WorldWideScience

Sample records for battery chargers

  1. Portable Battery Charger Berbasis Sel Surya

    Directory of Open Access Journals (Sweden)

    Budhi Anto

    2014-04-01

    Full Text Available A type of solar battery charger is introduced in this paper. This equipment functions as a medium size rechargeable battery that is needed to move culinary merchants and coastal fishermen living in area which is not supplied by electrical networks. The equipment consists of solar module mounted onto portable mechanical construction, a 12-V 7.5-Ah lead acid battery and charge controller. Solar module charges the battery through charge controller and then the battery can be discharged to power on electric lamps for lightening culinary wagon or fisherman’s boat at night. Charge controller charges the battery with float charging which is implemented by maintaining 13.5 Volt between battery terminals and limiting the charging current to 1.5 Amperes. Charge controller circuit is based on adjustable linear voltage regulator LM338. The battery is of sealed lead acid type. This type of battery is maintenance free and more hygiene than other types of lead acid battery. The field experiment of charging the baterry of 50% residual capacity from 8 am to 4 pm under sunny weather shows that the solar module has charged the battery to its full capacity under battery safe charging conditions.Keywords: portable solar battery charger, float charging, LM338

  2. The Extravehicular Maneuvering Unit's New Long Life Battery and Lithium Ion Battery Charger

    Science.gov (United States)

    Russell, Samuel P.; Elder, Mark A.; Williams, Anthony G.; Dembeck, Jacob

    2010-01-01

    The Long Life (Lithium Ion) Battery is designed to replace the current Extravehicular Mobility Unit Silver/Zinc Increased Capacity Battery, which is used to provide power to the Primary Life Support Subsystem during Extravehicular Activities. The Charger is designed to charge, discharge, and condition the battery either in a charger-strapped configuration or in a suit-mounted configuration. This paper will provide an overview of the capabilities and systems engineering development approach for both the battery and the charger

  3. 75 FR 56021 - Energy Conservation Standards for Battery Chargers and External Power Supplies: Public Meeting...

    Science.gov (United States)

    2010-09-15

    ..., and preliminary results. II. History of Standards Rulemaking for Battery Chargers and External Power... Part 430 RIN 1904-AB57 Energy Conservation Standards for Battery Chargers and External Power Supplies... establishing energy conservation standards for battery chargers (BCs) and non-Class A EPSs; the...

  4. Review on Electric Vehicle, Battery Charger, Charging Station and Standards

    Directory of Open Access Journals (Sweden)

    Afida Ayob

    2014-01-01

    Full Text Available Electric vehicles are a new and upcoming technology in the transportation and power sector that have many benefits in terms of economic and environmental. This study presents a comprehensive review and evaluation of various types of electric vehicles and its associated equipment in particular battery charger and charging station. A comparison is made on the commercial and prototype electric vehicles in terms of electric range, battery size, charger power and charging time. The various types of charging stations and standards used for charging electric vehicles have been outlined and the impact of electric vehicle charging on utility distribution system is also discussed.

  5. Smart charging management for electric vehicle battery chargers

    OpenAIRE

    Monteiro, Vítor Duarte Fernandes; Pinto, J. G.; Exposto, Bruno Fernandes; Ferreira, João C.; Afonso, João L.

    2014-01-01

    This paper proposes a smart battery charging strategy for Electric Vehicles (EVs) targeting the future smart homes. The proposed strategy consists in regulate the EV battery charging current in function of the total home current, aiming to prevent overcurrent trips in the main switch breaker. Computational and experimental results were obtained under real-time conditions to validate the proposed strategy. For such purpose was adapted a bidirectional EV battery charger ...

  6. Experimental design and construction of an enhanced solar battery charger

    OpenAIRE

    Faithpraise, Fina; Bassey, Donatus; Charles, Mfon; Osahon, Okoro; Udoh, Monday; Chatwin, Chris

    2016-01-01

    A Solar Battery Charger circuit is designed, built and tested. It acts as a control circuit to monitor and regulate the process of charging several batteries ranging from 4 volts to 12 volts, using a photovoltaic (PV) solar panel as the input source for the battery charging process. The circuit is economical and can be easily constructed from discrete electronic components. The circuit operation is based on matching the solar panel terminal load voltage to the input terminal of the charging c...

  7. Battery charger PP-4126( )/U. Final report, 1 Jul 1971--Jun 1974

    Energy Technology Data Exchange (ETDEWEB)

    Froeschle, T.A.

    1975-07-01

    The performance data and design configuration of the PP-4126( )/U Battery Charger are delineated in this final report. Performance of the unit is summarized. Terminal performance and selected aspects of internal performance are considered. The internal system configuration of the battery charger is presented in block form. Functions of internal system blocks are discussed to define their design and behavior. Circuit components used to implement the systems blocks are identified. The PP-4126( )/U Battery Charger is designed to charge 6-, 12-, and 24-V dc batteries at selectable charging rates from 0.1 A dc to 12 A dc. The battery charger operates from MIL-STD-704 dc power sources in the range 22 V dc to 40 V dc. The battery charger structure is a finned housing with a removable cover. The cover contains the input power cable. The battery charger may be operated in any position.

  8. Battery charger PP-4126()/U. Final report, 1 Jul 1969--30 Jul 1970

    Energy Technology Data Exchange (ETDEWEB)

    Froeschle, T.A.; Hill, H.W. Jr.

    1971-02-01

    The performance data and design configuration of the PP-4126 ()/U Battery Charger is delineated. Performance of the unit is summarized. Terminal performance and selected aspects of internal performance are considered. The internal system configuration of the battery charger is presented in block form. Functions of individual system blocks are discussed to define their behavior. Circuit components used to implement the system blocks are identified. The PP-4126 ()/U Battery Charger is designed to charge 6, 12, and 24 Vdc batteries at selectable charging rates from 0.1 Adc to 15 Adc. The battery charger operates from both dc and ac power sources. (auth)

  9. Will Your Battery Survive a World With Fast Chargers?

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, J. S.; Wood, E.

    2015-05-04

    Fast charging is attractive to battery electric vehicle (BEV) drivers for its ability to enable long-distance travel and quickly recharge depleted batteries on short notice. However, such aggressive charging and the sustained vehicle operation that result could lead to excessive battery temperatures and degradation. Properly assessing the consequences of fast charging requires accounting for disparate cycling, heating, and aging of individual cells in large BEV packs when subjected to realistic travel patterns, usage of fast chargers, and climates over long durations (i.e., years). The U.S. Department of Energy's Vehicle Technologies Office has supported the National Renewable Energy Laboratory's development of BLAST-V-the Battery Lifetime Analysis and Simulation Tool for Vehicles-to create a tool capable of accounting for all of these factors. We present on the findings of applying this tool to realistic fast charge scenarios. The effects of different travel patterns, climates, battery sizes, battery thermal management systems, and other factors on battery performance and degradation are presented. We find that the impact of realistic fast charging on battery degradation is minimal for most drivers, due to the low frequency of use. However, in the absence of active battery cooling systems, a driver's desired utilization of a BEV and fast charging infrastructure can result in unsafe peak battery temperatures. We find that active battery cooling systems can control peak battery temperatures to safe limits while allowing the desired use of the vehicle.

  10. Photovoltaic Power System with an Interleaving Boost Converter for Battery Charger Applications

    Directory of Open Access Journals (Sweden)

    Sheng-Yu Tseng

    2012-01-01

    Full Text Available This paper proposes a photovoltaic (PV power system for battery charger applications. The charger uses an interleaving boost converter with a single-capacitor turn-off snubber to reduce voltage stresses of active switches at turn-off transition. Therefore, active switches of the charger can be operated with zero-voltage transition (ZVT to decrease switching losses and increase conversion efficiency. In order to draw the maximum power from PV arrays and obtain the optimal power control of the battery charger, a perturbation-and-observation method and microchip are incorporated to implement maximum power point tracking (MPPT algorithm and power management. Finally, a prototype battery charger is built and implemented. Experimental results have verified the performance and feasibility of the proposed PV power system for battery charger applications.

  11. 78 FR 18253 - Request for Information on Evaluating New Products for the Battery Chargers and External Power...

    Science.gov (United States)

    2013-03-26

    ... Part 430 RIN 1904-AB57 Request for Information on Evaluating New Products for the Battery Chargers and... energy conservation standard levels for battery chargers if it is determined that new energy conservation... energy conservation standards for classes of battery chargers and external power supplies....

  12. Battery charger PP-6309()/U. Final report, 1 Jul 1969--30 Jul 1970

    Energy Technology Data Exchange (ETDEWEB)

    Froeschle, T.A.; Hill, H.W. Jr.

    1971-01-01

    The performance data and design configuration of the PP-6309 ()/U Battery Charger is delineated. Performance of the unit is summarized and analyzed. Terminal performance and selected aspects of internal performance are considered. The internal system configuration of the Battery Charger is presented in block form. Functions of individual system blocks are discussed to define their behavior. Circuit components used to implement the system blocks are identified. The PP-6309 ()/U Battery Charger is designed to charge 24 Vdc--28 Vdc batteries at adjustable charging rates from 5 Adc--15 Adc. The unit operates from 28 Vdc power sources having the characteristics of MIL-STD-704A. The Battery Charger is housed in a finned rectangular enclosure; the total weight is 26 pounds. (auth)

  13. Low cost RISC implementation of intelligent ultra fast charger for Ni-Cd battery

    Energy Technology Data Exchange (ETDEWEB)

    Petchjatuporn, Panom; Khaehintung, Noppadol [Department of Control and Instrumentation Engineering, Faculty of Engineering, Mahanakorn University of Technology, Bangkok 10530 (Thailand); Sirisuk, Phaophak; Sunat, Khamron [Department of Computer Engineering, Faculty of Engineering, Mahanakorn University of Technology, Bangkok 10530 (Thailand); Wicheanchote, Phinyo [Test Engineering Department, Sanmina-SCI Systems Co. Ltd. (Thailand); Kiranon, Wiwat [Department of Telecommunication Engineering, Faculty of Engineering, King Mongkut' s Institue of Technology, Ladkrabang, Bangkok 10520 (Thailand)

    2008-02-15

    This paper presents a low cost reduced instruction set computer (RISC) implementation of an intelligent ultra fast charger for a nickel-cadmium (Ni-Cd) battery. The charger employs a genetic algorithm (GA) trained generalized regression neural network (GRNN) as a key to ultra fast charging while avoiding battery damage. The tradeoff between mean square error (MSE) and the computational burden of the GRNN is addressed. Besides, an efficient technique is proposed for estimation of a radial basis function (RBF) in the GRNN. Hardware realization based upon the techniques is discussed. Experimental results with commercial Ni-Cd batteries reveal that while the proposed charger significantly reduces the charging time, it scarcely deteriorates the battery energy storage capability when compared with the conventional charger. (author)

  14. An SCR inverter with an integral battery charger for electric vehicles

    Science.gov (United States)

    Thimmeach, D.

    1983-01-01

    The feasibility of incorporating an onboard battery charger into the inverter previously developed under a NASA contract is successfully demonstrated. The rated output power of the resulting isolated battery charger is 3.6 kW at 220 Vac with an 86 percent efficiency and a 95 percent power factor. Also achieved are improved inverter efficiency (from 90 to 93 percent at 15 kW motor shaft power), inverter peak power capability (from 26 to 34 kW), and reduced weight and volume of the combined inverter/charger package (47 kg, 49 x 44 x 24 cm). Some major conclusions are that using the inverter commutation circuitry to perform the battery charging function is advantageous, and that the input-commutated thyristor inverter has the potential to be an excellent inverter and battery charger for use in electric vehicle applications.

  15. 75 FR 16957 - Energy Conservation Program: Test Procedures for Battery Chargers and External Power Supplies

    Science.gov (United States)

    2010-04-02

    ... and reverses polarity. In contrast, a battery or solar cell supplies direct current (DC), which is... . For additional information on how to submit or review public comments and on how to participate in the... Test Procedure B. Review of Battery Charger and External Power Supply Standby Mode and Off Mode...

  16. Battery charger PP-7286 ( )/U. Final report Jul 76--Jun 77

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, J.; Waldstein, S.

    1977-12-01

    The Battery Charger PP-7286 ( )/U was developed to support the Laser Rangefinder MX-9838 ( )/GVS-5, which is powered by a rechargeable nickel/cadmium battery, type BB-516 ( )/U, and other Army equipment using generically similar batteries. The technical characteristics are described in ECOM Development Specification Number EL-CP2128-0001A. The hardware developed consisted of the Battery Charger PP-7286 ( )/U and its Transit Case CY-7670 ( )/U. The Battery Charger operates from prime power of 115 or 230 V (plus or minus 10%) 47 to 63 Hz ac. It provides five independently adjustable charging circuits, each capable of being set to charge at constant current rates from 15 through 700 milliamperes inclusive. A multiple scale meter can be switched to measure current in each of the five channels. The circuits provide constant current into any load from zero volts (short circuit) to 36 volts. A digital timer common to all circuits can be set in tenths of an hour increments from 0.1 to 19.1 hours. Time remaining in the charging cycle is displayed by an incandescent, seven segment, 3 digit display. An internal primary battery provides nonvolatile memory for the charger in the event of power interruption. A sixth position on the meter switch allows the voltage of this battery to be measured.

  17. 77 FR 18477 - Energy Conservation Program: Energy Conservation Standards for Battery Chargers and External...

    Science.gov (United States)

    2012-03-27

    ... March 27, 2012 Part III Department of Energy 10 CFR Part 430 Energy Conservation Program: Energy... 430 RIN 1904-AB57 Energy Conservation Program: Energy Conservation Standards for Battery Chargers and... Conservation Act (EPCA) prescribes energy conservation standards for various consumer products and...

  18. Replacement of battery in Asco NPP Chargers; Sustitucion de cargadores de baterias en C. N. Asco

    Energy Technology Data Exchange (ETDEWEB)

    Montero Lansanc, J.

    2013-07-01

    The purpose of this paper is to present the project to replace battery chargers at NPP Asco. It describes the reasons for the replacement, the project approach, the development to date and current status of the project, the economics, and some lessons learned during the process.

  19. Test and evaluation of the Hoppecke Model E240G144/16 electric vehicle battery charger

    Science.gov (United States)

    Driggans, R. L.; Reese, R. W.; Keller, A. S.

    1984-11-01

    The Hoppecke Model E240 G 144/16 electric vehicle battery charger was tested. Charger input/output voltage, current, and power characteristics and input waveform distortion were measured and induced electromagnetic interference was evaluated as the charger recharged a lead acid battery pack. Electrical quantities were measured with precision volt-ampere-watt meters, frequency counters, a digital storage oscilloscope, and a spectrum analyzer. The Hoppecke charger required 12.2 hours to recharge a 144V battery from 100% depth of discharge (DOD). Energy efficiency was 82%, specific power was 81.2W/Kg (36.8W/lb), input current distortion varied from 52.6 to 73.6%, and electromagnetic interference was observed on AM radio. Charge factor was 1.25 from 100% DOD, increasing to 1.52 from 25% DOD.

  20. Isolated battery charger with unit power factor; Carregador de baterias isolado com fator de potencia unitario

    Energy Technology Data Exchange (ETDEWEB)

    Co, Marcio Almeida

    1993-05-01

    This work presents a single phase, isolated AC/DC converter (Battery Charger) with active power factor correction in a single stage of power processing. the topology studied is the fed-current full-bridge, in boost mode operation, at fixed switching frequency. After a complete design of converter and simulations, the results of a 1.500 W e 50 kHz prototype are shown. a Unit Power Factor and Total Harmonic Distortion less than 5% were obtained. (author)

  1. Double Resonant Topology for 72V Battery Charger used in a Hybrid Electric Locomotive - Study and Experimental Validation

    OpenAIRE

    BUTTERBACH, S; DE-BERNARDINIS, A; Lallemand, R; Coquery, G.; JEUNESSE, A; EVAIN, Y; AUBIN, PH

    2010-01-01

    This work deals with the study, adaptation and experimental validation of a 9kW lead-acid battery charger used to feed the 72VDC bus inside the hybrid electric locomotive demonstrator in the frame of the French research project PLATHEE. The topology of the charger is based on a high frequency double resonant series-parallel circuit which allows soft switching, losses minimization, reduction of passive component weight and facilitates system integration. Specific charging and floating modes we...

  2. A new battery charger/discharger converter. [for spacecraft application

    Science.gov (United States)

    Middlebrook, R. D.; Cuk, S.; Behen, W.

    1978-01-01

    A new optimum topology dc-to-dc switching converter is extended to provide bidirectional current flow. The resulting two-quadrant converter can be employed to eliminate the discontinuous current mode in normal unidirectional applications, but is especially suited for spacecraft battery conditioning as a charge-discharge regulator in place of the conventional separate converters. Implementation of the control features and the battery charge current and voltage limits are discussed.

  3. Test and evaluation of the Philips Model PE 1701 and Lester Model 9865 electric vehicle battery chargers

    Science.gov (United States)

    Reese, R. W.; Driggans, R. L.; Keller, A. S.

    1984-04-01

    The Philips Model PE 1701 and the Lester Model 9865 electric vehicle battery chargers were tested. Charger input/output voltage, current, power characteristics, and input waveform distortion were measured and induced electromagnetic interference was evaluated while the chargers recharged a fully discharged lead-acid battery pack. Electrical quantities were measured with precision volt-ampere-watt meters, frequency counters, a digital storage oscilloscope, and a spectrum analyzer. The Philips charger required 12.2 hours to recharge a 144-V battery; it had an energy efficiency of 86.0% and a specific power of 87.4 W/kg. Input current distortion was between 6.9 and 23.0 percent, and electromagnetic interference was observed on AM radio. The Lester charger required 8.2 hours to recharge a 106-V battery; it had an energy efficiency of 83.0% and a specific power of 117.3 W/kg (53.3 W/lb). Current distortion was between 52.7 and 97.4%, and electromagnetic interference was observed on AM radio.

  4. Savings Potential of ENERGY STAR(R) External Power Adapters andBattery Chargers

    Energy Technology Data Exchange (ETDEWEB)

    Webber, Carrie; Korn, David; Sanchez, Marla

    2007-02-28

    External power adapters may lose 10 to 70 percent of theenergy they consume, dissipated as heat rather than converted into usefulenergy. Battery charging systems have more avenues for losses: inaddition to power conversion losses, power is consumed by the chargingcircuitry, and additional power may be needed after the battery is fullcharged to balance self-discharge. In 2005, the Environmental ProtectionAgency launched a new ENERGY STAR(R) label for external power supplies(EPSs) that convert line-voltage AC electricity into low-voltage DCelectricity for certain electronic devices. The specification includedpower supplies for products with battery charging functions (e.g. laptopsand cell phones), but excluded others. In January 2006, a separatespecification was issued for battery charging systems contained primarilyin small household appliances and power tools. In addition to the ENERGYSTAR(R) label, the state of California will implement minimum energyperformance standards for EPSs in 2007, and similar standards for EPSsand battery chargers are in development at the national level.Many of theproducts covered by these policies use relatively little power and havemodest per-unit savings potential compared to conventional energyefficiency targets. But with an estimated 1.5 billion adapters and 230million battery charging systems in use in the United States, theaggregate savings potential is quite high. This paper presents estimatesof the savings potential for external power adapters and battery chargingsystems through 2025.

  5. Test and evaluation of the chloride Spegel S1P108/30 electric vehicle battery charger

    Science.gov (United States)

    Driggans, R. L.; Keller, A. S.

    1985-09-01

    The Chloride Spegel Model S1P108/30 electric vehicle battery charger was tested by the Tennessee Valley Authority (TVA) as an account of work sponsored by the Electric Power Research Institute (EPRI). Charger input/output voltage, current, and power characteristics and input waveform distortion were measured; and induced electromagnetic interference was evaluated as the charger recharged a lead-acid battery pack. Electrical quantities were measured with precision volt-ampere-watt meters, frequency counters, a digital-storage oscilloscope, and a spectrum analyzer. THe Chloride charger required 8.5 hours to recharge a 216V tubular plate lead-acid battery from 100 percent depth of discharge (DOD). Energy efficiency was 83 percent, specific power was 37.4 W/kg (17.0 W/lb), input current distortion varied from 22.4 to 34.1 percent, and electromagnetic interference was observed on AM radio. Tests were conducted with the battery at initial DOD of 100, 75, 50, and 25 percent. Charge factor was 1.14 from 100-percent DOD, increasing to 1.39 from 25-percent DOD.

  6. Single-Source Multi-Battery Solar Charger: Analysis and Stability Issues

    Directory of Open Access Journals (Sweden)

    Alon Kuperman

    2015-06-01

    Full Text Available In this paper, dynamic analysis of a multi-battery dual mode charger, powered by a single solar array and suitable for lead-acid and lithium-ion cell-based batteries is presented. Each battery is interfaced to the solar array by means of a current-controlled buck power stage, operating either in constant power or constant voltage mode. Operation in former/latter charging mode implies regulating input/output voltage of the converter, which is a non-trivial situation since while feeding different batteries, all the converters share the same input terminals, connected to the solar array. It is revealed that when at least one of the batteries operates in constant power charging mode, open-loop instability occurs whenever converter input voltage is lower than maximum power point voltage of the solar array. Consequently, input voltage regulating controller must be designed to stabilize closed-loop dynamics for the worst case of instability, which is also derived. Moreover, it is shown that the dynamics of the converters operating under output voltage control are perceived as disturbances by input voltage control loop and must be properly rejected. Simple loop shaping design is proposed based on a PI controller, allowing stabilizing the system in case of worst case instability and rejecting output voltage control induced disturbances at the expense of non-constant, operating-point dependent closed-loop damping.

  7. Design of solar battery charger%太阳电池充电器的设计

    Institute of Scientific and Technical Information of China (English)

    曾翔; 李咏红; 师彦荣

    2011-01-01

    提出了一种太阳电池充电器的设计方案,为用户提供锂电池和镍电池两种充电选择.太阳电池板的输出通过降压开关稳压器LT1777转化成稳定电压为充电模块MAX1501供电.系统整体的控制功能由微处理器PIC16F877A完成.本设计成本低、效率高,有良好的应用前景.%A solar powered battery charger was introduced in this paper, which gave the user the choice of charging either lithium or nickel based batteries. The output of solar panels was converted into a stable voltage to power the charging unit MAX1501 by using the step-down switching regulator LT1777. The control function of the whole system was implemented with the microcontroller PIC16F877A. The design has broad application prospects due to its low cost and high efficiency.

  8. A Pulsed Power System Design Using Lithium-ion Batteries and One Charger per Battery

    Science.gov (United States)

    2009-12-01

    manufacturers minimum discharge voltage can permanently damage the cells internal chemistry . This damage will reduce the capacity and lifetime of the...could permanently harm the internal chemistry of the battery. Table 3 summarizes these common lithium-ion battery characteristics [5], [7], [9...possible design to meet the identified requirements. • Chapter II discusses the theory of operation of the BMS and reviews the Simulink ® model

  9. Battery charger for solar cells; Chargeur de batterie pour cellules solaires

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2004-09-01

    The main drawback of solar energy concerns its availability and its intensity variations due to the changes in the clouds cover. For a maximum availability, a photovoltaic power supplies must be connected to a battery. Such an association requires a particular circuit for the management of the battery charging and of the energy conversion whatever the lighting conditions. This article describes the scheme of such a circuit. (J.S.)

  10. Design of a Charger Without Polarity for Battery Pack%蓄电池共用不分正负极充电器设计

    Institute of Scientific and Technical Information of China (English)

    丁左武

    2011-01-01

    Chargers selling on the market for different voltage electric bikes can't interchange. The charger has been designed, It without polarity for battery pack can be used for +24V, +36V and +48V battery pack in the paper. The paper includes battery terminal positive pole and cathode pole identifying circuit, battery voltage detecting circuit, charger's output voltage regulating circuit and charging state displaying circuit. Through prototype testing, the charger designed can meet the needs.%针对现有的24V、36V和48V电动自行车充电器不能互换使用且充电器正负极必须与蓄电池的正负极相对应的缺点,设计出一种24V、36V和48V蓄电池组共用不分正、负极充电器.文中包括蓄电池正负极识别电路、蓄电池电压数值检测电路、充电器输出电压大小调整电路和不同输出电压状态指示电路.通过样机试验,设计出的充电器能满足使用要求.

  11. Aging Management Guideline for commercial nuclear power plants: Battery chargers, inverters and uninterruptible power supplies. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Berg, R.; Stroinski, M.; Giachetti, R. [Multiple Dynamics Corp., Southfield, MI (United States)

    1994-02-01

    This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in BWR and PWR commercial nuclear power plant battery chargers, inverters and uninterruptible power supplies important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already, experienced) and aging management program activities to the more generic results and recommendations presented herein.

  12. Pulse-Based Fast Battery IoT Charger Using Dynamic Frequency and Duty Control Techniques Based on Multi-Sensing of Polarization Curve

    Directory of Open Access Journals (Sweden)

    Meng Di Yin

    2016-03-01

    Full Text Available The pulse-based charging method for battery cells has been recognized as a fast and efficient way to overcome the shortcoming of a slow charging time in distributed battery cells, which is regarded as a connection of cells such as the Internet of Things (IoT. The pulse frequency for controlling the battery charge duration is dynamically controlled within a certain range in order to inject the maximum charge current into the battery cells. The optimal frequency is determined in order to minimize battery impedance. The adaptation of the proposed pulse duty and frequency decreases the concentration of the polarization by sensing the runtime characteristics of battery cells so that it guarantees a certain level of safety in charging the distributed battery cells within the operating temperature range of 5–45 °C. The sensed terminal voltage and temperature of battery cells are dynamically monitored while the battery is charging so as to adjust the frequency and duty of the proposed charging pulse method, thereby preventing battery degradation. The evaluation results show that a newly designed charging algorithm for the implemented charger system is about 18.6% faster than the conventional constant-current (CC charging method with the temperature rise within a reasonable range. The implemented charger system, which is based on the proposed dynamic frequency and duty control by considering the cell polarization, charges to about 80% of its maximum capacity in less than 56 min and involves a 13 °C maximum temperature rise without damaging the battery.

  13. A Method for Compensating Customer Voltage Drops due to Nighttime Simultaneous Charging of EVs Utilizing Reactive Power Injection from Battery Chargers

    Science.gov (United States)

    Noda, Taku; Kabasawa, Yuichiro; Fukushima, Kentaro; Nemoto, Koshichi; Uemura, Satoshi

    When we consider the global warming, the reduction of CO2 emission is one of the most important problems which require urgent solutions. One option is to integrate low-CO2-emission generators to the grid as much as possible. Another option is to replace inefficient vehicles based on internal-combustion engines with electric ones (EVs). Due to the latter, we can easily estimate that most consumers will charge EVs' batteries at nighttime. Thus, excessive voltage drops due to the nighttime simultaneous charging are supposed to be a possible future problem. This paper proposes a method for compensating the voltage drops by injecting reactive power from EV battery chargers.

  14. Performance characteristics of a battery charger and state-of-charge indicator

    Science.gov (United States)

    Edwards, D.; Klein, J.

    1984-01-01

    A battery charge/state of charge indicator (BC/SCI) system for electric vehicle use was developed. The original and subsequent objectives for the BC/SCI and the rationale for those objectives are described. The requirements generated from the objectives are listed and a description of the BC/SCI is provided. The power section problem, the tests, and the test results are discussed.

  15. Single-Phase PFC Converter for Plug-in Hybrid Electric Vehicle Battery Chargers

    Directory of Open Access Journals (Sweden)

    Shakil Ahamed Khan

    2012-06-01

    Full Text Available In this paper, a front end ac–dc power factor correction topology is proposed for plug-in hybrid electric vehicle (PHEV battery charging. The topology can achieve improved power quality, in terms of power factor correction, reduced total harmonic distortion at input ac mains, and precisely regulated dc output. Within this context, this paper introduces a boost converter topology for implementing digital power factor correction based on low cost digital signal controller that operates the converter in continuous conduction mode, thereby significantly reducing input current harmonics. The theoretical analysis of the proposed converter is then developed, while an experimental digital control system is used to implement the new control strategy. A detailed converter operation, analysis and control strategy are presented along with simulation and experimental results for universal ac input voltage (100–240V to 380V dc output at up to 3.0 kW load and a power factor greater than 0.98. Experimental results show the advantages and flexibilities of the new control method for plug-in hybrid electric vehicle (PHEV battery charging application.

  16. 带电量显示的太阳能充电器设计%Design of Solar Energy Charger with Battery Display

    Institute of Scientific and Technical Information of China (English)

    张阳; 林凡强; 陈虎

    2014-01-01

    本文介绍了带电量显示的太阳能充电器,可实现太阳能充电和直流充电两种充电方式。该设计主要由太阳能电池板、锂电池、充电模块、升压模块、锂电池保护模块和电量显示模块等几个部分组成。把充电器放在一个有阳光的地方,即可以为手持设备提供一个方便的太阳能充电点,使户外充电变得便捷。%The article introduces the design of solar energy charger with battery display which can realize the solar charging and DC charging.The design is mainly composed of solar panels,lithium battery,the charging module,booster,lithium battery protection module and power module display module.If you place the solar panels in somewhere with good sunshine,you can get a convenient solar charging point for hand-held devices,which makes outside charging convenient.

  17. Design and implementation of Li-Ion battery charger based on LM3S9B92%基于LM3S9892的锂离子电池充电器的设计与实现

    Institute of Scientific and Technical Information of China (English)

    胡林权

    2012-01-01

    设计了一种基于LM3S9892嵌入式微控制器的锂离子电池充电器,并给出了硬件、软件设计。该充电器可以直接以市电作为输入,运用方便。其基本设计理念是根据采集的电池电压和充电电流信息,利用LM3S9892产生适合的PWM信号控制BUCK电源变换器工作,实现充电高效控制。该充电器具有数字化和智能化的特点,便于推广和应用。%One kind of Li-Ion battery charger based on LM3S9B92 is designed in this article, the hardware and software de- sign are illustrated as well. This charger uses commercial power as its input so that it can be utilized conveniently. The basic con- cept of the design is that LM3S9B92 produces the appropriate PWM signals to control the BUCK conventer and achieve charging characteristics highly effective according to the battery voltage and current. This Li-Ion battery charger has digital, intelligent features, so it is easier to be applied and popularized.

  18. Design of Ni-MH battery charger with USB interface based on DS2712%基于DS2712的USB接口镍氢电池充电器设计

    Institute of Scientific and Technical Information of China (English)

    屈宝鹏; 张喜凤; 许燕

    2012-01-01

    随着USB接口的广泛应用,将其作为小功率消费类电子产品的电池充电电源十分便利,而新产品的不断涌现和USB接口标准的不断进步使电池充电器设计面临着新的机遇与挑战.在此回顾了USB接口和镍氢电池的特性,对比了基于线性稳压源和开关电源原理设计的充电器之间的差异,设计了一种以DS2712为充电控制器,使用USB接口作为电源的镍氢电池充电器.在此设计的USB接口镍氢电池充电器经硬件验证,实现了对一节镍氢电池的快速智能充电功能,充电过程稳定可靠.%Along with the wide application of USB interface, which is very convenient to be used as a battery charging power of the low power consumption electronic products, the battery charger design is facing new opportunities and challenges because of the emergence of new products and the progress of the USB interface standards. The characteristics of the USB interface and the Ni-MH batteries are reviewed in this paper. The differenc between the chargers designed on the basis of the principle of the linear regulator and switch power supply was compared. A Ni-MH battery charger with the USB interface as the power supply and DS2712 as the charging controller was designed. The Ni-MH battery charger with USB interface realized the quick smart charging function which was validated by the hardware. Its charging process is stable and reliable.

  19. 10 CFR Appendix Y to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Battery Chargers

    Science.gov (United States)

    2010-01-01

    ... disconnect mains power from the device when a battery is removed from a cradle or charging base or, for... Requirements,” append this sentence to the end: “The test equipment must be capable of accounting for crest factor and frequency spectrum in its measurement of the UUT input current.” 4. Test Measurement:...

  20. Design of a hybrid battery charger system fed by a wind-turbine and photovoltaic power generators

    Science.gov (United States)

    Chang Chien, Jia-Ren; Tseng, Kuo-Ching; Yan, Bo-Yi

    2011-03-01

    This paper is aimed to develop a digital signal processor (DSP) for controlling a solar cell and wind-turbine hybrid charging system. The DSP consists of solar cells, a wind turbine, a lead acid battery, and a buck-boost converter. The solar cells and wind turbine serve as the system's main power sources and the battery as an energy storage element. The output powers of solar cells and wind turbine have large fluctuations with the weather and climate conditions. These unstable powers can be adjusted by a buck-boost converter and thus the most suitable output powers can be obtained. This study designs a booster by using a dsPIC30F4011 digital signal controller as a core processor. The DSP is controlled by the perturbation and observation methods to obtain an effective energy circuit with a full 100 W charging system. Also, this DSP can, day and night, be easily controlled and charged by a simple program, which can change the state of the system to reach a flexible application based on the reading weather conditions.

  1. Design of a hybrid battery charger system fed by a wind-turbine and photovoltaic power generators.

    Science.gov (United States)

    Chang Chien, Jia-Ren; Tseng, Kuo-Ching; Yan, Bo-Yi

    2011-03-01

    This paper is aimed to develop a digital signal processor (DSP) for controlling a solar cell and wind-turbine hybrid charging system. The DSP consists of solar cells, a wind turbine, a lead acid battery, and a buck-boost converter. The solar cells and wind turbine serve as the system's main power sources and the battery as an energy storage element. The output powers of solar cells and wind turbine have large fluctuations with the weather and climate conditions. These unstable powers can be adjusted by a buck-boost converter and thus the most suitable output powers can be obtained. This study designs a booster by using a dsPIC30F4011 digital signal controller as a core processor. The DSP is controlled by the perturbation and observation methods to obtain an effective energy circuit with a full 100 W charging system. Also, this DSP can, day and night, be easily controlled and charged by a simple program, which can change the state of the system to reach a flexible application based on the reading weather conditions.

  2. An Integrated Onboard Charger and Accessary Power Converter for Plug-in Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Su, Gui-Jia [ORNL; Tang, Lixin [ORNL

    2013-01-01

    Abstract: In this paper, an integrated onboard battery charger and accessary dc-dc converter for plug-in electric vehicles (PEVs) is presented. The idea is to utilize the already available traction drive inverters and motors of a PEV as the frond converter of the charger circuit and the transformer of the 14 V accessary dc-dc converter to provide galvanic isolation. The topology was verified by modeling and experimental results on a 5 kW charger prototype

  3. Efficient Wireless Charger Deployment for Wireless Rechargeable Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jehn-Ruey Jiang

    2016-08-01

    Full Text Available A wireless rechargeable sensor network (WRSN consists of sensor nodes that can harvest energy emitted from wireless chargers for refilling their batteries so that the WRSN can operate sustainably. This paper assumes wireless chargers are equipped with directional antennas, and are deployed on grid points of a fixed height to propose two heuristic algorithms solving the following wireless charger deployment optimization (WCDO problem: how to deploy as few as possible chargers to make the WRSN sustainable. Both algorithms model the charging space of chargers as a cone and calculate charging efficiency according power regression expressions complying with the Friis transmission equation. The two algorithms are the greedy cone covering (GCC algorithm and the adaptive cone covering (ACC algorithm. The GCC (respectively, ACC algorithm greedily (respectively, adaptively generates candidate cones to cover as many as possible sensor nodes. Both algorithms then greedily select the fewest number of candidate cones, each of which corresponds to the deployment of a charger, to have approximate solutions to the WCDO problem. We perform experiments, conduct simulations and do analyses for the algorithms to compare them in terms of the time complexity, the number of chargers deployed, and the execution time.

  4. A New Integrated Onboard Charger and Accessory Power Converter for Plug-in Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Su, Gui-Jia [ORNL; Tang, Lixin [ORNL

    2014-01-01

    In this paper, a new approach is presented for integrating the function of onboard battery charging into the traction drive system and accessory dc-dc converter of a plug-in electric vehicle (PEV). The idea is to utilize the segmented traction drive system of a PEV as the frond converter of the charging circuit and the transformer and high voltage converter of the 14 V accessory dc-dc converter to form a galvanically isolated onboard charger. Moreover, a control method is presented for suppressing the battery current ripple component of twice the grid frequency with the reduced dc bus capacitor in the segmented inverter. The resultant integrated charger has lower cost, weight, and volume than a standalone charger due to a substantially reduced component count. The proposed integrated charger topology was verified by modeling and experimental results on a 5.8 kW charger prototype.

  5. Design on Laptop Battery Charger Based on TOP202Y%基于TOP202Y的笔记本电脑电池充电器设计

    Institute of Scientific and Technical Information of China (English)

    孟武胜; 何潇; 杨阳; 李艳

    2013-01-01

    介绍了美国动力公司(Power)于九十年代中期研制推出的三端PWM/MOSFET二合一集成控制器件TOP Switch系列的一种基于TOP202Y的单片开关电源的主要工作性能及原理,将它与TOP Switch相匹配的高频功率变压器在笔记本电池充电器中加以应用,并对其进行了分析总结.%This paper introduces main working performance and principle of single-chip switch power supply of a series of TOP Switch based on TOP202Y,the three end PWM / MOSFET combo integrated control device,which is developed by the United States power company in 1990s.It links it with TOP Switch matching the high frequency power transformer in the laptop battery charger application,and has carried on the analysis and summary.

  6. A Power Balance Aware Wireless Charger Deployment Method for Complete Coverage in Wireless Rechargeable Sensor Networks

    Directory of Open Access Journals (Sweden)

    Tu-Liang Lin

    2016-08-01

    Full Text Available Traditional sensor nodes are usually battery powered, and the limited battery power constrains the overall lifespan of the sensors. Recently, wireless power transmission technology has been applied in wireless sensor networks (WSNs to transmit wireless power from the chargers to the sensor nodes and solve the limited battery power problem. The combination of wireless sensors and wireless chargers forms a new type of network called wireless rechargeable sensor networks (WRSNs. In this research, we focus on how to effectively deploy chargers to maximize the lifespan of a network. In WSNs, the sensor nodes near the sink consume more power than nodes far away from the sink because of frequent data forwarding. This important power unbalanced factor has not been considered, however, in previous charger deployment research. In this research, a power balance aware deployment (PBAD method is proposed to address the power unbalance in WRSNs and to design the charger deployment with maximum charging efficiency. The proposed deployment method is effectively aware of the existence of the sink node that would cause unbalanced power consumption in WRSNs. The simulation results show that the proposed PBAD algorithm performs better than other deployment methods, and fewer chargers are deployed as a result.

  7. Powerful, Efficient Electric Vehicle Chargers: Low-Cost, Highly-Integrated Silicon Carbide (SiC) Multichip Power Modules (MCPMs) for Plug-In Hybrid Electric

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-09-14

    ADEPT Project: Currently, charging the battery of an electric vehicle (EV) is a time-consuming process because chargers can only draw about as much power from the grid as a hair dryer. APEI is developing an EV charger that can draw as much power as a clothes dryer, which would drastically speed up charging time. APEI's charger uses silicon carbide (SiC)-based power transistors. These transistors control the electrical energy flowing through the charger's circuits more effectively and efficiently than traditional transistors made of straight silicon. The SiC-based transistors also require less cooling, enabling APEI to create EV chargers that are 10 times smaller than existing chargers.

  8. Design of solar lamp and portable charger system based on Li battery%基于锂电池的太阳能灯与移动电源系统设计

    Institute of Scientific and Technical Information of China (English)

    陶俊豪; 张志鸣; 王殿程

    2014-01-01

    In order to realize the outdoor lighting and USB charging requirements,a design scheme of solar lamps and por-table charger based on lithium batteries is presented in this paper. The overall plan and the detailed design scheme are put for-ward. The circuit design and system testing are completed. The system consists of four modules:solar charging module,USB in-terface charging module,high brightness LED driver module and power supply outputting module through USB interface. In addi-tion to the USB interface charging module using linear power chip,other modules are designed with switching power supply chips so as to reduce the size of the system and improve the efficiency. The system passed the test exam. The actual test results show that the system is working properly,its output is accurate,its circuit reaches the design requirements,and it can be popularized.%为了实现野外照明和USB充电的需求,提出了一种基于锂电池的太阳能灯和移动电源系统的设计方案,分别给出了总体方案和详细设计方案,并完成了系统的电路设计和测试。系统包含四个模块电路:太阳能充电模块、USB接口充电模块、高亮度LED驱动模块以及USB接口供电输出模块,除USB接口充电模块使用线性电源芯片外,其他模块均采用开关电源芯片设计,以提高效率,缩小体积。系统通过了实际的硬件测试,测试结果表明,该系统工作正常、输出准确,达到了设计要求,可以推广使用。

  9. Battery charging system

    Energy Technology Data Exchange (ETDEWEB)

    Carollo, J.A.; Kalinsky, W.A.

    1984-02-21

    A battery charger utilizes three basic modes of operation that includes a maintenance mode, a rapid charge mode and time controlled limited charging mode. The device utilizes feedback from the battery being charged of voltage, current and temperature to determine the mode of operation and the time period during which the battery is being charged.

  10. A High Power Density Integrated Charger for Electric Vehicles with Active Ripple Compensation

    Directory of Open Access Journals (Sweden)

    Liwen Pan

    2015-01-01

    Full Text Available This paper suggests a high power density on-board integrated charger with active ripple compensation circuit for electric vehicles. To obtain a high power density and high efficiency, silicon carbide devices are reported to meet the requirement of high-switching-frequency operation. An integrated bidirectional converter is proposed to function as AC/DC battery charger and to transfer energy between battery pack and motor drive of the traction system. In addition, the conventional H-bridge circuit suffers from ripple power pulsating at second-order line frequency, and a scheme of active ripple compensation circuit has been explored to solve this second-order ripple problem, in which a pair of power switches shared traction mode, a ripple energy storage capacitor, and an energy transfer inductor. Simulation results in MATLAB/Simulink validated the eligibility of the proposed topology. The integrated charger can work as a 70 kW motor drive circuit or a converter with an active ripple compensation circuit for 3 kW charging the battery. The impact of the proposed topology and control strategy on the integrated charger power losses, efficiency, power density, and thermal performance has also been analysed and simulated.

  11. PHEV-EV Charger Technology Assessment with an Emphasis on V2G Operation

    Energy Technology Data Exchange (ETDEWEB)

    Kisacikoglu, Mithat C [ORNL; Bedir, Abdulkadir [ORNL; Ozpineci, Burak [ORNL; Tolbert, Leon M [ORNL

    2012-03-01

    More battery powered electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) will be introduced to the market in 2011 and beyond. Since these vehicles have large batteries that need to be charged from an external power source or directly from the grid, their batteries, charging circuits, charging stations/infrastructures, and grid interconnection issues are garnering more attention. This report summarizes information regarding the batteries used in PHEVs, different types of chargers, charging standards and circuits, and compares different topologies. Furthermore, it includes a list of vehicles that are going to be in the market soon with information on their charging and energy storage equipment. A summary of different standards governing charging circuits and charging stations concludes the report. There are several battery types that are available for PHEVs; however, the most popular ones have nickel metal hydride (NiMH) and lithium-ion (Li-ion) chemistries. The former one is being used in current hybrid electric vehicles (HEVs), but the latter will be used in most of the PHEVs and EVs due to higher energy densities and higher efficiencies. The chargers can be classified based on the circuit topologies (dedicated or integrated), location of the charger (either on or off the vehicle), connection (conductive, inductive/wireless, and mechanical), electrical waveform (direct current (dc) or alternating current (ac)), and the direction of power flow (unidirectional or bidirectional). The first PHEVs typically will have dedicated, on-board, unidirectional chargers that will have conductive connections to the charging stations or wall outlets and will be charged using either dc or ac. In the near future, bidirectional chargers might also be used in these vehicles once the benefits of practical vehicle to grid applications are realized. The terms charger and charging station cause terminology confusion. To prevent misunderstandings, a more descriptive term

  12. High-efficiency electrical charger for nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, M., E-mail: malonso@cenim.csic.es [National Centre for Metallurgical Research (CENIM-CSIC) (Spain); Huang, C. H. [Yuanpei University, Department of Environmental Engineering and Health (China)

    2015-08-15

    An electrical charger, based on a point-to-plate DC corona discharge, for the high-efficiency charging of aerosol particles with diameter of a few nanometers, has been designed, constructed, and evaluated. The discharge takes place between a needle and a perforated plate, and the results presented here have shown that this specific design allows reduction of electrostatic losses of charged particles within the charger in comparison with other typical designs. Besides, the small effective volume of the charger leads to a relatively small diffusion loss of particles. As a consequence of the reduced electrostatic and diffusion losses, the extrinsic charging efficiency attainable is higher than in similar devices.

  13. Programmable direct current power supply (charger) GBE 2 x 38/4. mod II. Programmierbare Gleichstromversorgung (Ladegeraet) GBE 2 x 38/4. mod II

    Energy Technology Data Exchange (ETDEWEB)

    Obstfelder, I. (Benning (Theo) GmbH und Co. KG, Bocholt (Germany))

    1989-01-01

    The configuration and technical data of the microcontroller-controlled 'GBE 2x38/4 mod. II' battery charger is disclosed. Furthermore, the sequence of the charging program, i.e. the procedure for charging a closed battery each, is described. (MM).

  14. The Photovoltaic Charger Based on Supercapacitor-Lead Acid Battery Hybrid Energy Storage%超级电容-铅酸蓄电池混合储能的太阳能充电器

    Institute of Scientific and Technical Information of China (English)

    林建南; 郭震宁; 刘祖隆

    2011-01-01

    独立型太阳能照明系统存在铅酸蓄电池使用寿命短且弱光条件下系统充电能力不足的缺点,为了改进系统性能,文中设计了基于超级电容-铅酸蓄电池混合储能的太阳能充电器,采用UC3909智能管理芯片实现对铅酸蓄电池具有温度补偿功能的的四阶段充电管理;并利用超级电容器组及升降压转换电路实现弱光充电功能,优化铅酸蓄电池充放电过程,提高系统效率及稳定性。%The stand-alone photovoltaic lighting system has some shortcomings such as lead acid storage battery's short-life and the insufficiency of system charging ability.To improve the system's performance,this paper designs a solar charger based on supercapacit

  15. Solar battery energizer

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, M. E.

    1985-09-03

    A battery energizer for button batteries, such as zinc-silver oxide or zinc-mercuric oxide batteries, that are normally considered unchargeable, provides for energizing of the batteries in a safe and simple manner. A solar cell having a maximum current output (e.g., 20 milliamps) is operatively connected to terminals for releasably receiving a button battery. A light emitting diode, or like indicator, provides an indication of when the battery is fully energized, and additionally assists in preventing overenergization of the battery. The solar cell, terminals, LED, and the like can be mounted on a nonconductive material mounting plate which is mounted by a suction cup and hook to a window, adjacent a light bulb, or the like. A battery charger for conventional dry cell rechargeable batteries (such as nickel-cadmium batteries) utilizes the solar cells, and LED, and a zener diode connected in parallel with terminals. An adaptor may be provided with the terminal for adapting them for use with any conventional size dry cell battery, and a simple dummy battery may be utilized so that less than the full complement of batteries may be charged utilizing the charger.

  16. Development of micro solar charger with blocking relay; Gyakuryu boshi relay wo oyoshita kogata solar judenki no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Nanno, I.; Matsushita, Y. Oka, S. [Omron Corp., Kyoto (Japan)

    1997-11-25

    Heavy-current tiny-scale solar charger is tentatively built, equipped with a function of preventing overcharge and countercurrent in case of charging storage batteries using solar cells. Incorporated into this solar charger are a countercurrent prevention relay system, a low loss current detection system, and a MOSFET parallel connection, which allow the solar charger to be designed small in size in the presence of an increase in heat due to circuit loss. In the countercurrent prevention relay system, the countercurrent prevention diode is bypassed by MOSFETs when too large a current is generated. In the low loss current detection system, currents are detected by use of the ON resistance of the MOSFETs for the prevention of overcharge. In the MOSFET parallel connection, MOSFETs are connected in parallel for a decrease in the ON resistance. The tentatively built charger is then subjected to a performance evaluation test outside the building, and the test is carried out by measuring the temperatures of the MOSFETs and the air. As the result, it is found that the temperature of MOSFET junction of the 12A tiny-size solar charger is approximately 42.5 degC at the highest, low enough to clear the requirements. 4 refs., 7 figs., 4 tabs.

