WorldWideScience

Sample records for battery charging

  1. Battery charging system

    Energy Technology Data Exchange (ETDEWEB)

    Carollo, J.A.; Kalinsky, W.A.

    1984-02-21

    A battery charger utilizes three basic modes of operation that includes a maintenance mode, a rapid charge mode and time controlled limited charging mode. The device utilizes feedback from the battery being charged of voltage, current and temperature to determine the mode of operation and the time period during which the battery is being charged.

  2. Modular Battery Charge Controller

    Science.gov (United States)

    Button, Robert; Gonzalez, Marcelo

    2009-01-01

    A new approach to masterless, distributed, digital-charge control for batteries requiring charge control has been developed and implemented. This approach is required in battery chemistries that need cell-level charge control for safety and is characterized by the use of one controller per cell, resulting in redundant sensors for critical components, such as voltage, temperature, and current. The charge controllers in a given battery interact in a masterless fashion for the purpose of cell balancing, charge control, and state-of-charge estimation. This makes the battery system invariably fault-tolerant. The solution to the single-fault failure, due to the use of a single charge controller (CC), was solved by implementing one CC per cell and linking them via an isolated communication bus [e.g., controller area network (CAN)] in a masterless fashion so that the failure of one or more CCs will not impact the remaining functional CCs. Each micro-controller-based CC digitizes the cell voltage (V(sub cell)), two cell temperatures, and the voltage across the switch (V); the latter variable is used in conjunction with V(sub cell) to estimate the bypass current for a given bypass resistor. Furthermore, CC1 digitizes the battery current (I1) and battery voltage (V(sub batt) and CC5 digitizes a second battery current (I2). As a result, redundant readings are taken for temperature, battery current, and battery voltage through the summation of the individual cell voltages given that each CC knows the voltage of the other cells. For the purpose of cell balancing, each CC periodically and independently transmits its cell voltage and stores the received cell voltage of the other cells in an array. The position in the array depends on the identifier (ID) of the transmitting CC. After eight cell voltage receptions, the array is checked to see if one or more cells did not transmit. If one or more transmissions are missing, the missing cell(s) is (are) eliminated from cell

  3. Battery charging stations

    Energy Technology Data Exchange (ETDEWEB)

    Bergey, M.

    1997-12-01

    This paper discusses the concept of battery charging stations (BCSs), designed to service rural owners of battery power sources. Many such power sources now are transported to urban areas for recharging. A BCS provides the opportunity to locate these facilities closer to the user, is often powered by renewable sources, or hybrid systems, takes advantage of economies of scale, and has the potential to provide lower cost of service, better service, and better cost recovery than other rural electrification programs. Typical systems discussed can service 200 to 1200 people, and consist of stations powered by photovoltaics, wind/PV, wind/diesel, or diesel only. Examples of installed systems are presented, followed by cost figures, economic analysis, and typical system design and performance numbers.

  4. Electric vehicle battery charging controller

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention provides an electric vehicle charging controller. The charging controller comprises a first interface connectable to an electric vehicle charge source for receiving a charging current, a second interface connectable to an electric vehicle for providing the charging current...... to a battery management system in the electric vehicle to charge a battery therein, a first communication unit for receiving a charging message via a communication network, and a control unit for controlling a charging current provided from the charge source to the electric vehicle, the controlling at least...

  5. Remote RF Battery Charging

    NARCIS (Netherlands)

    Visser, H.J.; Pop, V.; Op het Veld, J.H.G.; Vullers, R.J.M.

    2011-01-01

    The design of a remote RF battery charger is discussed through the analysis and design of the subsystems of a rectenna (rectifying antenna): antenna, rectifying circuit and loaded DC-to-DC voltage (buck-boost) converter. Optimum system power generation performance is obtained by adopting a system in

  6. Battery Charge Equalizer with Transformer Array

    Science.gov (United States)

    Davies, Francis

    2013-01-01

    High-power batteries generally consist of a series connection of many cells or cell banks. In order to maintain high performance over battery life, it is desirable to keep the state of charge of all the cell banks equal. A method provides individual charging for battery cells in a large, high-voltage battery array with a minimum number of transformers while maintaining reasonable efficiency. This is designed to augment a simple highcurrent charger that supplies the main charge energy. The innovation will form part of a larger battery charge system. It consists of a transformer array connected to the battery array through rectification and filtering circuits. The transformer array is connected to a drive circuit and a timing and control circuit that allow individual battery cells or cell banks to be charged. The timing circuit and control circuit connect to a charge controller that uses battery instrumentation to determine which battery bank to charge. It is important to note that the innovation can charge an individual cell bank at the same time that the main battery charger is charging the high-voltage battery. The fact that the battery cell banks are at a non-zero voltage, and that they are all at similar voltages, can be used to allow charging of individual cell banks. A set of transformers can be connected with secondary windings in series to make weighted sums of the voltages on the primaries.

  7. Control Algorithms Charge Batteries Faster

    Science.gov (United States)

    2012-01-01

    On March 29, 2011, NASA s Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft beamed a milestone image to Earth: the first photo of Mercury taken from orbit around the solar system s innermost planet. (MESSENGER is also the first spacecraft to orbit Mercury.) Like most of NASA s deep space probes, MESSENGER is enabled by a complex power system that allows its science instruments and communications to function continuously as it travels millions of miles from Earth. "Typically, there isn't one particular power source that can support the entire mission," says Linda Taylor, electrical engineer in Glenn Research Center s Power Systems Analysis Branch. "If you have solar arrays and you are in orbit, at some point you re going to be in eclipse." Because of this, Taylor explains, spacecraft like MESSENGER feature hybrid power systems. MESSENGER is powered by a two-panel solar array coupled with a nickel hydrogen battery. The solar arrays provide energy to the probe and charge the battery; when the spacecraft s orbit carries it behind Mercury and out of the Sun s light, the spacecraft switches to battery power to continue operations. Typically, hybrid systems with multiple power inputs and a battery acting alternately as storage and a power source require multiple converters to handle the power flow between the devices, Taylor says. (Power converters change the qualities of electrical energy, such as from alternating current to direct current, or between different levels of voltage or frequency.) This contributes to a pair of major concerns for spacecraft design. "Weight and size are big drivers for any space application," Taylor says, noting that every pound added to a space vehicle incurs significant costs. For an innovative solution to managing power flows in a lightweight, cost-effective manner, NASA turned to a private industry partner.

  8. 46 CFR 112.55-10 - Storage battery charging.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Storage battery charging. 112.55-10 Section 112.55-10... AND POWER SYSTEMS Storage Battery Installation § 112.55-10 Storage battery charging. (a) Each storage battery installation for emergency lighting and power, and starting batteries for an emergency diesel...

  9. Photovoltaic battery charging experience in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, S.T. Jr.

    1997-12-01

    With the turn of the century, people in remote areas still live without electricity. Conventional electrification will hardly reach the remaining 50% of the population of the Philippines in remote areas. With photovoltaic technology, the delivery of electricity to remote areas can be sustainable. Malalison island was chosen as a project site for electrification using photovoltaic technology. With the fragile balance of ecology and seasonal income in this island, the PV electrification proved to be a better option than conventional fossil based electrification. The Solar Battery Charging Station (SBCS) was used to suit the economic and geographical condition of the island. Results showed that the system can charge as many as three batteries in a day for an average fee of $0.54 per battery. Charging is measured by an ampere-hour counter to determine the exact amount of charge the battery received. The system was highly accepted by the local residents and the demand easily outgrew the system within four months. A technical, economic and social evaluation was done. A recovery period of seven years and five months is expected when competed with the conventional battery charging in the mainland. The technical, economic, institutional and social risks faced by the project were analyzed. Statistics showed that there is a potential of 920,000 households that can benefit from PV electrification in the Philippines. The data and experiences gained in this study are valuable in designing SBCS for remote unelectrified communities in the Philippines and other developing countries.

  10. WIND DRIVEN MOBILE CHARGING OF AUTOMOBILE BATTERY

    Directory of Open Access Journals (Sweden)

    SUDHIR KUMAR SINHA

    2011-01-01

    Full Text Available This paper deals with implementation of mobile wind driven generator technology to produce electricity in charging of two wheeler (12V automobile battery. The use of PWM methodology with pulse charging method at a constant rate has been adopted for this purpose. The low speed PMSG driven by wind at speed of 15/40 km/hour has been used to eliminate gear box to achieve high efficiency. The output of three phase bridge rectifier is fed to boost converter which provides pulses of constant current to the battery.

  11. Improving battery charging with solar panels

    Science.gov (United States)

    Boico, Florent Michael

    Recent technological developments in thin-film photovoltaics, such as amorphous silicon and hybrid dye sensitized photovoltaic (PV) cells are leading to new generations of portable solar arrays. These new arrays are lightweight, durable, flexible, and have been reported to achieve power efficiencies of up to 10%. Already, commercial-off-the-shelf arrays exist that have panels embedded in fabric that can be folded to dimensions of less than 12" x 12", yet are able to produce up to 50Watts of power at 12V. These new products make solar power available to various types of applications. In particular, military applications are emerging to give soldier a source of power that can always be at reach. In parallel with these developments, NiMH and Li-ion batteries are increasingly being used to power various equipment. Currently, the military is field testing solar charging of its batteries with portable solar arrays. However, so far, all known charge control algorithm have failed as they commonly falsely detect overcharge at random times in the charging and leave the battery partially charged. The goal of our research is to investigate the origins of failure in existing charge control algorithms and to propose adequate algorithms that would improve the battery charging. Additionally, ways to optimize the generated photovoltaic power is critical for portable solar application as the energy produced is limited. It is known that the use of a DC-DC converter between the solar panel and the load allows optimization of the power delivered by the solar panel when "Maximum Power Point Tracking" is utilized. Therefore we are developing new solutions that address the specific problem of Maximum Power Point Tracking for modular solar panels.

  12. Fast charging of lead/acid batteries

    Energy Technology Data Exchange (ETDEWEB)

    Calasanzio, D. (FIAMM SpA, Montecchio Maggiore (Italy)); Maja, M. (Polytechnical Univ., Turin (Italy). Dept. of Materials Science and Chemical Engineering); Spinelli, P. (Polytechnical Univ., Turin (Italy). Dept. of Materials Science and Chemical Engineering)

    1993-10-15

    A key point in the development of storage batteries for electric vehicles (EVs) is the possibility for fast recharging. It is widely recognized that the lead/acid system represents an excellent candidate for EVs because of the low cost, durability, and expectance of improvements in the near future. The viability of the lead/acid battery for EV applications would be greatly enhanced if fast recharging could be applied to the system without shortening its life. The present paper reports the results obtained by simulating the charging behaviour with a mathematical model that is capable of predicting the behaviour of nonconventional lead/acid cells both on discharge and recharge. The effects of important parameters such as plate dimensions, acid distribution, and porosity of the active mass are taken into account. The data obtained with the simulation are compared with results got from fast-recharge testing of commercial batteries. (orig.)

  13. PIC BASED SOLAR CHARGING CONTROLLER FOR BATTERY

    Directory of Open Access Journals (Sweden)

    Mrs Jaya N. Ingole

    2012-02-01

    Full Text Available Solar resource is unlimited the government is trying to implement the use of Solar panels as an energy source in rural and sub urban areas for lighting the street lights, but the battery used to store the power gets affected due to overcharge & discharges. This paper presents the use of PIC16F72 based solar charger controller for controlling the overcharging and discharging of a solar cell. It works by continuously optimizing the interface between the solar array and battery. First, the variable supply is fixed at 12.8V dc—the voltage of a fully charged battery— and linked to the battery point of the circuit. Cut Off of battery from load voltage is 10.8 volt. A PIC16F72 for small size and inbuilt analog inputs is used to determine voltage level of battery and solar panel..It also describes how the disadvantages of analog circuit are overcome by this controller. The flow chart is also provided.

  14. Operation Strategy of EV Battery Charging and Swapping Station

    Institute of Scientific and Technical Information of China (English)

    Zhuo Peng; Li Zhang; Ku-An Lu; Jun-Peng Hu; Si Liu

    2014-01-01

    An operation strategy of the electric vehicle (EV) battery charging and swapping station is proposed in the paper. The strategy is established based on comprehensively consideration of the EV charging behaviors and the possible mutual actions between battery charging and swapping. Three energy management strategies can be used in the station:charging period shifting, energy exchange between EVs, and energy supporting from surplus swapping batteries. Then an optimization model which minimizes the total energy management costs of the station is built. The Monte Carlo simulation is applied to analyze the characteristics of the EV battery charging load, and a heuristic algorithm is used to solve the strategy providing the relevant information of EVs and the battery charging and swapping station. The operation strategy can efficiently reduce battery charging during the high electricity price periods and make more reasonable use of the resources. Simulations prove the feasibility and rationality of the strategy.

  15. Solar photovoltaic charging of lithium-ion batteries

    Science.gov (United States)

    Gibson, Thomas L.; Kelly, Nelson A.

    Solar photovoltaic (PV) charging of batteries was tested by using high efficiency crystalline and amorphous silicon PV modules to recharge lithium-ion battery modules. This testing was performed as a proof of concept for solar PV charging of batteries for electrically powered vehicles. The iron phosphate type lithium-ion batteries were safely charged to their maximum capacity and the thermal hazards associated with overcharging were avoided by the self-regulating design of the solar charging system. The solar energy to battery charge conversion efficiency reached 14.5%, including a PV system efficiency of nearly 15%, and a battery charging efficiency of approximately 100%. This high system efficiency was achieved by directly charging the battery from the PV system with no intervening electronics, and matching the PV maximum power point voltage to the battery charging voltage at the desired maximum state of charge for the battery. It is envisioned that individual homeowners could charge electric and extended-range electric vehicles from residential, roof-mounted solar arrays, and thus power their daily commuting with clean, renewable solar energy.

  16. Battery Management Systems: Accurate State-of-Charge Indication for Battery-Powered Applications

    NARCIS (Netherlands)

    Pop, V.; Bergveld, H.J.; Danilov, D.; Regtien, P.P.L.; Notten, P.H.L.

    2008-01-01

    Battery Management Systems – Universal State-of-Charge indication for portable applications describes the field of State-of-Charge (SoC) indication for rechargeable batteries. With the emergence of battery-powered devices with an increasing number of power-hungry features, accurately estimating the

  17. Impact of Fast Charging on Life of EV Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, Jeremy; Wood, Eric; Burton, Evan; Smith, Kandler; Pesaran, Ahmad A.

    2015-05-03

    Utilization of public charging infrastructure is heavily dependent on user-specific travel behavior. The availability of fast chargers can positively affect the utility of battery electric vehicles, even given infrequent use. Estimated utilization rates do not appear frequent enough to significantly impact battery life. Battery thermal management systems are critical in mitigating dangerous thermal conditions on long distance tours with multiple fast charge events.

  18. Study of Emergency Power Based on Solar Battery Charging

    OpenAIRE

    Wang Lei; Zhu Mengfu; Chen Ping; Deng Cheng; Liu Zhimeng; Wang Yanan

    2016-01-01

    To study an emergency power based on solar battery charging. Based on the electric-generation principle of solar panel, solar energy is changed into electrical energy. Through voltage conversion circuit and filter circuit, electrical energy is stored in the energy storage battery. The emergency power realizes the conversion from solar energy to electrical energy. The battery control unit has the function of PWM (Pulse-Width Modulation) charging, overcharging protection, over-discharging prote...

  19. Smart charging management for electric vehicle battery chargers

    OpenAIRE

    Monteiro, Vítor Duarte Fernandes; Pinto, J. G.; Exposto, Bruno Fernandes; Ferreira, João C.; Afonso, João L.

    2014-01-01

    This paper proposes a smart battery charging strategy for Electric Vehicles (EVs) targeting the future smart homes. The proposed strategy consists in regulate the EV battery charging current in function of the total home current, aiming to prevent overcurrent trips in the main switch breaker. Computational and experimental results were obtained under real-time conditions to validate the proposed strategy. For such purpose was adapted a bidirectional EV battery charger ...

  20. Efficiency of Pm-147 direct charge radioisotope battery

    Energy Technology Data Exchange (ETDEWEB)

    Kavetskiy, A.; Yakubova, G.; Yousaf, S.M. [TRACE Photonics Inc, 1680 West Polk Avenue, Charleston, IL 61920 (United States); Bower, K., E-mail: kbower@tracephotonics.co [TRACE Photonics Inc, 1680 West Polk Avenue, Charleston, IL 61920 (United States); Robertson, J.D.; Garnov, A. [Department of Chemistry and University of Missouri Research Reactor, 1513 Research Park Drive, Columbia, MO 65211 (United States)

    2011-05-15

    A theoretical analysis is presented here of the efficiency of direct charge radioisotope batteries based on the efficiency of the radioactive source, the system geometry, electrostatic repulsion of beta particles from the collector, the secondary electron emission, and backscattered beta particles from the collector. Efficiency of various design batteries using Pm-147 sources was experimentally measured and found to be in good agreement with calculations. The present approach can be used for predicting the efficiency for different designs of direct charge radioisotope batteries.

  1. Electrochemical model based charge optimization for lithium-ion batteries

    Science.gov (United States)

    Pramanik, Sourav; Anwar, Sohel

    2016-05-01

    In this paper, we propose the design of a novel optimal strategy for charging the lithium-ion battery based on electrochemical battery model that is aimed at improved performance. A performance index that aims at minimizing the charging effort along with a minimum deviation from the rated maximum thresholds for cell temperature and charging current has been defined. The method proposed in this paper aims at achieving a faster charging rate while maintaining safe limits for various battery parameters. Safe operation of the battery is achieved by including the battery bulk temperature as a control component in the performance index which is of critical importance for electric vehicles. Another important aspect of the performance objective proposed here is the efficiency of the algorithm that would allow higher charging rates without compromising the internal electrochemical kinetics of the battery which would prevent abusive conditions, thereby improving the long term durability. A more realistic model, based on battery electro-chemistry has been used for the design of the optimal algorithm as opposed to the conventional equivalent circuit models. To solve the optimization problem, Pontryagins principle has been used which is very effective for constrained optimization problems with both state and input constraints. Simulation results show that the proposed optimal charging algorithm is capable of shortening the charging time of a lithium ion cell while maintaining the temperature constraint when compared with the standard constant current charging. The designed method also maintains the internal states within limits that can avoid abusive operating conditions.

  2. Review on Electric Vehicle, Battery Charger, Charging Station and Standards

    Directory of Open Access Journals (Sweden)

    Afida Ayob

    2014-01-01

    Full Text Available Electric vehicles are a new and upcoming technology in the transportation and power sector that have many benefits in terms of economic and environmental. This study presents a comprehensive review and evaluation of various types of electric vehicles and its associated equipment in particular battery charger and charging station. A comparison is made on the commercial and prototype electric vehicles in terms of electric range, battery size, charger power and charging time. The various types of charging stations and standards used for charging electric vehicles have been outlined and the impact of electric vehicle charging on utility distribution system is also discussed.

  3. Charging performance of automotive batteries-An underestimated factor influencing lifetime and reliable battery operation

    Science.gov (United States)

    Sauer, Dirk Uwe; Karden, Eckhard; Fricke, Birger; Blanke, Holger; Thele, Marc; Bohlen, Oliver; Schiffer, Julia; Gerschler, Jochen Bernhard; Kaiser, Rudi

    Dynamic charge acceptance and charge acceptance under constant voltage charging conditions are for two reasons essential for lead-acid battery operation: energy efficiency in applications with limited charging time (e.g. PV systems or regenerative braking in vehicles) and avoidance of accelerated ageing due to sulphation. Laboratory tests often use charge regimes which are beneficial for the battery life, but which differ significantly from the operating conditions in the field. Lead-acid batteries in applications with limited charging time and partial-state-of-charge operation are rarely fully charged due to their limited charge acceptance. Therefore, they suffer from sulphation and early capacity loss. However, when appropriate charging strategies are applied most of the lost capacity and thus performance for the user may be recovered. The paper presents several aspects of charging regimes and charge acceptance. Theoretical and experimental investigations show that temperature is the most critical parameter. Full charging within short times can be achieved only at elevated temperatures. A strong dependency of the charge acceptance during charging pulses on the pre-treatment of the battery can be observed, which is not yet fully understood. But these effects have a significant impact on the fuel efficiency of micro-hybrid electric vehicles.

  4. Results of cycling with battery charging management; Resultats de cyclage avec gestion de charge au niveau batterie

    Energy Technology Data Exchange (ETDEWEB)

    Verniolle, J.; Fernandez, C. [European Space Research and Technology Centre, Noordwijk (Netherlands)

    1996-12-31

    In order to investigate the charging mode of an in-series assembly of lithium-carbon battery cells, a test has been performed on 5 commercial cells (18650) of 0.95 Ah nominal capacity. Results show that it is possible to cycle the cells at 80% of their output capacities during more than 2000 cycles. The management of the battery consists in maintaining a constant battery voltage as soon as a cell reaches its limit voltage during constant current charging. The initial dispersion of cells has been maintained practically constant during the cycling and the charge state of all cells has decreased progressively. (J.S.)

  5. Modeling Battery Behavior for Accurate State-of-Charge Indication

    NARCIS (Netherlands)

    Pop, V.; Bergveld, H.J.; Veld, op het J.H.G.; Regtien, P.P.L.; Danilov, D.; Notten, P.H.L.

    2006-01-01

    Li-ion is the most commonly used battery chemistry in portable applications nowadays. Accurate state-of-charge (SOC) and remaining run-time indication for portable devices is important for the user's convenience and to prolong the lifetime of batteries. A new SOC indication system, combining the ele

  6. Research on Battery Charging-Discharging in New Energy Systems

    Directory of Open Access Journals (Sweden)

    Che Yanbo

    2013-07-01

    Full Text Available As an energy storage component, the battery plays increasingly important role in new energy industry. Charging and discharging system is the vital part of the application of the battery, but the charge and discharge are always designed separately and carried by different part in the traditional application. Additionally, most battery discharge mode and method are always simplified which cannot ensure to meet the demand of power utilization. In the actual energy storage system, the design of the energy converter, which make the power storage and supply as a whole and the design of the charge and discharge method, will play an important role in efficient utilization of the battery system. As a part of the new energy system, the study makes battery and the charging and discharging system as a whole to store energy, which can store and release electric energy high efficiently according to the system state and control the bidirectional flow of energy precisely. Using TMS320F2812 as the control core, the system which integrates charging and discharging with battery monitoring can achieve the bidirectional Buck/Boost power control. It can achieve three-stage charging and selective discharging of the battery. Due to the influence of the diode reverse recovery time, current oscillation will appear. In order to eliminate the oscillation, we can set the circuit to work in critical conduction mode. The experimental result shows that the system can achieve the charging and discharging control of lead-acid battery and increase the battery life time further.

  7. Study of Emergency Power Based on Solar Battery Charging

    Directory of Open Access Journals (Sweden)

    Wang Lei

    2016-01-01

    Full Text Available To study an emergency power based on solar battery charging. Based on the electric-generation principle of solar panel, solar energy is changed into electrical energy. Through voltage conversion circuit and filter circuit, electrical energy is stored in the energy storage battery. The emergency power realizes the conversion from solar energy to electrical energy. The battery control unit has the function of PWM (Pulse-Width Modulation charging, overcharging protection, over-discharging protection and over-current protection. It also realizes the fast and safe charging of energy storage battery. The emergency power could provide both 12V AC power for emergency equipment such as miniature PSA oxygen concentrator and 5V USB for electronic equipment (mobile phone, GPS device, rechargeable light, etc..

  8. Circuit with a Switch for Charging a Battery in a Battery Capacitor Circuit

    Science.gov (United States)

    Stuart, Thomas A. (Inventor); Ashtiani, Cyrus N. (Inventor)

    2008-01-01

    A circuit for charging a battery combined with a capacitor includes a power supply adapted to be connected to the capacitor, and the battery. The circuit includes an electronic switch connected to the power supply. The electronic switch is responsive to switch between a conducting state to allow current and a non-conducting state to prevent current flow. The circuit includes a control device connected to the switch and is operable to generate a control signal to continuously switch the electronic switch between the conducting and non-conducting states to charge the battery.

  9. Adaptive coordinated control of engine speed and battery charging voltage

    Institute of Scientific and Technical Information of China (English)

    Jiangyan ZHANG; Xiaohong JIAO

    2008-01-01

    In this paper, the control problem of auxiliary power unit (APU) for hybrid electric vehicles is investigated. An adaptive controller is provided to achieve the coordinated control between the engine speed and the battery charging voltage. The proposed adaptive coordinated control laws for the throttle angle of the engine and the voltage of the power-converter can guarantee not only the asymptotic tracking performance of the engine speed and the regulation of the battery charging voltage, but also the robust stability of the closed loop system under external load changes. Simulation results are given to verify the performance of the proposed adaptive controller.

  10. Management of deep brain stimulator battery failure: battery estimators, charge density, and importance of clinical symptoms.

    Directory of Open Access Journals (Sweden)

    Kaihan Fakhar

    Full Text Available OBJECTIVE: We aimed in this investigation to study deep brain stimulation (DBS battery drain with special attention directed toward patient symptoms prior to and following battery replacement. BACKGROUND: Previously our group developed web-based calculators and smart phone applications to estimate DBS battery life (http://mdc.mbi.ufl.edu/surgery/dbs-battery-estimator. METHODS: A cohort of 320 patients undergoing DBS battery replacement from 2002-2012 were included in an IRB approved study. Statistical analysis was performed using SPSS 20.0 (IBM, Armonk, NY. RESULTS: The mean charge density for treatment of Parkinson's disease was 7.2 µC/cm(2/phase (SD = 3.82, for dystonia was 17.5 µC/cm(2/phase (SD = 8.53, for essential tremor was 8.3 µC/cm(2/phase (SD = 4.85, and for OCD was 18.0 µC/cm(2/phase (SD = 4.35. There was a significant relationship between charge density and battery life (r = -.59, p<.001, as well as total power and battery life (r = -.64, p<.001. The UF estimator (r = .67, p<.001 and the Medtronic helpline (r = .74, p<.001 predictions of battery life were significantly positively associated with actual battery life. Battery status indicators on Soletra and Kinetra were poor predictors of battery life. In 38 cases, the symptoms improved following a battery change, suggesting that the neurostimulator was likely responsible for symptom worsening. For these cases, both the UF estimator and the Medtronic helpline were significantly correlated with battery life (r = .65 and r = .70, respectively, both p<.001. CONCLUSIONS: Battery estimations, charge density, total power and clinical symptoms were important factors. The observation of clinical worsening that was rescued following neurostimulator replacement reinforces the notion that changes in clinical symptoms can be associated with battery drain.

  11. Support vector based battery state of charge estimator

    Science.gov (United States)

    Hansen, Terry; Wang, Chia-Jiu

    This paper investigates the use of a support vector machine (SVM) to estimate the state-of-charge (SOC) of a large-scale lithium-ion-polymer (LiP) battery pack. The SOC of a battery cannot be measured directly and must be estimated from measurable battery parameters such as current and voltage. The coulomb counting SOC estimator has been used in many applications but it has many drawbacks [S. Piller, M. Perrin, Methods for state-of-charge determination and their application, J. Power Sources 96 (2001) 113-120]. The proposed SVM based solution not only removes the drawbacks of the coulomb counting SOC estimator but also produces accurate SOC estimates, using industry standard US06 [V.H. Johnson, A.A. Pesaran, T. Sack, Temperature-dependent battery models for high-power lithium-ion batteries, in: Presented at the 17th Annual Electric Vehicle Symposium Montreal, Canada, October 15-18, 2000. The paper is downloadable at website http://www.nrel.gov/docs/fy01osti/28716.pdf] aggressive driving cycle test procedures. The proposed SOC estimator extracts support vectors from a battery operation history then uses only these support vectors to estimate SOC, resulting in minimal computation load and suitable for real-time embedded system applications.

  12. Fast Charging and Smart Charging Tests for Electric Vehicles Batteries Using Renewable Energy

    DEFF Research Database (Denmark)

    Forero Camacho, Oscar Mauricio; Mihet-Popa, Lucian

    2016-01-01

    Electric Vehicles (EV) technologies are still relatively new and under strong development. Although some standardized solutions are being promoted and becoming a new trend, there is an outstanding need for common platforms and sharing of knowledge and core technologies. This paper presents...... the development of a test platform, including three Li-ion batteries designed for EV applications, and three associated bi-directional power converters, for testing impacts on different advanced loadings of EV batteries. Different charging algorithms/profiles have been tested, including constant current and power......, and forced and pulsed power. The aim of the tests has been to study the impact of smart charging and fast charging on the power system, on the battery state of health and degradation, and to find out the limitations of the batteries for a Smart Grid. The paper outlines the advantages and disadvantages...

  13. Wireless power transmission for battery charging

    Energy Technology Data Exchange (ETDEWEB)

    Mi, Chris; Li, Siqi; Nguyen, Trong-Duy; Wang, Junhua; Li, Jiangui; Li, Weihan; Xu, Jun

    2016-11-15

    A wireless power transmission system is provided for high power applications. The power transmission system is comprised generally of a charging unit configured to generate an alternating electromagnetic field and a receive unit configured to receive the alternating electromagnetic field from the charging unit. The charging unit includes a power source; an input rectifier; an inverter; and a transmit coil. The transmit coil has a spirangle arrangement segmented into n coil segments with capacitors interconnecting adjacent coil segments. The receive unit includes a receive coil and an output rectifier. The receive coil also has a spirangle arrangement segmented into m coil segments with capacitors interconnecting adjacent coil segments.

  14. State of charge estimation in Ni-MH rechargeable batteries

    Energy Technology Data Exchange (ETDEWEB)

    Milocco, R.H. [Grupo Control Automatico y Sistemas (GCAyS), Depto. Electrotecnia, Facultad de Ingenieria, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquen (Argentina); Castro, B.E. [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Universidad Nacional de La Plata, Suc 4, CC16 (1900), La Plata (Argentina)

    2009-10-20

    In this work we estimate the state of charge (SOC) of Ni-MH rechargeable batteries using the Kalman filter based on a simplified electrochemical model. First, we derive the complete electrochemical model of the battery which includes diffusional processes and kinetic reactions in both Ni and MH electrodes. The full model is further reduced in a cascade of two parts, a linear time invariant dynamical sub-model followed by a static nonlinearity. Both parts are identified using the current and potential measured at the terminals of the battery with a simple 1-D minimization procedure. The inverse of the static nonlinearity together with a Kalman filter provide the SOC estimation as a linear estimation problem. Experimental results with commercial batteries are provided to illustrate the estimation procedure and to show the performance. (author)

  15. Hybrid supercapacitor-battery materials for fast electrochemical charge storage.

    Science.gov (United States)

    Vlad, A; Singh, N; Rolland, J; Melinte, S; Ajayan, P M; Gohy, J-F

    2014-03-07

    High energy and high power electrochemical energy storage devices rely on different fundamental working principles--bulk vs. surface ion diffusion and electron conduction. Meeting both characteristics within a single or a pair of materials has been under intense investigations yet, severely hindered by intrinsic materials limitations. Here, we provide a solution to this issue and present an approach to design high energy and high power battery electrodes by hybridizing a nitroxide-polymer redox supercapacitor (PTMA) with a Li-ion battery material (LiFePO4). The PTMA constituent dominates the hybrid battery charge process and postpones the LiFePO4 voltage rise by virtue of its ultra-fast electrochemical response and higher working potential. We detail on a unique sequential charging mechanism in the hybrid electrode: PTMA undergoes oxidation to form high-potential redox species, which subsequently relax and charge the LiFePO4 by an internal charge transfer process. A rate capability equivalent to full battery recharge in less than 5 minutes is demonstrated. As a result of hybrid's components synergy, enhanced power and energy density as well as superior cycling stability are obtained, otherwise difficult to achieve from separate constituents.

  16. ?Just-in-Time? Battery Charge Depletion Control for PHEVs and E-REVs for Maximum Battery Life

    Energy Technology Data Exchange (ETDEWEB)

    DeVault, Robert C [ORNL

    2009-01-01

    Conventional methods of vehicle operation for Plug-in Hybrid Vehicles first discharge the battery to a minimum State of Charge (SOC) before switching to charge sustaining operation. This is very demanding on the battery, maximizing the number of trips ending with a depleted battery and maximizing the distance driven on a depleted battery over the vehicle s life. Several methods have been proposed to reduce the number of trips ending with a deeply discharged battery and also eliminate the need for extended driving on a depleted battery. An optimum SOC can be maintained for long battery life before discharging the battery so that the vehicle reaches an electric plug-in destination just as the battery reaches the minimum operating SOC. These Just-in-Time methods provide maximum effective battery life while getting virtually the same electricity from the grid.

  17. Characterisation of charge voltage of lead-acid batteries: application to the charge control strategy in photovoltaic systems

    Energy Technology Data Exchange (ETDEWEB)

    Vela, N. [CIEMAT-DER, Madrid (Spain). Laboratorio de Energia Solar Fotovoltaica; Aguilera, J. [Universidad de Jaen (Spain). Escuela Politecnica Superior

    2006-12-15

    In stand-alone photovoltaic (PV) systems, charge controllers prevent excessive battery overcharge by interrupting or limiting the current flow from the PV array to the battery when the battery becomes fully charged. Charge regulation is most often accomplished by limiting the battery voltage to a predetermined value or cut-off voltage, higher than the gassing voltage. These regulation voltages are dependent on the temperature and battery charge current. An adequate selection of overcharge cut-off voltage for each battery type and operating conditions would maintain the highest battery state of charge without causing significant overcharge thus improving battery performance and reliability. To perform this work, a sample of nine different lead-acid batteries, typically used in stand-alone PV systems including vented and sealed batteries with 2 V cells and monoblock configurations have been selected. This paper presents simple mathematical expressions fitting two charge characteristic voltages: the gassing voltage (V{sub g}) and the end-of charge voltage (V{sub fc}) as function of charge current and temperature for the tested batteries. With these expressions, we have calculated V{sub g} and V{sub fc} at different current rates. An analysis of the different values obtained is presented here focusing in the implication in control strategies of batteries in stand-alone PV systems. (author)

  18. Experiments Study on Charge Technology of Lead-Acid Electric Vehicle Batteries

    Institute of Scientific and Technical Information of China (English)

    LI Wen; ZHANG Cheng-ning

    2008-01-01

    The basic theory of the fast charge and several charge methods are introduced. In order to heighten charge efficiency of valve-regulated lead-acid battery and shorten the charge time, five charge methods are investigated with experiments done on the Digatron BNT 400-050 test bench. Battery current, terminal voltage, capacity, energy and terminal pole temperature during battery experiment were recorded, and corresponding curves were depicted. Battery capacity-time ratio, energy efficiency and energy-temperature ratio are put forward to be the appraising criteria of lead-acid battery on electric vehicle (EV). According to the appraising criteria and the battery curves, multistage-current/negative-pulse charge method is recommended to charge lead-acid EV battery.

  19. Fast Charging and Smart Charging Tests for Electric Vehicles Batteries Using Renewable Energy

    Directory of Open Access Journals (Sweden)

    Forero Camacho Oscar Mauricio

    2016-01-01

    Full Text Available Electric Vehicles (EV technologies are still relatively new and under strong development. Although some standardized solutions are being promoted and becoming a new trend, there is an outstanding need for common platforms and sharing of knowledge and core technologies. This paper presents the development of a test platform, including three Li-ion batteries designed for EV applications, and three associated bi-directional power converters, for testing impacts on different advanced loadings of EV batteries. Different charging algorithms/profiles have been tested, including constant current and power, and forced and pulsed power. The aim of the tests has been to study the impact of smart charging and fast charging on the power system, on the battery state of health and degradation, and to find out the limitations of the batteries for a Smart Grid. The paper outlines the advantages and disadvantages of both tests in terms of regulation of the aggregated local power, power capacity and the power exchange with the grid. The smart charging tests performed have demonstrated that even with a simple control algorithm, without any forecasting, it is possible to provide the required charging and at the same time the power system services, reducing the peak power and the energy losses in the power connection line of the power exchange with the national grid.

  20. Model Predictive Control-Based Fast Charging for Vehicular Batteries

    Directory of Open Access Journals (Sweden)

    Zhibin Song

    2011-08-01

    Full Text Available Battery fast charging is one of the most significant and difficult techniques affecting the commercialization of electric vehicles (EVs. In this paper, we propose a fast charge framework based on model predictive control, with the aim of simultaneously reducing the charge duration, which represents the out-of-service time of vehicles, and the increase in temperature, which represents safety and energy efficiency during the charge process. The RC model is employed to predict the future State of Charge (SOC. A single mode lumped-parameter thermal model and a neural network trained by real experimental data are also applied to predict the future temperature in simulations and experiments respectively. A genetic algorithm is then applied to find the best charge sequence under a specified fitness function, which consists of two objectives: minimizing the charging duration and minimizing the increase in temperature. Both simulation and experiment demonstrate that the Pareto front of the proposed method dominates that of the most popular constant current constant voltage (CCCV charge method.

  1. Li-Ion Battery Charging with a Buck-Boost Power Converter for a Solar Powered Battery Management System

    OpenAIRE

    2013-01-01

    This paper analyzes and simulates the Li-ion battery charging process for a solar powered battery management system. The battery is charged using a non-inverting synchronous buck-boost DC/DC power converter. The system operates in buck, buck-boost, or boost mode, according to the supply voltage conditions from the solar panels. Rapid changes in atmospheric conditions or sunlight incident angle cause supply voltage variations. This study develops an electrochemical-based equivalent circuit mod...

  2. Estimator for Charge Acceptance of Lead Acid Batteries Estimateur d’acceptance de charge des batteries Pb-acide

    Directory of Open Access Journals (Sweden)

    Christen U.

    2012-08-01

    Full Text Available A phenomenological model of lead acid batteries is developed that is then used to construct an estimator for short term charge acceptance. Conceptually, the model is based on a partial differential equation that is discretized for tractability. With observers for the battery current and state of charge, the prediction of the internal states is improved. Since the model is essentially linear, the short term prediction can be implemented in closed form, thus without the need for computationally intensive prediction simulations at each sampling instant. The only nonlinearity, the dependence on temperature, can be incorporated in a linear parameter-varying model. Un modèle phénoménologique des batteries plomb-acide est développé et utilisé pour réaliser un estimateur d’acceptance de charge à court terme. Conceptuellement, le modèle est basé sur une équation différentielle partielle qui est discrétisée pour simplifier. La prédiction des états du modèle est améliorée par l’utilisation d’observateurs du courant et de la charge de la batterie. Comme le modèle est essentiellement linéaire, la prédiction à court terme peut être formulée en forme close. Il n’est donc plus nécessaire d’avoir recours à des simulations complexes à chaque instant d’échantillonnage. La seule dépendance non-linéaire, celle à la température, peut être incorporée dans un modèle linéaire à paramètre variable.

  3. Li-Ion Battery Charging with a Buck-Boost Power Converter for a Solar Powered Battery Management System

    Directory of Open Access Journals (Sweden)

    Chien-Wei Ma

    2013-03-01

    Full Text Available This paper analyzes and simulates the Li-ion battery charging process for a solar powered battery management system. The battery is charged using a non-inverting synchronous buck-boost DC/DC power converter. The system operates in buck, buck-boost, or boost mode, according to the supply voltage conditions from the solar panels. Rapid changes in atmospheric conditions or sunlight incident angle cause supply voltage variations. This study develops an electrochemical-based equivalent circuit model for a Li-ion battery. A dynamic model for the battery charging process is then constructed based on the Li-ion battery electrochemical model and the buck-boost power converter dynamic model. The battery charging process forms a system with multiple interconnections. Characteristics, including battery charging system stability margins for each individual operating mode, are analyzed and discussed. Because of supply voltage variation, the system can switch between buck, buck-boost, and boost modes. The system is modeled as a Markov jump system to evaluate the mean square stability of the system. The MATLAB based Simulink piecewise linear electric circuit simulation tool is used to verify the battery charging model.

  4. Handbook of secondary storage batteries and charge regulators in photovoltaic systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1981-08-01

    Solar photovoltaic systems often require battery subsystems to store reserve electrical energy for times of zero insolation. This handbook is designed to help the system designer make optimum choices of battery type, battery size and charge control circuits. Typical battery performance characteristics are summarized for four types of lead-acid batteries: pure lead, lead-calcium and lead-antimony pasted flat plate and lead-antimony tubular positive types. Similar data is also provided for pocket plate nickel cadmium batteries. Economics play a significant role in battery selection. Relative costs of each battery type are summarized under a variety of operating regimes expected for solar PV installations.

  5. Design and Comparative Study of Three Photovoltaic Battery Charge Control Algorithms in MATLAB/SIMULINK Environment

    Directory of Open Access Journals (Sweden)

    Ankur Bhattacharjee

    2012-09-01

    Full Text Available This paper contains the design of a three stage solar battery charge controller and a comparative study of this charge control technique with three conventional solar battery charge control techniques such as 1. Constant Current (CC charging, 2. Two stage constant current constant voltage (CC-CV charging technique. The analysis and the comparative study of the aforesaid charging techniques are done in MATLAB/SIMULINK environment. Here the practical data used to simulate the charge control algorithms are based on a 12Volts 7Ah Sealed lead acid battery.

  6. Application of Genetic Neural Network in Power Battery Charging State-of-Charge Estimation

    Directory of Open Access Journals (Sweden)

    Yongqin Zhou

    2011-03-01

    Full Text Available With global non-renewable resources and environmental issues becoming more apparent, the development of new energy vehicles have become the trend of auto industry. Hybrid vehicle becomes the key development of new energy vehicles with its long distance, low pollution, low fuel consumption characteristics and so on. The battery performances directly influence the quality of the whole vehicle performance. Considering the importance of the battery state of charge (SOC estimation and the nonlinear relationship between the battery SOC and the external characteristic, genetic algorithm (GA and back propagation (BP neural network are proposed. Because of the strong global search capability of the genetic algorithm and the generalization ability of BP neural network, the hybrid vehicle Ni-MH power battery GA-BP charging model is designed. In this approach, the network training speed is superior to the traditional BP network. According to the real-time data of the batteries, the optimal solution can be concluded in a short time and with high estimation precision.

  7. Barodynamic determination of the current yield in the charging of a sealed nickel-cadmium battery

    Energy Technology Data Exchange (ETDEWEB)

    Tsenter, B.T.; Boldin, R.V.; Levinzon, L.M.

    1982-02-10

    The current yield (n) in charging a sealed nickel-cadmium battery is an important parameter determining such characteristics as the charge, heat regime, and energy supply. This work presents a method for determining n relative to barodynamic measurements in charging and storing sealed nickel-cadmium battery.

  8. Electric and hybrid vehicles charge efficiency tests of ESB EV-106 lead-acid batteries

    Energy Technology Data Exchange (ETDEWEB)

    Rowlette, J.J.

    1981-01-15

    Charge efficiencies were determined for ESB EV-106 lead-acid batteries by measurements made under widely differing conditions of temperature, charge procedure, and battery age. The measurements were used to optimize charge procedures and to evaluate the concept of a modified, coulometric state-of-charge indicator. Charge efficiency determinations were made by measuring gassing rates and oxygen fractions. A novel, positive displacement gas flow meter which proved to be both simple and highly accurate is described and illustrated.

  9. Life cycle assessment of five batteries for electric vehicles under different charging regimes

    Energy Technology Data Exchange (ETDEWEB)

    Rantik, M. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Transportation and Logistics

    1999-12-01

    Life Cycle Assessment (LCA) methodology is used in this study to assess the environmental impact of five candidate batteries for electric vehicles under different conditions of charging. The entire lifetime of a passenger electric vehicle is considered as the basis for all batteries. Five different battery systems are considered. The four of them are electrically recharged - Lead-Acid, Nickel-Cadmium, Nickel-Metal hydride and Sodium-Nickel chloride whereas one system comprises batteries that are recharged mechanically (Zinc-Air). One specific battery from these five systems is selected. The results are representative of these particular batteries and not of the battery systems to which they belong. The study includes three scenarios, the basic scenario and two fast charging scenarios. The difference between the scenarios is in the phase of the battery's use and involves the charging regimes. Consequently, the other stages of the battery's life are identical in all three scenarios. The basic scenario implies normal overnight charging is used during the entire lifetime of an electric vehicle. In the first fast charging scenario, fast charging is combined with normal charging. The second fast charging scenario involves the exclusive use of fast charging. In both fast charging scenarios the user's behaviour is considered. In this study, it is believed that it is the violation of fast charging rules, set by the battery manufacturer rather than the fast charging technique, that will be critical for the cycle life of the battery. Due to low energy efficiency of the batteries and losses in the charging procedure, the use of energy for operating the electric vehicle seems to be a major contributor to the total environmental impact of the system. Significant resource constraints may prevent mass production of certain batteries or lead to increased prices of others. Use of fast charging increases the number of batteries used during the lifetime of the electric

  10. FY14 Milestone: Simulated Impacts of Life-Like Fast Charging on BEV Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, Jeremy [National Renewable Energy Lab. (NREL), Golden, CO (United States). Transportation and Hydrogen Systems Center; Wood, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States). Transportation and Hydrogen Systems Center; Burton, Evan [National Renewable Energy Lab. (NREL), Golden, CO (United States). Transportation and Hydrogen Systems Center; Smith, Kandler [National Renewable Energy Lab. (NREL), Golden, CO (United States). Transportation and Hydrogen Systems Center; Pesaran, Ahmad [National Renewable Energy Lab. (NREL), Golden, CO (United States). Transportation and Hydrogen Systems Center

    2014-09-01

    Fast charging is attractive to battery electric vehicle (BEV) drivers for its ability to enable long-distance travel and quickly recharge depleted batteries on short notice. However, such aggressive charging and the sustained vehicle operation that results could lead to excessive battery temperatures and degradation. Properly assessing the consequences of fast charging requires accounting for disparate cycling, heating, and aging of individual cells in large BEV packs when subjected to realistic travel patterns, usage of fast chargers, and climates over long durations (i.e., years). The U.S. Department of Energy's Vehicle Technologies Office has supported NREL's development of BLAST-V 'the Battery Lifetime Analysis and Simulation Tool for Vehicles' to create a tool capable of accounting for all of these factors. The authors present on the findings of applying this tool to realistic fast charge scenarios. The effects of different travel patterns, climates, battery sizes, battery thermal management systems, and other factors on battery performance and degradation are presented. The primary challenge for BEV batteries operated in the presence of fast charging is controlling maximum battery temperature, which can be achieved with active battery cooling systems.

  11. Process for ending the charging process of a battery. Verfahren zur Beendigung des Ladevorganges einer Akkumulatorenbatterie

    Energy Technology Data Exchange (ETDEWEB)

    Steinig, W.; Obstfelder, I.; Naegler, R.J.

    1986-09-11

    The invention concerns a process for ending the charging process of a battery to be charged with falling current and with a stabilised voltage, in which the value of current is measured at given time intervals and the difference between two successive measurements is formed as a criterion for switching off. According to the invention, on reaching or dropping below a given positive minimum difference (which is not zero) between two results, a pulse is stored and when two pulses are stored in sequence, the charging process is ended. The proposal of the invention achieves reliable switching off of the charging current on reaching the end of charging, without exceeding the end point of the charging process. In particular, the charging current does not have to pass through a minimum, so that batteries which do not have this characteristic can be safely switched off after the charging process has ended. There is therefore a completely correct charge of new and old batteries and correct charging of batteries which have been discharged too far. The possibly damaging post-charge and the socalled compensation charge are omitted, so that the life of the battery can be considerably extended.

  12. Constrained generalized predictive control of battery charging process based on a coupled thermoelectric model

    Science.gov (United States)

    Liu, Kailong; Li, Kang; Zhang, Cheng

    2017-04-01

    Battery temperature is a primary factor affecting the battery performance, and suitable battery temperature control in particular internal temperature control can not only guarantee battery safety but also improve its efficiency. This is however challenging as current controller designs for battery charging have no mechanisms to incorporate such information. This paper proposes a novel battery charging control strategy which applies the constrained generalized predictive control (GPC) to charge a LiFePO4 battery based on a newly developed coupled thermoelectric model. The control target primarily aims to maintain the battery cell internal temperature within a desirable range while delivering fast charging. To achieve this, the coupled thermoelectric model is firstly introduced to capture the battery behaviours in particular SOC and internal temperature which are not directly measurable in practice. Then a controlled auto-regressive integrated moving average (CARIMA) model whose parameters are identified by the recursive least squares (RLS) algorithm is developed as an online self-tuning predictive model for a GPC controller. Then the constrained generalized predictive controller is developed to control the charging current. Experiment results confirm the effectiveness of the proposed control strategy. Further, the best region of heat dissipation rate and proper internal temperature set-points are also investigated and analysed.

  13. Lithium-Ion Battery Failure: Effects of State of Charge and Packing Configuration

    Science.gov (United States)

    2016-08-22

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6180--16-9689 Lithium-Ion Battery Failure: Effects of State of Charge and Packing ...PAGES 17. LIMITATION OF ABSTRACT Lithium-Ion Battery Failure: Effects of State of Charge and Packing Configuration Neil S. Spinner,* Katherine M. Hinnant...geometries, abuse scenarios, and analysis techniques. In this report, different states of charge and packing configurations of a commercially available

  14. Evaluation of Aircraft Battery Charge, Discharge, and Analyzation Requirements for Ground Support Equipment.

    Science.gov (United States)

    1984-07-27

    M81757/8-2, 20Ah Battery . ............ o.......... o..........o.................... 40 8B Charge Temperature Chart for Type M81757/8-2, 20-Ah Battery . 41... battery M83769/ 6-1. M83769/7-1 12V , 54 Ah 6140-00-328-3854 C-117D, C-118B, VC-1118B, C- 131F, T-33B Varley 24V, 18 Ah 6140-00-467-6112 AV-8A, AV-8C...RD-A144 243 EVALUATION OF AIRCRAFT BATTERY CHARGE DISCHARGE AND i/i ANKLYZAT ION REQUIREME. U) NAVAL WEAPONS SUPPORT CENTER CRANE IN WEAPONS QUALITY

  15. Efficiently photo-charging lithium-ion battery by perovskite solar cell

    OpenAIRE

    Xu, Jiantie; Chen, Yonghua; Dai, Liming

    2015-01-01

    Electric vehicles using lithium-ion battery pack(s) for propulsion have recently attracted a great deal of interest. The large-scale practical application of battery electric vehicles may not be realized unless lithium-ion batteries with self-charging suppliers will be developed. Solar cells offer an attractive option for directly photo-charging lithium-ion batteries. Here we demonstrate the use of perovskite solar cell packs with four single CH3NH3PbI3 based solar cells connected in series f...

  16. Efficiently photo-charging lithium-ion battery by perovskite solar cell.

    Science.gov (United States)

    Xu, Jiantie; Chen, Yonghua; Dai, Liming

    2015-08-27

    Electric vehicles using lithium-ion battery pack(s) for propulsion have recently attracted a great deal of interest. The large-scale practical application of battery electric vehicles may not be realized unless lithium-ion batteries with self-charging suppliers will be developed. Solar cells offer an attractive option for directly photo-charging lithium-ion batteries. Here we demonstrate the use of perovskite solar cell packs with four single CH3NH3PbI3 based solar cells connected in series for directly photo-charging lithium-ion batteries assembled with a LiFePO4 cathode and a Li4Ti5O12 anode. Our device shows a high overall photo-electric conversion and storage efficiency of 7.80% and excellent cycling stability, which outperforms other reported lithium-ion batteries, lithium-air batteries, flow batteries and super-capacitors integrated with a photo-charging component. The newly developed self-chargeable units based on integrated perovskite solar cells and lithium-ion batteries hold promise for various potential applications.

  17. Efficiently photo-charging lithium-ion battery by perovskite solar cell

    Science.gov (United States)

    Xu, Jiantie; Chen, Yonghua; Dai, Liming

    2015-01-01

    Electric vehicles using lithium-ion battery pack(s) for propulsion have recently attracted a great deal of interest. The large-scale practical application of battery electric vehicles may not be realized unless lithium-ion batteries with self-charging suppliers will be developed. Solar cells offer an attractive option for directly photo-charging lithium-ion batteries. Here we demonstrate the use of perovskite solar cell packs with four single CH3NH3PbI3 based solar cells connected in series for directly photo-charging lithium-ion batteries assembled with a LiFePO4 cathode and a Li4Ti5O12 anode. Our device shows a high overall photo-electric conversion and storage efficiency of 7.80% and excellent cycling stability, which outperforms other reported lithium-ion batteries, lithium–air batteries, flow batteries and super-capacitors integrated with a photo-charging component. The newly developed self-chargeable units based on integrated perovskite solar cells and lithium-ion batteries hold promise for various potential applications. PMID:26311589

  18. Probing lithium-ion batteries' state-of-charge using ultrasonic transmission - Concept and laboratory testing

    Science.gov (United States)

    Gold, Lukas; Bach, Tobias; Virsik, Wolfgang; Schmitt, Angelika; Müller, Jana; Staab, Torsten E. M.; Sextl, Gerhard

    2017-03-01

    For electrically powered applications such as consumer electronics and especially for electric vehicles a precise state-of-charge estimation for their lithium-ion batteries is desired to reduce aging, e.g. avoiding detrimental states-of-charge. Today, this estimation is performed by battery management systems that solely rely on charge bookkeeping and cell voltage measurements. In the present work we introduce a new, physical probe for the state-of-charge based on ultrasonic transmission. Within the simple experimental setup raised cosine pulses are applied to lithium-ion battery pouch cells, whose signals are sensitive to changes in porosity of the graphite anode during charging/dis-charging and, therefore, to the state-of-charge. The underlying physical principle can be related to Biot's theory about propagation of waves in fluid saturated porous media and by including scattering by boundary layers inside the cell.

  19. Study on the Optimal Charging Strategy for Lithium-Ion Batteries Used in Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Shuo Zhang

    2014-10-01

    Full Text Available The charging method of lithium-ion batteries used in electric vehicles (EVs significantly affects its commercial application. This paper aims to make three contributions to the existing literature. (1 In order to achieve an efficient charging strategy for lithium-ion batteries with shorter charging time and lower charring loss, the trade-off problem between charging loss and charging time has been analyzed in details through the dynamic programing (DP optimization algorithm; (2 To reduce the computation time consumed during the optimization process, we have proposed a database based optimization approach. After off-line calculation, the simulation results can be applied to on-line charge; (3 The novel database-based DP method is proposed and the simulation results illustrate that this method can effectively find the suboptimal charging strategies under a certain balance between the charging loss and charging time.

  20. Charged Polymer-Coated Separators by Atmospheric Plasma-Induced Grafting for Lithium-Ion Batteries.

    Science.gov (United States)

    Han, Mina; Kim, Dong-Won; Kim, Yeong-Cheol

    2016-10-05

    A simple and fast method of atmospheric plasma-induced grafting was applied over a polyethylene membrane to enhance its performance as a separator for lithium-ion batteries. The process of grafting has formed a thin, durable, and uniform layer on the surface of the porous membrane. The charges of grafted polymers affected the performance of batteries in many ways besides the change of hydrophilicity. Negative charges in polymers improve the capacity retention of batteries and the uniformity of the SEI layer. On the other hand, the electrostatic attraction between different charges contributed to small increases of thermal stability and mechanical strength of separators. Polyampholyte was grafted by using the mixtures of monomers, and the composition of the grafted layer was optimized. The formation of stable uniform SEI layers and the marked improvement in capacity retention were observed in the full cell tests of the lithium battery with the polyampholyte-grafted separators when the polyampholyte has a negative net charge.

  1. Analytical assessment of the thermal behavior of nickel-metal hydride batteries during fast charging

    Science.gov (United States)

    Taheri, Peyman; Yazdanpour, Maryam; Bahrami, Majid

    2014-01-01

    A novel distributed transient thermal model is proposed to investigate the thermal behavior of nickel-metal hydride (NiMH) batteries under fast-charging processes at constant currents. Based on the method of integral transformation, a series-form solution for the temperature field inside the battery core is obtained that takes account for orthotropic heat conduction, transient heat generation, and convective heat dissipation at surfaces of the battery. The accuracy of the developed theoretical model is confirmed through comparisons with numerical and experimental data for a sample 30 ampere-hour NiMH battery. The comparisons show that even the first term of the series solution fairly predicts the temperature field with the modest numerical cost. The thermal model is also employed to define an efficiency for charging processes. Our calculations confirm that the charging efficiency decreases as the charging current increases.

  2. New charging strategy for lithium-ion batteries based on the integration of Taguchi method and state of charge estimation

    Science.gov (United States)

    Vo, Thanh Tu; Chen, Xiaopeng; Shen, Weixiang; Kapoor, Ajay

    2015-01-01

    In this paper, a new charging strategy of lithium-polymer batteries (LiPBs) has been proposed based on the integration of Taguchi method (TM) and state of charge estimation. The TM is applied to search an optimal charging current pattern. An adaptive switching gain sliding mode observer (ASGSMO) is adopted to estimate the SOC which controls and terminates the charging process. The experimental results demonstrate that the proposed charging strategy can successfully charge the same types of LiPBs with different capacities and cycle life. The proposed charging strategy also provides much shorter charging time, narrower temperature variation and slightly higher energy efficiency than the equivalent constant current constant voltage charging method.

  3. Lithium-ion Battery Charging System using Constant-Current Method with Fuzzy Logic Based ATmega16

    Directory of Open Access Journals (Sweden)

    Rossi Passarella

    2014-10-01

    Full Text Available In this charging system, constant-current charging technique keeps the current flow into the battery on its maximum range of 2A. The use of fuzzy logic control of this charging system is to control the value of PWM. PWM is controlling the value of current flowing to the battery during the charging process. The current value into the battery depends on the value of battery voltage and also its temperature. The cutoff system will occur if the temperature of the battery reaches its maximum range

  4. Modelling Inductive Charging of Battery Electric Vehicles using an Agent-Based Approach

    Directory of Open Access Journals (Sweden)

    Zain Ul Abedin

    2014-09-01

    Full Text Available The introduction of battery electric vehicles (BEVs could help to reduce dependence on fossil fuels and emissions from transportation and as such increase energy security and foster sustainable use of energy resources. However a major barrier to the introduction of BEVs is their limited battery capacity and long charging durations. To address these issues of BEVs several solutions are proposed such as battery swapping and fast charging stations. However apart from these stationary modes of charging, recently a new mode of charging has been introduced which is called inductive charging. This allows charging of BEVs as they drive along roads without the need of plugs, using induction. But it is unclear, if and how such technology could be utilized best. In order to investigate the possible impact of the introduction of such inductive charging infrastructure, its potential and its optimal placement, a framework for simulating BEVs using a multi-agent transport simulation was used. This framework was extended by an inductive charging module and initial test runs were performed. In this paper we present the simulation results of these preliminary tests together with analysis which suggests that battery sizes of BEVs could be reduced even if inductive charging technology is implemented only at a small number of high traffic volume links. The paper also demonstrates that our model can effectively support policy and decision making for deploying inductive charging infrastructure.

  5. Demand Profile Study of Battery Electric Vehicle under Different Charging Options

    DEFF Research Database (Denmark)

    Marra, Francesco; Yang, Guang Ya; Træholt, Chresten

    2012-01-01

    An increased research on electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) deals with their flexible use in electric power grids. Several research projects on smart grids and electric mobility are now looking into realistic models representing the behavior of an EV during charging......, including nonlinearities. In this work, modeling, simulation and testing of the demand profile of a battery-EV are conducted. Realistic work conditions for a lithium-ion EV battery and battery charger are considered as the base for the modeling. Simulation results show that EV charging generates different...

  6. The role of bypass diodes in the failure of solar battery charging stations in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Greacen, C.; Green, D. [Energy and Resources Group, 310 Barrows Hall no. 3050, University of California, 94720-3050 Berkeley, CA (United States)

    2001-12-15

    This paper focuses on the failure of bypass diodes in solar battery charging stations (SBCS) in Thailand. The Thai government has installed over 1000 SBCS in unelectrified villages to be used to charge 12-V batteries for household lights and small appliances. The unnecessary inclusion of bypass diodes in these systems created an unexpected failure mode when villagers misconnected their batteries with reverse polarity. In a survey of 31 stations, 18 stations were disabled by burnt-out bypass diodes. The electrical engineering theory of this failure mode is analyzed. In addition, we discuss how the bypass diode failures have been compounded by lack of end-user feedback to the implementing agencies.

  7. A Hydrogen-Evolving Hybrid-Electrolyte Battery with Electrochemical/Photoelectrochemical Charging from Water Oxidation.

    Science.gov (United States)

    Jin, Zhaoyu; Li, Panpan; Xiao, Dan

    2017-02-08

    Decoupled hydrogen and oxygen production were successfully embedded into an aqueous dual-electrolyte (acid-base) battery for simultaneous energy storage and conversion. A three-electrode configuration was adopted, involving an electrocatalytic hydrogen-evolving electrode as cathode, an alkaline battery-type or capacitor-type anode as shuttle, and a charging-assisting electrode for electro-/photoelectrochemically catalyzing water oxidation. The conceptual battery not only synergistically outputs electricity and chemical fuels with tremendous specific energy and power densities, but also supports various approaches to be charged by pure or solar-assisted electricity.

  8. Effects of Electric Vehicle Fast Charging on Battery Life and Vehicle Performance

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Shirk; Jeffrey Wishart

    2015-04-01

    As part of the U.S. Department of Energy’s Advanced Vehicle Testing Activity, four new 2012 Nissan Leaf battery electric vehicles were instrumented with data loggers and operated over a fixed on-road test cycle. Each vehicle was operated over the test route, and charged twice daily. Two vehicles were charged exclusively by AC level 2 EVSE, while two were exclusively DC fast charged with a 50 kW charger. The vehicles were performance tested on a closed test track when new, and after accumulation of 50,000 miles. The traction battery packs were removed and laboratory tested when the vehicles were new, and at 10,000-mile intervals. Battery tests include constant-current discharge capacity, electric vehicle pulse power characterization test, and low peak power tests. The on-road testing was carried out through 70,000 miles, at which point the final battery tests were performed. The data collected over 70,000 miles of driving, charging, and rest are analyzed, including the resulting thermal conditions and power and cycle demands placed upon the battery. Battery performance metrics including capacity, internal resistance, and power capability obtained from laboratory testing throughout the test program are analyzed. Results are compared within and between the two groups of vehicles. Specifically, the impacts on battery performance, as measured by laboratory testing, are explored as they relate to battery usage and variations in conditions encountered, with a primary focus on effects due to the differences between AC level 2 and DC fast charging. The contrast between battery performance degradation and the effect on vehicle performance is also explored.

