glaize, Christian

    2013-01-01

    Lithium batteries were introduced relatively recently in comparison to lead- or nickel-based batteries, which have been around for over 100 years. Nevertheless, in the space of 20 years, they have acquired a considerable market share - particularly for the supply of mobile devices. We are still a long way from exhausting the possibilities that they offer. Numerous projects will undoubtedly further improve their performances in the years to come. For large-scale storage systems, other types of batteries are also worthy of consideration: hot batteries and redox flow systems, for example.

  3. A Distributed Control Strategy Based on DC Bus Signaling for Modular Photovoltaic Generation Systems With Battery Energy Storage

    DEFF Research Database (Denmark)

    Sun, Kai; Zhang, Li; Xing, Yan

    2011-01-01

    Modular generation system, which consists of modular power conditioning converters, is an effective solution to integrate renewable energy sources with conventional utility grid to improve reliability and efficiency, especially for photovoltaic generation. A distributed control strategy based...... charging/discharging and local loads, which is available of either grid-connected operation or islanding operation. By using the proposed control strategy, the operations of a modular PV generation system are categorized into four modes: islanding with battery discharging, grid-connected rectification......, grid-connected inversion, and islanding with constant voltage (CV) generation.The power balance of the system under extreme conditions such as the islanding operation with a full-charged battery is taken into account in this control strategy. The dc bus voltage level is employed as an information...

  4. Economic Optimization of Component Sizing for Residential Battery Storage Systems

    Directory of Open Access Journals (Sweden)

    Holger C. Hesse

    2017-06-01

    Full Text Available Battery energy storage systems (BESS coupled with rooftop-mounted residential photovoltaic (PV generation, designated as PV-BESS, draw increasing attention and market penetration as more and more such systems become available. The manifold BESS deployed to date rely on a variety of different battery technologies, show a great variation of battery size, and power electronics dimensioning. However, given today’s high investment costs of BESS, a well-matched design and adequate sizing of the storage systems are prerequisites to allow profitability for the end-user. The economic viability of a PV-BESS depends also on the battery operation, storage technology, and aging of the system. In this paper, a general method for comprehensive PV-BESS techno-economic analysis and optimization is presented and applied to the state-of-art PV-BESS to determine its optimal parameters. Using a linear optimization method, a cost-optimal sizing of the battery and power electronics is derived based on solar energy availability and local demand. At the same time, the power flow optimization reveals the best storage operation patterns considering a trade-off between energy purchase, feed-in remuneration, and battery aging. Using up to date technology-specific aging information and the investment cost of battery and inverter systems, three mature battery chemistries are compared; a lead-acid (PbA system and two lithium-ion systems, one with lithium-iron-phosphate (LFP and another with lithium-nickel-manganese-cobalt (NMC cathode. The results show that different storage technology and component sizing provide the best economic performances, depending on the scenario of load demand and PV generation.

  5. Second Use of PEV Batteries: A Massive Storage Resource for Revolutionizing the Grid

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, Jeremy; Pesaran, Ahmad; Wood, Eric; Smith, Kandler

    2015-05-27

    The market penetration of plug-in electric vehicles (PEVs) and deployment of grid-connected energy storage systems are both presently impeded by the high cost of batteries. Battery second use (B2U) strategies-in which a single battery first serves an automotive application, then is redeployed into a secondary market-could help address both issues by reducing battery costs to the primary repurposed PEV batteries to serve grid applications for energy storage. The authors view this as of significant importance, as our expectation is that such batteries will be both cheap and plentiful. Understanding the dynamics of B2U will be important for customers and utilities in need of storage to understand when and where such batteries will be applicable. It will also be important for suppliers of other energy storage technologies, as repurposed PEV batteries could pose a significant threat to their business model.

  6. REopt Lite Web Tool Evaluates Photovoltaics and Battery Storage

    Energy Technology Data Exchange (ETDEWEB)

    2018-03-08

    Building on the success of the REopt renewable energy integration and optimization platform, NREL has developed a free, publicly available web version of REopt called REopt Lite. REopt Lite evaluates the economics of grid-connected photovoltaics (PV) and battery storage at a site. It allows building owners to identify the system sizes and battery dispatch strategy that minimize their life cycle cost of energy. This web tool also estimates the amount of time a PV and storage system can sustain the site's critical load during a grid outage.

  7. High security ion-lithium batteries with rapid recharge for the terrestrial transport and energy storage; Batteries de type ion-lithium de haute securite a recharge rapide pour le transport terrestre et le stockage d'energie

    Energy Technology Data Exchange (ETDEWEB)

    Zaghib, Karim; Dontigny, M.; Charest, P.; Guerfi, A.; Trotier, J.; Mathieu, M.C.; Zhu, W.; Petitclerc, M.; Veillette, R.; Serventi, A.; Hovington, P.; Lagace, M.; Trudeau, M.; Vijh, A.

    2010-09-15

    Electrical terrestrial transport is today a hub of innovation and growth for Hydro-Quebec. In the perspective of electrification of terrestrial transports, battery remains the critical factor of future success of rechargeable electrical vehicles. For nearly 20 years, Hydro-Quebec, via its research institute, has worked at developing battery material for the lithium-ion technology. Two types of Li-ion batteries have been developed: the energy battery and the power battery. [French] Le transport terrestre electrique est aujourd'hui un pole d'innovation et de croissance pour Hydro-Quebec. Dans la perspective de l'electrification des transports terrestres, la batterie demeure le facteur critique du succes futur des vehicules electriques rechargeables. Depuis pres de 20 ans, Hydro-Quebec, par le biais de son Institut de recherche, travaille au developpement de materiaux de batteries destinees a la technologie lithium-ion. Deux types de batteries Li-ion ont ete mises au point : la batterie d'energie et la batterie de puissance.

  8. Advanced energy storage for space applications: A follow-up

    Science.gov (United States)

    Halpert, Gerald; Surampudi, Subbarao

    1994-01-01

    Viewgraphs on advanced energy storage for space applications are presented. Topics covered include: categories of space missions using batteries; battery challenges; properties of SOA and advanced primary batteries; lithium primary cell applications; advanced rechargeable battery applications; present limitations of advanced battery technologies; and status of Li-TiS2, Ni-MH, and Na-NiCl2 cell technologies.

  9. Impact of Battery Energy Storage System Operation Strategy on Power System: An Urban Railway Load Case under a Time-of-Use Tariff

    Directory of Open Access Journals (Sweden)

    Hyeongig Kim

    2017-01-01

    Full Text Available Customer-owned battery energy storage systems (BESS have been used to reduce electricity costs of energy storage owners (ESOs under a time-of-use (TOU tariff in Korea. However, the current TOU tariff can unintentionally induce customer’s electricity usage to have a negative impact on power systems. This paper verifies the impact of different BESS operation strategies on power systems under a TOU tariff by analyzing the TOU tariff structure and the customer’s load pattern. First, several BESS operation strategies of ESO are proposed to reduce the electricity cost. In addition, a degradation cost calculation method for lithium ion batteries is considered for the ESO to determine the optimal BESS operation strategy that maximizes both electricity cost and annual investment cost. The optimal BESS operation strategy that maximizes ESO’s net benefit is illustrated by simulation using an urban railway load data from Namgwangju Station, Korea. The results show that BESS connected to urban railway loads can negative impact power system operation. This is due to the high BESS degradation costs and lack of incentive of differential rates in TOU tariff that can effectively induce proper demand response.

  10. Novel Battery Management System with Distributed Wireless and Fiber Optic Sensors for Early Detection and Suppression of Thermal Runaway in Large Battery Packs, FY13 Q4 Report, ARPA-E Program: Advanced Management Protection of Energy Storage Devices (AMPE

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chang, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zumstein, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kovotsky, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Puglia, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dobley, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Moore, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Osswald, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wolf, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kaschmitter, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Eaves, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-10-08

    Technology has been developed that enables monitoring of individual cells in highcapacity lithium-ion battery packs, with a distributed array of wireless Bluetooth 4.0 tags and sensors, and without proliferation of extensive wiring harnesses. Given the safety challenges facing lithium-ion batteries in electric vehicle, civilian aviation and defense applications, these wireless sensors may be particularly important to these emerging markets. These wireless sensors will enhance the performance, reliability and safety of such energy storage systems. Specific accomplishments to date include, but are not limited to: (1) the development of wireless tags using Bluetooth 4.0 standard to monitor a large array of sensors in battery pack; (2) sensor suites enabling the simultaneous monitoring of cell voltage, cell current, cell temperature, and package strain, indicative of swelling and increased internal pressure, (3) small receivers compatible with USB ports on portable computers; (4) software drivers and logging software; (5) a 7S2P battery simulator, enabling the safe development of wireless BMS hardware in the laboratory; (6) demonstrated data transmission out of metal enclosures, including battery box, with small variable aperture opening; (7) test data demonstrating the accurate and reliable operation of sensors, with transmission of terminal voltage, cell temperature and package strain at distances up to 110 feet; (8) quantification of the data transmission error as a function of distance, in both indoor and outdoor operation; (9) electromagnetic interference testing during operation with live, high-capacity battery management system at Yardney Technical Products; (10) demonstrated operation with live high-capacity lithium-ion battery pack during charge-discharge cycling; (11) development of special polymer-gel lithium-ion batteries with embedded temperature sensors, capable of measuring the core temperature of individual of the cells during charge-discharge cycling

  11. Environmental/Economic Operation Management of a Renewable Microgrid with Wind/PV/FC/MT and Battery Energy Storage Based on MSFLA

    Directory of Open Access Journals (Sweden)

    Morteza Haghshenas

    2016-03-01

    Full Text Available Microgrids (MGs are local grids consisting of Distributed generators, energy storage systems and dispersed loads which may operate in both grid-connected and islanded modes. This paper aims to optimize the operation of a typical grid-connected MG which comprises a variety of DGs and storage devices in order to minimize both total operation cost and environmental impacts resulted from supplying local demands. Furthermore we will try to achieve an intelligent schedule to charge and discharge storage devices that provides the opportunity to benefit from market price fluctuations. The presented optimization framework is based on multiobjective modified shuffled frog leaping algorithm (MSFLA. To solve environmental/economic operation management (EEOM problem using MSFLA, a new frog leaping rule, associated with a new strategy for frog distribution into memeplexes, is proposed to improve the local exploration and performance of the ordinary shuffled frog leaping algorithm. The proposed method is examined and tested on a grid-connected MG including fuel cell, wind turbine, photovoltaic, gas-fired microturbine, and battery energy storage devices. The simulation results for three scenarios involving the economic operation management of MG, environmental operation management of MG, and environmental/economic operation management of MG are presented separately. The obtained results compared with results of well-known methods reported in the literature and prove the efficiency of the proposed approach to solve the both single objective and multiobjective operation management of the MG.

  12. Energy Storage

    CSIR Research Space (South Africa)

    Bladergroen, B

    2015-10-01

    Full Text Available With the emergence of variable renewable energy (VRE) sources, such as solar photovoltaics (PV) and wind power, flexibility requirements in the power system are generally increasing. However, what is not so clear yet is what “increasing flexibility...

  13. Final report on the development of a 250-kW modular, factory-assembled battery energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Porter, D. [Omnion Power Engineering Corp., East Troy, WI (United States); Nerbun, W. [AC Battery Corp., East Troy, WI (United States); Corey, G. [Sandia National Labs., Albuquerque, NM (United States). Energy Storage Systems Analysis and Development Dept.

    1998-08-01

    A power management energy storage system was developed for stationary applications such as peak shaving, voltage regulation, and spinning reserve. Project activities included design, manufacture, factory testing, and field installation. The major features that characterize the development are the modularity of the production, its transportability, the power conversion method that aggregates power on the AC side of the converter, and the use of commonly employed technology for system components. 21 figs.

  14. A Responsive Battery with Controlled Energy Release.

    Science.gov (United States)

    Wang, Xiaopeng; Gao, Jian; Cheng, Zhihua; Chen, Nan; Qu, Liangti

    2016-11-14

    A new type of responsive battery with the fascinating feature of pressure perceptibility has been developed, which can spontaneously, timely and reliably control the power outputs (e.g., current and voltage) in response to pressure changes. The device design is based on the structure of the Zn-air battery, in which graphene-coated sponge serves as pressure-sensitive air cathode that endows the whole system with the capability of self-controlled energy release. The responsive batteries exhibit superior battery performance with high open-circuit voltage (1.3 V), and competitive areal capacity of 1.25 mAh cm -2 . This work presents an important move towards next-generation intelligent energy storage devices with energy management function. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Seasonal energy storage - PV-hydrogen systems

    Energy Technology Data Exchange (ETDEWEB)

    Leppaenen, J. [Neste Oy/NAPS (Finland)

    1998-10-01

    PV systems are widely used in remote areas e.g. in telecommunication systems. Typically lead acid batteries are used as energy storage. In northern locations seasonal storage is needed, which however is too expensive and difficult to realise with batteries. Therefore, a PV- battery system with a diesel backup is sometimes used. The disadvantages of this kind of system for very remote applications are the need of maintenance and the need to supply the fuel. To overcome these problems, it has been suggested to use hydrogen technologies to make a closed loop autonomous energy storage system

  16. Optimal bidding strategy of battery storage in power markets considering performance based regulation and battery cycle life

    DEFF Research Database (Denmark)

    He, Guannan; Chen, Qixin; Kang, Chongqing

    2016-01-01

    Large-scale battery storage will become an essential part of the future smart grid. This paper investigates the optimal bidding strategy for battery storage in power markets. Battery storage could increase its profitability by providing fast regulation service under a performance-based regulation...... mechanism, which better exploits a battery’s fast ramping capability. However, battery life might be decreased by frequent charge–discharge cycling, especially when providing fast regulation service. It is profitable for battery storage to extend its service life by limiting its operational strategy to some...... degree. Thus, we incorporate a battery cycle life model into a profit maximization model to determine the optimal bids in day-ahead energy, spinning reserve, and regulation markets. Then a decomposed online calculation method to compute cycle life under different operational strategies is proposed...

  17. Energy Conversion and Storage Program

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  18. Advanced fibre based energy storage.

    OpenAIRE

    Reid, Daniel

    2017-01-01

    New energy storage devices are required to enable future technologies. With the rise of wearable consumer and medical devices, a suitable flexible and wearable means of storing electrical energy is required. Fibre-based devices present a possible method of achieving this aim. Fibres are inherently more flexible than their bulk counterparts, and as such can be employed to form the electrodes of flexible batteries and capacitors. They also present a facile possibility for incorporation into man...

  19. A hybrid electrochemical device based on a synergetic inner combination of Li ion battery and Li ion capacitor for energy storage.

    Science.gov (United States)

    Zheng, Jun-Sheng; Zhang, Lei; Shellikeri, Annadanesh; Cao, Wanjun; Wu, Qiang; Zheng, Jim P

    2017-02-07

    Li ion battery (LIB) and electrochemical capacitor (EC) are considered as the most widely used energy storage systems (ESSs) because they can produce a high energy density or a high power density, but it is a huge challenge to achieve both the demands of a high energy density as well as a high power density on their own. A new hybrid Li ion capacitor (HyLIC), which combines the advantages of LIB and Li ion capacitor (LIC), is proposed. This device can successfully realize a potential match between LIB and LIC and can avoid the excessive depletion of electrolyte during the charge process. The galvanostatic charge-discharge cycling tests reveal that at low current, the HyLIC exhibits a high energy density, while at high current, it demonstrates a high power density. Ragone plot confirms that this device can make a synergetic balance between energy and power and achieve a highest energy density in the power density range of 80 to 300 W kg -1 . The cycle life test proves that HyLIC exhibits a good cycle life and an excellent coulombic efficiency. The present study shows that HyLIC, which is capable of achieving a high energy density, a long cycle life and an excellent power density, has the potential to achieve the winning combination of a high energy and power density.

  20. An approach for estimation of optimal energy flows in battery storage devices for electric vehicles in the smart grid

    Directory of Open Access Journals (Sweden)

    Vacheva Gergana

    2017-01-01

    Full Text Available While the number of the vehicle actuated with liquid fuels are settled, the count of electric vehicles is increasing. For the present moment most of them are scheduled for daily urban usage. This paper presents an analytical approach for estimation of the impact of electrical vehicle (EV battery charging on the distribution grid. Based on the EV charge profile, load curve and local distributed generation the grid nodes, the time variation of grid parameters is obtained. A set of typical load profiles of EV charging modes is studied and presented. A software implementation and a 24h case study of low voltage distribution network with EV charging devices is presented in order to illustrate the approach and the impacts of EV charging on the grid. In the current paper an approach using variable nonlinear algebraic equations for dynamic time domain analysis of the charge of the electric vehicles is presented. Based on the results, the challenges due to EV charging in distribution networks including renewable energy sources are discussed. This approach is widely applicable for various EV charging and distributed energy resources studies considering control algorithms, grid stability analysis, smart grid power management and other power system analysis problems.

  1. Rotating UPS installations and dynamic energy storage. Comparison of static and rotating UPS and comparison of dynamic energy storage using batteries - Final Report; Rotierende USV-Anlagen und dynamische Energiespeicherung. Vergleich der statischen mit rotierenden USV-Anlagen und Vergleich der dynamischen Energiespeicherung mit Batterieanlagen - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Mauchle, P.; Schnyder, G.

    2010-01-15

    As an alternative to the static UPS-Systems (uninterruptible power supply systems), rotating UPS-Systems can be applied. The application and the realisation of rotating UPS-Systems are different to the one of static UPS-Systems. Furthermore at the rotating UPS-Systems is to distinguish, if the UPS-System is realised as a diesel dynamic UPS-System, with an activity up from 400 kVA, or if the dynamic part is limited to the energy storage, with an activity up from 60 kVA. The diesel dynamic UPS-Systems are composed of a synchronous machine, an asynchronous machine with a flywheel, respectively a kinetic module and the diesel engine. The connection to the critical user at the low voltage network occurs using an inductor and the accordant switchgears. The application of a diesel dynamic UPS-System is optimal when it can be connected with an emergency power supply. With the realisation of dynamic energy storages, battery systems can be avoided respectively can be reduced or the lifetime of batteries can be extended. It is only possible to avoid the batteries if the requested autonomous time of the UPS-System is shorter than two minutes. Is an autonomous time longer than 2 minutes necessary, battery systems have to be realised for the energy storage. Thereby dynamic energy storage in parallel to the battery system is useful, because the dynamic energy storage will compensate temporary voltage drops or short power failures. In this way the number of charge and discharge cycles of the battery system will be reduced and therefore the lifetime of the battery will be extended. The use of a dynamic or static UPS system is dependent on the requirements of the powered load. Taking into account various criteria it can be found for each specific application the optimal type of UPS system. (authors)

  2. A thermophysical battery for storage-based climate control

    International Nuclear Information System (INIS)

    Narayanan, Shankar; Kim, Hyunho; Umans, Ari; Yang, Sungwoo; Li, Xiansen; Schiffres, Scott N.; Rao, Sameer R.; McKay, Ian S.; Rios Perez, Carlos A.; Hidrovo, Carlos H.; Wang, Evelyn N.

    2017-01-01

    Highlights: • The concept of a thermophysical battery for storing thermal energy is demonstrated. • The battery provides heating and cooling for stationary and mobile applications. • Energy storage mechanisms: adsorption-desorption and evaporation-condensation. • Max. heating: 103 W/l and 65 W/kg; Max. Cooling: 78 W/l and 49 W/kg. • Novel adsorbents further enhance performance for a compact and lightweight system. - Abstract: Climate control applications in the form of heating and cooling account for a significant portion of energy consumption in buildings and transportation. Consequently, improved efficiency of climate control systems can significantly reduce the energy consumption and greenhouse gas emissions. In particular, by leveraging intermittent or continuous sources of waste heat and solar energy, thermally-driven energy storage systems for climate control can play a crucial role. We demonstrate the concept of a thermophysical battery, which operates by storing thermal energy and subsequently releasing it to provide heating and cooling on demand. Taking advantage of the adsorption-desorption and evaporation-condensation mechanisms, the thermophysical battery can be a high-power density and rechargeable energy storage system. We investigated the thermophysical battery in detail to identify critical parameters governing its overall performance. A detailed computational analysis was used to predict its cyclic performance when exposed to different operating conditions and thermodynamic cycles. In addition, an experimental test bed was constructed using a contemporary adsorptive material, NaX-zeolite, to demonstrate this concept and deliver average heating and cooling powers of 900 W and 650 W, respectively. The maximum power densities and specific powers observed were 103 W/l and 65 W/kg for heating, and 78 W/l and 49 W/kg for cooling, respectively, making the thermophysical battery competitive with the state-of-the-art climate control systems that

  3. Optimized Fuzzy-Cuckoo Controller for Active Power Control of Battery Energy Storage System, Photovoltaic, Fuel Cell and Wind Turbine in an Isolated Micro-Grid

    Directory of Open Access Journals (Sweden)

    Mohsen Einan

    2017-08-01

    Full Text Available This paper presents a new control strategy for isolated micro-grids including wind turbines (WT, fuel cells (FC, photo-voltaic (PV and battery energy storage systems (BESS. FC have been used in parallel with BESSs in order to increase their lifetime and efficiency. The changes in some parameters such as wind speed, sunlight, and consumption, lead to improper performance of droop. To overcome this challenge, a new intelligent method using a combination of fuzzy controller and cuckoo optimization algorithm (COA techniques for active power controllers in isolated networks is proposed. In this paper, COA is compared with genetic algorithm (GA and particles swarm optimization algorithm (PSO. In order to show efficiency of the proposed controller, this optimal controller has been compared with droop, optimized droop, and conventional fuzzy methods, the dynamic analysis of the island is implemented to assess the behavior of isolated generations accurately and simulation results are reported.

  4. Analysis and optimization of the battery energy storage systems for frequency control in autonomous microgrids, by means of hardware-in-the-loop simulations

    DEFF Research Database (Denmark)

    Serban, I.; Teodorescu, Remus; Marinescu, C.

    2012-01-01

    This paper presents an original hardware-in-the-loop (HIL) solution for real-time testing and optimization of the frequency control mechanism in autonomous microgrids (MG), when battery energy storage systems (BESS) are integrated along classical and RES-based generators to stabilize the frequency....... The focus is on autonomous MGs that dynamically should perform similarly to the conventional power systems. During MG autonomous operation, the generators should accomplish the frequency control process, by means of their automatic generation control. However, RES-based generators have poor controllability...... of the involved mechanisms in the MG dynamics. An experimental test bench including a real-time digital simulator with BESS controller in the HIL structure is used for assessing the proposed system performances....

  5. Wide Temperature Range Hybrid Energy Storage Device, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal concerns the fabrication of a hybrid battery capacitor (HBC) using Eltron's knowledge gained in battery and capacitor research. Energy storage systems...

  6. Modeling, Control, and Simulation of Battery Storage Photovoltaic-Wave Energy Hybrid Renewable Power Generation Systems for Island Electrification in Malaysia

    Directory of Open Access Journals (Sweden)

    Nahidul Hoque Samrat

    2014-01-01

    Full Text Available Today, the whole world faces a great challenge to overcome the environmental problems related to global energy production. Most of the islands throughout the world depend on fossil fuel importation with respect to energy production. Recent development and research on green energy sources can assure sustainable power supply for the islands. But unpredictable nature and high dependency on weather conditions are the main limitations of renewable energy sources. To overcome this drawback, different renewable sources and converters need to be integrated with each other. This paper proposes a standalone hybrid photovoltaic- (PV- wave energy conversion system with energy storage. In the proposed hybrid system, control of the bidirectional buck-boost DC-DC converter (BBDC is used to maintain the constant dc-link voltage. It also accumulates the excess hybrid power in the battery bank and supplies this power to the system load during the shortage of hybrid power. A three-phase complex vector control scheme voltage source inverter (VSI is used to control the load side voltage in terms of the frequency and voltage amplitude. Based on the simulation results obtained from Matlab/Simulink, it has been found that the overall hybrid framework is capable of working under the variable weather and load conditions.

  7. Modeling, Control, and Simulation of Battery Storage Photovoltaic-Wave Energy Hybrid Renewable Power Generation Systems for Island Electrification in Malaysia

    Science.gov (United States)

    Samrat, Nahidul Hoque; Ahmad, Norhafizan Bin; Choudhury, Imtiaz Ahmed; Taha, Zahari Bin

    2014-01-01

    Today, the whole world faces a great challenge to overcome the environmental problems related to global energy production. Most of the islands throughout the world depend on fossil fuel importation with respect to energy production. Recent development and research on green energy sources can assure sustainable power supply for the islands. But unpredictable nature and high dependency on weather conditions are the main limitations of renewable energy sources. To overcome this drawback, different renewable sources and converters need to be integrated with each other. This paper proposes a standalone hybrid photovoltaic- (PV-) wave energy conversion system with energy storage. In the proposed hybrid system, control of the bidirectional buck-boost DC-DC converter (BBDC) is used to maintain the constant dc-link voltage. It also accumulates the excess hybrid power in the battery bank and supplies this power to the system load during the shortage of hybrid power. A three-phase complex vector control scheme voltage source inverter (VSI) is used to control the load side voltage in terms of the frequency and voltage amplitude. Based on the simulation results obtained from Matlab/Simulink, it has been found that the overall hybrid framework is capable of working under the variable weather and load conditions. PMID:24892049

  8. Modeling, control, and simulation of battery storage photovoltaic-wave energy hybrid renewable power generation systems for island electrification in Malaysia.

    Science.gov (United States)

    Samrat, Nahidul Hoque; Bin Ahmad, Norhafizan; Choudhury, Imtiaz Ahmed; Bin Taha, Zahari

    2014-01-01

    Today, the whole world faces a great challenge to overcome the environmental problems related to global energy production. Most of the islands throughout the world depend on fossil fuel importation with respect to energy production. Recent development and research on green energy sources can assure sustainable power supply for the islands. But unpredictable nature and high dependency on weather conditions are the main limitations of renewable energy sources. To overcome this drawback, different renewable sources and converters need to be integrated with each other. This paper proposes a standalone hybrid photovoltaic- (PV-) wave energy conversion system with energy storage. In the proposed hybrid system, control of the bidirectional buck-boost DC-DC converter (BBDC) is used to maintain the constant dc-link voltage. It also accumulates the excess hybrid power in the battery bank and supplies this power to the system load during the shortage of hybrid power. A three-phase complex vector control scheme voltage source inverter (VSI) is used to control the load side voltage in terms of the frequency and voltage amplitude. Based on the simulation results obtained from Matlab/Simulink, it has been found that the overall hybrid framework is capable of working under the variable weather and load conditions.

  9. Examination of VRLA cells sampled from a battery energy storage system (BESS) after 30-months of operations

    Energy Technology Data Exchange (ETDEWEB)

    SZYMBORSKI,JOSEPH; HUNT,GEORGE; TSAGALIS,ANGELO; JUNGST,RUDOLPH G.

    2000-06-08

    Valve-Regulated Lead-Acid (VRLA) batteries continue to be employed in a wide variety of applications for telecommunications and Uninterruptible Power Supply (UPS). With the rapidly growing penetration of internet services, the requirements for standby power systems appear to be changing. For example, at last year's INTELEC, high voltage standby power systems up to 300-vdc were discussed as alternatives to the traditional 48-volt power plant. At the same time, battery reliability and the sensitivity of VRLAS to charging conditions (e.g., in-rush current, float voltage and temperature), continue to be argued extensively. Charge regimes which provide off-line charging or intermittent charge to the battery have been proposed. Some of these techniques go against the widely accepted rules of operation for batteries to achieve optimum lifetime. Experience in the telecom industry with high voltage systems and these charging scenarios is limited. However, GNB has several years of experience in the installation and operation of large VRLA battery systems that embody many of the power management philosophies being proposed. Early results show that positive grid corrosion is not accelerated and battery performance is maintained even when the battery is operated at a partial state-of-charge for long periods of time.

  10. Levelised cost of storage for pumped heat energy storage in comparison with other energy storage technologies

    OpenAIRE

    Smallbone, A.; Jülch, V.; Wardle, R.; Roskilly, A.P.

    2017-01-01

    Future electricity systems which plan to use large proportions of intermittent (e.g. wind, solar or tidal generation) or inflexible (e.g. nuclear, coal, etc.) electricity generation sources require an increasing scale-up of energy storage to match the supply with hourly, daily and seasonal electricity demand profiles. Evaluation of how to meet this scale of energy storage has predominantly been based on the deployment of a handful of technologies including batteries, Pumped Hydroelectricity S...

  11. Energy storage in Canada - Embassy report

    International Nuclear Information System (INIS)

    Quennehen, Sylvain

    2014-09-01

    After having outlined what is at stake in energy storage in the world (brief presentation of storage methods, overview of world electricity production and its storage challenges), and given an overview of the Canadian energy sector, this report gives an overview of the Canadian key and particularly innovating actors: main organisations, scientific research (in the fields of advanced batteries, of fuel cells, and of thermal storage), industrial sector (leaders in electricity production, in the electric or hybrid automotive sector and in the field of portable electronic devices, in the Li-ion battery sector, and in the hydrogen fuel cell sector, innovating actors in other energy storage methods). The author then discusses the innovation momentum in Canada: examples of energy storage projects by public organisations (CNRC, RNC), industrial projects in energy projects, investment dynamics

  12. Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: solar cells, batteries, and fuel cells

    KAUST Repository

    Orilall, M. Christopher

    2011-01-01

    The development of energy conversion and storage devices is at the forefront of research geared towards a sustainable future. However, there are numerous issues that prevent the widespread use of these technologies including cost, performance and durability. These limitations can be directly related to the materials used. In particular, the design and fabrication of nanostructured hybrid materials is expected to provide breakthroughs for the advancement of these technologies. This tutorial review will highlight block copolymers as an emerging and powerful yet affordable tool to structure-direct such nanomaterials with precise control over structural dimensions, composition and spatial arrangement of materials in composites. After providing an introduction to materials design and current limitations, the review will highlight some of the most recent examples of block copolymer structure-directed nanomaterials for photovoltaics, batteries and fuel cells. In each case insights are provided into the various underlying fundamental chemical, thermodynamic and kinetic formation principles enabling general and relatively inexpensive wet-polymer chemistry methodologies for the efficient creation of multiscale functional materials. Examples include nanostructured ceramics, ceramic-carbon composites, ceramic-carbon-metal composites and metals with morphologies ranging from hexagonally arranged cylinders to three-dimensional bi-continuous cubic networks. The review ends with an outlook towards the synthesis of multicomponent and hierarchical multifunctional hybrid materials with different nano-architectures from self-assembly of higher order blocked macromolecules which may ultimately pave the way for the further development of energy conversion and storage devices. © 2011 The Royal Society of Chemistry.

  13. Southern company energy storage study :

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, James; Bhatnagar, Dhruv; Black, Clifton; Jenkins, Kip

    2013-03-01

    This study evaluates the business case for additional bulk electric energy storage in the Southern Company service territory for the year 2020. The model was used to examine how system operations are likely to change as additional storage is added. The storage resources were allowed to provide energy time shift, regulation reserve, and spinning reserve services. Several storage facilities, including pumped hydroelectric systems, flywheels, and bulk-scale batteries, were considered. These scenarios were tested against a range of sensitivities: three different natural gas price assumptions, a 15% decrease in coal-fired generation capacity, and a high renewable penetration (10% of total generation from wind energy). Only in the elevated natural gas price sensitivities did some of the additional bulk-scale storage projects appear justifiable on the basis of projected production cost savings. Enabling existing peak shaving hydroelectric plants to provide regulation and spinning reserve, however, is likely to provide savings that justify the project cost even at anticipated natural gas price levels. Transmission and distribution applications of storage were not examined in this study. Allowing new storage facilities to serve both bulk grid and transmission/distribution-level needs may provide for increased benefit streams, and thus make a stronger business case for additional storage.

  14. FY2015 Energy Storage R&D Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-04-30

    The Energy Storage research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush.

  15. FY2013 Energy Storage R&D Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-02-01

    The FY 2013 Progress Report for Energy Storage R&D focuses on advancing the development of batteries to enable a large market penetration of hybrid and electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush.