  17. Remote RF Battery Charging

    NARCIS (Netherlands)

    Visser, H.J.; Pop, V.; Op het Veld, J.H.G.; Vullers, R.J.M.

    2011-01-01

    The design of a remote RF battery charger is discussed through the analysis and design of the subsystems of a rectenna (rectifying antenna): antenna, rectifying circuit and loaded DC-to-DC voltage (buck-boost) converter. Optimum system power generation performance is obtained by adopting a system in

  18. Effects of V2G Reactive Power Compensation on the Component Selection in an EV or PHEV Bidirectional Charger

    Energy Technology Data Exchange (ETDEWEB)

    Kisacikoglu, Mithat C [ORNL; Ozpineci, Burak [ORNL; Tolbert, Leon M [ORNL

    2010-01-01

    Electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) are becoming a part of the electric grid day by day. Chargers for these vehicles have the ability to make this interaction better for the consumer and for the grid. Vehicle to grid (V2G) power transfer has been under research for more than a decade because of the large energy reserve of an electric vehicle battery and the potential of thousands of these connected to the grid. Rather than discharging the vehicle batteries, reactive power compensation in particular is beneficial for both consumers and for the utility. However, certain adverse effects or requirements of reactive power transfer should be defined before a design stage. To understand the dynamics of this operation, this study investigates the effect of reactive power transfer on the charger system components, especially on the dc-link capacitor and the battery.

  19. PSO Based PI Controller Design for a Solar Charger System

    Directory of Open Access Journals (Sweden)

    Her-Terng Yau

    2013-01-01

    Full Text Available Due to global energy crisis and severe environmental pollution, the photovoltaic (PV system has become one of the most important renewable energy sources. Many previous studies on solar charger integrated system only focus on load charge control or switching Maximum Power Point Tracking (MPPT and charge control modes. This study used two-stage system, which allows the overall portable solar energy charging system to implement MPPT and optimal charge control of Li-ion battery simultaneously. First, this study designs a DC/DC boost converter of solar power generation, which uses variable step size incremental conductance method (VSINC to enable the solar cell to track the maximum power point at any time. The voltage was exported from the DC/DC boost converter to the DC/DC buck converter, so that the voltage dropped to proper voltage for charging the battery. The charging system uses constant current/constant voltage (CC/CV method to charge the lithium battery. In order to obtain the optimum PI charge controller parameters, this study used intelligent algorithm to determine the optimum parameters. According to the simulation and experimental results, the control parameters resulted from PSO have better performance than genetic algorithms (GAs.

  20. PSO based PI controller design for a solar charger system.

    Science.gov (United States)

    Yau, Her-Terng; Lin, Chih-Jer; Liang, Qin-Cheng

    2013-01-01

    Due to global energy crisis and severe environmental pollution, the photovoltaic (PV) system has become one of the most important renewable energy sources. Many previous studies on solar charger integrated system only focus on load charge control or switching Maximum Power Point Tracking (MPPT) and charge control modes. This study used two-stage system, which allows the overall portable solar energy charging system to implement MPPT and optimal charge control of Li-ion battery simultaneously. First, this study designs a DC/DC boost converter of solar power generation, which uses variable step size incremental conductance method (VSINC) to enable the solar cell to track the maximum power point at any time. The voltage was exported from the DC/DC boost converter to the DC/DC buck converter, so that the voltage dropped to proper voltage for charging the battery. The charging system uses constant current/constant voltage (CC/CV) method to charge the lithium battery. In order to obtain the optimum PI charge controller parameters, this study used intelligent algorithm to determine the optimum parameters. According to the simulation and experimental results, the control parameters resulted from PSO have better performance than genetic algorithms (GAs).

  1. Distributed Sensor Nodes Charged by Mobile Charger with Directional Antenna and by Energy Trading for Balancing.

    Science.gov (United States)

    Moraes, Celso; Myung, Sunghee; Lee, Sangkeum; Har, Dongsoo

    2017-01-10

    Provision of energy to wireless sensor networks is crucial for their sustainable operation. Sensor nodes are typically equipped with batteries as their operating energy sources. However, when the sensor nodes are sited in almost inaccessible locations, replacing their batteries incurs high maintenance cost. Under such conditions, wireless charging of sensor nodes by a mobile charger with an antenna can be an efficient solution. When charging distributed sensor nodes, a directional antenna, rather than an omnidirectional antenna, is more energy-efficient because of smaller proportion of off-target radiation. In addition, for densely distributed sensor nodes, it can be more effective for some undercharged sensor nodes to harvest energy from neighboring overcharged sensor nodes than from the remote mobile charger, because this reduces the pathloss of charging signal due to smaller distances. In this paper, we propose a hybrid charging scheme that combines charging by a mobile charger with a directional antenna, and energy trading, e.g., transferring and harvesting, between neighboring sensor nodes. The proposed scheme is compared with other charging scheme. Simulations demonstrate that the hybrid charging scheme with a directional antenna achieves a significant reduction in the total charging time required for all sensor nodes to reach a target energy level.

  2. Efficiency Test Method for Electric Vehicle Chargers

    DEFF Research Database (Denmark)

    Kieldsen, Andreas; Thingvad, Andreas; Martinenas, Sergejus;

    2016-01-01

    This paper investigates different methods for measuring the charger efficiency of mass produced electric vehicles (EVs), in order to compare the different models. The consumers have low attention to the loss in the charger though the impact on the driving cost is high. It is not a high priority...... above the state of the art power converters. This is an unnecessary high consumption of electrical energy during charging, which not only affects the consumer financially, but also creates unnecessary load on the grid....... area for the Original Equipment Manufacturer (OEM), which means the cost of the power converter equipment is minimised. The internal wiring and the composition of components within an EV is different for each OEM and model, hence a unified test method is needed in order to compare results across...

  3. A Highly Accurate Li-Ion Battery Charger Based on Digital Controlled Source%基于数字受控源的高精度锂电池组储能方案

    Institute of Scientific and Technical Information of China (English)

    严伟; 刘豫章; 康琦

    2011-01-01

    提出了一种基于数字受控源,由纯硬件实现控制算法的锂电池组储能方案。该方案能够同时检测锂电池组中各单体电池的状态,并通过稳定且高精度的数控电信号输出,为锂电池组提供最佳的储能模式,解决了传统充电器控制方式中相对粗糙的信号采集与控制所造成的电池寿命缩短的问题,并消除了充电过程中电池爆裂等安全方面的隐患。在一些不稳定的可再生能源供给的采集与存储等应用场所,这种可靠、精确且通用性强的锂电池组的储能管理方案得以实施,可为锂电池供电系统发挥出最优性能提供保障。%A highly accurate Li-ion battery charging approach based on digitally controlled source by hardware was proposed. To avoid a reduced working life and a potential blast in conventional charging systems with less accurate signal-sample and control, it can synchronously detect the instant charging-states of each single cell in the whole series combinations with more stable and accurate, digitally controlled outputs. In some turbulent energy supplies from the reproducible source, the stable, accurate and universal charging system could be utilized to gain maximized efficiency of charging with minimum defaults.

  4. 基于Reflex TM充电策略的锂离子电池充电器设计%Design of lithium-ion battery charger based on Reflex TM charging strategy

    Institute of Scientific and Technical Information of China (English)

    汤天浩; 郑晓龙; 范辉

    2015-01-01

    为实现动力锂离子电池的高效快速充电,采用非耗散型的Reflex TM充电方法,消除充电过程中的极化现象,在分析改变充电电流参数对充电过程的优化作用基础上,提出一种变流变频充电控制策略。设计双向DC-DC变换器及其控制电路,实现可变流变频的Reflex TM充电策略。通过改变正负脉冲幅值和占空比等实验,验证其可行性和有效性。%To achieve the high-efficient and fast charge of a power lithium-ion battery,a non-dissipative charging method called as Reflex TM is adopted to remove the polarization phenomenon in the charging process. Based on the analysis of the optimization function of different charging current parameters on the charging process,the variable-current and variable-frequency control strategy is presented,and then a bi-directional DC-DC converter and its control circuit are designed to implement the strategy. The feasibility and availability of the strategy is proved through the experiment where the positive and negative pulse am-plitudes and the duty-cycle are changed.

  5. 77 FR 38743 - Energy Efficiency Program for Consumer Products: Energy Conservation Standards for Battery...

    Science.gov (United States)

    2012-06-29

    ... Part 430 RIN 1904-AB57 Energy Efficiency Program for Consumer Products: Energy Conservation Standards... proposed rulemaking to establish energy conservation standards for battery chargers and external power... must identify the subject matter (``Notice of Proposed Rulemaking to Establish Energy...

  6. Design of a Battery Intermediate Storage System for Rep-Rated Pulsed Power Loads

    Science.gov (United States)

    2013-04-01

    Abstract—The U.S. Naval Research Laboratory (NRL) is developing a battery-powered, rep-rate charger for a 60-kJ capacitor bank . The capacitor ...developing a rapid charger for a 60-kJ capacitor bank capable of charging a 4800- µF capacitor to 5-kV in roughly five seconds. This system needs to...U.S. Naval Research Laboratory (NRL) is developing a battery-powered, rep-rate charger for a 60-kJ capacitor bank . The capacitor will be charged with

  7. All-SiC Inductively Coupled Charger with Integrated Plug-in and Boost Functionalities for PEV Applications

    Energy Technology Data Exchange (ETDEWEB)

    Chinthavali, Madhu Sudhan [ORNL; Campbell, Steven L [ORNL; Tolbert, Leon M [ORNL

    2016-01-01

    So far, vehicular power electronics integration is limited to the integration of on-board battery chargers (OBC) into the traction drive system and sometimes to the accessory dc/dc converters in plug-in electric vehicles (PEV). These integration approaches do not provide isolation from the grid although it is an important feature that is required for user interface systems that have grid connections. This is therefore a major limitation that needs to be addressed along with the integrated functionality. Furthermore, there is no previous study that proposes the integration of wireless charger with the other on-board components. This study features a unique way of combining the wired and wireless charging functionalities with vehicle side boost converter integration and maintaining the isolation to provide the best solution to the plug-in electric vehicle users. The new topology is additionally compared with commercially available OBC systems from manufacturers.

  8. Wide Operating Voltage Range Fuel Cell Battery Charger

    DEFF Research Database (Denmark)

    Hernandez Botella, Juan Carlos; Mira Albert, Maria del Carmen; Sen, Gokhan

    2014-01-01

    DC-DC converters for fuel cell applications require wide voltage range operation due to the unique fuel cell characteristic curve. Primary parallel isolated boost converter (PPIBC) is a boost derived topology for low voltage high current applications reaching an efficiency figure up to 98...... by two the converter input-to-output voltage gain. This allows covering the conditions when the fuel cell stack operates in the activation region (maximum output voltage) and increases the degrees of freedom for converter optimization. The transition between operating modes is studied because represents...

  9. Wide Operating Voltage Range Fuel Cell Battery Charger

    DEFF Research Database (Denmark)

    Hernandez Botella, Juan Carlos; Mira Albert, Maria del Carmen; Sen, Gokhan;

    2014-01-01

    DC-DC converters for fuel cell applications require wide voltage range operation due to the unique fuel cell characteristic curve. Primary parallel isolated boost converter (PPIBC) is a boost derived topology for low voltage high current applications reaching an efficiency figure up to 98.2 %. Th...

  10. Single-Switch Equalization Charger Using Multiple Stacked Buck-Boost Converters for Series-Connected Energy-Storage Modules

    Science.gov (United States)

    Uno, Masatoshi; Tanaka, Koji

    Series connections of energy-storage modules such as electric double-layer capacitors (EDLCs) and lithium-ion batteries result in voltage imbalance because of the nonuniform properties of individual modules. Conventional voltage equalizers based on traditional dc-dc converters require numerous switches and/or transformers, and therefore, their costs and complexity tend to increase. This paper proposes a novel single-switch equalization charger using multiple stacked buck-boost converters. The single-switch operation not only reduces the circuit complexity but also contributes to increasing the reliability. The fundamental operating principles and design procedures of key components are presented in detail. An experimental charge test using a 25W prototype of the proposed equalization charger was performed for four series-connected EDLC modules whose initial voltages were intentionally imbalanced. Experimental results demonstrated that the proposed equalization charger could charge the series-connected modules preferentially in the order of increasing module voltage and that all the modules could be charged up to a uniform voltage level.

  11. EV/PHEV Bidirectional Charger Assessment for V2G Reactive Power Operation

    Energy Technology Data Exchange (ETDEWEB)

    Kisacikoglu, Mithat C [ORNL; Ozpineci, Burak [ORNL; Tolbert, Leon M [ORNL

    2013-01-01

    This paper presents a summary of the available single-phase ac-dc topologies used for EV/PHEV, level-1 and -2 on-board charging and for providing reactive power support to the utility grid. It presents the design motives of single-phase on-board chargers in detail and makes a classification of the chargers based on their future vehicle-to-grid usage. The pros and cons of each different ac-dc topology are discussed to shed light on their suitability for reactive power support. This paper also presents and analyzes the differences between charging-only operation and capacitive reactive power operation that results in increased demand from the dc-link capacitor (more charge/discharge cycles and increased second harmonic ripple current). Moreover, battery state of charge is spared from losses during reactive power operation, but converter output power must be limited below its rated power rating to have the same stress on the dc-link capacitor.

  12. Battery Charge Equalizer with Transformer Array

    Science.gov (United States)

    Davies, Francis

    2013-01-01

    High-power batteries generally consist of a series connection of many cells or cell banks. In order to maintain high performance over battery life, it is desirable to keep the state of charge of all the cell banks equal. A method provides individual charging for battery cells in a large, high-voltage battery array with a minimum number of transformers while maintaining reasonable efficiency. This is designed to augment a simple highcurrent charger that supplies the main charge energy. The innovation will form part of a larger battery charge system. It consists of a transformer array connected to the battery array through rectification and filtering circuits. The transformer array is connected to a drive circuit and a timing and control circuit that allow individual battery cells or cell banks to be charged. The timing circuit and control circuit connect to a charge controller that uses battery instrumentation to determine which battery bank to charge. It is important to note that the innovation can charge an individual cell bank at the same time that the main battery charger is charging the high-voltage battery. The fact that the battery cell banks are at a non-zero voltage, and that they are all at similar voltages, can be used to allow charging of individual cell banks. A set of transformers can be connected with secondary windings in series to make weighted sums of the voltages on the primaries.

  13. Impact of Fast Charging on Life of EV Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, Jeremy; Wood, Eric; Burton, Evan; Smith, Kandler; Pesaran, Ahmad A.

    2015-05-03

    Utilization of public charging infrastructure is heavily dependent on user-specific travel behavior. The availability of fast chargers can positively affect the utility of battery electric vehicles, even given infrequent use. Estimated utilization rates do not appear frequent enough to significantly impact battery life. Battery thermal management systems are critical in mitigating dangerous thermal conditions on long distance tours with multiple fast charge events.

  14. Design and Implementation of a Multi-function Charger Based on Microcontroller%基于单片机的多功能充电器的设计与实现

    Institute of Scientific and Technical Information of China (English)

    赵璞

    2012-01-01

    This project mainly based on single chip multi-function charger to address the fast charging of different battery.ATmega8 in-depth studies on the use of his performance, the design completely implemented the latest technology designed battery charger, sealed lead-acid battery can (SLA), and nickel-cadmium batteries (NiCd) fast charge without modification of hardware, to focus on a single hardware platform to achieve a complete charger product line. Just switch the button you can manually choose a different algo- rithm to realize the different battery charging, and through the LCD clearly see the charge status. Greatly increased the integrated charger, charging reduced cost, convenient and quick.%本课题主要研究基于单片机的多功能充电器,解决对不同电池的快速充电。通过对ATmega8的深入研究,利用它的高性能,设计完全实现了电池充电器设计的功能。本设计可以通过按键切换,对的密封铅酸电池(SLA)和镍镉电池(NiCd)进行充电,并通过LCD清楚地看到其充电状态。同时利用放大电路和Atmega8本身的AD转换器显示对电池电压和电流的实时测量,以较好的控制充电过程,保护电池。

  15. The design of the smartphone charger based on MCU%基于单片机的智能手机充电器的设计

    Institute of Scientific and Technical Information of China (English)

    王涛; 屈高龙; 殷蘖均; 汪楚; 杨富琴

    2014-01-01

    随着手机技术的持续快速发展,如何对智能手机电池进行安全有效地充电,已经成为了一个重要的课题。单片机技术在工业控制领域有着广泛的应用,利用它的处理控制能力可以实现充电器的智能化。本设计主要根据手机充电器现状,在传统的手机充电器基础上,使用AT89C58单片机来实现手机锂电池充电器方面的应用,充电控制部分由MAX1898芯片完成。该充电器能够实现电池的预充、快充、定时充电、充电需时提醒、充电后自动断电、充满提醒、LED灯提示、电路安全保护、温度控制、应急发电等功能。%With therapid development of mobile technology,how to be safe and effective for smartphone battery charging,has become an important issue.SCM technology has a wide field of industrial control applications.the ability to control the use of its processing can achieve intelligent charger.The design is mainly based on the status quo of mobile phone charger and cell phone charger in the traditional,to implement applications using mobile phone battery charger aspects based on AT89C58 microcontroller,the charge control by the MAX1898 chip.The battery charger is able to achieve a pre-charge,fast charging, regular charging,reminders for charging,automatic power-off and alert after charging,tips of LED lights, safety circuit protection,control for temperature,emergency power and other functions.

  16. Single stage grid converters for battery energy storage

    DEFF Research Database (Denmark)

    Trintis, Ionut; Munk-Nielsen, Stig; Teodorescu, Remus

    2010-01-01

    Integration of renewable energy systems in the power system network such as wind and solar is still a challenge in our days. Energy storage systems (ESS) can overcome the disadvantage of volatile generation of the renewable energy sources. This paper presents power converters for battery energy...... storage systems (BESS) which can interface mediumvoltage batteries to the grid. Converter topologies comparison is performed in terms of efficiency, common mode voltage and redundancy for a 6kV series connected medium voltage batteries with a nominal power of 5MVA to act as a battery charger/discharger....

  17. Architectural innovation foresight of thermoelectric generator charger integrated portable power supply for portable consumer electronic device in metropolitan market: The case study of Thailand

    Science.gov (United States)

    Maolikul, S.; Kiatgamolchai, S.; Chavarnakul, T.

    2012-06-01

    In the context of information and communication technology (ICT) trend for worldwide individuals, social life becomes digital and portable consumer electronic devices (PCED) powered by conventional power supply from batteries have been evolving through miniaturization and various function integration. Thermoelectric generators (TEG) were hypothesized for its potential role of battery charger to serve the shining PCED market. Hence, this paper, mainly focusing at the metropolitan market in Thailand, aimed to conduct architectural innovation foresight and to develop scenarios on potential exploitation approach of PCED battery power supply with TEG charger converting power from ambient heat source adjacent to individual's daily life. After technical review and assessment for TEG potential and battery aspect, the business research was conducted to analyze PCED consumer behavior for their PCED utilization pattern, power supply lack problems, and encountering heat sources/sinks in 3 modes: daily life, work, and leisure hobbies. Based on the secondary data analysis from literature and National Statistical Office of Thailand, quantitative analysis was applied using the cluster probability sampling methodology, statistically, with the sample size of 400 at 0.05 level of significance. In addition, the qualitative analysis was conducted to emphasize the rationale of consumer's behavior using in-depth qualitative interview. Scenario planning technique was also used to generate technological and market trend foresight. Innovation field and potential scenario for matching technology with market was proposed in this paper. The ingredient for successful commercialization of battery power supply with TEG charger for PCED market consists of 5 factors as follows: (1) PCED characteristic, (2) potential ambient heat sources/sinks, (3) battery module, (4) power management module, and the final jigsaw (5) characteristic and adequate arrangement of TEG modules. The foresight outcome for

  18. Optimization of unipolar magnetic couplers for EV wireless power chargers

    Science.gov (United States)

    Zeng, H.; Liu, Z. Z.; Chen, H. X.; Zhou, B.; Hei, T.

    2016-08-01

    In order to improve the coupling coefficient of EV wireless power chargers, it's important to optimize the magnetic couplers. To improve the coupling coefficient, the relationship between coupling coefficient and efficiency is derived, and the expression of coupling coefficient based on magnetic circuit is deduced, which provide the basis for optimizing the couplers. By 3D FEM simulation, the optimal core structure and coils are designed for unipolar circular couplers. Experiments are designed to verify the correctness of the optimization results, and compared with previous coupler, the transmission efficiency is improved and weight is reduced.

  19. DC Fast Charger Usage in the Pacific Northwest

    Energy Technology Data Exchange (ETDEWEB)

    Salisbury, Shawn [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smart, John [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    This document will describe the use of a number of Direct Current Fast Charging Stations throughout Washington and Oregon as a part of of the West Coast Electric Highway. It will detail the usage frequency and location of the charging stations INL has data from. It will also include aggregated data from hundreds of privately owned vehicles that were enrolled in the EV Project regarding driving distance when using one of the West Coast Electric Highway fast chargers. This document is a white paper that will be published on the INL AVTA website.

  20. Prospect of MH-Ni Batteries Development

    Institute of Scientific and Technical Information of China (English)

    Xu Shaoping; Xing Zhiqiang; Liang Wanlong; Ma Yijun

    2004-01-01

    The development trend and promising application prospects of high-power MH-Ni battery were reviewed by studying and comparing the current high-power batteries research area.High-power MH-Ni batiery has good performlife with 500 ~ 1000 times, abundant material resource, especially abundant rare earth resource in China, high-rate discharging, rapid charging, good safety as well as no pollution, etc., which is regarded as the most promising storage battery for electric vehicles.The performance of high power MH-Ni battery can be brought into play fully and ensure electric vehicles performance if it is equipped with appropriate chargers, controlling system and electric motors.Facing opportunities and challenges, MH-Ni battery has promising application prospects on hybrid electric automobile, electric bicycle and a variety of small sized electric vehicles by improving its technology constantly and developing market actively.

  1. Quantifying the Effect of Fast Charger Deployments on Electric Vehicle Utility and Travel Patterns via Advanced Simulation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wood, E.; Neubauer, J.; Burton, E.

    2015-02-01

    The disparate characteristics between conventional (CVs) and battery electric vehicles (BEVs) in terms of driving range, refill/recharge time, and availability of refuel/recharge infrastructure inherently limit the relative utility of BEVs when benchmarked against traditional driver travel patterns. However, given a high penetration of high-power public charging combined with driver tolerance for rerouting travel to facilitate charging on long-distance trips, the difference in utility between CVs and BEVs could be marginalized. We quantify the relationships between BEV utility, the deployment of fast chargers, and driver tolerance for rerouting travel and extending travel durations by simulating BEVs operated over real-world travel patterns using the National Renewable Energy Laboratory's Battery Lifetime Analysis and Simulation Tool for Vehicles (BLAST-V). With support from the U.S. Department of Energy's Vehicle Technologies Office, BLAST-V has been developed to include algorithms for estimating the available range of BEVs prior to the start of trips, for rerouting baseline travel to utilize public charging infrastructure when necessary, and for making driver travel decisions for those trips in the presence of available public charging infrastructure, all while conducting advanced vehicle simulations that account for battery electrical, thermal, and degradation response. Results from BLAST-V simulations on vehicle utility, frequency of inserted stops, duration of charging events, and additional time and distance necessary for rerouting travel are presented to illustrate how BEV utility and travel patterns can be affected by various fast charge deployments.

  2. Ministry of Information Industry Regulation: Mobile charger Interfaces must be Unified

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Recently, the Ministry of Information Industry (MII) printed and distributed the Notification on the Implementation of the Technical Requirements and Testing Method for Mobile Charger and Interface by Mobile Network Connection and Detection.

  3. Design of Intelligent Accumulator Charger for Wind Power System%小型风电系统蓄电池智能充电器的设计

    Institute of Scientific and Technical Information of China (English)

    肖成; 闫晓金

    2012-01-01

    With an in-depth analysis of the conventional battery charging method and technical requirements of lead-acid battery in small wind power system, a three-stage intelligent charger oriented based on SG3525A was designed. Its main circuit was the push- pull isolation convert structure and the charge strategy was the three-stage approach of constant current, constant voltage and trickle charge to achieve the different stages of battery charging requirements. The experiment results showed that the charger could adapt to a wide range voltage of charging requests and achieve real-time monitoring charge state and status display besides protecting over-volt- age and over-current.%在深入分析了小型风力发电系统对蓄电池的充电要求和蓄电池常规充电方式的基础上,设计了基于ATmega16和SG3525A的四段式智能充电器,其主电路采用推挽隔离变换结构,充电策略采用激活、恒流、恒压、涓流的四段式充电方法,实现了蓄电池在不同阶段下的充电要求。实验结果表明,该充电器能够适应风机宽范围的充电要求,而且可实现充电状态的实时监控和状态显示,并具有过压、过流保护功能。

  4. New Lithium-ion Polymer Battery for the Extravehicular Mobility Unit Suit

    Science.gov (United States)

    Jeevarajan, J. A.; Darcy, E. C.

    2004-01-01

    The Extravehicular Mobility Unit (EMU) suit currently has a silver-zinc battery that is 20.5 V and 45 Ah capacity. The EMU's portable life support system (PLSS) will draw power from the battery during the entire period of an EVA. Due to the disadvantages of using the silver-zinc battery in terms of cost and performance, a new high energy density battery is being developed for future use, The new battery (Lithium-ion battery or LIB) will consist of Li-ion polymer cells that will provide power to the EMU suit. The battery design consists of five 8 Ah cells in parallel to form a single module of 40 Ah and five such modules will be placed in series to give a 20.5 V, 40 Ah battery. Charging will be accomplished on the Shuttle or Station using the new LIB charger or the existing ALPS (Air Lock Power Supply) charger. The LIB delivers a maximum of 3.8 A on the average, for seven continuous hours, at voltages ranging from 20.5 V to 16.0 V and it should be capable of supporting transient pulses during start up and once every hour to support PLSS fan and pump operation. Figure 1 shows the placement of the battery in the backpack area of the EMU suit. The battery and cells will undergo testing under different conditions to understand its performance and safety characteristics.

  5. Design and Implementation of Battery Management System for Electric Bicycle

    OpenAIRE

    Mohd Rashid Muhammad Ikram; Anak Johnny Osman James Ranggi

    2017-01-01

    Today the electric vehicle (EV) has been developed in such a way that electronic motor, battery, and charger replace the engine, tank and gasoline pump of the conventional gasoline-powered [1]. In other word, instead of using fossil fuel to move the vehicle, in this case we used a pack of batteries to move it. The global climate change and the abnormal rising international crude oil prices call for the development of EV [2]. To solve these problems, a new energy needs to be developed or optim...

  6. Low wireless power transfer using Inductive Coupling for mobile phone charger

    Science.gov (United States)

    Fareq, M.; Fitra, M.; Irwanto, M.; Hasan, Syafruddin; Arinal, M.

    2014-04-01

    A wireless power transfer (WPT) using inductive coupling for mobile phone charger is studied. The project is offer to study and fabricate WPT using inductive coupling for mobile phone charger that will give more information about distance is effect for WPT performance and WPT is not much influenced by the presence of hands, books and types of plastics. The components used to build wireless power transfer can be divided into 3 parts components, the transceiver for power transmission, the inductive coils in this case as the antenna, receiver and the rectifier which act convert AC to DC. Experiments have been conducted and the wireless power transfer using inductive coupling is suitable to be implemented for mobile phone charger.

  7. Trimode Power Converter optimizes PV, diesel and battery energy sources

    Science.gov (United States)

    Osullivan, George; Bonn, Russell; Bower, Ward

    1994-12-01

    Conservatively, there are 100,000 localities in the world waiting for the benefits that electricity can provide, and many of these are in climates where sunshine is plentiful. With these locations in mind a prototype 30 kW hybrid system has been assembled at Sandia to prove the reliability and economics of photovoltaic, diesel and battery energy sources managed by an autonomous power converter. In the Trimode Power Converter the same power parts, four IGBT's with an isolation transformer and filter components, serve as rectifier and charger to charge the battery from the diesel; as a stand-alone inverter to convert PV and battery energy to AC; and, as a parallel inverter with the diesel-generator to accommodate loads larger than the rating of the diesel. Whenever the diesel is supplying the load, an algorithm assures that the diesel is running at maximum efficiency by regulating the battery charger operating point. Given the profile of anticipated solar energy, the cost of transporting diesel fuel to a remote location and a five year projection of load demand, a method to size the PV array, battery and diesel for least cost is developed.

  8. Design of portable outdoor charger%便携式野外充电器的设计

    Institute of Scientific and Technical Information of China (English)

    郭海军; 胡绍朋; 刘俊栋; 聂黎明; 陈炜峰

    2012-01-01

    为了解决手机电源突发断电,满足手机随时随地进行充电的目的,设计了一种太阳能及手摇式多功能手机充电器.使用太阳能电池板,经电路进行直流电压变换后给手机电池充电.手摇发电机产生波动较大的电压后,利用电压变换电路将输入电压整流、滤波、稳压后,得到稳定的充电电压.对220 V工频交流电进行整流、滤波、稳压后得到充电电压.后经充电管理电路给电池充电,充电完成后自动停止.该设计具有适用于旅行中野外使用的特点.%In order to solve the problem that the power supply of mobile phones interrupts suddenly, and meet the need that the mobile phone can get charged anytime and anywhere, a multifunction charger with solar panels or hand-cranked generator is designed. Its basic principles are as follows: the current produced by solar panels is converted to DC by voltage transformation circuit, and then charges mobile phones, and the hand-cranked generator generates a fluctuating current which flows through rectifier, filter, regulator and voltage conversion circuit to realize the voltage conversion from 220 V industrial frequency AC to a proper voltage. It can charge the batteries of mobile phones controlled by charging control circuit. The charging action stops automatically when the battery is full. It is especially useful when people are travelling or outdoor.

  9. Demand Profile Study of Battery Electric Vehicle under Different Charging Options

    DEFF Research Database (Denmark)

    Marra, Francesco; Yang, Guang Ya; Træholt, Chresten

    2012-01-01

    An increased research on electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) deals with their flexible use in electric power grids. Several research projects on smart grids and electric mobility are now looking into realistic models representing the behavior of an EV during charging......, including nonlinearities. In this work, modeling, simulation and testing of the demand profile of a battery-EV are conducted. Realistic work conditions for a lithium-ion EV battery and battery charger are considered as the base for the modeling. Simulation results show that EV charging generates different...

  10. A Novel Method of Remote Battery Back-up for A DMS Sub-station

    Directory of Open Access Journals (Sweden)

    Suba Srinivasan

    2014-12-01

    Full Text Available This study presents a remote battery backup for Distribution Management System substation. It elucidates the importance of the battery at the substation and the necessity of the automation at the substation. By achieving this we can remotely check the health of the battery from Back Control Center. It also enlightens the affects of the unavailability of power supply and how the charger gets activated and gives supply to the motors connected to the isolators and also acts as auxiliary supply to the Field Remote Terminal Unit until the station comes online.

  11. A Survey of Power Source Options for a Compact Battery Charger for Soldier Applications

    Science.gov (United States)

    2008-12-01

    perovskite ceramic oxide-conducting material. Use of a similar material for the entire cell structure is expected to overcome the problems...accompanying thermal cycling and the use of the perovskite anode is expected to allow the use of JP-8 without prior desulfurization. Protonex projects a...1 °C. In 1834, John Peltier discovered that the reverse is also true, where a flowing current in a metal or semiconductor creates a temperature

  12. Investigation of Tantalum Wet Slug Capacitor Failures in the Apollo Telescope Mount Charger Battery Regulator Modules

    Science.gov (United States)

    Williams, J. F.; Wiedeman, D. H.

    1973-01-01

    This investigation describes the capacitor failures and to identify the cause of the failure mechanism. Early failures were thought to have happened because of age and/or abuse since the failed capacitors were dated 1967. It is shown that all 1967 capacitors were replaced with 1972 capacitors.

  13. 76 FR 31749 - Energy Conservation Program for Certain Consumer Appliances: Test Procedures for Battery Chargers...

    Science.gov (United States)

    2011-06-01

    ... devices that (1) communicate with their loads through USB and other protocols (e.g. I2C and TCP/IP),\\3\\ (2... electricity from a power source, usually from a wall outlet, and convert it into a form that can be used.... Generalized Test Protocol for Calculating the Energy Efficiency of Internal Ac-Dc Power Supplies, Rev....

  14. Button batteries

    Science.gov (United States)

    Swallowing batteries ... These devices use button batteries: Calculators Cameras Hearing aids Penlights Watches ... If a person puts the battery up their nose and breathes it further in, ... problems Cough Pneumonia (if the battery goes unnoticed) ...

  15. PIC BASED SOLAR CHARGING CONTROLLER FOR BATTERY

    Directory of Open Access Journals (Sweden)

    Mrs Jaya N. Ingole

    2012-02-01

    Full Text Available Solar resource is unlimited the government is trying to implement the use of Solar panels as an energy source in rural and sub urban areas for lighting the street lights, but the battery used to store the power gets affected due to overcharge & discharges. This paper presents the use of PIC16F72 based solar charger controller for controlling the overcharging and discharging of a solar cell. It works by continuously optimizing the interface between the solar array and battery. First, the variable supply is fixed at 12.8V dc—the voltage of a fully charged battery— and linked to the battery point of the circuit. Cut Off of battery from load voltage is 10.8 volt. A PIC16F72 for small size and inbuilt analog inputs is used to determine voltage level of battery and solar panel..It also describes how the disadvantages of analog circuit are overcome by this controller. The flow chart is also provided.

  16. Integrated Charger with Wireless Charging and Boost Function for PHEV and EV Applications

    Energy Technology Data Exchange (ETDEWEB)

    Chinthavali, Madhu Sudhan [ORNL; Onar, Omer C [ORNL; Campbell, Steven L [ORNL

    2015-01-01

    Integrated charger topologies that have been researched so far with dc-dc converters and the charging functionality have no isolation in the system. Isolation is an important feature that is required for user interface systems that have grid connections and therefore is a major limitation that needs to be addressed along with the integrated functionality. The topology proposed in this paper is a unique and a first of its kind topology that integrates a wireless charging system and the boost converter for the traction drive system. The new topology is also compared with an on-board charger system from a commercial electric vehicle (EV). The ac-dc efficiency of the proposed system is 85.05% and the specific power and power density of the onboard components is ~455 W/kg and ~302 W/ .

  17. Integrated Charger with Wireless Charging and Boost Function for PHEV and EV Applications

    Energy Technology Data Exchange (ETDEWEB)

    Chinthavali, Madhu Sudhan [ORNL; Onar, Omer C [ORNL; Campbell, Steven L [ORNL; Tolbert, Leon M [ORNL

    2015-01-01

    Integrated charger topologies that have been researched so far with dc-dc converters and the charging functionality have no isolation in the system. Isolation is an important feature that is required for user interface systems that have grid connections and therefore is a major limitation that needs to be addressed along with the integrated functionality. The topology proposed in this paper is a unique and a first of its kind topology that integrates a wireless charging system and the boost converter for the traction drive system. The new topology is also compared with an on-board charger system from a commercial electric vehicle (EV). The ac-dc efficiency of the proposed system is 85.1% and the specific power and power density of the onboard components is ~455 W/kg and ~320 W/ .

  18. Possible fire hazard caused by mismatching electrical chargers with the incorrect device within the operating room.

    LENUS (Irish Health Repository)

    Hargrove, Martin

    2012-02-03

    It has come to our attention that numerous devices that need charging adaptors during cardiopulmonary bypass (CPB) have similar charging sockets but different voltage requirements. This has caused one of our devices in the operating theater to overheat and completely shut down when connected to an incorrect higher-voltage charger. The possibility of fire, device destruction, or patient harm in such circumstances is of serious concern.

  19. Design and Implementation of Battery Management System for Electric Bicycle

    Directory of Open Access Journals (Sweden)

    Mohd Rashid Muhammad Ikram

    2017-01-01

    Full Text Available Today the electric vehicle (EV has been developed in such a way that electronic motor, battery, and charger replace the engine, tank and gasoline pump of the conventional gasoline-powered [1]. In other word, instead of using fossil fuel to move the vehicle, in this case we used a pack of batteries to move it. The global climate change and the abnormal rising international crude oil prices call for the development of EV [2]. To solve these problems, a new energy needs to be developed or optimized in order to replace the current energy which is fossil fuel. A clean and green energy [2]. Because of this, it is very important to make sure that the battery that being used is reliable as the fossil fuel. Thus, the design of the battery management system plays an important role on battery life preservation and performance improvement of EV [3]. The BMS also performs many tasks including the measurement of system voltage, current and temperature, the cells’ state of charge (SOC, state of health (SOH, remaining useful life (RUL determination, controlling and monitoring the charge / discharge characteristics and cell balancing [3]. For this project, 18650 Lithium-Ion battery is used to develop battery management for 144V 50Ah. As lithium-ion batteries have high value of specific energy, high energy density, high open circuit voltage, and low self-discharge, they are a proper candidate for EVs among other cell chemistries [4].

  20. Distributed Cooperative Current-Sharing Control of Parallel Chargers Using Feedback Linearization

    Directory of Open Access Journals (Sweden)

    Jiangang Liu

    2014-01-01

    Full Text Available We propose a distributed current-sharing scheme to address the output current imbalance problem for the parallel chargers in the energy storage type light rail vehicle system. By treating the parallel chargers as a group of agents with output information sharing through communication network, the current-sharing control problem is recast as the consensus tracking problem of multiagents. To facilitate the design, input-output feedback linearization is first applied to transform the nonidentical nonlinear charging system model into the first-order integrator. Then, a general saturation function is introduced to design the cooperative current-sharing control law which can guarantee the boundedness of the proposed control. The cooperative stability of the closed-loop system under fixed and dynamic communication topologies is rigorously proved with the aid of Lyapunov function and LaSalle invariant principle. Simulation using a multicharging test system further illustrates that the output currents of parallel chargers are balanced using the proposed control.

  1. Perancangan Rangkaian Charger Telepon Seluler Dengan Sumber Catuan Handset Lain

    Directory of Open Access Journals (Sweden)

    Eka Wahyudi

    2009-11-01

    Full Text Available Kecenderungan setiap orang yang ingin melakukan segala sesuatu dengan praktis dan mudah, menyebabkan munculnya keinginan untuk tidak mau dibatasi oleh tempat dan waktu dalam melakukan aktivitas. Demikian pula dalam hal mencatu baterai handphone, akan lebih praktis jika bisa mencatu listrik baterai handphone yang lemah (low battery tanpa harus bergantung pada ketersediaan sumber arus PLN. Alat yang dirancang dalam penelitian ini digunakan  untuk mencatu handphone tanpa melalui sumber PLN. Rangkaian utama alat ini terdiri dari 3 bagian utama, yaitu multivibrator astabil, voltage quadrupler dan voltage regulation. Rangkaian multivibrator astabil ini akan menghasilkan tegangan keluaran AC yang digunakan sebagai input rangkaian voltage quadrupler agar bisa bekerja. Rangkaian voltage quadrupler ini akan mengalikan  4 kali dari tegangan input yang masuk, sehingga tegangan keluaran (Vout menjadi 4 kali tegangan masukan (Vin. Hasil akhir dari alat yang sudah dibuat belum memuaskan karena hanya bisa mencatu 1 jenis handset yaitu Nokia seri 8210 dengan efisiensi yang rendah. Untuk kedepannya alat ini bisa dikembangkan lagi dengan menaikkan nilai arus, dengan menggunakan penguatan transistor. Transistor yang digunakan harus memiliki karakteristik nilai hfe yang tinggi dan tegangan DC yang kecil.

  2. Micro controlled system used in the control and in the monitoring of batteries bank; Sistema microcontrolado usado no controle e monitoracao de banco de baterias

    Energy Technology Data Exchange (ETDEWEB)

    Bonacorso, Nelso Gauze

    1991-09-01

    The development of a closed loop micro controlled based system for battery charging, monitoring charge and discharge, and even more, detecting structure failures is presented. The control algorithm is emphasized, being applied a charging method which uses voltage, current and temperature information. The objective of using this control technique is the design of a high performance battery charger, allowing the longest battery life possible, in reliable UPS applications. A prototype has been built and laboratory tested. Experimental results, developed program routines and the system circuits are included. (author)

  3. Building an Interoperability Test System for Electric Vehicle Chargers Based on ISO/IEC 15118 and IEC 61850 Standards

    Directory of Open Access Journals (Sweden)

    Minho Shin

    2016-05-01

    Full Text Available The electric vehicle market is rapidly growing due to its environmental friendliness and governmental support. As electric vehicles are powered by electricity, the interoperability between the vehicles and the chargers made by multiple vendors is crucial for the success of the technology. Relevant standards are being published, but the methods for conformance testing need to be developed. In this paper, we present our conformance test system for the electric vehicle charger in accordance with the standards ISO/IEC 15118, IEC 61851 and IEC 61850-90-8. Our test system leverages the TTCN-3 framework for its flexibility and productivity. We evaluate the test system by lab tests with two reference chargers that we built. We also present the test results in two international testival events for the ISO/IEC 15118 interoperability. We confirmed that our test system is robust, efficient and practical.

  4. Research, development, and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report for 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    Work performed during Oct. 1, 1979 to Sept. 30, 1980 for the development of lead-acid batteries for electric vehicle propulsion is described. During this report period many of the results frpm Globe Battery's design, materials and process development programs became evident in the achievement of the ISOA (Improved State of Art) specific energy, specific power, and energy efficiency goals while testing in progress also indicates that the cycle life goal can be met. These programs led to the establishment of a working pilot assembly line which produced the first twelve volt ISOA modules. Five of these modules were delivered to the National Battery Test Laboratory during the year for capacity, power and life testing, and assembly is in progress of three full battery systems for installation in vehicles. In the battery subsystem area, design of the acid circulation system for a ninety-six volt ISOA battery pack was completed and assembly of the first such system was initiated. Charger development has been slowed by problems encountered with reliability of some circuits but a prototype unit is being prepared which will meet the charging requirements of our ninety-six volt pack. This charger will be available during the 1981 fiscal year.

  5. Using Atmospheric Pressure Tendency to Optimise Battery Charging in Off-Grid Hybrid Wind-Diesel Systems for Telecoms

    Directory of Open Access Journals (Sweden)

    Stephen Daniels

    2013-06-01

    Full Text Available Off grid telecom base stations in developing nations are powered by diesel generators. They are typically oversized and run at a fraction of their rated load for most of their operating lifetime. Running generators at partial load is inefficient and, over time, physically damages the engine. A hybrid configuration uses a battery bank, which powers the telecoms’ load for a portion of the time. The generator only operates when the battery bank needs to be charged. Adding a wind turbine further reduces the generator run hours and saves fuel. The generator is oblivious to the current wind conditions, which leads to simultaneous generator-wind power production. As the batteries become charged by the generator, the wind turbine controller is forced to dump surplus power as heat through a resistive load. This paper details how the relationship between barometric pressure and wind speed can be used to add intelligence to the battery charger. A Simulink model of the system is developed to test the different battery charging configurations. This paper demonstrates that if the battery charger is aware of upcoming wind conditions, it will provide modest fuel savings and reduce generator run hours in small-scale hybrid energy systems.

  6. Design of the DC-DC power stage of the capacitor charger for MAXIDISCAP power converters

    CERN Document Server

    Cravero, Jean-Marc

    2013-01-01

    This technical report presents the design of the DC-DC power stage of the capacitor charger for MAXIDISCAP power converters. The power stage is based on a half bridge series resonant converter in Discontinuous Conduction Mode (DCM). This simple and robust topology allows obtaining a current source behavior with a low switching losses power stage. The associated control stage is implemented using a commercial controller which has differenti nternal circuits that allows a high integration of the converter control system. The report presents the design and tuning criteria for the DC-DC converter, including the power stage and the control system.

  7. FY14 Milestone: Simulated Impacts of Life-Like Fast Charging on BEV Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, Jeremy [National Renewable Energy Lab. (NREL), Golden, CO (United States). Transportation and Hydrogen Systems Center; Wood, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States). Transportation and Hydrogen Systems Center; Burton, Evan [National Renewable Energy Lab. (NREL), Golden, CO (United States). Transportation and Hydrogen Systems Center; Smith, Kandler [National Renewable Energy Lab. (NREL), Golden, CO (United States). Transportation and Hydrogen Systems Center; Pesaran, Ahmad [National Renewable Energy Lab. (NREL), Golden, CO (United States). Transportation and Hydrogen Systems Center

    2014-09-01

    Fast charging is attractive to battery electric vehicle (BEV) drivers for its ability to enable long-distance travel and quickly recharge depleted batteries on short notice. However, such aggressive charging and the sustained vehicle operation that results could lead to excessive battery temperatures and degradation. Properly assessing the consequences of fast charging requires accounting for disparate cycling, heating, and aging of individual cells in large BEV packs when subjected to realistic travel patterns, usage of fast chargers, and climates over long durations (i.e., years). The U.S. Department of Energy's Vehicle Technologies Office has supported NREL's development of BLAST-V 'the Battery Lifetime Analysis and Simulation Tool for Vehicles' to create a tool capable of accounting for all of these factors. The authors present on the findings of applying this tool to realistic fast charge scenarios. The effects of different travel patterns, climates, battery sizes, battery thermal management systems, and other factors on battery performance and degradation are presented. The primary challenge for BEV batteries operated in the presence of fast charging is controlling maximum battery temperature, which can be achieved with active battery cooling systems.

  8. Magnetic Alignment Detection Using Existing Charging Facility in Wireless EV Chargers

    Directory of Open Access Journals (Sweden)

    Yabiao Gao

    2016-01-01

    Full Text Available Wireless charging is a promising outlet to promote the electric vehicle (EV industry due to its safe and noncontact manner. Wireless EV chargers require the secondary receiver coil to be well aligned with the primary station for efficient charging, which could require more of the driver’s time and attention when parking a vehicle. Therefore, this paper presents a magnetic alignment system to assist the EV driver during parking. The magnetic alignment approach uses the existing coil and frequency tracking control electronics of wireless chargers to detect the distance between the two coils while using 4 small auxiliary coils for direction and fine adjustment, leading to a cost effective detection method for coil alignment in electric vehicle wireless charging (EVWC. The testing results of a prototype show acceptable measurement correctness and the mean error for ten trials in range detection is within 0.25 cm at three different misalignment conditions (10.5, 15, and 20 cm. The positioning accuracy of coil alignment is within 1.2 cm for three different start positions with the auxiliary coils.

  9. 基于STC89C51的便携式太阳能充电器设计%The design and implementation of portable solar charger based on STC89C51

    Institute of Scientific and Technical Information of China (English)

    张鹏

    2016-01-01

    when electronic products are used outdoors its battery capacity is limited, it can affect users' normal use, a portable multi-purpose solar charger is designed. The charger can convert solar energy into charging voltage which fits for battery of electronic products, and can adjust different voltage, with built-in battery can meet portable power supply demand when the user is in outdoors. The system uses STC89C51 microcontroller as the control core, structured by boost circuit, photoelectric conversion circuit, overcharge protection circuit, voltage regulation circuit and digital display circuit. The performance of system is tested, the results show that the system has advantages of wide output voltage range, simple structure and high reliability, with mains charging function;it can meet different load requirements charging voltage under a variety of conditions.%针对电子产品在户外使用时电池容量有限,影响用户正常使用的问题,设计了一种便携式多用太阳能充电器。该装置可将太阳能转换成适合电子产品电源,而且能够调节不同电压,满足了用户外即时电源的需求。系统采用STC89C51单片机作为控制核心,由升压、光电转换、充电保护、电压调节和数码显示等功能电路构成。对系统进行了性能测试,结果表明系统具有输出电压范围宽、结构简单和可靠性高的优点,配合市电充电功能,可以满足多种条件下不同负载对充电电压的要求。

  10. System and Battery Charge Control for PV-Powered AC Lighting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kern, G.

    1999-04-01

    This report reviews a number of issues specific to stand-alone AC lighting systems. A review of AC lighting technology is presented, which discusses the advantages and disadvantages of various lamps. The best lamps for small lighting systems are compact fluorescent. The best lamps for intermediate-size systems are high- or low-pressure sodium. Specifications for battery charging and load control are provided with the goal of achieving lamp lifetimes on the order of 16,000 to 24,000 hours and battery lifetimes of 4 to 5 years. A rough estimate of the potential domestic and global markets for stand-alone AC lighting systems is presented. DC current injection tests were performed on high-pressure sodium lamps and the test results are presented. Finally, a prototype system was designed and a prototype system controller (with battery charger and DC/AC inverter) was developed and built.