  9. Discrete carbon nanotubes increase lead acid battery charge acceptance and performance

    Science.gov (United States)

    Swogger, Steven W.; Everill, Paul; Dubey, D. P.; Sugumaran, Nanjan

    2014-09-01

    Performance demands placed upon lead acid batteries have outgrown the technology's ability to deliver. These demands, typically leading to Negative Active Material (NAM) failure, include: short, high-current surges; prolonged, minimal, overvoltage charging; repeated, Ah deficit charging; and frequent deep discharges. Research shows these failure mechanisms are attenuated by inclusion of carbon allotropes into the NAM. Addition of significant quantities of carbon, however, produces detrimental changes in paste rheology, leading to lowered industrial throughput. Additionally, capacity, cold-cranking performance, and other battery metrics are negatively affected at high carbon loads. Presented here is Molecular Rebar® Lead Negative, a new battery additive comprising discrete carbon nanotubes (dCNT) which uniformly disperse within battery pastes during mixing. NS40ZL batteries containing dCNT show enhanced charge acceptance, reserve capacity, and cold-cranking performance, decreased risk of polarization, and no detrimental changes to paste properties, when compared to dCNT-free controls. This work focuses on the dCNT as NAM additives only, but early-stage research is underway to test their functionality as a PAM additive. Batteries infused with Molecular Rebar® Lead Negative address the needs of modern lead acid battery applications, produce none of the detrimental side effects associated with carbon additives, and require no change to existing production lines.

  10. Solar battery charging; Sonne in den Akku laden

    Energy Technology Data Exchange (ETDEWEB)

    Frey, Martin

    2012-01-30

    Swiss battery producer Leclanche intends serial production of lithium ion cells for storage of renewable energy. A production facility at Kehl, Germany, is currently under construction. Schueco International KG is one of the first customers.

  11. Impact of Fast Charging on Life of EV Batteries; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, Jeremy; Wood, Eric; Burton, Evan; Smith, Kandler; Pesaran, Ahmad

    2015-05-03

    Installation of fast charging infrastructure is considered by many as one of potential solutions to increase the utility and range of electric vehicles (EVs). This is expected to reduce the range anxiety of drivers of EVs and thus increase their market penetration. Level 1 and 2 charging in homes and workplaces is expected to contribute to the majority of miles driven by EVs. However, a small percentage of urban driving and most of inter-city driving could be only achieved by a fast-charging network. DC fast charging at 50 kW, 100 kW, 120 kW compared to level 1 (3.3 kW) and level 2 (6.6 kW) results in high-current charging that can adversely impact the life of the battery. In the last couple of years, we have investigated the impact of higher current rates in batteries and potential of higher temperatures and thus lower service life. Using mathematical models, we investigated the temperature increase of batteries due to higher heat generation during fast charge and have found that this could lead to higher temperatures. We compared our models with data from other national laboratories both for fine-tuning and calibration. We found that the incremental temperature rise of batteries during 1C to 3C fast charging may reduce the practical life of the batteries by less than 10% over 10 to 15 years of vehicle ownership. We also found that thermal management of batteries is needed for fast charging to prevent high temperature excursions leading to unsafe conditions.

  12. Extended Kalman Filter with a Fuzzy Method for Accurate Battery Pack State of Charge Estimation

    Directory of Open Access Journals (Sweden)

    Saeed Sepasi

    2015-06-01

    Full Text Available As the world moves toward greenhouse gas reduction, there is increasingly active work around Li-ion chemistry-based batteries as an energy source for electric vehicles (EVs, hybrid electric vehicles (HEVs and smart grids. In these applications, the battery management system (BMS requires an accurate online estimation of the state of charge (SOC in a battery pack. This estimation is difficult, especially after substantial battery aging. In order to address this problem, this paper utilizes SOC estimation of Li-ion battery packs using a fuzzy-improved extended Kalman filter (fuzzy-IEKF for Li-ion cells, regardless of their age. The proposed approach introduces a fuzzy method with a new class and associated membership function that determines an approximate initial value applied to SOC estimation. Subsequently, the EKF method is used by considering the single unit model for the battery pack to estimate the SOC for following periods of battery use. This approach uses an adaptive model algorithm to update the model for each single cell in the battery pack. To verify the accuracy of the estimation method, tests are done on a LiFePO4 aged battery pack consisting of 120 cells connected in series with a nominal voltage of 432 V.

  13. A new method of modeling and state of charge estimation of the battery

    Science.gov (United States)

    Liu, Congzhi; Liu, Weiqun; Wang, Lingyan; Hu, Guangdi; Ma, Luping; Ren, Bingyu

    2016-07-01

    Accurately estimating the State of Charge (SOC) of the battery is the basis of Battery Management System (BMS). This paper has introduced a new modeling and state estimation method for the lithium battery system, which utilizes the fractional order theories. Firstly, a fractional order model based on the PNGV (Partnership for a New Generation of Vehicle) model is proposed after analyzing the impedance characteristics of the lithium battery and compared with the integer order model. With the observability of the discrete non-linear model of the battery confirmed, the method of the state observer based on the extended fractional Kalman filter (EFKF) and the least square identification method of battery parameters are studied. Then, it has been applied successfully to estimate the battery SOC using the measured battery current and voltage. Finally, a standard HPPC (Hybrid Pulse Power Characteristic) test is used for parameter identification and several experimental validations are investigated on a ternary manganese-nickel-cobalt lithium battery pack with a nominal capacity of 24 Ah which consists of ten Sony commercial cells (US18650GR G7) in parallels. The results demonstrate the effectiveness of the fractional order model and the estimation method.

  14. A new battery-charging method suggested by molecular dynamics simulations

    CERN Document Server

    Hamad, Ibrahim Abou; Wipf, D; Rikvold, P A; 10.1039/b920970k

    2010-01-01

    Based on large-scale molecular dynamics simulations, we propose a new charging method that should be capable of charging a Lithium-ion battery in a fraction of the time needed when using traditional methods. This charging method uses an additional applied oscillatory electric field. Our simulation results show that this charging method offers a great reduction in the average intercalation time for Li+ ions, which dominates the charging time. The oscillating field not only increases the diffusion rate of Li+ ions in the electrolyte but, more importantly, also enhances intercalation by lowering the corresponding overall energy barrier.

  15. Lithium-Ion Battery Failure: Effects of State of Charge and Packing Configuration

    Science.gov (United States)

    2016-08-22

    geometries, abuse scenarios, and analysis techniques. In this report, different states of charge and packing configurations of a commercially available...15 1 1.0 Background and Motivation Lithium-ion batteries are a popular choice of power source for a variety of...military systems due to their promise of high power and high energy density. However, safety remains a significant concern, as battery failure leads

  16. A novel method to determine lithium battery state of charge

    Energy Technology Data Exchange (ETDEWEB)

    Milewits, M. [SPT, Rosharon, TX (United States)

    1997-12-31

    Methods for determining the remaining life of a special class of high performance batteries used in the down-hole oil service markets were discussed. Lithium thionyl chloride (LTC) batteries meet the stringent conditions of having high volumetric energy density, of operating in a wide temperature range and in confining environments. The remaining discharge capacity of an LTC battery was determined by altering the anode electrode construction to give an indication of depth of discharge upon application of a defined load at ambient temperatures. This approach makes use of cells with specially modified anode structures and a test method for these cells prior to intended re-use. The test can be performed using an inexpensive DC circuit. 3 refs., 1 tab., 7 figs.

  17. A new state of charge determination method for battery management system

    Institute of Scientific and Technical Information of China (English)

    ZHU Chun-bo 朱春波; WANG Tie-cheng 王铁成; HURLEY W G

    2004-01-01

    State of Charge (SOC) determination is an increasingly important issue in battery technology. In addition to the immediate display of the remaining battery capacity to the user, precise knowledge of SOC exerts additional control over the charging/discharging process which in turn reduces the risk of over-voltage and gassing, which degrade the chemical composition of the electrolyte and plates. This paper describes a new approach to SOC determination for the lead-acid battery management system by combining Ah-balance with an EMF estimation algorithm, which predicts the battery' s EMF value while it is under load. The EMF estimation algorithm is based on an equivalent-circuit representation of the battery, with the parameters determined from a pulse test performed on the battery and a curve-fitting algorithm by means of least-square regression. The whole battery cycle is classified into seven states where the SOC is estimated with the Ah-balance method and the proposed EMF based algorithm. Laboratory tests and results are described in detail in the paper.

  18. Adaptive estimation of state of charge and capacity with online identified battery model for vanadium redox flow battery

    Science.gov (United States)

    Wei, Zhongbao; Tseng, King Jet; Wai, Nyunt; Lim, Tuti Mariana; Skyllas-Kazacos, Maria

    2016-11-01

    Reliable state estimate depends largely on an accurate battery model. However, the parameters of battery model are time varying with operating condition variation and battery aging. The existing co-estimation methods address the model uncertainty by integrating the online model identification with state estimate and have shown improved accuracy. However, the cross interference may arise from the integrated framework to compromise numerical stability and accuracy. Thus this paper proposes the decoupling of model identification and state estimate to eliminate the possibility of cross interference. The model parameters are online adapted with the recursive least squares (RLS) method, based on which a novel joint estimator based on extended Kalman Filter (EKF) is formulated to estimate the state of charge (SOC) and capacity concurrently. The proposed joint estimator effectively compresses the filter order which leads to substantial improvement in the computational efficiency and numerical stability. Lab scale experiment on vanadium redox flow battery shows that the proposed method is highly authentic with good robustness to varying operating conditions and battery aging. The proposed method is further compared with some existing methods and shown to be superior in terms of accuracy, convergence speed, and computational cost.

  19. Computational models of an inductive power transfer system for electric vehicle battery charge

    Science.gov (United States)

    Anele, A. O.; Hamam, Y.; Chassagne, L.; Linares, J.; Alayli, Y.; Djouani, K.

    2015-09-01

    One of the issues to be solved for electric vehicles (EVs) to become a success is the technical solution of its charging system. In this paper, computational models of an inductive power transfer (IPT) system for EV battery charge are presented. Based on the fundamental principles behind IPT systems, 3 kW single phase and 22 kW three phase IPT systems for Renault ZOE are designed in MATLAB/Simulink. The results obtained based on the technical specifications of the lithium-ion battery and charger type of Renault ZOE show that the models are able to provide the total voltage required by the battery. Also, considering the charging time for each IPT model, they are capable of delivering the electricity needed to power the ZOE. In conclusion, this study shows that the designed computational IPT models may be employed as a support structure needed to effectively power any viable EV.

  20. Charge pump DC-DC converter comprising solid state batteries

    NARCIS (Netherlands)

    Reefman, D.; Roozeboom, F.; Notten, P.H.L.; Klootwijk, J.H.

    2013-01-01

    An electronic device is provided which comprises a DC-DC converter. The DC-DC converter comprises at least one solid-state rechargeable battery (B1, B2) for storing energy for the DC-DC conversion and an output capacitor (C2).

  1. Experimental research on charging characteristics of a pressure-controlled VRLA battery in high-temperature environments

    Institute of Scientific and Technical Information of China (English)

    Hua ZHU; Jin-jun TAN; Zhang-lu XU; Ji-sen XU

    2009-01-01

    Valve-regulated-lead-acid (VRLA) battery charging performed in high-temperature environments is extremely risky under overcharge conditions, and may lead to a subsequent thermal runaway. A new pressure-controlled charging method was adopted and the charging characteristics of the pressure-controlled VRLA battery in high-temperature environments were ex-perimentally studied. The concept was tested in a large temperature gradient to obtain more details about the effects of users' accustomed charging and discharging modes on battery capacity.' The premature capacity loss (PCL) phenomenon under high temperature exposure was analyzed. The results showed that the capacity loss could be recovered by charging using a large current.

  2. Battery State-of-Charge and Parameter Estimation Algorithm Based on Kalman Filter

    DEFF Research Database (Denmark)

    Dragicevic, Tomislav; Sucic, Stjepan; Guerrero, Josep M.

    2013-01-01

    on operating conditions, momentary replenishment and a number of past charge/discharge cycles. A good indicator for the quality of overall customer service in any battery based application is the availability and reliability of these informations, as they point out important runtime variables...... such as the actual state of charge (SOC) and state of health (SOH). Therefore, a modern battery management systems (BMSs) should incorporate functions that accommodate real time tracking of these nonlinearities. For that purpose, Kalman filter based algorithms emerged as a convenient solution due to their ability...

  3. Monitoring and control system of charging batteries connected to a photovoltaic panel

    Science.gov (United States)

    Idzkowski, Adam; Leoniuk, Katarzyna; Walendziuk, Wojciech; Budzynski, Lukasz

    2015-09-01

    In this paper the off-grid photovoltaic system consisting of a PV panel, MMPT charge controller and battery is described. The realization of a laboratory stand for charging or discharging batteries is presented. Original monitoring and control system, which is based on LabVIEW software and LabJack DAQ device, has been built. Data acquisition part, arithmetic part and front panel of program created in LabVIEW are described. Some problems with implementation of this system, providing the monitoring of electrical parameters, are mentioned.

  4. Optimal battery charging, Part I: Minimizing time-to-charge, energy loss, and temperature rise for OCV-resistance battery model

    Science.gov (United States)

    Abdollahi, A.; Han, X.; Avvari, G. V.; Raghunathan, N.; Balasingam, B.; Pattipati, K. R.; Bar-Shalom, Y.

    2016-01-01

    In this paper we present a closed-form solution to the problem of optimally charging a Li-ion battery. A combination of three cost functions is considered as the objective function: time-to-charge (TTC), energy losses (EL), and a temperature rise index (TRI). First, we consider the cost function of the optimization problem as a weighted sum of TTC and EL. We show that the optimal charging strategy in this case is the well-known Constant Current-Constant Voltage (CC-CV) policy with the value of the current in the CC stage being a function of the ratio of weighting on TTC and EL and of the resistance of the battery. Then, we extend the cost function to a weighted sum of TTC, EL and TRI and derive an analytical solution for the problem. It is shown that the analytical solution can be approximated by a CC-CV with the value of current in the CC stage being a function of ratio of weighting on TTC and EL, resistance of the battery and the effective thermal resistance.

  5. Photovoltaic battery & charge controller market & applications survey. An evaluation of the photovoltaic system market for 1995

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, R.L.; Turpin, J.F.; Corey, G.P. [and others

    1996-12-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Battery Analysis and Evaluation Department and the Photovoltaic System Assistance Center of Sandia National Laboratories (SNL) initiated a U.S. industry-wide PV Energy Storage System Survey. Arizona State University (ASU) was contracted by SNL in June 1995 to conduct the survey. The survey included three separate segments tailored to: (a) PV system integrators, (b) battery manufacturers, and (c) PV charge controller manufacturers. The overall purpose of the survey was to: (a) quantify the market for batteries shipped with (or for) PV systems in 1995, (b) quantify the PV market segments by battery type and application for PV batteries, (c) characterize and quantify the charge controllers used in PV systems, (d) characterize the operating environment for energy storage components in PV systems, and (e) estimate the PV battery market for the year 2000. All three segments of the survey were mailed in January 1996. This report discusses the purpose, methodology, results, and conclusions of the survey.

  6. Estimating the state of charge of MH-Ni batteries by measuring their stable internal pressure

    Science.gov (United States)

    Zhang, Jian; Shao, Guangjie; Guo, Weiwen; Lou, Yuwan; Xia, Baojia

    2017-03-01

    Nickel metal hydride (MH-Ni) batteries are widely used in hybrid electric vehicles (HEVs). Estimating a battery's state of charge (SOC) remains challenging in practical applications, and it is also the core technology. Because MH-Ni batteries exhibit high rates of self-discharge and have flat and broad charge-discharge voltage plateaus, the estimation of their SOC through their voltage, current, internal resistance, and temperature is not accurate and has a large cumulative error. In this study, a new method for estimating SOC based on battery's stable internal pressure is proposed using the one-to-one correspondence between the hydrogen equilibrium pressure and the reversible hydrogen-storage capacity described by the pressure-concentration-isotherm (P-C-T) curves of hydrogen storage alloys. The actual SOC and the stable internal pressure of the battery have a one-to-one correspondence after the battery was stored at different temperatures and SOCs, and this relationship is maintained after different cycling number and after four years of storage.

  7. State of Charge Estimation of Lithium-Ion Batteries Using an Adaptive Cubature Kalman Filter

    Directory of Open Access Journals (Sweden)

    Bizhong Xia

    2015-06-01

    Full Text Available Accurate state of charge (SOC estimation is of great significance for a lithium-ion battery to ensure its safe operation and to prevent it from over-charging or over-discharging. However, it is difficult to get an accurate value of SOC since it is an inner sate of a battery cell, which cannot be directly measured. This paper presents an Adaptive Cubature Kalman filter (ACKF-based SOC estimation algorithm for lithium-ion batteries in electric vehicles. Firstly, the lithium-ion battery is modeled using the second-order resistor-capacitor (RC equivalent circuit and parameters of the battery model are determined by the forgetting factor least-squares method. Then, the Adaptive Cubature Kalman filter for battery SOC estimation is introduced and the estimated process is presented. Finally, two typical driving cycles, including the Dynamic Stress Test (DST and New European Driving Cycle (NEDC are applied to evaluate the performance of the proposed method by comparing with the traditional extended Kalman filter (EKF and cubature Kalman filter (CKF algorithms. Experimental results show that the ACKF algorithm has better performance in terms of SOC estimation accuracy, convergence to different initial SOC errors and robustness against voltage measurement noise as compared with the traditional EKF and CKF algorithms.

  8. Performance characteristics of a battery charger and state-of-charge indicator

    Science.gov (United States)

    Edwards, D.; Klein, J.

    1984-01-01

    A battery charge/state of charge indicator (BC/SCI) system for electric vehicle use was developed. The original and subsequent objectives for the BC/SCI and the rationale for those objectives are described. The requirements generated from the objectives are listed and a description of the BC/SCI is provided. The power section problem, the tests, and the test results are discussed.

  9. State of Charge Estimation Using the Extended Kalman Filter for Battery Management Systems Based on the ARX Battery Model

    Directory of Open Access Journals (Sweden)

    Hongjie Wu

    2013-01-01

    Full Text Available State of charge (SOC is a critical factor to guarantee that a battery system is operating in a safe and reliable manner. Many uncertainties and noises, such as fluctuating current, sensor measurement accuracy and bias, temperature effects, calibration errors or even sensor failure, etc. pose a challenge to the accurate estimation of SOC in real applications. This paper adds two contributions to the existing literature. First, the auto regressive exogenous (ARX model is proposed here to simulate the battery nonlinear dynamics. Due to its discrete form and ease of implemention, this straightforward approach could be more suitable for real applications. Second, its order selection principle and parameter identification method is illustrated in detail in this paper. The hybrid pulse power characterization (HPPC cycles are implemented on the 60AH LiFePO4 battery module for the model identification and validation. Based on the proposed ARX model, SOC estimation is pursued using the extended Kalman filter. Evaluation of the adaptability of the battery models and robustness of the SOC estimation algorithm are also verified. The results indicate that the SOC estimation method using the Kalman filter based on the ARX model shows great performance. It increases the model output voltage accuracy, thereby having the potential to be used in real applications, such as EVs and HEVs.

  10. Comparative study of a small size wind generation system efficiency for battery charging

    Directory of Open Access Journals (Sweden)

    Mayouf Messaoud

    2013-01-01

    Full Text Available This paper presents an energetic comparison between two control strategies of a small size wind generation system for battery charging. The output voltage of the direct drive PMSG is connected to the battery through a switch mode rectifier. A DC-DC boost converter is used to regulate the battery bank current in order to achieve maximum power from the wind. A maximum powertracking algorithm calculates the current command that corresponds to maximum power output of the turbine. The DC-DC converter uses this current to calculate the duty cycle witch is necessary to control the pulse width modulated (PWM active switching device (IGPT. The system overview and modeling are presented including characteristics of wind turbine, generator, batteries, power converter, control system, and supervisory system. A simulation of the system is performed using MATLAB/SIMULINK.

  11. Prediction Model of Battery State of Charge and Control Parameter Optimization for Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Bambang Wahono

    2015-07-01

    Full Text Available This paper presents the construction of a battery state of charge (SOC prediction model and the optimization method of the said model to appropriately control the number of parameters in compliance with the SOC as the battery output objectives. Research Centre for Electrical Power and Mechatronics, Indonesian Institute of Sciences has tested its electric vehicle research prototype on the road, monitoring its voltage, current, temperature, time, vehicle velocity, motor speed, and SOC during the operation. Using this experimental data, the prediction model of battery SOC was built. Stepwise method considering multicollinearity was able to efficiently develops the battery prediction model that describes the multiple control parameters in relation to the characteristic values such as SOC. It was demonstrated that particle swarm optimization (PSO succesfully and efficiently calculated optimal control parameters to optimize evaluation item such as SOC based on the model.

  12. Battery pack state of charge balancing algorithm for cascaded H-Bridge multilevel converters

    DEFF Research Database (Denmark)

    Máthé, Lászlo; Burlacu, Paul Dan; Schaltz, Erik

    2016-01-01

    For most of the Multilevel Converter (MC) applications a commonly discussed issue is the maintenance of balance between the energy storage elements from the SubModules (SM). In applications where a battery pack is also part of the SM storage, such as STATCOMs or motor drives, the SM voltage...... is not in linear relation with the State Of Charge (SOC) of the entire battery; thus, the balancing becomes more cumbersome. A method to balance the SOC of the battery packs in a system using cascaded H-Bridge is proposed in this paper. The method uses nearest level control followed by sorting and selection based...... on the SOC of the battery packs. Based on the simulation results the number of switching is reduced considerably compared to the method where the phase shifted PWM is used. In addition, the time needed to achieve the balanced SOC is also reduced. The proposed method has been verified through experiments...

  13. Design Considerations for Wireless Charging Systems with an Analysis of Batteries

    Directory of Open Access Journals (Sweden)

    Zhenshi Wang

    2015-09-01

    Full Text Available Three criteria, including charging time, effective charging capacity and charging energy efficiency, are introduced to evaluate the CC (constant current and CC/CV (constant current/constant voltage charging strategies. Because the CC strategy presents a better performance and most resonant topologies have the CC characteristic, the CC strategy is more suitable for the design of wireless charging systems than the CC/CV strategy. Then, the state space model of the receiver is built to study the system dynamic characteristics, and the design of nonuse output filter capacitors is proposed, which can improve the system power density and avoid the drop in efficiency caused by capacitor degradation. At last, an electrochemical impedance spectrum (EIS based analysis method is introduced to validate that the design without output filter capacitors has no effects on the battery characteristics when the charging frequency is higher than 460 Hz. A prototype is fabricated to verify our research results.

  14. Safe and fast-charging Li-ion battery with long shelf life for power applications

    Science.gov (United States)

    Zaghib, K.; Dontigny, M.; Guerfi, A.; Charest, P.; Rodrigues, I.; Mauger, A.; Julien, C. M.

    We report a Li-ion battery that can be charged within few minutes, passes the safety tests, and has a very long shelf life. The active materials are nanoparticles of LiFePO 4 (LFP) and Li 4Ti 5O 12 (LTO) for the positive and negative electrodes, respectively. The LiFePO 4 particles are covered with 2 wt.% carbon to optimize the electrical conductivity, but not the Li 4Ti 5O 12 particles. The electrolyte is the usual carbonate solvent. The binder is a water-soluble elastomer. The "18650" battery prepared under such conditions delivers a capacity of 800 mAh. It retains full capacity after 20,000 cycles performed at charge rate 10C (6 min), discharge rate 5C (12 min), and retains 95% capacity after 30,000 cycles at charge rate 15C (4 mn) and discharge rate 5C both at 100% DOD and 100% SOC.

  15. Polyoxometalate active charge-transfer material for mediated redox flow battery

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Travis Mark; Hudak, Nicholas; Staiger, Chad; Pratt, Harry

    2017-01-17

    Redox flow batteries including a half-cell electrode chamber coupled to a current collecting electrode are disclosed herein. In a general embodiment, a separator is coupled to the half-cell electrode chamber. The half-cell electrode chamber comprises a first redox-active mediator and a second redox-active mediator. The first redox-active mediator and the second redox-active mediator are circulated through the half-cell electrode chamber into an external container. The container includes an active charge-transfer material. The active charge-transfer material has a redox potential between a redox potential of the first redox-active mediator and a redox potential of the second redox-active mediator. The active charge-transfer material is a polyoxometalate or derivative thereof. The redox flow battery may be particularly useful in energy storage solutions for renewable energy sources and for providing sustained power to an electrical grid.

  16. ESTIMATION METHOD ON THE BATTERY STATE OF CHARGE FOR HYBRID ELECTRIC VEHICLE

    Institute of Scientific and Technical Information of China (English)

    QIANG Jiaxi; AO Guoqiang; YANG Lin

    2008-01-01

    A combined algorithm for battery state of charge (SOC) estimation is proposed to solve the critical issue of hybrid electric vehicle (HEV). To obtain a more accurate SOC, both coulomb-accumulation and battery resistance-capacitor (RC) model are weighted combined to compensate the deficiencies of individual methods. In order to solve the key issue of coulomb-accumulation, the battery thermal model is used. Based on the principle of energy conservation, the heat generated from battery charge and discharge process is converted into the equivalent electricity to calculate charge and discharge efficiency under variable current. The extended Kalman filter (EKF) as a closed loop algorithm is applied to estimate the parameters of resistance-capacitor model. The input variables do not increase much computing difficulty. The proposed combined algorithm is implemented by adjusting the weighting factor of coulomb- accumulation and resistance-capacitor model. In the end, four different methods including Ah-efficiency, Ah-Equip, RC-SOC and Combined-SOC are compared in federal testing procedure (FTP) drive cycle. The experiment results show that the proposed method has good robustness and high accuracy which is suitable for HEV application.

  17. Kalman-variant estimators for state of charge in lithium-sulfur batteries

    DEFF Research Database (Denmark)

    Propp, Karsten; Auger, Daniel J.; Fotouhi, Abbas;

    2017-01-01

    Lithium-sulfur batteries are now commercially available, offering high specific energy density, low production costs and high safety. However, there is no commercially-available battery management system for them, and there are no published methods for determining state of charge in situ...... practical experimentation, considering both a pulse-discharge test and a test based on the New European Driving Cycle (NEDC). Experimentation is carried out at a constant temperature, mirroring the environment expected in the authors' target automotive application. It is shown that the estimators, which...

  18. State of charge modeling of lithium-ion batteries using dual exponential functions

    Science.gov (United States)

    Kuo, Ting-Jung; Lee, Kung-Yen; Huang, Chien-Kang; Chen, Jau-Horng; Chiu, Wei-Li; Huang, Chih-Fang; Wu, Shuen-De

    2016-05-01

    A mathematical model is developed by fitting the discharging curve of LiFePO4 batteries and used to investigate the relationship between the state of charge and the closed-circuit voltage. The proposed mathematical model consists of dual exponential terms and a constant term which can fit the characteristics of dual equivalent RC circuits closely, representing a LiFePO4 battery. One exponential term presents the stable discharging behavior and the other one presents the unstable discharging behavior and the constant term presents the cut-off voltage.

  19. Effect of extreme temperatures on battery charging and performance of electric vehicles

    Science.gov (United States)

    Lindgren, Juuso; Lund, Peter D.

    2016-10-01

    Extreme temperatures pose several limitations to electric vehicle (EV) performance and charging. To investigate these effects, we combine a hybrid artificial neural network-empirical Li-ion battery model with a lumped capacitance EV thermal model to study how temperature will affect the performance of an EV fleet. We find that at -10 °C, the self-weighted mean battery charging power (SWMCP) decreases by 15% compared to standard 20 °C temperature. Active battery thermal management (BTM) during parking can improve SWMCP for individual vehicles, especially if vehicles are charged both at home and at workplace; the median SWMCP is increased by over 30%. Efficiency (km/kWh) of the vehicle fleet is maximized when ambient temperature is close to 20 °C. At low (-10 °C) and high (+40 °C) ambient temperatures, cabin preconditioning and BTM during parking can improve the median efficiency by 8% and 9%, respectively. At -10 °C, preconditioning and BTM during parking can also improve the fleet SOC by 3-6%-units, but this also introduces a "base" load of around 140 W per vehicle. Finally, we observe that the utility of the fleet can be increased by 5%-units by adding 3.6 kW chargers to workplaces, but further improved charging infrastructure would bring little additional benefit.

  20. Charging/Discharging Nanomorphology Asymmetry and Rate-Dependent Capacity Degradation in Li-Oxygen Battery.

    Science.gov (United States)

    Kushima, Akihiro; Koido, Tetsuya; Fujiwara, Yoshiya; Kuriyama, Nariaki; Kusumi, Nobuhiro; Li, Ju

    2015-12-09

    Liquid-cell in situ transmission electron microscopy (TEM) observations of the charge/discharge reactions of nonaqueous Li-oxygen battery cathode were performed with ∼5 nm spatial resolution. The discharging reaction occurred at the interface between the electrolyte and the reaction product, whereas in charging, the reactant was decomposed at the contact with the gold current collector, indicating that the lithium ion diffusivity/electronic conductivity is the limiting factor in discharging/charging, respectively, which is a root cause for the asymmetry in discharging/charging overpotential. Detachments of lithium oxide particles from the current collector into the liquid electrolyte are frequently seen when the cell was discharged at high overpotentials, with loss of active materials into liquid electrolyte ("flotsam") under minute liquid flow agitation, as the lithium peroxide dendritic trees are shown to be fragile mechanically and electrically. Our result implies that enhancing the binding force between the reaction products and the current collector to maintain robust electronic conduction is a key for improving the battery performance. This work demonstrated for the first time the in situ TEM observation of a three-phase-reaction involving gold electrode, lithium oxides, DMSO electrolyte and lithium salt, and O2 gas. The technique described in this work is not limited to Li-oxygen battery but also can be potentially used in other applications involving gas/liquid/solid electrochemical reactions.

  1. System and Battery Charge Control for PV-Powered AC Lighting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kern, G.

    1999-04-01

    This report reviews a number of issues specific to stand-alone AC lighting systems. A review of AC lighting technology is presented, which discusses the advantages and disadvantages of various lamps. The best lamps for small lighting systems are compact fluorescent. The best lamps for intermediate-size systems are high- or low-pressure sodium. Specifications for battery charging and load control are provided with the goal of achieving lamp lifetimes on the order of 16,000 to 24,000 hours and battery lifetimes of 4 to 5 years. A rough estimate of the potential domestic and global markets for stand-alone AC lighting systems is presented. DC current injection tests were performed on high-pressure sodium lamps and the test results are presented. Finally, a prototype system was designed and a prototype system controller (with battery charger and DC/AC inverter) was developed and built.

  2. Heme biomolecule as redox mediator and oxygen shuttle for efficient charging of lithium-oxygen batteries

    Science.gov (United States)

    Ryu, Won-Hee; Gittleson, Forrest S.; Thomsen, Julianne M.; Li, Jinyang; Schwab, Mark J.; Brudvig, Gary W.; Taylor, André D.

    2016-10-01

    One of the greatest challenges with lithium-oxygen batteries involves identifying catalysts that facilitate the growth and evolution of cathode species on an oxygen electrode. Heterogeneous solid catalysts cannot adequately address the problematic overpotentials when the surfaces become passivated. However, there exists a class of biomolecules which have been designed by nature to guide complex solution-based oxygen chemistries. Here, we show that the heme molecule, a common porphyrin cofactor in blood, can function as a soluble redox catalyst and oxygen shuttle for efficient oxygen evolution in non-aqueous Li-O2 batteries. The heme's oxygen binding capability facilitates battery recharge by accepting and releasing dissociated oxygen species while benefiting charge transfer with the cathode. We reveal the chemical change of heme redox molecules where synergy exists with the electrolyte species. This study brings focus to the rational design of solution-based catalysts and suggests a sustainable cross-link between biomolecules and advanced energy storage.

  3. Electrochemical-acoustic time of flight: in operando correlation of physical dynamics with battery charge and health

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, AG; Bhadra, S; Hertzberg, BJ; Gjeltema, PJ; Goy, A; Fleischer, JW; Steingart, DA

    2015-01-01

    We demonstrate that a simple acoustic time-of-flight experiment can measure the state of charge and state of health of almost any closed battery. An acoustic conservation law model describing the state of charge of a standard battery is proposed, and experimental acoustic results verify the simulated trends; furthermore, a framework relating changes in sound speed, via density and modulus changes, to state of charge and state of health within a battery is discussed. Regardless of the chemistry, the distribution of density within a battery must change as a function of state of charge and, along with density, the bulk moduli of the anode and cathode changes as well. The shifts in density and modulus also change the acoustic attenuation in a battery. Experimental results indicating both state-of-charge determination and irreversible physical changes are presented for two of the most ubiquitous batteries in the world, the lithium-ion 18650 and the alkaline LR6 (AA). Overall, a one-or two-point acoustic measurement can be related to the interaction of a pressure wave at multiple discrete interfaces within a battery, which in turn provides insights into state of charge, state of health, and mechanical evolution/degradation.

  4. Nonlinear Dynamics and Bifurcation Analysis of a Boost Converter for Battery Charging in Photovoltaic Applications

    Science.gov (United States)

    Al-Hindawi, Mohammed M.; Abusorrah, Abdullah; Al-Turki, Yusuf; Giaouris, Damian; Mandal, Kuntal; Banerjee, Soumitro

    Photovoltaic (PV) systems with a battery back-up form an integral part of distributed generation systems and therefore have recently attracted a lot of interest. In this paper, we consider a system of charging a battery from a PV panel through a current mode controlled boost dc-dc converter. We analyze its complete nonlinear/nonsmooth dynamics, using a piecewise model of the converter and realistic nonlinear v-i characteristics of the PV panel. Through this study, it is revealed that system design without taking into account the nonsmooth dynamics of the converter combined with the nonlinear v-i characteristics of the PV panel can lead to unpredictable responses of the overall system with high current ripple and other undesirable phenomena. This analysis can lead to better designed converters that can operate under a wide variation of the solar irradiation and the battery's state of charge. We show that the v-i characteristics of the PV panel combined with the battery's output voltage variation can increase or decrease the converter's robustness, both under peak current mode control and average current mode control. We justify the observation in terms of the change in the discrete-time map caused by the nonlinear v-i characteristics of the PV panel. The theoretical results are validated experimentally.

  5. System dynamic model and charging control of lead-acid battery for stand-alone solar PV system

    KAUST Repository

    Huang, B.J.

    2010-05-01

    The lead-acid battery which is widely used in stand-alone solar system is easily damaged by a poor charging control which causes overcharging. The battery charging control is thus usually designed to stop charging after the overcharge point. This will reduce the storage energy capacity and reduce the service time in electricity supply. The design of charging control system however requires a good understanding of the system dynamic behaviour of the battery first. In the present study, a first-order system dynamics model of lead-acid battery at different operating points near the overcharge voltage was derived experimentally, from which a charging control system based on PI algorithm was developed using PWM charging technique. The feedback control system for battery charging after the overcharge point (14 V) was designed to compromise between the set-point response and the disturbance rejection. The experimental results show that the control system can suppress the battery voltage overshoot within 0.1 V when the solar irradiation is suddenly changed from 337 to 843 W/m2. A long-term outdoor test for a solar LED lighting system shows that the battery voltage never exceeded 14.1 V for the set point 14 V and the control system can prevent the battery from overcharging. The test result also indicates that the control system is able to increase the charged energy by 78%, as compared to the case that the charging stops after the overcharge point (14 V). © 2010 Elsevier Ltd. All rights reserved.

  6. Evaluation of Model Based State of Charge Estimation Methods for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Zhongyue Zou

    2014-08-01

    Full Text Available Four model-based State of Charge (SOC estimation methods for lithium-ion (Li-ion batteries are studied and evaluated in this paper. Different from existing literatures, this work evaluates different aspects of the SOC estimation, such as the estimation error distribution, the estimation rise time, the estimation time consumption, etc. The equivalent model of the battery is introduced and the state function of the model is deduced. The four model-based SOC estimation methods are analyzed first. Simulations and experiments are then established to evaluate the four methods. The urban dynamometer driving schedule (UDDS current profiles are applied to simulate the drive situations of an electrified vehicle, and a genetic algorithm is utilized to identify the model parameters to find the optimal parameters of the model of the Li-ion battery. The simulations with and without disturbance are carried out and the results are analyzed. A battery test workbench is established and a Li-ion battery is applied to test the hardware in a loop experiment. Experimental results are plotted and analyzed according to the four aspects to evaluate the four model-based SOC estimation methods.

  7. State of Charge Dependent Mechanical Integrity Behavior of 18650 Lithium-ion Batteries

    OpenAIRE

    Jun Xu; Binghe Liu; Dayong Hu

    2016-01-01

    Understanding the mechanism of mechanical deformation/stress-induced electrical failure of lithium–ion batteries (LIBs) is important in crash-safety design of power LIBs. The state of charge (SOC) of LIBs is a critical factor in their electrochemical performance; however, the influence of SOC with mechanical integrity of LIBs remains unclear. This study investigates the electrochemical failure behaviors of LIBs with various SOCs under both compression and bending loadings, underpinned by the ...

  8. Device and Method for Continuously Equalizing the Charge State of Lithium Ion Battery Cells

    Science.gov (United States)

    Schwartz, Paul D. (Inventor); Martin, Mark N. (Inventor); Roufberg, Lewis M. (Inventor)

    2015-01-01

    A method of equalizing charge states of individual cells in a battery includes measuring a previous cell voltage for each cell, measuring a previous shunt current for each cell, calculating, based on the previous cell voltage and the previous shunt current, an adjusted cell voltage for each cell, determining a lowest adjusted cell voltage from among the calculated adjusted cell voltages, and calculating a new shunt current for each cell.

  9. Short Range Wireless Power Transfer (WPT) for UAV/UAS Battery Charging - Phase 1

    Science.gov (United States)

    2014-12-01

    Power Satellites and Microwave Power Trans- mission in Japan,” IEEE Microwave Magazine , December 2002, pp. 36-45. [6] C. Balanis, Antenna Theory...numerous advantages of wireless power transfer (WPT) for many remote energy source and battery charging applications. The approach was first proposed for...antennas rather than coils, and the energy is transferred by a propagating wave, as depicted in Figure 3. The received power at antenna separation d is

  10. Electric vehicle battery charging algorithm using PMSM windings and an inverter as an active rectifier

    DEFF Research Database (Denmark)

    Zaja, Mario; Oprea, Matei-lon; Suárez, Carlos Gómez

    2014-01-01

    A major setback for large scale electric vehicle market expansion compared to their internal combustion competitors consists in their high price and low driving range. One way of reducing the cost, dimensions and mass of electric vehicles is to eliminate the dedicated AC/DC converter used...... for battery charging. Alternatively, charging could be done using the motor windings as grid side inductors and controlling the inverter to operate as an active boost rectifier. The challenge in this approach is the unequal phase inductances which depend on the rotor position. Another problem appears when...

  11. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jianming; Engelhard, Mark H.; Mei, Donghai; Jiao, Shuhong; Polzin, Bryant J.; Zhang, Ji-Guang; Xu, Wu

    2017-03-01

    Lithium (Li) metal battery is an attractive energy storage system owing to the ultrahigh specific capacity and the lowest redox potential of Li metal anode. However, safety concern associated with dendrite growth and limited cycle life especially at a high charge current density are two critical challenges hindering the practical applications of rechargeable Li metal batteries. Here, we report for the first time that an optimal amount (0.05 M) of LiPF6 as additive in the LiTFSI-LiBOB dual-salt/carbonate-based electrolyte can significantly enhance the charging capability and the long-term cycle life of Li metal batteries with a moderately high cathode loading of 1.75 mAh cm-2. Unprecedented stable-cycling (97.1% capacity retention after 500 cycles) along with very limited increase in electrode over-potential has been achieved at a high current density of 1.75 mA cm-2. This unparalleled fast charging and stable cycling performance is contributed from both the stabilized Al cathode current collector, and, more importantly, the robust and conductive SEI layer formed on Li metal anode in the presence of the LiPF6 additive.

  12. High rate partial-state-of-charge operation of VRLA batteries

    Science.gov (United States)

    Moseley, Patrick T.

    The world market for 12 V SLI batteries currently stands at around US$ 12 billion. The lack of a serious challenge from other battery types has allowed lead-acid products to serve this market exclusively, with minimal demand for product improvement through research and development, and a sharp competition has, over time, cut sales prices to commodity levels. The electrochemical storage of energy in automobiles now faces the possibility of a major change, in the form of the proposed 36/42 V electrical systems for vehicles that remain primarily powered by internal combustion engines, and of the hybrid electric vehicle. The duty cycle for these two applications sees the battery held at a partial-state-of-charge (PSoC) for most of its life and required to supply, and to accept, charge at unprecedented rates. The remarkable advances achieved with VRLA battery technology for electric vehicles during the past 8-10 years will be of only passing value in overcoming the challenges posed by high rate PSoC service in 36/42 V and HEV duty. This is because the failure modes seen in PSoC are quite different from those faced in EV (deep cycle) use. The replacement of the 12 V SLI will not take place rapidly. However, if the applications which take its place are to be satisfied by a lead-acid product (probably VRLA), rather than by a battery of a different chemistry, a program of development as successful as that mounted for deep cycle duty will be required. The present phase of the Advanced Lead-Acid Battery Consortium (ALABC) R&D program has begun to shed light on those aspects of the function of a VRLA battery which currently limit its life in high rate PSoC duty. The program is also pursuing the several technologies which show promise of overcoming those limits, including multiple tab plate design, mass transport facilitation and minor component (both beneficial and detrimental impurity) management. This paper presents a brief review of the changes which are taking place in

  13. Multi-band reflectance spectroscopy of carbonaceous lithium iron phosphate battery electrodes versus state of charge

    Science.gov (United States)

    Norris, R.; Iyer, K.; Chabot, V.; Nieva, P.; Yu, A.; Khajepour, A.; Wang, J.

    2014-03-01

    This study aims to expand the body of knowledge about the optical properties of battery cathode materials. Although some studies have been conducted on the optical properties of Lithium Iron Phosphate (LiFePO4), to the authors' knowledge, this is the first study of its kind on electrodes extracted from commercially available LiFePO4 batteries. The use of Vis/NIR and FTIR spectroscopy provides for a methodology to study the optical properties of LiFePO4 and may allow for the characterization of other properties such as particle size and the proportions of LiFePO4 versus FePO4 material. Knowledge of these properties is important for the development of a mechanism to measure the state-of charge (SOC) in lithium ion batteries. These properties are also important in a host of other applications including battery modeling and materials characterization. Cylindrical LiFePO4 batteries (from A123 Systems Inc.) were acquired from the commercial market and charged to 10 different states between 30% and 80% of their nominal capacity using a constant-current, constant-voltage (CCCV) cycling method. Visual inspection of the extracted electrodes shows that the LiFePO4/C-cathodes display subtle changes in color (shades of grey) with respect to SOC. Vis/NIR measurements support the visual observation of uniform intensity variations versus SOC. FTIR measurements show an absorbance signature that varies with SOC and is distinct from results found in the literature for similar LiFePO4-based material systems, supporting the uniqueness of the absorbance fingerprint.

  14. Model for charge/discharge-rate-dependent plastic flow in amorphous battery materials

    Science.gov (United States)

    Khosrownejad, S. M.; Curtin, W. A.

    2016-09-01

    Plastic flow is an important mechanism for relaxing stresses that develop due to swelling/shrinkage during charging/discharging of battery materials. Amorphous high-storage-capacity Li-Si has lower flow stresses than crystalline materials but there is evidence that the plastic flow stress depends on the conditions of charging and discharging, indicating important non-equilibrium aspects to the flow behavior. Here, a mechanistically-based constitutive model for rate-dependent plastic flow in amorphous materials, such as LixSi alloys, during charging and discharging is developed based on two physical concepts: (i) excess energy is stored in the material during electrochemical charging and discharging due to the inability of the amorphous material to fully relax during the charging/discharging process and (ii) this excess energy reduces the barriers for plastic flow processes and thus reduces the applied stresses necessary to cause plastic flow. The plastic flow stress is thus a competition between the time scales of charging/discharging and the time scales of glassy relaxation. The two concepts, as well as other aspects of the model, are validated using molecular simulations on a model Li-Si system. The model is applied to examine the plastic flow behavior of typical specimen geometries due to combined charging/discharging and stress history, and the results generally rationalize experimental observations.

  15. Battery Electric Vehicle Driving and Charging Behavior Observed Early in The EV Project

    Energy Technology Data Exchange (ETDEWEB)

    John Smart; Stephen Schey

    2012-04-01

    As concern about society's dependence on petroleum-based transportation fuels increases, many see plug-in electric vehicles (PEV) as enablers to diversifying transportation energy sources. These vehicles, which include plug-in hybrid electric vehicles (PHEV), range-extended electric vehicles (EREV), and battery electric vehicles (BEV), draw some or all of their power from electricity stored in batteries, which are charged by the electric grid. In order for PEVs to be accepted by the mass market, electric charging infrastructure must also be deployed. Charging infrastructure must be safe, convenient, and financially sustainable. Additionally, electric utilities must be able to manage PEV charging demand on the electric grid. In the Fall of 2009, a large scale PEV infrastructure demonstration was launched to deploy an unprecedented number of PEVs and charging infrastructure. This demonstration, called The EV Project, is led by Electric Transportation Engineering Corporation (eTec) and funded by the U.S. Department of Energy. eTec is partnering with Nissan North America to deploy up to 4,700 Nissan Leaf BEVs and 11,210 charging units in five market areas in Arizona, California, Oregon, Tennessee, and Washington. With the assistance of the Idaho National Laboratory, eTec will collect and analyze data to characterize vehicle consumer driving and charging behavior, evaluate the effectiveness of charging infrastructure, and understand the impact of PEV charging on the electric grid. Trials of various revenue systems for commercial and public charging infrastructure will also be conducted. The ultimate goal of The EV Project is to capture lessons learned to enable the mass deployment of PEVs. This paper is the first in a series of papers documenting the progress and findings of The EV Project. This paper describes key research objectives of The EV Project and establishes the project background, including lessons learned from previous infrastructure deployment and PEV

  16. On state-of-charge determination for lithium-ion batteries

    Science.gov (United States)

    Li, Zhe; Huang, Jun; Liaw, Bor Yann; Zhang, Jianbo

    2017-04-01

    Accurate estimation of state-of-charge (SOC) of a battery through its life remains challenging in battery research. Although improved precisions continue to be reported at times, almost all are based on regression methods empirically, while the accuracy is often not properly addressed. Here, a comprehensive review is set to address such issues, from fundamental principles that are supposed to define SOC to methodologies to estimate SOC for practical use. It covers topics from calibration, regression (including modeling methods) to validation in terms of precision and accuracy. At the end, we intend to answer the following questions: 1) can SOC estimation be self-adaptive without bias? 2) Why Ah-counting is a necessity in almost all battery-model-assisted regression methods? 3) How to establish a consistent framework of coupling in multi-physics battery models? 4) To assess the accuracy in SOC estimation, statistical methods should be employed to analyze factors that contribute to the uncertainty. We hope, through this proper discussion of the principles, accurate SOC estimation can be widely achieved.

  17. Understanding the charge/discharge mechanisms and passivation reactions in Na-O2 batteries

    Science.gov (United States)

    Landa-Medrano, Imanol; Frith, James T.; Ruiz de Larramendi, Idoia; Lozano, Iñigo; Ortiz-Vitoriano, Nagore; Garcia-Araez, Nuria; Rojo, Teófilo

    2017-03-01

    Sodium-oxygen batteries are becoming of increasing interest in the research community as they are able to overcome some of the difficulties associated with lithium-oxygen batteries. The interpretation of the processes governing the discharge and charge of these batteries, however, has been under debate since their early development. In this work we combine different electrochemical methods to build up a model of the discharge product formation and decomposition. We initially analyze the formation and decomposition of the discharge products by means of electrochemical impedance spectroscopy. After that, and for the first time, oxygen electrode processes in Na-O2 cells are analyzed by means of electrochemical quartz crystal microbalance experiments. Based on the combination of these two techniques it is possible to evidence the stabilization of the discharge products in the electrolyte prior to their precipitation. The deposition of passivating products that cannot be stripped off during charge is also demonstrated. Cyclic voltammetry experiments at different potential limits further confirm these passivation reactions. In conclusion, this work provides an accurate picture of the mechanism of the Na-O2 cell reactions by combining different electrochemical techniques.

  18. State of Charge Estimation Based on Microscopic Driving Parameters for Electric Vehicle's Battery

    Directory of Open Access Journals (Sweden)

    Enjian Yao

    2013-01-01

    Full Text Available Recently, battery-powered electric vehicle (EV has received wide attention due to less pollution during use, low noise, and high energy efficiency and is highly expected to improve urban air quality and then mitigate energy and environmental pressure. However, the widespread use of EV is still hindered by limited battery capacity and relatively short cruising range. This paper aims to propose a state of charge (SOC estimation method for EV’s battery necessary for route planning and dynamic route guidance, which can help EV drivers to search for the optimal energy-efficient routes and to reduce the risk of running out of electricity before arriving at the destination or charging station. Firstly, by analyzing the variation characteristics of power consumption rate with initial SOC and microscopic driving parameters (instantaneous speed and acceleration, a set of energy consumption rate models are established according to different operation modes. Then, the SOC estimation model is proposed based on the presented EV power consumption model. Finally, by comparing the estimated SOC with the measured SOC, the proposed SOC estimation method is proved to be highly accurate and effective, which can be well used in EV route planning and navigation systems.

  19. Charging operation with high energy efficiency for electric vehicle valve-regulated lead-acid battery system

    Energy Technology Data Exchange (ETDEWEB)

    Ikeya, Tomohiko; Mita, Yuichi; Ishihara, Kaoru [Central Research Inst. of Electric Power Industry (CRIEPI), Komae Res. Lab., Lithium Battery Project, Tokyo (Japan); Sawada, Nobuyuki [Hokkaido Electric Power Co., Sapporo (Japan); Takagi, Sakae; Murakami, Jun-ichi [Tohoku Electric Power Co. Inc., Sendai (Japan); Kobayashi, Kazuyuki [Tokyo Electric Power Co., Yokohama (Japan); Sakabe, Tetsuya [Chubu Electric Power Co., Nagoya (Japan); Kousaka, Eiichi [Hokuriku Electric Power Co., Toyama (Japan); Yoshioka, Haruki [The Kansai Electric Power Co., Osaka (Japan); Kato, Satoru [The Chugoku Electric Power Co., Hiroshima (Japan); Yamashita, Masanori [Shikoku Research Inst. Inc., Takamatsu (Japan); Narisoko, Hayato [The Okinawa Electric Power Co., Naha (Japan); Nishiyama, Kazuo [The Central Electric Power Council, Tokyo (Japan); Adachi, Kazuyuki [Kyushu Electric Power Co., Fukuoka (Japan)

    2000-12-01

    A new, high-energy-efficiency charging operation with as little amount of overcharge as possible is proposed to improve the energy efficiency and the cycle life for an EV valve-regulated lead-acid battery. Under this operation, the EV battery system is charged with 105% of amount of the preceding discharge five out of six times and once with 115% in order that it is fully charged. The cycle lives were estimated using a valve-regulated lead-acid battery system of 12 modules connected in series, by SFUDS79 pattern discharging and measurement of the amount of discharge every 50 cycles. Three-step constant current charging with 115% of amount of the preceding discharge required more than 5 h with the final charging step of more than 210 min, with coulomb efficiency of only 87% and energy efficiency of 74%. On the other hand, under the high-energy-efficiency charging operation, three-step charging with 105% shortens the final charging time to 132 min. It was completed in less than 4 h with coulomb and energy efficiency of 95% and 84%, respectively. This operation increased the energy efficiency from 74% to 83% on average in six charging, and extended the cycle life by about 30% to more than 400 cycles. Decreasing the amount of charge by as much as possible suppressed the corrosion of the grids in the positive plate and the heat evolution in batteries due to shortening of the final charging step. Although the high-energy-efficiency charging operation led to the accumulation of inactive PbSO{sub 4} at the upper part of the negative plate, possibly due to the decreasing amount of overcharge, this operation could prolong the cycle life. Full charging once every six times is though to be effective in suppressing degradation caused by the accumulation of inactive PbSO{sub 4} in the negative plate due to the shortage of charge. (orig.)

  20. An experimental setup for study direct charge battery based on Sr-90

    Science.gov (United States)

    Özkeçeci, S.; Koç, R.

    2017-02-01

    In this paper we present construction and analysis of nuclear micro battery driven by Strontium 90 (Sr-90). Our design based on charge deposition on the plates of a capacitor and polarization of dielectric materials between the plates. In the construction we have used liquid Sr-90 with activity 100 mCi in cylindrical ampoule coiled up by thin film graphene as one plate and Manganase dioxide (MnO2) as other plate of the capacitor. A dielectric material (paper) is inserted between the plates. The high energetic beta particles from the Sr-90 penetrate graphene to produce ionization and then electrons are removed from graphene to dielectric material. Electrons inside the dielectric material cause polarization of dipoles. Consequently the radiation from the isotope produces an external current. We discuss effect of beta particles on dielectrics and electrodes beside advantage and disadvantage of a battery of this type.

  1. State-Of-Charge Estimation of Li-Ion Battery Using Extended Kalman Filter

    Directory of Open Access Journals (Sweden)

    Feng Jin

    2013-07-01

    Full Text Available The Li-ion battery is studied base on its equivalent circuit PNGV model. The model parameters are identified by HPPC test. The discrete state space equation is established according to the model. The basic theory of extended Kalman filter algorithm is studied and then the filtering algorithm is set up under the noisy environments. Finally, a kind of electric car is used for testing under the UDDS driving condition. The difference between the simulation value using extended Kalman filter under the noisy environment and the theoretical value is compared. The result indicated that the extended Kalman filter keeps an excellent precision in state of charge estimation of Li-ion battery and performs well when disturbance happens.

  2. The porous membrane with tunable performance for vanadium flow battery: The effect of charge

    Science.gov (United States)

    Zhao, Yuyue; Yuan, Zhizhang; Lu, Wenjing; Li, Xianfeng; Zhang, Huamin

    2017-02-01

    Porous membranes with different charge on the surface and internal pore walls are prepared via the solvent-responsive layer-by-layer (SR-LBL) method. The effect of charge on the transport properties of different ions through the membranes is investigated in detail. The charge property of prepared membranes is tuned by assembling different charged polyelectrolytes (PEs) on the pore walls and the surface of the porous membranes. The results show that in a vanadium flow battery (VFB), the PE layers assembled on the surfaces (including pore walls) are capable to construct excellent ion transport channels to increase proton conductivity and to tune the ion selectivity via Donnan exclusion effect. Compared with the porous membrane with negative charges (7 bilayers), a VFB single cell assembled with a positively charged membrane (7.5 bilayers) yields a higher coulombic efficiency (98%). The water and ion transfer behavior exhibits a similar tendency. In the negative half-cell, the amount of V3+ gradually increases as cycles proceed and the amount of V2+ stays at a low and stable level. In the positive half-cell, the amount of VO2+ decreases; while VO2+ is accumulated. The imbalance of vanadium ions at both sides induces the discharge capacity fade.

  3. Technical and legal considerations and solutions in the area of battery charging for electric vehicles

    Science.gov (United States)

    Juda, Z.

    2016-09-01

    The issue of protecting health of residents of urbanized areas from the effect of excessive particulate matter and toxic components of car exhaust gases imposes the need of introduction of clean electric vehicles to the market. The increasing market availability of electric vehicles, especially in the segment of short-range (neighborhood) vehicles is followed by development of new and advanced infrastructure solutions. This also applies to the increasingly popular hybrid vehicles PHEV (Plug-in Hybrid Electric Vehicles). However, problems with the existing designs are primarily associated with limited driving range on a single battery charge, the density of charging stations in urban and suburban area, energy system efficiency due to increased electricity demand and the unification of solutions for charging stations, on-board chargers and the necessary accessories. Technical solutions are dependent on many factors, including the type and size of battery in the vehicle and access to power grid with increased load capacity. The article discusses the legal and technical actions outlined in the above directions. It shows the available and planned solutions in this area.

  4. First-principles Study on the Charge Transport Mechanism of Lithium Sulfide (Li2 S) in Lithium-Sulfur Batteries.

    Science.gov (United States)

    Kim, B S Do-Hoon; Lee, M S Byungju; Park, Kyu-Young; Kang, Kisuk

    2016-04-20

    The lithium-sulfur chemistry is regarded as a promising candidate for next-generation battery systems because of its high specific energy (1675 mA h g(-1) ). Although issues such as low cycle stability and power capability of the system remain to be addressed, extensive research has been performed experimentally to resolve these problems. Attaining a fundamental understanding of the reaction mechanism and its reaction product would further spur the development of lithium-sulfur batteries. Here, we investigated the charge transport mechanism of lithium sulfide (Li2 S), a discharge product of conventional lithium-sulfur batteries using first-principles calculations. Our calculations indicate that the major charge transport is governed by the lithium-ion vacancies among various possible charge carriers. Furthermore, the large bandgap and low concentration of electron polarons indicate that the electronic conduction negligibly contributes to the charge transport mechanism in Li2 S.

  5. The impact of range anxiety and home, workplace, and public charging infrastructure on simulated battery electric vehicle lifetime utility

    Science.gov (United States)

    Neubauer, Jeremy; Wood, Eric

    2014-07-01

    Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but have a limited utility due to factors including driver range anxiety and access to charging infrastructure. In this paper we apply NREL's Battery Lifetime Analysis and Simulation Tool for Vehicles (BLAST-V) to examine the sensitivity of BEV utility to range anxiety and different charging infrastructure scenarios, including variable time schedules, power levels, and locations (home, work, and public installations). We find that the effects of range anxiety can be significant, but are reduced with access to additional charging infrastructure. We also find that (1) increasing home charging power above that provided by a common 15 A, 120 V circuit offers little added utility, (2) workplace charging offers significant utility benefits to select high mileage commuters, and (3) broadly available public charging can bring many lower mileage drivers to near-100% utility while strongly increasing the achieved miles of high mileage drivers.

  6. Study on battery state of charge correct algorithm of electric vehicle

    Institute of Scientific and Technical Information of China (English)

    KAN Ping; QIAN Lijun

    2012-01-01

    State of Charge (SOC) is used to adjust the initialization SOC value so as to make electric vehicle simulation results close to real vehicle performance. This paper firstly analyses the battery SOC correct algorithm, then uses ADVISOR which is a electric vehicle simulation software to simulate a hybrid electric car with three different cases of no SOC correct, linear SOC correct and zero delta SOC correct, as well as makes the compare and analysis for those simulation results. In the end, an overall conclusion to SOC correct algorithm is given.

  7. Degradation mechanism of over-charged LiCoO2/mesocarbon microbeads battery during shallow depth of discharge cycling

    Science.gov (United States)

    Zhang, Lingling; Ma, Yulin; Cheng, Xinqun; Cui, Yingzhi; Guan, Ting; Gao, Yunzhi; Du, Chunyu; Yin, Geping; Lin, Feng; Nordlund, Dennis

    2016-10-01

    LiCoO2/mesocarbon microbeads (MCMB) batteries are over-charged to different voltage (4.4 V, 4.5 V, 4.6 V, and 4.7 V, respectively) for ten times, and then are cycled 1000 times for shallow depth of discharge. The morphology, structure, and electrochemical performance of the electrode materials were studied in detail in order to identify the capacity fading mechanism of over-charged battery after long-term cycling. The cycling performances of LiCoO2/MCMB batteries are gradually aggravated with the increase of over-charging voltage and the degradation mechanism is diverse upon the degree of over-charging. The capacity fading after long-term cycling of battery over-charged to 4.6 V or 4.7 V is mainly attributed to the cathodes. Soft X-ray absorption spectroscopy (XAS) demonstrates that the lower valence state of cobalt exists on the surface of the LiCoO2 after serious over-charging (4.6 V or 4.7 V), and cobalt is dissolved then deposited on the anode according to the result of energy dispersive spectrometry (EDS). However, after shallow over-charging (4.4 V or 4.5 V), the capacity deterioration is proposed as the loss of active lithium, presented by the generation of the SEI film on the anode, which is verified by water washed tests.

  8. Influence of state of charge in lead-acid batteries operating in PV systems; Comportamiento no repetitivo de las baterias de plomo-acido operando en sistemas FV.

    Energy Technology Data Exchange (ETDEWEB)

    Vela, N.; Chenlo, F.

    2004-07-01

    Correct determination of the overcharge cut-off voltage is a key point for both the optimal operation and maximum life-time of batteries in photovoltaic (PV) systems. This work presents the results of analysing the influence on charge voltage of different operation conditions, mainly current rate, temperature and state of charge (SOC). From the results obtained we have observed that voltage evolution during a charge process depends on its activation degree of the battery. The battery activation is reached when battery was previously fully charged. So, we can conclude that variation of the charge voltage with time as function of starting point (fully charged or fully discharged) together with current rate and temperature should be taking into account in the battery SOC determination and in the design of charge controllers. (Author)

  9. Mechanised charging stations enable point-to-point service for battery operated buses; Mechanisierte Ladestationen eroeffnen Batteriebussen den Linienbetrieb

    Energy Technology Data Exchange (ETDEWEB)

    Eggers, S. [Gottlob Auwaerter GmbH und Co., Stuttgart (Germany)

    1994-12-31

    Buses operated by an electrical battery do not any longer have a major disadvantage: the relatively short period of use/application. By means of mobile exchange charging stations the batteries of the buses do not have to be recharged for hours at installed charging stations or to be exchanged on a rather complicated way by forklifts. The battery exchange is as easy as filling up a car tank with diesel and can be carried out by the bus-driver himself within a few minutes. (orig.) [Deutsch] Batterie-elektrisch betriebene Busse haben einen gefuerchteten Nachteil verloren: die relativ geringe Einsatzzeit. Durch die mobile Wechsel-/Ladestation muessen die Busse nunmehr nicht mehr stundenlang an fest installierten Ladestationen `nachtanken` oder dort umstaendliche Batteriewechsel mit Hilfe von Gabelstaplern in Kauf nehmen. Der Batteriewechsel ist so einfach wie das Tanken von Dieselkraftstoff und wird von dem Busfahrer sebst in wenigen Minuten vorgenommen. (orig.)

  10. Fast Charge Battery Electric Transit Bus In-Use Fleet Evaluation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Prohaska, Robert; Eudy, Leslie; Kelly, Kenneth

    2016-05-06

    The focus of this interim fleet evaluation is to characterize and evaluate the operating behavior of Foothill Transit's fast charge battery electric buses (BEBs). Future research will compare the BEBs' performance to conventional vehicles. In an effort to better understand the impacts of drive cycle characteristics on advanced vehicle technologies, researchers at the National Renewable Energy Laboratory analyzed over 148,000 km of in-use operational data, including driving and charging events. This analysis provides an unbiased evaluation of advanced vehicle technologies in real-world operation demonstrating the importance of understanding the effects of road grade and heating, ventilating and air conditioning requirements when deploying electric vehicles. The results of this analysis show that the Proterra BE35 demonstrated an operating energy efficiency of 1.34 kWh/km over the data reporting period.