  16. Electric energy storage - Overview of technologies

    International Nuclear Information System (INIS)

    Boye, Henri

    2013-01-01

    Energy storage is a challenging and costly process, as electricity can only be stored by conversion into other forms of energy (e.g. potential, thermal, chemical or magnetic energy). The grids must be precisely balanced in real time and it must be made sure that the cost of electricity is the lowest possible. Storage of electricity has many advantages, in centralized mass storages used for the management of the transmission network, or in decentralized storages of smaller dimensions. This article presents an overview of the storage technologies: mechanical storage in hydroelectric and pumped storage power stations, compressed air energy storage (CAES), flywheels accumulating kinetic energy, electrochemical batteries with various technologies, traditional lead acid batteries, lithium ion, sodium sulfur (NaS) and others, including vehicle to grid, sensible heat thermal storage, superconducting magnetic energy storage (SMES), super-capacitors, conversion into hydrogen... The different technologies are compared in terms of cost and level of maturity. The development of intermittent renewable energies will result in a growing need for mechanisms to regulate energy flow and innovative energy storage solutions seem well positioned to develop. (author)

  17. High-performance batteries for electric-vehicle propulsion and stationary energy storage. Progress report, October 1978-September 1979. [40 kWh, Li-Al and Li-Si anodes

    Energy Technology Data Exchange (ETDEWEB)

    Barney, D. L.; Steunenberg, R. K.; Chilenskas, A. A.; Gay, E. C.; Battles, J. E.; Hornstra, F.; Miller, W. E.; Vissers, D. R.; Roche, M. F.; Shimotake, H.; Hudson, R.; Askew, B. A.; Sudar, S.

    1980-03-01

    The research, development, and management activities of the programs at Argonne National Laboratory (ANL) and at contractors' laboratories on high-temperature batteries during the period October 1978 to September 1979 are reported. These batteries are being developed for electric-vehicle propulsion and for stationary energy-storage applications. The present cells, which operate at 400 to 500/sup 0/C, are of a vertically oriented, prismatic design with one or more inner positive electrodes of FeS or FeS/sub 2/, facing negative electrodes of lithium-aluminum or lithium-silicon alloy, and molten LiCl-KC1 electrolyte. During this reporting period, cell and battery development work has continued at ANL and contractors' laboratories. A 40 kWh electric-vehicle battery (designated Mark IA) was fabricated and delivered to ANL for testing. During the initial heat-up, one of the two modules failed due to a short circuit. A failure analysis was conducted, and the Mark IA program completed. Development work on the next electric-vehicle battery (Mark II) was initiated at Eagle-Picher Industries, Inc. and Gould, Inc. Work on stationary energy-storage batteries during this period has consisted primarily of conceptual design studies. 107 figures, 67 tables.

  18. The stationary storage of energy. Available technologies and CEA researches

    International Nuclear Information System (INIS)

    2012-01-01

    After a discussion of the main challenges related to the stationary storage of energy, this publication proposes an overview of the different available technologies: plant for transfer of energy by pumping, compressed air, energy flywheels, hydrogen, lithium-ion battery, redox-flow battery, thermal storage by sensitive heat, thermal-chemical storage coupled to a thermal solar system, thermal storage by phase change, superconductive inductance storage, super-capacitors. It discusses the criteria of choice of storage technology, either for electric energy storage or for heat storage. It proposes an overview of researches performed within the CEA on storage systems: electrochemical, thermal, and hydrogen-based storages. The final chapter addresses current fundamental researches on storage in the field of lithium-ion batteries, hydrogen as a fuel, and thermoelectricity

  19. Hydrogen based energy storage for solar energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Vanhanen, J.; Hagstroem, M.; Lund, P. [Helsinki Univ. of Technology, Otaniemi (Finland). Advanced Energy Systems

    1998-10-01

    The main technical constraint in solar energy systems which operate around the year is the lack of suitable long-term energy storage. Conventional solutions to overcome the problem of seasonal storage in PV power systems are to use oversized batteries as a seasonal energy storage, or to use a diesel back-up generator. However, affordable lead-acid batteries are not very suitable for seasonal energy storage because of a high self-discharge rate and enhanced deterioration and divergence of the single cells during prolonged periods of low state of charge in times of low irradiation. These disadvantages can be avoided by a back-up system, e.g. a diesel generator, which car supply energy to the loads and charge the battery to the full state of charge to avoid the above mentioned disadvantages. Unfortunately, diesel generators have several disadvantages, e.g. poor starting reliability, frequent need for maintenance and noise

  20. Operational experience and performance characteristics of a valve-regulated lead-acid battery energy-storage system for providing the customer with critical load protection and energy-management benefits at a lead-recycling plant

    Science.gov (United States)

    Hunt, G. W.

    The Power Control Division of GNB Technologies, commissioned on May 13, 1996 a new facility which houses a 5-MW battery energy-storage system (BESS) at GNB's Lead Recycling Centre in Vernon, CA. When the plant loses utility power (which typically happens two or three times a year), the BESS will provide up to 5 MW of power at 4160 VAC in support of all the plant loads. Since the critical loads are not isolated, it is necessary to carry the entire plant load (maximum of 5 MVA) for a short period immediately following an incident until non-critical loads have been automatically shed. Plant loading typically peaks at 3.5 MVA with critical loads of about 2.1 MVA. The BESS also provides the manufacturing plant with customer-side-of-the-meter energy management options to reduce its energy demand during peak periods of the day. The BESS has provided a reduction in monthly electric bills through daily peak-shaving. By design, the battery can provide up to 2.5 MWh of energy and still retain 2.5 MWh of capacity in reserve to handle the possibility of a power outage in protecting the critical loads for up to 1 h. By storing energy from the utility during off-peak hours of the night in the batteries when the cost is low (US4.5¢ per kWh), GNB can then discharge this energy during high demand periods of the day (US14.50 per kW). For example, by reducing its peak demand by 300 kW, the lead-recycling centre can save over US4000 per month in its electric bills. The BESS at Vernon represents a first large-scale use of valve-regulated lead-acid batteries in such a demanding application. This paper presents a summary of the operational experience and performance characteristics of the BESS over the past 2 years.

  1. Energy storage technologies

    International Nuclear Information System (INIS)

    Brunet, Y.

    2009-01-01

    This book takes stock of the advantages and drawbacks of the different energy storage solutions apart from the classical fossil fuels (oil, uranium, gas), and details the technologies developed for an electric end-use. Storage is one of the most critical point for the development of new energy technologies, in particular those that use the electricity vector all along the energy source chain (generation, production, transport, utilisation). Storage is important not only for individual or independent applications, that use renewable energies or not, often intermittent, but also to secure coupled systems like power transportation and distribution systems. The development and choice of the most relevant technologies is dependent of technical-economical parameters. It can also supply new services, in particular in the framework of new electricity markets. Content: power film-capacitors, magnetic storage, kinetic energy storage, compressed air energy storage (CAES), hydro-pneumatic storage, high-temperature thermal storage of electricity, hydraulic gravity storage, power electronic systems for energy storage. (J.S.)

  2. Hybrid radical energy storage device and method of making

    Science.gov (United States)

    Gennett, Thomas; Ginley, David S; Braunecker, Wade; Ban, Chunmei; Owczarczyk, Zbyslaw

    2015-01-27

    Hybrid radical energy storage devices, such as batteries or electrochemical devices, and methods of use and making are disclosed. Also described herein are electrodes and electrolytes useful in energy storage devices, for example, radical polymer cathode materials and electrolytes for use in organic radical batteries.

  3. Energy storage deployment and innovation for the clean energy transition

    Science.gov (United States)

    Kittner, Noah; Lill, Felix; Kammen, Daniel M.

    2017-09-01

    The clean energy transition requires a co-evolution of innovation, investment, and deployment strategies for emerging energy storage technologies. A deeply decarbonized energy system research platform needs materials science advances in battery technology to overcome the intermittency challenges of wind and solar electricity. Simultaneously, policies designed to build market growth and innovation in battery storage may complement cost reductions across a suite of clean energy technologies. Further integration of R&D and deployment of new storage technologies paves a clear route toward cost-effective low-carbon electricity. Here we analyse deployment and innovation using a two-factor model that integrates the value of investment in materials innovation and technology deployment over time from an empirical dataset covering battery storage technology. Complementary advances in battery storage are of utmost importance to decarbonization alongside improvements in renewable electricity sources. We find and chart a viable path to dispatchable US$1 W-1 solar with US$100 kWh-1 battery storage that enables combinations of solar, wind, and storage to compete directly with fossil-based electricity options.

  4. Silver effect of Co–Ni composite material on energy storage and structural behavior for Li-ion batteries

    International Nuclear Information System (INIS)

    Gnanamuthu, RM.; Prasanna, K.; Subburaj, T.; Jo, Yong Nam; Lee, Chang Woo

    2013-01-01

    Ag powder has been comparatively applied to the Co–Ni materials preparing by mixing method and the prepared electrodes were used as negative electrodes for Li-ion batteries applications. The prepared Co–Ni and Ag–Co–Ni with 10 wt.% of Ag composite electrodes are characterized by XRD, FE-SEM with EDX, impedance and electrochemical charge-discharge studies. These electrochemical studies are demonstrated at current rates of 0.1 C and 0.5 C between 0.01 and 2.0 V vs. Li/Li + . The porous Co–Ni and Ag–Co–Ni composite materials are electrochemically tested in lithium half cells. The porous Ag–Co–Ni composite material demonstrates that the initial and end of discharge capacity up to 20th cycles is, respectively, 860 and 715 mAh g −1 at 0.1 C rate maintaining at approximately 83%. The porous Ag–Co–Ni composite electrode may be a good candidate for high power lithium-ion batteries.

  5. University of Arizona Compressed Air Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Joseph [Univ. of Arizona, Tucson, AZ (United States); Muralidharan, Krishna [Univ. of Arizona, Tucson, AZ (United States)

    2012-12-31

    Boiled down to its essentials, the grant’s purpose was to develop and demonstrate the viability of compressed air energy storage (CAES) for use in renewable energy development. While everyone agrees that energy storage is the key component to enable widespread adoption of renewable energy sources, the development of a viable scalable technology has been missing. The Department of Energy has focused on expanded battery research and improved forecasting, and the utilities have deployed renewable energy resources only to the extent of satisfying Renewable Portfolio Standards. The lack of dispatchability of solar and wind-based electricity generation has drastically increased the cost of operation with these components. It is now clear that energy storage coupled with accurate solar and wind forecasting make up the only combination that can succeed in dispatchable renewable energy resources. Conventional batteries scale linearly in size, so the price becomes a barrier for large systems. Flow batteries scale sub-linearly and promise to be useful if their performance can be shown to provide sufficient support for solar and wind-base electricity generation resources. Compressed air energy storage provides the most desirable answer in terms of scalability and performance in all areas except efficiency. With the support of the DOE, Tucson Electric Power and Science Foundation Arizona, the Arizona Research Institute for Solar Energy (AzRISE) at the University of Arizona has had the opportunity to investigate CAES as a potential energy storage resource.

  6. High-Energy-Density Metal-Oxygen Batteries: Lithium-Oxygen Batteries vs Sodium-Oxygen Batteries.

    Science.gov (United States)

    Song, Kyeongse; Agyeman, Daniel Adjei; Park, Mihui; Yang, Junghoon; Kang, Yong-Mook

    2017-12-01

    The development of next-generation energy-storage devices with high power, high energy density, and safety is critical for the success of large-scale energy-storage systems (ESSs), such as electric vehicles. Rechargeable sodium-oxygen (Na-O 2 ) batteries offer a new and promising opportunity for low-cost, high-energy-density, and relatively efficient electrochemical systems. Although the specific energy density of the Na-O 2 battery is lower than that of the lithium-oxygen (Li-O 2 ) battery, the abundance and low cost of sodium resources offer major advantages for its practical application in the near future. However, little has so far been reported regarding the cell chemistry, to explain the rate-limiting parameters and the corresponding low round-trip efficiency and cycle degradation. Consequently, an elucidation of the reaction mechanism is needed for both lithium-oxygen and sodium-oxygen cells. An in-depth understanding of the differences and similarities between Li-O 2 and Na-O 2 battery systems, in terms of thermodynamics and a structural viewpoint, will be meaningful to promote the development of advanced metal-oxygen batteries. State-of-the-art battery design principles for high-energy-density lithium-oxygen and sodium-oxygen batteries are thus reviewed in depth here. Major drawbacks, reaction mechanisms, and recent strategies to improve performance are also summarized. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Joint optimisation of arbitrage profits and battery life degradation for grid storage application of battery electric vehicles

    Science.gov (United States)

    Kies, Alexander

    2018-02-01

    To meet European decarbonisation targets by 2050, the electrification of the transport sector is mandatory. Most electric vehicles rely on lithium-ion batteries, because they have a higher energy/power density and longer life span compared to other practical batteries such as zinc-carbon batteries. Electric vehicles can thus provide energy storage to support the system integration of generation from highly variable renewable sources, such as wind and photovoltaics (PV). However, charging/discharging causes batteries to degradate progressively with reduced capacity. In this study, we investigate the impact of the joint optimisation of arbitrage revenue and battery degradation of electric vehicle batteries in a simplified setting, where historical prices allow for market participation of battery electric vehicle owners. It is shown that the joint optimisation of both leads to stronger gains then the sum of both optimisation strategies and that including battery degradation into the model avoids state of charges close to the maximum at times. It can be concluded that degradation is an important aspect to consider in power system models, which incorporate any kind of lithium-ion battery storage.

  8. Superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Rogers, J.D.; Boenig, H.J.

    1978-01-01

    Superconducting inductors provide a compact and efficient means of storing electrical energy without an intermediate conversion process. Energy storage inductors are under development for diurnal load leveling and transmission line stabilization in electric utility systems and for driving magnetic confinement and plasma heating coils in fusion energy systems. Fluctuating electric power demands force the electric utility industry to have more installed generating capacity than the average load requires. Energy storage can increase the utilization of base-load fossil and nuclear power plants for electric utilities. Superconducting magnetic energy storage (SMES) systems, which will store and deliver electrical energy for load leveling, peak shaving, and the stabilization of electric utility networks are being developed. In the fusion area, inductive energy transfer and storage is also being developed by LASL. Both 1-ms fast-discharge theta-pinch and 1-to-2-s slow tokamak energy transfer systems have been demonstrated. The major components and the method of operation of an SMES unit are described, and potential applications of different size SMES systems in electric power grids are presented. Results are given for a 1-GWh reference design load-leveling unit, for a 30-MJ coil proposed stabilization unit, and for tests with a small-scale, 100-kJ magnetic energy storage system. The results of the fusion energy storage and transfer tests are also presented. The common technology base for the systems is discussed

  9. Solar Energy: Heat Storage.

    Science.gov (United States)

    Knapp, Henry H., III

    This module on heat storage is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The module…

  10. Nanocarbons for advanced energy storage

    CERN Document Server

    Feng, Xinliang

    2015-01-01

    This first volume in the series on nanocarbons for advanced applications presents the latest achievements in the design, synthesis, characterization, and applications of these materials for electrochemical energy storage. The highly renowned series and volume editor, Xinliang Feng, has put together an internationally acclaimed expert team who covers nanocarbons such as carbon nanotubes, fullerenes, graphenes, and porous carbons. The first two parts focus on nanocarbon-based anode and cathode materials for lithium ion batteries, while the third part deals with carbon material-based supercapacit

  11. The Lifetime of the LiFePO4/C Battery Energy Storage System When Used For Smoothing of the Wind Power Plant Variations

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Ioan; Stan, Ana-Irina

    2013-01-01

    Fulfilling ambitious goals of the full transition from the centralized, fossil fuel-based conventional generation units into distributed and eco-friendly renewables can be difficult to achieve without energy storage systems due to technical and economical challenges. Energy storage system addition...

  12. Balancing autonomy and utilization of solar power and battery storage for demand based microgrids

    Science.gov (United States)

    Lawder, Matthew T.; Viswanathan, Vilayanur; Subramanian, Venkat R.

    2015-04-01

    The growth of intermittent solar power has developed a need for energy storage systems in order to decouple generation and supply of energy. Microgrid (MG) systems comprising of solar arrays with battery energy storage studied in this paper desire high levels of autonomy, seeking to meet desired demand at all times. Large energy storage capacity is required for high levels of autonomy, but much of this expensive capacity goes unused for a majority of the year due to seasonal fluctuations of solar generation. In this paper, a model-based study of MGs comprised of solar generation and battery storage shows the relationship between system autonomy and battery utilization applied to multiple demand cases using a single particle battery model (SPM). The SPM allows for more accurate state-of-charge and utilization estimation of the battery than previous studies of renewably powered systems that have used empirical models. The increased accuracy of battery state estimation produces a better assessment of system performance. Battery utilization will depend on the amount of variation in solar insolation as well as the type of demand required by the MG. Consumers must balance autonomy and desired battery utilization of a system within the needs of their grid.

  13. Review on the Distributed Energy Storage Technology in the Application of the Micro Network

    OpenAIRE

    Huang Qiyuan; Wang Zhijie; Zhu Jun; Wang Dongwei; Du Bin

    2015-01-01

    This paper summarized the application process of energy storage technology in the micro-grid, elaborated on the development of energy storage technology concisely, and illustrated the roles of battery energy storage, flywheel energy storage, superconducting magnetic energy storage (SMES), super capacitor energy storage and other energy storage and so on in micro-hybrid. Then it compared the performances of some sorts of the storage method. As characteristics and actual demands of micro-grid w...

  14. Thermal energy storage

    Science.gov (United States)

    Grodzka, P. G.; Picklesimer, E. A.

    1978-01-01

    The general scope of study on thermal energy storage development includes: (1) survey and review possible concepts for storing thermal energy; (2) evaluate the potentials of the surveyed concepts for practical applications in the low and high temperature ranges for thermal control and storage, with particular emphasis on the low temperature range, and designate the most promising concepts; and (3) determine the nature of further studies required to expeditiously convert the most promising concept(s) to practical applications. Cryogenic temperature control by means of energy storage materials was also included.

  15. Understanding the function and performance of carbon-enhanced lead-acid batteries : milestone report for the DOE Energy Storage Systems program (FY11 Quarter 2: January through March 2011).

    Energy Technology Data Exchange (ETDEWEB)

    Shane, R. (East Penn Manufacturing, Lyon Station, PA); Enos, David George; Hund, Thomas D.

    2011-05-01

    This report describes the status of research being performed under CRADA No. SC10/01771.00 (Lead/Carbon Functionality in VRLA Batteries) between Sandia National Laboratories and East Penn Manufacturing, conducted for the U.S. Department of Energy's Energy Storage Systems Program. The Quarter 2 Milestone was completed on time. The milestone entails an ex situ analysis of the four carbons that have been added to the negative active material of valve-regulated lead-acid (VRLA) batteries for the purposes of this study. The four carbons selected for this study were a graphitic carbon, a carbon black, an activated carbon, and acetylene black. The morphology, crystallinity, and impurity contents of each of the four carbons were analyzed; results were consistent with previous data. Cycling on a subset of the received East Penn cells containing different carbons (and a control) has been initiated. Carbon has been explored as an addition to lead-acid battery electrodes in a number of ways. Perhaps the most notable to date has been the hybrid 'Ultrabattery' developed by CSIRO where an asymmetric carbon-based electrochemical capacitor is combined with a lead-acid battery into a single cell, dramatically improving high-rate partial-state-of-charge (HRPSoC) operation. As illustrated below, the 'Ultrabattery' is a hybrid device constructed using a traditional lead-acid battery positive plate (i.e., PbO{sub 2}) and a negative electrode consisting of a carbon electrode in parallel with a lead-acid negative plate. This device exhibits a dramatically improved cycle life over traditional VRLA batteries, as well as increased charge power and charge acceptance. The 'Ultrabattery' has been produced successfully by both The Furukawa Battery Co. and East Penn Manufacturing. An example illustrating the dramatic improvement in cycle life of the Ultrabattery over a conventional VRLA battery is shown.

  16. Understanding the function and performance of carbon-enhanced lead-acid batteries : milestone report for the DOE Energy Storage Systems Program (FY11 Quarter 4: July through September 2011).

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Summer Rhodes; Shane, Rodney (East Penn Manufacturing, Lyon Station, PA); Enos, David George

    2011-10-01

    This report describes the status of research being performed under CRADA No. SC10/01771.00 (Lead/Carbon Functionality in VRLA Batteries) between Sandia National Laboratories and East Penn Manufacturing, conducted for the U.S. Department of Energy's Energy Storage Systems Program. The Quarter 4 Milestone was completed on time. The milestone entails the initiation of high rate, partial state of charge (HRPSoC) cycling of the carbon enhanced batteries. The morphology, porosity, and porosity distribution within the plates after 1k and 10k cycles were documented, illustrating the changes which take place in the early life of the carbon containing batteries, and as the battery approaches failure due to hard sulfation for the control battery. Longer term cycling on a subset of the received East Penn cells containing different carbons (and a control) continues, and will progress into FY12. Carbon has been explored as an addition to lead-acid battery electrodes in a number of ways. Perhaps the most notable to date has been the hybrid 'Ultrabattery' developed by CSIRO where an asymmetric carbon-based electrochemical capacitor is combined with a lead-acid battery into a single cell, dramatically improving high-rate partial-state-of-charge (HRPSoC) operation. As illustrated below, the 'Ultrabattery' is a hybrid device constructed using a traditional lead-acid battery positive plate (i.e., PbO2) and a negative electrode consisting of a carbon electrode in parallel with a lead-acid negative plate. This device exhibits a dramatically improved cycle life over traditional VRLA batteries, as well as increased charge power and charge acceptance. The 'Ultrabattery' has been produced successfully by both The Furukawa Battery Co. and East Penn Manufacturing. An example illustrating the dramatic improvement in cycle life of the Ultrabattery over a conventional VRLA battery is shown in a graph. In addition to the aforementioned hybrid device, carbon has

  17. Technology Roadmap: Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-03-01

    Energy storage technologies are valuable components in most energy systems and could be an important tool in achieving a low-carbon future. These technologies allow for the decoupling of energy supply and demand, in essence providing a valuable resource to system operators. There are many cases where energy storage deployment is competitive or near-competitive in today's energy system. However, regulatory and market conditions are frequently ill-equipped to compensate storage for the suite of services that it can provide. Furthermore, some technologies are still too expensive relative to other competing technologies (e.g. flexible generation and new transmission lines in electricity systems). One of the key goals of this new roadmap is to understand and communicate the value of energy storage to energy system stakeholders. This will include concepts that address the current status of deployment and predicted evolution in the context of current and future energy system needs by using a ''systems perspective'' rather than looking at storage technologies in isolation.

  18. Energy storage, to make the wager to believe

    International Nuclear Information System (INIS)

    Signoret, Stephane; Guilhem, Jean; De Santis, Audrey; Kim, Caroline; Petitot, Pauline; Mary, Olivier

    2016-01-01

    After having evoked some examples and studies (an assessment of the costs of energy storage, an industrial perspective for sodium-ion batteries, the development of an energy recovery system for road transport), a first article discusses the importance of a right definition of energy storage, of its functions and development framework (how to store, where to store, at which price, in which context). A second article evokes the installation of Forsee Power (a leader in battery assembly) in France. A third article discusses how to couple renewable energies and local energy storage. While evoking the example of the LMP battery by Bollore, a fourth article outline the common benefits of high capacity batteries used in electric vehicles as well as in domestic applications or renewable energy supply schemes. The fifth article proposes an overview of researches for the improvement of energy storage solutions (study of battery ageing, use of super-capacitors, thermal storage in industry, a hybrid storage of renewable energy in overseas districts, use of nano-silicon to improve anodes, improvement of oxygen supply in fuel cells, development of very porous silicon layers for anodes). The sixth article discusses the development of a process by Babcok and the Cnim Group for a massive storage of energy by thermal accumulation for electric or thermal energy producers. The seventh and last article notices that the IRENA (International renewable energy Agency) outlined the role of energy storage for the development of rural areas and of islands which are disconnected from the grid

  19. Thermal energy storage

    Science.gov (United States)

    Tomlinson, J. J.

    1992-03-01

    The Department of Energy (DOE) is supporting development of thermal energy storage (TES) as a means of efficiently coupling energy supplies to variable heating or cooling demands. Uses of TES include electrical demand-side management in buildings and industry, extending the utilization of renewable energy resources such as solar, and recovery of waste heat from periodic industrial processes. Technical progress to develop TES for specific diurnal and industrial applications under Oak Ridge National Laboratory's TES program from April 1990 to March 1992 is reported and covers research in the areas of low temperature sorption, direct contact ice making, latent heat storage plasterboard and latent/sensible heat regenerator technology development.

  20. An Empirical Model for Energy Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rosewater, David Martin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Scott, Paul [TransPower, Poway, CA (United States)

    2016-03-17

    Improved models of energy storage systems are needed to enable the electric grid’s adaptation to increasing penetration of renewables. This paper develops a generic empirical model of energy storage system performance agnostic of type, chemistry, design or scale. Parameters for this model are calculated using test procedures adapted from the US DOE Protocol for Uniformly Measuring and Expressing the Performance of Energy Storage. We then assess the accuracy of this model for predicting the performance of the TransPower GridSaver – a 1 MW rated lithium-ion battery system that underwent laboratory experimentation and analysis. The developed model predicts a range of energy storage system performance based on the uncertainty of estimated model parameters. Finally, this model can be used to better understand the integration and coordination of energy storage on the electric grid.

  1. Lithium-Ion Battery Storage for the Grid—A Review of Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids

    Directory of Open Access Journals (Sweden)

    Holger C. Hesse

    2017-12-01

    Full Text Available Battery energy storage systems have gained increasing interest for serving grid support in various application tasks. In particular, systems based on lithium-ion batteries have evolved rapidly with a wide range of cell technologies and system architectures available on the market. On the application side, different tasks for storage deployment demand distinct properties of the storage system. This review aims to serve as a guideline for best choice of battery technology, system design and operation for lithium-ion based storage systems to match a specific system application. Starting with an overview to lithium-ion battery technologies and their characteristics with respect to performance and aging, the storage system design is analyzed in detail based on an evaluation of real-world projects. Typical storage system applications are grouped and classified with respect to the challenges posed to the battery system. Publicly available modeling tools for technical and economic analysis are presented. A brief analysis of optimization approaches aims to point out challenges and potential solution techniques for system sizing, positioning and dispatch operation. For all areas reviewed herein, expected improvements and possible future developments are highlighted. In order to extract the full potential of stationary battery storage systems and to enable increased profitability of systems, future research should aim to a holistic system level approach combining not only performance tuning on a battery cell level and careful analysis of the application requirements, but also consider a proper selection of storage sub-components as well as an optimized system operation strategy.

  2. Effects of variability and rate on battery charge storage and lifespan

    Science.gov (United States)

    Krieger, Elena Marie

    The growing prevalence of hybrid and electric vehicles, intermittent renewable energy sources, and other complex power systems has triggered a rapid increase in demand for energy storage. Unlike portable electronic devices, whose batteries can be recharged according to a pre-determined protocol simply by plugging them into the wall, many of these applications are characterized by highly variable charge and demand profiles. The central objective of this work is to assess the impact of power distribution and frequency on battery behavior in order to improve overall system efficiency and lifespan in these variable power applications. We first develop and experimentally verify a model to describe the trade-off between battery charging power and energy stored to assess how varying power input affects battery efficiency. This relationship is influenced both by efficiency losses at high powers and by premature voltage cutoffs, which contribute to incomplete battery charging and discharging. We experimentally study the impact of variable power on battery aging in lead-acid, nickel metal hydride, lithium-ion and lithium iron phosphate batteries. As a case study we focus on off-grid wind systems, and analyze the impact of both power distribution and frequency on charge acceptance and degradation in each of these chemistries. We suggest that lithium iron phosphate batteries may be more suitable for off-grid electrification projects than standard lead-acid batteries. We experimentally assess the impact of additional variable charging parameters on battery performance, including the interplay between efficiency, frequency of power oscillations, state-of-charge, incomplete charging and path dependence. We develop a frequency-domain model for hybrid energy storage systems that couples non-stationary frequency analysis of variable power signals to a frequency-based metric for energy storage device performance. The experimental and modeling work developed herein can be utilized to

  3. Comparative analysis of thermal storage cooling and storage battery cooling using photovoltaic generation. Part 2. Research on architectural systematization of energy conversion devices; Taiyoko hatsuden ni yoru chikunetsu reibo to chikuden reibo ni tsuite. 2. Energy henkan no kenchiku system ka ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Ito, N.; Kimura, G.; Fukao, S.; Shimizu, T.; Sunaga, N.; Tsunoda, M.; Muro, K.; Yamanaka, S. [Tokyo Metropolitan University, Tokyo (Japan)

    1996-10-27

    For use in energy self-sufficient buildings, a system was studied capable of retaining for its own use the excess of power produced by a photovoltaic power generation system without releasing it to the commercial system. Summertime cooling was considered. The storage battery cooling system was provided with two solar cell systems and, in the daytime, one was used for cooling and the other for charging batteries for nighttime cooling. In the cold heat storage cooling system, cold heat accumulators (red bricks) were provided in the wall and floor, and under the floor, and the floor was a grating for proper ventilation between the room and underfloor space. With the solar cell-driven air conditioner out of operation, cold heat was fed to the room from the underfloor cold heat accumulators by a fan. In storage battery cooling, solar power covered 60% of what the air conditioner used. In the presence of sufficient power in storage, the air conditioner stayed on at night without buying commercial power, when the room temperature was 25{degree}C. In the cold heat accumulation cooling, 50% of the air conditioner power consumption was covered by solar power. It is recommended to install cold heat accumulators not in the room but in a separate space, such as the underfloor space, where they are exposed to the cooling cold air direct from an air conditioner for future retrieval of cold heat. 2 refs., 9 figs., 3 tabs.

  4. Start It up: Flywheel Energy Storage Efficiency

    Science.gov (United States)

    Dunn, Michelle

    2011-01-01

    The purpose of this project was to construct and test an off-grid photovoltaic (PV) system in which the power from a solar array could be stored in a rechargeable battery and a flywheel motor generator assembly. The mechanical flywheel energy storage system would in turn effectively power a 12-volt DC appliance. The voltage and current of…

  5. Energy Storage Annual Progress Report for FY15

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ban, Chunmei [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cao, Lei [National Renewable Energy Lab. (NREL), Golden, CO (United States); Graf, Peter [National Renewable Energy Lab. (NREL), Golden, CO (United States); Keyser, Matt [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kim, Gi-Heon [National Renewable Energy Lab. (NREL), Golden, CO (United States); Santhanagopalan, Shriram [National Renewable Energy Lab. (NREL), Golden, CO (United States); Saxon, Aron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Shi, Ying [National Renewable Energy Lab. (NREL), Golden, CO (United States); Smith, Kandler [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tenent, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Yang, Chuanbo [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhang, Chao [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-12-01

    The Energy Storage research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles (PEVs) in support of the EV Everywhere Grand Challenge. PEVs could have a significant impact on the nation's goal of reducing dependence on imported oil and gaseous pollutant emissions. The Energy Storage program targets overcoming technical barriers to enable market success, including: (1) significantly reducing battery cost; (2) increasing battery performance (power, energy, durability); (3) reducing battery weight and volume; and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. The National Renewable Energy Laboratory (NREL) supports the VTO's Energy Storage program by evaluating the thermal performance of cells and packs, developing electrochemical-thermal models to accelerate the design cycle for developing batteries, investigating the behavior of lithium-ion batteries under abuse conditions such as crush, enhancing the durability of electrodes by coatings such as atomic layer deposition, synthesis of materials for higher energy density batteries, and conducting techno-economic analysis of batteries in various electric-drive vehicles. This report describes the progress made by NREL on the research and development projects funded by the DOE VTO Energy Storage subprogram in FY15.

  6. A high energy density all solid-state tungsten-air battery.

    Science.gov (United States)

    Zhao, Xuan; Li, Xue; Gong, Yunhui; Xu, Nansheng; Romito, Kevin; Huang, Kevin

    2013-06-14

    An all solid-state tungsten-air battery is reported here, which is based on a new metal-air chemistry, featuring decoupled design of electrodes and energy storage. Benefited from higher specific density and better redox kinetics of tungsten, the new tungsten-air battery exhibits roughly higher energy density (W h L(-1)) than the previously reported iron-air battery.