  11. Computational models of an inductive power transfer system for electric vehicle battery charge

    Science.gov (United States)

    Anele, A. O.; Hamam, Y.; Chassagne, L.; Linares, J.; Alayli, Y.; Djouani, K.

    2015-09-01

    One of the issues to be solved for electric vehicles (EVs) to become a success is the technical solution of its charging system. In this paper, computational models of an inductive power transfer (IPT) system for EV battery charge are presented. Based on the fundamental principles behind IPT systems, 3 kW single phase and 22 kW three phase IPT systems for Renault ZOE are designed in MATLAB/Simulink. The results obtained based on the technical specifications of the lithium-ion battery and charger type of Renault ZOE show that the models are able to provide the total voltage required by the battery. Also, considering the charging time for each IPT model, they are capable of delivering the electricity needed to power the ZOE. In conclusion, this study shows that the designed computational IPT models may be employed as a support structure needed to effectively power any viable EV.

  12. Cargador Manual de Baterías: Prototipo AcadémicoManual Battery Charger: an Academic Prototype

    Directory of Open Access Journals (Sweden)

    José Rairán Antolines

    2016-01-01

    Full Text Available Contexto: Cuando se construye un cargador manual de baterías se garantiza una potencia de salida, pero normalmente se omite la eficiencia a la cual se hace la carga. Sin embargo, en el contexto actual de preocupación por el cambio climático, la selección entre un equipo u otro debe hacerse en términos del valor de la eficiencia. Método: Se estiman las potencias de entrada y de salida, necesarias en el cálculo de la eficiencia. Estas estimaciones requieren la aproximación de la velocidad angular y del torque en una manivela, y del voltaje y la corriente en la batería, las cuales se realizan mediante un procedimiento experimental y el uso de un circuito diseñado para tal fin. Resultados: Se construye un prototipo para dar un ejemplo de la medición de eficiencia, y se encuentra que mientras la potencia de entrada se acerca a 12 W, la potencia de salida es de 3 W, por lo cual la eficiencia es aproximadamente 25%. Conclusiones: El método de medición propuesto permite estimar la eficiencia de dispositivos manuales cargadores de baterías. Así, trabajos futuros pueden enfocarse en mejorar el diseño de los cargadores, para incrementar el valor de la eficiencia.

  13. Passive hybridization of a photovoltaic module with lithium-ion battery cells: A model-based analysis

    Science.gov (United States)

    Joos, Stella; Weißhar, Björn; Bessler, Wolfgang G.

    2017-04-01

    Standard photovoltaic battery systems based on AC or DC architectures require power electronics and controllers, including inverters, MPP tracker, and battery charger. Here we investigate an alternative system design based on the parallel connection of a photovoltaic module with battery cells without any intermediate voltage conversion. This approach, for which we use the term passive hybridization, is based on matching the solar cell's and battery cell's respective current/voltage behavior. A battery with flat discharge characteristics can allow to pin the solar cell to its maximum power point (MPP) independently of the external power consumption. At the same time, upon battery full charge, voltage increase will drive the solar cell towards zero current and therefore self-prevent battery overcharge. We present a modeling and simulation analysis of passively hybridizing a 5 kWp PV system with a 5 kWh LFP/graphite lithium-ion battery. Dynamic simulations with 1-min time resolution are carried out for three exemplary summer and winter days using historic weather data and a synthetic single-family household consumer profile. The results demonstrate the feasibility of the system. The passive hybrid allows for high self-sufficiencies of 84.6% in summer and 25.3% in winter, which are only slightly lower than those of a standard system.

  14. Hybrid Microgrid Model based on Solar Photovoltaics with Batteries and Fuel Cells system for intermittent applications

    Science.gov (United States)

    Patterson, Maxx

    Microgrids are a subset of the modern power structure; using distributed generation (DG) to supply power to communities rather than vast regions. The reduced scale mitigates loss allowing the power produced to do more with better control, giving greater security, reliability, and design flexibility. This paper explores the performance and cost viability of a hybrid grid-tied microgrid that utilizes Photovoltaic (PV), batteries, and fuel cell (FC) technology. The concept proposes that each community home is equipped with more PV than is required for normal operation. As the homes are part of a microgrid, excess or unused energy from one home is collected for use elsewhere within the microgrid footprint. The surplus power that would have been discarded becomes a community asset, and is used to run intermittent services. In this paper, the modeled community does not have parking adjacent to each home allowing for the installment of a privately owned slower Level 2 charger, making EV ownership option untenable. A solution is to provide a Level 3 DC Quick Charger (DCQC) as the intermittent service. The addition of batteries and Fuel Cells are meant to increase load leveling, reliability, and instill limited island capability.

  15. Powering-up Wireless Sensor Nodes Utilizing Rechargeable Batteries and an Electromagnetic Vibration Energy Harvesting System

    Directory of Open Access Journals (Sweden)

    Salar Chamanian

    2014-10-01

    Full Text Available This paper presents a wireless sensor node (WSN system where an electromagnetic (EM energy harvester is utilized for charging its rechargeable batteries while the system is operational. The capability and the performance of an in-house low-frequency EM energy harvester for charging rechargeable NiMH batteries were experimentally verified in comparison to a regular battery charger. Furthermore, the power consumption of MicaZ motes, used as the WSN, was evaluated in detail for different operation conditions. The battery voltage and current were experimentally monitored during the operation of the MicaZ sensor node equipped with the EM vibration energy harvester. A compact (24.5 cm3 in-house EM energy harvester provides approximately 65 µA charging current to the batteries when excited by 0.4 g acceleration at 7.4 Hz. It has been shown that the current demand of the MicaZ mote can be compensated for by the energy harvester for a specific low-power operation scenario, with more than a 10-fold increase in the battery lifetime. The presented results demonstrate the autonomous operation of the WSN, with the utilization of a vibration-based energy harvester.

  16. Device for automotive checking of battery capacity. Vorrichtung zur selbsttaetigen Pruefung der Kapazitaet von Batterien

    Energy Technology Data Exchange (ETDEWEB)

    Borkers, E.

    1987-01-29

    Well-known processes have the disadvantage that they have to be done manually and if the mains supply is suddenly lost, the units, for example in emergency power supplies, are not ready to work. The advance according to the invention is that a time measuring device, e.g. a frequency divider, is switched on simultaneously with the battery voltage monitoring. This divides the test period into 100 parts and emits pulses until either the test period has elapsed or the voltage drops below a voltage limit. In that case, a signal device operates and the battery is connected to the charger. The emitted pulses are added and are indicated optically as % of storage capacity. If the mains supply fails during the test period, the unit is switched on via a control relay.

  17. Memel's Batteries

    Directory of Open Access Journals (Sweden)

    Alexander F. Mitrofanov

    2015-12-01

    Full Text Available The article describes the history and equipment of the coastal and antiaircraft artillery batteries of German Navy (Kriegsmarine constructed in Memel area before and during the World War. There is given the brief description of the Soviet Navy stationed in the area in the postwar years.

  18. Batteries: Overview of Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Doeff, Marca M

    2010-07-12

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as

  19. Batteries: Overview of Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Doeff, Marca M

    2010-07-12

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as

  20. Effects of Electric Vehicle Fast Charging on Battery Life and Vehicle Performance

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Shirk; Jeffrey Wishart

    2015-04-01

    As part of the U.S. Department of Energy’s Advanced Vehicle Testing Activity, four new 2012 Nissan Leaf battery electric vehicles were instrumented with data loggers and operated over a fixed on-road test cycle. Each vehicle was operated over the test route, and charged twice daily. Two vehicles were charged exclusively by AC level 2 EVSE, while two were exclusively DC fast charged with a 50 kW charger. The vehicles were performance tested on a closed test track when new, and after accumulation of 50,000 miles. The traction battery packs were removed and laboratory tested when the vehicles were new, and at 10,000-mile intervals. Battery tests include constant-current discharge capacity, electric vehicle pulse power characterization test, and low peak power tests. The on-road testing was carried out through 70,000 miles, at which point the final battery tests were performed. The data collected over 70,000 miles of driving, charging, and rest are analyzed, including the resulting thermal conditions and power and cycle demands placed upon the battery. Battery performance metrics including capacity, internal resistance, and power capability obtained from laboratory testing throughout the test program are analyzed. Results are compared within and between the two groups of vehicles. Specifically, the impacts on battery performance, as measured by laboratory testing, are explored as they relate to battery usage and variations in conditions encountered, with a primary focus on effects due to the differences between AC level 2 and DC fast charging. The contrast between battery performance degradation and the effect on vehicle performance is also explored.

  1. 小型简易无线充电器设计%Design of a Small and Simple Wireless Charger

    Institute of Scientific and Technical Information of China (English)

    张卫华

    2014-01-01

    随着电子和无线电技术的不断发展,电子数码产品越来越丰富。随之而来的是,人们对产品便携充电的要求越来越迫切。本文介绍了无线电能传输的基本原理,利用变压器线圈和有源晶振,设计了一种便携的无线充电器,简单实用,成本低廉,经验证能够实现实用价值。%With the continuous development of electronics and radio engineering, electronic digital products have become increasingly diverse. Followed by people's requirements of the product's portable charging have be-come more and more urgent. This paper introduces the basic principles of wireless power transmission, and designs a portable wireless charger by using transformer coil and active crystals. This charger is simple and practical, with low cost, and the experiences show that it can achieve practical value.

  2. Experimental determination of the steady-state charging probabilities and particle size conservation in non-radioactive and radioactive bipolar aerosol chargers in the size range of 5–40 nm

    Energy Technology Data Exchange (ETDEWEB)

    Kallinger, Peter, E-mail: peter.kallinger@univie.ac.at; Szymanski, Wladyslaw W. [University of Vienna, Faculty of Physics (Austria)

    2015-04-15

    Three bipolar aerosol chargers, an AC-corona (Electrical Ionizer 1090, MSP Corp.), a soft X-ray (Advanced Aerosol Neutralizer 3087, TSI Inc.), and an α-radiation-based {sup 241}Am charger (tapcon & analysesysteme), were investigated on their charging performance of airborne nanoparticles. The charging probabilities for negatively and positively charged particles and the particle size conservation were measured in the diameter range of 5–40 nm using sucrose nanoparticles. Chargers were operated under various flow conditions in the range of 0.6–5.0 liters per minute. For particular experimental conditions, some deviations from the chosen theoretical model were found for all chargers. For very small particle sizes, the AC-corona charger showed particle losses at low flow rates and did not reach steady-state charge equilibrium at high flow rates. However, for all chargers, operating conditions were identified where the bipolar charge equilibrium was achieved. Practically, excellent particle size conservation was found for all three chargers.

  3. An electrostatic CMOS/BiCMOS Lithium ion vibration-based harvester-charger IC

    Science.gov (United States)

    Torres, Erick Omar

    Self-powered microsystems, such as wireless transceiver microsensors, appeal to an expanding application space in monitoring, control, and diagnosis for commercial, industrial, military, space, and biomedical products. As these devices continue to shrink, their microscale dimensions allow them to be unobtrusive and economical, with the potential to operate from typically unreachable environments and, in wireless network applications, deploy numerous distributed sensing nodes simultaneously. Extended operational life, however, is difficult to achieve since their limited volume space constrains the stored energy available, even with state-of-the-art technologies, such as thin-film lithium-ion batteries (Li Ion) and micro-fuel cells. Harvesting ambient energy overcomes this deficit by continually replenishing the energy reservoir and, as a result, indefinitely extending system lifetime. In this work, an electrostatic harvester that harnesses ambient kinetic energy from vibrations to charge an energy-storage device (e.g., a battery) is investigated, developed, and evaluated. The proposed harvester charges and holds the voltage across a vibration-sensitive variable capacitor so that vibrations can induce it to generate current into the battery when capacitance decreases (as its plates separate). The challenge is that energy is harnessed at relatively slow rates, producing low output power, and the electronics required to transfer it to charge a battery can easily demand more than the power produced. To this end, the system reduces losses by time-managing and biasing its circuits to operate only when needed and with just enough energy while charging the capacitor through an efficient quasi-lossless inductor-based precharger. As result, the proposed energy harvester stores a net energy gain in the battery during every vibration cycle. Two energy-harvesting integrated circuits (IC) were analyzed, designed, developed, and validated using a 0.7-im BiCMOS process and a 30-Hz

  4. Strategy and criteria for deployment of high speed chargers - Part 1; Strategi og kriteriesett for utplassering av hurtigladere - Del 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    This report was commissioned by Transnova, as a part of their commitment to the electrification of road transport. The project has been conducted by Poeyry and Architect Harald N. Roestvik in close cooperation with representatives of Transnova and Vegdirektoratet. In addition, a number of external experts provided information during the process. The first part of the report describes a strategy and a set of criteria for the deployment of fast charging stations. The purpose of this section is to find out how many charging points are needed and where they should be placed. The second part describes the possible business models for providers of quick chargers. This section is intended to give some ideas to those who are interested in running high speed charging, and evaluate opportunities for commercial operations.(auth)

  5. Alkaline battery operational methodology

    Science.gov (United States)

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  6. Development of battery management systems (BMS for electric vehicles (EVs in Malaysia

    Directory of Open Access Journals (Sweden)

    Salehen P.M.W.

    2017-01-01

    Full Text Available Battery Management Systems (BMS is an electronic devices component, which is a vital fundamental device connected between the charger and the battery of the hybrid or electric vehicle (EV systems. Thus, BMS significantly enable for safety protection and reliable battery management by performing of monitoring charge control, state evaluation, reporting the data and functionalities cell balancing. To date, 97.1% of Malaysian CO2 emissions are mainly caused by transportation activities and the numbers will keep rising as numbers of registered car increase close up to 1 million yearly; double the amounts in the last two decades. The uncertainty of a battery’s performance poses a challenge to predict the extended range of EVs, which need BMS implementation of optimization of optimum power management. Hence, using MATLAB/SIMULINK software is one of the potential methods of BMS optimization with power generated by Hybrid Energy Storage system of lithium-ion battery. Therefore, this paper address through reviewing previous literatures initially focuses on the BMS optimization for EVs (car in Malaysia as prognostic technology model improvement on performance management of EVs.

  7. Leak-Proof Solution of Mobile Phone Charger%手机充电器的防漏电解决措施

    Institute of Scientific and Technical Information of China (English)

    姜培生; 陈玉伟

    2015-01-01

    A leak-proof solution of mobile phone charger is given in this paper.It reduces the possibility of electric shock,when a phone charger is abnormal (leakage of electric happens).It prevents human body and phone from lightning stroke when phone is charging in thunderstorms.The requirement of phone safe charging in daily life is satisfied.%文章给出了一种手机充电器的防漏电措施,可使手机充电器在异常情况(漏电)时致使人体遭受电击的可能性大大降低,避免了雷雨天手机充电时被雷击损坏或人体遭受雷击的可能,可满足日常情况下手机安全充电的使用要求。

  8. 电动汽车快速充电机监控终端的设计%Design of fast charger monitoring terminal for electric vehicles

    Institute of Scientific and Technical Information of China (English)

    蔡贵方; 李优新; 姚震; 张泱泱; 张进坤

    2013-01-01

      With the coming of Internet of Things age,the design of monitoring terminal for fast charger becomes a key tech⁃nology for realizing intelligent remote management. The whole design scheme of fast charger monitoring terminal is introduced, which is in combination with the microcontroller STM32 and the real⁃time operating system μC/OS⁃Ⅱ. The protocol establish⁃ment and software design method for high⁃power charger CAN bus and GPRS data transmission are studied. The economic analy⁃sis of GPRS flow cost is performed. The results show that the communication network is stable,and the monitoring terminal can realize the state monitoring and remote management for the charger.%  随着物联网时代的到来,实现对快速充电机的智能远程管理,其监控终端的设计是其中的关键技术。结合单片机STM32和实时操作系统μC/OS⁃Ⅱ,介绍了快速充电机监控终端的整体设计方案,研究了大功率充电机CAN总线及GPRS数据发送的协议制定及软件设计方法,并对GPRS流量费用进行了经济性分析。结果表明该监控终端保证监控网络工作稳定,实现对充电机的运行状态的监测及其远程管理。

  9. 核电站K3级充电器设备鉴定探究%Qualification Research of Nuclear Power Station K3 Charger

    Institute of Scientific and Technical Information of China (English)

    林建; 许本福; 张瑞明

    2013-01-01

      The paper analyses the differences between RCC-E and IEEE concerning the charger qualification. Based on the RCC-E,related standards and technical data,the paper introduces classification and qualification methods of Class 1E electrical equipment for nuclear power station,investigates in detail the K3 charger of nuclear power station,provides reference to the K3 charger localization.%  本文分析了RCC-E和IEEE标准对充电器设备鉴定要求的区别。基于RCC-E等相关标准和技术资料,本文介绍了核电站1E级电气设备分级和鉴定方法,对核电站K3级充电器设备鉴定进行了深入研究,为K3级充电器国产化提供了借鉴作用。

  10. THD Reduction of Distribution System Based on ASRFC and HVC Method for SVC under EV Charger Condition for Power Factor Improvement

    Directory of Open Access Journals (Sweden)

    Saeid Gholami Farkoush

    2016-12-01

    Full Text Available Electric vehicles (EVs have been gaining popularity in recent years due to growing concerns about fuel depletion and increasing petrol prices. Random uncoordinated charging of multiple EVs at residential distribution feeders with moderate penetration levels is expected in the near future. This paper describes a high performance voltage controller for the EVs charging system, and proposes a scheme of asymmetric synchronous reference frame controller (ASRFC in order to compensate for the voltage distortions and unbalance distribution system due to EVs charger. This paper explores the power factor of distribution and residential network under random EVs charger on the bus load. ASRFC and harmonic voltage compensator (HVC are employed for static VAR compensator (SVC in this paper. The proposed scheme can improve the power factor and total harmonic distortion (THD of the smart grid due to the EVs charger in grid. The effectiveness of the scheme was investigated and verified through computer simulations of a 22.9-kV grid.

  11. Design of wireless charger based on QI protocol%基于QI协议的无线充电器的设计

    Institute of Scientific and Technical Information of China (English)

    曾维; 秦建波; 邓蕾; 胡男; 张玉竹

    2014-01-01

    通过对无线充电三种方式的研究,选择QI协议作为本设计的设计方式。主芯片选用了TI系列的无线充电芯片,用符合WPC1.1标准的无线电源发送器管理器bq500211a作为发射芯片,用符合Qi (WPC)标准的高度集成的次级侧直充式锂离子充电器bq51050b作为接收部分,完成了无线充电器的设计。%By study of three ways of wireless charger,the design of the application is based on QI protocol.TI's wireless charging chip is Selected as main chip .Using TI's bq500211a as the emission chip to meet the WPC1.1 standard of Wireless power transmitter manager,and Using TI’s bq51050b as the receiving part to meet the standard of lithium ion charger of highly integrated straight type secondary side,completed the wireless charger designs.

  12. Ionene membrane battery separator

    Science.gov (United States)

    Moacanin, J.; Tom, H. Y.

    1969-01-01

    Ionic transport characteristics of ionenes, insoluble membranes from soluble polyelectrolyte compositions, are studied for possible application in a battery separator. Effectiveness of the thin film of separator membrane essentially determines battery lifetime.

  13. Rechargeable batteries applications handbook

    CERN Document Server

    1998-01-01

    Represents the first widely available compendium of the information needed by those design professionals responsible for using rechargeable batteries. This handbook introduces the most common forms of rechargeable batteries, including their history, the basic chemistry that governs their operation, and common design approaches. The introduction also exposes reader to common battery design terms and concepts.Two sections of the handbook provide performance information on two principal types of rechargeable batteries commonly found in consumer and industrial products: sealed nickel-cad

  14. Battery systems engineering

    CERN Document Server

    Rahn, Christopher D

    2012-01-01

    A complete all-in-one reference on the important interdisciplinary topic of Battery Systems Engineering Focusing on the interdisciplinary area of battery systems engineering, this book provides the background, models, solution techniques, and systems theory that are necessary for the development of advanced battery management systems. It covers the topic from the perspective of basic electrochemistry as well as systems engineering topics and provides a basis for battery modeling for system engineering of electric and hybrid electric vehicle platforms. This original

  15. Test of hybrid power system for electrical vehicles using a lithium-ion battery pack and a reformed methanol fuel cell range extender

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Ashworth, Leanne; Sahlin, Simon Lennart

    2014-01-01

    monoxide, the HTPEM fuel cell system can efficiently use a liquid methanol/water mixture of 60%/40% by volume, as fuel instead of compressed hydrogen, enabling potentially a higher volumetric energy density. In order to test the performance of such a system, the experimental validation conducted uses......This work presents the proof-of-concept of an electric traction power system with a high temperature polymer electrolyte membrane fuel cell range extender, usable for automotive class electrical vehicles. The hybrid system concept examined, consists of a power system where the primary power...... is delivered by a lithium ion battery pack. In order to increase the run time of the application connected to this battery pack, a high temperature PEM (HTPEM) fuel cell stack acts as an on-board charger able to charge a vehicle during operation as a series hybrid. Because of the high tolerance to carbon...

  16. Electric Vehicle Battery Challenge

    Science.gov (United States)

    Roman, Harry T.

    2014-01-01

    A serious drawback to electric vehicles [batteries only] is the idle time needed to recharge their batteries. In this challenge, students can develop ideas and concepts for battery change-out at automotive service stations. Such a capability would extend the range of electric vehicles.

  17. A Wearable Wireless Energy Link for Thin-Film Batteries Charging

    Directory of Open Access Journals (Sweden)

    Giuseppina Monti

    2016-01-01

    Full Text Available A wireless charger for low capacity thin-film batteries is presented. The proposed device consists of a nonradiative wireless resonant energy link and a power management unit. Experimental data referring to a prototype operating in the ISM band centered at 434 MHz are presented and discussed. In more detail, in order to facilitate the integration into wearable accessories (such as handbags or suitcases, the prototype of the wireless energy link was implemented by exploiting a magnetic coupling between two planar resonators fabricated by using a conductive fabric on a layer of leather. From experimental data, it is demonstrated that, at 434 MHz, the RF-to-RF power transfer efficiency of the link is approximately 69.3%. As for the performance of the system as a whole, when an RF power of 7.5 dBm is provided at the input port, a total efficiency of about 29.7% is obtained. Finally, experiments performed for calculating the charging time for a low capacity thin-film battery demonstrated that, for RF input power higher than 6 dBm, the time necessary for recharging the battery is lower than 50 minutes.

  18. Effect of extreme temperatures on battery charging and performance of electric vehicles

    Science.gov (United States)

    Lindgren, Juuso; Lund, Peter D.

    2016-10-01

    Extreme temperatures pose several limitations to electric vehicle (EV) performance and charging. To investigate these effects, we combine a hybrid artificial neural network-empirical Li-ion battery model with a lumped capacitance EV thermal model to study how temperature will affect the performance of an EV fleet. We find that at -10 °C, the self-weighted mean battery charging power (SWMCP) decreases by 15% compared to standard 20 °C temperature. Active battery thermal management (BTM) during parking can improve SWMCP for individual vehicles, especially if vehicles are charged both at home and at workplace; the median SWMCP is increased by over 30%. Efficiency (km/kWh) of the vehicle fleet is maximized when ambient temperature is close to 20 °C. At low (-10 °C) and high (+40 °C) ambient temperatures, cabin preconditioning and BTM during parking can improve the median efficiency by 8% and 9%, respectively. At -10 °C, preconditioning and BTM during parking can also improve the fleet SOC by 3-6%-units, but this also introduces a "base" load of around 140 W per vehicle. Finally, we observe that the utility of the fleet can be increased by 5%-units by adding 3.6 kW chargers to workplaces, but further improved charging infrastructure would bring little additional benefit.

  19. Design of the Feedback Converter Mode Universal USB Charger%反激式通用USB充电器设计

    Institute of Scientific and Technical Information of China (English)

    郭育; 蔡慧; 严虹

    2013-01-01

    伴随着科技的发展,5V USB电源被广泛运用。按照USB端口电压和电流技术规范,给出一种通用手机充电器设计。该设计基于LNK616DG控制开关元件,采用反激式电路结构,实现低功耗和低成本的要求。大大简化恒压/恒流转换器的设计,具有先进的性能和保护/安全特性,具有很好的应用价值和市场前景。%With the development of science and technology, USB power supply is widely used. With the technical specifications of USB port voltage and current, designs a universal mobile phone charger. This design is based on LNK616DG control switch element, adopts feedback converter mode of circuit structure, realizes the request of low power consumption and low cost. Greatly simplifies the design of constant voltage/constant current converter, with advanced performance and protection/security features, has good application value and market prospect.

  20. Electrochemical accumulators batteries; Accumulateurs electrochimiques batteries

    Energy Technology Data Exchange (ETDEWEB)

    Ansart, F.; Castillo, S.; Laberty- Robert, C.; Pellizon-Birelli, M. [Universite Paul Sabatier, Lab. de Chimie des Materiaux Inorganiques et Energetiques, CIRIMAT, UMR CNRS 5085, 31 - Toulouse (France)] [and others

    2000-07-01

    It is necessary to storage the electric power in batteries to join the production and the utilization. In this domain progresses are done every days in the technics and also in the available materials. These technical days present the state of the art in this domain. Many papers were presented during these two days giving the research programs and recent results on the following subjects: the lithium batteries, the electrolytes performances and behaviour, lead accumulators, economic analysis of the electrochemical storage market, the batteries applied to the transportation sector and the telephones. (A.L.B.)

  1. Electric-vehicle batteries

    Science.gov (United States)

    Oman, Henry; Gross, Sid

    1995-02-01

    Electric vehicles that can't reach trolley wires need batteries. In the early 1900's electric cars disappeared when owners found that replacing the car's worn-out lead-acid battery costs more than a new gasoline-powered car. Most of today's electric cars are still propelled by lead-acid batteries. General Motors in their prototype Impact, for example, used starting-lighting-ignition batteries, which deliver lots of power for demonstrations, but have a life of less than 100 deep discharges. Now promising alternative technology has challenged the world-wide lead miners, refiners, and battery makers into forming a consortium that sponsors research into making better lead-acid batteries. Horizon's new bipolar battery delivered 50 watt-hours per kg (Wh/kg), compared with 20 for ordinary transport-vehicle batteries. The alternatives are delivering from 80 Wh/kg (nickel-metal hydride) up to 200 Wh/kg (zinc-bromine). A Fiat Panda traveled 260 km on a single charge of its zinc-bromine battery. A German 3.5-ton postal truck traveled 300 km with a single charge in its 650-kg (146 Wh/kg) zinc-air battery. Its top speed was 110 km per hour.

  2. 太阳能手机充电器的设计%Design of Solar Energy Battery Charger's for Cell Phone

    Institute of Scientific and Technical Information of China (English)

    赵云丽; 宋振灿

    2009-01-01

    设计了基于单片机的太阳能充电器,通过脉宽调制对手机电池充电曲线进行模拟,并且用单片机对充电,放电过程进行智能控制,从而提高太阳能电池输出功率及手机电池的使用效率,达到延长电池使用寿命的目的.

  3. Wireless Battery Charger System for Permanent Pacemaker%心脏起搏器用无线充电系统设计

    Institute of Scientific and Technical Information of China (English)

    郑晓晨; 汪木兰; Hung T. Nguyen

    2009-01-01

    通过线圈产生电磁感应作为无线电力传输方法为心脏起搏器供电,并且充电装置可以自行操作.介绍了系统的设计和构成,分析了主要电路和元器件的选型,描述了系统的工作原理.在电磁感应的作用下,可将电能在一定距离内进行无线传输,提供给体内的心脏起搏器,操作方便,并且磁场对人体无任何危险性,本系统极大程度地延长了心脏起搏器的使用寿命,使患者无需通过手术可以完成体内起搏器充电过程,具有较高的实用价值.

  4. Protection of Li-lion Battery Charger%新型锂离子电池充放电保护器MAX1665S/V/X

    Institute of Scientific and Technical Information of China (English)

    程荣贵; 马军骥; 黄天录

    2001-01-01

    MAX1665S/V/X是 MAXIM公司生产的一种专用的锂离子电池组充、放电控制保护器。利用它可以对锂离子电池组提供有效的过压、欠压和过流保护。文中介绍了 MAX1665S/V/X的性能参数、典型电路的工作原理,同时给出了 2~ 4节锂离子电池组保护器的应用电路。

  5. Potassium Secondary Batteries.

    Science.gov (United States)

    Eftekhari, Ali; Jian, Zelang; Ji, Xiulei

    2017-02-08

    Potassium may exhibit advantages over lithium or sodium as a charge carrier in rechargeable batteries. Analogues of Prussian blue can provide millions of cyclic voltammetric cycles in aqueous electrolyte. Potassium intercalation chemistry has recently been demonstrated compatible with both graphite and nongraphitic carbons. In addition to potassium-ion batteries, potassium-O2 (or -air) and potassium-sulfur batteries are emerging. Additionally, aqueous potassium-ion batteries also exhibit high reversibility and long cycling life. Because of potentially low cost, availability of basic materials, and intriguing electrochemical behaviors, this new class of secondary batteries is attracting much attention. This mini-review summarizes the current status, opportunities, and future challenges of potassium secondary batteries.

  6. A desalination battery.

    Science.gov (United States)

    Pasta, Mauro; Wessells, Colin D; Cui, Yi; La Mantia, Fabio

    2012-02-08

    Water desalination is an important approach to provide fresh water around the world, although its high energy consumption, and thus high cost, call for new, efficient technology. Here, we demonstrate the novel concept of a "desalination battery", which operates by performing cycles in reverse on our previously reported mixing entropy battery. Rather than generating electricity from salinity differences, as in mixing entropy batteries, desalination batteries use an electrical energy input to extract sodium and chloride ions from seawater and to generate fresh water. The desalination battery is comprised by a Na(2-x)Mn(5)O(10) nanorod positive electrode and Ag/AgCl negative electrode. Here, we demonstrate an energy consumption of 0.29 Wh l(-1) for the removal of 25% salt using this novel desalination battery, which is promising when compared to reverse osmosis (~ 0.2 Wh l(-1)), the most efficient technique presently available.

  7. A Desalination Battery

    KAUST Repository

    Pasta, Mauro

    2012-02-08

    Water desalination is an important approach to provide fresh water around the world, although its high energy consumption, and thus high cost, call for new, efficient technology. Here, we demonstrate the novel concept of a "desalination battery", which operates by performing cycles in reverse on our previously reported mixing entropy battery. Rather than generating electricity from salinity differences, as in mixing entropy batteries, desalination batteries use an electrical energy input to extract sodium and chloride ions from seawater and to generate fresh water. The desalination battery is comprised by a Na 2-xMn 5O 10 nanorod positive electrode and Ag/AgCl negative electrode. Here, we demonstrate an energy consumption of 0.29 Wh l -1 for the removal of 25% salt using this novel desalination battery, which is promising when compared to reverse osmosis (∼ 0.2 Wh l -1), the most efficient technique presently available. © 2012 American Chemical Society.

  8. Polyoxometalate flow battery

    Science.gov (United States)

    Anderson, Travis M.; Pratt, Harry D.

    2016-03-15

    Flow batteries including an electrolyte of a polyoxometalate material are disclosed herein. In a general embodiment, the flow battery includes an electrochemical cell including an anode portion, a cathode portion and a separator disposed between the anode portion and the cathode portion. Each of the anode portion and the cathode portion comprises a polyoxometalate material. The flow battery further includes an anode electrode disposed in the anode portion and a cathode electrode disposed in the cathode portion.

  9. Electronically configured battery pack

    Energy Technology Data Exchange (ETDEWEB)

    Kemper, D.

    1997-03-01

    Battery packs for portable equipment must sometimes accommodate conflicting requirements to meet application needs. An electronically configurable battery pack was developed to support two highly different operating modes, one requiring very low power consumption at a low voltage and the other requiring high power consumption at a higher voltage. The configurable battery pack optimizes the lifetime and performance of the system by making the best use of all available energy thus enabling the system to meet its goals of operation, volume, and lifetime. This paper describes the cell chemistry chosen, the battery pack electronics, and tradeoffs made during the evolution of its design.

  10. Battery Thermal Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Keyser, Matthew; Saxon, Aron; Powell, Mitchell; Shi, Ying

    2016-06-07

    This poster shows the progress in battery thermal characterization over the previous year. NREL collaborated with U.S. DRIVE and USABC battery developers to obtain thermal properties of their batteries, obtained heat capacity and heat generation of cells under various power profiles, obtained thermal images of the cells under various drive cycles, and used the measured results to validate thermal models. Thermal properties are used for the thermal analysis and design of improved battery thermal management systems to support achieve life and performance targets.

  11. Ballistic negatron battery

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, M.S.R. [Koneru Lakshmiah Univ.. Dept. of Electrical and Electronics Engineering, Green fields, Vaddeswaram (India)

    2012-07-01

    If we consider the Statistics there is drastic increase in dependence of batteries from year to year, due to necessity of power storage equipment at homes, power generating off grid and on grid Wind, PV systems, etc.. Where wind power is leading in renewable sector, there is a need to look at its development. Considering the scenario in India, most of the wind resource areas are far away from grid and the remaining areas which are near to grid are of low wind currents which is of no use connecting these equipment directly to grid. So, there is a need for a power storage utility to be integrated, such as the BNB (Ballistic Negatron Battery). In this situation a country like India need a battery which should be reliable, cheap and which can be industrialized. So this paper presents the concept of working, design, operation, adaptability of a Ballistic Negatron Battery. Unlike present batteries with low energy density, huge size, more weight, more charging time and low resistant to wear level, this Ballistic Negatron Battery comes with, 1) High energy storage capability (many multiples more than the present most advanced battery). 2) Very compact in size. 3) Almost negligible in weight compared to present batteries. 4) Charges with in very less time. 5) Never exhibits a wear level greater than zero. Seems like inconceivable but adoptable with simple physics. This paper will explains in detail the principle, model, design, construction and practical considerations considered in making this battery. (Author)

  12. 充电器对移动电话比吸收率影响的研究%Research on specific absorption rate for mobile phone by charger

    Institute of Scientific and Technical Information of China (English)

    杨彦彰; 林斌; 刘晖; 吴飞云; 王育亮

    2012-01-01

    阐述电磁波对人体的影响可测试参数比吸收率的定义、测试方法和测试系统,分析影响移动电话比吸收率的主要因素,重点研究移动电话附件充电器对移动电话比吸收率的影响,提出充电器对移动电话的等效天线影响模型,并通过实际的测试数据来验证模型.基于模型提出降低充电器对移动电话比吸率影响的改进措施,为移动电话设计提供参考依据.%The definition, test method and test system of specific absorption rate (SAR) which affects the human body by electromagnetic wave are described. Equivalent antenna model of the charger for mobile phone is proposed according to the result of studying the impact on the specific absorption rate for mobile phone. The model which is validated by actual test data shows that the charger of mobile phone has important impact on SAR. Improvement measures based on the model are proposed to reduce the value of SAR for mobile phone. It can provide reference for the design of mobile phones.

  13. Turbo charger of marine diesel engine malfunction analyze%船舶柴油机涡轮增压器常见故障分析

    Institute of Scientific and Technical Information of China (English)

    蒋志斌; 杨庆明

    2012-01-01

    涡轮增压器是船舶动力装置的重要部件,其工作状况是否良好,对改善气缸的燃烧条件,降低燃油消耗,提高柴油机的功率有着十分重要的意义。由于船舶柴油机涡轮增压器的工况恶劣,使用中易发生故障。本文通过其运行中的常见故障,阐述了故障原因并加以分析,提出了排除故障的方法及预防建议。%Turbo charger is a very important component of vessels power appliance, the working condition of it has extremely important meanings to improve the combustion condition of cylinders, reduce fuel consumption and increase engine power. Since the working condition on board is seriously bad, malfunction can be easily happened on the turbo charger. In this article, it will describe and analyze the malfunction reasons and reminding the methods of solving faults and prevention suggestions through different kinds of faults during running.

  14. Silicon Betavoltaic Batteries Structures

    Directory of Open Access Journals (Sweden)

    V.N. Murashev

    2015-12-01

    Full Text Available For low-power miniature energy creation sources the particular interest is nickel Ni63. This paper discusses the main types of betavoltaic battery structures with the prospects for industrial application using - isotope of nickel Ni63. It is shown that the prospects for improving the effective efficiency are planar multijunction betavoltaic batteries.

  15. Computing Battery Lifetime Distributions

    NARCIS (Netherlands)

    Cloth, Lucia; Jongerden, Marijn R.; Haverkort, Boudewijn R.

    2007-01-01

    The usage of mobile devices like cell phones, navigation systems, or laptop computers, is limited by the lifetime of the included batteries. This lifetime depends naturally on the rate at which energy is consumed, however, it also depends on the usage pattern of the battery. Continuous drawing of a

  16. Hydrophobic, Porous Battery Boxes

    Science.gov (United States)

    Bragg, Bobby J.; Casey, John E., Jr.

    1995-01-01

    Boxes made of porous, hydrophobic polymers developed to contain aqueous potassium hydroxide electrolyte solutions of zinc/air batteries while allowing air to diffuse in as needed for operation. Used on other types of batteries for in-cabin use in which electrolytes aqueous and from which gases generated during operation must be vented without allowing electrolytes to leak out.

  17. Battery energy storage system

    NARCIS (Netherlands)

    Tol, C.S.P.; Evenblij, B.H.

    2009-01-01

    The ability to store electrical energy adds several interesting features to a ships distribution network, as silent power, peak shaving and a ride through in case of generator failure. Modern intrinsically safe Li-ion batteries bring these within reach. For this modern lithium battery applications t

  18. Battery thermal management unit

    Science.gov (United States)

    Sanders, Nicholas A.

    1989-03-01

    A battery warming device has been designed which uses waste heat from an operating internal combustion engine to warm a battery. A portion of the waste heat is stored in the sensible and latent heat of a phase change type material for use in maintaining the battery temperature after the engine is shut off. The basic design of the device consists of a Phase Change Material (PCM) reservoir and a simple heat exchanger connected to the engineer's cooling system. Two types of units were built, tested and field trialed. A strap-on type which was strapped to the side of an automotive battery and was intended for the automotive after-market and a tray type on which a battery or batteries sat. This unit was intended for the heavy duty truck market. It was determined that both types of units increased the average cranking power of the batteries they were applied to. Although there were several design problems with the units such as the need for an automatic thermostatically controlled bypass valve, the overall feeling is that there is a market opportunity for both the strap-on and tray type battery warming units.

  19. Battery Pack Thermal Design

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad

    2016-06-14

    This presentation describes the thermal design of battery packs at the National Renewable Energy Laboratory. A battery thermal management system essential for xEVs for both normal operation during daily driving (achieving life and performance) and off-normal operation during abuse conditions (achieving safety). The battery thermal management system needs to be optimized with the right tools for the lowest cost. Experimental tools such as NREL's isothermal battery calorimeter, thermal imaging, and heat transfer setups are needed. Thermal models and computer-aided engineering tools are useful for robust designs. During abuse conditions, designs should prevent cell-to-cell propagation in a module/pack (i.e., keep the fire small and manageable). NREL's battery ISC device can be used for evaluating the robustness of a module/pack to cell-to-cell propagation.

  20. Electrolytes for advanced batteries

    Energy Technology Data Exchange (ETDEWEB)

    Blomgren, G.E. [Energizer, Westlake, OH (United States)

    1999-09-01

    The choices of the components of the electrolyte phase for advanced batteries (lithium and lithium ion batteries) are very sensitive to the electrodes which are used. There are also a number of other requirements for the electrolyte phase, which depend on the cell design and the materials chosen for the battery. The difficulty of choice is compounded when the cell is a rechargeable one. This paper looks at each of these requirements and the degree to which they are met for lithium and lithium ion batteries. The discussion is broken into sections on anode or negative electrode stability requirements, cathode or positive electrode stability requirements, conductivity needs, viscosity and wetting requirements. The effects of these properties and interactions on the performance of batteries are also discussed. (orig.)

  1. Intelligent uninterruptible power supply system with back-up fuel cell/battery hybrid power source

    Science.gov (United States)

    Zhan, Yuedong; Guo, Youguang; Zhu, Jianguo; Wang, Hua

    2008-05-01

    This paper presents the development of an intelligent uninterruptible power supply (UPS) system with a hybrid power source that comprises a proton-exchange membrane fuel cell (PEMFC) and a battery. Attention is focused on the architecture of the UPS hybrid system and the data acquisition and control of the PEMFC. Specifically, the hybrid UPS system consists of a low-cost 60-cell 300 W PEMFC stack, a 3-cell lead-acid battery, an active power factor correction ac-dc rectifier, a half-bridge dc-ac inverter, a dc-dc converter, an ac-dc charger and their control units based on a digital signal processor TMS320F240, other integrated circuit chips, and a simple network management protocol adapter. Experimental tests and theoretical studies are conducted. First, the major parameters of the PEMFC are experimentally obtained and evaluated. Then an intelligent control strategy for the PEMFC stack is proposed and implemented. Finally, the performance of the hybrid UPS system is measured and analyzed.

  2. A wireless power interface for rechargeable battery operated neural recording implants.

    Science.gov (United States)

    Li, Pengfei; Principe, Jose C; Bashirullah, Rizwan

    2006-01-01

    This paper describes an integrated analog front-end for wireless powering and recharging of miniature Li-ion batteries used in implantable neural recording microsystems. DC signal extraction from a wireless carrier is accomplished using Schottky barrier contact diodes with lower forward voltage drop for improved efficiency. The battery charger employs a new control loop that relaxes comparator resolution requirements, provides simultaneous operation of constant-current and constant-voltage loops, and eliminates the external current sense resistor from the charging path. The accuracy of the end-of-charge detection is primarily determined by the voltage drop across matched resistors and current-sources and the offset voltage of the sense comparator. Experimental results in 0.6 mum bulk CMOS technology indicate that +/- 1.3% (or +/-20 microA) end-of-charge accuracy can be obtained under worst-case conditions for a comparator offset voltage of +/-5mV. The circuits occupy 1.735 mm(2) with a power dissipation of 8.4 mW when delivering a load current of 1.5 mA at 4.1 V (or 6.15 mW) for an efficiency of 73%

  3. Technical and legal considerations and solutions in the area of battery charging for electric vehicles

    Science.gov (United States)

    Juda, Z.

    2016-09-01

    The issue of protecting health of residents of urbanized areas from the effect of excessive particulate matter and toxic components of car exhaust gases imposes the need of introduction of clean electric vehicles to the market. The increasing market availability of electric vehicles, especially in the segment of short-range (neighborhood) vehicles is followed by development of new and advanced infrastructure solutions. This also applies to the increasingly popular hybrid vehicles PHEV (Plug-in Hybrid Electric Vehicles). However, problems with the existing designs are primarily associated with limited driving range on a single battery charge, the density of charging stations in urban and suburban area, energy system efficiency due to increased electricity demand and the unification of solutions for charging stations, on-board chargers and the necessary accessories. Technical solutions are dependent on many factors, including the type and size of battery in the vehicle and access to power grid with increased load capacity. The article discusses the legal and technical actions outlined in the above directions. It shows the available and planned solutions in this area.

  4. Mathematical Storage-Battery Models

    Science.gov (United States)

    Chapman, C. P.; Aston, M.

    1985-01-01

    Empirical formula represents performance of electrical storage batteries. Formula covers many battery types and includes numerous coefficients adjusted to fit peculiarities of each type. Battery and load parameters taken into account include power density in battery, discharge time, and electrolyte temperature. Applications include electric-vehicle "fuel" gages and powerline load leveling.

  5. Battery Technology Stores Clean Energy

    Science.gov (United States)

    2008-01-01

    Headquartered in Fremont, California, Deeya Energy Inc. is now bringing its flow batteries to commercial customers around the world after working with former Marshall Space Flight Center scientist, Lawrence Thaller. Deeya's liquid-cell batteries have higher power capability than Thaller's original design, are less expensive than lead-acid batteries, are a clean energy alternative, and are 10 to 20 times less expensive than nickel-metal hydride batteries, lithium-ion batteries, and fuel cell options.

  6. Analysis of electric vehicle charger input impedance%电动汽车充电机输入阻抗特性分析

    Institute of Scientific and Technical Information of China (English)

    李晶; 姜久春; 牛利勇

    2013-01-01

    The problem of interaction between electric car charger and the grid is transformed into the research on charging machine input impedance and the grid output impedance by using the research methods of DC-DC modules interaction. The electric car charger input part is three-phase PWM rectifier, so first the small signal model of three-phase PWM rectifier is established in d-q coordinate system , then the reduced order model is established and its open loop and closed loop input impedance expression are deduced. How the charging machine input impedance vary with the change of the grid voltage is discussed. PWM rectifier output current, inductance parasitic resistance, capacitance parasitic resistance, voltage control loop, and current control loop are researched. The paper can provide a basis for the stability analysis of electric vehicle chargers.%针对电动汽车充电机与电网之间的相互作用问题,借鉴DC/DC模块之间相互作用的研究方法,将充电机与电网之间的相互作用问题转化为研究充电机输入阻抗与电网输出阻抗之间的问题.由于电动汽车充电机的输入部分为三相PWM整流器,在d-q坐标系下建立了降阶的三相PWM整流器小信号模型,推导出其开环与闲环输入阻抗表达式.研究充电机输入阻抗随电网电压波动,PWM整流器输出电流、电感寄生电阻和电容寄生电阻,以及电压控制环路和电流控制环路对输入阻抗的影响.

  7. Lithium Sulfuryl Chloride Battery.

    Science.gov (United States)

    Primary batteries , Electrochemistry, Ionic current, Electrolytes, Cathodes(Electrolytic cell), Anodes(Electrolytic cell), Thionyl chloride ...Phosphorus compounds, Electrical conductivity, Calibration, Solutions(Mixtures), Electrical resistance, Performance tests, Solvents, Lithium compounds

  8. High temperature battery. Hochtemperaturbatterie

    Energy Technology Data Exchange (ETDEWEB)

    Bulling, M.

    1992-06-04

    To prevent heat losses of a high temperature battery, it is proposed to make the incoming current leads in the area of their penetration through the double-walled insulating housing as thermal throttle, particularly spiral ones.

  9. Thermal battery degradation mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Missert, Nancy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brunke, Lyle Brent [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Diffuse reflectance IR spectroscopy (DRIFTS) was used to investigate the effect of accelerated aging on LiSi based anodes in simulated MC3816 batteries. DRIFTS spectra showed that the oxygen, carbonate, hydroxide and sulfur content of the anodes changes with aging times and temperatures, but not in a monotonic fashion that could be correlated to phase evolution. Bands associated with sulfur species were only observed in anodes taken from batteries aged in wet environments, providing further evidence for a reaction pathway facilitated by H2S transport from the cathode, through the separator, to the anode. Loss of battery capacity with accelerated aging in wet environments was correlated to loss of FeS2 in the catholyte pellets, suggesting that the major contribution to battery performance degradation results from loss of active cathode material.

  10. Battery energy storage technologies

    Science.gov (United States)

    Anderson, Max D.; Carr, Dodd S.

    1993-03-01

    Battery energy storage systems, comprising lead-acid batteries, power conversion systems, and control systems, are used by three main groups: power generating utilities, power distributing utilities, and major power consumers (such as electric furnace foundries). The principal advantages of battery energy storage systems to generating utilities include load leveling, frequency control, spinning reserve, modular construction, convenient siting, no emissions, and investment deferral for new generation and transmission equipment. Power distributing utilities and major power consumers can avoid costly demand changes by discharging their batteries at peak periods and then recharging with lower cost off-peak power (say, at night). Battery energy storage systems are most cost effective when designed for discharge periods of less than 5 h; other systems (for example, pumped water storage) are better suited for longer discharges. It is estimated that by the year 2000 there will be a potential need for 4000 MW of battery energy storage. New construction of five plants totaling 100 MW is presently scheduled for completion by the Puerto Rico Electric Power Authority between 1992 and 1995.

  11. Study of Design for Portable Charger of Mobile Phone%便携式手机充电器的设计研究

    Institute of Scientific and Technical Information of China (English)

    王善银; 王家珂

    2011-01-01

    This paper makes a study of the shortcoming of the of market product and designs a new charger of the mobile phone,which has the advantage of long working time, stability and being easy to carry about.The structure design of the mobile phone is very good.%通过对目前市场上常用的充电器产品的研究,得出其中的不足,通过不足的比较研究,设计出具有工作时间长、工作稳定性好、携带方便的手机充电器,并对充电器的结构、组成进行了设计.