  11. Bio-batteries and bio-fuel cells: leveraging on electronic charge transfer proteins.

    Science.gov (United States)

    Kannan, A M; Renugopalakrishnan, V; Filipek, S; Li, P; Audette, G F; Munukutla, L

    2009-03-01

    Bio-fuel cells are alternative energy devises based on bio-electrocatalysis of natural substrates by enzymes or microorganisms. Here we review bio-fuel cells and bio-batteries based on the recent literature. In general, the bio-fuel cells are classified based on the type of electron transfer; mediated electron transfer and direct electron transfer or electronic charge transfer (ECT). The ECT of the bio-fuel cells is critically reviewed and a variety of possible applications are considered. The technical challenges of the bio-fuel cells, like bioelectrocatalysis, immobilization of bioelectrocatalysts, protein denaturation etc. are highlighted and future research directions are discussed leveraging on the use of electron charge transfer proteins. In addition, the packaging aspects of the bio-fuel cells are also analyzed and the found that relatively little work has been done in the engineering development of bio-fuel cells.

  12. A Wearable Wireless Energy Link for Thin-Film Batteries Charging

    Directory of Open Access Journals (Sweden)

    Giuseppina Monti

    2016-01-01

    Full Text Available A wireless charger for low capacity thin-film batteries is presented. The proposed device consists of a nonradiative wireless resonant energy link and a power management unit. Experimental data referring to a prototype operating in the ISM band centered at 434 MHz are presented and discussed. In more detail, in order to facilitate the integration into wearable accessories (such as handbags or suitcases, the prototype of the wireless energy link was implemented by exploiting a magnetic coupling between two planar resonators fabricated by using a conductive fabric on a layer of leather. From experimental data, it is demonstrated that, at 434 MHz, the RF-to-RF power transfer efficiency of the link is approximately 69.3%. As for the performance of the system as a whole, when an RF power of 7.5 dBm is provided at the input port, a total efficiency of about 29.7% is obtained. Finally, experiments performed for calculating the charging time for a low capacity thin-film battery demonstrated that, for RF input power higher than 6 dBm, the time necessary for recharging the battery is lower than 50 minutes.

  13. Failure Mechanism of Fast-Charged Lithium Metal Batteries in Liquid Electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Dongping; Shao, Yuyan; Lozano, Terence J.; Bennett, Wendy D.; Graff, Gordon L.; Polzin, Bryant; Zhang, Jiguang; Engelhard, Mark H.; Saenz, Natalio T.; Henderson, Wesley A.; Bhattacharya, Priyanka; Liu, Jun; Xiao, Jie

    2015-02-01

    In recent years, lithium anode has re-attracted broad interest because of the necessity of employing lithium metal in the next-generation battery technologies such as lithium sulfur (Li-S) and lithium oxygen (Li-O2) batteries. Fast capacity degradation and safety issue associated with rechargeable lithium metal batteries have been reported, although the fundamental understanding on the failure mechanism of lithium metal at high charge rate is still under debate due to the complicated interfacial chemistry between lithium metal and electrolyte. Herein, we demonstrate that, at high current density, the quick growth of porous solid electrolyte interphase towards bulk lithium, instead of towards the separator, dramatically builds up the cell impedance that directly leads to the cell failure. Understanding the lithium metal failure mechanism is very critical to gauge the various approaches used to address the stability and safety issues associated with lithium metal anode. Otherwise, all cells will fail quickly at high rates before the observation of any positive effects that might be brought from adopting the new strategies to protect lithium.

  14. Kalman-variant estimators for state of charge in lithium-sulfur batteries

    Science.gov (United States)

    Propp, Karsten; Auger, Daniel J.; Fotouhi, Abbas; Longo, Stefano; Knap, Vaclav

    2017-03-01

    Lithium-sulfur batteries are now commercially available, offering high specific energy density, low production costs and high safety. However, there is no commercially-available battery management system for them, and there are no published methods for determining state of charge in situ. This paper describes a study to address this gap. The properties and behaviours of lithium-sulfur are briefly introduced, and the applicability of 'standard' lithium-ion state-of-charge estimation methods is explored. Open-circuit voltage methods and 'Coulomb counting' are found to have a poor fit for lithium-sulfur, and model-based methods, particularly recursive Bayesian filters, are identified as showing strong promise. Three recursive Bayesian filters are implemented: an extended Kalman filter (EKF), an unscented Kalman filter (UKF) and a particle filter (PF). These estimators are tested through practical experimentation, considering both a pulse-discharge test and a test based on the New European Driving Cycle (NEDC). Experimentation is carried out at a constant temperature, mirroring the environment expected in the authors' target automotive application. It is shown that the estimators, which are based on a relatively simple equivalent-circuit-network model, can deliver useful results. If the three estimators implemented, the unscented Kalman filter gives the most robust and accurate performance, with an acceptable computational effort.

  15. Design construction and analysis of solar ridge concentrator photovoltaic (PV) system to improve battery charging performance.

    Science.gov (United States)

    Narasimman, Kalaiselvan; Selvarasan, Iniyan

    2016-05-01

    A ridge concentrator photovoltaic system for a 10W multi-crystalline solar panel was designed with the concentration ratios of 1X and 2X. The ray tracing model of ridge concentrator photovoltaic system was carried out using Trace-Pro simulation. The optimum tilt angle for the concentrator PV system throughout the year was computed. The electrical parameters of the 3 panels were analyzed. The effect of temperature on the electrical performance of the panel was also studied. The reduction of voltage due to increasing panel temperature was managed by MPES type Charge controller. Glass reflector with reflectivity 0.95 was chosen as the ridge wall for the concentrator system. The maximum power outputs for the 1X and 2X panel reached were 9W and 10.5W with glass reflector. The percentage of power improvement for 1X and 2X concentrations were 22.3% and 45.8% respectively. The 2X concentrated panel connected battery takes lower time to charge compared with normal panel connected battery.

  16. Singlet Oxygen Formation during the Charging Process of an Aprotic Lithium-Oxygen Battery.

    Science.gov (United States)

    Wandt, Johannes; Jakes, Peter; Granwehr, Josef; Gasteiger, Hubert A; Eichel, Rüdiger-A

    2016-06-06

    Aprotic lithium-oxygen (Li-O2 ) batteries have attracted considerable attention in recent years owing to their outstanding theoretical energy density. A major challenge is their poor reversibility caused by degradation reactions, which mainly occur during battery charge and are still poorly understood. Herein, we show that singlet oxygen ((1) Δg ) is formed upon Li2 O2 oxidation at potentials above 3.5 V. Singlet oxygen was detected through a reaction with a spin trap to form a stable radical that was observed by time- and voltage-resolved in operando EPR spectroscopy in a purpose-built spectroelectrochemical cell. According to our estimate, a lower limit of approximately 0.5 % of the evolved oxygen is singlet oxygen. The occurrence of highly reactive singlet oxygen might be the long-overlooked missing link in the understanding of the electrolyte degradation and carbon corrosion reactions that occur during the charging of Li-O2 cells.

  17. Using Atmospheric Pressure Tendency to Optimise Battery Charging in Off-Grid Hybrid Wind-Diesel Systems for Telecoms

    Directory of Open Access Journals (Sweden)

    Stephen Daniels

    2013-06-01

    Full Text Available Off grid telecom base stations in developing nations are powered by diesel generators. They are typically oversized and run at a fraction of their rated load for most of their operating lifetime. Running generators at partial load is inefficient and, over time, physically damages the engine. A hybrid configuration uses a battery bank, which powers the telecoms’ load for a portion of the time. The generator only operates when the battery bank needs to be charged. Adding a wind turbine further reduces the generator run hours and saves fuel. The generator is oblivious to the current wind conditions, which leads to simultaneous generator-wind power production. As the batteries become charged by the generator, the wind turbine controller is forced to dump surplus power as heat through a resistive load. This paper details how the relationship between barometric pressure and wind speed can be used to add intelligence to the battery charger. A Simulink model of the system is developed to test the different battery charging configurations. This paper demonstrates that if the battery charger is aware of upcoming wind conditions, it will provide modest fuel savings and reduce generator run hours in small-scale hybrid energy systems.

  18. Estimation of State of Charge of a Lithium-Ion Battery Pack for Electric Vehicles Using an Adaptive Luenberger Observer

    Directory of Open Access Journals (Sweden)

    Yuan Zou

    2010-09-01

    Full Text Available In order to safely and efficiently use the power as well as to extend the lifetime of the traction battery pack, accurate estimation of State of Charge (SoC is very important and necessary. This paper presents an adaptive observer-based technique for estimating SoC of a lithium-ion battery pack used in an electric vehicle (EV. The RC equivalent circuit model in ADVISOR is applied to simulate the lithium-ion battery pack. The parameters of the battery model as a function of SoC, are identified and optimized using the numerically nonlinear least squares algorithm, based on an experimental data set. By means of the optimized model, an adaptive Luenberger observer is built to estimate online the SoC of the lithium-ion battery pack. The observer gain is adaptively adjusted using a stochastic gradient approach so as to reduce the error between the estimated battery output voltage and the filtered battery terminal voltage measurement. Validation results show that the proposed technique can accurately estimate SoC of the lithium-ion battery pack without a heavy computational load.

  19. About the Territorial Potential of the Construction of Battery-Charging Stations for Autonomous Electric Motor Vehicles in the Regions

    Directory of Open Access Journals (Sweden)

    Shilova Lyubov

    2016-01-01

    Full Text Available The article describes the main current trends in the development of electric motor vehicles with "zero emission" as well as the battery-charging stations concerned. The study is based on a preliminary comparative analysis of the RF regions with respect to five indices (average per capita income, number of private cars in the region, air pollution level, provision of the region with power supply and the potential use of local renewable energy resources, and it gives some recommendations on the prospects of possible construction of battery-charging stations in the regions.

  20. A New Charging Method for Li-ion Batteries: Dependence of the charging time on the Direction of an Additional Oscillating Field

    CERN Document Server

    Hamad, I Abou; Wipf, D O; Rikvold, P A

    2010-01-01

    We have recently proposed a new method for charging Li-ion batteries based on large-scale molecular dynamics studies (I. Abou Hamad et al, Phys. Chem. Chem. Phys., 12, 2740 (2010)). Applying an additional oscillating electric field in the direction perpendicular to the graphite sheets of the anode showed an exponential decrease in charging time with increasing amplitude of the applied oscillating field. Here we present new results exploring the effect on the charging time of changing the orientation of the oscillating field. Results for oscillating fields in three orthogonal directions are compared.

  1. Estimation of State of Charge for Two Types of Lithium-Ion Batteries by Nonlinear Predictive Filter for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Yin Hua

    2015-04-01

    Full Text Available Estimation of state of charge (SOC is of great importance for lithium-ion (Li-ion batteries used in electric vehicles. This paper presents a state of charge estimation method using nonlinear predictive filter (NPF and evaluates the proposed method on the lithium-ion batteries with different chemistries. Contrary to most conventional filters which usually assume a zero mean white Gaussian process noise, the advantage of NPF is that the process noise in NPF is treated as an unknown model error and determined as a part of the solution without any prior assumption, and it can take any statistical distribution form, which improves the estimation accuracy. In consideration of the model accuracy and computational complexity, a first-order equivalent circuit model is applied to characterize the battery behavior. The experimental test is conducted on the LiCoO2 and LiFePO4 battery cells to validate the proposed method. The results show that the NPF method is able to accurately estimate the battery SOC and has good robust performance to the different initial states for both cells. Furthermore, the comparison study between NPF and well-established extended Kalman filter for battery SOC estimation indicates that the proposed NPF method has better estimation accuracy and converges faster.

  2. In-Use Fleet Evaluation of Fast-Charge Battery Electric Transit Buses

    Energy Technology Data Exchange (ETDEWEB)

    Prohaska, Robert; Kelly, Kenneth; Eudy; Leslie

    2016-06-27

    With support from the U.S. Department of Energy's Vehicle Technologies Office, the National Renewable Energy Laboratory (NREL) conducts real-world performance evaluations of advanced medium- and heavy-duty fleet vehicles. Evaluation results can help vehicle manufacturers fine-tune their designs and assist fleet managers in selecting fuel-efficient, low-emission vehicles that meet their economic and operational goals. In 2015, NREL launched an in-service evaluation of 12 battery electric buses (BEBs) compared to conventional compressed natural gas (CNG) buses operated by Foothill Transit in West Covina, California. The study aims to improve understanding of the overall usage and effectiveness of fast-charge BEBs and associated charging infrastructure in transit operation. To date, NREL researchers have analyzed more than 148,000 km of in-use operational data, including driving and charging events. Foothill Transit purchased the BEBs with grant funding from the Federal Transit Administration's Transit Investments for Greenhouse Gas and Energy Reduction Program.

  3. Semiconduction properties of some polyene-iodine charge-transfer complexes and their application in solid-state batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sen, S.; Pal, P.; Misra, T.N. (Indian Association for the Cultivation of Science, Calcutta (India). Dept. of Spectroscopy)

    1993-03-01

    The conjugated polyenes [beta]-carotene, lutein, retinoic acid and [beta]-apo-8'-carotenal are shown to form charge-transfer (CT) complexes with the electron acceptor iodine. The conductivity increases by several orders of magnitude and the activation energy decreases on CT complex formation. Using these complexes as cathodic material, batteries with the configuration Mg/(polyene-iodine CT complex)/graphite are developed. Different battery parameters are evaluated. The effects of ambient temperature and humidity on battery performance are also studied. Results show that a [beta]-apo-8'-carotenal-1[sub 2] based battery has the maximum power density and longest self-life and is suitable for use as a micro-electronic gadget energizer. (author)

  4. State-of-charge estimation in lithium-ion batteries: A particle filter approach

    Science.gov (United States)

    Tulsyan, Aditya; Tsai, Yiting; Gopaluni, R. Bhushan; Braatz, Richard D.

    2016-11-01

    The dynamics of lithium-ion batteries are complex and are often approximated by models consisting of partial differential equations (PDEs) relating the internal ionic concentrations and potentials. The Pseudo two-dimensional model (P2D) is one model that performs sufficiently accurately under various operating conditions and battery chemistries. Despite its widespread use for prediction, this model is too complex for standard estimation and control applications. This article presents an original algorithm for state-of-charge estimation using the P2D model. Partial differential equations are discretized using implicit stable algorithms and reformulated into a nonlinear state-space model. This discrete, high-dimensional model (consisting of tens to hundreds of states) contains implicit, nonlinear algebraic equations. The uncertainty in the model is characterized by additive Gaussian noise. By exploiting the special structure of the pseudo two-dimensional model, a novel particle filter algorithm that sweeps in time and spatial coordinates independently is developed. This algorithm circumvents the degeneracy problems associated with high-dimensional state estimation and avoids the repetitive solution of implicit equations by defining a 'tether' particle. The approach is illustrated through extensive simulations.

  5. Local state-of-charge mapping of lithium-ion battery electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Nanda, Jagjit [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Remillard, Jeffrey; O' Neill, Ann; Bernardi, Dawn; Ro, Tina; Nietering, Kenneth E.; Miller, Ted J. [Research and Advanced Engineering, Ford Motor Co., Dearborn, MI (United States); Go, Joo-Young [SB LiMotive, R and D Team, Gyeonggi-do (Korea, Republic of)

    2011-09-09

    Current lithium-ion battery technology is gearing towards meeting the robust demand of power and energy requirements for all-electric transportation without compromising on the safety, performance, and cycle life. The state-of-charge (SOC) of a Li-ion cell can be a macroscopic indicator of the state-of-health of the battery. The microscopic origin of the SOC relates to the local lithium content in individual electrode particles and the effective ability of Li-ions to transport or shuttle between the redox couples through the cell geometric boundaries. Herein, micrometer-resolved Raman mapping of a transition-metal-based oxide positive electrode, Li{sub 1-x}(Ni{sub y}Co{sub z}Al{sub 1-y-z})O{sub 2}, maintained at different SOCs, is shown. An attempt has been made to link the underlying changes to the composition and structural integrity at the individual particle level. Furthermore, an SOC distribution at macroscopic length scale of the electrodes is presented. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. An Assessment of Grid-Charged Inverter-Battery Systems for Domestic Applications in Ghana

    Directory of Open Access Journals (Sweden)

    David A. Quansah

    2016-01-01

    Full Text Available Ghana, like many African countries, is currently facing power supply shortage, which has led to load shedding. To minimize the impact of the power crisis, options such as diesel and petrol generators, grid-charged battery-inverter systems (GBIS, and solar PV with battery storage (SPVS have been used in residential and nonresidential contexts. In this paper, we develop analytical models to conduct a technical and economic comparison of GBIS and SPVS systems. Using average electricity tariff of $0.186 for residential sector (excluding lifeline customers we show that although initial cost of SPVS is higher, it costs 30% less than GBIS. We also show that losses associated with the GBIS are as high as 42% when viewed from a systems perspective and that some of its costs are externalized. We conclude by commending the Ghana Government’s initiative of rolling out 200,000 residential rooftop solar systems and recommend an increase in system capacities as well as a similar programme for nonresidential facilities.

  7. Space Charge Layer Effect in Solid State Ion Conductors and Lithium Batteries: Principle and Perspective.

    Science.gov (United States)

    Chen, Cheng; Guo, Xiangxin

    2016-01-01

    The space charge layer (SCL) effects were initially developed to explain the anomalous conductivity enhancement in composite ionic conductors. They were further extended to qualitatively as well as quantitatively understand the interfacial phenomena in many other ionic-conducting systems. Especially in nanometre-scale systems, the SCL effects could be used to manipulate the conductivity and construct artificial conductors. Recently, existence of such effects either at the electrolyte/cathode interface or at the interfaces inside the composite electrode in all solid state lithium batteries (ASSLB) has attracted attention. Therefore, in this article, the principle of SCL on basis of defect chemistry is first presented. The SCL effects on the carrier transport and storage in typical conducting systems are reviewed. For ASSLB, the relevant effects reported so far are also reviewed. Finally, the perspective of interface engineer related to SCL in ASSLB is addressed.

  8. Low temperature aging mechanism identification and lithium deposition in a large format lithium iron phosphate battery for different charge profiles

    Science.gov (United States)

    Ouyang, Minggao; Chu, Zhengyu; Lu, Languang; Li, Jianqiu; Han, Xuebing; Feng, Xuning; Liu, Guangming

    2015-07-01

    Charging procedures at low temperatures severely shorten the cycle life of lithium ion batteries due to lithium deposition on the negative electrode. In this paper, cycle life tests are conducted to reveal the influence of the charging current rate and the cut-off voltage limit on the aging mechanisms of a large format LiFePO4 battery at a low temperature (-10 °C). The capacity degradation rates accelerate rapidly after the charging current reaches 0.25 C or the cut-off voltage reaches 3.55 V. Therefore the scheduled current and voltage during low-temperature charging should be reconsidered to avoid capacity degradation. Lithium deposition contributes to low-temperature aging mechanisms, as something needle-like which might be deposited lithium is observed on the surface of the negative electrode after disassembling the aged battery cell. To confirm our explanation, incremental capacity analysis (ICA) is performed to identify the characteristics of the lithium deposition induced battery aging mechanisms. Furthermore, the aging mechanism is quantified using a mechanistic model, whose parameters are estimated with the particle swarm optimization algorithm (PSO). The loss of reversible lithium originating from secondary SEI formation and dead lithium is confirmed as the cause of the aging.

  9. Fast charging technique for high power LiFePO4 batteries: A mechanistic analysis of aging

    Science.gov (United States)

    Anseán, D.; Dubarry, M.; Devie, A.; Liaw, B. Y.; García, V. M.; Viera, J. C.; González, M.

    2016-07-01

    One of the major issues hampering the acceptance of electric vehicles (EVs) is the anxiety associated with long charging time. Hence, the ability to fast charging lithium-ion battery (LIB) systems is gaining notable interest. However, fast charging is not tolerated by all LIB chemistries because it affects battery functionality and accelerates its aging processes. Here, we investigate the long-term effects of multistage fast charging on a commercial high power LiFePO4-based cell and compare it to another cell tested under standard charging. Coupling incremental capacity (IC) and IC peak area analysis together with mechanistic model simulations ('Alawa' toolbox with harvested half-cell data), we quantify the degradation modes that cause aging of the tested cells. The results show that the proposed fast charging technique caused similar aging effects as standard charging. The degradation is caused by a linear loss of lithium inventory, coupled with a less degree of linear loss of active material on the negative electrode. This study validates fast charging as a feasible mean of operation for this particular LIB chemistry and cell architecture. It also illustrates the benefits of a mechanistic approach to understand cell degradation on commercial cells.

  10. 电动汽车蓄电池的充电方法和充电设备%Charging equipment and method of electric vehicle battery

    Institute of Scientific and Technical Information of China (English)

    李俄收; 朱会田; 吴文民

    2009-01-01

    电动汽车常用的蓄电池有铅酸蓄电池、镉镍电池、氢镍电池、锂离子电池等,由于它们的结构及充电特性不同,充电时的方法也各异,这些蓄电池使用的充电设备可以是车载式、非车载式,也可以是接触式和感应式的.%Batteries of electric vehicles are commonly used lead-acid battery, Ni-Cd battery, Ni-MH battery, lithium-ion battery and so on. As a result of their construction and charging characteristics are different, methods of charging are different. Charging equipments of these batteries may take different form of vehicle-mounted, non-vehicle-mounted,contacted and the induction.

  11. Simulation of charge-discharge cycling of lithium-ion batteries under low-earth-orbit conditions

    Science.gov (United States)

    Lee, Jong-Won; Anguchamy, Yogesh K.; Popov, Branko N.

    Charge-discharge behavior of SONY 18650 lithium-ion batteries for aerospace applications was simulated under low-earth-orbit (LEO) conditions, by using a first-principles based mathematical model. The model determines the capacity fade on the basis of the irreversible loss of active lithium ions due to electrolyte reduction. The capacity fade during LEO cycling was studied for 5 years of continuous operation with 20% depth of discharge as a function of the cycling parameters such as the end of charge voltage and the charging rate.

  12. Extended Kalman filter method for state of charge estimation of vanadium redox flow battery using thermal-dependent electrical model

    Science.gov (United States)

    Xiong, Binyu; Zhao, Jiyun; Wei, Zhongbao; Skyllas-Kazacos, Maria

    2014-09-01

    State of charge (SOC) estimation is a key issue for battery management since an accurate estimation method can ensure safe operation and prevent the over-charge/discharge of a battery. Traditionally, open circuit voltage (OCV) method is utilized to estimate the stack SOC and one open flow cell is needed in each battery stack [1,2]. In this paper, an alternative method, extended Kalman filter (EKF) method, is proposed for SOC estimation for VRBs. By measuring the stack terminal voltages and applied currents, SOC can be predicted with a state estimator instead of an additional open circuit flow cell. To implement EKF estimator, an electrical model is required for battery analysis. A thermal-dependent electrical circuit model is proposed to describe the charge/discharge characteristics of the VRB. Two scenarios are tested for the robustness of the EKF. For the lab testing scenarios, the filtered stack voltage tracks the experimental data despite the model errors. For the online operation, the simulated temperature rise is observed and the maximum SOC error is within 5.5%. It is concluded that EKF method is capable of accurately predicting SOC using stack terminal voltages and applied currents in the absence of an open flow cell for OCV measurement.

  13. Design and simulation of a fast-charging station for plug-in hybrid electric vehicle (PHEV) batteries

    Science.gov (United States)

    de Leon, Nathalie Pulmones

    2011-12-01

    With the increasing interest in green technologies in transportation, plug-in hybrid electric vehicles (PHEV) have proven to be the best short-term solution to minimize greenhouse gas emissions. Despite such interest, conventional vehicle drivers are still reluctant in using such a new technology, mainly because of the long duration (4-8 hours) required to charge PHEV batteries with the currently existing Level I and II chargers. For this reason, Level III fast-charging stations capable of reducing the charging duration to 10-15 minutes are being considered. The present thesis focuses on the design of a fast-charging station that uses, in addition to the electrical grid, two stationary energy storage devices: a flywheel energy storage and a supercapacitor. The power electronic converters used for the interface of the energy sources with the charging station are designed. The design also focuses on the energy management that will minimize the PHEV battery charging duration as well as the duration required to recharge the energy storage devices. For this reason, an algorithm that minimizes durations along with its mathematical formulation is proposed, and its application in fast charging environment will be illustrated by means of two scenarios.

  14. Novel Energy Sources -Material Architecture and Charge Transport in Solid State Ionic Materials for Rechargeable Li ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Katiyar, Ram S; Gómez, M; Majumder, S B; Morell, G; Tomar, M S; Smotkin, E; Bhattacharya, P; Ishikawa, Y

    2009-01-19

    Since its introduction in the consumer market at the beginning of 1990s by Sony Corporation ‘Li-ion rechargeable battery’ and ‘LiCoO2 cathode’ is an inseparable couple for highly reliable practical applications. However, a separation is inevitable as Li-ion rechargeable battery industry demand more and more from this well serving cathode. Spinel-type lithium manganate (e.g., LiMn2O4), lithium-based layered oxide materials (e.g., LiNiO2) and lithium-based olivine-type compounds (e.g., LiFePO4) are nowadays being extensively studied for application as alternate cathode materials in Li-ion rechargeable batteries. Primary goal of this project was the advancement of Li-ion rechargeable battery to meet the future demands of the energy sector. Major part of the research emphasized on the investigation of electrodes and solid electrolyte materials for improving the charge transport properties in Li-ion rechargeable batteries. Theoretical computational methods were used to select electrodes and electrolyte material with enhanced structural and physical properties. The effect of nano-particles on enhancing the battery performance was also examined. Satisfactory progress has been made in the bulk form and our efforts on realizing micro-battery based on thin films is close to give dividend and work is progressing well in this direction.

  15. Kalman filter for onboard state of charge estimation and peak power capability analysis of lithium-ion batteries

    Science.gov (United States)

    Dong, Guangzhong; Wei, Jingwen; Chen, Zonghai

    2016-10-01

    To evaluate the continuous and instantaneous load capability of a battery, this paper describes a joint estimator for state-of-charge (SOC) and state-of-function (SOF) of lithium-ion batteries (LIB) based on Kalman filter (KF). The SOC is a widely used index for remain useful capacity left in a battery. The SOF represents the peak power capability of the battery. It can be determined by real-time SOC estimation and terminal voltage prediction, which can be derived from impedance parameters. However, the open-circuit-voltage (OCV) of LiFePO4 is highly nonlinear with SOC, which leads to the difficulties in SOC estimation. To solve these problems, this paper proposed an onboard SOC estimation method. Firstly, a simplified linearized equivalent-circuit-model is developed to simulate the dynamic characteristics of a battery, where the OCV is regarded as a linearized function of SOC. Then, the system states are estimated based on the KF. Besides, the factors that influence peak power capability are analyzed according to statistical data. Finally, the performance of the proposed methodology is demonstrated by experiments conducted on a LiFePO4 LIBs under different operating currents and temperatures. Experimental results indicate that the proposed approach is suitable for battery onboard SOC and SOF estimation.

  16. 电池梯次利用储能装置在电动汽车充换电站中的应用%Application of Battery Cascade Utilization Device in EV Battery Charging and Swapping Station

    Institute of Scientific and Technical Information of China (English)

    王泽众; 李家辉

    2012-01-01

    针对电动汽车充换电站中动力电池的梯次利用问题,设计了电池梯次利用储能站,将充换电站中即将报废的电池用于储能放电,以降低电动汽车动力电池的使用成本.介绍了电池梯次利用储能站结构、电能控制系统以及储能控制策略,可以实现电动汽车充换电站动力电池的梯次利用、对电网负荷进行峰谷调节并作为充换电站的应急和后备电源.%Aiming at the application of battery cascade utilization in EV ( electric vehicle) battery charging and swapping station, this paper design battery cascade utilization storage station. In order to decreasing the battery cost, it utilizes the reject battery of battery charging and swapping station to storage and discharge electric energy. This paper introduces the battery cascade utilization device construction, control system and electric storage control strategy. It can implement the battery cascade utilization, regulate power grid peak and valley and be emergency power of the battery charging and swapping station.

  17. A New State of Charge Estimation Method for LiFePO4 Battery Packs Used in Robots

    Directory of Open Access Journals (Sweden)

    Han-Pang Huang

    2013-04-01

    Full Text Available The accurate state of charge (SOC estimation of the LiFePO4 battery packs used in robot applications is required for better battery life cycle, performance, reliability, and economic issues. In this paper, a new SOC estimation method, “Modified ECE + EKF”, is proposed. The method is the combination of the modified Equivalent Coulombic Efficiency (ECE method and the Extended Kalman Filter (EKF method. It is based on the zero-state hysteresis battery model, and adopts the EKF method to correct the initial value used in the Ah counting method. Experimental results show that the proposed technique is superior to the traditional techniques, such as ECE + EKF and ECE + Unscented Kalman Filter (UKF, and the accuracy of estimation is within 1%.

  18. A New State of Charge Estimation Method for LiFePO4 Battery Packs Used in Robots

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-04-15

    The accurate state of charge (SOC) estimation of the LiFePO4 battery packs used in robot applications is required for better battery life cycle, performance, reliability, and economic issues. In this paper, a new SOC estimation method, ''Modified ECE + EKF'', is proposed. The method is the combination of the modified Equivalent Coulombic Efficiency (ECE) method and the Extended Kalman Filter (EKF) method. It is based on the zero-state hysteresis battery model, and adopts the EKF method to correct the initial value used in the Ah counting method. Experimental results show that the proposed technique is superior to the traditional techniques, such as ECE + EKF and ECE + Unscented Kalman Filter (UKF), and the accuracy of estimation is within 1%.

  19. Multi-functional Converter with Integrated Motor Control, Battery Charging and Active Module Balancing for Electric Vehicular Application

    DEFF Research Database (Denmark)

    Mathe, Laszlo; Schaltz, Erik; Teodorescu, Remus

    2014-01-01

    , weight and volume in comparison with other Li-Ion based chemistries. The control of the energy flow has been done through a Modular Multilevel Converter (MMC), which has demonstrated advantages over 2 level converters in terms of efficiency, fault tolerant operation, flexible operation modes. It has been......In order to reduce the fuel consumption and the acoustical noise generated by refuse lorries, electrification of the waste compactor unit is a very promising solution. For the electrical energy storage Lithium-Sulfur (Li-S) battery technology has been selected with potential for reducing the cost...... used successfully in HVDC/FACTS and large drive applications. In this paper the use of MMC for a battery driven waste compactor unit addressed with integrated functionality including: motor driver, battery charge and active balancing is presented. The challenges addressed here are related to the design...

  20. In situ Scanning Electron Microscopy of Silicon Anode Reactions in Lithium-Ion Batteries during Charge/Discharge Processes

    Science.gov (United States)

    Chen, Chih-Yao; Sano, Teruki; Tsuda, Tetsuya; Ui, Koichi; Oshima, Yoshifumi; Yamagata, Masaki; Ishikawa, Masashi; Haruta, Masakazu; Doi, Takayuki; Inaba, Minoru; Kuwabata, Susumu

    2016-10-01

    A comprehensive understanding of the charge/discharge behaviour of high-capacity anode active materials, e.g., Si and Li, is essential for the design and development of next-generation high-performance Li-based batteries. Here, we demonstrate the in situ scanning electron microscopy (in situ SEM) of Si anodes in a configuration analogous to actual lithium-ion batteries (LIBs) with an ionic liquid (IL) that is expected to be a functional LIB electrolyte in the future. We discovered that variations in the morphology of Si active materials during charge/discharge processes is strongly dependent on their size and shape. Even the diffusion of atomic Li into Si materials can be visualized using a back-scattering electron imaging technique. The electrode reactions were successfully recorded as video clips. This in situ SEM technique can simultaneously provide useful data on, for example, morphological variations and elemental distributions, as well as electrochemical data.

  1. Vertical distribution of overpotentials and irreversible charge losses in lithium ion battery electrodes.

    Science.gov (United States)

    Klink, Stefan; Schuhmann, Wolfgang; La Mantia, Fabio

    2014-08-01

    Porous lithium ion battery electrodes are characterized using a vertical distribution of cross-currents. In an appropriate simplification, this distribution can be described by a transmission line model (TLM) consisting of infinitely thin electrode layers. To investigate the vertical distribution of currents, overpotentials, and irreversible charge losses in a porous graphite electrode in situ, a multi-layered working electrode (MWE) was developed as the experimental analogue of a TLM. In this MWE, each layer is in ionic contact but electrically insulated from the other layers by a porous separator. It was found that the negative graphite electrodes get lithiated and delithiated stage-by-stage and layer-by-layer. Several mass-transport- as well as non-mass-transport-limited processes could be identified. Local current densities can reach double the average, especially on the outermost layer at the beginning of each intercalation stage. Furthermore, graphite particles close to the counter electrode act as "electrochemical sieve" reducing the impurities present in the electrolyte such as water.

  2. Failure Mechanism for Fast-Charged Lithium Metal Batteries with Liquid Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Lv, DP; Shao, YY; Lozano, T; Bennett, WD; Graff, GL; Polzin, B; Zhang, JG; Engelhard, MH; Saenz, NT; Henderson, WA; Bhattacharya, P; Liu, J; Xiao, J

    2014-09-11

    In recent years, the Li metal anode has regained a position of paramount research interest because of the necessity for employing Li metal in next-generation battery technologies such as Li-S and Li-O-2. Severely limiting this utilization, however, are the rapid capacity degradation and safety issues associated with rechargeable Li metal anodes. A fundamental understanding of the failure mechanism of Li metal at high charge rates has remained elusive due to the complicated interfacial chemistry that occurs between Li metal and liquid electrolytes. Here, it is demonstrated that at high current density the quick formation of a highly resistive solid electrolyte interphase (SEI) entangled with Li metal, which grows towards the bulk Li, dramatically increases up the cell impedance and this is the actual origin of the onset of cell degradation and failure. This is instead of dendritic or mossy Li growing outwards from the metal surface towards/through the separator and/or the consumption of the Li and electrolyte through side reactions. Interphase, in this context, refers to a substantive layer rather than a thin interfacial layer. Discerning the mechanisms and consequences for this interphase formation is crucial for resolving the stability and safety issues associated with Li metal anodes.

  3. State of Charge Dependent Mechanical Integrity Behavior of 18650 Lithium-ion Batteries

    Science.gov (United States)

    Xu, Jun; Liu, Binghe; Hu, Dayong

    2016-02-01

    Understanding the mechanism of mechanical deformation/stress-induced electrical failure of lithium–ion batteries (LIBs) is important in crash-safety design of power LIBs. The state of charge (SOC) of LIBs is a critical factor in their electrochemical performance; however, the influence of SOC with mechanical integrity of LIBs remains unclear. This study investigates the electrochemical failure behaviors of LIBs with various SOCs under both compression and bending loadings, underpinned by the short circuit phenomenon. Mechanical behaviors of the whole LIB body, which is regarded as an intact structure, were analyzed in terms of structure stiffness. Results showed that the mechanical behaviors of LIBs depend highly on SOC. Experimental verification on the cathode and anode sheet compression tests show that higher SOC with more lithium inserted in the anode leads to higher structure stiffness. In the bending tests, failure strain upon occurrence of short circuit has an inverse linear relationship with the SOC value. These results may shed light on the fundamental physical mechanism of mechanical integrity LIBs in relation to inherent electrochemical status.

  4. Effect of battery state of charge on fuel use and pollutant emissions of a full hybrid electric light duty vehicle

    Science.gov (United States)

    Duarte, G. O.; Varella, R. A.; Gonçalves, G. A.; Farias, T. L.

    2014-01-01

    This research work focuses on evaluating the effect of battery state of charge (SOC) in the fuel consumption and gaseous pollutant emissions of a Toyota Prius Full Hybrid Electric Vehicle, using the Vehicle Specific Power Methodology. Information on SOC, speed and engine management was obtained from the OBD interface, with additional data collected from a 5 gas analyzer and GPS receiver with barometric altimeter. Compared with average results, 40-50% battery SOC presented higher fuel consumption (57%), as well as higher CO2 (56%), CO (27%) and NOx (55.6%) emissions. For battery SOC between 50 and 60%, fuel consumption and CO2 were 9.7% higher, CO was 1.6% lower and NOx was 20.7% lower than average. For battery SOC between 60 and 70%, fuel consumption was 3.4% lower, CO2 was 3.6% lower, CO was 6.9% higher and NOx was 24.4% higher than average. For battery SOC between 70 and 80%, fuel consumption was 39.9% lower, CO2 was 38% lower, CO was 33.9% lower and NOx was 61.4% lower than average. The effect of engine OFF periods was analyzed for CO and NOx emissions. For OFF periods higher than 30 s, increases of 63% and 73% respectively were observed.

  5. Robust Online State of Charge Estimation of Lithium-Ion Battery Pack Based on Error Sensitivity Analysis

    Directory of Open Access Journals (Sweden)

    Ting Zhao

    2015-01-01

    Full Text Available Accurate and reliable state of charge (SOC estimation is a key enabling technique for large format lithium-ion battery pack due to its vital role in battery safety and effective management. This paper tries to make three contributions to existing literatures through robust algorithms. (1 Observer based SOC estimation error model is established, where the crucial parameters on SOC estimation accuracy are determined by quantitative analysis, being a basis for parameters update. (2 The estimation method for a battery pack in which the inconsistency of cells is taken into consideration is proposed, ensuring all batteries’ SOC ranging from 0 to 1, effectively avoiding the battery overcharged/overdischarged. Online estimation of the parameters is also presented in this paper. (3 The SOC estimation accuracy of the battery pack is verified using the hardware-in-loop simulation platform. The experimental results at various dynamic test conditions, temperatures, and initial SOC difference between two cells demonstrate the efficacy of the proposed method.

  6. Negative plates for dry-charged lead storage batteries. [higher charging capacity when impregnated with tannin solution

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, V.; Malikova, V.; Weber, H.

    1970-09-15

    Impregnation of negative plates with acid solutions of sulfomethylated tannins was found to improve the charging properties at low temperatures. Methods for synthesizing tannins are described. Charging capacity at 0/sup 0/ was 7.3A. (RWR)

  7. 一种新型蓄电池均衡充电系统的设计%Design of A New Type of Battery Equalization Charging System

    Institute of Scientific and Technical Information of China (English)

    马文静

    2014-01-01

    The battery is more and more widely used in various production areas ,the application and management of battery has be-come a key technology in the development of various equipment .Based on the research of battery technology ,a new type of battery equalization charging system was designed ,the implementation method of its hardware and software was introduced .%通过对蓄电池技术的研究,设计了一种新型蓄电池均衡充电系统,并介绍了其硬件和软件的实现方法。

  8. Joint Estimation of the Electric Vehicle Power Battery State of Charge Based on the Least Squares Method and the Kalman Filter Algorithm

    OpenAIRE

    Xiangwei Guo; Longyun Kang; Yuan Yao; Zhizhen Huang; Wenbiao Li

    2016-01-01

    An estimation of the power battery state of charge (SOC) is related to the energy management, the battery cycle life and the use cost of electric vehicles. When a lithium-ion power battery is used in an electric vehicle, the SOC displays a very strong time-dependent nonlinearity under the influence of random factors, such as the working conditions and the environment. Hence, research on estimating the SOC of a power battery for an electric vehicle is of great theoretical significance a...

  9. Micro-hybrid electric vehicle application of valve-regulated lead-acid batteries in absorbent glass mat technology: Testing a partial-state-of-charge operation strategy

    Science.gov (United States)

    Schaeck, S.; Stoermer, A. O.; Hockgeiger, E.

    The BMW Group has launched two micro-hybrid functions in high volume models in order to contribute to reduction of fuel consumption in modern passenger cars. Both the brake energy regeneration (BER) and the auto-start-stop function (ASSF) are based on the conventional 14 V vehicle electrical system and current series components with only little modifications. An intelligent control algorithm of the alternator enables recuperative charging in braking and coasting phases, known as BER. By switching off the internal combustion engine at a vehicle standstill the idling fuel consumption is effectively reduced by ASSF. By reason of economy and package a lead-acid battery is used as electrochemical energy storage device. The BMW Group assembles valve-regulated lead-acid (VRLA) batteries in absorbent glass mat (AGM) technology in the micro-hybrid electrical power system since special challenges arise for the batteries. By field data analysis a lower average state-of-charge (SOC) due to partial state-of-charge (PSOC) operation and a higher cycling rate due to BER and ASSF are confirmed in this article. Similar to a design of experiment (DOE) like method we present a long-term lab investigation. Two types of 90 Ah VRLA AGM batteries are operated with a test bench profile that simulates the micro-hybrid vehicle electrical system under varying conditions. The main attention of this lab testing is focused on capacity loss and charge acceptance over cycle life. These effects are put into context with periodically refresh charging the batteries in order to prevent accelerated battery aging due to hard sulfation. We demonstrate the positive effect of refresh chargings concerning preservation of battery charge acceptance. Furthermore, we observe moderate capacity loss over 90 full cycles both at 25 °C and at 3 °C battery temperature.

  10. Multi-step constant-current charging method for electric vehicle, valve-regulated, lead/acid batteries during night time for load-levelling

    Energy Technology Data Exchange (ETDEWEB)

    Ikeya, Tomohiko; Mita, Yuichi; Ishihara, Kaoru [Central Research Inst. of Electric Power Industry, Tokyo (Japan); Sawada, Nobuyuki [Hokkaido Electric Power, Sapporo (Japan); Takagi, Sakae; Murakami, Jun-ichi [Tohoku Electric Power, Sendai (Japan); Kobayashi, Kazuyuki [Tokyo Electric Power, Yokohama (Japan); Sakabe, Tetsuya [Chubu Electric Power, Nagoya (Japan); Kousaka, Eiichi [Hokuriku Electric Power, Toyama (Japan); Yoshioka, Haruki [The Kansai Electric Power, Osaka (Japan); Kato, Satoru [The Chugoku Electric Power, Hiroshima (Japan); Yamashita, Masanori [Shikoku Research Inst., Takamatsu (Japan); Narisoko, Hayato [The Okinawa Electric Power, Naha (Japan); Nishiyama, Kazuo [The Central Electric Power Council, Tokyo (Japan); Adachi, Kazuyuki [Kyushu Electric Power, Fukuoka (Japan)

    1998-09-01

    For the popularization of electric vehicles (EVs), the conditions for charging EV batteries with available current patterns should allow complete charging in a short time, i.e., less than 5 to 8 h. Therefore, in this study, a new charging condition is investigated for the EV valve-regulated lead/acid battery system, which should allow complete charging of EV battery systems with multi-step constant currents in a much shorter time with longer cycle life and higher energy efficiency compared with two-step constant-current charging. Although a high magnitude of the first current in the two-step constant-current method prolongs cycle life by suppressing the softening of positive active material, too large a charging current magnitude degrades cells due to excess internal evolution of heat. A charging current magnitude of approximately 0.5 C is expected to prolong cycle life further. Three-step charging could also increase the magnitude of charging current in the first step without shortening cycle life. Four-or six-step constant-current methods could shorten the charging time to less than 5 h, as well as yield higher energy efficiency and enhanced cycle life of over 400 cycles compared with two-step charging with the first step current of 0.5 C. Investigation of the degradation mechanism of the batteries revealed that the conditions of multi-step constant-current charging suppressed softening of positive active material and sulfation of negative active material, but, unfortunately, advanced the corrosion of the grids in the positive plates. By adopting improved grids and cooling of the battery system, the multistep constant-current method may enhance the cycle life. (orig.)

  11. Elucidating the Performance Limitations of Lithium-ion Batteries due to Species and Charge Transport through Five Characteristic Parameters

    Science.gov (United States)

    Jiang, Fangming; Peng, Peng

    2016-01-01

    Underutilization due to performance limitations imposed by species and charge transports is one of the key issues that persist with various lithium-ion batteries. To elucidate the relevant mechanisms, two groups of characteristic parameters were proposed. The first group contains three characteristic time parameters, namely: (1) te, which characterizes the Li-ion transport rate in the electrolyte phase, (2) ts, characterizing the lithium diffusion rate in the solid active materials, and (3) tc, describing the local Li-ion depletion rate in electrolyte phase at the electrolyte/electrode interface due to electrochemical reactions. The second group contains two electric resistance parameters: Re and Rs, which represent respectively, the equivalent ionic transport resistance and the effective electronic transport resistance in the electrode. Electrochemical modeling and simulations to the discharge process of LiCoO2 cells reveal that: (1) if te, ts and tc are on the same order of magnitude, the species transports may not cause any performance limitations to the battery; (2) the underlying mechanisms of performance limitations due to thick electrode, high-rate operation, and large-sized active material particles as well as effects of charge transports are revealed. The findings may be used as quantitative guidelines in the development and design of more advanced Li-ion batteries. PMID:27599870

  12. Janus Solid-Liquid Interface Enabling Ultrahigh Charging and Discharging Rate for Advanced Lithium-Ion Batteries.

    Science.gov (United States)

    Zheng, Jiaxin; Hou, Yuyang; Duan, Yandong; Song, Xiaohe; Wei, Yi; Liu, Tongchao; Hu, Jiangtao; Guo, Hua; Zhuo, Zengqing; Liu, Lili; Chang, Zheng; Wang, Xiaowei; Zherebetskyy, Danylo; Fang, Yanyan; Lin, Yuan; Xu, Kang; Wang, Lin-Wang; Wu, Yuping; Pan, Feng

    2015-09-09

    LiFePO4 has long been held as one of the most promising battery cathode for its high energy storage capacity. Meanwhile, although extensive studies have been conducted on the interfacial chemistries in Li-ion batteries,1-3 little is known on the atomic level about the solid-liquid interface of LiFePO4/electrolyte. Here, we report battery cathode consisted with nanosized LiFePO4 particles in aqueous electrolyte with an high charging and discharging rate of 600 C (3600/600 = 6 s charge time, 1 C = 170 mAh g(-1)) reaching 72 mAh g(-1) energy storage (42% of the theoretical capacity). By contrast, the accessible capacity sharply decreases to 20 mAh g(-1) at 200 C in organic electrolyte. After a comprehensive electrochemistry tests and ab initio calculations of the LiFePO4-H2O and LiFePO4-EC (ethylene carbonate) systems, we identified the transient formation of a Janus hydrated interface in the LiFePO4-H2O system, where the truncated symmetry of solid LiFePO4 surface is compensated by the chemisorbed H2O molecules, forming a half-solid (LiFePO4) and half-liquid (H2O) amphiphilic coordination environment that eases the Li desolvation process near the surface, which makes a fast Li-ion transport across the solid/liquid interfaces possible.

  13. Limits of a tritium battery based on charged particle collection (CPC)

    Energy Technology Data Exchange (ETDEWEB)

    Schalch, D.; Scharmann, A.

    1981-01-01

    The development of a long-lived tritium powered battery using plane electrodes with an inorganic thin-film insulator is reported. The aim of our work was to show that in principle this type of battery can be realized by the use of improved deposition techniques. In addition, the limits of this conversion system were defined with respect to the actual level of thin-film technology.

  14. The correlation of the properties of pyrrolidinium-based ionic liquid electrolytes with the discharge-charge performances of rechargeable Li-O2 batteries

    Science.gov (United States)

    Li, Yu; Zhang, Zhonglin; Duan, Donghong; Sun, Yanbo; Wei, Guoqiang; Hao, Xiaogang; Liu, Shibin; Han, Yunxia; Meng, Weijuan

    2016-10-01

    Pyrrolidinium-based ionic liquids (ILs), such as PYR13TFSI, PYR14TFSI, and PYR1(2O1)TFSI, exhibit high thermal and electrochemical stability with wide electrochemical windows as electrolytes for application to rechargeable Li-O2 batteries. In this work, several fundamental properties of three ILs are measured: the ionic conductivity, oxygen solubility, and oxygen diffusion coefficient. The oxygen electro-reduction kinetics is characterized using cyclic voltammetry. The performances of Li-O2 batteries with these IL electrolytes are also investigated using electrochemical impedance spectroscopy and galvanostatic discharge-charge tests. The results demonstrate that the PYR1(2O1)TFSI electrolyte battery has a higher first-discharge voltage than the PYR13TFSI electrolyte and PYR14TFSI electrolyte batteries. Both PYR13TFSI- and PYR1(2O1)TFSI-based batteries exhibit higher first-discharge capacities and better cycling stabilities than the PYR14TFSI-based battery for 30 cycles. A theoretical analysis of the experimental results shows that the diffusion coefficient and solubility of oxygen in the electrolyte remarkably affect the discharge capacity and cycling stability of the batteries. Particularly, the oxygen diffusion coefficient of the IL electrolyte can effectively facilitate the electrochemical oxygen electro-reduction reaction and oxygen concentration distribution in the catalyst layers of air electrodes. The oxygen diffusion coefficient and oxygen solubility improvements of IL electrolytes can enhance the discharge-charge performances of Li-O2 batteries.

  15. The effect of the charging protocol on the cycle life of a Li-ion battery

    Science.gov (United States)

    Zhang, Sheng Shui

    The effect of the charging protocol on the cycle life of a commercial 18650 Li-ion cell was studied using three methods: (1) constant current (CC) charging, (2) constant power (CP) charging, and (3) multistage constant current (MCC) charging. The MCC-charging consists of two CC steps, which starts with a low current to charge the initial 10% capacity followed by a high current charging until the cell voltage reaches 4.2 V. Using these methods, respectively, the cell was charged to 4.2 V followed by a constant voltage (CV) charging until the current declined to 0.05 C. Results showed that the cycle life of the cell strongly depended on the charging protocol even if the same charging rate was used. Among these three methods, the CC-method was found to be more suitable for slow charging (0.5 C) while the CP-method was better for fast charging (1 C). Impedance analyses indicated that the capacity loss during cycling was mainly attributed to the increase of charge-transfer resistance as a result of the progressive growth of surface layers on the surface of two electrodes. Fast charging resulted in an accelerated capacity fading due to the loss of Li + ions and the related growth of a surface layer, which was associated with metallic lithium plating onto the anode and a high polarization at the electrolyte-electrode interface. Analyses of the cell electrochemistry showed that use of a reduced current to charge the initial 10% capacity and near the end of charge, respectively, was favorable for long cycle life.

  16. Tuning of Kalman Filter Parameters via Genetic Algorithm for State-of-Charge Estimation in Battery Management System

    Directory of Open Access Journals (Sweden)

    T. O. Ting

    2014-01-01

    Full Text Available In this work, a state-space battery model is derived mathematically to estimate the state-of-charge (SoC of a battery system. Subsequently, Kalman filter (KF is applied to predict the dynamical behavior of the battery model. Results show an accurate prediction as the accumulated error, in terms of root-mean-square (RMS, is a very small value. From this work, it is found that different sets of Q and R values (KF’s parameters can be applied for better performance and hence lower RMS error. This is the motivation for the application of a metaheuristic algorithm. Hence, the result is further improved by applying a genetic algorithm (GA to tune Q and R parameters of the KF. In an online application, a GA can be applied to obtain the optimal parameters of the KF before its application to a real plant (system. This simply means that the instantaneous response of the KF is not affected by the time consuming GA as this approach is applied only once to obtain the optimal parameters. The relevant workable MATLAB source codes are given in the appendix to ease future work and analysis in this area.

  17. Tuning of Kalman filter parameters via genetic algorithm for state-of-charge estimation in battery management system.

    Science.gov (United States)

    Ting, T O; Man, Ka Lok; Lim, Eng Gee; Leach, Mark

    2014-01-01

    In this work, a state-space battery model is derived mathematically to estimate the state-of-charge (SoC) of a battery system. Subsequently, Kalman filter (KF) is applied to predict the dynamical behavior of the battery model. Results show an accurate prediction as the accumulated error, in terms of root-mean-square (RMS), is a very small value. From this work, it is found that different sets of Q and R values (KF's parameters) can be applied for better performance and hence lower RMS error. This is the motivation for the application of a metaheuristic algorithm. Hence, the result is further improved by applying a genetic algorithm (GA) to tune Q and R parameters of the KF. In an online application, a GA can be applied to obtain the optimal parameters of the KF before its application to a real plant (system). This simply means that the instantaneous response of the KF is not affected by the time consuming GA as this approach is applied only once to obtain the optimal parameters. The relevant workable MATLAB source codes are given in the appendix to ease future work and analysis in this area.

  18. A Combined State of Charge Estimation Method for Lithium-Ion Batteries Used in a Wide Ambient Temperature Range

    Directory of Open Access Journals (Sweden)

    Fei Feng

    2014-05-01

    Full Text Available Ambient temperature is a significant factor that influences the characteristics of lithium-ion batteries, which can produce adverse effects on state of charge (SOC estimation. In this paper, an integrated SOC algorithm that combines an advanced ampere-hour counting (Adv Ah method and multistate open-circuit voltage (multi OCV method, denoted as “Adv Ah + multi OCV”, is proposed. Ah counting is a simple and general method for estimating SOC. However, the available capacity and coulombic efficiency in this method are influenced by the operating states of batteries, such as temperature and current, thereby causing SOC estimation errors. To address this problem, an enhanced Ah counting method that can alter the available capacity and coulombic efficiency according to temperature is proposed during the SOC calculation. Moreover, the battery SOCs between different temperatures can be mutually converted in accordance with the capacity loss. To compensate for the accumulating errors in Ah counting caused by the low precision of current sensors and lack of accurate initial SOC, the OCV method is used for calibration and as a complement. Given the variation of available capacities at different temperatures, rated/non-rated OCV–SOCs are established to estimate the initial SOCs in accordance with the Ah counting SOCs. Two dynamic tests, namely, constant- and alternated-temperature tests, are employed to verify the combined method at different temperatures. The results indicate that our method can provide effective and accurate SOC estimation at different ambient temperatures.

  19. Charge-discharge mechanisms of Li3V2(PO4)3 cathode materials in Li-batteries - studied by operando PXD

    DEFF Research Database (Denmark)

    Sørensen, Daniel Risskov; Mathiesen, Jette Katja; Henriksen, Christian;

    of their safety, cost, energy density and rate performance. Herein lie the demand for new electrode materials that can provide the required battery properties. Monoclinic Li3V2(PO4)3 (LVP) is a well-known candidate as a cathode material in rechargeable Li-batteries, showing good cyclic stability, high operating......Rechargeable Li-ion batteries are widely recognized as an enabling technology for electrochemical energy storage in applications ranging from small portable electronics over electric vehicles to grid-scale electricity storage1. However, Li-ion batteries still face challenges in terms...... the following: •Is it possible to correlate the features seen in the charge/discharge curves with changes in the crystal structure of LVP? Is operando synchrotron PXD a suitable tool in this investigation? •Changes in the used potential window are known to significantly influence the performance of the battery...

  20. Structural and Electrochemical Investigation during the First Charging Cycles of Silicon Microwire Array Anodes for High Capacity Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Helmut Föll

    2013-02-01

    Full Text Available Silicon microwire arrays embedded in Cu present exceptional performance as anode material in Li ion batteries. The processes occurring during the first charging cycles of batteries with this anode are essential for good performance. This paper sheds light on the electrochemical and structural properties of the anodes during the first charging cycles. Scanning Electron Microscopy, X-ray diffractommetry, and fast Fourier transformation impedance spectroscopy are used for the characterization. It was found that crystalline phases with high Li content are obtained after the first lithiation cycle, while for the second lithiation just crystalline phases with less Li are observable, indicating that the lithiated wires become amorphous upon cycling. The formation of a solid electrolyte interface of around 250 nm during the first lithiation cycle is evidenced, and is considered a necessary component for the good cycling performance of the wires. Analog to voltammetric techniques, impedance spectroscopy is confirmed as a powerful tool to identify the formation of the different Si-Li phases.

  1. Implementation of RTOS on STM32F4 Microcontroller to Control Parallel Boost for Photovoltaic Battery Charging Application

    Directory of Open Access Journals (Sweden)

    EkaPrasetyono

    2015-12-01

    Full Text Available The DC-DC converter is operated with pulse width modulation (PWM and controlled by modifying duty cycle. The PWM is easy developed on microcontroller system, but the problem become complex when some control algorithm implemented to determine duty cycle value. Multitasking is needed to handle sensor, control algorithm and user interface system. This paper discusses the application of Real Time Operating System (RTOS to handle multitasking process on STM32F407 ARM Cortex M4 microcontroller to control parallel boost converter with load sharing algorithm for photovoltaic (PV battery charging application. The first OS task is to run MPPT to get maximum energy from PV. This first OS task is implemented to control the first boost converter. Then, The second OS task to run fuzzy logic controller to control battery charging current with load sharing energy. This second OS task is task implemented to control second boost converter. The measurement of current and voltage of both converter side, display and user interface system also handled with OS task. As the result, each designed task could run well with recommended OS task priority for MPPT and Fuzzy is IRQ task and for TFT_LCD_displayosPriorityAboveNormal.

  2. New Technology for USB Battery Charging and Testing Method%最新USB充电技术与测试

    Institute of Scientific and Technical Information of China (English)

    魏明

    2011-01-01

    The USB2.0 spec does not take into account the applications that portable devices charging their batteries on an USB port,but such applications are becoming more and more popular.This paper describes the main content of the battery charging specification version 1.2 which is latest issued by USB-IF.Then,it gives a brief introduction of the related test specifications and introduces the key items and difficult contents during the tests based on the test experience.%USB2.0规范并没有考虑到使用USB接口为便携式设备的电池进行充电的需求,而这样的应用需求却越来越多。本文首先介绍USB-IF最新颁布的电池充电规范v1.2版本的主要内容;然后对其相关测试规范做简单介绍;最后结合测试经验,对测试中的重点项目和难点内容进行说明。

  3. Cell-level battery charge/discharge protection system. [electronic control techniques

    Science.gov (United States)

    Donovan, R. L.; Imamura, M. S.

    1977-01-01

    The paper describes three design approaches to individual cell monitoring and control for sealed secondary battery cells. One technique involves a modular strap-on single cell protector which contains all the electronics required for monitoring cell voltage, responding to external commands, and forming a bypass circuit for the cell. A second technique, the multiplexed cell protector, uses common circuitry to monitor and control each cell in a battery pack. The third technique, the computerized cell protector, by replacing the hard-wired logic of the multiplexed cell protector with a microprocessor, achieves greatest control flexibility and inherent computational capability with a minimum parts count implementation.

  4. A Real-Time Joint Estimator for Model Parameters and State of Charge of Lithium-Ion Batteries in Electric Vehicles

    OpenAIRE

    Jianping Gao; Yongzhi Zhang; Hongwen He

    2015-01-01

    Accurate state of charge (SoC) estimation of batteries plays an important role in promoting the commercialization of electric vehicles. The main work to be done in accurately determining battery SoC can be summarized in three parts. (1) In view of the model-based SoC estimation flow diagram, the n-order resistance-capacitance (RC) battery model is proposed and expected to accurately simulate the battery’s major time-variable, nonlinear characteristics. Then, the mathematical equations for mod...

  5. A Study of Fuel Economy Improvement in a Plug-in Hybrid Electric Vehicle using Engine on/off and Battery Charging Power Control Based on Driver Characteristics

    Directory of Open Access Journals (Sweden)

    Seulgi Lee

    2015-09-01

    Full Text Available In this study, driving data for various types of drivers are collected using a VIDE (virtual integrated driving environment, and a driver model is developed. To represent the driver tendencies quantitatively, the DDA (degree of driver aggression is proposed based on fuzzy logic. DDA has a 0-1 value; the closer the DDA is to one, the more aggressive the driver. Using the DDA, an engine on/off and battery charging power control algorithm are developed to improve the fuel economy of a power-split-type plug-in hybrid electric vehicle. The engine on/off control reduces the frequent engine on/off caused by aggressive driving, whereas the battery charging power control maintains the battery state of charge (SOC by operating the engine according to the DDA. It is found that the proposed control algorithm improves fuel economy by 17.3% compared to the existing control for an aggressive driver.

  6. A Real-Time Joint Estimator for Model Parameters and State of Charge of Lithium-Ion Batteries in Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jianping Gao

    2015-08-01

    Full Text Available Accurate state of charge (SoC estimation of batteries plays an important role in promoting the commercialization of electric vehicles. The main work to be done in accurately determining battery SoC can be summarized in three parts. (1 In view of the model-based SoC estimation flow diagram, the n-order resistance-capacitance (RC battery model is proposed and expected to accurately simulate the battery’s major time-variable, nonlinear characteristics. Then, the mathematical equations for model parameter identification and SoC estimation of this model are constructed. (2 The Akaike information criterion is used to determine an optimal tradeoff between battery model complexity and prediction precision for the n-order RC battery model. Results from a comparative analysis show that the first-order RC battery model is thought to be the best based on the Akaike information criterion (AIC values. (3 The real-time joint estimator for the model parameter and SoC is constructed, and the application based on two battery types indicates that the proposed SoC estimator is a closed-loop identification system where the model parameter identification and SoC estimation are corrected mutually, adaptively and simultaneously according to the observer values. The maximum SoC estimation error is less than 1% for both battery types, even against the inaccurate initial SoC.

  7. A Method for Compensating Customer Voltage Drops due to Nighttime Simultaneous Charging of EVs Utilizing Reactive Power Injection from Battery Chargers

    Science.gov (United States)

    Noda, Taku; Kabasawa, Yuichiro; Fukushima, Kentaro; Nemoto, Koshichi; Uemura, Satoshi

    When we consider the global warming, the reduction of CO2 emission is one of the most important problems which require urgent solutions. One option is to integrate low-CO2-emission generators to the grid as much as possible. Another option is to replace inefficient vehicles based on internal-combustion engines with electric ones (EVs). Due to the latter, we can easily estimate that most consumers will charge EVs' batteries at nighttime. Thus, excessive voltage drops due to the nighttime simultaneous charging are supposed to be a possible future problem. This paper proposes a method for compensating the voltage drops by injecting reactive power from EV battery chargers.

  8. Estimation of the charge quantity from solar cell to battery; Taiyo denchi ni yoru chikudenchi eno juden yosoku

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsumi, K.; Nishitani, M. [Daiichi University, College of Technology, Kagoshima (Japan)

    1996-10-27

    In performing an experiment of running a small electric vehicle by installing solar cells in it and by charging the storage battery at a specific voltage, an estimation was made on the charge quantity to the battery for each solar altitude and inclination of a module at different hours. The solar altitude was determined at Daiichi University, College of Technology, according to the month and the time of day from a formula using day-declination and time equation of a chronological table of science. The quantity of global solar radiation was determined by resolving the solar radiation into its direct and diffuse components on the basis of the extra-terrestrial solar radiation quantity with the change in radius vector taken into consideration; and then, the global solar radiation on the inclined face was obtained from the angle of inclination and incidence. On the roof of a Daiichi University building, solar cell modules were installed facing north and south at 0{degree}, 30{degree}, 45{degree}, 60{degree} and 90{degree} each, so that a short-circuit current was measured for each differently inclined angle. As a result of the experiment, shown in an regression formula is a relation between the temperature conversion value of the maximum output of the solar cell at the standard temperature of 25{degree}C and the quantity of solar radiation on the inclined surface. Consequently, it enabled the prediction of a charging quantity, in the case of running a small vehicle with solar cells installed, from the quantity of solar radiation on the inclined surface in the clear weather. 2 refs., 4 figs., 2 tabs.