  7. Electrochemical energy storage

    CERN Document Server

    Tarascon, Jean-Marie

    2015-01-01

    The electrochemical storage of energy has become essential in assisting the development of electrical transport and use of renewable energies. French researchers have played a key role in this domain but Asia is currently the market leader. Not wanting to see history repeat itself, France created the research network on electrochemical energy storage (RS2E) in 2011. This book discusses the launch of RS2E, its stakeholders, objectives, and integrated structure that assures a continuum between basic research, technological research and industries. Here, the authors will cover the technological

  8. FY2014 Energy Storage R&D Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2015-03-01

    The Energy Storage research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Energy Storage subprogram in 2014. You can download individual sections at the following website, http://energy.gov/eere/vehicles/downloads/vehicle-technologies-office-2014-energy-storage-rd-annual-report.

  9. Biodigester as an energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Borges Neto, M.R.; Lopes, L.C.N. [Federal Institute of Education, Science and Technology of Sertao Pernambucano (IFSertao-PE), Petrolina, PE (Brazil)], Emails: rangel@cefetpet.br; Pinheiro Neto, J.S.; Carvalho, P.C.M. [Federal University of Ceara (UFC), Fortaleza, CE (Brazil). Dept. of Electrical Engineering], Emails: neto@tbmtextil.com.br, carvalho@dee.ufc.br; Silveira, G.C.; Moreira, A.P.; Borges, T.S.H. [Federal Institute of Education, Science and Technology of Ceara (IFCE), Fortaleza, CE (Brazil)], Emails: gcsilveira@cefet-ce.br, apmoreira@ifce.edu.br, thatyanys@yahoo.com.br

    2009-07-01

    Electricity supply for rural and remote areas is becoming an increasing priority to developing countries. The high initial cost of renewable energy based unities usually needs an energy storage system; due its operational and even replacement cost contributes to a higher final cost. The choice of energy storage systems depends on the sort and size of adopted power supply. This paper has a main goal to introduce a renewable energy based storage system weakly explored in Brazil: biogas from anaerobic digestion. It also brings a review of the main energy storage systems applied to electrical energy generation. As reference an experiment with an adapted Indian digester of 5 m{sup 3} that produced nearly 2m{sup 3} of biogas daily. The obtained biogas met the consumption of at least 4 typical Brazilian low income households with installed load of 500 W each and was enough to replace the use of 420 Ah lead-acid batteries. (author)

  10. Ten questions to Jean Dhers on the storage of electric energy

    International Nuclear Information System (INIS)

    2006-01-01

    The authors proposes a comprehensive set of technical and economical data and information on electricity storage: the reasons to store energy (autonomous, stationary and network applications), the different types and advantages of energy storages with reversible power, the means to massively store electricity to exploit in on the network (description, uses and comparison of pumping energy transfer station, energy storage under the form of compressed air), the inertial storage (storage of kinetic energy accumulated in a flywheel, and its applications), the importance of storage with electrochemical batteries (reversible storage, evolution of batteries in ground transports, main economic sectors for batteries), fuel cells, the role of energy storage by power capacitors, the perspectives of super capacitors in a near future (comparison of their performance with those of batteries, possible applications), the use of electromagnetic storage of electricity (description, advantages, drawbacks and applications of superconducting magnet energy storage or SMES), and how the research on electric power storage is organised

  11. Energy storage connection system

    Science.gov (United States)

    Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

    2012-07-03

    A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

  12. Energy Storage Criteria Handbook.

    Science.gov (United States)

    1982-10-01

    derived from the process of electrolysis in which electri- city is used to break water, H20, into its constituents, H and 0. The hydrogen and oxygen are...cavity because of incipient problems with surface brine . There are some problems with air leakage also. Storage in porous media covers variable pressure...with hydrogen and oxygen is more likely to be useful in an energy storage application. The hydrogen and oxygen can be initially generated by electrolysis

  13. Energy Storage Requirements & Challenges for Ground Vehicles

    Science.gov (United States)

    2010-03-18

    provide electric power to start the vehicle power generation (Engines / APUs)  Hybrid Vehicle Boost Acceleration and Regenerative Braking Energy Capture...Cooling Thermal Architectures Po we r Ma na ge m en t Power Controllers for Power Management Power Converters/ Inverters Wide Band Gap Materials (SiC...to recover wasted energy in vehicle braking  Silent Watch Batteries can provide the energy storage capability to power mission equipment with

  14. Identifying Critical Factors in the Cost-Effectiveness of Solar and Battery Storage in Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, Joyce A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Anderson, Katherine H [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Laws, Nicholas D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gagnon, Pieter J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); DiOrio, Nicholas A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Li, Xiangkun [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-21

    This analysis elucidates the emerging market for distributed solar paired with battery energy storage in commercial buildings across the United States. It provides insight into the near-term and future solar and solar-plus-storage market opportunities as well as the variables that impact the expected savings from installing behind-the-meter systems.

  15. Battery Storage Technologies for Electrical Applications: Impact in Stand-Alone Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Daniel Akinyele

    2017-11-01

    Full Text Available Batteries are promising storage technologies for stationary applications because of their maturity, and the ease with which they are designed and installed compared to other technologies. However, they pose threats to the environment and human health. Several studies have discussed the various battery technologies and applications, but evaluating the environmental impact of batteries in electrical systems remains a gap that requires concerted research efforts. This study first presents an overview of batteries and compares their technical properties such as the cycle life, power and energy densities, efficiencies and the costs. It proposes an optimal battery technology sizing and selection strategy, and then assesses the environmental impact of batteries in a typical renewable energy application by using a stand-alone photovoltaic (PV system as a case study. The greenhouse gas (GHG impact of the batteries is evaluated based on the life cycle emission rate parameter. Results reveal that the battery has a significant impact in the energy system, with a GHG impact of about 36–68% in a 1.5 kW PV system for different locations. The paper discusses new batteries, strategies to minimize battery impact and provides insights into the selection of batteries with improved cycling capacity, higher lifespan and lower cost that can achieve lower environmental impacts for future applications.

  16. Average Behavior of Battery - Electric Vehicles for Distributed Energy System Studies

    DEFF Research Database (Denmark)

    Marra, Francesco; Træholt, Chresten; Larsen, Esben

    2010-01-01

    use conditions cannot be neglected for a proper estimation of available fleet energy. In this paper we describe an average behavior of battery-EVs. Main points of this concept include the definition of the energy window and lifetime of the batteries, in relation to existing models and battery use......The increase of focus on electric vehicles (EVs) as distributed energy resources calls for new concepts of aggregated models of batteries. Despite the developed battery models for EVs applications, when looking at energy storage scenarios using EVs, both geographical-temporal aspects and battery...

  17. Self-assembly of exfoliated layered double hydroxide and graphene nanosheets for electrochemical energy storage in zinc/nickel secondary batteries

    Science.gov (United States)

    Long, Jun; Yang, Zhanhong; Huang, Jianhang; Zeng, Xiao

    2017-08-01

    In this work, the Zn-Al layered double hydroxide (Zn-Al LDH) is exfoliated. Ambient temperature ion exchange and chemical exfoliation route have been developed to synthesize the exfoliated layered double hydroxide/graphene compounds (Exfoliated LDH/G). The as-prepared Exfoliated LDH/G nanocomposites demonstrate no obvious impurity and good morphology, being characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). Here we intensively study the electrochemical performances of Exfoliated LDH/G and pure LDH electrodes for Zn-Ni secondary battery. It was found that the as-prepared Exfoliated LDH/G here exhibits higher and wide discharge voltage plateaus due to the well electrical conductivity and lower self-corrosion, which could promote charge-transfer of the exfoliated LDH. The preliminary results show that the Exfoliated LDH/G displays superior Zn-Ni secondary battery performance with outstanding reversible capacity, prominent cyclic performance (343 mA h g-1 after 1200 cycles at 1 C), highlighting the practicability of the self-assembly Exfoliated LDH/G for maximum anodic utilization of exfoliated LDH for power storage in Zn-Ni secondary battery.

  18. Sizing Study of Second Life Li-ion Batteries for Enhancing Renewable Energy Grid Integration

    DEFF Research Database (Denmark)

    Saez-de-Ibarra, Andoni; Martinez-Laserna, Egoitz; Stroe, Daniel Loan

    2016-01-01

    solution due to the fast dynamics of electrochemical storage systems, besides their scalability and flexibility. However, large-scale battery energy storage systems are still too expensive to be a mass market solution for the renewable energy resources integration. Thus, in order to make battery investment...

  19. Understanding the function and performance of carbon-enhanced lead-acid batteries : milestone report for the DOE energy storage systems program (FY11 Quarter 3: April through June 2011).

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Summer Rhodes; Shane, Rodney (East Penn Manufacturing, Lyon Station, PA); Enos, David George

    2011-09-01

    This report describes the status of research being performed under CRADA No. SC10/01771.00 (Lead/Carbon Functionality in VRLA Batteries) between Sandia National Laboratories and East Penn Manufacturing, conducted for the U.S. Department of Energy's Energy Storage Systems Program. The Quarter 3 Milestone was completed on time. The milestone entails an ex situ analysis of a control as well as three carbon-containing negative plates in the raw, as cast form as well as after formation. The morphology, porosity, and porosity distribution within each plate was evaluated. In addition, baseline electrochemical measurements were performed on each battery to establish their initial performance. These measurements included capacity, internal resistance, and float current. The results obtained for the electrochemical testing were in agreement with previous evaluations performed at East Penn manufacturing. Cycling on a subset of the received East Penn cells containing different carbons (and a control) has been initiated.

  20. High-performance batteries for off-peak energy storage and electric-vehicle propulsion. Progress report, January--June 1975. [Li--Al/KCl--LiCl/Fe sulfide, 42 kWh

    Energy Technology Data Exchange (ETDEWEB)

    1976-03-01

    This report describes the research and management efforts, for the period January--June 1975, of Argonne National Laboratory's program on high-performance lithium/metal sulfide batteries. The batteries are being developed for two applications, off-peak energy storage in electric utility networks and electric-vehicle propulsion. The battery design for the two applications differ, particularly in cell configuration and electrode design, because of the differing performance requirements. The present cells are vertically oriented, prismatic cells with two negative electrodes of a solid lithium--aluminium alloy, a central positive electrode of iron sulfide (FeS/sub 2/ or FeS), and an electrolyte of LiCl--KCl eutectic (mp, 352/sup 0/C). The operating temperature of the cells is about 400--450/sup 0/C. Recent effort in the development of engineering-scale cells was focused on designing and fabricating vertically oriented, prismatic cells and on improving the lifetime capabilities of cells. Work on electrode development was directed toward the evaluation of the factors that influence the performance of the negative electrode and the development of new designs of vertical, prismatic iron sulfide electrodes. Materials studies included work on improving feedthroughs and separators, corrosion tests of candidate materials of construction, and postoperative examinations of cells. Cell chemistry studies included continuing investigations of cell reactions and the identification of advanced cell systems. Battery development work included the design of a battery for an electric automobile and the development of battery components. The transfer of Li--Al/FeS/sub x/ battery technology to industry is being implemented through contracts with industrial firms for the manufacture of components, electrodes, and cells.

  1. Energy storage systems: power grid and energy market use cases

    Directory of Open Access Journals (Sweden)

    Komarnicki Przemysław

    2016-09-01

    Full Text Available Current power grid and market development, characterized by large growth of distributed energy sources in recent years, especially in Europa, are according energy storage systems an increasingly larger field of implementation. Existing storage technologies, e.g. pumped-storage power plants, have to be upgraded and extended by new but not yet commercially viable technologies (e.g. batteries or adiabatic compressed air energy storage that meet expected demands. Optimal sizing of storage systems and technically and economically optimal operating strategies are the major challenges to the integration of such systems in the future smart grid. This paper surveys firstly the literature on the latest niche applications. Then, potential new use case and operating scenarios for energy storage systems in smart grids, which have been field tested, are presented and discussed and subsequently assessed technically and economically.

  2. Influence of Li-ion Battery Models in the Sizing of Hybrid Storage Systems with Supercapacitors

    DEFF Research Database (Denmark)

    Pinto, Claudio; Barreras, Jorge Varela; de Castro, Ricardo

    2014-01-01

    This paper presents a comparative study of the influence of different aggregated electrical circuit battery models in the sizing process of a hybrid energy storage system (ESS), composed by Li-ion batteries and supercapacitors (SCs). The aim is to find the number of cells required to propel......-order dynamics of the battery. Simulation results demonstrate that the adoption of a more accurate battery model in the sizing of hybrid ESSs prevents over-sizing, leading to a reduction in the number of cells of up to 29%, and a cost decrease of up to 10%....

  3. Review of storage battery system cost estimates

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.R.; Russell, J.A.

    1986-04-01

    Cost analyses for zinc bromine, sodium sulfur, and lead acid batteries were reviewed. Zinc bromine and sodium sulfur batteries were selected because of their advanced design nature and the high level of interest in these two technologies. Lead acid batteries were included to establish a baseline representative of a more mature technology.

  4. Thermal energy storage material

    Science.gov (United States)

    Leifer, Leslie

    1976-01-01

    A thermal energy storage material which is stable at atmospheric temperature and pressure and has a melting point higher than 32.degree.F. is prepared by dissolving a specific class of clathrate forming compounds, such as tetra n-propyl or tetra n-butyl ammonium fluoride, in water to form a substantially solid clathrate. The resultant thermal energy storage material is capable of absorbing heat from or releasing heat to a given region as it transforms between solid and liquid states in response to temperature changes in the region above and below its melting point.

  5. Electric Vehicles Mileage Extender Kinetic Energy Storage

    Science.gov (United States)

    Jivkov, Venelin; Draganov, Vutko; Stoyanova, Yana

    2015-03-01

    The proposed paper considers small urban vehicles with electric hybrid propulsion systems. Energy demands are examined on the basis of European drive cycle (NEUDC) and on an energy recuperation coefficient and are formulated for description of cycle energy transfers. Numerical simulation results show real possibilities for increasing in achievable vehicle mileage at the same energy levels of a main energy source - the electric battery. Kinetic energy storage (KES), as proposed to be used as an energy buffer and different structural schemes of the hybrid propulsion system are commented. Minimum energy levels for primary (the electric battery) and secondary (KES) sources are evaluated. A strategy for reduced power flows control is examined, and its impact on achievable vehicle mileage is investigated. Results show an additional increase in simulated mileage at the same initial energy levels.

  6. Superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Rogers, J.D.

    1976-01-01

    Fusion power production requires energy storage and transfer on short time scales to create confining magnetic fields and for heating plasmas. The theta-pinch Scyllac Fusion Test Reactor (SFTR) requires 480 MJ of energy to drive the 5-T compression field with a 0.7-ms rise time. Tokamak Experimental Power Reactors (EPR) require 1 to 2 GJ of energy with a 1 to 2-s rise time for plasma ohmic heating. The design, development, and testing of four 300-kJ energy storage coils to satisfy the SFTR needs are described. Potential rotating machinery and homopolar energy systems for both the Reference Theta-Pinch Reactor (RTPR) and tokamak ohmic-heating are presented

  7. 46 CFR 112.55-10 - Storage battery charging.

    Science.gov (United States)

    2010-10-01

    ... gas turbine driven generator set, must have apparatus to automatically maintain the battery fully... 46 Shipping 4 2010-10-01 2010-10-01 false Storage battery charging. 112.55-10 Section 112.55-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING...

  8. Assessment of the use of vanadium redox flow batteries for energy storage and fast charging of electric vehicles in gas stations

    International Nuclear Information System (INIS)

    Cunha, Álvaro; Brito, F.P.; Martins, Jorge; Rodrigues, Nuno; Monteiro, Vitor; Afonso, João L.; Ferreira, Paula

    2016-01-01

    A network of conveniently located fast charging stations is one of the possibilities to facilitate the adoption of Electric Vehicles (EVs). This paper assesses the use of fast charging stations for EVs in conjunction with VRFBs (Vanadium Redox Flow Batteries). These batteries are charged during low electricity demand periods and then supply electricity for the fast charging of EVs during day, thus implementing a power peak shaving process. Flow batteries have unique characteristics which make them especially attractive when compared with conventional batteries, such as their ability to decouple rated power from rated capacity, as well as their greater design flexibility and nearly unlimited life. Moreover, their liquid nature allows their installation inside deactivated underground gas tanks located at gas stations, enabling a smooth transition of gas stations' business model towards the emerging electric mobility paradigm. A project of a VRFB system to fast charge EVs taking advantage of existing gas stations infrastructures is presented. An energy and cost analysis of this concept is performed, which shows that, for the conditions tested, the project is technologically and economically viable, although being highly sensitive to the investment costs and to the electricity market conditions. - Highlights: • Assessment of Vanadium Redox Flow Battery use for EV fast charge in gas stations. • This novel system proposal allows power peak shaving and use of deactivated gas tanks. • Philosophy allows seamless business transition towards the Electric Mobility paradigm. • Project is technologically and economically viable, although with long payback times. • Future Cost cuts due to technology maturation will consolidate project attractiveness.

  9. A multi-port power electronics interface for battery powered electric vehicles: Application of inductively coupled wireless power transfer and hybrid energy storage system

    Science.gov (United States)

    McDonough, Matthew Kelly

    Climate change, pollution, and geopolitical conflicts arising from the extreme wealth concentrations caused by fossil fuel deposits are just a few of the side-effects of the way that we fuel our society. A new method to power our civilization is becoming more and more necessary. Research for new, more sustainable fuel sources is already underway due to research in wind, solar, geothermal, and hydro power. However this focus is mainly on stationary applications. A large portion of fossil fuel usage comes from transportation. Unfortunately, the transition to cleaner transportation fuels is being stunted by the inability to store adequate amounts of energy in electro-chemical batteries. The idea of charging while driving has been proposed by many researchers, however several challenges still exist. In this work some of these challenges are addressed. Specifically, the ability to route power from multiple sources/loads is investigated. Special attention is paid to adjusting the time constant of particular converters, namely the battery and ultra-capacitor converters to reduce the high frequency and high magnitude current components applied to the battery terminals. This is done by developing a closed loop model of the entire multi-port converter, including the state of charge of the ultra-capacitors. The development of closed loop models and two experimental testbeds for use as stationary vehicle charging platforms with their unique set of sources/loads are presented along-side an on-board charger to demonstrate the similarities and differences between stationary charging and mobile charging. Experimental results from each are given showing that it is not only possible, but feasible to utilize Inductively Coupled Wireless Power Transfer (ICWPT) to charge a battery powered electric vehicle while driving and still protect the life-span of the batteries under the new, harsher conditions generated by the ICWPT system.

  10. Storage Integration in Energy Systems: A New Perspective

    International Nuclear Information System (INIS)

    Faure-Schuyer, Aurelie

    2016-06-01

    Energy storage is partly an 'old story' and a new one. Energy storage is an essential stabilizing factor in existing electrical systems. Looking forward, energy storage is being considered as a key element of the transformation of energy systems, given the higher shares of renewable generation integrating the systems and demand-side management offered to end-customers. Today, the cost of electricity produced from battery storage is approaching parity with electricity bought from the grid. For this trend to gain strength and energy storage to be part of new business models, energy policies and regulatory frameworks need to be adapted. (author)

  11. Cost analysis of energy storage systems for electric utility applications

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, A. [Sandia National Lab., Albuquerque, NM (United States); Swaminathan, S.; Sen, R.K. [R.K. Sen & Associates, Inc., Bethesda, MD (United States)

    1997-02-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

  12. Electrochemical energy storage behavior of Sn/SnO2 double phase nanocomposite anodes produced on the multiwalled carbon nanotube buckypapers for lithium-ion batteries

    Science.gov (United States)

    Alaf, Mirac; Akbulut, Hatem

    2014-02-01

    Recent development of electrode materials for Li-ion batteries is driven mainly by hybrid nanocomposite structures consisting of Li storage compounds and CNTs. In this study, tin/tinoxide (Sn/SnO2) films and tin/tinoxide/multi walled carbon nanotube (Sn/SnO2/MWCNT) nanocomposites are produced by a two steps process; thermal evaporation and subsequent plasma oxidation as anode materials for Li-ion batteries. The physical, structural, and electrochemical behaviors of the nanocomposite electrodes containing MWCNTs are discussed. The ratio between metallic tin (Sn) and tinoxide (SnO2) is controlled with plasma oxidation time and effects of the ratio are investigated on the structural and electrochemical properties. The greatly enhanced electrochemical performance is mainly due to the morphological stability and reduced diffusion resistance, which are induced by MWCNT core and deposited Sn/SnO2 double phase shell. The outstanding long-term cycling stability is a result of the two layers Sn and SnO2 phases on MWCNTs. The nanoscale Sn/SnO2/MWCNT network provides good electrical conductivity, and the creation of open spaces that buffer a large volume change during the Li-alloying/de-alloying reaction.

  13. Manufacturing conductive polyaniline/graphite nanocomposites with spent battery powder (SBP) for energy storage: A potential approach for sustainable waste management

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Xiaojuan; Deng, Jinxing; Wang, Xue; Guo, Jinshan [State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Liu, Peng, E-mail: pliu@lzu.edu.cn [State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Joint Research Center of Urban Resource Recycling Technology of Graduate School at Shenzhen, Tsinghua University and Shenzhen Green Eco-Manufacturer High-Tech, Shenzhen 518055 (China)

    2016-07-15

    Highlights: • Potential approach to sustainable waste management was established. • Spent battery material was used for manufacturing conductive polymer. • The obtained nanocomposites possessed better electrochemical performance. - Abstract: A potential approach for sustainable waste management of the spent battery material (SBM) is established for manufacturing conductive polyaniline (PANI) nanocomposites as electrode materials for supercapacitors, following the principle of “What comes from the power should be used for the power”. The ternary nanocomposites (G/MnO{sub 2}/PANI) containing PANI, graphite powder (G) and remanent MnO{sub 2} nanoparticles and the binary nanocomposites of polyaniline and graphite powder (G/PANI) are synthesized by the chemical oxidative polymerization of aniline in hydrochloric aqueous solution with the MnO{sub 2} nanoparticles in the spent battery powder (SBP) as oxidant. The G/PANI sample, which was prepared with MnO{sub 2}/aniline mole ratio of 1:1 with 1.0 mL aniline in 50 mL of 1.0 mol L{sup −1} HCl, exhibits the electrical conductivity of 22.22 S cm{sup −1}, the highest specific capacitance up to 317 F g{sup −1} and the highest energy density of 31.0 Wh kg{sup −1}, with retention of as high as 84.6% of its initial capacitance after 1000 cycles, indicating good cyclic stability.

  14. Understanding the function and performance of carbon-enhanced lead-acid batteries : milestone report for the DOE Energy Storage Systems program (FY11 Quarter 1: October through December 2010).

    Energy Technology Data Exchange (ETDEWEB)

    Shane, R. (East Penn Manufacturing, Lyon Station, PA); Enos, David George; Hund, Thomas D.

    2011-05-01

    This report describes the status of research being performed under CRADA No. SC10/01771.00 (Lead/Carbon Functionality in VRLA Batteries) between Sandia National Laboratories and East Penn Manufacturing, conducted for the U.S. Department of Energy's Energy Storage Systems Program. The Quarter 1 Milestone was completed on time. The milestone entails conducting a thorough literature review to establish the current level of understanding of the mechanisms through which carbon additions to the negative active material improve valve-regulated lead-acid (VRLA) batteries. Most studies have entailed phenomenological research observing that the carbon additions prevent/reduce sulfation of the negative electrode; however, no understanding is available to provide insight into why certain carbons are successful while others are not. Impurities were implicated in one recent review of the electrochemical behavior of carbon additions. Four carbon samples have been received from East Penn Manufacturing and impurity contents have been analyzed. Carbon has been explored as an addition to lead-acid battery electrodes in a number of ways. Perhaps the most notable to date has been the hybrid 'Ultrabattery' developed by CSIRO where an asymmetric carbon-based electrochemical capacitor is combined with a lead-acid battery into a single cell, dramatically improving high-rate partial-state-of-charge (HRPSoC) operation. As illustrated below, the 'Ultrabattery' is a hybrid device constructed using a traditional lead-acid battery positive plate (i.e., PbO{sub 2}) and a negative electrode consisting of a carbon electrode in parallel with a lead-acid negative plate. This device exhibits a dramatically improved cycle life over traditional VRLA batteries, as well as increased charge power and charge acceptance. The 'Ultrabattery' has been produced successfully by both The Furukawa Battery Co. and East Penn Manufacturing. An example illustrating the dramatic

  15. Special file on the storage of energies

    International Nuclear Information System (INIS)

    Signoret, Stephane; Kim, Caroline; Bohlinger, Philippe; Petitot, Pauline; Mary, Olivier; Guilhem, Jean

    2017-01-01

    After brief presentations of current research and industrial activities, a first article comments the new impetus of storage technologies and projects due to regulatory and legal evolutions associated with the French law on energy transition. Self-consumption and flexibility systems in distribution networks are practical factors of this evolution. Benefits provided by energy storage are notably outlined. The next articles present several examples: a decentralised heat storage in Brest, a flywheel plant by Levisys. An article then discusses the technological and commercial aspects of the battle in this sector for the French majors (EDF, Engie, Total). An article comments the emergence and development of a range of solutions for energy storage in case of self-consumption. The next article briefly presents the Elsa project (financed by the EU) which gives a second life to electric vehicle batteries by developing an energy storage and control solution for professionals. A system developed by French researchers is briefly presented: it aims at producing electricity, at storing it, and at using it to supply isolated autonomous systems. The idea developed in a published study is then discussed: to use electric vehicle batteries to store the intermittent energy produced by renewable sources. The last article comments the integration by Enedis of intelligent devices into the grid

  16. Energy storage system for a pulsed DEMO

    International Nuclear Information System (INIS)

    Lucas, J.; Cortes, M.; Mendez, P.; Hayward, J.; Maisonnier, D.

    2007-01-01

    Several designs have been proposed for the DEMO fusion reactor. Some of them are working in a non-steady state mode. Since a power plant should be able to deliver to the grid a constant power, this challenge must be solved. Energy storage is required at a level of 250 MWh e with the capability of delivering a power of 1 GWe. A review of different technologies for energy storage is made. Thermal energy storage (TES), fuel cells and other hydrogen storage, compressed air storage, water pumping, batteries, flywheels and supercapacitors are the most promising solutions to energy storage. Each one is briefly described in the paper, showing its basis, features, advantages and disadvantages for this application. The conclusion of the review is that, based on existing technology, thermal energy storage using molten salts and a system based on hydrogen storage are the most promising candidates to meet the requirements of a pulsed DEMO. These systems are investigated in more detail together with an economic assessment of each

  17. Aramid Nanofiber Composites for Energy Storage Applications

    Science.gov (United States)

    Tung, Siu on

    Lithium ion batteries and non-aqueous redox flow batteries represent two of the most important energy storage technologies to efficient electric vehicles and power grid, which are essential to decreasing U.S. dependence on fossil fuels and sustainable economic growth. Many of the developmental roadblocks for these batteries are related to the separator, an electrically insulating layer between the cathode and anode. Lithium dendrite growth has limited the performance and threatened the safety of lithium ion batteries by piercing the separator and causing internal shorts. In non-aqueous redox flow batteries, active material crossover through microporous separators and the general lack of a suitable ion conducting membrane has led to low operating efficiencies and rapid capacity fade. Developing new separators for these batteries involve the combination of different and sometimes seemingly contradictory properties, such as high ionic conductivity, mechanical stability, thermal stability, chemical stability, and selective permeability. In this dissertation, I present work on composites made from Kevlar-drived aramid nanofibers (ANF) through rational design and fabrication techniques. For lithium ion batteries, a dendrite suppressing layer-by-layer composite of ANF and polyethylene oxide is present with goals of high ionic conductivity, improved safety and thermal stability. For non-aqueous redox flow batteries, a nanoporous ANF separator with surface polyelectrolyte modification is used to achieve high coulombic efficiencies and cycle life in practical flow cells. Finally, manufacturability of ANF based separators is addressed through a prototype machine for continuous ANF separator production and a novel separator coated on anode assembly. In combination, these studies serve as a foundation for addressing the challenges in separator engineering for lithium ion batteries and redox flow batteries.

  18. Maui energy storage study.

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, James; Bhatnagar, Dhruv; Karlson, Benjamin

    2012-12-01

    This report investigates strategies to mitigate anticipated wind energy curtailment on Maui, with a focus on grid-level energy storage technology. The study team developed an hourly production cost model of the Maui Electric Company (MECO) system, with an expected 72 MW of wind generation and 15 MW of distributed photovoltaic (PV) generation in 2015, and used this model to investigate strategies that mitigate wind energy curtailment. It was found that storage projects can reduce both wind curtailment and the annual cost of producing power, and can do so in a cost-effective manner. Most of the savings achieved in these scenarios are not from replacing constant-cost diesel-fired generation with wind generation. Instead, the savings are achieved by the more efficient operation of the conventional units of the system. Using additional storage for spinning reserve enables the system to decrease the amount of spinning reserve provided by single-cycle units. This decreases the amount of generation from these units, which are often operated at their least efficient point (at minimum load). At the same time, the amount of spinning reserve from the efficient combined-cycle units also decreases, allowing these units to operate at higher, more efficient levels.

  19. Graphene hybridization for energy storage applications.

    Science.gov (United States)

    Li, Xianglong; Zhi, Linjie

    2018-03-07

    Graphene has attracted considerable attention due to its unique two-dimensional structure, high electronic mobility, exceptional thermal conductivity, excellent optical transmittance, good mechanical strength, and ultrahigh surface area. To meet the ever increasing demand for portable electronic products, electric vehicles, smart grids, and renewable energy integrations, hybridizing graphene with various functions and components has been demonstrated to be a versatile and powerful strategy to significantly enhance the performance of various energy storage systems such as lithium-ion batteries, supercapacitors and beyond, because such hybridization can result in synergistic effects that combine the best merits of involved components and confer new functions and properties, thereby improving the charge/discharge efficiencies and capabilities, energy/power densities, and cycle life of these energy storage systems. This review will focus on diverse graphene hybridization principles and strategies for energy storage applications, and the proposed outline is as follows. First, graphene and its fundamental properties, followed by graphene hybrids and related hybridization motivation, are introduced. Second, the developed hybridization formulas of using graphene for lithium-ion batteries are systematically categorized from the viewpoint of material structure design, bulk electrode construction, and material/electrode collaborative engineering; the latest representative progress on anodes and cathodes of lithium-ion batteries will be reviewed following such classifications. Third, similar hybridization formulas for graphene-based supercapacitor electrodes will be summarized and discussed as well. Fourth, the recently emerging hybridization formulas for other graphene-based energy storage devices will be briefed in combination with typical examples. Finally, future prospects and directions on the exploration of graphene hybridization toward the design and construction of

  20. High Energy-Density Lithium-Sulfur Batteries with Extended Cycle Life, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Conventional lithium-ion batteries demonstrate great potential for energy storage applications but they face some major challenges such as low energy density and...

  1. Energy storage financing :

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Richard

    2016-08-01

    Project financing is emerging as the linchpin for the future health, direction, and momentum of the energy storage industry. Market leaders have so far relied on selffunding or captive lending arrangements to fund projects. New lenders are proceeding hesitantly as they lack a full understanding of the technology, business, and credit risks involved in this rapidly changing market. The U.S. Department of Energy is poised to play a critical role in expanding access to capital by reducing the barriers to entry for new lenders, and providing trusted analytical benchmarks to better judge and price the risk in systematic ways.

  2. Engineered nanomembranes for smart energy storage devices.

    Science.gov (United States)

    Wang, Xianfu; Chen, Yu; Schmidt, Oliver G; Yan, Chenglin

    2016-03-07

    Engineered nanomembranes are of great interest not only for large-scale energy storage devices, but also for on-chip energy storage integrated microdevices (such as microbatteries, microsupercapacitors, on-chip capacitors, etc.) because of their large active surfaces for electrochemical reactions, shortened paths for fast ion diffusion, and easy engineering for microdevice applications. In addition, engineered nanomembranes provide a lab-on-chip electrochemical device platform for probing the correlations of electrode structure, electrical/ionic conductivity, and electrochemical kinetics with device performance. This review focuses on the recent progress in engineered nanomembranes including tubular nanomembranes and planar nanomembranes, with the aim to provide a systematic summary of their fabrication, modification, and energy storage applications in lithium-ion batteries, lithium-oxygen batteries, on-chip electrostatic capacitors and micro-supercapacitors. A comprehensive understanding of the relationship between engineered nanomembranes and electrochemical properties of lithium ion storage with engineered single-tube microbatteries is given, and the flexibility and transparency of micro-supercapacitors is also discussed. Remarks on challenges and perspectives related to engineered nanomembranes for the further development of energy storage applications conclude this review.

