WorldWideScience

Sample records for battery capacity indicator

  1. A new battery capacity indicator for nickel-metal hydride battery powered electric vehicles using adaptive neuro-fuzzy inference system

    CERN Document Server

    Chau, K T; Chan, C C; Shen, W X

    2003-01-01

    This paper describes a new approach to estimate accurately the battery residual capacity (BRC) of the nickel-metal hydride (Ni-MH) battery for modern electric vehicles (EVs). The key to this approach is to model the Ni-MH battery in EVs by using the adaptive neuro-fuzzy inference system (ANFIS) with newly defined inputs and output. The inputs are the temperature and the discharged capacity distribution describing the discharge current profile, while the output is the state of available capacity (SOAC) representing the BRC. The estimated SOAC from ANFIS model and the measured SOAC from experiments are compared, and the results confirm that the proposed approach can provide an accurate estimation of the SOAC under variable discharge currents.

  2. Hubble Space Telescope Battery Capacity Update

    Science.gov (United States)

    Hollandsworth, Roger; Armantrout, Jon; Rao, Gopalakrishna M.

    2007-01-01

    Orbital battery performance for the Hubble Space Telescope is discussed and battery life is predicted which supports decision to replace orbital batteries by 2009-2010 timeframe. Ground characterization testing of cells from the replacement battery build is discussed, with comparison of data from battery capacity characterization with cell studies of Cycle Life and 60% Stress Test at the Naval Weapons Surface Center (NWSC)-Crane, and cell Cycle Life testing at the Marshal Space Flight Center (MSFC). The contents of this presentation includes an update to the performance of the on-orbit batteries, as well as a discussion of the HST Service Mission 4 (SM4) batteries manufactured in 1996 and activated in 2000, and a second set of SM4 backup replacement batteries which began manufacture Jan 11, 2007, with delivery scheduled for July 2008.

  3. 46 CFR 112.55-15 - Capacity of storage batteries.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Capacity of storage batteries. 112.55-15 Section 112.55... LIGHTING AND POWER SYSTEMS Storage Battery Installation § 112.55-15 Capacity of storage batteries. (a) A storage battery for an emergency lighting and power system must have the capacity— (1) To close...

  4. High-capacity nanocarbon anodes for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haitao; Sun, Xianzhong; Zhang, Xiong; Lin, He; Wang, Kai; Ma, Yanwei, E-mail: ywma@mail.iee.ac.cn

    2015-02-15

    Highlights: • The nanocarbon anodes in lithium-ion batteries deliver a high capacity of ∼1100 mA h g{sup −1}. • The nanocarbon anodes exhibit excellent cyclic stability. • A novel structure of carbon materials, hollow carbon nanoboxes, has potential application in lithium-ion batteries. - Abstract: High energy and power density of secondary cells like lithium-ion batteries become much more important in today’s society. However, lithium-ion battery anodes based on graphite material have theoretical capacity of 372 mA h g{sup −1} and low charging-discharging rate. Here, we report that nanocarbons including mesoporous graphene (MPG), carbon tubular nanostructures (CTN), and hollow carbon nanoboxes (HCB) are good candidate for lithium-ion battery anodes. The nanocarbon anodes have high capacity of ∼1100, ∼600, and ∼500 mA h g{sup −1} at 0.1 A g{sup −1} for MPG, CTN, and HCB, respectively. The capacity of 181, 141, and 139 mA h g{sup −1} at 4 A g{sup −1} for MPG, CTN, and HCB anodes is retained. Besides, nanocarbon anodes show high cycling stability during 1000 cycles, indicating formation of a passivating layer—solid electrolyte interphase, which support long-term cycling. Nanocarbons, constructed with graphene layers which fulfill lithiation/delithiation process, high ratio of graphite edge structure, and high surface area which facilitates capacitive behavior, deliver high capacity and improved rate-capability.

  5. Fail-safe designs for large capacity battery systems

    Science.gov (United States)

    Kim, Gi-Heon; Smith, Kandler; Ireland, John; Pesaran, Ahmad A.; Neubauer, Jeremy

    2016-05-17

    Fail-safe systems and design methodologies for large capacity battery systems are disclosed. The disclosed systems and methodologies serve to locate a faulty cell in a large capacity battery, such as a cell having an internal short circuit, determine whether the fault is evolving, and electrically isolate the faulty cell from the rest of the battery, preventing further electrical energy from feeding into the fault.

  6. Satellite Lithium-Ion Battery Remaining Cycle Life Prediction with Novel Indirect Health Indicator Extraction

    OpenAIRE

    Haitao Liao; Wei Xie; Yu Peng; Datong Liu; Hong Wang

    2013-01-01

    Prognostics and remaining useful life (RUL) estimation for lithium-ion batteries play an important role in intelligent battery management systems (BMS). The capacity is often used as the fade indicator for estimating the remaining cycle life of a lithium-ion battery. For spacecraft requiring high reliability and long lifetime, in-orbit RUL estimation and reliability verification on ground should be carefully addressed. However, it is quite challenging to monitor and estimate the capacity of a...

  7. Optimised battery capacity utilisation within battery management systems

    NARCIS (Netherlands)

    Wilkins, S.; Rosca, B.; Jacob, J.; Hoedmaekers, E.

    2015-01-01

    Battery Management Systems (BMSs) play a key role in the performance of both hybrid and fully electric vehicles. Typically, the role of the BMS is to help maintain safety, performance, and overall efficiency of the battery pack. One important aspect of its operation is the estimation of the state of

  8. Battery prices and capacity sensitivity: Electric drive vehicles

    DEFF Research Database (Denmark)

    Juul, Nina

    2012-01-01

    The increase in fluctuating power production requires an increase in flexibility in the system as well. Flexibility can be found in generation technologies with fast response times or in storage options. In the transport sector, the proportion of electric drive vehicles is expected to increase over...... the next decade or two. These vehicles can provide some of the flexibility needed in the power system, in terms of both flexible demand and electricity storage. However, what are the batteries worth to the power system? And does the value depend on battery capacity? This article presents an analysis...... of the integrated power and transport system, focusing on the sensitivity of the power system configuration according to battery capacity and price of the electric drive vehicle. The value of different battery capacities is estimated, given that the batteries are used for both driving and storage. Likewise...

  9. Post-vehicle-application lithium-ion battery remanufacturing, repurposing and recycling capacity: Modeling and analysis

    Directory of Open Access Journals (Sweden)

    Charles Robert Standridge

    2015-05-01

    recycling is relatively constant regardless of the percent of post-vehicle-application batteries that are remanufactured.  The sum of the capacity for remanufacturing and recycling is relatively constant as well.  The need for new battery production capacity is reduced significantly (> 10% for remanufacturing percentages of 55% and above. Research limitations/implications: There is a high degree of uncertainty associated with any forecast concerning post-vehicle-application lithium-ion batteries due to a lack of experience with their remanufacturing, repurposing, and recycling. Practical implications: Electrification of vehicles appears to be the only technically feasible approach to meeting government regulations concerning mileage and emissions (Center for Climate and Energy Solutions 2013.  The planning in the present for the remanufacturing, repurposing, and recycling of the lithium-ion batteries used in electrification of vehicles is necessary.  Capacity estimation is one important component of such planning. Social implications: The electrification of vehicles versus the use of fossil fuels is consistent with the guiding principles of sustainability in helping to meet current needs without compromising the needs and resources of future generations.  Reusing entire lithium-ion batteries or recycling the materials of which they are composed further reinforces the sustainability of vehicle electrification. Originality/value: Estimates of recycling capacity needed in 2030, about 2.69M kWh, change little with the percent of post-vehicle-application batteries that are remanufactured.  The need for significant recycling capacity appears between 2022 and 2024, increasing steadily thereafter.  Similarly, the sum of remanufacturing and repurposing capacity is relatively constant indicating the need for flexible facilities that can do either task.  In addition by 2030, up to approximately 25% of new battery production could be replaced by remanufactured batteries.

  10. Battery Management Systems: Accurate State-of-Charge Indication for Battery-Powered Applications

    NARCIS (Netherlands)

    Pop, V.; Bergveld, H.J.; Danilov, D.; Regtien, P.P.L.; Notten, P.H.L.

    2008-01-01

    Battery Management Systems – Universal State-of-Charge indication for portable applications describes the field of State-of-Charge (SoC) indication for rechargeable batteries. With the emergence of battery-powered devices with an increasing number of power-hungry features, accurately estimating the

  11. Prediction of Retained Capacity and EODV of Li-ion Batteries in LEO Spacecraft Batteries

    CERN Document Server

    Ramakrishnan, S; Jeyakumar, A Ebenezer

    2010-01-01

    In resent years ANN is widely reported for modeling in different areas of science including electro chemistry. This includes modeling of different technological batteries such as lead acid battery, Nickel cadmium batteries etc. Lithium ion batteries are advance battery technology which satisfy most of the space mission requirements. Low earth orbit (LEO)space craft batteries undergo large number of charge discharge cycles (about 25000 cycles)compared to other ground level or space applications. This study is indented to develop ANN model for about 25000 cycles, cycled under various temperature, Depth Of Discharge (DOD) settings with constant charge voltage limit to predict the retained capacity and End of Discharge Voltage (EODV). To extract firm conclusion and distinguish the capability of ANN method, the predicted values are compared with experimental result by statistical method and Bland Altman plot.

  12. Recycling rice husks for high-capacity lithium battery anodes.

    Science.gov (United States)

    Jung, Dae Soo; Ryou, Myung-Hyun; Sung, Yong Joo; Park, Seung Bin; Choi, Jang Wook

    2013-07-23

    The rice husk is the outer covering of a rice kernel and protects the inner ingredients from external attack by insects and bacteria. To perform this function while ventilating air and moisture, rice plants have developed unique nanoporous silica layers in their husks through years of natural evolution. Despite the massive amount of annual production near 10(8) tons worldwide, so far rice husks have been recycled only for low-value agricultural items. In an effort to recycle rice husks for high-value applications, we convert the silica to silicon and use it for high-capacity lithium battery anodes. Taking advantage of the interconnected nanoporous structure naturally existing in rice husks, the converted silicon exhibits excellent electrochemical performance as a lithium battery anode, suggesting that rice husks can be a massive resource for use in high-capacity lithium battery negative electrodes.

  13. Satellite Lithium-Ion Battery Remaining Cycle Life Prediction with Novel Indirect Health Indicator Extraction

    Directory of Open Access Journals (Sweden)

    Haitao Liao

    2013-07-01

    Full Text Available Prognostics and remaining useful life (RUL estimation for lithium-ion batteries play an important role in intelligent battery management systems (BMS. The capacity is often used as the fade indicator for estimating the remaining cycle life of a lithium-ion battery. For spacecraft requiring high reliability and long lifetime, in-orbit RUL estimation and reliability verification on ground should be carefully addressed. However, it is quite challenging to monitor and estimate the capacity of a lithium-ion battery on-line in satellite applications. In this work, a novel health indicator (HI is extracted from the operating parameters of a lithium-ion battery to quantify battery degradation. Moreover, the Grey Correlation Analysis (GCA is utilized to evaluate the similarities between the extracted HI and the battery’s capacity. The result illustrates the effectiveness of using this new HI for fading indication. Furthermore, we propose an optimized ensemble monotonic echo state networks (En_MONESN algorithm, in which the monotonic constraint is introduced to improve the adaptivity of degradation trend estimation, and ensemble learning is integrated to achieve high stability and precision of RUL prediction. Experiments with actual testing data show the efficiency of our proposed method in RUL estimation and degradation modeling for the satellite lithium-ion battery application.

  14. Modeling Battery Behavior for Accurate State-of-Charge Indication

    NARCIS (Netherlands)

    Pop, V.; Bergveld, H.J.; Veld, op het J.H.G.; Regtien, P.P.L.; Danilov, D.; Notten, P.H.L.

    2006-01-01

    Li-ion is the most commonly used battery chemistry in portable applications nowadays. Accurate state-of-charge (SOC) and remaining run-time indication for portable devices is important for the user's convenience and to prolong the lifetime of batteries. A new SOC indication system, combining the ele

  15. High capacity anode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Herman A.; Anguchamy, Yogesh Kumar; Deng, Haixia; Han, Yongbon; Masarapu, Charan; Venkatachalam, Subramanian; Kumar, Suject

    2015-11-19

    High capacity silicon based anode active materials are described for lithium ion batteries. These materials are shown to be effective in combination with high capacity lithium rich cathode active materials. Supplemental lithium is shown to improve the cycling performance and reduce irreversible capacity loss for at least certain silicon based active materials. In particular silicon based active materials can be formed in composites with electrically conductive coatings, such as pyrolytic carbon coatings or metal coatings, and composites can also be formed with other electrically conductive carbon components, such as carbon nanofibers and carbon nanoparticles. Additional alloys with silicon are explored.

  16. High voltage and high specific capacity dual intercalating electrode Li-ion batteries

    Science.gov (United States)

    West, William C. (Inventor); Blanco, Mario (Inventor)

    2010-01-01

    The present invention provides high capacity and high voltage Li-ion batteries that have a carbonaceous cathode and a nonaqueous electrolyte solution comprising LiF salt and an anion receptor that binds the fluoride ion. The batteries can comprise dual intercalating electrode Li ion batteries. Methods of the present invention use a cathode and electrode pair, wherein each of the electrodes reversibly intercalate ions provided by a LiF salt to make a high voltage and high specific capacity dual intercalating electrode Li-ion battery. The present methods and systems provide high-capacity batteries particularly useful in powering devices where minimizing battery mass is important.

  17. A novel health indicator for on-line lithium-ion batteries remaining useful life prediction

    Science.gov (United States)

    Zhou, Yapeng; Huang, Miaohua; Chen, Yupu; Tao, Ye

    2016-07-01

    Prediction of lithium-ion batteries remaining useful life (RUL) plays an important role in an intelligent battery management system. The capacity and internal resistance are often used as the batteries health indicator (HI) for quantifying degradation and predicting RUL. However, on-line measurement of capacity and internal resistance are hardly realizable due to the not fully charged and discharged condition and the extremely expensive cost, respectively. Therefore, there is a great need to find an optional way to deal with this plight. In this work, a novel HI is extracted from the operating parameters of lithium-ion batteries for degradation modeling and RUL prediction. Moreover, Box-Cox transformation is employed to improve HI performance. Then Pearson and Spearman correlation analyses are utilized to evaluate the similarity between real capacity and the estimated capacity derived from the HI. Next, both simple statistical regression technique and optimized relevance vector machine are employed to predict the RUL based on the presented HI. The correlation analyses and prediction results show the efficiency and effectiveness of the proposed HI for battery degradation modeling and RUL prediction.

  18. Analysis of capacity fade in a lithium ion battery

    Science.gov (United States)

    Stamps, Andrew T.; Holland, Charles E.; White, Ralph E.; Gatzke, Edward P.

    Two parameter estimation methods are presented for online determination of parameter values using a simple charge/discharge model of a Sony 18650 lithium ion battery. Loss of capacity and resistance increase are both included in the model. The first method is a hybrid combination of batch data reconciliation and moving-horizon parameter estimation. A discussion on the selection of tuning parameters for this method based on confidence intervals is included. The second method uses batch data reconciliation followed by application of discrete filtering of the resulting parameters. These methods are demonstrated using cycling data from an experimental cell with over 1600 charge-discharge cycles.

  19. Analysis on the capacity degradation mechanism of a series lithium-ion power battery pack based on inconsistency of capacity

    Institute of Scientific and Technical Information of China (English)

    Wang Zhen-Po; Liu Peng; Wang Li-Fang

    2013-01-01

    The lithium-ion battery has been widely used as an energy source.Charge rate,discharge rate,and operating temperature are very important factors for the capacity degradations of power batteries and battery packs.Firstly,in this paper we make use of an accelerated life test and a statistical analysis method to establish the capacity accelerated degradation model under three constant stress parameters according to the degradation data,which are charge rate,discharge rate,and operating temperature,and then we propose a capacity degradation model according to the current residual capacity of a Li-ion cell under dynamic stress parameters.Secondly,we analyze the charge and discharge process of a series power battery pack and interpret the correlation between the capacity degradations of the battery pack and its charge/discharge rate.According to this cycling condition,we establish a capacity degradation model of a series power battery pack under inconsistent capacity of cells,and analyze the degradation mechanism with capacity variance and operating temperature difference.The comparative analysis of test results shows that the inconsistent operating temperatures of cells in the series power battery pack are the main cause of its degradation; when the difference between inconsistent temperatures is narrowed by 5 ℃,the cycle life can be improved by more than 50%.Therefore,it effectively improves the cycle life of the series battery pack to reasonably assemble the batteries according to their capacities and to narrow the differences in operating temperature among cells.

  20. Selective poisoning of Li-air batteries for increased discharge capacity

    DEFF Research Database (Denmark)

    Mýrdal, Jón Steinar Garðarsson; Vegge, Tejs

    2014-01-01

    The main discharge product at the cathode of non-aqueous Li-air batteries is insulating Li2O2 and its poor electronic conduction is a main limiting factor in the battery performance. Here, we apply density functional theory calculations (DFT) to investigate the potential of circumventing...... accessible battery capacity at the expense of a limited increase in the overpotentials....

  1. Tracking inhomogeneity in high-capacity lithium iron phosphate batteries

    Science.gov (United States)

    Paxton, William A.; Zhong, Zhong; Tsakalakos, Thomas

    2015-02-01

    Energy-dispersive x-ray diffraction (EDXRD) is one of the few techniques that can internally probe a sealed battery under operating conditions. In this paper, we use EDXRD with ultrahigh energy synchrotron radiation to track inhomogeneity in a cycled high-capacity lithium iron phosphate cell under in-situ and operando conditions. A sequence of depth-profile x-ray diffraction spectra are collected with 40 μm resolution as the cell is discharged. Additionally, nine different locations of the cell are tracked independently throughout a second discharge process. In each case, a two-peak reference intensity ratio analysis (RIR) was used on the LiFePO4 311 and the FePO4 020 reflections to estimate the relative phase abundance of the lithiated and non-lithiated phases. The data provide a first-time look at the dynamics of electrochemical inhomogeneity in a real-world battery. We observe a strong correlation between inhomogeneity and overpotential in the galvanic response of the cell. Additionally, the data closely follow the behavior that is predicted by the resistive-reactant model originally proposed by Thomas-Alyea. Despite a non-linear response in the independently measured locations, the behavior of the ensemble is strikingly linear. This suggests that effects of inhomogeneity can be elusive and highlights the power of the EDXRD technique.

  2. Verification of Safety Margins of Battery Banks Capacity of Class 1E DC System in a Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lukman, Abdulrauf [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Zhu, Oon-Pyo [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    According to Ref 'Station blackout (SBO) is generally a plant condition with complete loss of all alternating current (AC) power from off-site sources, from the main generator and from standby AC power sources important to safety to the essential and nonessential switchgear buses. Direct current (DC) power supplies and uninterruptible AC power supplies may be available as long as batteries can supply the loads, alternate AC power supplies are available'. The above IAEA document indicated the importance of batteries during SBO. Prior to the Fukushima accident, most batteries might be designed with coping capability of four hours. However, the accident showed the need for the coping capability to be increased to at least eight hours. The purpose of this research is to verify the safety capacity margin of the nuclear qualified battery banks of class 1E DC system and test the response to SBO using the load profile of a Korean design nuclear power plant (NPP). The capacity margins of class 1E batteries of DC power system batteries in a nuclear power plant were determined using the load profile of the plant. It was observed that if appropriate manufacturer Kt data are not available, the accuracy of the battery capacity might not be accurately calculated. The result obtained shows that the batteries have the coping capability of two hours for channel A and B, and eight hours for channel C and D. Also capacity margin as show in figure show a reasonable margin for each batteries of the DC system.

  3. AFM as an analysis tool for high-capacity sulfur cathodes for Li-S batteries.

    Science.gov (United States)

    Hiesgen, Renate; Sörgel, Seniz; Costa, Rémi; Carlé, Linus; Galm, Ines; Cañas, Natalia; Pascucci, Brigitta; Friedrich, K Andreas

    2013-01-01

    In this work, material-sensitive atomic force microscopy (AFM) techniques were used to analyse the cathodes of lithium-sulfur batteries. A comparison of their nanoscale electrical, electrochemical, and morphological properties was performed with samples prepared by either suspension-spraying or doctor-blade coating with different binders. Morphological studies of the cathodes before and after the electrochemical tests were performed by using AFM and scanning electron microscopy (SEM). The cathodes that contained polyvinylidene fluoride (PVDF) and were prepared by spray-coating exhibited a superior stability of the morphology and the electric network associated with the capacity and cycling stability of these batteries. A reduction of the conductive area determined by conductive AFM was found to correlate to the battery capacity loss for all cathodes. X-ray diffraction (XRD) measurements of Li2S exposed to ambient air showed that insulating Li2S hydrolyses to insulating LiOH. This validates the significance of electrical ex-situ AFM analysis after cycling. Conductive tapping mode AFM indicated the existence of large carbon-coated sulfur particles. Based on the analytical findings, the first results of an optimized cathode showed a much improved discharge capacity of 800 mA·g(sulfur)(-1) after 43 cycles.

  4. Prediction of Retained Capacity and EODV of Li-ion Batteries in LEO Spacecraft Batteries

    OpenAIRE

    2010-01-01

    In resent years ANN is widely reported for modeling in different areas of science including electro chemistry. This includes modeling of different technological batteries such as lead acid battery, Nickel cadmium batteries etc. Lithium ion batteries are advance battery technology which satisfy most of the space mission requirements. Low earth orbit (LEO)space craft batteries undergo large number of charge discharge cycles (about 25000 cycles)compared to other ground level or space application...

  5. Quantitative Analysis of Lithium-Ion Battery Capacity Prediction via Adaptive Bathtub-Shaped Function

    Directory of Open Access Journals (Sweden)

    Shaomin Wu

    2013-06-01

    Full Text Available Batteries are one of the most important components in many mechatronics systems, as they supply power to the systems and their failures may lead to reduced performance or even catastrophic results. Therefore, the prediction analysis of remaining useful life (RUL of batteries is very important. This paper develops a quantitative approach for battery RUL prediction using an adaptive bathtub-shaped function (ABF. ABF has been utilised to model the normalised battery cycle capacity prognostic curves, which attempt to predict the remaining battery capacity with given historical test data. An artificial fish swarm algorithm method with a variable population size (AFSAVP is employed as the optimiser for the parameter determination of the ABF curves, in which the fitness function is defined in the form of a coefficient of determination (R2. A 4 x 2 cross-validation (CV has been devised, and the results show that the method can work valuably for battery health management and battery life prediction.

  6. Device for automotive checking of battery capacity. Vorrichtung zur selbsttaetigen Pruefung der Kapazitaet von Batterien

    Energy Technology Data Exchange (ETDEWEB)

    Borkers, E.

    1987-01-29

    Well-known processes have the disadvantage that they have to be done manually and if the mains supply is suddenly lost, the units, for example in emergency power supplies, are not ready to work. The advance according to the invention is that a time measuring device, e.g. a frequency divider, is switched on simultaneously with the battery voltage monitoring. This divides the test period into 100 parts and emits pulses until either the test period has elapsed or the voltage drops below a voltage limit. In that case, a signal device operates and the battery is connected to the charger. The emitted pulses are added and are indicated optically as % of storage capacity. If the mains supply fails during the test period, the unit is switched on via a control relay.

  7. Silicon oxide based high capacity anode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Haixia; Han, Yongbong; Masarapu, Charan; Anguchamy, Yogesh Kumar; Lopez, Herman A.; Kumar, Sujeet

    2017-03-21

    Silicon oxide based materials, including composites with various electrical conductive compositions, are formulated into desirable anodes. The anodes can be effectively combined into lithium ion batteries with high capacity cathode materials. In some formulations, supplemental lithium can be used to stabilize cycling as well as to reduce effects of first cycle irreversible capacity loss. Batteries are described with surprisingly good cycling properties with good specific capacities with respect to both cathode active weights and anode active weights.

  8. Changes of Some Capacities and Failure Mode of Ni/MH Batteries During Cycling

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The changes of capacities of positive and negative electrodes,reserve capacities of charging and discharging, and the weight of batteries during cycling have been determined. The increase of the discharging reserve capacity due to the conjugated electrochemical reactions of the oxidation of hydrogen-storage alloy is estimated. The results show that the failure mode of Ni/MH batteries developed is as follows: during the increase of cycles, the hydrogen-storage alloy is oxidized continuously and the charging reserve capacity is decreased rapidly while the discharging reserve capacity is increased gradually, thus the internal pressure is increasing, first H2 leaks out from the battery, then the mixture of H2 and O2. The leakage of gases and the total reaction of oxidation of the alloy consume H2O, and the surface oxides on the alloy increase, so that the internal resistance of the battery increases.

  9. Research on Effective Oxygen Window Influencing the Capacity of Li-O2 Batteries.

    Science.gov (United States)

    Jiang, Jie; Deng, Han; Li, Xiang; Tong, Shengfu; He, Ping; Zhou, Haoshen

    2016-04-27

    Li-O2 batteries have attracted extensive attention recently due to the extremely huge specific energy. Similar to research mode of Li-ion batteries, nowadays specific capacity based on the mass of cathode material is widely adopted to evaluate the electrochemical performance of Li-O2 batteries. However, the prerequisite of linear correlation between the delivered capacity and active mass is easily neglected. In this paper, we demonstrate the rationality of specific capacity adopted in Li-ion batteries with classic LiCoO2 cathode by confirming the linear correlation between cell capacity and LiCoO2 mass. Delivered capacities of Li-O2 batteries with different cathode masses are simultaneously measured and nonlinear correlation is obtained. The discharge and charge products are identified by X-ray diffraction and in situ gas chromatography-mass spectrometry analysis to ensure reaction mechanism. Discharge capacities of Li-O2 batteries with various areas of oxygen window are further studied, which shows that cell capacity increases linearly with the area of oxygen window. Scanning electron microscopy is employed to observe the discharged electrode and shows that Li2O2 deposition during discharge mainly occurs in the electrode area exposure to the oxygen, which is consequently defined as effective area for accommodating Li2O2. Moreover, a plausible route for formation of effective area in the oxygen electrode is proposed. These results provide evidence that effective area is an equally important factor determining cell capacity.

  10. Li2C2, a High-Capacity Cathode Material for Lithium Ion Batteries.

    Science.gov (United States)

    Tian, Na; Gao, Yurui; Li, Yurong; Wang, Zhaoxiang; Song, Xiaoyan; Chen, Liquan

    2016-01-11

    As a typical alkaline earth metal carbide, lithium carbide (Li2C2) has the highest theoretical specific capacity (1400 mA h g(-1)) among all the reported lithium-containing cathode materials for lithium ion batteries. Herein, the feasibility of using Li2C2 as a cathode material was studied. The results show that at least half of the lithium can be extracted from Li2C2 and the reversible specific capacity reaches 700 mA h g(-1). The C≡C bond tends to rotate to form C4 (C≡C⋅⋅⋅C≡C) chains during lithium extraction, as indicated with the first-principles molecular dynamics (FPMD) simulation. The low electronic and ionic conductivity are believed to be responsible for the potential gap between charge and discharge, as is supported with density functional theory (DFT) calculations and Arrhenius fitting results. These findings illustrate the feasibility to use the alkali and alkaline earth metal carbides as high-capacity electrode materials for secondary batteries.

  11. Significance of the Capacity Recovery Effect in Pouch Lithium-Sulfur Battery Cells

    DEFF Research Database (Denmark)

    Knap, Vaclav; Zhang, Teng; Stroe, Daniel Loan;

    2016-01-01

    Lithium-Sulfur (Li-S) batteries are an emerging energy storage technology, which is technically-attractive due to its high theoretical limits; practically, it is expected that Li-S batteries will result into lighter energy storage devices with higher capacities than traditional Lithium-ion batter...

  12. SGCC successfully developed large-capacity sodium-sulfur monomeric battery

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Through many years' cooperation,SGCC and Shanghai Silicate Research Institute of Chinese Academy of Science successfully developed 650 ampere-hours capacity sodium-sulfur monomeric storage battery with the independent intellectual property right

  13. Optimal Capacity Allocation of Large-Scale Wind-PV-Battery Units

    OpenAIRE

    Kehe Wu; Huan Zhou; Jizhen Liu

    2014-01-01

    An optimal capacity allocation of large-scale wind-photovoltaic- (PV-) battery units was proposed. First, an output power model was established according to meteorological conditions. Then, a wind-PV-battery unit was connected to the power grid as a power-generation unit with a rated capacity under a fixed coordinated operation strategy. Second, the utilization rate of renewable energy sources and maximum wind-PV complementation was considered and the objective function of full life cycle-net...

  14. High Capacity Anodes for Advanced Lithium Ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lithium-ion batteries are slowly being introduced into satellite power systems, but their life still presents concerns for longer duration missions. Future NASA...

  15. Determination of the heat capacities of Lithium/BCX (bromide chloride in thionyl chloride) batteries

    Science.gov (United States)

    Kubow, Stephen A.; Takeuchi, Kenneth J.; Takeuchi, Esther S.

    1989-12-01

    Heat capacities of twelve different Lithium/BCX (BrCl in thionyl chloride) batteries in sizes AA, C, D, and DD were determined. Procedures and measurement results are reported. The procedure allowed simple, reproducible, and precise determinations of heat capacities of industrially important Lithium/BCX cells, without interfering with performance of the cells. Use of aluminum standards allowed the accuracy of the measurements to be maintained. The measured heat capacities were within 5 percent of calculated heat capacity values.

  16. Collective Trust: A Social Indicator of Instructional Capacity

    Science.gov (United States)

    Adams, Curt M.

    2013-01-01

    Purpose: The purpose of this study is to test the validity of using collective trust as a social indicator of instructional capacity. Design/methodology/approach: A hypothesized model was advanced for the empirical investigation. Collective trust was specified as a latent construct with observable indicators being principal trust in faculty (PTF),…

  17. Capacity fade modelling of lithium-ion battery under cyclic loading conditions

    Science.gov (United States)

    Ashwin, T. R.; Chung, Yongmann M.; Wang, Jihong

    2016-10-01

    A pseudo two-dimensional (P2D) electro-chemical lithium-ion battery model is presented in this paper to study the capacity fade under cyclic charge-discharge conditions. The Newman model [1,2] has been modified to include a continuous solvent reduction reaction responsible for the capacity fade and power fade. The temperature variation inside the cell is accurately predicted using a distributed thermal model coupled with the internal chemical heat generation. The model is further improved by linking the porosity variation with the electrolyte partial molar concentration, thereby proving a stronger coupling between the battery performance and the chemical properties of electrolyte. The solid electrolyte interface (SEI) layer growth is estimated for different cut-off voltages and charging current rates. The results show that the convective heat transfer coefficient as well as the porosity variation influences the SEI layer growth and the battery life significantly. The choice of an electrolyte decides the conductivity and partial molar concentration, which is found to have a strong influence on the capacity fade of the battery. The present battery model integrates all essential electro-chemical processes inside a lithium-ion battery under a strong implicit algorithm, proving a useful tool for computationally fast battery monitoring system.

  18. A unified discharge voltage characteristic for VRLA battery capacity and reserve time estimation

    Energy Technology Data Exchange (ETDEWEB)

    Pascoe, P.E.; Anbuky, A.H. [Invensys Energy Systems NZ Limited, Christchurch (New Zealand)

    2004-01-01

    Determining the capacity and discharge reserve time of a valve regulated lead acid battery is a highly non-trivial task. This is due to the dependence of the capacity and discharge reserve time on the discharge operating conditions as well as the battery condition. Operating conditions include discharge rate, ambient temperature and initial state of charge (SOC), while battery conditions include battery state of health and battery type. A simple approach is presented for estimating the SOC and discharge reserve time throughout a discharge. In addition, an estimation of capacity can be made at the completion of a shallow discharge. The approach employs a unified discharge characteristic that is shown to be robust to variations in operating conditions as well as battery condition. The approach provides a good degree of accuracy without the cost of complexity. Results are presented that demonstrate the estimation of the SOC to be well within 10% throughout the discharge and the reserve time (and capacity) to be within 10% from the early stages of the discharge. (author)

  19. Online estimation of lithium-ion battery capacity using sparse Bayesian learning

    Science.gov (United States)

    Hu, Chao; Jain, Gaurav; Schmidt, Craig; Strief, Carrie; Sullivan, Melani

    2015-09-01

    Lithium-ion (Li-ion) rechargeable batteries are used as one of the major energy storage components for implantable medical devices. Reliability of Li-ion batteries used in these devices has been recognized as of high importance from a broad range of stakeholders, including medical device manufacturers, regulatory agencies, patients and physicians. To ensure a Li-ion battery operates reliably, it is important to develop health monitoring techniques that accurately estimate the capacity of the battery throughout its life-time. This paper presents a sparse Bayesian learning method that utilizes the charge voltage and current measurements to estimate the capacity of a Li-ion battery used in an implantable medical device. Relevance Vector Machine (RVM) is employed as a probabilistic kernel regression method to learn the complex dependency of the battery capacity on the characteristic features that are extracted from the charge voltage and current measurements. Owing to the sparsity property of RVM, the proposed method generates a reduced-scale regression model that consumes only a small fraction of the CPU time required by a full-scale model, which makes online capacity estimation computationally efficient. 10 years' continuous cycling data and post-explant cycling data obtained from Li-ion prismatic cells are used to verify the performance of the proposed method.