  9. Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates

    OpenAIRE

    Li, Na; Chen, Zongping; Ren, Wencai; LI Feng; Cheng, Hui-Ming

    2012-01-01

    There is growing interest in thin, lightweight, and flexible energy storage devices to meet the special needs for next-generation, high-performance, flexible electronics. Here we report a thin, lightweight, and flexible lithium ion battery made from graphene foam, a three-dimensional, flexible, and conductive interconnected network, as a current collector, loaded with Li4Ti5O12 and LiFePO4, for use as anode and cathode, respectively. No metal current collectors, conducting additives, or binde...

  10. Investigation of battery-charged-capacitor pulsed-power systems for electromagnetic-launcher experiments. Final report, Jan 90-Apr 91

    Energy Technology Data Exchange (ETDEWEB)

    Cornette, J.B.

    1992-02-01

    Candidate pulsed power systems for electromagnetic launchers constitute two broad categories: rotating machinery and non-rotating devices. Rotating machinery for this purpose is under development at several industrial and educational institutions around the world. Non-rotating hardware includes capacitors, batteries, and inductors. These, too, are the subject of research programs, but as yet, are much larger than rotating supplies of equal power and energy capability. In 1988, system studies identified several attractive pulsed power systems for electromagnetic launchers. Battery charged capacitor pulsed power systems were among those identified as promising for electromagnetic launcher systems. The basic equations governing the battery charging capacitor sequence, and the capacitor discharge into an electromagnetic launcher are the subject of this report. A battery charged capacitor system powering an electromagnetic launcher has also been built and tested. This experiment not only validates the system concept with presently available hardware, but can be used to establish a baseline for evaluation of future systems when technology in capacitor and battery power and energy densities improve.

  11. Evaluation of Lithium-Ion Battery Equivalent Circuit Models for State of Charge Estimation by an Experimental Approach

    Directory of Open Access Journals (Sweden)

    Jinxin Fan

    2011-03-01

    Full Text Available To improve the use of lithium-ion batteries in electric vehicle (EV applications, evaluations and comparisons of different equivalent circuit models are presented in this paper. Based on an analysis of the traditional lithium-ion battery equivalent circuit models such as the Rint, RC, Thevenin and PNGV models, an improved Thevenin model, named dual polarization (DP model, is put forward by adding an extra RC to simulate the electrochemical polarization and concentration polarization separately. The model parameters are identified with a genetic algorithm, which is used to find the optimal time constant of the model, and the experimental data from a Hybrid Pulse Power Characterization (HPPC test on a LiMn2O4 battery module. Evaluations on the five models are carried out from the point of view of the dynamic performance and the state of charge (SoC estimation. The dynamic performances of the five models are obtained by conducting the Dynamic Stress Test (DST and the accuracy of SoC estimation with the Robust Extended Kalman Filter (REKF approach is determined by performing a Federal Urban Driving Schedules (FUDS experiment. By comparison, the DP model has the best dynamic performance and provides the most accurate SoC estimation. Finally, sensitivity of the different SoC initial values is investigated based on the accuracy of SoC estimation with the REKF approach based on the DP model. It is clear that the errors resulting from the SoC initial value are significantly reduced and the true SoC is convergent within an acceptable error.

  12. Stability Analysis for Li-Ion Battery Model Parameters and State of Charge Estimation by Measurement Uncertainty Consideration

    Directory of Open Access Journals (Sweden)

    Shifei Yuan

    2015-07-01

    Full Text Available Accurate estimation of model parameters and state of charge (SoC is crucial for the lithium-ion battery management system (BMS. In this paper, the stability of the model parameters and SoC estimation under measurement uncertainty is evaluated by three different factors: (i sampling periods of 1/0.5/0.1 s; (ii current sensor precisions of ±5/±50/±500 mA; and (iii voltage sensor precisions of ±1/±2.5/±5 mV. Firstly, the numerical model stability analysis and parametric sensitivity analysis for battery model parameters are conducted under sampling frequency of 1–50 Hz. The perturbation analysis is theoretically performed of current/voltage measurement uncertainty on model parameter variation. Secondly, the impact of three different factors on the model parameters and SoC estimation was evaluated with the federal urban driving sequence (FUDS profile. The bias correction recursive least square (CRLS and adaptive extended Kalman filter (AEKF algorithm were adopted to estimate the model parameters and SoC jointly. Finally, the simulation results were compared and some insightful findings were concluded. For the given battery model and parameter estimation algorithm, the sampling period, and current/voltage sampling accuracy presented a non-negligible effect on the estimation results of model parameters. This research revealed the influence of the measurement uncertainty on the model parameter estimation, which will provide the guidelines to select a reasonable sampling period and the current/voltage sensor sampling precisions in engineering applications.

  13. The reaction current distribution in battery electrode materials revealed by XPS-based state-of-charge mapping.

    Science.gov (United States)

    Pearse, Alexander J; Gillette, Eleanor; Lee, Sang Bok; Rubloff, Gary W

    2016-07-28

    Morphologically complex electrochemical systems such as composite or nanostructured lithium ion battery electrodes exhibit spatially inhomogeneous internal current distributions, particularly when driven at high total currents, due to resistances in the electrodes and electrolyte, distributions of diffusion path lengths, and nonlinear current-voltage characteristics. Measuring and controlling these distributions is interesting from both an engineering standpoint, as nonhomogenous currents lead to lower utilization of electrode material, as well as from a fundamental standpoint, as comparisons between theory and experiment are relatively scarce. Here we describe a new approach using a deliberately simple model battery electrode to examine the current distribution in a electrode material limited by poor electronic conductivity. We utilize quantitative spatially resolved X-ray photoelectron spectroscopy to measure the spatial distribution of the state-of-charge of a V2O5 model electrode as a proxy measure for the current distribution on electrodes discharged at varying current densities. We show that the current at the electrode-electrolyte interface falls off with distance from the current collector, and that the current distribution is a strong function of total current. We compare the observed distributions with a simple analytical model which reproduces the dependence of the distribution on total current, but fails to predict the correct length scale. A more complete numerical simulation suggests that dynamic changes in the electronic conductivity of the V2O5 concurrent with lithium insertion may contribute to the differences between theory and experiment. Our observations should help inform design criteria for future electrode architectures.

  14. Thailand's solar white elephants: an analysis of 15 yr of solar battery charging programmes in northern Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Green, D. [University of California, Berkeley, CA (United States). Energy and Resources Group

    2004-04-01

    The use of decentralised renewable energy technologies to provide rural electrification in developing countries has been a common topic of analysis and policy debate for more than two decades. Unfortunately, a lack of empirical evidence about the field performance of these technologies is a significant barrier to making sound policy decisions about them. Compounded by minimal information sharing between stakeholders, this situation has frequently allowed duplication of inefficient policies. This issue is addressed here by providing empirical evidence gathered from field visits and interviews about the largest government subsidised solar battery charging programme in the world. This analysis highlights the different policies of departments responsible and discusses them with specific attention to their technical, social and economic components. Field study results from over 50 villages in the north of Thailand suggest about 60% of these systems are no longer operational. Many of the technical failures observed are attributed to social factors, as well as flawed implementation strategies. (author)

  15. In situ monitoring of discharge/charge processes in Li-O2 batteries by electrochemical impedance spectroscopy

    Science.gov (United States)

    Landa-Medrano, Imanol; Ruiz de Larramendi, Idoia; Ortiz-Vitoriano, Nagore; Pinedo, Ricardo; Ignacio Ruiz de Larramendi, José; Rojo, Teófilo

    2014-03-01

    Gaining insight into the reaction mechanisms underway during charge and discharge in Li-air batteries is essential to allow the target development of improved power and performance devices. This work reports the in situ monitoring of Li-air cells by electrochemical impedance spectroscopy and, for the first time, the development of an electrochemical model allowing the identification and attribution of the processes involved. The voltage at which each reaction product forms has been identified, including Li2O2 or Li2CO3 during discharge, together with the delithiation of the outer part of Li2O2 and oxidation reactions and electrolyte decomposition. The developed model can be used as a valuable tool for the optimisation of composition and structure of the air electrode through the investigation of the resistance associated with each process.

  16. Alternatively Energy-Supplying and Charging Circuit Binary Batteries%两电池交替供、充电电路

    Institute of Scientific and Technical Information of China (English)

    王昊; 那文鹏; 胡伟强

    2001-01-01

    选用电池作为单片机应用系统的电源,应用两个电池交替供电、充电,能彻底解决模拟部分电源地与数字部分电源地的隔离问题。本文研究了两个电池交替供电、充电电路的原理以及防过充电路的原理。%Taking batteries as the power supply of monolithic microcomputer application system, using double batteries alternatively to supply energy and charge can thoroughly solve the insulating problem of simulate part power earthing and digital part power earthing. The paper studies the theorem of double batteries alternative energy supply and charging circuit, and the principle on overcharging prevention circuit.

  17. A high-fidelity multiphysics model for the new solid oxide iron-air redox battery part I: Bridging mass transport and charge transfer with redox cycle kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Jin, XF; Zhao, X; Huang, K

    2015-04-15

    A high-fidelity two-dimensional axial symmetrical multi-physics model is described in this paper as an effort to simulate the cycle performance of a recently discovered solid oxide metal-air redox battery (SOMARB). The model collectively considers mass transport, charge transfer and chemical redox cycle kinetics occurring across the components of the battery, and is validated by experimental data obtained from independent research. In particular, the redox kinetics at the energy storage unit is well represented by Johnson-Mehl-Avrami-Kolmogorov (JIVIAK) and Shrinking Core models. The results explicitly show that the reduction of Fe3O4 during the charging cycle limits the overall performance. Distributions of electrode potential, overpotential, Nernst potential, and H-2/H2O-concentration across various components of the battery are also systematically investigated. (C) 2015 Elsevier B.V. All rights reserved.

  18. Joint Estimation of the Electric Vehicle Power Battery State of Charge Based on the Least Squares Method and the Kalman Filter Algorithm

    Directory of Open Access Journals (Sweden)

    Xiangwei Guo

    2016-02-01

    Full Text Available An estimation of the power battery state of charge (SOC is related to the energy management, the battery cycle life and the use cost of electric vehicles. When a lithium-ion power battery is used in an electric vehicle, the SOC displays a very strong time-dependent nonlinearity under the influence of random factors, such as the working conditions and the environment. Hence, research on estimating the SOC of a power battery for an electric vehicle is of great theoretical significance and application value. In this paper, according to the dynamic response of the power battery terminal voltage during a discharging process, the second-order RC circuit is first used as the equivalent model of the power battery. Subsequently, on the basis of this model, the least squares method (LS with a forgetting factor and the adaptive unscented Kalman filter (AUKF algorithm are used jointly in the estimation of the power battery SOC. Simulation experiments show that the joint estimation algorithm proposed in this paper has higher precision and convergence of the initial value error than a single AUKF algorithm.

  19. Cathode limited charge transport and performance of thin-film rechargeable lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Bates, J.B.; Hart, F.X.; Lubben, D.; Kwak, B.S.; van Zomeren, A.

    1994-11-01

    Several types of thin-film rechargeable batteries based on lithium metal anodes and amorphous V{sub 2}O{sub 5} (aV{sub 2}O{sub 5}), LiMn{sub 2}O{sub 4}, and LiCoO{sub 2} cathodes have been investigated in this laboratory. In all cases, the current density of these cells is limited by lithium ion transport in the cathodes. This paper, discusses sources of this impedance in Li-aV{sub 2}O{sub 5} and Li-LiMn{sub 2}O{sub 4} thin-film cells and their effect on cell performance.

  20. Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates.

    Science.gov (United States)

    Li, Na; Chen, Zongping; Ren, Wencai; Li, Feng; Cheng, Hui-Ming

    2012-10-23

    There is growing interest in thin, lightweight, and flexible energy storage devices to meet the special needs for next-generation, high-performance, flexible electronics. Here we report a thin, lightweight, and flexible lithium ion battery made from graphene foam, a three-dimensional, flexible, and conductive interconnected network, as a current collector, loaded with Li(4)Ti(5)O(12) and LiFePO(4), for use as anode and cathode, respectively. No metal current collectors, conducting additives, or binders are used. The excellent electrical conductivity and pore structure of the hybrid electrodes enable rapid electron and ion transport. For example, the Li(4)Ti(5)O(12)/graphene foam electrode shows a high rate up to 200 C, equivalent to a full discharge in 18 s. Using them, we demonstrate a thin, lightweight, and flexible full lithium ion battery with a high-rate performance and energy density that can be repeatedly bent to a radius of 5 mm without structural failure and performance loss.

  1. In situ X-ray near-edge absorption spectroscopy investigation of the state of charge of all-vanadium redox flow batteries.

    Science.gov (United States)

    Jia, Chuankun; Liu, Qi; Sun, Cheng-Jun; Yang, Fan; Ren, Yang; Heald, Steve M; Liu, Yadong; Li, Zhe-Fei; Lu, Wenquan; Xie, Jian

    2014-10-22

    Synchrotron-based in situ X-ray near-edge absorption spectroscopy (XANES) has been used to study the valence state evolution of the vanadium ion for both the catholyte and anolyte in all-vanadium redox flow batteries (VRB) under realistic cycling conditions. The results indicate that, when using the widely used charge-discharge profile during the first charge process (charging the VRB cell to 1.65 V under a constant current mode), the vanadium ion valence did not reach V(V) in the catholyte and did not reach V(II) in the anolyte. Consequently, the state of charge (SOC) for the VRB cell was only 82%, far below the desired 100% SOC. Thus, such incompletely charged mix electrolytes results in not only wasting the electrolytes but also decreasing the cell performance in the following cycles. On the basis of our study, we proposed a new charge-discharge profile (first charged at a constant current mode up to 1.65 V and then continuously charged at a constant voltage mode until the capacity was close to the theoretical value) for the first charge process that achieved 100% SOC after the initial charge process. Utilizing this new charge-discharge profile, the theoretical charge capacity and the full utilization of electrolytes has been achieved, thus having a significant impact on the cost reduction of the electrolytes in VRB.

  2. A sensor data format incorporating battery charge information for smartphone-based mHealth applications

    Science.gov (United States)

    Escobar, Rodrigo; Akopian, David; Boppana, Rajendra

    2015-03-01

    Remote health monitoring systems involve energy-constrained devices, such as sensors and mobile gateways. Current data formats for communication of health data, such as DICOM and HL7, were not designed for multi-sensor applications or to enable the management of power-constrained devices in health monitoring processes. In this paper, a data format suitable for collection of multiple sensor data, including readings and other operational parameters is presented. By using the data format, the system management can assess energy consumptions and plan realistic monitoring scenarios. The proposed data format not only outperforms other known data formats in terms of readability, flexibility, interoperability and validation of compliant documents, but also enables energy assessment capability for realistic data collection scenarios and maintains or even reduces the overhead introduced due to formatting. Additionally, we provide analytical methods to estimate incremental energy consumption by various sensors and experiments to measure the actual battery drain on smartphones.

  3. Comparison of Nonlinear Filtering Methods for Estimating the State of Charge of Li4Ti5O12 Lithium-Ion Battery

    Directory of Open Access Journals (Sweden)

    Jianping Gao

    2015-01-01

    Full Text Available Accurate state of charge (SoC estimation is of great significance for the lithium-ion battery to ensure its safety operation and to prevent it from overcharging or overdischarging. To achieve reliable SoC estimation for Li4Ti5O12 lithium-ion battery cell, three filtering methods have been compared and evaluated. A main contribution of this study is that a general three-step model-based battery SoC estimation scheme has been proposed. It includes the processes of battery data measurement, parametric modeling, and model-based SoC estimation. With the proposed general scheme, multiple types of model-based SoC estimators have been developed and evaluated for battery management system application. The detailed comparisons on three advanced adaptive filter techniques, which include extend Kalman filter, unscented Kalman filter, and adaptive extend Kalman filter (AEKF, have been implemented with a Li4Ti5O12 lithium-ion battery. The experimental results indicate that the proposed model-based SoC estimation approach with AEKF algorithm, which uses the covariance matching technique, performs well with good accuracy and robustness; the mean absolute error of the SoC estimation is within 1% especially with big SoC initial error.

  4. Influence of memory effect on the state-of-charge estimation of large-format Li-ion batteries based on LiFePO4 cathode

    Science.gov (United States)

    Shi, Wei; Wang, Jiulin; Zheng, Jianming; Jiang, Jiuchun; Viswanathan, Vilayanur; Zhang, Ji-Guang

    2016-04-01

    In this work, we systematically investigated the influence of the memory effect of LiFePO4 cathodes in large-format full batteries. The electrochemical performance of the electrodes used in these batteries was also investigated separately in half-cells to reveal their intrinsic properties. We noticed that the memory effect of LiFePO4/graphite cells depends not only on the maximum state of charge reached during the memory writing process, but is also affected by the depth of discharge reached during the memory writing process. In addition, the voltage deviation in a LiFePO4/graphite full battery is more complex than in a LiFePO4/Li half-cell, especially for a large-format battery, which exhibits a significant current variation in the region near its terminals. Therefore, the memory effect should be taken into account in advanced battery management systems to further extend the long-term cycling stabilities of Li-ion batteries using LiFePO4 cathodes.

  5. State of Charge Balancing Control of a Multi-Functional Battery Energy Storage System Based on a 11-Level Cascaded Multilevel PWM Converter

    DEFF Research Database (Denmark)

    Wang, Songcen; Teodorescu, Remus; Máthé, Lászlo

    2015-01-01

    This paper focuses on modeling and SOC (State of Charge) balancing control of lithium-ion battery energy storage system based on cascaded multilevel converter for both grid integration and electric vehicle propulsion applications. The equivalent electrical circuit model of lithium-ion battery...... is adopted to control active power and reactive power independently, and the zero-sequence voltage injection and a sorting and select algorithm are employed for SOC balancing control. The simulation results have been carried out with PLECS Simulation Software and are presented to validate the SOC control...

  6. Monitoring and control system for the charging of batteries in photovoltaic applications; Sistema para monitorizar y controlar la carga de baterias en aplicaciones fotovoltaicas

    Energy Technology Data Exchange (ETDEWEB)

    Ortega S, Cesar A; Pacheco A, Maria Jojutla; Orozco V, Jaime A; Cristin V, Miguel A [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2004-07-01

    The appropriate monitoring and control of the charging of lead-acid (LAB) batteries is an increasing necessity in an industry that demands systems with low maintenance costs and high availability. The problem of extending the batteries useful life becomes more complex when the batteries are charged through photovoltaic panels. The purpose of the present article is to offer the description of the system for monitoring and control for the charging of batteries developed at the Instituto de Investigaciones Electricas (IIE). This system performs a continuous monitoring of the charging state of the battery and of the main operation parameters. With the extracted information of the data, the fine tuning algorithm control can be made. The data are acquired in a personal computer through a serial connection. Once stored, they are presented to the user in a graphical way so that they can be analyzed. [Spanish] El adecuado monitoreo y control de carga de baterias plomo-acido (BPA) es una necesidad creciente en una industria que demanda sistemas con bajos costos de mantenimiento y alta disponibilidad. El problema de extender la vida util de las baterias se vuelve mas complejo cuando las baterias son cargadas a traves de paneles fotovoltaicos. La intencion del presente articulo es ofrecer la descripcion del sistema para monitoreo y control de carga de baterias desarrollado en el Instituto de Investigaciones Electricas (IIE). Este sistema realiza un monitoreo continuo del estado de carga de la bateria y de los principales parametros de operacion. Con la informacion extraida de los datos, se puede hacer la sintonizacion fina del algoritmo de control. Los datos se adquieren en una computadora personal a traves de un enlace serial. Una vez almacenados, se presentan al usuario de manera grafica para que puedan ser analizados.

  7. Assessment of the development of a battery charging infrastructure for a redox flow battery based electromobility concept; Bewertung des Aufbaus einer Ladeinfrastruktur fuer eine Redox-Flow-Batteriebasierte Elektromobilitaet

    Energy Technology Data Exchange (ETDEWEB)

    Arpad Funke, Simon; Wietschel, Martin [Fraunhofer-Institut fuer System- und Innovationsforschung (ISI), Karlsruhe (Germany). Competence Center Energietechnologien und Energiesysteme

    2012-07-01

    Apart from the high acquisition cost, the major obstacles to widespread use of electric-powered vehicles today are long battery charging times and limited mileage. Rechargeable batteries might be a solution. The publication investigates a potential infrastructure for electric-powered vehicles based on so-called redox flow batteries. Redox flow batteries are characterized in that active materials are dissolved in liquid electrolyte and are stored outside the cell. Batteries are recharged by exchanging charged electrolyte for discharged electrolyte, which can be done in fuel stations. Redox flow batteries have the drawback of low energy and power density and were hardly ever considered for mobile applications so far. A technical analysis of RFB technology identified the vanadium oxygen redox flow fuel cell (VOFC) as a promising version. It provides higher energy density than conventional redox flow batteries, but development is still in an early stage. Assuming a 'best case' scenario, a refuelling infrastructure for VOFC vehicles was developed and compared with battery-powered vehicles (BEV) and fuel cell vehicles (FVEV). It was found that electromobility based on VOFC may be a promising alternative to current electromobility concepts. (orig./AKB) [German] Neben den Anschaffungsausgaben stehen lange Ladezeiten und eine beschraenkte Reichweite dem heutigen Einsatz von Elektrofahrzeugen oft entgegen. Eine moegliche Abhilfe koennten betankbare Batterien leisten. In der vorliegenden Arbeit soll ein moeglicher Infrastrukturaufbau fuer Elektrofahrzeuge mit sogenannten Redox-Flow-Batterien untersucht werden. Redox-Flow-Batterien besitzen die Eigenschaft, dass aktive Materialien geloest in Fluessigelektrolyten ausserhalb der Zelle gespeichert werden. Dieser Aufbau ermoeglicht das Aufladen der Batterie, indem der entladene Elektrolyt durch geladenen ausgetauscht wird. Dieser Tausch kann an einer Tankstelle durchgefuehrt werden. Ein wesentlicher Nachteil von Redox

  8. Estimation method of state-of-charge for lithium-ion battery used in hybrid electric vehicles based on variable structure extended kalman filter

    Science.gov (United States)

    Sun, Yong; Ma, Zilin; Tang, Gongyou; Chen, Zheng; Zhang, Nong

    2016-07-01

    Since the main power source of hybrid electric vehicle(HEV) is supplied by the power battery, the predicted performance of power battery, especially the state-of-charge(SOC) estimation has attracted great attention in the area of HEV. However, the value of SOC estimation could not be greatly precise so that the running performance of HEV is greatly affected. A variable structure extended kalman filter(VSEKF)-based estimation method, which could be used to analyze the SOC of lithium-ion battery in the fixed driving condition, is presented. First, the general lower-order battery equivalent circuit model(GLM), which includes column accumulation model, open circuit voltage model and the SOC output model, is established, and the off-line and online model parameters are calculated with hybrid pulse power characteristics(HPPC) test data. Next, a VSEKF estimation method of SOC, which integrates the ampere-hour(Ah) integration method and the extended Kalman filter(EKF) method, is executed with different adaptive weighting coefficients, which are determined according to the different values of open-circuit voltage obtained in the corresponding charging or discharging processes. According to the experimental analysis, the faster convergence speed and more accurate simulating results could be obtained using the VSEKF method in the running performance of HEV. The error rate of SOC estimation with the VSEKF method is focused in the range of 5% to 10% comparing with the range of 20% to 30% using the EKF method and the Ah integration method. In Summary, the accuracy of the SOC estimation in the lithium-ion battery cell and the pack of lithium-ion battery system, which is obtained utilizing the VSEKF method has been significantly improved comparing with the Ah integration method and the EKF method. The VSEKF method utilizing in the SOC estimation in the lithium-ion pack of HEV can be widely used in practical driving conditions.

  9. Estimation Method of State-of-Charge For Lithium-ion Battery Used in Hybrid Electric Vehicles Based on Variable Structure Extended Kalman Filter

    Institute of Scientific and Technical Information of China (English)

    SUN Yong; MA Zilin; TANG Gongyou; CHEN Zheng; ZHANG Nong

    2016-01-01

    Since the main power source of hybrid electric vehicle(HEV) is supplied by the power battery, the predicted performance of power battery, especially the state-of-charge(SOC) estimation has attracted great attention in the area of HEV. However, the value of SOC estimation could not be greatly precise so that the running performance of HEV is greatly affected. A variable structure extended kalman filter(VSEKF)-based estimation method, which could be used to analyze the SOC of lithium-ion battery in the fixed driving condition, is presented. First, the general lower-order battery equivalent circuit model(GLM), which includes column accumulation model, open circuit voltage model and the SOC output model, is established, and the off-line and online model parameters are calculated with hybrid pulse power characteristics(HPPC) test data. Next, a VSEKF estimation method of SOC, which integrates the ampere-hour(Ah) integration method and the extended Kalman filter(EKF) method, is executed with different adaptive weighting coefficients, which are determined according to the different values of open-circuit voltage obtained in the corresponding charging or discharging processes. According to the experimental analysis, the faster convergence speed and more accurate simulating results could be obtained using the VSEKF method in the running performance of HEV. The error rate of SOC estimation with the VSEKF method is focused in the range of 5%to 10%comparing with the range of 20%to 30%using the EKF method and the Ah integration method. In Summary, the accuracy of the SOC estimation in the lithium-ion battery cell and the pack of lithium-ion battery system, which is obtained utilizing the VSEKF method has been significantly improved comparing with the Ah integration method and the EKF method. The VSEKF method utilizing in the SOC estimation in the lithium-ion pack of HEV can be widely used in practical driving conditions.

  10. Effects of state of charge on the degradation of LiFePO{sub 4}/graphite batteries during accelerated storage test

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yong [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); He, Yan-Bing; Qian, Kun [Engineering Laboratory for Next Generation Power and Energy Storage Batteries, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Li, Baohua, E-mail: libh@mail.sz.tsinghua.edu.cn [Engineering Laboratory for Next Generation Power and Energy Storage Batteries, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Wang, Xindong [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Li, Jianling, E-mail: lijianling@ustb.edu.cn [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Miao, Cui; Kang, Feiyu [Engineering Laboratory for Next Generation Power and Energy Storage Batteries, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China)

    2015-08-05

    Highlights: • Degradation of LiFePO{sub 4}/graphite batteries under different state of charge at 55 °C is investigate. • Side reactions caused by self-discharge are the main reason for performance fade during storage. • The detailed degradation mechanism is proven by post-mortem analysis. • Increased electrode resistance in LiFePO{sub 4} cathode suggests that side reactions also happen at positive electrode. - Abstract: In this paper, the degradation of LiFePO{sub 4}/graphite batteries during 10 months of storage under different temperatures and states of charge (SOCs) is studied. The effects of SOC during storage process are systematically investigated using electrochemical methods and post-mortem analysis. The results show that at elevated temperature of 55 °C, higher stored SOC results in more significant increase in bulk resistance (R{sub b}) and charge-transfer resistance (R{sub ct}) of full battery, whereas the rate-discharge capability of stored battery is unchanged. The side reactions at the electrode/electrolyte interface caused by self-discharge are the main reasons for the performance fading during storage. For LiFePO{sub 4} cathode, long-time storage does not influence the framework structure under various SOCs. The existence of little irreversible capacity loss and impedance increase indicates that side reactions also occur at the positive electrode. For graphite anode, only a little capacity loss is found upon storage. There is a significant increase in impedance and a small amount of Fe deposition on graphite anode after storage at 100% SOC and 55 °C. The lithium ion loss arises from side reactions taking place at the graphite anode, which is responsible for the capacity degradation of battery during the storage process. XPS analysis confirms that a deposit layer composed of Li{sub 2}CO{sub 3} and LiF is formed on the surface of anode.

  11. Online Estimation of Model Parameters and State of Charge of LiFePO4 Batteries Using a Novel Open-Circuit Voltage at Various Ambient Temperatures

    Directory of Open Access Journals (Sweden)

    Fei Feng

    2015-04-01

    Full Text Available This study describes an online estimation of the model parameters and state of charge (SOC of lithium iron phosphate batteries in electric vehicles. A widely used SOC estimator is based on the dynamic battery model with predeterminate parameters. However, model parameter variances that follow with their varied operation temperatures can result in errors in estimating battery SOC. To address this problem, a battery online parameter estimator is presented based on an equivalent circuit model using an adaptive joint extended Kalman filter algorithm. Simulations based on actual data are established to verify accuracy and stability in the regression of model parameters. Experiments are also performed to prove that the proposed estimator exhibits good reliability and adaptability under different loading profiles with various temperatures. In addition, open-circuit voltage (OCV is used to estimate SOC in the proposed algorithm. However, the OCV based on the proposed online identification includes a part of concentration polarization and hysteresis, which is defined as parametric identification-based OCV (OCVPI. Considering the temperature factor, a novel OCV–SOC relationship map is established by using OCVPI under various temperatures. Finally, a validating experiment is conducted based on the consecutive loading profiles. Results indicate that our method is effective and adaptable when a battery operates at different ambient temperatures.

  12. State of charge estimation of Li-ion batteries in an electric vehicle based on a radial-basis-function neural network

    Institute of Scientific and Technical Information of China (English)

    Bi Jun; Shao Sai; Guan Wei; Wang Lu

    2012-01-01

    The on-line estimation of the state of charge (SOC) of the batteries is important for the reliable running of the pure electric vehicle in practice.Because a nonlinear feature exists in the batteries and the radial-basis-function neural network (RBF NN) has good characteristics to solve the nonlinear problem,a practical method for the SOC estimation of batteries based on the RBF NN with a small number of input variables and a simplified structure is proposed.Firstly,in this paper,the model of on-line SOC estimation with the RBF NN is set.Secondly,four important factors for estimating the SOC are confirmed based on the contribution analysis method,which simplifies the input variables of the RBF NN and enhances the real-time performance of estimation.Finally,the pure electric buses with LiFePO4Li-ion batteries running during the period of the 2010 Shanghai World Expo are considered as the experimental object.The performance of the SOC estimation is validated and evaluated by the battery data from the electric vehicle.

  13. Study on Charging Load Modeling and Coordinated Charging of Electric Vehicles Under Battery Swapping Modes%换电模式下电动汽车电池充电负荷建模与有序充电研究

    Institute of Scientific and Technical Information of China (English)

    罗卓伟; 胡泽春; 宋永华; 徐智威; 贾龙

    2012-01-01

    为了建立换电模式下电动汽车电池充电负荷及优化模型,对2种电动汽车换电模式即充换电模式和集中充电统一配送模式的结构、运营流程进行了分析.在满足用户换电需求的约束下,基于分时电价机制,提出考虑2种换电方式的以总充电费用最小为目标的第1阶段优化模型.第2阶段优化以第1阶段求取的最小充电费用为总充电费用的上限,以日负荷曲线波动最小为目标.以中国2020年充电负荷为例进行计算,对不同类型电动汽车采用不同的换电方式,并将换电模式与充电模式的充电负荷进行比较.计算结果表明,换电模式下无序充电情景峰荷较充电模式时增加较小,有序充电情景电网峰荷将不会增加,所提出的换电模式下有序充电模型能够有效减少充电费用及日负荷曲线波动.%To build the charging load calculation and optimization model under the battery swapping modes of electric vehicles (Evs), the structure and operation of two kinds of battery swapping modes, I.e. charging-swapping modes and centralized charging unified distribution modes, were analyzed. Then taken the constrains of satisfying the battery swapping needs of customers, the first stage coordinated charging formulation considering both the battery swap modes to minimize charging cost based on the time of use (TOU) power price mechanism were proposed. The peak load obtained from the first stage were set as the upper bound of the second stage optimization. In the second stage, the objective is to smooth the daily load curve fluctuation. Case studies calculate the charging loads of Evs in the year of 2020 in China, different kinds of battery swapping modes were matched for different kinds of Evs. The results were compared with those of the plug-in charging mode. The calculation results show that, the peak load under battery swapping modes increases less than the plug-in modes in the uncoordinated charging scenario

  14. Charge equalization of Li-ion battery for electric vehicles%纯电动汽车动力锂电池均衡充电的研究

    Institute of Scientific and Technical Information of China (English)

    郭军; 刘和平; 徐伟; 刘平

    2012-01-01

    针对电动汽车动力电池组中单体电池的不均衡将减少电池使用寿命和电动车单次充电行驶距离的问题,设计了均衡充电装置.通过对16节串联电池组的大量充放电试验得到电池电压之间的分散性曲线,并分析了均衡充电的必要性.根据锂电池充电特性,对电池不均衡度进行了数学建模,并提出单体电池SOC(State of charge)相对浓度和伪均衡的概念.均衡充电主电路采用反激变换器完成高频变压器的设计,同时通过软件实现均衡装置的自启动和结束,并采用两点标定法来提高A/D巾采样精度.最后采用Saber仿真软件和实验对设计进行了验证.结果表明:实现了恒流和恒压控制,并将电池分散性降低了61.86%.%The unbalance of Li-ion cells in the same battery pack may limit the life of batter and the operating range of once charge, so the charge equalization converter was designed. The dispersion curve of voltage was obtained by testing battery, which was made up 16 cells. The necessity of charge equalization was analyzed particularly. According to electrical properties of Li-ion cells, the unbalance of a battery was discussed, and a mathematical model was established. Two concepts were presented: relative concentration of single battery for SOC (State of Charge), and pseudo-equilibrium for battery. The high-frequency transformer adopted flyback converter and start and end of charge equalization was controlled by software. The accuracy of A/D sample was improved by two point method of calibration. Finally, the result of simulation and experiment show that constant voltage and current control is achieved and the dispersion is decreased by 61.86%.

  15. Prediction of State-of-Health for Nickel-Metal Hydride Batteries by a Curve Model Based on Charge-Discharge Tests

    Directory of Open Access Journals (Sweden)

    Huan Yang

    2015-11-01

    Full Text Available Based on charge-discharge cycle tests for commercial nickel-metal hydride (Ni-MH batteries, a nonlinear relationship is found between the discharging capacity (Cdischarge, Ah and the voltage changes in 1 s occurring at the start of the charging process (ΔVcharge, mV. This nonlinear relationship between Cdischarge and ΔVcharge is described with a curve equation, which can be determined using a nonlinear least-squares method. Based on the curve equation, a curve model for the state-of-health (SOH prediction is constructed without battery models and cycle numbers. The validity of the curve model is verified using (Cdischarge, ΔVcharge data groups obtained from the charge-discharge cycle tests at different rates. The results indicate that the curve model can be effectively applied to predict the SOH of the Ni-MH batteries and the best prediction root-mean-square error (RMSE can reach upto 1.2%. Further research is needed to confirm the application of this empirical curve model in practical fields.

  16. Alkaline battery operational methodology

    Science.gov (United States)

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  17. The long term charged storage performance of Li-ion battery%锂离子电池的长期荷电贮存性能

    Institute of Scientific and Technical Information of China (English)

    王洪; 杨驰; 王大兴; 郭春泰

    2011-01-01

    Li-ion battery was long term (5 ~ 10 a) stored under normal temperature with different state of charge (SOC), the performance of battery before and after storage was teated. When the battery was stored for a long time, the internal resistance improved, the average internal resistance increasing ratio was above 79.95 %, polymer Li-ion battery had a lower internal resistance increasing ratio. The capacity recovery performance of Li-ion battery stored for a long time was fine, the average capacity recovery ratio with 10 a storage could reach to 88% .Long term storage had unfavorable effect to the capacity,platform and cycle life of the battery.%将锂离子电池在常温下以不同的荷电态(SOC)长期(5-10 a)贮存,对贮存前后的电池性能进行测试.长期贮存后,电池的内阻增加,10 a贮存后的内阻平均增加率高达79.95%,聚合物锂离子电池的内阻增加稍低.锂离子电池长期贮存后,容量恢复性能较好,10 a贮存容量平均恢复率可迭88%.长期贮存对电池的容量、平台和循环寿命都会产生不利的影响.

  18. Understanding the Charging Mechanism of Lithium-Sulfur Batteries Using Spatially Resolved Operando X-Ray Absorption Spectroscopy

    NARCIS (Netherlands)

    Y. Gorlin; M.U.M. Patel; A. Freiberg; Q. He; M. Piana; M. Tromp; H.A. Gasteiger

    2016-01-01

    Replacement of conventional cars with battery electric vehicles (BEVs) offers an opportunity to significantly reduce future carbon dioxide emissions. One possible way to facilitate widespread acceptance of BEVs is to replace the lithium-ion batteries used in existing BEVs with a lithium-sulfur batte

  19. Research on Shift Gating Equalization Charging System for Power Battery Pack%动力电池组移位选通均衡充电方案设计

    Institute of Scientific and Technical Information of China (English)

    陈曦; 何志杰

    2015-01-01

    This paper presents a shift gating equalization charging system for power battery pack. Each cell is equipped with a gating charging module in this system. In order to make an equalization charging for power battery pack, battery management system control gating charging module,increasing the charging current of the battery which is charging slowly,accelerating the charging speed. Gating charging module using the shift gating control mode, this control circuit structure is simple and easy to expand. Experiments show that using this system, when charging is completed the battery terminal voltage difference is only 50mV and no overcharging, the power battery pack achieving an equalization charging purposes.%提出了一种动力电池组移位选通均衡充电系统,该系统为每节电池配备一个选通充电模块。电池管理系统通过控制选通充电模块,增大充电慢的电池的充电电流,加快其充电速度,实现动力电池组的均衡充电。选通充电模块采用移位选通的控制方式,使控制电路结构简单,便于扩展。实验表明,采用该系统,充电结束时电池端电压仅相差50 mV且没有过充电,达到电池组均衡充电的目的。

  20. A method for state-of-charge estimation of LiFePO4 batteries at dynamic currents and temperatures using particle filter

    Science.gov (United States)

    Wang, Yujie; Zhang, Chenbin; Chen, Zonghai

    2015-04-01

    The state-of-charge (SOC) estimation for LiFePO4 batteries is one of the most important issues in battery management system (BMS) on electric vehicles (EVs). Significant temperature changes and drift current noises are inevitable in EVs and cause strong interference in SOC estimation, therefore a SOC-Particle filter (PF) estimator is proposed for SOC estimation. This paper tries to make three contributions: (1) a temperature composed battery model is established based on commercial LiFePO4 cells which can be used for SOC estimation at dynamic temperatures. (2) A capacity retention ratio (CRR) aging model is established based on the real history statistical analysis of the running mileage of the battery on an urban bus. (3) The proposed models are combined with an electrochemical model and the PF method is employed for SOC estimation to eliminate the drift noise effects. Experiments under dynamic current and temperature conditions are designed and performed to verify the accuracy and robustness of the proposed method. The numeral results of the validation experiments have verified that accurate and robust SOC estimation results can be obtained by the proposed method.

  1. Online Identification with Reliability Criterion and State of Charge Estimation Based on a Fuzzy Adaptive Extended Kalman Filter for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Zhongwei Deng

    2016-06-01

    Full Text Available In the field of state of charge (SOC estimation, the Kalman filter has been widely used for many years, although its performance strongly depends on the accuracy of the battery model as well as the noise covariance. The Kalman gain determines the confidence coefficient of the battery model by adjusting the weight of open circuit voltage (OCV correction, and has a strong correlation with the measurement noise covariance (R. In this paper, the online identification method is applied to acquire the real model parameters under different operation conditions. A criterion based on the OCV error is proposed to evaluate the reliability of online parameters. Besides, the equivalent circuit model produces an intrinsic model error which is dependent on the load current, and the property that a high battery current or a large current change induces a large model error can be observed. Based on the above prior knowledge, a fuzzy model is established to compensate the model error through updating R. Combining the positive strategy (i.e., online identification and negative strategy (i.e., fuzzy model, a more reliable and robust SOC estimation algorithm is proposed. The experiment results verify the proposed reliability criterion and SOC estimation method under various conditions for LiFePO4 batteries.

  2. Online state of charge and model parameters estimation of the LiFePO4 battery in electric vehicles using multiple adaptive forgetting factors recursive least-squares

    Science.gov (United States)

    Duong, Van-Huan; Bastawrous, Hany Ayad; Lim, KaiChin; See, Khay Wai; Zhang, Peng; Dou, Shi Xue

    2015-11-01

    This paper deals with the contradiction between simplicity and accuracy of the LiFePO4 battery states estimation in the electric vehicles (EVs) battery management system (BMS). State of charge (SOC) and state of health (SOH) are normally obtained from estimating the open circuit voltage (OCV) and the internal resistance of the equivalent electrical circuit model of the battery, respectively. The difficulties of the parameters estimation arise from their complicated variations and different dynamics which require sophisticated algorithms to simultaneously estimate multiple parameters. This, however, demands heavy computation resources. In this paper, we propose a novel technique which employs a simplified model and multiple adaptive forgetting factors recursive least-squares (MAFF-RLS) estimation to provide capability to accurately capture the real-time variations and the different dynamics of the parameters whilst the simplicity in computation is still retained. The validity of the proposed method is verified through two standard driving cycles, namely Urban Dynamometer Driving Schedule and the New European Driving Cycle. The proposed method yields experimental results that not only estimated the SOC with an absolute error of less than 2.8% but also characterized the battery model parameters accurately.

  3. Improving the cycle life of lead-acid batteries using three-dimensional reduced graphene oxide under the high-rate partial-state-of-charge condition

    Science.gov (United States)

    Long, Qunying; Ma, Guozheng; Xu, Qiqin; Ma, Cheng; Nan, Junmin; Li, Aiju; Chen, Hongyu

    2017-03-01

    A three-dimensional reduced graphene oxide (3D-RGO) material has been successfully prepared by a facile hydrothermal method and is employed as the negative additive to curb the sulfation of lead-acid battery. When added with 1.0 wt% 3D-RGO, the initial discharge capacity (0.05 C, 185.36 mAh g-1) delivered by the battery is 14.46% higher than that of the control cell (161.94 mAh g-1); and the cycle life under the high-rate partial-state-of-charge (HRPSoC) condition is significantly improved by more than 224% from 8142 to 26,425 cycles. In comparison to the conventional carbon additions like the activated carbon and acetylene black, the 3D-RGO also exhibits the highest initial discharge capacity, the best rate capabilities and the longest HRPSoC cycling life. Finally, we propose a possible mechanism for 3D-RGO to suppress lead-acid battery sulfation, where the abundant pore structure and excellent conductivity of 3D-RGO may have a synergistic effect on facilitating the charge and discharge process of negative plate.

  4. 6.25m 捣固焦炉配煤结构研究%Study on coal blending structure for 6. 25m stamp-charging battery

    Institute of Scientific and Technical Information of China (English)

    王建明

    2014-01-01

    通过开展各单种煤煤质分析、结焦性能及配合煤细度研究,结合40kg 试验焦炉数据和1750m3钒钛高炉对焦炭质量的要求,进行了6.25m 捣固焦炉工业论证试验,提出了适用于钒钛高炉冶炼用焦炭经济性配煤结构,充分发挥了捣固炼焦优势。%With the study on each individual coal quality,coking characteristic and coal fineness,and with reference the data obtained from 40kg pilot coke oven battery and quality requirement to coke of 1 750m3 vanadium-titanium blast furnace,6. 25m stamp-charging coke oven battery is undergone in-dustrial demonstrating test. An optimum and economic coal blending structure for vanadium-titanium blast furnace is proposed,which can fully play the advantage of stamp-charging coke oven battery.

  5. 独立光伏系统蓄电池充放电模糊控制%Fuzzy Control Strategy for Battery Charge/Discharge in Stand-alone Photovoltaic System

    Institute of Scientific and Technical Information of China (English)

    徐小斐; 李茂军

    2012-01-01

    提出基于蓄电池电压、温度及其变化的充放电模糊控制策略,克服了蓄电池充放电常规电压控制法和常规温度控制法的缺点.测试结果表明:该控制策略能显著提高蓄电池的充放电性能并延长其使用寿命.%A fuzzy control strategy based on voltage and temperature change for battery charge and discharge was proposed to overcome shortcomings of conventional voltage and temperature control methods for battery charge and discharge. Test result shows that this control strategy can make battery charge and discharge more efficient and can extend battery life.

  6. Optimizing safety control of the traveling of charging car for stamp-charge battery%捣固焦炉装煤车走行安全控制优化

    Institute of Scientific and Technical Information of China (English)

    于黎黎

    2014-01-01

    针对攀钢3#、4#捣固焦炉装煤车和推焦机的走行系统,分析了现用的防碰撞方法和装置的局限性,提出了使用FK-ULS型激光防碰撞报警器实现装煤车与推焦机走行时的防碰撞解决方案,提高了装煤车、推焦机的走行安全性。%Regarding to the traveling system of charging car and pushing car for stamp -charge battery No.3 and No.4 in PanSteel,the limitation of existing anticollision method and device is analyzed .An anticollision solution using FK-ULS type laser anticollision alarm is proposed , which improves the traveling safety of charging car and pushing car .

  7. 基于有序充电的换电站电池冗余度研究%Battery Redundancy of Swapping Station Under Coordinated Charging

    Institute of Scientific and Technical Information of China (English)

    汤波; 马世伟; 邱云; 郑一峰; 张绮华; 符杨

    2015-01-01

    电动汽车大规模接入电网后,有序充电优化控制具有便于集中管理、抑制负荷波动、降低峰谷差和充电费用等优势,但同时也带来换电站电池冗余度增大的问题。文中针对换电模式,以抑制电网总体负荷波动为有序充电主要目标,采用自适应遗传算法,建立有序充电模式下换电站电池冗余度模型,并使用蒙特卡洛方法模拟电动汽车用户的用车需求。对比分析无序充电和有序充电模式下换电站电池冗余度仿真结果,表明该有序充电策略能够有效削减负荷波动,减小峰谷差,但也相应提升了换电站电池冗余度。%Coordinated charging by large-scale application of electric vehicles will bring benefits such as facilitating centralized management,inhibiting load fluctuation and reducing the charging cost.Despite the positive effects,it will bring about disadvantages of battery redundancy to swapping station. For the sake of concentrating on battery redundancy under coordinated charging,a load fluctuation optimization model is developed in battery swapping modes using the adaptive genetic algorithm,with the power demand of electric vehicles analyzed through Monte Carlo method.Calculation results show that compared to the uncoordinated charging scenario,the coordinated charging model can not only restrain load fluctuation and peak-valley,but,as a result,increase battery redundancy.

  8. Comparisons of Modeling and State of Charge Estimation for Lithium-Ion Battery Based on Fractional Order and Integral Order Methods

    Directory of Open Access Journals (Sweden)

    Renxin Xiao

    2016-03-01

    Full Text Available In order to properly manage lithium-ion batteries of electric vehicles (EVs, it is essential to build the battery model and estimate the state of charge (SOC. In this paper, the fractional order forms of Thevenin and partnership for a new generation of vehicles (PNGV models are built, of which the model parameters including the fractional orders and the corresponding resistance and capacitance values are simultaneously identified based on genetic algorithm (GA. The relationships between different model parameters and SOC are established and analyzed. The calculation precisions of the fractional order model (FOM and integral order model (IOM are validated and compared under hybrid test cycles. Finally, extended Kalman filter (EKF is employed to estimate the SOC based on different models. The results prove that the FOMs can simulate the output voltage more accurately and the fractional order EKF (FOEKF can estimate the SOC more precisely under dynamic conditions.

  9. Research of multi-stage charging method for on-board lithium battery of electric vehicles%电动汽车车载锂电池分段充电策略研究

    Institute of Scientific and Technical Information of China (English)

    陈超; 谢瑞; 何湘宁

    2011-01-01

    为了实现电动汽车(EV)车载锂电池快速充、放电,研究了电动汽车锂电池分段充电策略,给出了充电拓扑图.通过监控电池端电压和电流,采用了恒流、恒压和涓流3种充电方式结合的方法,控制功率变换器对电池进行智能充电.实验结果表明,利用分段充电方法可以在30 min内使电池端压达到额定值,并通过恒压充电使电池迅速得以充满.该研究为提高车载电池充电效率、缩短充电时间和保证充电安全奠定了基础.%In order to achieve the fast charging and discharging of the on-board lithium battery of electric vehicles (EV), the multi-stage charging method of the EV lithium battery was investigated and the charging circuit topology was presented. The method combined three charging methods ( constant-current method, constant-voltage method and low-current method) was used to control a power converter by monitoring the battery voltage and current for intelligent fast charging. The experimental results indicate that the battery voltage can reach the rated value in 30 minutes as being charged by the system, then the battery will soon be fully charged by using the constant-voltage method. The research lays the foundation for the improvement of the charging efficiency and the charging security of the on-board batteries.

  10. Equalizing Charging of Lithium Battery Pack on Change of Mode%更换模式下的锂电池组均衡充电

    Institute of Scientific and Technical Information of China (English)

    程昌银; 王桂棠; 赖雄辉; 江跃龙

    2012-01-01

    Aimming at the problem of short life and lack of stability for vehicle's Li-ion battery pack, this paper puts an equalization charging method of lithium battery on change of mode forward. The method combines a intelligence charging mode with the second equalization technology. It adopts a method of dissipation balance in first equalization design, the excess energy consumed in the resistance in the form of heat. In the second equalization design adopts energy transfer method, which divert the excess energy by capacitance to the battery of lower energy. The experiments show that the voltage of battery got a good consistency in this equalization method.%针对电动车的锂离子电池组寿命短、缺乏稳定性的问题,提出一种在更换模式下的充电均衡方案。采用了一次智能充电方式和二次均衡技术相结合,在第一次均衡设计中采用了耗散式均衡法,把多余能量以热能的形式在电阻消耗掉;在二次均衡设计中采用了能量转移的方法,通过电容把高能量电池的多余能量转移到低能量的电池中。实验表明该均衡方式得到很好的电压一致性。

  11. BOOST-BUCK converter-based photovoltaic-battery charging system%基于BOOST-BUCK电路的光伏脉冲充电系统

    Institute of Scientific and Technical Information of China (English)

    涂小伟; 陈皓

    2012-01-01

    太阳能光伏发电作为一种具有广阔前景的绿色能源已成为工业界和国内外学术界研究的热点,针对离网型光伏发电系统,分析了BOOST电路和BUCK电路在最大功率点跟踪(MPPT)电路中的缺点,提出了一种基于BOOST-BUCK电路的蓄电池脉冲充电电路,采用PIC16F877单片机进行智能控制,并绘制了单片机控制的N/D采样电路及外围电路.实验结果表明:一是实现了对蓄电池的脉冲充电;二是与BOOST、BUCK电路相比,大大提高了系统的工作效率.%As a green energy,solar photovoltaic technology has a wide prospect and it has been the research hotspot in industrial circles and the academic circles.In this paper,a battery charging circuit controlled by PIC microcontroller for stand-alone photo -voltaic power generation was presented.The shortcomings of the BUCK and BOOST circuits applied in the MPPT circuit were analyzed.The experimental result shows that the pulse charging method is used to charge the battery,which can extend the life of battery and improve system efficiency.

  12. 钒液流电池建模及充放电效率分析%Vanadium redox flow battery modeling and charge-discharge efficiency analysis

    Institute of Scientific and Technical Information of China (English)

    沈洁; 李广凯; 侯耀飞; 滕松; 贾超

    2013-01-01

    The energy storage plays an important role in wind power systems and solar photovoltaic power generation system.As a new energy storage battery,the vanadium redox flow battery (VRB)'s advantages and successful example demonstrate its broad prospects in storage marker.The operating principle of VRB was introduced.Through studying stack voltage,state of charge,intemal loss and dynamic response,VRB simulation model was set up.The constant current mode for VRB was studied in detail.At the end,the factors which influenced the charging and discharging efficiency of battery energy storage were analyzed qualitatively and quantitatively.What's more,the optimal charging-discharging current was obtained.%储能系统是风力发电系统和太阳能光伏发电系统的重要组成部分,钒液流电池(VRB)作为一种新型储能电池,其优势及成功范例充分展示了它在储能市场的广阔前景.介绍了钒液流电池的工作原理,通过研究VRB的堆栈电压、荷电状态SOC、内部损耗和动态响应,构建了VRB仿真系统模型.详细研究了VRB恒电流充放电模式,定性、定量地分析了影响钒液流电池储能充放电效率的因素,并得出了最优充电电流.

  13. Optimal Conditions for Fast Charging and Long Cycling Stability of Silicon Microwire Anodes for Lithium Ion Batteries, and Comparison with the Performance of Other Si Anode Concepts

    Directory of Open Access Journals (Sweden)

    Enrique Quiroga-González

    2013-10-01

    Full Text Available Cycling tests under various conditions have been performed for lithium ion battery anodes made from free-standing silicon microwires embedded at one end in a copper current collector. Optimum charging/discharging conditions have been found for which the anode shows negligible fading (< 0.001% over 80 cycles; an outstanding result for this kind of anodes. Several performance parameters of the anode have been compared to the ones of other Si anode concepts, showing that especially the capacity as well as the rates of charge flow per nominal area of anode are the highest for the present anode. With regard to applications, the specific parameters per area are more important than the specific gravimetric parameters like the gravimetric capacity, which is good for comparing the capacity between materials but not enough for comparing between anodes.

  14. Battery Cell Balancing System and Method

    Science.gov (United States)

    Davies, Francis J. (Inventor)

    2014-01-01

    A battery cell balancing system is operable to utilize a relatively small number of transformers interconnected with a battery having a plurality of battery cells to selectively charge the battery cells. Windings of the transformers are simultaneously driven with a plurality of waveforms whereupon selected battery cells or groups of cells are selected and charged. A transformer drive circuit is operable to selectively vary the waveforms to thereby vary a weighted voltage associated with each of the battery cells.

  15. 电动汽车充换电示范站中的有序充放电措施%Orderly Charge and Discharge Measures for the Battery Charging and Swapping Demonstration Stations

    Institute of Scientific and Technical Information of China (English)

    李红梅

    2013-01-01

    With the substantial increase in ownership of electric vehicles in the future, uncontrolled charge for the electric vehicles will have a significant impact on the power grid. The measures of orderly charge and discharge for the battery charging and swapping demonstration stations are introduced in Shandong province from such two aspects as vehicle to grid (V2G) system and the operations management system. In the V2G system, an intelligent bi-directional charge and discharge equipment is designed and the peak-valley price based control systems of charge and discharge and the station monitoring systems are developed. In the operations management system, the methods of battery echelon utilization and the life cycle management are proposed and the structures, working principles and technological means of both the metering and billing system and the fast battery switching system are introduced.%未来,随着电动汽车在数量上的增加,电动汽车的充电将对电网产生很大的影响.从车辆并网系统和有序充放电运营管理系统2个方面介绍了省级电动汽车充换电示范站中的有序充放电措施;在车辆并网系统方面,设计了双向智能充放电装置,探讨了基于峰谷电价的充放电控制系统和充换电监控系统;在运营管理方面,提出了电池梯次利用和全寿命周期管理方法,并阐述了有利于有序充放电的计量计费管理系统和电池快速更换系统的结构、原理和实现手段.

  16. Portable Battery Charger Berbasis Sel Surya

    Directory of Open Access Journals (Sweden)

    Budhi Anto

    2014-04-01

    Full Text Available A type of solar battery charger is introduced in this paper. This equipment functions as a medium size rechargeable battery that is needed to move culinary merchants and coastal fishermen living in area which is not supplied by electrical networks. The equipment consists of solar module mounted onto portable mechanical construction, a 12-V 7.5-Ah lead acid battery and charge controller. Solar module charges the battery through charge controller and then the battery can be discharged to power on electric lamps for lightening culinary wagon or fisherman’s boat at night. Charge controller charges the battery with float charging which is implemented by maintaining 13.5 Volt between battery terminals and limiting the charging current to 1.5 Amperes. Charge controller circuit is based on adjustable linear voltage regulator LM338. The battery is of sealed lead acid type. This type of battery is maintenance free and more hygiene than other types of lead acid battery. The field experiment of charging the baterry of 50% residual capacity from 8 am to 4 pm under sunny weather shows that the solar module has charged the battery to its full capacity under battery safe charging conditions.Keywords: portable solar battery charger, float charging, LM338

  17. Design of intelligent management system for nickel-cadmium charging battery based on AT89S52%基于AT89S52的镍镉充电电池智能管理系统设计

    Institute of Scientific and Technical Information of China (English)

    陈继栋; 施崇阳; 周乐意

    2011-01-01

    As a kind of alkaline battery, nickel-cadmium charging battery has special requirments for using, management and maintenance. It would result in aging, losing efficacy or even abandonment without good using, management and timely maintenance. This item is designed for nickel-cadmium charging batteries which are used widely and stored centrally in army and factory. Using single chip processor control technology, the system can achieve intelligent battery management of nickel-cadmium charging battery such as automatic state examination, charge and discharge management, function maintenance, etc. Through automatic management of nickel-cadmium charging battery, it is able to eliminate blindness and arbitrariness in using and management of nickel-cadmium charging battery effectively, it improves the efficiency of nickel-cadmium charging battery and lengthens its service life.%镍镉充电电池作为一种碱性电池,对使用、管理和维护有特殊要求,如果管理不善、使用不当、维护不及时,很容易导致电池老化、失效甚至报废。针对部队、厂矿大量使用并集中存放的不同种类镍镉充电电池,运用单片微型计算机控制技术,设计了电池智能管理系统,对镍镉充电电池进行状态自动检测、充放电管理、性能维护等智能化管理。通过对镍镉充电电池的自动管理,有效消除镍镉充电电池使用管理上的盲目性和随意性,提高镍镉充电电池的使用效能,延长镍镉充电电池的使用寿命。

  18. Solar battery energizer

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, M. E.

    1985-09-03

    A battery energizer for button batteries, such as zinc-silver oxide or zinc-mercuric oxide batteries, that are normally considered unchargeable, provides for energizing of the batteries in a safe and simple manner. A solar cell having a maximum current output (e.g., 20 milliamps) is operatively connected to terminals for releasably receiving a button battery. A light emitting diode, or like indicator, provides an indication of when the battery is fully energized, and additionally assists in preventing overenergization of the battery. The solar cell, terminals, LED, and the like can be mounted on a nonconductive material mounting plate which is mounted by a suction cup and hook to a window, adjacent a light bulb, or the like. A battery charger for conventional dry cell rechargeable batteries (such as nickel-cadmium batteries) utilizes the solar cells, and LED, and a zener diode connected in parallel with terminals. An adaptor may be provided with the terminal for adapting them for use with any conventional size dry cell battery, and a simple dummy battery may be utilized so that less than the full complement of batteries may be charged utilizing the charger.

  19. Conceptual design of a device for charging PIG's batteries, using the hydraulic energy from the flow in pipe

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Ricardo E.; Dutra, Max S. [Alberto Luiz Coimbra Institute for Graduate and Research Studies (COPPE-UFRJ), Rio de Janeiro, RJ (Brazil). Mechanical Engineering Program], e-mail: rramirez@ufrj.br, e-mail: max@mecanica.coppe.ufrj.br

    2009-07-01

    Some actual projects deal with development of PIGs with speed control for liquid pipelines, with the possibility of controlled displacement including counter flow locomotion, in order to inspect and service in 'unpiggable lines' and flexible lines. In this case, it is normal to carry energy consumption greater than the energy disposable in the batteries. This work proposes a device composed by a turbine and an electric generator; presents a preliminary mechanical design of the turbine for the specific requirements of the application like internal pressure inside the line, a range of relative velocities between the PIG and the pipeline and adequate material for the environmental conditions. One of the priority requirements is that the geometric form of the turbine and generator mate with a proposed form of the PIG minimizing the pressure drop in the line for the different work conditions. The electric design defines the magnets characteristics, geometric forms, dimensions and number of turns to obtain the required voltage and power for charging a nominal pack of batteries. (author)

  20. Charge and discharge characteristics of a commercial LiCoO 2-based 18650 Li-ion battery

    Science.gov (United States)

    Zhang, S. S.; Xu, K.; Jow, T. R.

    We studied the charge and discharge characteristics of commercial LiCoO 2-based 18650 cells by using various electrochemical methods, including discharging at constant power, ac impedance spectroscopy, and dc-voltage pulse. At 20 °C, these cells deliver 8.7-6.8 Wh of energy when discharged at a power range of 1-12 W between 2.5 and 4.2 V. Ragone plots show that the effect of discharge power on the energy is significantly increased with decreasing of the temperature. For example, energy of the cell is entirely lost when the temperature downs to -10 °C and the discharge rate still remains at 10 W. Impedance analyses indicate that the total cell resistance (R cell) is mainly contributed by the bulk resistance (R b, including electric contact resistance and electrolytic ionic conductivity), solid electrolyte interface resistance (R sei), and charge-transfer resistance (R ct). Individual contribution of these three resistances to the cell resistance is greatly varied with the temperature. Near room temperature, the R b occupies up to half of the cell resistance, which means that the rate performance of the cell could be improved by modifying cell design such as employing electrolyte with higher ionic conductivity and enhancing electric contact of the active material particles. At low temperature, the R ct, which is believed to reflect cell reaction kinetics, dominates the cell resistance. In addition, galvanosatic cycling tests indicate that the charge and discharge processes have nearly same kinetics. The performance discrepancy observed during charging and discharging, especially at low temperatures, can be attributed to these two factors of: (1) substantially higher R ct at the discharged state than at the charged state; (2) asymmetric voltage limits pre-determined for the charge and discharge processes.

  1. A high reliable DC-DC converter for charging battery%一种蓄电池充电用高可靠性DC-DC变换器

    Institute of Scientific and Technical Information of China (English)

    陶艳

    2012-01-01

    介绍了一种能将直流高压电源变换为直流低压电源,并对蓄电池进行充电和管理的高可靠性的DC-DC变换器.详细说明了DC-DC变换器的技术参数、功能要求及插槽式模块化结构设计方法,着重阐述了开关电源模块的均流控制、充电管理功能及电路原理;归纳总结了变换器高可靠性的冗余设计及其相应保护功能.%A high reliable DC-DC converter which could transform DC high voltage power supply into DC low voltage power supply,charge and manage the battery was introduced in this paper.Its technical parameters,functional requirements and modular structure design method of slots were illustrated for the DC-DC converter,focusing on the load sharing,charging management and circuit theory of the switching power supply modules; the DC-DC converter reliability redundancy design and its corresponding protection were summarized.

  2. A Phenomenological Model of Bulk Force in a Li-Ion Battery Pack and Its Application to State of Charge Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, S; Kim, Y; Siegel, JB; Samad, NA; Stefanopoulou, AG

    2014-09-19

    A phenomenological model of the bulk force exerted by a lithium ion cell during various charge, discharge, and temperature operating conditions is developed. The measured and modeled force resembles the carbon expansion behavior associated with the phase changes during intercalation, as there are ranges of state of charge (SOC) with a gradual force increase and ranges of SOC with very small change in force. The model includes the influence of temperature on the observed force capturing the underlying thermal expansion phenomena. Moreover the model is capable of describing the changes in force during thermal transients, when internal battery heating due to high C-rates or rapid changes in the ambient temperature, which create a mismatch in the temperature of the cell and the holding fixture. It is finally shown that the bulk force model can be very useful for a more accurate and robust SOC estimation based on fusing information from voltage and force (or pressure) measurements. (C) The Author(s) 2014. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives 4.0 License (CC BY-NC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is not changed in any way and is properly cited. For permission for commercial reuse, please email oa@electrochem.org. All rights reserved.