  3. FY2011 Annual Report for NREL Energy Storage Projects

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, A.; Ban, C.; Dillon, A.; Gonder, J.; Ireland, J.; Keyser, M.; Kim, G. H.; Lee, K. J.; Long, D.; Neubauer, J.; Santhangopalan, S.; Smith, K.

    2012-04-01

    This report describes the work of NREL's Energy Storage group for FY2011. The National Renewable Energy Laboratory (NREL) supports energy storage R&D under the Vehicle Technologies Program at the U.S. Department of Energy (DOE). The DOE Energy Storage program's charter is to develop battery technologies that will enable large market penetration of electric drive vehicles. These vehicles could have a significant impact on the nation's goal of reducing dependence on imported oil and gaseous pollutant emissions. DOE has established several program activities to address and overcome the barriers limiting the penetration of electric drive battery technologies: cost, performance, safety, and life. These programs are: (1) Advanced Battery Development [through the United States Advanced Battery Consortium (USABC)]; (2) Testing, Design and Analysis (TDA); (3) Applied Battery Research (ABR); and (4) Focused Fundamental Research, or Batteries for Advanced Transportation Technologies (BATT). In FY11, DOE funded NREL to make technical contributions to all of these R&D activities. This report summarizes NREL's R&D projects in FY11 in support of the USABC, TDA, ABR, and BATT program elements. In addition, we continued the enhancement of NREL's battery testing facilities funded through the American Reinvestment and Recovery Act (ARRA) of 2009. The FY11 projects under NREL's Energy Storage R&D program are briefly described below. Each of these is discussed in depth in the main sections of this report.

  4. Global distribution of grid connected electrical energy storage systems

    Directory of Open Access Journals (Sweden)

    Katja Buss

    2016-06-01

    Full Text Available This article gives an overview of grid connected electrical energy storage systems worldwide, based on public available data. Technologies considered in this study are pumped hydroelectric energy storage (PHES, compressed air energy storage (CAES, sodium-sulfur batteries (NaS, lead-acid batteries, redox-flow batteries, nickel-cadmium batteries (NiCd and lithium-ion batteries. As the research indicates, the worldwide installed capacity of grid connected electrical energy storage systems is approximately 154 GW. This corresponds to a share of 5.5 % of the worldwide installed generation capacity. Furthermore, the article gives an overview of the historical development of installed and used storage systems worldwide. Subsequently, the focus is on each considered technology concerning the current storage size, number of plants and location. In summary it can be stated, PHES is the most commonly used technology worldwide, whereas electrochemical technologies are increasingly gaining in importance. Regarding the distribution of grid connected storage systems reveals the share of installed storage capacity is in Europe and Eastern Asia twice as high as in North America.

  5. Energy Storage Options for Low-Cost Spacecraft Applications

    OpenAIRE

    Pennington, D.F.; Wecker, S.E.; Wright, R.D.; Coates, D.K.

    1995-01-01

    Several energy storage options currently exist for small satellite power systems. These include nickel-hydrogen, nickel-cadmium and nickel-metal hydride batteries. Nickel-hydrogen is available only as a spaceflight qualified system and is therefore relatively high in cost. Nickel-metal hydride batteries are available only in a small capacity, commercial cylindrical version which limits usefulness in aerospace applications. Both aerospace and commercial nickel-cadmium batteries are available, ...

  6. High Energy Density Li-ion Batteries Enabled By a New Class of Cathode Materials, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed program addresses NASA's need for advanced battery technologies, and in particular the energy storage needs for Extravehicular Activities. The most...

  7. Multi-Objective Scheduling Optimization Based on a Modified Non-Dominated Sorting Genetic Algorithm-II in Voltage Source Converter−Multi-Terminal High Voltage DC Grid-Connected Offshore Wind Farms with Battery Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Ho-Young Kim

    2017-07-01

    Full Text Available Improving the performance of power systems has become a challenging task for system operators in an open access environment. This paper presents an optimization approach for solving the multi-objective scheduling problem using a modified non-dominated sorting genetic algorithm in a hybrid network of meshed alternating current (AC/wind farm grids. This approach considers voltage and power control modes based on multi-terminal voltage source converter high-voltage direct current (MTDC and battery energy storage systems (BESS. To enhance the hybrid network station performance, we implement an optimal process based on the battery energy storage system operational strategy for multi-objective scheduling over a 24 h demand profile. Furthermore, the proposed approach is formulated as a master problem and a set of sub-problems associated with the hybrid network station to improve the overall computational efficiency using Benders’ decomposition. Based on the results of the simulations conducted on modified institute of electrical and electronics engineers (IEEE-14 bus and IEEE-118 bus test systems, we demonstrate and confirm the applicability, effectiveness and validity of the proposed approach.

  8. Energy storage. The actual challenge for tomorrow

    International Nuclear Information System (INIS)

    Combe, Matthieu; Danielo, Olivier

    2016-09-01

    As methods of energy production are now diversified and efficient, the challenge is now their integration into the grid, and their storage. Thus, this publication first proposes a set of articles which address perspectives and realisations (or projects) related to energy storage: the challenge of modernisation of Pump Storage Power plants (PSP), the possibilities provided by power-to-gas technology to store electricity, the possibilities provided by coupling of CO 2 storage and geothermal energy. Other aspects concern electric power storage at the back end of the supply chain: the Corri-door project of 200 terminals for fast electric charging (for electric vehicles), the emergence of the domestic battery as storage mean in different counties. More prospective projects are also evoked: the use of hot water in Hawaii to store photovoltaic solar electricity and inspired projects by ENGIE and EDF, the perspective of energy storage on miniaturised chips, and a three-wheel light vehicle (Moe) using solar energy and developed by the Evovelo startup

  9. NREL Energy Storage Projects. FY2014 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ban, Chunmei [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Burton, Evan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gonder, Jeff [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Grad, Peter [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jun, Myungsoo [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Keyser, Matt [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kim, Gi-Heon [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Neubauer, Jeremy [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Santhanagopalan, Shriram [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Saxon, Aron [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Shi, Ying [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Smith, Kandler [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sprague, Michael [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tenent, Robert [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wood, Eric [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yang, Chuanbo [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Chao [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Han, Taeyoung [General Motors, Detroit, MI (United States); Hartridge, Steve [CD-adapco, Detroit, MI (United States); Shaffer, Christian E. [EC Power, Aurora, CO (United States)

    2015-03-01

    The National Renewable Energy Laboratory supports energy storage R&D under the Office of Vehicle Technologies at the U.S. Department of Energy. The DOE Energy Storage Program’s charter is to develop battery technologies that will enable large market penetration of electric drive vehicles. These vehicles could have a significant impact on the nation’s goal of reducing dependence on imported oil and gaseous pollutant emissions. DOE has established several program activities to address and overcome the barriers limiting the penetration of electric drive battery technologies: cost, performance, safety, and life. These programs are; Advanced Battery Development through the United States Advanced Battery Consortium (USABC); Battery Testing, Analysis, and Design; Applied Battery Research (ABR); and Focused Fundamental Research, or Batteries for Advanced Transportation Technologies (BATT) In FY14, DOE funded NREL to make technical contributions to all of these R&D activities. This report summarizes NREL’s R&D projects in FY14 in support of the USABC; Battery Testing, Analysis, and Design; ABR; and BATT program elements. The FY14 projects under NREL’s Energy Storage R&D program are briefly described below. Each of these is discussed in depth in this report.

  10. Review on the Distributed Energy Storage Technology in the Application of the Micro Network

    Directory of Open Access Journals (Sweden)

    Huang Qiyuan

    2015-01-01

    Full Text Available This paper summarized the application process of energy storage technology in the micro-grid, elaborated on the development of energy storage technology concisely, and illustrated the roles of battery energy storage, flywheel energy storage, superconducting magnetic energy storage (SMES, super capacitor energy storage and other energy storage and so on in micro-hybrid. Then it compared the performances of some sorts of the storage method. As characteristics and actual demands of micro-grid work were given full into consideration, the current micro-grid energy storage technology research problems and development trend in the future were pointed out.

  11. Development of evaluation techniques for electrochemical energy storage systems

    Science.gov (United States)

    Gaines, L. H.; Nazimek, K.

    1980-03-01

    The development of standardized techniques for the comparative evaluation of electric vehicle battery technologies is summarized. The methodology considers both the traditional measures of battery performance (energy density, energy storage costs, and cycle life) and the equally important usage related battery characteristics (probability of technical success, operating and maintenance parameters, and safety/environmental impact). This comparative rationale is supplemented by the ability to generate battery test programs normalized to specific technologies and electric vehicle mission specifications. These test programs allow the evaluation of different battery technologies at comparable levels of electric vehicle performance. It was found that cost optimized electric passenger vehicles will have range specifications of 100 to 110 KM, depending on the specific performance of the battery. Longer range vehicles are penalized by higher first costs while shorter range vehicles suffer from reduced battery life and the need for more frequent alternative car rentals (presumably petroleum fueled) for trips which exceed the EV's range capability.

  12. Optimal sizing of battery storage for stand-alone hybrid (photo-voltaic + diesel) power systems

    Science.gov (United States)

    Shaahid, S. M.; Elhadidy, M. A.

    2005-09-01

    An important element of hybrid photo- voltaic(PV) + diesel sytem is battery storage. Size of battery storage plays a role in optimum operation of the hybrid system. Emphasis needs to be placed on this issue. In this perspective, hourly solar radiation data, for the period 1986 93 recorded at Dhahran, Saudi Arabia, have been analyzed to investigate the optimum size of battery storage capacity for hybrid (PV + diesel) power systems. Various sizing configurations have been simulated. The monthly average daily values of solar global radiation range from 3.61 to 7.96kWh/m2. As a case study, hybrid systems considered in the present analysis consist of 225m2 PV array area (panels/modules) supplemented with battery storage unit and diesel backup generators (to meet the load requirements of a typical residential building with annual electrical energy demand of 35,200kWh). The monthly average energy generated from the aforementioned hybrid system for different scenarios has been presented. More importantly, the study explores the influence of variation of battery storage capacity on hybrid power generation. The results exhibit a trade-off between size of the storage capacity and diesel power to be generated to cope with annual load distribution. Concurrently, the energy to be generated from the diesel generator and the number of operational hours of the diesel system to meet the load demand have been also addressed.The study shows that for optimum operation of diesel system, storage capacity equivalent to 12 18h of maximum monthly average hourly demand need to be used. It has been found that in the absence of battery bank, ˜58% of the load needs to be provided by the diesel system. However, use of 12h of battery storage (autonomy) reduces diesel energy generation by ˜49% and the number of hours of operation of the diesel system get reduced by about ˜82%. The findings of this study can be employed as a tool for sizing of battery storage for PV/diesel systems for other

  13. A Review of Energy Storage Technologies

    DEFF Research Database (Denmark)

    Connolly, David

    2010-01-01

    A brief examination into the energy storage techniques currently available for the integration of fluctuating renewable energy was carried out. These included Pumped Hydroelectric Energy Storage (PHES), Underground Pumped Hydroelectric Energy Storage (UPHES), Compressed Air Energy Storage (CAES...

  14. Northeastern Center for Chemical Energy Storage (NECCES)

    Energy Technology Data Exchange (ETDEWEB)

    Whittingham, M. Stanley [Stony Brook Univ., NY (United States)

    2015-07-31

    The chemical reactions that occur in batteries are complex, spanning a wide range of time and length scales from atomic jumps to the entire battery structure. The NECCES team of experimentalists and theorists made use of, and developed new methodologies to determine how model compound electrodes function in real time, as batteries are cycled. The team determined that kinetic control of intercalation reactions (reactions in which the crystalline structure is maintained) can be achieved by control of the materials morphology and explains and allows for the high rates of many intercalation reactions where the fundamental properties might indicate poor behavior in a battery application. The small overvoltage required for kinetic control is technically effective and economically feasible. A wide range of state-of-the-art operando techniques was developed to study materials under realistic battery conditions, which are now available to the scientific community. The team also investigated the key reaction steps in conversion electrodes, where the crystal structure is destroyed on reaction with lithium and rebuilt on lithium removal. These so-called conversion reactions have in principle much higher capacities, but were found to form very reactive discharge products that reduce the overall energy efficiency on cycling. It was found that by mixing either the anion, as in FeOF, or the cation, as in Cu1-yFeyF2, the capacity on cycling could be improved. The fundamental understanding of the reactions occurring in electrode materials gained in this study will allow for the development of much improved battery systems for energy storage. This will benefit the public in longer lived electronics, higher electric vehicle ranges at lower costs, and improved grid storage that also enables renewable energy supplies such as wind and solar.

  15. Merits of flywheels for spacecraft energy storage

    Science.gov (United States)

    Gross, S.

    1984-01-01

    Flywheel energy storage systems which have a very good potential for use in spacecraft are discussed. This system can be superior to alkaline secondary batteries and regenerable fuel cells in most of the areas that are important in spacecraft applications. Of special importance, relative to batteries, are lighter weight, longer cycle and operating life, and high efficiency which minimizes solar array size and the amount of orbital makeup fuel required. Flywheel systems have a long shelf life, give a precise state of charge indication, have modest thermal control needs, are capable of multiple discharges per orbit, have simple ground handling needs, and have characteristics which would be useful for military applications. The major disadvantages of flywheel energy storage systems are that: power is not available during the launch phase without special provisions; and in flight failure of units may force shutdown of good counter rotating units, amplifying the effects of failure and limiting power distribution system options; no inherent emergency power capability unless specifically designed for, and a high level of complexity compared with batteries. The potential advantages of the flywheel energy storage system far outweigh the disadvantages.

  16. Energy Storage System for a Pulsed DEMO

    International Nuclear Information System (INIS)

    Lucas, J.; Cortes, M.; Mendez, P.; Maisonnier, D.; Hayward, J.

    2006-01-01

    Several designs have been proposed for DEMO, some of which will operate in pulsed mode. Since a fusion power plant will be required to deliver continuous output, this challenge must be solved. For the reference DEMO, energy storage is required at a level of 250 MWhe with a capability of delivering a power of 1 GWe. Although DEMO is scheduled to be built in about 30 years, the design of the energy storage system must be based on current technology, focusing on commercially available products and on their expected future trends. From a thorough review of the different technologies available, thermal energy storage, compressed air energy storage, water pumping, fuel cells, batteries, flywheels and ultracapacitors are the most promising solutions to energy storage for a pulsed DEMO. An outline of each of these technologies is described in the paper, showing its basis, features, advantages and disadvantages for this application. Following this review, the most suitable methods capable of storing the required energy are examined. Fuel cells are not suitable due to the power requirement. Compressed air energy storage has a lower efficiency than the required one. Thermal energy storage, based on molten salts, so more energy can be stored with a better efficiency, and water pumping are shown as the main solutions, based on existing technology. However, those are not the only solutions capable of solving our challenge. Hydrogen production, using water electrolysis, hydrogen storage and combustion in a combined cycle can achieve our energy and power requirements with an acceptable efficiency. All these solutions are studied in detail and described, evaluating their current cost and efficiency in order to compare them all. (author)

  17. Studies on battery storage requirement of PV fed wind-driven induction generators

    International Nuclear Information System (INIS)

    Rajan Singaravel, M.M.; Arul Daniel, S.

    2013-01-01

    Highlights: ► Sizing of battery storage for PV fed wind-driven IG system is taken up. ► Battery storage is also used to supply reactive power for wind-driven IG. ► Computation of LPSP by incorporating uncertainties of irradiation and wind speed. ► Sizing of hybrid power system components to ensure zero LPSP. ► Calculated storage size satisfied the constraints and improves battery life. - Abstract: Hybrid stand-alone renewable energy systems based on wind–solar resources are considered to be economically better and reliable than stand-alone systems with a single source. An isolated hybrid wind–solar system has been considered in this work, where the storage (battery bank) is necessary to supply the required reactive power for a wind-driven induction generator (IG) during the absence of power from a photovoltaic (PV) array. In such a scheme, to ensure zero Loss of Power Supply Probability (LPSP) and to improve battery bank life, a sizing procedure has been proposed with the incorporation of uncertainties in wind-speed and solar-irradiation level at the site of erection of the plant. Based on the proposed procedure, the size of hybrid power system components and storage capacity are determined. Storage capacity has been calculated for two different requirements. The first requirement of storage capacity is common to any hybrid scheme, which is; to supply both real and reactive power in the absence of wind and solar sources. The second requirement is to supply reactive power alone for the IG during the absence of photovoltaic power, which is unique to the hybrid scheme considered in this work. Storage capacity calculations for different conditions using the proposed approach, satisfies the constraints of maintaining zero LPSP and also improved cycle life of the battery bank

  18. Flywheel energy storage workshop

    Energy Technology Data Exchange (ETDEWEB)

    O`Kain, D.; Carmack, J. [comps.

    1995-12-31

    Since the November 1993 Flywheel Workshop, there has been a major surge of interest in Flywheel Energy Storage. Numerous flywheel programs have been funded by the Advanced Research Projects Agency (ARPA), by the Department of Energy (DOE) through the Hybrid Vehicle Program, and by private investment. Several new prototype systems have been built and are being tested. The operational performance characteristics of flywheel energy storage are being recognized as attractive for a number of potential applications. Programs are underway to develop flywheels for cars, buses, boats, trains, satellites, and for electric utility applications such as power quality, uninterruptible power supplies, and load leveling. With the tremendous amount of flywheel activity during the last two years, this workshop should again provide an excellent opportunity for presentation of new information. This workshop is jointly sponsored by ARPA and DOE to provide a review of the status of current flywheel programs and to provide a forum for presentation of new flywheel technology. Technology areas of interest include flywheel applications, flywheel systems, design, materials, fabrication, assembly, safety & containment, ball bearings, magnetic bearings, motor/generators, power electronics, mounting systems, test procedures, and systems integration. Information from the workshop will help guide ARPA & DOE planning for future flywheel programs. This document is comprised of detailed viewgraphs.

  19. Solar energy storage

    CERN Document Server

    Sorensen, Bent

    2015-01-01

    While solar is the fastest-growing energy source in the world, key concerns around solar power's inherent variability threaten to de-rail that scale-up . Currently, integration of intermittent solar resources into the grid creates added complication to load management, leading some utilities to reject it altogether, while other operators may penalize the producers via rate increases or force solar developers to include storage devices on-site to smooth out power delivery at the point of production. However these efforts at mitigation unfold, it is increasingly clear to parties on all sides th

  20. Development of zinc-bromine batteries for utility energy storage. First annual report, 1 September 1978-31 August 1979. [8-kWh submodule

    Energy Technology Data Exchange (ETDEWEB)

    Putt, R.; Attia, A.J.; Lu, P.Y.; Heyland, J.H.

    1980-05-01

    Development work on the Zn/Br battery is reported. A major improvement was the use of a bipolar cell design; this design is superior with respect to cost, performance, and simplicity. A cost and design study for an 80-kWh module resulted in a cost estimate of $54/kWh(1979$) for purchased materials and components, on the basis of 2500 MWh of annual production. A cell submodule (nominal 2 kWh) of full-sized electrodes (1 ft/sup 2/) accrued over 200 continuous cycles in a hands-off, automatic routine with efficiencies in the range of 53 to 56%. Initial testing of a full-sized 8-kWh submodule demonstrated energy efficiencies of 65 to 67%. 23 figures, 10 tables. (RWR)

  1. High energy density lithium batteries

    CERN Document Server

    Aifantis, Katerina E; Kumar, R Vasant

    2010-01-01

    Cell phones, portable computers and other electronic devices crucially depend on reliable, compact yet powerful batteries. Therefore, intensive research is devoted to improving performance and reducing failure rates. Rechargeable lithium-ion batteries promise significant advancement and high application potential for hybrid vehicles, biomedical devices, and everyday appliances. This monograph provides special focus on the methods and approaches for enhancing the performance of next-generation batteries through the use of nanotechnology. Deeper understanding of the mechanisms and strategies is

  2. Foldable, High Energy Density Lithium Ion Batteries

    Science.gov (United States)

    Suresh, Shravan

    Lithium Ion Batteries (LIBs) have become ubiquitous owing to its low cost, high energy density and, power density. Due to these advantages, LIBs have garnered a lot of attention as the primary energy storage devices in consumer electronics and electric vehicles. Recent advances in the consumer electronics research and, the drive to reduce greenhouse gases have created a demand for a shape conformable, high energy density batteries. This thesis focuses on the aforementioned two aspects of LIBs: (a) shape conformability (b) energy density and provides potential solutions to enhance them. This thesis is divided into two parts viz. (i) achieving foldability in batteries and, (ii) improving its energy density. Conventional LIBs are not shape conformable due to two limitations viz. inelasticity of metallic foils, and delamination of the active materials while bending. In the first part of the thesis (in Chapter 3), this problem is solved by replacing metallic current collector with Carbon Nanotube Macrofilms (CNMs). CNMs are superelastic films comprising of porous interconnected nanotube network. Using Molecular Dynamics (MD) simulation, we found that in the presence of an interconnected nanotube network CNMs can be fully folded. This is because the resultant stress due to bending and, the effective bending angle at the interface is reduced due to the network of nanotubes. Hence, unlike an isolated nanotube (which ruptures beyond 120 degrees of bending), a network of nanotubes can be completely folded. Thus, by replacing metallic current collector foils with CNMs, the flexibility limitation of a conventional LIB can be transcended. The second part of this thesis focusses on enhancing the energy density of LIBs. Two strategies adopted to achieve this goal are (a) removing the dead weight of the batteries, and (b) incorporating high energy density electrode materials. By incorporating CNMs, the weight of the batteries was reduced by 5-10 times due to low mass loading of

  3. Control strategies and cycling demands for Li-ion storage batteries in residential micro-cogeneration systems

    International Nuclear Information System (INIS)

    Darcovich, K.; Kenney, B.; MacNeil, D.D.; Armstrong, M.M.

    2015-01-01

    Highlights: • Canadian home energy system modeled with PV, ICE CHP, battery and power grid. • Battery function is modeled on fundamental electrochemical principles. • Techno-economics of control strategies assessed. • Impact of control strategies battery cycles is developed for wear analysis. • Non-monotonic nature of battery cycles with transient renewables is discussed. - Abstract: Energy storage units have become important components in residential micro-cogeneration (MCG) systems. As MCG systems are often connected to single residences or buildings in a wide variety of settings, they are frequently unique and highly customized. Lithium-ion batteries have recently gained some profile as energy storage units of choice, because of their good capacity, high efficiency, robustness and ability to meet the demands of typical residential electrical loads. In the present work, modeled scenarios are explored which examine the performance of a MCG system with an internal combustion engine, photovoltaic input and a Li-ion storage battery. An electricity demand profile from new data collected in Ottawa, Canada is used to provide a full year energy use context for the analyses. The demands placed on the battery are examined to assess the suitability of the battery size and performance, as well as control related functionalities which reveal significantly varying battery use, and led to a quantitative expression for equivalent cycles. The energy use simulations are derived from electrochemical fundamentals adapted for a larger battery pack. Simulation output provides the basis for techno-economic commentary on how to assess large-scale Li-ion batteries for effective electrical storage purposes in MCG systems, and the impact of the nature of the control strategy on the battery service life

  4. Energy Conversion & Storage Program, 1993 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1994-06-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: production of new synthetic fuels; development of high-performance rechargeable batteries and fuel cells; development of high-efficiency thermochemical processes for energy conversion; characterization of complex chemical processes and chemical species; and the study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

  5. Energy conversion & storage program. 1994 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1995-04-01

    The Energy Conversion and Storage Program investigates state-of-the-art electrochemistry, chemistry, and materials science technologies for: (1) development of high-performance rechargeable batteries and fuel cells; (2) development of high-efficiency thermochemical processes for energy conversion; (3) characterization of complex chemical processes and chemical species; (4) study and application of novel materials for energy conversion and transmission. Research projects focus on transport process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

  6. Optimal sizing of energy storage system for microgrids

    Indian Academy of Sciences (India)

    Another reference covers some design and operation aspects of distributed battery micro- storage systems in a deregulated electricity market system (Ala et al 2012). The term 'micro' refers to the size of the energy storage system compared to the grid generation, with a capacity from few kilowatt-hours and up. Generally, ES ...

  7. Storage exploratory project. Energy program. Final report; Projet exploratoire Stockage. Programme Energie. Rapport final

    Energy Technology Data Exchange (ETDEWEB)

    Brunet, Y. [Laboratoire d' Electrotechnique de Grenoble, UMR 5529 INPG/UJF - CNRS, ENSIEG, 38 - Saint-Martin-d' Heres (France); Ozil, P. [Laboratoire d' Electrochimie et de Physico-Chimie des Materiaux et des Interfaces (LEPMI), ENSEEG, 38 - Saint Martin d' Heres (France); Cheron, Y. [Laboratoire d' Electrotechnique et d' Electronique Industrielle, CNRS, 31 - Toulouse (France); Multon, B. [Laboratoire des Sciences de l' Information et des Systemes et Applications des Technologies de l' Information et de l' Energie (SATIE), 94 - Cachan (France); Carillo, S. [Centre Interuniversitaire de recherche et d' Ingenierie sur les Materiaux (CIRIMAT), 31 - Toulouse (France)

    2004-07-01

    The aim of this exploratory project was the analysis of the most efficient possibilities of electric power storage. It was limited to the electrochemical storage, the lead batteries which behavior is not completely characterized, the flywheel energy storage and the development of simulation. This report presents the results of the works. (A.L.B.)

  8. Energy Storage System with Voltage Equalization Strategy for Wind Energy Conversion

    OpenAIRE

    Tsai, Cheng-Tao

    2012-01-01

    In this paper, an energy storage system with voltage equalization strategy for wind energy conversion is presented. The proposed energy storage system provides a voltage equalization strategy for series-connected lead-acid batteries to increase their total storage capacity and lifecycle. In order to draw the maximum power from the wind energy, a perturbation-and-observation method and digital signal processor (DSP) are incorporated to implement maximum power point tracking (MPPT) algorithm an...

  9. Graphene-Based Systems for Energy Storage

    Science.gov (United States)

    Calle, Carlos I.; Mackey, Paul J.; Johansen, Michael R.; Phillips, James, III; Hogue, Michael; Kaner, Richard B.; El-Kady, Maher

    2016-01-01

    Development of graphene-based energy storage devices based on the Laser Scribe system developed by the University of California Los Angeles. These devices These graphene-based devices store charge on graphene sheets and take advantage of the large accessible surface area of graphene (2,600 m2g) to increase the electrical energy that can be stored. The proposed devices should have the electrical storage capacity of thin-film-ion batteries but with much shorter charge discharge cycle times as well as longer lives The proposed devices will be carbon-based and so will not have the same issues with flammability or toxicity as the standard lithium-based storage cells.

  10. Inductive energy storage commutator

    International Nuclear Information System (INIS)

    Gavrilov, I.M.

    1987-01-01

    An inductive energy storage commutator is described. The value of commutated current is up to 800 A, the voltage amplitude in the load is up to 50 kV, the working frequency is equal to 1-50 Hz, the commutated power is up to 40 MW. The commutating device comprises of the first stage commutator having two in-series connected modules of the BTSV - 800/235 high-voltage thyristor unit, the second stage commutator containing three GMI-43A parallel connected powerful pulsed triodes, a commutating capacitor, an induction coil, two supplementary high-voltage thyristor keys (20 in-series connected thyristors T2-300 (13 class)), load, control pulse shapers, thyristor keys, power supply

  11. Use of steam storage batteries at breweries

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilenkov, A.M.; Kulakov, V.I.

    1982-01-01

    In the example of the brewing shop, a technique is examined for calculating the main technical-economic characteristics of the heat storage. The main consumers of steam at the breweries with the existing technological plans operate cyclically which results in considerable nonuniform graph for steam consumption. In order to smooth the fluctuations in steam consumption one can successfully use the proposed Roots steam storage, a sealed vessel filled partially with water, with devices for bubbling steam.

  12. Energy Storage Materials from Nature through Nanotechnology: A Sustainable Route from Reed Plants to a Silicon Anode for Lithium-Ion Batteries.

    Science.gov (United States)

    Liu, Jun; Kopold, Peter; van Aken, Peter A; Maier, Joachim; Yu, Yan

    2015-08-10

    Silicon is an attractive anode material in energy storage devices, as it has a ten times higher theoretical capacity than its state-of-art carbonaceous counterpart. However, the common process to synthesize silicon nanostructured electrodes is complex, costly, and energy-intensive. Three-dimensional (3D) porous silicon-based anode materials have been fabricated from natural reed leaves by calcination and magnesiothermic reduction. This sustainable and highly abundant silica source allows for facile production of 3D porous silicon with very good electrochemical performance. The obtained silicon anode retains the 3D hierarchical architecture of the reed leaf. Impurity leaching and gas release during the fabrication process leads to an interconnected porosity and the reductive treatment to an inside carbon coating. Such anodes show a remarkable Li-ion storage performance: even after 4000 cycles and at a rate of 10 C, a specific capacity of 420 mA h g(-1) is achieved. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Magnesium Borohydride: From Hydrogen Storage to Magnesium Battery

    OpenAIRE

    Mohtadi, Rana; Matsui, Masaki; Arthur, Timothy S.; Hwang, Son-Jong

    2012-01-01

    Beyond hydrogen storage: The first example of reversible magnesium deposition/stripping onto/from an inorganic salt was seen for a magnesium borohydride electrolyte. High coulombic efficiency of up to 94 % was achieved in dimethoxyethane solvent. This Mg(BH_4)_2 electrolyte was utilized in a rechargeable magnesium battery.

  14. Grid-tied photovoltaic and battery storage systems with Malaysian electricity tariff

    DEFF Research Database (Denmark)

    Subramani, Gopinath; Ramachandaramurthy, Vigna K.; Padmanaban, Sanjeevikumar

    2017-01-01

    , and will hence result in commercial and industrial customers focussing on alternative energy supply to minimize the billing cost. This paper aims to review the technical assessment methods of a grid-connected solar photovoltaic (PV)-battery storage system-with respect to maximum demand shaving. An effective......Under the current energy sector framework of electricity tariff in Malaysia, commercial and industrial customers are required to pay the maximum demand (MD) charge apart from the net consumption charges every month. The maximum demand charge will contribute up to 20% of the electricity bill...... battery storage system can provide the extra energy needed during the peak energy consumption periods, as well as when renewable energy (RE) sources go offline. Based on the reviews, maximum demand shaving with good Return-of-Investment (ROI) can be achieved by considering the actual load profile...

  15. Article for thermal energy storage

    Science.gov (United States)

    Salyer, Ival O.

    2000-06-27

    A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.

  16. Advanced Nanostructured Cathode for Ultra High Specific Energy Lithium Ion Batteries, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Integrate advanced nanotechnology with energy storage technology to develop advanced cathode materials for use in Li-ion batteries while maintaining a high level of...

  17. One-step electrodeposition of Co0·12Ni1·88S2@Co8S9 nanoparticles on highly conductive TiO2 nanotube arrays for battery-type electrodes with enhanced energy storage performance

    Science.gov (United States)

    Yu, Cuiping; Wang, Yan; Zhang, Jianfang; Yang, Wanfen; Shu, Xia; Qin, Yongqiang; Cui, Jiewu; Zheng, Hongmei; Zhang, Yong; Ajayan, Pulickel M.; Wu, Yucheng

    2017-10-01

    High-performance battery-type electrodes based on TiO2 nanotube arrays decorated with Co0·12Ni1·88S2@Co8S9 (CNCS) nanoparticles have been successfully prepared in this paper. The highly conductive TiO2 nanotube arrays modified with carbon and oxygen vacancies (Ti3+ defects) (m-TNAs) are selected as the three-dimensional backbones to support electroactive materials and offer direct pathways for electron and ions transport. Then CNCS nanoparticles are electrodeposited on each nanotube uniformly, and the loading mass of nanoparticles can be controlled through adjusting electrodeposition cycles. After optimization, a remarkable specific capacity of 680.1 C g-1 is achieved at 2 A g -1 as a result of the intrinsic synergetic contributions from structural/compositional/componental merits. This specific capacity is much higher than most of the TNAs-based energy storage electrodes. In addition, an asymmetric supercapacitor device is assembled by applying the optimized CNCS/m-TNAs and commercial active carbon as positive and negative electrode, respectively. It displays a high energy density of 45.5 Wh kg-1 at a power density of 400.5 W kg-1, after cycling for 3000 cycles at a high current density of 4 A g-1, the specific capacitance could still remain 85.7%. This self-supported and binder-free CNCS/m-TNAs electrode will be a competitive and promising candidate for the application in energy storage.