  20. State of available capacity estimation for lead-acid batteries in electric vehicles using neural network

    Energy Technology Data Exchange (ETDEWEB)

    Shen, W.X. [School of Engineering, Monash University Malaysia, 2 Jalan Kolej, Bandar Sunway, 46150 Petaling Jaya, Selangor Darul Ehsan (Malaysia)

    2007-02-15

    This paper reviews recent definitions of the state of charge (SOC) that are often used to estimate the battery residual available capacity (BRAC) for lead-acid batteries in electric vehicles (EVs) and identifies their shortcomings. Then, the state of available capacity (SOAC), instead of the SOC, is defined to denote the BRAC in EVs, which refers to the percentage of the battery available capacity (BAC) of the discharge current profile for the EV battery at the fully charged state. Based on the experimentation of different discharge current profiles, including theoretical current profiles and practical current profiles under EV driving cycles, the discharged and regenerative capacity distribution is proposed to describe discharge current profiles for the SOAC estimation. Because of the complexity and nonlinearity of the relationship between the SOAC and the capacity distribution at different temperatures, a neural network (NN) is applied to this SOAC estimation. Comparisons between the estimated SOACs by the NN and the calculated SOACs from the experimental data are used for verification. The results confirm that the proposed approach can provide an accurate and effective estimation of the BRAC for lead-acid batteries in EVs. (author)

  1. Development and characterization of a high capacity lithium/thionyl chloride battery

    Science.gov (United States)

    Boyle, Gerald H.; Goebel, Franz

    A 30 V lithium/thionyl chloride battery with 320 Ah capacity capable of operating at currents of 14 to 75 A has been developed and tested over a temperature range from 15 to 71 °C. The 81 lb battery consists of nine series connected cylindrical cells in a three-by-three arrangement within an aluminum case. The cells are of a parallel disc electrode design with a total active surface area of 10 200 cm 2. Cells and batteries have each been tested for safety, performance and to a space environment. The battery has clearly performed in excess of the specification requirements. The cell design is very adaptable to many battery design requirements.

  2. Development and characterization of a high capacity lithium/thionyl chloride battery

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, G.H. [Yardney Technical Products, Inc., Pawcatuck, CT (United States); Goebel, F. [Yardney Technical Products, Inc., Pawcatuck, CT (United States)

    1995-04-01

    A 30 V lithium/thionyl chloride battery with 320 Ah capacity capable of operating at currents of 14 to 75 A has been developed and tested over a temperature range from 15 to 71 C. The 81 lb battery consists of nine series connected cylindrical cells in a three-by-three arrangement within an aluminum case. The cells are of a parallel disc electrode design with a total active surface area of 10 200 cm{sup 2}. Cells and batteries have each been tested for safety, performance and to a space environment. The battery has clearly performed in excess of the specification requirements. The cell design is very adaptable to many battery design requirements. (orig.)

  3. Optimal Capacity Allocation of Large-Scale Wind-PV-Battery Units

    Directory of Open Access Journals (Sweden)

    Kehe Wu

    2014-01-01

    Full Text Available An optimal capacity allocation of large-scale wind-photovoltaic- (PV- battery units was proposed. First, an output power model was established according to meteorological conditions. Then, a wind-PV-battery unit was connected to the power grid as a power-generation unit with a rated capacity under a fixed coordinated operation strategy. Second, the utilization rate of renewable energy sources and maximum wind-PV complementation was considered and the objective function of full life cycle-net present cost (NPC was calculated through hybrid iteration/adaptive hybrid genetic algorithm (HIAGA. The optimal capacity ratio among wind generator, PV array, and battery device also was calculated simultaneously. A simulation was conducted based on the wind-PV-battery unit in Zhangbei, China. Results showed that a wind-PV-battery unit could effectively minimize the NPC of power-generation units under a stable grid-connected operation. Finally, the sensitivity analysis of the wind-PV-battery unit demonstrated that the optimization result was closely related to potential wind-solar resources and government support. Regions with rich wind resources and a reasonable government energy policy could improve the economic efficiency of their power-generation units.

  4. Adaptive estimation of state of charge and capacity with online identified battery model for vanadium redox flow battery

    Science.gov (United States)

    Wei, Zhongbao; Tseng, King Jet; Wai, Nyunt; Lim, Tuti Mariana; Skyllas-Kazacos, Maria

    2016-11-01

    Reliable state estimate depends largely on an accurate battery model. However, the parameters of battery model are time varying with operating condition variation and battery aging. The existing co-estimation methods address the model uncertainty by integrating the online model identification with state estimate and have shown improved accuracy. However, the cross interference may arise from the integrated framework to compromise numerical stability and accuracy. Thus this paper proposes the decoupling of model identification and state estimate to eliminate the possibility of cross interference. The model parameters are online adapted with the recursive least squares (RLS) method, based on which a novel joint estimator based on extended Kalman Filter (EKF) is formulated to estimate the state of charge (SOC) and capacity concurrently. The proposed joint estimator effectively compresses the filter order which leads to substantial improvement in the computational efficiency and numerical stability. Lab scale experiment on vanadium redox flow battery shows that the proposed method is highly authentic with good robustness to varying operating conditions and battery aging. The proposed method is further compared with some existing methods and shown to be superior in terms of accuracy, convergence speed, and computational cost.

  5. Study on Battery Capacity for Grid-connection Power Planning with Forecasts in Clustered Photovoltaic Systems

    Science.gov (United States)

    Shimada, Takae; Kawasaki, Norihiro; Ueda, Yuzuru; Sugihara, Hiroyuki; Kurokawa, Kosuke

    This paper aims to clarify the battery capacity required by a residential area with densely grid-connected photovoltaic (PV) systems. This paper proposes a planning method of tomorrow's grid-connection power from/to the external electric power system by using demand power forecasting and insolation forecasting for PV power predictions, and defines a operation method of the electricity storage device to control the grid-connection power as planned. A residential area consisting of 389 houses consuming 2390 MWh/year of electricity with 2390kW PV systems is simulated based on measured data and actual forecasts. The simulation results show that 8.3MWh of battery capacity is required in the conditions of half-hour planning and 1% or less of planning error ratio and PV output limiting loss ratio. The results also show that existing technologies of forecasting reduce required battery capacity to 49%, and increase the allowable installing PV amount to 210%.

  6. A Novel Data-Driven Fast Capacity Estimation of Spent Electric Vehicle Lithium-ion Batteries

    Directory of Open Access Journals (Sweden)

    Caiping Zhang

    2014-12-01

    Full Text Available Fast capacity estimation is a key enabling technique for second-life of lithium-ion batteries due to the hard work involved in determining the capacity of a large number of used electric vehicle (EV batteries. This paper tries to make three contributions to the existing literature through a robust and advanced algorithm: (1 a three layer back propagation artificial neural network (BP ANN model is developed to estimate the battery capacity. The model employs internal resistance expressing the battery’s kinetics as the model input, which can realize fast capacity estimation; (2 an estimation error model is established to investigate the relationship between the robustness coefficient and regression coefficient. It is revealed that commonly used ANN capacity estimation algorithm is flawed in providing robustness of parameter measurement uncertainties; (3 the law of large numbers is used as the basis for a proposed robust estimation approach, which optimally balances the relationship between estimation accuracy and disturbance rejection. An optimal range of the threshold for robustness coefficient is also discussed and proposed. Experimental results demonstrate the efficacy and the robustness of the BP ANN model together with the proposed identification approach, which can provide an important basis for large scale applications of second-life of batteries.

  7. Online Capacity Estimation of Lithium-Ion Batteries Based on Novel Feature Extraction and Adaptive Multi-Kernel Relevance Vector Machine

    Directory of Open Access Journals (Sweden)

    Yang Zhang

    2015-11-01

    Full Text Available Prognostics is necessary to ensure the reliability and safety of lithium-ion batteries for hybrid electric vehicles or satellites. This process can be achieved by capacity estimation, which is a direct fading indicator for assessing the state of health of a battery. However, the capacity of a lithium-ion battery onboard is difficult to monitor. This paper presents a data-driven approach for online capacity estimation. First, six novel features are extracted from cyclic charge/discharge cycles and used as indirect health indicators. An adaptive multi-kernel relevance machine (MKRVM based on accelerated particle swarm optimization algorithm is used to determine the optimal parameters of MKRVM and characterize the relationship between extracted features and battery capacity. The overall estimation process comprises offline and online stages. A supervised learning step in the offline stage is established for model verification to ensure the generalizability of MKRVM for online application. Cross-validation is further conducted to validate the performance of the proposed model. Experiment and comparison results show the effectiveness, accuracy, efficiency, and robustness of the proposed approach for online capacity estimation of lithium-ion batteries.

  8. Probing Mechanisms for Inverse Correlation between Rate Performance and Capacity in K-O2 Batteries.

    Science.gov (United States)

    Xiao, Neng; Ren, Xiaodi; He, Mingfu; McCulloch, William D; Wu, Yiying

    2017-02-08

    Owing to the formation of potassium superoxide (K(+) + O2 + e(-) = KO2), K-O2 batteries exhibit superior round-trip efficiency and considerable energy density in the absence of any electrocatalysts. For further improving the practical performance of K-O2 batteries, it is important to carry out a systematic study on parameters that control rate performance and capacity to comprehensively understand the limiting factors in superoxide-based metal-oxygen batteries. Herein, we investigate the influence of current density and oxygen diffusion on the nucleation, growth, and distribution of potassium superoxide (KO2) during the discharge process. It is observed that higher current results in smaller average sizes of KO2 crystals but a larger surface coverage on the carbon fiber electrode. As KO2 grows and covers the cathode surface, the discharge will eventually end due to depletion of the oxygen-approachable electrode surface. Additionally, higher current also induces a greater gradient of oxygen concentration in the porous carbon electrode, resulting in less efficient loading of the discharge product. These two factors explain the observed inverse correlation between current and capacity of K-O2 batteries. Lastly, we demonstrate a reduced graphene oxide-based K-O2 battery with a large specific capacity (up to 8400 mAh/gcarbon at a discharge rate of 1000 mA/gcarbon) and a long cycle life (over 200 cycles).

  9. Theory of SEI Formation in Rechargeable Batteries: Capacity Fade, Accelerated Aging and Lifetime Prediction

    CERN Document Server

    Pinson, Matthew B

    2012-01-01

    Cycle life is critically important in applications of rechargeable batteries, but lifetime prediction is mostly based on empirical trends, rather than mathematical models. In practical lithium-ion batteries, capacity fade occurs over thousands of cycles, limited by slow electrochemical processes, such as the formation of a solid-electrolyte interphase (SEI) in the negative electrode, which compete with reversible lithium intercalation. Focusing on SEI growth as the canonical degradation mechanism, we show that a simple single-particle model can accurately explain experimentally observed capacity fade in commercial cells with graphite anodes, and predict future fade based on limited accelerated aging data for short times and elevated temperatures. The theory is extended to porous electrodes, predicting that SEI growth is essentially homogeneous throughout the electrode, even at high rates. The lifetime distribution for a sample of batteries is found to be consistent with Gaussian statistics, as predicted by th...

  10. Transient Stability Improvement of Multi-Machine Power System with Large-Capacity Battery Systems

    Science.gov (United States)

    Kawabe, Ken-Ichi; Yokoyama, Akihiko

    An emergency control has been applied to power systems to avoid cascading outages by making the best use of existing equipment under severe fault conditions. Battery energy storage system (BESS) is one of the attractive equipment for the emergency control according to its growing installed capacity in the current grid. This paper investigates an effective use of BESS for transient stability improvement, and proposes a novel control scheme using wide-area information. The proposed control scheme adopts two stability indices, the energy function and rotor speed of the critical machine, to make it applicable to multi-machine power systems. Besides, it can control active and reactive power injection of the BESS coordinately to make the best use of its converter capacity for the stability enhancement. Digital simulations are conducted on the 32-machine meshed system with multiple BESSs. The results demonstrate that the BESSs controlled by the proposed method can improve the first swing stability and the system damping, and it is made clear how they improve the transient stability of the multi-machine power system. In addition, an impact of the reactive power control on the bus voltages around the installation sites is investigated to discuss a preferable way of their installation.

  11. Online Diagnosis for the Capacity Fade Fault of a Parallel-Connected Lithium Ion Battery Group

    Directory of Open Access Journals (Sweden)

    Hua Zhang

    2016-05-01

    Full Text Available In a parallel-connected battery group (PCBG, capacity degradation is usually caused by the inconsistency between a faulty cell and other normal cells, and the inconsistency occurs due to two potential causes: an aging inconsistency fault or a loose contacting fault. In this paper, a novel method is proposed to perform online and real-time capacity fault diagnosis for PCBGs. Firstly, based on the analysis of parameter variation characteristics of a PCBG with different fault causes, it is found that PCBG resistance can be taken as an indicator for both seeking the faulty PCBG and distinguishing the fault causes. On one hand, the faulty PCBG can be identified by comparing the PCBG resistance among PCBGs; on the other hand, two fault causes can be distinguished by comparing the variance of the PCBG resistances. Furthermore, for online applications, a novel recursive-least-squares algorithm with restricted memory and constraint (RLSRMC, in which the constraint is added to eliminate the “imaginary number” phenomena of parameters, is developed and used in PCBG resistance identification. Lastly, fault simulation and validation results demonstrate that the proposed methods have good accuracy and reliability.

  12. Study on capacity fading of 18650 type LiCoO2-based lithium ion batteries during storage

    Science.gov (United States)

    Zheng, Liu-Qun; Li, Shu-Jun; Zhang, Deng-Feng; Lin, Hai-Jun; Miao, Yan-Yue; Chen, Shou-Wei; Liu, Hai-Bin

    2015-05-01

    The capacity fading of LiCoO2-based lithium ion batteries during storage was studied. The discharging capacity fading is attributed to the decreasing in the charging capacity at the constant current stage. After 300 cycles, the ratio of the charging capacity of batteries at the constant current stage to the total charging capacity decreases from 87.2 to 71.2%. The bounce-back voltage is closely related to the internal resistance when the battery is discharged to the cut-off voltage of 3.0 V. Batteries were disassembled in the fully discharged state, and then a assembled again in order to deeply understand the causes of the capacity fading of the cathode and anode. The results shows that the SEI film thickness increasing, breaking or repairing process at the anode could be responsible for the high bounce-back voltage, the increase of the internal resistance and the capacity fading during storage.

  13. Spongelike Nanosized Mn 3 O 4 as a High-Capacity Anode Material for Rechargeable Lithium Batteries

    KAUST Repository

    Gao, Jie

    2011-07-12

    Mn3O4 has been investigated as a high-capacity anode material for rechargeable lithium ion batteries. Spongelike nanosized Mn 3O4 was synthesized by a simple precipitation method and characterized by powder X-ray diffraction, Raman scattering and scanning electron microscopy. Its electrochemical performance, as an anode material, was evaluated by galvanostatic discharge-charge tests. The results indicate that this novel type of nanosized Mn3O4 exhibits a high initial reversible capacity (869 mA h/g) and significantly enhanced first Coulomb efficiency with a stabilized reversible capacity of around 800 mA h/g after over 40 charge/discharge cycles. © 2011 American Chemical Society.

  14. Investigation of Battery Heat Generation and Key Performance Indicator Efficiency Using Isothermal Calorimeter

    DEFF Research Database (Denmark)

    Khan, Mohammad Rezwan; Kær, Søren Knudsen

    2016-01-01

    In this experiment-based research, the performance and behaviour of a pouch type Li-ion battery cell are reported. The commercial test cell has a Lithium Titanate Oxide (LTO) based anode with 13Ah capacity. It is accomplished by measuring the evolution of surface temperature distribution, and the......In this experiment-based research, the performance and behaviour of a pouch type Li-ion battery cell are reported. The commercial test cell has a Lithium Titanate Oxide (LTO) based anode with 13Ah capacity. It is accomplished by measuring the evolution of surface temperature distribution...

  15. High-capacity thick cathode with a porous aluminum current collector for lithium secondary batteries

    Science.gov (United States)

    Abe, Hidetoshi; Kubota, Masaaki; Nemoto, Miyu; Masuda, Yosuke; Tanaka, Yuichi; Munakata, Hirokazu; Kanamura, Kiyoshi

    2016-12-01

    A high-capacity thick cathode has been studied as one of ways to improve the energy density of lithium secondary batteries. In this study, the LiFePO4 cathode with a capacity per unit area of 8.4 m Ah cm-2 corresponding to four times the capacity of conventional cathodes has been developed using a three-dimensional porous aluminum current collector called "FUSPOROUS". This unique current collector enables the smooth transfer of electrons and Li+-ions through the thick cathode, resulting in a good rate capability (discharge capacity ratio of 1.0 C/0.2 C = 0.980) and a high charge-discharge cycle performance (80% of the initial capacity at 2000th cycle) even though the electrode thickness is 400 μm. To take practical advantage of the developed thick cathode, conceptual designs for a 10-Ah class cell were also carried out using graphite and lithium-metal anodes.

  16. Materials Research Advances towards High-Capacity Battery/Fuel Cell Devices (Invited paper)

    Institute of Scientific and Technical Information of China (English)

    Wei-Dong He; Lu-Han Ye; Ke-Chun Wen; Ya-Chun Liang; Wei-Qiang Lv; Gao-Long Zhu; Kelvin H. L. Zhang

    2016-01-01

    The world has entered an era featured with fast transportations, instant communications, and prompt technological revolutions, the further advancement of which all relies fundamentally, yet, on the development of cost-effective energy resources allowing for durable and high-rate energy supply. Current battery and fuel cell systems are challenged by a few issues characterized either by insufficient energy capacity or by operation instability and, thus, are not ideal for such highly-demanded applications as electrical vehicles and portable electronic devices. In this mini-review, we present, from materials perspectives, a few selected important breakthroughs in energy resources employed in these applications. Prospectives are then given to look towards future research activities for seeking viable materials solutions for addressing the capacity, durability, and cost shortcomings associated with current battery/fuel cell devices.

  17. Role of Manganese Deposition on Graphite in the Capacity Fading of Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Vissers, Daniel R.; Chen, Zonghai; Shao, Yuyan; Engelhard, Mark H.; Das, Ujjal; Redfern, Paul C.; Curtiss, Larry A.; Pan, Baofei; Liu, Jun; Amine, Khalil

    2016-05-06

    Lithium-ion batteries utilizing manganese based cathodes have received considerable interest in recent years for their lower cost and favorable environmental friendliness relative to their cobalt counterparts. However, Li-ion batteries using manganese based cathodes and graphite anodes suffer from severe capacity fading at higher operating temperature. In this article, we report on an astute investigation into how the dissolution of manganese impacts the capacity fading within the Li-ion batteries. Our investigation reveals that the manganese dissolves from the cathode, transports to the graphite electrode, and deposits onto the outer surface of the inner most solid electrolyte interphase (SEI) layer which is known to be a mixture of inorganic salts (e.g. Li2CO3, LiF, and Li2O). In this location, the manganese facilitates the reduction of the electrolyte and the subsequent formation of lithium containing products on the graphite which removes lithium ions from the normal operation of the cell and thereby induces the severe capacity fade.

  18. Capacity fade study of lithium-ion batteries cycled at high discharge rates

    Science.gov (United States)

    Ning, Gang; Haran, Bala; Popov, Branko N.

    Capacity fade of Sony US 18650 Li-ion batteries cycled using different discharge rates was studied at ambient temperature. The capacity losses were estimated after 300 cycles at 2 C and 3 C discharge rates and were found to be 13.2 and 16.9% of the initial capacity, respectively. At 1 C discharge rate the capacity lost was only 9.5%. The cell cycled at high discharge rate (3 C) showed the largest internal resistance increase of 27.7% relative to the resistance of the fresh cells. The rate capability losses were proportional with the increase of discharge rates. Half-cell study and material and charge balances were used to quantify the capacity fade due to the losses of primary active material (Li +), the secondary active material (LiCoO 2/C)) and rate capability losses. It was found that carbon with 10.6% capacity loss after 300 cycles dominates the capacity fade of the whole cell at high discharge rates (3 C). A mechanism is proposed which explains the capacity fade at high discharge rates.

  19. Comparative Analysis of Battery Behavior with Different Modes of Discharge for Optimal Capacity Sizing and BMS Operation

    Directory of Open Access Journals (Sweden)

    Mazhar Abbas

    2016-10-01

    Full Text Available Battery-operated systems are always concerned about the proper management and sizing of a battery. A Traditional Battery Management System (BMS only includes battery-aware task scheduling based on the discharge characteristics of a whole battery pack and do not take into account the mode of the load being served by the battery. On the other hand, an efficient and intelligent BMS should monitor the battery at a cell level and track the load with significant consideration of the load mode. Depending upon the load modes, the common modes of discharge (MOD of a battery identified so far are Constant Power Mode (CPM, Constant Current Mode (CCM and Constant Impedance Mode (CIM. This paper comparatively analyzes the discharging behavior of batteries at an individual cell level for different load modes. The difference in discharging behavior from mode to mode represents the study of the mode-dependent behavior of the battery before its deployment in some application. Based on simulation results, optimal capacity sizing and BMS operation of battery for an assumed situation in a remote microgrid has been proposed.

  20. Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries

    KAUST Repository

    Zheng, Guangyuan

    2011-10-12

    Sulfur has a high specific capacity of 1673 mAh/g as lithium battery cathodes, but its rapid capacity fading due to polysulfides dissolution presents a significant challenge for practical applications. Here we report a hollow carbon nanofiber-encapsulated sulfur cathode for effective trapping of polysulfides and demonstrate experimentally high specific capacity and excellent electrochemical cycling of the cells. The hollow carbon nanofiber arrays were fabricated using anodic aluminum oxide (AAO) templates, through thermal carbonization of polystyrene. The AAO template also facilitates sulfur infusion into the hollow fibers and prevents sulfur from coating onto the exterior carbon wall. The high aspect ratio of the carbon nanofibers provides an ideal structure for trapping polysulfides, and the thin carbon wall allows rapid transport of lithium ions. The small dimension of these nanofibers provides a large surface area per unit mass for Li2S deposition during cycling and reduces pulverization of electrode materials due to volumetric expansion. A high specific capacity of about 730 mAh/g was observed at C/5 rate after 150 cycles of charge/discharge. The introduction of LiNO3 additive to the electrolyte was shown to improve the Coulombic efficiency to over 99% at C/5. The results show that the hollow carbon nanofiber-encapsulated sulfur structure could be a promising cathode design for rechargeable Li/S batteries with high specific energy. © 2011 American Chemical Society.

  1. Crystalline-Amorphous Core−Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes

    KAUST Repository

    Cui, Li-Feng

    2009-01-14

    Silicon is an attractive alloy-type anode material for lithium ion batteries because of its highest known capacity (4200 mAh/g). However silicon\\'s large volume change upon lithium insertion and extraction, which causes pulverization and capacity fading, has limited its applications. Designing nanoscale hierarchical structures is a novel approach to address the issues associated with the large volume changes. In this letter, we introduce a core-shell design of silicon nanowires for highpower and long-life lithium battery electrodes. Silicon crystalline- amorphous core-shell nanowires were grown directly on stainless steel current collectors by a simple one-step synthesis. Amorphous Si shells instead of crystalline Si cores can be selected to be electrochemically active due to the difference of their lithiation potentials. Therefore, crystalline Si cores function as a stable mechanical support and an efficient electrical conducting pathway while amorphous shells store Li ions. We demonstrate here that these core-shell nanowires have high charge storage capacity (̃1000 mAh/g, 3 times of carbon) with ̃90% capacity retention over 100 cycles. They also show excellent electrochemical performance at high rate charging and discharging (6.8 A/g, ̃20 times of carbon at 1 h rate). © 2009 American Chemical Society.

  2. An Aqueous Redox-Flow Battery with High Capacity and Power: The TEMPTMA/MV System.

    Science.gov (United States)

    Janoschka, Tobias; Martin, Norbert; Hager, Martin D; Schubert, Ulrich S

    2016-11-07

    Redox-flow batteries (RFB) can easily store large amounts of electric energy and thereby mitigate the fluctuating output of renewable power plants. They are widely discussed as energy-storage solutions for wind and solar farms to improve the stability of the electrical grid. Most common RFB concepts are based on strongly acidic metal-salt solutions or poorly performing organics. Herein we present a battery which employs the highly soluble N,N,N-2,2,6,6-heptamethylpiperidinyl oxy-4-ammonium chloride (TEMPTMA) and the viologen derivative N,N'-dimethyl-4,4-bipyridinium dichloride (MV) in a simple and safe aqueous solution as redox-active materials. The resulting battery using these electrolyte solutions has capacities of 54 Ah L(-1) , giving a total energy density of 38 Wh L(-1) at a cell voltage of 1.4 V. With peak current densities of up to 200 mA cm(-2) the TEMPTMA/MV system is a suitable candidate for compact high-capacity and high-power applications.

  3. Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li-O$_2$ battery capacity

    CERN Document Server

    Burke, Colin M; Khetan, Abhishek; Viswanathan, Venkatasubramanian; McCloskey, Bryan D

    2015-01-01

    Among the 'beyond Li-ion' battery chemistries, nonaqueous Li-O$_2$ batteries have the highest theoretical specific energy and as a result have attracted significant research attention over the past decade. A critical scientific challenge facing nonaqueous Li-O$_2$ batteries is the electronically insulating nature of the primary discharge product, lithium peroxide, which passivates the battery cathode as it is formed, leading to low ultimate cell capacities. Recently, strategies to enhance solubility to circumvent this issue have been reported, but rely upon electrolyte formulations that further decrease the overall electrochemical stability of the system, thereby deleteriously affecting battery rechargeability. In this study, we report that a significant enhancement (greater than four-fold) in Li-O$_2$ cell capacity is possible by appropriately selecting the salt anion in the electrolyte solution. Using $^7$Li nuclear magnetic resonance and modeling, we confirm that this improvement is a result of enhanced Li...

  4. A Novel Ion-exchange Method for the Synthesis of Nano-SnO/micro-C Hybrid Structure as High Capacity Anode Material in Lithium Ion Batteries

    Institute of Scientific and Technical Information of China (English)

    Zhi Tan; Zhenhua Sun; Qi Guo; Haihua Wang; Dangsheng Su

    2013-01-01

    A novel and simple ion-exchange method was developed for the synthesis of nano-SnO/micro-C hybrid structure.The structure of the as prepared nano-SnO/micro-C was directly revealed by scanning electron microscopy (SEM)and transmission electron microscopy (TEM).SnO particles with the size about 25 nm were well confined in amorphous carbon microparticles.Carbon matrix in micrometer scale not only acts as a protective buffer for the SnO nanoparticles during the battery cycling processes,but also avoids the shortcomings of nanostructures,such as low tap density and potential safety threats.Electrochemical behaviors of the nano-SnO/micro-C were tested as anode material in lithium ion batteries.The initial reversible capacity is 508 mA h g-1,and the reversible capacity after 60 cycles is 511 mA h g-1,indicating good capacity retention ability.

  5. Carbon−Silicon Core−Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries

    KAUST Repository

    Cui, Li-Feng

    2009-09-09

    We introduce a novel design of carbon-silicon core-shell nanowires for high power and long life lithium battery electrodes. Amorphous silicon was coated onto carbon nanofibers to form a core-shell structure and the resulted core-shell nanowires showed great performance as anode material. Since carbon has a much smaller capacity compared to silicon, the carbon core experiences less structural stress or damage during lithium cycling and can function as a mechanical support and an efficient electron conducting pathway. These nanowires have a high charge storage capacity of ∼2000 mAh/g and good cycling life. They also have a high Coulmbic efficiency of 90% for the first cycle and 98-99.6% for the following cycles. A full cell composed of LiCoO2 cathode and carbon-silicon core-shell nanowire anode is also demonstrated. Significantly, using these core-shell nanowires we have obtained high mass loading and an area capacity of ∼4 mAh/cm2, which is comparable to commercial battery values. © 2009 American Chemical Society.

  6. Electrospun titania-based fibers for high areal capacity Li-ion battery anodes

    Science.gov (United States)

    Self, Ethan C.; Wycisk, Ryszard; Pintauro, Peter N.

    2015-05-01

    Electrospinning is utilized to prepare composite fiber Li-ion battery anodes containing titania and carbon nanoparticles with a poly (acrylic acid) binder. The electrospun material exhibits a stable charge/discharge capacity with only 5% capacity fade over 450 cycles at 0.5 C. Compared to a conventional slurry cast electrode of the same composition, the electrospun anode demonstrates 4-fold higher capacity retention (31% vs. 7.9%) at a charge/discharge rate of 5 C. Electrospinning is also used to prepare ultrathick anodes (>1 mm) with areal capacities up to 3.9 mAh cm-2. Notably, the thick electrodes exhibit areal capacities of 2.5 and 1.3 mAh cm-2 at 1 C and 2 C, respectively. Electrospun anodes with densely packed fibers have a 2 C volumetric capacity which exceeds that of the slurry cast material (21.2 and 17.5 mAh cm-3, respectively). The excellent performance of the electrospun anodes is attributed to interfiber voids which provide complete electrolyte intrusion, a large electrode/electrolyte interface, and short Li+ transport pathways between the electrolyte and titania nanoparticles.

  7. Robustness indicators and capacity models for railway networks

    DEFF Research Database (Denmark)

    Jensen, Lars Wittrup

    In a world continuous striving for higher mobility and the use of more sustainable modes of transport, there is a constant pressure on utilising railway capacity better and, at the same time, obtaining a high robustness against delays. During the planning of railway operations and infrastructure...

  8. Effect of short-time external short circuiting on the capacity fading mechanism during long-term cycling of LiCoO2/mesocarbon microbeads battery

    Science.gov (United States)

    Zhang, Lingling; Cheng, Xinqun; Ma, Yulin; Guan, Ting; Sun, Shun; Cui, Yingzhi; Du, Chunyu; Zuo, Pengjian; Gao, Yunzhi; Yin, Geping

    2016-06-01

    Commercial LiCoO2/mesocarbon microbeads (MCMB) batteries (CP475148AR) are short circuited by different contact resistances (0.6 mΩ and 5.0 mΩ) for short times. The short circuited battery is cycled for 1000 times, and the effect of the short-time external short circuiting on the capacity fading mechanism during long-term cycling of LiCoO2/MCMB battery is studied by analyzing the morphology, structure, and electrochemical performance. The results of SEM indicates that the morphology of LiCoO2 material is almost unchanged, except that the particle surface becomes smooth, and the solid electrolyte interphase (SEI) film on the surface of MCMB electrode becomes nonuniform due to the high temperature caused by short circuiting. The lithium ions are more difficult to de-intercalate from the anode and the lattice structure of LiCoO2 degrades according to the results of X-ray diffraction (XRD). The high discharge current caused by short circuiting can damage electrodes, leaving vacancies in structure. The damage of electrode structure can lead to a decrease of diffusion coefficient of lithium (D), so polarization increases and mainly caused by the LiCoO2 electrode. The capacity deterioration of short circuited battery during long-term cycling is mainly caused by the increase of polarization and capacity loss of electrodes.

  9. High-Capacity Layered-Spinel Cathodes for Li-Ion Batteries.

    Science.gov (United States)

    Nayak, Prasant Kumar; Levi, Elena; Grinblat, Judith; Levi, Mikhael; Markovsky, Boris; Munichandraiah, N; Sun, Yang Kook; Aurbach, Doron

    2016-09-08

    Li and Mn-rich layered oxides with the general structure x Li2 MnO3 ⋅(1-x) LiMO2 (M=Ni, Mn, Co) are promising cathode materials for Li-ion batteries because of their high specific capacity, which may be greater than 250 mA h g(-1) . However, these materials suffer from high first-cycle irreversible capacity, gradual capacity fading, limited rate capability and discharge voltage decay upon cycling, which prevent their commercialization. The decrease in average discharge voltage is a major issue, which is ascribed to a structural layered-to-spinel transformation upon cycling of these oxide cathodes in wide potential ranges with an upper limit higher than 4.5 V and a lower limit below 3 V versus Li. By using four elements systems (Li, Mn, Ni, O) with appropriate stoichiometry, it is possible to prepare high capacity composite cathode materials that contain LiMn1.5 Ni0.5 O4 and Lix Mny Niz O2 components. The Li and Mn-rich layered-spinel cathode materials studied herein exhibit a high specific capacity (≥200 mA h g(-1) ) with good capacity retention upon cycling in a wide potential domain (2.4-4.9 V). The effect of constituent phases on their electrochemical performance, such as specific capacity, cycling stability, average discharge voltage, and rate capability, are explored here. This family of materials can provide high specific capacity, high rate capability, and promising cycle life. Using Co-free cathode materials is also an obvious advantage of these systems.

  10. Small-capacity valve-regulated lead/acid battery with long life at high ambient temperature

    Energy Technology Data Exchange (ETDEWEB)

    Hatanaka, T.; Maeda, M.; Iwata, M. [Battery Development Center, Japan Storage Battery, Kyoto (Japan)

    1998-05-18

    Valve-regulated lead/acid (VRLA) batteries are widely used as back-up power sources for telecommunications and UPS. These applications require high-reliability under severe environmental conditions. To meet this demand, the authors` company have developed small capacity (12 V, 15-65 A h at C{sub 20}/20 rate), long-life VRLA batteries which can endure high ambient temperature. These batteries make use of a new alloy and grid design which has improved resistance to corrosion at the positive plate, while at the same time reduce float current at high temperature. As a result, these batteries have a life expectancy of 13 years at 25 C, and inhibited thermal runaway even under ambient temperatures up to 75 C. The batteries can be installed in outdoor and underground environments. (orig.)