  3. Measuring the state of charge of the electrolyte solution in a vanadium redox flow battery using a four-pole cell device

    Science.gov (United States)

    Ngamsai, Kittima; Arpornwichanop, Amornchai

    2015-12-01

    The decrease in the efficiency and capacity of a vanadium redox flow battery (VRB) caused by an electrolyte imbalance is an important impediment to its long-term operation. Knowing the state of charge (SOC) of an electrolyte solution can quantify the level of the electrolyte imbalance in the VRB. In this study, a four-pole cell device is devised and employed to predict the SOC. The proposed method directly measures the ionic resistance of the electrolyte solution and is sufficiently precise to be applied in real-time mode. Experimental studies on the effects of the operating current on the four-pole cell and the concentrations of vanadium and sulfuric acid in the electrolyte solution are carried out. The results show that the four-pole cell method can be utilized to measure the electrolyte SOC. The concentrations of vanadium and sulfuric acid in the electrolyte solution affect the ionic resistance of the solution. Regarding the capacity and efficiency of the VRB system, the results indicate that the electrical charge is determined from the concentration of vanadium and that the cell voltage depends on the concentration of sulfuric acid in the electrolyte solution. The decreased vanadium concentration and increased sulfuric acid concentration improves the cell voltage efficiency.

  4. Electric-vehicle batteries

    Science.gov (United States)

    Oman, Henry; Gross, Sid

    1995-02-01

    Electric vehicles that can't reach trolley wires need batteries. In the early 1900's electric cars disappeared when owners found that replacing the car's worn-out lead-acid battery costs more than a new gasoline-powered car. Most of today's electric cars are still propelled by lead-acid batteries. General Motors in their prototype Impact, for example, used starting-lighting-ignition batteries, which deliver lots of power for demonstrations, but have a life of less than 100 deep discharges. Now promising alternative technology has challenged the world-wide lead miners, refiners, and battery makers into forming a consortium that sponsors research into making better lead-acid batteries. Horizon's new bipolar battery delivered 50 watt-hours per kg (Wh/kg), compared with 20 for ordinary transport-vehicle batteries. The alternatives are delivering from 80 Wh/kg (nickel-metal hydride) up to 200 Wh/kg (zinc-bromine). A Fiat Panda traveled 260 km on a single charge of its zinc-bromine battery. A German 3.5-ton postal truck traveled 300 km with a single charge in its 650-kg (146 Wh/kg) zinc-air battery. Its top speed was 110 km per hour.

  5. A Comparative Study Based on the Least Square Parameter Identification Method for State of Charge Estimation of a LiFePO4 Battery Pack Using Three Model-Based Algorithms for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Taimoor Zahid

    2016-09-01

    Full Text Available Battery energy storage management for electric vehicles (EV and hybrid EV is the most critical and enabling technology since the dawn of electric vehicle commercialization. A battery system is a complex electrochemical phenomenon whose performance degrades with age and the existence of varying material design. Moreover, it is very tedious and computationally very complex to monitor and control the internal state of a battery’s electrochemical systems. For Thevenin battery model we established a state-space model which had the advantage of simplicity and could be easily implemented and then applied the least square method to identify the battery model parameters. However, accurate state of charge (SoC estimation of a battery, which depends not only on the battery model but also on highly accurate and efficient algorithms, is considered one of the most vital and critical issue for the energy management and power distribution control of EV. In this paper three different estimation methods, i.e., extended Kalman filter (EKF, particle filter (PF and unscented Kalman Filter (UKF, are presented to estimate the SoC of LiFePO4 batteries for an electric vehicle. Battery’s experimental data, current and voltage, are analyzed to identify the Thevenin equivalent model parameters. Using different open circuit voltages the SoC is estimated and compared with respect to the estimation accuracy and initialization error recovery. The experimental results showed that these online SoC estimation methods in combination with different open circuit voltage-state of charge (OCV-SoC curves can effectively limit the error, thus guaranteeing the accuracy and robustness.

  6. 动力锂电池变电阻均衡充电方法研究%Research on Variable Resistance Equalizing Charge method of Power Lithium-ion Battery

    Institute of Scientific and Technical Information of China (English)

    徐磊; 何秋生; 孙志毅; 李晓云

    2014-01-01

    To solve the inconsistency of voltage between individual battery cells of electric car lithium-ion battery pack,a new variable resistance equalizing charge method is put forward in this paper. Firstly,the cause of the in-consistency voltage of inter-cell is analyzed;digital variable resistance and simulation model of variable resistor are designed. Secondly,lithium battery model and variable resistance module are designed. Finally, the equalization charge simulation is finished in Matlab/Simulink software. The value of equalization resistance is set according to the battery terminal voltage. The result shows that the voltage error between individual battery cells could be limited to less than 0. 3 mV,and the method may reduce effectively the inconsistency between individual battery cells and prolongs battery life.%针对动力锂电池组中单体电池之间电压不一致性,提出一种变电阻均衡充电方法。在分析了单体电池间电压不一致性的原因、设计数字可变电阻器和可变电阻仿真模型的基础上,采用Matlab/Simulink软件对可变电阻均衡充电进行仿真,根据电池端电压大小调节均衡电阻值。结果表明变电阻均衡控制可使电压误差控制在0.3 mV以内,有效的减小单体电池之间的不一致性、延长电池的使用寿命。

  7. Research on the Optimized 3-stage Charging Strategy for the Storage Battery in Stand-alone Photovoltaic System%独立光伏系统蓄电池优化三段式充电策略研究

    Institute of Scientific and Technical Information of China (English)

    蔡晓峰; 张鸿博; 黄伟; 赵慧光

    2012-01-01

    To improve the charging efficiency and the lifetime of the storage battery in the stand-alone photovoltaic system, the charging algorithm of storage battery is studied. In consideration of the photovoltaic system is easily to be impacted by the environment, and the power generated is unstable, the reason caused failure of implementing 3-stage charging by using PI algorithm is analyzed, thus the charging strategy combining maximum power point tracking (MPPT) and 3-stage charging is proposed. PI constant current, constant current charging and the switching criteria of MPPT charging are researched emphatically. The result of Matlab simulation verifies the correctness of the algorithm.%为了提高独立光伏系统蓄电池的充电效率和使用寿命,对蓄电池充电算法进行了研究.考虑到光伏系统受环境影响较大、发电功率不稳定等因素,分析了直接利用PI算法实现三段式充电失败的原因,提出了将最大功率点跟踪(MPPT)与三段式充电相结合的充电策略.重点研究了PI恒流、恒压充电与MPPT充电的切换判据.Matlab仿真结果证明了该算法的正确性.

  8. Discharge-charge process of the porous sulfur/carbon nanocomposite cathode for rechargeable lithium sulfur batteries

    Science.gov (United States)

    Gao, Mengyao; Xiong, Xing; Wang, Weikun; Zhao, Shengrong; Li, Chengming; Zhang, Hao; Yu, Zhongbao; Huang, Yaqin

    2014-02-01

    The discharge-charge process of the porous sulfur/carbon nanocomposite cathode has been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), electrochemical impedance spectroscopy (EIS), and energy-dispersive X-ray spectroscopy (EDS). The results indicate that the porous nanocomposite enhances the electrolyte infiltrate into the cathode materials evenly, has a good capability of confining the soluble polysulfides and preventing the aggregation of insoluble Li2S. The regenerated elemental sulfur of the porous sulfur/carbon nanocomposite cathode exists in nano-size particles in the pore and the resistance decreases compared with the original cathode. Moreover, the porous nanocomposite realizes the micro-reactors during the discharge-charge process and can accommodate the volume change which is benefit for stabilization of the cathode during the electrochemical reaction.

  9. Performance Simulation Of Photovoltaic System Battery

    Directory of Open Access Journals (Sweden)

    O. A. Babatunde

    2014-09-01

    Full Text Available Solar energy, despite being inexhaustible, has a major shortcoming; it is intermittent. As a result, there's a need for it to be stored for later use. The widely used energy storage in photovoltaic system applications is the lead-acid battery and the knowledge of its state-of-charge (SOC is important in effecting efficient control and energy management. However, SOC cannot be measured while the battery is connected to the system. This study adjusts and validates two estimation models: battery state-of-charge model using ampere-hour counting method and battery charge voltage model. For the battery state-of-charge model, the SOC is estimated by integrating the charge/discharge current over time while the battery charge voltage characteristic response is modelled by using the equation-fit method which expresses the battery charge voltage variations by a 5th order polynomial in terms of the state-of-charge and current. These models are realized using the MATLAB program. The battery charge voltage model is corrected for errors which may result from reduced charge voltage due to variation of solar radiation using the battery state-of-charge model. Moreover, the starting SOC needed in the state-of-charge model is estimated using the charge voltage model. The accuracies of the models are verified using various laboratory experiments.

  10. Atomic Batteries: Energy from Radioactivity

    OpenAIRE

    Kumar, Suhas

    2015-01-01

    With alternate, sustainable, natural sources of energy being sought after, there is new interest in energy from radioactivity, including natural and waste radioactive materials. A study of various atomic batteries is presented with perspectives of development and comparisons of performance parameters and cost. We discuss radioisotope thermal generators, indirect conversion batteries, direct conversion batteries, and direct charge batteries. We qualitatively describe their principles of operat...

  11. High energy density aluminum battery

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan

    2016-10-11

    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  12. 46 CFR 169.668 - Batteries.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Batteries. 169.668 Section 169.668 Shipping COAST GUARD... § 169.668 Batteries. (a) Each battery must be in a location that allows the gas generated in charging to... this section, a battery must not be located in the same compartment with a gasoline tank or...

  13. Charge and bilateral discharge of battery in hybrid vehicles with ability of reactive power compensation with technology V2G

    Directory of Open Access Journals (Sweden)

    Sajad Davtalab

    2016-09-01

    Full Text Available Posing V2G theory for hybrid vehicles can create opportunities on the operation of the grid, and can even put it in row of renewable energy sources. One of the needs in the operation of power systems on which is special attention is voltage control and reactive power of grid. Hybrid cars with V2G capability can be utilized for this work and is the subject of this article.An appropriate control method for reactive power control of grid by using V2G is suggested in this article. Reactive powers, dc-link voltage and reactive power in the suggested control method are independent and can be controlled separately. Section of battery and transducer of hybrid vehicle with V2G capability have been simulated and the suggested controller has been applied to it in order to evaluate the suggested control method. The results achieved from the simulation show that reactive power injected into the grid or received from it can be controlled independent of its reactive power with appropriate transient state.

  14. A Review of Approaches for the Design of Li-Ion BMS Estimation Functions Revue de différentes approches pour l’estimation de l’état de charge de batteries Li-ion

    Directory of Open Access Journals (Sweden)

    Di Domenico D.

    2013-02-01

    Full Text Available This paper aims at comparing different approaches for the estimation of the state of charge of lithium-ion batteries. The main advantages as well as the critical points of the considered techniques are analyzed, highlighting the impact of the cell model precision and complexity on the estimator performance. Among others, the electrical equivalent circuit based technique is selected for further development. The results of a complete procedure from the cell characterization to the online estimation are illustrated. The experimental tests based on the data collected on batteries testing facilities of IFP Energies nouvelles show that the proposed strategy allows a satisfying state of charge real time estimation. Cet article vise à comparer différentes approches pour l’estimation de l’état de charge pour les batteries Li-ion. Les principaux avantages ainsi que les points critiques des différentes techniques sont analysés, en soulignant l’impact de la complexité et de la précision du modèle sur les performances de l’estimateur. La procédure complète, allant de la caractérisation de la cellule jusqu’à l’estimation en ligne de l’état de charge, est présentée pour la modélisation par circuit électrique équivalent. Les tests expérimentaux sur la base des données acquises au laboratoire batteries d’IFP Energies nouvelles montrent que cette stratégie permet d’obtenir un estimateur en temps réel de l’état de charge présentant de bonnes performances.

  15. Charge/discharge characteristics of the coal-tar pitch carbon as negative electrode in Li-ion batteries

    Science.gov (United States)

    Kim, Jung-Sik

    The charge/discharge characteristics were studied for the coal-tar pitch-based carbon (CTPC), which was pyrolyzed under the condition to form anisotropic mesophase pitch and then heat treated at temperatures ranging from 500 to 1300°C in N 2 atmosphere. As the heat treatment temperature increased, the reversible capacity for the CTPC increased progressively up to 1000°C, while the irreversible capacity decreased continuously. Carbons synthesized through the extraction of anisotropic mesophases showed higher reversible and lower irreversible capacities than the directly pyrolyzed ones.

  16. Ballistic negatron battery

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, M.S.R. [Koneru Lakshmiah Univ.. Dept. of Electrical and Electronics Engineering, Green fields, Vaddeswaram (India)

    2012-07-01

    If we consider the Statistics there is drastic increase in dependence of batteries from year to year, due to necessity of power storage equipment at homes, power generating off grid and on grid Wind, PV systems, etc.. Where wind power is leading in renewable sector, there is a need to look at its development. Considering the scenario in India, most of the wind resource areas are far away from grid and the remaining areas which are near to grid are of low wind currents which is of no use connecting these equipment directly to grid. So, there is a need for a power storage utility to be integrated, such as the BNB (Ballistic Negatron Battery). In this situation a country like India need a battery which should be reliable, cheap and which can be industrialized. So this paper presents the concept of working, design, operation, adaptability of a Ballistic Negatron Battery. Unlike present batteries with low energy density, huge size, more weight, more charging time and low resistant to wear level, this Ballistic Negatron Battery comes with, 1) High energy storage capability (many multiples more than the present most advanced battery). 2) Very compact in size. 3) Almost negligible in weight compared to present batteries. 4) Charges with in very less time. 5) Never exhibits a wear level greater than zero. Seems like inconceivable but adoptable with simple physics. This paper will explains in detail the principle, model, design, construction and practical considerations considered in making this battery. (Author)

  17. Potassium Secondary Batteries.

    Science.gov (United States)

    Eftekhari, Ali; Jian, Zelang; Ji, Xiulei

    2017-02-08

    Potassium may exhibit advantages over lithium or sodium as a charge carrier in rechargeable batteries. Analogues of Prussian blue can provide millions of cyclic voltammetric cycles in aqueous electrolyte. Potassium intercalation chemistry has recently been demonstrated compatible with both graphite and nongraphitic carbons. In addition to potassium-ion batteries, potassium-O2 (or -air) and potassium-sulfur batteries are emerging. Additionally, aqueous potassium-ion batteries also exhibit high reversibility and long cycling life. Because of potentially low cost, availability of basic materials, and intriguing electrochemical behaviors, this new class of secondary batteries is attracting much attention. This mini-review summarizes the current status, opportunities, and future challenges of potassium secondary batteries.

  18. Prediction of Retained Capacity and EODV of Li-ion Batteries in LEO Spacecraft Batteries

    OpenAIRE

    2010-01-01

    In resent years ANN is widely reported for modeling in different areas of science including electro chemistry. This includes modeling of different technological batteries such as lead acid battery, Nickel cadmium batteries etc. Lithium ion batteries are advance battery technology which satisfy most of the space mission requirements. Low earth orbit (LEO)space craft batteries undergo large number of charge discharge cycles (about 25000 cycles)compared to other ground level or space application...

  19. 基于STC89 C51单片机的智能充电器的设计%Intelligent Battery Charge Design Based on STC89 C51 Single-chip Computer

    Institute of Scientific and Technical Information of China (English)

    齐晓龙

    2016-01-01

    以 STC89 C51单片机为控制核心,结合MAX1898锂离子电池充电芯片以及报警电路设计了手机智能充电器。该充电器提供恒定充电电流,并将手机反馈的充电状况以脉冲的形式发送给单片机,单片机经过内部处理后控制充电过程,实现智能手机预充、快充、满充、充电保护、自动断电和充电完成自动报警等功能。实验结果表明,该充电器能安全高效的给手机进行充电,且性能稳定。%Controlled by STC89C51 single-chip and combined with Li-ion battery charging chip and a-larm circuit, we designed a mobile phone intelligent battery charger which provides constant charging cur -rent, and sends the charging condition feedback from mobile phone to the single -chip in the form of pulse .After internal processing , single-chip controls the charging process to fulfill the function of pre charge , fast charge , full charge , charging protection , automatic power down and charging complete auto-matic alarm etc .The result shows that the charger is safe and efficient , and its performance is stable .

  20. Button batteries

    Science.gov (United States)

    Swallowing batteries ... These devices use button batteries: Calculators Cameras Hearing aids Penlights Watches ... If a person puts the battery up their nose and breathes it further in, ... problems Cough Pneumonia (if the battery goes unnoticed) ...

  1. Accelerating rate calorimetry studies of the reactions between ionic liquids and charged lithium ion battery electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yadong; Dahn, J.R. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS (Canada); Zaghib, K.; Guerfi, A. [Institut de Recherche d' Hydro-Quebec, 1800 Lionel-Boulet, Varennes, Que. (Canada); Bazito, Fernanda F.C.; Torresi, Roberto M. [Instituto de Quimica Universidade de Sao Paulo, CP 26077, 05513-970 Sao Paulo (Brazil)

    2007-06-30

    Using accelerating rate calorimetry (ARC), the reactivity between six ionic liquids (with and without added LiPF{sub 6}) and charged electrode materials is compared to the reactivity of standard carbonate-based solvents and electrolytes with the same electrode materials. The charged electrode materials used were Li{sub 1}Si, Li{sub 7}Ti{sub 4}O{sub 12} and Li{sub 0.45}CoO{sub 2}. The experiments showed that not all ionic liquids are safer than conventional electrolytes/solvents. Of the six ionic liquids tested, 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide (EMI-FSI) shows the worst safety properties, and is much worse than conventional electrolyte. 1-Ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMI-TFSI) and 1-propyl-1-methylpyrrolidinium bis(fluorosulfonyl)imide (Py13-FSI) show similar reactivity to carbonate-based electrolyte. The three ionic liquids 1-butyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide (BMMI-TFSI), 1-butyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide (Pp14-TFSI) and N-trimethyl-N-butylammonium bis(trifluoromethanesulfonyl)imide (TMBA-TFSI) show similar reactivity and are much safer than the conventional carbonate-based electrolyte. A comparison of the reactivity of ionic liquids with common anions and cations shows that ionic liquids with TFSI{sup -} are safer than those with FSI{sup -}, and liquids with EMI{sup +} are worse than those with BMMI{sup +}, Py13{sup +}, Pp14{sup +} and TMBA{sup +}. (author)

  2. Fuzzy Sliding Mode Observer with Grey Prediction for the Estimation of the State-of-Charge of a Lithium-Ion Battery

    Directory of Open Access Journals (Sweden)

    Daehyun Kim

    2015-11-01

    Full Text Available We propose a state-of-charge (SOC estimation method for Li-ion batteries that combines a fuzzy sliding mode observer (FSMO with grey prediction. Unlike the existing methods based on a conventional first-order sliding mode observer (SMO and an adaptive gain SMO, the proposed method eliminates chattering in SOC estimation. In this method, which uses a fuzzy inference system, the gains of the SMO are adjusted according to the predicted future error and present estimation error of the terminal voltage. To forecast the future error value, a one-step-ahead terminal voltage prediction is obtained using a grey predictor. The proposed estimation method is validated through two types of discharge tests (a pulse discharge test and a random discharge test. The SOC estimation results are compared to the results of the conventional first-order SMO-based and the adaptive gain SMO-based methods. The experimental results show that the proposed method not only reduces chattering, but also improves estimation accuracy.

  3. Particle-filtering-based failure prognosis via sigma-points: Application to Lithium-Ion battery State-of-Charge monitoring

    Science.gov (United States)

    Acuña, David E.; Orchard, Marcos E.

    2017-02-01

    This paper presents a novel prognostic method that allows a proper characterization of the uncertainty associated with the evolution in time of nonlinear dynamical systems. The method assumes a state-space representation of the system, as well as the availability of particle-filtering-based estimates of the state posterior density at the moment in which the prognostic algorithm is executed. Our proposal significantly improves all particle-filtering-based prognosis frameworks currently available in two main aspects. First, it provides a correction for the expression that is used for the computation of the Time-of-Failure (ToF) probability mass function in the context of online monitoring schemes. Secondly, it presents a method for improved characterization of the tails of the ToF probability mass function via sequential propagation of sigma-points and the computation of Gaussian Mixture Models (GMMs). The proposed algorithm is tested and validated using experimental data related to the problem of Lithium-Ion battery State-of-Charge prognosis.

  4. Low temperature hydrogen reduction of high surface area anatase and anatase/β-TiO₂ for high-charging-rate batteries.

    Science.gov (United States)

    Ventosa, Edgar; Tymoczko, Anna; Xie, Kunpeng; Xia, Wei; Muhler, Martin; Schuhmann, Wolfgang

    2014-09-01

    There are several strategies to improve the electrochemical performance of TiO2 as negative electrode material for Li-ion batteries. Introducing oxygen vacancies through hydrogen reduction leads to an enhancement in electrical conductivity. However, this strategy does not improve the low lithium-ion mobility. Herein, we show that by decreasing the temperature of hydrogen annealing the improved lithium-ion mobility of high-surface-area TiO2 and β-TiO2 can be combined with the enhanced electrical conductivity of oxygen deficiencies. Annealing at only 275-300 °C in pure hydrogen atmosphere successfully creates oxygen vacancies in TiO2, as confirmed by UV/Vis spectroscopy, whereas the temperature is low enough to maintain a high specific surface area and prevent β-to-anatase phase transformation. The hydrogen reduction of high-surface-area anatase or anatase/β-TiO2 at these temperatures leads to improvements in the performance, achieving charge capacities of 142 or 152 mAh g(-1) at 10C, respectively.

  5. 光电致变色池和光伏打自充电电池%Photoelectrochromic Cell and Photovoltaic Self-charging Battery

    Institute of Scientific and Technical Information of China (English)

    关英勋; 关伟; 陈忠林; 房大维

    2004-01-01

      光电致变色池是一种利用光电化学反应的新型有机/无机杂化型变色器件,它的特点是以太阳光为能源,且具极强的可控性。本文介绍了光电致变色池及由其衍生出的光伏打自充电电池的器件结构、工作原理和当前的研究现状以及未来可能的研究方向。%  The photoelectrochromic cell is a new kind of organic-inorganic hybrid chromoic device driven by the photoelectrochemical mechanism. It is self-powered by solar irradiation and can be controlled easily. In this paper, the device structure, the mechanism, the state of the art of the photoelectrochromic cell and photovoltaic self-charging battery are introduced. The possible method of research and development has also been mentioned.

  6. Beneficial effects of activated carbon additives on the performance of negative lead-acid battery electrode for high-rate partial-state-of-charge operation

    Science.gov (United States)

    Xiang, Jiayuan; Ding, Ping; Zhang, Hao; Wu, Xianzhang; Chen, Jian; Yang, Yusheng

    2013-11-01

    Experiments are made with negative electrode of 2 V cell and 12 V lead-acid battery doped with typical activated carbon additives. It turns out that the negative electrode containing tens-of-micron-sized carbon particles in NAM exhibits markedly increased HRPSoC cycle life than the one containing carbon particles with much smaller size of several microns or the one containing no activated carbon. The improved performance is mainly attributed to the optimized NAM microstructure and the enhanced electrode reaction kinetics by introducing appropriate activated carbon. The beneficial effects can be briefly summarized from three aspects. First, activated carbon acts as new porous-skeleton builder to increase the porosity and active surface of NAM, and thus facilitates the electrolyte diffusion from surface to inner and provides more sites for crystallization/dissolution of lead sulfate; second, activated carbon plays the role of electrolyte supplier to provide sufficient H2SO4 in the inner of plate when the diffusion of H2SO4 from plate surface cannot keep pace of the electrode reaction; Third, activated carbon acts as capacitive buffer to absorb excess charge current which would otherwise lead to insufficient NAM conversion and hydrogen evolution.

  7. Design and implementation of intelligent charging and discharging management system for power lithium-ion battery pack%动力锂电池组充放电智能管理系统设计与实现

    Institute of Scientific and Technical Information of China (English)

    王天福; 刘强; 李志强

    2011-01-01

    锂离子电池组充放电过程中对电压、电流和温度比较敏感,而且各单体电池存在不一致性.提出了一种新的锂电池组充放电智能管理系统,能够实时检测电池组单体的电压、电流和温度,控制电池组均衡充放电,并实现对电池组充放电过流保护和负载短路过流保护.系统具有集成度高,体积小,精度高,反应快并能够灵活地扩展系统容量等优点.%In the lithium-ion battery charging and discharging process, the voltage, current and temperature was quite sensitive. Also, for each cells, its behavior was different. A kind of new intelligent management system for lithium-ion battery pack was proposed, which could check the real-time voltage, current and temperature of each cell, control the balanced charging and discharging of battery, and realize the over-current protection and discharging, and short circuit current protection in the process of charging. The system has the advantages of high integration, small volume, high precision, quick response, and easy scale-up of the capacity.

  8. Technical Progress Report for PEPCO: Turbo-Z Battery Charging System. Calendar Quarter Ending March 31, 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-04-01

    The project is proceeding at a rapid pace now. The software is in development for the control board and the test stand. Portions of the writing and debugging of this software have been in conjunction with the hardware development. The software now interfaces with all the measurement instruments and displays the measurements on the screen, and it saves the measurements to a disc file. There is still cleanup work to do on the display items. Work must still be imparted to the code to control a charging sequence while taking measurements of the results. The test stand hardware has received a good development effort this quarter. The timer-counter board is working in the computer. This board paces the measurement cycle and times the discharge pulse (whine circuit). The thermocouple multiplexer is scanning at the same time the analog to digital converter is taking measurements. We have made a good number of hardware modifications to solve problems revealed while writing the software. The power factor correction for the charger power section is still in development. The engineers have found additional sources for the PFC chips, and they have obtained more technical data sheets and acquired samples. The control board schematics are complete, and the software is far along in the development phase. The functions of the control board have been detailed. The control board must next be integrated with the power supply unit. The next phase of development will concentrate on integrating the components together. At this time, the final debugging of the hardware and software will begin. Additionally, the capacitive coupler development is proceeding. The annual DARPA/DoT Advanced Transportation review will be held on May 16, 1999. We expect to learn the status of our project proposal during this conference. Should we more forward, UL has agreed to help us determine the design requirements of the complete charging system at their EV testing facility, prior to manufacturing. This

  9. 电瓶车充电停车智能管理系统%Car battery charging intelligent parking management system

    Institute of Scientific and Technical Information of China (English)

    陈玲君

    2015-01-01

    随着科技的发展,自动化的东西不断进入到我们的生活中。本系统以ATMEL公司单片机AT89S52为控制核心,另有红外遥控器、红外解码器、矩阵键盘电路、液晶显示电路部分、步进电机驱动电路等构成辅助电路。利用按键来进行密码输入、密码重置,同时在液晶屏上显示密码正确与否,从而判断是否开锁;同时能够用红外遥控来进行密码输入来控制步进电机开锁。如需充电可激活连接本车位充电线,车位将给电瓶车自动充电并实时显示电量。整个系统通过键盘和红外遥控器来控制密码输入和控制,液晶屏LCD1602时时显示自行车停车位。%With the development of science and technology,automation of things coming into our life.This system based on ATMEL single chip AT89S52 as the control core,and the infrared remote control,infrared decoder,matrix keyboard circuit,liquid crystal display circuit,driving circuit of stepping motor and an auxiliary circuit.To enter the password,password reset using the key,at the same time in the LCD screen to display the password is correct or not,in order to determine whether the lock;at the same time can use infrared remote control to enter the password to unlock the stepper motor control.For charging can activate the parking spaces will be charging line,to the car battery charging automatically and real-time display of power. The whole system to control the password input and control by keyboard and infrared remote control, liquid crystal screen display bicycle parking spaces at the LCD1602.

  10. 典型蓄电池的建模与荷电状态估算的对比研究%Comparison study on model and state of charge estimation of typical battery

    Institute of Scientific and Technical Information of China (English)

    吴红斌; 顾缃; 赵波; 朱承治

    2014-01-01

    研究不同蓄电池荷电状态(state of charge, SOC)的变化特征有助于在实际应用过程中对蓄电池类型进行选择。基于铅酸电池、磷酸铁锂电池、全钒液流电池3种典型蓄电池模型,采用电池容量修正过的改进安时计量法和改进安时-卡尔曼预测法( Ah-Kal法),对各电池在不同充放电模式下,用MATLAB软件编程得到两种估算方法下的SOC变化曲线。通过SOC对比曲线可以发现铅酸电池的自放电较严重,循环寿命短;磷酸铁锂电池可迅速提供大功率;而全钒液流电池适合作为长期大容量储能支持。同时,改进安时计量法和Ah-Kal的估算结果基本相同,验证了Ah-Kal法的正确性。%It is helpful to make the reasonable choice on types of battery in actual application through studying on state of charge (SOC) of the different batteries.Based on the models of Lead-acid battery, LiFePO4Li-ion battery and Vanadium Redox Flow battery(VRB), the SOC of each battery was estimated through the improved Ah count-ing method and the method of combined improved Ah counting-Kalman filtering(Ah-kal method).Under the differ-ent charging or discharging modes, it obtained the curves of SOC with MATLAB software.It can be found that the Lead-acid battery has the serious self-discharge and short cycle life, the LiFePO4Li-ion battery could supply rapidly high power, and VRB has the large-capacity energy storage support for long-term.With the simulation results, it validates that the improved Ah counting method and Ah-Kal method have almost equal result .And it verifies the correctness of the Ah-Kal method.

  11. Energy Transferring Dynamic Equalization for Battery Packs

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The equivalent circuit model of battery and the analytic model of series battery uniformities are setup. The analysis shows that it is the key to maintain small voltage difference between cells in order to improve uniformities. Therefore a new technique combining low voltage difference, big current charging and bi-directional charge equalizer system is put forward and designed. The test shows that the energy transferring dynamic equalization system betters the series battery uniformities and protection during charging and discharging, improves the battery performance and extends the use life of series battery.

  12. 电动汽车铅酸电池脉冲快速充电系统设计%Design of the Pulse-type Fast Speed Charging System of Lead-Acid Battery for Electric Car

    Institute of Scientific and Technical Information of China (English)

    段朝伟; 张雷; 刘刚

    2013-01-01

    为了缩短电动汽车铅酸电池的充电时间,提高能量接受率,基于带放电电流脉宽调制技术,设计了汽车电池脉冲快速充电系统.该系统采用嵌入式控制和上位机监控相结合的方式,软硬设计合理,性能可靠.试验数据分析表明,该系统有效缓解了电池的极化现象,缩短了汽车铅酸电池的充电时间,提高了电池能量接受率.系统具有广泛的应用前景.%In order to shorten the charging time of the lead-acid battery for electric car,and improve the energy acceptance rate,based on current pulse width modulation technology with discharging,the pulse type fast speed charging system of the battery for electric car has been designed.By adopting embedded control and combining with host computer monitoring,the system is designed reasonably in hardware and software and offers reliable performance.The analysis of test data indicates that this system effectively alleviates the polarization phenomenon of battery,shortens the charging time of the lead-acid battery,and enhances the energy acceptance rate.The system possesses broad applicable prospects.

  13. Batteries: Overview of Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Doeff, Marca M

    2010-07-12

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as

  14. Batteries: Overview of Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Doeff, Marca M

    2010-07-12

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as

  15. High Temperature Sensing Systems--Characteristics of Rechargeable Batteries at High Temperature--

    OpenAIRE

    2001-01-01

     High temperature discharge characteristics were measured at 100℃ for commercial available Nickel Cadmium and Nickel Metal Hydride rechargeable batteries. A Nickel Cadmium battery has superior dis­charge characteristics than a Nickel Metal Hydride battery. A life cycle of rechargeable battery can be esti­mated by measuring an internal resistance of the battery during charge at room temperature.

  16. Epitaxial growth of visible to infra-red transparent conducting In2O3 nanodot dispersions and reversible charge storage as a Li-ion battery anode.

    Science.gov (United States)

    Osiak, M; Khunsin, W; Armstrong, E; Kennedy, T; Torres, C M Sotomayor; Ryan, K M; O'Dwyer, C

    2013-02-15

    Unique bimodal distributions of single crystal epitaxially grown In2O3 nanodots on silicon are shown to have excellent IR transparency greater than 87% at IR wavelengths up to 4 μm without sacrificing transparency in the visible region. These broadband antireflective nanodot dispersions are grown using a two-step metal deposition and oxidation by molecular beam epitaxy, and backscattered diffraction confirms a dominant (111) surface orientation. We detail the growth of a bimodal size distribution that facilitates good surface coverage (80%) while allowing a significant reduction in In2O3 refractive index. This unique dispersion offers excellent surface coverage and three-dimensional volumetric expansion compared to a thin film, and a step reduction in refractive index compared to bulk active materials or randomly porous composites, to more closely match the refractive index of an electrolyte, improving transparency. The (111) surface orientation of the nanodots, when fully ripened, allows minimum lattice mismatch strain between the In2O3 and the Si surface. This helps to circumvent potential interfacial weakening caused by volume contraction due to electrochemical reduction to lithium, or expansion during lithiation. Cycling under potentiodynamic conditions shows that the transparent anode of nanodots reversibly alloys lithium with good Coulombic efficiency, buffered by co-insertion into the silicon substrate. These properties could potentially lead to further development of similarly controlled dispersions of a range of other active materials to give transparent battery electrodes or materials capable of non-destructive in situ spectroscopic characterization during charging and discharging.

  17. 鱼雷动力电池充放电自动操控技术及其应用%Automatic Manipulation Technique of Charge and Discharge for Torpedo Power Battery

    Institute of Scientific and Technical Information of China (English)

    李伟; 孙云春; 邓鹏

    2013-01-01

    Based on the analysis on existing automatic operation, control and detection technique of charge and dis-charge of torpedo power battery, a scheme of novel automatic manipulation system for charge and discharge of torpedo power battery is presented. The designs and implementation methods of the master control part, the signal transmission part, the power drive and execution part, the man-machine control interface, and the modularized power supply, as well as the overall structure and layout of the micro control unit (MCU), are explained. The charging process of 120 batteries in series shows that the system can realize the functions of overall automatic control, unmanned online remote monitor-ing of torpedo power battery charge and discharge with power-off protection, and automatic charge cut-off or recovery in the cases of abnormal parameters (such as sudden change of voltage or over-fast rise of temperature) and full capacity.%基于对现有充放电自动操作、控制及检测技术的研究,提出了集自动化、智能化和数字化为一体的鱼雷电池技术准备自动操控系统的技术方案,阐述了微控制器(MCU)主控部分、信号传输部分、功率驱动及执行部分、人机操控界面、模块化电源和总体结构布局等各部分的设计及实现方法,通过对120块动力电池串联充电过程中参数异常(如电压骤变或温升过快)电池和容量已满电池的断电保护、自动切出和恢复充电,实现鱼雷动力电池充放电的全程自动控制,以及现场无人值守的远程在线监控。

  18. 铅酸电池的不一致性与均衡充电的研究%Research on the Inequality of Lead Acid Batteries and Equalizing Charge

    Institute of Scientific and Technical Information of China (English)

    麻友良; 陈全世

    2001-01-01

    由于应用于电动汽车的铅酸电池的性能参数的不一致性而导致使用过程中其性能参数差别扩大,是电池使用寿命短并造成电动汽车性能下降的重要因素。本文分析了电池性能差别扩大的原因以及各种不同均衡方法的可用性,提出了切合实际的均衡充电定义,并以试验结果予以验证。%In EVs the batteries' capability parameters demonstrate an inequality. What is more, the inequality becomes more and more serious with the use of batteries. This is an important factor which leads to batteries' shortened life-span and the reduced energy using rate and poorer performance of EVs. This paper has analyzed the features and practicability of different equalizing charging methods.With the analysis ,a practical equalizing charge is proposed, which has been proved to be effective by experiments.

  19. 核电厂铅酸蓄电池充放电方式分析%The Analysis for Selection of the Lead-acid Battery Charging and Discharging Method

    Institute of Scientific and Technical Information of China (English)

    刘宇; 李波; 孔凡华

    2015-01-01

    蓄电池作为直流系统的最后一道保护屏障,其运行状况、性能是直流系统安全稳定运行的决定性因素,而充放电试验是验证蓄电池运行状况的基本方法.文章以某核电铅酸蓄电池为例,着重介绍了铅酸蓄电池在不同工况下的充放电方式.通过查阅相关文献、调查研究并结合现场实际情况,对不同工况下蓄电池的充放电方式进行了确认;同时对不同充放电方式的适用范围及其优缺点进行了分析,为铅酸蓄电池组设计了合理的充放电方式选用方法,为铅酸蓄电池的安全稳定运行打下了坚实的基础.%The operation of battery,as the last barrier of DC system,determines the stable op-eration of the DC system. Capacity test is the basic way to verify the battery performance. This article takes the lead-acid battery of Fuqing Nuclear Power Plant as example,shows the different charging and discharging modes. The charging and discharging modes under different conditions are confirmed depending on relevant literature,investigation and the actual situation. The advantages and disadvantages of different charging and discharging modes,and also the scope of application are discussed in this paper. Areasonable charging and discharging method forlead-acid batteries is selected,which laid a solid foundation for the safe and stable operation of lead-acid battery.

  20. Role of Li2O2@Li2CO3 Interfaces on Charge Transport in Nonaqueous Li−Air Batteries

    DEFF Research Database (Denmark)

    Mekonnen, Yedilfana Setarge; García Lastra, Juan Maria; Hummelshøj, Jens S.;

    2015-01-01

    vacancies accumulate at the peroxide part of the interface during charge, reducing the coherent electron transport by two to three orders of magnitude compared with pristine Li2O2. During discharge, Li2O2@Li2CO3 interfaces may, however, provide an alternative in-plane channel for fast electron polaron...... battery. Here we apply density functional theory with the Hubbard U correction (DFT+U) and nonequilibrium Green’s function (NEGF) methods to investigate the role of Li2O2@Li2CO3 interface layers on the ionic and electronic transport properties at the oxygen electrode. We show that, for example, lithium...... hopping that could improve the electronic conductivity and ultimately increase the practical capacity in nonaqueous Li−O2 batteries....

  1. Modeling battery cells under discharge using kinetic and stochastic battery models

    OpenAIRE

    Kaj, Ingemar; Konane, Victorien

    2016-01-01

    In this paper we review several approaches to mathematical modeling of simple battery cells and develop these ideas further with emphasis on charge recovery and the response behavior of batteries to given external load. We focus on models which use few parameters and basic battery data, rather than detailed reaction and material characteristics of a specific battery cell chemistry, starting with the coupled ODE linear dynamics of the kinetic battery model. We show that a related system of PDE...

  2. Behavior data of battery and battery pack SOC estimation under different working conditions.

    Science.gov (United States)

    Zhang, Xu; Wang, Yujie; Yang, Duo; Chen, Zonghai

    2016-12-01

    This article provides the dataset of operating conditions of battery behavior. The constant current condition and the dynamic stress test (DST) condition were carried out to analyze the battery discharging and charging features. The datasets were achieved at room temperature, in April, 2016. The shared data contributes to clarify the battery pack state-of-charge (SOC) and the battery inconsistency, which is also shown in the article of "An on-line estimation of battery pack parameters and state-of-charge using dual filters based on pack model" (X. Zhang, Y. Wang, D. Yang, et al., 2016) [1].

  3. 全钒液流电池电化学建模与充放电分析%Electrochemical model of all vanadium redox flow battery and its charge/discharge analysis

    Institute of Scientific and Technical Information of China (English)

    周文源; 袁越; 傅质馨; 惠东; 杨凯

    2013-01-01

    全钒氧化还原液流电池凭借它的诸多优势,在电力系统中的应用潜力巨大,前景广阔,然而目前尚未有较为统一的仿真模型.以钒电池的电化学原理为基础,推导了以钒电池荷电容量和初始离子浓度为参量的电压方程,通过三组实际系统对仿真模型进行了验证.在此模型基础上,仿真分析对比了钒电池常见的恒功率和恒电流的充放电方法的各项效率指标.%With various advantages,all vanadium redox flow battery is a promising technology in power system.However,the simulation model of vanadium redox battery has not yet been united.Based on the electrochemical principal,the voltage function with the initial ion concentrations and the state of charge as parameters was deduced.The proposed model was then verified by comparing the simulations results with measured data taking from three different actual systems.Moreover,simulations of the constant power charging and constant current charging methods were taking out and their efficiencies were analyzed.

  4. 移动式电动汽车充换电的服务理念及其实施%Mobile Battery Charging/Swapping Service for Electric Vehicles and Its Implementation

    Institute of Scientific and Technical Information of China (English)

    周瑾; 杨冠群; 唐国春

    2014-01-01

    电动汽车未来大规模发展需要众多公共充电设施的支持,但是出于地面场地的限制,以及大规模充电对配电网可能带来的冲击,极大地限制了固定式充电设施的布设。为了克服这些困难,提出一种全新的设想方案,即建立移动式电动汽车充换电系统,并分析了这一系统相对于固定式充电设施的优势,以及它从技术角度的可行性。%The massive development of electric vehicles in near future demands numerous public charging infrastructure’s backup. However, the restriction of ground space and the possible impacts of large-scale charging behavior on distribution network, significantly confine the installment of fixable charging infrastructure. In order to overcome these difficulties, a novel conjecture scheme-establish-ment of a mobile battery charging/swapping system for electric vehicles is presented. Furthermore, the advantages of the novel system over fixable charging infrastructure and the feasibility of implementation from the point of view of technology is analyzed.

  5. Aproximation to the Modelling of Charge and Discharge Processes in Electrochemical Batteries by Integral Equation; Aproximacion al Modelo de los Procesos de Carga y Descarga en Baterias Electroquimicas mediante Ecuaciones Integrales

    Energy Technology Data Exchange (ETDEWEB)

    Balenzategui, J. L. [Ciemat, Madrid (Spain)

    2000-07-01

    A new way for the modelling of the charge and discharge processes in electrochemical batteries based on the use of integral equations is presented. The proposed method models the charge curves by by the so called fractional or cumulative integrals of a certain objective function f(t) that must be sought. The charge figures can be easily fitted by breaking down this objective function as the addition of two different Lorentz-type functions: the first one is associated to the own charge process and the second one to the overcharge process. The method allows calculating the starting voltage for overcharge as the intersection between both functions. The curve fitting of this model to different experimental charge curves, by using the Marquardt algorithm, has shown very accurate results. In the case of discharge curves, two possible methods for modelling purposes are suggested, well by using the same kind of integral equations, well by the simple subtraction of an objective function f(t) from a constant value V{sub o}D. Many other aspects for the study and analysis of this method in order to improve its results in further developments are also discussed. (Author) 10 refs.

  6. Microfluidic redox battery.

    Science.gov (United States)

    Lee, Jin Wook; Goulet, Marc-Antoni; Kjeang, Erik

    2013-07-01

    A miniaturized microfluidic battery is proposed, which is the first membraneless redox battery demonstrated to date. This unique concept capitalizes on dual-pass flow-through porous electrodes combined with stratified, co-laminar flow to generate electrical power on-chip. The fluidic design is symmetric to allow for both charging and discharging operations in forward, reverse, and recirculation modes. The proof-of-concept device fabricated using low-cost materials integrated in a microfluidic chip is shown to produce competitive power levels when operated on a vanadium redox electrolyte. A complete charge/discharge cycle is performed to demonstrate its operation as a rechargeable battery, which is an important step towards providing sustainable power to lab-on-a-chip and microelectronic applications.

  7. Secondary alkaline batteries

    Science.gov (United States)

    McBreen, J.

    1984-03-01

    The overall reactions (charge/discharge characteristics); electrode structures and materials; and cell construction are studied for nickel oxide-cadmium, nickel oxide-iron, nickel oxide-hydrogen, nickel oxide-zinc, silver oxide-zinc, and silver oxide-cadmium, silver oxide-iron, and manganese dioxide-zinc batteries.

  8. 钒液流电池在不同温度下的充放电特性%Charge-discharge Characteristics of Vanadium Redox Flow Battery at various temperatures

    Institute of Scientific and Technical Information of China (English)

    田戈; 贾明波; 李娟; 张中洋

    2014-01-01

    Influence of the temperature on the polarization curve, cyclic efficiency, charge-discharge capacity and self-discharge performance of vanadium redox flow battery was studied in temperature range 15℃~35℃ by using a 10-cell stack, and the mechanism was analyzed. The results show that, in the process of temperature rising, the current efficiency decreases, and voltage efficiency, charge-discharge capacity and self-discharge rate all gradually increase. In order to ensure stable operation of the vanadium battery, the temperature should be strictly controlled in the actual application.%利用10电池电堆考查了在15~35℃范围内温度对钒电池极化曲线、循环效率、充放电容量以及自放电性能的影响,并进行了机理分析,测试结果表明,在温度逐渐升高的过程中,除电流效率逐渐降低外,电压效率、充放电容量、自放电速率均逐渐升高,在实际应用过程中,应严格对温度进行控制以保证钒电池系统的稳定运行。

  9. Charge Localization in the Lithium Iron Phosphate Li3Fe2(PO4)3at High Voltages in Lithium-Ion Batteries

    DEFF Research Database (Denmark)

    Younesi, Reza; Christiansen, Ane Sælland; Loftager, Simon

    2015-01-01

    Possible changes in the oxidation state of the oxygen ion in the lithium iron phosphate Li3Fe2(PO4)3 at high voltages in lithium-ion (Li-ion) batteries are studied using experimental and computational analysis. Results obtained from synchrotron-based hard X-ray photoelectron spectroscopy and dens......Possible changes in the oxidation state of the oxygen ion in the lithium iron phosphate Li3Fe2(PO4)3 at high voltages in lithium-ion (Li-ion) batteries are studied using experimental and computational analysis. Results obtained from synchrotron-based hard X-ray photoelectron spectroscopy...

  10. A VRLA battery simulation model

    Energy Technology Data Exchange (ETDEWEB)

    Pascoe, P.E.; Anbuky, A.H. [Invensys Energy Systems NZ Limited, Christchurch (New Zealand)

    2004-05-01

    A valve regulated lead acid (VRLA) battery simulation model is an invaluable tool for the standby power system engineer. The obvious use for such a model is to allow the assessment of battery performance. This may involve determining the influence of cells suffering from state of health (SOH) degradation on the performance of the entire string, or the running of test scenarios to ascertain the most suitable battery size for the application. In addition, it enables the engineer to assess the performance of the overall power system. This includes, for example, running test scenarios to determine the benefits of various load shedding schemes. It also allows the assessment of other power system components, either for determining their requirements and/or vulnerabilities. Finally, a VRLA battery simulation model is vital as a stand alone tool for educational purposes. Despite the fundamentals of the VRLA battery having been established for over 100 years, its operating behaviour is often poorly understood. An accurate simulation model enables the engineer to gain a better understanding of VRLA battery behaviour. A system level multipurpose VRLA battery simulation model is presented. It allows an arbitrary battery (capacity, SOH, number of cells and number of strings) to be simulated under arbitrary operating conditions (discharge rate, ambient temperature, end voltage, charge rate and initial state of charge). The model accurately reflects the VRLA battery discharge and recharge behaviour. This includes the complex start of discharge region known as the coup de fouet. (author)

  11. Battery thermal models for hybrid vehicle simulations

    Science.gov (United States)

    Pesaran, Ahmad A.

    This paper summarizes battery thermal modeling capabilities for: (1) an advanced vehicle simulator (ADVISOR); and (2) battery module and pack thermal design. The National Renewable Energy Laboratory's (NREL's) ADVISOR is developed in the Matlab/Simulink environment. There are several battery models in ADVISOR for various chemistry types. Each one of these models requires a thermal model to predict the temperature change that could affect battery performance parameters, such as resistance, capacity and state of charges. A lumped capacitance battery thermal model in the Matlab/Simulink environment was developed that included the ADVISOR battery performance models. For thermal evaluation and design of battery modules and packs, NREL has been using various computer aided engineering tools including commercial finite element analysis software. This paper will discuss the thermal ADVISOR battery model and its results, along with the results of finite element modeling that were presented at the workshop on "Development of Advanced Battery Engineering Models" in August 2001.

  12. International Space Station Lithium-Ion Battery

    Science.gov (United States)

    Dalton, Penni J.; Balcer, Sonia

    2016-01-01

    The International Space Station (ISS) Electric Power System (EPS) currently uses Nickel-Hydrogen (Ni-H2) batteries to store electrical energy. The batteries are charged during insolation and discharged during eclipse. The Ni-H2 batteries are designed to operate at a 35 depth of discharge (DOD) maximum during normal operation in a Low Earth Orbit. Since the oldest of the 48 Ni-H2 battery Orbital Replacement Units (ORUs) has been cycling since September 2006, these batteries are now approaching their end of useful life. In 2010, the ISS Program began the development of Lithium-Ion (Li-ion) batteries to replace the Ni-H2 batteries and concurrently funded a Li-ion cell life testing project. This paper will include an overview of the ISS Li-Ion battery system architecture and the progress of the Li-ion battery design and development.

  13. A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics.

    Science.gov (United States)

    Pu, Xiong; Li, Linxuan; Song, Huanqiao; Du, Chunhua; Zhao, Zhengfu; Jiang, Chunyan; Cao, Guozhong; Hu, Weiguo; Wang, Zhong Lin

    2015-04-17

    A novel integrated power unit realizes both energy harvesting and energy storage by a textile triboelectric nanogenerator (TENG)-cloth and a flexible lithium-ion battery (LIB) belt, respectively. The mechanical energy of daily human motion is converted into electricity by the TENG-cloth, sustaining the energy of the LIB belt to power wearable smart electronics.

  14. Charge Localization in the Lithium Iron Phosphate Li3Fe2(PO4)3at High Voltages in Lithium-Ion Batteries

    DEFF Research Database (Denmark)

    Younesi, Reza; Christiansen, Ane Sælland; Loftager, Simon;

    2015-01-01

    Possible changes in the oxidation state of the oxygen ion in the lithium iron phosphate Li3Fe2(PO4)3 at high voltages in lithium-ion (Li-ion) batteries are studied using experimental and computational analysis. Results obtained from synchrotron-based hard X-ray photoelectron spectroscopy...

  15. 基于离散滑模观测器的锂电池荷电状态估计%Charge State Estimation of Li-ion Batteries Based on Discrete-time Sliding Mode Observers

    Institute of Scientific and Technical Information of China (English)

    孙冬; 陈息坤

    2015-01-01

    Estimation of the state of charge (SOC) is the key technique in the power management system for a li-ion power battery. For the inherent nonlinear property of the li-ion power battery, a method of SOC estimation is proposed applied to batteries, and the design of the algorithm for battery SOC estimation based on discrete-time sliding mode observers (DSMO) is given and the stability proof of DSMO is proven. Based on the Thevenin equivalent model, the detailed procedures of this estimation method are exhibited,and the model parameters are identified at different current rate and ambient temperature. The accuracy, the robustness and the time complexity of the extended Kalman filter (EKF) and the proposed method are analyzed in this comparative study. Experiments show that the arithmetic of the discrete-time sliding mode observers can be used to compute the battery SOC quickly and accurately with the dynamic error of 3%, and that the feasibility of the proposed algorithm is verified.%锂电池的荷电状态(state of charge,SOC)估计是电池管理系统的重要组成部分,针对锂电池非线性的特性,提出了采用离散滑模观测器估计锂电池荷电状态的方法,给出了离散滑模观测器的设计方法及其稳定性证明。基于锂电池的戴维南等效电路模型,给出了该方法的设计过程,在不同的充放电电流倍率和环境温度下,进行了锂电池模型的参数辨识,通过与常用的扩展卡尔曼滤波法相比较,分析了离散滑模观测器对锂电池SOC估计的精度、鲁棒性和算法复杂度等方面的性能。实验结果表明,采用该算法可实现锂电池SOC快速精确地估计,误差可控制在约3%,验证了该方法的可行性。

  16. The Extravehicular Maneuvering Unit's New Long Life Battery and Lithium Ion Battery Charger

    Science.gov (United States)

    Russell, Samuel P.; Elder, Mark A.; Williams, Anthony G.; Dembeck, Jacob

    2010-01-01

    The Long Life (Lithium Ion) Battery is designed to replace the current Extravehicular Mobility Unit Silver/Zinc Increased Capacity Battery, which is used to provide power to the Primary Life Support Subsystem during Extravehicular Activities. The Charger is designed to charge, discharge, and condition the battery either in a charger-strapped configuration or in a suit-mounted configuration. This paper will provide an overview of the capabilities and systems engineering development approach for both the battery and the charger

  17. Intelligent charging controller of battery-buffered stand-alone photovoltaic system%蓄电池储能的独立光伏系统充电控制器研制

    Institute of Scientific and Technical Information of China (English)

    周静; 何为; 龙兴明

    2011-01-01

    针对光伏阵列对蓄电池进行直接串联充电时能量收集效率过低的缺陷,提出基于系统参数实时跟踪的最大充电控制方法,研制以微处理器为核心、可切换并联Buck/Boost拓扑结构为框架的智能充电控制器,实现太阳能的最大收集.实际运行结果表明:基于微处理器的智能控制策略能动态描述系统的参数信息,提高电量收集效率,系统动态跟踪时间约4 ms,电能收集效率提高20%以上;基于廉价单片机的最大充电控制器避免了太阳能电池的过大功率配置,有利于降低系统成本.%As the direct battery-charging by photovoltaic array has low efficiency,a control scheme of maximum charging based on real-time system parameter tracking is proposed. A microprocessor-based intelligent CC(Charging Controller) with switching parallel Buck/Boost topology is developed,which carries out the maximum gathering of solar energy. Practical operation shows that.it describes dynamically the system parameter information and enhances the electric charge collection efficiency. The system dynamic tracking time is about 4 ms and the electric charge collection efficiency increases more than 20 %. The CC with microcontroller reduces the cost of photovoltaic system by avoiding over power configuration of photovoltaic array.

  18. 基于Reflex TM充电策略的锂离子电池充电器设计%Design of lithium-ion battery charger based on Reflex TM charging strategy

    Institute of Scientific and Technical Information of China (English)

    汤天浩; 郑晓龙; 范辉

    2015-01-01

    为实现动力锂离子电池的高效快速充电,采用非耗散型的Reflex TM充电方法,消除充电过程中的极化现象,在分析改变充电电流参数对充电过程的优化作用基础上,提出一种变流变频充电控制策略。设计双向DC-DC变换器及其控制电路,实现可变流变频的Reflex TM充电策略。通过改变正负脉冲幅值和占空比等实验,验证其可行性和有效性。%To achieve the high-efficient and fast charge of a power lithium-ion battery,a non-dissipative charging method called as Reflex TM is adopted to remove the polarization phenomenon in the charging process. Based on the analysis of the optimization function of different charging current parameters on the charging process,the variable-current and variable-frequency control strategy is presented,and then a bi-directional DC-DC converter and its control circuit are designed to implement the strategy. The feasibility and availability of the strategy is proved through the experiment where the positive and negative pulse am-plitudes and the duty-cycle are changed.

  19. Will Your Battery Survive a World With Fast Chargers?

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, J. S.; Wood, E.

    2015-05-04

    Fast charging is attractive to battery electric vehicle (BEV) drivers for its ability to enable long-distance travel and quickly recharge depleted batteries on short notice. However, such aggressive charging and the sustained vehicle operation that result could lead to excessive battery temperatures and degradation. Properly assessing the consequences of fast charging requires accounting for disparate cycling, heating, and aging of individual cells in large BEV packs when subjected to realistic travel patterns, usage of fast chargers, and climates over long durations (i.e., years). The U.S. Department of Energy's Vehicle Technologies Office has supported the National Renewable Energy Laboratory's development of BLAST-V-the Battery Lifetime Analysis and Simulation Tool for Vehicles-to create a tool capable of accounting for all of these factors. We present on the findings of applying this tool to realistic fast charge scenarios. The effects of different travel patterns, climates, battery sizes, battery thermal management systems, and other factors on battery performance and degradation are presented. We find that the impact of realistic fast charging on battery degradation is minimal for most drivers, due to the low frequency of use. However, in the absence of active battery cooling systems, a driver's desired utilization of a BEV and fast charging infrastructure can result in unsafe peak battery temperatures. We find that active battery cooling systems can control peak battery temperatures to safe limits while allowing the desired use of the vehicle.

  20. Reason for the black smoke discharged from the chimney of stamp-charging battery and improvement%捣固焦炉烟囱冒黑烟的原因及改进

    Institute of Scientific and Technical Information of China (English)

    贾瑞民

    2014-01-01

    分析了捣固焦炉烟囱冒黑烟的原因和主要影响因素,通过优化捣固操作、缩小煤箱宽度和改进配煤结构等措施,推焦电流由150~170A 降低到105~120A,杜绝了焦炉烟囱冒黑烟现象。%The reasons and main influencing factors for the black smoke discharged from the chimney of stamp-charging battery,and corresponding measures such as optimizing operation,narrow the coal bunker and adjusting coal blending structure and so on are taken. As a result,the pushing current is reduced to 105 ~ 120A from 150 ~ 170A,and no black smoke is discharged from the chimney any more.

  1. 荷电态对锰酸锂电池储存性能的影响%Effect of state of charge on storage performance of manganese spinel battery

    Institute of Scientific and Technical Information of China (English)

    刘云建; 李新海; 郭华军; 王志兴

    2011-01-01

    The power battery was manufactured with the commercial LJMn2O4 and graphite. The storage performances of LiMn2O4 batteries at different charged states were studied. Structure, morphology and surface state change of the LiMn2O4 before and after storage were observed by scanning electron microscopy (SEM), X-ray diffraction (XRD), cyclic voltammograms (CV) and electrochemical impedance spectroscopy (EIS), respectively. The electrochemical performances of LiMn2O4 battery before and after storage were tested. The results show that the capacity recovery of LiMn2O4 at discharge state is the best, and it is 99.4%, while the ratio at full charged state is the smallest, which is 93.6%. The cycling performance is improved because of the low capacity and MnO2 film deposited on the electrode. The cycling performance of LiMn2O4 after storage is improved. The cycling performance of LiMn2O4 stored at full charged state is the best, and the capacity retaining is 89.7% after 170 cycles. The capacity retaining is 85.4% after 170 cycles before storage. The capacity fading of LiMn2O4 battery is increased with the increase of charge state, which is because of the increase of Mn dissolution and polarization of electrode.%采用商品化的LiMn2O4和石墨作为正负极材料制作锰酸锂动力电池,研究锰酸锂电池在不同荷电态下的储存性能,并且利用扫描电镜(SEM)、X线衍射(XRD)、循环伏安(CV)和交流阻抗(AC)等分析检测手段表征LiMn2O4电极储存前后的结构、形貌和表面状态变化,测试锰酸锂电池储存前后的电化学性能.研究结果表明:锰酸锂在放电态下储存的容量恢复率最高,达到99.4%;满电储存后容量恢复率最低,为93.6%;储存后锰酸锂电池的循环性能均有所改善,其中满电储存后循环性能最好,170次循环容量保持率为89.7‰,储存前170次循环容量保持率为85.4%;锰酸锂电池储存后容量衰减随着荷电态的增加而增加,这主要是由Mn溶

  2. Experimental design and construction of an enhanced solar battery charger

    OpenAIRE

    Faithpraise, Fina; Bassey, Donatus; Charles, Mfon; Osahon, Okoro; Udoh, Monday; Chatwin, Chris

    2016-01-01

    A Solar Battery Charger circuit is designed, built and tested. It acts as a control circuit to monitor and regulate the process of charging several batteries ranging from 4 volts to 12 volts, using a photovoltaic (PV) solar panel as the input source for the battery charging process. The circuit is economical and can be easily constructed from discrete electronic components. The circuit operation is based on matching the solar panel terminal load voltage to the input terminal of the charging c...

  3. Calculation and analysis of depth of charge/discharge of interfacial capacitance for lithium ion battery%锂离子电池界面电容充放电深度的计算与分析

    Institute of Scientific and Technical Information of China (English)

    黄秋安; 栾婷; 方迪; 杨昌平

    2016-01-01

    采用理论计算并结合实验验证的方法讨论脉冲电流法提取锂离子电池(L IB )电路模型参数中静置时间的影响。首先,给出双脉冲激励下L IB二阶电路模型全响应解析解,并计算界面电容瞬态电压随时间演化规律;然后,定义界面电容充放电深度,给出计算公式,分析静置时间长短对界面电容充放电深度影响。最后,采用Solartron1470E‐1455电化学工作站对15AH‐NCM LIB进行充放电测试和电化学阻抗谱测试,实验结果验证了数值计算的正确性。%Theoretical calculation and experimentl validation was conducted to answer how the resting time affect pulse current method ,aiming at parameter identification of circuit mode for lithium ion battery (LIB) .Firstly ,an analytical solution of a second‐order circuit model for LIB was solved under bi‐pulse excitement ,followed by simulation for transient response voltage .Subsequently ,the depth of charge /discharge was defined and formulated for interfacial capacitance ,and effect of resting time on charge stored in interfacial capacitance was quantitatively studied .Finally ,the test of charge/dis‐charge and AC impedance for 15AH‐NCM LIB were carried out with Solartron 1470E‐1455 worksta‐tion ,and experimental results were in agreement with the above conclusions .

  4. 平滑光伏功率波动的储能系统充放电控制策略研究%Research on charge-discharge control strategy of battery energy storage system for smoothing photovoltaic power fluctuations

    Institute of Scientific and Technical Information of China (English)

    杨可林; 黄瑞雯; 刘皓明

    2015-01-01

    Integrating a battery energy storage system (BESS) with photovoltaic systems helps smooth the output fluctuations of photovoltaic power, improve the power supply reliability of the pow⁃er system, and enhance the regulation capability of the power sys⁃tem. Taking the photovoltaic⁃energy storage hybrid system as re⁃search object, an energy storage’s charge⁃discharge control strate⁃gy accounting charge⁃discharge depth of the battery is proposed based on the principle of filtering. The strategy considers the state⁃of⁃charge (SOC) of the battery to prevent accelerating its aging and damage, which, at the same time, dynamically compensates for the output power of BESS by regulating the output active power of ener⁃gy storage system. Taking a rooftop photovoltaic system in Wuxi city as an example for the simulation, the results show that the con⁃trol strategy proposed in this paper can fully consider the capacity configuration of BESS and furthest dynamically smooth the power output fluctuations of photovoltaic power system, and effectively prolong the service life of the battery.%在光伏发电系统中配备一定的储能装置可以平滑光伏发电的功率波动,提高系统的供电可靠性,增强电网的调控能力。以光储联合发电系统为研究对象,在滤波原理的基础上,设计了一种计及电池充放电深度的储能系统充放电控制策略。该策略计及储能电池荷电状态,防止过度充放电加快其寿命老损,通过调节储能系统输出有功功率,对光伏出力波动进行动态补偿。以无锡市某屋顶光伏电站为例进行了仿真研究,仿真结果表明,所提策略能够充分考虑储能系统容量配置,最大程度的动态平滑光伏发电系统输出功率波动,有效延长储能电池使用寿命。

  5. Used batteries - REMINDER

    CERN Document Server

    2006-01-01

    With colder weather drawing in, it is quite likely that older car batteries will fail. On this subject, the Safety Commission wishes to remind everyone that CERN is not responsible for the disposal of used batteries from private vehicles. So please refrain from abandoning them on pavements or around or inside buildings. Used batteries can be disposed of safely, free-of-charge and without any damage to the environment at waste disposal sites (déchetteries) close to CERN in both France (Ain and Haute-Savoie) and in the Canton of Geneva in Switzerland (Cheneviers). Since the average car battery lasts a number of years, this only represents a small effort on your part over the whole lifetime of your vehicle. Most people don't need reminding that car batteries contain concentrated sulphuric acid, which can cause severe burns. Despite this, we frequently find them casually dumped in scrap metal bins! For more information, please contact R. Magnier/SC-GS 160879 We all have a responsibility for safety and th...