  18. Review of electrical energy storage technologies and systems and of their potential for the UK

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report presents the findings of a review of current energy storage technologies and their potential application in the UK. Five groups of storage technologies are examined: compressed air energy storage; battery energy storage systems including lead-acid, nickel-cadmium, sodium-sulphur, sodium-nickel and lithium ion batteries; electrochemical flow cell systems, including the vanadium redox battery, the zinc bromide battery and the polysulphide battery; kinetic energy storage systems, ie flywheel storage; and fuel cell/electrolyser systems based on hydrogen. Details are given of the technology, its development status, potential applications and the key developers, manufacturers and suppliers. The opportunities available to UK industry and the potential for systems integration and wealth creation are also discussed.

  19. Advanced Energy Storage Systems (AESS)

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop and demonstrate advanced Energy Storage System (AESS) technologies that meet NASA's space exploration needs for safe, abundant, reliable, and lightweight...

  20. Recent Advances on Porous Carbon Materials for Electrochemical Energy Storage.

    Science.gov (United States)

    Wang, Libin; Hu, Xianluo

    2018-04-17

    The climate change and energy crisis promote the rapid development of electrochemical energy-storage devices. Of many intriguing physicochemical properties such as excellent chemical stability, high electronic conductivity and large specific surface area, porous carbon materials have always been considering as a promising candidate for electrochemical energy storage. Up to date, a wide variety of porous carbon materials upon molecular design, pore control and compositional tailoring have been proposed for energy-storage applications. This focus review summaries recent advances in the synthesis of various porous carbon materials from the view of energy storage, especially in the past three years. Their applications in representative electrochemical energy storage devices like lithium-ion batteries, supercapacitors, lithium-ion hybrid capacitors have been discussed in this review, looking forward to offering some inspirations and guidelines for the exploitation of advanced carbon-based energy-storage materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The economics of using plug-in hybrid electric vehicle battery packs for grid storage

    Science.gov (United States)

    Peterson, Scott B.; Whitacre, J. F.; Apt, Jay

    We examine the potential economic implications of using vehicle batteries to store grid electricity generated at off-peak hours for off-vehicle use during peak hours. Ancillary services such as frequency regulation are not considered here because only a small number of vehicles will saturate that market. Hourly electricity prices in three U.S. cities were used to arrive at daily profit values, while the economic losses associated with battery degradation were calculated based on data collected from A123 Systems LiFePO 4/Graphite cells tested under combined driving and off-vehicle electricity utilization. For a 16 kWh (57.6 MJ) vehicle battery pack, the maximum annual profit with perfect market information and no battery degradation cost ranged from ∼US140 to 250 in the three cities. If the measured battery degradation is applied, however, the maximum annual profit (if battery pack replacement costs fall to 5000 for a 16 kWh battery) decreases to ∼10-120. It appears unlikely that these profits alone will provide sufficient incentive to the vehicle owner to use the battery pack for electricity storage and later off-vehicle use. We also estimate grid net social welfare benefits from avoiding the construction and use of peaking generators that may accrue to the owner, finding that these are similar in magnitude to the energy arbitrage profit.

  2. Electrochemical energy storage for renewable sources and grid balancing

    CERN Document Server

    Moseley, Patrick T

    2015-01-01

    Electricity from renewable sources of energy is plagued by fluctuations (due to variations in wind strength or the intensity of insolation) resulting in a lack of stability if the energy supplied from such sources is used in 'real time'. An important solution to this problem is to store the energy electrochemically (in a secondary battery or in hydrogen and its derivatives) and to make use of it in a controlled fashion at some time after it has been initially gathered and stored. Electrochemical battery storage systems are the major technologies for decentralized storage systems and hydrogen

  3. An overview—Functional nanomaterials for lithium rechargeable batteries, supercapacitors, hydrogen storage, and fuel cells

    International Nuclear Information System (INIS)

    Liu, Hua Kun

    2013-01-01

    Graphical abstract: Nanomaterials play important role in lithium ion batteries, supercapacitors, hydrogen storage and fuel cells. - Highlights: • Nanomaterials play important role for lithium rechargeable batteries. • Nanostructured materials increase the capacitance of supercapacitors. • Nanostructure improves the hydrogenation/dehydrogenation of hydrogen storage materials. • Nanomaterials enhance the electrocatalytic activity of the catalysts in fuel cells. - Abstract: There is tremendous worldwide interest in functional nanostructured materials, which are the advanced nanotechnology materials with internal or external dimensions on the order of nanometers. Their extremely small dimensions make these materials unique and promising for clean energy applications such as lithium ion batteries, supercapacitors, hydrogen storage, fuel cells, and other applications. This paper will highlight the development of new approaches to study the relationships between the structure and the physical, chemical, and electrochemical properties of functional nanostructured materials. The Energy Materials Research Programme at the Institute for Superconducting and Electronic Materials, the University of Wollongong, has been focused on the synthesis, characterization, and applications of functional nanomaterials, including nanoparticles, nanotubes, nanowires, nanoporous materials, and nanocomposites. The emphases are placed on advanced nanotechnology, design, and control of the composition, morphology, nanostructure, and functionality of the nanomaterials, and on the subsequent applications of these materials to areas including lithium ion batteries, supercapacitors, hydrogen storage, and fuel cells

  4. Nanostructured Mo-based electrode materials for electrochemical energy storage.

    Science.gov (United States)

    Hu, Xianluo; Zhang, Wei; Liu, Xiaoxiao; Mei, Yueni; Huang, Yunhui

    2015-04-21

    The development of advanced energy storage devices is at the forefront of research geared towards a sustainable future. Nanostructured materials are advantageous in offering huge surface to volume ratios, favorable transport features, and attractive physicochemical properties. They have been extensively explored in various fields of energy storage and conversion. This review is focused largely on the recent progress in nanostructured Mo-based electrode materials including molybdenum oxides (MoO(x), 2 ≤ x ≤ 3), dichalconides (MoX2, X = S, Se), and oxysalts for rechargeable lithium/sodium-ion batteries, Mg batteries, and supercapacitors. Mo-based compounds including MoO2, MoO3, MoO(3-y) (0 nanostructured Mo-based compounds, as well as their energy storage applications in lithium/sodium-ion batteries, Mg batteries, and pseudocapacitors. The relationship between nanoarchitectures and electrochemical performances as well as the related charge-storage mechanism is discussed. Moreover, remarks on the challenges and perspectives of Mo-containing compounds for further development in electrochemical energy storage applications are proposed. This review sheds light on the sustainable development of advanced rechargeable batteries and supercapacitors with nanostructured Mo-based electrode materials.

  5. Peak reduction for commercial buildings using energy storage

    Science.gov (United States)

    Chua, K. H.; Lim, Y. S.; Morris, S.

    2017-11-01

    Battery-based energy storage has emerged as a cost-effective solution for peak reduction due to the decrement of battery’s price. In this study, a battery-based energy storage system is developed and implemented to achieve an optimal peak reduction for commercial customers with the limited energy capacity of the energy storage. The energy storage system is formed by three bi-directional power converter rated at 5 kVA and a battery bank with capacity of 64 kWh. Three control algorithms, namely fixed-threshold, adaptive-threshold, and fuzzy-based control algorithms have been developed and implemented into the energy storage system in a campus building. The control algorithms are evaluated and compared under different load conditions. The overall experimental results show that the fuzzy-based controller is the most effective algorithm among the three controllers in peak reduction. The fuzzy-based control algorithm is capable of incorporating a priori qualitative knowledge and expertise about the load characteristic of the buildings as well as the useable energy without over-discharging the batteries.

  6. One-dimensional nanomaterials for energy storage

    Science.gov (United States)

    Chen, Cheng; Fan, Yuqi; Gu, Jianhang; Wu, Liming; Passerini, Stefano; Mai, Liqiang

    2018-03-01

    The search for higher energy density, safer, and longer cycling-life energy storage systems is progressing quickly. One-dimensional (1D) nanomaterials have a large length-to-diameter ratio, resulting in their unique electrical, mechanical, magnetic and chemical properties, and have wide applications as electrode materials in different systems. This article reviews the latest hot topics in applying 1D nanomaterials, covering both their synthesis and their applications. 1D nanomaterials can be grouped into the categories: carbon, silicon, metal oxides, and conducting polymers, and we structure our discussion accordingly. Then, we survey the unique properties and application of 1D nanomaterials in batteries and supercapacitors, and provide comments on the progress and advantages of those systems, paving the way for a better understanding of employing 1D nanomaterials for energy storage.

  7. Energy Storage and Smart Energy Systems

    Directory of Open Access Journals (Sweden)

    Poul Alberg Østergaard

    2016-12-01

    Full Text Available It is often highlighted how the transition to renewable energy supply calls for significant electricity storage. However, one has to move beyond the electricity-only focus and take a holistic energy system view to identify optimal solutions for integrating renewable energy. In this paper, an integrated cross-sector approach is used to determine the most efficient and least-cost storage options for the entire renewable energy system concluding that the best storage solutions cannot be found through analyses focusing on the individual sub-sectors. Electricity storage is not the optimum solution to integrate large inflows of fluctuating renewable energy, since more efficient and cheaper options can be found by integrating the electricity sector with other parts of the energy system and by this creating a Smart Energy System. Nevertheless, this does not imply that electricity storage should be disregarded but that it will be needed for other purposes in the future.

  8. Energy Storage and Smart Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Østergaard, Poul Alberg; Connolly, David

    2016-01-01

    It is often highlighted how the transition to renewable energy supply calls for significant electricity storage. However, one has to move beyond the electricity-only focus and take a holistic energy system view to identify optimal solutions for integrating renewable energy. In this paper......, an integrated cross-sector approach is used to determine the most efficient and least-cost storage options for the entire renewable energy system concluding that the best storage solutions cannot be found through analyses focusing on the individual sub-sectors. Electricity storage is not the optimum solution...... to integrate large inflows of fluctuating renewable energy, since more efficient and cheaper options can be found by integrating the electricity sector with other parts of the energy system and by this creating a Smart Energy System. Nevertheless, this does not imply that electricity storage should...

  9. The Carbon Nanotube Fibers for Optoelectric Conversion and Energy Storage

    Directory of Open Access Journals (Sweden)

    Yongfeng Luo

    2014-01-01

    Full Text Available This review summarizes recent studies on carbon nanotube (CNT fibers for weavable device of optoelectric conversion and energy storage. The intrinsic properties of individual CNTs make the CNT fibers ideal candidates for optoelectric conversion and energy storage. Many potential applications such as solar cell, supercapacitor, and lithium ion battery have been envisaged. The recent advancement in CNT fibers for optoelectric conversion and energy storage and the current challenge including low energy conversion efficiency and low stability and future direction of the energy fiber have been finally summarized in this paper.

  10. Optimal Sizing of Battery Storage Systems for Industrial Applications when Uncertainties Exist

    OpenAIRE

    Guido Carpinelli; Anna Rita di Fazio; Shahab Khormali; Fabio Mottola

    2014-01-01

    Demand response (DR) can be very useful for an industrial facility, since it allows noticeable reductions in the electricity bill due to the significant value of energy demand. Although most industrial processes have stringent constraints in terms of hourly active power, DR only becomes attractive when performed with the contemporaneous use of battery energy storage systems (BESSs). When this option is used, an optimal sizing of BESSs is desirable, because the investment costs can be signific...

  11. Advanced Fibre Based Energy Storage

    Science.gov (United States)

    Reid, Daniel Oliver

    New energy storage devices are required to enable future technologies. With the rise of wearable consumer and medical devices, a suitable flexible and wearable means of storing electrical energy is required. Fibre-based devices present a possible method of achieving this aim. Fibres are inherently more flexible than their bulk counterparts, and as such can be employed to form the electrodes of flexible batteries and capacitors. They also present a facile possibility for incorporation into many fabrics and clothes, further boosting their potential for use in wearable devices. Electrically conducting fibres were produced from a dispersion of carbon nanomaterials in a room temperature ionic liquid. Coagulation of this dispersion was achieved through manual injection into aqueous solutions of xanthan gum. The limitations of this method are highlighted by very low ultimate tensile strengths of these fibres, in the order of 3 MPa, with high variation within all of the fibres. Fibres were also produced via scrolling of bi-component films containing poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and poly(vinyl alcohol) (PVA). Chemical treatments were employed to impart water compatibility to these fibres, and their electrochemical, physical and electrical properties were analysed. Fibres were wet spun from two PEDOT:PSS sources, in several fibre diameters. The effect of chemical treatments on the fibres were investigated and compared. Short 5 min treatment times with dimethyl sulfoxide (DMSO) on 20 mum fibres produced from Clevios PH1000 were found to produce the best overall treatment. Up to a six-fold increase in electrical conductivity resulted, reaching 800 S cm-1, with up to 40 % increase in specific capacitance and no loss of mechanical strength (55 F g-1 and 150 MPa recorded). A wet spinning system to produce PEDOT:PSS fibres containing functionalised graphenes and carbon nanotubes, as well as birnessite nanotubes was subsequently developed

  12. Energy Conversion and Storage Requirements for Hybrid Electric Aircraft

    Science.gov (United States)

    Misra, Ajay

    2016-01-01

    Among various options for reducing greenhouse gases in future large commercial aircraft, hybrid electric option holds significant promise. In the hybrid electric aircraft concept, gas turbine engine is used in combination with an energy storage system to drive the fan that propels the aircraft, with gas turbine engine being used for certain segments of the flight cycle and energy storage system being used for other segments. The paper will provide an overview of various energy conversion and storage options for hybrid electric aircraft. Such options may include fuel cells, batteries, super capacitors, multifunctional structures with energy storage capability, thermoelectric, thermionic or a combination of any of these options. The energy conversion and storage requirements for hybrid electric aircraft will be presented. The role of materials in energy conversion and storage systems for hybrid electric aircraft will be discussed.

  13. Energy storage: potential analysis is still on the way

    International Nuclear Information System (INIS)

    Signoret, Stephane; Dejeu, Mathieu; Deschaseaux, Christelle; De Santis, Audrey; Cygler, Clement; Petitot, Pauline

    2014-01-01

    A set of articles gives an overview of the status and current evolutions of the energy storage sector. The different technologies (flywheel, lithium-ion batteries, NaS or Zebra batteries, compressed air energy storage or CAES, 2. generation CAES, pump storage power plants or PSP) have different applications areas, and also different technological maturity levels. PSPs have probably the best potential nowadays, but investors must be supported. In an interview, a member of the CNRS evokes the main researches, the obstacles in the development of solar thermodynamic plants, technology transfers, and the potential of hydrogen for massive energy storage. An article outlines the need to develop the battery market. Several technological examples and experiments are then presented: Nice Grid (storage at the source level), FlyProd (energy storage by flywheel). An article then addresses the issue of heat storage, notably in a situation of energy co-generation. Researches and prototype development are then presented, the objective of which is to obtain an adiabatic CAES. The last articles address the development of hydrogen to store energy (technologies) and a first technological demonstrator

  14. Cost and energy consumption estimates for the aluminum-air battery anode fuel cycle

    Science.gov (United States)

    1990-01-01

    At the request of DOE's Office of Energy Storage and Distribution (OESD), Pacific Northwest Laboratory (PNL) conducted a study to generate estimates of the energy use and costs associated with the aluminum anode fuel cycle of the aluminum-air (Al-air) battery. The results of this analysis indicate that the cost and energy consumption characteristics of the mechanically rechargeable Al-air battery system are not as attractive as some other electrically rechargeable electric vehicle battery systems being developed by OESD. However, there are distinct advantages to mechanically rechargeable batteries, which may make the Al-air battery (or other mechanically rechargeable batteries) attractive for other uses, such as stand-alone applications. Fuel cells, such as the proton exchange membrane (PEM), and advanced secondary batteries may be better suited to electric vehicle applications.

  15. Electric Vehicle Based Battery Storages for Large Scale Wind Power Integration in Denmark

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna

    . In Denmark, there are many hours of surplus wind power production every year. This could be consumed locally through demand side management of electric vehicles by controlled charging of their batteries. Also, the EV batteries could discharge the stored electricity to the grid on demand, which...... is improving on a rapid scale and the battery cost is also reducing which could enable the electric cars to be competitive in the market. The electric vehicles could also benefit the electricity sector in supporting more renewable energy which is also one of the most important driving forces in its promotion...... the clean wind energy and latter could be expensive and limited as the neighbouring countries are also installing more renewable energy across their borders. One of the other alternative solutions lies with the local distributed storages which could be provided by the flexible, efficient and quick start...

  16. Renewable rural electrification: Prediction of sustainability in South Africa: Case study: Wind and solar photo-voltaic with lead acid battery storage

    CSIR Research Space (South Africa)

    Rogers, DEC

    2008-11-01

    Full Text Available A case study methodology and assessment of renewable energy technology and sustainable development is applied to a DME rural village project. Wind, solar and lead acid battery energy storage technology were used for off-grid electrification...

  17. Microbial battery for efficient energy recovery

    OpenAIRE

    Xie, Xing; Ye, Meng; Hsu, Po-Chun; Liu, Nian; Criddle, Craig S.; Cui, Yi

    2013-01-01

    This work introduces a microbial battery for recovery of energy from reservoirs of organic matter, such as wastewater. Microorganisms at an anode oxidize dissolved organic substances, releasing electrons to an external circuit, where power can be extracted. The electrons then enter a solid-state electrode that remains solid as electrons accumulate within it. The solid-state electrode is periodically removed from the battery, oxidized, and reinstalled for sustained power production. Molecular ...

  18. The Hybrid Mineral Battery: energy storage and dissolution behavior of CuFeS2 in a fixed bed flow cell.

    Science.gov (United States)

    Deen, Kashif Mairaj; Asselin, Edouard

    2018-03-08

    The development of a hybrid system, capable of storing energy, and with the additional benefit of Cu extraction is discussed in this work. A fixed bed flow cell (FBFC) was used in which a composite negative electrode containing CuFeS2 (80 wt. %) and carbon black (20 wt. %) in graphite felt was separated from a positive (graphite felt) electrode by proton exchange membrane. The anolyte (0.2M H2SO4) and catholyte (0.5M Fe2+ in 0.2M H2SO4 with or without 0.1M Cu2+ addition) were circulated in the cell. With the addition of Cu2+ in the catholyte, the electrochemical activity of the Fe2+/Fe3+ redox couple over graphite felt was significantly improved. Ultimately, in the CuFeS2||Fe2+/Cu2+ (CFeCu) FBFC system the specific capacity increased continuously to 26.4 mAh-g-1 in 500 galvanostatic charge/discharge (GCD) cycles, compared to the CuFeS2||Fe2+ (CFe) system (13.9 mAh-g-1). Interestingly, the specific discharge energy gradually increased to 3.6 Wh-kg-1 in 500 GCD cycles for the CFeCu system compared to 3.29 Wh-kg-1 for the CFe system in 150 cycles. In addition to the energy storage, 10.75 % Cu was also extracted from the mineral, which is an important feature of CFeCu system as it would allow for Cu extraction and recovery through hydrometallurgical methods. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Introduction to energy storage with market analysis and outlook

    International Nuclear Information System (INIS)

    Schmid, Robert; Pillot, Christophe

    2014-01-01

    At first, the rechargeable battery market in 2012 will be described by technology - lead acid, NiCd, NiMH, lithium ion - and application - portable electronics, power tools, e-bikes, automotive, energy storage. This will be followed by details of the lithium ion battery market value chain from the raw material to the final application. The lithium ion battery market of 2012 will be analyzed and split by applications, form factors and suppliers. There is also a focus on the cathode, anode, electrolyte and separator market included. This report will also give a forecast for the main trends and the market in 2020, 2025. To conclude, a forecast for the rechargeable battery market by application for 2025 will be presented. Since energy storage plays an important role for the growing Electric Vehicle (EV) market, this EV issue is closely considered throughout this analysis

  20. Metal oxide-carbon composites for energy conversion and storage

    Science.gov (United States)

    Perera, Sanjaya Dulip

    The exponential growth of the population and the associated energy demand requires the development of new materials for sustainable energy conversion and storage. Expanding the use of renewable energy sources to generate electricity is still not sufficient enough to fulfill the current energy demand. Electricity generation by wind and solar is the most promising alternative energy resources for coal and oil. The first part of the dissertation addresses an alternative method for preparing TiO2 nanotube based photoanodes for DSSCs. This would involve smaller diameter TiO2 nanotubes (˜10 nm), instead of nanoparticles or electrochemically grown larger nanotubes. Moreover, TiO2 nanotube-graphene based photocatalysts were developed to treat model pollutants. In the second part of this dissertation, the development of electrical energy storage systems, which provide high storage capacity and power output using low cost materials are discussed. Among different types of energy storage systems, batteries are the most convenient method to store electrical energy. However, the low power performance of batteries limits the application in different types of electrical energy storage. The development of electrical energy storage systems, which provide high storage capacity and power output using low cost materials are discussed.

  1. Kauai Island Utility Cooperative energy storage study.

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, Abbas Ali; Yamane, Mike (Kauai Island Utility Cooperative, Lihu' e, HI); Murray, Aaron T.

    2009-06-01

    into the KIUC grid. General Electric is presently conducting such a study and results of this study will be available in the near future. Another study conducted by Electric Power Systems, Inc. (EPS) in May 2006 took a broader approach to determine the causes of KIUC system outages. This study concluded that energy storage with batteries will provide stability benefits and possibly eliminate the load shedding while also providing positive voltage control. Due to the lack of fuel diversity in the KIUC generation mix, SNL recommends that KIUC continue its efforts to quantify the dynamic benefits of storage. The value of the dynamic benefits, especially as an enabler of renewable generation such as wind energy, may be far greater than the production cost benefits alone. A combination of these benefits may provide KIUC sufficient positive economic and operational benefits to implement an energy storage project that will contribute to the overall enhancement of the KIUC system.

  2. Nuclear Energy Assessment Battery. Form C.

    Science.gov (United States)

    Showers, Dennis Edward

    This publication consists of a nuclear energy assessment battery for secondary level students. The test contains 44 multiple choice items and is organized into four major sections. Parts include: (1) a knowledge scale; (2) attitudes toward nuclear energy; (3) a behaviors and intentions scale; and (4) an anxiety scale. Directions are provided for…

  3. Using CPE Function to Size Capacitor Storage for Electric Vehicles and Quantifying Battery Degradation during Different Driving Cycles

    Directory of Open Access Journals (Sweden)

    Cong Zhang

    2016-11-01

    Full Text Available Range anxiety and battery cycle life are two major factors which restrict the development of electric vehicles. Battery degradation can be reduced by adding supercapacitors to create a Hybrid Energy Storage System. This paper proposes a systematic approach to configure the hybrid energy storage system and quantifies the battery degradation for electric vehicles when using supercapacitors. A continuous power-energy function is proposed to establish supercapacitor size based on national household travel survey statistics. By analyzing continuous driving action in standard driving cycles and special driving phases (start up and acceleration, the supercapacitor size is calculated to provide a compromise between the capacitor size and battery degradation. Estimating the battery degradation after 10 years, the battery capacity loss value decreases 17.55% and 21.6%, respectively, under the urban dynamometer driving schedule and the US06. Furthermore, the battery lifespan of the continuous power-energy configured system is prolonged 28.62% and 31.39%, respectively, compared with the battery alone system.

  4. Seasonal Thermal Energy Storage Program

    Science.gov (United States)

    Minor, J. E.

    1980-01-01

    The Seasonal Thermal Energy Storage (STES) Program designed to demonstrate the storage and retrieval of energy on a seasonal basis using heat or cold available from waste or other sources during a surplus period is described. Factors considered include reduction of peak period demand and electric utility load problems and establishment of favorable economics for district heating and cooling systems for commercialization of the technology. The initial thrust of the STES Program toward utilization of ground water systems (aquifers) for thermal energy storage is emphasized.

  5. Energy storage for power systems

    CERN Document Server

    Ter-Gazarian, Andrei

    2011-01-01

    The supply of energy from primary sources is not constant and rarely matches the pattern of demand from consumers. Electricity is also difficult to store in significant quantities. Therefore, secondary storage of energy is essential to increase generation capacity efficiency and to allow more substantial use of renewable energy sources that only provide energy intermittently. Lack of effective storage has often been cited as a major hurdle to substantial introduction of renewable energy sources into the electricity supply network.This 2nd edition, without changing the existing structure of the

  6. Analysis of the economics of photovoltaic-diesel-battery energy systems for remote applications

    Science.gov (United States)

    Brainard, W. A.

    1983-01-01

    Computer simulations were conducted to analyze the performance and operating cost of a photovoltaic energy source combined with a diesel generator system and battery storage. The simulations were based on the load demand profiles used for the design of an all photovoltaic energy system installed in the remote Papago Indian Village of Schuchuli, Arizona. Twenty year simulations were run using solar insolation data from Phoenix SOLMET tapes. Total energy produced, energy consumed, operation and maintenance costs were calculated. The life cycle and levelized energy costs were determined for a variety of system configurations (i.e., varying amounts of photovoltaic array and battery storage).

  7. Emerging electrochemical energy conversion and storage technologies

    Science.gov (United States)

    Badwal, Sukhvinder; Giddey, Sarbjit; Munnings, Christopher; Bhatt, Anand; Hollenkamp, Tony

    2014-09-01

    Electrochemical cells and systems play a key role in a wide range of industry sectors. These devices are critical enabling technologies for renewable energy; energy management, conservation and storage; pollution control / monitoring; and greenhouse gas reduction. A large number of electrochemical energy technologies have been developed in the past. These systems continue to be optimized in terms of cost, life time and performance, leading to their continued expansion into existing and emerging market sectors. The more established technologies such as deep-cycle batteries and sensors are being joined by emerging technologies such as fuel cells, large format lithium-ion batteries, electrochemical reactors; ion transport membranes and supercapacitors. This growing demand (multi billion dollars) for electrochemical energy systems along with the increasing maturity of a number of technologies is having a significant effect on the global research and development effort which is increasing in both in size and depth. A number of new technologies, which will have substantial impact on the environment and the way we produce and utilize energy, are under development. This paper presents an overview of several emerging electrochemical energy technologies along with a discussion some of the key technical challenges.

  8. Emerging electrochemical energy conversion and storage technologies

    Science.gov (United States)

    Badwal, Sukhvinder P. S.; Giddey, Sarbjit S.; Munnings, Christopher; Bhatt, Anand I.; Hollenkamp, Anthony F.

    2014-01-01

    Electrochemical cells and systems play a key role in a wide range of industry sectors. These devices are critical enabling technologies for renewable energy; energy management, conservation, and storage; pollution control/monitoring; and greenhouse gas reduction. A large number of electrochemical energy technologies have been developed in the past. These systems continue to be optimized in terms of cost, life time, and performance, leading to their continued expansion into existing and emerging market sectors. The more established technologies such as deep-cycle batteries and sensors are being joined by emerging technologies such as fuel cells, large format lithium-ion batteries, electrochemical reactors; ion transport membranes and supercapacitors. This growing demand (multi billion dollars) for electrochemical energy systems along with the increasing maturity of a number of technologies is having a significant effect on the global research and development effort which is increasing in both in size and depth. A number of new technologies, which will have substantial impact on the environment and the way we produce and utilize energy, are under development. This paper presents an overview of several emerging electrochemical energy technologies along with a discussion some of the key technical challenges. PMID:25309898

  9. Energy Storage System with Voltage Equalization Strategy for Wind Energy Conversion

    Directory of Open Access Journals (Sweden)

    Cheng-Tao Tsai

    2012-07-01

    Full Text Available In this paper, an energy storage system with voltage equalization strategy for wind energy conversion is presented. The proposed energy storage system provides a voltage equalization strategy for series-connected lead-acid batteries to increase their total storage capacity and lifecycle. In order to draw the maximum power from the wind energy, a perturbation-and-observation method and digital signal processor (DSP are incorporated to implement maximum power point tracking (MPPT algorithm and power regulating scheme. In the proposed energy storage system, all power switches have zero-voltage-switching (ZVS feature at turn-on transition. Therefore, the conversion efficiency can be increased. Finally, a prototype energy storage system for wind energy conversion is built and implemented. Experimental results have verified the performance and feasibility of the proposed energy storage system for wind energy conversion.

  10. Functional Carbon Materials for Electrochemical Energy Storage

    Science.gov (United States)

    Zhou, Huihui

    The ability to harvest and convert solar energy has been associated with the evolution of human civilization. The increasing consumption of fossil fuels since the industrial revolution, however, has brought to concerns in ecological deterioration and depletion of the fossil fuels. Facing these challenges, humankind is forced to seek for clean, sustainable and renewable energy resources, such as biofuels, hydraulic power, wind power, geothermal energy and other kinds of alternative energies. However, most alternative energy sources, generally in the form of electrical energy, could not be made available on a continuous basis. It is, therefore, essential to store such energy into chemical energy, which are portable and various applications. In this context, electrochemical energy-storage devices hold great promises towards this goal. The most common electrochemical energy-storage devices are electrochemical capacitors (ECs, also called supercapacitors) and batteries. In comparison to batteries, ECs posses high power density, high efficiency, long cycling life and low cost. ECs commonly utilize carbon as both (symmetric) or one of the electrodes (asymmetric), of which their performance is generally limited by the capacitance of the carbon electrodes. Therefore, developing better carbon materials with high energy density has been emerging as one the most essential challenges in the field. The primary objective of this dissertation is to design and synthesize functional carbon materials with high energy density at both aqueous and organic electrolyte systems. The energy density (E) of ECs are governed by E = CV 2/2, where C is the total capacitance and V is the voltage of the devices. Carbon electrodes with high capacitance and high working voltage should lead to high energy density. In the first part of this thesis, a new class of nanoporous carbons were synthesized for symmetric supercapacitors using aqueous Li2SO4 as the electrolyte. A unique precursor was adopted to

  11. Electric utility applications of hydrogen energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.; Sen, R.K.

    1997-10-15

    This report examines the capital cost associated with various energy storage systems that have been installed for electric utility application. The storage systems considered in this study are Battery Energy Storage (BES), Superconducting Magnetic Energy Storage (SMES) and Flywheel Energy Storage (FES). The report also projects the cost reductions that may be anticipated as these technologies come down the learning curve. This data will serve as a base-line for comparing the cost-effectiveness of hydrogen energy storage (HES) systems in the electric utility sector. Since pumped hydro or compressed air energy storage (CAES) is not particularly suitable for distributed storage, they are not considered in this report. There are no comparable HES systems in existence in the electric utility sector. However, there are numerous studies that have assessed the current and projected cost of hydrogen energy storage system. This report uses such data to compare the cost of HES systems with that of other storage systems in order to draw some conclusions as to the applications and the cost-effectiveness of hydrogen as a electricity storage alternative.

  12. Multifunctional Carbon Nanostructures for Advanced Energy Storage Applications

    Directory of Open Access Journals (Sweden)

    Yiran Wang

    2015-05-01

    Full Text Available Carbon nanostructures—including graphene, fullerenes, etc.—have found applications in a number of areas synergistically with a number of other materials. These multifunctional carbon nanostructures have recently attracted tremendous interest for energy storage applications due to their large aspect ratios, specific surface areas, and electrical conductivity. This succinct review aims to report on the recent advances in energy storage applications involving these multifunctional carbon nanostructures. The advanced design and testing of multifunctional carbon nanostructures for energy storage applications—specifically, electrochemical capacitors, lithium ion batteries, and fuel cells—are emphasized with comprehensive examples.

  13. Storage to Energy Calculator

    NARCIS (Netherlands)

    Taal, A.; Makkes, M.X.; Grosso, P.

    2014-01-01

    Computational and storage tasks can nowadays be offloaded among data centers, in order to optimize costs and or performance. We set out to investigate what are the environmental effects, namely the total CO2 emission, of such offloading. We built models for the various components present in these

  14. Lih thermal energy storage device

    Science.gov (United States)

    Olszewski, Mitchell; Morris, David G.

    1994-01-01

    A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures.

  15. Pseudocapacitive oxide materials for high-rate electrochemical energy storage

    OpenAIRE

    Augustyn, Veronica; Simon, Patrice; Dunn, Bruce

    2014-01-01

    International audience; Electrochemical energy storage technology is based on devices capable of exhibiting high energy density (batteries) or high power density (electrochemical capacitors). There is a growing need, for current andnear-future applications, where both high energy and high power densities are required in the same material. Pseudocapacitance, a faradaic process involving surface or near surface redox reactions, offers a means of achieving high energy density at high charge–disc...