  11. An asymmetric Zn//Ag doped polyaniline microparticle suspension flow battery with high discharge capacity

    Science.gov (United States)

    Wu, Sen; Zhao, Yongfu; Li, Degeng; Xia, Yang; Si, Shihui

    2015-02-01

    In this study, the effect of oxygen on the potential of reduced polyaniline (PANI) was investigated. In order to enhance the air oxidation of reduced PANI, several composites of PANI doped with co-catalysts were prepared, and a reasonable flow Zn//PANI suspension cell system was designed to investigate the discharge capacity of obtained PANI composite microparticle suspension cathodes. Compared with PANI doped with Cu2+, La+, Mn2+ and zinc protoporphyrin, Ag doped PANI composite at 0.90 weight percent doping of Ag gave the highest value of discharge capacity for the half-cell potential from the initial value to -0.20 V (vs. SCE). A comparison study on the electrochemical properties of both PANI and Ag doped PANI microparticle suspension was done by using cyclic voltammetry, AC Impedance. Due to partial utilization of Zn//air fuel cell, the discharge capacity for Ag doped PANI reached 470 mA h g-1 at the current density of 20 mA cm-2. At 15 mA cm-2, the discharge capacity even reached up to 1650 mA h g-1 after 220 h constant current discharge at the final discharge voltage of 0.65 V. This work demonstrates an effective and feasible approach toward obtaining high energy and power densities by a Zn//Ag-doped PANI suspension flow battery system combined with Zn//air fuel cell.

  12. Robust, High Capacity, High Power Lithium Ion Batteries for Space Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lithium ion battery technology provides the highest energy density of all rechargeable battery technologies available today. However, the majority of the research...

  13. On-board capacity estimation of lithium iron phosphate batteries by means of half-cell curves

    Science.gov (United States)

    Marongiu, Andrea; Nlandi, Nsombo; Rong, Yao; Sauer, Dirk Uwe

    2016-08-01

    This paper presents a novel methodology for the on-board estimation of the actual battery capacity of lithium iron phosphate batteries. The approach is based on the detection of the actual degradation mechanisms by collecting plateau information. The tracked degradation modes are employed to change the characteristics of the fresh electrode voltage curves (mutual position and dimension), to reconstruct the full voltage curve and therefore to obtain the total capacity. The work presents a model which describes the relation between the single degradation modes and the electrode voltage curves characteristics. The model is then implemented in a novel battery management system structure for aging tracking and on-board capacity estimation. The working principle of the new algorithm is validated with data obtained from lithium iron phosphate cells aged in different operating conditions. The results show that both during charge and discharge the algorithm is able to correctly track the actual battery capacity with an error of approx. 1%. The use of the obtained results for the recalibration of a hysteresis model present in the battery management system is eventually presented, demonstrating the benefit of the tracked aging information for additional scopes.

  14. Li2CuVO4: A high capacity positive electrode material for Li-ion batteries

    Science.gov (United States)

    Ben Yahia, Hamdi; Shikano, Masahiro; Yamaguchi, Yoichi

    2016-07-01

    The new compound Li2CuVO4 was synthesized by a solid state reaction route, and its crystal structure was determined from single crystal X-ray diffraction data. Li2CuVO4 was characterized by galvanometric cycling, cycle voltammetry, and electrochemical impedance spectroscopy. The structure of Li2CuVO4 is isotypic to Pmn21-Li3VO4. It can be described as a disordered wurtzite structure with rows of Li1/Cu1 atoms alternating with rows of (Li2/Cu2)-V-(Li2/Cu2) atoms along [100]. All cations are tetrahedrally coordinated. The lithium and copper atoms are statistically disordered over two crystallographic sites. The electrochemical cycling between 2.0 and 4.7 V indicates that almost two lithium atoms could be extracted and re-intercalated. This delivers a maximum discharge capacity of 257 mA h g-1 at a C/50 rate (theoretical capacity = 139 mA h g-1 for one lithium). Li2CuVO4 shows also high rate capability with a capacity of 175 mA h g-1 at 1C rate. This demonstrates that Cu-based compounds can be very interesting as electrodes for Li-ion batteries if Cu-dissolution is avoided.

  15. The association of selected SPEEX-battery indices with the constructs of the multifactor leadership questionnaire

    Directory of Open Access Journals (Sweden)

    G Sugreen

    2006-01-01

    Full Text Available The principal objective of the study was to determine the relationship between certain indices of the SPEEX-battery and the leadership dimensions of the MLQ. The SPEEX-battery was subjected to factor analysis and yielded six factors. The reliabilities of the composite scores calculated to represent each of the factors ranged from 0,712 to 0,925. The MLQ was also subjected to factor analysis and yielded three factors. A canonical correlation of 0,666 (p Opsomming Die hoofdoelwit van die studie was om die verband tussen sekere indekse van die SPEEX-battery en die leierskapsdimensies van die MLQ te bepaal. Die SPEEX-battery is aan ’n faktorontleding onderwerp en ses faktore is verkry. Saamgesteldetellings is bereken om elk van die faktore te verteenwoordig. Die verkreë betroubaarhede het gewissel van 0,712 tot 0,925. Die MLQ is ook aan ’n faktorontleding onderwerp en drie faktore is verkry. ’n Kanoniese korrelasie van 0,666 (p< 0,000001 is verkry tussen die dimensies van die SPEEX-battery (OV’s en die leierskapsdimensies van die MLQ (AV’s. Die implikasies van die studie word bespreek.

  16. Charging/Discharging Nanomorphology Asymmetry and Rate-Dependent Capacity Degradation in Li-Oxygen Battery.

    Science.gov (United States)

    Kushima, Akihiro; Koido, Tetsuya; Fujiwara, Yoshiya; Kuriyama, Nariaki; Kusumi, Nobuhiro; Li, Ju

    2015-12-09

    Liquid-cell in situ transmission electron microscopy (TEM) observations of the charge/discharge reactions of nonaqueous Li-oxygen battery cathode were performed with ∼5 nm spatial resolution. The discharging reaction occurred at the interface between the electrolyte and the reaction product, whereas in charging, the reactant was decomposed at the contact with the gold current collector, indicating that the lithium ion diffusivity/electronic conductivity is the limiting factor in discharging/charging, respectively, which is a root cause for the asymmetry in discharging/charging overpotential. Detachments of lithium oxide particles from the current collector into the liquid electrolyte are frequently seen when the cell was discharged at high overpotentials, with loss of active materials into liquid electrolyte ("flotsam") under minute liquid flow agitation, as the lithium peroxide dendritic trees are shown to be fragile mechanically and electrically. Our result implies that enhancing the binding force between the reaction products and the current collector to maintain robust electronic conduction is a key for improving the battery performance. This work demonstrated for the first time the in situ TEM observation of a three-phase-reaction involving gold electrode, lithium oxides, DMSO electrolyte and lithium salt, and O2 gas. The technique described in this work is not limited to Li-oxygen battery but also can be potentially used in other applications involving gas/liquid/solid electrochemical reactions.

  17. Morphology control of ordered mesoporous carbons for high capacity lithium sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Joerg David

    2011-06-07

    The focus of this thesis concerns the morphology control of ordered mesoporous carbon (OMC) materials. Ordered mesoporous carbons with diverse morphologies, that are thin films, fibers - embedded in anodic alumina membranes and free-standing - or spherical nanoparticles, have been successfully prepared by soft-templating procedures. The mechanisms of structure formation and processing were investigated with in-situ SAXS measurements and their application in high capacity lithium-sulfur batteries was successfully tested in cooperation with Guang He and Linda Nazar from the University of Waterloo in Canada. The Li-S batteries receive increasing attention due to their high theoretical energy density which is 3 to 5 times higher than from lithium-ion batteries. For this type of battery the specific pore volume is crucial for the content of the active component (sulfur) in the cathode and therefore correlates with the capacity and gravimetric energy density of the battery. At first, mesoporous thin films with 2D-hexagonal structure were obtained through organic-organic self-assembly of a preformed oligomeric resol precursor and the triblock copolymer template Pluronic P123. The formation of a condensed-wall material through thermopolymerization of the precursor oligomers resulted in mesostructured phenolic resin films. Subsequent decomposition of the surfactant and partial carbonization were achieved through thermal treatment in inert atmosphere. The films were crack-free with tunable homogenous thicknesses, and showed either 2D-hexagonal or lamellar mesostructure. An additional, yet unknown 3D-mesostructure was also found. In the second part, cubic and circular hexagonal mesoporous carbon phases in the confined environment of tubular anodic alumina membrane (AAM) pores were obtained by self-assembly of the mentioned resol precursor and the triblock copolymer templates Pluronic F127 or P123, respectively. Casting and solvent-evaporation were also followed by

  18. Species Transport Mechanisms Governing Crossover and Capacity Loss in Vanadium Redox Flow Batteries

    Science.gov (United States)

    Agar, Ertan

    Vanadium redox flow batteries (VRFBs) are an emerging energy storage technology that offers unique advantages for grid-scale energy storage due to their flexible design and decoupled power/energy feature. Despite their popularity, a series of technical challenges hinder their widespread implementation. Among these, capacity loss (i.e., loss of energy storage capability) due to the undesired species crossover across the membrane has been identified as the key issue limiting the longevity of these systems. This issue is primarily governed by the properties of the membrane and can be mitigated by using proper membrane architectures with desired features. Presently, identifying proper membrane architectures for VRFB systems is hampered by the lack of a fundamental understanding of the nature of species transport mechanisms and how they are related to the membrane properties and key operating conditions. This Ph.D. study seeks to address this critical challenge by exploring the fundamental mechanisms responsible for species transport within the membrane. The overall objective of this dissertation study is to establish a fundamental understanding of the multi-ionic transport in VRFB membranes by investigating the ionic transport mechanisms responsible for crossover, and utilize this understanding to reveal the role of membrane properties and operating conditions on the capacity loss. To achieve these goals, a combined experimental and computational study was designed. An experimentally validated, 2-D, transient VRFB model that can track the vanadium crossover and capture the related capacity loss was developed. In addition to the model, several electrochemical techniques were used to characterize different types of membrane and study the effects of various operating conditions on the species crossover. Using these computational and experimental tools, an in-depth understanding of the species transport mechanisms within the membrane and how they are related to membrane

  19. Capacity determination of a battery energy storage system based on the control performance of load leveling and voltage control

    Directory of Open Access Journals (Sweden)

    Satoru Akagi

    2016-01-01

    Full Text Available This paper proposes a method to determine the combined energy (kWh and power (kW capacity of a battery energy storage system and power conditioning system capacity (kVA based on load leveling and voltage control performances. Through power flow calculations, a relationship between the capacity combination and the control performance is identified and evaluated. A tradeoff relationship between the capacity combination and control performance is confirmed, and the proper capacity combination for operation is determined based on the evaluated relationship. In addition, the control performance of the capacity combination is evaluated through the power flow calculation, confirming that the proposed method is effective for determining the optimized capacity combination.

  20. Morphology control of ordered mesoporous carbons for high capacity lithium sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Joerg David

    2011-06-07

    The focus of this thesis concerns the morphology control of ordered mesoporous carbon (OMC) materials. Ordered mesoporous carbons with diverse morphologies, that are thin films, fibers - embedded in anodic alumina membranes and free-standing - or spherical nanoparticles, have been successfully prepared by soft-templating procedures. The mechanisms of structure formation and processing were investigated with in-situ SAXS measurements and their application in high capacity lithium-sulfur batteries was successfully tested in cooperation with Guang He and Linda Nazar from the University of Waterloo in Canada. The Li-S batteries receive increasing attention due to their high theoretical energy density which is 3 to 5 times higher than from lithium-ion batteries. For this type of battery the specific pore volume is crucial for the content of the active component (sulfur) in the cathode and therefore correlates with the capacity and gravimetric energy density of the battery. At first, mesoporous thin films with 2D-hexagonal structure were obtained through organic-organic self-assembly of a preformed oligomeric resol precursor and the triblock copolymer template Pluronic P123. The formation of a condensed-wall material through thermopolymerization of the precursor oligomers resulted in mesostructured phenolic resin films. Subsequent decomposition of the surfactant and partial carbonization were achieved through thermal treatment in inert atmosphere. The films were crack-free with tunable homogenous thicknesses, and showed either 2D-hexagonal or lamellar mesostructure. An additional, yet unknown 3D-mesostructure was also found. In the second part, cubic and circular hexagonal mesoporous carbon phases in the confined environment of tubular anodic alumina membrane (AAM) pores were obtained by self-assembly of the mentioned resol precursor and the triblock copolymer templates Pluronic F127 or P123, respectively. Casting and solvent-evaporation were also followed by

  1. Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Lifen; Cao, Yuliang; Henderson, Wesley A.; Sushko, Maria L.; Shao, Yuyan; Xiao, Jie; Wang, Wei; Engelhard, Mark H.; Nie, Zimin; Liu, Jun

    2016-01-01

    Hard carbon nanoparticles (HCNP) were synthesized by the pyrolysis of a polyaniline precursor. The measured Na+ cation diffusion coefficient (10-13-10-15cm2s-1) in the HCNP obtained at 1150 °C is two orders of magnitude lower than that of Li+ in graphite (10-10-13-15cm2s-1), indicating that reducing the carbon particle size is very important for improving electrochemical performance. These measurements also enable a clear visualization of the stepwise reaction phases and rate changes which occur throughout the insertion/extraction processes in HCNP, The electrochemical measurements also show that the nano-sized HCNP obtained at 1150 °C exhibited higher practical capacity at voltages lower than 1.2 V (vs. Na/Na⁺), as well as a prolonged cycling stability, which is attributed to an optimum spacing of 0.366 nm between the graphitic layers and the nano particular size resulting in a low-barrier Na+ cation insertion. These results suggest that HCNP is a very promising high-capacity/stability anode for low cost sodium-ion batteries (SIBs).

  2. The Improvement of Discharge Capacity of Zr-doped Lithium Titanate for Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Chen Yongjian

    2016-01-01

    Full Text Available Li4Ti5−xZrxO12 (0 ≪ x ≪ 0.05 materials are synthesized via one-step liquid method in this work. The morphology, elemental distribution and lithium storage performance of Zr-doped lithium titanate are systematic analyzed by field emitting scanning electron microscopy (FE-SEM, Hitachi S-4800, energy dispersive X-ray (EDS and Land battery test system (LAND CT2001A together with the pristine lithium titanate for comparison. The FE-SEM images show the uniform morphology and narrow particle size distribution of Zr-doped samples. The cycle performance measurements demonstrate that the Li4Ti4.97Zr0.03O12 electrode displays the best discharge capacities among the composites. It delivers the initial discharge capacities of 165.4 mAh/g and 152.9 mAh/g at 5C and 10C, and remains the values of 142.9 mAh/g and 127.4 mAh/g after 200 cycles. Furthermore, the charge and discharge curves exhibit that the Zr-doped composite presents smaller polarization than the pristine lithium titanate.

  3. Performance characteristics of a battery charger and state-of-charge indicator

    Science.gov (United States)

    Edwards, D.; Klein, J.

    1984-01-01

    A battery charge/state of charge indicator (BC/SCI) system for electric vehicle use was developed. The original and subsequent objectives for the BC/SCI and the rationale for those objectives are described. The requirements generated from the objectives are listed and a description of the BC/SCI is provided. The power section problem, the tests, and the test results are discussed.

  4. High Capacity Nano-Composite Cathodes for Human-Rated Lithium-Ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Non-incremental improvements are necessary in lithium-ion batteries order to meet future space applications demands such as NASA's call for lithium-ion battery...

  5. Metamodel for Efficient Estimation of Capacity-Fade Uncertainty in Li-Ion Batteries for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jaewook Lee

    2015-06-01

    Full Text Available This paper presents an efficient method for estimating capacity-fade uncertainty in lithium-ion batteries (LIBs in order to integrate them into the battery-management system (BMS of electric vehicles, which requires simple and inexpensive computation for successful application. The study uses the pseudo-two-dimensional (P2D electrochemical model, which simulates the battery state by solving a system of coupled nonlinear partial differential equations (PDEs. The model parameters that are responsible for electrode degradation are identified and estimated, based on battery data obtained from the charge cycles. The Bayesian approach, with parameters estimated by probability distributions, is employed to account for uncertainties arising in the model and battery data. The Markov Chain Monte Carlo (MCMC technique is used to draw samples from the distributions. The complex computations that solve a PDE system for each sample are avoided by employing a polynomial-based metamodel. As a result, the computational cost is reduced from 5.5 h to a few seconds, enabling the integration of the method into the vehicle BMS. Using this approach, the conservative bound of capacity fade can be determined for the vehicle in service, which represents the safety margin reflecting the uncertainty.

  6. Life cycle environmental impact of high-capacity lithium ion battery with silicon nanowires anode for electric vehicles.

    Science.gov (United States)

    Li, Bingbing; Gao, Xianfeng; Li, Jianyang; Yuan, Chris

    2014-01-01

    Although silicon nanowires (SiNW) have been widely studied as an ideal material for developing high-capacity lithium ion batteries (LIBs) for electric vehicles (EVs), little is known about the environmental impacts of such a new EV battery pack during its whole life cycle. This paper reports a life cycle assessment (LCA) of a high-capacity LIB pack using SiNW prepared via metal-assisted chemical etching as anode material. The LCA study is conducted based on the average U.S. driving and electricity supply conditions. Nanowastes and nanoparticle emissions from the SiNW synthesis are also characterized and reported. The LCA results show that over 50% of most characterized impacts are generated from the battery operations, while the battery anode with SiNW material contributes to around 15% of global warming potential and 10% of human toxicity potential. Overall the life cycle impacts of this new battery pack are moderately higher than those of conventional LIBs but could be actually comparable when considering the uncertainties and scale-up potential of the technology. These results are encouraging because they not only provide a solid base for sustainable development of next generation LIBs but also confirm that appropriate nanomanufacturing technologies could be used in sustainable product development.

  7. Remarkable cycle-activated capacity increasing in onion-like carbon nanospheres as lithium battery anode material

    Science.gov (United States)

    Dong, Jiajun; Zhang, Tong; Zhang, Dong; Zhang, Weiwei; Zhang, Huafang; Liu, Ran; Yao, Mingguang; Liu, Bingbing

    2017-01-01

    Onion-like carbon nanospheres (OCNSs) with an average diameter of 43 nm were produced on a large scale via a combustion method and examined as an anode material for lithium ion batteries. The OCNSs exhibit a remarkable electrochemical cycling behavior and a capacity much higher than that of graphite. The capacity increases significantly with increasing charge-discharge cycles and reaches a value of 178% of the initial value (from 586 mA h g-1to 1045 mA h g-1) after 200 cycles. Further investigation provides unambiguous experimental evidence that such a remarkable capacity increase is related to the stable onion-like structure of the OCNSs and to the existence of large numbers of disordered/short graphitic fragments, which gradually provide more active sites for Li ion storage. The unique electrochemical performance of OCNSs provides a new way to design a high-performance anode material for rechargeable batteries.

  8. Iron titanium phosphates as high-specific-capacity electrode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Essehli, R., E-mail: essehli.rachid@yahoo.fr [Laboratory of Mineral Solid and Analytical Chemistry (LMSAC), Department of Chemistry, Faculty of Sciences, University Mohamed I, PO. Box 717, 60000 Oujda (Morocco); ESECO SYSTEMS 270 rue Thomas Edison, Atelier Relais No 6, 34400 Lunel (France); El Bali, B. [Laboratory of Mineral Solid and Analytical Chemistry (LMSAC), Department of Chemistry, Faculty of Sciences, University Mohamed I, PO. Box 717, 60000 Oujda (Morocco); Faik, A. [CIC energigune, Parque Tecnológico de Álava, Albert Einstein 48, 01510 Miñano, Álava (Spain); Naji, M. [CNRS, UPR3079 CEMHTI, 1D avenue de la Recherche Scientifique, 45071 Orléans cedex 2 (France); Benmokhtar, S. [LCPGM, Laboratoire de Chimie-Physique Générale des Matériaux, Département de Chimie, Université Hassan II-Mohammedia, Faculté des Sciences Ben M’Sik, Casablanca (Morocco); Zhong, Y.R.; Su, L.W.; Zhou, Z. [Institute of New Energy Material Chemistry, Synergetic Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071 (China); Kim, J.; Kang, K. [Department of Materials Science and Engineering, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Dusek, M. [Institute of Physics of the ASCR, v.v.i., Na Slovance 2, 182 21 Praha 8 (Czech Republic)

    2014-02-05

    Highlights: • Iron Titanium Phosphates as High-Specific-Capacity. • Electrode Materials for Lithium ion Batteries. • During the following cycles, good reversible capacity retention and better cyclabilit. • Ex-situ XRD analysis during the first discharge shows an amorphization of this anode material. -- Abstract: Two iron titanium phosphates, Fe{sub 0.5}TiOPO{sub 4} and Fe{sub 0.5}Ti{sub 2}(PO{sub 4}){sub 3}, were prepared, and their crystal structures and electrochemical performances were compared. The electrochemical measurements of Fe{sub 0.5}TiOPO{sub 4} as an anode of a lithium ion cell showed that upon the first discharge down to 0.5 V, the cell delivered a capacity of 560 mA h/g, corresponding to the insertion of 5 Li’s per formula unit Fe{sub 0.5}TiOPO{sub 4}. Ex-situ XRD reveals a gradual evolution of the structure during cycling of the material, with lower crystallinity after the first discharge cycle. By correlating the electrochemical performances with the structural studies, new insights are achieved into the electrochemical behaviour of the Fe{sub 0.5}TiOPO{sub 4} anode material, suggesting a combination of intercalation and conversion reactions. The Nasicon-type Fe{sub 0.5}Ti{sub 2}(PO{sub 4}){sub 3} consists of a three-dimensional network made of corners and edges sharing [TiO{sub 6}] and [FeO{sub 6}] octahedra and [PO{sub 4}] tetrahedra leading to the formation of trimmers [FeTi{sub 2}O{sub 12}]. The first discharge of lithium ion cells based on Fe{sub 0.5}Ti{sub 2}(PO{sub 4}){sub 3} materials showed electrochemical activity of Ti{sup 4+}/Ti{sup 3+} and Fe{sup 2+}/Fe{sup 0} couples in the 2.5–1 V region. Below this voltage, the discharge profiles are typical of phosphate systems where Li{sub 3}PO{sub 4} is a product of the electrochemical reaction with lithium; moreover, the electrolyte solvent is reduced. An initial capacities as high as 1100 mA h g{sup −1} can be obtained at deep discharge. However, there is an irreversible capacity

  9. The use of battery storage for increasing the hosting capacity of the grid for renewable electricity production

    OpenAIRE

    2014-01-01

    This paper defines a step-by-step systematic decision making process to define operant conditions and applications for which battery storage is an option for electrical power grids. The set of rules is based on a number of research studies performed by the authors focusing mainly on sub-transmission grids. Battery storage is expensive so the focus in this paper is on comparing storage with other ways of achieving the same increase in the hosting capacity (HC) of grid. The approach is to find ...

  10. Capacity-loss diagnostic and life-time prediction in lithium-ion batteries: Part 1. Development of a capacity-loss diagnostic method based on open-circuit voltage analysis

    Science.gov (United States)

    Wang, Tiansi; Pei, Lei; Wang, Tingting; Lu, Rengui; Zhu, Chunbo

    2016-01-01

    Effective capacity-loss diagnosis and life-time prediction are the foundations of battery second-use technology and will play an important role in the development of the new energy industry. Of the two, the capacity-loss diagnostic, as a precondition of the life-time prediction, needs to be studied first. Performing a capacity-loss diagnosis for an aging cell consists of finding the decisive degradation mechanisms for the cell's capacity degradation. Because a cell's capacity just equals the span of the open-circuit voltage (OCV), when suspect degradation mechanisms affect a cell's capacity, they will leave corresponding and particular clues in the OCV curve. Taking a cell's OCV as the diagnostic indicator, a multi-mechanistic and non-destructive diagnostic method is developed in this paper. To establish an unambiguous relationship between OCV changes and the combinations of the decisive mechanisms, all the possible OCV changes under various aging situations are systematically analyzed based on a novel simultaneous coordinate system, in which the effects of each suspect capacity-loss mechanism on the OCV curve can be clearly represented. As a summary of the analysis results, a straightforward diagnostic flowchart is presented. By following the flowchart, an aging cell can be diagnosed within three steps by observation of the OCV changes.

  11. 高比容量镍氢电池的制备及电化学性能%Preparation and electrochemical Performances of nickel metal hydride batteries with high specific volume capacity

    Institute of Scientific and Technical Information of China (English)

    杨敏杰; 南俊民; 侯宪鲁; 李伟善

    2008-01-01

    Cylindrical nickel metal hydride (Ni-MH) battery with high specific volume capacity was prepared by using the oxyhydroxide Ni(OH)2 and AB5 type hydrogen storage alloy and adjusting the designing parameters of positive and negative electrodes. The oxyhydroxide Ni(OH)2 was synthesized by oxidizing spherical β-Ni(OH)2 with chemical method. The X-ray diffraction (XRD) patterns and the Fourier transform infrared (FT-IR) spectra indicated that γ-NiOOH was formed on the oxyhydroxide Ni(OH)2 powders, and some H2O molecules were inserted into their crystal lattice spacing. The battery capacity could not be improved when the oxyhydroxide Ni(OH)2 sample was directly used as the positive active materials. However, based on the conductance and residual capacity of the oxyhydroxide Ni(OH)2 powders, AA size Ni-MH battery with 2560 mA·h capacity and 407 W·h·L specific volume energy at 0.2C was obtained by using the commercial spherical β-Ni(OH)2 and AB5-type hydrogen-storage alloy powders as the active materials when 10% mass amount of the oxyhydroxide Ni(OH)2 with 2.50 valence was added to the positive active materials and subsequently the battery designing parameters were adjusted as well. The as-prepared battery showed 70% initial capacity after 80 cycles at 0.5C. The possibility for adjusting the capacity ratio of positive and negative electrodes from 1 : 1.35 to 1 : 1.22 was demonstrated preliminarily. It is considered the as-prepared battery can meet the requirement of some special portable electrical instruments.

  12. Ion intercalation into two-dimensional transition-metal carbides: global screening for new high-capacity battery materials.

    Science.gov (United States)

    Eames, Christopher; Islam, M Saiful

    2014-11-19

    Two-dimensional transition metal carbides (termed MXenes) are a new family of compounds generating considerable interest due to their unique properties and potential applications. Intercalation of ions into MXenes has recently been demonstrated with good electrochemical performance, making them viable electrode materials for rechargeable batteries. Here we have performed global screening of the capacity and voltage for a variety of intercalation ions (Li(+), Na(+), K(+), and Mg(2+)) into a large number of M2C-based compounds (M = Sc, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta) with F-, H-, O-, and OH-functionalized surfaces using density functional theory methods. In terms of gravimetric capacity a greater amount of Li(+) or Mg(2+) can be intercalated into an MXene than Na(+) or K(+), which is related to the size of the intercalating ion. Variation of the surface functional group and transition metal species can significantly affect the voltage and capacity of an MXene, with oxygen termination leading to the highest capacity. The most promising group of M2C materials in terms of anode voltage and gravimetric capacity (>400 mAh/g) are compounds containing light transition metals (e.g., Sc, Ti, V, and Cr) with nonfunctionalized or O-terminated surfaces. The results presented here provide valuable insights into exploring a rich variety of high-capacity MXenes for potential battery applications.

  13. A Capacity Design Method of Distributed Battery Storage for Controlling Power Variation with Large-Scale Photovoltaic Sources in Distribution Network

    Science.gov (United States)

    Kobayashi, Yasuhiro; Sawa, Toshiyuki; Gunji, Keiko; Yamazaki, Jun; Watanabe, Masahiro

    A design method for distributed battery storage capacity has been developed for evaluating battery storage advantage on demand-supply imbalance control in distribution systems with which large-scale home photovoltaic powers connected. The proposed method is based on a linear storage capacity minimization model with design basis demand load and photovoltaic output time series subjective to battery management constraints. The design method has been experimentally applied to a sample distribution system with substation storage and terminal area storage. From the numerical results, the developed method successfully clarifies the charge-discharge control and stored power variation, satisfies peak cut requirement, and pinpoints the minimum distributed storage capacity.

  14. Premature capacity loss in lead/acid batteries: a discussion of the antimony-free effect and related phenomena

    Science.gov (United States)

    Hollenkamp, A. F.

    Instances of severe capacity loss in apparently healthy lead/acid batteries have been reported over a period of many years, and are still common today. In most cases, these phenomena are linked to the use of antimony-free positive grids and are invoked by repetitive deep-discharge duties. This situation represents probably the greatest barrier to the expansion of markets for lead/acid batteries. To date, research has focused on several possible explanations for capacity loss; notably, degradation of the positive active mass (e.g., relaxable insufficient mass utilization) and the development of electrical barriers around the grid. Although much of the evidence gathered is circumstantial, it does point to the key issues that must be addressed in future work.

  15. Mn 3 O 4 −Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries

    KAUST Repository

    Wang, Hailiang

    2010-10-13

    We developed two-step solution-phase reactions to form hybrid materials of Mn3O4 nanoparticles on reduced graphene oxide (RGO) sheets for lithium ion battery applications. Selective growth of Mn3O 4 nanoparticles on RGO sheets, in contrast to free particle growth in solution, allowed for the electrically insulating Mn3O4 nanoparticles to be wired up to a current collector through the underlying conducting graphene network. The Mn3O4 nanoparticles formed on RGO show a high specific capacity up to ∼900 mAh/g, near their theoretical capacity, with good rate capability and cycling stability, owing to the intimate interactions between the graphene substrates and the Mn 3O4 nanoparticles grown atop. The Mn3O 4/RGO hybrid could be a promising candidate material for a high-capacity, low-cost, and environmentally friendly anode for lithium ion batteries. Our growth-on-graphene approach should offer a new technique for the design and synthesis of battery electrodes based on highly insulating materials. © 2010 American Chemical Society.

  16. A Power Smoothing Control Strategy and Optimized Allocation of Battery Capacity Based on Hybrid Storage Energy Technology

    Directory of Open Access Journals (Sweden)

    Yong Li

    2012-05-01

    Full Text Available Wind power parallel operation is an effective way to realize the large scale use of wind power, but the fluctuations of power output from wind power units may have great influence on power quality, hence a new method of power smoothing and capacity optimized allocation based on hybrid energy storage technology is proposed in terms of the uncontrollable and unexpected characteristics of wind speed in wind farms. First, power smoothing based on a traditional Inertial Filter is introduced and the relationship between the time constant, its smoothing effect and capacity allocation are analyzed and combined with Proportional Integral Differential (PID control to realize power smoothing control of wind power. Then wavelet theory is adopted to realize a multi-layer decomposition of power output in some wind farms, a power smoothing model based on hybrid energy storage technology is constructed combining the characteristics of the Super Capacitor (SC and Battery Energy Storage System (BESS technologies. The hybrid energy storage system is available for power fluctuations with high frequency-low energy and low frequency-high energy to achieve good smoothing effects compared with a single energy storage system. The power fluctuations filtered by the Wavelet Transform is regarded as the target value of BESS, the charging and discharging control for battery is completed quickly by Model Algorithm Control (MAC. Because of the influence of the inertia and the response speed of the battery, its actual output is not completely equal to the target value which mainly reflects in high-frequency part, the difference part uses SC to compensate and makes the output of battery and SC closer to the target value on the whole. Compared with the traditional Inertial Filter and PID control method, the validity of the model was verified by simulation results. Finally under the premise of power grid standards, the corresponding capacity design had been given to reduce the

  17. Capacity optimization of battery-generator hybrid power system: Toward minimizing maintenance cost in expeditionary basecamp/operational energy applications

    Science.gov (United States)

    Onwuanumkpe, Jude C.

    Low and transient load condition are known to have deleterious impact on the efficiency and health of diesel generators (DGs). Extensive operation under such loads reduces fuel consumption and energy conversion efficiency, and contribute to diesel engine degradation, damage, or catastrophic failure. Non-ideal loads are prevalent in expeditionary base camps that support contingency operations in austere environments or remote locations where grid electricity is either non-existent or inaccessible. The impact of such loads on DGs exacerbates already overburdened basecamp energy logistics requirements. There is a need, therefore, to eliminate or prevent the occurrence of non-ideal loads. Although advances in diesel engine technologies have improved their performance, DGs remain vulnerable to the consequences of non-ideal loads and inherent inefficiencies of combustion. The mechanisms through which DGs respond to and mitigate non-ideal loads are also mechanically stressful and energy-intensive. Thus, this research investigated the idea of using batteries to prevent DGs from encountering non-ideal loads, as a way to reduce basecamp energy logistics requirements. Using a simple semi-empirical approach, the study modeled and simulated a battery-DG hybrid system under various load conditions. The simulation allowed for synthesis of design space in which specified battery and generator capacity can achieve optimal savings in fuel consumption and maintenance cost. Results show that a right-sized battery-diesel generator system allows for more than 50% cost savings relative to a standalone generator.