  12. On Design of Wireless Charger Based on MSP430 Microcontroller%基于MSP430单片机的无线充电器设计

    Institute of Scientific and Technical Information of China (English)

    周功明; 周陈琛

    2011-01-01

    采用MSP430F2274超低功耗单片机作为无线传能充电器的监测控制核心,通过开关选择充电的速度,实现快速充电和常态充电功能,电能充满后给出充满提示且自动停止充电。能量发送端可用市电和直流电源供电,具有交流优先和交直流自动切换的功能,电压和充电时间显示采用低功耗OCM126864-9液晶屏。该设计系统具有无线充电、能量传输效果好、携带方便、成本低、无需布线等优势,有着广泛的应用前景。%This paper is to introduce the design of a wireless charger by using MSP430F2274 ultra-low power microcontroller as the monitoring control center of energy transfer,applying switches to control the charging speed,and this charger has the function of rapid charging and normal charging,it will be automatically stopped after being fully charged.AC or DC power supplies are both OK with the priority of AC,and automatic switchover of AC and DC;and using the low-power OCM126864-9 LCD as the display of voltage and charging time.This design system has advantages of wireless charging,good energy transfer effect,being easy to carry,low cost,no wiring,and it will have a broad prospect of application.

  13. COBE battery overview: History, handling, and performance

    Science.gov (United States)

    Yi, Thomas; Tiller, Smith; Sullivan, David

    1991-01-01

    The following topics are presented in viewgraph format: Cosmic Background Explorer (COBE) mission background; battery background and specifications; cell history; battery mechanical/structural design; battery test data; and flowcharts of the various battery approval procedures.

  14. 基于Proteus的电池模拟设备的研究与实现%Study of Battery Simulation Equipment Based on Proteus

    Institute of Scientific and Technical Information of China (English)

    张颖

    2011-01-01

    Battery Simulation Equipment is a new - style charger testing equipment that can set voltage and charge - discharge at will. It reduces the testing cycle and enhances the production efficiency of charger. The usage of Proteus to Battery Simulation Equipment will better the performance and prepare for the prototype production of the Equipment. This paper mainly introduces the function of the Equipment, characteristic of Proteus, function realization for the Equipment with Proteus and the problems in practical application for the Equipment.%电池模拟设备是一种新型的充电器测试设备,其具有任意设定电压、可任意充放电等特点,解决了以往对于充电器测试所需的测试周期过长的问题,大大提高了充电器的生产效率。将电池模拟设备的功能通过Pro—teus实现,有助于研究人员对于电池模拟设备相关特性的了解和改进,为以后的样机生产奠定良好基础。本文介绍了电池模拟设备的工作原理、Proteus特点、电池模拟设备在Proteus中应用的设计方案,并对电池模拟设备在实际应用中将会面临的问题做了相应阐述和解释。

  15. Lithium use in batteries

    Science.gov (United States)

    Goonan, Thomas G.

    2012-01-01

    Lithium has a number of uses but one of the most valuable is as a component of high energy-density rechargeable lithium-ion batteries. Because of concerns over carbon dioxide footprint and increasing hydrocarbon fuel cost (reduced supply), lithium may become even more important in large batteries for powering all-electric and hybrid vehicles. It would take 1.4 to 3.0 kilograms of lithium equivalent (7.5 to 16.0 kilograms of lithium carbonate) to support a 40-mile trip in an electric vehicle before requiring recharge. This could create a large demand for lithium. Estimates of future lithium demand vary, based on numerous variables. Some of those variables include the potential for recycling, widespread public acceptance of electric vehicles, or the possibility of incentives for converting to lithium-ion-powered engines. Increased electric usage could cause electricity prices to increase. Because of reduced demand, hydrocarbon fuel prices would likely decrease, making hydrocarbon fuel more desirable. In 2009, 13 percent of worldwide lithium reserves, expressed in terms of contained lithium, were reported to be within hard rock mineral deposits, and 87 percent, within brine deposits. Most of the lithium recovered from brine came from Chile, with smaller amounts from China, Argentina, and the United States. Chile also has lithium mineral reserves, as does Australia. Another source of lithium is from recycled batteries. When lithium-ion batteries begin to power vehicles, it is expected that battery recycling rates will increase because vehicle battery recycling systems can be used to produce new lithium-ion batteries.

  16. Used batteries - REMINDER

    CERN Document Server

    2006-01-01

    With colder weather drawing in, it is quite likely that older car batteries will fail. On this subject, the Safety Commission wishes to remind everyone that CERN is not responsible for the disposal of used batteries from private vehicles. So please refrain from abandoning them on pavements or around or inside buildings. Used batteries can be disposed of safely, free-of-charge and without any damage to the environment at waste disposal sites (déchetteries) close to CERN in both France (Ain and Haute-Savoie) and in the Canton of Geneva in Switzerland (Cheneviers). Since the average car battery lasts a number of years, this only represents a small effort on your part over the whole lifetime of your vehicle. Most people don't need reminding that car batteries contain concentrated sulphuric acid, which can cause severe burns. Despite this, we frequently find them casually dumped in scrap metal bins! For more information, please contact R. Magnier/SC-GS 160879 We all have a responsibility for safety and th...

  17. A Martian Air Battery Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will investigate an entirely new battery chemistry by developing A Martian Air Battery. Specifically the project will explore the concept of a Martian...

  18. Relativity and the mercury battery.

    Science.gov (United States)

    Zaleski-Ejgierd, Patryk; Pyykkö, Pekka

    2011-10-06

    Comparative, fully relativistic (FR), scalar relativistic (SR) and non-relativistic (NR) DFT calculations attribute about 30% of the mercury-battery voltage to relativity. The obtained percentage is smaller than for the lead-acid battery, but not negligible.

  19. Atomic Batteries: Energy from Radioactivity

    OpenAIRE

    Kumar, Suhas

    2015-01-01

    With alternate, sustainable, natural sources of energy being sought after, there is new interest in energy from radioactivity, including natural and waste radioactive materials. A study of various atomic batteries is presented with perspectives of development and comparisons of performance parameters and cost. We discuss radioisotope thermal generators, indirect conversion batteries, direct conversion batteries, and direct charge batteries. We qualitatively describe their principles of operat...

  20. High energy density aluminum battery

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan

    2016-10-11

    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  1. Microfluidic redox battery.

    Science.gov (United States)

    Lee, Jin Wook; Goulet, Marc-Antoni; Kjeang, Erik

    2013-07-01

    A miniaturized microfluidic battery is proposed, which is the first membraneless redox battery demonstrated to date. This unique concept capitalizes on dual-pass flow-through porous electrodes combined with stratified, co-laminar flow to generate electrical power on-chip. The fluidic design is symmetric to allow for both charging and discharging operations in forward, reverse, and recirculation modes. The proof-of-concept device fabricated using low-cost materials integrated in a microfluidic chip is shown to produce competitive power levels when operated on a vanadium redox electrolyte. A complete charge/discharge cycle is performed to demonstrate its operation as a rechargeable battery, which is an important step towards providing sustainable power to lab-on-a-chip and microelectronic applications.

  2. Batteries, from Cradle to Grave

    Science.gov (United States)

    Smith, Michael J.; Gray, Fiona M.

    2010-01-01

    As battery producers and vendors, legislators, and the consumer population become aware of the consequences of inappropriate disposal of batteries to landfill sites instead of responsible chemical neutralization and reuse, the topic of battery recycling has begun to appear on the environmental agenda. In the United Kingdom, estimates of annual…

  3. Battery switch for downhole tools

    Science.gov (United States)

    Boling, Brian E.

    2010-02-23

    An electrical circuit for a downhole tool may include a battery, a load electrically connected to the battery, and at least one switch electrically connected in series with the battery and to the load. The at least one switch may be configured to close when a tool temperature exceeds a selected temperature.

  4. Automotive battery technology

    CERN Document Server

    Watzenig, Daniel

    2014-01-01

    The use of electrochemical energy storage systems in automotive applications also involves new requirements for modeling these systems, especially in terms of model depth and model quality. Currently, mainly simple application-oriented models are used to describe the physical behavior of batteries. This book provides a step beyond of state-of-the-art modeling showing various different approaches covering following aspects: system safety, misuse behavior (crash, thermal runaway), battery state estimation and electrochemical modeling with the needed analysis (pre/post mortem). All this different approaches are developed to support the overall integration process from a multidisciplinary point-of-view and depict their further enhancements to this process.

  5. Lithium-ion batteries

    CERN Document Server

    Yoshio, Masaki; Kozawa, Akiya

    2010-01-01

    This book is a compilation of up-to-date information relative to Li-Ion technology. It provides the reader with a single source covering all important aspects of Li-Ion battery operations. It fills the gap between the old original Li-Ion technology and present state of the technology that has developed into a high state of practice. The book is designed to provide a single source for an up-to-date description of the technology associated with the Li-Ion battery industry. It will be useful to researchers interested in energy conversion for the direct conversion of chemical energy into electrica

  6. Design and simulation of a fast-charging station for plug-in hybrid electric vehicle (PHEV) batteries

    Science.gov (United States)

    de Leon, Nathalie Pulmones

    2011-12-01

    With the increasing interest in green technologies in transportation, plug-in hybrid electric vehicles (PHEV) have proven to be the best short-term solution to minimize greenhouse gas emissions. Despite such interest, conventional vehicle drivers are still reluctant in using such a new technology, mainly because of the long duration (4-8 hours) required to charge PHEV batteries with the currently existing Level I and II chargers. For this reason, Level III fast-charging stations capable of reducing the charging duration to 10-15 minutes are being considered. The present thesis focuses on the design of a fast-charging station that uses, in addition to the electrical grid, two stationary energy storage devices: a flywheel energy storage and a supercapacitor. The power electronic converters used for the interface of the energy sources with the charging station are designed. The design also focuses on the energy management that will minimize the PHEV battery charging duration as well as the duration required to recharge the energy storage devices. For this reason, an algorithm that minimizes durations along with its mathematical formulation is proposed, and its application in fast charging environment will be illustrated by means of two scenarios.

  7. Calculation of buffer batteries with voltage-adding storage batteries

    Energy Technology Data Exchange (ETDEWEB)

    Boldin, R.V.; Koloskov, A.A.; Ratner, G.B.; Sharov, V.N.

    1982-01-01

    A technique is proposed for buffer storage batteries of the NKG type with voltage-adding storage batteries. These batteries (B) guarantee comparatively narrow range of change in the voltage for load with discharge of the storage batteries of the main B to the assigned minimum voltage. The purpose of the calculation is to determine the number of voltage-adding B and the number of storage batteries in each of them. The initial data for calculation are minimum and maximum values of voltage for load and storage batteries of the main B. Expressions have been obtained for determining the depth of the discharge and the final expression for determining the depth of the discharge and the final discharge voltage of the storage batteries of each voltage-adding B. The necessary formulas are presented and the order for making the calculation is given.

  8. High energy battery. Hochenergiebatterie

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, H.; Beyermann, G.; Bulling, M.

    1992-03-26

    In a high energy battery with a large number of individual cells in a housing with a cooling medium flowing through it, it is proposed that the cooling medium should be guided so that it only affects one or both sides of the cells thermally.

  9. Secondary alkaline batteries

    Science.gov (United States)

    McBreen, J.

    1984-03-01

    The overall reactions (charge/discharge characteristics); electrode structures and materials; and cell construction are studied for nickel oxide-cadmium, nickel oxide-iron, nickel oxide-hydrogen, nickel oxide-zinc, silver oxide-zinc, and silver oxide-cadmium, silver oxide-iron, and manganese dioxide-zinc batteries.

  10. USED BATTERIES-REMINDER

    CERN Multimedia

    2002-01-01

    Note from the TIS Division: Although it is not an obligation for CERN to collect, store and dispose of used batteries from private vehicles, they are often found abandoned on the site and even in the scrap metal bins. As well as being very dangerous (they contain sulphuric acid which is highly corrosive), this practise costs CERN a non-negligible amount of money to dispose of them safely. The disposal of used batteries in the host state could not be simpler, there are 'déchetteries' in neighbouring France at Saint-Genis, Gaillard and Annemasse as well as in other communes. In Geneva Canton the centre de traitement des déchets spéciaux, at Cheneviers on the river Rhône a few kilometers from CERN, will dispose of your batterie free of charge. So we ask you to use a little common sense and to help protect the environnement from the lead and acid in these batteries and even more important, to avoid the possibility of a colleague being seriously injured. It doesn't take m...

  11. Batteries: Imaging degradation

    Science.gov (United States)

    Shearing, Paul R.

    2016-11-01

    The degradation and failure of Li-ion batteries is strongly associated with electrode microstructure change upon (de)lithiation. Now, an operando X-ray tomography approach is shown to correlate changes in the microstructure of electrodes to cell performance, and thereby predict degradation pathways.

  12. Battery cell module

    Energy Technology Data Exchange (ETDEWEB)

    Shambaugh, J.S.

    1981-11-23

    A modular lithium battery having a plurality of cells, having electrical connecting means connecting the cells to output terminals, and venting means for releasing discharge byproducts to a chemical scrubber is disclosed. Stainless steel cell casings are potted in an aluminum modular case with syntactic foam and epoxy. The wall thickness resulting is about 0.5 inches.

  13. Lightweight bipolar storage battery

    Science.gov (United States)

    Rowlette, John J. (Inventor)

    1992-01-01

    An apparatus [10] is disclosed for a lightweight bipolar battery of the end-plate cell stack design. Current flow through a bipolar cell stack [12] is collected by a pair of copper end-plates [16a,16b] and transferred edgewise out of the battery by a pair of lightweight, low resistance copper terminals [28a,28b]. The copper terminals parallel the surface of a corresponding copper end-plate [16a,16b] to maximize battery throughput. The bipolar cell stack [12], copper end-plates [16a,16b] and copper terminals [28a,28b] are rigidly sandwiched between a pair of nonconductive rigid end-plates [20] having a lightweight fiber honeycomb core which eliminates distortion of individual plates within the bipolar cell stack due to internal pressures. Insulating foam [30] is injected into the fiber honeycomb core to reduce heat transfer into and out of the bipolar cell stack and to maintain uniform cell performance. A sealed battery enclosure [ 22] exposes a pair of terminal ends [26a,26b] for connection with an external circuit.

  14. Modular Battery Charge Controller

    Science.gov (United States)

    Button, Robert; Gonzalez, Marcelo

    2009-01-01

    A new approach to masterless, distributed, digital-charge control for batteries requiring charge control has been developed and implemented. This approach is required in battery chemistries that need cell-level charge control for safety and is characterized by the use of one controller per cell, resulting in redundant sensors for critical components, such as voltage, temperature, and current. The charge controllers in a given battery interact in a masterless fashion for the purpose of cell balancing, charge control, and state-of-charge estimation. This makes the battery system invariably fault-tolerant. The solution to the single-fault failure, due to the use of a single charge controller (CC), was solved by implementing one CC per cell and linking them via an isolated communication bus [e.g., controller area network (CAN)] in a masterless fashion so that the failure of one or more CCs will not impact the remaining functional CCs. Each micro-controller-based CC digitizes the cell voltage (V(sub cell)), two cell temperatures, and the voltage across the switch (V); the latter variable is used in conjunction with V(sub cell) to estimate the bypass current for a given bypass resistor. Furthermore, CC1 digitizes the battery current (I1) and battery voltage (V(sub batt) and CC5 digitizes a second battery current (I2). As a result, redundant readings are taken for temperature, battery current, and battery voltage through the summation of the individual cell voltages given that each CC knows the voltage of the other cells. For the purpose of cell balancing, each CC periodically and independently transmits its cell voltage and stores the received cell voltage of the other cells in an array. The position in the array depends on the identifier (ID) of the transmitting CC. After eight cell voltage receptions, the array is checked to see if one or more cells did not transmit. If one or more transmissions are missing, the missing cell(s) is (are) eliminated from cell

  15. Advanced Battery Manufacturing (VA)

    Energy Technology Data Exchange (ETDEWEB)

    Stratton, Jeremy

    2012-09-30

    LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATT’s work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease

  16. 49 CFR 173.159 - Batteries, wet.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Batteries, wet. 173.159 Section 173.159... Batteries, wet. (a) Electric storage batteries, containing electrolyte acid or alkaline corrosive battery fluid (wet batteries), may not be packed with other materials except as provided in paragraphs (g)...

  17. Electric batteries and the environment. Die Batterie und die Umwelt

    Energy Technology Data Exchange (ETDEWEB)

    Hiller, F.; Hartinger, L.; Kiehne, H.A.; Niklas, H.; Schiele, R.; Steil, H.U.

    1987-01-01

    The book deals with the production, use and waste management of batteries (accumulators and primary batteries), with regard to protection of the environment. Legal, technical and medical aspects are shown. There are numerous electro-chemical systems, but only few proved to be really good in practice. Most batteries contain lead, cadmium or mercury and must therefore be eliminated in a way doing no harm to the environment. Large quantities of the above named heavy metals are today already being recovered by means of appropriate procedures. The reduction of these heavy metals in batteries is also described to be a contribution to the protection of the environment. (orig.) With 67 figs.

  18. Smart battery controller for lithium sulfur dioxide batteries

    Science.gov (United States)

    Atwater, Terrill; Bard, Arnold; Testa, Bruce; Shader, William

    1992-08-01

    Each year, the U.S. Army purchases millions of lithium sulfur dioxide batteries for use in portable electronics equipment. Because of their superior rate capability and service life over a wide variety of conditions, lithium batteries are the power source of choice for military equipment. There is no convenient method of determining the available energy remaining in partially used lithium batteries; hence, users do not take full advantage of all the available battery energy. Currently, users replace batteries before each mission, which leads to premature disposal, and results in the waste of millions of dollars in battery energy every year. Another problem of the lithium battery is that it is necessary to ensure complete discharge of the cells when the useful life of the battery has been expended, or when a hazardous condition exists; a hazardous condition may result in one or more of the cells venting. The Electronics Technology and Devices Laboratory has developed a working prototype of a smart battery controller (SBC) that addresses these problems.

  19. Battery separator manufacturing process

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, N.I.; Sugarman, N.

    1974-12-27

    A battery with a positive plate, a negative plate, and a separator of polymeric resin having a degree of undesirable hydrophobia, solid below 180/sup 0/F, extrudable as a hot melt, and resistant to degradation by at least either acids or alkalies positioned between the plates is described. The separator comprises a nonwoven mat of fibers, the fibers being comprised of the polymeric resin and a wetting agent in an amount of 0.5 to 20 percent by weight based on the weight of the resin with the amount being incompatible with the resin below the melting point of the resin such that the wetting agent will bloom over a period of time at ambient temperatures in a battery, yet being compatible with the resin at the extrusion temperature and bringing about blooming to the surface of the fibers when the fibers are subjected to heat and pressure.

  20. The nuclear battery

    Science.gov (United States)

    Kozier, K. S.; Rosinger, H. E.

    The evolution and present status of an Atomic Energy of Canada Limited program to develop a small, solid-state, passively cooled reactor power supply known as the Nuclear Battery is reviewed. Key technical features of the Nuclear Battery reactor core include a heat-pipe primary heat transport system, graphite neutron moderator, low-enriched uranium TRISO coated-particle fuel and the use of burnable poisons for long-term reactivity control. An external secondary heat transport system extracts useful heat energy, which may be converted into electricity in an organic Rankine cycle engine or used to produce high-pressure steam. The present reference design is capable of producing about 2400 kW(t) (about 600 kW(e) net) for 15 full-power years. Technical and safety features are described along with recent progress in component hardware development programs and market assessment work.

  1. Block copolymer battery separator

    Science.gov (United States)

    Wong, David; Balsara, Nitash Pervez

    2016-04-26

    The invention herein described is the use of a block copolymer/homopolymer blend for creating nanoporous materials for transport applications. Specifically, this is demonstrated by using the block copolymer poly(styrene-block-ethylene-block-styrene) (SES) and blending it with homopolymer polystyrene (PS). After blending the polymers, a film is cast, and the film is submerged in tetrahydrofuran, which removes the PS. This creates a nanoporous polymer film, whereby the holes are lined with PS. Control of morphology of the system is achieved by manipulating the amount of PS added and the relative size of the PS added. The porous nature of these films was demonstrated by measuring the ionic conductivity in a traditional battery electrolyte, 1M LiPF.sub.6 in EC/DEC (1:1 v/v) using AC impedance spectroscopy and comparing these results to commercially available battery separators.

  2. Battery charging stations

    Energy Technology Data Exchange (ETDEWEB)

    Bergey, M.

    1997-12-01

    This paper discusses the concept of battery charging stations (BCSs), designed to service rural owners of battery power sources. Many such power sources now are transported to urban areas for recharging. A BCS provides the opportunity to locate these facilities closer to the user, is often powered by renewable sources, or hybrid systems, takes advantage of economies of scale, and has the potential to provide lower cost of service, better service, and better cost recovery than other rural electrification programs. Typical systems discussed can service 200 to 1200 people, and consist of stations powered by photovoltaics, wind/PV, wind/diesel, or diesel only. Examples of installed systems are presented, followed by cost figures, economic analysis, and typical system design and performance numbers.

  3. Solar battery powered bicycle lamp SKL050. Final report; Solar/Akkufahrradleuchte SKL050. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Lang, O.

    2001-06-01

    Up to now there are no functional or high quality mobile solar powered chargers and lamps available for the outdoor and bicycle consumer. Hence the project SKL050 was concerned with the development of a novel combination of battery powered multi-functional lamp and solar charger. All components such as solar module, bulb, electronics and housing were supposed to be involved in the development. The goal was a ready-for-production development well placed in the field of high quality bicycle, camping and household appliances by efficient, well matched components and an exclusive and functional design. Another issue in the development was a cost effective production by automated assembling in order to maintain the maximum customer price of 129,- DM (incl. VAT). Most of the stated goals were reached at the end of the project. Only the detailed construction of the housing parts and final approvals have to be carried out by a bicycle accessories company which is interested to produce and market the SKL050 in licence. Apart from the product SKL050 several important results regarding automation processes of small solar modules have been collected and are supposed to be integrated in future products of the SOLARC GmbH. (orig.) [German] Im Bereich mobiler solarbetriebener Ladegeraete und Leuchten fuer den Outdoor- und Fahrradkonsumenten sind bislang keine funktionell oder aesthetisch brauchbaren Produkte verfuegbar. Das Vorhaben SKL050 umfasste daher gezielt die Entwicklung einer neuartigen Kombination aus akkubetriebener Mehrzweckleuchte und Solar-Akkulader. Saemtliche Basiskomponenten wie Solarmodul, Leuchtmittel, Elektronik und Gehaeuse sollten mit in die Entwicklung einbezogen werden. Ziel des Vorhabens war ein zur Serienreife entwickeltes Produkt, welches durch leistungsfaehige, optimal aufeinander abgestimmte Komponenten sowie durch ein exklusives und funktionelles Design einen Platz im Bereich der hochwertigen Fahrrad-, Camping-, und Haushaltsaccessoires findet. Bei

  4. Navy Lithium Battery Safety

    Science.gov (United States)

    2010-07-14

    lithium -sulfur dioxide (Li-SO2), lithium - thionyl chloride (Li- SOCL2), and lithium -sulfuryl chloride (Li-S02CL2...and 1980’s with active primary cells: Lithium -sulfur dioxide (Li-SO2) Lithium - thionyl chloride (Li-SOCL2) Lithium -sulfuryl chloride (Li-S0 CL ) 2 2...DISTRIBUTION A. Approved for public release; distribution unlimited. NAVY LITHIUM BATTERY SAFETY John Dow1 and Chris Batchelor2 Naval

  5. Miniaturized nuclear battery

    Energy Technology Data Exchange (ETDEWEB)

    Adler, K.; Ducommun, G.

    1976-01-20

    The invention relates to a miniaturized nuclear battery, consisting of several in series connected cells, wherein each cell contains a support which acts as positive pole and which supports on one side a ..beta..-emitter, above said emitter is a radiation resisting insulation layer which is covered by an absorption layer, above which is a collector layer, and wherein the in series connected calls are disposed in an airtight case.

  6. High energy density lithium batteries

    CERN Document Server

    Aifantis, Katerina E; Kumar, R Vasant

    2010-01-01

    Cell phones, portable computers and other electronic devices crucially depend on reliable, compact yet powerful batteries. Therefore, intensive research is devoted to improving performance and reducing failure rates. Rechargeable lithium-ion batteries promise significant advancement and high application potential for hybrid vehicles, biomedical devices, and everyday appliances. This monograph provides special focus on the methods and approaches for enhancing the performance of next-generation batteries through the use of nanotechnology. Deeper understanding of the mechanisms and strategies is

  7. Membranes in Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Junbo Hou

    2012-07-01

    Full Text Available Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed.

  8. Membranes in lithium ion batteries.

    Science.gov (United States)

    Yang, Min; Hou, Junbo

    2012-07-04

    Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed.

  9. Air and metal hydride battery

    Energy Technology Data Exchange (ETDEWEB)

    Lampinen, M.; Noponen, T. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Applied Thermodynamics

    1998-12-31

    The main goal of the air and metal hydride battery project was to enhance the performance and manufacturing technology of both electrodes to such a degree that an air-metal hydride battery could become a commercially and technically competitive power source for electric vehicles. By the end of the project it was possible to demonstrate the very first prototype of the air-metal hydride battery at EV scale, achieving all the required design parameters. (orig.)

  10. Battery Post-Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Post-test diagnostics of aged batteries can provide additional information regarding the cause of performance degradation, which, previously, could be only inferred...

  11. A VRLA battery simulation model

    Energy Technology Data Exchange (ETDEWEB)

    Pascoe, P.E.; Anbuky, A.H. [Invensys Energy Systems NZ Limited, Christchurch (New Zealand)

    2004-05-01

    A valve regulated lead acid (VRLA) battery simulation model is an invaluable tool for the standby power system engineer. The obvious use for such a model is to allow the assessment of battery performance. This may involve determining the influence of cells suffering from state of health (SOH) degradation on the performance of the entire string, or the running of test scenarios to ascertain the most suitable battery size for the application. In addition, it enables the engineer to assess the performance of the overall power system. This includes, for example, running test scenarios to determine the benefits of various load shedding schemes. It also allows the assessment of other power system components, either for determining their requirements and/or vulnerabilities. Finally, a VRLA battery simulation model is vital as a stand alone tool for educational purposes. Despite the fundamentals of the VRLA battery having been established for over 100 years, its operating behaviour is often poorly understood. An accurate simulation model enables the engineer to gain a better understanding of VRLA battery behaviour. A system level multipurpose VRLA battery simulation model is presented. It allows an arbitrary battery (capacity, SOH, number of cells and number of strings) to be simulated under arbitrary operating conditions (discharge rate, ambient temperature, end voltage, charge rate and initial state of charge). The model accurately reflects the VRLA battery discharge and recharge behaviour. This includes the complex start of discharge region known as the coup de fouet. (author)

  12. Characterization of vanadium flow battery

    Energy Technology Data Exchange (ETDEWEB)

    Bindner, H.; Ekman, C.; Gehrke, O.; Isleifsson, F.

    2010-10-15

    This report summarizes the work done at Risoe DTU testing a vanadium flow battery as part of the project 'Characterisation of Vanadium Batteries' (ForskEl project 6555) with the partners PA Energy A/S and OI Electric A/S under the Danish PSO energy research program. A 15kW/120kWh vanadium battery has been installed as part of the distributed energy systems experimental facility, SYSLAB, at Risoe DTU. A test programme has been carried out to get hands-on experience with the technology, to characterize the battery from a power system point of view and to assess it with respect to integration of wind energy in the Danish power system. The battery has been in operation for 18 months. During time of operation the battery has not shown signs of degradation of performance. It has a round-trip efficiency at full load of approximately 60% (depending on temperature and SOC). The sources of the losses are power conversion in cell stacks/electrolyte, power converter, and auxiliary power consumption from pumps and controller. The response time for the battery is limited at 20kW/s by the ramp rate of the power converter. The battery can thus provide power and frequency support for the power system. Vanadium battery is a potential technology for storage based services to the power system provided investment and O and M cost are low enough and long term operation is documented. (Author)

  13. 基于STC89 C51单片机的智能充电器的设计%Intelligent Battery Charge Design Based on STC89 C51 Single-chip Computer

    Institute of Scientific and Technical Information of China (English)

    齐晓龙

    2016-01-01

    以 STC89 C51单片机为控制核心,结合MAX1898锂离子电池充电芯片以及报警电路设计了手机智能充电器。该充电器提供恒定充电电流,并将手机反馈的充电状况以脉冲的形式发送给单片机,单片机经过内部处理后控制充电过程,实现智能手机预充、快充、满充、充电保护、自动断电和充电完成自动报警等功能。实验结果表明,该充电器能安全高效的给手机进行充电,且性能稳定。%Controlled by STC89C51 single-chip and combined with Li-ion battery charging chip and a-larm circuit, we designed a mobile phone intelligent battery charger which provides constant charging cur -rent, and sends the charging condition feedback from mobile phone to the single -chip in the form of pulse .After internal processing , single-chip controls the charging process to fulfill the function of pre charge , fast charge , full charge , charging protection , automatic power down and charging complete auto-matic alarm etc .The result shows that the charger is safe and efficient , and its performance is stable .

  14. Battery Cell Balancing System and Method

    Science.gov (United States)

    Davies, Francis J. (Inventor)

    2014-01-01

    A battery cell balancing system is operable to utilize a relatively small number of transformers interconnected with a battery having a plurality of battery cells to selectively charge the battery cells. Windings of the transformers are simultaneously driven with a plurality of waveforms whereupon selected battery cells or groups of cells are selected and charged. A transformer drive circuit is operable to selectively vary the waveforms to thereby vary a weighted voltage associated with each of the battery cells.

  15. Advanced Battery Diagnosis for Electric Vehicles

    OpenAIRE

    Lamichhane, Chudamani

    2008-01-01

    Summary Literatures on battery technologies and diagnosis of its parameters were studied. The innovative battery technologies from basic knowledge to world standard testing procedures were analysed and discussed in the report. The established battery test station and flowchart was followed during the battery test preparation and testing. In order to understand and verify the battery performance, the well established test procedures developed by USABC (United States Advanced Battery Consorti...

  16. AGOR 28: SIO Shipyard Representative Bi-Weekly Progress Report

    Science.gov (United States)

    2015-08-10

    finishing the few remaining areas in the lower engine room. • Main Deck Noise Levels – DCI rotated the engine exhaust outlets 45-degrees to port to...Volt DC Batteries and Chargers - Tested all 7 battery chargers and their batteries. Checked and set charger settings per procedure. The charger for...fiddle board as promised. • Roll-Back – The yard did a roll-back last Friday, pulling back welding leads, temporary ducting and extension cords

  17. Optimised battery capacity utilisation within battery management systems

    NARCIS (Netherlands)

    Wilkins, S.; Rosca, B.; Jacob, J.; Hoedmaekers, E.

    2015-01-01

    Battery Management Systems (BMSs) play a key role in the performance of both hybrid and fully electric vehicles. Typically, the role of the BMS is to help maintain safety, performance, and overall efficiency of the battery pack. One important aspect of its operation is the estimation of the state of

  18. Automotive Battery Modelling and Management

    Directory of Open Access Journals (Sweden)

    N. M. Hammad

    2014-06-01

    Full Text Available The estimation of vehicle battery performance is typically addressed by testing the battery under specific operation conditions by using a model to represent the test results. Approaches for representing test results range from simple statistical models to neural networks to complex, physics-based models. Basing the model on test data could be problematical when testing becomes impractical with many years life time tests. So, real time estimation of battery performance, an important problem in automotive applications, falls into this area. In vehicles it is important to know the state of charge of the batteries in order to prevent vehicle stranding and to ensure that the full range of the vehicle operation is exploited. In this paper, several battery models have studied including analytical, electrical circuits, stochastic and electro- chemical models. Valve Regulated Lead Acid “VRLA” battery has been modelled using electric circuit technique. This model is considered in the proposed Battery Monitoring System “BMS”. The proposed BMS includes data acquisition, data analysis and prediction of battery performance under a hypothetical future loads. Based on these criteria, a microprocessor based BMS prototype had been built and tested in automotive Lab,. The tests show promising results that can be used in industrial applications

  19. Redox Flow Batteries, a Review

    Energy Technology Data Exchange (ETDEWEB)

    Knoxville, U. Tennessee; U. Texas Austin; U, McGill; Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

    2011-07-15

    Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

  20. Battery system with temperature sensors

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Steven J.; Trester, Dale B.

    2012-11-13

    A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

  1. Which battery model to use?

    NARCIS (Netherlands)

    Jongerden, Marijn R.; Haverkort, Boudewijn R.

    2009-01-01

    The use of mobile devices like cell phones, navigation systems or laptop computers is limited by the lifetime of the included batteries. This lifetime depends naturally on the rate at which energy is consumed; however, it also depends on the usage pattern of the battery. Continuous drawing of a high

  2. 可传输音频信号的简易无线充电器设计%The design of a simple wireless charger that can achieve audio signal transmission

    Institute of Scientific and Technical Information of China (English)

    旭东; 彭华雨; 任重伟; 张建军

    2015-01-01

    无线充电技术是近年新出现的一种充电方式,其极大的方便性在很多方面有重要的应用,所以扩展无线充电器的应用功能必不可少。基于电磁耦合共振原理设计一种充电过程中可同时进行音频信号传输的无线充电装置,实现信号、能量同时传递的多功能化。针对无线充电器的电磁场分布和发射电路的设计,从工作原理到电路逐步分析,并通过实验验证此装置的可行性,为无线充电器的发展提供一种可行的方案。%Wireless charging technology is a new way of charging. Its great convenience finds important applications in many aspects, so it’s indispensible to expand the appliances of wireless charging. The wireless charger based on the electromagnetic coupling resonance principle this paper desingnes a wireless charging device that can simultaneously tranfer audio and visual signals and realizes audio signal transmission and energy transfer. This paper Aiming at the electromagnetic field distribution of wireless charger and the design of transmitting circuit, the team analyses the working principle and the transmitting circuit step by step. The feasibility of this device is verified by experiment. This paper provides a feasible project for the development of the wireless charger.

  3. Fault Analysis and Phase Debugging Method of the Thyristor Charger%晶闸管充电机的故障分析及相位调试方法

    Institute of Scientific and Technical Information of China (English)

    杨伟珍

    2001-01-01

    It is analyzed that voltage phase characteristics when thethyristor charger is wried in different ways and the phase shift characteristic of the thyristor rectification circuit. The voltage phasor diagram is drawed. The phase debugging method of the thyristor rectification circuit is introduced.%分析了晶闸管充电机不同接线时的电压相位特性和晶闸管整流电路的移相特性,画出了电压相量图。给出晶闸管整流电路的相位调试方法。

  4. Injection Mold Design of Mobile Phone Charger Bottom Cover%手机充电器底盖注塑模设计

    Institute of Scientific and Technical Information of China (English)

    赵长荣

    2014-01-01

    针对手机充电器底盖进行了相关的工艺设计和模具设计。在具体设计过程中,采用了侧浇口浇注系统,通过计算分析采用了一模四腔结构,有利于生产的批量化;根据设计的原则要求选择分型面,使得模具结构变得更加简单;在结构易损复杂的部位,为了提高模具的寿命,采用镶嵌式结构。设计过程还运用了CAD,PRO/E对塑料件进行三维造型、调模架、设计冷却系统等,加快了设计的进程。%The associated process design and die design of mobile phone charger bottom cover were processed. During specific design process,side gate pouring position was used. Through calculation and analysis,a mold four cavity structure was used, conducive to batch production. According to the design principle requires,parting surface was selected,the mold structure became more simple in structure. In vulnerable and complex parts of structure,in order to improve mold life,mosaic structure was used. The design also uses CAD and PRO/E for 3D modeling, mold, design of cooling system to speed up the design process.

  5. Electric batteries. Lithium batteries; Piles electrique. Piles au lithium

    Energy Technology Data Exchange (ETDEWEB)

    Sarrazin, Ch. [Delegation Generale pour l' Armement, DGA/DRET, 75 - Paris (France)

    2002-05-01

    Lithium has the most negative potential and the highest mass capacity of all solid anode materials. It is the metal that allows to reach the highest mass energies in batteries when associated to a high potential cathode. The search for high performance cathodes has led to many different types of lithium batteries (transition metal oxides or sulfides, halogenides, oxi-halogenides, carbon, organic compounds etc..). These batteries can have a solid cathode (Li/CuO, Li/MnO{sub 2}, Li/CF{sub x}, etc..), or a liquid cathode (Li/SOCl{sub 2}, Li/SO{sub 2}, etc..) and in some cases they can have also a solid electrolyte, but not all types of lithium battery led to important industrial fabrication. The increasing use of lithium batteries is linked with the development of portable equipments for which, the compactness of the energy source is a key point. This article examines only the lithium batteries that have been the object of a significant industrial fabrication: lithium-sulfur dioxide, lithium-thionyl chloride, lithium-manganese dioxide, lithium-copper oxide, lithium-carbon fluoride, lithium-iron disulfide, other types of lithium batteries. (J.S.)

  6. Research on lithium batteries

    Science.gov (United States)

    Hill, I. R.; Goledzinowski, M.; Dore, R.

    1993-12-01

    Research was conducted on two types of lithium batteries. The first is a rechargeable Li-SO2 system using an all-inorganic electrolyte. A Li/liquid cathode system was chosen to obtain a relatively high discharge rate capability over the +20 to -30 C range. The fabrication and cycling performance of research cells are described, including the preparation and physical properties of porous polytetra fluoroethylene bonded carbon electrodes. Since the low temperature performance of the standard electrolyte was unsatisfactory, studies of electrolytes containing mixed salts were made. Raman spectroscopy was used to study the species present in these electrolytes and to identify discharge products. Infrared spectroscopy was used to measure electrolyte impurities. Film growth on the LiCl was also monitored. The second battery is a Li-thionyl chloride nonrechargeable system. Research cells were fabricated containing cobalt phthalo cyanine in the carbon cathode. The cathode was heat treated at different temperatures and the effect on cell discharge rate and capacity evaluated. Commercially obtained cells were used in an investigation of a way to identify substandard cells. The study also involved electrochemical impedance spectroscopy and cell discharging at various rates. The results are discussed in terms of LiCl passivation.

  7. 77 FR 8325 - Sixth Meeting: RTCA Special Committee 225, Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2012-02-14

    ... with Li-Ion Batteries (15 min). Results of EFB thermal runaway on flightdeck (smoke and toxic gases... Batteries and Battery Systems, Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Batteries and Battery Systems, Small and Medium Size. SUMMARY: The FAA is issuing this notice to advise...

  8. Computing lifetimes for battery-powered devices

    NARCIS (Netherlands)

    Jongerden, Marijn; Haverkort, Boudewijn

    2010-01-01

    The battery lifetime of mobile devices depends on the usage pattern of the battery, next to the discharge rate and the battery capacity. Therefore, it is important to include the usage pattern in battery lifetime computations. We do this by combining a stochastic workload, modeled as a continuous-ti

  9. BLET:Battery Lifetime Enhancement Technology

    Institute of Scientific and Technical Information of China (English)

    Yong-Ju; Jang; Seongsoo; Lee

    2010-01-01

    <正>In recent years,mobile devices and high-hearth because of the multifunctional,battery capacity has been increased.In this paper,without the overhead by using the battery discharge characteristics,and application of technology to extend the battery life is explained. Experiment H.264 video transmission to take some losses and extended battery life was achieved.

  10. 46 CFR 169.668 - Batteries.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Batteries. 169.668 Section 169.668 Shipping COAST GUARD... § 169.668 Batteries. (a) Each battery must be in a location that allows the gas generated in charging to... this section, a battery must not be located in the same compartment with a gasoline tank or...

  11. Principles of an Atomtronic Battery

    CERN Document Server

    Zozulya, Alex A

    2013-01-01

    An asymmetric atom trap is investigated as a means to implement a "battery" that supplies ultracold atoms to an atomtronic circuit. The battery model is derived from a scheme for continuous loading of a non-dissipative atom trap proposed by Roos et al.(Europhysics Letters V61, 187 (2003)). The trap is defined by longitudinal and transverse trap frequencies and corresponding trap energy heights. The battery's ability to supply power to a load is evaluated as a function of an input atom flux and power. For given trap parameters and input flux the battery is shown to have a resonantly optimum value of input power. The battery behavior can be cast in terms of an equivalent circuit model; specifically, for fixed input flux and power the battery is modeled in terms of a Th\\'{e}venin equivalent chemical potential and internal resistance. The internal resistance establishes the maximum power that can be supplied to a circuit, the heat that will be generated by the battery, and that noise will be imposed on the circui...

  12. Lewis Research Center battery overview

    Science.gov (United States)

    Odonnell, Patricia

    1993-01-01

    The topics covered are presented in viewgraph form and include the following: the Advanced Communications Technology Satellite; the Space Station Freedom (SSF) photovoltaic power module division; Ni/H2 battery and cell design; individual pressure vessel (IPV) nickel-hydrogen cell testing SSF support; the LeRC Electrochemical Technology Branch; improved design IPV nickel-hydrogen cells; advanced technology for IPV nickel-hydrogen flight cells; a lightweight nickel-hydrogen cell; bipolar nickel-hydrogen battery development and technology; aerospace nickel-metal hydride cells; the NASA Sodium-Sulfur Cell Technology Flight Experiment; and the lithium-carbon dioxide battery thermodynamic model.

  13. Computing lifetimes for battery-powered devices

    OpenAIRE

    Jongerden, Marijn; Haverkort, Boudewijn

    2010-01-01

    The battery lifetime of mobile devices depends on the usage pattern of the battery, next to the discharge rate and the battery capacity. Therefore, it is important to include the usage pattern in battery lifetime computations. We do this by combining a stochastic workload, modeled as a continuous-time Markov model, with a well-known battery model. For this combined model, we provide new algorithms to efficiently compute the expected lifetime and the distribution and expected value of the deli...

  14. Electro-chemical batteries for guided missiles

    Directory of Open Access Journals (Sweden)

    H. S. Jaggi

    1966-05-01

    Full Text Available Electro-chemical batteries owing to their simplicity and ease of stowage form one of the sources of electrical power inside a missile. However, all batteries are not suited for this application. This article describes the special features required of a missile borne battery pack and discusses the characteristics of various types of batteries available today in the world. Conclusions have been drawn as to the most suitable types of batteries for missile applications.

  15. Battery Ownership Model - Medium Duty HEV Battery Leasing & Standardization

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Ken; Smith, Kandler; Cosgrove, Jon; Prohaska, Robert; Pesaran, Ahmad; Paul, James; Wiseman, Marc

    2015-12-01

    Prepared for the U.S. Department of Energy, this milestone report focuses on the economics of leasing versus owning batteries for medium-duty hybrid electric vehicles as well as various battery standardization scenarios. The work described in this report was performed by members of the Energy Storage Team and the Vehicle Simulation Team in NREL's Transportation and Hydrogen Systems Center along with members of the Vehicles Analysis Team at Ricardo.

  16. Design of the Cell-phone Charger Based on the Flyback Converter%基于反激变换器的手机充电器的设计

    Institute of Scientific and Technical Information of China (English)

    刘琳

    2011-01-01

    分析了手机充电器的设计要求,选择电路拓扑简洁的反激变换器作为其主电路。为了满足电路高变换效率的要求选择电路满载时工作在连续模式。考虑到降低待机功耗的要求,选取SG6848为控制芯片。给出90V~264V交流输入、12W输出的反激变换器的参数设计步骤及其实验结果。220V交流输入、12W输出时,变换器效率达到78%。%Based on the analysis of the requirement of the cell - phone charger, it uses the flyback converter as the main circuit, choices CCM as the operation mode at full load. In order to achieve high efficiency and reduce the stand - by loss, it uses SG6848 as the control IC. It shows the detail about the procedure for the 90-265Vac input, 12W output charger. The efficiency of the prototype reaches 78% at 220Vac input, 12W output.

  17. 基于BP神经网络的涡轮增压机组压气机特性计算%Characteristic Calculating of Compressor in Turbo-charger Set Based on BP Neural Network

    Institute of Scientific and Technical Information of China (English)

    徐海成

    2011-01-01

    In the change-condition calculation of turbo-charger set, the problem which refers to repeat characteristic calculating of compressor according to input data have made the whole calculating process complicated and low efficiency.Applying BP neural network to working out the functional relation in the characteristic map of compressor, and then introduces it into Excel for the change-condition characteristic calculating of turbo-charger set.A given example showed that the efficiency and universality of the Excel for characteristic calculating of compressor is remarkable, and that can be expanded to the other place where the characteristic calculating of compressor involved.%在涡轮增压机组变工况热力计算中,因为涉及到需要依据输入数据反复计算压气机特性参数的问题,使得整个计算过程复杂繁琐、效率低下.应用BP神经网络求出压气机特性曲线的函数关系,并将其引入到Excel中,可以实现机组的变工况热力计算.实例表明,该计算表格的查值效率较高、通用性较好,可推广至其它涉及到压气机特性计算的地方.

  18. Design of electric motorcycle cellphone charger based on 51 microcontroller%基于51单片机的电动车手机充电器设计

    Institute of Scientific and Technical Information of China (English)

    林倩; 胡耀武; 胡丽冰; 高康晨

    2013-01-01

    During an important period of the global advocation of environmental protection and low-carbon energy-saving, bicycles or electric motorcycles have been increasingly ridden. With the solar panels as the power, a cellphone charger mounted on electric motorcycle is designed based on microcontroller. The charger which uses a closed-loop control is characterized by high control accuracy and the self-regulation ability, and has certain practicality and market prospects.%  在全球提倡环保和低碳节能的重要时期,骑自行车或电动车的人也越来越普遍。给出了一种利用电动车的太阳能电池板作为电源,以单片机为主控部件设计电动车车载手机充电器的设计方法。该充电器使用闭环控制,控制精度高,有自我调节能力,具有一定的实用性和市场前景。

  19. Prediction of Retained Capacity and EODV of Li-ion Batteries in LEO Spacecraft Batteries

    OpenAIRE

    2010-01-01

    In resent years ANN is widely reported for modeling in different areas of science including electro chemistry. This includes modeling of different technological batteries such as lead acid battery, Nickel cadmium batteries etc. Lithium ion batteries are advance battery technology which satisfy most of the space mission requirements. Low earth orbit (LEO)space craft batteries undergo large number of charge discharge cycles (about 25000 cycles)compared to other ground level or space application...

  20. Ultrasonic enhancement of battery diffusion.

    Science.gov (United States)

    Hilton, R; Dornbusch, D; Branson, K; Tekeei, A; Suppes, G J

    2014-03-01

    It has been demonstrated that sonic energy can be harnessed to enhance convection in Galvanic cells during cyclic voltammetry; however, the practical value of this approach is limited due to the lack of open volumes for convection patterns to develop in most batteries. This study evaluates the ability of ultrasonic waves to enhance diffusion in membrane separators commonly used in sandwich-architecture batteries. Studies include the measuring of open-circuit performance curves to interpret performances in terms of reductions in concentration overpotentials. The use of a 40 kHz sonicator bath can consistently increase the voltage of the battery and reduce overpotential losses up to 30%. This work demonstrates and quantifies battery enhancement due to enhanced diffusion made possible with ultrasonic energy.

  1. Composite materials for battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Amine, Khalil; Yang, Junbing; Abouimrane, Ali; Ren, Jianguo

    2017-03-14

    A process for producing nanocomposite materials for use in batteries includes electroactive materials are incorporated within a nanosheet host material. The process may include treatment at high temperatures and doping to obtain desirable properties.

  2. Prognostics in Battery Health Management

    Data.gov (United States)

    National Aeronautics and Space Administration — Batteries represent complex systems whose internal state vari- ables are either inaccessible to sensors or hard to measure un- der operational conditions. This work...

  3. Storage Reliability of Reserve Batteries

    Science.gov (United States)

    2007-11-02

    batteries – Environmental concerns, lack of business – Non-availability of some critical materials • Lithium Oxyhalides are systems of choice – Good...exhibit good corrosion resistance to neutral electrolytes (LiAlCl4 in thionyl chloride and sulfuryl chloride ) • Using AlCl3 creates a much more corrosive...Storage Reliability of Reserve Batteries Jeff Swank and Allan Goldberg Army Research Laboratory Adelphi, MD 301-394-3116 jswank@arl.army.mil ll l

  4. Lithium battery safety and reliability

    Science.gov (United States)

    Levy, Samuel C.