  6. 基于STM32处理器的锂电池快速充电设计%The Design of Lithium Batteries Fast Charging Based on STM32 Processor

    Institute of Scientific and Technical Information of China (English)

    张洪涛; 彭潇丽

    2012-01-01

    提出了基于STM32处理器的智能管理系统和PFC(功率因数校正)的充电电路对锂离子电池进行充电.利用MATLAB动态仿真工具实现了PFC控制技术的动态仿真,仿真结果达到了预期效果.用C语言编程指令来实现STM32处理器的智能管理.%This paper proposed the design in which the STM32 processor-based intelligent management system and PFC(power factor correction) charging circuit were used to charged lithium ion batteries.MATLAB simulation tool was used to achieve the dynamic simulation of PFC control technology,and the simulation achieved the expected results.C language programming instructions was then used to complete intelligent management of STM32 processor.The results show that the design of experiments is feasible.

  7. On the complex ageing characteristics of high-power LiFePO4/graphite battery cells cycled with high charge and discharge currents

    DEFF Research Database (Denmark)

    Groot, Jens; Swierczynski, Maciej Jozef; Stroe, Ana-Irina

    2015-01-01

    power-optimised LiFePO4/graphite cells was quantified by testing with charge and discharge rates between 1 and 4C-rate, temperatures between +23o C and +53o C, and a depth-of-discharge of either 100% or 60%. Although all cells show similar ageing pattern in general, the cycle life...

  8. Solar Charged Stand Alone Inverter

    Directory of Open Access Journals (Sweden)

    M.Vasugi

    2014-07-01

    Full Text Available This paper deals with solar powered stand alone inverter which converts the variable dc output of a photovoltaic solar panel into ac that can be fed to loads. Stand alone inverters are used in systems where the inverter get its energy from batteries charged by photo voltaic arrays. A charge controller limits the rate at which electric current is added to or drawn from electric batteries. This charge discharge controller is needed to prevent the battery from being overcharged or discharged thus prolonging its life. The charge/discharge control is necessary in order to achieve safety and increase the capacity of the battery. The project has been tested according its operational purposes. Maximum power rating of the experimented solar charge controller is 100W according battery capacities. Cost effective solar charge controller has been designed and implemented to have efficient system and much longer battery lifetime. The dc output is given to inverter and then it is supplied to loads. This method is very cheap and cost effective.

  9. Penta-graphene: A Promising Anode Material as the Li/Na-Ion Battery with Both Extremely High Theoretical Capacity and Fast Charge/Discharge Rate.

    Science.gov (United States)

    Xiao, Bo; Li, Yan-Chun; Yu, Xue-Fang; Cheng, Jian-Bo

    2016-12-28

    Recently, a new two-dimensional (2D) carbon allotrope named penta-graphene was theoretically proposed ( Zhang , S. ; et al. Proc. Natl. Acad. Sci. U.S.A. 2015 , 112 , 2372 ) and has been predicted to be the promising candidate for broad applications due to its intriguing properties. In this work, by using first-principles simulation, we have further extended the potential application of penta-graphene as the anode material for a Li/Na-ion battery. Our results show that the theoretical capacity of Li/Na ions on penta-graphene reaches up to 1489 mAh·g(-1), which is much higher than that of most of the previously reported 2D anode materials. Meanwhile, the calculated low open-circuit voltages (from 0.24 to 0.60 V), in combination with the low diffusion barriers (≤0.33 eV) and the high electronic conductivity during the whole Li/Na ions intercalation processes, further show the advantages of penta-graphene as the anode material. Particularly, molecular dynamics simulation (300 K) reveals that Li ion could freely diffuse on the surface of penta-graphene, and thus the ultrafast Li ion diffusivity is expected. Superior performance of penta-graphene is further confirmed by comparing with the other 2D anode materials. The light weight and unique atomic arrangement (with isotropic furrow paths on the surface) of penta-graphene are found to be mainly responsible for the high Li/Na ions storage capacity and fast diffusivity. In this regard, except penta-graphene, many other recently proposed 2D metal-free materials with pentagonal Cairo-tiled structures may be the potential candidates as the Li/Na-ion battery anodes.

  10. Automotive Battery Modelling and Management

    Directory of Open Access Journals (Sweden)

    N. M. Hammad

    2014-06-01

    Full Text Available The estimation of vehicle battery performance is typically addressed by testing the battery under specific operation conditions by using a model to represent the test results. Approaches for representing test results range from simple statistical models to neural networks to complex, physics-based models. Basing the model on test data could be problematical when testing becomes impractical with many years life time tests. So, real time estimation of battery performance, an important problem in automotive applications, falls into this area. In vehicles it is important to know the state of charge of the batteries in order to prevent vehicle stranding and to ensure that the full range of the vehicle operation is exploited. In this paper, several battery models have studied including analytical, electrical circuits, stochastic and electro- chemical models. Valve Regulated Lead Acid “VRLA” battery has been modelled using electric circuit technique. This model is considered in the proposed Battery Monitoring System “BMS”. The proposed BMS includes data acquisition, data analysis and prediction of battery performance under a hypothetical future loads. Based on these criteria, a microprocessor based BMS prototype had been built and tested in automotive Lab,. The tests show promising results that can be used in industrial applications

  11. Effects of iron phthalocyanine on the inner pressure of MH/Ni battery

    Institute of Scientific and Technical Information of China (English)

    WANG Fang; WU Feng

    2004-01-01

    Effects of iron phthalocyanine (FePc) on the inner pressure of MH/Ni batteries during charging were examined. Experimental results show that the battery with appropriate quantity of FePc displays a much lower inner pressure under charging and overcharging than the battery without FePc, especially the battery with 1 mg FePc exhibits the slowest increasing speed of inner pressure and the best charging efficiency and overchargeability.

  12. An averaging battery model for a lead-acid battery operating in an electric car

    Science.gov (United States)

    Bozek, J. M.

    1979-01-01

    A battery model is developed based on time averaging the current or power, and is shown to be an effective means of predicting the performance of a lead acid battery. The effectiveness of this battery model was tested on battery discharge profiles expected during the operation of an electric vehicle following the various SAE J227a driving schedules. The averaging model predicts the performance of a battery that is periodically charged (regenerated) if the regeneration energy is assumed to be converted to retrievable electrochemical energy on a one-to-one basis.

  13. Synthesis and charge-discharge properties of LiF-NiO composite as a cathode material for Li-ion batteries

    Science.gov (United States)

    Tomita, Yasumasa; Nasu, Hiromasa; Izumi, Yusuke; Arai, Juichi; Otsuka, Satoshi; Yamane, Yohei; Yamada, Koji; Kohno, Yoshiumi; Kobayashi, Kenkichiro

    2016-10-01

    LiF-NiO composites in a molar ratio of 1:1 are synthesized by the mechanical milling of equal amounts of LiF and NiO for 12-144 h. The synthesized composites are investigated by XRD, charge-discharge measurements, and XPS. The XRD peaks of NiO broaden with an increase in the milling time, while those of LiF disappear. Rietveld analysis shows that the LiF-NiO composites prepared by milling for more than 72 h form a solid solution and that the arrangement of Li+ and Ni2+ ions in them is disordered. The LiF and NiO samples milled individually do not exhibit a noticeable discharge capacity, while the composites show a large one. Further, the discharge capacity of the LiF-NiO composites increases with the milling time, with the composite prepared by milling for 144 h exhibiting a discharge capacity of 216 mA h g-1 and an average voltage of 3.53 V at 0.05 C for voltages of 2.0-5.0 V. The XPS data suggest that the Ni ions are probably oxidized and reduced repeatedly during the charge-discharge process and that the Ni2+ ions are partially oxidized to Ni3+ ions during charging to 5.0 V.

  14. Large scaled cascaded battery energy storage system with charge/discharge balancing%大容量链式电池储能系统及其充放电均衡控制

    Institute of Scientific and Technical Information of China (English)

    金一丁; 宋强; 刘文华

    2011-01-01

    In order to connect large scaled energy storage to high voltage bus in urban distribution network,a battery energy storage system topology for the large sealed and multi-modular systems is proposed,which combines the cascaded converter topology with the interleaved bi-directional DC/DC conversion technology.The designed system can directly connect to 10 kV bus and above without transformer and achieve better output harmonics performance under lower switching frequency. The DC voltage of each serial module can be boosted based on the battery output voltage and the parallel connection of battery groups is allowed. A simulation system based on delta configuration is built with three-level charge/discharge balancing control.The control effectiveness is verified by EMTDC simulative results.%为实现高母线电压、大容量的城网储能.结合链式DC/AC变流器拓扑及多重化双向DC/DC变流技术,提出一种适合于大容量、多储能模块的电池储能系统结构.该储能系统可以不通过升压变压器直接接入10 kV以上电压等级母线,并可在较低开关频率下达到良好的输出谐波特性;系统中每个串联单元的直流电压可在电池组端电压的基础上进一步提高.并允许多组电池并联接入.针对三角接链式系统提出了三级电池充放电均衡策略.电磁暂态仿真实验的结果验证了相关控制策略的有效性.

  15. Carbon-enhanced VRLA batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Enos, David George; Hund, Thomas D.; Shane, Rod (East Penn Manufacturing, Lyon Station, PA)

    2010-10-01

    The addition of certain forms of carbon to the negative plate in valve regulated lead acid (VRLA) batteries has been demonstrated to increase the cycle life of such batteries by an order of magnitude or more under high-rate, partial-state-of-charge operation. Such performance will provide a significant impact, and in some cases it will be an enabling feature for applications including hybrid electric vehicles, utility ancillary regulation services, wind farm energy smoothing, and solar photovoltaic energy smoothing. There is a critical need to understnd how the carbon interacts with the negative plate and achieves the aforementioned benefits at a fundamental level. Such an understanding will not only enable the performance of such batteries to be optimzied, but also to explore the feasibility of applying this technology to other battery chemistries. In partnership with the East Penn Manufacturing, Sandia will investigate the electrochemical function of the carbon and possibly identify improvements to its anti-sulfation properties. Shiomi, et al. (1997) discovered that the addition of carbon to the negative active material (NAM) substantially reduced PbSO{sub 4} accumulation in high rate, partial state of charge (HRPSoC) cycling applications. This improved performance with a minimal cost. Cycling applications that were uneconomical for traditional VRLA batteries are viable for the carbon enhanced VRLA. The overall goal of this work is to quantitatively define the role that carbon plays in the electrochemistry of a VRLA battery.

  16. Active battery charge equalization with voltage controlled vertical buck-boost switching cells%电压控制Buck-Boost电池充电均衡器

    Institute of Scientific and Technical Information of China (English)

    谢莉; 蒋伟

    2015-01-01

    本文研究了储能设备的均衡充电方法。采用垂直 Buck-Boost 电路作为均衡器的基本交换单元。在不同的负载条件下,用状态空间平均法和小信号分析法获得对应的开关单元模型。通过电压控制均衡方案,利用电压环补偿设备端电压,电流内环使得电荷定向移动。实验结果表明,所提出的均衡器能实现电荷最快移动并能有效地收敛到零电压差,本地控制器能快速、准确地跟踪参考值。%This paper investigates the active charge equalization method for energy storage devices. The vertical buck-boost circuit is used as the basic switching cell of this equalizer. By applying state-space averaging and small signal analysis, the model of the switching cell is obtained under different load condition. A voltage controlled equalization scheme is presented, which is featured with voltage loop to equalize the terminal voltage and inner current loop for charge shuttling. The simulation and experimental results indicate that the proposed equalizer can effectively converge to zero voltage difference condition by offering a maximized charge shuttling effort, and the local controller can react fast and precisely to the reference command.

  17. Research on the fast charging of VRLA

    Directory of Open Access Journals (Sweden)

    Xiao Qing

    2012-11-01

    Full Text Available VRLA can be the energy storing device of the HEV (Hybrid Electric Vehicle, photovoltaic system and so on. The most important factor that restricts the improvement of these fields is the service lifetime of the battery cannot reach the expectation. In the charging process, traditional charging method has serious polarization phenomenon. It will decrease its service life. Aimed at the purpose of reducing the polarization phenomenon, this paper proposed the changing current depolarization pulse charging method which is combining the dynamic model of the battery on the basis of analyzing the existential issues in the pulse charging method. By building the hardware circuit to achieve the function and verify their feasibility. The results indicate that, compared with pulse charging method, the new method makes battery fully charged in shorter time obviously and the temperature of batteries rise more slowly.

  18. 钒液流电池的建模与充放电控制特性%Researching on vanadium redox flow battery modeling and charge-discharge characteristics

    Institute of Scientific and Technical Information of China (English)

    丁明; 陈中; 林根德

    2011-01-01

    随着风电场、光伏电站并网穿透功率的不断增加,风电场、光伏电站输出功率随机波动性给电网的安全运行带来了一系列影响,储能技术平滑风电场、光伏电站输出功率波动是有效手段之一,因此对储能媒介建模及充放电控制方式的深入研究至关重要.钒液流电池作为一种新型储能电池,具有功率密度和能量密度独立控制、充放电循环寿命长、动态响应快、维护简单等优点,适合于可再生能源发电系统应用.研究钒液流电池(VRB)的充放电模型、电池可用能量预测、荷电状态SOC及充放电输出特性,构建10 kW/h VRB仿真系统模型,详细研究VRB的恒功率、恒电流充放电模式和充放电效率,并讨论应用于独立光伏发电系统的VRB优化充电方式.%With the increasing penetration of grid-connected wind power generation and PV system, the output fluctuation of wind power and PV system brings many effects on the safe operation of power system. Smoothing the output fluctuation with energy storage system is an effective method. Vanadium Redox Flow Battery (VRB) as a new type energy storage system has many advantages, such as the decoupling control of the power and capacity, long life, fast response and low maintenance requirements, which make it suitable for renewable sources generation systems. Base on the study of VRB charge-discharge model, remaining energy prediction,state of charge (SOC) and the output characteristics, a 10 kW/h VRB simulation model is set up in this paper. The constant power mode and the constant current mode are studied in detail as well as the charge-discharge efficiency. At the end, an optimization charging method for VRB system in a stand-alone PV system is proposed, and the simulation results are given.

  19. Prediction of Retained Capacity and EODV of Li-ion Batteries in LEO Spacecraft Batteries

    CERN Document Server

    Ramakrishnan, S; Jeyakumar, A Ebenezer

    2010-01-01

    In resent years ANN is widely reported for modeling in different areas of science including electro chemistry. This includes modeling of different technological batteries such as lead acid battery, Nickel cadmium batteries etc. Lithium ion batteries are advance battery technology which satisfy most of the space mission requirements. Low earth orbit (LEO)space craft batteries undergo large number of charge discharge cycles (about 25000 cycles)compared to other ground level or space applications. This study is indented to develop ANN model for about 25000 cycles, cycled under various temperature, Depth Of Discharge (DOD) settings with constant charge voltage limit to predict the retained capacity and End of Discharge Voltage (EODV). To extract firm conclusion and distinguish the capability of ANN method, the predicted values are compared with experimental result by statistical method and Bland Altman plot.

  20. USED BATTERIES-REMINDER

    CERN Multimedia

    2002-01-01

    Note from the TIS Division: Although it is not an obligation for CERN to collect, store and dispose of used batteries from private vehicles, they are often found abandoned on the site and even in the scrap metal bins. As well as being very dangerous (they contain sulphuric acid which is highly corrosive), this practise costs CERN a non-negligible amount of money to dispose of them safely. The disposal of used batteries in the host state could not be simpler, there are 'déchetteries' in neighbouring France at Saint-Genis, Gaillard and Annemasse as well as in other communes. In Geneva Canton the centre de traitement des déchets spéciaux, at Cheneviers on the river Rhône a few kilometers from CERN, will dispose of your batterie free of charge. So we ask you to use a little common sense and to help protect the environnement from the lead and acid in these batteries and even more important, to avoid the possibility of a colleague being seriously injured. It doesn't take m...

  1. Effects of compatibility of polymer binders with solvate ionic liquid electrolytes on discharge and charge reactions of lithium-sulfur batteries

    Science.gov (United States)

    Nakazawa, Toshitada; Ikoma, Ai; Kido, Ryosuke; Ueno, Kazuhide; Dokko, Kaoru; Watanabe, Masayoshi

    2016-03-01

    Electrochemical reactions in Li-S cells with a solvate ionic liquid (SIL) electrolyte composed of tetraglyme (G4) and Li[TFSA] (TFSA: bis(trifluoromethanesulfonyl)amide) are studied. The sulfur cathode (S cathode) comprises sulfur, carbon powder, and a polymer binder. Poly(ethylene oxide) (PEO) and poly(vinyl alcohol) (PVA-x) with different degrees of saponification (x%) are used as binders to prepare the composite cathodes. For the Li-S cell containing PEO binder, lithium polysulfides (Li2Sm, 2 ≤ m ≤ 8), reaction intermediates of the S cathode, dissolve into the electrolyte, and Li2Sm acts as a redox shuttle in the Li-S cell. In contrast, in the Li-S cell with PVA-x binder, the dissolution of Li2Sm is suppressed, leading to high columbic efficiencies during charge-discharge cycles. The compatibility of the PVA-x binder with the SIL electrolyte changes depending on the degree of saponification. Decreasing the degree of saponification leads to increased electrolyte uptake by the PVA-x binder, increasing the charge and discharge capacities of Li-S cell. The rate capability of Li-S cell is also enhanced by the partial swelling of the PVA-x binder. The enhanced performance of Li-S cell containing PVA-x is attributed to the lowering of resistance of Li+ ion transport in the composite cathode.

  2. Batteries used to Power Implantable Biomedical Devices

    Science.gov (United States)

    Bock, David C.; Marschilok, Amy C.; Takeuchi, Kenneth J.; Takeuchi, Esther S.

    2012-01-01

    Battery systems have been developed that provide years of service for implantable medical devices. The primary systems utilize lithium metal anodes with cathode systems including iodine, manganese oxide, carbon monofluoride, silver vanadium oxide and hybrid cathodes. Secondary lithium ion batteries have also been developed for medical applications where the batteries are charged while remaining implanted. While the specific performance requirements of the devices vary, some general requirements are common. These include high safety, reliability and volumetric energy density, long service life, and state of discharge indication. Successful development and implementation of these battery types has helped enable implanted biomedical devices and their treatment of human disease. PMID:24179249

  3. Batteries used to Power Implantable Biomedical Devices.

    Science.gov (United States)

    Bock, David C; Marschilok, Amy C; Takeuchi, Kenneth J; Takeuchi, Esther S

    2012-12-01

    Battery systems have been developed that provide years of service for implantable medical devices. The primary systems utilize lithium metal anodes with cathode systems including iodine, manganese oxide, carbon monofluoride, silver vanadium oxide and hybrid cathodes. Secondary lithium ion batteries have also been developed for medical applications where the batteries are charged while remaining implanted. While the specific performance requirements of the devices vary, some general requirements are common. These include high safety, reliability and volumetric energy density, long service life, and state of discharge indication. Successful development and implementation of these battery types has helped enable implanted biomedical devices and their treatment of human disease.

  4. Separator Material Chosen for MH/Ni Battery

    Institute of Scientific and Technical Information of China (English)

    Xu Shaoping; Ma Yijun; Liang Wanlong; Liu Dong; Jia Chunming

    2004-01-01

    The properties of MH/Ni batteries using different separator were studied.And then an idea for choosing separator for high-power MH/Ni battery was provided.Using the separator with grafting treatment, the storage characteristic, charge retention characteristic and anti-soft-short characteristic of high-power MH/Ni battery are improved.Wetlaid and spunfibre material meet different properties requirement of battery.

  5. Electrical characterization of the Magellan batteries after storage

    Science.gov (United States)

    Deligiannis, Frank; Perrone, D.; Distefano, Sal; Timmerman, Paul

    1993-01-01

    Two 22 cell batteries designed by Martin Marietta were tested. The batteries were rated at 26.5 Amp-Hr. The battery design is characterized by the following: Gates Aerospace 42B030AB15, 11 pos/12 neg, Pellon 2536 separator, passivated pos/teflonated neg. The tests can be summarized as follows: (1) no noticeable capacity loss after storage period; and (2) batteries exhibited larger non-uniformity of cell voltages during constant current charge.

  6. Electrical Vehicle Batteries Testing in a Distribution Network Using Sustainable Energy

    DEFF Research Database (Denmark)

    Forero Camacho, Oscar Mauricio; Nørgård, Per Bromand; Rao, Ningling

    2014-01-01

    of EV batteries. The aim of the tests has been to study the impact of smart charging and fast charging on the power system, on the battery state of health and degradation, and to find out the limitations of the batteries for a Smart Grid. The paper outlines the advantages and disadvantages of both tests...

  7. Experimental research on charging characteristics of a solar photovoltaic system by the pressure-control method

    Institute of Scientific and Technical Information of China (English)

    Hua ZHU; Zhang-lu XU; Zi-juan CAO

    2011-01-01

    The charging characteristics of the valve-regulated lead acid (VRLA) battery driven by solar energy were experimentally studied through the pressure-control method in this paper. The aims of the research were to increase charging efficiency to make the most of solar energy and to improve charging quality to prolong life of battery. The charging process of a 12 V 12 A.h VRLA battery has been tested under the mode of a stand-alone photovoltaic (PV) system. Results show that the pressure-control method can effectively control PV charging of the VRLA battery and make the best of PV cells through the maximum power point tracking (MPPT). The damage of VRLA battery by excess oxygen accumulation can be avoided through the inner pressure control of VRLA battery. Parameters such as solar radiation intensity, charging power, inner pressure of the battery, and charging current and voltage during the charging process were measured and analyzed.

  8. 电动汽车充换电站动力电池全寿命周期在线检测管理系统%The whole life cycle on-line detection and management system of power battery in the electric vehicle charging and exchanging station

    Institute of Scientific and Technical Information of China (English)

    连湛伟; 石欣; 克潇; 徐鹏

    2014-01-01

    In order to improve the assessment accuracy of power battery health degree, this paper provides an assessment arithmetic based on power battery life cycle characteristic parameter for power battery box (group). Starting with the safe use and accurate assessment of power battery, concerning the SOC arithmetic and SOH test methods of power battery, it leads to the design concept of on-line monitoring supervision system for power battery life cycle;with the power battery nominal data as basis, it tests the power battery based on its daily charging/switching and discharging data, to conduct unified management of power battery with hidden danger during testing and make battery maintain/servicing plan. The assessment result shows that with battery box (group) as analyzing/managing object, assessing battery box with corresponding strategies according to power battery electrical features, we can assess the current health condition of power battery relatively accurately, and forecast the use tendency of power battery, thus achieving the goal of improving the security of power battery use, prolonging its serving life and reducing the operating costs.%为了提高对动力电池健康程度评估的准确性,针对动力电池(组),给出一种基于动力电池的全寿命周期特征参数的评估算法。以动力电池的安全使用和准确评估为切入点,关注动力电池SOC的算法与动力电池SOH的检测方式,引出动力电池全生命周期在线监测管理系统的设计思想。以动力电池标称数据为基础,基于动力电池日常充电/换电、放电数据对动力电池进行检测,对检测中发现的隐患的动力电池统一调度,并制定电池维护/检修计划。评估结果表明,以电池箱(组)为分析/管理对象,根据动力电池的电气特征量采用对应策略对电池箱进行评估,可较为准确的评估动力电池当前的健康状态。且可预测出动力电池的使用趋势,从而

  9. Requirements for future automotive batteries - a snapshot

    Science.gov (United States)

    Karden, Eckhard; Shinn, Paul; Bostock, Paul; Cunningham, James; Schoultz, Evan; Kok, Daniel

    Introduction of new fuel economy, performance, safety, and comfort features in future automobiles will bring up many new, power-hungry electrical systems. As a consequence, demands on automotive batteries will grow substantially, e.g. regarding reliability, energy throughput (shallow-cycle life), charge acceptance, and high-rate partial state-of-charge (HRPSOC) operation. As higher voltage levels are mostly not an economically feasible alternative for the short term, the existing 14 V electrical system will have to fulfil these new demands, utilizing advanced 12 V energy storage devices. The well-established lead-acid battery technology is expected to keep playing a key role in this application. Compared to traditional starting-lighting-ignition (SLI) batteries, significant technological progress has been achieved or can be expected, which improve both performance and service life. System integration of the storage device into the vehicle will become increasingly important. Battery monitoring systems (BMS) are expected to become a commodity, penetrating the automotive volume market from both highly equipped premium cars and dedicated fuel-economy vehicles (e.g. stop/start). Battery monitoring systems will allow for more aggressive battery operating strategies, at the same time improving the reliability of the power supply system. Where a single lead-acid battery cannot fulfil the increasing demands, dual-storage systems may form a cost-efficient extension. They consist either of two lead-acid batteries or of a lead-acid battery plus another storage device.

  10. Development of battery management system for nickel-metal hydride batteries in electric vehicle applications

    Science.gov (United States)

    Jung, Do Yang; Lee, Baek Haeng; Kim, Sun Wook

    Electric vehicle (EV) performance is very dependent on traction batteries. For developing electric vehicles with high performance and good reliability, the traction batteries have to be managed to obtain maximum performance under various operating conditions. Enhancement of battery performance can be accomplished by implementing a battery management system (BMS) that plays an important role in optimizing the control mechanism of charge and discharge of the batteries as well as monitoring the battery status. In this study, a BMS has been developed for maximizing the use of Ni-MH batteries in electric vehicles. This system performs several tasks: the control of charging and discharging, overcharge and over-discharge protection, the calculation and display of state-of-charge (SOC), safety, and thermal management. The BMS is installed in and tested in a DEV5-5 electric vehicle developed by Daewoo Motor Co. and the Institute for Advanced Engineering in Korea. Eighteen modules of a Panasonic nickel-metal hydride (Ni-MH) battery, 12 V, 95 A h, are used in the DEV5-5. High accuracy within a range of 3% and good reliability are obtained. The BMS can also improve the performance and cycle-life of the Ni-MH battery peak, as well as the reliability and the safety of the electric vehicles.

  11. Heat tolerance of automotive lead-acid batteries

    Science.gov (United States)

    Albers, Joern

    Starter batteries have to withstand a quite large temperature range. In Europe, the battery temperature can be -30 °C in winter and may even exceed +60 °C in summer. In most modern cars, there is not much space left in the engine compartment to install the battery. So the mean battery temperature may be higher than it was some decades ago. In some car models, the battery is located in the passenger or luggage compartment, where ambient temperatures are more moderate. Temperature effects are discussed in detail. The consequences of high heat impact into the lead-acid battery may vary for different battery technologies: While grid corrosion is often a dominant factor for flooded lead-acid batteries, water loss may be an additional influence factor for valve-regulated lead-acid batteries. A model was set up that considers external and internal parameters to estimate the water loss of AGM batteries. Even under hot climate conditions, AGM batteries were found to be highly durable and superior to flooded batteries in many cases. Considering the real battery temperature for adjustment of charging voltage, negative effects can be reduced. Especially in micro-hybrid applications, AGM batteries cope with additional requirements much better than flooded batteries, and show less sensitivity to high temperatures than suspected sometimes.

  12. 基于蓄电池三段式充电的小型风光互补控制系统的设计与仿真%Design and Simulation for Small Wind and Solar Control Systems Based on Three—Stage Battery Charging

    Institute of Scientific and Technical Information of China (English)

    汪楚锟; 谢利理; 雒名佳

    2012-01-01

    基于太阳能光伏发电和风力发电的特点,给出了新颖的最大功率点跟踪控制策略;研究了蓄电池在各个充电方式下的特点,给出一种三段式充电控制策略,设计了一种新型风光互补控制系统,经matlab仿真验证,本系统可靠稳定,降低了成本,并实现了蓄电池的高效、快速、无损充电,使得充电曲线尽可能地逼近最佳充电曲线,提高了蓄电池使用效率,并利用双闭环PID控制实现了蓄电池的恒压限流充电.%A novel maximum power point tracking control strategy is proposed based on characteristics of photovoltaic and wind power generation. And a new three —stage charging strategy of battery is given to research the different charging mode. The simulation results prove that the system is reliable and stable, less—cost and non — destructive charge. The charging curve seems more approximate the best possible charging curve. Using double —loop PID control can achieve constant voltage battery current limiting.

  13. Free-standing hybrid film of less defective graphene coated with mesoporous TiO2 for flexible lithium ion batteries with fast charging/discharging capabilities

    Science.gov (United States)

    Feng, Bingmei; Wang, Huixin; Zhang, Yingqi; Shan, Xuyi; Liu, Min; Li, Feng; Guo, Jinghua; Feng, Jun; Fang, Hai-Tao

    2017-03-01

    Benefiting from extremely high conductivity, graphene sheets (GS) with very low defect density are preferable to reduced graphene oxide sheets for constructing the free-standing hybrid electrodes of flexible electrochemical energy storage devices. However, due to the hydrophobic nature and deficiency of nucleation sites, how to uniformly and intimately anchor electrochemically active materials onto less defective GS is a challenge. Herein, a free-standing and mechanically flexible hybrid film with two-layer structure, mesoporous TiO2 anchored less defective GS hybrid (mTiO2-GS) upper-layer and graphene under-layer, denoted as mTiO2-GS/G, is fabricated. The hydrolysis of a Ti glycolate aqueous sol solution were applied to form mTiO2. The decoration of less defective GS with sodium lignosulfonate (SLS) surfactant is crucial for anchoring TiO2 nanoparticles (NPs). The aromatic rings of SLS favor a non-destructive functionalization of GS through the π-π stacking interaction. The sulfonic acid groups and hydroxyl groups of SLS, respectively, greatly improve the dispersity of GS in water and trigger the nucleation of TiO2 through the oxolation in the hydrolysis of Ti glycolate sol solution. The following characteristics of free-standing mTiO2-GS/G electrode benefit the fast charging/discharging capabilities: highly conductive graphene framework, ultra-small NPs (˜5.0 nm) in mTiO2 anchored, high specific surface area (202.5 m2 g-1), abundant mesopores (0.32 cm3 g-1), intimate interfacial interaction between mTiO2 and GS, robust contact between the mTiO2-GS upper-layer and an under-layer of bare graphene as the current collector. In coin half-cells, the mTiO2-GS/G electrode delivers a capacity of 130 mA h g-1 at 50 C, and 71 mA h g-1 at 100 C, and it also exhibits excellent cycle stability up to 10 000 cycles under 10 C, with a degradation rate of 0.0033% per cycle. When packed in flexible cells, the mTiO2-GS/G electrode maintains fast charging/discharging capabilities

  14. Direct Observation of Active Material Concentration Gradients and Crystallinity Breakdown in LiFePO4 Electrodes During Charge/Discharge Cycling of Lithium Batteries.

    Science.gov (United States)

    Roberts, Matthew R; Madsen, Alex; Nicklin, Chris; Rawle, Jonathan; Palmer, Michael G; Owen, John R; Hector, Andrew L

    2014-04-03

    The phase changes that occur during discharge of an electrode comprised of LiFePO4, carbon, and PTFE binder have been studied in lithium half cells by using X-ray diffraction measurements in reflection geometry. Differences in the state of charge between the front and the back of LiFePO4 electrodes have been visualized. By modifying the X-ray incident angle the depth of penetration of the X-ray beam into the electrode was altered, allowing for the examination of any concentration gradients that were present within the electrode. At high rates of discharge the electrode side facing the current collector underwent limited lithium insertion while the electrode as a whole underwent greater than 50% of discharge. This behavior is consistent with depletion at high rate of the lithium content of the electrolyte contained in the electrode pores. Increases in the diffraction peak widths indicated a breakdown of crystallinity within the active material during cycling even during the relatively short duration of these experiments, which can also be linked to cycling at high rate.

  15. Automatic Battery Swap System for Home Robots

    Directory of Open Access Journals (Sweden)

    Juan Wu

    2012-12-01

    Full Text Available This paper presents the design and implementation of an automatic battery swap system for the prolonged activities of home robots. A battery swap station is proposed to implement battery off‐line recharging and on‐line exchanging functions. It consists of a loading and unloading mechanism, a shifting mechanism, a locking device and a shell. The home robot is a palm‐sized wheeled robot with an onboard camera and a removable battery case in the front. It communicates with the battery swap station wirelessly through ZigBee. The influences of battery case deflection and robot docking deflection on the battery swap operations have been investigated. The experimental results show that it takes an average time of 84.2s to complete the battery swap operations. The home robot does not have to wait several hours for the batteries to be fully charged. The proposed battery swap system is proved to be efficient in home robot applications that need the robots to work continuously over a long period.

  16. 电动汽车动力电池荷电状态的滑模估计方法%State-of-charge estimation method for electric vehicle battery using sliding mode observer

    Institute of Scientific and Technical Information of China (English)

    夏晴; 刘志远

    2011-01-01

    应用滑模观测器方法进行了荷电状态估计的研究.基于改进的Thevenin等效电路模型建立了电池的状态空间模型,设计了一种能改善抖动问题的滑模状态观测器.为分析观测器的稳定性,对模型中的非线性项进行了分析,根据其导数有界的特性,利用拉格朗日中值定理给出了保证观测器收敛的条件,并由此确定观测器的设计参数.并且在Matlab环境下对该方法进行了仿真,与扩展卡尔曼滤波方法进行了比较,结果表明在电池的建模误差相同的情况下该方法具有更高的估计精度.所以,用滑模观测器进行荷电状态的估计可以有效地减小由模型误差引入的荷电状态估计误差.%A method to estimate SOC ( state of charge) using sliding mode observer is studied. First, a modified Thevenin model was used to establish the state space model of a battery. Then a sliding mode observer was designed. In order to analyze the stability of the observer, the nonlinear feature of the battery model was analyzed, which is used along with the theorem of Lagrange's mean to design a stable observer. Finally, a simulation experiment was carried out using Matlab. The result shows that this method has better predicting performance comparing to the extended Kalman filter method when there exists the same modeling errors. The uncertainty and model errors caused by the simple model are compensated by the sliding mode observer.

  17. 捣固焦炉装煤除尘系统技术的开发与应用%Development and application of charging emission control for stamp-charging battery

    Institute of Scientific and Technical Information of China (English)

    冯书辉; 李金平; 李学才; 杨世勤; 何选明

    2014-01-01

    This paper analyzed charging emission control status in coking industry and described a so -lution by using high pressure ammonia liquor plus a double-U emission transfer pipe on oven top and a dedusting hood on P .S.plus water-seal type dedusting main for suction ,incineration and purifica-tion on the emission at oven ends ,which has dedusting efficiency up to 95%~99%.%分析了焦化行业装煤烟尘的治理情况,详述了内导高压氨水配合炉顶双U型导烟管,外引机侧集尘罩配合水封式干管对炉头烟气进行抽吸、焚烧和洗涤净化的捣固焦炉装煤除尘工艺,综合处理效率达到95%~99%。

  18. A Comparative Study Based on the Least Square Parameter Identification Method for State of Charge Estimation of a LiFePO4 Battery Pack Using Three Model-Based Algorithms for Electric Vehicles

    OpenAIRE

    Taimoor Zahid; Weimin Li

    2016-01-01

    Battery energy storage management for electric vehicles (EV) and hybrid EV is the most critical and enabling technology since the dawn of electric vehicle commercialization. A battery system is a complex electrochemical phenomenon whose performance degrades with age and the existence of varying material design. Moreover, it is very tedious and computationally very complex to monitor and control the internal state of a battery’s electrochemical systems. For Thevenin battery model we establishe...

  19. Charge sniffer for electrostatics demonstrations

    Science.gov (United States)

    Dinca, Mihai P.

    2011-02-01

    An electronic electroscope with a special design for demonstrations and experiments on static electricity is described. It operates as an electric charge sniffer by detecting slightly charged objects when they are brought to the front of its sensing electrode. The sniffer has the advantage of combining high directional sensitivity with a logarithmic bar display. It allows for the identification of electric charge polarity during charge separation by friction, peeling, electrostatic induction, batteries, or secondary coils of power transformers. Other experiments in electrostatics, such as observing the electric field of an oscillating dipole and the distance dependence of the electric field generated by simple charge configurations, are also described.

  20. 考虑电池储能系统荷电状态的近海可再生能源综合发电协调控制%A Coordinated Control Strategy for Hybrid Offshore Renewable Energy Power Generation Considering State of Charge of Battery Energy Storage System

    Institute of Scientific and Technical Information of China (English)

    王荃荃; 秦川; 鞠平; 吴峰

    2014-01-01

    近海可再生能源综合发电系统融合近海风电、波浪能发电以及潮流能发电于一体,其输出功率具有较大的随机波动特性。为减小功率波动对电网的不利影响,采用电池储能对综合发电系统的输出功率进行平滑。在此基础上,考虑电池的荷电状态,提出了在防止电池过充过放的同时尽可能保持系统输出功率平稳的协调控制策略。当荷电状态维持在正常水平时,通过电池的充放电控制平抑功率波动;当电池发生过充电时,通过风电和潮流能机组的超速与变桨距协调控制,降低发电机侧输出功率;当电池发生过放电时,通过降低网侧输出功率设定值使电池恢复到正常工作状态。算例结果验证了上述方法的正确性和有效性。%In view of the fact that hybrid offshore renewable energy power generation system is composed of offshore wind power generation, wave power generation and tidal power generation and they are integrated as a whole, there is considerable random fluctuation in the output power of the hybrid generation system. To reduce the affection of power fluctuation on power grid the battery energy storage system is adopted to smooth the output power of the hybrid generation system. On this basis, considering the state of charge of batteries, a coordinated control strategy, which can keep output power of the hybrid generation system as smooth as possible and prevent the over-charging/over-discharging of batteries in the meantime, is proposed. When the state of charge of batteries is maintained in the normal level, the power fluctuation can be suppressed by the charging/discharging of batteries;when over-charging of batteries occurs, output power of generators can be reduced by the coordinated control of overspeed and pitch-varying of wind turbines and tidal generation units;when over-discharging of batteries occurs, the normal working state of batteries can be recovered by

  1. Analysis of reaction and transport processes in zinc air batteries

    CERN Document Server

    Schröder, Daniel

    2016-01-01

    This book contains a novel combination of experimental and model-based investigations, elucidating the complex processes inside zinc air batteries. The work presented helps to answer which battery composition and which air-composition should be adjusted to maintain stable and efficient charge/discharge cycling. In detail, electrochemical investigations and X-ray transmission tomography are applied on button cell zinc air batteries and in-house set-ups. Moreover, model-based investigations of the battery anode and the impact of relative humidity, active operation, carbon dioxide and oxygen on zinc air battery operation are presented. The techniques used in this work complement each other well and yield an unprecedented understanding of zinc air batteries. The methods applied are adaptable and can potentially be applied to gain further understanding of other metal air batteries. Contents Introduction on Zinc Air Batteries Characterizing Reaction and Transport Processes Identifying Factors for Long-Term Stable O...

  2. Health risks following ingestion of mercury and zinc air batteries.

    Science.gov (United States)

    Nolan, M; Tucker, I

    1981-01-01

    This paper reports on a study set up to assess the corrosive behaviour of mercury and zinc air batteries in the gastric juice environment of the stomach. The results show a relatively rapid rate of corrosion for charged mercury batteries. In contrast, the zinc air battery showed no visible corrosion under the same conditions. In view of the toxic dangers from leakage of mercury batteries, it is recommended that steps be taken to ensure that such batteries do not remain in the acidic environment of the stomach, should ingestion occur.

  3. Memel's Batteries

    Directory of Open Access Journals (Sweden)

    Alexander F. Mitrofanov

    2015-12-01

    Full Text Available The article describes the history and equipment of the coastal and antiaircraft artillery batteries of German Navy (Kriegsmarine constructed in Memel area before and during the World War. There is given the brief description of the Soviet Navy stationed in the area in the postwar years.

  4. Advanced Battery Manufacturing (VA)

    Energy Technology Data Exchange (ETDEWEB)

    Stratton, Jeremy

    2012-09-30

    LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATT’s work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease

  5. Proton enhanced dynamic battery chemistry for aprotic lithium-oxygen batteries

    Science.gov (United States)

    Zhu, Yun Guang; Liu, Qi; Rong, Yangchun; Chen, Haomin; Yang, Jing; Jia, Chuankun; Yu, Li-Juan; Karton, Amir; Ren, Yang; Xu, Xiaoxiong; Adams, Stefan; Wang, Qing

    2017-02-01

    Water contamination is generally considered to be detrimental to the performance of aprotic lithium-air batteries, whereas this view is challenged by recent contrasting observations. This has provoked a range of discussions on the role of water and its impact on batteries. In this work, a distinct battery chemistry that prevails in water-contaminated aprotic lithium-oxygen batteries is revealed. Both lithium ions and protons are found to be involved in the oxygen reduction and evolution reactions, and lithium hydroperoxide and lithium hydroxide are identified as predominant discharge products. The crystallographic and spectroscopic characteristics of lithium hydroperoxide monohydrate are scrutinized both experimentally and theoretically. Intriguingly, the reaction of lithium hydroperoxide with triiodide exhibits a faster kinetics, which enables a considerably lower overpotential during the charging process. The battery chemistry unveiled in this mechanistic study could provide important insights into the understanding of nominally aprotic lithium-oxygen batteries and help to tackle the critical issues confronted.

  6. Proton enhanced dynamic battery chemistry for aprotic lithium–oxygen batteries

    Science.gov (United States)

    Zhu, Yun Guang; Liu, Qi; Rong, Yangchun; Chen, Haomin; Yang, Jing; Jia, Chuankun; Yu, Li-Juan; Karton, Amir; Ren, Yang; Xu, Xiaoxiong; Adams, Stefan; Wang, Qing

    2017-01-01

    Water contamination is generally considered to be detrimental to the performance of aprotic lithium–air batteries, whereas this view is challenged by recent contrasting observations. This has provoked a range of discussions on the role of water and its impact on batteries. In this work, a distinct battery chemistry that prevails in water-contaminated aprotic lithium–oxygen batteries is revealed. Both lithium ions and protons are found to be involved in the oxygen reduction and evolution reactions, and lithium hydroperoxide and lithium hydroxide are identified as predominant discharge products. The crystallographic and spectroscopic characteristics of lithium hydroperoxide monohydrate are scrutinized both experimentally and theoretically. Intriguingly, the reaction of lithium hydroperoxide with triiodide exhibits a faster kinetics, which enables a considerably lower overpotential during the charging process. The battery chemistry unveiled in this mechanistic study could provide important insights into the understanding of nominally aprotic lithium–oxygen batteries and help to tackle the critical issues confronted. PMID:28165008

  7. Dynamic analysis of a photovoltaic power system with battery storage capability

    Science.gov (United States)

    Merrill, W. C.; Blaha, R. J.; Pickrell, R. L.

    1979-01-01

    A photovolataic power system with a battery storage capability is analyzed. A dual battery current control concept is proposed, which enables the battery to either supply or accept power depending upon system environment and load conditions. A simulation of the power system, including the battery current control, is developed and evaluated. The evaulation demonstrate the visbility of the battery control concept of switch the battery from a charge to discharge mode and back as required by load and environmental conditions. An acceptable system operation is demonstrated over the entire insolation range. Additionally, system sensitivity, bandwidth, and damping characteristics of the battery control are shown to be acceptable for a projected hardware implementation.

  8. Na-Zn liquid metal battery

    Science.gov (United States)

    Xu, Junli; Kjos, Ole Sigmund; Osen, Karen Sende; Martinez, Ana Maria; Kongstein, Ole Edvard; Haarberg, Geir Martin

    2016-11-01

    A new kind of membrane free liquid metal battery was developed. The battery employs liquid sodium and zinc as electrodes both in liquid state, and NaCl-CaCl2 molten salts as electrolyte. The discharge flat voltage is in the range of about 1.4 V-1.8 V, and the cycle efficiency achieved is about 90% at low discharge current densities (below 40 mA cm-2). Moreover, this battery can also be charged and discharged at high current density with good performance. The discharge flat voltage is above 1.1 V when it is discharged at 100 mA cm-2, while it is about 0.8 V with 100% cycle efficiency when it is discharged at 200 mA cm-2. Compared to other reported liquid metal battery, this battery has lower cost, which suggests broad application prospect in energy storage systems for power grid.

  9. Prospect of MH-Ni Batteries Development

    Institute of Scientific and Technical Information of China (English)

    Xu Shaoping; Xing Zhiqiang; Liang Wanlong; Ma Yijun

    2004-01-01

    The development trend and promising application prospects of high-power MH-Ni battery were reviewed by studying and comparing the current high-power batteries research area.High-power MH-Ni batiery has good performlife with 500 ~ 1000 times, abundant material resource, especially abundant rare earth resource in China, high-rate discharging, rapid charging, good safety as well as no pollution, etc., which is regarded as the most promising storage battery for electric vehicles.The performance of high power MH-Ni battery can be brought into play fully and ensure electric vehicles performance if it is equipped with appropriate chargers, controlling system and electric motors.Facing opportunities and challenges, MH-Ni battery has promising application prospects on hybrid electric automobile, electric bicycle and a variety of small sized electric vehicles by improving its technology constantly and developing market actively.

  10. Life cycle assessment of lithium sulfur battery for electric vehicles

    Science.gov (United States)

    Deng, Yelin; Li, Jianyang; Li, Tonghui; Gao, Xianfeng; Yuan, Chris

    2017-03-01

    Lithium-sulfur (Li-S) battery is widely recognized as the most promising battery technology for future electric vehicles (EV). To understand the environmental sustainability performance of Li-S battery on future EVs, here a novel life cycle assessment (LCA) model is developed for comprehensive environmental impact assessment of a Li-S battery pack using a graphene sulfur composite cathode and a lithium metal anode protected by a lithium-ion conductive layer, for actual EV applications. The Li-S battery pack is configured with a 61.3 kWh capacity to power a mid-size EV for 320 km range. The life cycle inventory model is developed with a hybrid approach, based on our lab-scale synthesis of the graphene sulfur composite, our lab fabrication of Li-S battery cell, and our industrial partner's battery production processes. The impacts of the Li-S battery are assessed using the ReCiPe method and benchmarked with those of a conventional Nickle-Cobalt-Manganese (NCM)-Graphite battery pack under the same driving distance per charge. The environmental impact assessment results illustrate that Li-S battery is more environmentally friendly than conventional NCM-Graphite battery, with 9%-90% lower impact. Finally, the improvement pathways for the Li-S battery to meet the USABC (U.S. Advanced Battery Consortium) targets are presented with the corresponding environmental impact changes.

  11. Aqueous batteries based on mixed monovalence metal ions: a new battery family.

    Science.gov (United States)

    Chen, Liang; Zhang, Leyuan; Zhou, Xufeng; Liu, Zhaoping

    2014-08-01

    As existing battery technologies struggle to meet the requirements for widespread use in the field of large-scale energy storage, new concepts are urgently needed to build batteries with high energy density, low cost, and good safety. Here, we demonstrate two new aqueous batteries based on two monovalence metal ions (Li(+) /K(+) and Na(+) /K(+) ) as charge-transfer ions, Ni1 Zn1 HCF/TiP2 O7 and Ni1 Zn1 HCF/NaTi2 (PO4 )3 . These new batteries are unlike the conventional "rocking-chair" aqueous metal-ion batteries based on the migration of one type of shuttle ion between cathode and anode. They can deliver specific energy of 46 Wh kg(-1) and 53 Wh kg(-1) based on the total mass of active materials; this is superior to current aqueous battery systems based on sodium-ion and/or potassium-ion technologies. These two new batteries together with the previously developed Li(+) /Na(+) mixed-ion battery not only constitute a new battery family for energy storage, but also greatly broaden our horizons for battery research.

  12. Complete Charging for Piezoelectric Energy Harvesting System

    Institute of Scientific and Technical Information of China (English)

    樊康旗; 徐春辉; 王卫东

    2014-01-01

    Under an in-phase assumption, the complete charging for an energy harvesting system is studied, which consists of a piezoelectric energy harvester (PEH), a bridge rectifier, a filter capacitor, a switch, a controller and a rechargeable battery. For the transient charging, the results indicate that the voltage across the filter capacitor increases as the charging proceeds, which is consistent with that reported in the literature. However, a new finding shows that the charging rate and energy harvesting efficiency decrease over time after their respective peak values are acquired. For the steady-state charging, the results reveal that the energy harvesting efficiency can be adjusted by altering the critical charging voltage that controls the transition of the system. The optimal energy harvesting efficiency is limited by the optimal efficiency of the transient charging. Finally, the relationship between the critical charging voltage and the equivalent resistance of the controller and rechargeable battery is established explicitly.

  13. Advances in understanding mechanisms underpinning lithium-air batteries

    Science.gov (United States)

    Aurbach, Doron; McCloskey, Bryan D.; Nazar, Linda F.; Bruce, Peter G.

    2016-09-01

    The rechargeable lithium-air battery has the highest theoretical specific energy of any rechargeable battery and could transform energy storage if a practical device could be realized. At the fundamental level, little was known about the reactions and processes that take place in the battery, representing a significant barrier to progress. Here, we review recent advances in understanding the chemistry and electrochemistry that govern the operation of the lithium-air battery, especially the reactions at the cathode. The mechanisms of O2 reduction to Li2O2 on discharge and the reverse process on charge are discussed in detail, as are their consequences for the rate and capacity of the battery. The various parasitic reactions involving the cathode and electrolyte during discharge and charge are also considered. We also provide views on understanding the stability of the cathode and electrolyte and examine design principles for better lithium-air batteries.

  14. Innovation Meets Performance Demands of Advanced Lithium-ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    2016-06-01

    Advancements in high capacity and low density battery technologies have led to a growing need for battery materials with greater charge capacity and therefore stability. NREL's developments in ALD and molecular layer MLD allow for thin film coatings to battery composite electrodes, which can improve battery lifespan, high charge capacity, and stability. Silicon, one of the best high-energy anode materials for Li-ion batteries, can experience capacity fade from volumetric expansion. Using MLD to examine how surface modification could stabilize silicon anode material in Li-ion batteries, researchers discovered a new reaction precursor that leads to a flexible surface coating that accommodates volumetric expansion of silicon electrodes.

  15. Battery Management Systems in Electric and Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    Michael Pecht

    2011-10-01

    Full Text Available The battery management system (BMS is a critical component of electric and hybrid electric vehicles. The purpose of the BMS is to guarantee safe and reliable battery operation. To maintain the safety and reliability of the battery, state monitoring and evaluation, charge control, and cell balancing are functionalities that have been implemented in BMS. As an electrochemical product, a battery acts differently under different operational and environmental conditions. The uncertainty of a battery’s performance poses a challenge to the implementation of these functions. This paper addresses concerns for current BMSs. State evaluation of a battery, including state of charge, state of health, and state of life, is a critical task for a BMS. Through reviewing the latest methodologies for the state evaluation of batteries, the future challenges for BMSs are presented and possible solutions are proposed as well.

  16. Optimization of batteries for plug-in hybrid electric vehicles

    Science.gov (United States)

    English, Jeffrey Robb

    This thesis presents a method to quickly determine the optimal battery for an electric vehicle given a set of vehicle characteristics and desired performance metrics. The model is based on four independent design variables: cell count, cell capacity, state-of-charge window, and battery chemistry. Performance is measured in seven categories: cost, all-electric range, maximum speed, acceleration, battery lifetime, lifetime greenhouse gas emissions, and charging time. The performance of each battery is weighted according to a user-defined objective function to determine its overall fitness. The model is informed by a series of battery tests performed on scaled-down battery samples. Seven battery chemistries were tested for capacity at different discharge rates, maximum output power at different charge levels, and performance in a real-world automotive duty cycle. The results of these tests enable a prediction of the performance of the battery in an automobile. Testing was performed at both room temperature and low temperature to investigate the effects of battery temperature on operation. The testing highlighted differences in behavior between lithium, nickel, and lead based batteries. Battery performance decreased with temperature across all samples with the largest effect on nickel-based chemistries. Output power also decreased with lead acid batteries being the least affected by temperature. Lithium-ion batteries were found to be highly efficient (>95%) under a vehicular duty cycle; nickel and lead batteries have greater losses. Low temperatures hindered battery performance and resulted in accelerated failure in several samples. Lead acid, lead tin, and lithium nickel alloy batteries were unable to complete the low temperature testing regime without losing significant capacity and power capability. This is a concern for their applicability in electric vehicles intended for cold climates which have to maintain battery temperature during long periods of inactivity

  17. Optimization of BEV Charging Strategy

    Science.gov (United States)

    Ji, Wei

    This paper presents different approaches to optimize fast charging and workplace charging strategy of battery electric vehicle (BEV) drivers. For the fast charging analysis, a rule-based model was built to simulate BEV charging behavior. Monte Carlo analysis was performed to explore to the potential range of congestion at fast charging stations which could be more than four hours at the most crowded stations. Genetic algorithm was performed to explore the theoretical minimum waiting time at fast charging stations, and it can decrease the waiting time at the most crowded stations to be shorter than one hour. A deterministic approach was proposed as a feasible suggestion that people should consider to take fast charging when the state of charge is approaching 40 miles. This suggestion is hoped to help to minimize potential congestion at fast charging stations. For the workplace charging analysis, scenario analysis was performed to simulate temporal distribution of charging demand under different workplace charging strategies. It was found that if BEV drivers charge as much as possible and as late as possible at workplace, it could increase the utility of solar-generated electricity while relieve grid stress of extra intensive electricity demand at night caused by charging electric vehicles at home.

  18. Battery Cell Voltage Sensing and Balancing Using Addressable Transformers

    Science.gov (United States)

    Davies, Francis

    2009-01-01

    A document discusses the use of saturating transformers in a matrix arrangement to address individual cells in a high voltage battery. This arrangement is able to monitor and charge individual cells while limiting the complexity of circuitry in the battery. The arrangement has inherent galvanic isolation, low cell leakage currents, and allows a single bad cell in a battery of several hundred cells to be easily spotted.

  19. Redox reactions with empirical potentials: Atomistic battery discharge simulations

    OpenAIRE

    Dapp, Wolf B.; Müser, Martin H.

    2013-01-01

    Batteries are pivotal components in overcoming some of today's greatest technological challenges. Yet to date there is no self-consistent atomistic description of a complete battery. We take first steps toward modeling of a battery as a whole microscopically. Our focus lies on phenomena occurring at the electrode-electrolyte interface which are not easily studied with other methods. We use the redox split-charge equilibration (redoxSQE) method that assigns a discrete ionization state to each ...

  20. Nickel cadmium battery evaluation, modeling, and application in an electric vehicle

    Science.gov (United States)

    Lynch, William Alfred

    A battery testing facility was set up in the battery evaluation laboratory. This system includes a set of current regulators which were fabricated in the UMASS. Lowell labs and a PC based data acquisition system. Batteries were charged or discharged at any rate within system ratings, and data including battery voltage, current, temperature and impedance were stored by a PC. STM5.140 type nickel-cadmium electric vehicle batteries were subjected to various test procedures using the battery testing facility. The results from these tests were used to determine battery characteristics. An electrical component battery model was also developed using the test data. The validity of the battery model was verified through experimental testing, and it was found to be accurate. Additionally, improved battery charging algorithms were developed which resulted in significant improvements in battery efficiency. Electric car operation with STM5.140 type of batteries was evaluated. Realistic road test data were analyzed experimentally and using the battery model. No battery abuse was found under EV driving conditions. The performance of the STM5.140 battery under abuse conditions was evaluated and it was found that it performs reasonably well under all abuse conditions tested. The model and test methodologies may be incorporated into complete electric vehicle models in order to assist in the design and operation of current and future electric vehicles.

  1. New Horizons for Conventional Lithium Ion Battery Technology.

    Science.gov (United States)

    Erickson, Evan M; Ghanty, Chandan; Aurbach, Doron

    2014-10-02

    Secondary lithium ion battery technology has made deliberate, incremental improvements over the past four decades, providing sufficient energy densities to sustain a significant mobile electronic device industry. Because current battery systems provide ∼100-150 km of driving distance per charge, ∼5-fold improvements are required to fully compete with internal combustion engines that provide >500 km range per tank. Despite expected improvements, the authors believe that lithium ion batteries are unlikely to replace combustion engines in fully electric vehicles. However, high fidelity and safe Li ion batteries can be used in full EVs plus range extenders (e.g., metal air batteries, generators with ICE or gas turbines). This perspective article describes advanced materials and directions that can take this technology further in terms of energy density, and aims at delineating realistic horizons for the next generations of Li ion batteries. This article concentrates on Li intercalation and Li alloying electrodes, relevant to the term Li ion batteries.

  2. Cell overcharge testing inside sodium metal halide battery

    Science.gov (United States)

    Frutschy, Kris; Chatwin, Troy; Bull, Roger

    2015-09-01

    Testing was conducted to measure electrical performance and safety of the General Electric Durathon™ E620 battery module (600 V class 20 kWh) during cell overcharge. Data gathered from this test was consistent with SAE Electric Vehicle Battery Abuse Testing specification J2464 [1]. After cell overcharge failure and 24 A current flow for additional 60 minutes, battery was then discharged at 7.5 KW average power to 12% state of charge (SOC) and recharged back to 100% SOC. This overcharging test was performed on two cells. No hydrogen chloride (HCl) gas was detected during front cell (B1) test, and small amount (6.2 ppm peak) was measured outside the battery after center cell (F13) overcharge. An additional overcharge test was performed per UL Standard 1973 - Batteries for Use in Light Electric Rail (LER) Applications and Stationary Applications[2]. With the battery at 11% SOC and 280 °C float temperature, an individual cell near the front (D1) was deliberately imbalanced by charging it to 62% SOC. The battery was then recharged to 100% SOC. In all three tests, the battery cell pack was stable and individual cell failure did not propagate to other cells. Battery discharge performance, charge performance, and electrical isolation were normal after all three tests.

  3. 46 CFR 129.350 - Batteries-general.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Batteries-general. 129.350 Section 129.350 Shipping... INSTALLATIONS Power Sources and Distribution Systems § 129.350 Batteries—general. (a) Wherever a battery is charged, there must be natural or induced ventilation to dissipate the gases generated. (b) Each...

  4. 46 CFR 183.350 - Batteries-general.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Batteries-general. 183.350 Section 183.350 Shipping...) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.350 Batteries—general. (a) Where provisions are made for charging batteries, there must be natural or induced ventilation sufficient...

  5. 46 CFR 120.350 - Batteries-general.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Batteries-general. 120.350 Section 120.350 Shipping... and Distribution Systems § 120.350 Batteries—general. (a) Where provisions are made for charging batteries, there must be natural or induced ventilation sufficient to dissipate the gases generated....

  6. High energy density battery based on complex hydrides

    Science.gov (United States)

    Zidan, Ragaiy

    2016-04-26

    A battery and process of operating a battery system is provided using high hydrogen capacity complex hydrides in an organic non-aqueous solvent that allows the transport of hydride ions such as AlH.sub.4.sup.- and metal ions during respective discharging and charging steps.

  7. Equipment for testing automotive lead/acid batteries under SAE J240a conditions

    Science.gov (United States)

    Hamilton, J. A.; Rand, D. A. J.

    Battery cycling equipment has been designed and constructed to test lead/acid batteries according to the American Society of Automotive Engineers' (SAE) J240a Standard. This life test simulates automotive service where the battery operates in a voltage-regulated charging system. The CSIRO design uses a master/slave concept to reduce both construction time and cost.

  8. Method for Load Sharing and Power Management in a Hybrid PV/Battery Source Islanded Microgrid

    DEFF Research Database (Denmark)

    Karimi, Yaser; Oraee, Hashem; Guerrero, Josep M.

    2016-01-01

    This paper presents a decentralized load sharing and power management method for an islanded microgrid composed of PV units, battery units and hybrid PV/battery units. The proposed method performs all the necessary tasks such as load sharing among the units, battery charging and discharging and PV...

  9. Storage battery comprising negative plates of a wedge shaped configuration. [for preventing shape change induced malfunctions

    Science.gov (United States)

    Bogner, R. S.; Farris, C. D. (Inventor)

    1974-01-01

    An improved silver-zinc battery particularly suited for use in an environment where battery operation is subjected to multiple charge/discharge cycling over extended periods is described. The battery seperator system, containing a highly absorbent material continguous with the surfaces of the plates and multiple semi-permeable membranes interposed between the plates, is also characterized.

  10. Thermal behavior simulation of Ni/MH battery

    Institute of Scientific and Technical Information of China (English)

    LI DaHe; YANG Kai; CHEN Shi; WU Feng

    2009-01-01

    Thermal behavior of overcharged Ni/MH battery is studied with microcalorimeter. The battery Is in-stalled in a special device in a microcslorimeter with a quartz frequency thermometer. Quantity of heat and heat capacity of the battery charged at different state of charge (SOC) st different rates are meas-ured by the microcalorimeter. Based on a series of aseumputions, heat transfer equation is set up. Ex-pression of heat generation is attained by curve fitting instead of theoretical calculation. Thermal model is used to simulate thermal behavior of the battery in charging period, results of calculation and expe-riment match very well. The temperature distribution is non-uniform because the poor conductivity limits the heat transfer during charging process. It is difficult to greatly improve the heat conductivity of the battery because it is related to materials inside the battery including electrodes, separators and so on. Therefore, high rate charge should be avoided in actual use. It may cause some damage to the battery.

  11. No Free Charge Theorem: a Covert Channel via USB Charging Cable on Mobile Devices

    OpenAIRE

    Spolaor, Riccardo; Abudahi, Laila; Moonsamy, Veelasha; Conti, Mauro; Poovendran, Radha

    2016-01-01

    More and more people are regularly using mobile and battery-powered handsets, such as smartphones and tablets. At the same time, thanks to the technological innovation and to the high user demands, those devices are integrating extensive functionalities and developers are writing battery-draining apps, which results in a surge of energy consumption of these devices. This scenario leads many people to often look for opportunities to charge their devices at public charging stations: the presenc...

  12. LiNi0.8Co0.2O2-based high-power lithium-ion battery positive electrodes analyzed by X-ray photoelectron spectroscopy: 4. Following calendar-life test for 8 weeks at 50 °C, 60% state-of-charge (3.747 V)

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, Daniel A; Haasch, Richard T.