  18. Adaptive capacity indicators to assess sustainability of urban water systems - Current application.

    Science.gov (United States)

    Spiller, Marc

    2016-11-01

    Sustainability is commonly assessed along environmental, societal, economic and technological dimensions. A crucial aspect of sustainability is that inter-generational equality must be ensured. This requires that sustainability is attained in the here and now as well as into the future. Therefore, what is perceived as 'sustainable' changes as a function of societal opinion and technological and scientific progress. A concept that describes the ability of systems to change is adaptive capacity. Literature suggests that the ability of systems to adapt is an integral part of sustainable development. This paper demonstrates that indicators measuring adaptive capacity are underrepresented in current urban water sustainability studies. Furthermore, it is discussed under which sustainability dimensions adaptive capacity indicators are lacking and why. Of the >90 indicators analysed, only nine are adaptive capacity indicators, of which six are socio-cultural, two technological, one economical and none environmental. This infrequent use of adaptive capacity indicators in sustainability assessments led to the conclusion that the challenge of dynamic and uncertain urban water systems is, with the exception of the socio-cultural dimension, not yet sufficiently reflected in the application of urban water sustainability indicators. This raises concerns about the progress towards urban water systems that can transform as a response variation and change. Therefore, research should focus on developing methods and indicators that can define, evaluate and quantify adaptive capacity under the economic, environmental and technical dimension of sustainability. Furthermore, it should be evaluated whether sustainability frameworks that focus on the control processes of urban water systems are more suitable for measuring adaptive capacity, than the assessments along environmental, economic, socio-cultural and technological dimensions.

  19. Discharge capacity and microstructures of La Mg Pr Al Mn Co Ni alloys for nickel-metal hydride batteries

    Energy Technology Data Exchange (ETDEWEB)

    Casini, J.C.S.; Galdino, G.S.; Ferreira, E.A.; Takiishi, H.; Faria, R.N., E-mail: jcasini@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (DM/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Dept. de Metalurgia

    2010-07-01

    La{sub 0.7-x}Mg{sub x}Pr{sub 0.3}Al{sub 0.3}Mn{sub 0.4}Co{sub 0.5}Ni{sub 3.8} (x = 0.0, 0.3 and 0.7) alloys have been investigated aiming the production of negative electrodes for nickel-metal hydride batteries. The alloys employed in this work were used in the as cast state. The results showed that the substitution of magnesium by lanthanum increased the discharge capacity of the Ni-MH batteries. A battery produced with the La{sub 0.4}Mg{sub 0.3}Pr{sub 0.3}Al{sub 0.3}Mn{sub 0.4}Co{sub 0.5}Ni{sub 3.8} alloy shown a high discharge capacity (380mAh/g) also good stability compared to other alloys. The electrode materials were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). (author)

  20. Modeling Li-ion Battery Capacity Depletion in a Particle Filtering Framework

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper presents an empirical model to describe battery behavior during individual discharge cycles as well as over its cycle life. The basis for the form of the...

  1. Spray pyrolysis-deposited nanoengineered TiO2 thick films for ultra-high areal and volumetric capacity lithium ion battery applications

    Science.gov (United States)

    Haridas, Anupriya K.; Gangaja, Binitha; Srikrishnarka, Pillalamarri; Unni, Gautam E.; Nair, A. Sreekumaran; Nair, Shantikumar V.; Santhanagopalan, Dhamodaran

    2017-03-01

    Energy storage technologies are sensitively dependent on electrode film quality, thickness and process scalability. In Li-ion batteries, using additive-free titania (TiO2) as electrodes, we sought to show the potential of spray pyrolysis-deposited nanoengineered films with thicknesses up to 135 μm exhibiting ultra-high areal capacities. Detailed electron microscopic characterization indicated that the achieved thick films are composed of highly crystalline anatase TiO2 particles with sizes on the order of 10-12 nm and porous as well. A 135 μm thick film yielded ultra-high areal and volumetric capacities of 3.7 mAh cm-2 and 274 mAh cm-3, respectively, at 1C rate. Also the present work recorded high Coulombic efficiency and good cycling stability. The best previously achieved capacities for additive-free TiO2 films have been less than 0.25 mAh cm-2 and With additives, best reported areal capacity in the literature has been 2.5 mAh cm-2 at 1C rate, but only with electrode thickness as high as 1400 μm. Formation of through-the-thickness percolation of Ti3+ conductive network upon lithiation contributed substantially for the superior performance. Spray pyrolysis deposition of nanoparticulate TiO2 electrodes have the potential to yield volumetric capacities an order of magnitude higher than the other processes previously reported without sacrificing performance and process scalability.

  2. Capacity indicators for disaster preparedness in hospitals within Nairobi County, Kenya.

    Science.gov (United States)

    Simiyu, Cynthia Nekesa; Odhiambo-Otieno, George; Okero, Dominic

    2014-01-01

    The goal of this study was to assess hospital capacity for disaster preparedness within Nairobi County. This information would be valuable to institutional strategists to resolve weaknesses and reinforce strengths in hospital capacity hence ensure efficient and effective service delivery during disasters. Analytical cross-sectional research design was used. Indicator variables for capacity were hospital equipment, hospital infrastructure, surrounding hospital environment, training, drills, staff knowledge and staff capabilities. Thirty two hospitals were studied of which nine of them were public hospitals. Data analysis was done using SPSS and presented in the form of frequency tables at p hospital capacity to disaster preparedness in Nairobi County existed in 22 (68.88%) hospitals, in 6 (64.95%) public hospitals and 16 (69.64%) private hospitals. The difference in capacity between public and private hospitals within the County was less than 5%. This showed that both public and private hospitals were relatively at par, with regard to the capacity to handle disaster cases. Study findings also revealed that the surrounding hospital environment was the most highly rated indicator while inter hospital training and drills were the least rated. Although existent in hospitals within Nairobi County, for maximum hospital capacity and disaster preparedness within Nairobi County to be achieved, the existent gap in inter hospital training and inter hospital drills, both of which fall under the finance health systems pillar, required addressing.

  3. Determination of installation capacity in reservoir hydro-power plants considering technical, economical and reliability indices

    DEFF Research Database (Denmark)

    Hosseini, S.M.H.; Forouzbakhsh, Farshid; Fotouh-Firuzabad, Mahmood

    2008-01-01

    One of the most important issues in planning the ‘‘reservoir” type of hydro-power plants (HPP) is to determine the installation capacity of the HPPs and estimate its annual energy value. In this paper, a method is presented. A computer program has been developed to analyze energy calculation...... the technical, economic and reliability indices will determine the installation capacity of an HPP. By applying the above-mentioned algorithm to an existing HPP named ‘‘Bookan” (located in the westnorth of Iran); the capacity of 30 MW is obtained....

  4. Thermal and electrochemical studies of carbons for Li-ion batteries. 2. Correlation of active sites and irreversible capacity loss

    Science.gov (United States)

    Tran, T.; Yebka, B.; Song, X.; Nazri, G.; Kinoshita, K.; Curtis, D.

    Thermal gravimetric analysis (TGA) and differential thermal analysis (DTA) involving air oxidation of fluid coke, coal-tar pitch delayed coke and needle coke suggested that active sites are present which can be correlated to the crystallographic parameters, La and Lc, and the d(002) spacing. This finding was extended to determine the relationship between active sites on carbon and their role in catalyzing electrolyte decomposition leading to irreversible capacity loss (ICL) in Li-ion batteries. Electrochemical data from this study with graphitizable carbons and from published literature were analyzed to determine the relationship between the physical properties of carbon and the ICL during the first charge/discharge cycle. Based on this analysis, we conclude that the active surface area, and not the total BET surface area, has an influence on the ICL of carbons for Li-ion batteries. This conclusion suggests that the carbon surface structure plays a significant role in catalyzing electrolyte decomposition.

  5. Optimal Installation Capacity of Medium Hydro-Power Plants Considering Technical, Economic and Reliability Indices

    DEFF Research Database (Denmark)

    Hosseini, S. M. H.; Forouzbakhsh, Farshid; Fotuhi-Firuzabad, Mahmood

    2008-01-01

    One of the most important issues in planning the reservoir type of Medium Hydro-Power Plants (MHPP) is to determine the optimal installation capacity of the MHPP and estimate its optimal annual energy value. In this paper, a method is presented to calculate the annual energy. A computer program has...... been developed to analyse energy calculation and estimation of the most important economic indices of an MHPP using the sensitivity analysis method. Another program, developed by Matlab software, calculates the reliability indices for a number of units of an MHPP with a specified load duration curve...... using the Monte Carlo method. Ultimately, com- paring the technical, economic and reliability indices will determine the optimal installation capacity of an MHPP. By applying the above-mentioned algorithm to an existing MHPP named "Bookan( located in the west-north of Iran); the optimal capacity of 30...

  6. Performance and capacity fading reason of LiMn2O4/graphite batteries after storing at high temperature

    Institute of Scientific and Technical Information of China (English)

    LIU Yunjian; LI Xinhai; GUO Huajun; WANG Zhixing; HU Qiyang; PENG Wenjie; YANG Yong

    2009-01-01

    Spinel LiMn2O4 was synthesized by a solid-state method. A 204468-size battery was fabricated and stored at 55℃. The structure and mor-phology of the LiMn2O4 cathode were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (gEM) technique. Energy dispersive spectroscopy (EDS) was used to analyze the surface component of the carbon anode. The discharge capacities of LiMn2O4 stored for 0, 24, 48, and 96 h are 106, 98, 96, and 92 mAh-g-1, respectively. The cyclic performance is improved after storage. The capacity reten-tions of LiMn2O4 stored for 0, 24, 48, and 96 h are 83.8%, 85.8%, 86.9%, and 88.6% after 180 cycles. The intensity of all the LiMn2O4 dif-fraction peaks is weakened. Mn is detected from the carbon electrode when the battery is stored for 96 h. Cyclic voltammograms and elec-trochemical impedance spectroscopy (EIS) were used to examine the surface state of the electrode after storage. The results show that the re-sistance and polarization of LiMn2O4/electrolyte is increased after storage, which is responsible for the fading of capacity.

  7. Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium-Sulfur Battery Cathode Material with High Capacity and Cycling Stability

    Science.gov (United States)

    Wang, Hailiang; Yang, Yuan; Liang, Yongye; Robinson, Joshua Tucker; Li, Yanguang; Jackson, Ariel; Cui, Yi; Dai, Hongjie

    2011-07-01

    We report the synthesis of a graphene-sulfur composite material by wrapping polyethyleneglycol (PEG) coated submicron sulfur particles with mildly oxidized graphene oxide sheets decorated by carbon black nanoparticles. The PEG and graphene coating layers are important to accommodating volume expansion of the coated sulfur particles during discharge, trapping soluble polysulfide intermediates and rendering the sulfur particles electrically conducting. The resulting graphene-sulfur composite showed high and stable specific capacities up to ~600mAh/g over more than 100 cycles, representing a promising cathode material for rechargeable lithium batteries with high energy density.

  8. High-capacity lithium-ion battery conversion cathodes based on iron fluoride nanowires and insights into the conversion mechanism.

    Science.gov (United States)

    Li, Linsen; Meng, Fei; Jin, Song

    2012-11-14

    The increasing demands from large-scale energy applications call for the development of lithium-ion battery (LIB) electrode materials with high energy density. Earth abundant conversion cathode material iron trifluoride (FeF(3)) has a high theoretical capacity (712 mAh g(-1)) and the potential to double the energy density of the current cathode material based on lithium cobalt oxide. Such promise has not been fulfilled due to the nonoptimal material properties and poor kinetics of the electrochemical conversion reactions. Here, we report for the first time a high-capacity LIB cathode that is based on networks of FeF(3) nanowires (NWs) made via an inexpensive and scalable synthesis. The FeF(3) NW cathode yielded a discharge capacity as high as 543 mAh g(-1) at the first cycle and retained a capacity of 223 mAh g(-1) after 50 cycles at room temperature under the current of 50 mA g(-1). Moreover, high-resolution transmission electron microscopy revealed the existence of continuous networks of Fe in the lithiated FeF(3) NWs after discharging, which is likely an important factor for the observed improved electrochemical performance. The loss of active material (FeF(3)) caused by the increasingly ineffective reconversion process during charging was found to be a major factor responsible for the capacity loss upon cycling. With the advantages of low cost, large quantity, and ease of processing, these FeF(3) NWs are not only promising battery cathode materials but also provide a convenient platform for fundamental studies and further improving conversion cathodes in general.

  9. High-Capacity Micrometer-Sized Li 2 S Particles as Cathode Materials for Advanced Rechargeable Lithium-Ion Batteries

    KAUST Repository

    Yang, Yuan

    2012-09-19

    Li 2S is a high-capacity cathode material for lithium metal-free rechargeable batteries. It has a theoretical capacity of 1166 mAh/g, which is nearly 1 order of magnitude higher than traditional metal oxides/phosphates cathodes. However, Li 2S is usually considered to be electrochemically inactive due to its high electronic resistivity and low lithium-ion diffusivity. In this paper, we discover that a large potential barrier (∼1 V) exists at the beginning of charging for Li 2S. By applying a higher voltage cutoff, this barrier can be overcome and Li 2S becomes active. Moreover, this barrier does not appear again in the following cycling. Subsequent cycling shows that the material behaves similar to common sulfur cathodes with high energy efficiency. The initial discharge capacity is greater than 800 mAh/g for even 10 μm Li 2S particles. Moreover, after 10 cycles, the capacity is stabilized around 500-550 mAh/g with a capacity decay rate of only ∼0.25% per cycle. The origin of the initial barrier is found to be the phase nucleation of polysulfides, but the amplitude of barrier is mainly due to two factors: (a) charge transfer directly between Li 2S and electrolyte without polysulfide and (b) lithium-ion diffusion in Li 2S. These results demonstrate a simple and scalable approach to utilizing Li 2S as the cathode material for rechargeable lithium-ion batteries with high specific energy. © 2012 American Chemical Society.

  10. Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li-O2 batteries

    DEFF Research Database (Denmark)

    Viswanathan, V.; Thygesen, Kristian Sommer; Hummelshøj, J.S.

    2011-01-01

    Non-aqueous Li-air or Li-O2 cells show considerable promise as a very high energy density battery couple. Such cells, however, show sudden death at capacities far below their theoretical capacity and this, among other problems, limits their practicality. In this paper, we show that this sudden de...

  11. A quick indicator of effectiveness of “capacity building” initiatives of NGOs and international organizations

    Directory of Open Access Journals (Sweden)

    David Lempert

    2015-12-01

    Full Text Available The article offers an easy-to-use indicator for scholars and practitioners to measure whether NGOs, international organizations, and government policies and projects meet the criteria for design and implementation of “capacity building” projects that have been established by various international organizations and that are recognized by experts in the field. The indicator can be used directly to address failures that are routinely reported in this key and growing development intervention. Use of this indicator on more than a dozen standard interventions funded today by international development banks, UN organizations, country donors, and non-governmental organizations (NGOs reveals that while many smaller organizations are working to change institutions and society in ways that effectively build long-term capacity, most of the major actors in the field of development have failed to follow their own guidelines. Many appear to be using “capacity building” as a cover for lobbying foreign governments to promote international agendas (“purchasing foreign officials” and/or to increase the power of particular officials at the expense of democracy, with the public lacking simple accountability tools. The indicator points to specific areas for holding development actors accountable in order to promote development goals of sustainability and good governance. The breadth of the field of “capacity building” also allows this indicator to be used, with some modifications, for a large variety of development interventions. This article also offers several examples of where current capacity building projects fail, along with a sample test of the indicator using UNCDF as a case study.

  12. Anthropometric and Cardio-Respiratory Indices and Aerobic Capacity of Male and Female Students

    Science.gov (United States)

    Czajkowska, Anna; Mazurek, Krzysztof; Lutoslawska, Grazyna; Zmijewski, Piotr

    2009-01-01

    Study aim: To assess the relations between anthropometric and cardio-respiratory indices, and aerobic capacity of students, differing in the level of physical activity, under resting and exercise conditions. Material and methods: A group of 87 male and 75 female students volunteered to participate in the study. Their physical activity was…

  13. A New Method to Plan the Capacity and Location of Battery Swapping Station for Electric Vehicle Considering Demand Side Management

    Directory of Open Access Journals (Sweden)

    Wenxia Liu

    2016-06-01

    Full Text Available Compared to electric vehicle (EV charging mode, battery swapping mode can realize concentrated and orderly charging. Therefore battery swapping stations (BSS can participate in the demand side management (DSM as an integrated form. In this context, a new method to plan the capacity and location of BSS for EV, considering DSM, is proposed in this paper. Firstly, based on the original charging power of BSS with the rule of “First-In First-Out”, a bi-level optimal configuration model of BSS, in which net profit of BSS is maximized in the upper model and operating cost of Distribution Company is minimized in the lower model, is developed to decide the rated power, number of batteries, contract pricing and dispatched power of BSS for DSM. Then, the optimal locating model of BSS with the objective of minimizing network loss is built. A mesh adaptive direct search algorithm with YALMIP toolbox is applied to optimize the bi-level model. Simulation calculation was carried on IEEE-33 nodes distribution system and the results show that participating in DSM can improve the economic benefits of both BSS and distribution network and promote the consumption of distributed generation, verifying the feasibility and effectiveness of the proposed method.

  14. Overcharge performance of LiMn_2O_4/graphite battery with large capacity

    Institute of Scientific and Technical Information of China (English)

    LIU Yun-jian; LI Xin-hai; GUO Hua-jun; WANG Zhi-xing; HU Qi-yang; PENG Wen-jie

    2009-01-01

    The LiMn_2O_4/graphite battery was fabricated and its 3 C/10 V overcharge performance was studied. Spinel LiMn_2O_4 was synthesized by solid-state method and 325680-type size full battery was fabricated. The structure and morphology of the powders were characterized by XRD and SEM technique, respectively. The battery explodes after 3 C/10 V overcharged test, and surface temperature of the battery case arrives at 290℃ in 12 s after exploding. Black air is given out with blast. Carbon, MnO, and Li_2CO_3 are observed in the exploded powders. The cathode electrode remains spinel structure with 5.0 V charged. Cracks in the cathode electrode particles are detected with the increase of voltage by SEM technique. The 5.0 V charged electrode can decompose into Mn_30_4 at 400 ℃. It is demonstrated that the decomposition of 5.0 V charged electrode can be promoted and Mn~(4+) can be deoxidized to Mn~(2+) by carbon and electrolyte through the simulation of blast process.

  15. Superior electrochemical performance of sulfur/graphene nanocomposite material for high-capacity lithium-sulfur batteries.

    Science.gov (United States)

    Wang, Bei; Li, Kefei; Su, Dawei; Ahn, Hyojun; Wang, Guoxiu

    2012-06-01

    Sulfur/graphene nanocomposite material has been prepared by incorporating sulfur into the graphene frameworks through a melting process. Field-emission scanning electron microscope analysis shows a homogeneous distribution of sulfur in the graphene nanosheet matrix. The sulfur/graphene nanocomposite exhibits a super-high lithium-storage capacity of 1580 mA h g(-1) and a satisfactory cycling performance in lithium-sulfur cells. The enhancement of the reversible capacity and cycle life could be attributed to the flexible graphene nanosheet matrix, which acts as a conducting medium and a physical buffer to cushion the volume change of sulfur during the lithiation and delithiation process. Graphene-based nanocomposites can significantly improve the electrochemical performance of lithium-sulfur batteries.

  16. High reversible capacity of SnO{sub 2}/graphene nanocomposite as an anode material for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lian Peichao [School of Chemistry and Chemical Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640 (China); Zhu Xuefeng [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Liang Shuzhao; Li Zhong [School of Chemistry and Chemical Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640 (China); Yang Weishen [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Wang Haihui, E-mail: hhwang@scut.edu.c [School of Chemistry and Chemical Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640 (China)

    2011-04-30

    Highlights: {yields} Gas-liquid interfacial reaction was used to prepare SnO{sub 2}/graphene nanocomposite. {yields} SnO{sub 2}/graphene nanocomposite as an anode for lithium-ion batteries. {yields} It exhibited high reversible specific capacity and excellent cycle capability. {yields} Graphene sheets can improve the cycling performance and reverible capacity of SnO{sub 2}. - Abstract: A gas-liquid interfacial synthesis approach has been developed to prepare SnO{sub 2}/graphene nanocomposite. The as-prepared nanocomposite was characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and Brunauer-Emmett-Teller measurements. Field emission scanning electron microscopy and transmission electron microscopy observation revealed the homogeneous distribution of SnO{sub 2} nanoparticles (2-6 nm in size) on graphene matrix. The electrochemical performances were evaluated by using coin-type cells versus metallic lithium. The SnO{sub 2}/graphene nanocomposite prepared by the gas-liquid interface reaction exhibits a high reversible specific capacity of 1304 mAh g{sup -1} at a current density of 100 mA g{sup -1} and excellent rate capability, even at a high current density of 1000 mA g{sup -1}, the reversible capacity was still as high as 748 mAh g{sup -1}. The electrochemical test results show that the SnO{sub 2}/graphene nanocomposite prepared by the gas-liquid interfacial synthesis approach is a promising anode material for lithium-ion batteries.

  17. Ultrahigh capacity anode material for lithium ion battery based on rod gold nanoparticles decorated reduced graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Atar, Necip, E-mail: necipatar@gmail.com [Department of Chemical Engineering, Pamukkale University, Denizli (Turkey); Eren, Tanju [Department of Chemical Engineering, Pamukkale University, Denizli (Turkey); Yola, Mehmet Lütfi [Department of Metallurgical and Materials Engineering, Sinop University, Sinop (Turkey)

    2015-09-01

    In this study, we report the synthesis of rod shaped gold nanoparticles/2-aminoethanethiol functionalized reduced graphene oxide composite (rdAuNPs/AETrGO) and its application as an anode material for lithium-ion batteries. The structure of the rdAuNPs/AETrGO composite was characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction. The electrochemical performance was investigated at different current rates by using a coin-type cell. It was found that the rod shaped gold nanoparticles were highly dispersed on the reduced graphene oxide sheets. Moreover, the rdAuNPs/AETrGO composite showed a high specific gravimetric capacity of about 1320 mAh g{sup −1} and a long-term cycle stability. - Highlights: • We prepared rod shaped gold nanoparticles functionalized reduced graphene oxide. • The nanocomposite was used as an anode material for lithium-ion batteries. • The nanocomposite showed a high specific gravimetric capacity of about 1320 mAh g{sup −1}. • The nanocomposite exhibited a long-term cycle stability.

  18. Capacity Management and Walkdown During LEO Cycling of Nickel-Hydrogen Cells and Batteries

    Science.gov (United States)

    Thaller, Lawrence H.; Zimmerman, Albert H.; To, Gloria

    2001-01-01

    This viewgraph presentation discusses the following topics: 1) Capacity walkdown defined and illustrated; 2) Importance of capacity walkdown: 3) Four approaches to understanding the phenomenon - Pressure Trend, Charging Curve, Electrochemical Voltage Spectroscopy, and Destructive Physical Analysis Studies; 4) Results of the interrelated studies; 5) Suggested mechanism for capacity walkdown; and 6) Charging protocols to avoid the problem. In summary: 1) capacity walkdown is a consequence of the inability to maintain a high state of charge; 2) Capacity loss is typically 35% which would be expected by the valence difference between gamma and beta nickel oxyhydroxide; 3) Cycling at -5 degrees facilitates the formation of the gamma phase; 4) Excessive overcharge can also facilitate gamma phase formation at the expense of cycle life; and 5) Conditions can now be suggested to help minimize capacity walkdown.

  19. Differential Capacity-Based Modeling for In-Use Battery Diagnostics, Prognostics, and Quality Assurance

    Science.gov (United States)

    2014-06-09

    test and to observe which characteristic feature(s) of the curve changes as a result of performance degradation. A 3.4 Ah NMC 18650 cell was...with corresponding differential capacity curve for a 2.4 Ah NMC 18650 cell. Figure 2. Differential capacity curves comparing data fidelity at...varying charge/discharge rates for a 2.4 Ah NMC 18650 cell. Figure 3. Differential capacity curves comparing data fidelity at varying voltage

  20. Mesoporous Silicon-Based Anodes for High Capacity, High Performance Li-ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A new high capacity anode composite based on mesoporous silicon is proposed. By virtue of a structure that resembles a pseudo one-dimensional phase, the active anode...

  1. Mono-layer BC2 a high capacity anode material for Li-ion batteries

    Science.gov (United States)

    Hardikar, Rahul; Samanta, Atanu; Han, Sang Soo; Lee, Kwang-Ryeol; Singh, Abhishek

    2015-04-01

    Mono-layer of graphene with high surface area compared to the bulk graphite phase, shows less Li uptake. The Li activity or kinetics can be modified via defects and/or substitutional doping. Boron and Nitrogen are the best known dopants for carbonaceous anode materials. In particular, boron doped graphene shows higher capacity and better Li adsorption compared to Nitrogen doped graphene. Here, using first principles density functional theory calculations, we study the spectrum of boron carbide (BCx) mono-layer phases in order to estimate the maximum gravimetric capacity that can be achieved by substitutional doping in graphene. Our results show that uniformly boron doped BC2 phase shows a high capacity of? 1400 mAh/g, much higher than previously reported capacity of BC3. Supported by Korea Institute of Science and Technology.

  2. Mesoporous Silicon-Based Anodes for High Capacity, High Performance Li-ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A new high capacity anode composite based on mesoporous silicon is proposed. By virtue of a structure that resembles a pseudo one-dimensional phase, the active...

  3. Reduced graphene oxide as a stable and high-capacity cathode material for Na-ion batteries

    Science.gov (United States)

    Ali, Ghulam; Mehmood, Asad; Ha, Heung Yong; Kim, Jaehoon; Chung, Kyung Yoon

    2017-01-01

    We report the feasibility of using reduced graphene oxide (RGO) as a cost-effective and high performance cathode material for sodium-ion batteries (SIBs). Graphene oxide is synthesized by a modified Hummers’ method and reduced using a solid-state microwave irradiation method. The RGO electrode delivers an exceptionally stable discharge capacity of 240 mAh g−1 with a stable long cycling up to 1000 cycles. A discharge capacity of 134 mAh g−1 is obtained at a high current density of 600 mA g−1, and the electrode recovers a capacity of 230 mAh g−1 when the current density is reset to 15 mA g−1 after deep cycling, thus demonstrating the excellent stability of the electrode with sodium de/intercalation. The successful use of the RGO electrode demonstrated in this study is expected to facilitate the emergence of low-cost and sustainable carbon-based materials for SIB cathode applications. PMID:28098231

  4. Communication: The influence of CO2 poisoning on overvoltages and discharge capacity in non-aqueous Li-Air batteries

    Science.gov (United States)

    Mekonnen, Yedilfana S.; Knudsen, Kristian B.; Mýrdal, Jon S. G.; Younesi, Reza; Højberg, Jonathan; Hjelm, Johan; Norby, Poul; Vegge, Tejs

    2014-03-01

    The effects of Li2CO3 like species originating from reactions between CO2 and Li2O2 at the cathode of non-aqueous Li-air batteries were studied by density functional theory (DFT) and galvanostatic charge-discharge measurements. Adsorption energies of CO2 at various nucleation sites on a stepped ({1bar 100}) Li2O2 surface were determined and even a low concentration of CO2 effectively blocks the step nucleation site and alters the Li2O2 shape due to Li2CO3 formation. Nudged elastic band calculations show that once CO2 is adsorbed on a step valley site, it is effectively unable to diffuse and impacts the Li2O2 growth mechanism, capacity, and overvoltages. The charging processes are strongly influenced by CO2 contamination, and exhibit increased overvoltages and increased capacity, as a result of poisoning of nucleation sites: this effect is predicted from DFT calculations and observed experimentally already at 1% CO2. Large capacity losses and overvoltages are seen at higher CO2 concentrations.

  5. Reduced graphene oxide as a stable and high-capacity cathode material for Na-ion batteries

    Science.gov (United States)

    Ali, Ghulam; Mehmood, Asad; Ha, Heung Yong; Kim, Jaehoon; Chung, Kyung Yoon

    2017-01-01

    We report the feasibility of using reduced graphene oxide (RGO) as a cost-effective and high performance cathode material for sodium-ion batteries (SIBs). Graphene oxide is synthesized by a modified Hummers’ method and reduced using a solid-state microwave irradiation method. The RGO electrode delivers an exceptionally stable discharge capacity of 240 mAh g-1 with a stable long cycling up to 1000 cycles. A discharge capacity of 134 mAh g-1 is obtained at a high current density of 600 mA g-1, and the electrode recovers a capacity of 230 mAh g-1 when the current density is reset to 15 mA g-1 after deep cycling, thus demonstrating the excellent stability of the electrode with sodium de/intercalation. The successful use of the RGO electrode demonstrated in this study is expected to facilitate the emergence of low-cost and sustainable carbon-based materials for SIB cathode applications.

  6. Monolayer MoS2-Graphene Hybrid Aerogels with Controllable Porosity for Lithium-Ion Batteries with High Reversible Capacity.

    Science.gov (United States)

    Jiang, Lianfu; Lin, Binghui; Li, Xiaoming; Song, Xiufeng; Xia, Hui; Li, Liang; Zeng, Haibo

    2016-02-01

    Monolayer MoS2 nanosheets (NSs) are promising anode materials for lithium-ion batteries because all redox reactions take place at the surface without lithium-ion diffusion limit. However, the expanded band gap of monolayer MoS2 NSs (∼1.8 eV) compared to their bulk counterparts (∼1.2 eV) and restacking tendency due to the van der Waals forces result in poor electron transfer and loss of the structure advantage. Here, a facile approach is developed to fabricate the MoS2-graphene aerogels comprising controlled three-dimensional (3D) porous architectures constructed by interconnected monolayer MoS2-graphene hybrid NSs. The robust 3D architectures combining with the monolayer feature of the hybrid NSs not only prevent the MoS2 and graphene NSs from restacking, but also enable fast electrode kinetics due to the surface reaction mechanism and highly conductive graphene matrix. As a consequence, the 3D porous monolayer MoS2-graphene composite aerogels exhibit a large reversible capacity up to 1200 mAh g(-1) as well as outstanding cycling stability and rate performance, making them promising as advanced anode materials for lithium-ion batteries.

  7. Strong dependency of lithium diffusion on mechanical constraints in high-capacity Li-ion battery electrodes

    Institute of Scientific and Technical Information of China (English)

    Yi-Fan Gao; Min Zhou

    2012-01-01

    The effect of external constraints on Li diffusion in high-capacity Li-ion battery electrodes is investigated using a coupled finite deformation theory.It is found that thinfilm electrodes on rigid substrates experience much slower diffusion rates compared with free-standing films with the same material properties and geometric dimensions.More importantly,the study reveals that mechanical driving forces tend to retard diffusion in highly-constrained thin films when lithiation-induced softening is considered,in contrast to the fact that mechanical driving forces always enhance diffusion when deformation is fully elastic.The results provide further proof that nano-particles are a better design option for nextgeneration alloy-based electrodes compared with thin films.

  8. Detection of capacity imbalance in vanadium electrolyte and its electrochemical regeneration for all-vanadium redox-flow batteries

    Science.gov (United States)

    Roznyatovskaya, Nataliya; Herr, Tatjana; Küttinger, Michael; Fühl, Matthias; Noack, Jens; Pinkwart, Karsten; Tübke, Jens

    2016-01-01

    A vanadium electrolyte for redox-flow batteries (VRFB) with different VIII and VIV mole fractions has been studied by UV-vis spectroscopy. Spectrophotometric detection enables a rough estimate of the VIV and VIII content, which can be used to detect an electrolyte capacity imbalance, i.e. a deviation in the mole fraction of VIV or VIII away from 50%. The isosbestic point at 600 nm can be used as a reference point in the analysis of common VRFB electrolyte batches. The VRFB electrolyte is observed to have an imbalance after prolonged storage (a couple of years) in a tank under ambient conditions. A regeneration procedure, which involves pre-charging the unbalanced electrolyte and mixing part of it with a portion of initial unbalanced electrolyte, has been tested. The resulting rebalanced electrolyte has been compared with a common electrolyte in a charge-discharge cell test and is shown to be suitable for cell operation.

  9. Proposal of simple and novel method of capacity fading analysis using pseudo-reference electrode in lithium ion cells: Application to solvent-free lithium ion polymer batteries

    Science.gov (United States)

    Shono, Kumi; Kobayashi, Takeshi; Tabuchi, Masato; Ohno, Yasutaka; Miyashiro, Hajime; Kobayashi, Yo

    2014-02-01

    We propose a simple procedure for introducing a pseudo-reference electrode (PRE) to lithium ion batteries using isometric lithium metal placed between the cathode and anode, and we successfully obtained the cathode and anode voltage profiles, individual interfacial impedances, and the misalignment of the operation range between the cathode and anode after cycle operation. The proposed procedure is applicable to lithium ion battery systems using a solid electrolyte to prepare two cells with a lithium counter electrode. We determined the capacity decrease of a solvent-free lithium ion polymer battery consisting of a LiNi1/3Mn1/3Co1/3O2 (NMC), a polyether-based solid polymer electrolyte (SPE), and a graphite (Gr) with the proposed PRE over 1000 cycles. The capacity retention of the [Gr|SPE|NMC] cell reached 50% at the 1000th cycle upon the optimization of cell preparation, and we found that the main factor of the capacity decrease was the continuous irreversible loss of active lithium at the graphite anode, not the oxidation of the SPE. Our findings suggest that we should reconsider combining a polyether-based SPE with a conventionally used 4 V class cathode and a graphite anode to develop an innovative, safe, and low-cost battery for the expected large lithium ion battery systems for stationary use.