    Lithium batteries have been used in a variety of applications for a number of years. As their use continues to grow, particularly in the consumer market, a greater emphasis needs to be placed on safety and reliability. There is a useful technique which can help to design cells and batteries having a greater degree of safety and higher reliability. This technique, known as fault tree analysis, can also be useful in determining the cause of unsafe behavior and poor reliability in existing designs.

  5. Separators for Lithium Ion Batteries

    Institute of Scientific and Technical Information of China (English)

    G.C.Li; H.P.Zhang; Y.P.Wu

    2007-01-01

    1 Results A separator for rechargeable batteries is a microporous membrane placed between electrodes of opposite polarity, keeping them apart to prevent electrical short circuits and at the same time allowing rapid transport of lithium ions that are needed to complete the circuit during the passage of current in an electrochemical cell, and thus plays a key role in determining the performance of the lithium ion battery. Here provides a comprehensive overview of various types of separators for lithium io...

  6. Iron-Air Rechargeable Battery

    Science.gov (United States)

    Narayan, Sri R. (Inventor); Prakash, G.K. Surya (Inventor); Kindler, Andrew (Inventor)

    2014-01-01

    Embodiments include an iron-air rechargeable battery having a composite electrode including an iron electrode and a hydrogen electrode integrated therewith. An air electrode is spaced from the iron electrode and an electrolyte is provided in contact with the air electrode and the iron electrodes. Various additives and catalysts are disclosed with respect to the iron electrode, air electrode, and electrolyte for increasing battery efficiency and cycle life.

  7. Modeling the Lithium Ion Battery

    Science.gov (United States)

    Summerfield, John

    2013-01-01

    The lithium ion battery will be a reliable electrical resource for many years to come. A simple model of the lithium ions motion due to changes in concentration and voltage is presented. The battery chosen has LiCoO[subscript 2] as the cathode, LiPF[subscript 6] as the electrolyte, and LiC[subscript 6] as the anode. The concentration gradient and…

  8. The Design of Universal Charger Based on Single-Chip%基于单片机的通用充电器的设计

    Institute of Scientific and Technical Information of China (English)

    吴奇飞

    2011-01-01

    In order to solve the recharging problems of nickel-cadmium battery, ni-mh batteries, lithium battery, we need to control the process of charging more accurately, so we can and finally prevent the batteries from damaging by shortening charging time and ma%为了解决当前镍镉电池、镍氢电池、锂电池的充电问题,需要对充电过程进行更精确的监控,以缩短充电时间、达到最大的电池容量,并防止电池损坏。设计了一种以单片机为核心的通用充电器,介绍了充电器的工作原理、LCD液晶显示原理,并讨论了系统的硬件构成及软件设计方法。

  9. Electric batteries and the environment. 2. rev. and enlarged ed. Die Batterie und die Umwelt

    Energy Technology Data Exchange (ETDEWEB)

    Hiller, F.; Hartinger, L.; Kiehne, H.A.; Niklas, H.; Schiele, R.; Steil, H.U.

    1990-01-01

    The book deals with the prodution, use and waste management of batteries (accumulators and primary batteries), with regard to protection of the environment. Legal, technical and medical aspects are shown. Subjects: 1. Toxicological aspects of battery substances; 2. legal foundations of environmental protection; 3. off-air purification in battery production; 4. dust monitoring; 5. waste water of the battery industry; 6. safety aspects of battery operation; 7. recycling of battery materials; 8. disposal of used primary batteries. (orig./MM) With 67 figs.

  10. Computer Aided Battery Engineering Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad

    2016-06-07

    A multi-national lab collaborative team was assembled that includes experts from academia and industry to enhance recently developed Computer-Aided Battery Engineering for Electric Drive Vehicles (CAEBAT)-II battery crush modeling tools and to develop microstructure models for electrode design - both computationally efficient. Task 1. The new Multi-Scale Multi-Domain model framework (GH-MSMD) provides 100x to 1,000x computation speed-up in battery electrochemical/thermal simulation while retaining modularity of particles and electrode-, cell-, and pack-level domains. The increased speed enables direct use of the full model in parameter identification. Task 2. Mechanical-electrochemical-thermal (MECT) models for mechanical abuse simulation were simultaneously coupled, enabling simultaneous modeling of electrochemical reactions during the short circuit, when necessary. The interactions between mechanical failure and battery cell performance were studied, and the flexibility of the model for various batteries structures and loading conditions was improved. Model validation is ongoing to compare with test data from Sandia National Laboratories. The ABDT tool was established in ANSYS. Task 3. Microstructural modeling was conducted to enhance next-generation electrode designs. This 3- year project will validate models for a variety of electrodes, complementing Advanced Battery Research programs. Prototype tools have been developed for electrochemical simulation and geometric reconstruction.

  11. Carbon-enhanced VRLA batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Enos, David George; Hund, Thomas D.; Shane, Rod (East Penn Manufacturing, Lyon Station, PA)

    2010-10-01

    The addition of certain forms of carbon to the negative plate in valve regulated lead acid (VRLA) batteries has been demonstrated to increase the cycle life of such batteries by an order of magnitude or more under high-rate, partial-state-of-charge operation. Such performance will provide a significant impact, and in some cases it will be an enabling feature for applications including hybrid electric vehicles, utility ancillary regulation services, wind farm energy smoothing, and solar photovoltaic energy smoothing. There is a critical need to understnd how the carbon interacts with the negative plate and achieves the aforementioned benefits at a fundamental level. Such an understanding will not only enable the performance of such batteries to be optimzied, but also to explore the feasibility of applying this technology to other battery chemistries. In partnership with the East Penn Manufacturing, Sandia will investigate the electrochemical function of the carbon and possibly identify improvements to its anti-sulfation properties. Shiomi, et al. (1997) discovered that the addition of carbon to the negative active material (NAM) substantially reduced PbSO{sub 4} accumulation in high rate, partial state of charge (HRPSoC) cycling applications. This improved performance with a minimal cost. Cycling applications that were uneconomical for traditional VRLA batteries are viable for the carbon enhanced VRLA. The overall goal of this work is to quantitatively define the role that carbon plays in the electrochemistry of a VRLA battery.

  12. Battery thermal models for hybrid vehicle simulations

    Science.gov (United States)

    Pesaran, Ahmad A.

    This paper summarizes battery thermal modeling capabilities for: (1) an advanced vehicle simulator (ADVISOR); and (2) battery module and pack thermal design. The National Renewable Energy Laboratory's (NREL's) ADVISOR is developed in the Matlab/Simulink environment. There are several battery models in ADVISOR for various chemistry types. Each one of these models requires a thermal model to predict the temperature change that could affect battery performance parameters, such as resistance, capacity and state of charges. A lumped capacitance battery thermal model in the Matlab/Simulink environment was developed that included the ADVISOR battery performance models. For thermal evaluation and design of battery modules and packs, NREL has been using various computer aided engineering tools including commercial finite element analysis software. This paper will discuss the thermal ADVISOR battery model and its results, along with the results of finite element modeling that were presented at the workshop on "Development of Advanced Battery Engineering Models" in August 2001.

  13. Evaluation of Batteries for Safe Air Transport

    Directory of Open Access Journals (Sweden)

    Nicholas Williard

    2016-05-01

    Full Text Available Lithium-ion batteries are shipped worldwide with many limitations implemented to ensure safety and to prevent loss of cargo. Many of the transportation guidelines focus on new batteries; however, the shipment requirements for used or degraded batteries are less clear. Current international regulations regarding the air transport of lithium-ion batteries are critically reviewed. The pre-shipping tests are outlined and evaluated to assess their ability to fully mitigate risks during battery transport. In particular, the guidelines for shipping second-use batteries are considered. Because the electrochemical state of previously used batteries is inherently different from that of new batteries, additional considerations must be made to evaluate these types of cells. Additional tests are suggested that evaluate the risks of second-use batteries, which may or may not contain incipient faults.

  14. International Space Station Lithium-Ion Battery

    Science.gov (United States)

    Dalton, Penni J.; Balcer, Sonia

    2016-01-01

    The International Space Station (ISS) Electric Power System (EPS) currently uses Nickel-Hydrogen (Ni-H2) batteries to store electrical energy. The batteries are charged during insolation and discharged during eclipse. The Ni-H2 batteries are designed to operate at a 35 depth of discharge (DOD) maximum during normal operation in a Low Earth Orbit. Since the oldest of the 48 Ni-H2 battery Orbital Replacement Units (ORUs) has been cycling since September 2006, these batteries are now approaching their end of useful life. In 2010, the ISS Program began the development of Lithium-Ion (Li-ion) batteries to replace the Ni-H2 batteries and concurrently funded a Li-ion cell life testing project. This paper will include an overview of the ISS Li-Ion battery system architecture and the progress of the Li-ion battery design and development.

  15. Effective Algorithm for Placement of Directional Wireless Chargers%一种高效有向无线充电器的布置算法

    Institute of Scientific and Technical Information of China (English)

    戴海鹏; 陈贵海; 徐力杰; 刘云淮; 吴小兵; 何田

    2015-01-01

    传统的传感器节点通常采用电池供电,有限的电池能量限制了传感器网络整体的寿命.无线能量传输技术可将能量以无线方式从充电器发送至传感器,从而可以彻底解决这一问题.无线可充电传感网中的一个重要问题是无线充电器的布置问题,即,如何有效地布置充电器,使得传感器网络的整体充电效用最大化.已有的工作主要考虑的是全向充电器的布置问题,且充电器可布置的位置受限,如只能布置在三角形顶点或网格中的格点处,因此具有相当的局限性.首次考虑了有向充电器的一般布置问题,即,充电器充电区域为扇形,并且充电器可布置在区域内任何位置处,其朝向可任意调节.另外,首次基于实测数据建立了有向充电器的充电模型,并提出一系列创新方法将问题进行转化,设计了一种近似比为(1-1/e)/(1+ε)的高效算法——CDG(charger deployment-greedy)算法来解决这一问题.仿真实验结果说明了CDG算法的有效性.与其他提出的两种随机算法相比,CDG算法的性能分别提升了将近300%和100%.

  16. Liquid cathode primary batteries

    Science.gov (United States)

    Schlaikjer, Carl R.

    1985-03-01

    Lithium/liquid cathode/carbon primary batteries offer from 3 to 6 times the volumetric energy density of zinc/alkaline manganese cells, improved stability during elevated temperature storage, satisfactory operation at temperatures from -40 to +150 °C, and efficient discharge at moderate rates. he lithium/sulfur dioxide cell is the most efficient system at temperatures below 0 °C. Although chemical reactions leading to electrolyte degradation and lithium corrosion are known, the rates of these reactions are slow. While the normal temperature cell reaction produces lithium dithionite, discharge at 60 °C leads to a reduction in capacity due to side reactions involving sulfur dioxide and discharge intermediates. Lithium/thionyl chloride and lithium/sulfuryl chloride cells have the highest practical gravimetric and volumetric energy densities when compared with aqueous and most other nonaqueous systems. For thionyl chloride, discharge proceeds through a series of intermediates to sulfur, sulfur dioxide and lithium chloride. Catalysis, leading to improved rate capability and capacity, has been achieved. The causes of rapid reactions leading to thermal runaway are thought to be chemical in nature. Lithium/sulfuryl chloride cells, which produce sulfur dioxide and lithium chloride on discharge, experience more extensive anode corrosion. An inorganic cosolvent and suitable salt are capable of alleviating this corrosion. Calcium/oxyhalide cells have been studied because of their promise of increased safety without substantial sacrifice of energy density relative to lithium cells. Anode corrosion, particularly during discharge, has delayed practical development.

  17. Bifunctional redox flow battery

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Y.H. [Research Institute of Chemical Defense, Beijing 100083 (China)], E-mail: wen_yuehua@126.com; Cheng, J. [Research Institute of Chemical Defense, Beijing 100083 (China); Beijing Science and Technology University, Beijing 100083 (China); Xun, Y. [Research Institute of Chemical Defense, Beijing 100083 (China); Ma, P.H. [Full Cell R and D Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China); Yang, Y.S. [Research Institute of Chemical Defense, Beijing 100083 (China); Beijing Science and Technology University, Beijing 100083 (China)

    2008-08-20

    A new bifunctional redox flow battery (BRFB) system, V(III)/V(II)-L-cystine(O{sub 2}), was systematically investigated by using different separators. It is shown that during charge, water transfer is significantly restricted with increasing the concentration of HBr when the Nafion 115 cation exchange membrane is employed. The same result can be obtained when the gas diffusion layer (GDL) hot-pressed separator is used. The organic electro-synthesis is directly correlated with the crossover of vanadium. When employing the anion exchange membrane, the electro-synthesis efficiency is over 96% due to a minimal crossover of vanadium. When the GDL hot-pressed separator is applied, the crossover of vanadium and water transfer are noticeably prevented and the electro-synthesis efficiency of over 99% is obtained. Those impurities such as vanadium ions and bromine can be eliminated through the purification of organic electro-synthesized products. The purified product is identified to be L-cysteic acid by IR spectrum. The BRFB shows a favorable discharge performance at a current density of 20 mA cm{sup -2}. Best discharge performance is achieved by using the GDL hot-pressed separator. The coulombic efficiency of 87% and energy efficiency of about 58% can be obtained. The cause of major energy losses is mainly associated with the cross-contamination of anodic and cathodic active electrolytes.

  18. Liquid cathode primary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Schlaikjer, C.R.

    1985-01-15

    Lithium/liquid cathode/carbon primary batteries offer from 3 to 6 times the volumetric energy density of zinc/alkaline manganese cells, improved stability during elevated temperature storage, satisfactory operation at temperatures from -40 to +150/sup 0/C, and efficient discharge at moderate rates. The lithium/sulfur dioxide cell is the most efficient system at temperatures below 0/sup 0/C. Although chemical reactions leading to electrolyte degradation and lithium corrosion are known, the rates of these reactions are slow. While the normal temperature cell reaction produces lithium dithionite, discharge at 60/sup 0/C leads to a reduction in capacity due to side reactions involving sulfur dioxide and discharge intermediates. Lithium/thionyl chloride and lithium/sulfuryl chloride cells have the highest practical gravimetric and volumetric energy densities when compared with aqueous and most other nonaqueous systems. For thionyl chloride, discharge proceeds through a series of intermediates to sulfur, sulfur dioxide and lithium chloride. Catalysis, leading to improved rate capability and capacity, has been achieved. The causes of rapid reactions leading to thermal runaway are thought to be chemical in nature. Lithium/sulfuryl chloride cells, which produce sulfur dioxide and lithium chloride on discharge, experience more extensive anode corrosion. An inorganic cosolvent and suitable salt are capable of alleviating this corrosion. Calcium/oxyhalide cells have been studied because of their promise of increased safety without substantial sacrifice of energy density relative to lithium cells. Anode corrosion, particularly during discharge, has delayed practical development.

  19. 49 CFR 173.185 - Lithium cells and batteries.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Lithium cells and batteries. 173.185 Section 173... Class 7 § 173.185 Lithium cells and batteries. (a) Cells and batteries. A lithium cell or battery, including a lithium polymer cell or battery and a lithium-ion cell or battery, must conform to all of...

  20. Lithium batteries in Japan; Les batteries lithium au Japon

    Energy Technology Data Exchange (ETDEWEB)

    Guyomard, D.; Mercier, A.; Tarascon, J.M.

    2000-04-01

    This document is a mission report about the development of lithium batteries research in Japan. The mission took place between November 29 and December 3, 1999 and was organized by the Science and Technology Service of the French embassy in Tokyo. The organizations shown during the mission were: ETL, NEDO/LIBES, the Kyoto university, Yuasa, Hitachi, Matsushita, Japan Storage, Sanyo and Sony. The mission has shown that the government program is clearly backward. The Japanese research on battery materials remains important. The leaders of the lithium-ion technology are Sony, first, and then Hitachi and Sanyo. Applications of lithium-ion batteries are developing for small electric-powered vehicles. (J.S.)

  1. Characterization of Vanadium Flow Battery

    DEFF Research Database (Denmark)

    Bindner, Henrik W.; Krog Ekman, Claus; Gehrke, Oliver;

    of wind energy in the Danish power system. The battery has been in operation for 18 months. During time of operation the battery has not shown signs of degradation of performance. It has a round-trip efficiency at full load of approximately 60% (depending on temperature and SOC). The sources of the losses......This report summarizes the work done at Risø-DTU testing a vanadium flow battery as part of the project “Characterisation of Vanadium Batteries” (ForskEl project 6555) with the partners PA Energy A/S and OI Electric A/S under the Danish PSO energy research program. A 15kW/120kWh vanadium battery...... has been installed as part of the distributed energy systems experimental facility, SYSLAB, at Risø DTU. A test programme has been carried out to get hands-on experience with the technology, to characterize the battery from a power system point of view and to assess it with respect to integration...

  2. A terracotta bio-battery.

    Science.gov (United States)

    Ajayi, Folusho F; Weigele, Peter R

    2012-07-01

    Terracotta pots were converted into simple, single chamber, air-cathode bio-batteries. This bio-battery design used a graphite-felt anode and a conductive graphite coating without added catalyst on the exterior as a cathode. Bacteria enriched from river sediment served as the anode catalyst. These batteries gave an average OCV of 0.56 V ± 0.02, a Coulombic efficiency of 21 ± 5%, and a peak power of 1.06 mW ± 0.01(33.13 mW/m(2)). Stable current was also produced when the batteries were operated with hay extract in salt solution. The bacterial community on the anode of the batteries was tested for air tolerance and desiccation resistance over a period ranging from 2 days to 2 weeks. The results showed that the anode community could survive complete drying of the electrolyte for several days. These data support the further development of this technology as a potential power source for LED-based lighting in off-grid, rural communities.

  3. Li-ion Battery Aging Datasets

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set has been collected from a custom built battery prognostics testbed at the NASA Ames Prognostics Center of Excellence (PCoE). Li-ion batteries were run...

  4. Flameless Candle Batteries Pose Risk to Kids

    Science.gov (United States)

    ... medlineplus.gov/news/fullstory_162882.html Flameless Candle Batteries Pose Risk to Kids If swallowed, serious damage ... WEDNESDAY, Jan. 4, 2017 (HealthDay News) -- Tiny button batteries that light up flameless "tea candles" pose a ...

  5. Hubble Space Telescope Battery Capacity Update

    Science.gov (United States)

    Hollandsworth, Roger; Armantrout, Jon; Rao, Gopalakrishna M.

    2007-01-01

    Orbital battery performance for the Hubble Space Telescope is discussed and battery life is predicted which supports decision to replace orbital batteries by 2009-2010 timeframe. Ground characterization testing of cells from the replacement battery build is discussed, with comparison of data from battery capacity characterization with cell studies of Cycle Life and 60% Stress Test at the Naval Weapons Surface Center (NWSC)-Crane, and cell Cycle Life testing at the Marshal Space Flight Center (MSFC). The contents of this presentation includes an update to the performance of the on-orbit batteries, as well as a discussion of the HST Service Mission 4 (SM4) batteries manufactured in 1996 and activated in 2000, and a second set of SM4 backup replacement batteries which began manufacture Jan 11, 2007, with delivery scheduled for July 2008.

  6. Controlling fires in silver/zinc batteries

    Science.gov (United States)

    Boshers, W. A.; Britz, W. A.

    1977-01-01

    Silver/zinc storage battery fires are often difficult to extinguish. Improved technique employs manifold connected to central evacuation chamber to rapidly vent combustion-supporting gases generated by battery plate oxides.

  7. The NTS-2 nickel-hydrogen battery

    Science.gov (United States)

    Betz, F.

    1977-01-01

    Features of the first operational nickel hydrogen battery are described as well as experiences encountered during its testing and installation. Battery performance since launching of the NTS-2 satellite is discussed.

  8. Specification For ST-5 Li Ion Battery

    Science.gov (United States)

    Castell, Karen D.; Day, John H. (Technical Monitor)

    2000-01-01

    This Specification defines the general requirements for rechargeable Space Flight batteries intended for use in the ST-5 program. The battery chemistry chosen for this mission is lithium ion (Li-Ion).

  9. Next Generation of Launcher & Space Vehicles Batteries

    Science.gov (United States)

    Laroye, J. F.; Brochard, P.; Grassien, J.-Y.; Masgrangeas, D.

    2008-09-01

    This paper presents several examples of Saft lithium batteries in use onboard launchers & space vehicles: ATV primary lithium manganese dioxide (LiMnO2) batteries and Rosetta primary lithium thionyl chloride (LiSOCl2) batteries as well as the VEGA rechargeable lithium-ion (Li-ion) avionics & thrust vector control (TVC) batteries.It gives an overview of possible chemistries and tradeoff to address these needs.

  10. Membranes for Redox Flow Battery Applications

    OpenAIRE

    Maria Skyllas-Kazacos; Aishwarya Parasuraman; Tuti Mariana Lim; Suminto Winardi; Helen Prifti

    2012-01-01

    The need for large scale energy storage has become a priority to integrate renewable energy sources into the electricity grid. Redox flow batteries are considered the best option to store electricity from medium to large scale applications. However, the current high cost of redox flow batteries impedes the wide spread adoption of this technology. The membrane is a critical component of redox flow batteries as it determines the performance as well as the economic viability of the batteries. Th...

  11. Ion-batterier - "The Next Generation"

    DEFF Research Database (Denmark)

    Søndergaard, Martin; Becker, Jacob; Shen, Yanbin;

    2014-01-01

    Lithium-ion batterier er strømkilden, der har revolutioneret vores transportable elektronik. Familien af ion-batterier er imidlertid større end som så og har meget, meget mere at byde på.......Lithium-ion batterier er strømkilden, der har revolutioneret vores transportable elektronik. Familien af ion-batterier er imidlertid større end som så og har meget, meget mere at byde på....

  12. Principles and applications of lithium secondary batteries

    CERN Document Server

    Park, Jung-Ki

    2012-01-01

    Lithium secondary batteries have been key to mobile electronics since 1990. Large-format batteries typically for electric vehicles and energystorage systems are attracting much attention due to current energy and environmental issues. Lithium batteries are expected to play a centralrole in boosting green technologies. Therefore, a large number of scientists and engineers are carrying out research and development onlithium secondary batteries.The book is written in a straightforward fashion suitable for undergraduate and graduate students, as well as scientists, and engineer

  13. Novel Electrolytes for Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lucht, Brett L. [Univ. of Rhode Island, Kingston, RI (United States). Dept. of Chemistry

    2014-12-12

    We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have been investigating the thermal stability of novel electrolytes for lithium ion batteries, in particular borate based salts. Second, we have been investigating novel additives to improve the calendar life of lithium ion batteries. Third, we have been investigating the thermal decomposition reactions of electrolytes for lithium-oxygen batteries.

  14. Vehicle Battery Safety Roadmap Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Doughty, D. H.

    2012-10-01

    The safety of electrified vehicles with high capacity energy storage devices creates challenges that must be met to assure commercial acceptance of EVs and HEVs. High performance vehicular traction energy storage systems must be intrinsically tolerant of abusive conditions: overcharge, short circuit, crush, fire exposure, overdischarge, and mechanical shock and vibration. Fail-safe responses to these conditions must be designed into the system, at the materials and the system level, through selection of materials and safety devices that will further reduce the probability of single cell failure and preclude propagation of failure to adjacent cells. One of the most important objectives of DOE's Office of Vehicle Technologies is to support the development of lithium ion batteries that are safe and abuse tolerant in electric drive vehicles. This Roadmap analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would further DOE's mission.

  15. Origami lithium-ion batteries.

    Science.gov (United States)

    Song, Zeming; Ma, Teng; Tang, Rui; Cheng, Qian; Wang, Xu; Krishnaraju, Deepakshyam; Panat, Rahul; Chan, Candace K; Yu, Hongyu; Jiang, Hanqing

    2014-01-01

    There are significant challenges in developing deformable devices at the system level that contain integrated, deformable energy storage devices. Here we demonstrate an origami lithium-ion battery that can be deformed at an unprecedented high level, including folding, bending and twisting. Deformability at the system level is enabled using rigid origami, which prescribes a crease pattern such that the materials making the origami pattern do not experience large strain. The origami battery is fabricated through slurry coating of electrodes onto paper current collectors and packaging in standard materials, followed by folding using the Miura pattern. The resulting origami battery achieves significant linear and areal deformability, large twistability and bendability. The strategy described here represents the fusion of the art of origami, materials science and functional energy storage devices, and could provide a paradigm shift for architecture and design of flexible and curvilinear electronics with exceptional mechanical characteristics and functionalities.

  16. Design of Wireless Charger for Lithium-ion Batteries Based on the Electromagnetic Induction%基于电磁感应方式的锂离子电池无线充电器的设计与实现

    Institute of Scientific and Technical Information of China (English)

    胡新福

    2014-01-01

    本文设计了一种基于线圈电磁感应原理的无线充电平台,对锂离子电池的无线充电技术进行了实验分析和研究.测量了该平台的PWM驱动信号,能量发送电路,能量接收电路,锂离子电池充电时间和充电电压,测得的实际波形和数据说明该无线充电平台符合设计要求,使无线供电技术在其它便携式电子产品中的应用提供了参考案例.

  17. USB电源控制器/充电器缩短设计和电池充电时间%USB Power Controller/Charger Reduces Both Design Time and Battery Charge Time

    Institute of Scientific and Technical Information of China (English)

    Roger Zemke

    2004-01-01

    可再充电的电池普遍用于给便携式通月串行总线(USB)设备(如PDA或MP3播放器)供电。USB本身可直接用于给这类设备供电或培电池充电。LTC 4055采用电源通路(PowerPath)控制嚣可将负载完艇,有效地引导至选择的电源.而不会越过规定的USB电流极限;并且可以用任何可利用的残余电流来给电池充电。

  18. Modelling of rechargeable NiMH batteries

    NARCIS (Netherlands)

    Ledovskikh, A.; Verbitskiy, E.; Ayeb, A.; Notten, P.H.L.

    2003-01-01

    A new mathematical model has been developed for rechargeable NiMH batteries, which is based on the occurring physical–chemical processes inside. This model enables one to simultaneously simulate the battery voltage, internal gas pressures (both PO2 and PH2) and temperature during battery operation.

  19. 33 CFR 183.420 - Batteries.

    Science.gov (United States)

    2010-07-01

    ... battery terminals. (c) Each metallic fuel line and fuel system component within 12 inches and above the... battery must not be directly above or below a fuel tank, fuel filter, or fitting in a fuel line. (e) A... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Batteries. 183.420 Section...

  20. Propagation testing multi-cell batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Orendorff, Christopher J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lamb, Joshua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Steele, Leigh Anna Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Spangler, Scott Wilmer [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    Propagation of single point or single cell failures in multi-cell batteries is a significant concern as batteries increase in scale for a variety of civilian and military applications. This report describes the procedure for testing failure propagation along with some representative test results to highlight the potential outcomes for different battery types and designs.

  1. A rechargeable carbon-oxygen battery

    DEFF Research Database (Denmark)

    2014-01-01

    The invention relates to a rechargeable battery and a method to operate a rechargeable battery having high efficiency and high energy density for storing energy. The battery stores electrical energy in the bonds of carbon and oxygen atoms by converting carbon dioxide into solid carbon and oxygen....

  2. Modeling battery cells under discharge using kinetic and stochastic battery models

    OpenAIRE

    Kaj, Ingemar; Konane, Victorien

    2016-01-01

    In this paper we review several approaches to mathematical modeling of simple battery cells and develop these ideas further with emphasis on charge recovery and the response behavior of batteries to given external load. We focus on models which use few parameters and basic battery data, rather than detailed reaction and material characteristics of a specific battery cell chemistry, starting with the coupled ODE linear dynamics of the kinetic battery model. We show that a related system of PDE...

  3. Allocation of Battery Production Impact between EVs and Battery Reuse Applications

    OpenAIRE

    Furuseth, Marta

    2014-01-01

    Significant environmental impacts associated with electric vehicle (EV) Li-ion battery pack production has lead to a desire to explore the possibility of offsetting some of the environmental burdens associated with the battery pack production from the EV to a post-vehicle application. In this study, different battery characteristics were calculated in order to allocate environmental EV Li-ion battery pack production impacts between an EV and selected reuse applications. The battery characteri...

  4. History of solid state batteries

    Science.gov (United States)

    Owens, Boone B.; Munshi, M. Z.

    1987-01-01

    Historically, batteries have combined liquid electrolytes with solid electrodes because solid electrolytes were too resistive and could not accommodate the volumetric changes associated with the cell reactions. Solid materials utilized as battery electrolytes include: (1) simple ionic salts - silver iodide; (2) double salt compounds - rubidic silver iodide; (3) dispersed phase solid electrolytes - LiI (AL2)3); (4) ceramic compounds - Sodium - Beta - Al2)3; (5) in-situ formed electrolytes - Lithium iodide; (6) glasses - LiI-Li2S-P2S5; (7) polymer electrolytes - (PEO)8LiClO4). Commercialization has been limited because of performance and cost factors.

  5. Electric vehicle battery charging controller

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention provides an electric vehicle charging controller. The charging controller comprises a first interface connectable to an electric vehicle charge source for receiving a charging current, a second interface connectable to an electric vehicle for providing the charging current...... to a battery management system in the electric vehicle to charge a battery therein, a first communication unit for receiving a charging message via a communication network, and a control unit for controlling a charging current provided from the charge source to the electric vehicle, the controlling at least...

  6. Microfluidic fuel cells and batteries

    CERN Document Server

    Kjeang, Erik

    2014-01-01

    Microfluidic fuel cells and batteries represent a special type of electrochemical power generators that can be miniaturized and integrated in a microfluidic chip. Summarizing the initial ten years of research and development in this emerging field, this SpringerBrief is the first book dedicated to microfluidic fuel cell and battery technology for electrochemical energy conversion and storage. Written at a critical juncture, where strategically applied research is urgently required to seize impending technology opportunities for commercial, analytical, and educational utility, the intention is

  7. Solid-state lithium battery

    Science.gov (United States)

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  8. Condensation-evaporator nanoparticle charger

    Energy Technology Data Exchange (ETDEWEB)

    Hering, Susanne Vera; Spielman, Steven Russel; Lewis, Gregory Stephen

    2017-02-28

    A particle charging method and apparatus are provided. An ion source is applied to a particle laden flow. The flow is introduced into a container in a laminar manner. The container has at least a first section, a second section and a third section. The first section includes wetted walls at a first temperature. A second section adjacent to the first section has wetted walls at a second temperature T2 greater than the first temperature T1. A third section adjacent to the second section has dry walls provided at a temperature T3 equal to or greater than T2. Additional water removal and temperature conditioning sections may be provided.

  9. Compact Digital High Voltage Charger

    CERN Document Server

    Li, Ge

    2005-01-01

    The operation of classical resonant circuit developed for the pulse energizing is investigated. The HV pulse or generator is very compact by a soft switching circuit made up of IGBT working at over 30 kHZ. The frequencies of macro pulses andμpulses can be arbitrarily tuned below resonant frequency to digitalize the HV pulse power. Theμpulses can also be connected by filter circuit to get the HVDC power. The circuit topology is given and its novel control logic is analyzed by flowchart. The circuit is part of a system consisting of a AC or DC LV power supply, a pulse transformer, the pulse generator implemented by LV capacitor and leakage inductance of the transformer, a HV DC or pulse power supply and the charged HV capacitor of the modulators.

  10. Lithium-ion batteries advances and applications

    CERN Document Server

    Pistoia, Gianfranco

    2014-01-01

    Lithium-Ion Batteries features an in-depth description of different lithium-ion applications, including important features such as safety and reliability. This title acquaints readers with the numerous and often consumer-oriented applications of this widespread battery type. Lithium-Ion Batteries also explores the concepts of nanostructured materials, as well as the importance of battery management systems. This handbook is an invaluable resource for electrochemical engineers and battery and fuel cell experts everywhere, from research institutions and universities to a worldwi

  11. Primary battery design and safety guidelines handbook

    Science.gov (United States)

    Bragg, Bobby J.; Casey, John E.; Trout, J. Barry

    1994-12-01

    This handbook provides engineers and safety personnel with guidelines for the safe design or selection and use of primary batteries in spaceflight programs. Types of primary batteries described are silver oxide zinc alkaline, carbon-zinc, zinc-air alkaline, manganese dioxide-zionc alkaline, mercuric oxide-zinc alkaline, and lithium anode cells. Along with typical applications, the discussions of the individual battery types include electrochemistry, construction, capacities and configurations, and appropriate safety measures. A chapter on general battery safety covers hazard sources and controls applicable to all battery types. Guidelines are given for qualification and acceptance testing that should precede space applications. Permissible failure levels for NASA applications are discussed.

  12. Paper-based batteries: a review.

    Science.gov (United States)

    Nguyen, Thu H; Fraiwan, Arwa; Choi, Seokheun

    2014-04-15

    There is an extensively growing interest in using paper or paper-like substrates for batteries and other energy storage devices. Due to their intrinsic characteristics, paper (or paper-like) batteries show outstanding performance while retaining low cost, multifunctionality, versatility, flexibility and disposability. In this overview, we review recent achievements in paper (or paper-like) batteries as well as their applications. Various types of paper power devices are discussed including electrochemical batteries, biofuel cells, lithium-ion batteries, supercapacitors, and nanogenerators. Further scientific and technological challenges in this field are also discussed.

  13. Models for Battery Reliability and Lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G. H.; Neubauer, J.; Pesaran, A.

    2014-03-01

    Models describing battery degradation physics are needed to more accurately understand how battery usage and next-generation battery designs can be optimized for performance and lifetime. Such lifetime models may also reduce the cost of battery aging experiments and shorten the time required to validate battery lifetime. Models for chemical degradation and mechanical stress are reviewed. Experimental analysis of aging data from a commercial iron-phosphate lithium-ion (Li-ion) cell elucidates the relative importance of several mechanical stress-induced degradation mechanisms.

  14. Energy Transferring Dynamic Equalization for Battery Packs

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The equivalent circuit model of battery and the analytic model of series battery uniformities are setup. The analysis shows that it is the key to maintain small voltage difference between cells in order to improve uniformities. Therefore a new technique combining low voltage difference, big current charging and bi-directional charge equalizer system is put forward and designed. The test shows that the energy transferring dynamic equalization system betters the series battery uniformities and protection during charging and discharging, improves the battery performance and extends the use life of series battery.

  15. Cathode material for lithium batteries

    Science.gov (United States)

    Park, Sang-Ho; Amine, Khalil

    2013-07-23

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  16. Zinc-bromine battery development

    Science.gov (United States)

    Richards, Lew; Vanschalwijk, Walter; Albert, George; Tarjanyi, Mike; Leo, Anthony; Lott, Stephen

    1990-05-01

    This report describes development activities on the zinc-bromine battery system conducted by Energy Research Corporation (ERC). The project was a cost-shared program supported by the U.S. Department of Energy and managed through Sandia. The project began in September 1985 and ran through January 1990. The zinc-bromine battery has been identified as a promising alternative to conventional energy storage options for many applications. The low cost of the battery reactants and the potential for long life make the system an attractive candidate for bulk energy storage applications, such as utility load leveling. The battery stores energy by the electrolysis of an aqueous zinc bromide salt to zinc metal and dissolved bromine. Zinc is plated as a layer on the electrode surface while bromine is dissolved in the electrolyte and carried out of the stack. The bromine is then extracted from the electrolyte with an organic complexing agent in the positive electrolyte storage tank. On discharge the zinc and bromine are consumed, regenerating the zinc bromide salt.

  17. Transparent lithium-ion batteries

    KAUST Repository

    Yang, Y.

    2011-07-25

    Transparent devices have recently attracted substantial attention. Various applications have been demonstrated, including displays, touch screens, and solar cells; however, transparent batteries, a key component in fully integrated transparent devices, have not yet been reported. As battery electrode materials are not transparent and have to be thick enough to store energy, the traditional approach of using thin films for transparent devices is not suitable. Here we demonstrate a grid-structured electrode to solve this dilemma, which is fabricated by a microfluidics-assisted method. The feature dimension in the electrode is below the resolution limit of human eyes, and, thus, the electrode appears transparent. Moreover, by aligning multiple electrodes together, the amount of energy stored increases readily without sacrificing the transparency. This results in a battery with energy density of 10 Wh/L at a transparency of 60%. The device is also flexible, further broadening their potential applications. The transparent device configuration also allows in situ Raman study of fundamental electrochemical reactions in batteries.

  18. The General Aptitude Test Battery.

    Science.gov (United States)

    Goguen, Lucille

    The development and use of the GATB in the United States is presented by a Canadian author. The history of establishing the norms for the GATB is also discussed. The use of the GATB as a counseling and selection tool is outlined while another section of the article points out the advantages and disadvantages of the test battery. There are also…

  19. Development program of electrical vehicles of batteries in the UNAM; Programa de desarrollo de vehiculos electricos de baterias en la UNAM

    Energy Technology Data Exchange (ETDEWEB)

    Carmona Paredes, G.; Chicurel Uziel, R.; Chicurel Uziel, E.; Gutierrez Martinez, F. [Instituto de Ingenieria, UNAM, Mexico, D.F. (Mexico)

    2002-09-01

    Eight years ago, project to develop a small battery powered electric bus, known today as UNAM's Electric Vehicle, was started at the Engineering Institute. This project was followed by the design and construction, under an agreement with the Mexico City Government, of the Electrobus, a public transport vehicle that was recently put in operation and is being evaluated by the City's Electric Transportation Service. Two other projects, within the scope of UNAM's Electric Vehicle Development Program refer to light trucks: the Electrovira, characterized by exceptional maneuverability, and the Electric Delivery Vehicle. These projects are being carried out respectively by the Engineering Institute and the School of Engineering's Center for Design and Manufacture. Other parties that have collaborated in the program are: the School of Architecture's Center for Research in Industrial Design, the Instruments Center, and the School of Chemistry. Work is also being done on complementary aspects which include the development of an intelligent charger for large battery packs and of a dual electronic controller, a study of the dynamic performance of lead-acid batteries, the design of a battery monitoring system, and the search for new battery alternatives. [Spanish] Hace ocho anos, el Instituto de Ingenieria inicio el proyecto de desarrollo de un minibus electrico de baterias, conocido ahora como el Vehiculo Electrico UNAM. Este proyecto fue seguido de un convenio con el Gobierno del Distrito Federal para el diseno y construccion del Electrobus, un vehiculo para transporte publico que recientemente fue puesto en operacion para ser evaluado por el Servicio de Transporte Electrico del DF. Dos proyectos mas, enmarcados dentro del Programa de Desarrollo de Vehiculos Electricos, se refieren a vehiculos ligeros de carga como el Electrovira, caracterizado por su gran maniobrabilidad y el Vehiculo Electrico de Reparto. Estos proyectos se realizan respectivamente

  20. Negative electrodes for Na-ion batteries.

    Science.gov (United States)

    Dahbi, Mouad; Yabuuchi, Naoaki; Kubota, Kei; Tokiwa, Kazuyasu; Komaba, Shinichi

    2014-08-07

    Research interest in Na-ion batteries has increased rapidly because of the environmental friendliness of sodium compared to lithium. Throughout this Perspective paper, we report and review recent scientific advances in the field of negative electrode materials used for Na-ion batteries. This paper sheds light on negative electrode materials for Na-ion batteries: carbonaceous materials, oxides/phosphates (as sodium insertion materials), sodium alloy/compounds and so on. These electrode materials have different reaction mechanisms for electrochemical sodiation/desodiation processes. Moreover, not only sodiation-active materials but also binders, current collectors, electrolytes and electrode/electrolyte interphase and its stabilization are essential for long cycle life Na-ion batteries. This paper also addresses the prospect of Na-ion batteries as low-cost and long-life batteries with relatively high-energy density as their potential competitive edge over the commercialized Li-ion batteries.

  1. Batteries and fuel cells: Design, employment, chemistry

    Science.gov (United States)

    Euler, K.-J.

    The history of electrochemical current sources is considered along with primary cells, standard cells, high-energy primary cells, high-energy storage batteries, and fuel cells. Aspects of battery research and development are also discussed, taking into account general considerations related to technological development projects, the introduction of mathematical methods into battery research, resistance measurements, autoradiography and other radiochemical methods, color photography as an aid in research, electron microscopy, X-ray and electron diffraction, spin resonance methods, and electrical measurements involving powders. Attention is given to zinc/manganese dioxide cells, zinc/mercury cells, zinc/silver oxide primary cells, cells utilizing atmospheric oxygen, lead-acid batteries, nickel-iron and nickel-cadmium storage batteries, zinc/silver storage batteries, dry cells with organic depolarizers, dry cells with solid electrolyte, and storage batteries utilizing hydrogen.

  2. The Science of Battery Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, John P. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Physics; El Gabaly Marquez, Farid [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Physics; McCarty, Kevin [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Physics; Sugar, Joshua Daniel [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Physics; Talin, Alec A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Physics; Fenton, Kyle R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Power Sources Design and Development; Nagasubramanian, Ganesan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Power Sources Design and Development; Harris, Charles Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nanosystems Synthesis/Analysis; Jungjohann, Katherine Leigh [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nanosystems Synthesis/Analysis; Hayden, Carl C. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Combustion Chemistry Dept.; Kliewer, Christopher Jesse [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Combustion Chemistry Dept.; Hudak, Nicholas S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Power Sources Research and Development; Leung, Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nanostructure Physics; McDaniel, Anthony H. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Hydrogen and Combustion Technology; Tenney, Craig M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Chemical and Biological Systems; Zavadil, Kevin R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Materials Lab.

    2015-01-01

    This report documents work that was performed under the Laboratory Directed Research and Development project, Science of Battery Degradation. The focus of this work was on the creation of new experimental and theoretical approaches to understand atomistic mechanisms of degradation in battery electrodes that result in loss of electrical energy storage capacity. Several unique approaches were developed during the course of the project, including the invention of a technique based on ultramicrotoming to cross-section commercial scale battery electrodes, the demonstration of scanning transmission x-ray microscopy (STXM) to probe lithium transport mechanisms within Li-ion battery electrodes, the creation of in-situ liquid cells to observe electrochemical reactions in real-time using both transmission electron microscopy (TEM) and STXM, the creation of an in-situ optical cell utilizing Raman spectroscopy and the application of the cell for analyzing redox flow batteries, the invention of an approach for performing ab initio simulation of electrochemical reactions under potential control and its application for the study of electrolyte degradation, and the development of an electrochemical entropy technique combined with x-ray based structural measurements for understanding origins of battery degradation. These approaches led to a number of scientific discoveries. Using STXM we learned that lithium iron phosphate battery cathodes display unexpected behavior during lithiation wherein lithium transport is controlled by nucleation of a lithiated phase, leading to high heterogeneity in lithium content at each particle and a surprising invariance of local current density with the overall electrode charging current. We discovered using in-situ transmission electron microscopy that there is a size limit to lithiation of silicon anode particles above which particle fracture controls electrode degradation. From electrochemical entropy measurements, we discovered that entropy

  3. The Science of Battery Degradation.

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, John P; Fenton, Kyle R [Sandia National Laboratories, Albuquerque, NM; El Gabaly Marquez, Farid; Harris, Charles Thomas [Sandia National Laboratories, Albuquerque, NM; Hayden, Carl C.; Hudak, Nicholas [Sandia National Laboratories, Albuquerque, NM; Jungjohann, Katherine Leigh [Sandia National Laboratories, Albuquerque, NM; Kliewer, Christopher Jesse; Leung, Kevin [Sandia National Laboratories, Albuquerque, NM; McDaniel, Anthony H.; Nagasubramanian, Ganesan [Sandia National Laboratories, Albuquerque, NM; Sugar, Joshua Daniel; Talin, Albert Alec; Tenney, Craig M [Sandia National Laboratories, Albuquerque, NM; Zavadil, Kevin R. [Sandia National Laboratories, Albuquerque, NM

    2015-01-01

    This report documents work that was performed under the Laboratory Directed Research and Development project, Science of Battery Degradation. The focus of this work was on the creation of new experimental and theoretical approaches to understand atomistic mechanisms of degradation in battery electrodes that result in loss of electrical energy storage capacity. Several unique approaches were developed during the course of the project, including the invention of a technique based on ultramicrotoming to cross-section commercial scale battery electrodes, the demonstration of scanning transmission x-ray microscopy (STXM) to probe lithium transport mechanisms within Li-ion battery electrodes, the creation of in-situ liquid cells to observe electrochemical reactions in real-time using both transmission electron microscopy (TEM) and STXM, the creation of an in-situ optical cell utilizing Raman spectroscopy and the application of the cell for analyzing redox flow batteries, the invention of an approach for performing ab initio simulation of electrochemical reactions under potential control and its application for the study of electrolyte degradation, and the development of an electrochemical entropy technique combined with x-ray based structural measurements for understanding origins of battery degradation. These approaches led to a number of scientific discoveries. Using STXM we learned that lithium iron phosphate battery cathodes display unexpected behavior during lithiation wherein lithium transport is controlled by nucleation of a lithiated phase, leading to high heterogeneity in lithium content at each particle and a surprising invariance of local current density with the overall electrode charging current. We discovered using in-situ transmission electron microscopy that there is a size limit to lithiation of silicon anode particles above which particle fracture controls electrode degradation. From electrochemical entropy measurements, we discovered that entropy

  4. Stand Alone Battery Thermal Management System

    Energy Technology Data Exchange (ETDEWEB)

    Brodie, Brad [Denso International America, Incorporated, Southfield, MI (United States)

    2015-09-30

    The objective of this project is research, development and demonstration of innovative thermal management concepts that reduce the cell or battery weight, complexity (component count) and/or cost by at least 20%. The project addresses two issues that are common problems with current state of the art lithium ion battery packs used in vehicles; low power at cold temperatures and reduced battery life when exposed to high temperatures. Typically, battery packs are “oversized” to satisfy the two issues mentioned above. The first phase of the project was spent making a battery pack simulation model using AMEsim software. The battery pack used as a benchmark was from the Fiat 500EV. FCA and NREL provided vehicle data and cell data that allowed an accurate model to be created that matched the electrical and thermal characteristics of the actual battery pack. The second phase involved using the battery model from the first phase and evaluate different thermal management concepts. In the end, a gas injection heat pump system was chosen as the dedicated thermal system to both heat and cool the battery pack. Based on the simulation model. The heat pump system could use 50% less energy to heat the battery pack in -20°C ambient conditions, and by keeping the battery cooler at hot climates, the battery pack size could be reduced by 5% and still meet the warranty requirements. During the final phase, the actual battery pack and heat pump system were installed in a test bench at DENSO to validate the simulation results. Also during this phase, the system was moved to NREL where testing was also done to validate the results. In conclusion, the heat pump system can improve “fuel economy” (for electric vehicle) by 12% average in cold climates. Also, the battery pack size, or capacity, could be reduced 5%, or if pack size is kept constant, the pack life could be increased by two years. Finally, the total battery pack and thermal system cost could be reduced 5% only if the

  5. Lithium sulfide compositions for battery electrolyte and battery electrode coatings

    Science.gov (United States)

    Liang, Chengdu; Liu, Zengcai; Fu, Wunjun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

    2013-12-03

    Methods of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electroytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one or .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

  6. Automatic Battery Swap System for Home Robots

    Directory of Open Access Journals (Sweden)

    Juan Wu

    2012-12-01

    Full Text Available This paper presents the design and implementation of an automatic battery swap system for the prolonged activities of home robots. A battery swap station is proposed to implement battery off‐line recharging and on‐line exchanging functions. It consists of a loading and unloading mechanism, a shifting mechanism, a locking device and a shell. The home robot is a palm‐sized wheeled robot with an onboard camera and a removable battery case in the front. It communicates with the battery swap station wirelessly through ZigBee. The influences of battery case deflection and robot docking deflection on the battery swap operations have been investigated. The experimental results show that it takes an average time of 84.2s to complete the battery swap operations. The home robot does not have to wait several hours for the batteries to be fully charged. The proposed battery swap system is proved to be efficient in home robot applications that need the robots to work continuously over a long period.