    2017-01-01

    High-power lithium-ion batteries are rapidly replacing the nickel metal hydride batteries currently used for energy storage in hybrid electric vehicles. Widespread commercialization of these batteries for vehicular applications is, however, limited by calendar-life performance, thermal abuse characteristics, and cost. The Advanced Technology Development Program was established by the U.S. Department of Energy to address these limitations. An important objective of this program was the development and application of diagnostic tools that provide unique ways to investigate the phenomena that limit lithium-ion cell life, performance, and safety characteristics. This report introduces a set of six Surface Science Spectra xray photoelectron spectroscopy (XPS) comparison records of data collected from positive electrodes (cathode) harvested from cylindrically wound, 18650-type, 1 A h capacity cells. The cathodes included in this study are (1) fresh, (2) following three formation cycles, (3) following calendar-life test for 12 weeks at 40 C, 60% state-of-charge (SOC), (4) following calendar-life test for 8 weeks at 50 C, 60% SOC, (5) following calendar-life test for 8 weeks at 60 C, 60% SOC, and (6) following calendar-life test for 2 weeks at 70 C, 60% SOC.

  13. LiNi 0.8 Co 0.2 O 2 -based high power lithium-ion battery positive electrodes analyzed by x-ray photoelectron spectroscopy: 3. Following calendar-life test for 12 weeks at 40 °C, 60% state-of-charge (3.747 V)

    Energy Technology Data Exchange (ETDEWEB)

    Haasch, Richard T.; Abraham, Daniel A.

    2016-12-01

    High-power lithium-ion batteries are rapidly replacing the nickel metal hydride batteries currently used for energy storage in hybrid electric vehicles. Widespread commercialization of these batteries for vehicular applications is, however, limited by calendar-life performance, thermal abuse characteristics, and cost. The Advanced Technology Development Program was established by the U.S. Department of Energy to address these limitations. An important objective of this program was the development and application of diagnostic tools that provide unique ways to investigate the phenomena that limit lithium-ion cell life, performance, and safety characteristics. This report introduces a set of six Surface Science Spectra xray photoelectron spectroscopy (XPS) comparison records of data collected from positive electrodes (cathode) harvested from cylindrically wound, 18650-type, 1 A h capacity cells. The cathodes included in this study are (1) fresh, (2) following three formation cycles, (3) following calendar-life test for 12 weeks at 40 C, 60% state-of-charge (SOC), (4) following calendar-life test for 8 weeks at 50 C, 60% SOC, (5) following calendar-life test for 8 weeks at 60 C, 60% SOC, and (6) following calendar-life test for 2 weeks at 70 C, 60% SOC.

  14. A new battery charger/discharger converter. [for spacecraft application

    Science.gov (United States)

    Middlebrook, R. D.; Cuk, S.; Behen, W.

    1978-01-01

    A new optimum topology dc-to-dc switching converter is extended to provide bidirectional current flow. The resulting two-quadrant converter can be employed to eliminate the discontinuous current mode in normal unidirectional applications, but is especially suited for spacecraft battery conditioning as a charge-discharge regulator in place of the conventional separate converters. Implementation of the control features and the battery charge current and voltage limits are discussed.

  15. Materials for Lithium Batteries Prepared via Mechanochemical Route

    Institute of Scientific and Technical Information of China (English)

    N.V.Kosova

    2007-01-01

    1 Results Nanostructured materials are currently of interest for lithium-ion batteries due to relevant demands for high-rate performance batteries and the aspect of structural stability (reversibility) under charge-discharge processes.Decreasing of particle size facilitates the reducing of diffuse paths for lithium ions as compared with micron-sized materials and the increasing of surface contact between electrode and electrolyte leading to acceleration of ionic transport and of charge-discharge process...

  16. Battery charger PP-4126()/U. Final report, 1 Jul 1969--30 Jul 1970

    Energy Technology Data Exchange (ETDEWEB)

    Froeschle, T.A.; Hill, H.W. Jr.

    1971-02-01

    The performance data and design configuration of the PP-4126 ()/U Battery Charger is delineated. Performance of the unit is summarized. Terminal performance and selected aspects of internal performance are considered. The internal system configuration of the battery charger is presented in block form. Functions of individual system blocks are discussed to define their behavior. Circuit components used to implement the system blocks are identified. The PP-4126 ()/U Battery Charger is designed to charge 6, 12, and 24 Vdc batteries at selectable charging rates from 0.1 Adc to 15 Adc. The battery charger operates from both dc and ac power sources. (auth)

  17. A Thermal Runaway Simulation on a Lithium Titanate Battery and the Battery Module

    Directory of Open Access Journals (Sweden)

    Man Chen

    2015-01-01

    Full Text Available Based on the electrochemical and thermal model, a coupled electro-thermal runaway model was developed and implemented using finite element methods. The thermal decomposition reactions when the battery temperature exceeds the material decomposition temperature were embedded into the model. The temperature variations of a lithium titanate battery during a series of charge-discharge cycles under different current rates were simulated. The results of temperature and heat generation rate demonstrate that the greater the current, the faster the battery temperature is rising. Furthermore, the thermal influence of the overheated cell on surrounding batteries in the module was simulated, and the variation of temperature and heat generation during thermal runaway was obtained. It was found that the overheated cell can induce thermal runaway in other adjacent cells within 3 mm distance in the battery module if the accumulated heat is not dissipated rapidly.

  18. Behavior Patterns, Origin of Problems and Solutions Regarding Hysteresis Phenomena in Complex Battery Systems

    DEFF Research Database (Denmark)

    Khan, Mohammad Rezwan; Barreras, Jorge Varela; Stan, Ana-Irina

    2014-01-01

    One of the common phenomenona for most of the battery cell chemistries is hysteresis. Since an open circuit voltage (OCV) path is not identical for the charge and discharge of the battery cell at different states of charge (SoC) level, the battery cells show the hysteresis effect. Usually, the OCV...... i.e. voltage with zero current after previous charge is higher than the OCV after discharge at the same SoC level. It embodies the hysteresis of the battery cell. The OCV is principally subjected to previous operating condition and cannot be taken as self-regulating from the operating history....... Therefore, an accurate knowledge of the hysteresis of OCV is vital for various applications and battery models. This is because currently Battery Management Systems (BMS) use the well-defined OCV-SoC representative curve for SoC estimation and power prediction. Particularly lithium-ion batteries with iron...

  19. Battery charger for solar cells; Chargeur de batterie pour cellules solaires

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2004-09-01

    The main drawback of solar energy concerns its availability and its intensity variations due to the changes in the clouds cover. For a maximum availability, a photovoltaic power supplies must be connected to a battery. Such an association requires a particular circuit for the management of the battery charging and of the energy conversion whatever the lighting conditions. This article describes the scheme of such a circuit. (J.S.)

  20. Growth of oxygen bubbles during recharge process in zinc-air battery

    Science.gov (United States)

    Wang, Keliang; Pei, Pucheng; Ma, Ze; Chen, Huicui; Xu, Huachi; Chen, Dongfang; Xing, Haoqiang

    2015-11-01

    Rechargeable zinc-air battery used for energy storage has a serious problem of charging capacity limited by oxygen bubble coalescence. Fast removal of oxygen bubbles adhered to the charging electrode surface is of great importance for improving the charging performance of the battery. Here we show that the law of oxygen bubble growth can be achieved by means of phase-field simulation, revealing two phenomena of bubble detachment and bubble coalescence located in the charging electrode on both sides. Hydrodynamic electrolyte and partial insulation structure of the charging electrode are investigated to solve the problem of oxygen bubble coalescence during charging. Two types of rechargeable zinc-air battery are developed on the basis of different tri-electrode configurations, demonstrating that the charging performance of the battery with electrolyte flow (Ⅰ) is better than that of the battery with the partially insulated electrode (Ⅱ), while the battery Ⅱ is superior to the battery Ⅰ in the discharging performance, cost and portability. The proposed solutions and results would be available for promoting commercial application of rechargeable zinc-air batteries or other metal-air batteries.

  1. Directly connected series coupled HTPEM fuel cell stacks to a Li-ion battery DC bus for a fuel cell electrical vehicle

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Ashworth, Leanne; Remón, Ian Natanael

    2008-01-01

    The work presented in this paper examines the use of pure hydrogen fuelled high temperature polymer electrolyte membrane (HTPEM) fuel cell stacks in an electrical car, charging a Li-ion battery pack. The car is equipped with two branches of two series coupled 1 kW fuel cell stacks which...... are connected directly parallel to the battery pack during operation. This enables efficient charging of the batteries for increased driving range. With no power electronics used, the fuel cell stacks follow the battery pack voltage, and charge the batteries passively. This saves the electrical and economical...... losses related to these components and their added system complexity. The new car battery pack consists of 23 Li-ion battery cells and the charging and discharging are monitored by a battery management system (BMS) which ensures safe operating conditions for the batteries. The direct connection...

  2. Second life battery energy storage system for enhancing renewable energy grid integration

    DEFF Research Database (Denmark)

    Koch-Ciobotaru, C.; Saez-de-Ibarra, A.; Martinez-Laserna, E.;

    2015-01-01

    must be explored especially that large battery energy storage systems are still expensive solutions. Thus, in order to make battery investment economic viable, the use of second life batteries is investigated in the present work. This paper proposes a method for determining firstly, the optimal rating...... of a second life battery energy storage system (SLBESS) and secondly, to obtain the power exchange and battery state of charge profiles during the operation. These will constitute the cycling patterns for testing batteries and studying the ageing effect of this specific application. Real data from the Spanish...

  3. Laboratory evaluation of a pilot cell battery protection system for photovoltaic applications

    Science.gov (United States)

    Cataldo, R. L.; Thomas, R. D.

    1981-01-01

    An energy storage method for the 3.5 kW battery power system was investigated. The Pilot Cell Battery Protection System was tested for use in photovoltaic power systems and results show that this is a viable method of storage battery control. The method of limiting battery depth of discharge has the following advantages: (1) temperature sensitivity; (2) rate sensitivity; and (3) state of charge indication. The pilot cell concept is of interest in remote stand alone photovoltaic power systems. The battery can be protected from damaging overdischarge by using the proper ratio of pilot cell capacities to main battery capacity.

  4. Caustic esophageal injury by impaction of cell batteries.

    Science.gov (United States)

    García Fernández, Francisco José; León Montañés, Rafael; Bozada Garcia, Juan Manuel

    2016-12-01

    The ingestion of cell batteries can cause serious complications (fistula, perforation or stenosis) at the esophageal level. The damage starts soon after ingestion (approximately 2 hours) and is directly related to the amount of time the battery is lodged in said location, the amount of electrical charge remaining in the battery, and the size of the battery itself. Injury is produced by the combination of electrochemical and chemical mechanisms and pressure necrosis. The ingestion of multiple cells and a size > = 20 mm are related with more severe and clinically significant outcomes. A female patient, 39 years old, with a history of previous suicide attempts, was admitted to the Emergency Room with chest pain and dysphagia after voluntary ingestion of 2 cell batteries. Two cell batteries are easily detected in a routine chest X-ray, presenting a characteristic double-ring shadow, or peripheral halo. Urgent oral endoscopy was performed 10 hours after ingestion, showing a greenish-gray lumpy magma-like consistency due to leakage of battery contents. The 2 batteries were sequentially removed with alligator-jaw forceps. After flushing and aspiration of the chemical material, a broad and circumferential injury with denudation of the mucosa and two deep ulcerations with necrosis were observed where the batteries had been. The batteries' seals were eroded, releasing chemical contents. Despite the severity of the injuries, the patient progressed favorably and there was no esophageal perforation. Esophageal impaction of cell batteries should always be considered an endoscopic urgency.

  5. Parameter Extraction and Characteristics Study for Manganese-Type Lithium-Ion Battery

    OpenAIRE

    Somakettarin, Natthawuth; Funaki, Tsuyoshi

    2016-01-01

    In this paper, we propose the battery transient response model and parameter extraction method for studying the dynamic behaviors of Manganese-type Lithium-Ion battery. The background knowledge of the battery structure and its operating principle are also concluded. Several aspects of operating conditions, such as charging and discharging operations, environments of terminal currents and temperatures, are considered through the experiments for understanding the battery behaviors.  The charact...

  6. Battery powered BION FES network.

    Science.gov (United States)

    Schulman, J H; Mobley, J P; Wolfe, J; Regev, E; Perron, C Y; Ananth, R; Matei, E; Glukhovsky, A; Davis, R

    2004-01-01

    The Alfred Mann Foundation is completing development of a coordinated network of BION microstimulator/sensor (hereinafter implant) that has broad stimulating, sensing and communication capabilities. The network consists of a master control unit (MCU) in communication with a group of BION implants. Each implant is powered by a custom lithium-ion rechargeable 10 mW-hr battery. The charging, discharging, safety, stimulating, sensing, and communication circuits are designed to be highly efficient to minimize energy use and maximize battery life and time between charges. The stimulator can be programmed to deliver pulses in any value in the following range: 5 microA to 20 mA in 3.3% constant current steps, 7 micros to 2000 micros in 7 micros pulse width steps, and 1 to 4000 Hz in frequency. The preamp voltage sensor covers the range 10 microV to 1.0 V with bandpass filtering and several forms of data analysis. The implant also contains sensors that can read out pressure, temperature, DC magnetic field, and distance (via a low frequency magnetic field) up to 20 cm between any two BION implants. The MCU contains a microprocessor, user interface, two-way communication system, and a rechargeable battery. The MCU can command and interrogate in excess of 800 BlON implants every 10 ms, i.e., 100 times a second.

  7. Electrochemical stiffness in lithium-ion batteries

    Science.gov (United States)

    Tavassol, Hadi; Jones, Elizabeth M. C.; Sottos, Nancy R.; Gewirth, Andrew A.

    2016-11-01

    Although lithium-ion batteries are ubiquitous in portable electronics, increased charge rate and discharge power are required for more demanding applications such as electric vehicles. The high-rate exchange of lithium ions required for more power and faster charging generates significant stresses and strains in the electrodes that ultimately lead to performance degradation. To date, electrochemically induced stresses and strains in battery electrodes have been studied only individually. Here, a new technique is developed to probe the chemomechanical response of electrodes by calculating the electrochemical stiffness via coordinated in situ stress and strain measurements. We show that dramatic changes in electrochemical stiffness occur due to the formation of different graphite-lithium intercalation compounds during cycling. Our analysis reveals that stress scales proportionally with the lithiation/delithiation rate and strain scales proportionally with capacity (and inversely with rate). Electrochemical stiffness measurements provide new insights into the origin of rate-dependent chemomechanical degradation and the evaluation of advanced battery electrodes.

  8. The Shortest Path Problems in Battery-Electric Vehicle Dispatching with Battery Renewal

    Directory of Open Access Journals (Sweden)

    Minfang Huang

    2016-06-01

    Full Text Available Electric vehicles play a key role for developing an eco-sustainable transport system. One critical component of an electric vehicle is its battery, which can be quickly charged or exchanged before it runs out. The problem of electric vehicle dispatching falls into the category of the shortest path problem with resource renewal. In this paper, we study the shortest path problems in (1 electric transit bus scheduling and (2 electric truck routing with time windows. In these applications, a fully-charged battery allows running a limited operational distance, and the battery before depletion needs to be quickly charged or exchanged with a fully-charged one at a battery management facility. The limited distance and battery renewal result in a shortest path problem with resource renewal. We develop a label-correcting algorithm with state space relaxation to find optimal solutions. In the computational experiments, real-world road geometry data are used to generate realistic travel distances, and other types of data are obtained from the real world or randomly generated. The computational results show that the label-correcting algorithm performs very well.

  9. Role of Li2O2@Li2CO3 Interfaces on Charge Transport in Nonaqueous Li−Air Batteries

    DEFF Research Database (Denmark)

    Mekonnen, Yedilfana Setarge; García Lastra, Juan Maria; Hummelshøj, Jens S.

    2015-01-01

    The formation and oxidation of the main discharge product in nonaqueous secondary Li−O2 batteries, that is, Li2O2, has been studied intensively, but less attention has been given to the formation of cathode−electrolyte interfaces, which can significantly influence the performance of the Li−O2 bat...

  10. Electrical performance and chemical composition studies on original and falsified Ni-MH batteries

    Directory of Open Access Journals (Sweden)

    Alexandre Urbano

    2010-12-01

    Full Text Available We show in this paper that falsifications on technological products have hit even rechargeable nickel metal hydride batteries (Ni-MH. The electrical performance and the electrode chemical composition were investigated for authentic and falsified AAA Ni-MH batteries, purchased in the Londrina market, Paraná State. Battery charge capacities were measured at 0,2 C discharge rate and average electrical power was measured at 0.2 and 0.8 C discharge rate. To perform chemical composition analysis, the batteries were vacuum dismantled and their electrodes were characterized by Energy Dispersive X-Ray Fluorescence (EDXRF and X-Ray Diffraction (XRD techniques. It was observed that the charge capacities for the authentic and falsified batteries were 920 and 154 mAh, respectively. The average electrical powers were 210 mW for authentic and 41 mW for falsified batteries. The cathode chemical composition was nickel hydroxide, (Ni(OH2, for both kinds of batteries. However, the anodes of these batteries were not composed by the same materials. The alloy LaNi5 was identified as the electroactive compound in the anode of the authentic battery, while cadmium hydroxide compound, (Cd (OH2, was identified in the falsified battery anode. The authentic battery therefore presented six times more charge capacity, five times more power at 0.2 C discharge rate and 6 times at 0.8 C than the falsified battery, and are yet less dangerous to environment due cadmium absence.

  11. Parameter Analysis Method for Lithium-ion Battery Circuit Model and State of Charge Estimation%锂电池模型参数估计与荷电状态估算研究

    Institute of Scientific and Technical Information of China (English)

    张东华; 马燕; 陈思琪; 朱国荣; 陈伟

    2015-01-01

    Data of 45Ah LiFePO4 Li-ion battery characteristics was collected and analyzed.The mathematical relationship between battery voltage, current and model parameters under the z domain was established respectively in the Thevenin and PNGV model, which were two kinds of practical circuits.The theory of least square method for the multivariate linear regression was used to estimate parameters of the models in the MATLAB environment.Parameters estimation results of the two models at 25℃temperature were obtained.Finally, the model accuracy was verified; and steps about two models of lithium battery suitable for SOC estimation were designed.The simulation of lithium battery SOC estimation shows that PNGV model accuracy is higher, more suitable for the actual battery modeling system.%采集了一款45Ah磷酸铁锂电池特性数据,分别在戴维南和PNGV两种实用电路模型中推导建立了z域下电池电压、电流,以及模型参数间的数学关系。采用最小二乘法多元线性回归理论,在Matlab环境下对模型参数进行了估算,得到两种模型在25℃温度下的参数估算结果,并对模型精度进行了验证,设计了适用于两种电池模型的锂电池SOC估算步骤,根据仿真得到的锂电池SOC估算情况分析得到PNGV模型精度更高,更适合用于实际电池建模系统中。

  12. Solar-rechargeable battery based on photoelectrochemical water oxidation: Solar water battery.

    Science.gov (United States)

    Kim, Gonu; Oh, Misol; Park, Yiseul

    2016-09-15

    As an alternative to the photoelectrochemical water splitting for use in the fuel cells used to generate electrical power, this study set out to develop a solar energy rechargeable battery system based on photoelectrochemical water oxidation. We refer to this design as a "solar water battery". The solar water battery integrates a photoelectrochemical cell and battery into a single device. It uses a water oxidation reaction to simultaneously convert and store solar energy. With the solar water battery, light striking the photoelectrode causes the water to be photo-oxidized, thus charging the battery. During the discharge process, the solar water battery reduces oxygen to water with a high coulombic efficiency (>90%) and a high average output voltage (0.6 V). Because the reduction potential of oxygen is more positive [E(0) (O2/H2O) = 1.23 V vs. NHE] than common catholytes (e.g., iodide, sulfur), a high discharge voltage is produced. The solar water battery also exhibits a superior storage ability, maintaining 99% of its specific discharge capacitance after 10 h of storage, without any evidence of self-discharge. The optimization of the cell design and configuration, taking the presence of oxygen in the cell into account, was critical to achieving an efficient photocharge/discharge.

  13. Repurposing of Batteries from Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Vilayanur V.; Kintner-Meyer, Michael CW

    2015-06-11

    Energy storage for stationary use is gaining traction both at the grid scale and distributed level. As renewable energy generation increases, energy storage is needed to compensate for the volatility of renewable over various time scales. This requires energy storage that is tailored for various energy to power (E/P) ratios. Other applications for energy storage include peak shaving, time shifting, load leveling, VAR control, frequency regulation, spinning reserves and other ancillary applications. While the need for energy storage for stationary applications is obvious, the regulations that determine the economic value of adding storage are at various stages of development. This has created a reluctance on the part of energy storage manufacturers to develop a suite of storage systems that can address the myriad of applications associated with stationary applications. Deployment of battery energy storage systems in the transportation sector is ahead of the curve with respect to the stationary space. Batteries, along with battery management systems (BMS) have been deployed for hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs). HEVs have now been deployed for 12 years, while PHEVs for 8 and EVs for 4 years. Some of the batteries are approaching end of life within the vehicle, and are ready to be taken off for recycling and disposal. Performance within a vehicle is non-negotiable in terms of miles traveled per charge, resulting in the batteries retaining a significant portion of their life. For stationary applications, the remaining energy and power of the battery can still be used by grouping together a few of these batteries. This enables getting the most of these batteries, while ensuring that performance is not compromised in either the automotive or stationary applications. This work summarizes the opportunities for such re-purposing of automotive batteries, along with the advantages and limitations

  14. Development of power storage system. Review of development for advanced battery technique in Yuasa Battery Co. , Ltd

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    Yuasa Battery Co., Ltd. selected the ceramic battery (Na/S) for power storage to establish the basic technique, to enlarge the capacity and to develop the 50kW/400kWh battery system. The ceramic battery is one where Na and S are combined and the beta alumina, that is, a special solid hydrolyte is utilized as the Na ion conductor. The battery system under development consists of 1120 batteries in which each nominal capacity is 540Wh, and which are connected to series and parallel and is put in a insulating electric furnace. The 76-77% energy efficiency in the constant power charging and discharging per every 8 hours specified, was established at the initial test of NO. 1 50kW/400kW power system. Other tests are conducting. (1 fig, 1 tab, 2 photo)

  15. Prospects and Limits of Energy Storage in Batteries.

    Science.gov (United States)

    Abraham, K M

    2015-03-05

    Energy densities of Li ion batteries, limited by the capacities of cathode materials, must increase by a factor of 2 or more to give all-electric automobiles a 300 mile driving range on a single charge. Battery chemical couples with very low equivalent weights have to be sought to produce such batteries. Advanced Li ion batteries may not be able to meet this challenge in the near term. The state-of-the-art of Li ion batteries is discussed, and the challenges of developing ultrahigh energy density rechargeable batteries are identified. Examples of ultrahigh energy density battery chemical couples include Li/O2, Li/S, Li/metal halide, and Li/metal oxide systems. Future efforts are also expected to involve all-solid-state batteries with performance similar to their liquid electrolyte counterparts, biodegradable batteries to address environmental challenges, and low-cost long cycle-life batteries for large-scale energy storage. Ultimately, energy densities of electrochemical energy storage systems are limited by chemistry constraints.

  16. Secondary batteries with multivalent ions for energy storage.

    Science.gov (United States)

    Xu, Chengjun; Chen, Yanyi; Shi, Shan; Li, Jia; Kang, Feiyu; Su, Dangsheng

    2015-09-14

    The use of electricity generated from clean and renewable sources, such as water, wind, or sunlight, requires efficiently distributed electrical energy storage by high-power and high-energy secondary batteries using abundant, low-cost materials in sustainable processes. American Science Policy Reports state that the next-generation "beyond-lithium" battery chemistry is one feasible solution for such goals. Here we discover new "multivalent ion" battery chemistry beyond lithium battery chemistry. Through theoretic calculation and experiment confirmation, stable thermodynamics and fast kinetics are presented during the storage of multivalent ions (Ni(2+), Zn(2+), Mg(2+), Ca(2+), Ba(2+), or La(3+) ions) in alpha type manganese dioxide. Apart from zinc ion battery, we further use multivalent Ni(2+) ion to invent another rechargeable battery, named as nickel ion battery for the first time. The nickel ion battery generally uses an alpha type manganese dioxide cathode, an electrolyte containing Ni(2+) ions, and Ni anode. The nickel ion battery delivers a high energy density (340 Wh kg(-1), close to lithium ion batteries), fast charge ability (1 minute), and long cycle life (over 2200 times).

  17. The Science of Battery Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, John P. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Physics; El Gabaly Marquez, Farid [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Physics; McCarty, Kevin [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Physics; Sugar, Joshua Daniel [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Physics; Talin, Alec A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Physics; Fenton, Kyle R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Power Sources Design and Development; Nagasubramanian, Ganesan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Power Sources Design and Development; Harris, Charles Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nanosystems Synthesis/Analysis; Jungjohann, Katherine Leigh [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nanosystems Synthesis/Analysis; Hayden, Carl C. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Combustion Chemistry Dept.; Kliewer, Christopher Jesse [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Combustion Chemistry Dept.; Hudak, Nicholas S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Power Sources Research and Development; Leung, Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nanostructure Physics; McDaniel, Anthony H. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Hydrogen and Combustion Technology; Tenney, Craig M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Chemical and Biological Systems; Zavadil, Kevin R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Materials Lab.

    2015-01-01

    This report documents work that was performed under the Laboratory Directed Research and Development project, Science of Battery Degradation. The focus of this work was on the creation of new experimental and theoretical approaches to understand atomistic mechanisms of degradation in battery electrodes that result in loss of electrical energy storage capacity. Several unique approaches were developed during the course of the project, including the invention of a technique based on ultramicrotoming to cross-section commercial scale battery electrodes, the demonstration of scanning transmission x-ray microscopy (STXM) to probe lithium transport mechanisms within Li-ion battery electrodes, the creation of in-situ liquid cells to observe electrochemical reactions in real-time using both transmission electron microscopy (TEM) and STXM, the creation of an in-situ optical cell utilizing Raman spectroscopy and the application of the cell for analyzing redox flow batteries, the invention of an approach for performing ab initio simulation of electrochemical reactions under potential control and its application for the study of electrolyte degradation, and the development of an electrochemical entropy technique combined with x-ray based structural measurements for understanding origins of battery degradation. These approaches led to a number of scientific discoveries. Using STXM we learned that lithium iron phosphate battery cathodes display unexpected behavior during lithiation wherein lithium transport is controlled by nucleation of a lithiated phase, leading to high heterogeneity in lithium content at each particle and a surprising invariance of local current density with the overall electrode charging current. We discovered using in-situ transmission electron microscopy that there is a size limit to lithiation of silicon anode particles above which particle fracture controls electrode degradation. From electrochemical entropy measurements, we discovered that entropy

  18. The Science of Battery Degradation.

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, John P; Fenton, Kyle R [Sandia National Laboratories, Albuquerque, NM; El Gabaly Marquez, Farid; Harris, Charles Thomas [Sandia National Laboratories, Albuquerque, NM; Hayden, Carl C.; Hudak, Nicholas [Sandia National Laboratories, Albuquerque, NM; Jungjohann, Katherine Leigh [Sandia National Laboratories, Albuquerque, NM; Kliewer, Christopher Jesse; Leung, Kevin [Sandia National Laboratories, Albuquerque, NM; McDaniel, Anthony H.; Nagasubramanian, Ganesan [Sandia National Laboratories, Albuquerque, NM; Sugar, Joshua Daniel; Talin, Albert Alec; Tenney, Craig M [Sandia National Laboratories, Albuquerque, NM; Zavadil, Kevin R. [Sandia National Laboratories, Albuquerque, NM

    2015-01-01

    This report documents work that was performed under the Laboratory Directed Research and Development project, Science of Battery Degradation. The focus of this work was on the creation of new experimental and theoretical approaches to understand atomistic mechanisms of degradation in battery electrodes that result in loss of electrical energy storage capacity. Several unique approaches were developed during the course of the project, including the invention of a technique based on ultramicrotoming to cross-section commercial scale battery electrodes, the demonstration of scanning transmission x-ray microscopy (STXM) to probe lithium transport mechanisms within Li-ion battery electrodes, the creation of in-situ liquid cells to observe electrochemical reactions in real-time using both transmission electron microscopy (TEM) and STXM, the creation of an in-situ optical cell utilizing Raman spectroscopy and the application of the cell for analyzing redox flow batteries, the invention of an approach for performing ab initio simulation of electrochemical reactions under potential control and its application for the study of electrolyte degradation, and the development of an electrochemical entropy technique combined with x-ray based structural measurements for understanding origins of battery degradation. These approaches led to a number of scientific discoveries. Using STXM we learned that lithium iron phosphate battery cathodes display unexpected behavior during lithiation wherein lithium transport is controlled by nucleation of a lithiated phase, leading to high heterogeneity in lithium content at each particle and a surprising invariance of local current density with the overall electrode charging current. We discovered using in-situ transmission electron microscopy that there is a size limit to lithiation of silicon anode particles above which particle fracture controls electrode degradation. From electrochemical entropy measurements, we discovered that entropy

  19. Confession of a Magnesium Battery.

    Science.gov (United States)

    Bucur, Claudiu B; Gregory, Thomas; Oliver, Allen G; Muldoon, John

    2015-09-17

    Magnesium is an ideal metal anode that has nearly double the volumetric capacity of lithium metal with a very negative reduction potential of -2.37 vs SHE. A significant advantage of magnesium is the apparent lack of dendrite formation during charging, which overcomes major safety and performance challenges encountered with using lithium metal anodes. Here, we highlight major recent advances in nonaqueous Mg electrochemistry, notably the development of electrolytes and cathodes, and discuss some of the challenges that must be overcome to realize a practical magnesium battery.

  20. Battery charger PP-4126( )/U. Final report, 1 Jul 1971--Jun 1974

    Energy Technology Data Exchange (ETDEWEB)

    Froeschle, T.A.

    1975-07-01

    The performance data and design configuration of the PP-4126( )/U Battery Charger are delineated in this final report. Performance of the unit is summarized. Terminal performance and selected aspects of internal performance are considered. The internal system configuration of the battery charger is presented in block form. Functions of internal system blocks are discussed to define their design and behavior. Circuit components used to implement the systems blocks are identified. The PP-4126( )/U Battery Charger is designed to charge 6-, 12-, and 24-V dc batteries at selectable charging rates from 0.1 A dc to 12 A dc. The battery charger operates from MIL-STD-704 dc power sources in the range 22 V dc to 40 V dc. The battery charger structure is a finned housing with a removable cover. The cover contains the input power cable. The battery charger may be operated in any position.

  1. New secondary batteries utilizing electronically conductive polymer cathodes

    Science.gov (United States)

    Martin, Charles R.; White, Ralph E.

    1989-01-01

    The objectives of this project are to characterize the transport properties in electronically conductive polymers and to assess the utility of these films as cathodes in lithium/polymer secondary batteries. During this research period, progress has been made in a literature survey of the historical background, methods of preparation, the physical and chemical properties, and potential technological applications of polythiophene. Progress has also been made in the characterization of polypyrrole flat films and fibrillar films. Cyclic voltammetry and potential step chronocoulometry were used to gain information on peak currents and potentials switching reaction rates, charge capacity, and charge retention. Battery charge/discharge studies were also performed.

  2. Ionene membrane battery separator

    Science.gov (United States)

    Moacanin, J.; Tom, H. Y.

    1969-01-01

    Ionic transport characteristics of ionenes, insoluble membranes from soluble polyelectrolyte compositions, are studied for possible application in a battery separator. Effectiveness of the thin film of separator membrane essentially determines battery lifetime.

  3. Battery Management of Smart Charging and Swapping Service Network for Electric Vehicle Based on Internet of Things%基于物联网的电动汽车智能充换电服务网络电池管理

    Institute of Scientific and Technical Information of China (English)

    薛飞; 雷宪章; 张野飚; 刘红超; 高赐威

    2012-01-01

    In the forthcoming operation of smart charging and swapping service network for electric vehicle(EV),the management of batteries within this special operating mode is still a big challenge.The main issues of battery management are analyzed and clarified and a systematic solution framework based on internet of things(IOT) is proposed with an overall explanation through the sensing layer,network layer and application layer.Different dedicated techniques are selected to deal with different scenarios of batteries,i.e.inside station,outside station and logistics.The implementing methods are treated with consideration of the reality to solve especially the problems of identification within overall scenarios,dynamic stocktaking,grouping management,general and comprehensive analysis,and security measures.%在电动汽车智能充换电服务网络运营中,电池资产关系的变更及其与运营模式相适应的各种管理问题成为实践中的挑战。文中论述了该模式下电池管理面对的主要问题,并基于物联网技术提出了系统性的解决方案,通过感知层、网络层和应用层进行了全面阐述,根据站内、站外和配送3种不同情境的特点,有针对性地采用不同技术,并结合实践介绍了实施方法,主要解决了全方位身份识别、动态盘点、编组管理、综合统计分析以及安全防范等问题。

  4. Rechargeable batteries applications handbook

    CERN Document Server

    1998-01-01

    Represents the first widely available compendium of the information needed by those design professionals responsible for using rechargeable batteries. This handbook introduces the most common forms of rechargeable batteries, including their history, the basic chemistry that governs their operation, and common design approaches. The introduction also exposes reader to common battery design terms and concepts.Two sections of the handbook provide performance information on two principal types of rechargeable batteries commonly found in consumer and industrial products: sealed nickel-cad

  5. Battery systems engineering

    CERN Document Server

    Rahn, Christopher D

    2012-01-01

    A complete all-in-one reference on the important interdisciplinary topic of Battery Systems Engineering Focusing on the interdisciplinary area of battery systems engineering, this book provides the background, models, solution techniques, and systems theory that are necessary for the development of advanced battery management systems. It covers the topic from the perspective of basic electrochemistry as well as systems engineering topics and provides a basis for battery modeling for system engineering of electric and hybrid electric vehicle platforms. This original

  6. Metal pad instabilities in liquid metal batteries

    CERN Document Server

    Zikanov, Oleg

    2015-01-01

    A mechanical analogy is used to analyze the interaction between the magnetic field, electric current and deformation of interfaces in liquid metal batteries. It is found that, during charging or discharging, a sufficiently large battery is prone to instabilities of two types. One is similar to the metal pad instability known for aluminum reduction cells. Another type is new. It is related to the destabilizing effect of the Lorentz force formed by the azimuthal magnetic field induced by the base current and the current perturbations caused by the local variations of the thickness of the electrolyte layer.

  7. Thermal convection in a liquid metal battery

    CERN Document Server

    Shen, Yuxin

    2015-01-01

    Generation of thermal convection flow in the liquid metal battery, a device recently proposed as a promising solution for the problem of the short-term energy storage, is analyzed using a numerical model. It is found that convection caused by Joule heating of electrolyte during charging or discharging is virtually unavoidable. It exists in laboratory prototypes larger than a few cm in size and should become much stronger in larger-scale batteries. The phenomenon needs further investigation in view of its positive (enhanced mixing of reactants) and negative (loss of efficiency and possible disruption of operation due to the flow-induced deformation of the electrolyte layer) effects.

  8. Thermal convection in a liquid metal battery

    Science.gov (United States)

    Shen, Yuxin; Zikanov, Oleg

    2016-08-01

    Generation of thermal convection flow in the liquid metal battery, a device recently proposed as a promising solution for the problem of the short-term energy storage, is analyzed using a numerical model. It is found that convection caused by Joule heating of electrolyte during charging or discharging is virtually unavoidable. It exists in laboratory prototypes larger than a few centimeters in size and should become much stronger in larger-scale batteries. The phenomenon needs further investigation in view of its positive (enhanced mixing of reactants) and negative (loss of efficiency and possible disruption of operation due to the flow-induced deformation of the electrolyte layer) effects.

  9. Design and Implementation of Battery Management System for Electric Bicycle

    Directory of Open Access Journals (Sweden)

    Mohd Rashid Muhammad Ikram

    2017-01-01

    Full Text Available Today the electric vehicle (EV has been developed in such a way that electronic motor, battery, and charger replace the engine, tank and gasoline pump of the conventional gasoline-powered [1]. In other word, instead of using fossil fuel to move the vehicle, in this case we used a pack of batteries to move it. The global climate change and the abnormal rising international crude oil prices call for the development of EV [2]. To solve these problems, a new energy needs to be developed or optimized in order to replace the current energy which is fossil fuel. A clean and green energy [2]. Because of this, it is very important to make sure that the battery that being used is reliable as the fossil fuel. Thus, the design of the battery management system plays an important role on battery life preservation and performance improvement of EV [3]. The BMS also performs many tasks including the measurement of system voltage, current and temperature, the cells’ state of charge (SOC, state of health (SOH, remaining useful life (RUL determination, controlling and monitoring the charge / discharge characteristics and cell balancing [3]. For this project, 18650 Lithium-Ion battery is used to develop battery management for 144V 50Ah. As lithium-ion batteries have high value of specific energy, high energy density, high open circuit voltage, and low self-discharge, they are a proper candidate for EVs among other cell chemistries [4].

  10. Electric Vehicle Battery Challenge

    Science.gov (United States)

    Roman, Harry T.

    2014-01-01

    A serious drawback to electric vehicles [batteries only] is the idle time needed to recharge their batteries. In this challenge, students can develop ideas and concepts for battery change-out at automotive service stations. Such a capability would extend the range of electric vehicles.

  11. Solar-rechargeable battery based on photoelectrochemical water oxidation: Solar water battery

    Science.gov (United States)

    Kim, Gonu; Oh, Misol; Park, Yiseul

    2016-09-01

    As an alternative to the photoelectrochemical water splitting for use in the fuel cells used to generate electrical power, this study set out to develop a solar energy rechargeable battery system based on photoelectrochemical water oxidation. We refer to this design as a “solar water battery”. The solar water battery integrates a photoelectrochemical cell and battery into a single device. It uses a water oxidation reaction to simultaneously convert and store solar energy. With the solar water battery, light striking the photoelectrode causes the water to be photo-oxidized, thus charging the battery. During the discharge process, the solar water battery reduces oxygen to water with a high coulombic efficiency (>90%) and a high average output voltage (0.6 V). Because the reduction potential of oxygen is more positive [E0 (O2/H2O) = 1.23 V vs. NHE] than common catholytes (e.g., iodide, sulfur), a high discharge voltage is produced. The solar water battery also exhibits a superior storage ability, maintaining 99% of its specific discharge capacitance after 10 h of storage, without any evidence of self-discharge. The optimization of the cell design and configuration, taking the presence of oxygen in the cell into account, was critical to achieving an efficient photocharge/discharge.

  12. Use of calorimetry for end of charge determination

    Science.gov (United States)

    Johnson, Chris J.

    1994-01-01

    To perform heat flow measurements on batteries, it is necessary to consider the following requirements: establish thermal neutral potential; identify inefficient charging; understand self discharge mechanisms; and provide accurate voltage/temperature data. A discussion is provided in viewgraph format.

  13. Data pieces-based parameter identification for lithium-ion battery

    Science.gov (United States)

    Gao, Wei; Zou, Yuan; Sun, Fengchun; Hu, Xiaosong; Yu, Yang; Feng, Sen

    2016-10-01

    Battery characteristics vary with temperature and aging, it is necessary to identify battery parameters periodically for electric vehicles to ensure reliable State-of-Charge (SoC) estimation, battery equalization and safe operation. Aiming for on-board applications, this paper proposes a data pieces-based parameter identification (DPPI) method to identify comprehensive battery parameters including capacity, OCV (open circuit voltage)-Ah relationship and impedance-Ah relationship simultaneously only based on battery operation data. First a vehicle field test was conducted and battery operation data was recorded, then the DPPI method is elaborated based on vehicle test data, parameters of all 97 cells of the battery package are identified and compared. To evaluate the adaptability of the proposed DPPI method, it is used to identify battery parameters of different aging levels and different temperatures based on battery aging experiment data. Then a concept of "OCV-Ah aging database" is proposed, based on which battery capacity can be identified even though the battery was never fully charged or discharged. Finally, to further examine the effectiveness of the identified battery parameters, they are used to perform SoC estimation for the test vehicle with adaptive extended Kalman filter (AEKF). The result shows good accuracy and reliability.

  14. Threshold-Based Random Charging Scheme for Decentralized PEV Charging Operation in a Smart Grid

    Directory of Open Access Journals (Sweden)

    Ojin Kwon

    2016-12-01

    Full Text Available Smart grids have been introduced to replace conventional power distribution systems without real time monitoring for accommodating the future market penetration of plug-in electric vehicles (PEVs. When a large number of PEVs require simultaneous battery charging, charging coordination techniques have become one of the most critical factors to optimize the PEV charging performance and the conventional distribution system. In this case, considerable computational complexity of a central controller and exchange of real time information among PEVs may occur. To alleviate these problems, a novel threshold-based random charging (TBRC operation for a decentralized charging system is proposed. Using PEV charging thresholds and random access rates, the PEVs themselves can participate in the charging requests. As PEVs with a high battery state do not transmit the charging requests to the central controller, the complexity of the central controller decreases due to the reduction of the charging requests. In addition, both the charging threshold and the random access rate are statistically calculated based on the average of supply power of the PEV charging system that do not require a real time update. By using the proposed TBRC with a tolerable PEV charging degradation, a 51% reduction of the PEV charging requests is achieved.

  15. New logistical issues in using electric vehicle fleets with battery exchange infrastructure

    DEFF Research Database (Denmark)

    Mirchandani, Pitu; Adler, Jonathan; Madsen, Oli B.G.

    2014-01-01

    batteries with charged ones. This paper discusses some new logistical issues that must be addressed by such EV fleets, principally the issues related to the limited driving range of each EV's set of charged batteries and the possible detouring for battery exchanges. In particular, the paper addresses (1......) the routing and scheduling of the fleet, (2) the locations of battery-exchange stations, and (3) the sizing of each facility. An overview of the literature on the topic is provided and some initial results are presented. (C) 2013 The Authors. Published by Elsevier Ltd....

  16. Influence of measurement procedure on quality of impedance spectra on lead-acid batteries

    Science.gov (United States)

    Budde-Meiwes, Heide; Kowal, Julia; Sauer, Dirk Uwe; Karden, Eckhard

    Many battery simulation models, but also electrochemical interpretations are based on impedance spectroscopy. However, the impedance of a battery is influenced by various factors, e.g. in the case of a lead-acid battery: state of charge (SOC), charging or discharging, superimposed dc current, short-term history or homogeneity of the electrolyte. This paper analyses the impact of those factors on impedance spectra of lead-acid batteries. The results show that very detailed information about the conditions during the measurement is crucial for the correct interpretation of a spectrum.

  17. Use of Super-Capacitor to Enhance Charging Performance of Stand-Alone Solar PV System

    KAUST Repository

    Huang, B. J.

    2011-01-01

    Introduction: The battery charging performance in a stand-alone solar PV system affects the PV system efficiency and the load operating time. The New Energy Center of National Taiwan University has been devoted to the development of a PWM charging technique to continue charging the lead-acid battery after the overcharge point to increase the battery storage capacity by more than 10%. The present study intends to use the super-capacitor to further increase the charge capacity before the overcharge point of the battery. The super-capacitor is connected in parallel to the lead-acid battery. This will reduce the overall charging impedance during the charge and increase the charging current, especially in sunny weather. A system dynamics model of the lead-acid battery and super-capacitor was derived and the control system simulation was carried out to predict the charging performance for various weathers. It shows that the overall battery impedance decreases and charging power increases with increasing solar radiation. An outdoor comparative test for two identical PV systems with and without supercapacitor was carried out. The use of super-capacitor is shown to be able to increase the lead-acid charging capacity by more than 25% at sunny weather and 10% in cloudy weather. © Springer-Verlag Berlin Heidelberg 2011.

  18. System for electric power generation with photovoltaic solar modules for charging the batteries of an electric wheelchair; Sistema de geracao de energia eletrica com modulos solares fotovoltaicos para o carregamento de baterias de uma cadeira de rodas eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Rafael Pimenta; Souza, Teofilo Miguel de [Universidade Estadual Paulista (UNESP), Guaratinguta, SP (Brazil). Fac. de Engenharia. Dept. de Engenharia Eletrica], Emails: pimentamesquita@gmail.com, teofilo@feg.unesp.br

    2006-07-01

    Renewable energy is all kind of energy produced from a natural source that not diminish because its utilization is 'renewable'. More and more renewable energy resources are used, because they offer multiple advantages such as the energy output facility in small scale and because they are entirely compatible with the environment. The renewable energy used in this project is the photovoltaic solar energy, obtained by the direct conversion of the solar energy in electric energy through the use of solar cells, that can be of several kinds, being the most common of silicon. The main advantage of photovoltaic system is the generation of clean electric energy, or either, generates energy without emitting pollutant and without destroying the environment, moreover is an inexhaustible source of energy. The main disadvantage is, nowadays, the high cost and its low efficiency, so to continue developing it is necessary establish capable mechanisms to make it possible. The search of these mechanisms of incentive becomes-itself a lot important, because the renewable energy and not conventional do not produce a financial return to the investor properly said, but brings lots of benefits to the community, the society and to the environment. This project has the purpose of create an electric energy generation system through solar photovoltaic modules to carry batteries of a motorized wheelchair. An electric wheelchair is moved by electric motors of direct current that are feed by batteries, permitting a medium autonomy of 10 km by load. The batteries are recharged by a battery supplier. This operation should be carried out daily in a space of 6 to 8 hours. According to the Demographic Census realized in 2000 carried out by the IBGE, Brazil has around 1.416.060 physical deficient, which 861.196 are men and 554.864 are women. From a request of a user of electric wheelchair the idea of this project was shown up. The user complained that he stayed a long time carrying his seat

  19. Symposium on Batteries and Fuel Cells for Stationary and Electric Vehicle Applications, Honolulu, HI, May 16-21, 1993, Proceedings

    Science.gov (United States)

    Landgrebe, Albert R.; Takehara, Zen-Ichiro

    The present conference discusses the development status of vehicular batteries in Japan, the effects of the solvent for electropolymerization of aniline on the charge/discharge characteristics of polyaniline, the charge/discharge mechanism of the amorphous FeOOH, including aniline as a cathode for a rechargeable Li battery, the effect of mesocarbon microbead structure on the electrochemistry of Li secondary batteries' negative electrode, and novel aluminum batteries. Also discussed are a room-temperature molten salt electrolyte for the Na/iron chloride battery, portable cells for redox batteries, the development status of lead-acid batteries for electric vehicles, mechanically refuelable zinc/air vehicular cells, polymer electrolyte fuel cells for transportation applications, proton exchange membrane fuel cells using gas-fed methanol, and a phosphotic acid fuel cell/battery.

  20. a Movable Charging Unit for Green Mobility

    Science.gov (United States)

    ElBanhawy, E. Y.; Nassar, K.

    2013-05-01

    Battery swapping of electric vehicles (EVs) matter appears to be the swiftest and most convenient to users. The existence of swapping stations increases the feasibility of distributed energy storage via the electric grid. However, it is a cost-prohibitive way of charging. Early adaptors' preferences of /perceptions about EV system in general, has its inflectional effects on potential users hence the market penetration level. Yet, the charging matter of electric batteries worries the users and puts more pressure on them with the more rigorous planning-ahead they have to make prior to any trip. This paper presents a distinctive way of charging. It aims at making the overall charging process at ease. From a closer look into the literature, most of EVs' populations depend on domestic charge. Domestic charging gives them more confidence and increases the usability factor of the EV system. Nevertheless, they still need to count on the publically available charging points to reach their destination(s). And when it comes to multifamily residences, it becomes a thorny problem as these apartments do not have a room for charging outlets. Having said the irritating charging time needed to fatten the batteries over the day and the minimal average mileage drove daily, hypothetically, home delivery charging (Movable Charging Unit-MCU) would be a stupendous solution. The paper discusses the integration of shortest path algorithm problem with the information about EV users within a metropolitan area, developing an optimal route for a charging unit. This MCU delivers charging till homes whether by swapping batteries or by fast charging facility. Information about users is to be provided by the service provider of the neighbourhood, which includes charging patterns (timing, power capacity). This problem lies under the shortest path algorithms problem. It provides optimal route of charging that in return shall add more reliability and usability values and alleviate the charging

  1. A low-cost lead-acid battery with high specific-energy

    Indian Academy of Sciences (India)

    S K Martha; B Hariprakash; S A Gaffoor; D C Trivedi; A K Shukla

    2006-01-01

    Lightweight grids for lead-acid battery grids have been prepared from acrylonitrile butadiene styrene (ABS) copolymer followed by coating with lead. Subsequently, the grids have been electrochemically coated with a conductive and corrosion-resistant layer of polyaniline. These grids are about 75% lighter than those employed in conventional lead-acid batteries. Commercial-grade 6V/3.5Ah (C20-rate) lead-acid batteries have been assembled and characterized employing positive and negative plates constituting these grids. The specific energy of such a lead-acid battery is about 50 Wh/kg. The batteries can withstand fast charge-discharge duty cycles.

  2. ETK's experience in the application of VRLA batteries

    Energy Technology Data Exchange (ETDEWEB)

    Klaric, I. [Ericsson Nikola Tesla d.d., Zagreb (Croatia)

    2000-07-01

    This paper presents the experience of the company Ericsson Nikola Tesla (ETK) in the application of VRLA batteries. After a short comment on conventional lead acid batteries, the paper explains the reasons for introduction of VRLA batteries and presents our experience considering their quality, performance, hydrogen evolution, safety, service life etc. Stress is put on some internal and external factors which affect useful life, such as positive grid corrosion, ambient temperature and charging voltage. ETK also gained experience in relation to adaptation of some UPS systems to VRLA batteries. The article concludes with the list of important advantages and disadvantages of VRLA batteries compared with the flooded ones. (orig.)

  3. Battery Lifetime Analysis and Simulation Tool (BLAST) Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-12-01

    The deployment and use of lithium-ion (Li-ion) batteries in automotive and stationary energy storage applications must be optimized to justify their high up-front costs. Given that batteries degrade with use and storage, such optimizations must evaluate many years of operation. As the degradation mechanisms are sensitive to temperature, state-of-charge (SOC) histories, current levels, and cycle depth and frequency, it is important to model both the battery and the application to a high level of detail to ensure battery response is accurately predicted. To address these issues, the National Renewable Energy Laboratory (NREL) has developed the Battery Lifetime Analysis and Simulation Tool (BLAST) suite. This suite of tools pairs NREL’s high-fidelity battery degradation model with a battery electrical and thermal performance model, application-specific electrical and thermal performance models of the larger system (e.g., an electric vehicle), application-specific system use data (e.g., vehicle travel patterns and driving data), and historic climate data from cities across the United States. This provides highly realistic long-term predictions of battery response and thereby enables quantitative comparisons of varied battery use strategies.

  4. Battery Lifetime Analysis and Simulation Tool (BLAST) Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, J.

    2014-12-01

    The deployment and use of lithium-ion batteries in automotive and stationary energy storage applications must be optimized to justify their high up-front costs. Given that batteries degrade with use and storage, such optimizations must evaluate many years of operation. As the degradation mechanisms are sensitive to temperature, state-of-charge histories, current levels, and cycle depth and frequency, it is important to model both the battery and the application to a high level of detail to ensure battery response is accurately predicted. To address these issues, the National Renewable Energy Laboratory has developed the Battery Lifetime Analysis and Simulation Tool (BLAST) suite of tools. This suite of tools pairs NREL's high-fidelity battery degradation model with a battery electrical and thermal performance model, application-specific electrical and thermal performance models of the larger system (e.g., an electric vehicle), application-specific system use data (e.g., vehicle travel patterns and driving data), and historic climate data from cities across the United States. This provides highly realistic, long-term predictions of battery response and thereby enables quantitative comparisons of varied battery use strategies.

  5. Powering up the future: radical polymers for battery applications.

    Science.gov (United States)

    Janoschka, Tobias; Hager, Martin D; Schubert, Ulrich S

    2012-12-18

    Our society's dependency on portable electric energy, i.e., rechargeable batteries, which permit power consumption at any place and in any time, will eventually culminate in resource wars on limited commodities like lithium, cobalt, and rare earth metals. The substitution of conventional metals as means of electric charge storage by organic and polymeric materials, which may ultimately be derived from renewable resources, appears to be the only feasible way out. In this context, the novel class of organic radical batteries (ORBs) excelling in rate capability (i.e., charging speed) and cycling stability (>1000 cycles) sets new standards in battery research. This review examines stable nitroxide radical bearing polymers, their processing to battery systems, and their promising performance.

  6. High-Power-Density Organic Radical Batteries.

    Science.gov (United States)

    Friebe, Christian; Schubert, Ulrich S

    2017-02-01

    Batteries that are based on organic radical compounds possess superior charging times and discharging power capability in comparison to established electrochemical energy-storage technologies. They do not rely on metals and, hence, feature a favorable environmental impact. They furthermore offer the possibility of roll-to-roll processing through the use of different printing techniques, which enables the cost-efficient fabrication of mechanically flexible devices. In this review, organic radical batteries are presented with the focus on the hitherto developed materials and the key properties thereof, e.g., voltage, capacity, and cycle life. Furthermore, basic information, such as significant characteristics, housing approaches, and applied additives, are presented and discussed in the context of organic radical batteries.

  7. Anode-Free Rechargeable Lithium Metal Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Jiangfeng [The Joint Center for Energy Storage Research (JCESR), Pacific Northwest National Laboratory, Richland WA 99354 USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Adams, Brian D. [The Joint Center for Energy Storage Research (JCESR), Pacific Northwest National Laboratory, Richland WA 99354 USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Zheng, Jianming [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Xu, Wu [The Joint Center for Energy Storage Research (JCESR), Pacific Northwest National Laboratory, Richland WA 99354 USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Henderson, Wesley A. [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Wang, Jun [A123 Systems Research and Development, Waltham MA 02451 USA; Bowden, Mark E. [Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Xu, Suochang [Earth and Biological Science Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Hu, Jianzhi [The Joint Center for Energy Storage Research (JCESR), Pacific Northwest National Laboratory, Richland WA 99354 USA; Earth and Biological Science Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Zhang, Ji-Guang [The Joint Center for Energy Storage Research (JCESR), Pacific Northwest National Laboratory, Richland WA 99354 USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA

    2016-08-18

    Anode-free rechargeable lithium (Li) batteries (AFLBs) are phenomenal energy storage systems due to their significantly increased energy density and reduced cost relative to Li-ion batteries, as well as ease of assembly owing to the absence of an active (reactive) anode material. However, significant challenges, including Li dendrite growth and low cycling Coulombic efficiency (CE), have prevented their practical implementation. Here, we report for the first time an anode-free rechargeable lithium battery based on a Cu||LiFePO4 cell structure with an extremely high CE (> 99.8%). This results from the utilization of both an exceptionally stable electrolyte and optimized charge/discharge protocols which minimize the corrosion of the in-situ formed Li metal anode.

  8. Bifunctional redox flow battery

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Y.H. [Research Institute of Chemical Defense, Beijing 100083 (China)], E-mail: wen_yuehua@126.com; Cheng, J. [Research Institute of Chemical Defense, Beijing 100083 (China); Beijing Science and Technology University, Beijing 100083 (China); Xun, Y. [Research Institute of Chemical Defense, Beijing 100083 (China); Ma, P.H. [Full Cell R and D Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China); Yang, Y.S. [Research Institute of Chemical Defense, Beijing 100083 (China); Beijing Science and Technology University, Beijing 100083 (China)

    2008-08-20

    A new bifunctional redox flow battery (BRFB) system, V(III)/V(II)-L-cystine(O{sub 2}), was systematically investigated by using different separators. It is shown that during charge, water transfer is significantly restricted with increasing the concentration of HBr when the Nafion 115 cation exchange membrane is employed. The same result can be obtained when the gas diffusion layer (GDL) hot-pressed separator is used. The organic electro-synthesis is directly correlated with the crossover of vanadium. When employing the anion exchange membrane, the electro-synthesis efficiency is over 96% due to a minimal crossover of vanadium. When the GDL hot-pressed separator is applied, the crossover of vanadium and water transfer are noticeably prevented and the electro-synthesis efficiency of over 99% is obtained. Those impurities such as vanadium ions and bromine can be eliminated through the purification of organic electro-synthesized products. The purified product is identified to be L-cysteic acid by IR spectrum. The BRFB shows a favorable discharge performance at a current density of 20 mA cm{sup -2}. Best discharge performance is achieved by using the GDL hot-pressed separator. The coulombic efficiency of 87% and energy efficiency of about 58% can be obtained. The cause of major energy losses is mainly associated with the cross-contamination of anodic and cathodic active electrolytes.

  9. Metal Hydrides for Rechargeable Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Valoeen, Lars Ole

    2000-03-01

    Rechargeable battery systems are paramount in the power supply of modern electronic and electromechanical equipment. For the time being, the most promising secondary battery systems for the future are the lithium-ion and the nickel metal hydride (NiMH) batteries. In this thesis, metal hydrides and their properties are described with the aim of characterizing and improving those. The thesis has a special focus on the AB{sub 5} type hydrogen storage alloys, where A is a rare earth metal like lanthanum, or more commonly misch metal, which is a mixture of rare earth metals, mainly lanthanum, cerium, neodymium and praseodymium. B is a transition metal, mainly nickel, commonly with additions of aluminium, cobalt, and manganese. The misch metal composition was found to be very important for the geometry of the unit cell in AB{sub 5} type alloys, and consequently the equilibrium pressure of hydrogen in these types of alloys. The A site substitution of lanthanum by misch metal did not decrease the surface catalytic properties of AB{sub 5} type alloys. B-site substitution of nickel with other transition elements, however, substantially reduced the catalytic activity of the alloy. If the internal pressure within the electrochemical test cell was increased using inert argon gas, a considerable increase in the high rate charge/discharge performance of LaNi{sub 5} was observed. An increased internal pressure would enable the utilisation of alloys with a high hydrogen equivalent pressure in batteries. Such alloys often have favourable kinetics and high hydrogen diffusion rates and thus have a potential for improving the high current discharge rates in metal hydride batteries. The kinetic properties of metal hydride electrodes were found to improve throughout their lifetime. The activation properties were found highly dependent on the charge/discharge current. Fewer charge/discharge cycles were needed to activate the electrodes if a small current was used instead of a higher

  10. Electrochemical accumulators batteries; Accumulateurs electrochimiques batteries

    Energy Technology Data Exchange (ETDEWEB)

    Ansart, F.; Castillo, S.; Laberty- Robert, C.; Pellizon-Birelli, M. [Universite Paul Sabatier, Lab. de Chimie des Materiaux Inorganiques et Energetiques, CIRIMAT, UMR CNRS 5085, 31 - Toulouse (France)] [and others

    2000-07-01

    It is necessary to storage the electric power in batteries to join the production and the utilization. In this domain progresses are done every days in the technics and also in the available materials. These technical days present the state of the art in this domain. Many papers were presented during these two days giving the research programs and recent results on the following subjects: the lithium batteries, the electrolytes performances and behaviour, lead accumulators, economic analysis of the electrochemical storage market, the batteries applied to the transportation sector and the telephones. (A.L.B.)

  11. Rapid charge-discharge property of Li4Ti5O12-TiO2 nanosheet and nanotube composites as anode material for power lithium-ion batteries.

    Science.gov (United States)

    Yi, Ting-Feng; Fang, Zi-Kui; Xie, Ying; Zhu, Yan-Rong; Yang, Shuang-Yuan

    2014-11-26

    Well-defined Li4Ti5O12-TiO2 nanosheet and nanotube composites have been synthesized by a solvothermal process. The combination of in situ generated rutile-TiO2 in Li4Ti5O12 nanosheets or nanotubes is favorable for reducing the electrode polarization, and Li4Ti5O12-TiO2 nanocomposites show faster lithium insertion/extraction kinetics than that of pristine Li4Ti5O12 during cycling. Li4Ti5O12-TiO2 electrodes also display lower charge-transfer resistance and higher lithium diffusion coefficients than pristine Li4Ti5O12. Therefore, Li4Ti5O12-TiO2 electrodes display lower charge-transfer resistance and higher lithium diffusion coefficients. This reveals that the in situ TiO2 modification improves the electronic conductivity and electrochemical activity of the electrode in the local environment, resulting in its relatively higher capacity at high charge-discharge rate. Li4Ti5O12-TiO2 nanocomposite with a Li/Ti ratio of 3.8:5 exhibits the lowest charge-transfer resistance and the highest lithium diffusion coefficient among all samples, and it shows a much improved rate capability and specific capacity in comparison with pristine Li4Ti5O12 when charging and discharging at a 10 C rate. The improved high-rate capability, cycling stability, and fast charge-discharge performance of Li4Ti5O12-TiO2 nanocomposites can be ascribed to the improvement of electrochemical reversibility, lithium ion diffusion, and conductivity by in situ TiO2 modification.

  12. Minimizing heat loss in DC networks using batteries

    CERN Document Server

    Zocca, Alessandro

    2016-01-01

    Electricity transmission networks dissipate a non-negligible fraction of the power they transport due to the heat loss in the transmission lines. In this work we explore how the transport of energy can be more efficient by adding to the network multiple batteries that can coordinate their operations. Such batteries can both charge using the current excess in the network or discharge to meet the network current demand. Either way, the presence of batteries in the network can be leveraged to mitigate the intrinsic uncertainty in the power generation and demand and, hence, transport the energy more efficiently through the network. We consider a resistive DC network with stochastic external current injections or consumptions and show how the expected total heat loss depends on the network structure and on the batteries operations. Furthermore, in the case where the external currents are modeled by Ornstein-Uhlenbeck processes, we derive the dynamical optimal control for the batteries over a finite time interval.

  13. Model-based condition monitoring for lithium-ion batteries

    Science.gov (United States)

    Kim, Taesic; Wang, Yebin; Fang, Huazhen; Sahinoglu, Zafer; Wada, Toshihiro; Hara, Satoshi; Qiao, Wei

    2015-11-01

    Condition monitoring for batteries involves tracking changes in physical parameters and operational states such as state of health (SOH) and state of charge (SOC), and is fundamentally important for building high-performance and safety-critical battery systems. A model-based condition monitoring strategy is developed in this paper for Lithium-ion batteries on the basis of an electrical circuit model incorporating hysteresis effect. It systematically integrates 1) a fast upper-triangular and diagonal recursive least squares algorithm for parameter identification of the battery model, 2) a smooth variable structure filter for the SOC estimation, and 3) a recursive total least squares algorithm for estimating the maximum capacity, which indicates the SOH. The proposed solution enjoys advantages including high accuracy, low computational cost, and simple implementation, and therefore is suitable for deployment and use in real-time embedded battery management systems (BMSs). Simulations and experiments validate effectiveness of the proposed strategy.