  10. Retinol metabolism in the mollusk Osilinus lineatus indicates an ancient origin for retinyl ester storage capacity.

    Directory of Open Access Journals (Sweden)

    Manuel Gesto

    Full Text Available Although retinoids have been reported to be present and active in vertebrates and invertebrates, the presence of mechanisms for retinoid storage in the form of retinyl esters, a key feature to maintain whole-organism retinoid homeostasis, have been considered to date a vertebrate innovation. Here we demonstrate for the first time the presence of retinol and retinyl esters in an invertebrate lophotrochozoan species, the gastropod mollusk Osilinus lineatus. Furthermore, through a pharmacological approach consisting of intramuscular injections of different retinoid precursors, we also demonstrate that the retinol esterification pathway is active in vivo in this species. Interestingly, retinol and retinyl esters were only detected in males, suggesting a gender-specific role for these compounds in the testis. Females, although lacking detectable levels of retinol or retinyl esters, also have the biochemical capacity to esterify retinol, but at a lower rate than males. The occurrence of retinyl ester storage capacity, together with the presence in males and females of active retinoids, i.e., retinoic acid isomers, indicates that O. lineatus has a well developed retinoid system. Hence, the present data strongly suggest that the capacity to maintain retinoid homeostasis has arisen earlier in Bilateria evolution than previously thought.

  11. Does power indicate capacity? 30-s Wingate anaerobic test vs. maximal accumulated O2 deficit.

    Science.gov (United States)

    Minahan, C; Chia, M; Inbar, O

    2007-10-01

    The purpose of this study was to evaluate the relationship between anaerobic power and capacity. Seven men and seven women performed a 30-s Wingate Anaerobic Test on a cycle ergometer to determine peak power, mean power, and the fatigue index. Subjects also cycled at a work rate predicted to elicit 120 % of peak oxygen uptake to exhaustion to determine the maximal accumulated O (2) deficit. Peak power and the maximal accumulated O (2) deficit were significantly correlated (r = 0.782, p = 0.001). However, when the absolute difference in exercise values between groups (men and women) was held constant using a partial correlation, the relationship diminished (r = 0.531, p = 0.062). In contrast, we observed a significant correlation between fatigue index and the maximal accumulated O (2) deficit when controlling for gender (r = - 0.597, p = 0.024) and the relationship remained significant when values were expressed relative to active muscle mass. A higher anaerobic power does not indicate a greater anaerobic capacity. Furthermore, we suggest that the ability to maintain power output during a 30-s cycle sprint is related to anaerobic capacity.

  12. Electrospun TiO2/C Nanofibers As a High-Capacity and Cycle-Stable Anode for Sodium-Ion Batteries.

    Science.gov (United States)

    Xiong, Ya; Qian, Jiangfeng; Cao, Yuliang; Ai, Xinping; Yang, Hanxi

    2016-07-06

    Nanosized TiO2 is now actively developed as a low-cost and potentially high capacity anode material of Na-ion batteries, but its poor capacity utilization and insufficient cyclability remains an obstacle for battery applications. To overcome these drawbacks, we synthesized electrospun TiO2/C nanofibers, where anatase TiO2 nanocrystals with a diameter of ∼12 nm were densely embedded in the conductive carbon fibers, thus preventing them from aggregating and attacking by electrolyte. Due to its abundant active surfaces of well-dispersed TiO2 nanocrytals and high electronic conductivity of the carbon matrix, the TiO2/C anode shows a high redox capacity of ∼302.4 mA h g(-1) and a high-rate capability of 164.9 mAh g(-1) at a very high current of 2000 mA g(-1). More significantly, this TiO2/C anode can be cycled with nearly 100% capacity retention over 1000 cycles, showing a sufficiently long cycle life for battery applications. The nanofibrous architecture of the TiO2/C composite and its superior electrochemical performance may provide new insights for development of better host materials for practical Na-ion batteries.

  13. Influence of solvents on species crossover and capacity decay in non-aqueous vanadium redox flow batteries: Characterization of acetonitrile and 1, 3 dioxolane solvent mixture

    Science.gov (United States)

    Bamgbopa, Musbaudeen O.; Almheiri, Saif

    2017-02-01

    The importance of the choice of solvent in a non-aqueous redox flow battery (NARFB) cannot be overemphasized. Several studies demonstrated the influence of the solvent on electrolyte performance in terms of reaction rates, energy/power densities, and efficiencies. In this work, we investigate capacity decay as a direct consequence of varying reactant crossover rates through membranes in different solvent environments. Specifically, we demonstrate the superiority of an 84/16 vol% acetonitrile/1,3 dioxolane solvent mixture over pure acetonitrile in terms of energy efficiency (up to 89%) and capacity retention for vanadium NARFBs - while incorporating a Nafion 115 membrane. The permeability of Nafion to the vanadium acetylacetonate active species is an order of magnitude lower when pure acetonitrile is replaced by the solvent mixture. A method to estimate relative membrane permeability is formulated from numerical analysis of self-discharge experimental data. Furthermore, tests on a modified Nafion/SiO2 membrane, which generally offered low species permeability, also show that different solvents alter membrane permeability. Elemental and morphological analyses of cycled Nafion and NafionSi membranes in different solvent environments indicate that different crossover rates induced by the choice of solvent during cycling are due to changes in the membrane microstructure, intrinsic permeability, swelling rates, and chemical stability.

  14. Bio-inspired 2-line ferrihydrite as a high-capacity and high-rate-capability anode material for lithium-ion batteries

    Science.gov (United States)

    Hashimoto, Hideki; Ukita, Masahiro; Sakuma, Ryo; Nakanishi, Makoto; Fujii, Tatsuo; Imanishi, Nobuyuki; Takada, Jun

    2016-10-01

    A high-capacity and high-rate-capability anode material for lithium-ion batteries, silicon-doped iron oxyhydroxide or 2-line ferrihydrite (2Fh), was prepared by mixing iron nitrate powder, tetraethyl orthosilicate, 2-propanol, and ammonium hydrogen carbonate powder at room temperature. The design of this material was inspired by a bacteriogenic product, a nanometric amorphous iron-based oxide material containing small amounts of structural Si. The atomistic structure of the prepared Si-doped 2Fh was strongly affected by the Si molar ratio [x = Si/(Fe + Si)]. Its crystallinity gradually decreased as the Si molar ratio increased, with a structural variation from nanocrystalline to amorphous at x = 0.25. The sample with x = 0.20 demonstrated the best Li storage performance. The developed material exhibited a high capacity of ∼400 mAh g-1 at the 25th cycle in the voltage range of 0.3-3.0 V and at a current rate of 9 A g-1, which was three times greater than that of the Si-free 2Fh. This indicates that Si-doping into the 2Fh structure realizes good rate capability, which are presumably because of the specific nanocomposite structure of iron-based electrochemical centers embedded in the Si-based amorphous matrix, generated by reversible Li insertion/deinsertion process.

  15. On-chip high-power porous silicon lithium ion batteries with stable capacity over 10000 cycles (Presentation Recording)

    Science.gov (United States)

    Westover, Andrew S.; Freudiger, Daniel; Gani, Zarif; Share, Keith; Oakes, Landon; Carter, Rachel E.; Pint, Cary L.

    2015-09-01

    We demonstrate the operation of a graphene-passivated on-chip porous silicon material as a high rate lithium ion battery anode with over 50x power density and 100x energy density improvement compared to identically prepared on-chip porous silicon supercapacitors. We demonstrate this Faradaic storage behavior to occur at fast charging rates (1-10 mA/cm2) where lithium locally intercalates into the nanoporous silicon, but not underlying bulk silicon material. This prevents the degradation and poor cycling performance that is commonly observed from deep storage in bulk silicon materials. As a result, this device exhibits cycling performance that exceeds 10,000 cycles with capacity above 0.1 mAh/cm2, without notable capacity fade. This work demonstrates a practical route toward high power, high energy, and long lifetime all-silicon on-chip storage systems relevant toward integration of energy storage into electronics, photovoltaics, and other silicon-based technology.

  16. Fabrication and Characterization of SnO2/Graphene Composites as High Capacity Anodes for Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Abirami Dhanabalan

    2013-11-01

    Full Text Available Tin-oxide and graphene (TG composites were fabricated using the Electrostatic Spray Deposition (ESD technique, and tested as anode materials for Li-ion batteries. The electrochemical performance of the as-deposited TG composites were compared to heat-treated TG composites along with pure tin-oxide films. The heat-treated composites exhibited superior specific capacity and energy density than both the as-deposited TG composites and tin oxide samples. At the 70th cycle, the specific capacities of the as-deposited and post heat-treated samples were 534 and 737 mA·h/g, respectively, and the corresponding energy densities of the as-deposited and heat-treated composites were 1240 and 1760 W·h/kg, respectively. This improvement in the electrochemical performance of the TG composite anodes as compared to the pure tin oxide samples is attributed to the synergy between tin oxide and graphene, which increases the electrical conductivity of tin oxide and helps alleviate volumetric changes in tin-oxide during cycling.

  17. Investigation of Battery Heat Generation and Key Performance Indicator Efficiency Using Isothermal Calorimeter

    DEFF Research Database (Denmark)

    Khan, Mohammad Rezwan; Kær, Søren Knudsen

    2016-01-01

    , and the heat flux of the battery cell at the same time. Temperatures on the surface of the cell are measured using contact thermocouples, whereas, the heat flux is measured simultaneously by the isothermal calorimeter. This heat flux measurement is used for determining the heat generation inside the cell....... Consequently, using the heat generation result the important performance constituent of the battery cell efficiency is calculated. Those are accomplished at different temperature levels (-5°C, 10°C, 25°C and 40°C) of continuous charge and discharge constant current rate (1C,2C,4......C,8C,10C (maximum)). There is a significant change in heat generation in both charge and discharge events on different temperature and C-rate. The heat flux change level is non-linear. This nonlinear heat flux is responsible for the nonlinear change of efficiency in different C-rate in a particular...

  18. Structural and Electrochemical Investigation during the First Charging Cycles of Silicon Microwire Array Anodes for High Capacity Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Helmut Föll

    2013-02-01

    Full Text Available Silicon microwire arrays embedded in Cu present exceptional performance as anode material in Li ion batteries. The processes occurring during the first charging cycles of batteries with this anode are essential for good performance. This paper sheds light on the electrochemical and structural properties of the anodes during the first charging cycles. Scanning Electron Microscopy, X-ray diffractommetry, and fast Fourier transformation impedance spectroscopy are used for the characterization. It was found that crystalline phases with high Li content are obtained after the first lithiation cycle, while for the second lithiation just crystalline phases with less Li are observable, indicating that the lithiated wires become amorphous upon cycling. The formation of a solid electrolyte interface of around 250 nm during the first lithiation cycle is evidenced, and is considered a necessary component for the good cycling performance of the wires. Analog to voltammetric techniques, impedance spectroscopy is confirmed as a powerful tool to identify the formation of the different Si-Li phases.

  19. High capacity hydrogen storage alloy negative electrodes for use in nickel–metal hydride batteries

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Hiroshi, E-mail: inoue-h@chem.osakafu-u.ac.jp; Kotani, Norihiro; Chiku, Masanobu; Higuchi, Eiji

    2015-10-05

    Highlights: • Rare earth-free TiV{sub 2.1−x}Cr{sub x}Ni{sub 0.3} (x = 0.4–1.0) alloys were prepared by arc-melting. • All alloys were composed of two phases, bcc phase and TiNi-based phase. • The higher Cr content, the lower discharge capacity, the higher cycle durability. • The lower charge-transfer resistance led to the higher HRD. • The TiV{sub 1.6}Cr{sub 0.5}Ni{sub 0.3} alloy electrode had the highest HRD. - Abstract: Rare earth-free V-based TiV{sub 2.1−x}Cr{sub x}Ni{sub 0.3} (x = 0.4–1.0) alloys were prepared by arc-melting. All alloys were composed of two phases, the primary phase in which the V and Cr constituents were mainly distributed and the secondary phase in which the Ti and Ni constituents were mainly distributed. When the Cr content was increased, the maximum discharge capacity was decreased, but charge–discharge cycle durability was improved. The lower the charge-transfer resistance and the higher the specific discharge current at which the positive shift of potential at degree of discharge of 50% stagnates, the higher the HRD. In the present study, the TiV{sub 1.6}Cr{sub 0.5}Ni{sub 0.3} alloy electrode had the highest HRD.

  20. The concurrent validity of the technical test battery as an indicator of work performance in a telecommunications company

    Directory of Open Access Journals (Sweden)

    Marelize Barnard

    2005-10-01

    Full Text Available The purpose of this study was to assess the concurrent validity of the Technical Test Battery (TTB in a South African telecommunications institution. The Technical Test Battery (TTB was administered to a sample of 107 technical officers. Their test scores were compared to the scores obtained from a job performance rating scale specifically designed for this position on the basis of a thorough job analysis. The TTB demonstrated high concurrent validity as an indicator of work performance for technical posts in the telecommunications environment. These results suggest that the TTB may have a high predictive validity for performance in technical positions. The findings and implications of the study are discussed. Opsomming Die doel van hierdie studie was om die samevallende geldigheid van die “Technical Test Battery (TTB�? in ’n Suid-Afrikaanse telekommunikasie instansie te bepaal. Die TTB is op ’n steekproef van 107 tegniese personeel toegepas. Die toetstellings is in verband gebring met die tellings van ’n werksprestasiemaatstaf wat spesifiek vir die pos ontwikkel is op grond van ’n deeglike posanalise. Daar is bevind dat die TTB ’n hoë samevallende geldigheid as aanduider van werksprestasie vir tegniese poste in the telekommunikasiebedryf toon. Dié resultate dui op ’n sterk moontlikheid dat die TTB ’n goeie voorspeller van werksprestasie vir tegniese beroepe kan wees. Die bevindinge en implikasies van die studie word bespreek.

  1. Testicular membrane lipid damage by complex mixture of leachate from municipal battery recycling site as indication of idiopathic male infertility in rat.

    Science.gov (United States)

    Akintunde, Jacob K; Oboh, Ganiyu; Akindahunsi, Akintunde A

    2013-12-01

    Leachate from a municipal battery recycling site is a potent source of mixed-metal released into the environment. The present study investigated the degree at which mixed-metal exposure to the municipal auto-battery leachate (MABL) and to the Elewi Odo municipal auto-battery recycling site leachate (EOMABRL) affected the lipid membrane of the testes in in vitro experiment. The results showed elevated level of mixed-metals over the permissible levels in drinking water, as recommended by regulatory authorities. In the leachate samples, the levels of malondialdehyde (MDA), a biomarker of lipid damage, was significantly (pbattery leachate (MABL) was significantly (pbattery recycling site (EOMABRL). The testicular lipid membrane capacity was compromised following treatment with leachate from the municipal battery recycling site, implicating mixed-metal exposure as the causative agent of testicular damage and male infertility.

  2. 海运出口乘用车蓄电池亏电问题的解决%Solving Capacity Loss of Battery on Exported Vehicles

    Institute of Scientific and Technical Information of China (English)

    童国庆; 赵春鹏; 马芳武; 赵福全

    2011-01-01

    The problem of battery capacity loss on exported vehicles is presented.The causes lie in two aspects:battery and vehicle circuit.The problem can be solved by choosing battery with better quality and improving the vehicle circuit diagram,fuse box and wiring harness.%提出了出口乘用车蓄电池亏电问题,分析了问题原因在蓄电池和整车电路两个方面;通过选用性能优良的蓄电池,改进整车电路原理图、熔断丝盒以及线束,解决了问题。

  3. Method of fabricating electrodes including high-capacity, binder-free anodes for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Ban, Chunmei; Wu, Zhuangchun; Dillon, Anne C.

    2017-01-10

    An electrode (110) is provided that may be used in an electrochemical device (100) such as an energy storage/discharge device, e.g., a lithium-ion battery, or an electrochromic device, e.g., a smart window. Hydrothermal techniques and vacuum filtration methods were applied to fabricate the electrode (110). The electrode (110) includes an active portion (140) that is made up of electrochemically active nanoparticles, with one embodiment utilizing 3d-transition metal oxides to provide the electrochemical capacity of the electrode (110). The active material (140) may include other electrochemical materials, such as silicon, tin, lithium manganese oxide, and lithium iron phosphate. The electrode (110) also includes a matrix or net (170) of electrically conductive nanomaterial that acts to connect and/or bind the active nanoparticles (140) such that no binder material is required in the electrode (110), which allows more active materials (140) to be included to improve energy density and other desirable characteristics of the electrode. The matrix material (170) may take the form of carbon nanotubes, such as single-wall, double-wall, and/or multi-wall nanotubes, and be provided as about 2 to 30 percent weight of the electrode (110) with the rest being the active material (140).

  4. Octahedral Tin Dioxide Nanocrystals Anchored on Vertically Aligned Carbon Aerogels as High Capacity Anode Materials for Lithium-Ion Batteries

    Science.gov (United States)

    Liu, Mingkai; Liu, Yuqing; Zhang, Yuting; Li, Yiliao; Zhang, Peng; Yan, Yan; Liu, Tianxi

    2016-01-01

    A novel binder-free graphene - carbon nanotubes - SnO2 (GCNT-SnO2) aerogel with vertically aligned pores was prepared via a simple and efficient directional freezing method. SnO2 octahedrons exposed of {221} high energy facets were uniformly distributed and tightly anchored on multidimensional graphene/carbon nanotube (GCNT) composites. Vertically aligned pores can effectively prevent the emersion of “closed” pores which cannot load the active SnO2 nanoparticles, further ensure quick immersion of electrolyte throughout the aerogel, and can largely shorten the transport distance between lithium ions and active sites of SnO2. Especially, excellent electrical conductivity of GCNT-SnO2 aerogel was achieved as a result of good interconnected networks of graphene and CNTs. Furthermore, meso- and macroporous structures with large surface area created by the vertically aligned pores can provide great benefit to the favorable transport kinetics for both lithium ion and electrons and afford sufficient space for volume expansion of SnO2. Due to the well-designed architecture of GCNT-SnO2 aerogel, a high specific capacity of 1190 mAh/g with good long-term cycling stability up to 1000 times was achieved. This work provides a promising strategy for preparing free-standing and binder-free active electrode materials with high performance for lithium ion batteries and other energy storage devices. PMID:27510357

  5. Si-SiOx-Al2O3 nanocomposites as high-capacity anode materials for Li-ion batteries

    Science.gov (United States)

    Kim, Kyungbae; Kim, Moon-Soo; Choi, Hyerang; Min, Kyeong-Sik; Kim, Ki-Doo; Kim, Jae-Hun

    2017-03-01

    Nanocrystalline Si-embedded SiOx-Al2O3 composite materials were synthesized by a high-energy mechanical milling method, and their potential as an anode material for Li-ion batteries was examined. The starting materials were amorphous SiO2 and Al metal powders. To increase the initial coulombic efficiency of the SiO2-based electrode materials, the amorphous SiO2 was reduced by Al. The reducing medium was decided by calculating the thermodynamic formation energy. During the highenergy milling process, SiO2 was partially reduced and Al was simultaneously oxidized to aluminum oxide, yielding nano Si-embedded composite. The composite was characterized by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and high-resolution transmission microscopy. In electrochemical tests, the reversible capacity of the composite electrode was approximately 850 mAh g-1 with enhanced initial coulombic efficiency of 66%. This performance of the composite electrode was achieved not through carbon incorporation, but through the formation of Si-embedded nanocomposites.

  6. Octahedral Tin Dioxide Nanocrystals Anchored on Vertically Aligned Carbon Aerogels as High Capacity Anode Materials for Lithium-Ion Batteries

    Science.gov (United States)

    Liu, Mingkai; Liu, Yuqing; Zhang, Yuting; Li, Yiliao; Zhang, Peng; Yan, Yan; Liu, Tianxi

    2016-08-01

    A novel binder-free graphene - carbon nanotubes - SnO2 (GCNT-SnO2) aerogel with vertically aligned pores was prepared via a simple and efficient directional freezing method. SnO2 octahedrons exposed of {221} high energy facets were uniformly distributed and tightly anchored on multidimensional graphene/carbon nanotube (GCNT) composites. Vertically aligned pores can effectively prevent the emersion of “closed” pores which cannot load the active SnO2 nanoparticles, further ensure quick immersion of electrolyte throughout the aerogel, and can largely shorten the transport distance between lithium ions and active sites of SnO2. Especially, excellent electrical conductivity of GCNT-SnO2 aerogel was achieved as a result of good interconnected networks of graphene and CNTs. Furthermore, meso- and macroporous structures with large surface area created by the vertically aligned pores can provide great benefit to the favorable transport kinetics for both lithium ion and electrons and afford sufficient space for volume expansion of SnO2. Due to the well-designed architecture of GCNT-SnO2 aerogel, a high specific capacity of 1190 mAh/g with good long-term cycling stability up to 1000 times was achieved. This work provides a promising strategy for preparing free-standing and binder-free active electrode materials with high performance for lithium ion batteries and other energy storage devices.

  7. Laboratory evaluation of a pilot cell battery protection system for photovoltaic applications

    Science.gov (United States)

    Cataldo, R. L.; Thomas, R. D.

    1981-01-01

    An energy storage method for the 3.5 kW battery power system was investigated. The Pilot Cell Battery Protection System was tested for use in photovoltaic power systems and results show that this is a viable method of storage battery control. The method of limiting battery depth of discharge has the following advantages: (1) temperature sensitivity; (2) rate sensitivity; and (3) state of charge indication. The pilot cell concept is of interest in remote stand alone photovoltaic power systems. The battery can be protected from damaging overdischarge by using the proper ratio of pilot cell capacities to main battery capacity.

  8. Nuclear Energy Readiness Indicator Index (NERI): A benchmarking tool for assessing nuclear capacity in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Saum-Manning,L.

    2008-07-13

    ) nuclear infrastructure; (6) the utilization of IAEA technical assistance; (7) participation in regional arrangements; and (8) public support for nuclear power. In this paper, the Index aggregates the indicators and evaluates and compares the level of readiness in seven countries that have recently expressed various degrees of interest in establishing a nuclear energy program. The NERI Index could be a valuable tool to be utilized by: (1) country officials who are considering nuclear power; (2) the international community, desiring reassurance of a country's capacity for the peaceful, safe, and secure use of nuclear energy; (3) foreign governments/NGO's, seeking to prioritize and direct resources toward developing countries; and (4) private stakeholders interested in nuclear infrastructure investment opportunities.

  9. Event-related potential indices of inter-individual and age differences in visual attention capacity

    DEFF Research Database (Denmark)

    Wiegand, Iris; Töllner, Thomas; Dyrholm, Mads;

    The ‘Theory of Visual Attention’ quantifies an individual’s capacity of attentional resources in parameters visual processing speed C and vSTM storage capacity K. By combining TVA-based assessment with neurophysiology, we showed that distinct ERP components index inter-individual differences......-related changes in attentional capacities, these ERP markers of individual differences in processing speed and storage capacity were validated in an older group. Furthermore, additional components were related to performance exclusively in older inidividuals: Anterior N1 amplitudes were reduced for slower older...... that reorganization of attentional brain networks, including age-specific decline and compensation mechanisms, determines older individuals’ attention capacity. Furthermore, we show that the distinctiveness of the two functions, as defined in TVA, is preserved (or even increased) in older age....

  10. Effect of Lead Exposure on the Status of Reticulocyte Count Indices among Workers from Lead Battery Manufacturing Plant

    Science.gov (United States)

    Kalahasthi, Ravibabu; Barman, Tapu

    2016-01-01

    Earlier studies conducted on lead-exposed workers have determined the reticulocyte count (RC) (%), but the parameters of Absolute Reticulocyte Count (ARC), Reticulocyte Index (RI), and Reticulocyte Production Index (RPI) were not reported. This study assessed the effect of lead (Pb) exposure on the status of reticulocyte count indices in workers occupied in lead battery plants. The present cross-sectional study was carried out on 391 male lead battery workers. The blood lead levels (BLL) were determined by using an Atomic Absorption Spectrophotometer. The RC (%) was estimated by using the supravital staining method. The parameters, such as ARC, RI, and RPI, were calculated by using the RC (%) with the red cell indices (RBC count and hematocrit). The levels of RBC count and hematocrit were determined by using an ABX Micros ES-60 hematology analyzer. The levels of reticulocyte count indices - RC (%), ARC, RI, and RPI significantly increased with elevated BLL. The association between BLL and reticulocyte count indices was positive and significant. The results of linear multiple regression analysis showed that the reticulocyte count (β = 0.212, P < 0.001), ARC (β = 0.217, P < 0.001), RI (β = 0.194, P < 0.001), and RPI (β = 0.208, P < 0.001) were positively associated with BLL. The variable, smoking habits, showed a significant positive association with reticulocyte count indices: RC (%) (β = 0.188, P < 0.001), ARC (β = 0.174, P < 0.001), RI (β = 0.200, P < 0.001), and RPI (β = 0.151, P < 0.005). The study results revealed that lead exposure may cause reticulocytosis with an increase of reticulocyte count indices.

  11. Evaluation of iron metabolism indices and their relation with physical work capacity in athletes.

    OpenAIRE

    Karamizrak, S O; Işlegen, C; Varol, S R; Taşkiran, Y; Yaman, C; Mutaf, I; Akgün, N

    1996-01-01

    OBJECTIVE--To evaluate the relation between iron status and physical working capacity, and to assess the effect of oral iron treatment on these variables, in athletes with borderline iron status. METHODS--Blood haemoglobin (Hb), packed cell volume (PCV), red blood cell count (RBC), serum iron, total iron binding capacity (TIBC), and ferritin determinations were compared in 71 male and 18 female athletes participating in various sports and in matched male (n = 11) and female (n = 8) controls. ...

  12. Perceptual load effects on processing distractor faces indicate face-specific capacity limits

    OpenAIRE

    Thoma, Volker; Lavie, Nilli

    2013-01-01

    The claim that face perception is mediated by a specialized ‘face module’ that proceeds automatically, independently of attention (e.g., Kanwisher, 2000) can be reconciled with load theory claims that visual perception has limited capacity (e.g., Lavie, 1995) by hypothesizing that face perception has face-specific capacity limits. We tested this hypothesis by comparing the effects of face and non-face perceptual load on distractor face processing. Participants searched a central array of eith...

  13. Causes for capacity decrease of Li ion batteries%锂离子电池容量衰减的原因分析

    Institute of Scientific and Technical Information of China (English)

    李伟善; 邱仕洲

    2001-01-01

    Li-ion battery is a second battery that now develops as quickly as Ni-Cd and Ni-MH battery did before,Its high energy density meets the requirement of power sources used for large transportation vehicles as well as for small electronic equipments. However, its application depends to a great extend on its cycle life. Factors that may cause capacity decrease of Li ion battery during cycling are discussed in this paper.%锂离子电池是继镉镍、氢镍电池之后发展最快的二次电池。它的高能特性既适合于用作高速发展的小型化电子产品的电源,也很有希望用作对环境无污染的大型动力工具的电源。锂离子电池的应用很大程度取决于其充放电循环的稳定性。本文分析了锂离子电池容量衰减的可能原因,期望对优质锂离子电池的研究与开发有一定的参考价值。

  14. Carbon-Coated Honeycomb Ni-Mn-Co-O Inverse Opal: A High Capacity Ternary Transition Metal Oxide Anode for Li-ion Batteries

    Science.gov (United States)

    McNulty, David; Geaney, Hugh; O’Dwyer, Colm

    2017-01-01

    We present the formation of a carbon-coated honeycomb ternary Ni-Mn-Co-O inverse opal as a conversion mode anode material for Li-ion battery applications. In order to obtain high capacity via conversion mode reactions, a single phase crystalline honeycombed IO structure of Ni-Mn-Co-O material was first formed. This Ni-Mn-Co-O IO converts via reversible redox reactions and Li2O formation to a 3D structured matrix assembly of nanoparticles of three (MnO, CoO and NiO) oxides, that facilitates efficient reactions with Li. A carbon coating maintains the structure without clogging the open-worked IO pore morphology for electrolyte penetration and mass transport of products during cycling. The highly porous IO was compared in a Li-ion half-cell to nanoparticles of the same material and showed significant improvement in specific capacity and capacity retention. Further optimization of the system was investigated by incorporating a vinylene carbonate additive into the electrolyte solution which boosted performance, offering promising high-rate performance and good capacity retention over extended cycling. The analysis confirms the possibility of creating a ternary transition metal oxide material with binder free accessible open-worked structure to allow three conversion mode oxides to efficiently cycle as an anode material for Li-ion battery applications. PMID:28186183

  15. Electrostatic Self-Assembly of Fe3O4 Nanoparticles on Graphene Oxides for High Capacity Lithium-Ion Battery Anodes

    Directory of Open Access Journals (Sweden)

    Jung Kyoo Lee

    2013-09-01

    Full Text Available Magnetite, Fe3O4, is a promising anode material for lithium ion batteries due to its high theoretical capacity (924 mA h g−1, high density, low cost and low toxicity. However, its application as high capacity anodes is still hampered by poor cycling performance. To stabilize the cycling performance of Fe3O4 nanoparticles, composites comprising Fe3O4 nanoparticles and graphene sheets (GS were fabricated. The Fe3O4/GS composite disks of mm dimensions were prepared by electrostatic self-assembly between negatively charged graphene oxide (GO sheets and positively charged Fe3O4-APTMS [Fe3O4 grafted with (3-aminopropyltrimethoxysilane (APTMS] in an acidic solution (pH = 2 followed by in situ chemical reduction. Thus prepared Fe3O4/GS composite showed an excellent rate capability as well as much enhanced cycling stability compared with Fe3O4 electrode. The superior electrochemical responses of Fe3O4/GS composite disks assure the advantages of: (1 electrostatic self-assembly between high storage-capacity materials with GO; and (2 incorporation of GS in the Fe3O4/GS composite for high capacity lithium-ion battery application.

  16. High reversible capacities of graphite and SiO/graphite with solvent-free solid polymer electrolyte for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Y.; Seki, S.; Mita, Y.; Ohno, Y.; Miyashiro, H. [Central Research Institute of Electric Power Industry, 2-11-1 Iwado-kita, Komae, Tokyo 201-8511 (Japan); Charest, P.; Guerfi, A.; Zaghib, K. [Institut de recherche, Hydro Quebec, 1800, boul. Lionel-Boulet, Varennes, QC J3X 1S1 (Canada)

    2008-10-15

    The combination of graphite or silicon monoxide (SiO)/graphite = 1/1 mixture with a solvent-free solid polymer electrolyte (SPE) was fabricated using a new preparation process, involving precoating the electrode with vapor-grown carbon fiber (VGCF) and binders (polyvinyl difluoride: PVdF or polyimide: PI), followed by the overcoating of the SPE. The reversible capacity of [graphite vertical stroke SPE vertical stroke Li] and [SiO/graphite vertical stroke SPE vertical stroke Li] cells were >360 and >1000 mAh g{sup -1} with 78% and 77% for the 1st Coulombic efficiency, respectively. The reversible capacities were 75% at the 250th cycle for [graphite vertical stroke SPE vertical stroke Li] and 72% at the 100th cycle for [SiO/graphite vertical stroke SPE vertical stroke Li]. The electrode used was compatible with that of the conventional liquid electrolyte system, and the SPE film could be formed on the electrode by the continuous overcoating process, which will lead to a low-cost electrodes and low-cost battery production. The solid-state lithium-ion polymer battery (SSLiPB) developed in this study, which consisted of [LiFePO{sub 4} vertical stroke SPE vertical stroke graphite], showed the reversible capacity of 128 mAh g{sup -1} (based on the LiFePO{sub 4} capacity) with favorable cycle performance. (author)

  17. High reversible capacities of graphite and SiO/graphite with solvent-free solid polymer electrolyte for lithium-ion batteries

    Science.gov (United States)

    Kobayashi, Y.; Seki, S.; Mita, Y.; Ohno, Y.; Miyashiro, H.; Charest, P.; Guerfi, A.; Zaghib, K.

    The combination of graphite or silicon monoxide (SiO)/graphite = 1/1 mixture with a solvent-free solid polymer electrolyte (SPE) was fabricated using a new preparation process, involving precoating the electrode with vapor-grown carbon fiber (VGCF) and binders (polyvinyl difluoride: PVdF or polyimide: PI), followed by the overcoating of the SPE. The reversible capacity of [graphite | SPE | Li] and [SiO/graphite | SPE | Li] cells were >360 and >1000 mAh g -1 with 78% and 77% for the 1st Coulombic efficiency, respectively. The reversible capacities were 75% at the 250th cycle for [graphite | SPE | Li] and 72% at the 100th cycle for [SiO/graphite | SPE | Li]. The electrode used was compatible with that of the conventional liquid electrolyte system, and the SPE film could be formed on the electrode by the continuous overcoating process, which will lead to a low-cost electrodes and low-cost battery production. The solid-state lithium-ion polymer battery (SSLiPB) developed in this study, which consisted of [LiFePO 4 | SPE | graphite], showed the reversible capacity of 128 mAh g -1 (based on the LiFePO 4 capacity) with favorable cycle performance.

  18. High areal capacity hybrid magnesium-lithium-ion battery with 99.9% Coulombic efficiency for large-scale energy storage.

    Science.gov (United States)

    Yoo, Hyun Deog; Liang, Yanliang; Li, Yifei; Yao, Yan

    2015-04-01

    Hybrid magnesium-lithium-ion batteries (MLIBs) featuring dendrite-free deposition of Mg anode and Li-intercalation cathode are safe alternatives to Li-ion batteries for large-scale energy storage. Here we report for the first time the excellent stability of a high areal capacity MLIB cell and dendrite-free deposition behavior of Mg under high current density (2 mA cm(-2)). The hybrid cell showed no capacity loss for 100 cycles with Coulombic efficiency as high as 99.9%, whereas the control cell with a Li-metal anode only retained 30% of its original capacity with Coulombic efficiency well below 90%. The use of TiS2 as a cathode enabled the highest specific capacity and one of the best rate performances among reported MLIBs. Postmortem analysis of the cycled cells revealed dendrite-free Mg deposition on a Mg anode surface, while mossy Li dendrites were observed covering the Li surface and penetrated into separators in the Li cell. The energy density of a MLIB could be further improved by developing electrolytes with higher salt concentration and wider electrochemical window, leading to new opportunities for its application in large-scale energy storage.