  7. An Advanced Battery Management System for Lithium Ion Batteries

    Science.gov (United States)

    2011-08-01

    preliminary cycle life data of the 18650 1100 mAh, and 26650 2200 mAh Lithium Iron Phosphate (LiFePO4) cells from Tenergy Battery Corp. (Manufacturer...10 shows how the data might be used to estimate SOL of a 18650 cell. The plot shows the analytical life cycle curve (blue) superimposed on actual...of equation 3 result with real 18650 Tenergy cell cycle life data. REFERENCES [1] Z. Filipi, L. Louca, A. Stefanopoulou, J. Pukrushpan, B

  8. In-Orbit Earth Radiation Budget Satellite (ERBS) Battery Switch

    Science.gov (United States)

    Ahmad, Anisa; Enciso, Marlon; Rao, Gopalakrishna

    2000-01-01

    A viewgraph presentation outlines the Earth Radiation Budget Satellite (ERBS) power system and battery history. ERBS spacecraft and battery cell failures are listed with the reasons for failure. The battery management decision and stabilization of the batteries is discussed. Present battery operations are shown to be successful.

  9. 46 CFR 112.55-10 - Storage battery charging.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Storage battery charging. 112.55-10 Section 112.55-10... AND POWER SYSTEMS Storage Battery Installation § 112.55-10 Storage battery charging. (a) Each storage battery installation for emergency lighting and power, and starting batteries for an emergency diesel...

  10. Composite electrodes for lithium batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Hackney, S. A.; Johnson, C. S.; Kahaian, A. J.; Kepler, K. D.; Shao-Horn, Y.; Thackeray, M. M.; Vaughey, J. T.

    1999-02-03

    The stability of composite positive and negative electrodes for rechargeable lithium batteries is discussed. Positive electrodes with spinel-type structures that are derived from orthorhombic-LiMnO{sub 2} and layered-MnO{sub 2} are significantly more stable than standard spinel Li[Mn{sub 2}]O{sub 4} electrodes when cycled electrochemically over both the 4-V and 3-V plateaus in lithium cells. Transmission electron microscope data of cycled electrodes have indicated that a composite domain structure accounts for this greater electrochemical stability. The performance of composite Cu{sub x}Sn materials as alternative negative electrodes to amorphous SnO{sub x} electrodes for lithium-ion batteries is discussed in terms of the importance of the concentration of the electrochemically inactive copper component in the electrode.

  11. Control Algorithms Charge Batteries Faster

    Science.gov (United States)

    2012-01-01

    On March 29, 2011, NASA s Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft beamed a milestone image to Earth: the first photo of Mercury taken from orbit around the solar system s innermost planet. (MESSENGER is also the first spacecraft to orbit Mercury.) Like most of NASA s deep space probes, MESSENGER is enabled by a complex power system that allows its science instruments and communications to function continuously as it travels millions of miles from Earth. "Typically, there isn't one particular power source that can support the entire mission," says Linda Taylor, electrical engineer in Glenn Research Center s Power Systems Analysis Branch. "If you have solar arrays and you are in orbit, at some point you re going to be in eclipse." Because of this, Taylor explains, spacecraft like MESSENGER feature hybrid power systems. MESSENGER is powered by a two-panel solar array coupled with a nickel hydrogen battery. The solar arrays provide energy to the probe and charge the battery; when the spacecraft s orbit carries it behind Mercury and out of the Sun s light, the spacecraft switches to battery power to continue operations. Typically, hybrid systems with multiple power inputs and a battery acting alternately as storage and a power source require multiple converters to handle the power flow between the devices, Taylor says. (Power converters change the qualities of electrical energy, such as from alternating current to direct current, or between different levels of voltage or frequency.) This contributes to a pair of major concerns for spacecraft design. "Weight and size are big drivers for any space application," Taylor says, noting that every pound added to a space vehicle incurs significant costs. For an innovative solution to managing power flows in a lightweight, cost-effective manner, NASA turned to a private industry partner.

  12. Battery system with temperature sensors

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Steven J; Trester, Dale B

    2014-02-04

    A battery system includes a platform having an aperture formed therethrough, a flexible member having a generally planar configuration and extending across the aperture, wherein a portion of the flexible member is coextensive with the aperture, a cell provided adjacent the platform, and a sensor coupled to the flexible member and positioned proximate the cell. The sensor is configured to detect a temperature of the cell.

  13. The lithium air battery fundamentals

    CERN Document Server

    Imanishi, Nobuyuki; Bruce, Peter G

    2014-01-01

    Lithium air rechargeable batteries are the best candidate for a power source for electric vehicles, because of their high specific energy density. In this book, the history, scientific background, status and prospects of the lithium air system are introduced by specialists in the field. This book will contain the basics, current statuses, and prospects for new technologies. This book is ideal for those interested in electrochemistry, energy storage, and materials science.

  14. Household batteries: Evaluation of collection methods

    Energy Technology Data Exchange (ETDEWEB)

    Seeberger, D.A.

    1992-01-01

    While it is difficult to prove that a specific material is causing contamination in a landfill, tests have been conducted at waste-to-energy facilities that indicate that household batteries contribute significant amounts of heavy metals to both air emissions and ash residue. Hennepin County, MN, used a dual approach for developing and implementing a special household battery collection. Alternative collection methods were examined; test collections were conducted. The second phase examined operating and disposal policy issues. This report describes the results of the grant project, moving from a broad examination of the construction and content of batteries, to a description of the pilot collection programs, and ending with a discussion of variables affecting the cost and operation of a comprehensive battery collection program. Three out-of-state companies (PA, NY) were found that accept spent batteries; difficulties in reclaiming household batteries are discussed.

  15. Household batteries: Evaluation of collection methods

    Energy Technology Data Exchange (ETDEWEB)

    Seeberger, D.A.

    1992-12-31

    While it is difficult to prove that a specific material is causing contamination in a landfill, tests have been conducted at waste-to-energy facilities that indicate that household batteries contribute significant amounts of heavy metals to both air emissions and ash residue. Hennepin County, MN, used a dual approach for developing and implementing a special household battery collection. Alternative collection methods were examined; test collections were conducted. The second phase examined operating and disposal policy issues. This report describes the results of the grant project, moving from a broad examination of the construction and content of batteries, to a description of the pilot collection programs, and ending with a discussion of variables affecting the cost and operation of a comprehensive battery collection program. Three out-of-state companies (PA, NY) were found that accept spent batteries; difficulties in reclaiming household batteries are discussed.

  16. Battery powered BION FES network.

    Science.gov (United States)

    Schulman, J H; Mobley, J P; Wolfe, J; Regev, E; Perron, C Y; Ananth, R; Matei, E; Glukhovsky, A; Davis, R

    2004-01-01

    The Alfred Mann Foundation is completing development of a coordinated network of BION microstimulator/sensor (hereinafter implant) that has broad stimulating, sensing and communication capabilities. The network consists of a master control unit (MCU) in communication with a group of BION implants. Each implant is powered by a custom lithium-ion rechargeable 10 mW-hr battery. The charging, discharging, safety, stimulating, sensing, and communication circuits are designed to be highly efficient to minimize energy use and maximize battery life and time between charges. The stimulator can be programmed to deliver pulses in any value in the following range: 5 microA to 20 mA in 3.3% constant current steps, 7 micros to 2000 micros in 7 micros pulse width steps, and 1 to 4000 Hz in frequency. The preamp voltage sensor covers the range 10 microV to 1.0 V with bandpass filtering and several forms of data analysis. The implant also contains sensors that can read out pressure, temperature, DC magnetic field, and distance (via a low frequency magnetic field) up to 20 cm between any two BION implants. The MCU contains a microprocessor, user interface, two-way communication system, and a rechargeable battery. The MCU can command and interrogate in excess of 800 BlON implants every 10 ms, i.e., 100 times a second.

  17. Battery Simulation and Investigation Utilizing Matlab Simulink

    OpenAIRE

    Klussmann, Annika

    2016-01-01

    Approved for public release; distribution is unlimited. As a self-sufficient power system, a satellite has to be equipped with an electrical energy storage system enabled with a rechargeable battery. To improve the quality of the energy supply at space satellite systems the new high performance battery cell technology, lithium iron phosphate (LiFePO4), is presented and investigated in this work. Evaluation factors of battery cells for an assessment of the technology are explained ...

  18. A Cable-Shaped Lithium Sulfur Battery.

    Science.gov (United States)

    Fang, Xin; Weng, Wei; Ren, Jing; Peng, Huisheng

    2016-01-20

    A carbon nanostructured hybrid fiber is developed by integrating mesoporous carbon and graphene oxide into aligned carbon nanotubes. This hybrid fiber is used as a 1D cathode to fabricate a new cable-shaped lithium-sulfur battery. The fiber cathode exhibits a decent specific capacity and lifespan, which makes the cable-shaped lithium-sulfur battery rank far ahead of other fiber-shaped batteries.

  19. Improved Thermal-Switch Disks Protect Batteries

    Science.gov (United States)

    Darcy, Eric; Bragg, Bobby

    1990-01-01

    Improved thermal-switch disks help protect electrical batteries against high currents like those due to short circuits or high demands for power in circuits supplied by batteries. Protects batteries against excessive temperatures. Centered by insulating fiberglass washer. Contains conductive polymer that undergoes abrupt increase in electrical resistance when excessive current raises its temperature above specific point. After cooling, polymer reverts to low resistance. Disks reusable.

  20. Characterization of vanadium flow battery. Revised

    Energy Technology Data Exchange (ETDEWEB)

    Bindner, H.; Ekman, C.; Gehrke, O.; Isleifsson, F.

    2011-02-15

    This report summarizes the work done at Risoe-DTU testing a vanadium flow battery as part of the project ''Characterisation of Vanadium Batteries'' (ForskEl project 6555) with the partners PA Energy A/S and OI Electric A/S under the Danish PSO energy research program. A 15kW/120kWh vanadium battery has been installed as part of the distributed energy systems experimental facility, SYSLAB, at Risoe DTU. A test programme has been carried out to get hands-on experience with the technology, to characterize the battery from a power system point of view and to assess it with respect to integration of wind energy in the Danish power system. The battery has been in operation for 18 months. During time of operation the battery has not shown signs of degradation of performance. It has a round-trip efficiency at full load of approximately 60% (depending on temperature and SOC). The sources of the losses are power conversion in cell stacks/electrolyte, power converter, and auxiliary power consumption from pumps and controller. The efficiency was not influenced by the cycling of the battery. The response time for the battery is limited at 20kW/s by the ramp rate of the power converter. The battery can thus provide power and frequency support for the power system. The battery was operated together with a 11kW stall-regulated Gaia wind turbine to smooth the output of the wind turbine and during the tests the battery proved capable of firming the output of the wind turbine. Vanadium battery is a potential technology for storage based services to the power system provided investment and O and M cost are low enough and long term operation is documented. (Author)

  1. Polymer Electrolytes for Lithium/Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    The Nam Long Doan

    2012-08-01

    Full Text Available This review evaluates the characteristics and advantages of employing polymer electrolytes in lithium/sulfur (Li/S batteries. The main highlights of this study constitute detailed information on the advanced developments for solid polymer electrolytes and gel polymer electrolytes, used in the lithium/sulfur battery. This includes an in-depth analysis conducted on the preparation and electrochemical characteristics of the Li/S batteries based on these polymer electrolytes.

  2. Design of WireIess Charger System Based on MSP430%基于MSP430的无线充电器系统设计

    Institute of Scientific and Technical Information of China (English)

    曹琛; 李元章; 马忠梅

    2016-01-01

    Based on the phone lithium battery,the wireless energy transmission is researched.In the paper,the electromagnetic induction mode is adopted.First,the energy transmission mode and the working principle of the lithium battery charging are analyzed,then the hardware and software of the system are discussed.On the basis of theoretical analysis,the wireless charging system is debugging using the related tools.It uses the mathematical data analysis method to verify the design,and analyzes the maximum distance power transmis-sion,the optimal efficiency and the maximum power of the system.Finally,the design of multifunction wireless charging platform is a-chieved.%本设计是基于手机锂电池来研究无线电能传输的,采用电磁感应方式进行电能传输。首先,对系统电能传输方式和锂电池充电的工作原理进行分析,其次对系统的硬件和软件进行分析。在理论分析的基础上,借助工具对无线充电系统进行调试,采取数学数据分析方法对设计系统进行验证,分析出系统传输电能的最大距离、最优效率、最大功率,最终设计出多功能无线充电平台。

  3. BATTERIES 2020 – A Joint European Effort towards European Competitive Automotive Batteries

    DEFF Research Database (Denmark)

    Timmermans, J.-M.; Rodriguez-Martinez, L.M.; Omar, N.;

    The Integrated Project “Batteries 2020” unites 9 European partners jointly working on the research and development of European competitive automotive batteries. The project aims at increasing lifetime and energy density of large format high-energy lithium-ion batteries towards the goals targeted...

  4. Battery Management Systems: Accurate State-of-Charge Indication for Battery-Powered Applications

    NARCIS (Netherlands)

    Pop, V.; Bergveld, H.J.; Danilov, D.; Regtien, P.P.L.; Notten, P.H.L.

    2008-01-01

    Battery Management Systems – Universal State-of-Charge indication for portable applications describes the field of State-of-Charge (SoC) indication for rechargeable batteries. With the emergence of battery-powered devices with an increasing number of power-hungry features, accurately estimating the

  5. Rechargeable batteries materials, technologies and new trends

    CERN Document Server

    Zhang, Zhengcheng

    2015-01-01

    This book updates the latest advancements in new chemistries, novel materials and system integration of rechargeable batteries, including lithium-ion batteries and batteries beyond lithium-ion and addresses where the research is advancing in the near future in a brief and concise manner. The book is intended for a wide range of readers from undergraduates, postgraduates to senior scientists and engineers. In order to update the latest status of rechargeable batteries and predict near research trend, we plan to invite the world leading researchers who are presently working in the field to write

  6. Overview of Sandia's electric vehicle battery program

    Science.gov (United States)

    Clark, R. P.

    1993-11-01

    Sandia National Laboratories is actively involved in several projects which are part of an overall Electric Vehicle Battery Program. Part of this effort is funded by the United States Department of Energy/Office of Transportation Technologies (DOE/OTT) and the remainder is funded through the United States Advanced Battery Consortium (USABC). DOE/OTT supported activities include research and development of zinc/air and sodium/sulfur battery technologies as well as double layer capacitor (DLC) R&D. Projects in the USABC funded work include lithium/polymer electrolyte (LPE) R&D, sodium/sulfur activities and battery test and evaluation.

  7. Bacterial Acclimation Inside an Aqueous Battery.

    Directory of Open Access Journals (Sweden)

    Dexian Dong

    Full Text Available Specific environmental stresses may lead to induced genomic instability in bacteria, generating beneficial mutants and potentially accelerating the breeding of industrial microorganisms. The environmental stresses inside the aqueous battery may be derived from such conditions as ion shuttle, pH gradient, free radical reaction and electric field. In most industrial and medical applications, electric fields and direct currents are used to kill bacteria and yeast. However, the present study focused on increasing bacterial survival inside an operating battery. Using a bacterial acclimation strategy, both Escherichia coli and Bacillus subtilis were acclimated for 10 battery operation cycles and survived in the battery for over 3 days. The acclimated bacteria changed in cell shape, growth rate and colony color. Further analysis indicated that electrolyte concentration could be one of the major factors determining bacterial survival inside an aqueous battery. The acclimation process significantly improved the viability of both bacteria E. coli and B. subtilis. The viability of acclimated strains was not affected under battery cycle conditions of 0.18-0.80 mA cm(-2 and 1.4-2.1 V. Bacterial addition within 1.0×10(10 cells mL(-1 did not significantly affect battery performance. Because the environmental stress inside the aqueous battery is specific, the use of this battery acclimation strategy may be of great potential for the breeding of industrial microorganisms.

  8. Batteries used to Power Implantable Biomedical Devices

    Science.gov (United States)

    Bock, David C.; Marschilok, Amy C.; Takeuchi, Kenneth J.; Takeuchi, Esther S.

    2012-01-01

    Battery systems have been developed that provide years of service for implantable medical devices. The primary systems utilize lithium metal anodes with cathode systems including iodine, manganese oxide, carbon monofluoride, silver vanadium oxide and hybrid cathodes. Secondary lithium ion batteries have also been developed for medical applications where the batteries are charged while remaining implanted. While the specific performance requirements of the devices vary, some general requirements are common. These include high safety, reliability and volumetric energy density, long service life, and state of discharge indication. Successful development and implementation of these battery types has helped enable implanted biomedical devices and their treatment of human disease. PMID:24179249

  9. Batteries used to Power Implantable Biomedical Devices.

    Science.gov (United States)

    Bock, David C; Marschilok, Amy C; Takeuchi, Kenneth J; Takeuchi, Esther S

    2012-12-01

    Battery systems have been developed that provide years of service for implantable medical devices. The primary systems utilize lithium metal anodes with cathode systems including iodine, manganese oxide, carbon monofluoride, silver vanadium oxide and hybrid cathodes. Secondary lithium ion batteries have also been developed for medical applications where the batteries are charged while remaining implanted. While the specific performance requirements of the devices vary, some general requirements are common. These include high safety, reliability and volumetric energy density, long service life, and state of discharge indication. Successful development and implementation of these battery types has helped enable implanted biomedical devices and their treatment of human disease.

  10. Lithium batteries and other electrochemical storage systems

    CERN Document Server

    Glaize, Christian

    2013-01-01

    Lithium batteries were introduced relatively recently in comparison to lead- or nickel-based batteries, which have been around for over 100 years. Nevertheless, in the space of 20 years, they have acquired a considerable market share - particularly for the supply of mobile devices. We are still a long way from exhausting the possibilities that they offer. Numerous projects will undoubtedly further improve their performances in the years to come. For large-scale storage systems, other types of batteries are also worthy of consideration: hot batteries and redox flow systems, for example.

  11. Organic Cathode Materials for Rechargeable Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Ruiguo; Qian, Jiangfeng; Zhang, Jiguang; Xu, Wu

    2015-06-28

    This chapter will primarily focus on the advances made in recent years and specify the development of organic electrode materials for their applications in rechargeable lithium batteries, sodium batteries and redox flow batteries. Four various organic cathode materials, including conjugated carbonyl compounds, conducting polymers, organosulfides and free radical polymers, are introduced in terms of their electrochemical performances in these three battery systems. Fundamental issues related to the synthesis-structure-activity correlations, involved work principles in energy storage systems, and capacity fading mechanisms are also discussed.

  12. Lithium-ion batteries fundamentals and applications

    CERN Document Server

    Wu, Yuping

    2015-01-01

    Lithium-Ion Batteries: Fundamentals and Applications offers a comprehensive treatment of the principles, background, design, production, and use of lithium-ion batteries. Based on a solid foundation of long-term research work, this authoritative monograph:Introduces the underlying theory and history of lithium-ion batteriesDescribes the key components of lithium-ion batteries, including negative and positive electrode materials, electrolytes, and separatorsDiscusses electronic conductive agents, binders, solvents for slurry preparation, positive thermal coefficient (PTC) materials, current col

  13. DOE battery program for weapon applications

    Science.gov (United States)

    Clark, R. P.; Baldwin, A. R.

    This report discusses the Department of Energy (DOE) Weapons Battery program which originates from Sandia National Laboratories (SNL) and involves activities ranging from research, design and development to testing, consulting, and production support. The primary customer is the DOE/Office of Defense Programs, although work is also done for various Department of Defense agencies and their contractors. The majority of the SNL activities involve thermal battery (TB) and lithium ambient temperature battery (LAMB)technologies. Smaller efforts are underway in the areas of silver oxide/zinc and nickel oxide/cadmium batteries as well as double layer capacitors.

  14. Performance Simulation Of Photovoltaic System Battery

    Directory of Open Access Journals (Sweden)

    O. A. Babatunde

    2014-09-01

    Full Text Available Solar energy, despite being inexhaustible, has a major shortcoming; it is intermittent. As a result, there's a need for it to be stored for later use. The widely used energy storage in photovoltaic system applications is the lead-acid battery and the knowledge of its state-of-charge (SOC is important in effecting efficient control and energy management. However, SOC cannot be measured while the battery is connected to the system. This study adjusts and validates two estimation models: battery state-of-charge model using ampere-hour counting method and battery charge voltage model. For the battery state-of-charge model, the SOC is estimated by integrating the charge/discharge current over time while the battery charge voltage characteristic response is modelled by using the equation-fit method which expresses the battery charge voltage variations by a 5th order polynomial in terms of the state-of-charge and current. These models are realized using the MATLAB program. The battery charge voltage model is corrected for errors which may result from reduced charge voltage due to variation of solar radiation using the battery state-of-charge model. Moreover, the starting SOC needed in the state-of-charge model is estimated using the charge voltage model. The accuracies of the models are verified using various laboratory experiments.

  15. Requirements for future automotive batteries - a snapshot

    Science.gov (United States)

    Karden, Eckhard; Shinn, Paul; Bostock, Paul; Cunningham, James; Schoultz, Evan; Kok, Daniel

    Introduction of new fuel economy, performance, safety, and comfort features in future automobiles will bring up many new, power-hungry electrical systems. As a consequence, demands on automotive batteries will grow substantially, e.g. regarding reliability, energy throughput (shallow-cycle life), charge acceptance, and high-rate partial state-of-charge (HRPSOC) operation. As higher voltage levels are mostly not an economically feasible alternative for the short term, the existing 14 V electrical system will have to fulfil these new demands, utilizing advanced 12 V energy storage devices. The well-established lead-acid battery technology is expected to keep playing a key role in this application. Compared to traditional starting-lighting-ignition (SLI) batteries, significant technological progress has been achieved or can be expected, which improve both performance and service life. System integration of the storage device into the vehicle will become increasingly important. Battery monitoring systems (BMS) are expected to become a commodity, penetrating the automotive volume market from both highly equipped premium cars and dedicated fuel-economy vehicles (e.g. stop/start). Battery monitoring systems will allow for more aggressive battery operating strategies, at the same time improving the reliability of the power supply system. Where a single lead-acid battery cannot fulfil the increasing demands, dual-storage systems may form a cost-efficient extension. They consist either of two lead-acid batteries or of a lead-acid battery plus another storage device.

  16. Lithium batteries advanced technologies and applications

    CERN Document Server

    Scrosati, Bruno; Schalkwijk, Walter A van; Hassoun, Jusef

    2013-01-01

    Explains the current state of the science and points the way to technological advances First developed in the late 1980s, lithium-ion batteries now power everything from tablet computers to power tools to electric cars. Despite tremendous progress in the last two decades in the engineering and manufacturing of lithium-ion batteries, they are currently unable to meet the energy and power demands of many new and emerging devices. This book sets the stage for the development of a new generation of higher-energy density, rechargeable lithium-ion batteries by advancing battery chemistry and ident

  17. Bipolar Ag-Zn battery

    Science.gov (United States)

    Giltner, L. John

    1994-02-01

    The silver-zinc (AgZn) battery system has been unique in its ability to safely satisfy high power demand applications with low mass and volume. However, a new generation of defense, aerospace, and commercial applications will impose even higher power demands. These new power demands can be satisfied by the development of a bipolar battery design. In this configuration the power consuming, interelectrode current conductors are eliminated while the current is then conducted via the large cross-section electrode substrate. Negative and positive active materials are applied to opposite sides of a solid silver foil substrate. In addition to reducing the weight and volume required for a specified power level, the output voltage performance is also improved as follows. Reduced weight through: elimination of the plastic cell container; elimination of plate leads and intercell connector; and elimination of internal plate current collector. Increased voltage through: elimination of resistance of current collector; elimination of resistance of plate lead; and elimination of resistance of intercell connector. EPI worked previously on development of a secondary bipolar silver zinc battery. This development demonstrated the electrical capability of the system and manufacturing techniques. One difficulty with this development was mechanical problems with the seals. However, recent improvements in plastics and adhesives should eliminate the major problem of maintaining a seal around the periphery of the bipolar module. The seal problem is not as significant for a primary battery application or for a requirement for only a few discharge cycles. A second difficulty encountered was with activation (introducing electrolyte into the cell) and with venting gas from the cell without loss of electrolyte. During previous work, the following projections for energy density were made from test data for a high power system which demonstrated in excess of 50 discharge/charge cycles. Projected

  18. Invention of Lithium Ion Secondary Battery and Its Business Development

    OpenAIRE

    正本, 順三/米田,晴幸; 米田, 晴幸; MASAMOTO, Junzo; YONEDA, Haruyuki

    2010-01-01

    At present, mobile phones and laptop computers are essential items in our daily life. As a battery for such portable devices, the lithium ion secondary battery is used. The lithium ion secondary battery, which is used as a battery for such portable devices, was first invented by Dr. Yoshino at Asahi Kasei. In this paper, the authors describe how the lithium ion secondary battery was developed by the inventor. The authors also describe the battery separator, which is one of the key components ...

  19. 一种使用H桥和多谐振荡器的无线充电器设计%A Design of Wireless Charger based on H-Bridge and Multivibrator

    Institute of Scientific and Technical Information of China (English)

    耿其炜; 宋宇飞; 陈耀

    2014-01-01

    针对有线充电繁琐的人工操作和线材杂乱的弊端,设计一种无线充电器方案。此设计使用H桥逆变器和基于NE555的多谐振荡器,利用开关电源模块对交流电进行降压和整流,再将直流电逆变为交流电并通过线圈将电能发射,接收端将接收到的交流电能整流滤波后稳压供应给用电器。与大多数一对一无线充电方案相比,本设计可以在一较大范围内对多个移动设备同时供电。该套系统经测试可稳定工作,并可同时给手机、键盘和鼠标三件无线设备供电,达到设计要求。%To avoid tedious manual charging cable and wire clutter drawbacks,this paper develops a scheme for designing a wireless charger by using an H-bridge inverter and a multivibrator based on NE555.Then switch power module is applied to reduce the voltage and rectify the alternating current.Next,direct current is inverted to alternating current,and the power is transmitted via coils.The alternating power,which is filtered and rectified,is provided for electrical appliances. Compared with the mostly used one-to-one wireless chargers,this design is able to simultaneously power multiple mobile devices in a large area.The tests suggest that this system can work stably and charge mobile phone,keyboard and mouse at the same time.The design purpose is achieved.

  20. Updating United States Advanced Battery Consortium and Department of Energy battery technology targets for battery electric vehicles

    Science.gov (United States)

    Neubauer, Jeremy; Pesaran, Ahmad; Bae, Chulheung; Elder, Ron; Cunningham, Brian

    2014-12-01

    Battery electric vehicles (BEVs) offer significant potential to reduce the nation's consumption of petroleum based products and the production of greenhouse gases however, their widespread adoption is limited largely by the cost and performance limitations of modern batteries. With recent growth in efforts to accelerate BEV adoption (e.g. the Department of Energy's (DOE) EV Everywhere Grand Challenge) and the age of existing BEV battery technology targets, there is sufficient motivation to re-evaluate the industry's technology targets for battery performance and cost. Herein we document the analysis process that supported the selection of the United States Advanced Battery Consortium's (USABC) updated BEV battery technology targets. Our technology agnostic approach identifies the necessary battery performance characteristics that will enable the vehicle level performance required for a commercially successful, mass market full BEV, as guided by the workgroup's OEM members. The result is an aggressive target, implying that batteries need to advance considerably before BEVs can be both cost and performance competitive with existing petroleum powered vehicles.

  1. An averaging battery model for a lead-acid battery operating in an electric car

    Science.gov (United States)

    Bozek, J. M.

    1979-01-01

    A battery model is developed based on time averaging the current or power, and is shown to be an effective means of predicting the performance of a lead acid battery. The effectiveness of this battery model was tested on battery discharge profiles expected during the operation of an electric vehicle following the various SAE J227a driving schedules. The averaging model predicts the performance of a battery that is periodically charged (regenerated) if the regeneration energy is assumed to be converted to retrievable electrochemical energy on a one-to-one basis.

  2. Behavior data of battery and battery pack SOC estimation under different working conditions.

    Science.gov (United States)

    Zhang, Xu; Wang, Yujie; Yang, Duo; Chen, Zonghai

    2016-12-01

    This article provides the dataset of operating conditions of battery behavior. The constant current condition and the dynamic stress test (DST) condition were carried out to analyze the battery discharging and charging features. The datasets were achieved at room temperature, in April, 2016. The shared data contributes to clarify the battery pack state-of-charge (SOC) and the battery inconsistency, which is also shown in the article of "An on-line estimation of battery pack parameters and state-of-charge using dual filters based on pack model" (X. Zhang, Y. Wang, D. Yang, et al., 2016) [1].

  3. Lithium Battery Fire Tests and Mitigation

    Science.gov (United States)

    2014-08-25

    developed by the battery industry include thionyl chloride , sulfuryl chloride , sulfur dioxide, carbon monofluoride, and manganese dioxide. These cells have......Frederick W. Williams Senior Scientific Staff Office Chemistry Division Lithium Battery Fire Tests and Mitigation Gerard G. Back Hughes Associates

  4. Alloys of clathrate allotropes for rechargeable batteries

    Science.gov (United States)

    Chan, Candace K; Miller, Michael A; Chan, Kwai S

    2014-12-09

    The present disclosure is directed at an electrode for a battery wherein the electrode comprises clathrate alloys of silicon, germanium or tin. In method form, the present disclosure is directed at methods of forming clathrate alloys of silicon, germanium or tin which methods lead to the formation of empty cage structures suitable for use as electrodes in rechargeable type batteries.

  5. Batteries at NASA - Today and Beyond

    Science.gov (United States)

    Reid, Concha M.

    2015-01-01

    NASA uses batteries for virtually all of its space missions. Batteries can be bulky and heavy, and some chemistries are more prone to safety issues than others. To meet NASA's needs for safe, lightweight, compact and reliable batteries, scientists and engineers at NASA develop advanced battery technologies that are suitable for space applications and that can satisfy these multiple objectives. Many times, these objectives compete with one another, as the demand for more and more energy in smaller packages dictates that we use higher energy chemistries that are also more energetic by nature. NASA partners with companies and universities, like Xavier University of Louisiana, to pool our collective knowledge and discover innovative technical solutions to these challenges. This talk will discuss a little about NASA's use of batteries and why NASA seeks more advanced chemistries. A short primer on battery chemistries and their chemical reactions is included. Finally, the talk will touch on how the work under the Solid High Energy Lithium Battery (SHELiB) grant to develop solid lithium-ion conducting electrolytes and solid-state batteries can contribute to NASA's mission.

  6. What are batteries, fuel cells, and supercapacitors?

    Science.gov (United States)

    Winter, Martin; Brodd, Ralph J

    2004-10-01

    Electrochemical energy conversion devices are pervasive in our daily lives. Batteries, fuel cells and supercapacitors belong to the same family of energy conversion devices. They are all based on the fundamentals of electrochemical thermodynamics and kinetics. All three are needed to service the wide energy requirements of various devices and systems. Neither batteries, fuel cells nor electrochemical capacitors, by themselves, can serve all applications.

  7. Lifetime modelling of lead acid batteries

    DEFF Research Database (Denmark)

    Bindner, H.; Cronin, T.; Lundsager, P.;

    2005-01-01

    The performance and lifetime of energy storage in batteries are an important part of many renewable based energy systems. Not only do batteries impact on the system performance but they are also a significant expenditure when considering the whole lifecycle costs. Poor prediction of lifetime can,...

  8. 49 CFR 393.30 - Battery installation.

    Science.gov (United States)

    2010-10-01

    ... NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical Wiring § 393.30 Battery installation... 49 Transportation 5 2010-10-01 2010-10-01 false Battery installation. 393.30 Section 393.30 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER...

  9. Bunsen's Batteries and the Electric Arc.

    Science.gov (United States)

    Stock, John T.

    1995-01-01

    Traces the history of the observation of the production of electric sparks and the early history of battery design. Detail is provided about laboratory experiments performed by Robert Bunsen, who spent a great deal of time developing an efficient and comparatively cheap battery. (36 references) (DDR)

  10. Enhanced battery model including temperature effects

    NARCIS (Netherlands)

    Rosca, B.; Wilkins, S.

    2013-01-01

    Within electric and hybrid vehicles, batteries are used to provide/buffer the energy required for driving. However, battery performance varies throughout the temperature range specific to automotive applications, and as such, models that describe this behaviour are required. This paper presents a dy

  11. Bipolar batteries based on Ebonex ® technology

    Science.gov (United States)

    Loyns, A. C.; Hill, A.; Ellis, K. G.; Partington, T. J.; Hill, J. M.

    Continuing work by Atraverda on the production of a composite-laminate form of the Ebonex ® material, that can be cheaply formulated and manufactured to form substrate plates for bipolar lead-acid batteries, is described. Ebonex ® is the registered trade name of a range of titanium suboxide ceramic materials, typically Ti 4O 7 and Ti 5O 9, which combine electrical conductivity with high corrosion and oxidation resistance. Details of the structure of the composite, battery construction techniques and methods for filling and forming of batteries are discussed. In addition, lifetime and performance data obtained by Atraverda from laboratory bipolar lead-acid batteries and cells are presented. Battery production techniques for both conventional monopolar and bipolar batteries are reviewed. The findings indicate that substantial time and cost savings may be realised in the manufacture of bipolar batteries in comparison to conventional designs. This is due to the fewer processing steps required and more efficient formation. The results indicate that the use of Ebonex ® composite material as a bipolar substrate will provide lightweight and durable high-voltage lead-acid batteries suitable for a wide range of applications including advanced automotive, stationary power and portable equipment.

  12. Organic electrolytes for sodium batteries

    Science.gov (United States)

    Vestergaard, B.

    1992-09-01

    A summary of earlier given status reports in connection with the project on organic electrolytes for sodium batteries is presented. The aim of the investigations was to develop new room temperature molten salts electrolytes mainly with radical substituted heterocyclic organic chlorides mixed with aluminum chloride. The new electrolytes should have an ionic conductivity comparable with MEIC1:AlCl3 or better. A computer model program MOPAC (Molecular Orbital Package) was to be included to calculate theoretically reduction potentials for a variety of organic cations. Furthermore, MOPAC could be utilized to predict the electron densities, and then give a prediction of the stability of the organic cation.

  13. Sealed nickel-cadmium battery

    Energy Technology Data Exchange (ETDEWEB)

    1989-08-15

    Overcharge protection, and especially the chargeability of a sealed Ni/Cd battery with high currents is improved by rolling a carbon-containing powdered material into the surface of the negative electrode, which material catalyzes the reduction of oxygen. Wetting of the electrode with a Tylose dispersion prior to application of the powder (by powdering, vibration or in an agitator) improves the adhesion of the powder. The cadmium electrode thus prepared combines in itself the functions of a negative principal electrode and of an auxiliary oxygen electrode.

  14. Electroactive materials for rechargeable batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huiming; Amine, Khalil; Abouimrane, Ali

    2016-10-25

    A secondary battery including a cathode having a primary cathode active material and an alkaline source material selected from the group consisting of Li.sub.2O, Li.sub.2O.sub.2, Li.sub.2S, LiF, LiCl, Li.sub.2Br, Na.sub.2O, Na.sub.2O.sub.2, Na.sub.2S, NaF, NaCl, and a mixture of any two or more thereof; an anode having an anode active material; an electrolyte; and a separator.

  15. Confession of a Magnesium Battery.

    Science.gov (United States)

    Bucur, Claudiu B; Gregory, Thomas; Oliver, Allen G; Muldoon, John

    2015-09-17

    Magnesium is an ideal metal anode that has nearly double the volumetric capacity of lithium metal with a very negative reduction potential of -2.37 vs SHE. A significant advantage of magnesium is the apparent lack of dendrite formation during charging, which overcomes major safety and performance challenges encountered with using lithium metal anodes. Here, we highlight major recent advances in nonaqueous Mg electrochemistry, notably the development of electrolytes and cathodes, and discuss some of the challenges that must be overcome to realize a practical magnesium battery.

  16. Lead-nickel electrochemical batteries

    CERN Document Server

    Glaize, Christian

    2012-01-01

    The lead-acid accumulator was introduced in the middle of the 19th Century, the diverse variants of nickel accumulators between the beginning and the end of the 20th Century. Although old, these technologies are always very present on numerous markets. Unfortunately they are still not used in optimal conditions, often because of the misunderstanding of the internal electrochemical phenomena.This book will show that batteries are complex systems, made commercially available thanks to considerable amounts of scientific research, empiricism and practical knowledge. However, the design of

  17. Na-Zn liquid metal battery

    Science.gov (United States)

    Xu, Junli; Kjos, Ole Sigmund; Osen, Karen Sende; Martinez, Ana Maria; Kongstein, Ole Edvard; Haarberg, Geir Martin

    2016-11-01

    A new kind of membrane free liquid metal battery was developed. The battery employs liquid sodium and zinc as electrodes both in liquid state, and NaCl-CaCl2 molten salts as electrolyte. The discharge flat voltage is in the range of about 1.4 V-1.8 V, and the cycle efficiency achieved is about 90% at low discharge current densities (below 40 mA cm-2). Moreover, this battery can also be charged and discharged at high current density with good performance. The discharge flat voltage is above 1.1 V when it is discharged at 100 mA cm-2, while it is about 0.8 V with 100% cycle efficiency when it is discharged at 200 mA cm-2. Compared to other reported liquid metal battery, this battery has lower cost, which suggests broad application prospect in energy storage systems for power grid.

  18. Enabling room temperature sodium metal batteries

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Ruiguo; Mushra, Kuber; Li, Xiaolin; Qian, Jiangfeng; Engelhard, Mark H.; Bowden, Mark E.; Han, Kee Sung; Mueller, Karl T.; Henderson, Wesley A.; Zhang, Jiguang

    2016-12-01

    Rechargeable batteries based upon sodium (Na+) cations are at the core of many new battery chemistries beyond Li-ion batteries. Rather than using carbon or alloy-based anodes, the direct utilization of solid sodium metal as an anode would be highly advantageous, but its use has been highly problematic due to its high reactivity. In this work, however, it is demonstrated that, by tailoring the electrolyte formulation, solid Na metal can be electrochemically plated/stripped at ambient temperature with high efficiency (> 99%) on both copper and inexpensive aluminum current collectors thereby enabling a shift in focus to new battery chemical couples based upon Na metal operating at ambient temperature. These highly concentrated electrolytes has enabled stable cycling of Na metal batteries based on a Na metal anode and Na3V2(PO4)3 cathode at high rates with very high efficiency.

  19. Silicene for Na-ion battery applications

    Science.gov (United States)

    Zhu, Jiajie; Schwingenschlögl, Udo

    2016-09-01

    Na-ion batteries are promising candidates to replace Li-ion batteries in large scale applications because of the advantages in natural abundance and cost of Na. Silicene has potential as the anode in Li-ion batteries but so far has not received attention with respect to Na-ion batteries. In this context, freestanding silicene, a graphene-silicene-graphene heterostructure, and a graphene-silicene superlattice are investigated for possible application in Na-ion batteries, using first-principles calculations. The calculated Na capacities of 954 mAh/g for freestanding silicene and 730 mAh/g for the graphene-silicene superlattice (10% biaxial tensile strain) are highly competitive and potentials of \\gt 0.3 {{V}} against the Na{}+/Na potential exceed the corresponding value of graphite. In addition, the diffusion barriers are predicted to be \\lt 0.3 {eV}.

  20. Multiscale simulation approach for battery production systems

    CERN Document Server

    Schönemann, Malte

    2017-01-01

    Addressing the challenge of improving battery quality while reducing high costs and environmental impacts of the production, this book presents a multiscale simulation approach for battery production systems along with a software environment and an application procedure. Battery systems are among the most important technologies of the 21st century since they are enablers for the market success of electric vehicles and stationary energy storage solutions. However, the performance of batteries so far has limited possible applications. Addressing this challenge requires an interdisciplinary understanding of dynamic cause-effect relationships between processes, equipment, materials, and environmental conditions. The approach in this book supports the integrated evaluation of improvement measures and is usable for different planning horizons. It is applied to an exemplary battery cell production and module assembly in order to demonstrate the effectiveness and potential benefits of the simulation.

  1. Coordinated discharge of a collection of batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sastry, Shivakumar; Gimdogmus, Omer; Hartley, Tom T.; Veillette, Robert J. [Department of Electrical and Computer Engineering, The University of Akron, Akron, OH 44325-3904 (United States)

    2007-03-30

    Collections of batteries are used to supply energy to a variety of applications. By utilizing the energy in such a collection efficiently, we can improve the lifetime over which energy can be supplied to the application. We say that the discharge of a collection of batteries is coordinated when, at the end of discharge, the difference in the remaining capacity of individual batteries is small. This paper presents a decision-maker based on a goal-seeking formulation that coordinates the discharge of a collection of batteries. This formulation allows us to use a simple battery model and simple decision-making algorithms. We present results from MATLAB simulations that demonstrate the performance of the decision-maker when energy is drawn out of the collection in three different discharge scenarios. The new decision-maker consistently improves the discharge efficiency obtained using scheduling methods. Our results show that when the discharge is coordinated, the lifetime of the collection is extended. (author)

  2. Silicene for Na-ion battery applications

    KAUST Repository

    Zhu, Jiajie

    2016-08-19

    Na-ion batteries are promising candidates to replace Li-ion batteries in large scale applications because of the advantages in natural abundance and cost of Na. Silicene has potential as the anode in Li-ion batteries but so far has not received attention with respect to Na-ion batteries. In this context, freestanding silicene, a graphene-silicene-graphene heterostructure, and a graphene-silicene superlattice are investigated for possible application in Na-ion batteries, using first-principles calculations. The calculated Na capacities of 954mAh/g for freestanding silicene and 730mAh/g for the graphenesilicene superlattice (10% biaxial tensile strain) are highly competitive and potentials of >0.3 V against the Na/Na potential exceed the corresponding value of graphite. In addition, the diffusion barriers are predicted to be <0.3 eV.

  3. Sealed aerospace metal-hydride batteries

    Science.gov (United States)

    Coates, Dwaine

    1992-01-01

    Nickel metal hydride and silver metal hydride batteries are being developed for aerospace applications. There is a growing market for smaller, lower cost satellites which require higher energy density power sources than aerospace nickel-cadmium at a lower cost than space nickel-hydrogen. These include small LEO satellites, tactical military satellites and satellite constellation programs such as Iridium and Brilliant Pebbles. Small satellites typically do not have the spacecraft volume or the budget required for nickel-hydrogen batteries. NiCd's do not have adequate energy density as well as other problems such as overcharge capability and memory effort. Metal hydride batteries provide the ideal solution for these applications. Metal hydride batteries offer a number of advantages over other aerospace battery systems.

  4. Metal Hydrides for Rechargeable Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Valoeen, Lars Ole

    2000-03-01

    Rechargeable battery systems are paramount in the power supply of modern electronic and electromechanical equipment. For the time being, the most promising secondary battery systems for the future are the lithium-ion and the nickel metal hydride (NiMH) batteries. In this thesis, metal hydrides and their properties are described with the aim of characterizing and improving those. The thesis has a special focus on the AB{sub 5} type hydrogen storage alloys, where A is a rare earth metal like lanthanum, or more commonly misch metal, which is a mixture of rare earth metals, mainly lanthanum, cerium, neodymium and praseodymium. B is a transition metal, mainly nickel, commonly with additions of aluminium, cobalt, and manganese. The misch metal composition was found to be very important for the geometry of the unit cell in AB{sub 5} type alloys, and consequently the equilibrium pressure of hydrogen in these types of alloys. The A site substitution of lanthanum by misch metal did not decrease the surface catalytic properties of AB{sub 5} type alloys. B-site substitution of nickel with other transition elements, however, substantially reduced the catalytic activity of the alloy. If the internal pressure within the electrochemical test cell was increased using inert argon gas, a considerable increase in the high rate charge/discharge performance of LaNi{sub 5} was observed. An increased internal pressure would enable the utilisation of alloys with a high hydrogen equivalent pressure in batteries. Such alloys often have favourable kinetics and high hydrogen diffusion rates and thus have a potential for improving the high current discharge rates in metal hydride batteries. The kinetic properties of metal hydride electrodes were found to improve throughout their lifetime. The activation properties were found highly dependent on the charge/discharge current. Fewer charge/discharge cycles were needed to activate the electrodes if a small current was used instead of a higher

  5. Aqueous batteries based on mixed monovalence metal ions: a new battery family.

    Science.gov (United States)

    Chen, Liang; Zhang, Leyuan; Zhou, Xufeng; Liu, Zhaoping

    2014-08-01

    As existing battery technologies struggle to meet the requirements for widespread use in the field of large-scale energy storage, new concepts are urgently needed to build batteries with high energy density, low cost, and good safety. Here, we demonstrate two new aqueous batteries based on two monovalence metal ions (Li(+) /K(+) and Na(+) /K(+) ) as charge-transfer ions, Ni1 Zn1 HCF/TiP2 O7 and Ni1 Zn1 HCF/NaTi2 (PO4 )3 . These new batteries are unlike the conventional "rocking-chair" aqueous metal-ion batteries based on the migration of one type of shuttle ion between cathode and anode. They can deliver specific energy of 46 Wh kg(-1) and 53 Wh kg(-1) based on the total mass of active materials; this is superior to current aqueous battery systems based on sodium-ion and/or potassium-ion technologies. These two new batteries together with the previously developed Li(+) /Na(+) mixed-ion battery not only constitute a new battery family for energy storage, but also greatly broaden our horizons for battery research.

  6. Organic Materials as Electrodes for Li-ion Batteries

    Science.gov (United States)

    2015-09-04

    Several organic compounds were synthesized , characterized and tested in battery configurations. The details are given for each class of materials...batteries. Several organic compounds were synthesized , characterized and tested in battery configurations. The details are given for each class of materials... synthesized , characterized and tested in battery configurations. The details are given below for each class of materials.Various macrocycles, their synthesis

  7. 40 CFR 273.2 - Applicability-batteries.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Applicability-batteries. 273.2 Section...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT General § 273.2 Applicability—batteries. (a) Batteries covered under 40 CFR part 273. (1) The requirements of this part apply to persons managing batteries,...

  8. 46 CFR 112.55-15 - Capacity of storage batteries.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Capacity of storage batteries. 112.55-15 Section 112.55... LIGHTING AND POWER SYSTEMS Storage Battery Installation § 112.55-15 Capacity of storage batteries. (a) A storage battery for an emergency lighting and power system must have the capacity— (1) To close...

  9. Miniature fuel cells relieve gas pressure in sealed batteries

    Science.gov (United States)

    Frank, H. A.

    1971-01-01

    Miniature fuel cells within sealed silver zinc batteries consume evolved hydrogen and oxygen rapidly, preventing pressure rupturing. They do not significantly increase battery weight and they operate in all battery life phases. Complete gas pressure control requires two fuel cells during all phases of operation of silver zinc batteries.

  10. Battery electrolytes. Citations from the NTIS data base

    Science.gov (United States)

    Young, C. G.

    1980-05-01

    Many types of solid, liquid and gaseous battery electrolytes are described and analyzed in the cited abstracts. Battery design, construction, and use, employing the listed electrolytes, are discussed. Battery design, construction, and use, employing the listed electrolytes, are discussed. Battery life, efficiency, and maintenance characteristics are also delineated. Included are 196 citations.

  11. Nickel-Cadmium Battery Operation Management Optimization Using Robust Design

    Science.gov (United States)

    Blosiu, Julian O.; Deligiannis, Frank; DiStefano, Salvador

    1996-01-01

    In recent years following several spacecraft battery anomalies, it was determined that managing the operational factors of NASA flight NiCd rechargeable battery was very important in order to maintain space flight battery nominal performance. The optimization of existing flight battery operational performance was viewed as something new for a Taguchi Methods application.

  12. 14 CFR 27.1353 - Storage battery design and installation.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Storage battery design and installation. 27... Equipment § 27.1353 Storage battery design and installation. (a) Each storage battery must be designed and... result when the battery is recharged (after previous complete discharge)— (1) At maximum...

  13. Membranes for Redox Flow Battery Applications

    Directory of Open Access Journals (Sweden)

    Maria Skyllas-Kazacos

    2012-06-01

    Full Text Available The need for large scale energy storage has become a priority to integrate renewable energy sources into the electricity grid. Redox flow batteries are considered the best option to store electricity from medium to large scale applications. However, the current high cost of redox flow batteries impedes the wide spread adoption of this technology. The membrane is a critical component of redox flow batteries as it determines the performance as well as the economic viability of the batteries. The membrane acts as a separator to prevent cross-mixing of the positive and negative electrolytes, while still allowing the transport of ions to complete the circuit during the passage of current. An ideal membrane should have high ionic conductivity, low water intake and excellent chemical and thermal stability as well as good ionic exchange capacity. Developing a low cost, chemically stable membrane for redox flow cell batteries has been a major focus for many groups around the world in recent years. This paper reviews the research work on membranes for redox flow batteries, in particular for the all-vanadium redox flow battery which has received the most attention.