  16. Conference on storage in the service of energy transition

    International Nuclear Information System (INIS)

    Leuthold, Matthias; Marchal, David; Sitte, Ralf; Kairies, Kai-Philipp; Guerrier, Pierre; Netzel, Niklas; Radvanyi, Etienne; Lenck, Thorsten

    2016-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on energy storage supporting the energy transition in France and in Germany. In the framework of this French-German exchange of experience, about 140 participants met together to debate about the answer of future storage technologies to the electric power system needs and to the optimum integration of renewable energies at different levels of the power transmission and distribution grid. This document brings together the available presentations (slides) made during this event: 1 - Storage Technologies, Status and Perspectives (Matthias Leuthold); 2 - Which electricity storage needs for 2030, 2050 in France? (David Marchal); 3 - Storage in context of the German 'Energiewende' (Ralf Sitte); 4 - Battery Storage for residential PV Systems: Grid relieving effects (Kai-Philipp Kairies); 5 - Battery Storage for residential PV Systems: Technologies and Market Trends (Kai-Philipp Kairies); 6 - Pumped hydro-stations to ensure a decentralized and flexible storage to integrate the best way RES in the electric system (Pierre Guerrier); 7 - RRKW Feldheim - Primary Frequency Control in a wind feed-in grid (Niklas Netzel); 8 - Smoothing an intermittent generation: interest of generation forecast and storage global management (Etienne Radvanyi); 9 - Power-to-gas after 2030 - A cost-benefit analysis (Thorsten Lenck)

  17. Improving wind power quality with energy storage

    OpenAIRE

    Rasmussen, Claus Nygaard

    2009-01-01

    The results of simulation of the influence of energy storage on wind power quality are presented. Simulations are done using a mathematical model of energy storage. Results show the relation between storage power and energy, and the obtained increase in minimum available power from the combination of wind and storage. The introduction of storage enables smoothening of wind power on a timescale proportional to the storage energy. Storage does not provide availability of wind power at all times...

  18. Electrical Energy Storage Systems Feasibility; the Case of Terceira Island

    Directory of Open Access Journals (Sweden)

    Ana Rodrigues

    2017-07-01

    Full Text Available The Azores Regional Government, through the Sustainable Energy Action Plan for the Azorean Islands, assumed that by the year 2018, 60% of electricity would be generated from renewable energy sources. Nevertheless, by increasing renewable energy sources share in the electricity mix, peak energy that exceeds grid capacity cannot be used unless when considering energy storage systems. Therefore, this article aims at determining, among batteries and Pumped Hydro Systems, the most cost-effective energy storage system to deploy in Terceira Island, along with geothermal, wind, thermal and bio waste energy, while considering demand and supply constraints. It is concluded that a pumped hydro system sited in Serra do Morião-Nasce Água is the best option for storage of the excess generated energy when compared with batteries. However, further studies should analyze environmental constraints. It is demonstrated that by increasing the storage power capacity, a pumped hydro system improves its cost efficiency when compared with batteries. It is also demonstrated that, to ensure quality, economic feasibility, reliability and a reduction of external costs, it is preferable to replace fuel-oil by wind to generate electricity up to a conceivable technical limit, while building a pumped hydro system, or dumping the excess peak energy generated.

  19. Energy Storage Technology Development for Space Exploration

    Science.gov (United States)

    Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.

    2011-01-01

    The National Aeronautics and Space Administration is developing battery and fuel cell technology to meet the expected energy storage needs of human exploration systems. Improving battery performance and safety for human missions enhances a number of exploration systems, including un-tethered extravehicular activity suits and transportation systems including landers and rovers. Similarly, improved fuel cell and electrolyzer systems can reduce mass and increase the reliability of electrical power, oxygen, and water generation for crewed vehicles, depots and outposts. To achieve this, NASA is developing non-flow-through proton-exchange-membrane fuel cell stacks, and electrolyzers coupled with low permeability membranes for high pressure operation. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments over the past year include the fabrication and testing of several robust, small-scale non-flow-through fuel cell stacks that have demonstrated proof-of-concept. NASA is also developing advanced lithium-ion battery cells, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiatedmixed- metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety.

  20. Development of fuel and energy storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Development of fuel cell power plants is intended of high-efficiency power generation using such fuels with less air pollution as natural gas, methanol and coal gas. The closest to commercialization is phosphoric acid fuel cells, and the high in efficiency and rich in fuel diversity is molten carbonate fuel cells. The development is intended to cover a wide scope from solid electrolyte fuel cells to solid polymer electrolyte fuel cells. For new battery power storage systems, development is focused on discrete battery energy storage technologies of fixed type and mobile type (such as electric vehicles). The ceramic gas turbine technology development is purposed for improving thermal efficiency and reducing pollutants. Small-scale gas turbines for cogeneration will also be developed. Development of superconduction power application technologies is intended to serve for efficient and stable power supply by dealing with capacity increase and increase in power distribution distance due to increase in power demand. In the operations to improve the spread and general promotion systems for electric vehicles, load leveling is expected by utilizing and storing nighttime electric power. Descriptions are given also on economical city systems which utilize wide-area energy. 30 figs., 7 tabs.

  1. Photovoltaic power systems energy storage

    International Nuclear Information System (INIS)

    Buldini, P.L.

    1991-01-01

    Basically, the solar photovoltaic power system consists of: Array of solar panels; Charge/voltage stabilizer; Blocking diode and Storage device. The storage device is a very important part of the system due to the necessity to harmonize the inevitable time shift between energy supply and demand. As energy storage, different devices can be utilized, such as hydropumping, air or other gas compression, flywheel, superconducting magnet, hydrogen generation and so on, but actually secondary (rechargeable) electrochemical cells appear to be the best storage device, due to the direct use for recharge of the d.c. current provided by the solar panels, without any intermediate step of energy transformation and its consequent loss of efficiency

  2. Energy conversion & storage program. 1995 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1996-06-01

    The 1995 annual report discusses laboratory activities in the Energy Conversion and Storage (EC&S) Program. The report is divided into three categories: electrochemistry, chemical applications, and material applications. Research performed in each category during 1995 is described. Specific research topics relate to the development of high-performance rechargeable batteries and fuel cells, the development of high-efficiency thermochemical processes for energy conversion, the characterization of new chemical processes and complex chemical species, and the study and application of novel materials related to energy conversion and transmission. Research projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials and deposition technologies, and advanced methods of analysis.

  3. Dynamic Prediction of Power Storage and Delivery by Data-Based Fractional Differential Models of a Lithium Iron Phosphate Battery

    Directory of Open Access Journals (Sweden)

    Yunfeng Jiang

    2016-07-01

    Full Text Available A fractional derivative system identification approach for modeling battery dynamics is presented in this paper, where fractional derivatives are applied to approximate non-linear dynamic behavior of a battery system. The least squares-based state-variable filter (LSSVF method commonly used in the identification of continuous-time models is extended to allow the estimation of fractional derivative coefficents and parameters of the battery models by monitoring a charge/discharge demand signal and a power storage/delivery signal. In particular, the model is combined by individual fractional differential models (FDMs, where the parameters can be estimated by a least-squares algorithm. Based on experimental data, it is illustrated how the fractional derivative model can be utilized to predict the dynamics of the energy storage and delivery of a lithium iron phosphate battery (LiFePO 4 in real-time. The results indicate that a FDM can accurately capture the dynamics of the energy storage and delivery of the battery over a large operating range of the battery. It is also shown that the fractional derivative model exhibits improvements on prediction performance compared to standard integer derivative model, which in beneficial for a battery management system.

  4. Overview of Energy Storage Technologies for Space Applications

    Science.gov (United States)

    Surampudi, Subbarao

    2006-01-01

    This presentations gives an overview of the energy storage technologies that are being used in space applications. Energy storage systems have been used in 99% of the robotic and human space missions launched since 1960. Energy storage is used in space missions to provide primary electrical power to launch vehicles, crew exploration vehicles, planetary probes, and astronaut equipment; store electrical energy in solar powered orbital and surface missions and provide electrical energy during eclipse periods; and, to meet peak power demands in nuclear powered rovers, landers, and planetary orbiters. The power source service life (discharge hours) dictates the choice of energy storage technology (capacitors, primary batteries, rechargeable batteries, fuel cells, regenerative fuel cells, flywheels). NASA is planning a number of robotic and human space exploration missions for the exploration of space. These missions will require energy storage devices with mass and volume efficiency, long life capability, an the ability to operate safely in extreme environments. Advanced energy storage technologies continue to be developed to meet future space mission needs.

  5. TEXT Energy Storage System

    International Nuclear Information System (INIS)

    Weldon, W.F.; Rylander, H.G.; Woodson, H.H.

    1977-01-01

    The Texas Experimental Tokamak (TEXT) Enery Storage System, designed by the Center for Electromechanics (CEM), consists of four 50 MJ, 125 V homopolar generators and their auxiliaries and is designed to power the toroidal and poloidal field coils of TEXT on a two-minute duty cycle. The four 50 MJ generators connected in series were chosen because they represent the minimum cost configuration and also represent a minimal scale up from the successful 5.0 MJ homopolar generator designed, built, and operated by the CEM

  6. Computation of current pulsed sources with inductive energy storages

    OpenAIRE

    Nosov, G. V.

    2007-01-01

    Formulas for computation of efficiency and parameters of current pulsed sources at charging and discharging of the inductive energy storage on active loading have been obtained. For charging the inductive storage the electric and capacitor batteries, unipolar and synchronous electric generators with the rectifier, equivalent circuit of which can be presented by consecutive connection of equivalent capacity, inductance and resistance are considered. Formulas, at which high efficiency of charge...

  7. High density energy storage capacitor

    International Nuclear Information System (INIS)

    Whitham, K.; Howland, M.M.; Hutzler, J.R.

    1979-01-01

    The Nova laser system will use 130 MJ of capacitive energy storage and have a peak power capability of 250,000 MW. This capacitor bank is a significant portion of the laser cost and requires a large portion of the physical facilities. In order to reduce the cost and volume required by the bank, the Laser Fusion Program funded contracts with three energy storage capacitor producers: Aerovox, G.E., and Maxwell Laboratories, to develop higher energy density, lower cost energy storage capacitors. This paper describes the designs which resulted from the Aerovox development contract, and specifically addresses the design and initial life testing of a 12.5 kJ, 22 kV capacitor with a density of 4.2 J/in 3 and a projected cost in the range of 5 cents per joule

  8. Sodium nickel chloride battery technology for large-scale stationary storage in the high voltage network

    Science.gov (United States)

    Benato, Roberto; Cosciani, Nicola; Crugnola, Giorgio; Dambone Sessa, Sebastian; Lodi, Giuseppe; Parmeggiani, Carlo; Todeschini, Marco

    2015-10-01

    The extensive application of Sodium-Nickel Chloride (Na-NiCl2) secondary batteries in electric and hybrid vehicles, in which the safety requirements are more restrictive than these of stationary storage applications, depicts the Na-NiCl2 technology as perfectly suitable for the stationary storage applications. The risk of fire is negligible because of the intrinsic safety of the cell chemical reactions, related to the sodium-tetrachloroaluminate (NaAlCl4) content into the cell, which acts as a secondary electrolyte (the primary one being the ceramic β″-alumina as common for Na-Beta batteries). The 3 h rate discharge time makes this technology very attractive for load levelling, voltage regulation, time shifting and the power fluctuation mitigation of the renewable energy sources in both HV and EHV networks.

  9. Integrated Building Energy Systems Design Considering Storage Technologies

    International Nuclear Information System (INIS)

    Stadler, Michael; Marnay, Chris; Siddiqui, Afzal; Lai, Judy; Aki, Hirohisa

    2009-01-01

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic, as well as environmental attraction of micro-generation systems (e.g., PV or fuel cells with or without CHP) and contribute to enhanced demand response. The interactions among PV, solar thermal, and storage systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of storage technologies on demand response and CO2 emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that can pursue two strategies as its objective function. These two strategies are minimization of its annual energy costs or of its CO2 emissions. The problem is solved for a given test year at representative customer sites, e.g., nursing homes, to obtain not only the optimal investment portfolio, but also the optimal hourly operating schedules for the selected technologies. This paper focuses on analysis of storage technologies in micro-generation optimization on a building level, with example applications in New York State and California. It shows results from a two-year research project performed for the U.S. Department of Energy and ongoing work. Contrary to established expectations, our results indicate that PV and electric storage adoption compete rather than supplement each other considering the tariff structure and costs of electricity supply. The work shows that high electricity tariffs during on-peak hours are a significant driver for the adoption of electric storage technologies. To satisfy the site's objective of minimizing energy costs, the batteries have to be charged by grid power during off-peak hours instead of PV during on-peak hours. In contrast, we also show a CO2 minimization strategy where the common assumption that batteries can be charged by PV can be fulfilled at extraordinarily high energy costs for the site

  10. Complex metal hydrides for hydrogen, thermal and electrochemical energy storage

    DEFF Research Database (Denmark)

    Møller, Kasper T.; Sheppard, Drew; Ravnsbæk, Dorthe B.

    2017-01-01

    Hydrogen has a very diverse chemistry and reacts with most other elements to form compounds, which have fascinating structures, compositions and properties. Complex metal hydrides are a rapidly expanding class of materials, approaching multi-functionality, in particular within the energy storage...... field. This review illustrates that complex metal hydrides may store hydrogen in the solid state, act as novel battery materials, both as electrolytes and electrode materials, or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore, it is highlighted...... inspiration to solve the great challenge of our time: efficient conversion and large-scale storage of renewable energy....

  11. Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage

    DEFF Research Database (Denmark)

    Moller, Kasper T.; Sheppard, Drew; Ravnsbaek, Dorthe B.

    2017-01-01

    Hydrogen has a very diverse chemistry and reacts with most other elements to form compounds, which have fascinating structures, compositions and properties. Complex metal hydrides are a rapidly expanding class of materials, approaching multi-functionality, in particular within the energy storage...... field. This review illustrates that complex metal hydrides may store hydrogen in the solid state, act as novel battery materials, both as electrolytes and electrode materials, or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore, it is highlighted...... inspiration to solve the great challenge of our time: efficient conversion and large-scale storage of renewable energy....

  12. Energy storage for sustainable microgrid

    CERN Document Server

    Gao, David Wenzhong

    2015-01-01

    Energy Storage for Sustainable Microgrid addresses the issues related to modelling, operation and control, steady-state and dynamic analysis of microgrids with ESS. This book discusses major electricity storage technologies in depth along with their efficiency, lifetime cycles, environmental benefits and capacity, so that readers can envisage which type of storage technology is best for a particular microgrid application. This book offers solutions to numerous difficulties such as choosing the right ESS for the particular microgrid application, proper sizing of ESS for microgrid, as well as

  13. Thermal Energy Storage: Fourth Annual Review Meeting

    Science.gov (United States)

    1980-01-01

    The development of low cost thermal energy storage technologies is discussed in terms of near term oil savings, solar energy applications, and dispersed energy systems for energy conservation policies. Program definition and assessment and research and technology development are considered along with industrial storage, solar thermal power storage, building heating and cooling, and seasonal thermal storage. A bibliography on seasonal thermal energy storage emphasizing aquifer thermal energy is included.

  14. The CUNY Energy Institute Electrical Energy Storage Development for Grid Applications

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Sanjoy

    2013-03-31

    1. Project Objectives The objectives of the project are to elucidate science issues intrinsic to high energy density electricity storage (battery) systems for smart-grid applications, research improvements in such systems to enable scale-up to grid-scale and demonstrate a large 200 kWh battery to facilitate transfer of the technology to industry. 2. Background Complex and difficult to control interfacial phenomena are intrinsic to high energy density electrical energy storage systems, since they are typically operated far from equilibrium. One example of such phenomena is the formation of dendrites. Such dendrites occur on battery electrodes as they cycle, and can lead to internal short circuits, reducing cycle life. An improved understanding of the formation of dendrites and their control can improve the cycle life and safety of many energy storage systems, including rechargeable lithium and zinc batteries. Another area where improved understanding is desirable is the application of ionic liquids as electrolytes in energy storage systems. An ionic liquid is typically thought of as a material that is fully ionized (consisting only of anions and cations) and is fluid at or near room temperature. Some features of ionic liquids include a generally high thermal stability (up to 450 °C), a high electrochemical window (up to 6 V) and relatively high intrinsic conductivities. Such features make them attractive as battery or capacitor electrolytes, and may enable batteries which are safer (due to the good thermal stability) and of much higher energy density (due to the higher voltage electrode materials which may be employed) than state of the art secondary (rechargeable) batteries. Of particular interest is the use of such liquids as electrolytes in metal air batteries, where energy densities on the order of 1-2,000 Wh / kg are possible; this is 5-10 times that of existing state of the art lithium battery technology. The Energy Institute has been engaged in the

  15. Energy storage in evaporated brine

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, R. Ian

    2010-09-15

    We propose storage of electrical energy in brine solutions by using the energy to enhance natural evaporation. Using properties of existing industrial evaporation technologies and estimates of power regeneration from brine by pressure retarded osmosis, efficiency near 100% is calculated. Modelling indicates that systems ranging from 50kW to 50MW output may be practical, with storage capacities of hours to days. The method appears to have potential to be economically competitive with other technologies over a wide range of capacity. It may present a large new application area that could aid the development of salinity-based power generation technology.

  16. Thermal energy storage flight experiments

    Science.gov (United States)

    Namkoong, D.

    1989-01-01

    Consideration is given to the development of an experimental program to study heat transfer, energy storage, fluid movement, and void location under microgravity. Plans for experimental flight packages containing Thermal Energy Storage (TES) material applicable for advanced solar heat receivers are discussed. Candidate materials for TES include fluoride salts, salt eutectics, silicides, and metals. The development of a three-dimensional computer program to describe TES material behavior undergoing melting and freezing under microgravity is also discussed. The TES experiment concept and plans for ground and flight tests are outlined.

  17. NV energy electricity storage valuation :

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader; Jin, Chunlian

    2013-06-01

    This study examines how grid-level electricity storage may benefit the operations of NV Energy, and assesses whether those benefits are likely to justify the cost of the storage system. To determine the impact of grid-level storage, an hourly production cost model of the Nevada Balancing Authority ("BA") as projected for 2020 was created. Storage was found to add value primarily through the provision of regulating reserve. Certain storage resources were found likely to be cost-effective even without considering their capacity value, as long as their effectiveness in providing regulating reserve was taken into account. Giving fast resources credit for their ability to provide regulating reserve is reasonable, given the adoption of FERC Order 755 ("Pay-for-performance"). Using a traditional five-minute test to determine how much a resource can contribute to regulating reserve does not adequately value fast-ramping resources, as the regulating reserve these resources can provide is constrained by their installed capacity. While an approximation was made to consider the additional value provided by a fast-ramping resource, a more precise valuation requires an alternate regulating reserve methodology. Developing and modeling a new regulating reserve methodology for NV Energy was beyond the scope of this study, as was assessing the incremental value of distributed storage.

  18. Low Energy Desalination Using Battery Electrode Deionization

    KAUST Repository

    Kim, Taeyoung

    2017-09-21

    New electrochemical technologies that use capacitive or battery electrodes are being developed to minimize energy requirements for desalinating brackish waters. When a pair of electrodes is charged in capacitive deionization (CDI) systems, cations bind to the cathode and anions bind to the anode, but high applied voltages (>1.2 V) result in parasitic reactions and irreversible electrode oxidation. In the battery electrode deionization (BDI) system developed here, two identical copper hexacyanoferrate (CuHCF) battery electrodes were used that release and bind cations, with anion separation occurring via an anion exchange membrane. The system used an applied voltage of 0.6 V, which avoided parasitic reactions, achieved high electrode desalination capacities (up to 100 mg-NaCl/g-electrode, 50 mM NaCl influent), and consumed less energy than CDI. Simultaneous production of desalinated and concentrated solutions in two channels avoided a two-cycle approach needed for CDI. Stacking additional membranes between CuHCF electrodes (up to three anion and two cation exchange membranes) reduced energy consumption to only 0.02 kWh/m3 (approximately an order of magnitude lower than values reported for CDI), for an influent desalination similar to CDI (25 mM decreased to 17 mM). These results show that BDI could be effective as a very low energy method for brackish water desalination.

  19. Applying wind turbines and battery storage to defer Orcas Power and Light Company distribution circuit upgrades

    International Nuclear Information System (INIS)

    Zaininger, H.W.; Barnes, P.R.

    1997-03-01

    The purpose of this study is to conduct a detailed assessment of the Orcas Power and Light Company (OPALCO) system to determine the potential for deferring the costly upgrade of the 25-kV Lopez- Eastsound circuit, by the application of a MW-scale wind farm and battery storage facilities as appropriate. Local wind resource data has been collected over the past year and used to determine MW-scale wind farm performance. This hourly wind farm performance data is used with measured hourly Eastsound load data, and recent OPALCO distribution system expansion plans and cost projections in performing this detailed benefit-cost assessment. The OPALCO distribution circuit expansion project and assumptions are described. MW-scale wind farm performance results are given. The economic benefit-cost results for the wind farm and battery storage applications on the OPALCO system using OPALCO system design criteria and cost assumptions are reported. A recalculation is presented of the benefit-cost results for similar potential wind farm and battery storage applications on other utility systems with higher marginal energy and demand costs. Conclusions and recommendations are presented. costs. Conclusions and recommendations are presented

  20. Recent Progress on Integrated Energy Conversion and Storage Systems.

    Science.gov (United States)

    Luo, Bin; Ye, Delai; Wang, Lianzhou

    2017-09-01

    Over the last few decades, there has been increasing interest in the design and construction of integrated energy conversion and storage systems (IECSSs) that can simultaneously capture and store various forms of energies from nature. A large number of IECSSs have been developed with different combination of energy conversion technologies such as solar cells, mechanical generators and thermoelectric generators and energy storage devices such as rechargeable batteries and supercapacitors. This review summarizes the recent advancements to date of IECSSs based on different energy sources including solar, mechanical, thermal as well as multiple types of energies, with a special focus on the system configuration and working mechanism. With the rapid development of new energy conversion and storage technologies, innovative high performance IECSSs are of high expectation to be realised for diverse practical applications in the near future.

  1. Optimal energy management of HEVs with hybrid storage system

    International Nuclear Information System (INIS)

    Vinot, E.; Trigui, R.

    2013-01-01

    Highlights: • A battery and ultra-capacitor system for parallel hybrid vehicle is considered. • Optimal management using Pontryagin’s minimum principle is developed. • Battery stress limitation is taken into account by means of RMS current. • Rule based management approaching the optimal control is proposed. • Comparison between rule based and optimal management are proposed using Pareto front. - Abstract: Energy storage systems are a key point in the design and development of electric and hybrid vehicles. In order to reduce the battery size and its current stress, a hybrid storage system, where a battery is coupled with an electrical double-layer capacitor (EDLC) is considered in this paper. The energy management of such a configuration is not obvious and the optimal operation concerning the energy consumption and battery RMS current has to be identified. Most of the past work on the optimal energy management of HEVs only considered one additional power source. In this paper, the control of a hybrid vehicle with a hybrid storage system (HSS), where two additional power sources are used, is presented. Applying the Pontryagin’s minimum principle, an optimal energy management strategy is found and compared to a rule-based parameterized control strategy. Simulation results are shown and discussed. Applied on a small compact car, optimal and ruled-based methods show that gains of fuel consumption and/or a battery RMS current higher than 15% may be obtained. The paper also proves that a well tuned rule-based algorithm presents rather good performances when compared to the optimal strategy and remains relevant for different driving cycles. This rule-based algorithm may easily be implemented in a vehicle prototype or in an HIL test bench

  2. Control and operation of power sources in a medium-voltage direct-current microgrid for an electric vehicle fast charging station with a photovoltaic and a battery energy storage system

    International Nuclear Information System (INIS)

    García-Triviño, Pablo; Torreglosa, Juan P.; Fernández-Ramírez, Luis M.; Jurado, Francisco

    2016-01-01

    Although electric vehicles (EVs) are experiencing a considerable upsurge, the technology associated with them is still under development. This study focused on the control and operation of a medium-voltage direct-current (MVDC) microgrid with an innovative decentralized control system, which was used as a fast charging station (FCS) for EVs. The FCS was composed of a photovoltaic (PV) system, a Li-ion battery energy storage system (BESS), two 48 kW fast charging units for EVs, and a connection to the local grid. With this configuration and thanks to its decentralized control, the FCS was able to work as a stand-alone system most of the time though with occasional grid support. This paper presents a new decentralized energy management system (EMS) with two options to control the power sources of the FCS. The choice of the power source depends on the MVDC bus voltage, the state-of-charge (SOC) of the BESS, and the control option of the EMS. This control was tested by simulating the FCS, when connected to several EVs and under different sun irradiance conditions. Simulation results showed that the FCS operated smoothly and effectively, which confirms the feasibility of using this technology in EVs. - Highlights: • This paper studies a MVDC microgrid for fast charging station of EV. • It is composed of a PV system, a BESS, two EV charging stations and a grid connection. • A decentralized control scheme is applied to control the power sources. • The MVDC bus voltage is the key parameter for controlling the system. • The results demonstrate the feasibility of the system and control under study.

  3. Battery storage for electric-powered vehicles; Batteriespeicher fuer Elektrofahrzeuge

    Energy Technology Data Exchange (ETDEWEB)

    Ledjeff, K. [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany)

    1994-12-31

    The individual traffic in urban areas contributes very much to the environmental load. Related to the discussion about the influence of CO{sub 2} and trace gases on the destruction of our climate, more and more political pressure is put on the automobile industry. Due to the Californian laws about the introduction of Zero Emission Vehicles starting in 1998 an international competition began for the development of electric-powered vehicles in series. The greatest challenge will be to provide appropriate batteries, with high energy and performance data, but at considerably low costs. The further development of batteries is supported on an international level and several new concepts are going to be developed not only for conventional systems but also for high energy batteries. (orig.) [Deutsch] Der Individualverkehr traegt in staedtischen Gebieten erheblich zur Umweltbelastung bei. Auch im Zusammenhang mit der Diskussion um die Einfluesse von CO2 uns Spurengasen auf die Schaedigung unseres Klimas, konzentriert sich der politische Druck zunehmend auf den Automobilbereich. Bedingt durch die kalifornischen Gesetze ueber die Einfuehrung der Zero Emission Vehicles ab 1998 wurde ein internationaler Wettkampf zur Entwicklung von serienreifen Elektrofahrzeugen gestartet. Die groesste Herausforderung stellt die Bereitstellung von geeigneten Batterien dar, mit hohen Energie- und Leistungsdaten, jedoch bei guenstigen Kosten. Die Batterieentwicklung wird international erheblich forciert, und es kristallisieren sich verschiedenen neuartige Konzepte heraus, sowohl bei den konventionellen Systemen, als auch bei den Hochenergiebatterien. (orig.)

  4. FY2010 Annual Progress Report for Energy Storage Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-01-28

    The energy storage research and development effort within the VT Program is responsible for researching and improving advanced batteries and ultracapacitors for a wide range of vehicle applications, including HEVs, PHEVs, EVs, and fuel cell vehicles (FCVs). Over the past few years, the emphasis of these efforts has shifted from high-power batteries for HEV applications to high-energy batteries for PHEV and EV applications.

  5. The concentration gradient flow battery as electricity storage system

    NARCIS (Netherlands)

    Egmond, Van W.J.; Saakes, M.; Porada, S.; Meuwissen, T.; Buisman, C.J.N.; Hamelers, H.V.M.

    2016-01-01

    Unlike traditional fossil fuel plants, the wind and the sun provide power only when the renewable resource is available. To accommodate large scale use of renewable energy sources for efficient power production and utilization, energy storage systems are necessary. Here, we introduce a scalable

  6. Multifunctional composites for energy storage

    Science.gov (United States)

    Shuvo, Mohammad Arif I.; Karim, Hasanul; Rajib, Md; Delfin, Diego; Lin, Yirong

    2014-03-01

    Electrochemical super-capacitors have become one of the most important topics in both academia and industry as novel energy storage devices because of their high power density, long life cycles, and high charge/discharge efficiency. Recently, there has been an increasing interest in the development of multifunctional structural energy storage devices such as structural super-capacitors for applications in aerospace, automobiles and portable electronics. These multifunctional structural super-capacitors provide lighter structures combining energy storage and load bearing functionalities. Due to their superior materials properties, carbon fiber composites have been widely used in structural applications for aerospace and automotive industries. Besides, carbon fiber has good electrical conductivity which will provide lower equivalent series resistance; therefore, it can be an excellent candidate for structural energy storage applications. Hence, this paper is focused on performing a pilot study for using nanowire/carbon fiber hybrids as building materials for structural energy storage materials; aiming at enhancing the charge/discharge rate and energy density. This hybrid material combines the high specific surface area of carbon fiber and pseudo-capacitive effect of metal oxide nanowires which were grown hydrothermally in an aligned fashion on carbon fibers. The aligned nanowire array could provide a higher specific surface area that leads to high electrode-electrolyte contact area and fast ion diffusion rates. Scanning Electron Microscopy (SEM) and XRay Diffraction (XRD) measurements were used for the initial characterization of this nanowire/carbon fiber hybrid material system. Electrochemical testing has been performed using a potentio-galvanostat. The results show that gold sputtered nanowire hybrid carbon fiber provides 65.9% better performance than bare carbon fiber cloth as super-capacitor.

  7. Regenerative flywheel energy storage system. Volume 1: Executive summary

    Science.gov (United States)

    1980-06-01

    The development, fabrication, and test of a regenerative flywheel energy storage and recovery system for a battery/flywheel electric vehicle of the 3000 pound class are described. The vehicle propulsion system was simulated on a digital computer in order to determine the optimum system operating strategies and to establish a calculated range improvement over a nonregenerative, all electric vehicle. Fabrication of the inductor motor, the flywheel, the power conditioner, and the system control are described. Test results of the system operating over the SAE J227a Schedule D driving cycle are given and are compared to the calculated value. The flywheel energy storage system consists of a solid rotor, synchronous, inductor type, flywheel drive machine electrically coupled to a dc battery electric propulsion system through a load commutated inverter. The motor/alternator unit is coupled mechanically to a small steel flywheel which provides a portion of the vehicle's accelerating energy and regenerates the vehicle's braking energy.

  8. FY2009 Annual Progress Report for Energy Storage Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-01-19

    The energy storage research and development effort within the VT Program is responsible for researching and improving advanced batteries and ultracapacitors for a wide range of vehicle applications, including HEVs, PHEVs, EVs, and fuel cell vehicles (FCVs).

  9. Energy Conversion and Storage Program. 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  10. Designing and Testing Composite Energy Storage Systems for Regulating the Outputs of Linear Wave Energy Converters

    Directory of Open Access Journals (Sweden)

    Zanxiang Nie

    2017-01-01

    Full Text Available Linear wave energy converters generate intrinsically intermittent power with variable frequency and amplitude. A composite energy storage system consisting of batteries and super capacitors has been developed and controlled by buck-boost converters. The purpose of the composite energy storage system is to handle the fluctuations and intermittent characteristics of the renewable source, and hence provide a steady output power. Linear wave energy converters working in conjunction with a system composed of various energy storage devices, is considered as a microsystem, which can function in a stand-alone or a grid connected mode. Simulation results have shown that by applying a boost H-bridge and a composite energy storage system more power could be extracted from linear wave energy converters. Simulation results have shown that the super capacitors charge and discharge often to handle the frequent power fluctuations, and the batteries charge and discharge slowly for handling the intermittent power of wave energy converters. Hardware systems have been constructed to control the linear wave energy converter and the composite energy storage system. The performance of the composite energy storage system has been verified in experiments by using electronics-based wave energy emulators.

  11. Thermal energy storage devices, systems, and thermal energy storage device monitoring methods

    Science.gov (United States)

    Tugurlan, Maria; Tuffner, Francis K; Chassin, David P.

    2016-09-13

    Thermal energy storage devices, systems, and thermal energy storage device monitoring methods are described. According to one aspect, a thermal energy storage device includes a reservoir configured to hold a thermal energy storage medium, a temperature control system configured to adjust a temperature of the thermal energy storage medium, and a state observation system configured to provide information regarding an energy state of the thermal energy storage device at a plurality of different moments in time.