  19. One-pot synthesis of a metal–organic framework as an anode for Li-ion batteries with improved capacity and cycling stability

    Energy Technology Data Exchange (ETDEWEB)

    Gou, Lei, E-mail: Leigou@chd.edu.cn; Hao, Li-Min; Shi, Yong-Xin; Ma, Shou-Long; Fan, Xiao-Yong; Xu, Lei; Li, Dong-Lin, E-mail: dlli@chd.edu.cn; Wang, Kang

    2014-02-15

    Metal–organic framework is a kind of novel electrode materials for lithium ion batteries. Here, a 3D metal–organic framework Co{sub 2}(OH){sub 2}BDC (BDC=1,4-benzenedicarboxylate) was synthesized for the first time by the reaction of Co{sup 2+} with a bio-inspired renewable organic ligand 1,4-benzenedicarboxylic acid through a solvothermal method. As an anode material for lithium ion batteries, this material exhibited an excellent cyclic stability as well as a large reversible capacity of ca. 650 mA h g{sup −1} at a current density of 50 mA g{sup −1} after 100 cycles within the voltage range of 0.02–3.0 V, higher than that of other BDC based anode. - Graphical abstract: The PXRD pattern and the cycleability curves (inset) of Co{sub 2}(OH){sub 2}BDC. Display Omitted - Highlights: • Co{sub 2}(OH){sub 2}BDC was synthesized through a one pot solvothermal process. • The solvent had a great effect on the purity of this material. • This material was used as anode material for lithium ion batteries for the first time. • Co{sub 2}(OH){sub 2}BDC showed improved capacity and cycling stability.

  20. 蓄电池容量性能测试仪的设计%The Design of Battery Capacity Performance Tester

    Institute of Scientific and Technical Information of China (English)

    储开斌; 陈树越; 何宝祥

    2011-01-01

    This paper puts forward a design scheme about battery capacity performance tester based on single - chip microcomputer. It is used to test battery capacity, the life and the distribution group index, with single -chip microcomputer as the core and various modules used as the main structure. Among them, the charging and discharging module using linear scheme and high - precision data acquisition chip, can realize high precision measurement and it is accord with national standard for battery test requirements. And it can provide the scientific basis for studying and improving battery performance and life which are used for electric automobiles. This instrument can be controlled by single itself or implement control through network by the RS - 485, combined with production line, and it has good application value and the market prospect.%提出了一种基于单片机的蓄电池容量性能测试仪的设计方案。以单片机为核心,多种控制模块为主要结构,用于测试蓄电池的容量、寿命及配组指标。其中,充放电模块采用线性方案和高精度数据采集芯片,实现高精度测量,符合国标对蓄电池的测试要求。可为研究分析和改善电动汽车等使用的蓄电池性能和寿命提供科学依据。该仪器可单机或通过RS-485进行组网控制,可与流水线结合使用,具有良好的应用价值和市场前景。

  1. Exploring climate change vulnerability across sectors and scenarios using indicators of impacts and coping capacity.

    Science.gov (United States)

    Dunford, R; Harrison, P A; Jäger, J; Rounsevell, M D A; Tinch, R

    Addressing climate change vulnerability requires an understanding of both the level of climate impacts and the capacity of the exposed population to cope. This study developed a methodology for allowing users to explore vulnerability to changes in ecosystem services as a result of climatic and socio-economic changes. It focuses on the vulnerability of Europe across multiple sectors by combining the outputs of a regional integrated assessment (IA) model, the CLIMSAVE IA Platform, with maps of coping capacity based on the five capitals approach. The presented methodology enables stakeholder-derived socio-economic futures to be represented within a quantitative integrated modelling framework in a way that changes spatially and temporally with the socio-economic storyline. Vulnerability was mapped for six key ecosystem services in 40 combined climate and socio-economic scenarios. The analysis shows that, whilst the north and west of Europe are generally better placed to cope with climate impacts than the south and east, coping could be improved in all areas. Furthermore, whilst the lack of coping capacity in dystopian scenarios often leads to greater vulnerability, there are complex interactions between sectors that lead to patterns of vulnerability that vary spatially, with scenario and by sector even within the more utopian futures.

  2. The capacity fading mechanism and improvement of cycling stability in MoS2-based anode materials for lithium-ion batteries.

    Science.gov (United States)

    Shu, Haibo; Li, Feng; Hu, Chenli; Liang, Pei; Cao, Dan; Chen, Xiaoshuang

    2016-02-01

    Two-dimensional (2D) layered MoS2 nanosheets possess great potential as anode materials for lithium ion batteries (LIBs), but they still suffer from poor cycling performance. Improving the cycling stability of electrode materials depends on a deep understanding of their dynamic structural evolution and reaction kinetics in the lithiation process. Herein, thermodynamic phase diagrams and the lithiation dynamics of MoS2-based nanostructures with the intercalation of lithium ions are studied by using first-principles calculations and ab initio molecular dynamics simulations. Our results demonstrate that the continuous intercalation of Li ions induces structural destruction of 2H phase MoS2 nanosheets in the discharge process that follows a layer-by-layer dissociation mechanism. Meanwhile, the intercalation of Li ions leads to a structural transition of MoS2 nanosheets from the 2H to the 1T phase due to the ultralow transition barriers (∼0.1 eV). We find that the phase transition can slow down the dissociation of MoS2 nanosheets during lithiation. The result can be applied to explain extensive experimental observation of the fast capacity fading of MoS2-based anode materials between the first and the subsequent discharges. To suppress the dissociation of MoS2 nanosheets in the lithiation process, we propose a strategy by constructing a sandwich-like graphene/MoS2/graphene structure that indicates high chemical stability, superior conductivity, and high Li-ion mobility in the charge/discharge process, implying the possibility to induce an improvement in the anode cycling performance. This work opens a new route to rational design layered transition-metal disulfide (TMD) anode materials for LIBs with superior cycling stability and electrochemical performance.

  3. Wave-like free-standing NiCo2O4 cathode for lithium-oxygen battery with high discharge capacity

    Science.gov (United States)

    Shen, Chen; Wen, Zhaoyin; Wang, Fan; Rui, Kun; Lu, Yan; Wu, Xiangwei

    2015-10-01

    A novel free-standing air electrode for Li-O2 battery with a wave-like microstructure is designed and synthesized through a facile electrochemical deposition process. Interconnected NiCo2O4 nanosheets with planes grown almost parallel to the surface of Ni foam build up continues porous catalytic surface with open space for the growth of Li2O2 discharge product. Li-O2 battery with the synthesized cathode delivers a high discharge capacity of 7004 mAh g-1 at 40 mA g-1 with a charge potential lower than 3.6 V (vs. Li/Li+), and significantly lower impedance compared to conventional electrode. Flower-like Li2O2 particles with a large size are observed as discharge products, consisting with the high discharge capacity. The unique wave-like microstructure and DMSO-based electrolyte with a high-doner-number are proposed to be responsible for the high discharge capacity, and the formation of large size Li2O2 discharge products. In addition, the electrode also exhibits stable cycle performance up to 100 cycles at the current density of 100 mA g-1 due to the robust composition and microstructure of the free-standing design.

  4. Graphite-coated ZnO nanosheets as high-capacity, highly stable, and binder-free anodes for lithium-ion batteries

    Science.gov (United States)

    Quartarone, Eliana; Dall'Asta, Valentina; Resmini, Alessandro; Tealdi, Cristina; Tredici, Ilenia Giuseppina; Tamburini, Umberto Anselmi; Mustarelli, Piercarlo

    2016-07-01

    ZnO is one of the materials of choice as anode for lithium batteries, due to its high theoretical capacity, natural abundance, low toxicity, and low cost. At present, however, its industrial exploitation is impeded by massive capacity fading, and by cycling instability due to the drastic volume expansions during the electrochemical lithiation/delithiation process. Herein, we present a novel graphite coated-ZnO anode for LiBs based on films of nanosheets, coated with graphite. The electrode is obtained by a simple and inexpensive solution hydrothermal synthesis, whereas the graphite is deposited by thermal evaporation, which is easier to perform than a wet chemistry technique. Our approach leads to a substantial increase of the permanent specific capacity, obtaining values of 600 mAhg-1 after 100 cycles at a high specific current of 1 Ag-1. This represents the best performance for long-cycled, ZnO-based anodes obtained so far. Such result derives from the peculiar porous structure of the nanosheets film (pore diameter < 1 nm), as well as by the graphite coating that works as a dimensional buffer and preserves its morphology during cycling. This appears a very promising strategy for designing more stable ZnO-based anodes for Li batteries and microbatteries.

  5. A three-dimensional porous MoP@C hybrid as a high-capacity, long-cycle life anode material for lithium-ion batteries

    Science.gov (United States)

    Wang, Xia; Sun, Pingping; Qin, Jinwen; Wang, Jianqiang; Xiao, Ying; Cao, Minhua

    2016-05-01

    Metal phosphides are great promising anode materials for lithium-ion batteries with a high gravimetric capacity. However, significant challenges such as low capacity, fast capacity fading and poor cycle stability must be addressed for their practical applications. Herein, we demonstrate a versatile strategy for the synthesis of a novel three-dimensional porous molybdenum phosphide@carbon hybrid (3D porous MoP@C hybrid) by a template sol-gel method followed by an annealing treatment. The resultant hybrid exhibits a 3D interconnected ordered porous structure with a relatively high surface area. Benefiting from its advantages of microstructure and composition, the 3D porous MoP@C hybrid displays excellent lithium storage performance as an anode material for lithium-ion batteries in terms of specific capacity, cycling stability and long-cycle life. It presents stable cycling performance with a high reversible capacity up to 1028 mA h g-1 at a current density of 100 mA g-1 after 100 cycles. By ex situ XRD, HRTEM, SAED and XPS analyses, the 3D porous MoP@C hybrid was found to follow the Li-intercalation reaction mechanism (MoP + xLi+ + e- LixMoP), which was further confirmed by ab initio calculations based on density functional theory.Metal phosphides are great promising anode materials for lithium-ion batteries with a high gravimetric capacity. However, significant challenges such as low capacity, fast capacity fading and poor cycle stability must be addressed for their practical applications. Herein, we demonstrate a versatile strategy for the synthesis of a novel three-dimensional porous molybdenum phosphide@carbon hybrid (3D porous MoP@C hybrid) by a template sol-gel method followed by an annealing treatment. The resultant hybrid exhibits a 3D interconnected ordered porous structure with a relatively high surface area. Benefiting from its advantages of microstructure and composition, the 3D porous MoP@C hybrid displays excellent lithium storage performance as an

  6. Alkaline battery operational methodology

    Science.gov (United States)

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  7. Optimization of batteries for plug-in hybrid electric vehicles

    Science.gov (United States)

    English, Jeffrey Robb

    . Three sample optimizations were performed: a compact car, a, truck, and a sports car. The compact car benefits from increased battery capacity despite the associated higher cost. The truck returned the smallest possible battery of each chemistry, indicating that electrification is not advisable. The sports car optimization resulted in the largest possible battery, indicating large performance from increased electrification. These results mirror the current state of the electric vehicle market.

  8. Communication: The influence of CO2 poisoning on overvoltages and discharge capacity in non-aqueous Li-Air batteries

    DEFF Research Database (Denmark)

    Mekonnen, Yedilfana Setarge; Knudsen, Kristian Bastholm; Mýrdal, Jón Steinar Garðarsson;

    2014-01-01

    The effects of Li2CO3 like species originating from reactions between CO2 and Li2O2 at the cathode of non-aqueous Li-air batteries were studied by density functional theory (DFT) and galvanostatic charge-discharge measurements. Adsorption energies of CO2 at various nucleation sites on a stepped (1...

  9. High Area Capacity Lithium-Sulfur Full-cell Battery with Prelitiathed Silicon Nanowire-Carbon Anodes for Long Cycling Stability

    Science.gov (United States)

    Krause, Andreas; Dörfler, Susanne; Piwko, Markus; Wisser, Florian M.; Jaumann, Tony; Ahrens, Eike; Giebeler, Lars; Althues, Holger; Schädlich, Stefan; Grothe, Julia; Jeffery, Andrea; Grube, Matthias; Brückner, Jan; Martin, Jan; Eckert, Jürgen; Kaskel, Stefan; Mikolajick, Thomas; Weber, Walter M.

    2016-06-01

    We show full Li/S cells with the use of balanced and high capacity electrodes to address high power electro-mobile applications. The anode is made of an assembly comprising of silicon nanowires as active material densely and conformally grown on a 3D carbon mesh as a light-weight current collector, offering extremely high areal capacity for reversible Li storage of up to 9 mAh/cm2. The dense growth is guaranteed by a versatile Au precursor developed for homogenous Au layer deposition on 3D substrates. In contrast to metallic Li, the presented system exhibits superior characteristics as an anode in Li/S batteries such as safe operation, long cycle life and easy handling. These anodes are combined with high area density S/C composite cathodes into a Li/S full-cell with an ether- and lithium triflate-based electrolyte for high ionic conductivity. The result is a highly cyclable full-cell with an areal capacity of 2.3 mAh/cm2, a cyclability surpassing 450 cycles and capacity retention of 80% after 150 cycles (capacity loss <0.4% per cycle). A detailed physical and electrochemical investigation of the SiNW Li/S full-cell including in-operando synchrotron X-ray diffraction measurements reveals that the lower degradation is due to a lower self-reduction of polysulfides after continuous charging/discharging.

  10. Nanoparticulate Mn3O4/VGCF composite conversion-anode material with extraordinarily high capacity and excellent rate capability for lithium ion batteries.

    Science.gov (United States)

    Ma, Feng; Yuan, Anbao; Xu, Jiaqiang

    2014-10-22

    In this work, highly conductive vapor grown carbon fiber (VGCF) was applied as an electrically conductive agent for facile synthesis of a nanoparticulate Mn3O4/VGCF composite material. This material exhibits super high specific capacity and excellent rate capability as a conversion-anode for lithium ion batteries. Rate performance test result demonstrates that at the discharge/charge current density of 0.2 A g(-1) a reversible capacity of ca. 950 mAh g(-1) is delivered, and when the current rate is increased to a high current density of 5 A g(-1), a reversible capacity of ca. 390 mAh g(-1) is retained. Cyclic performance examination conducted at the current density of 0.5 A g(-1) reveals that in the initial 20 cycles the reversible capacity decreases gradually from 855 to 747 mAh g(-1). However, since then, it increases gradually with cycle number increasing, and after 200 cycles an extraordinarily high reversible capacity of 1391 mAh g(-1) is achieved.

  11. Riverine threat indices to assess watershed condition and identify primary management capacity of agriculture natural resource management agencies.

    Science.gov (United States)

    Fore, Jeffrey D; Sowa, Scott P; Galat, David L; Annis, Gust M; Diamond, David D; Rewa, Charles

    2014-03-01

    Managers can improve conservation of lotic systems over large geographies if they have tools to assess total watershed conditions for individual stream segments and can identify segments where conservation practices are most likely to be successful (i.e., primary management capacity). The goal of this research was to develop a suite of threat indices to help agriculture resource management agencies select and prioritize watersheds across Missouri River basin in which to implement agriculture conservation practices. We quantified watershed percentages or densities of 17 threat metrics that represent major sources of ecological stress to stream communities into five threat indices: agriculture, urban, point-source pollution, infrastructure, and all non-agriculture threats. We identified stream segments where agriculture management agencies had primary management capacity. Agriculture watershed condition differed by ecoregion and considerable local variation was observed among stream segments in ecoregions of high agriculture threats. Stream segments with high non-agriculture threats were most concentrated near urban areas, but showed high local variability. 60 % of stream segments in the basin were classified as under U.S. Department of Agriculture's Natural Resources Conservation Service (NRCS) primary management capacity and most segments were in regions of high agricultural threats. NRCS primary management capacity was locally variable which highlights the importance of assessing total watershed condition for multiple threats. Our threat indices can be used by agriculture resource management agencies to prioritize conservation actions and investments based on: (a) relative severity of all threats, (b) relative severity of agricultural threats, and (c) and degree of primary management capacity.

  12. Y-doped Li8ZrO6: A Li-Ion Battery Cathode Material with High Capacity.

    Science.gov (United States)

    Huang, Shuping; Wilson, Benjamin E; Wang, Bo; Fang, Yuan; Buffington, Keegan; Stein, Andreas; Truhlar, Donald G

    2015-09-02

    We study--experimentally and theoretically--the energetics, structural changes, and charge flows during the charging and discharging processes for a new high-capacity cathode material, Li8ZrO6 (LZO), which we study both pure and yttrium-doped. We quantum mechanically calculated the stable delithiated configurations, the delithiation energy, the charge flow during delithiation, and the stability of the delithiated materials. We find that Li atoms are easier to extract from tetrahedral sites than octahedral ones. We calculate a large average voltage of 4.04 eV vs Li/Li(+) for delithiation of the first Li atom in a primitive cell, which is confirmed by galvanostatic charge/discharge cycling data. Energy calculations indicate that topotactic delithiation is kinetically favored over decomposition into Li, ZrO2, and O2 during the charging process, although the thermodynamic energy of the topotactic reaction is less favorable. When one or two lithium atoms are extracted from a primitive cell of LZO, its volume and structure change little, whereas extraction of the third lithium greatly distorts the layered structure. The Li6ZrO6 and Li5ZrO6 delithiation products can be thermodynamically metastable to release of O2. Experimentally, materials with sufficiently small particle size for efficient delithiation and relithiation were achieved within an yttrium-doped LZO/carbon composite cathode that exhibited an initial discharge capacity of at least 200 mAh/g over the first 10 cycles, with 142 mAh/g maintained after 60 cycles. Computations predict that during the charging process, the oxygen ion near the Li vacancy is oxidized for both pure LZO and yttrium-doped LZO, which leads to a small-polaron hole.

  13. Polyvinyl Alcohol-derived carbon nanofibers/carbon nanotubes/sulfur electrode with honeycomb-like hierarchical porous structure for the stable-capacity lithium/sulfur batteries

    Science.gov (United States)

    Deng, Nanping; Kang, Weimin; Ju, Jingge; Fan, Lanlan; Zhuang, Xupin; Ma, Xiaomin; He, Hongsheng; Zhao, Yixia; Cheng, Bowen

    2017-04-01

    The honeycomb-like hierarchical porous carbon nanofibers (PCNFs)-carbon nanotubes (CNTs)-sulfur(S) composite electrode is successfully desgined and prepared through ball-milling and heating method, in which the PCNFs are carbonized from fibers in the membrane composed of Polyvinyl Alcohol and Polytetrafluoroethylene by electro-blown spinning technology. The prepared PCNFs-CNTs-S composite are regarded as cathode for lithium-sulfur battery. The tailored porous structure and CNTs in the composite facilitate construction of a high electrical conductive pathway and store more S/polysulfides, and the dissoluble loss of intermediate S species in electrolyte can also be restrained because of acidized PVA-based porous carbon nanofibers. Meanwhile, the porous strcucture and CNTs can effectively alleviate volume changes in battery cycling process. Moreover, the presence of LiNO3 in electrolyte helps the electrochemical oxidation of Li2S and LiNO3-derived surface film effectively suppresses the migration of soluble polysulfide to the Li anode surface. Therefore, the obtained PCNFs-CNTs-S cathode exhibits excellent performance in Li-S battery with a high initial discharge capacity as high as 1302.9 mAh g-1, and super stable capacity retention with 809.1 mAh g-1 after 300 cycles at the current density of 837.5 mA g-1 (0.5 C). And the rate capability of PCNFs-CNTs-S electrode is much better than those of CNTs-S and PCNFs-S electrodes.

  14. A Further Indication of the Self-Ordering Capacity of Water Via the Droplet Evaporation Method

    Directory of Open Access Journals (Sweden)

    Igor Jerman

    2014-10-01

    Full Text Available The droplet evaporation method (DEM is increasingly used for assessing various characteristics of water. In our research we tried to use DEM to detect a possible self-ordering capability of (spring water that would be similar to the already found and described autothixotropic phenomenon, namely increasing order of non-distilled water subject to aging. The output of DEM is a droplet remnant pattern (DRP. For analysis of DRP images we used a specially developed computer program that does the frequency distribution analysis of certain parameters of the images. The results of experiments demonstrated statistically significant differences in both aging of water as well as in the glass exposed surface/volume ratio of the aged water. The most important result supporting the self-ordering character of water was found in an increasing dependence between two analyzed parameters: distance and frequency, at the peak frequency. As the result concerns mostly aging and shows increasing order it further corroborates other findings concerning increasing order by aging. Such further confirmation of self-ordering capacity of water is not important only for physical chemistry, but also for biology.

  15. State Capacity to Link K-12/Postsecondary Data Systems and Report Key Indicators

    Science.gov (United States)

    Data Quality Campaign, 2016

    2016-01-01

    The Every Student Succeeds Act (ESSA) provides an opportunity to produce high quality postsecondary indicators and, as available, publicly report them in ways that inform, engage, and empower communities. As first "required" in 2009's American Recovery and Reinvestment Act (ARRA) stimulus law, almost every state has linked its K-12 and…

  16. Cathode material influence on the power capability and utilizable capacity of next generation lithium-ion batteries

    Science.gov (United States)

    Roscher, Michael A.; Vetter, Jens; Sauer, Dirk Uwe

    Lithium-ion cells (Li-ion) comprising lithium iron phosphate (LiFePO 4) based cathode active material are a promising battery technology for future automotive applications and consumer electronics in terms of safety, cycle and calendar lifetime and cost. Those cells comprise flat open circuit voltage (OCV) characteristics and long-term load history dependent cell impedance. In this work the special electric characteristics of LiFePO 4 based cells are elucidated, quantified and compared to Li-ion cells containing a competing cathode technology. Through pulse tests and partial cycle tests, performed with various olivine based cells, the cycling history dependency of the internal resistance and therefore on the power capability is shown. Hence, methods are illustrated to quantify this load history impact on the cells performance. Subsequently, methods to achieve a safe battery operation are elucidated. Furthermore strategies are given to obtain reliable information about the cells power capability, taking the mentioned properties into consideration.

  17. Preparation, structure study and electrochemistry of layered H2V3O8 materials: High capacity lithium-ion battery cathode

    Science.gov (United States)

    Sarkar, Sudeep; Bhowmik, Arghya; Pan, Jaysree; Bharadwaj, Mridula Dixit; Mitra, Sagar

    2016-10-01

    The present study explores H2V3O8 as high capacity cathode material for lithium-ion batteries (LIB's). Despite having high discharge capacity, H2V3O8 material suffers from poor electrochemical stability for prolonged cycle life. Ultra-long H2V3O8 nanobelts with ordered crystallographic patterns are synthesized via a hydrothermal process to mitigate this problem. The growth of the crystal is facile along [001] direction, and the most common surface is (001) as suggested by Wulff construction study. Electrochemical performance of H2V3O8 cathode is tested against Li/Li+ at various current rates. At 50 mA g-1current rate, it delivers a discharge capacity of 308 mAh g-1, whereas, at 3000 mA g-1, an initial discharge capacity of 144 mAh g-1 is observed and stabilized at 100 mAh g-1 till 500 cycles. Further, the density functional theory (DFT) based simulations study of both the pristine and lithiated phase of H2V3O8 cathode materials is undertaken. DFT study reveals the presence of hydrogen as hydroxyl unit in the framework of the host. In correlation, the magnetic property of vanadium atoms is examined in detail with through partial density of states (PDOS) calculation during three stage lithiation processes and evaluating various potential steps involved in lithium insertion.

  18. Fluorine-Doped Tin Oxide Nanocrystal/Reduced Graphene Oxide Composites as Lithium Ion Battery Anode Material with High Capacity and Cycling Stability.

    Science.gov (United States)

    Xu, Haiping; Shi, Liyi; Wang, Zhuyi; Liu, Jia; Zhu, Jiefang; Zhao, Yin; Zhang, Meihong; Yuan, Shuai

    2015-12-16

    Tin oxide (SnO2) is a kind of anode material with high theoretical capacity. However, the volume expansion and fast capability fading during cycling have prevented its practical application in lithium ion batteries. Herein, we report that the nanocomposite of fluorine-doped tin oxide (FTO) and reduced graphene oxide (RGO) is an ideal anode material with high capacity, high rate capability, and high stability. The FTO conductive nanocrystals were successfully anchored on RGO nanosheets from an FTO nanocrystals colloid and RGO suspension by hydrothermal treatment. As the anode material, the FTO/RGO composite showed high structural stability during the lithiation and delithiation processes. The conductive FTO nanocrystals favor the formation of stable and thin solid electrolyte interface films. Significantly, the FTO/RGO composite retains a discharge capacity as high as 1439 mAhg(-1) after 200 cycles at a current density of 100 mAg(-1). Moreover, its rate capacity displays 1148 mAhg(-1) at a current density of 1000 mAg(-1).

  19. Reversible conversion-alloying of Sb2O3 as a high-capacity, high-rate, and durable anode for sodium ion batteries.

    Science.gov (United States)

    Hu, Meijuan; Jiang, Yinzhu; Sun, Wenping; Wang, Hongtao; Jin, Chuanhong; Yan, Mi

    2014-11-12

    Sodium ion batteries are attracting ever-increasing attention for the applications in large/grid scale energy storage systems. However, the research on novel Na-storage electrode materials is still in its infancy, and the cycling stability, specific capacity, and rate capability of the reported electrode materials cannot satisfy the demands of practical applications. Herein, a high performance Sb(2)O(3) anode electrochemically reacted via the reversible conversion-alloying mechanism is demonstrated for the first time. The Sb(2)O(3) anode exhibits a high capacity of 550 mAh g(-1) at 0.05 A g(-1) and 265 mAh g(-1) at 5 A g(-1). A reversible capacity of 414 mAh g(-1) at 0.5 A g(-1) is achieved after 200 stable cycles. The synergistic effect involving conversion and alloying reactions promotes stabilizing the structure of the active material and accelerating the kinetics of the reaction. The mechanism may offer a well-balanced approach for sodium storage to create high capacity and cycle-stable anode materials.

  20. MoO2-ordered mesoporous carbon hybrids as anode materials with highly improved rate capability and reversible capacity for lithium-ion battery.

    Science.gov (United States)

    Chen, Ailian; Li, Caixia; Tang, Rui; Yin, Longwei; Qi, Yongxin

    2013-08-28

    A novel hybrid of MoO2-ordered mesoporous carbon (MoO2-OMC) was prepared through a two-step solvothermal chemical reaction route. The electrochemical performances of the mesoporous MoO2-OMC hybrids were examined using galvanostatical charge-discharge, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS) techniques. The MoO2-OMC hybrid exhibits significantly improved electrochemical performance of high reversible capacity, high-rate capability, and excellent cycling performance as an anode electrode material for Li ion batteries. It is revealed that the MoO2-OMC hybrid could deliver the first discharge capacity of 1641.8 mA h g(-1) with an initial Coulombic efficiency of 63.6%, and a reversible capacity as high as 1049.1 mA h g(-1) even after 50 cycles at a current density of 100 mA g(-1), much higher than the theoretical capacity of MoO2 (838 mA h g(-1)) and OMC materials. The MoO2-OMC hybrid demonstrates an excellent high rate capability with capacity of ∼600 mA h g(-1) even at a charge current density of 1600 mA g(-1) after 50 cycles, which is approximately 11.1 times higher than that of the OMC (54 mA h g(-1)) materials. The improved rate capability and reversible capacity of the MoO2-OMC hybrid are attributed to a synergistic reaction between the MoO2 nanoparticles and mesoporous OMC matrices. It is noted that the electrochemical performance of the MoO2-OMC hybrid is evidently much better than the previous MoO2-based hybrids.

  1. PI2 controller based coordinated control with Redox Flow Battery and Unified Power Flow Controller for improved Restoration Indices in a deregulated power system

    Directory of Open Access Journals (Sweden)

    R. Thirunavukarasu

    2016-12-01

    Full Text Available The nature of power system restoration problem involves status assessment, optimization of generation capability and load pickup. This paper proposes the evaluation of Power System Restoration Indices (PSRI based on the Automatic Generation Control (AGC assessment of interconnected power system in a deregulated environment. The PSRI are useful for system planners to prepare the power system restoration plans and to improve the efficiency of the physical operation of the power system with the increased transmission capacity in the network. The stabilization of frequency and tie-line power oscillations in an interconnected power system becomes challenging when implemented in the future competitive environment. This paper also deals with the concept of AGC in two-area reheat power system having coordinated control action with Redox Flow Battery (RFB and Unified Power Flow Controller (UPFC are capable of controlling the network performance in a very fast manner and improve power transfer limits in order to have a better restoration. In addition to that a new Proportional–Double Integral (PI2 controller is designed and implemented in AGC loop and controller parameters are optimized through Bacterial Foraging Optimization (BFO algorithm. Simulation results reveal that the proposed PI2 controller is that it has good stability during load variations, excellent transient and dynamic responses when compared with the system comprising PI controller. Moreover the AGC loop with RFB coordinated with UPFC has greatly improved the dynamic response and it reduces the control input requirements, to ensure improved PSRI in order to provide the reduced restoration time, thereby improving the system reliability.

  2. Indices of Sulfur—Supplying Capacities of Upland Soils in North China

    Institute of Scientific and Technical Information of China (English)

    LINBAO; ZHOUWEI; 等

    1999-01-01

    Fifteen upland soils collected from the major arable areas in NOrth China were used to assess the availability of soil sulfur(S) to plants in a pot experiment.Soils were extracted with various reagents and the extractable S was determined using turbidimetric method or inductively coupled plasma atomic emission spectrometry (ICP-AES),respectively.In addition,mineralizable organic S,organic S,N/S ratio,sulfur availability index(SAI) and available sulfur correction value(ASC) in soils were also determined.The S amout extracted by 1.5g L-1 CaCl2 was nearly equivalent to that by 0.25mol L-1 KCl(40℃),and both of them were slightly smaller than that by 0.01 molL-1 Ca(H2PO4)2 solution,as measured by turbidimetric method or ICP-AES.The extractable S measured by turbidimetric method was consistently smaller than that by ICP-AES.All methods tested except that for organic S and N/S ratio produced satisfactoy results in the regression analyses of the relationships between the amounts of S extracted and plant dry matter weight and S uptake in the pot experiment,In general,0.01 mol L-1 Ca(H2PO4)2-extracted S determined by ICP-AES or turbidimetric method and 0.25mol L-1 KCl(40℃)-extracted S determined by ICP-AES appeared to be the best indicators for evaluation of soil available S.

  3. Study on high precision capacity detection system of mine lithium battery based on internal resistance test method%基于内阻法的矿用锂电池高精度容量检测系统研究

    Institute of Scientific and Technical Information of China (English)

    李学哲; 张有东; 封孝辉; 胡兴志

    2016-01-01

    针对常见的锂电池容量检测方法存在测量精度低、限制条件多、灵活性差等问题,提出了一种基于内阻法的高精度锂电池容量检测方案。讨论了锂电池容量与内阻的关系,建立了锂电池荷电状态估算模型,并完成了系统的软硬件设计。该系统采用交流注入法在线检测电池的内阻,并根据内阻测量值分析计算电池容量。实验结果表明,该系统具有高精度、高可靠、灵活方便等优点。此外,系统还设计了温度、电压、电流等检测功能,实现电池参数的综合检测和分析。%Aiming at the problems of common lithium battery capacity test, such as low measuring precision, multi limiting conditions and poor flexibility, a high accuracy lithium battery capacity detection scheme was proposed based on internal resistance test method. The relationship between lithium battery capacity and internal resistance was discussed, an estimation model of lithium battery charged state was established, and the hardware and software of the system were designed. The system uses AC inserting method to measure the internal resistance of battery, and calculates the battery capacity according to the resistance. In addition, the system also realizes comprehensive testing and analysis of battery parameters, such as voltage, current, temperature.

  4. 蓄电池恒流放电容量监测仪的电路设计%Circuit Design of Constant Current Discharge Capacity Monitor for Battery

    Institute of Scientific and Technical Information of China (English)

    付晓伟; 普仕凡

    2013-01-01

    蓄电池恒流放电容量监测仪以单片机为核心,以PTC热敏电阻为放电负载;采用PWM技术控制电流恒定,实时监测放电电池的电流电压;采用大电流恒流放电方法,对蓄电池进行活化处理延长寿命.由ATmega128单片机、电源、存储器及时间芯片组成基础电路,由触摸屏、LCD显示模块、数据采集电路、PWM信号驱动电路组成显控驱动电路,监测仪则由二者共同构成.介绍了硬件构成与电路设计的思路.%In the constant current discharge capacity monitor for battery, microcontroller is taken as core and PTC thermistor is taken as discharge load, PWM technique is used to control current constant, the current and voltage of discharge battery is real-time monitored, the discharge means of heavy current constant current is a dopted to activate the battery and lengthen the life of it. The basic circuit consists of ATmegal28, power, memo ry and time chips, the display control drive circuit is composed of the touch screen, LCD display module, data acquisition circuit and PWM signal driving circuit, and the monitor is constituted together by the two circuits. The design idea of the hardware structure and circuit is introduced.