  14. Membranes for redox flow battery applications.

    Science.gov (United States)

    Prifti, Helen; Parasuraman, Aishwarya; Winardi, Suminto; Lim, Tuti Mariana; Skyllas-Kazacos, Maria

    2012-06-19

    The need for large scale energy storage has become a priority to integrate renewable energy sources into the electricity grid. Redox flow batteries are considered the best option to store electricity from medium to large scale applications. However, the current high cost of redox flow batteries impedes the wide spread adoption of this technology. The membrane is a critical component of redox flow batteries as it determines the performance as well as the economic viability of the batteries. The membrane acts as a separator to prevent cross-mixing of the positive and negative electrolytes, while still allowing the transport of ions to complete the circuit during the passage of current. An ideal membrane should have high ionic conductivity, low water intake and excellent chemical and thermal stability as well as good ionic exchange capacity. Developing a low cost, chemically stable membrane for redox flow cell batteries has been a major focus for many groups around the world in recent years. This paper reviews the research work on membranes for redox flow batteries, in particular for the all-vanadium redox flow battery which has received the most attention.

  15. Flow Battery System Design for Manufacturability.

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

    2014-10-01

    Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

  16. A Battery Health Monitoring Framework for Planetary Rovers

    Science.gov (United States)

    Daigle, Matthew J.; Kulkarni, Chetan Shrikant

    2014-01-01

    Batteries have seen an increased use in electric ground and air vehicles for commercial, military, and space applications as the primary energy source. An important aspect of using batteries in such contexts is battery health monitoring. Batteries must be carefully monitored such that the battery health can be determined, and end of discharge and end of usable life events may be accurately predicted. For planetary rovers, battery health estimation and prediction is critical to mission planning and decision-making. We develop a model-based approach utilizing computaitonally efficient and accurate electrochemistry models of batteries. An unscented Kalman filter yields state estimates, which are then used to predict the future behavior of the batteries and, specifically, end of discharge. The prediction algorithm accounts for possible future power demands on the rover batteries in order to provide meaningful results and an accurate representation of prediction uncertainty. The framework is demonstrated on a set of lithium-ion batteries powering a rover at NASA.

  17. Repurposing of Batteries from Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Vilayanur V.; Kintner-Meyer, Michael CW

    2015-06-11

    Energy storage for stationary use is gaining traction both at the grid scale and distributed level. As renewable energy generation increases, energy storage is needed to compensate for the volatility of renewable over various time scales. This requires energy storage that is tailored for various energy to power (E/P) ratios. Other applications for energy storage include peak shaving, time shifting, load leveling, VAR control, frequency regulation, spinning reserves and other ancillary applications. While the need for energy storage for stationary applications is obvious, the regulations that determine the economic value of adding storage are at various stages of development. This has created a reluctance on the part of energy storage manufacturers to develop a suite of storage systems that can address the myriad of applications associated with stationary applications. Deployment of battery energy storage systems in the transportation sector is ahead of the curve with respect to the stationary space. Batteries, along with battery management systems (BMS) have been deployed for hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs). HEVs have now been deployed for 12 years, while PHEVs for 8 and EVs for 4 years. Some of the batteries are approaching end of life within the vehicle, and are ready to be taken off for recycling and disposal. Performance within a vehicle is non-negotiable in terms of miles traveled per charge, resulting in the batteries retaining a significant portion of their life. For stationary applications, the remaining energy and power of the battery can still be used by grouping together a few of these batteries. This enables getting the most of these batteries, while ensuring that performance is not compromised in either the automotive or stationary applications. This work summarizes the opportunities for such re-purposing of automotive batteries, along with the advantages and limitations

  18. DS-2 Mars Microprobe Battery

    Science.gov (United States)

    Frank, H.; Kindler, A.; Deligiannis, F.; Davies, E.; Blankevoort, J.; Ratnakumar, B. V.; Surampudi, S.

    1999-01-01

    In January of 1999 the NM DS-2 Mars microprobe will be launched to impact on Mars in December. The technical objectives of the missions are to demonstrate: key technologies, a passive atmospheric entry, highly integrated microelectronics which can withstand both low temperatures and high decelerations, and the capability to conduct in-situ, surface and subsurface science data acquisition. The scientific objectives are to determine if ice is present below the Martian surface, measure the local atmospheric pressure, characterize the thermal properties of the martian subsurface soil, and to estimate the vertical temperature gradient of the Martian soil. The battery requirements are 2-4 cell batteries, with voltage of 6-14 volts, capacity of 550 mAh at 80C, and 2Ah at 25C, shelf life of 2.5 years, an operating temperature of 60C and below, and the ability to withstand shock impact of 80,000 g's. The technical challenges and the approach is reviewed. The Li-SOCL2 system is reviewed, and graphs showing the current and voltage is displayed, along with the voltage over discharge time. The problems encountered during the testing were: (1) impact sensitivity, (2) cracking of the seals, and (3) delay in voltage. A new design resulted in no problems in the impact testing phase. The corrective actions for the seal problems involved: (1) pre weld fill tube, (2) an improved heat sink during case to cover weld and (3) change the seal dimensions to reduce stress. To correct the voltage delay problem the solutions involved: (1) drying the electrodes to reduce contamination by water, (2) assemblage of the cells within a week of electrode manufacture, (3) ensure electrolyte purity, and (4) provide second depassivation pulse after landing. The conclusions on further testing were that the battery can: (1) withstand anticipated shock of up to 80,000 g, (2) meet the discharge profile post shock at Mars temperatures, (3) meet the required self discharge rate and (4) meet environmental

  19. Proton enhanced dynamic battery chemistry for aprotic lithium-oxygen batteries

    Science.gov (United States)

    Zhu, Yun Guang; Liu, Qi; Rong, Yangchun; Chen, Haomin; Yang, Jing; Jia, Chuankun; Yu, Li-Juan; Karton, Amir; Ren, Yang; Xu, Xiaoxiong; Adams, Stefan; Wang, Qing

    2017-02-01

    Water contamination is generally considered to be detrimental to the performance of aprotic lithium-air batteries, whereas this view is challenged by recent contrasting observations. This has provoked a range of discussions on the role of water and its impact on batteries. In this work, a distinct battery chemistry that prevails in water-contaminated aprotic lithium-oxygen batteries is revealed. Both lithium ions and protons are found to be involved in the oxygen reduction and evolution reactions, and lithium hydroperoxide and lithium hydroxide are identified as predominant discharge products. The crystallographic and spectroscopic characteristics of lithium hydroperoxide monohydrate are scrutinized both experimentally and theoretically. Intriguingly, the reaction of lithium hydroperoxide with triiodide exhibits a faster kinetics, which enables a considerably lower overpotential during the charging process. The battery chemistry unveiled in this mechanistic study could provide important insights into the understanding of nominally aprotic lithium-oxygen batteries and help to tackle the critical issues confronted.

  20. Proton enhanced dynamic battery chemistry for aprotic lithium–oxygen batteries

    Science.gov (United States)

    Zhu, Yun Guang; Liu, Qi; Rong, Yangchun; Chen, Haomin; Yang, Jing; Jia, Chuankun; Yu, Li-Juan; Karton, Amir; Ren, Yang; Xu, Xiaoxiong; Adams, Stefan; Wang, Qing

    2017-01-01

    Water contamination is generally considered to be detrimental to the performance of aprotic lithium–air batteries, whereas this view is challenged by recent contrasting observations. This has provoked a range of discussions on the role of water and its impact on batteries. In this work, a distinct battery chemistry that prevails in water-contaminated aprotic lithium–oxygen batteries is revealed. Both lithium ions and protons are found to be involved in the oxygen reduction and evolution reactions, and lithium hydroperoxide and lithium hydroxide are identified as predominant discharge products. The crystallographic and spectroscopic characteristics of lithium hydroperoxide monohydrate are scrutinized both experimentally and theoretically. Intriguingly, the reaction of lithium hydroperoxide with triiodide exhibits a faster kinetics, which enables a considerably lower overpotential during the charging process. The battery chemistry unveiled in this mechanistic study could provide important insights into the understanding of nominally aprotic lithium–oxygen batteries and help to tackle the critical issues confronted. PMID:28165008

  1. Prediction of Retained Capacity and EODV of Li-ion Batteries in LEO Spacecraft Batteries

    CERN Document Server

    Ramakrishnan, S; Jeyakumar, A Ebenezer

    2010-01-01

    In resent years ANN is widely reported for modeling in different areas of science including electro chemistry. This includes modeling of different technological batteries such as lead acid battery, Nickel cadmium batteries etc. Lithium ion batteries are advance battery technology which satisfy most of the space mission requirements. Low earth orbit (LEO)space craft batteries undergo large number of charge discharge cycles (about 25000 cycles)compared to other ground level or space applications. This study is indented to develop ANN model for about 25000 cycles, cycled under various temperature, Depth Of Discharge (DOD) settings with constant charge voltage limit to predict the retained capacity and End of Discharge Voltage (EODV). To extract firm conclusion and distinguish the capability of ANN method, the predicted values are compared with experimental result by statistical method and Bland Altman plot.

  2. 2010 Honda Civic Hybrid UltraBattery Conversion 5577 - Hybrid Electric Vehicle Battery Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of on-road fleet testing. This report documents battery testing performed for the 2010 Honda Civic HEV UltraBattery Conversion (VIN JHMFA3F24AS005577). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  3. Battery life-cycle cost analysis

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.R.; Humphreys, K.K.

    1988-07-01

    Life-cycle cost (LCC) estimates have been prepared for 17 combinations of battery or fuel-cell technologies and load-levelling, stand-alone power system, or electric vehicle applications. In addition, LCCs for gas-fired turbine, compressed-air energy storage, pumped hydro energy storage, and internal combustion engine technologies were estimated for comparative purposes. The objectives in preparing the estimates were to determine the relative economics among alternative battery systems and to compare battery systems economics with competing energy technologies.

  4. Nanomaterials Meet Li-ion Batteries.

    Science.gov (United States)

    Kwon, Nam Hee; Brog, Jean-Pierre; Maharajan, Sivarajakumar; Crochet, Aurélien; Fromm, Katharina M

    2015-01-01

    Li-ion batteries are used in many applications in everyday life: cell phones, laser pointers, laptops, cordless drillers or saws, bikes and even cars. Yet, there is room for improvement in order to make the batteries smaller and last longer. The Fromm group contributes to this research focusing mainly on nanoscale lithium ion cathode materials. This contribution gives an overview over our current activities in the field of batteries. After an introduction on the nano-materials of LiCoO(2) and LiMnPO(4), the studies of our cathode composition and preparation will be presented.

  5. Ionic Liquids in Lithium-Ion Batteries.

    Science.gov (United States)

    Balducci, Andrea

    2017-04-01

    Lithium-ion batteries are among the most widespread energy storage devices in our society. In order to introduce these devices in new key applications such as transportation, however, their safety and their operative temperature range need to be significantly improved. These improvements can be obtained only by developing new electrolytes. Ionic liquids are presently considered among the most attractive electrolytes for the development of advanced and safer lithium-ion batteries. In this manuscript, the use of various types of ionic liquids, e.g. aprotic and protic, in lithium-ion batteries is considered. The advantages and the limits associated to the use of these innovative electrolytes are critically analysed.

  6. Fuel Cell and Battery Powered Forklifts

    DEFF Research Database (Denmark)

    Zhang, Zhe; Mortensen, Henrik H.; Jensen, Jes Vestervang

    2013-01-01

    A hydrogen-powered materials handling vehicle with a fuel cell combines the advantages of diesel/LPG and battery powered vehicles. Hydrogen provides the same consistent power and fast refueling capability as diesel and LPG, whilst fuel cells provide energy efficient and zero emission Electric...... propulsion similar to batteries. In this paper, the performance of a forklift powered by PEM fuel cells and lead acid batteries as auxiliary energy source is introduced and investigated. In this electromechanical propulsion system with hybrid energy/power sources, fuel cells will deliver average power...

  7. Evaluation of battery packs for liquid microclimate cooling systems

    Science.gov (United States)

    Teal, Walter B., Jr.; Avellini, Barbara A.

    1995-05-01

    The Navy clothing and Textile Research Facility conducted a literature and industry survey to determine the best commercially available battery technology for use with liquid microclimate cooling systems (MCS), and a laboratory evaluation of a battery pack utilizing that technology. Nickel/cadmium batteries were determined to be the best battery technology commercially available at the present time. However, several other battery technologies are nearing commercialization and may be available in the near future.

  8. Aerospace Battery Activities at NASA/Goddard Space Flight Center

    Science.gov (United States)

    Rao, Gopalakrishna M.

    2006-01-01

    Goddard Space Flight Center has "pioneered" rechargeable secondary battery design, test, infusion and in-orbit battery management among NASA installations. Nickel cadmium batteries of various designs and sizes have been infused for LEO, GEO and Libration Point spacecraft. Nickel-Hydrogen batteries have currently been baselined for the majority of our missions. Li-Ion batteries from ABSL, JSB, SaFT and Lithion have been designed and tested for aerospace application.

  9. Life cycle assessment of sodium-ion batteries

    OpenAIRE

    2016-01-01

    Sodium-ion batteries are emerging as potential alternatives to lithium-ion batteries. This study presents a prospective life cycle assessment for the production of a sodium-ion battery with a layered transition metal oxide as a positive electrode material and hard carbon as a negative electrode material on the battery component level. The complete and transparent inventory data are disclosed, which can easily be used as a basis for future environmental assessments. Na-ion batteries are found ...

  10. Assessing electric vehicles battery second life remanufacture and management

    OpenAIRE

    Canals Casals, Lluc; Amante García, Beatriz

    2016-01-01

    Electric cars are entering into the automotive market. However, their prices are still expensive mostly due to the battery cost. Additionally, electric vehicle batteries are considered not useful for traction purposes after they have lost a 20% of its capacity. Having still an 80% of its capacity, these batteries may work on stationary applications with lower requirements than electric mobility. In order to recover part of the battery costs came out the idea of giving batteries a second l...

  11. Flexible lithium-ion planer thin-film battery

    KAUST Repository

    Kutbee, Arwa T.

    2016-02-03

    Commercialization of wearable electronics requires miniaturized, flexible power sources. Lithium ion battery is a strong candidate as the next generation high performance flexible battery. The development of flexible materials for battery electrodes suffers from the limited material choices. In this work, we present a flexible inorganic lithium-ion battery with no restrictions on the materials used. The battery showed an enhanced normalized capacity of 146 ??Ah/cm2.

  12. Automation of a coke battery

    Energy Technology Data Exchange (ETDEWEB)

    Simonov, N.F.; Bannikov, L.S.; Yakushina, E.N.; Mil' ko, M.S.

    1980-10-01

    This paper discusses methods of remote control of machines used for discharging coke ovens. The system, developed by the Construction Office of AiM Giprokoks, consists of a number of detecting and transmitting coupling coils and oscillators installed at various places on a coke battery. A scheme of the automated remote control system is given. Method of placing coupling coils and covering them to prevent damages is explained. Principles of coupling coil operation are described. By means of coupling coils exact position of a quenching car, coke discharging machine, and machine removing the coke oven door, can be controlled. When the position of a machine is not exact, operation of other machines is blocked. Operation of the system is regarded as satisfactory. Principles of operation of another system in which, instead of coupling coils coupling bars are installed, are evaluated. Bars control position of machines. The system has numerous weak points and its introduction is not recommended. (In Russian)

  13. Anodematerials for Metal Hydride Batteries

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf

    1997-01-01

    by annealing at 700°C for 12 hours. The alloys appeared to be nanocrystalline with an average crystallite size around 10 nm before annealing. Special steel containers was developed for the annealing of the metal powders in inert atmosphere. The use of various annealing temperatures was investigated......This report describes the work on development of hydride forming alloys for use as electrode materials in metal hydride batteries. The work has primarily been concentrated on calcium based alloys derived from the compound CaNi5. This compound has a higher capacity compared with alloys used in today...... was developed. The parameters milling time, milling intensity, number of balls and form of the alloying metals were investigated. Based on this a final alloying technique for the subsequent preparation of electrode materials was established. The technique comprises milling for 4 hours twice possibly followed...

  14. ?Just-in-Time? Battery Charge Depletion Control for PHEVs and E-REVs for Maximum Battery Life

    Energy Technology Data Exchange (ETDEWEB)

    DeVault, Robert C [ORNL

    2009-01-01

    Conventional methods of vehicle operation for Plug-in Hybrid Vehicles first discharge the battery to a minimum State of Charge (SOC) before switching to charge sustaining operation. This is very demanding on the battery, maximizing the number of trips ending with a depleted battery and maximizing the distance driven on a depleted battery over the vehicle s life. Several methods have been proposed to reduce the number of trips ending with a deeply discharged battery and also eliminate the need for extended driving on a depleted battery. An optimum SOC can be maintained for long battery life before discharging the battery so that the vehicle reaches an electric plug-in destination just as the battery reaches the minimum operating SOC. These Just-in-Time methods provide maximum effective battery life while getting virtually the same electricity from the grid.

  15. Heat tolerance of automotive lead-acid batteries

    Science.gov (United States)

    Albers, Joern

    Starter batteries have to withstand a quite large temperature range. In Europe, the battery temperature can be -30 °C in winter and may even exceed +60 °C in summer. In most modern cars, there is not much space left in the engine compartment to install the battery. So the mean battery temperature may be higher than it was some decades ago. In some car models, the battery is located in the passenger or luggage compartment, where ambient temperatures are more moderate. Temperature effects are discussed in detail. The consequences of high heat impact into the lead-acid battery may vary for different battery technologies: While grid corrosion is often a dominant factor for flooded lead-acid batteries, water loss may be an additional influence factor for valve-regulated lead-acid batteries. A model was set up that considers external and internal parameters to estimate the water loss of AGM batteries. Even under hot climate conditions, AGM batteries were found to be highly durable and superior to flooded batteries in many cases. Considering the real battery temperature for adjustment of charging voltage, negative effects can be reduced. Especially in micro-hybrid applications, AGM batteries cope with additional requirements much better than flooded batteries, and show less sensitivity to high temperatures than suspected sometimes.

  16. Development of battery management system for nickel-metal hydride batteries in electric vehicle applications

    Science.gov (United States)

    Jung, Do Yang; Lee, Baek Haeng; Kim, Sun Wook

    Electric vehicle (EV) performance is very dependent on traction batteries. For developing electric vehicles with high performance and good reliability, the traction batteries have to be managed to obtain maximum performance under various operating conditions. Enhancement of battery performance can be accomplished by implementing a battery management system (BMS) that plays an important role in optimizing the control mechanism of charge and discharge of the batteries as well as monitoring the battery status. In this study, a BMS has been developed for maximizing the use of Ni-MH batteries in electric vehicles. This system performs several tasks: the control of charging and discharging, overcharge and over-discharge protection, the calculation and display of state-of-charge (SOC), safety, and thermal management. The BMS is installed in and tested in a DEV5-5 electric vehicle developed by Daewoo Motor Co. and the Institute for Advanced Engineering in Korea. Eighteen modules of a Panasonic nickel-metal hydride (Ni-MH) battery, 12 V, 95 A h, are used in the DEV5-5. High accuracy within a range of 3% and good reliability are obtained. The BMS can also improve the performance and cycle-life of the Ni-MH battery peak, as well as the reliability and the safety of the electric vehicles.

  17. Metal Hydrides for Rechargeable Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Valoeen, Lars Ole

    2000-03-01

    Rechargeable battery systems are paramount in the power supply of modern electronic and electromechanical equipment. For the time being, the most promising secondary battery systems for the future are the lithium-ion and the nickel metal hydride (NiMH) batteries. In this thesis, metal hydrides and their properties are described with the aim of characterizing and improving those. The thesis has a special focus on the AB{sub 5} type hydrogen storage alloys, where A is a rare earth metal like lanthanum, or more commonly misch metal, which is a mixture of rare earth metals, mainly lanthanum, cerium, neodymium and praseodymium. B is a transition metal, mainly nickel, commonly with additions of aluminium, cobalt, and manganese. The misch metal composition was found to be very important for the geometry of the unit cell in AB{sub 5} type alloys, and consequently the equilibrium pressure of hydrogen in these types of alloys. The A site substitution of lanthanum by misch metal did not decrease the surface catalytic properties of AB{sub 5} type alloys. B-site substitution of nickel with other transition elements, however, substantially reduced the catalytic activity of the alloy. If the internal pressure within the electrochemical test cell was increased using inert argon gas, a considerable increase in the high rate charge/discharge performance of LaNi{sub 5} was observed. An increased internal pressure would enable the utilisation of alloys with a high hydrogen equivalent pressure in batteries. Such alloys often have favourable kinetics and high hydrogen diffusion rates and thus have a potential for improving the high current discharge rates in metal hydride batteries. The kinetic properties of metal hydride electrodes were found to improve throughout their lifetime. The activation properties were found highly dependent on the charge/discharge current. Fewer charge/discharge cycles were needed to activate the electrodes if a small current was used instead of a higher

  18. 'Button' Batteries Pose Serious Risk to Children

    Science.gov (United States)

    Skip navigation U.S. National Library of Medicine Menu ... Pose Serious Risk to Children Toddlers may swallow the tiny batteries used to power many common household objects To use the sharing features ...

  19. Catastrophic event modeling. [lithium thionyl chloride batteries

    Science.gov (United States)

    Frank, H. A.

    1981-01-01

    A mathematical model for the catastrophic failures (venting or explosion of the cell) in lithium thionyl chloride batteries is presented. The phenomenology of the various processes leading to cell failure is reviewed.

  20. A Responsive Battery with Controlled Energy Release.

    Science.gov (United States)

    Wang, Xiaopeng; Gao, Jian; Cheng, Zhihua; Chen, Nan; Qu, Liangti

    2016-11-14

    A new type of responsive battery with the fascinating feature of pressure perceptibility has been developed, which can spontaneously, timely and reliably control the power outputs (e.g., current and voltage) in response to pressure changes. The device design is based on the structure of the Zn-air battery, in which graphene-coated sponge serves as pressure-sensitive air cathode that endows the whole system with the capability of self-controlled energy release. The responsive batteries exhibit superior battery performance with high open-circuit voltage (1.3 V), and competitive areal capacity of 1.25 mAh cm(-2) . This work presents an important move towards next-generation intelligent energy storage devices with energy management function.

  1. 400 Wh/kg Secondary Battery Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Summary Lithium-ion battery technology will not provide significant breakthroughs beyond 200 Wh/kg. It will not provide adequate specific energy and cycle life for...

  2. Membrane-less hydrogen bromine flow battery.

    Science.gov (United States)

    Braff, William A; Bazant, Martin Z; Buie, Cullen R

    2013-01-01

    In order for the widely discussed benefits of flow batteries for electrochemical energy storage to be applied at large scale, the cost of the electrochemical stack must come down substantially. One promising avenue for reducing stack cost is to increase the system power density while maintaining efficiency, enabling smaller stacks. Here we report on a membrane-less hydrogen bromine laminar flow battery as a potential high-power density solution. The membrane-less design enables power densities of 0.795 W cm(-2) at room temperature and atmospheric pressure, with a round-trip voltage efficiency of 92% at 25% of peak power. Theoretical solutions are also presented to guide the design of future laminar flow batteries. The high-power density achieved by the hydrogen bromine laminar flow battery, along with the potential for rechargeable operation, will translate into smaller, inexpensive systems that could revolutionize the fields of large-scale energy storage and portable power systems.

  3. Membrane-less hydrogen bromine flow battery

    CERN Document Server

    Braff, W A; Buie, C R

    2014-01-01

    In order for the widely discussed benefits of flow batteries for electrochemical energy storage to be applied at large scale, the cost of the electrochemical stack must come down substantially. One promising avenue for reducing stack cost is to increase the system power density while maintaining efficiency, enabling smaller stacks. Here we report on a membrane-less, hydrogen bromine laminar flow battery as a potential high power density solution. The membrane-less design enables power densities of 0.795 W cm$^{-2}$ at room temperature and atmospheric pressure, with a round-trip voltage efficiency of 92\\% at 25\\% of peak power. Theoretical solutions are also presented to guide the design of future laminar flow batteries. The high power density achieved by the hydrogen bromine laminar flow battery, along with the potential for rechargeable operation, will translate into smaller, inexpensive systems that could revolutionize the fields of large-scale energy storage and portable power systems.

  4. Predicting Battery Life for Electric UAVs

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper presents a novel battery health management technology for the new generation of electric unmanned aerial vehicles powered by long-life, high-density,...

  5. Recent advances in zinc-air batteries.

    Science.gov (United States)

    Li, Yanguang; Dai, Hongjie

    2014-08-07

    Zinc-air is a century-old battery technology but has attracted revived interest recently. With larger storage capacity at a fraction of the cost compared to lithium-ion, zinc-air batteries clearly represent one of the most viable future options to powering electric vehicles. However, some technical problems associated with them have yet to be resolved. In this review, we present the fundamentals, challenges and latest exciting advances related to zinc-air research. Detailed discussion will be organized around the individual components of the system - from zinc electrodes, electrolytes, and separators to air electrodes and oxygen electrocatalysts in sequential order for both primary and electrically/mechanically rechargeable types. The detrimental effect of CO2 on battery performance is also emphasized, and possible solutions summarized. Finally, other metal-air batteries are briefly overviewed and compared in favor of zinc-air.

  6. Battery-cell thermal test facility

    Science.gov (United States)

    Sanders, J. A.

    1976-01-01

    Vacuum-enclosed system is used to analyze instantaneous thermal and electrical characteristics of batteries. Data can be used to determine efficiency and provide for more effective utilization of available power.

  7. Design of a thermophotovoltaic battery substitute

    Science.gov (United States)

    Doyle, Edward F.; Becker, Frederick E.; Shukla, Kailash C.; Fraas, Lewis M.

    1999-03-01

    Many military platforms that currently use the BA-5590 primary battery or the BB-390A/U rechargeable battery are limited in performance by low storage capacity and long recharge times. Thermo Power Corporation, with team members JX Crystals and Essential Research Inc. is developing an advanced thermophotovoltaic (TPV) battery substitute that will provide higher storage capacity, lower weight, and instantaneous recharging (by refueling). The TPV battery substitute incorporates several advanced design features including: an evacuated and sealed enclosure for the emitter and PV cells to minimize unwanted convection heat transfer from the emitter to PV cells; selective tungsten emitter with a well matched gallium antimonide PV cell receiver; optical filter to recycle nonconvertible radiant energy; and a silicon carbide thermal recuperator to recover thermal energy from exhaust gases.

  8. Technology status: Batteries and fuel cells

    Science.gov (United States)

    Fordyce, J. S.

    1978-01-01

    The current status of research and development programs on batteries and fuel cells and the technology goals being pursued are discussed. Emphasis is placed upon those technologies relevant to earth orbital electric energy storage applications.

  9. Multi-Cell Thermal Battery Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The multi-cell thermal battery (MCTB) is a device that can recover a large fraction of the thermal energy from heated regolith and subsequently apply this energy to...

  10. Efficient Electrolytes for Lithium-Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    Natarajan eAngulakshmi

    2015-05-01

    Full Text Available This review article mainly encompasses on the state-of-the-art electrolytes for lithium–sulfur batteries. Different strategies have been employed to address the issues of lithium-sulfur batteries across the world. One among them is identification of electrolytes and optimization of their properties for the applications in lithium-sulfur batteries. The electrolytes for lithium-sulfur batteries are broadly classified as (i non-aqueous liquid electrolytes, (ii ionic liquids, (iii solid polymer and (iv glass-ceramic electrolytes. This article presents the properties, advantages and limitations of each type of electrolytes. Also the importance of electrolyte additives on the electrochemical performance of Li-S cells is discussed.

  11. High Temperature Rechargeable Battery Development Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This small business innovation research is intended to develop and proof the concept of a highly efficient, high temperature rechargeable battery for supporting...

  12. Sealed Cylindrical Silver/Zinc Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — RBC Technologies has significanly improved the cycle life and wet life of silver/zinc battery technology through novel separator and anode formulations. This...

  13. The Breakthrough Behind the Chevy Volt Battery

    Science.gov (United States)

    Lerner, Louise

    2011-03-28

    A revolutionary breakthrough cathode for lithium-ion batteries—the kind in your cell phone, laptop and new hybrid cars—makes them last longer, run more safely and perform better than batteries currently on the market.

  14. Novel Lithium Ion High Energy Battery Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Under this SBIR project a new chemistry for Li-ion cells will be developed that will enable a major advance in secondary battery gravimetric and volumetric energy...

  15. Battery Health Management System for Electric UAVs

    Data.gov (United States)

    National Aeronautics and Space Administration — In summary, this paper lays out a novel battery health management technique for application onboard an electric UAV. This technique is also applicable to other...

  16. Assessment of high-temperature battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Sen, R K

    1989-02-01

    Three classes of high-temperature batteries are being developed internationally with transportation and stationary energy storage applications in mind: sodium/sulfur, lithium/metal sulfide, and sodium/metal chloride. Most attention is being given to the sodium/sulfur system. The Office of Energy Storage and Distribution (OESD) and the Office of Transportation Systems (OTS) of the US Department of Energy (DOE) are actively supporting the development of this battery system. It is anticipated that pilot-scale production facilities for sodium/sulfur batteries will be in operation in the next couple of years. The lithium/metal sulfide and the sodium/metal chloride systems are not receiving the same level of attention as the sodium/sulfur battery. Both of these systems are in an earlier stage of development than sodium/sulfur. OTS and OESD are supporting work on the lithium/iron sulfide battery in collaboration with the Electric Power Research Institute (EPRI); the work is being carried out at Argonne National Laboratory (ANL). The sodium/metal chloride battery, the newest member of the group, is being developed by a Consortium of South African and British companies. Very little DOE funds are presently allocated for research on this battery. The purpose of this assessment is to evaluate the present status of the three technologies and to identify for each technology a prioritized list of R and D issues. Finally, the assessment includes recommendations to DOE for a proposed high-temperature battery research and development program. 18 figs., 21 tabs.

  17. The rechargeable aluminum-ion battery

    KAUST Repository

    Jayaprakash, N.

    2011-01-01

    We report a novel aluminium-ion rechargeable battery comprised of an electrolyte containing AlCl3 in the ionic liquid, 1-ethyl-3-methylimidazolium chloride, and a V2O5 nano-wire cathode against an aluminium metal anode. The battery delivered a discharge capacity of 305 mAh g-1 in the first cycle and 273 mAh g-1 after 20 cycles, with very stable electrochemical behaviour. © The Royal Society of Chemistry 2011.

  18. Radioisotope battery using Schottky barrier devices

    Energy Technology Data Exchange (ETDEWEB)

    Manasse, F.K. (Drexel Univ., Philadelphia); Tse, A.N.

    1976-05-01

    Based on the well-known betavoltaic effect, a new nuclear battery, which uses a Schottky barrier, has been used in place of the more standard p-n junction diode, along with /sup 147/Pm metal film rather than Pm/sub 2/O/sub 3/ oxide, as in the commercially available Betacel. Measurement of absorption, conversion efficiency, thickness, etc., as functions of resistivity and other cell parameters, and assessment of performance are being researched to design a prototype battery.

  19. Survey of Commercial Small Lithium Polymer Batteries

    Science.gov (United States)

    2007-09-19

    Approved for public release; distribution is unlimited. Arnold M. Stux KAren Swider-lyonS Chemical Dynamics and Diagnostics Branch Chemistry Division i...stored per mole of material, M.W. is its molecular weight, and F is the Faraday constant (96,485 C/mol). The theoretical specific capacity of...phosphate, LiFePO4 , which will lead to higher power, but lower energy batteries. The driver for battery improvement will continue to be the toy and

  20. The rechargeable aluminum-ion battery.

    Science.gov (United States)

    Jayaprakash, N; Das, S K; Archer, L A

    2011-12-21

    We report a novel aluminium-ion rechargeable battery comprised of an electrolyte containing AlCl(3) in the ionic liquid, 1-ethyl-3-methylimidazolium chloride, and a V(2)O(5) nano-wire cathode against an aluminium metal anode. The battery delivered a discharge capacity of 305 mAh g(-1) in the first cycle and 273 mAh g(-1) after 20 cycles, with very stable electrochemical behaviour.

  1. The rechargeable aluminum-ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Navaneedhakrishnan, Jayaprakash; Das, Shyamal K; Archer, Lynden A.

    2011-01-01

    We report a novel aluminium-ion rechargeable battery comprised of an electrolyte containing AlCl₃ in the ionic liquid, 1-ethyl-3-methylimidazolium chloride, and a V₂O₅ nano-wire cathode against an aluminium metal anode. The battery delivered a discharge capacity of 305 mAh g⁻¹ in the first cycle and 273 mAh g⁻¹ after 20 cycles, with very stable electrochemical behaviour.

  2. Lithium Ion Battery Anode Aging Mechanisms

    Directory of Open Access Journals (Sweden)

    Victor Agubra

    2013-03-01

    Full Text Available Degradation mechanisms such as lithium plating, growth of the passivated surface film layer on the electrodes and loss of both recyclable lithium ions and electrode material adversely affect the longevity of the lithium ion battery. The anode electrode is very vulnerable to these degradation mechanisms. In this paper, the most common aging mechanisms occurring at the anode during the operation of the lithium battery, as well as some approaches for minimizing the degradation are reviewed.

  3. Lithium Ion Battery Anode Aging Mechanisms

    OpenAIRE

    Victor Agubra; Jeffrey Fergus

    2013-01-01

    Degradation mechanisms such as lithium plating, growth of the passivated surface film layer on the electrodes and loss of both recyclable lithium ions and electrode material adversely affect the longevity of the lithium ion battery. The anode electrode is very vulnerable to these degradation mechanisms. In this paper, the most common aging mechanisms occurring at the anode during the operation of the lithium battery, as well as some approaches for minimizing the degradation are reviewed.

  4. Upgrading Li-battery performance via nanotechnology

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Lithium batteries,as a main or back-up power source for mobile communication devices,portable electronic devices and the like,have attracted much attention in the scientific and industrial fields due to their high electromotive force and high energy density.To meet the demand for batteries with higher energy density and improved cycle characteristics in recent years,many attempts have been made to develop new electrode materials or design new structures of electrode materials.

  5. Management of deep brain stimulator battery failure: battery estimators, charge density, and importance of clinical symptoms.

    Directory of Open Access Journals (Sweden)

    Kaihan Fakhar

    Full Text Available OBJECTIVE: We aimed in this investigation to study deep brain stimulation (DBS battery drain with special attention directed toward patient symptoms prior to and following battery replacement. BACKGROUND: Previously our group developed web-based calculators and smart phone applications to estimate DBS battery life (http://mdc.mbi.ufl.edu/surgery/dbs-battery-estimator. METHODS: A cohort of 320 patients undergoing DBS battery replacement from 2002-2012 were included in an IRB approved study. Statistical analysis was performed using SPSS 20.0 (IBM, Armonk, NY. RESULTS: The mean charge density for treatment of Parkinson's disease was 7.2 µC/cm(2/phase (SD = 3.82, for dystonia was 17.5 µC/cm(2/phase (SD = 8.53, for essential tremor was 8.3 µC/cm(2/phase (SD = 4.85, and for OCD was 18.0 µC/cm(2/phase (SD = 4.35. There was a significant relationship between charge density and battery life (r = -.59, p<.001, as well as total power and battery life (r = -.64, p<.001. The UF estimator (r = .67, p<.001 and the Medtronic helpline (r = .74, p<.001 predictions of battery life were significantly positively associated with actual battery life. Battery status indicators on Soletra and Kinetra were poor predictors of battery life. In 38 cases, the symptoms improved following a battery change, suggesting that the neurostimulator was likely responsible for symptom worsening. For these cases, both the UF estimator and the Medtronic helpline were significantly correlated with battery life (r = .65 and r = .70, respectively, both p<.001. CONCLUSIONS: Battery estimations, charge density, total power and clinical symptoms were important factors. The observation of clinical worsening that was rescued following neurostimulator replacement reinforces the notion that changes in clinical symptoms can be associated with battery drain.

  6. Lithium-Air Batteries with Hybrid Electrolytes.

    Science.gov (United States)

    He, Ping; Zhang, Tao; Jiang, Jie; Zhou, Haoshen

    2016-04-07

    During the past decade, Li-air batteries with hybrid electrolytes have attracted a great deal of attention because of their exceptionally high capacity. Introducing aqueous solutions and ceramic lithium superionic conductors to Li-air batteries can circumvent some of the drawbacks of conventional Li-O2 batteries such as decomposition of organic electrolytes, corrosion of Li metal from humidity, and insoluble discharge product blocking the air electrode. The performance of this smart design battery depends essentially on the property and structure of the cell components (i.e., hybrid electrolyte, Li anode, and air cathode). In recent years, extensive efforts toward aqueous electrolyte-based Li-air batteries have been dedicated to developing the high catalytic activity of the cathode as well as enhancing the conductivity and stability of the hybrid electrolyte. Herein, the progress of all aspects of Li-air batteries with hybrid electrolytes is reviewed. Moreover, some suggestions and concepts for tailored design that are expected to promote research in this field are provided.

  7. Single Switched Capacitor Battery Balancing System Enhancements

    Directory of Open Access Journals (Sweden)

    Joeri van Mierlo

    2013-04-01

    Full Text Available Battery management systems (BMS are a key element in electric vehicle energy storage systems. The BMS performs several functions concerning to the battery system, its key task being balancing the battery cells. Battery cell unbalancing hampers electric vehicles’ performance, with differing individual cell voltages decreasing the battery pack capacity and cell lifetime, leading to the eventual failure of the total battery system. Quite a lot of cell balancing topologies have been proposed, such as shunt resistor, shuttling capacitor, inductor/transformer based and DC energy converters. The shuttling capacitor balancing systems in particular have not been subject to much research efforts however, due to their perceived low balancing speed and high cost. This paper tries to fill this gap by briefly discussing the shuttling capacitor cell balancing topologies, focusing on the single switched capacitor (SSC cell balancing and proposing a novel procedure to improve the SSC balancing system performance. This leads to a new control strategy for the SSC system that can decrease the balancing system size, cost, balancing time and that can improve the SSC balancing system efficiency.

  8. Bipolar Membranes for Acid Base Flow Batteries

    Science.gov (United States)

    Anthamatten, Mitchell; Roddecha, Supacharee; Jorne, Jacob; Coughlan, Anna

    2011-03-01

    Rechargeable batteries can provide grid-scale electricity storage to match power generation with consumption and promote renewable energy sources. Flow batteries offer modular and flexible design, low cost per kWh and high efficiencies. A novel flow battery concept will be presented based on acid-base neutralization where protons (H+) and hydroxyl (OH-) ions react electrochemically to produce water. The large free energy of this highly reversible reaction can be stored chemically, and, upon discharge, can be harvested as usable electricity. The acid-base flow battery concept avoids the use of a sluggish oxygen electrode and utilizes the highly reversible hydrogen electrode, thus eliminating the need for expensive noble metal catalysts. The proposed flow battery is a hybrid of a battery and a fuel cell---hydrogen gas storing chemical energy is produced at one electrode and is immediately consumed at the other electrode. The two electrodes are exposed to low and high pH solutions, and these solutions are separated by a hybrid membrane containing a hybrid cation and anion exchange membrane (CEM/AEM). Membrane design will be discussed, along with ion-transport data for synthesized membranes.

  9. The importance of batteries in unmanned missions

    Science.gov (United States)

    Klein, John W.

    1989-12-01

    The planetary program has historically used batteries to supply peak power needs for mission specific applications. Any time that additional power has been required in order to meet peak power demands or those applications where only limited amounts of power were required, batteries have always been used. Up until the mid to late 70's they have performed their task admirably. Recently, however, we have all become aware of the growing problem of developing reliable NiCd batteries for long mission and high cycle life applications. Here, the role rechargeable batteries will play for future planetary and earth observing spacecraft is discussed. In conclusion, NiCds have been and will continue to be the mainstay of the power system engineers tools for peak power production. Recent experience has tarnished its once sterling reputation. However, the industry has stood up to this challenge and implemented wide ranging plans to rectify the situation. These efforts should be applauded and supported as new designs and materials become available. In addition, project managers must become aware of their responsibility to test their batteries and insure quality and mission operating characteristics. Without this teamwork, the role of NiCds in the future will diminish, and other batteries, not as optimum for high performance applications (low mass and volume) will take their place.

  10. Progress in Modeling and Simulation of Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Turner, John A [ORNL

    2016-01-01

    Modeling and simulation of batteries, in conjunction with theory and experiment, are important research tools that offer opportunities for advancement of technologies that are critical to electric motors. The development of data from the application of these tools can provide the basis for managerial and technical decision-making. Together, these will continue to transform batteries for electric vehicles. This collection of nine papers presents the modeling and simulation of batteries and the continuing contribution being made to this impressive progress, including topics that cover: * Thermal behavior and characteristics * Battery management system design and analysis * Moderately high-fidelity 3D capabilities * Optimization Techniques and Durability As electric vehicles continue to gain interest from manufacturers and consumers alike, improvements in economy and affordability, as well as adoption of alternative fuel sources to meet government mandates are driving battery research and development. Progress in modeling and simulation will continue to contribute to battery improvements that deliver increased power, energy storage, and durability to further enhance the appeal of electric vehicles.

  11. Multicell LiSOCl sub 2 reserve battery

    Science.gov (United States)

    Baldwin, A. R.; Garoutte, K. F.

    Recent development work on reverse lithium thionyl chloride (RLTC) batteries at SNLA and Honeywell has included safety and performance evaluations. The RLTC battery is being considered for applications that were traditionally fulfilled by state-of-the-art thermal batteries and reserve silver oxide zinc electrochemical systems. These applications typically demand a reserve battery having a rapid voltage rise, high reliability, operational safety and useful active lifetime ranging from minutes to hours. The RLTC work reported here was directed toward a power battery capable of meeting or exceeding the design requirements. Performance and safety test data indicate that the RLTC battery may be better suited than thermal batteries for some long-life applications. A comparison between Li(Si)/FeS2 thermal battery and an RLTC battery, both of which were designed to fulfill the requirements is presented.

  12. Primary and secondary battery consumption trends in Sweden 1996–2013: Method development and detailed accounting by battery type

    Energy Technology Data Exchange (ETDEWEB)

    Patrício, João, E-mail: joao.patricio@chalmers.se [Department of Civil and Environmental Engineering, Chalmers University of Technology, 412 96 Gothenburg (Sweden); Kalmykova, Yuliya; Berg, Per E.O.; Rosado, Leonardo [Department of Civil and Environmental Engineering, Chalmers University of Technology, 412 96 Gothenburg (Sweden); Åberg, Helena [The Faculty of Education, University of Gothenburg, 40530 Gothenburg (Sweden)

    2015-05-15

    Highlights: • Developed MFA method was validated by the national statistics. • Exponential increase of EEE sales leads to increase in integrated battery consumption. • Digital convergence is likely to be a cause for primary batteries consumption decline. • Factors for estimation of integrated batteries in EE are provided. • Sweden reached the collection rates defined by European Union. - Abstract: In this article, a new method based on Material Flow Accounting is proposed to study detailed material flows in battery consumption that can be replicated for other countries. The method uses regularly available statistics on import, industrial production and export of batteries and battery-containing electric and electronic equipment (EEE). To promote method use by other scholars with no access to such data, several empirically results and their trends over time, for different types of batteries occurrence among the EEE types are provided. The information provided by the method can be used to: identify drivers of battery consumption; study the dynamic behavior of battery flows – due to technology development, policies, consumers behavior and infrastructures. The method is exemplified by the study of battery flows in Sweden for years 1996–2013. The batteries were accounted, both in units and weight, as primary and secondary batteries; loose and integrated; by electrochemical composition and share of battery use between different types of EEE. Results show that, despite a fivefold increase in the consumption of rechargeable batteries, they account for only about 14% of total use of portable batteries. Recent increase in digital convergence has resulted in a sharp decline in the consumption of primary batteries, which has now stabilized at a fairly low level. Conversely, the consumption of integrated batteries has increased sharply. In 2013, 61% of the total weight of batteries sold in Sweden was collected, and for the particular case of alkaline manganese

  13. Modelling Thermal Effects of Battery Cells inside Electric Vehicle Battery Packs

    DEFF Research Database (Denmark)

    Khan, Mohammad Rezwan; Kær, Søren Knudsen

    The poster presents a methodology to account for thermal effects on battery cells to improve the typical thermal performances in a pack through heating calculations generally performed under the operating condition assumption. The aim is to analyze the issues based on battery thermo-physical char...

  14. Solar-rechargeable battery based on photoelectrochemical water oxidation: Solar water battery.

    Science.gov (United States)

    Kim, Gonu; Oh, Misol; Park, Yiseul

    2016-09-15

    As an alternative to the photoelectrochemical water splitting for use in the fuel cells used to generate electrical power, this study set out to develop a solar energy rechargeable battery system based on photoelectrochemical water oxidation. We refer to this design as a "solar water battery". The solar water battery integrates a photoelectrochemical cell and battery into a single device. It uses a water oxidation reaction to simultaneously convert and store solar energy. With the solar water battery, light striking the photoelectrode causes the water to be photo-oxidized, thus charging the battery. During the discharge process, the solar water battery reduces oxygen to water with a high coulombic efficiency (>90%) and a high average output voltage (0.6 V). Because the reduction potential of oxygen is more positive [E(0) (O2/H2O) = 1.23 V vs. NHE] than common catholytes (e.g., iodide, sulfur), a high discharge voltage is produced. The solar water battery also exhibits a superior storage ability, maintaining 99% of its specific discharge capacitance after 10 h of storage, without any evidence of self-discharge. The optimization of the cell design and configuration, taking the presence of oxygen in the cell into account, was critical to achieving an efficient photocharge/discharge.

  15. 78 FR 6845 - Eleventh Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-01-31

    ... Federal Aviation Administration Eleventh Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S..., working group meetings, and document preparation. Establish agenda for next Plenary. Review Progress...

  16. Second Life for Electric Vehicle Batteries: Answering Questions on Battery Degradation and Value

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, J. S.; Wood, E.; Pesaran, A.

    2015-05-04

    Battery second use – putting used plug-in electric vehicle (PEV) batteries into secondary service following their automotive tenure – has been proposed as a means to decrease the cost of PEVs while providing low cost energy storage to other fields (e.g. electric utility markets). To understand the value of used automotive batteries, however, we must first answer several key questions related to National Renewable Energy Laboratory (NREL) has developed a methodology and the requisite tools to answer these questions, including NREL’s Battery Lifetime Simulation Tool (BLAST). Herein we introduce these methods and tools, and demonstrate their application. We have found that capacity fade from automotive use has a much larger impact on second use value than resistance growth. Where capacity loss is driven by calendar effects more than cycling effects, average battery temperature during automotive service – which is often driven by climate – is found to be the single factor with the largest effect on remaining value. Installing hardware and software capabilities onboard the vehicle that can both infer remaining battery capacity from in-situ measurements, as well as track average battery temperature over time, will thereby facilitate the second use of automotive batteries.

  17. Lithium batteries for electric road vehicle applications

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Bo; Hallgren, B.; Johansson, Arne; Selaanger, P. [Catella Generics, Kista (Sweden)

    1995-12-31

    Lithium is one of the most promising negative electrode materials to be used for the manufacturing of batteries. It is the most electronegative material in the table of standard potentials and its low weight will facilitate a high gravimetric coulombic density. Theoretically, as high values as 6 kWh/kg could be reached for lithium based batteries. The aim of this study has been to make an inventory of what is internationally known about lithium batteries suitable for electric vehicle applications. It is representative for the development status by the summer of 1995. Both high and ambient temperature lithium batteries are described in the study even if the analysis is concentrated on the latter. Ambient temperature systems has gathered the major interest, especially from manufacturers in the `3Cs` market segment (Consumer electronics, Communications and Computers). There is no doubt, a bright future for lithium rechargeable batteries. Depending on the ambition of a national research programme, one can await the ongoing development of batteries for the 3Cs market segment or take the lead in a near-term or advanced system R and D for EV batteries. In the zero ambition EV battery programme, we recommend allocation of funds to follow the development within the 3Cs sector. The corresponding funding level is 1-2 MSEK/year granted to a stable receiver. In a low ambition EV programme, we recommend to keep a few groups active in the front-line of specific research areas. The purpose is to keep a link for communication open to the surrounding battery world. The cost level is 4-6 MSEK per year continually. In a high ambition programme we recommend the merging of Swedish resources with international EV battery R and D programmes, e.g. the EUCAR project. The research team engaged should be able to contribute to the progress of the overall project. The cost for the high ambition programme is estimated at the level 15-20 MSEK per year continually. 47 refs, 17 figs, 16 tabs

  18. Standby battery requirements for telecommunications power

    Science.gov (United States)

    May, G. J.