  14. Investigation of Impedance-Based Parameters in Metal-O2 Batteries for Next Generation of Battery Management Systems

    DEFF Research Database (Denmark)

    Christensen, Andreas Elkjær; Højberg, Jonathan

    2015-01-01

    compared to current Li-ion batteries1,2. A battery management system (BMS) typically uses a combination of coulomb counting and calibration based on open circuit voltage (OCV) measurements that depend on the state of charge (SOC). Calibration is needed due to the accumulation of errors in the coulomb...... the entire discharge, both OCV and discharge potential is constant until the end of discharge, where other processes become limiting, as shown in figure 1. New methods have to be developed to overcome the constant OCV and flat discharge plateau that otherwise would complicate both battery management.......1149/2.086202jes [2] Hartmann, P. (2012). A rechargeable room-temperature sodium superoxide (NaO2) battery. Nature Materials, 12(3), 228–232. doi:10.1038/nmat3486 [3] Ng, K. S., Moo, C.-S., Chen, Y.-P., & Hsieh, Y.-C. (2009). Enhanced coulomb counting method for estimating state-of-charge and state...

  15. Economic evaluation of a photovoltaic (PV) power generation system with battery; Battery wo heiyoshita taiyoko hatsuden system no keizaiseihyoka

    Energy Technology Data Exchange (ETDEWEB)

    Tomikura, S.; Kaya, Y. [Keio University, Tokyo (Japan)

    1997-01-30

    To improve the correlation characteristics between unstable output of PV system and demand, and to improve its economical value, use of battery was investigated. In this study, at first, solution of constrained optimization problem was derived in the case when the demand and PV output were defined by the continuous function, to obtain the break-even cost of PV system. To investigate the charge from PV in daytime or the charge from base power source at night, peak, middle and base power sources were considered. Finally, break-even cost of the PV system with battery was calculated as a trial using a multiple time zone model having PV and usual three power sources. As a result, the difference ranging from 25000 to 29000 yen in the break-even costs between PV and PV with battery was provided, which was considered to be a pure increase of the value using battery. 10 refs., 7 figs., 1 tab.

  16. Charging up for the future of plug-in hybrids and range extenders. An exploration of options for increased battery utilisation; Opladen voor de toekomst van plug-in hybrides en range extenders. Een verkenning naar mogelijkheden voor vergroten van het elektrische gebruik

    Energy Technology Data Exchange (ETDEWEB)

    Van Essen, H.; Schroten, A.; Aarnink, S.

    2013-05-15

    If the full potential of plug-in hybrids and electric cars with a range extender is to be usefully exploited, it is important that these vehicles be used in battery mode as much as possible. This means that users' charging and driving behaviour needs to be positively influenced. This can be achieved through suitably designed financial incentives on the part of employers and government, further expansion of battery-charging infrastructure, and transferring knowledge on driving style. Improved driving and charging behaviour will lead to lower effective fuel consumption, reduced CO2 emissions and improved air quality. These are some of the results of this study in which it is examined how the performance of plug-in hybrids and cars with a range extender can be improved. It is the first study to look into the factors governing practical usage of such vehicles and the options available to the various parties to improve that usage. To this end a literature study was carried out and interviews were held with employers, leasing companies, trade associations, government agencies and other parties [Dutch] Om het potentieel van plug-in hybrides en elektrische auto's met een range extender te benutten is het van belang dat deze auto's zoveel mogelijk elektrisch worden gereden. Hiervoor is het nodig om het oplaad- en rijgedrag van de gebruikers positief te beïnvloeden. Dit kan door het geven van slimme financiële prikkels door werkgevers en overheid, het verder uitbreiden van de laadinfrastructuur en kennisoverdracht over rijgedrag. Een verbeterd rij- en laadgedrag zorgt voor een lager brandstofpraktijkverbruik, minder CO2-uitstoot en een betere luchtkwaliteit. Dit staat onder meer in de studie 'Opladen voor de toekomst van plug-in hybrides en range extenders' van CE Delft, waarin op verzoek van de Nederlandse importeurs van Toyota en Opel is onderzocht hoe het elektrisch gebruik kan worden verbeterd. Hierin is voor het eerst gekeken naar de factoren

  17. State of charge estimation for lithium-ion batteries based on extended Kalman filter optimized by fuzzy neural network%基于模糊神经网络优化扩展卡尔曼滤波的锂离子电池荷电状态估计

    Institute of Scientific and Technical Information of China (English)

    商云龙; 张承慧; 崔纳新; 张奇

    2016-01-01

    The accurate estimation for state of charge (SOC) is the important basis to prevent overcharge or overdis-charge of batteries, and is the important guarantee for the electric vehicle safety and reliability. In the traditional SOC estimation methods based on extended Kalman filter (EKF), the SOC estimation precision was highly dependent on an accurate battery model. To solve the above problems, an error prediction model was built based on fuzzy neural network (FNN), by which the measurement noise covariance of EKF was real-time revised. When the predicted model error was small, the measurement model was updated, otherwise, the process model was updated only. The simulation and experi-mental results show that the proposed algorithm can effectively eliminate the SOC estimation error caused by the model error and the uncertain noise statistical properties, with the maximum error of less than 1.2%. The proposed algorithm has good convergence and robustness, and is applicable to various complicated driving cycles for electric vehicles, with high application value.%电池荷电状态(state of charge, SOC)的精确估计是判断电池是否过充或过放的重要依据,是电动汽车安全、可靠运行的重要保障.传统基于扩展卡尔曼滤波(extended Kalman filter, EKF)的SOC估计方法过度依赖于精确的电池模型,并且要求系统噪声必须服从高斯白噪声分布.为解决上述问题,基于模糊神经网络(fuzzy neural network, FNN)建立模型误差预测模型,并藉此修正扩展卡尔曼滤波测量噪声协方差,以实现当模型误差较小时对状态估计进行测量更新,而当模型误差较大时只进行过程更新.仿真和实验结果表明,该算法能有效消除由于模型误差和测量噪声统计特性不确定而引入的SOC估计误差,误差在1.2%以内,并且具有较好的收敛性和鲁棒性,适用于电动汽车的各种复杂工况,应用价值较高.

  18. CO2 emissions associated with electric vehicle charging: The impact of electricity generation mix, charging infrastructure availability and vehicle type

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, Joyce; Miller, John; O’Shaughnessy, Eric; Wood, Eric; Shapiro, Evan

    2016-06-01

    The emission reduction benefits of EVs are dependent on the time and location of charging. An analysis of battery electric and plug-in hybrid vehicles under four charging scenarios and five electricity grid profiles shows that CO2 emissions are highly dependent on the percentage of fossil fuels in the grid mix. Availability of workplace charging generally results in lower emissions, while restricting charging to off-peak hours results in higher total emissions.

  19. Wearable textile battery rechargeable by solar energy.

    Science.gov (United States)

    Lee, Yong-Hee; Kim, Joo-Seong; Noh, Jonghyeon; Lee, Inhwa; Kim, Hyeong Jun; Choi, Sunghun; Seo, Jeongmin; Jeon, Seokwoo; Kim, Taek-Soo; Lee, Jung-Yong; Choi, Jang Wook

    2013-01-01

    Wearable electronics represent a significant paradigm shift in consumer electronics since they eliminate the necessity for separate carriage of devices. In particular, integration of flexible electronic devices with clothes, glasses, watches, and skin will bring new opportunities beyond what can be imagined by current inflexible counterparts. Although considerable progresses have been seen for wearable electronics, lithium rechargeable batteries, the power sources of the devices, do not keep pace with such progresses due to tenuous mechanical stabilities, causing them to remain as the limiting elements in the entire technology. Herein, we revisit the key components of the battery (current collector, binder, and separator) and replace them with the materials that support robust mechanical endurance of the battery. The final full-cells in the forms of clothes and watchstraps exhibited comparable electrochemical performance to those of conventional metal foil-based cells even under severe folding-unfolding motions simulating actual wearing conditions. Furthermore, the wearable textile battery was integrated with flexible and lightweight solar cells on the battery pouch to enable convenient solar-charging capabilities.

  20. Valve-regulated lead-acid batteries

    Science.gov (United States)

    Berndt, D.

    Valve-regulated lead-acid (VRLA) batteries with gelled electrolyte appeared as a niche market during the 1950s. During the 1970s, when glass-fiber felts became available as a further method to immobilize the electrolyte, the market for VRLA batteries expanded rapidly. The immobilized electrolyte offers a number of obvious advantages including the internal oxygen cycle which accommodates the overcharging current without chemical change within the cell. It also suppresses acid stratification and thus opens new fields of application. VRLA batteries, however, cannot be made completely sealed, but require a valve for gas escape, since hydrogen evolution and grid corrosion are unavoidable secondary reactions. These reactions result in water loss, and also must be balanced in order to ensure proper charging of both electrodes. Both secondary reactions have significant activation energies, and can reduce the service life of VRLA batteries, operated at elevated temperature. This effect can be aggravated by the comparatively high heat generation caused by the internal oxygen cycle during overcharging. Temperature control of VRLA batteries, therefore, is important in many applications.

  1. Multi-temperature state-dependent equivalent circuit discharge model for lithium-sulfur batteries

    DEFF Research Database (Denmark)

    Propp, Karsten; Marinescu, Monica; Auger, Daniel J.;

    2016-01-01

    -linear state-of-charge dependent Li-S equivalent circuit network (ECN) model for a Li-S cell under discharge. Li-S batteries are fundamentally different to Li-ion batteries, and require chemistry-specific models. A new Li-S model is obtained using a ‘behavioural’ interpretation of the ECN model; as Li......Lithium-sulfur (Li-S) batteries are described extensively in the literature, but existing computational models aimed at scientific understanding are too complex for use in applications such as battery management. Computationally simple models are vital for exploitation. This paper proposes a non...... pulse profile at four temperatures from 10 °C to 50 °C, giving linearized ECN parameters for a range of states-of-charge, currents and temperatures. These are used to create a nonlinear polynomial-based battery model suitable for use in a battery management system. When the model is used to predict...

  2. SOC EKF Estimation based on a Second-order LiFePO4 Battery Model

    Directory of Open Access Journals (Sweden)

    Zheng Zhu

    2013-08-01

    Full Text Available An accurate battery State of Charge (SOC estimation has great significance in improving battery life and vehicle performance. An improved second-order battery model is proposed in this paper through quantities of LiFePO4 battery experiments. The parameters of the model were acquired by the HPPC composite pulse condition under different temperature, charging and discharging rates, SOC. Based on the model, battery SOC is estimated by Extended Kalman Filter (EKF. Comparison of three different pulse conditions shows that the average error of SOC estimation of this algorithm is about 4.2%. The improved model is able to reflect the dynamic performance of batteries suitably, and the SOC estimation algorithm is provided with higher accuracy and better dynamic adaptability.

  3. A desalination battery.

    Science.gov (United States)

    Pasta, Mauro; Wessells, Colin D; Cui, Yi; La Mantia, Fabio

    2012-02-08

    Water desalination is an important approach to provide fresh water around the world, although its high energy consumption, and thus high cost, call for new, efficient technology. Here, we demonstrate the novel concept of a "desalination battery", which operates by performing cycles in reverse on our previously reported mixing entropy battery. Rather than generating electricity from salinity differences, as in mixing entropy batteries, desalination batteries use an electrical energy input to extract sodium and chloride ions from seawater and to generate fresh water. The desalination battery is comprised by a Na(2-x)Mn(5)O(10) nanorod positive electrode and Ag/AgCl negative electrode. Here, we demonstrate an energy consumption of 0.29 Wh l(-1) for the removal of 25% salt using this novel desalination battery, which is promising when compared to reverse osmosis (~ 0.2 Wh l(-1)), the most efficient technique presently available.

  4. A Desalination Battery

    KAUST Repository

    Pasta, Mauro

    2012-02-08

    Water desalination is an important approach to provide fresh water around the world, although its high energy consumption, and thus high cost, call for new, efficient technology. Here, we demonstrate the novel concept of a "desalination battery", which operates by performing cycles in reverse on our previously reported mixing entropy battery. Rather than generating electricity from salinity differences, as in mixing entropy batteries, desalination batteries use an electrical energy input to extract sodium and chloride ions from seawater and to generate fresh water. The desalination battery is comprised by a Na 2-xMn 5O 10 nanorod positive electrode and Ag/AgCl negative electrode. Here, we demonstrate an energy consumption of 0.29 Wh l -1 for the removal of 25% salt using this novel desalination battery, which is promising when compared to reverse osmosis (∼ 0.2 Wh l -1), the most efficient technique presently available. © 2012 American Chemical Society.

  5. Polyoxometalate flow battery

    Science.gov (United States)

    Anderson, Travis M.; Pratt, Harry D.

    2016-03-15

    Flow batteries including an electrolyte of a polyoxometalate material are disclosed herein. In a general embodiment, the flow battery includes an electrochemical cell including an anode portion, a cathode portion and a separator disposed between the anode portion and the cathode portion. Each of the anode portion and the cathode portion comprises a polyoxometalate material. The flow battery further includes an anode electrode disposed in the anode portion and a cathode electrode disposed in the cathode portion.

  6. Electronically configured battery pack

    Energy Technology Data Exchange (ETDEWEB)

    Kemper, D.

    1997-03-01

    Battery packs for portable equipment must sometimes accommodate conflicting requirements to meet application needs. An electronically configurable battery pack was developed to support two highly different operating modes, one requiring very low power consumption at a low voltage and the other requiring high power consumption at a higher voltage. The configurable battery pack optimizes the lifetime and performance of the system by making the best use of all available energy thus enabling the system to meet its goals of operation, volume, and lifetime. This paper describes the cell chemistry chosen, the battery pack electronics, and tradeoffs made during the evolution of its design.

  7. Battery Thermal Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Keyser, Matthew; Saxon, Aron; Powell, Mitchell; Shi, Ying

    2016-06-07

    This poster shows the progress in battery thermal characterization over the previous year. NREL collaborated with U.S. DRIVE and USABC battery developers to obtain thermal properties of their batteries, obtained heat capacity and heat generation of cells under various power profiles, obtained thermal images of the cells under various drive cycles, and used the measured results to validate thermal models. Thermal properties are used for the thermal analysis and design of improved battery thermal management systems to support achieve life and performance targets.

  8. Effect of polysulfone concentration on the performance of membrane-assisted lead acid battery

    OpenAIRE

    Ahmad Fauzi Ismail; Wan Ahmad Hafiz

    2002-01-01

    The application of lead acid battery in tropical countries normally faces the problem of water decomposition. This phenomenon is due to the factor of charge-discharge reaction in the battery and heat accumulation caused by hot tropical climate and heat generated from engine compartment. The objective of this study is to analyze the effect of polysulfone concentration on the performance of membrane-assisted lead-acid battery. Gas separation membranes, prepared through wet-dry phase inversion m...

  9. 3D Ordered Mesoporous Bifunctional Oxygen Catalyst for Electrically Rechargeable Zinc-Air Batteries.

    Science.gov (United States)

    Park, Moon Gyu; Lee, Dong Un; Seo, Min Ho; Cano, Zachary Paul; Chen, Zhongwei

    2016-05-01

    To enhance energy efficiency and durability, a highly active and durable 3D ordered mesoporous cobalt oxide framework has been developed for rechargeable zinc-air batteries. The bifunctional air electrode consisting of 3DOM Co3 O4 having high active surface area and robust structure, results in superior charge and discharge battery voltages, and durable performance for electrically rechargeable zinc-air batteries.

  10. N-phenylmaleimide as a New Ploymerizable Additive for Overcharge Protection of Lithium-ion Batteries

    Institute of Scientific and Technical Information of China (English)

    B.Wang; Q.Xia; Y.P.Wu

    2007-01-01

    1 Results In persuit of better safety controls of lithium batteries,much efforts has been focused on the development of the internal and self-actuating overcharge protection additives.We report a novel electropolymerizable electrolyte additive for overcharge protection of lithium batteries. Electrochemical properties and overcharge behavior of NPM as a new polymerizable electrolyte additive for overcharge protection of lithium ion batteries are studied by cyclic voltammetry,charge-discharge measurements...

  11. Thermal characteristics of Lithium-ion batteries

    Science.gov (United States)

    Hauser, Dan

    2004-01-01

    Lithium-ion batteries have a very promising future for space applications. Currently they are being used on a few GEO satellites, and were used on the two recent Mars rovers Spirit and Opportunity. There are still problem that exist that need to be addressed before these batteries can fully take flight. One of the problems is that the cycle life of these batteries needs to be increased. battery. Research is being focused on the chemistry of the materials inside the battery. This includes the anode, cathode, and the cell electrolyte solution. These components can undergo unwanted chemical reactions inside the cell that deteriorate the materials of the battery. During discharge/ charge cycles there is heat dissipated in the cell, and the battery heats up and its temperature increases. An increase in temperature can speed up any unwanted reactions in the cell. Exothermic reactions cause the temperature to increase; therefore increasing the reaction rate will cause the increase of the temperature inside the cell to occur at a faster rate. If the temperature gets too high thermal runaway will occur, and the cell can explode. The material that separates the electrode from the electrolyte is a non-conducting polymer. At high temperatures the separator will melt and the battery will be destroyed. The separator also contains small pores that allow lithium ions to diffuse through during charge and discharge. High temperatures can cause these pores to close up, permanently damaging the cell. My job at NASA Glenn research center this summer will be to perform thermal characterization tests on an 18650 type lithium-ion battery. High temperatures cause the chemicals inside lithium ion batteries to spontaneously react with each other. My task is to conduct experiments to determine the temperature that the reaction takes place at, what components in the cell are reacting and the mechanism of the reaction. The experiments will be conducted using an accelerating rate calorimeter

  12. Bipolar Ag-Zn battery

    Science.gov (United States)

    Giltner, L. John

    1994-02-01

    The silver-zinc (AgZn) battery system has been unique in its ability to safely satisfy high power demand applications with low mass and volume. However, a new generation of defense, aerospace, and commercial applications will impose even higher power demands. These new power demands can be satisfied by the development of a bipolar battery design. In this configuration the power consuming, interelectrode current conductors are eliminated while the current is then conducted via the large cross-section electrode substrate. Negative and positive active materials are applied to opposite sides of a solid silver foil substrate. In addition to reducing the weight and volume required for a specified power level, the output voltage performance is also improved as follows. Reduced weight through: elimination of the plastic cell container; elimination of plate leads and intercell connector; and elimination of internal plate current collector. Increased voltage through: elimination of resistance of current collector; elimination of resistance of plate lead; and elimination of resistance of intercell connector. EPI worked previously on development of a secondary bipolar silver zinc battery. This development demonstrated the electrical capability of the system and manufacturing techniques. One difficulty with this development was mechanical problems with the seals. However, recent improvements in plastics and adhesives should eliminate the major problem of maintaining a seal around the periphery of the bipolar module. The seal problem is not as significant for a primary battery application or for a requirement for only a few discharge cycles. A second difficulty encountered was with activation (introducing electrolyte into the cell) and with venting gas from the cell without loss of electrolyte. During previous work, the following projections for energy density were made from test data for a high power system which demonstrated in excess of 50 discharge/charge cycles. Projected

  13. Li-Ion Battery and Supercapacitor Hybrid Design for Long Extravehicular Activities

    Science.gov (United States)

    Jeevarajan, Judith

    2013-01-01

    With the need for long periods of extravehicular activities (EVAs) on the Moon or Mars or a near-asteroid, the need for long-performance batteries has increased significantly. The energy requirements for the EVA suit, as well as surface systems such as rovers, have increased significantly due to the number of applications they need to power at the same time. However, even with the best state-of-the-art Li-ion batteries, it is not possible to power the suit or the rovers for the extended period of performance. Carrying a charging system along with the batteries makes it cumbersome and requires a self-contained power source for the charging system that is usually not possible. An innovative method to charge and use the Li-ion batteries for long periods seems to be necessary and hence, with the advent of the Li-ion supercapacitors, a method has been developed to extend the performance period of the Li-ion power system for future exploration applications. The Li-ion supercapacitors have a working voltage range of 3.8 to 2.5 V, and are different from a traditional supercapacitor that typically has a working voltage of 1 V. The innovation is to use this Li-ion supercapacitor to charge Liion battery systems on an as-needed basis. The supercapacitors are charged using solar arrays and have battery systems of low capacity in parallel to be able to charge any one battery system while they provide power to the application. Supercapacitors can safely take up fast charge since the electrochemical process involved is still based on charge separation rather than the intercalation process seen in Li-ion batteries, thus preventing lithium metal deposition on the anodes. The lack of intercalation and eliminating wear of the supercapacitors allows for them to be charged and discharged safely for a few tens of thousands of cycles. The Li-ion supercapacitors can be charged from the solar cells during the day during an extended EVA. The Liion battery used can be half the capacity

  14. An Electric Bus with a Battery Exchange System

    Directory of Open Access Journals (Sweden)

    Jeongyong Kim

    2015-07-01

    Full Text Available As part of the ongoing effort to be independent of petroleum resources and to be free from pollutant emission issues, various electric vehicles have been developed and tested through their integration with real world systems. In the current paper, yet another application specific EV for public transportation, an electric bus, is introduced and explained with results from the pilot test program which was carried out under real traffic conditions. The main feature of the current system is a battery exchanging mechanism mounted on the roof of the bus. The current configuration certainly requires an externally fabricated battery exchanging robot system that would complement the electric bus for a fully automated battery exchanging process. The major advantage of the current system is the quick re-charging of the electric energy through the physical battery exchange and the possible utilization of the battery exchange station as a mini scale energy storage system for grid system peak power shaving. With the total system solution approach for the public transportation system, it is fully expected to create outstanding business opportunities in number of areas such as battery suppliers, battery exchanging station management, battery leasing and many more.

  15. Research on Eliminate Micro-Shorted MH/Ni Batteries

    Institute of Scientific and Technical Information of China (English)

    Liang Wanlong; Zhang Zhong; Xu Shaoping; Ma Yijun

    2004-01-01

    There are two methods for selecting micro-shorted MH/Ni batteries out from all formationed.cells.One is to judge by the decrease of open circuit voltage which takes longer standing time to eliminate efficiently and does not work very well when the coverage of open circuit voltage is big.Another is to judge by discharge capacity of charged cells, this can not only meet the requirement of MH/Ni battery stored in charged state, but also has the advantages of being easier to read out, good accuracy and taking shorting standing time etc, is a proper way to be used on the production line.

  16. Analysis of heat generation of lithium ion rechargeable batteries used in implantable battery systems for driving undulation pump ventricular assist device.

    Science.gov (United States)

    Okamoto, Eiji; Nakamura, Masatoshi; Akasaka, Yuhta; Inoue, Yusuke; Abe, Yusuke; Chinzei, Tsuneo; Saito, Itsuro; Isoyama, Takashi; Mochizuki, Shuichi; Imachi, Kou; Mitamura, Yoshinori

    2007-07-01

    We have developed internal battery systems for driving an undulation pump ventricular assist device using two kinds of lithium ion rechargeable batteries. The lithium ion rechargeable batteries have high energy density, long life, and no memory effect; however, rise in temperature of the lithium ion rechargeable battery is a critical issue. Evaluation of temperature rise by means of numerical estimation is required to develop an internal battery system. Temperature of the lithium ion rechargeable batteries is determined by ohmic loss due to internal resistance, chemical loss due to chemical reaction, and heat release. Measurement results of internal resistance (R(cell)) at an ambient temperature of 37 degrees C were 0.1 Omega in the lithium ion (Li-ion) battery and 0.03 Omega in the lithium polymer (Li-po) battery. Entropy change (DeltaS) of each battery, which leads to chemical loss, was -1.6 to -61.1 J/(mol.K) in the Li-ion battery and -9.6 to -67.5 J/(mol.K) in the Li-po battery depending on state of charge (SOC). Temperature of each lithium ion rechargeable battery under a discharge current of 1 A was estimated by finite element method heat transfer analysis at an ambient temperature of 37 degrees C configuring with measured R(cell) and measured DeltaS in each SOC. Results of estimation of time-course change in the surface temperature of each battery coincided with results of measurement results, and the success of the estimation will greatly contribute to the development of an internal battery system using lithium ion rechargeable batteries.

  17. Effects of iron phthalocyanine on performance of MH/Ni battery

    Institute of Scientific and Technical Information of China (English)

    王芳; 吴锋

    2004-01-01

    Oxygen evolution causes a high inner pressure during charge and overcharge for MH/Ni battery, and an inappropriate eliminating way of the oxygen in the battery results in accumulation of heat. This is the main obstacle to develop and apply high capability and high power battery. How to reduce the ratio of the chemical catalysis rate to the electric catalysis rate in MH/Ni battery is considered as an urgent question. Iron phthalocyanine(FePc) was chosen as an electrochemical catalyst. The batteries were prepared by adding iron phthalocyanine with different dosages. The inner pressure, the capacity attenuation, the discharge voltage and capacity at high current of these three batteries were compared. The battery with 1 mg FePc in the negative electrode exhibits a good performance.

  18. Advanced High Energy Density Secondary Batteries with Multi-Electron Reaction Materials.

    Science.gov (United States)

    Chen, Renjie; Luo, Rui; Huang, Yongxin; Wu, Feng; Li, Li

    2016-10-01

    Secondary batteries have become important for smart grid and electric vehicle applications, and massive effort has been dedicated to optimizing the current generation and improving their energy density. Multi-electron chemistry has paved a new path for the breaking of the barriers that exist in traditional battery research and applications, and provided new ideas for developing new battery systems that meet energy density requirements. An in-depth understanding of multi-electron chemistries in terms of the charge transfer mechanisms occuring during their electrochemical processes is necessary and urgent for the modification of secondary battery materials and development of secondary battery systems. In this Review, multi-electron chemistry for high energy density electrode materials and the corresponding secondary battery systems are discussed. Specifically, four battery systems based on multi-electron reactions are classified in this review: lithium- and sodium-ion batteries based on monovalent cations; rechargeable batteries based on the insertion of polyvalent cations beyond those of alkali metals; metal-air batteries, and Li-S batteries. It is noted that challenges still exist in the development of multi-electron chemistries that must be overcome to meet the energy density requirements of different battery systems, and much effort has more effort to be devoted to this.

  19. A battery chemistry-adaptive fuel gauge using probabilistic data association

    Science.gov (United States)

    Avvari, G. V.; Balasingam, B.; Pattipati, K. R.; Bar-Shalom, Y.

    2015-01-01

    This paper considers the problem of state of charge (SOC) tracking in Li-ion batteries when the battery chemistry is unknown. It is desirable for a battery fuel gauge (BFG) to be able to perform without any offline characterization or calibration on sample batteries. All the existing approaches for battery fuel gauging require at least one set of parameters, a set of open circuit voltage (OCV) parameters, that need to be estimated offline. Further, a BFG with parameters from offline characterization will be accurate only for a "known" battery chemistry. A more desirable BFG is one that is accurate for "any" battery chemistry. In this paper, we show that by storing finite sets of OCV parameters of possible batteries, we can derive a generalized BFG using the probabilistic data association (PDA) algorithm. The PDA algorithm starts by assigning prior model probabilities (typically equal) for all the possible models in the library and recursively updates those probabilities based on the voltage and current measurements. In the event of an unknown battery to be gauged, the PDA algorithm selects the most similar OCV model to the battery from the library. We also demonstrate a strategy to select the minimum sets of OCV parameters representing a large number of Li-ion batteries. The proposed approaches are demonstrated using data from portable Li-ion batteries.

  20. High cycling stability of zinc-anode/conducting polymer rechargeable battery with non-aqueous electrolyte

    Science.gov (United States)

    Guerfi, A.; Trottier, J.; Boyano, I.; De Meatza, I.; Blazquez, J. A.; Brewer, S.; Ryder, K. S.; Vijh, A.; Zaghib, K.

    2014-02-01

    A non-aqueous zinc-polyaniline secondary battery was fabricated with polyaniline Emeraldine base as cathode and zinc metal as anode in an electrolyte consisting of 0.3 M zinc-bis(trifluoromethyl-sulfonyl)imide Zn(TFSI)2 dissolved in propylene carbonate. We observed that the formation of the battery required a prerequisite condition to stabilize the interfaces in order to maintain a stable capacity. The battery suffered from Zn dissolution which induces a competition between concurrent Zn dissolution and plating when the battery is in charge mode, and thus inefficient cycles are obtained. The capacity and coulombic efficiency of the battery depends on the charge-discharge rates. We propose cycling protocols at different rates to determine the steady-state rates of competing reactions. When the cell is cycled at ≥1 C rate, the coulombic efficiency improves. The maximum capacity and energy densities of the battery are 148 mAhg-1 and 127 mWhg-1, respectively for discharge at C/2. The battery was successively charged/discharged at constant current densities (1C rate), and high cycling stability was obtained for more than 1700 cycles at 99.8% efficiency. Zinc dissolution and self discharge of the battery were investigated after 24 h of standby. The investigation showed that the battery experiences a severe self-discharge of 48% per day.

  1. Five Ministries and Commissions Discussed Abolishing the 5% Consumption Tax on Lead Battery

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>Wang Jinliang, the vice-chairman of China Battery Industry Association, said that recently the five ministries and commissions have been discussing on drawing concrete plans, with China’s Ministry of Industry and Information Technology taking the lead. In view of the status quo of lead-acid battery industry, the ministry prefers charging no or little consumption

  2. The AC Impedance Characteristic of High Power Li4Ti5O12-based Battery Cells

    DEFF Research Database (Denmark)

    Stroe, Ana-Irina; Stroe, Daniel Loan; Swierczynski, Maciej Jozef;

    2015-01-01

    This paper studies the impedance characteristics of a fresh 13 Ah high-power lithium titanate oxide (LTO) battery cell and analyses its dependence on the temperature and state-of-charge. The impedance of the battery cell was measured by means of the electrochemical impedance spectroscopy (EIS...

  3. Pulse Power Capability Estimation of Lithium Titanate Oxide-based Batteries

    DEFF Research Database (Denmark)

    Stroe, Ana-Irina; Swierczynski, Maciej Jozef; Stroe, Daniel Loan;

    2016-01-01

    , this paper analyzes the power capability characteristic of a 13Ah high power Lithium Titanate Oxide-based battery and its dependence on temperature, load current and state-of-charge. Furthermore, a model to predict the discharging PPC of the battery cell at different temperatures and load currents for three...

  4. Impedance-Based Battery Management for Metal-O2 Systems

    DEFF Research Database (Denmark)

    Christensen, Andreas Elkjær; Højberg, Jonathan; Norby, Poul

    2015-01-01

    In electric vehicles, reliable estimation of the state-of-charge (SoC) is crucial to determine the remaining capacity, but the electrochemical processes in metal-O2 batteries are very different to the Li-ion batteries used today, and current SoC-estimation methods prove insufficient. In Li-O2 bat...

  5. Fusion analysis of MH-Ni batteries characteristics by neural network data fusion method

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Presents the fusion analysis of the charging and dischargingcharacteristics of MH-Ni batteries in wide applications by neural network data fusion method to generate a specific vector and the use of this specific vector for selection of MH-Ni batteries, and the comparison of two results of selection.

  6. Communications: Elementary oxygen electrode reactions in the aprotic Li-air battery

    DEFF Research Database (Denmark)

    Hummelshøj, Jens Strabo; Blomquist, Jakob; Datta, Soumendu;

    2010-01-01

    We discuss the electrochemical reactions at the oxygen electrode of an aprotic Li-air battery. Using density functional theory to estimate the free energy of intermediates during the discharge and charge of the battery, we introduce a reaction free energy diagram and identify possible origins...

  7. 一次锂-亚硫酰氯电池电化学阻抗谱与荷电状态%Electrochemical Impedance Spectra and State-of-charge Analysis of Lithium-Thionyl Chloride Primary Batteries

    Institute of Scientific and Technical Information of China (English)

    缑玲玲; 袁中直; 钟清华; 刘金成

    2007-01-01

    The EIS of Li/SOCl2 batteries (3.6V/1.2Ah) were measured at various SOC in the frequency range 20kHz~5mHz. It was found that the EIS altered with strong regularity during the discharge, which externalized the two semicircles becoming bigger gradually, as well as the secondary semicircle drifting upwards gradually. It is possible to use the EIS alter characteristics for estimating the cell's SOC. The most informative parameters for the SOC test in the region 40%~0% are the ImZ*, log (Z*) and phaseθ*on the extreme point of an EIS.%对Li/SOCl2实体电池不同荷电状态下电池电化学阻抗谱测试,结果表明,电池阻抗谱变化有很好的规律,主要体现在阻抗谱中两个圆弧的先较小后增大.这就有可能根据电池EIS谱局部变化特征来预测电池的荷电状态.在电池荷电状态≤40%时,其有效预测参数为阻抗谱高频端圆弧最高点对应的ImZ*, log (Z*) 及相角θ*.

  8. Non-Flammable, High Voltage Electrolytes for Lithium Ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An electrolyte will be demonstrated for lithium ion batteries with increased range of charge and discharge voltages and with improved fire safety. Experimental...

  9. Bipolar Transistors Can Detect Charge in Electrostatic Experiments

    Science.gov (United States)

    Dvorak, L.

    2012-01-01

    A simple charge indicator with bipolar transistors is described that can be used in various electrostatic experiments. Its behaviour enables us to elucidate links between 'static electricity' and electric currents. In addition it allows us to relate the sign of static charges to the sign of the terminals of an ordinary battery. (Contains 7 figures…

  10. Ecological and biomedical effects of effluents from near-term electric vehicle storage battery cycles

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    An assessment of the ecological and biomedical effects due to commercialization of storage batteries for electric and hybrid vehicles is given. It deals only with the near-term batteries, namely Pb/acid, Ni/Zn, and Ni/Fe, but the complete battery cycle is considered, i.e., mining and milling of raw materials, manufacture of the batteries, cases and covers; use of the batteries in electric vehicles, including the charge-discharge cycles; recycling of spent batteries; and disposal of nonrecyclable components. The gaseous, liquid, and solid emissions from various phases of the battery cycle are identified. The effluent dispersal in the environment is modeled and ecological effects are assessed in terms of biogeochemical cycles. The metabolic and toxic responses by humans and laboratory animals to constituents of the effluents are discussed. Pertinent environmental and health regulations related to the battery industry are summarized and regulatory implications for large-scale storage battery commercialization are discussed. Each of the seven sections were abstracted and indexed individually for EDB/ERA. Additional information is presented in the seven appendixes entitled; growth rate scenario for lead/acid battery development; changes in battery composition during discharge; dispersion of stack and fugitive emissions from battery-related operations; methodology for estimating population exposure to total suspended particulates and SO/sub 2/ resulting from central power station emissions for the daily battery charging demand of 10,000 electric vehicles; determination of As air emissions from Zn smelting; health effects: research related to EV battery technologies. (JGB)

  11. Silicon Betavoltaic Batteries Structures

    Directory of Open Access Journals (Sweden)

    V.N. Murashev

    2015-12-01

    Full Text Available For low-power miniature energy creation sources the particular interest is nickel Ni63. This paper discusses the main types of betavoltaic battery structures with the prospects for industrial application using - isotope of nickel Ni63. It is shown that the prospects for improving the effective efficiency are planar multijunction betavoltaic batteries.

  12. Computing Battery Lifetime Distributions

    NARCIS (Netherlands)

    Cloth, Lucia; Jongerden, Marijn R.; Haverkort, Boudewijn R.

    2007-01-01

    The usage of mobile devices like cell phones, navigation systems, or laptop computers, is limited by the lifetime of the included batteries. This lifetime depends naturally on the rate at which energy is consumed, however, it also depends on the usage pattern of the battery. Continuous drawing of a

  13. Hydrophobic, Porous Battery Boxes

    Science.gov (United States)

    Bragg, Bobby J.; Casey, John E., Jr.

    1995-01-01

    Boxes made of porous, hydrophobic polymers developed to contain aqueous potassium hydroxide electrolyte solutions of zinc/air batteries while allowing air to diffuse in as needed for operation. Used on other types of batteries for in-cabin use in which electrolytes aqueous and from which gases generated during operation must be vented without allowing electrolytes to leak out.

  14. Battery energy storage system

    NARCIS (Netherlands)

    Tol, C.S.P.; Evenblij, B.H.

    2009-01-01

    The ability to store electrical energy adds several interesting features to a ships distribution network, as silent power, peak shaving and a ride through in case of generator failure. Modern intrinsically safe Li-ion batteries bring these within reach. For this modern lithium battery applications t

  15. Battery thermal management unit

    Science.gov (United States)

    Sanders, Nicholas A.

    1989-03-01

    A battery warming device has been designed which uses waste heat from an operating internal combustion engine to warm a battery. A portion of the waste heat is stored in the sensible and latent heat of a phase change type material for use in maintaining the battery temperature after the engine is shut off. The basic design of the device consists of a Phase Change Material (PCM) reservoir and a simple heat exchanger connected to the engineer's cooling system. Two types of units were built, tested and field trialed. A strap-on type which was strapped to the side of an automotive battery and was intended for the automotive after-market and a tray type on which a battery or batteries sat. This unit was intended for the heavy duty truck market. It was determined that both types of units increased the average cranking power of the batteries they were applied to. Although there were several design problems with the units such as the need for an automatic thermostatically controlled bypass valve, the overall feeling is that there is a market opportunity for both the strap-on and tray type battery warming units.

  16. Defective graphene as promising anode material for Na-ion battery and Ca-ion battery

    CERN Document Server

    Datta, Dibakar; Shenoy, Vivek B

    2013-01-01

    We have investigated adsorption of Na and Ca on graphene with divacancy (DV) and Stone-Wales (SW) defect. Our results show that adsorption is not possible on pristine graphene. However, their adsorption on defective sheet is energetically favorable. The enhanced adsorption can be attributed to the increased charge transfer between adatoms and underlying defective sheet. With the increase in defect density until certain possible limit, maximum percentage of adsorption also increases giving higher battery capacity. For maximum possible DV defect, we can achieve maximum capacity of 1459 mAh/g for Na-ion batteries (NIBs) and 2900 mAh/g for Ca-ion batteries (CIBs). For graphene full of SW defect, we find the maximum capacity of NIBs and CIBs is around 1071 mAh/g and 2142 mAh/g respectively. Our results will help create better anode materials with much higher capacity and better cycling performance for NIBs and CIBs.

  17. A comparison of iron phthalocyanine and cobalt porphyrin on the electrochemical catalysis in Ni-MH battery

    Institute of Scientific and Technical Information of China (English)

    WANG Fang; WU Feng; CHEN Shi; QIU XinPing; CHEN LiQuan

    2007-01-01

    The effects of iron phthalocyanine (FePc) and cobalt porphyrin (CoPp) on inner pressure and cycle behavior of sealed Ni-MH batteries were investigated in this study. The morphology of battery electrode was observed by SEM. The electrochemical impedance spectroscopy of floating-charge/discharge battery was also measured. Experimental results show that the addition of FePc or CoPp to the alloy electrode is an effective approach to decrease the internal pressure of battery during the process of charge and overcharge. In contrast to CoPp, the battery with FePc exhibits a slower capacity decay and a smaller overpotential at the same charge-discharge rate. As an electrocatalyst, FePc may more effectively speed up the reduction of oxygen, and decrease its reduction potential. As a result, the charge process is accelerated, the gas evolution is reduced and the pulverization of electrode materials is slowed down.

  18. Battery Resistance Analysis of ISS Power System

    Science.gov (United States)

    Newstadt, Gregory E.

    2004-01-01

    The computer package, SPACE (Systems Power Analysis for Capability Evaluation) was created by the members of LT-9D to perform power analysis and modeling of the electrical power system on the International Space Station (ISS). Written in FORTRAN, SPACE comprises thousands of lines of code and has been used profficiently in analyzing missions to the ISS. LT-9D has also used its expertise recently to investigate the batteries onboard the Hubble telescope. During the summer of 2004, I worked with the members of LT-9D, under the care of Dave McKissock. Solar energy will power the ISS through eight solar arrays when the ISS is completed, although only two arrays are currently connected. During the majority of the periods of sunlight, the solar arrays provide enough energy for the ISS. However, rechargeable Nickel-Hydrogen batteries are used during eclipse periods or at other times when the solar arrays cannot be used (at docking for example, when the arrays are turned so that they will not be damaged by the Shuttle). Thirty-eight battery cells are connected in series, which make up an ORU (Orbital Replacement Unit). An ISS "battery" is composed of two ORUs. a great deal of time into finding the best way to represent them in SPACE. During my internship, I investigated the resistance of the ISS batteries. SPACE constructs plots of battery charge and discharge voltages vs. time using a constant current. To accommodate for a time-varying current, the voltages are adjusted using the formula, DeltaV = DeltaI * Cell Resistance. To enhance our model of the battery resistance, my research concentrated on several topics: investigating the resistance of a qualification unit battery (using data gathered by LORAL), comparing the resistance of the qualification unit to SPACE, looking at the internal resistance and wiring resistance, and examining the impact of possible recommended changes to SPACE. The ISS batteries have been found to be very difficult to model, and LT-9D has

  19. Expansion of Lithium Ion Pouch Cell Batteries: Observations from Neutron Imaging

    Science.gov (United States)

    2012-12-21

    electrolyte interface (SEI), and one which is reversible and follows the battery state of charge, expanding upon charging [4]. They attributed the...National Institute for Standards and Technology (NIST) Center for Neutron Research. The collimated neutron beam originates from a 20MW reactor , which...electrodes stacked inside the pouch and electrically connected in parallel. The batteries were then filled with electrolyte , sealed, formed (cycled

  20. Battery Pack Thermal Design

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad

    2016-06-14

    This presentation describes the thermal design of battery packs at the National Renewable Energy Laboratory. A battery thermal management system essential for xEVs for both normal operation during daily driving (achieving life and performance) and off-normal operation during abuse conditions (achieving safety). The battery thermal management system needs to be optimized with the right tools for the lowest cost. Experimental tools such as NREL's isothermal battery calorimeter, thermal imaging, and heat transfer setups are needed. Thermal models and computer-aided engineering tools are useful for robust designs. During abuse conditions, designs should prevent cell-to-cell propagation in a module/pack (i.e., keep the fire small and manageable). NREL's battery ISC device can be used for evaluating the robustness of a module/pack to cell-to-cell propagation.

  1. Electrolytes for advanced batteries

    Energy Technology Data Exchange (ETDEWEB)

    Blomgren, G.E. [Energizer, Westlake, OH (United States)

    1999-09-01

    The choices of the components of the electrolyte phase for advanced batteries (lithium and lithium ion batteries) are very sensitive to the electrodes which are used. There are also a number of other requirements for the electrolyte phase, which depend on the cell design and the materials chosen for the battery. The difficulty of choice is compounded when the cell is a rechargeable one. This paper looks at each of these requirements and the degree to which they are met for lithium and lithium ion batteries. The discussion is broken into sections on anode or negative electrode stability requirements, cathode or positive electrode stability requirements, conductivity needs, viscosity and wetting requirements. The effects of these properties and interactions on the performance of batteries are also discussed. (orig.)

  2. CHARGE syndrome

    Directory of Open Access Journals (Sweden)

    Prasad Chitra

    2006-09-01

    Full Text Available Abstract CHARGE syndrome was initially defined as a non-random association of anomalies (Coloboma, Heart defect, Atresia choanae, Retarded growth and development, Genital hypoplasia, Ear anomalies/deafness. In 1998, an expert group defined the major (the classical 4C's: Choanal atresia, Coloboma, Characteristic ears and Cranial nerve anomalies and minor criteria of CHARGE syndrome. Individuals with all four major characteristics or three major and three minor characteristics are highly likely to have CHARGE syndrome. However, there have been individuals genetically identified with CHARGE syndrome without the classical choanal atresia and coloboma. The reported incidence of CHARGE syndrome ranges from 0.1–1.2/10,000 and depends on professional recognition. Coloboma mainly affects the retina. Major and minor congenital heart defects (the commonest cyanotic heart defect is tetralogy of Fallot occur in 75–80% of patients. Choanal atresia may be membranous or bony; bilateral or unilateral. Mental retardation is variable with intelligence quotients (IQ ranging from normal to profound retardation. Under-development of the external genitalia is a common finding in males but it is less apparent in females. Ear abnormalities include a classical finding of unusually shaped ears and hearing loss (conductive and/or nerve deafness that ranges from mild to severe deafness. Multiple cranial nerve dysfunctions are common. A behavioral phenotype for CHARGE syndrome is emerging. Mutations in the CHD7 gene (member of the chromodomain helicase DNA protein family are detected in over 75% of patients with CHARGE syndrome. Children with CHARGE syndrome require intensive medical management as well as numerous surgical interventions. They also need multidisciplinary follow up. Some of the hidden issues of CHARGE syndrome are often forgotten, one being the feeding adaptation of these children, which needs an early aggressive approach from a feeding team. As the child

  3. High-energy X-ray powder diffraction and atomic-pair distribution-function studies of charged/discharged structures in carbon-hybridized Li2MnSiO4 nanoparticles as a cathode material for lithiumion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, Maki; Miyahara, Masahiko; Hokazono, Mana; Sasaki, Hirokazu; Nemoto, Atsushi; Katayama, Shingo; Akimoto, Yuji; Hirano, Shin-ichi; Ren, Yang

    2014-10-01

    The stable cycling performance with a high discharge capacity of similar to 190 mAh g(-1) in a carbon-hybridized Li2MnSiO4 nanostructured powder has prompted an experimental investigation of the charged/discharged structures using synchrotron-based and laboratory-based X-rays and atomic-pair distributionfunction (PDF) analyses. A novel method of in-situ spray pyrolysis of a precursor solution with glucose as a carbon source enabled the successful synthesis of the carbon-hybridized Li2(M)nSiO(4) nanoparticles. The XRD patters of the discharged (lithiated) samples exhibit a long-range ordered structure characteristic of the (beta) Li2MnSiO4 crystalline phase (space group Pmn2(1)) which dissipates in the charged (delithiated) samples. However, upon discharging the long-range ordered structure recovers in each cycle. The disordered structure, according to the PDF analysis, is mainly due to local distortions of the MnO4 tetrahedra which show a mean Mn-O nearest neighbor distance shorter than that of the long-range ordered phase. These results corroborate the notion of the smaller Mn3+/Mn4+ ionic radii in the Li extracted phase versus the larger Mn2+ ionic radius in Li inserted phase. Thus Li extraction/insertion drives the fluctuation between the disordered and the long-range ordered structures. (C) 2014 Elsevier B.V. All rights reserved.

  4. Modeling and simulation of the zinc-nickel single flow batteries based on MATLAB/Simulink

    Science.gov (United States)

    Yao, Shouguang; Liao, Peng; Xiao, Min; Cheng, Jie; He, Ke

    2016-12-01

    Based on the working principle of the zinc-nickel single flow batteries (ZNBs), this paper builds the electrochemical model and mechanical model, analyzes the effect of electrolyte flux on the battery performance and obtains a single cell with a 216 Ah charge-discharge capacity as an example, and thereafter conducts a simulation to obtain several results under the condition of constant current charge and discharge. The simulation results are well matched in comparison with the experimental results. An optimal flux exists during the charge and discharge, which indicates that the model can well simulate the charge and discharge characteristics of the ZNBs under the condition of constant current.

  5. A Multi-Point Sensor Based on Optical Fiber for the Measurement of Electrolyte Density in Lead-Acid Batteries

    Science.gov (United States)

    Cao-Paz, Ana M.; Marcos-Acevedo, Jorge; del Río-Vázquez, Alfredo; Martínez-Peñalver, Carlos; Lago-Ferreiro, Alfonso; Nogueiras-Meléndez, Andrés A.; Doval-Gandoy, Jesús

    2010-01-01

    This article describes a multi-point optical fiber-based sensor for the measurement of electrolyte density in lead-acid batteries. It is known that the battery charging process creates stratification, due to the different densities of sulphuric acid and water. In order to study this process, density measurements should be obtained at different depths. The sensor we describe in this paper, unlike traditional sensors, consists of several measurement points, allowing density measurements at different depths inside the battery. The obtained set of measurements helps in determining the charge (SoC) and state of health (SoH) of the battery. PMID:22319262

  6. Effects of Exchanging Battery on the Electric Vehicle’s Electricity Consumption in a Single-Lane Traffic System

    Directory of Open Access Journals (Sweden)

    Shi-Chun Yang

    2014-01-01

    Full Text Available We propose a car-following model to explore the influences of exchanging battery on each vehicle’s electricity consumption under three traffic situations from the numerical perspective. The numerical results show that exchanging battery will destroy the stability of traffic flow, but the effects are related to each vehicle’s initial headway, the time that each electric vehicle exchanges the battery, the proportion of the electric vehicles that should exchange the battery, the number of charging stations, and the distance between two adjacent charging stations.

  7. Modeling and Analyzing Electric Vehicle Charging

    DEFF Research Database (Denmark)

    Andersen, Ove; Krogh, Benjamin Bjerre; Thomsen, Christian

    2017-01-01

    The combined battery capacity in electric vehicles (EVs) is considered an integral part of balancing a smart power grid in the future. In addition, EVs can reduce the usage of fossil fuels in the transport sector because EVs can be charged using electricity from renewable energy sources......, such as wind turbines. To both enable a smart grid and the use of renewable energy, it is essential to know when and where an EV is plugged into the power grid and what battery capacity is available. In this paper, we present a generic spatio-temporal data-warehouse model for storing detailed information...... on all aspects of charging EVs, including integration with the electricity prices from a spot market. The proposed data warehouse is fully implemented and currently contains 2.5 years of charging data from 176 EVs. We describe the date warehouse model and the implementation including complex operations...

  8. Pulse-Based Fast Battery IoT Charger Using Dynamic Frequency and Duty Control Techniques Based on Multi-Sensing of Polarization Curve

    Directory of Open Access Journals (Sweden)

    Meng Di Yin

    2016-03-01

    Full Text Available The pulse-based charging method for battery cells has been recognized as a fast and efficient way to overcome the shortcoming of a slow charging time in distributed battery cells, which is regarded as a connection of cells such as the Internet of Things (IoT. The pulse frequency for controlling the battery charge duration is dynamically controlled within a certain range in order to inject the maximum charge current into the battery cells. The optimal frequency is determined in order to minimize battery impedance. The adaptation of the proposed pulse duty and frequency decreases the concentration of the polarization by sensing the runtime characteristics of battery cells so that it guarantees a certain level of safety in charging the distributed battery cells within the operating temperature range of 5–45 °C. The sensed terminal voltage and temperature of battery cells are dynamically monitored while the battery is charging so as to adjust the frequency and duty of the proposed charging pulse method, thereby preventing battery degradation. The evaluation results show that a newly designed charging algorithm for the implemented charger system is about 18.6% faster than the conventional constant-current (CC charging method with the temperature rise within a reasonable range. The implemented charger system, which is based on the proposed dynamic frequency and duty control by considering the cell polarization, charges to about 80% of its maximum capacity in less than 56 min and involves a 13 °C maximum temperature rise without damaging the battery.

  9. Extending battery life: A low-cost practical diagnostic technique for lithium-ion batteries

    Science.gov (United States)

    Merla, Yu; Wu, Billy; Yufit, Vladimir; Brandon, Nigel P.; Martinez-Botas, Ricardo F.; Offer, Gregory J.

    2016-11-01

    Modern applications of lithium-ion batteries such as smartphones, hybrid & electric vehicles and grid scale electricity storage demand long lifetime and high performance which typically makes them the limiting factor in a system. Understanding the state-of-health during operation is important in order to optimise for long term durability and performance. However, this requires accurate in-operando diagnostic techniques that are cost effective and practical. We present a novel diagnosis method based upon differential thermal voltammetry demonstrated on a battery pack made from commercial lithium-ion cells where one cell was deliberately aged prior to experiment. The cells were in parallel whilst being thermally managed with forced air convection. We show for the first time, a diagnosis method capable of quantitatively determining the state-of-health of four cells simultaneously by only using temperature and voltage readings for both charge and discharge. Measurements are achieved using low-cost thermocouples and a single voltage measurement at a frequency of 1 Hz, demonstrating the feasibility of implementing this approach on real world battery management systems. The technique could be particularly useful under charge when constant current or constant power is common, this therefore should be of significant interest to all lithium-ion battery users.

  10. Charged Leptons

    CERN Document Server

    Albrecht, J; Babu, K; Bernstein, R H; Blum, T; Brown, D N; Casey, B C K; Cheng, C -h; Cirigliano, V; Cohen, A; Deshpande, A; Dukes, E C; Echenard, B; Gaponenko, A; Glenzinski, D; Gonzalez-Alonso, M; Grancagnolo, F; Grossman, Y; Harnik, R; Hitlin, D G; Kiburg, B; Knoepfe, K; Kumar, K; Lim, G; Lu, Z -T; McKeen, D; Miller, J P; Ramsey-Musolf, M; Ray, R; Roberts, B L; Rominsky, M; Semertzidis, Y; Stoeckinger, D; Talman, R; Van De Water, R; Winter, P

    2013-01-01

    This is the report of the Intensity Frontier Charged Lepton Working Group of the 2013 Community Summer Study "Snowmass on the Mississippi", summarizing the current status and future experimental opportunities in muon and tau lepton studies and their sensitivity to new physics. These include searches for charged lepton flavor violation, measurements of magnetic and electric dipole moments, and precision measurements of the decay spectrum and parity-violating asymmetries.

  11. Hierarchically structured nanocarbon electrodes for flexible solid lithium batteries

    KAUST Repository

    Wei, Di

    2013-09-01

    The ever increasing demand for storage of electrical energy in portable electronic devices and electric vehicles is driving technological improvements in rechargeable batteries. Lithium (Li) batteries have many advantages over other rechargeable battery technologies, including high specific energy and energy density, operation over a wide range of temperatures (-40 to 70. °C) and a low self-discharge rate, which translates into a long shelf-life (~10 years) [1]. However, upon release of the first generation of rechargeable Li batteries, explosions related to the shorting of the circuit through Li dendrites bridging the anode and cathode were observed. As a result, Li metal batteries today are generally relegated to non-rechargeable primary battery applications, because the dendritic growth of Li is associated with the charging and discharging process. However, there still remain significant advantages in realizing rechargeable secondary batteries based on Li metal anodes because they possess superior electrical conductivity, higher specific energy and lower heat generation due to lower internal resistance. One of the most practical solutions is to use a solid polymer electrolyte to act as a physical barrier against dendrite growth. This may enable the use of Li metal once again in rechargeable secondary batteries [2]. Here we report a flexible and solid Li battery using a polymer electrolyte with a hierarchical and highly porous nanocarbon electrode comprising aligned multiwalled carbon nanotubes (CNTs) and carbon nanohorns (CNHs). Electrodes with high specific surface area are realized through the combination of CNHs with CNTs and provide a significant performance enhancement to the solid Li battery performance. © 2013 Elsevier Ltd.

  12. Mathematical Storage-Battery Models

    Science.gov (United States)

    Chapman, C. P.; Aston, M.

    1985-01-01

    Empirical formula represents performance of electrical storage batteries. Formula covers many battery types and includes numerous coefficients adjusted to fit peculiarities of each type. Battery and load parameters taken into account include power density in battery, discharge time, and electrolyte temperature. Applications include electric-vehicle "fuel" gages and powerline load leveling.

  13. Metal Hydrides for Rechargeable Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Valoeen, Lars Ole

    2000-03-01

    Rechargeable battery systems are paramount in the power supply of modern electronic and electromechanical equipment. For the time being, the most promising secondary battery systems for the future are the lithium-ion and the nickel metal hydride (NiMH) batteries. In this thesis, metal hydrides and their properties are described with the aim of characterizing and improving those. The thesis has a special focus on the AB{sub 5} type hydrogen storage alloys, where A is a rare earth metal like lanthanum, or more commonly misch metal, which is a mixture of rare earth metals, mainly lanthanum, cerium, neodymium and praseodymium. B is a transition metal, mainly nickel, commonly with additions of aluminium, cobalt, and manganese. The misch metal composition was found to be very important for the geometry of the unit cell in AB{sub 5} type alloys, and consequently the equilibrium pressure of hydrogen in these types of alloys. The A site substitution of lanthanum by misch metal did not decrease the surface catalytic properties of AB{sub 5} type alloys. B-site substitution of nickel with other transition elements, however, substantially reduced the catalytic activity of the alloy. If the internal pressure within the electrochemical test cell was increased using inert argon gas, a considerable increase in the high rate charge/discharge performance of LaNi{sub 5} was observed. An increased internal pressure would enable the utilisation of alloys with a high hydrogen equivalent pressure in batteries. Such alloys often have favourable kinetics and high hydrogen diffusion rates and thus have a potential for improving the high current discharge rates in metal hydride batteries. The kinetic properties of metal hydride electrodes were found to improve throughout their lifetime. The activation properties were found highly dependent on the charge/discharge current. Fewer charge/discharge cycles were needed to activate the electrodes if a small current was used instead of a higher

  14. Batteries: from alkaline to zinc-air.

    Science.gov (United States)

    Dondelinger, Robert M

    2004-01-01

    applications (for example, zinc-air for alkaline--if it is cost-effective), this is absolutely forbidden for secondary cells. Because of the differing cell voltages, charge characteristics and overcharge tolerance between different types of secondary cells, substituting a nickel-cadmium battery pack for the more expensive lithium-ion pack (if it is physically able to fit into the battery compartment), might appear to save money (e.g. $50 vs. $100) but it would be very ill advised. Since the cell characteristics are very different, it would be downright fatal to anyone within the 'kill radius' when the pack explodes. Those outside the kill radius would receive chemical burns from the electrolyte. Substitutions of secondary cell battery packs are generally not a good idea for biomeds to engage in. These are engineering decisions best left to either aftermarket battery pack manufacturers or the medical device manufacturer as a design engineering change.

  15. New Li-ion Battery Evaluation Research Based on Thermal Property and Heat Generation Behavior of Battery

    Science.gov (United States)

    Lv, Zhe; Guo, Xun; Qiu, Xin-ping

    2012-12-01

    We do a new Li-ion battery evaluation research on the effects of cell resistance and polarization on the energy loss in batteries based on thermal property and heat generation behavior of battery. Series of 18650 cells with different capacities and electrode materials are evaluated by measuring input and output energy which change with charge-discharge time and current. Based on the results of these tests, we build a model of energy loss in cells' charge-discharge process, which include Joule heat and polarization heat impact factors. It was reported that Joule heat was caused by cell resistance, which included DC-resistance and reaction resistance, and reaction resistance could not be easily obtained through routine test method. Using this new method, we can get the total resistance R and the polarization parameter η. The relationship between R, η, and temperature is also investigated in order to build a general model for series of different Li-ion batteries, and the research can be used in the performance evaluation, state of charge prediction and the measuring of consistency of the batteries.

  16. Variations in battery life of a heart-lung machine using different pump speeds, pressure loads, boot material, centrifugal pump head, multiple pump usage, and battery age.

    LENUS (Irish Health Repository)

    Marshall, Cornelius

    2012-02-03

    Electrical failure during cardiopulmonary bypass (CPB) has previously been reported to occur in 1 of every 1500 cases. Most heart-lung machine pump consoles are equipped with built-in battery back-up units. Battery run times of these devices are variable and have not been reported. Different conditions of use can extend battery life in the event of electrical failure. This study was designed to examine the run time of a fully charged battery under various conditions of pump speed, pressure loads, pump boot material, multiple pump usage, and battery life. Battery life using a centrifugal pump also was examined. The results of this study show that battery life is affected by pump speed, circuit pressure, boot stiffness, and the number of pumps in service. Centrifugal pumps also show a reduced drain on battery when compared with roller pumps. These elements affect the longevity and performance of the battery. This information could be of value to the individual during power failure as these are variables that can affect the battery life during such a challenging scenario.

  17. Nanowire Electrodes for Advanced Lithium Batteries

    Directory of Open Access Journals (Sweden)

    Lei eHuang

    2014-10-01

    Full Text Available Since the commercialization of lithium ion batteries (LIBs in the past two decades, rechargeable LIBs have become widespread power sources for portable devices used in daily life. However, current demands require higher energy density and power density of batteries. The electrochemical energy storage performance of LIBs could be improved by applying nanomaterial electrodes, but their fast capacity fading is still one of the key limitations and the mechanism needs to be clearly understood. Single nanowire electrode devices are considered as a versatile platform for in situ probing the direct relationship between electrical transport, structure change, and other properties of the single nanowire electrode along with the charge/discharge process. The results indicate the conductivity decrease of the nanowire electrode and the structural disorder/destruction during electrochemical reactions which limit the cycling performance of LIBs. Based on the in situ observations, some feasible structure architecture strategies, including prelithiation, coaxial structure, nanowire arrays and hierarchical structure architecture, are proposed and utilized to restrain the conductivity decrease and structural disorder/destruction. Further, the applications of nanowire electrodes in some beyond Li-ion batteries, such as Li-S and Li-air battery, are also described.

  18. Rechargeable Room-Temperature Na-CO2 Batteries.

    Science.gov (United States)

    Hu, Xiaofei; Sun, Jianchao; Li, Zifan; Zhao, Qing; Chen, Chengcheng; Chen, Jun

    2016-05-23

    Developing rechargeable Na-CO2 batteries is significant for energy conversion and utilization of CO2 . However, the reported batteries in pure CO2 atmosphere are non-rechargeable with limited discharge capacity of 200 mAh g(-1) . Herein, we realized the rechargeability of a Na-CO2 battery, with the proposed and demonstrated reversible reaction of 3 CO2 +4 Na↔2 Na2 CO3 +C. The battery consists of a Na anode, an ether-based electrolyte, and a designed cathode with electrolyte-treated multi-wall carbon nanotubes, and shows reversible capacity of 60000 mAh g(-1) at 1 A g(-1) (≈1000 Wh kg(-1) ) and runs for 200 cycles with controlled capacity of 2000 mAh g(-1) at charge voltage CO2 .

  19. Photovoltaic System Test Platform with Integrated Battery Energy Storage Emulator

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Sera, Dezso; Stroe, Daniel-Ioan

    2017-01-01

    In this work, we present a hybrid simulation and a real-time test platform for developing control systems for photovoltaic (PV) inverters with integrated battery energy storage (BES). The platform consists of a dual-stage single-phase PV inverter system, DC coupled with a full-bridge grid connected...... or directly to a physical PV array. The platform enables real-time testing of PV+BES control systems, including battery (BMS) and energy management systems (EMS), for a variety of battery technologies, which can be modelled in detail and emulated by the full-bridge grid connected inverter. Such flexibility...... is difficult to achieve with real BES systems, due to electrical safety and cost constrains of high power charge regulators and battery packs....

  20. Nanostructured material for advanced energy storage : magnesium battery cathode development.

    Energy Technology Data Exchange (ETDEWEB)

    Sigmund, Wolfgang M. (University of Florida, Gainesville, FL); Woan, Karran V. (University of Florida, Gainesville, FL); Bell, Nelson Simmons

    2010-11-01

    Magnesium batteries are alternatives to the use of lithium ion and nickel metal hydride secondary batteries due to magnesium's abundance, safety of operation, and lower toxicity of disposal. The divalency of the magnesium ion and its chemistry poses some difficulties for its general and industrial use. This work developed a continuous and fibrous nanoscale network of the cathode material through the use of electrospinning with the goal of enhancing performance and reactivity of the battery. The system was characterized and preliminary tests were performed on the constructed battery cells. We were successful in building and testing a series of electrochemical systems that demonstrated good cyclability maintaining 60-70% of discharge capacity after more than 50 charge-discharge cycles.