  12. Flywheel Energy Storage Drive System for Wind Applications

    Directory of Open Access Journals (Sweden)

    Marius Constantin Georgescu

    2014-09-01

    Full Text Available This paper presents a wind small power plant with a Smart Storage Modular Structure (SSMS, as follows: a Short Time Storage Module (STSM based on a flywheel with Induction Motor (IM and a Medium/Long Time Storage Module (MLTSM based on a Vanadium Redox flow Battery (VRB. To control the speed and torque of the IM are used a nonlinear sensorless solution and a direct torque solution which have been compared. Now, the author proposes to replace the IM by a dc motor with permanent magnet energy injection. In this aim, are accomplished some laboratory tests.

  13. Modeling, Design and Simulation of Stand-Alone Photovoltaic Power Systems with Battery Storage

    Directory of Open Access Journals (Sweden)

    Abd Essalam BADOUD

    2013-06-01

    Full Text Available Stand alone renewable energy based on photovoltaic systems accompanied with battery storage system are beginning to play an important role over the world to supply power to remote areas. The objective of the study reported in this paper is to elaborate and design a bond graphs model for sizing stand-alone domestic solar photovoltaic electricity systems and simulating the performance of the systems in a tropical climate. The systems modelled consist of an array of PV modules, a lead-acid battery, and a number of direct current appliances. This paper proposes the combination of lead acid battery system with a typical stand alone photovoltaic energy system under variable loads. The main activities of this work purpose to establish library graphical models for each individual component of standalone photovoltaic system. Control strategy has been considered to achieve permanent power supply to the load via photovoltaic/battery based on the power available from the sun. The complete model was simulated under two testing including sunny and cloudy conditions. Simulation of the system using Symbols software was performed and the results of simulation show the superior stable control system and high efficiency. These results have been contrasted with real measured data from a measurement campaign plant carried on electrical engineering laboratory of Grenoble using various interconnection schemes are presented.

  14. 4th international renewable energy storage conference (IRES 2009)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Within the 4th International Renewable Energy Storage Conference of The European Association for Renewable Energy (Bonn, Federal Republic of Germany) and The World Council for Renewable Energy (Bonn, Federal Republic of Germany) between 24th and 25 November, 2009, in Berlin (Federal Republic of Germany), the following lectures were held: (1) The World Wind Energy Association (A. Kane); (2) The contribution of wind power to the energy supply of tomorrow (H. Albers); (3) Intelligent energy systems for the integration of renewable energies (A.-C. Agricola); (4) 100% Renewable energies: From fossil baseload plants to renewable plants for basic supply (M. Willenbacher); (5) High-performance Li-ion technology for stationary and mobile applications (A. Gutsch); (6) Energy storage in geological underground - Competition of use at storage formations (L. Dietrich); (7) E-mobility concepts for model region ''Rhein-Ruhr'' in North Rhine Westphalia (G.-U. Funk); (8) Photovoltaic energy storage for a better energy management in residential buildings (S. Pincemin); (9) Self-consuming photovoltaic energy in Germany - Impact on energy flows, business cases, and the distribution grid (M. Braun); (10) Local energy systems -optimized for local consumption of self-produced electricity (B. Wille-Haussmann); (11) Assessing the economics of distributed storage systems at the end consumer level (K.-H. Ahlert); (12) A new transportation system for heat on a wide temperature range (S. Gschwander); (13) Latent heat storage media for cooling applications (C. Doetsch); (14) Numerical and experimental analysis of latent heat storage systems for mobile application (F. Roesler); (15) CO{sub 2}-free heat supply from waste heat (H.-W. Etzkorn); (16) Stationary Li-Ion-technology applications for dispatchable power (C. Kolligs); (17) Redox-flow batteries - Electric storage systems for renewable energy (T. Smolinka); (18) Energy storage by means of flywheels (H. Kielsein); (19

  15. Centrifugal Spinning and Its Energy Storage Applications

    Science.gov (United States)

    Yao, Lu

    Lithium-ion batteries (LIBs) and supercapacitors are important electrochemical energy storage systems. LIBs have high specific energy density, long cycle life, good thermal stability, low self-discharge, and no memory effect. However, the low abundance of Li in the Earth's crust and the rising cost of LIBs urge the attempts to develop alternative energy storage systems. Recently, sodium-ion batteries (SIBs) have become an attractive alternative to LIBs due to the high abundance and low cost of Na. Although the specific capacity and energy density of SIBs are not as high as LIBs, SIBs can still be promising power sources for certain applications such as large-scale, stationary grids. Supercapacitors are another important class of energy storage devices. Electric double-layer capacitors (EDLCs) are one important type of supercapacitors and they exhibit high power density, long cycle life, excellent rate capability and environmental friendliness. The potential applications of supercapacitors include memory protection in electronic circuitry, consumer portable electronic devices, and electrical hybrid vehicles. The electrochemical performance of SIBs and EDLCs is largely dependent on the electrode materials. Therefore, development of superior electrodes is the key to achieve highperformance alternative energy storage systems. Recently, one-dimensional nano-/micro-fiber based electrodes have become promising candidates in energy storage because they possess a variety of desirable properties including large specific surface area, well-guided ionic/electronic transport, and good electrode-electrolyte contact, which contribute to enhanced electrochemical performance. Currently, most nano-/micro-fiber based electrodes are prepared via electrospinning method. However, the low production rate of this approach hinders its practical application in the production of fibrous electrodes. Thus, it is significantly important to employ a rapid, low-cost and scalable nano

  16. Optimizing MEMS-Based Storage Devices for Mobile Battery-Powered Systems

    NARCIS (Netherlands)

    Khatib, M.G.; Hartel, Pieter H.

    An emerging storage technology, called MEMS-based storage, promises nonvolatile storage devices with ultrahigh density, high rigidity, a small form factor, and low cost. For these reasons, MEMS-based storage devices are suitable for battery-powered mobile systems such as PDAs. For deployment in such

  17. Solar applications analysis for energy storage

    Science.gov (United States)

    Blanchard, T.

    1980-01-01

    The role of energy storage as it relates to solar energy systems is considered. Storage technologies to support solar energy applications, the status of storage technologies, requirements and specifications for storage technologies, and the adequacy of the current storage research and development program to meet these requirements are among the factors discussed. Emphasis is placed on identification of where the greatest potential exists for energy storage in support of those solar energy systems which could have a significant impact on the U.S. energy mix.

  18. Excess Li-Ion Storage on Reconstructed Surfaces of Nanocrystals To Boost Battery Performance.

    Science.gov (United States)

    Duan, Yandong; Zhang, Bingkai; Zheng, Jiaxin; Hu, Jiangtao; Wen, Jianguo; Miller, Dean J; Yan, Pengfei; Liu, Tongchao; Guo, Hua; Li, Wen; Song, Xiaohe; Zhuo, Zengqing; Liu, Chaokun; Tang, Hanting; Tan, Rui; Chen, Zonghai; Ren, Yang; Lin, Yuan; Yang, Wanli; Wang, Chong-Min; Wang, Lin-Wang; Lu, Jun; Amine, Khalil; Pan, Feng

    2017-10-11

    Because of their enhanced kinetic properties, nanocrystallites have received much attention as potential electrode materials for energy storage. However, because of the large specific surface areas of nanocrystallites, they usually suffer from decreased energy density, cycling stability, and effective electrode capacity. In this work, we report a size-dependent excess capacity beyond theoretical value (170 mA h g -1 ) by introducing extra lithium storage at the reconstructed surface in nanosized LiFePO 4 (LFP) cathode materials (186 and 207 mA h g -1 in samples with mean particle sizes of 83 and 42 nm, respectively). Moreover, this LFP composite also shows excellent cycling stability and high rate performance. Our multimodal experimental characterizations and ab initio calculations reveal that the surface extra lithium storage is mainly attributed to the charge passivation of Fe by the surface C-O-Fe bonds, which can enhance binding energy for surface lithium by compensating surface Fe truncated symmetry to create two types of extra positions for Li-ion storage at the reconstructed surfaces. Such surface reconstruction nanotechnology for excess Li-ion storage makes full use of the large specific surface area of the nanocrystallites, which can maintain the fast Li-ion transport and greatly enhance the capacity. This discovery and nanotechnology can be used for the design of high-capacity and efficient lithium ion batteries.

  19. Superconducting magnetic energy storage, possibilities and limitations

    International Nuclear Information System (INIS)

    Bace, M.; Knapp, V.

    1981-01-01

    Energy storage is of great importance for the exploitation of new energy sources as well as for the better utilisation of conventional ones. Several proposals in recent years have suggested that superconducting magnets could be used as energy storage in large electricity networks. It is a purpose of this note to point out that the requirements which have to be met by energy storage in a large electricity network place serious limitation on the possible use of superconducting energy storage. (author)

  20. Applied research on energy storage and conversion for photovoltaic and wind energy systems. Volume II. Photovoltaic systems with energy storage. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This volume of the General Electric study was directed at an evaluation of those energy storage technologies deemed best suited for use in conjunction with a photovoltaic energy conversion system in utility, residential and intermediate applications. Break-even cost goals are developed for several storage technologies in each application. These break-even costs are then compared with cost projections presented in Volume I of this report to show technologies and time frames of potential economic viability. The form of the presentation allows the reader to use more accurate storage system cost data as they become available. The report summarizes the investigations performed and presents the results, conclusions and recommendations pertaining to use of energy storage with photovoltaic energy conversion systems. Candidate storage concepts studied include (1) above ground and underground pumped hydro, (2) underground compressed air, (3) electric batteries, (4) flywheels, and (5) hydrogen production and storage. (WHK)

  1. Intelligent energy systems - Regulating the electricity grid using car batteries

    International Nuclear Information System (INIS)

    Horbaty, R.

    2009-01-01

    This article takes a look at how the electricity supply industry will, in the future, be able to substantially rely on decentrally organised sources of renewable energy. As such forms of power generation are, in part, difficult to plan, the increasing importance of regulating energy is being stressed. The use of the batteries of plug-in hybrid vehicles to provide such regulating power is discussed. So-called smart grids within the framework of a deregulated energy market are discussed and examples of possible configurations are noted. The intelligent control of apparatus and generation and storage facilities is discussed. Individual mobility with lower emissions is examined. New business areas now opening up for the electricity economy and vehicle manufacturers are discussed.

  2. Flexible energy-storage devices: design consideration and recent progress.

    Science.gov (United States)

    Wang, Xianfu; Lu, Xihong; Liu, Bin; Chen, Di; Tong, Yexiang; Shen, Guozhen

    2014-07-23

    Flexible energy-storage devices are attracting increasing attention as they show unique promising advantages, such as flexibility, shape diversity, light weight, and so on; these properties enable applications in portable, flexible, and even wearable electronic devices, including soft electronic products, roll-up displays, and wearable devices. Consequently, considerable effort has been made in recent years to fulfill the requirements of future flexible energy-storage devices, and much progress has been witnessed. This review describes the most recent advances in flexible energy-storage devices, including flexible lithium-ion batteries and flexible supercapacitors. The latest successful examples in flexible lithium-ion batteries and their technological innovations and challenges are reviewed first. This is followed by a detailed overview of the recent progress in flexible supercapacitors based on carbon materials and a number of composites and flexible micro-supercapacitors. Some of the latest achievements regarding interesting integrated energy-storage systems are also reviewed. Further research direction is also proposed to surpass existing technological bottle-necks and realize idealized flexible energy-storage devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Microwavable thermal energy storage material

    Science.gov (United States)

    Salyer, Ival O.

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

  4. Flywheel Energy Storage technology workshop

    Energy Technology Data Exchange (ETDEWEB)

    O`Kain, D.; Howell, D. [comps.

    1993-12-31

    Advances in recent years of high strength/lightweight materials, high performance magnetic bearings, and power electronics technology has spurred a renewed interest by the transportation, utility, and manufacturing industries in Flywheel Energy Storage (FES) technologies. FES offers several advantages over conventional electro-chemical energy storage, such as high specific energy and specific power, fast charging time, long service life, high turnaround efficiency (energy out/energy in), and no hazardous/toxic materials or chemicals are involved. Potential applications of FES units include power supplies for hybrid and electric vehicles, electric vehicle charging stations, space systems, and pulsed power devices. Also, FES units can be used for utility load leveling, uninterruptable power supplies to protect electronic equipment and electrical machinery, and for intermittent wind or photovoltaic energy sources. The purpose of this workshop is to provide a forum to highlight technologies that offer a high potential to increase the performance of FES systems and to discuss potential solutions to overcome present FES application barriers. This document consists of viewgraphs from 27 presentations.

  5. Control of a lithium-ion battery storage system for microgrid applications

    Science.gov (United States)

    Pegueroles-Queralt, Jordi; Bianchi, Fernando D.; Gomis-Bellmunt, Oriol

    2014-12-01

    The operation of future microgrids will require the use of energy storage systems employing power electronics converters with advanced power management capacities. This paper presents the control scheme for a medium power lithium-ion battery bidirectional DC/AC power converter intended for microgrid applications. The switching devices of a bidirectional DC converter are commanded by a single sliding mode control law, dynamically shaped by a linear voltage regulator in accordance with the battery management system. The sliding mode controller facilitates the implementation and design of the control law and simplifies the stability analysis over the entire operating range. Control parameters of the linear regulator are designed to minimize the impact of commutation noise in the DC-link voltage regulation. The effectiveness of the proposed control strategy is illustrated by experimental results.

  6. 78 FR 15753 - Maintenance, Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear Power Plants

    Science.gov (United States)

    2013-03-12

    ...-Acid Storage Batteries for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Draft...-Acid Storage Batteries for Nuclear Power Plants.'' The draft guide describes methods that the NRC staff..., testing, and replacement of vented lead-acid storage batteries in nuclear power plants. DATES: Submit...

  7. Selection and Performance-Degradation Modeling of LiMO2/Li4Ti5O12 and LiFePO4/C Battery Cells as Suitable Energy Storage Systems for Grid Integration With Wind Power Plants

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Ioan; Stan, Ana-Irina

    2014-01-01

    Advances in the development of energy storage technologies are making them attractive for grid integration together with wind power plants. Thus, the new system, the virtual power plant, is able to emulate the characteristics of today’s conventional power plants. However, at present, energy storage......-degradation models were developed for the two most suitable Li–ion chemistries for the primary frequency regulation service: LiMO2 /Li4Ti5O12 and LiFePO4/C....

  8. Multifunctional Composites for Future Energy Storage in Aerospace Structures

    Directory of Open Access Journals (Sweden)

    Till Julian Adam

    2018-02-01

    Full Text Available Multifunctionalization of fiber-reinforced composites, especially by adding energy storage capabilities, is a promising approach to realize lightweight structural energy storages for future transport vehicles. Compared to conventional energy storage systems, energy density can be increased by reducing parasitic masses of non-energy-storing components and by benefitting from the composite meso- and microarchitectures. In this paper, the most relevant existing approaches towards multifunctional energy storages are reviewed and subdivided into five groups by distinguishing their degree of integration and their scale of multifunctionalization. By introducing a modified range equation for battery-powered electric aircrafts, possible range extensions enabled by multifunctionalization are estimated. Furthermore, general and aerospace specific potentials of multifunctional energy storages are discussed. Representing an intermediate degree of structural integration, experimental results for a multifunctional energy-storing glass fiber-reinforced composite based on the ceramic electrolyte Li1.4Al0.4Ti1.6(PO43 are presented. Cyclic voltammetry tests are used to characterize the double-layer behavior combined with galvanostatic charge–discharge measurements for capacitance calculation. The capacitance is observed to be unchanged after 1500 charge–discharge cycles revealing a promising potential for future applications. Furthermore, the mechanical properties are assessed by means of four-point bending and tensile tests. Additionally, the influence of mechanical loads on the electrical properties is also investigated, demonstrating the storage stability of the composites.

  9. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery

    OpenAIRE

    Li, Bin; Nie, Zimin; Vijayakumar, M.; Li, Guosheng; Liu, Jun; Sprenkle, Vincent; Wang, Wei

    2015-01-01

    Redox flow batteries are receiving wide attention for electrochemical energy storage due to their unique architecture and advantages, but progress has so far been limited by their low energy density (~25?Wh?l?1). Here we report a high-energy density aqueous zinc-polyiodide flow battery. Using the highly soluble iodide/triiodide redox couple, a discharge energy density of 167?Wh?l?1 is demonstrated with a near-neutral 5.0?M ZnI2 electrolyte. Nuclear magnetic resonance study and density functio...

  10. Clean energy storage technology in the making: An innovation systems perspective on flywheel energy storage.

    Science.gov (United States)

    Wicki, Samuel; Hansen, Erik G

    2017-09-20

    The emergence and diffusion of green and sustainable technologies is full of obstacles and has therefore become an important area of research. We are interested in further understanding the dynamics between entrepreneurial experimentation, market formation, and institutional contexts, together playing a decisive role for successful diffusion of such technologies. Accordingly, we study these processes by adopting a technological innovation system perspective focusing on actors, networks, and institutions as well as the functions provided by them. Using a qualitative case study research design, we focus on the high-speed flywheel energy storage technology. As flywheels are based on a rotating mass allowing short-term storage of energy in kinetic form, they represent an environmentally-friendly alternative to electrochemical batteries and therefore can play an important role in sustainable energy transitions. Our contribution is threefold: First , regarding the flywheel energy storage technology, our findings reveal two subsystems and related markets in which development took different courses. In the automotive sector, flywheels are developing well as a braking energy recovery technology under the influence of two motors of innovation. In the electricity sector, they are stagnating at the stage of demonstration projects because of two important system weaknesses that counteract demand for storage. Second , we contribute to the theory of technological innovation systems by better understanding the internal dynamics between different functions of an innovation system as well as between the innovation system and its (external) contextual structures. Our third contribution is methodological. According to our best knowledge, we are the first to use system dynamics to (qualitatively) analyze and visualize dynamics between the diverse functions of innovation systems with the aim of enabling a better understanding of complex and iterative system processes. The paper also

  11. Mitigation of large power spills by an energy storage device in a stand alone energy system

    NARCIS (Netherlands)

    D. Bhaumik (Debarati); D.T. Crommelin (Daan); A.P. Zwart (Bert)

    2018-01-01

    textabstractThe unpredictable nature of wind energy makes its integration to the electric grid highly challenging. However, these challenges can be addressed by incorporating storage devices (batteries) in the system. We perform an overall assessment of a single domestic power system with a wind

  12. Feasibility Study of Energy Storage Systems in Wind/Diesel Applications Using the HOMER Model

    Directory of Open Access Journals (Sweden)

    Andrew Stiel

    2012-10-01

    Full Text Available With an increased focus on solutions to the ensuing “climate crisis”, the need for energy storage systems is becoming increasingly important as a means to increase the penetration of renewable technologies such as wind energy. The Vanadium Redox Battery is one such energy storage system showing considerable potential owing to its flexibility in power output and capacity, high efficiency and long operating life. This study models the use of the Vanadium Redox Battery as an integration technology in realistic large-scale remote wind/diesel power systems using the HOMER Micropower Optimization Model computer program developed by the US National Renewable Energy Laboratory. Results from this modelling demonstrate the significant financial and environmental benefits to be gained in installing energy storage in a wind farm. The storage system considered here was a Vanadium Redox Battery.

  13. Energy storage device with large charge separation

    Energy Technology Data Exchange (ETDEWEB)

    Holme, Timothy P.; Prinz, Friedrich B.; Iancu, Andrei T.

    2018-04-03

    High density energy storage in semiconductor devices is provided. There are two main aspects of the present approach. The first aspect is to provide high density energy storage in semiconductor devices based on formation of a plasma in the semiconductor. The second aspect is to provide high density energy storage based on charge separation in a p-n junction.

  14. Energy storage device with large charge separation

    Science.gov (United States)

    Holme, Timothy P.; Prinz, Friedrich B.; Iancu, Andrei

    2016-04-12

    High density energy storage in semiconductor devices is provided. There are two main aspects of the present approach. The first aspect is to provide high density energy storage in semiconductor devices based on formation of a plasma in the semiconductor. The second aspect is to provide high density energy storage based on charge separation in a p-n junction.

  15. Silicon-embedded copper nanostructure network for high energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Tianyue

    2018-01-23

    Provided herein are nanostructure networks having high energy storage, electrochemically active electrode materials including nanostructure networks having high energy storage, as well as electrodes and batteries including the nanostructure networks having high energy storage. According to various implementations, the nanostructure networks have high energy density as well as long cycle life. In some implementations, the nanostructure networks include a conductive network embedded with electrochemically active material. In some implementations, silicon is used as the electrochemically active material. The conductive network may be a metal network such as a copper nanostructure network. Methods of manufacturing the nanostructure networks and electrodes are provided. In some implementations, metal nanostructures can be synthesized in a solution that contains silicon powder to make a composite network structure that contains both. The metal nanostructure growth can nucleate in solution and on silicon nanostructure surfaces.

  16. Silicon-embedded copper nanostructure network for high energy storage

    Science.gov (United States)

    Yu, Tianyue

    2016-03-15

    Provided herein are nanostructure networks having high energy storage, electrochemically active electrode materials including nanostructure networks having high energy storage, as well as electrodes and batteries including the nanostructure networks having high energy storage. According to various implementations, the nanostructure networks have high energy density as well as long cycle life. In some implementations, the nanostructure networks include a conductive network embedded with electrochemically active material. In some implementations, silicon is used as the electrochemically active material. The conductive network may be a metal network such as a copper nanostructure network. Methods of manufacturing the nanostructure networks and electrodes are provided. In some implementations, metal nanostructures can be synthesized in a solution that contains silicon powder to make a composite network structure that contains both. The metal nanostructure growth can nucleate in solution and on silicon nanostructure surfaces.

  17. Review—Two-Dimensional Layered Materials for Energy Storage Applications

    KAUST Repository

    Kumar, Pushpendra

    2016-07-02

    Rechargeable batteries are most important energy storage devices in modern society with the rapid development and increasing demand for handy electronic devices and electric vehicles. The higher surface-to-volume ratio two-dimensional (2D) materials, especially transition metal dichalcogenides (TMDCs) and transition metal carbide/nitrite generally referred as MXene, have attracted intensive research activities due to their fascinating physical/chemical properties with extensive applications. One of the growing applications is to use these 2D materials as potential electrodes for rechargeable batteries and electrochemical capacitors. This review is an attempt to summarize the research and development of TMDCs, MXenes and their hybrid structures in energy storage systems. (C) The Author(s) 2016. Published by ECS. All rights reserved.

  18. Energy storage;Le stockage de l'energie

    Energy Technology Data Exchange (ETDEWEB)

    Odru, P. [Institut Francais du Petrole (IFP), 92 - Rueil-Malmaison (France)

    2010-07-01

    This book proposes a broad overview of the technologies developed in the domains of on-board electricity storage (batteries, super-capacitors, flywheels), stationary storage (hydraulic dams, compressed air, batteries and hydrogen), and heat storage (sensible, latent and sorption) together with their relative efficiency, their expected developments and what advantages they can offer. Eminent specialists of this domain have participated to the redaction of this book, all being members of the Tuck's Foundation 'IDees' think tank. (J.S.)

  19. Solar plus: Optimization of distributed solar PV through battery storage and dispatchable load in residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    O' Shaughnessy, Eric; Cutler, Dylan; Ardani, Kristen; Margolis, Robert

    2018-03-01

    As utility electricity rates evolve, pairing solar photovoltaic (PV) systems with battery storage has potential to ensure the value proposition of residential solar by mitigating economic uncertainty. In addition to batteries, load control technologies can reshape customer load profiles to optimize PV system use. The combination of PV, energy storage, and load control provides an integrated approach to PV deployment, which we call 'solar plus'. The U.S. National Renewable Energy Laboratory's Renewable Energy Optimization (REopt) model is utilized to evaluate cost-optimal technology selection, sizing, and dispatch in residential buildings under a variety of rate structures and locations. The REopt model is extended to include a controllable or 'smart' domestic hot water heater model and smart air conditioner model. We find that the solar plus approach improves end user economics across a variety of rate structures - especially those that are challenging for PV - including lower grid export rates, non-coincident time-of-use structures, and demand charges.

  20. Economics of compressed air energy storage employing thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, S.C.; Reilly, R.W.

    1979-11-01

    The approach taken in this study is to adopt system design and capital cost estimates from three independent CAES studies (eight total designs) and, by supplying a common set of fuel/energy costs and economic assumptions in conjunction with a common methodology, to arrive at a series of levelized energy costs over the system's lifetime. In addition, some analyses are provided to gauge the sensitivity of these levelized energy costs to fuel and compression energy costs and to system capacity factors. The systems chosen for comparison are of four generic types: conventional CAES, hybrid CAES, adiabatic CAES, and an advanced-design gas turbine (GT). In conventional CAES systems the heat of compression generated during the storage operation is rejected to the environment, and later, during the energy-generation phase, turbine fuel must be burned to reheat the compressed air. In the hybrid systems some of the heat of compression is stored and reapplied later during the generation phase, thereby reducing turbine fuel requirements. The adiabatic systems store adequate thermal energy to eliminate the need for turbine fuel entirely. The gas turbine is included within the report for comparison purposes; it is an advanced-design turbine, one that is expected to be available by 1985.

  1. Thermal energy storage for the Stirling engine powered automobile

    Science.gov (United States)

    Morgan, D. T. (Editor)

    1979-01-01

    A thermal energy storage (TES) system developed for use with the Stirling engine as an automotive power system has gravimetric and volumetric storage densities which are competitive with electric battery storage systems, meets all operational requirements for a practical vehicle, and can be packaged in compact sized automobiles with minimum impact on passenger and freight volume. The TES/Stirling system is the only storage approach for direct use of combustion heat from fuel sources not suitable for direct transport and use on the vehicle. The particular concept described is also useful for a dual mode TES/liquid fuel system in which the TES (recharged from an external energy source) is used for short duration trips (approximately 10 miles or less) and liquid fuel carried on board the vehicle used for long duration trips. The dual mode approach offers the potential of 50 percent savings in the consumption of premium liquid fuels for automotive propulsion in the United States.

  2. New Nanostructured Li 2 S/Silicon Rechargeable Battery with High Specific Energy

    KAUST Repository

    Yang, Yuan

    2010-04-14

    Rechargeable lithium ion batteries are important energy storage devices; however, the specific energy of existing lithium ion batteries is still insufficient for many applications due to the limited specific charge capacity of the electrode materials. The recent development of sulfur/mesoporous carbon nanocomposite cathodes represents a particularly exciting advance, but in full battery cells, sulfur-based cathodes have to be paired with metallic lithium anodes as the lithium source, which can result in serious safety issues. Here we report a novel lithium metal-free battery consisting of a Li 2S/mesoporous carbon composite cathode and a silicon nanowire anode. This new battery yields a theoretical specific energy of 1550 Wh kg ?1, which is four times that of the theoretical specific energy of existing lithium-ion batteries based on LiCoO2 cathodes and graphite anodes (∼410 Wh kg?1). The nanostructured design of both electrodes assists in overcoming the issues associated with using sulfur compounds and silicon in lithium-ion batteries, including poor electrical conductivity, significant structural changes, and volume expansion. We have experimentally realized an initial discharge specific energy of 630 Wh kg ?1 based on the mass of the active electrode materials. © 2010 American Chemical Society.

  3. Optimal energy management strategy for self-reconfigurable batteries

    International Nuclear Information System (INIS)

    Bouchhima, Nejmeddine; Schnierle, Marc; Schulte, Sascha; Birke, Kai Peter

    2017-01-01

    This paper proposes a novel energy management strategy for multi-cell high voltage batteries where the current through each cell can be controlled, called self-reconfigurable batteries. An optimized control strategy further enhances the energy efficiency gained by the hardware architecture of those batteries. Currently, achieving cell equalization by using the active balancing circuits is considered as the best way to optimize the energy efficiency of the battery pack. This study demonstrates that optimizing the energy efficiency of self-reconfigurable batteries is no more strongly correlated to the cell balancing. According to the features of this novel battery architecture, the energy management strategy is formulated as nonlinear dynamic optimization problem. To solve this optimal control, an optimization algorithm that generates the optimal discharge policy for a given driving cycle is developed based on dynamic programming and code vectorization. The simulation results show that the designed energy management strategy maximizes the system efficiency across the battery lifetime over conventional approaches. Furthermore, the present energy management strategy can be implemented online due to the reduced complexity of the optimization algorithm. - Highlights: • The energy efficiency of self-reconfigurable batteries is maximized. • The energy management strategy for the battery is formulated as optimal control problem. • Developing an optimization algorithm using dynamic programming techniques and code vectorization. • Simulation studies are conducted to validate the proposed optimal strategy.

  4. NREL Energy Storage Projects: FY2013 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, A.; Ban, C.; Brooker, A.; Gonder, J.; Ireland, J.; Keyser, M.; Kim, G. H.; Long, D.; Neubauer, J.; Santhanagopalan, S.; Smith, K.; Tenent, R.; Wood, E.; Han, T.; Hartridge, S.; Shaffer, C. E.

    2014-07-01

    In FY13, DOE funded NREL to make technical contributions to various R&D activities. This report summarizes NREL's R&D projects in FY13 in support of the USABC; Battery Testing, Analysis, and Design; ABR; and BATT program elements. The FY13 projects under NREL's Energy Storage R&D program are discussed in depth in this report.

  5. Grid integration of decentralized generation facilities by means of battery storages in the distribution network using the pilot project 'INESS' (Intelligent network energy storage system) as an example; Netzintegration von dezentralen Erzeugungsanlagen durch Batteriespeicher im Verteilnetz am Beispiel des Pilotprojektes 'INESS' (Intelligentes Netz Energie Speicher-System)

    Energy Technology Data Exchange (ETDEWEB)

    Stoelzle, Franz; Bader, Daniel [Netzgesellschaft Ostwuerttemberg GmbH, Ellwangen (Germany); Backes, Juergen [EnBW OstwuerttembergDonauRies AG, Ellwangen (Germany)

    2012-07-01

    Fundamentally, storage facilities may replace conventional grid building measures. The storage facility thus adopts the function as an additional load if a large decentralized supply is into the network is performed. The storage facility acts as a generating plant at high reference load when the storage facility is unloaded. In order to replace a network expansion optimally, the storage facilities are at least optimized decentralized such as the corresponding power generating plants. The required capacity of the storage facility depends on the case of application. When used as an alternative to the network expansion, relatively high capacities with 6 kWh per kW of the installed generation capacity are required. Due to the rarely occuring maximum input performance only a low energy turnover is achieved. Under current framework conditions and realities of the market storage facilities exclusively for this application currently can not operated economically. Combined use of storage facilities by customers, trade and standards of the grid operator could allow an economical operation with modified framework conditions and corresponding decline in prices of energy storage systems.

  6. Electrical Energy Storage for Renewable Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Helms, C. R. [Univ. of Texas, Dallas, TX (United States); Cho, K. J. [Univ. of Texas, Dallas, TX (United States); Ferraris, John [Univ. of Texas, Dallas, TX (United States); Balkus, Ken [Univ. of Texas, Dallas, TX (United States); Chabal, Yves [Univ. of Texas, Dallas, TX (United States); Gnade, Bruce [Univ. of Texas, Dallas, TX (United States); Rotea, Mario [Univ. of Texas, Dallas, TX (United States); Vasselli, John [Univ. of Texas, Dallas, TX (United States)

    2012-08-31

    This program focused on development of the fundamental understanding necessary to significantly improve advanced battery and ultra-capacitor materials and systems to achieve significantly higher power and energy density on the one hand, and significantly lower cost on the other. This program spanned all the way from atomic-level theory, to new nanomaterials syntheses and characterization, to system modeling and bench-scale technology demonstration. This program not only delivered significant advancements in fundamental understanding and new materials and technology, it also showcased the power of the cross-functional, multi-disciplinary teams at UT Dallas and UT Tyler for such work. These teams are continuing this work with other sources of funding from both industry and government.

  7. Thermal energy storage and transport

    Science.gov (United States)

    Hausz, W.

    1980-01-01

    The extraction of thermal energy from large LWR and coal fired plants for long distance transport to industrial and residential/commercial users is analyzed. Transport of thermal energy as high temperature water is shown to be considerably cheaper than transport as steam, hot oil, or molten salt over a wide temperature range. The delivered heat is competitive with user-generated heat from oil, coal, or electrode boilers at distances well over 50 km when the pipeline operates at high capacity factor. Results indicate that thermal energy storage makes meeting of even very low capacity factor heat demands economic and feasible and gives the utility flexibility to meet coincident electricity and heat demands effectively.