    The requirements for standby power for telecommunications are changing as the network moves from conventional systems to Internet Protocol (IP) telephony. These new systems require higher power levels closer to the user but the level of availability and reliability cannot be compromised if the network is to provide service in the event of a failure of the public utility. Many parts of these new networks are ac rather than dc powered with UPS systems for back-up power. These generally have lower levels of reliability than dc systems and the network needs to be designed such that overall reliability is not reduced through appropriate levels of redundancy. Mobile networks have different power requirements. Where there is a high density of nodes, continuity of service can be reasonably assured with short autonomy times. Furthermore, there is generally no requirement that these networks are the provider of last resort and therefore, specifications for continuity of power are directed towards revenue protection and overall reliability targets. As a result of these changes, battery requirements for reserve power are evolving. Shorter autonomy times are specified for parts of the network although a large part will continue to need support for hours rather minutes. Operational temperatures are increasing and battery solutions that provide longer life in extreme conditions are becoming important. Different battery technologies will be discussed in the context of these requirements. Conventional large flooded lead/acid cells both with pasted and tubular plates are used in larger central office applications but the majority of requirements are met with valve-regulated lead/acid (VRLA) batteries. The different types of VRLA battery will be described and their suitability for various applications outlined. New developments in battery construction and battery materials have improved both performance and reliability in recent years. Alternative technologies are also being proposed

  19. High Threshold for Lead Accumulators Helps the Battery Industry to Recover in Q2

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>Along with release of relevant access conditions of the lead acid accumulator industry and increasing popularity of new-type batteries including lithium battery and lead-carbon battery, etc., the battery industry recovered in the first

  20. Factors on Storage Performance of MH-Ni Battery

    Institute of Scientific and Technical Information of China (English)

    Zhang Zhong; Jia Chunming; Xing Zhiqiang; Li Li; Ma Yijun

    2004-01-01

    The open voltage of batteries shows different status after MH-Ni batteries are stored for a period of time.Some batteries with 0, 0.9 ~ 1.1V and above 1.1 V were chosen to study their corresponding internal resistances, open voltages and the reduction of capacities, etc.On the basis of battery reaction principle, battery samples were analyzed,and factors causing different storage performance were found out.Therefore, some references on the improvement of battery storage performance were provided.

  1. Sodium-sulfur batteries for spacecraft energy storage

    Science.gov (United States)

    Dueber, R. E.

    1986-01-01

    Power levels for future space missions will be much higher than are presently attainable using nickel-cadmium and nickel-hydrogen batteries. Development of a high energy density rechargeable battery is essential in being able to provide these higher power levels without tremendous weight penalties. Studies conducted by both the Air Force and private industry have identified the sodium-sulfur battery as the best candidate for a next generation battery system. The advantages of the sodium-sulfur battery over the nickel-cadmium battery are discussed.

  2. A Thermal Runaway Simulation on a Lithium Titanate Battery and the Battery Module

    Directory of Open Access Journals (Sweden)

    Man Chen

    2015-01-01

    Full Text Available Based on the electrochemical and thermal model, a coupled electro-thermal runaway model was developed and implemented using finite element methods. The thermal decomposition reactions when the battery temperature exceeds the material decomposition temperature were embedded into the model. The temperature variations of a lithium titanate battery during a series of charge-discharge cycles under different current rates were simulated. The results of temperature and heat generation rate demonstrate that the greater the current, the faster the battery temperature is rising. Furthermore, the thermal influence of the overheated cell on surrounding batteries in the module was simulated, and the variation of temperature and heat generation during thermal runaway was obtained. It was found that the overheated cell can induce thermal runaway in other adjacent cells within 3 mm distance in the battery module if the accumulated heat is not dissipated rapidly.

  3. All-graphene-battery: bridging the gap between supercapacitors and lithium ion batteries.

    Science.gov (United States)

    Kim, Haegyeom; Park, Kyu-Young; Hong, Jihyun; Kang, Kisuk

    2014-01-01

    Herein, we propose an advanced energy-storage system: all-graphene-battery. It operates based on fast surface-reactions in both electrodes, thus delivering a remarkably high power density of 6,450 W kg(-1)(total electrode) while also retaining a high energy density of 225 Wh kg(-1)(total electrode), which is comparable to that of conventional lithium ion battery. The performance and operating mechanism of all-graphene-battery resemble those of both supercapacitors and batteries, thereby blurring the conventional distinction between supercapacitors and batteries. This work demonstrates that the energy storage system made with carbonaceous materials in both the anode and cathode are promising alternative energy-storage devices.

  4. Electrode materials for rechargeable battery

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Christopher; Kang, Sun-Ho

    2015-09-08

    A positive electrode is disclosed for a non-aqueous electrolyte lithium rechargeable cell or battery. The electrode comprises a lithium containing material of the formula Na.sub.yLi.sub.xNi.sub.zMn.sub.1-z-z'M.sub.z'O.sub.d, wherein M is a metal cation, x+y>1, 0

  5. Application of nonwovens in batteries

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, H.G. [Freudenberg Nonwovens, Weinheim (Germany)

    1995-07-01

    Nonwovens are textile products that are manufactured directly from fibers. According to ISO 9092: 1988 nonwovens are defined as a manufactured sheet, web or batt of directionally or randomly oriented fibers, bonded by friction, and/or cohesion, and/or adhesion excluding paper and products which are woven, tufted, stitchbonded incorporating binding yarns or filaments, or felted by wetmilling whether or not additionally needled. The fibers may be of natural or man-made origin. They may be staple or continuous filaments or be formed in situ. The production of nonwovens can be described as taking place in three stages, although modern technology allows an overlapping of the stages. The three stages are: web formation, web bonding, and finishing treatments. The opportunity to combine different raw materials and different techniques accounts for the diversity of the industry and its products. This diversity is enhanced by the ability to engineer nonwovens to have specific properties and to perform specific tasks. This paper describes the production and applications of nonwovens in primary and secondary electric batteries.

  6. Historical review on special batteries

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Ken' ichi; Takuwa, Tsuneo

    1988-04-12

    Special batteries are explained in summary, and the related technologies are reviewed. Sea water cells bring in and activate sea water for use as the electrolyte. They can be stored for a long time as no specific electrolyte is required, and have been used as power sources for rescure wireless systems and torpedos. They are used also as the power sources for marine drifting lights, observation equipment at the south pole base, and various kinds of telemeters. Lithium cells are enjoying rapid increase in demand since they have large energy density and high voltage with the ability of supplying stable voltage for a long period. As to the thermobattery, the electrolyte instantaneously melts at the time of use to generate electricity. It has such merits as long term storage, large current discharge, etc. Silver oxide cells have high energy density, and were developed in U.S.A. for military purposes. In Japan, they were develped and proudced as the power sources for artificial satellites and electric furnaces for space material experiment rockets. The cell was delivered also as the power source for a deep sea rescue vehicle. (9 figs, 4 photos, 1 tab, 5 refs)

  7. 75 FR 43975 - California State Motor Vehicle and Nonroad Engine Pollution Control Standards; Truck Idling...

    Science.gov (United States)

    2010-07-27

    ... to fuel-fired heaters, batteries, fuel cells, and power inverter/chargers for on-shore power are not... requirements pertaining to fuel- fired heaters, batteries, fuel cells, power inverter/chargers for on- shore... applicable California off-road or Federal nonroad emission standards and test procedures for its fuel...

  8. 77 FR 9239 - California State Motor Vehicle and Nonroad Engine Pollution Control Standards; Truck Idling...

    Science.gov (United States)

    2012-02-16

    ... to fuel-fired heaters, batteries, fuel cells, and power inverter/chargers for on-shore power are not... requirements pertaining to fuel- fired heaters, batteries, fuel cells, power inverter/chargers for on- shore... applicable California off-road or federal nonroad emission standards and test procedures for its fuel...

  9. Batteries 2020 – Lithium - ion battery first and second life ageing, validated battery models, lifetime modelling and ageing assessment of thermal parameters

    DEFF Research Database (Denmark)

    Timmermans, Jean-Marc; Nikolian, Alexandros; De Hoog, Joris

    2016-01-01

    for automotive batteries (250 Wh/kg at cell level, over 4000 cycles at 80% depth of discharge). Three parallel strategies are followed in order to achieve those targets: (i) Highly focused materials development; two improved generations of NMC cathode materials allows to improve the performance, stability...... driving profiles was used to obtain a thorough understanding of the degradation processes occurring in the battery cells . (iii) Reduction of battery cost; a way to reduce costs, increase battery residual value and improve sustainability is to consider second life uses of batteries used in electric...

  10. Life cycle assessment of lithium sulfur battery for electric vehicles

    Science.gov (United States)

    Deng, Yelin; Li, Jianyang; Li, Tonghui; Gao, Xianfeng; Yuan, Chris

    2017-03-01

    Lithium-sulfur (Li-S) battery is widely recognized as the most promising battery technology for future electric vehicles (EV). To understand the environmental sustainability performance of Li-S battery on future EVs, here a novel life cycle assessment (LCA) model is developed for comprehensive environmental impact assessment of a Li-S battery pack using a graphene sulfur composite cathode and a lithium metal anode protected by a lithium-ion conductive layer, for actual EV applications. The Li-S battery pack is configured with a 61.3 kWh capacity to power a mid-size EV for 320 km range. The life cycle inventory model is developed with a hybrid approach, based on our lab-scale synthesis of the graphene sulfur composite, our lab fabrication of Li-S battery cell, and our industrial partner's battery production processes. The impacts of the Li-S battery are assessed using the ReCiPe method and benchmarked with those of a conventional Nickle-Cobalt-Manganese (NCM)-Graphite battery pack under the same driving distance per charge. The environmental impact assessment results illustrate that Li-S battery is more environmentally friendly than conventional NCM-Graphite battery, with 9%-90% lower impact. Finally, the improvement pathways for the Li-S battery to meet the USABC (U.S. Advanced Battery Consortium) targets are presented with the corresponding environmental impact changes.

  11. Batteries: from alkaline to zinc-air.

    Science.gov (United States)

    Dondelinger, Robert M

    2004-01-01

    There is no perfect disposable battery--one that will sit on the shelf for 20 years, then continually provide unlimited current, at a completely constant voltage until exhausted, without producing heat. There is no perfect rechargeable battery--one with all of the above characteristics and will also withstand an infinite overcharge while providing an equally infinite cycle life. There are only compromises. Every battery selection is a compromise between the ideally required characteristics, the advantages, and the limitations of each battery type. General selection of a battery type to power a medical device is largely outside the purview of the biomed. Initially, these are engineering decisions made at the time of medical equipment design and are intended to be followed in perpetuity. However, since newer cell types evolve and the manufacturer's literature is fixed at the time of printing, some intelligent substitutions may be made as long as the biomed understands the characteristics of both the recommended cell and the replacement cell. For example, when the manufacturer recommends alkaline, it is usually because of the almost constant voltage it produces under the devices' design load. Over time, other battery types may be developed that will meet the intent of the manufacturer, at a lower cost, providing longer operational life, at a lower environmental cost, or with a combination of these advantages. In the Obstetrical Doppler cited at the beginning of this article, the user had put in carbon-zinc cells, and the biomed had unknowingly replaced them with carbonzinc cells. If the alkaline cells recommended by the manufacturer had been used, there would have been the proper output voltage at the battery terminals when the [table: see text] cells were at their half-life. Instead, the device refused to operate since the battery voltage was below presumed design voltage. While battery-type substitutions may be easily and relatively successfully made in disposable

  12. Thermal characteristics of Lithium-ion batteries

    Science.gov (United States)

    Hauser, Dan

    2004-01-01

    Lithium-ion batteries have a very promising future for space applications. Currently they are being used on a few GEO satellites, and were used on the two recent Mars rovers Spirit and Opportunity. There are still problem that exist that need to be addressed before these batteries can fully take flight. One of the problems is that the cycle life of these batteries needs to be increased. battery. Research is being focused on the chemistry of the materials inside the battery. This includes the anode, cathode, and the cell electrolyte solution. These components can undergo unwanted chemical reactions inside the cell that deteriorate the materials of the battery. During discharge/ charge cycles there is heat dissipated in the cell, and the battery heats up and its temperature increases. An increase in temperature can speed up any unwanted reactions in the cell. Exothermic reactions cause the temperature to increase; therefore increasing the reaction rate will cause the increase of the temperature inside the cell to occur at a faster rate. If the temperature gets too high thermal runaway will occur, and the cell can explode. The material that separates the electrode from the electrolyte is a non-conducting polymer. At high temperatures the separator will melt and the battery will be destroyed. The separator also contains small pores that allow lithium ions to diffuse through during charge and discharge. High temperatures can cause these pores to close up, permanently damaging the cell. My job at NASA Glenn research center this summer will be to perform thermal characterization tests on an 18650 type lithium-ion battery. High temperatures cause the chemicals inside lithium ion batteries to spontaneously react with each other. My task is to conduct experiments to determine the temperature that the reaction takes place at, what components in the cell are reacting and the mechanism of the reaction. The experiments will be conducted using an accelerating rate calorimeter

  13. Battery Resistance Analysis of ISS Power System

    Science.gov (United States)

    Newstadt, Gregory E.

    2004-01-01

    The computer package, SPACE (Systems Power Analysis for Capability Evaluation) was created by the members of LT-9D to perform power analysis and modeling of the electrical power system on the International Space Station (ISS). Written in FORTRAN, SPACE comprises thousands of lines of code and has been used profficiently in analyzing missions to the ISS. LT-9D has also used its expertise recently to investigate the batteries onboard the Hubble telescope. During the summer of 2004, I worked with the members of LT-9D, under the care of Dave McKissock. Solar energy will power the ISS through eight solar arrays when the ISS is completed, although only two arrays are currently connected. During the majority of the periods of sunlight, the solar arrays provide enough energy for the ISS. However, rechargeable Nickel-Hydrogen batteries are used during eclipse periods or at other times when the solar arrays cannot be used (at docking for example, when the arrays are turned so that they will not be damaged by the Shuttle). Thirty-eight battery cells are connected in series, which make up an ORU (Orbital Replacement Unit). An ISS "battery" is composed of two ORUs. a great deal of time into finding the best way to represent them in SPACE. During my internship, I investigated the resistance of the ISS batteries. SPACE constructs plots of battery charge and discharge voltages vs. time using a constant current. To accommodate for a time-varying current, the voltages are adjusted using the formula, DeltaV = DeltaI * Cell Resistance. To enhance our model of the battery resistance, my research concentrated on several topics: investigating the resistance of a qualification unit battery (using data gathered by LORAL), comparing the resistance of the qualification unit to SPACE, looking at the internal resistance and wiring resistance, and examining the impact of possible recommended changes to SPACE. The ISS batteries have been found to be very difficult to model, and LT-9D has

  14. Fibrous zinc anodes for high power batteries

    Science.gov (United States)

    Zhang, X. Gregory

    This paper introduces newly developed solid zinc anodes using fibrous material for high power applications in alkaline and large size zinc-air battery systems. The improved performance of the anodes in these two battery systems is demonstrated. The possibilities for control of electrode porosity and for anode/battery design using fibrous materials are discussed in light of experimental data. Because of its mechanical integrity and connectivity, the fibrous solid anode has good electrical conductivity, mechanical stability, and design flexibility for controlling mass distribution, porosity and effective surface area. Experimental data indicated that alkaline cells made of such anodes can have a larger capacity at high discharging currents than commercially available cells. It showed even greater improvement over commercial cells with a non-conventional cell design. Large capacity anodes for a zinc-air battery have also been made and have shown excellent material utilization at various discharge rates. The zinc-air battery was used to power an electric bicycle and demonstrated good results.

  15. Wearable textile battery rechargeable by solar energy.

    Science.gov (United States)

    Lee, Yong-Hee; Kim, Joo-Seong; Noh, Jonghyeon; Lee, Inhwa; Kim, Hyeong Jun; Choi, Sunghun; Seo, Jeongmin; Jeon, Seokwoo; Kim, Taek-Soo; Lee, Jung-Yong; Choi, Jang Wook

    2013-01-01

    Wearable electronics represent a significant paradigm shift in consumer electronics since they eliminate the necessity for separate carriage of devices. In particular, integration of flexible electronic devices with clothes, glasses, watches, and skin will bring new opportunities beyond what can be imagined by current inflexible counterparts. Although considerable progresses have been seen for wearable electronics, lithium rechargeable batteries, the power sources of the devices, do not keep pace with such progresses due to tenuous mechanical stabilities, causing them to remain as the limiting elements in the entire technology. Herein, we revisit the key components of the battery (current collector, binder, and separator) and replace them with the materials that support robust mechanical endurance of the battery. The final full-cells in the forms of clothes and watchstraps exhibited comparable electrochemical performance to those of conventional metal foil-based cells even under severe folding-unfolding motions simulating actual wearing conditions. Furthermore, the wearable textile battery was integrated with flexible and lightweight solar cells on the battery pouch to enable convenient solar-charging capabilities.

  16. Lithium Ion Batteries Used for Nuclear Forensics

    Science.gov (United States)

    Johnson, Erik B.; Stapels, Christopher J.; Chen, X. Jie; Whitney, Chad; Holbert, Keith E.; Christian, James F.

    2013-10-01

    Nuclear forensics includes the study of materials used for the attribution a nuclear event. Analysis of the nuclear reaction products resulting both from the weapon and the material in the vicinity of the event provides data needed to identify the source of the nuclear material and the weapon design. The spectral information of the neutrons produced by the event provides information on the weapon configuration. The lithium battery provides a unique platform for nuclear forensics, as the Li-6 content is highly sensitive to neutrons, while the battery construction consists of various layers of materials. Each of these materials represents an element for a threshold detector scheme, where isotopes are produced in the battery components through various nuclear reactions that require a neutron energy above a fundamental threshold energy. This study looks into means for extracting neutron spectral information by understanding the isotopic concentration prior to and after exposure. The radioisotopes decay through gamma and beta emission, and radiation spectrometers have been used to measure the radiation spectra from the neutron exposed batteries. The batteries were exposed to various known neutron fields, and analysis was conducted to reconstruct the incident neutron spectra. This project is supported by the Defense Threat Reduction Agency, grant number HDTRA1-11-1-0028.

  17. Photovoltaic battery charging experience in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, S.T. Jr.

    1997-12-01

    With the turn of the century, people in remote areas still live without electricity. Conventional electrification will hardly reach the remaining 50% of the population of the Philippines in remote areas. With photovoltaic technology, the delivery of electricity to remote areas can be sustainable. Malalison island was chosen as a project site for electrification using photovoltaic technology. With the fragile balance of ecology and seasonal income in this island, the PV electrification proved to be a better option than conventional fossil based electrification. The Solar Battery Charging Station (SBCS) was used to suit the economic and geographical condition of the island. Results showed that the system can charge as many as three batteries in a day for an average fee of $0.54 per battery. Charging is measured by an ampere-hour counter to determine the exact amount of charge the battery received. The system was highly accepted by the local residents and the demand easily outgrew the system within four months. A technical, economic and social evaluation was done. A recovery period of seven years and five months is expected when competed with the conventional battery charging in the mainland. The technical, economic, institutional and social risks faced by the project were analyzed. Statistics showed that there is a potential of 920,000 households that can benefit from PV electrification in the Philippines. The data and experiences gained in this study are valuable in designing SBCS for remote unelectrified communities in the Philippines and other developing countries.

  18. Valve-regulated lead-acid batteries

    Science.gov (United States)

    Berndt, D.

    Valve-regulated lead-acid (VRLA) batteries with gelled electrolyte appeared as a niche market during the 1950s. During the 1970s, when glass-fiber felts became available as a further method to immobilize the electrolyte, the market for VRLA batteries expanded rapidly. The immobilized electrolyte offers a number of obvious advantages including the internal oxygen cycle which accommodates the overcharging current without chemical change within the cell. It also suppresses acid stratification and thus opens new fields of application. VRLA batteries, however, cannot be made completely sealed, but require a valve for gas escape, since hydrogen evolution and grid corrosion are unavoidable secondary reactions. These reactions result in water loss, and also must be balanced in order to ensure proper charging of both electrodes. Both secondary reactions have significant activation energies, and can reduce the service life of VRLA batteries, operated at elevated temperature. This effect can be aggravated by the comparatively high heat generation caused by the internal oxygen cycle during overcharging. Temperature control of VRLA batteries, therefore, is important in many applications.

  19. Lithium-Thionyl Chloride Batteries for the Mars Pathfinder Microrover

    Energy Technology Data Exchange (ETDEWEB)

    Deligiannis, F.; Frank, H.; Staniewicz, R.J.; Willson, J. [SAFT America, Inc., Cockeysville, MD (United States)

    1996-02-01

    A discussion of the power requirements for the Mars Pathfinder Mission is given. Topics include: battery requirements; cell design; battery design; test descriptions and results. A summary of the results is also included.

  20. Lithium-Thionyl Chloride Batteries for the Mars Pathfinder Microrover

    Science.gov (United States)

    Deligiannis, Frank; Frank, Harvey; Staniewicz, R. J.; Willson, John

    1996-01-01

    A discussion of the power requirements for the Mars Pathfinder Mission is given. Topics include: battery requirements; cell design; battery design; test descriptions and results. A summary of the results is also included.

  1. Exploring the Model Design Space for Battery Health Management

    Data.gov (United States)

    National Aeronautics and Space Administration — Battery Health Management (BHM) is a core enabling technology for the success and widespread adoption of the emerging electric vehicles of today. Although battery...

  2. Analysis of reaction and transport processes in zinc air batteries

    CERN Document Server

    Schröder, Daniel

    2016-01-01

    This book contains a novel combination of experimental and model-based investigations, elucidating the complex processes inside zinc air batteries. The work presented helps to answer which battery composition and which air-composition should be adjusted to maintain stable and efficient charge/discharge cycling. In detail, electrochemical investigations and X-ray transmission tomography are applied on button cell zinc air batteries and in-house set-ups. Moreover, model-based investigations of the battery anode and the impact of relative humidity, active operation, carbon dioxide and oxygen on zinc air battery operation are presented. The techniques used in this work complement each other well and yield an unprecedented understanding of zinc air batteries. The methods applied are adaptable and can potentially be applied to gain further understanding of other metal air batteries. Contents Introduction on Zinc Air Batteries Characterizing Reaction and Transport Processes Identifying Factors for Long-Term Stable O...

  3. Thermal modeling of NiH2 batteries

    Science.gov (United States)

    Ponthus, Agnes-Marie; Alexandre, Alain

    1994-01-01

    The following are discussed: NiH2 battery mission and environment; NiH2 cell heat dissipation; Nodal software; model development general philosophy; NiH2 battery model development; and NiH2 experimental developments.

  4. Safety via Thermal Shutdown for Space Rated Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Li-ion battery safety has inspired many safety features from CID, to safety valves. However, none of the current features protect a battery from internal...

  5. Batteries made in Germany; Batterien made in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Wiedemann, Karsten

    2011-06-15

    Electromobility has opened up a huge market for batteries. German manufacturers are trying to grab a market share. Serial production of lithium ion batteries will start this very year in Kamenz in the German state of Sachsen.

  6. Test methodology and characterization of batteries for remote power applications

    Energy Technology Data Exchange (ETDEWEB)

    Manninen, L.M.; Tuominen, E.; Lund, P.H.

    1997-12-31

    Battery storage is an integral subcomponent of many remote autonomous energy systems. An accurate battery model is essential for the analysis of the system performance. The accuracy of the performance estimate is therefore open dependent on how well the behaviour of the battery is understood. This paper presents computational submodels that predict the voltage vs. current behaviour and internal losses of a vented lead acid battery and illustrates their utilization in practical simulation. A complete and compact methodology for the determination of the battery model parameters that is easily adaptable for different battery types is also presented. The method can be applied routinely. Required instrumentation is minimal, only battery voltage, current and temperature are recorded. The model parameters for a vented lead acid battery determined with this method are also given. (orig.) 26 refs.

  7. Solar-rechargeable battery based on photoelectrochemical water oxidation: Solar water battery

    Science.gov (United States)

    Kim, Gonu; Oh, Misol; Park, Yiseul

    2016-09-01

    As an alternative to the photoelectrochemical water splitting for use in the fuel cells used to generate electrical power, this study set out to develop a solar energy rechargeable battery system based on photoelectrochemical water oxidation. We refer to this design as a “solar water battery”. The solar water battery integrates a photoelectrochemical cell and battery into a single device. It uses a water oxidation reaction to simultaneously convert and store solar energy. With the solar water battery, light striking the photoelectrode causes the water to be photo-oxidized, thus charging the battery. During the discharge process, the solar water battery reduces oxygen to water with a high coulombic efficiency (>90%) and a high average output voltage (0.6 V). Because the reduction potential of oxygen is more positive [E0 (O2/H2O) = 1.23 V vs. NHE] than common catholytes (e.g., iodide, sulfur), a high discharge voltage is produced. The solar water battery also exhibits a superior storage ability, maintaining 99% of its specific discharge capacitance after 10 h of storage, without any evidence of self-discharge. The optimization of the cell design and configuration, taking the presence of oxygen in the cell into account, was critical to achieving an efficient photocharge/discharge.

  8. Batteries: An Advanced Na-FeCl2 ZEBRA Battery for Stationary Energy Storage Application

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Yong; Viswanathan, Vilayanur V.; Meinhardt, Kerry D.; Engelhard, Mark H.; Sprenkle, Vincent L.

    2015-06-17

    Sodium-metal chloride batteries, ZEBRA, are considered as one of the most important electrochemical devices for stationary energy storage applications because of its advantages of good cycle life, safety, and reliability. However, sodium-nickel chloride (Na-NiCl2) batteries, the most promising redox chemistry in ZEBRA batteries, still face great challenges for the practical application due to its inevitable feature of using Ni cathode (high materials cost). In this work, a novel intermediate-temperature sodium-iron chloride (Na-FeCl2) battery using a molten sodium anode and Fe cathode is proposed and demonstrated. The first use of unique sulfur-based additives in Fe cathode enables Na-FeCl2 batteries can be assembled in the discharged state and operated at intermediate-temperature (<200°C). The results in this work demonstrate that intermediate-temperature Na-FeCl2 battery technology could be a propitious solution for ZEBRA battery technologies by replacing the traditional Na-NiCl2 chemistry.

  9. Prognostics of Lithium-Ion Batteries Based on Battery Performance Analysis and Flexible Support Vector Regression

    Directory of Open Access Journals (Sweden)

    Shuai Wang

    2014-10-01

    Full Text Available Accurate prediction of the remaining useful life (RUL of lithium-ion batteries is important for battery management systems. Traditional empirical data-driven approaches for RUL prediction usually require multidimensional physical characteristics including the current, voltage, usage duration, battery temperature, and ambient temperature. From a capacity fading analysis of lithium-ion batteries, it is found that the energy efficiency and battery working temperature are closely related to the capacity degradation, which account for all performance metrics of lithium-ion batteries with regard to the RUL and the relationships between some performance metrics. Thus, we devise a non-iterative prediction model based on flexible support vector regression (F-SVR and an iterative multi-step prediction model based on support vector regression (SVR using the energy efficiency and battery working temperature as input physical characteristics. The experimental results show that the proposed prognostic models have high prediction accuracy by using fewer dimensions for the input data than the traditional empirical models.

  10. Boron Clusters as Highly Stable Magnesium-Battery Electrolytes**

    OpenAIRE

    Carter, Tyler J; Mohtadi, Rana; Arthur, Timothy S.; Mizuno, Fuminori; Zhang, Ruigang; Shirai, Soichi; Kampf, Jeff W.

    2014-01-01

    Boron clusters are proposed as a new concept for the design of magnesium-battery electrolytes that are magnesium-battery-compatible, highly stable, and noncorrosive. A novel carborane-based electrolyte incorporating an unprecedented magnesium-centered complex anion is reported and shown to perform well as a magnesium-battery electrolyte. This finding opens a new approach towards the design of electrolytes whose likelihood of meeting the challenging design targets for magnesium-battery electro...

  11. Separator Material Chosen for MH/Ni Battery

    Institute of Scientific and Technical Information of China (English)

    Xu Shaoping; Ma Yijun; Liang Wanlong; Liu Dong; Jia Chunming

    2004-01-01

    The properties of MH/Ni batteries using different separator were studied.And then an idea for choosing separator for high-power MH/Ni battery was provided.Using the separator with grafting treatment, the storage characteristic, charge retention characteristic and anti-soft-short characteristic of high-power MH/Ni battery are improved.Wetlaid and spunfibre material meet different properties requirement of battery.

  12. Battery Calendar Life Estimator Manual Modeling and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Jon P. Christophersen; Ira Bloom; Ed Thomas; Vince Battaglia

    2012-10-01

    The Battery Life Estimator (BLE) Manual has been prepared to assist developers in their efforts to estimate the calendar life of advanced batteries for automotive applications. Testing requirements and procedures are defined by the various manuals previously published under the United States Advanced Battery Consortium (USABC). The purpose of this manual is to describe and standardize a method for estimating calendar life based on statistical models and degradation data acquired from typical USABC battery testing.

  13. Lithium batteries, anodes, and methods of anode fabrication

    KAUST Repository

    Li, Lain-Jong

    2016-12-29

    Prelithiation of a battery anode carried out using controlled lithium metal vapor deposition. Lithium metal can be avoided in the final battery. This prelithiated electrode is used as potential anode for Li- ion or high energy Li-S battery. The prelithiation of lithium metal onto or into the anode reduces hazardous risk, is cost effective, and improves the overall capacity. The battery containing such an anode exhibits remarkably high specific capacity and a long cycle life with excellent reversibility.

  14. Electrical characterization of the Magellan batteries after storage

    Science.gov (United States)

    Deligiannis, Frank; Perrone, D.; Distefano, Sal; Timmerman, Paul

    1993-01-01

    Two 22 cell batteries designed by Martin Marietta were tested. The batteries were rated at 26.5 Amp-Hr. The battery design is characterized by the following: Gates Aerospace 42B030AB15, 11 pos/12 neg, Pellon 2536 separator, passivated pos/teflonated neg. The tests can be summarized as follows: (1) no noticeable capacity loss after storage period; and (2) batteries exhibited larger non-uniformity of cell voltages during constant current charge.

  15. Safety considerations for fabricating lithium battery packs

    Science.gov (United States)

    Ciesla, J. J.

    1986-09-01

    Lithium cell safety is a major issue with both manufacturers and end users. Most manufacturers have taken great strides to develop the safest cells possible while still maintaining performance characteristics. The combining of lithium cells for higher voltages, currents, and capacities requires the fabricator of lithium battery packs to be knowledgable about the specific electrochemical system being used. Relatively high rate, spirally wound (large surface area) sulfur oxychloride cells systems, such as Li/Thionyl or Sulfuryl chloride are considered. Prior to the start of a design of a battery pack, a review of the characterization studies for the cells should be conducted. The approach for fabricating a battery pack might vary with cell size.

  16. High-Power-Density Organic Radical Batteries.

    Science.gov (United States)

    Friebe, Christian; Schubert, Ulrich S

    2017-02-01

    Batteries that are based on organic radical compounds possess superior charging times and discharging power capability in comparison to established electrochemical energy-storage technologies. They do not rely on metals and, hence, feature a favorable environmental impact. They furthermore offer the possibility of roll-to-roll processing through the use of different printing techniques, which enables the cost-efficient fabrication of mechanically flexible devices. In this review, organic radical batteries are presented with the focus on the hitherto developed materials and the key properties thereof, e.g., voltage, capacity, and cycle life. Furthermore, basic information, such as significant characteristics, housing approaches, and applied additives, are presented and discussed in the context of organic radical batteries.

  17. High-energy metal air batteries

    Science.gov (United States)

    Zhang, Ji-Guang; Xiao, Jie; Xu, Wu; Wang, Deyu; Williford, Ralph E.; Liu, Jun

    2013-07-09

    Disclosed herein are embodiments of lithium/air batteries and methods of making and using the same. Certain embodiments are pouch-cell batteries encased within an oxygen-permeable membrane packaging material that is less than 2% of the total battery weight. Some embodiments include a hybrid air electrode comprising carbon and an ion insertion material, wherein the mass ratio of ion insertion material to carbon is 0.2 to 0.8. The air electrode may include hydrophobic, porous fibers. In particular embodiments, the air electrode is soaked with an electrolyte comprising one or more solvents including dimethyl ether, and the dimethyl ether subsequently is evacuated from the soaked electrode. In other embodiments, the electrolyte comprises 10-20% crown ether by weight.

  18. Anode-Free Rechargeable Lithium Metal Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Jiangfeng [The Joint Center for Energy Storage Research (JCESR), Pacific Northwest National Laboratory, Richland WA 99354 USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Adams, Brian D. [The Joint Center for Energy Storage Research (JCESR), Pacific Northwest National Laboratory, Richland WA 99354 USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Zheng, Jianming [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Xu, Wu [The Joint Center for Energy Storage Research (JCESR), Pacific Northwest National Laboratory, Richland WA 99354 USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Henderson, Wesley A. [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Wang, Jun [A123 Systems Research and Development, Waltham MA 02451 USA; Bowden, Mark E. [Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Xu, Suochang [Earth and Biological Science Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Hu, Jianzhi [The Joint Center for Energy Storage Research (JCESR), Pacific Northwest National Laboratory, Richland WA 99354 USA; Earth and Biological Science Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Zhang, Ji-Guang [The Joint Center for Energy Storage Research (JCESR), Pacific Northwest National Laboratory, Richland WA 99354 USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA

    2016-08-18

    Anode-free rechargeable lithium (Li) batteries (AFLBs) are phenomenal energy storage systems due to their significantly increased energy density and reduced cost relative to Li-ion batteries, as well as ease of assembly owing to the absence of an active (reactive) anode material. However, significant challenges, including Li dendrite growth and low cycling Coulombic efficiency (CE), have prevented their practical implementation. Here, we report for the first time an anode-free rechargeable lithium battery based on a Cu||LiFePO4 cell structure with an extremely high CE (> 99.8%). This results from the utilization of both an exceptionally stable electrolyte and optimized charge/discharge protocols which minimize the corrosion of the in-situ formed Li metal anode.

  19. Lithium Ion Batteries in Electric Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad A.

    2016-05-16

    This research focuses on the technical issues that are critical to the adoption of high-energy-producing lithium Ion batteries. In addition to high energy density / high power density, this publication considers performance requirements that are necessary to assure lithium ion technology as the battery format of choice for electrified vehicles. Presentation of prime topics includes: long calendar life (greater than 10 years); sufficient cycle life; reliable operation under hot and cold temperatures; safe performance under extreme conditions; end-of-life recycling. To achieve aggressive fuel economy standards, carmakers are developing technologies to reduce fuel consumption, including hybridization and electrification. Cost and affordability factors will be determined by these relevant technical issues which will provide for the successful implementation of lithium ion batteries for application in future generations of electrified vehicles.

  20. Fast charging of lead/acid batteries

    Energy Technology Data Exchange (ETDEWEB)

    Calasanzio, D. (FIAMM SpA, Montecchio Maggiore (Italy)); Maja, M. (Polytechnical Univ., Turin (Italy). Dept. of Materials Science and Chemical Engineering); Spinelli, P. (Polytechnical Univ., Turin (Italy). Dept. of Materials Science and Chemical Engineering)

    1993-10-15

    A key point in the development of storage batteries for electric vehicles (EVs) is the possibility for fast recharging. It is widely recognized that the lead/acid system represents an excellent candidate for EVs because of the low cost, durability, and expectance of improvements in the near future. The viability of the lead/acid battery for EV applications would be greatly enhanced if fast recharging could be applied to the system without shortening its life. The present paper reports the results obtained by simulating the charging behaviour with a mathematical model that is capable of predicting the behaviour of nonconventional lead/acid cells both on discharge and recharge. The effects of important parameters such as plate dimensions, acid distribution, and porosity of the active mass are taken into account. The data obtained with the simulation are compared with results got from fast-recharge testing of commercial batteries. (orig.)

  1. Thermal conductivity of thermal-battery insulations

    Energy Technology Data Exchange (ETDEWEB)

    Guidotti, R.A.; Moss, M.

    1995-08-01

    The thermal conductivities of a variety of insulating materials used in thermal batteries were measured in atmospheres of argon and helium using several techniques. (Helium was used to simulate the hydrogen atmosphere that results when a Li(Si)/FeS{sub 2} thermal battery ages.) The guarded-hot-plate method was used with the Min-K insulation because of its extremely low thermal conductivity. For comparison purposes, the thermal conductivity of the Min-K insulating board was also measured using the hot-probe method. The thermal-comparator method was used for the rigid Fiberfrax board and Fiberfrax paper. The thermal conductivity of the paper was measured under several levels of compression to simulate the conditions of the insulating wrap used on the stack in a thermal battery. The results of preliminary thermal-characterization tests with several silica aerogel materials are also presented.

  2. Porous graphene nanocages for battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Amine, Khalil; Lu, Jun; Du, Peng; Wen, Jianguo; Curtiss, Larry A.

    2017-03-07

    An active material composition includes a porous graphene nanocage and a source material. The source material may be a sulfur material. The source material may be an anodic material. A lithium-sulfur battery is provided that includes a cathode, an anode, a lithium salt, and an electrolyte, where the cathode of the lithium-sulfur battery includes a porous graphene nanocage and a sulfur material and at least a portion of the sulfur material is entrapped within the porous graphene nanocage. Also provided is a lithium-air battery that includes a cathode, an anode, a lithium salt, and an electrolyte, where the cathode includes a porous graphene nanocage and where the cathode may be free of a cathodic metal catalyst.

  3. Electrochemical stiffness in lithium-ion batteries

    Science.gov (United States)

    Tavassol, Hadi; Jones, Elizabeth M. C.; Sottos, Nancy R.; Gewirth, Andrew A.

    2016-11-01

    Although lithium-ion batteries are ubiquitous in portable electronics, increased charge rate and discharge power are required for more demanding applications such as electric vehicles. The high-rate exchange of lithium ions required for more power and faster charging generates significant stresses and strains in the electrodes that ultimately lead to performance degradation. To date, electrochemically induced stresses and strains in battery electrodes have been studied only individually. Here, a new technique is developed to probe the chemomechanical response of electrodes by calculating the electrochemical stiffness via coordinated in situ stress and strain measurements. We show that dramatic changes in electrochemical stiffness occur due to the formation of different graphite-lithium intercalation compounds during cycling. Our analysis reveals that stress scales proportionally with the lithiation/delithiation rate and strain scales proportionally with capacity (and inversely with rate). Electrochemical stiffness measurements provide new insights into the origin of rate-dependent chemomechanical degradation and the evaluation of advanced battery electrodes.

  4. Advancement Of Tritium Powered Betavoltaic Battery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Staack, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Gaillard, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hitchcock, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Peters, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Colon-Mercado, H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Teprovich, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coughlin, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Neikirk, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fisher, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-14

    Due to their decades-long service life and reliable power output under extreme conditions, betavoltaic batteries offer distinct advantages over traditional chemical batteries, especially in applications where frequent battery replacement is hazardous, or cost prohibitive. Although many beta emitting isotopes exist, tritium is considered ideal in betavoltaic applications for several reasons: 1) it is a “pure” beta emitter, 2) the beta is not energetic enough to damage the semiconductor, 3) it has a moderately long half-life, and 4) it is readily available. Unfortunately, the widespread application of tritium powered betavoltaics is limited, in part, by their low power output. This research targets improving the power output of betavoltaics by increasing the flux of beta particles to the energy conversion device (the p-n junction) through the use of low Z nanostructured tritium trapping materials.

  5. Rechargeable galvanic cell. Wiederaufladbare galvanische Batterie

    Energy Technology Data Exchange (ETDEWEB)

    Knoedler, R.; Mennicke, S.

    1982-11-11

    Rechargeable galvanic batteries using liquid sodium as negative electro-chemical material and liquid sulphur absorbed in graphite as the positive one as well as sodium-ion-conducting solid electrolytes which, in the battery housing, are designed as containers open to one side and filled with either sulphur or sodium and which have one collector each, are developed further by using the advantages of 'normal cells' and 'inverted cells' while reducing their disadvantages at the same time. This is obtained by designing the battery to consist in at least two parallelly arranged single cells connected in series via the housing and showing an inverted arrangement of sodium and sulphur relative to each other.

  6. The Salty Science of the Aluminum-Air Battery

    Science.gov (United States)

    Chasteen, Stephanie V.; Chasteen, N. Dennis; Doherty, Paul

    2008-01-01

    Fruit batteries and saltwater batteries are excellent ways to explore simple circuits in the classroom. These are examples of air batteries in which metal reacts with oxygen in the air in order to generate free electrons, which flow through an external circuit and do work. Students are typically told that the salt or fruit water acts as an…

  7. Gradient porous electrode architectures for rechargeable metal-air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Dudney, Nancy J.; Klett, James W.; Nanda, Jagjit; Narula, Chaitanya Kumar; Pannala, Sreekanth

    2016-03-22

    A cathode for a metal air battery includes a cathode structure having pores. The cathode structure has a metal side and an air side. The porosity decreases from the air side to the metal side. A metal air battery and a method of making a cathode for a metal air battery are also disclosed.

  8. 77 FR 68069 - Outbound International Mailings of Lithium Batteries

    Science.gov (United States)

    2012-11-15

    ... 20 Outbound International Mailings of Lithium Batteries AGENCY: Postal Service TM . ACTION: Final... batteries internationally, or to and from an APO, FPO, or DPO destinations. DATES: Effective date: November... international standards effective May 16, 2012, that prohibited the mailing of lithium batteries and...

  9. 76 FR 53056 - Outbound International Mailings of Lithium Batteries

    Science.gov (United States)

    2011-08-25

    ... 20 Outbound International Mailings of Lithium Batteries AGENCY: Postal Service TM . ACTION: Final... for the outbound mailing of lithium batteries. This is consistent with recent amendments to the... a subject line of ``International Lithium Batteries.'' Faxed comments are not accepted. FOR...

  10. 75 FR 9147 - Hazardous Materials: Transportation of Lithium Batteries

    Science.gov (United States)

    2010-03-01

    ...-AE44 Hazardous Materials: Transportation of Lithium Batteries AGENCY: Pipeline and Hazardous Materials... associated with the air transport of lithium cells and batteries. PHMSA and FAA will hold a public meeting on... they will be attending the Lithium Battery Public Meeting and wait to be escorted to the...

  11. Battery-Aware Scheduling of Mixed Criticality Systems

    DEFF Research Database (Denmark)

    Wognsen, Erik Ramsgaard; Hansen, Rene Rydhof; Larsen, Kim Guldstrand

    2014-01-01

    Wireless systems such as satellites and sensor networks are often battery-powered. To operate optimally they must therefore take the performance properties of real batteries into account. Additionally, these systems, and therefore their batteries, are often exposed to loads with uncertain timings...

  12. Prediction of Betavoltaic Battery Output Parameters Based on SEM Measurements

    Directory of Open Access Journals (Sweden)

    E.B. Yakimov

    2016-12-01

    Full Text Available The approach for the prediction of betavoltaic battery output parameters based on EBIC investigations of semiconductor converters of beta-radiation energy into electric power is presented. Using this approach the parameters of battery based on porous Si are calculated. These parameters are compared with those of battery based on a planar Si p-n junction.

  13. High performance batteries with carbon nanomaterials and ionic liquids

    Science.gov (United States)

    Lu, Wen

    2012-08-07

    The present invention is directed to lithium-ion batteries in general and more particularly to lithium-ion batteries based on aligned graphene ribbon anodes, V.sub.2O.sub.5 graphene ribbon composite cathodes, and ionic liquid electrolytes. The lithium-ion batteries have excellent performance metrics of cell voltages, energy densities, and power densities.

  14. Datasheet-based modeling of Li-Ion batteries

    DEFF Research Database (Denmark)

    Barreras, Jorge Varela; Schaltz, Erik; Andreasen, Søren Juhl;

    2012-01-01

    Researchers and developers use battery models in order to predict the performance of batteries depending on external and internal conditions, such as temperature, C-rate, Depth-of-Discharge (DoD) or State-of-Health (SoH). Most battery models proposed in the literature require specific laboratory ...

  15. 14 CFR 23.1353 - Storage battery design and installation.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Storage battery design and installation. 23... Equipment Electrical Systems and Equipment § 23.1353 Storage battery design and installation. (a) Each storage battery must be designed and installed as prescribed in this section. (b) Safe cell...

  16. An Advanced HIL Simulation Battery Model for Battery Management System Testing

    DEFF Research Database (Denmark)

    Barreras, Jorge Varela; Fleischer, Christian; Christensen, Andreas Elkjær

    2016-01-01

    testing on a commercial HIL simulator. A multicell electrothermal Li-ion battery (LIB) model is integrated in a system-level simulation. Then, the LIB system model is converted to C code and run in real time with the HIL simulator. Finally, in order to demonstrate the capabilities of the setup......Developers and manufacturers of battery management systems (BMSs) require extensive testing of controller Hardware (HW) and Software (SW), such as analog front-end and performance of generated control code. In comparison with the tests conducted on real batteries, tests conducted on a state...

  17. Data-driven battery product development: Turn battery performance into a competitive advantage.

    Energy Technology Data Exchange (ETDEWEB)

    Sholklapper, Tal [Voltaiq, Inc.

    2016-04-19

    Poor battery performance is a primary source of user dissatisfaction across a broad range of applications, and is a key bottleneck hindering the growth of mobile technology, wearables, electric vehicles, and grid energy storage. Engineering battery systems is difficult, requiring extensive testing for vendor selection, BMS programming, and application-specific lifetime testing. This work also generates huge quantities of data. This presentation will explain how to leverage this data to help ship quality products faster using fewer resources while ensuring safety and reliability in the field, ultimately turning battery performance into a competitive advantage.

  18. Circuit with a Switch for Charging a Battery in a Battery Capacitor Circuit

    Science.gov (United States)

    Stuart, Thomas A. (Inventor); Ashtiani, Cyrus N. (Inventor)

    2008-01-01

    A circuit for charging a battery combined with a capacitor includes a power supply adapted to be connected to the capacitor, and the battery. The circuit includes an electronic switch connected to the power supply. The electronic switch is responsive to switch between a conducting state to allow current and a non-conducting state to prevent current flow. The circuit includes a control device connected to the switch and is operable to generate a control signal to continuously switch the electronic switch between the conducting and non-conducting states to charge the battery.

  19. 基于磁场耦合共振的自适应无线充电器研究%Study of Adaptive Wireless Charger Based on MCI-WPT

    Institute of Scientific and Technical Information of China (English)

    张胜利; 李伟

    2016-01-01

    In view of the development of the wireless charger which belongs to the initial stage of the study,the model of the mutual inductance coupling resonance is analyzed in this paper.The normalized voltage expression is obtained by the circuit analysis,and the effective transmission distance and frequency characteristics of the transmission model are analyzed based on the normalized voltage expression.Through the optimization of circuit design,the efficiency of transmission is achieved.Through a series of experimental data,the design of the program,the correctness and effectiveness of the analysis.%针对目前在国内属于研究初始阶段的穿戴设备的无线充电器的开发,首先对无线电能传输的互感耦合共振的模型进行分析。从电路角度对互感耦合模型的工作原理进行系统的分析。通过电路分析得出的归一化电压表达式,并基于归一化电压表达式,对传输模型的有效传输距离和频率特性进行分析。通过一系列的实验数据,对设计的方案进行正确性和有效性的分析。通过红外测距,把红外测距的数据经过处理器处理,可以调节相应的充电器的参数,通过控制器打开多路开关选择发射和接收线圈的匝数,就可以在距离改变的时候实现自适应的调整,从而提高电能传输效率。为小功率无线穿戴设备的充电设备的开发,提供相应参考。

  20. Reserve, flowing electrolyte, high rate lithium battery

    Science.gov (United States)

    Puskar, M.; Harris, P.

    Flowing electrolyte Li/SOCl2 tests in single cell and multicell bipolar fixtures have been conducted, and measurements are presented for electrolyte flow rates, inlet and outlet temperatures, fixture temperatures at several points, and the pressure drop across the fixture. Reserve lithium batteries with flowing thionyl-chloride electrolytes are found to be capable of very high energy densities with usable voltages and capacities at current densities as high as 500 mA/sq cm. At this current density, a battery stack 10 inches in diameter is shown to produce over 60 kW of power while maintaining a safe operating temperature.