  5. Negative plates for dry-charged lead storage batteries. [higher charging capacity when impregnated with tannin solution

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, V.; Malikova, V.; Weber, H.

    1970-09-15

    Impregnation of negative plates with acid solutions of sulfomethylated tannins was found to improve the charging properties at low temperatures. Methods for synthesizing tannins are described. Charging capacity at 0/sup 0/ was 7.3A. (RWR)

  6. Germanium as a Sodium Ion Battery Material: In Situ TEM Reveals Fast Sodiation Kinetics with High Capacity

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiaotang; Adkins, Emily R.; He, Yang; Zhong, Li; Luo, Langli; Mao, Scott X.; Wang, Chong M.; Korgel, Brian A.

    2016-01-29

    Amorphous germanium (a-Ge) nanowires have great potential for application as anodes in Na-ion batteries. However, the Na-Ge reaction is much less studied and understood compared with other metal alloy anodes. Here, in situ transmission electron microscopy (TEM) is used to study the sodiation/desodiation behavior of a-Ge nanowires. Unexpectedly, our experiments revealed that a-Ge nanowires can be charged at a very fast rate and the final sodiation product, with over 300% volume expansion, is close to Na3Ge instead of NaGe which was considered as the ultimate sodiation state that Ge could achieve. Porous structure was observed in desodiation and, in contrast to delithiation, Na extraction is more likely to create pores in the nanowires due to the much larger radius of the Na ion. This porous structure has demonstrated excellent robustness upon cycling: it could recover flawlessly from the giant pores that were created during experimentation. These results show that the potential of a-Ge for Na-ion battery applications may have been previously underestimated.

  7. Reduced graphene oxide/carbon nanotubes sponge: A new high capacity and long life anode material for sodium-ion batteries

    Science.gov (United States)

    Yan, Dong; Xu, Xingtao; Lu, Ting; Hu, Bingwen; Chua, Daniel H. C.; Pan, Likun

    2016-06-01

    Reduced graphene oxide/carbon nanotubes (CNTs) sponge (GCNTS) is fabricated via a simple freeze drying of graphene oxide/CNTs mixed solution and subsequent thermal treatment in nitrogen atmosphere, and used as anodes for sodium-ion batteries (SIBs) for the first time. The morphology, structure and electrochemical performance of GCNTS are characterized by field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, nitrogen adsorption-desorption isotherms, galvanostatic charge/discharge tests, cyclic voltammetry and electrochemical impedance spectroscopy, respectively. The results show that GCNTS with 20 wt % CNTs has a highest charge capacity of 436 mA h g-1 after 100 cycles at a current density of 50 mA g-1 and even at a high current density of 10 A g-1, a capacity of 195 mA h g-1 is maintained after 7440 cycles. The high capacity, excellent rate performance and long life cycling enable the GCNTS to be a promising candidate for practical SIBs.

  8. Connecting the irreversible capacity loss in Li-ion batteries with the electronic insulating properties of solid electrolyte interphase (SEI) components

    Science.gov (United States)

    Lin, Yu-Xiao; Liu, Zhe; Leung, Kevin; Chen, Long-Qing; Lu, Peng; Qi, Yue

    2016-03-01

    The formation and continuous growth of a solid electrolyte interphase (SEI) layer are responsible for the irreversible capacity loss of batteries in the initial and subsequent cycles, respectively. In this article, the electron tunneling barriers from Li metal through three insulating SEI components, namely Li2CO3, LiF and Li3PO4, are computed by density function theory (DFT) approaches. Based on electron tunneling theory, it is estimated that sufficient to block electron tunneling. It is also found that the band gap decreases under tension while the work function remains the same, and thus the tunneling barrier decreases under tension and increases under compression. A new parameter, η, characterizing the average distances between anions, is proposed to unify the variation of band gap with strain under different loading conditions into a single linear function of η. An analytical model based on the tunneling results is developed to connect the irreversible capacity loss, due to the Li ions consumed in forming these SEI component layers on the surface of negative electrodes. The agreement between the model predictions and experimental results suggests that only the initial irreversible capacity loss is due to the self-limiting electron tunneling property of the SEI.

  9. Facile synthesis of sandwiched Zn2GeO4-graphene oxide nanocomposite as a stable and high-capacity anode for lithium-ion batteries.

    Science.gov (United States)

    Zou, Feng; Hu, Xianluo; Qie, Long; Jiang, Yan; Xiong, Xiaoqin; Qiao, Yun; Huang, Yunhui

    2014-01-21

    Traditional metal anode materials in lithium-ion batteries are plagued by instability upon discharge-charge cycling. We report that a unique sandwiched Zn2GeO4-graphene oxide nanocomposite has been synthesized on a large scale through a simple ion-exchange reaction, whereby Zn2GeO4 nanorods with lengths of 600 nm and widths of 40 nm are homogeneously sandwiched into the graphene oxide matrix. Compared with bare Zn2GeO4 nanorods, a dramatic improvement in the electrochemical performance of the resulting nanocomposite has been achieved. In the voltage window of 0.001-3 V, the electrode of the Zn2GeO4-graphene oxide nanocomposite delivers a specific capacity as high as 1150 mA h g(-1) at 200 mA g(-1) after 100 discharge-charge cycles. Even at a high current density of 3.2 A g(-1), a capacity of 522 mA h g(-1) can be retained. The unusual electrochemical performance including highly reversible capacity and excellent rate capability arise from synergetic chemical coupling effects between Zn2GeO4 and graphene oxide.

  10. Towards High Capacity Li-ion Batteries Based on Silicon-Graphene Composite Anodes and Sub-micron V-doped LiFePO4 Cathodes

    Science.gov (United States)

    Loveridge, M. J.; Lain, M. J.; Johnson, I. D.; Roberts, A.; Beattie, S. D.; Dashwood, R.; Darr, J. A.; Bhagat, R.

    2016-11-01

    Lithium iron phosphate, LiFePO4 (LFP) has demonstrated promising performance as a cathode material in lithium ion batteries (LIBs), by overcoming the rate performance issues from limited electronic conductivity. Nano-sized vanadium-doped LFP (V-LFP) was synthesized using a continuous hydrothermal process using supercritical water as a reagent. The atomic % of dopant determined the particle shape. 5 at. % gave mixed plate and rod-like morphology, showing optimal electrochemical performance and good rate properties vs. Li. Specific capacities of >160 mAh g‑1 were achieved. In order to increase the capacity of a full cell, V-LFP was cycled against an inexpensive micron-sized metallurgical grade Si-containing anode. This electrode was capable of reversible capacities of approximately 2000 mAh g‑1 for over 150 cycles vs. Li, with improved performance resulting from the incorporation of few layer graphene (FLG) to enhance conductivity, tensile behaviour and thus, the composite stability. The cathode material synthesis and electrode formulation are scalable, inexpensive and are suitable for the fabrication of larger format cells suited to grid and transport applications.

  11. Numerical predictions and experimental verification of Li-O2 battery capacity limits for cathodes with spherical conductors and solid electrolytes

    Science.gov (United States)

    Lee, Heung Chan; Roev, Victor; Kim, Tae Young; Park, Min Sik; Lee, Dong Joon; Im, Dongmin; Doo, Seok-Gwang

    2016-11-01

    The capacity limits, local formation of Li2O2, passivation of active surfaces, and depletion of oxygen by mass transport characteristics in a composite cathode are modeled, numerically simulated, and experimentally evaluated for non-aqueous Li-O2 batteries employing composites of a solid polymer electrolyte and carbon particles as the cathode, Li metal as the anode, and an ion conductive oxide membrane as the separator. Although the theoretical maximum specific energy of the Li-O2 battery is known to be 3458 Wh kg-1cathode, our simulation predicts a maximum specific energy of 1840 Wh kg-1cathode with an optimized weight ratio of all essential components as well as cathode thickness. A specific energy of 1713 Wh kg-1cathode is experimentally demonstrated in a cell with a composite cathode of poly(ethylene oxide) electrolyte and Printex carbon nanoparticles with 48% carbon volume and 30 μm thickness. The model also predicts that the incorporation of voids in the cathode can significantly improve the specific energy.

  12. Ultradispersed Nanoarchitecture of LiV3O8 Nanoparticle/Reduced Graphene Oxide with High-Capacity and Long-Life Lithium-Ion Battery Cathodes

    Science.gov (United States)

    Mo, Runwei; Du, Ying; Rooney, David; Ding, Guqiao; Sun, Kening

    2016-01-01

    Lack of high-performance cathode materials has become the major barriers to lithium-ion battery applications in advanced communication equipment and electric vehicles. In this paper, we report a versatile interfacial reaction strategy, which is based on the idea of space confinement, for the synthesis of ultradispersed LiV3O8 nanoparticles (~10 nm) on graphene (denoted as LVO NPs-GNs) with an unprecedented degree of control on the separation and manipulation of the nucleation, growth, anchoring, and crystallization of nanoparticles in a water-in-oil emulsion system over free growth in solution. The prepared LVO NPs-GNs composites displayed high performance as an cathode material for lithium-ion battery, including high reversible lithium storage capacity (237 mA h g-1 after 200 cycles), high Coulombic efficiency (about 98%), excellent cycling stability and high rate capability (as high as 176 mA h g-1 at 0.9 A g-1, 128 mA h g-1 at 1.5 A g-1, 91 mA h g-1 at 3 A g-1 and 59 mA h g-1 at 6 A g-1, respectively). Very significantly, the preparation method employed can be easily adapted and may opens the door to complex hybrid materials design and engineering with graphene for advanced energy storage.

  13. Flake-by-flake ZnCo{sub 2}O{sub 4} as a high capacity anode material for lithium-ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xiong [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Engineering Research Center of Materials and Technology for Electrochemical Energy Storage (Ministry of Education), Guangzhou 510006 (China); Ru, Qiang, E-mail: rq7702@yeah.net [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Engineering Research Center of Materials and Technology for Electrochemical Energy Storage (Ministry of Education), Guangzhou 510006 (China); Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Zhang, Beibei; Hu, Shejun; An, Bonan [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Engineering Research Center of Materials and Technology for Electrochemical Energy Storage (Ministry of Education), Guangzhou 510006 (China)

    2014-02-05

    Highlights: • The ZnCo{sub 2}O{sub 4} with porous structure was prepared by co-precipitation method. • Flake-by-flake used in ZnCo{sub 2}O{sub 4} was studied for the first time. • The as-prepared ZCO shows excellent electrochemical performances. • The preparation method has mild experiment conditions and high production rate. -- Abstract: A novel flake-by-flake ZnCo{sub 2}O{sub 4} (ZCO) with porous nanostructure is prepared by a typical and facile co-precipitation method using oxalic acid as complex agent. XRD, SEM, and TEM analyses show the as-prepared ZCO nanoparticles have a high purity and a good crystallinity, and the ZCO nanoflakes with a thickness of 30–80 nm are composed of uniform ZCO nanocrystals with a diameter of 20–40 nm. The novel structure with enough free space is beneficial to improving the electrochemical performance. The as-prepared ZCO used as an anode material for lithium-ion batteries exhibits a high specific capacity of 1275 mA h/g at a current rate of 100 mA/g after 50 cycles, as well as a high power capability at elevated current rates, i.e., 1130 and 730 mA h/g at current rates of 500 and 3000 mA/g, respectively. It has a great prospect for the application of anode materials for lithium-ion batteries.

  14. Penta-graphene: A Promising Anode Material as the Li/Na-Ion Battery with Both Extremely High Theoretical Capacity and Fast Charge/Discharge Rate.

    Science.gov (United States)

    Xiao, Bo; Li, Yan-Chun; Yu, Xue-Fang; Cheng, Jian-Bo

    2016-12-28

    Recently, a new two-dimensional (2D) carbon allotrope named penta-graphene was theoretically proposed ( Zhang , S. ; et al. Proc. Natl. Acad. Sci. U.S.A. 2015 , 112 , 2372 ) and has been predicted to be the promising candidate for broad applications due to its intriguing properties. In this work, by using first-principles simulation, we have further extended the potential application of penta-graphene as the anode material for a Li/Na-ion battery. Our results show that the theoretical capacity of Li/Na ions on penta-graphene reaches up to 1489 mAh·g(-1), which is much higher than that of most of the previously reported 2D anode materials. Meanwhile, the calculated low open-circuit voltages (from 0.24 to 0.60 V), in combination with the low diffusion barriers (≤0.33 eV) and the high electronic conductivity during the whole Li/Na ions intercalation processes, further show the advantages of penta-graphene as the anode material. Particularly, molecular dynamics simulation (300 K) reveals that Li ion could freely diffuse on the surface of penta-graphene, and thus the ultrafast Li ion diffusivity is expected. Superior performance of penta-graphene is further confirmed by comparing with the other 2D anode materials. The light weight and unique atomic arrangement (with isotropic furrow paths on the surface) of penta-graphene are found to be mainly responsible for the high Li/Na ions storage capacity and fast diffusivity. In this regard, except penta-graphene, many other recently proposed 2D metal-free materials with pentagonal Cairo-tiled structures may be the potential candidates as the Li/Na-ion battery anodes.

  15. Asymmetric pathways in the electrochemical conversion reaction of NiO as battery electrode with high storage capacity

    Science.gov (United States)

    Boesenberg, Ulrike; Marcus, Matthew A.; Shukla, Alpesh K.; Yi, Tanghong; McDermott, Eamon; Teh, Pei Fen; Srinivasan, Madhavi; Moewes, Alexander; Cabana, Jordi

    2014-11-01

    Electrochemical conversion reactions of transition metal compounds create opportunities for large energy storage capabilities exceeding modern Li-ion batteries. However, for practical electrodes to be envisaged, a detailed understanding of their mechanisms is needed, especially vis-à-vis the voltage hysteresis observed between reduction and oxidation. Here, we present such insight at scales from local atomic arrangements to whole electrodes. NiO was chosen as a simple model system. The most important finding is that the voltage hysteresis has its origin in the differing chemical pathways during reduction and oxidation. This asymmetry is enabled by the presence of small metallic clusters and, thus, is likely to apply to other transition metal oxide systems. The presence of nanoparticles also influences the electrochemical activity of the electrolyte and its degradation products and can create differences in transport properties within an electrode, resulting in localized reactions around converted domains that lead to compositional inhomogeneities at the microscale.

  16. Asymmetric pathways in the electrochemical conversion reaction of NiO as battery electrode with high storage capacity.

    Science.gov (United States)

    Boesenberg, Ulrike; Marcus, Matthew A; Shukla, Alpesh K; Yi, Tanghong; McDermott, Eamon; Teh, Pei Fen; Srinivasan, Madhavi; Moewes, Alexander; Cabana, Jordi

    2014-11-20

    Electrochemical conversion reactions of transition metal compounds create opportunities for large energy storage capabilities exceeding modern Li-ion batteries. However, for practical electrodes to be envisaged, a detailed understanding of their mechanisms is needed, especially vis-à-vis the voltage hysteresis observed between reduction and oxidation. Here, we present such insight at scales from local atomic arrangements to whole electrodes. NiO was chosen as a simple model system. The most important finding is that the voltage hysteresis has its origin in the differing chemical pathways during reduction and oxidation. This asymmetry is enabled by the presence of small metallic clusters and, thus, is likely to apply to other transition metal oxide systems. The presence of nanoparticles also influences the electrochemical activity of the electrolyte and its degradation products and can create differences in transport properties within an electrode, resulting in localized reactions around converted domains that lead to compositional inhomogeneities at the microscale.

  17. High capacity and high rate capability of nanostructured CuFeO 2 anode materials for lithium-ion batteries

    Science.gov (United States)

    Lu, Lin; Wang, Jia-Zhao; Zhu, Xue-Bin; Gao, Xuan-Wen; Liu, Hua-Kun

    Non-toxic, cheap, nanostructured ternary transition metal oxide CuFeO 2 was synthesised using a simple sol-gel method at different temperatures. The effects of the processing temperature on the particle size and electrochemical performance of the nanostructured CuFeO 2 were investigated. The electrochemical results show that the sample synthesised at 650 °C shows the best cycling performance, retaining a specific capacity of 475 mAh g -1 beyond 100 cycles, with a capacity fading of less than 0.33% per cycle. The electrode also exhibits good rate capability in the range of 0.5 C-4 C. At the high rate of 4 C, the reversible capacity of CuFeO 2 is around 170 mAh g -1. It is believed that the ternary transition metal oxide CuFeO 2 is quite acceptable compared with other high performance nanostructured anode materials.

  18. Facile synthesis of nickel-foam-based nano-architectural composites as binder-free anodes for high capacity Li-ion batteries

    Science.gov (United States)

    Min, Shudi; Zhao, Chongjun; Ju, Peiwen; Zhou, Tengfei; Gao, Hong; Zheng, Yang; Wang, Hongqiang; Chen, Guorong; Qian, Xiuzhen; Guo, Zaiping

    2016-02-01

    A series of nickel foam (NF)-based composites of MxOy/RGO/Ni(OH)2 [MxOy = Co3O4, MnO2, and Ni(OH)2] with diverse multilayer nano-architectures were designed and grown in situ on NF through a one-pot hydrothermal process. Based on the redox reaction between the active NF substrate and graphene oxide (GO), along with electrostatic forces between the Mn+ ions and GO in the solution, strong interactions take place at the interfaces of MxOy/RGO, RGO/Ni(OH)2, and Ni(OH)2/Ni, and thus, there is good contact for electron transfer. These MxOy/RGO/Ni(OH)2 samples were directly used as conductive-agent- and binder-free anodes for lithium ion batteries (LIBs), and the Ni(OH)2/RGO/Ni(OH)2/NF composite electrode showed a high specific capacity, good rate capability, and excellent cycling stability, especially, it had a high reversible capacity of about 1330 mAh g-1 even after 200 cycles at 100 mA g-1. This general strategy presents a promising route for the design and synthesis of various multilayer nano-architectural transition metal oxides (hydroxide)/RGO composites on NF as energy storage materials.

  19. Surface modification of graphite by coke coating for reduction of initial irreversible capacity in lithium secondary batteries

    Science.gov (United States)

    Yoon, Songhun; Kim, Hanjun; Oh, Seung M.

    Surface modification of graphite to reduce the irreversible capacity loss during the first charging period of graphite anodes is described. For the surface modification, artificial graphite (Lonza KS44) is dispersed in a tetrahydrofuran/acetone solution which contains coal tar pitch. The solvent is then evaporated. The loaded pitch component is converted to coke by a heat treatment at 1000°C in argon atmosphere. The resulting coke-coated graphite has a smaller surface area than that of the pristine one. The reduction of surface area, which is due to the coverage of pores of <10 nm by the coke component, causes a decrease in the irreversible capacity on the first cycle. The extent of electrolyte decomposition, gas evolution and surface film growth is also less with the coke-coated graphite electrode.

  20. Effects of anode active materials to the storage-capacity fading on commercial lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Gunho; Park, Jounghwan; Lee, Jinuk [Energy Business Division, Samsung SDI Co. Ltd., Sungsung-Dong, Cheonan-Si, Chungcheongnam-Do 330-300 (Korea); Kim, Sinja; Jung, Inho [Corporate R and D Center, Samsung SDI Co. Ltd., Sungsung-Dong, Cheonan-Si, Chungcheongnam-Do 330-300 (Korea)

    2007-12-06

    Thermal storage of prismatic Li-ion cell with different types of anodes has been performed at 60 C for 15 days to 30 days. The results were compared for two anodes: natural-like graphite (NLG) with styrene-butadiene rubber (SBR, 2.5 wt.%) binder and artificial graphite (AG) with polyvinylidene fluoride (PVdF, 6 wt.%) as binder. The storage-capacity fading behavior of the commercial Li-ion cell was studied by dissection the storage cells and analyzing their electrodes and solid electrolyte interphase (SEI), allows lithium-ion transfer but prevents electron migration using SEM, DSC, FT-IR, XRD and impedance analysis. Side-reaction and transformation of the passivation film on NLG anode contributed the capacity loss. Self-discharge of NLG cell due to high specific surface area was one of the main factors for capacity fading. Impedance analysis revealed that the interfacial resistance at NLG anode was larger than that of the AG anode. The increase of lithium alkylcarbonate and lithium carbonate due to reductive decomposition of electrolyte with storage time decreased the charge and increased the interfacial resistance. (author)

  1. Effects of anode active materials to the storage-capacity fading on commercial lithium-ion batteries

    Science.gov (United States)

    Kwak, Gunho; Park, Jounghwan; Lee, Jinuk; Kim, Sinja; Jung, Inho

    Thermal storage of prismatic Li-ion cell with different types of anodes has been performed at 60 °C for 15 days to 30 days. The results were compared for two anodes: natural-like graphite (NLG) with styrene-butadiene rubber (SBR, 2.5 wt.%) binder and artificial graphite (AG) with polyvinylidene fluoride (PVdF, 6 wt.%) as binder. The storage-capacity fading behavior of the commercial Li-ion cell was studied by dissection the storage cells and analyzing their electrodes and solid electrolyte interphase (SEI), allows lithium-ion transfer but prevents electron migration using SEM, DSC, FT-IR, XRD and impedance analysis. Side-reaction and transformation of the passivation film on NLG anode contributed the capacity loss. Self-discharge of NLG cell due to high specific surface area was one of the main factors for capacity fading. Impedance analysis revealed that the interfacial resistance at NLG anode was larger than that of the AG anode. The increase of lithium alkylcarbonate and lithium carbonate due to reductive decomposition of electrolyte with storage time decreased the charge and increased the interfacial resistance.

  2. THE TOURIST ACOMMODATION CAPACITY IN VÂLCEA COUNTY AND THE MAIN TOURIST INDICATORS BETWEEN 2006-2010

    Directory of Open Access Journals (Sweden)

    Maria-Roxana, Dorobanţu

    2013-01-01

    Full Text Available The article highlights an analysis of the tourist accommodation capacity conducted in Vâlcea County. We analyzed the main tourism indicators registred between 2006-2010: number of arrivals in the main establishments of tourist’s reception with functions of tourist’s accommodation, number of stays overnight. Also, we explained the tourism terms that we used in our paper. We mention that the statistical data are processed according to the Vâlcea County Statistics Department, press releases from 2011, published under National Statistics Intitute. The paper was conducted in Vâlcea County, an area with touristic potential and wich has a strong attraction for tourist seeking natural resources, local culture.

  3. Indicators of implicit and explicit social anxiety influence threat-related interpretive bias as a function of working memory capacity

    Directory of Open Access Journals (Sweden)

    Elske eSalemink

    2013-05-01

    Full Text Available Interpretive biases play a crucial role in anxiety disorders. The aim of the current study was to examine factors that determine the relative strength of threat-related interpretive biases that are characteristic of individuals high in social anxiety. Different (dual process models argue that both implicit and explicit processes determine information processing biases and behaviour, and that their impact is moderated by the availability of executive resources such as working memory capacity (WMC. Based on these models, we expected indicators of implicit social anxiety to predict threat-related interpretive bias in individuals low, but not high in WMC. Indicators of explicit social anxiety should predict threat-related interpretive bias in individuals high, but not low in WMC. As expected, WMC moderated the impact of implicit social anxiety on threat-related interpretive bias, although the simple slope for individuals low in WMC was not statistically significant. The hypotheses regarding explicit social anxiety (with fear of negative evaluation used as an indicator were fully supported. The clinical implications of these findings are discussed.

  4. Design and Research on Measurement of Battery Capacity Based on PIC Microcomputer%基于PIC单片机的电池电量检测系统的设计与研究

    Institute of Scientific and Technical Information of China (English)

    李兵; 胡明炜

    2012-01-01

    Most downhole control system uses a battery-powered, lack of battery capacity could lead to the Non-normal operation of the downhole control system. To solve the above problems, this paper design a portable battery detection circuit which uses high-temperature battery as a detection object. Based on linear relationship between power and voltage according to pre-acquisition battery discharge parameters established, the detecting circuit detects and process voltage of the battery, then calculate the remaining battery capacity and display it on the LCD screen and alarming. This system has the characteristics of simple operation, portability,high precision and so on.%国内大多数井下控制系统采用电池供电,由于电池电量的不足可能导致井下控制系统不能正常运行.针对这一问题,文章以高温电池作为检测对象,设计了一种便携式电池电量检测电路.通过对电池的电压进行采集、处理,根据预先采集电池放电参数建立的电量与电压分段线性关系,计算出电池的电池电量,在液晶显示屏上显示电池的剩余电量并报警提示.该控制系统操作简单,具有便携性、精度较高等优点.

  5. Recent Developments of Ferrate (VI) Salts as Cathode Meterial in High Capacity Batteries%铁(VI)酸盐正极材料的研究进展

    Institute of Scientific and Technical Information of China (English)

    袁中直; 周震涛; 李伟善

    2002-01-01

      The ferrate (VI) salts that have Fe element in an unusual VI valence state may be one of the best choices of high-energy batteries' cathode material, because ferrates (VI) are capable of the three-electron reduction, their reduction and decomposition products are nontoxic and environment-benign. One and a half century after the K2FeO4 synthesis, the chemistry and electrochemistry remains relatively unknown because of the incorrect knowledge of ferrates (VI) instability. The studies of ferrates (VI) used as cathode have been renewed recently. Many achievements have been made after the Israeli scientist Dr. Stuart Licht published their results on Science magazine that the alkaline ferrate (VI)/Zn batteries can provide 50% higher capacity than conventional alkaline batteries. In this article, the reasons of ferrate (VI) salts’ instability, methods of avoiding ferrate (VI) salts' decomposition and influences of some modifiers such as SrTiO3, Co2O3,MnO2,In2O3,KMnO4, (CFx)n on electrochemical characteristics of ferrate (VI) cathode are reviewed.%  铁(VI)酸盐中的Fe具有不寻常的高价态+6价,可以进行3电子还原放电反应,其还原产物及分解产物无毒无害,具有新一代“绿色电池”的重要特征。铁(VI)酸盐合成一个半世纪以来,由于认为它不稳定至今其化学和电化学性质并不很清楚。直到1999年以色列科学家Licht博士在Science上发表研究结果表明铁(VI)酸盐/Zn电池可以获得比常规碱性电池多50%的容量,铁(VI)酸盐高能电池才又引起深入的研究。本文综述了近年来铁(VI)酸盐作为高能电池正极活性物质的研究进展,包括改善铁(VI)酸盐稳定性的方法、掺杂修饰(如SrTiO3, Co2O3,MnO2,In2O3,KMnO4,(CFx)n等)等改善铁(VI)酸盐正极电化学性能的技术等。

  6. Suppressing the chromium disproportionation reaction in O3-type layered cathode materials for high capacity sodium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Ming-Hui; Wang, Yong; Shadike, Zulipiya; Yue, Ji-Li; Hu, Enyuan; Bak, Seong-Min; Zhou, Yong-Ning; Yang, Xiao-Qing; Fu, Zheng-Wen

    2017-01-01

    Chromium-based layered cathode materials suffer from the irreversible disproportionation reaction of Cr4+ to Cr3+ and Cr6+, which hinders the reversible multi-electron redox of Cr ions in layered cathodes, and limits their capacity and reversibility. To address this problem, a novel O3-type layer-structured transition metal oxide of NaCr1/3Fe1/3Mn1/3O2 (NCFM) was designed and studied as a cathode material. A high reversible capacity of 186 mA h g-1 was achieved at a current rate of 0.05C in a voltage range of 1.5 to 4.2 V. X-ray diffraction revealed an O3 → (O3 + P3) → (P3 + O3'') → O3'' phase-transition pathway for NCFM during charge. X-ray absorption, X-ray photoelectron and electron energy-loss spectroscopy measurements revealed the electronic structure changes of NCFM during Na+ deintercalation/intercalation processes. It is confirmed that the disproportionation reaction of Cr4+ to Cr3+ and Cr6+ can be effectively suppressed by Fe3+ and Mn4+ substitution. These results demonstrated that the reversible multi-electron oxidation/reduction of Cr ions can be achieved in NCFM during charge and discharge accompanied by CrO6 octahedral distortion and recovery.

  7. TVA–based assessment of attentional capacities – associations with age and indices of brain white matter microstructure

    Directory of Open Access Journals (Sweden)

    Thomas eEspeseth

    2014-10-01

    Full Text Available In this study the primary aims were to characterize the effects of age on basic components of visual attention derived from assessments based on a theory of visual attention (TVA in 325 healthy volunteers covering the adult lifespan (19-81 years. Furthermore, we aimed to investigate how age-related differences on TVA parameters are associated with white matter (WM microstructure as indexed by diffusion tensor imaging (DTI. Finally, we explored how TVA parameter estimates were associated with complex, or multicomponent indices of processing speed (Digit-symbol substitution, DSS and fluid intelligence (gF. The results indicated that the TVA parameters for visual short-term memory capacity, K, and for attentional selectivity, α, were most strongly associated with age before the age of 50. However, in this age range, it was the parameter for processing speed, C, that was most clearly associated with DTI indices, in this case fractional anisotropy (FA, particularly in the genu and body of the corpus callosum. Furthermore, differences in the C parameter partially mediated differences in DSS within this age range. After the age of 50, the TVA parameter for the perceptual threshold, t0, as well as K, were most strongly related to participant age. Both parameters, but t0 more strongly so than K, were associated WM diffusivity, particularly in projection fibers such as the internal capsule, the sagittal stratum, and the corona radiata. Within this age range, t0 partially mediated age-related differences in gF. The results are consistent with, and provide novel empirical support for the neuroanatomical localization of TVA computations as outlined in the neuronal interpretation of TVA (NTVA. Furthermore, the results indicate that to understand the biological sources of age-related changes in processing speed and fluid cognition, it may be useful to employ methods that allow for computational fractionation of these multicomponent measures.

  8. Selected Test Results from the Encell Technology Nickel Iron Battery

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Summer Kamal Rhodes [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Power Sources R& D; Baca, Wes Edmund [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Power Sources R& D; Avedikian, Kristan [Encell Technology, Alachua, FL (United States)

    2014-09-01

    The performance of the Encell Nickel Iron (NiFe) battery was measured. Tests included capacity, capacity as a function of rate, capacity as a function of temperature, charge retention (28-day), efficiency, accelerated life projection, and water refill evaluation. The goal of this work was to evaluate the general performance of the Encell NiFe battery technology for stationary applications and demonstrate the chemistry's capabilities in extreme conditions. Test results have indicated that the Encell NiFe battery technology can provide power levels up to the 6C discharge rate, ampere-hour efficiency above 70%. In summary, the Encell batteries have met performance metrics established by the manufacturer. Long-term cycle tests are not included in this report. A cycle test at elevated temperature was run, funded by the manufacturer, which Encell uses to predict long-term cycling performance, and which passed their prescribed metrics.

  9. Sensitivity on Battery Prices and Capacity on board Electric Drive Vehicles and the Effects on the Power System Configuration

    DEFF Research Database (Denmark)

    Juul, Nina

    2011-01-01

    concerns establishing improved understanding of potential trade-offs and synergies between energy system adaptation and mitigation options, and adaptation and development prospects in other sectors or areas. Finally, improved knowledge on damage costs, and adaptation costs and benefits is likely to remove......Energy systems are significantly vulnerable to current climate variability and extreme events. As climate change becomes more pronounced, the risks and vulnerabilities will be exacerbated. To date, energy sector adaptation issues have received very limited attention. In this paper, a climate risk...... on reviewing the current knowledge on risks and vulnerabilities of energy systems and on potential adaptation options. The paper finds that short and longer term action on climate risk management of energy systems strongly depends on: Strengthening the capacity to model and project climate change and its...

  10. Study of high-capacity 18650 Li-ion battery%18650高容量锂离子电池研制

    Institute of Scientific and Technical Information of China (English)

    吴小兰

    2014-01-01

    采用高镍材料作为电池正极制作了18650型圆柱锂离子电池(0.5C 放电标称容量为2800 mAh),并对该材料扣式电池与18650锂离子电池性能进行了测试。结果显示:高镍材料扣式电池首次充放电效率为88.7%;Li 氧化覆盖整个氧化峰范围(3.7~5.0 V),同时4.25 V 时 Ni2+/Ni4+电对氧化,5.0 V 处为 Co3+/Co4+的氧化,并且反应开始时优先发生 Ni 的氧化,随着电位增大,发生 Co 的氧化。高镍材料18650锂离子电池0.5 C、1.0 C、2.0 C 放电容量分别是0.2 C 时的99.89%、99.26%、97.38%,能够满足电池对于快充快放的使用要求;电池0.5 C 充电1 C 放电20周、100周、200周、450周对应容量保持率分别为98.40%、94.74%、87.62%、82.22%。低倍率(0.5C)时,常规结构18650电池与本实验结构电池的散热效果相当,随着放电倍率增大,两种结构散热效果温度差值也增大。%18650 cylindrical Li-ion battery was made with nickel-rich composite material as cathode in this paper.And the battery’s nominal capacity was 2 800 mAh at 0.5 C.The performance of nickel-rich composite button cell and 18650 type full battery was tested.The testing results showed that,the first charge/discharge rate of the composite materials of cobalt/nickel/man-ganese was 88.7%,and Li oxidation covered the oxidation peak from 3.7 V to 5.0 V,and the oxidation of Ni2 + to Ni4+ at 4.25 V,while Co3 + oxidized to Co4+ at 5.0 V,Ni oxidation preferen-tially occurred at the beginning of the reaction.With the increasing of potential,the Co3 + subse-quently oxidized.For the nickel-rich composite 18650 type full battery,the discharge of 0.5C, 1.0 C,2.0 C rate contrasting to 0.2C was 99.89%,99.26%,97.38%,respectively.And it can meet the requirements of fast charge/discharge.The capacity retention rate of 18650 type full battery after (0.5C charge /1 C discharge)20 cycles,100

  11. Nitrogen-doped graphene/sulfur composite as cathode material for high capacity lithium-sulfur batteries

    Science.gov (United States)

    Wang, Xiwen; Zhang, Zhian; Qu, Yaohui; Lai, Yanqing; Li, Jie

    2014-06-01

    Two types of nitrogen-doped graphene sheets (NGS) synthesized by a facile hydrothermal method are used to immobilize sulfur via an in situ sulfur deposition route. The structure and composition of the prepared nitrogen doped graphene/sulfur (NGS/S) composites are confirmed with X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Scanning electron microscope (SEM) and Transmission electron microscope (TEM) images shows the porous sulfur particles are well wrapped by NGS. Compared with graphene/sulfur (GS/S) composite, the NGS-1/S composite with high loading (80 wt%) of sulfur presents a remarkably higher reversible capacity (1356.8 mAh g-1 at 0.1 C) and long cycle stability (578.5 mAh g-1 remaining at 1 C up to 500 cycles). Pyridinic-N rich NGS-1/S exhibits a better electrochemical performance than pyrrolic-N enriched NGS-2/S. The improvement of electrochemical properties could be attributed to the chemical interaction between the nitrogen functionalities on the surface of NGS and polysulfide as well as the enhanced electronic conductivity of the carbon matrix.