  8. National Assessment of Energy Storage for Grid Balancing and Arbitrage: Phase 1, WECC

    Energy Technology Data Exchange (ETDEWEB)

    Kintner-Meyer, Michael CW; Balducci, Patrick J.; Colella, Whitney G.; Elizondo, Marcelo A.; Jin, Chunlian; Nguyen, Tony B.; Viswanathan, Vilayanur V.; Zhang, Yu

    2012-06-01

    To examine the role that energy storage could play in mitigating the impacts of the stochastic variability of wind generation on regional grid operation, the Pacific Northwest National Laboratory (PNNL) examined a hypothetical 2020 grid scenario in which additional wind generation capacity is built to meet renewable portfolio standard targets in the Western Interconnection. PNNL developed a stochastic model for estimating the balancing requirements using historical wind statistics and forecasting error, a detailed engineering model to analyze the dispatch of energy storage and fast-ramping generation devices for estimating size requirements of energy storage and generation systems for meeting new balancing requirements, and financial models for estimating the life-cycle cost of storage and generation systems in addressing the future balancing requirements for sub-regions in the Western Interconnection. Evaluated technologies include combustion turbines, sodium sulfur (Na-S) batteries, lithium ion batteries, pumped-hydro energy storage, compressed air energy storage, flywheels, redox flow batteries, and demand response. Distinct power and energy capacity requirements were estimated for each technology option, and battery size was optimized to minimize costs. Modeling results indicate that in a future power grid with high-penetration of renewables, the most cost competitive technologies for meeting balancing requirements include Na-S batteries and flywheels.

  9. Exploratory Technology Research Program for electrochemical energy storage

    Science.gov (United States)

    Kinoshita, Kim

    1994-09-01

    The U.S. Department of Energy's Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EV's). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratories (SNL); Lawrence Berkeley Laboratory (LBL) is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on selected candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EV's. The role of the FIR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1993.

  10. Twelve Principles for Green Energy Storage in Grid Applications.

    Science.gov (United States)

    Arbabzadeh, Maryam; Johnson, Jeremiah X; Keoleian, Gregory A; Rasmussen, Paul G; Thompson, Levi T

    2016-01-19

    The introduction of energy storage technologies to the grid could enable greater integration of renewables, improve system resilience and reliability, and offer cost effective alternatives to transmission and distribution upgrades. The integration of energy storage systems into the electrical grid can lead to different environmental outcomes based on the grid application, the existing generation mix, and the demand. Given this complexity, a framework is needed to systematically inform design and technology selection about the environmental impacts that emerge when considering energy storage options to improve sustainability performance of the grid. To achieve this, 12 fundamental principles specific to the design and grid application of energy storage systems are developed to inform policy makers, designers, and operators. The principles are grouped into three categories: (1) system integration for grid applications, (2) the maintenance and operation of energy storage, and (3) the design of energy storage systems. We illustrate the application of each principle through examples published in the academic literature, illustrative calculations, and a case study with an off-grid application of vanadium redox flow batteries (VRFBs). In addition, trade-offs that can emerge between principles are highlighted.

  11. Design of Hydrogen Storage Alloys/Nanoporous Metals Hybrid Electrodes for Nickel-Metal Hydride Batteries.

    Science.gov (United States)

    Li, M M; Yang, C C; Wang, C C; Wen, Z; Zhu, Y F; Zhao, M; Li, J C; Zheng, W T; Lian, J S; Jiang, Q

    2016-06-07

    Nickel metal hydride (Ni-MH) batteries have demonstrated key technology advantages for applications in new-energy vehicles, which play an important role in reducing greenhouse gas emissions and the world's dependence on fossil fuels. However, the poor high-rate dischargeability of the negative electrode materials-hydrogen storage alloys (HSAs) limits applications of Ni-MH batteries in high-power fields due to large polarization. Here we design a hybrid electrode by integrating HSAs with a current collector of three-dimensional bicontinuous nanoporous Ni. The electrode shows enhanced high-rate dischargeability with the capacity retention rate reaching 44.6% at a discharge current density of 3000 mA g(-1), which is 2.4 times that of bare HSAs (18.8%). Such a unique hybrid architecture not only enhances charge transfer between nanoporous Ni and HSAs, but also facilitates rapid diffusion of hydrogen atoms in HSAs. The developed HSAs/nanoporous metals hybrid structures exhibit great potential to be candidates as electrodes in high-performance Ni-MH batteries towards applications in new-energy vehicles.

  12. Integration of Energy Storage in Distribution Grids

    OpenAIRE

    Geth, Frederik; Tant, Jeroen; Haesen, Edwin; Driesen, Johan; Belmans, Ronnie

    2010-01-01

    Electrical energy storage services can bring benefit to multiple stakeholders in the distribution grid. Energy storage owners maximize their profit on an external energy market. This can cause a conflict with the distribution system operator because a grid is designed in terms of peak power, not energy. The subject of this paper is a optimization method for the siting and sizing of energy storage in distribution grids. The optimization is implemented multi-objective as to visualize the trade-...

  13. Testing and evaluation of different energy storage devices for piezoelectric energy harvesting under road conditions

    Science.gov (United States)

    Gopalakrishnan, Pratheek

    The increasing needs in green technology have propelled the rapid development in energy conversion and the advancement of electric energy storage systems. A viable storage technology is needed to store intermittent electrical energy in different electronic applications. In this thesis, recent progress on the chemistry and design of batteries is summarized with their challenges and improvements. Along with that, electrolytic capacitors are also reviewed with their types, advantages and disadvantages of each in short. Super capacitors having higher surface area and thinner dielectrics than conventional capacitors along with hybrid capacitors, are discussed in detail. The potential of a hybrid capacitor, Ni(OH)2/ Active Carbon, compared with Ni-Cd batteries and electrolytic capacitors in the application of energy storage for high way energy harvesting has been explored in this work. Both the battery and the hybrid capacitor has been tested under various experimental conditions and their properties in relation to their chemical compositions are compared. The results obtained from the experiments have been analyzed and the most suitable energy storage devices have been selected with their application potential evaluated before drawing conclusion reported in this thesis.

  14. Fuzzy droop control loops adjustment for stored energy balance in distributed energy storage system

    DEFF Research Database (Denmark)

    Aldana, Nelson Leonardo Diaz; Wu, Dan; Dragicevic, Tomislav

    2015-01-01

    The study of isolated AC microgrid has been under high interest due to the integration of renewable energy resources especially for remote areas, or to improve the local energy reliability. The current trend is oriented to distributed renewable energy sources and their corresponding energy storage...... system, in order to smooth the variations at the prime energy generator. In this paper, a decentralized strategy based on fuzzy logic is proposed in order to balance the state of charge of distributed energy storage systems in lowvoltage three phase AC microgrid. The proposed method weights the action...... of conventional droop control loops for battery based distributed energy storage systems, in order to equalize their stored energy. The units are selfcontrolled by using local variables, hence, the microgrid can operate without communication systems. Frequency and voltage bus signaling are used in order...

  15. Seasonal sensible thermal energy storage solutions

    Directory of Open Access Journals (Sweden)

    Lavinia Gabriela SOCACIU

    2012-08-01

    Full Text Available The thermal energy storage can be defined as the temporary storage of thermal energy at high or low temperatures. Thermal energy storage is an advances technology for storing thermal energy that can mitigate environmental impacts and facilitate more efficient and clean energy systems. Seasonal thermal energy storage has a longer thermal storage period, generally three or more months. This can contribute significantly to meeting society`s need for heating and cooling. The objectives of thermal energy storage systems are to store solar heat collected in summer for space heating in winter. This concept is not new; it is been used and developed for centuries because is playing an important role in energy conservation and contribute significantly to improving the energy efficiency and reducing the gas emissions to the atmosphere.

  16. Improving wind power quality with energy storage

    DEFF Research Database (Denmark)

    Rasmussen, Claus Nygaard

    2009-01-01

    The results of simulation of the influence of energy storage on wind power quality are presented. Simulations are done using a mathematical model of energy storage. Results show the relation between storage power and energy, and the obtained increase in minimum available power from the combination...... of wind and storage. The introduction of storage enables smoothening of wind power on a timescale proportional to the storage energy. Storage does not provide availability of wind power at all times, but allows for a certain fraction of average power in a given timeframe to be available with high...... probability. The amount of storage capacity necessary for significant wind power quality improvement in a given period is found to be 20 to 40% of the energy produced in that period. The necessary power is found to be 80 to 100% of the average power of the period....

  17. Polyaniline (PANi based electrode materials for energy storage and conversion

    Directory of Open Access Journals (Sweden)

    Huanhuan Wang

    2016-09-01

    Full Text Available Polyaniline (PANi as one kind of conducting polymers has been playing a great role in the energy storage and conversion devices besides carbonaceous materials and metallic compounds. Due to high specific capacitance, high flexibility and low cost, PANi has shown great potential in supercapacitor. It alone can be used in fabricating an electrode. However, the inferior stability of PANi limits its application. The combination of PANi and other active materials (carbon materials, metal compounds or other polymers can surpass these intrinsic disadvantages of PANi. This review summarizes the recent progress in PANi based composites for energy storage/conversion, like application in supercapacitors, rechargeable batteries, fuel cells and water hydrolysis. Besides, PANi derived nitrogen-doped carbon materials, which have been widely employed as carbon based electrodes/catalysts, are also involved in this review. PANi as a promising material for energy storage/conversion is deserved for intensive study and further development.

  18. Graphene-Based Carbon Materials for Electrochemical Energy Storage

    Directory of Open Access Journals (Sweden)

    Fei Liu

    2013-01-01

    Full Text Available Because of their unique 2D structure and numerous fascinating properties, graphene-based materials have attracted particular attention for their potential applications in energy storage devices. In this review paper, we focus on the latest work regarding the development of electrode materials for batteries and supercapacitors from graphene and graphene-based carbon materials. To begin, the advantages of graphene as an electrode material and the existing problems facing its use in this application will be discussed. The next several sections deal with three different methods for improving the energy storage performance of graphene: the restacking of the nanosheets, the doping of graphene with other elements, and the creation of defects on graphene planes. State-of-the-art work is reviewed. Finally, the prospects and further developments in the field of graphene-based materials for electrochemical energy storage are discussed.

  19. Application of electrochemical energy storage in solar thermal electric generation systems

    Science.gov (United States)

    Das, R.; Krauthamer, S.; Frank, H.

    1982-01-01

    This paper assesses the status, cost, and performance of existing electrochemical energy storage systems, and projects the cost, performance, and availability of advanced storage systems for application in terrestrial solar thermal electric generation. A 10 MWe solar plant with five hours of storage is considered and the cost of delivered energy is computed for sixteen different storage systems. The results indicate that the five most attractive electrochemical storage systems use the following battery types: zinc-bromine (Exxon), iron-chromium redox (NASA/Lewis Research Center, LeRC), sodium-sulfur (Ford), sodium-sulfur (Dow), and zinc-chlorine (Energy Development Associates, EDA).

  20. A Review on Battery Charging and Discharging Control Strategies: Application to Renewable Energy Systems

    Directory of Open Access Journals (Sweden)

    Edison Banguero

    2018-04-01

    Full Text Available Energy storage has become a fundamental component in renewable energy systems, especially those including batteries. However, in charging and discharging processes, some of the parameters are not controlled by the battery’s user. That uncontrolled working leads to aging of the batteries and a reduction of their life cycle. Therefore, it causes an early replacement. Development of control methods seeks battery protection and a longer life expectancy, thus the constant-current–constant-voltage method is mostly used. However, several studies show that charging time can be reduced by using fuzzy logic control or model predictive control. Another benefit is temperature control. This paper reviews the existing control methods used to control charging and discharging processes, focusing on their impacts on battery life. Classical and modern methods are studied together in order to find the best approach to real systems.

  1. Nanostructured metal sulfides for energy storage.

    Science.gov (United States)

    Rui, Xianhong; Tan, Huiteng; Yan, Qingyu

    2014-09-07

    Advanced electrodes with a high energy density at high power are urgently needed for high-performance energy storage devices, including lithium-ion batteries (LIBs) and supercapacitors (SCs), to fulfil the requirements of future electrochemical power sources for applications such as in hybrid electric/plug-in-hybrid (HEV/PHEV) vehicles. Metal sulfides with unique physical and chemical properties, as well as high specific capacity/capacitance, which are typically multiple times higher than that of the carbon/graphite-based materials, are currently studied as promising electrode materials. However, the implementation of these sulfide electrodes in practical applications is hindered by their inferior rate performance and cycling stability. Nanostructures offering the advantages of high surface-to-volume ratios, favourable transport properties, and high freedom for the volume change upon ion insertion/extraction and other reactions, present an opportunity to build next-generation LIBs and SCs. Thus, the development of novel concepts in material research to achieve new nanostructures paves the way for improved electrochemical performance. Herein, we summarize recent advances in nanostructured metal sulfides, such as iron sulfides, copper sulfides, cobalt sulfides, nickel sulfides, manganese sulfides, molybdenum sulfides, tin sulfides, with zero-, one-, two-, and three-dimensional morphologies for LIB and SC applications. In addition, the recently emerged concept of incorporating conductive matrices, especially graphene, with metal sulfide nanomaterials will also be highlighted. Finally, some remarks are made on the challenges and perspectives for the future development of metal sulfide-based LIB and SC devices.

  2. Comparing the Energy Content of Batteries, Fuels, and Materials

    Science.gov (United States)

    Balsara, Nitash P.; Newman, John

    2013-01-01

    A methodology for calculating the theoretical and practical specific energies of rechargeable batteries, fuels, and materials is presented. The methodology enables comparison of the energy content of diverse systems such as the lithium-ion battery, hydrocarbons, and ammonia. The methodology is relevant for evaluating the possibility of using…

  3. Storage of a lithium-ion secondary battery under micro-gravity conditions

    Science.gov (United States)

    Sone, Yoshitsugu; Ooto, Hiroki; Yamamoto, Masahiro; Eguro, Takashi; Sakai, Shigeru; Yoshida, Teiji; Takahashi, Keiji; Uno, Masatoshi; Hirose, Kazuyuki; Tajima, Michio; Kawaguchi, Jun'ichiro

    'HAYABUSA' is a Japanese inter-planetary spacecraft built for the exploration of an asteroid named 'ITOKAWA.' The spacecraft is powered by a 13.2 Ah lithium-ion secondary battery. To realize maximum performance of the battery for long flight operation, the state-of-charge (SOC) of the battery was maintained at ca. 65% during storage, in case it is required for a loss of attitude control. The capacity of the battery was measured during flight operations. Along with the operation in orbit, a ground-test battery was discharged, and both results showed a good agreement. This result confirmed that the performance of the lithium-ion secondary battery stored under micro-gravity conditions is predictable using a ground-test battery.

  4. Pore-Confined Light Metal Hydrides for Energy Storage and Catalysis

    NARCIS (Netherlands)

    Bramwell, P.L.

    2017-01-01

    Light metal hydrides have enjoyed several decades of attention in the field of hydrogen storage, but their applications have recently begun to diversify more and more into the broader field of energy storage. For example, light metal hydrides have shown great promise as battery materials, in sensors

  5. Hybrid Hydro Renewable Energy Storage Model

    Science.gov (United States)

    Dey, Asit Kr

    2018-01-01

    This paper aims at presenting wind & tidal turbine pumped-storage solutions for improving the energy efficiency and economic sustainability of renewable energy systems. Indicated a viable option to solve problems of energy production, as well as in the integration of intermittent renewable energies, providing system flexibility due to energy load’s fluctuation, as long as the storage of energy from intermittent sources. Sea water storage energy is one of the best and most efficient options in terms of renewable resources as an integrated solution allowing the improvement of the energy system elasticity and the global system efficiency.

  6. Energy storage: a review of recent literature

    International Nuclear Information System (INIS)

    Tatone, O.S.

    1981-12-01

    Recent literature on the technological and economic status of reversible energy storage has been reviewed. A broad range of research and development activities have been pursued between 1975 and the present. Most of this work has concentrated on improving technical and economic performance of previously known storage technologies. Hydraulic pumped storage with both reservoirs above ground and compressed air storage (1 plant) are the only methods that have been adopted by electric utilities. The need for electrical energy storage in Canada has not been acute because of the large proportion of hydraulic generation which incorporates some storge and, in most cases, can readily be used for load-following. Residential heat storage in ceramic room heaters has been used in Europe for several years. For Canadian climatic and market conditions larger, central heating units would be required. Residential heat storage depends upon utilities offering time-of-use rates and none in Canada do so at present. Most seasonal storage concepts depend upon storage of low-grade heat for district heating. The cost of energy storage is highly dependent upon annual energy throughput and hence favours smaller capacity systems operating on frequent charge/discharge cycles over long-term storage. Capital costs of energy storage methods from the literature, expressed in constant dollars, are compared graphically and tentative investment costs are presented for several storage methods

  7. Flexible energy storage devices based on nanocomposite paper.

    Science.gov (United States)

    Pushparaj, Victor L; Shaijumon, Manikoth M; Kumar, Ashavani; Murugesan, Saravanababu; Ci, Lijie; Vajtai, Robert; Linhardt, Robert J; Nalamasu, Omkaram; Ajayan, Pulickel M

    2007-08-21

    There is strong recent interest in ultrathin, flexible, safe energy storage devices to meet the various design and power needs of modern gadgets. To build such fully flexible and robust electrochemical devices, multiple components with specific electrochemical and interfacial properties need to be integrated into single units. Here we show that these basic components, the electrode, separator, and electrolyte, can all be integrated into single contiguous nanocomposite units that can serve as building blocks for a variety of thin mechanically flexible energy storage devices. Nanoporous cellulose paper embedded with aligned carbon nanotube electrode and electrolyte constitutes the basic unit. The units are used to build various flexible supercapacitor, battery, hybrid, and dual-storage battery-in-supercapacitor devices. The thin freestanding nanocomposite paper devices offer complete mechanical flexibility during operation. The supercapacitors operate with electrolytes including aqueous solvents, room temperature ionic liquids, and bioelectrolytes and over record temperature ranges. These easy-to-assemble integrated nanocomposite energy-storage systems could provide unprecedented design ingenuity for a variety of devices operating over a wide range of temperature and environmental conditions.

  8. Integrated Photoelectrochemical Solar Energy Conversion and Organic Redox Flow Battery Devices

    KAUST Repository

    Li, Wenjie

    2016-09-21

    Building on regenerative photoelectrochemical solar cells and emerging electrochemical redox flow batteries (RFBs), more efficient, scalable, compact, and cost-effective hybrid energy conversion and storage devices could be realized. An integrated photoelectrochemical solar energy conversion and electrochemical storage device is developed by integrating regenerative silicon solar cells and 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/1,2-benzoquinone-3,5-disulfonic acid (BQDS) RFBs. The device can be directly charged by solar light without external bias, and discharged like normal RFBs with an energy storage density of 1.15 Wh L−1 and a solar-to-output electricity efficiency (SOEE) of 1.7 % over many cycles. The concept exploits a previously undeveloped design connecting two major energy technologies and promises a general approach for storing solar energy electrochemically with high theoretical storage capacity and efficiency.

  9. Integrated Photoelectrochemical Solar Energy Conversion and Organic Redox Flow Battery Devices.

    Science.gov (United States)

    Li, Wenjie; Fu, Hui-Chun; Li, Linsen; Cabán-Acevedo, Miguel; He, Jr-Hau; Jin, Song

    2016-10-10

    Building on regenerative photoelectrochemical solar cells and emerging electrochemical redox flow batteries (RFBs), more efficient, scalable, compact, and cost-effective hybrid energy conversion and storage devices could be realized. An integrated photoelectrochemical solar energy conversion and electrochemical storage device is developed by integrating regenerative silicon solar cells and 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/1,2-benzoquinone-3,5-disulfonic acid (BQDS) RFBs. The device can be directly charged by solar light without external bias, and discharged like normal RFBs with an energy storage density of 1.15 Wh L -1 and a solar-to-output electricity efficiency (SOEE) of 1.7 % over many cycles. The concept exploits a previously undeveloped design connecting two major energy technologies and promises a general approach for storing solar energy electrochemically with high theoretical storage capacity and efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Kinetic Storage as an Energy Management System

    International Nuclear Information System (INIS)

    Garcia-Tabares, L.

    2007-01-01

    The possibility of storing energy is increasingly important and necessary. The reason is that storage modifies the basic equation of the energy production balance which states that the power produced should equal the power consumed. When there is a storage device in the grid, this equation is modified such that, in the new balance, the energy produced should equal the algebraic sum of the energy consumed and the energy stored (positive in storage phase and negative when released). This means that the generation profile can be uncoupled from the consumption profile, with the resulting improvement of efficiency. Even small-sized storage systems can be very effective. (Author) 10 refs

  11. Ecological and biomedical effects of effluents from near-term electric vehicle storage battery cycles

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    An assessment of the ecological and biomedical effects due to commercialization of storage batteries for electric and hybrid vehicles is given. It deals only with the near-term batteries, namely Pb/acid, Ni/Zn, and Ni/Fe, but the complete battery cycle is considered, i.e., mining and milling of raw materials, manufacture of the batteries, cases and covers; use of the batteries in electric vehicles, including the charge-discharge cycles; recycling of spent batteries; and disposal of nonrecyclable components. The gaseous, liquid, and solid emissions from various phases of the battery cycle are identified. The effluent dispersal in the environment is modeled and ecological effects are assessed in terms of biogeochemical cycles. The metabolic and toxic responses by humans and laboratory animals to constituents of the effluents are discussed. Pertinent environmental and health regulations related to the battery industry are summarized and regulatory implications for large-scale storage battery commercialization are discussed. Each of the seven sections were abstracted and indexed individually for EDB/ERA. Additional information is presented in the seven appendixes entitled; growth rate scenario for lead/acid battery development; changes in battery composition during discharge; dispersion of stack and fugitive emissions from battery-related operations; methodology for estimating population exposure to total suspended particulates and SO/sub 2/ resulting from central power station emissions for the daily battery charging demand of 10,000 electric vehicles; determination of As air emissions from Zn smelting; health effects: research related to EV battery technologies. (JGB)

  12. Storing energy for cooling demand management in tropical climates: A techno-economic comparison between different energy storage technologies

    International Nuclear Information System (INIS)

    Comodi, Gabriele; Carducci, Francesco; Sze, Jia Yin; Balamurugan, Nagarajan; Romagnoli, Alessandro

    2017-01-01

    This paper addresses the role of energy storage in cooling applications. Cold energy storage technologies addressed are: Li-Ion batteries (Li-Ion EES), sensible heat thermal energy storage (SHTES); phase change material (PCM TES), compressed air energy storage (CAES) and liquid air energy storage (LAES). Batteries and CAES are electrical storage systems which run the cooling systems; SHTES and PCM TES are thermal storage systems which directly store cold energy; LAES is assessed as a hybrid storage system which provides both electricity (for cooling) and cold energy. A hybrid quantitative-qualitative comparison is presented. Quantitative comparison was investigated for different sizes of daily cooling energy demand and three different tariff scenarios. A techno-economic analysis was performed to show the suitability of the different storage systems at different scales. Three parameters were used (Pay-back period, Savings-per-energy-unit and levelized-cost-of-energy) to analyze and compare the different scenarios. The qualitative analysis was based on five comparison criteria (Complexity, Technology Readiness Level, Sustainability, Flexibility and Safety). Results showed the importance of weighing the pros and cons of each technology to select a suitable cold energy storage system. Techno-economic analysis highlighted the fundamental role of tariff scenario: a greater difference between peak and off-peak electricity tariff leads to a shorter payback period of each technology. - Highlights: • Techno-economic evaluation of energy storage solutions for cooling applications. • Comparison between five energy storage (EES, SHTES, PCM, CAES, LAES) is performed. • Qualitative and quantitative performance parameters were used for the analysis. • LAES/PCM can be valid alternatives to more established technologies EES, SHTES, CAES. • Tariffs, price arbitrage and investment cost play a key role in energy storage spread.

  13. Integration of Lithium-Ion Battery Storage Systems in Hydroelectric Plants for Supplying Primary Control Reserve

    Directory of Open Access Journals (Sweden)

    Fabio Bignucolo

    2017-01-01

    Full Text Available The ever-growing diffusion of renewables as electrical generation sources is forcing the electrical power system to face new and challenging regulation problems to preserve grid stability. Among these, the primary control reserve is reckoned to be one of the most important issues, since the introduction of generators based on renewable energies and interconnected through static converters, if relieved from the primary reserve contribution, reduces both the system inertia and the available power reserve in case of network events involving frequency perturbations. In this scenario, renewable plants such as hydroelectric run-of-river generators could be required to provide the primary control reserve ancillary service. In this paper, the integration between a multi-unit run-of-river power plant and a lithium-ion based battery storage system is investigated, suitably accounting for the ancillary service characteristics as required by present grid codes. The storage system is studied in terms of maximum economic profitability, taking into account its operating constraints. Dynamic simulations are carried out within the DIgSILENT PowerFactory 2016 software environment in order to analyse the plant response in case of network frequency contingencies, comparing the pure hydroelectric plant with the hybrid one, in which the primary reserve is partially or completely supplied by the storage system. Results confirm that the battery storage system response to frequency perturbations is clearly faster and more accurate during the transient phase compared to a traditional plant, since time delays due to hydraulic and mechanical regulations are overpassed. A case study, based on data from an existing hydropower plant and referring to the Italian context in terms of operational constraints and ancillary service remuneration, is presented.

  14. High energy storage capacitor by embedding tunneling nano-structures

    Science.gov (United States)

    Holme, Timothy P; Prinz, Friedrich B; Van Stockum, Philip B

    2014-11-04

    In an All-Electron Battery (AEB), inclusions embedded in an active region between two electrodes of a capacitor provide enhanced energy storage. Electrons can tunnel to/from and/or between the inclusions, thereby increasing the charge storage density relative to a conventional capacitor. One or more barrier layers is present in an AEB to block DC current flow through the device. The AEB effect can be enhanced by using multi-layer active regions having inclusion layers with the inclusions separated by spacer layers that don't have the inclusions. The use of cylindrical geometry or wrap around electrodes and/or barrier layers in a planar geometry can enhance the basic AEB effect. Other physical effects that can be employed in connection with the AEB effect are excited state energy storage, and formation of a Bose-Einstein condensate (BEC).

  15. Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage

    Directory of Open Access Journals (Sweden)

    Kasper T. Møller

    2017-10-01

    Full Text Available Hydrogen has a very diverse chemistry and reacts with most other elements to form compounds, which have fascinating structures, compositions and properties. Complex metal hydrides are a rapidly expanding class of materials, approaching multi-functionality, in particular within the energy storage field. This review illustrates that complex metal hydrides may store hydrogen in the solid state, act as novel battery materials, both as electrolytes and electrode materials, or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore, it is highlighted how complex metal hydrides may act in an integrated setup with a fuel cell. This review focuses on the unique properties of light element complex metal hydrides mainly based on boron, nitrogen and aluminum, e.g., metal borohydrides and metal alanates. Our hope is that this review can provide new inspiration to solve the great challenge of our time: efficient conversion and large-scale storage of renewable energy.

  16. Synchronization method for grid integrated battery storage systems during asymmetrical grid faults

    Directory of Open Access Journals (Sweden)

    Popadić Bane

    2017-01-01

    Full Text Available This paper aims at presenting a robust and reliable synchronization method for battery storage systems during asymmetrical grid faults. For this purpose, a Matlab/Simulink based model for testing of the power electronic interface between the grid and the battery storage systems has been developed. The synchronization method proposed in the paper is based on the proportional integral resonant controller with the delay signal cancellation. The validity of the synchronization method has been verified using the advanced laboratory station for the control of grid connected distributed energy sources. The proposed synchronization method has eliminated unfavourable components from the estimated grid angular frequency, leading to the more accurate and reliable tracking of the grid voltage vector positive sequence during both the normal operation and the operation during asymmetrical grid faults. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III 042004: Integrated and Interdisciplinary Research entitled: Smart Electricity Distribution Grids Based on Distribution Management System and Distributed Generation

  17. The INERIS at the heart of energy transition - INERISmag Nr 35. Clean energy - hydrogen, an energy vector for the future. Storage of electrochemical energy - To assess and to improve the safety of batteries. Methanization - Biogas: an energy which valorises organic wastes

    International Nuclear Information System (INIS)

    2014-11-01

    The first article of this magazine proposes a brief comment on the content of the bill project related to energy transition and green growth, and briefly outlines the role the INERIS is to play in this perspective. The second article addresses the perspectives of development of the use of hydrogen as an energy vector, and evokes the GHRYD project in which the INERIS is involved with GDF Suez, the Dunkirk urban community and other partners, and which is based on the use of a mix of hydrogen, methane and natural gas for mobility and household applications. The third article evokes works and researches undertaken to improve the safety of batteries. The last article briefly evokes INERIS activities on the safety of the methanization process, and in investigating characteristics of bio-wastes and domestic wastes with respect to French and European standards

  18. Thermal energy storage for cogeneration applications

    Energy Technology Data Exchange (ETDEWEB)

    Drost, M.K.; Antoniak, Z.I.

    1992-04-01

    Cogeneration is playing an increasingly important role in providing energy efficient power generation and thermal energy for space heating and industrial process heat applications. However, the range of applications for cogeneration could be further increased if the generation of electricity could be coupled from the generation of process heat. Thermal energy storage (TES) can decouple power generation from the production of process heat, allowing the production of dispatchable power while fully utilizing the thermal energy available from the prime mover. The Pacific Northwest Laboratory (PNL) leads the US Department of Energy`s Thermal Energy Storage Program. The program focuses on developing TES for daily cycling (diurnal storage), annual cycling (seasonal storage), and utility applications (utility thermal energy storage (UTES)). Several of these technologies can be used in a cogeneration facility. This paper discusses TES concepts relevant to cogeneration and describes the current status of these TES systems.

  19. 2014 Overview of NASA GRC Electrochemical Power and Energy Storage Technology

    Science.gov (United States)

    Reid, Concha M.

    2014-01-01

    Overview presentation to the IAPG Chemical Working Group meeting, discussing current electrochemical power and energy storage R and D at NASA GRC including missions, demonstrations, and reserch projects. Activities such as ISS Lithium-Ion Battery Replacements, the Advanced Exploration Systems Modular Power Systems project, Enabling Electric Aviation with Ultra-High Energy Litium Metal Batteries, Advanced Space Power Systems project, and SBIR STTR work, will be discussed.

  20. Glass ceramic approaches for energy storage materials

    Science.gov (United States)

    Davis, Calvin Goodwin, III

    Glass ceramics are an advanced material class that exhibit excellent potential for energy storage applications. Unique properties can be obtained through the controlled crystallization that is used to form these glassy and crystalline composite materials from an amorphous bulk. By exploiting this synthesis route, materials can be optimized to offer the best balance between the crystalline ceramic phase, and the amorphous glass phase. The topic of this dissertation focuses on the structure-property relationships for glass ceramic systems for energy storage applications. Specifically, a lithium aluminum titanium phosphate system, and a barium sodium niobate system were explored for battery and capacitor applications, respectively. Li1+xAlxTi2-x(PO4)3 (LATP) is a lithium ion conductor which has shown potential for use in current and future battery technology. In its glass ceramic form the material has a conductivity of approximately 10-4 S/cm, which makes it an excellent conductor compared to other solid state lithium ion conductors. This conductivity is still lower than ionic liquids and polymers with currently used as electrolytes with conductivity higher than 10-3 S/cm. In exploring synthesis routes, it was found that microwave hybrid heating offered improve conductivity, as opposed to conventional crystallization methods. The role of microstructure and the crystallization kinetics on the overall have been investigated. It was shown that commonly used Johnson-Mehl-Avrami equation could not accurately describe the kinetics of LATP's nucleation and growth. An empirical Sestak-Berggren model was used in combination with differential scanning calorimetry data to model the kinetics of LATP. Glass ceramic systems based on a NaBa2Nb5O 15 (BNN) crystalline have shown potential as dielectrics in high energy density capacitors. Here microwave hybrid heating and conventional heating were used to crystallize BNN glass ceramics in the range of 750°C - 1000°C, and the results