  12. Improvement of Energy Capacity with Vitamin C Treated Dual-Layered Graphene-Sulfur Cathodes in Lithium-Sulfur Batteries.

    Science.gov (United States)

    Kim, Jin Won; Ocon, Joey D; Kim, Ho-Sung; Lee, Jaeyoung

    2015-09-07

    A graphene-based cathode design for lithium-sulfur batteries (LSB) that shows excellent electrochemical performance is proposed. The dual-layered cathode is composed of a sulfur active layer and a polysulfide absorption layer, and both layers are based on vitamin C treated graphene oxide at various degrees of reduction. By controlling the degree of reduction of graphene, the dual-layered cathode can increase sulfur utilization dramatically owing to the uniform formation of nanosized sulfur particles, the chemical bonding of dissolved polysulfides on the oxygen-rich sulfur active layer, and the physisorption of free polysulfides on the absorption layer. This approach enables a LSB with a high specific capacity of over 600 mAh gsulfur (-1) after 100 cycles even under a high current rate of 1C (1675 mA gsulfur (-1) ). An intriguing aspect of our work is the synthesis of a high-performance dual-layered cathode by a green chemistry method, which could be a promising approach to LSBs with high energy and power densities.

  13. Soft-contact conductive carbon enabling depolarization of LiFePO4 cathodes to enhance both capacity and rate performances of lithium ion batteries

    Science.gov (United States)

    Ren, Wenju; Wang, Kai; Yang, Jinlong; Tan, Rui; Hu, Jiangtao; Guo, Hua; Duan, Yandong; Zheng, Jiaxin; Lin, Yuan; Pan, Feng

    2016-11-01

    Conductive nanocarbons generally are used as the electronic conductive additives to contact with active materials to generate conductive network for electrodes of commercial Li-ion batteries (LIBs). A typical of LiFePO4 (LFP), which has been widely used as cathode material for LIBs with low electronic conductivity, needs higher quantity of conductive nanocarbons to enhance the performance for cathode electrodes. In this work, we systematically studied three types of conductive nanocarbons and related performances in the LFP electrodes, and classify them as hard/soft-contact conductive carbon (named as H/SCC), respectively, according to their crystallite size, surface graphite-defect, specific surface area and porous structure, in which SCC can generate much larger contact area with active nano-particles of cathode materials than that of HCC. It is found that LFP nanocrystals wrapped in SCC networks perform significantly enhanced both capacity and rate performance than that in HCC. Combined experiments with multiphysics simulation, the mechanism is that LFP nanoparticles embedded in SCC with large contact area enable to generate higher depolarized effects with a relatively uniform current density vector (is) and lithium flux vector (NLi) than that in HCC. This discovery will guide us to how to design LIBs by selective using conductive carbon for high-performance LIBs.

  14. A Capacity-Restraint Transit Assignment Model When a Predetermination Method Indicates the Invalidity of Time Independence

    Directory of Open Access Journals (Sweden)

    Haoyang Ding

    2015-01-01

    Full Text Available The statistical independence of time of every two adjacent bus links plays a crucial role in deciding the feasibility of using many mathematical models to analyze urban transit networks. Traditional research generally ignores the time independence that acts as the ground of their models. Assumption is usually made that time independence of every two adjacent links is sound. This is, however, actually groundless and probably causes problematic conclusions reached by corresponding models. Many transit assignment models such as multinomial probit-based models lose their effects when the time independence is not valid. In this paper, a simple method to predetermine the time independence is proposed. Based on the predetermination method, a modified capacity-restraint transit assignment method aimed at engineering practice is put forward and tested through a small contrived network and a case study in Nanjing city, China, respectively. It is found that the slope of regression equation between the mean and standard deviation of normal distribution acts as the indicator of time independence at the same time. Besides, our modified assignment method performs better than the traditional one with more reasonable results while keeping the property of simplicity well.

  15. Solar battery energizer

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, M. E.

    1985-09-03

    A battery energizer for button batteries, such as zinc-silver oxide or zinc-mercuric oxide batteries, that are normally considered unchargeable, provides for energizing of the batteries in a safe and simple manner. A solar cell having a maximum current output (e.g., 20 milliamps) is operatively connected to terminals for releasably receiving a button battery. A light emitting diode, or like indicator, provides an indication of when the battery is fully energized, and additionally assists in preventing overenergization of the battery. The solar cell, terminals, LED, and the like can be mounted on a nonconductive material mounting plate which is mounted by a suction cup and hook to a window, adjacent a light bulb, or the like. A battery charger for conventional dry cell rechargeable batteries (such as nickel-cadmium batteries) utilizes the solar cells, and LED, and a zener diode connected in parallel with terminals. An adaptor may be provided with the terminal for adapting them for use with any conventional size dry cell battery, and a simple dummy battery may be utilized so that less than the full complement of batteries may be charged utilizing the charger.

  16. Capacity diagnosis of short-term discharge of battery based on multi-frequency measurement%基于多频点测试的蓄电池短时放电容量诊断

    Institute of Scientific and Technical Information of China (English)

    黄世回; 杨忠亮; 王汝钢; 白海江

    2016-01-01

    The polarization capacitor parameter of electric double layer in the Thevenin battery model is identiifed by multi-frequency testing. The regularity which the zero-crossing time of polarization capacitor change rate curve is half the time of completely discharge process is got by analyzing the change of the polarization capacitor during 0.1C constant current discharge process for battery capacity check. According to this, the actual capacity of the battery is double that at the zero-crossing time. The rapid short-term battery capacity diagnosis can be realized because the test time is saved by 50 %. The operation cost of the capacity check and the safety risk of DC power supply system are reduced greatly.%多频点测试技术可辨识出蓄电池 Thevenin模型中双电层极化电容参数。通过分析满充蓄电池0.1C恒流核容放电过程极化电容的变化,得出极化电容变化率曲线过零点的时刻为完全放电过程用时一半的时间点的规律。据此得出蓄电池实际容量为该时刻为止放出电量的2倍。用时节约了50%左右,实现了快速短时的蓄电池容量诊断,极大降低了核容过程的操作成本和直流电源系统安全风险。

  17. Report on Lithium Ion Battery Trade Studies to Support the Exploration Technology Development Program (ETDP) Energy Storage Project

    Science.gov (United States)

    Green, Robert D.; Kissock, Barbara I.; Bennett, William R.

    2010-01-01

    This report documents the results of two system related analyses to support the Exploration Technology Development Program (ETDP) Energy Storage Project. The first study documents a trade study to determine the optimum Li-ion battery cell capacity for the ascent stage battery for the Altair lunar lander being developed under the Constellation Systems program. The battery cell capacity for the Ultra High Energy (UHE) Li-ion battery initially chosen as the target for development was 35 A-hr; this study concludes that a 19.4 A-hr cell capacity would be more optimum from a minimum battery mass perspective. The second study in this report is an assessment of available low temperature Li-ion battery cell performance data to determine whether lowering the operating temperature range of the Li-ion battery, in a rover application, could save overall system mass by eliminating thermal control system mass normally needed to maintain battery temperature within a tighter temperature limit than electronics or other less temperature sensitive components. The preliminary assessment for this second study indicates that the reduction in the thermal control system mass is negated by an increase in battery mass to compensate for the loss in battery capacity due to lower temperature operating conditions.

  18. Battery Thermal Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Keyser, Matthew; Saxon, Aron; Powell, Mitchell; Shi, Ying

    2016-06-07

    This poster shows the progress in battery thermal characterization over the previous year. NREL collaborated with U.S. DRIVE and USABC battery developers to obtain thermal properties of their batteries, obtained heat capacity and heat generation of cells under various power profiles, obtained thermal images of the cells under various drive cycles, and used the measured results to validate thermal models. Thermal properties are used for the thermal analysis and design of improved battery thermal management systems to support achieve life and performance targets.

  19. Computing lifetimes for battery-powered devices

    NARCIS (Netherlands)

    Jongerden, Marijn; Haverkort, Boudewijn

    2010-01-01

    The battery lifetime of mobile devices depends on the usage pattern of the battery, next to the discharge rate and the battery capacity. Therefore, it is important to include the usage pattern in battery lifetime computations. We do this by combining a stochastic workload, modeled as a continuous-ti

  20. BLET:Battery Lifetime Enhancement Technology

    Institute of Scientific and Technical Information of China (English)

    Yong-Ju; Jang; Seongsoo; Lee

    2010-01-01

    <正>In recent years,mobile devices and high-hearth because of the multifunctional,battery capacity has been increased.In this paper,without the overhead by using the battery discharge characteristics,and application of technology to extend the battery life is explained. Experiment H.264 video transmission to take some losses and extended battery life was achieved.

  1. Button batteries

    Science.gov (United States)

    Swallowing batteries ... These devices use button batteries: Calculators Cameras Hearing aids Penlights Watches ... If a person puts the battery up their nose and breathes it further in, ... problems Cough Pneumonia (if the battery goes unnoticed) ...

  2. Determination of the optimal installation capacity of small hydro-power plants through the use of technical, economic and reliability indices

    DEFF Research Database (Denmark)

    Hosseini, S.M.H.; Forouzbakhsh, Farshid; Rahimpoor, M.

    2005-01-01

    One of the most important issues in planning Small Hydro-Power Plants (SHPPs) of the ‘‘run-off river’’ type is to determine the optimal installation capacity of the SHPP andestimate its optimal annual energy value. In this paper, a methodto calculate the annual energy is presented......, as is the program developed using Excel software. This program analyzes and estimates the most important economic indices of an SHPP using the sensitivity analysis method. Another program, developed by Matlab software, calculates the reliability indices for a number of units of an SHPP with a specified load...... duration curve using the Monte Carlo method. Ultimately, comparing the technical, economic and reliability indices will determine the optimal installation capacity of an SHPP. By applying the above-mentionedalgorithm to a sample SHPP named‘‘Nari’’ (locatedin the northern part of Iran), the optimal capacity...

  3. Model-based condition monitoring for lithium-ion batteries

    Science.gov (United States)

    Kim, Taesic; Wang, Yebin; Fang, Huazhen; Sahinoglu, Zafer; Wada, Toshihiro; Hara, Satoshi; Qiao, Wei

    2015-11-01

    Condition monitoring for batteries involves tracking changes in physical parameters and operational states such as state of health (SOH) and state of charge (SOC), and is fundamentally important for building high-performance and safety-critical battery systems. A model-based condition monitoring strategy is developed in this paper for Lithium-ion batteries on the basis of an electrical circuit model incorporating hysteresis effect. It systematically integrates 1) a fast upper-triangular and diagonal recursive least squares algorithm for parameter identification of the battery model, 2) a smooth variable structure filter for the SOC estimation, and 3) a recursive total least squares algorithm for estimating the maximum capacity, which indicates the SOH. The proposed solution enjoys advantages including high accuracy, low computational cost, and simple implementation, and therefore is suitable for deployment and use in real-time embedded battery management systems (BMSs). Simulations and experiments validate effectiveness of the proposed strategy.

  4. Testicular membrane lipid damage by complex mixture of leachate from municipal battery recycling site as indication of idiopathic male infertility in rat

    OpenAIRE

    Akintunde, Jacob K.; Oboh, Ganiyu; Akindahunsi, Akintunde A.

    2013-01-01

    Leachate from a municipal battery recycling site is a potent source of mixed-metal released into the environment. The present study investigated the degree at which mixed-metal exposure to the municipal auto-battery leachate (MABL) and to the Elewi Odo municipal auto-battery recycling site leachate (EOMABRL) affected the lipid membrane of the testes in in vitro experiment. The results showed elevated level of mixed-metals over the permissible levels in drinking water, as recommended by regula...

  5. Cycle Life of Commercial Lithium-Ion Batteries with Lithium Titanium Oxide Anodes in Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Xuebing Han

    2014-07-01

    Full Text Available The lithium titanium oxide (LTO anode is widely accepted as one of the best anodes for the future lithium ion batteries in electric vehicles (EVs, especially since its cycle life is very long. In this paper, three different commercial LTO cells from different manufacturers were studied in accelerated cycle life tests and their capacity fades were compared. The result indicates that under 55 °C, the LTO battery still shows a high capacity fade rate. The battery aging processes of all the commercial LTO cells clearly include two stages. Using the incremental capacity (IC analysis, it could be judged that in the first stage, the battery capacity decreases mainly due to the loss of anode material and the degradation rate is lower. In the second stage, the battery capacity decreases much faster, mainly due to the degradation of the cathode material. The result is important for the state of health (SOH estimation and remaining useful life (RUL prediction of battery management system (BMS for LTO batteries in EVs.

  6. Fibrous zinc anodes for high power batteries

    Science.gov (United States)

    Zhang, X. Gregory

    This paper introduces newly developed solid zinc anodes using fibrous material for high power applications in alkaline and large size zinc-air battery systems. The improved performance of the anodes in these two battery systems is demonstrated. The possibilities for control of electrode porosity and for anode/battery design using fibrous materials are discussed in light of experimental data. Because of its mechanical integrity and connectivity, the fibrous solid anode has good electrical conductivity, mechanical stability, and design flexibility for controlling mass distribution, porosity and effective surface area. Experimental data indicated that alkaline cells made of such anodes can have a larger capacity at high discharging currents than commercially available cells. It showed even greater improvement over commercial cells with a non-conventional cell design. Large capacity anodes for a zinc-air battery have also been made and have shown excellent material utilization at various discharge rates. The zinc-air battery was used to power an electric bicycle and demonstrated good results.

  7. Batteries: Overview of Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Doeff, Marca M

    2010-07-12

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as

  8. Batteries: Overview of Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Doeff, Marca M

    2010-07-12

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as

  9. Reducing of internal resistance lithium ion battery using glucose addition

    Energy Technology Data Exchange (ETDEWEB)

    Salim, Andri Pratama; Hafidlullah, Noor; Purwanto, Agus, E-mail: aguspurw@gmail.com [Research Group of Battery & Advanced Material, Department of Chemical Engineering, Sebelas Maret University, Jl. Ir. Sutami 36 A Kentingan, Surakarta Indonesia 57126 (Indonesia)

    2016-02-08

    There are two indicators of battery performance, i.e : capacity and the internal resistance of battery. In this research, the affect of glucose addition to decrease the internal resistance of lithium battery was investigated. The ratio of glucose addition were varied at weight ratio 1%, 3%, and 5% and one mixtures without glucose addition. Lithium ferri phosphate (LiFePO{sub 4}), polyvinylidene fluoride (PVDF), acetylene black (AB) and glucose were materials that used in this study. Both of mixtures were mixed in the vacuum mixer until became homogeneous. The slurry was coated on an aluminium foil sheet and the coated thickness was 200 µm. The performance of battery lithium was examined by Eight Channel Battery Analyzer and the Internal resistance was examined by Internal Resistance of Battery Meter. The result from all analyzer were showed that the internal resistance reduced as well as the battery capacity. The best internal resistance value is owned by mixtures with 3wt% ratio glucose addition. It has an internal resistance value about 64 miliohm.

  10. Computing lifetimes for battery-powered devices

    OpenAIRE

    Jongerden, Marijn; Haverkort, Boudewijn

    2010-01-01

    The battery lifetime of mobile devices depends on the usage pattern of the battery, next to the discharge rate and the battery capacity. Therefore, it is important to include the usage pattern in battery lifetime computations. We do this by combining a stochastic workload, modeled as a continuous-time Markov model, with a well-known battery model. For this combined model, we provide new algorithms to efficiently compute the expected lifetime and the distribution and expected value of the deli...

  11. Correlating cycling history with structural evolution in commercial 26650 batteries using in operando neutron powder diffraction

    Science.gov (United States)

    Goonetilleke, Damian; Pramudita, James C.; Hagan, Mackenzie; Al Bahri, Othman K.; Pang, Wei Kong; Peterson, Vanessa K.; Groot, Jens; Berg, Helena; Sharma, Neeraj

    2017-03-01

    Ex situ and time-resolved in operando neutron powder diffraction (NPD) has been used to study the structural evolution of the graphite negative electrode and LiFePO4 positive electrode within ANR26650M1A commercial batteries from A123 Systems, in what to our knowledge is the first reported NPD study investigating a 26650-type battery. Batteries with different and accurately-known electrochemical and storage histories were studied, enabling the tell-tale signs of battery degradation to be elucidated using NPD. The ex-situ NPD data revealed that the intensity of the graphite/lithiated graphite (LixC6 or LiyC) reflections was affected by battery history, with lower lithiated graphite (LiC12) reflection intensities typically corresponding to more abused batteries. This indicates that the lithiation of graphite is less progressed in more abused batteries, and hence these batteries have lower capacities. In operando NPD allows the rate of structural evolution in the battery electrode materials to be correlated to the applied current. Interestingly, the electrodes exhibit different responses to the applied current that depend on the battery cycling history, with this particularly evident for the negative electrode. Therefore, this work illustrates how NPD can be used to correlate a battery history with electrode structure.

  12. Antioxidant capacity and polyphenolic composition as quality indicators for aqueous infusions of Salvia officinalis L. (sage tea

    Directory of Open Access Journals (Sweden)

    Stephan G Walch

    2011-12-01

    Full Text Available Sage (Salvia officinalis L. is used as an herbal medicinal product, with the most typical form of application as infusion with boiling water (sage tea. The well-established traditional uses include symptomatic treatment of mild dyspeptic complaints, the treatment of inflammations in the mouth and the throat, and relief of excessive sweating and relief of minor skin inflammations. In this study, sage teas prepared from commercially available products were chemically analysed for polyphenolic content using liquid chromatography, for antioxidant potential using the oxygen radical absorbance capacity (ORAC method, and for the Folin-Ciocalteu (FC index. The sage teas showed a high variation for all parameters studied (up to 20-fold differences for rosmarinic acid. Univariate and multivariate analyses showed that the antioxidant potential, which varied between 0.4 and 1.8 mmol trolox equivalents/100 mL, was highly dependent on rosmarinic acid and its derivatives. The FC index also showed a high correlation to these polyphenols, and could therefore be used as a screening parameter for sage tea quality. The considerable differences in polyphenolic composition and antioxidant capacity between the brands lead to a demand for quality standardisation, especially if these sage teas are to be used for therapeutic purposes. Further research also appears to be necessary to characterise the dose-benefit relationship, as sage may also contain a constituent (thujone with potentially adverse effects.

  13. Antioxidant Capacity and Polyphenolic Composition as Quality Indicators for Aqueous Infusions of Salvia officinalis L. (sage tea).

    Science.gov (United States)

    Walch, Stephan G; Tinzoh, Laura Ngaba; Zimmermann, Benno F; Stühlinger, Wolf; Lachenmeier, Dirk W

    2011-01-01

    Sage (Salvia officinalis L.) is used as an herbal medicinal product, with the most typical form of application as infusion with boiling water (sage tea). The well-established traditional uses include symptomatic treatment of mild dyspeptic complaints, the treatment of inflammations in the mouth and the throat, and relief of excessive sweating and relief of minor skin inflammations. In this study, sage teas prepared from commercially available products were chemically analyzed for polyphenolic content using liquid chromatography, for antioxidant potential using the oxygen radical absorbance capacity method, and for the Folin-Ciocalteu (FC) index. The sage teas showed a high variation for all parameters studied (up to 20-fold differences for rosmarinic acid). Univariate and multivariate analyses showed that the antioxidant potential, which varied between 0.4 and 1.8 mmol trolox equivalents/100 mL, was highly dependent on rosmarinic acid and its derivatives. The FC index also showed a high correlation to these polyphenols, and could therefore be used as a screening parameter for sage tea quality. The considerable differences in polyphenolic composition and antioxidant capacity between the brands lead to a demand for quality standardization, especially if these sage teas are to be used for therapeutic purposes. Further research also appears to be necessary to characterize the dose-benefit relationship, as sage may also contain a constituent (thujone) with potentially adverse effects.

  14. Key strategies for enhancing the cycling stability and rate capacity of LiNi0.5Mn1.5O4 as high-voltage cathode materials for high power lithium-ion batteries

    Science.gov (United States)

    Yi, Ting-Feng; Mei, Jie; Zhu, Yan-Rong

    2016-06-01

    Spinel LiNi0.5Mn1.5O4 (LNMO) is one of the most promising high voltage cathode materials for future application due to its advantages of large reversible capacity, high thermal stability, low cost, environmental friendliness, and high energy density. LNMO can provide 20% and 30% higher energy density than traditional cathode materials LiCoO2 and LiFePO4, respectively. Unfortunately, LNMO-based batteries with LiPF6-based carbonate electrolytes always suffer from severe capacity deterioration and poor thermostability because of the oxidization of organic carbonate solvents and decomposition of LiPF6, especially at elevated temperatures and water-containing environment. Hence, it is necessary to systematically and comprehensively summarize the progress in understanding and modifying LNMO cathode from various aspects. In this review, the structure, transport properties and different reported possible fading mechanisms of LNMO cathode are first discussed detailedly. And then, the major goal of this review is to highlight new progress in using proposed strategies to improve the cycling stability and rate capacity of LNMO-based batteries, including synthesis, control of special morphologies, element doping and surface coating etc., especially at elevated temperatures. Finally, an insight into the future research and further development of LNMO cathode is discussed.

  15. Suppressing capacity fading and voltage decay of Li-rich layered cathode material by a surface nano-protective layer of CoF2 for lithium-ion batteries

    Science.gov (United States)

    Chong, Shaokun; Chen, Yuanzhen; Yan, Wuwei; Guo, Shengwu; Tan, Qiang; Wu, Yifang; Jiang, Tao; Liu, Yongning

    2016-11-01

    Li-rich layered oxides have been regarded as valuable cathode materials for high energy density lithium-ion batteries. However, high initial irreversible capacity, bad rate capability, as well as serious capacity fading and voltage decay hinder their commercial application. In this paper, a nano CoF2 protective layer is coated on the surface of Li1.2Ni0.2Mn0.6O2 via a facial wet chemistry method. A high initial discharge capacity of 264.4 mAh g-1 is obtained for 0.5% CoF2-coated sample and 259.1 mAh g-1 for 1% CoF2-coated sample owing to the suppression of irreversible release of O2 and the contribution of electrochemical conversion of CoF2/LiF. Furthermore, 1% CoF2-coated sample exhibits the excellent rate capability of 167.5 mAh g-1 at 5 C rate, the superior cycling stability with the capacity retention of 241.0 mAh g-1 and the ameliorative voltage drop of 0.312 V at 0.1C after 100 cycles. The enhanced rate performance as well as stability of capacity and voltage can be attributed to the nano coatings which inhibit the electrolyte-electrode side reaction, enhance the electrochemical kinetics and mitigate structure transition from layered to spinel phase.

  16. 计及缺电成本的用户侧蓄电池储能系统容量规划%Capacity Plan of Battery Energy Storage System in User Side Considering Power Outage Cost

    Institute of Scientific and Technical Information of China (English)

    颜志敏; 王承民; 连鸿波; 衣涛; 时志雄; 张宇

    2012-01-01

    Based on the relevant studies, in order to bring the battery energy storage system economical benefits in the user side caused by reducing capacity of user's distribution station and decreasing the power expenses for user, a value model for reducing loss of the transformer and power outage cost is built. In the mean time, considering the investment cost and operation and maintenance cost, the capacity optimization plan model for user' s battery energy storage system is developed and particle swarm optimization algorithm is used to solve it.%在相关研究的基础上,考虑了用户侧电池储能系统在减少用户配电站建设容量和降低购电费用方面为用户带来的经济价值,建立了其降低配电变压器损耗和停电损失的价值模型。同时,考虑蓄电池储能系统的投资成本和运行维护成本,建立了其容量优化规划模型,并用粒子群优化算法进行了求解。

  17. The performance of Ebonex ® electrodes in bipolar lead-acid batteries

    Science.gov (United States)

    Ellis, Keith; Hill, Andrew; Hill, John; Loyns, Andrew; Partington, Tom

    Recent work by Atraverda on the production of an Ebonex ® material that can be cheaply formulated and manufactured to form bipolar substrate plates for bipolar lead-acid batteries is described. In addition, data obtained by Atraverda from laboratory lead-acid batteries is presented indicating that weight savings of around 40% for a bipolar 36 V design (20 Ah capacity, 5 h rate, 9 kW) are potentially achievable in comparison to more conventional designs containing monopolar lead grids. Results indicate that their use as bipolar substrate materials will provide light-weight, long-lasting lead-acid batteries suitable for automotive, standby and power tool applications.

  18. Effects of the Schroth exercise on the Cobb’s angle and vital capacity of patients with idiopathic scoliosis that is an operative indication

    Science.gov (United States)

    Kim, Kyoung-Don; Hwangbo, Pil-Neo

    2016-01-01

    [Purpose] The purpose of this study was to investigate the effects of the Schroth exercise on the Cobb’s angle and vital capacity of patients with growing idiopathic scoliosis, an operative indication. [Subjects] Five idiopathic scoliosis patients with a Cobb’s angle of the thoracic vertebra of 40 degrees or higher and Risser sign stage 3 or higher. [Methods] The Schroth exercise was applied 3 times a week for 12 weeks. We measured the thoracic trunk inclination, Cobb’s angle, and vital capacity before and after the exercise program. [Results] The thoracic trunk rotation angle decreased from 11.86 ± 3.32° to 4.90 ± 1.91° on average, the thoracic Cobb’s angle decreased from 42.40 ± 7.86° to 26.0 ± 3.65° on average, and the vital capacity also increased from 2.83 ± 1.23° to 4.04° ± 1.67° on average. All these effects were significant. [Conclusion] The 12-week Schroth exercise caused significant effects in the thoracic trunk inclination, Cobb’s angle, and vital capacity. The conservative treatment method was found to be effective even at a 40 degree or higher Cobb’s angle. In the future, universal exercise approach methods and preventive training for the treatment of scoliosis should be developed further. PMID:27134385

  19. Assessing electric vehicles battery second life remanufacture and management

    OpenAIRE

    Canals Casals, Lluc; Amante García, Beatriz

    2016-01-01

    Electric cars are entering into the automotive market. However, their prices are still expensive mostly due to the battery cost. Additionally, electric vehicle batteries are considered not useful for traction purposes after they have lost a 20% of its capacity. Having still an 80% of its capacity, these batteries may work on stationary applications with lower requirements than electric mobility. In order to recover part of the battery costs came out the idea of giving batteries a second l...

  20. 通信蓄电池核容性试验实例%The Nuclear Capacity Test Instance of Communication Battery

    Institute of Scientific and Technical Information of China (English)

    黄慧萍

    2012-01-01

    在电网出现故障时,由蓄电池组直接给负载供电,它是直流系统最后一道关口。因此,通信电源设备中蓄电池的测试和维护工作至关重要。选择最佳的蓄电池维护方案和优质的实验维护设备能让维护工作事半功倍,万无一失。%When the grid fault occurs, the storage battery directly power the load. It is the last guarantee of DC sys- tem. In communication power supply equipment, battery testing and maintenance is an essential work. Choose the best bat- tery maintenance scheme and quality of maintenance equipment can make your work more effective, no risk at all.

  1. Evaluation of the indexes of income yield capacity of energetic projects; Evaluacion de los indices de rentabilidad de proyectos energeticos

    Energy Technology Data Exchange (ETDEWEB)

    Villanueva M, C. [Facultad de Quimica, UNAM, 04510 Mexico D.F. (Mexico)

    2008-07-01

    An economic-financial model to evaluate in the class living room those indexes of profitability of projects of productive infrastructure of the energy sector was developed, as for example: generation projects, transmission and electric energy distribution; projects of transport and distribution of natural gas; projects of cogeneration of vapor and electricity; projects of refinement of petroleum; and other industrial projects. It is described the structure and operation of the pattern, which has been implemented in an Excel calculation sheet that the students use in their personal computers to apply it to the evaluation of the indexes of profitability, specified by the Secretaria de Hacienda y Credito Publico (SHCP) in their limits for the elaboration and presentation of the cost and benefit analysis of the programs and projects of investment of the public sector. The indicators are: present net value VPN, quotient benefits cost B/C, return internal rate TIR, and equivalent annual cost CAE, which should be calculated with methodological rigor according to the SHCP lineaments. The pattern uses the pre-programmed financial functions in the Excel calculation sheet to carry out the compute of the indicators starting from the effective flow of the projects. It is described the technician-economic configuration and the effective flows during the useful life of three power stations of electric power generation that are designed, builds and operated to sell electric power to the national interconnected system in a nodal marginal prices market: a hydroelectric one, a combined cycle power station that uses natural gas, and a nucleo electric. The effective flows are developed and the central profitability of three centrals are evaluated and they are also carried out the corresponding sensitivity analyses and indifference required by the SHCP in their lineaments. Finally, the conditions in that the projects should operate and the prices in those that should sell their

  2. The ZEBRA electric vehicle battery: power and energy improvements

    Science.gov (United States)

    Galloway, Roy C.; Haslam, Steven

    Vehicle trials with the first sodium/nickel chloride ZEBRA batteries indicated that the pulse power capability of the battery needed to be improved towards the end of the discharge. A research programme led to several design changes to improve the cell which, in combination, have improved the power of the battery to greater than 150 W kg -1 at 80% depth of discharge. Bench and vehicle tests have established the stability of the high power battery over several years of cycling. The gravimetric energy density of the first generation of cells was less than 100 Wh kg -1. Optimisation of the design has led to a cell with a specific energy of 120 Wh kg -1 or 86 Wh kg -1 for a 30 kWh battery. Recently, the cell chemistry has been altered to improve the useful capacity. The cell is assembled in the over-discharged state and during the first charge the following reactions occur: at 1.6 V: Al+4NaCl=NaAlCl 4+3Na; at 2.35 V: Fe+2NaCl=FeCl 2+2Na; at 2.58 V: Ni+2NaCl=NiCl 2+2 Na. The first reaction serves to prime the negative sodium electrode but occurs at too low a voltage to be of use in providing useful capacity. By minimising the aluminium content more NaCl is released for the main reactions to improve the capacity of the cell. This, and further composition optimisation, have resulted in cells with specific energies in excess of 140 Wh kg -1, which equates to battery energies>100 Wh kg -1. The present production battery, as installed in a Mercedes Benz A class electric vehicle, gives a driving range of 205 km (128 miles) in city and hill climbing. The cells with improved capacity will extend the practical driving range to beyond 240 km (150 miles).

  3. Exploring the Capacity of Water Framework Directive Indices to Assess Ecosystem Services in Fluvial and Riparian Systems: Towards a Second Implementation Phase

    Science.gov (United States)

    Vidal-Abarca, M. R.; Santos-Martín, F.; Martín-López, B.; Sánchez-Montoya, M. M.; Suárez Alonso, M. L.

    2016-06-01

    We explored the capacity of the biological and hydromorphological indices used in the Water Framework Directive (WFD) to assess ecosystem services by evaluating the ecological status of Spanish River Basins. This analysis relies on an exhaustive bibliography review which showed scientific evidence of the interlinkages between some ecosystem services and different hydromorphological and biological elements which have been used as indices in the WFD. Our findings indicate that, of a total of 38 ecosystem services analyzed, biological and hydromorphological indices can fully evaluate four ecosystem services. In addition, 18 ecosystem services can be partly evaluated by some of the analyzed indices, while 11 are not related with the indices. While Riparian Forest Quality was the index that was able to assess the largest number of ecosystem services ( N = 12), the two indices of macrophytes offered very poor guarantees. Finally, biological indices related to diatoms and aquatic invertebrates and the Fluvial Habitat Index can be related with 7, 6, and 6 ecosystem services, respectively. Because the WFD indices currently used in Spain are not able to assess most of the ecosystem services analyzed, we suggest that there is potential to develop the second phase of the WFD implementation taking this approach into consideration. The incorporation of the ecosystem services approach into the WFD could provide the framework for assess the impacts of human activities on the quality of fluvial ecosystems and could give insights for water and watershed management in order to guarantee the delivery of multiple ecosystem services.

  4. 47 CFR 80.919 - Required capacity.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Required capacity. 80.919 Section 80.919... capacity. If either the main or reserve power supply includes batteries, these batteries must have sufficient reserve capacity to permit proper operation of the required transmitter and receiver for at...

  5. 废电池浸出液对荆芥生理及挥发性成分含量的影响%Effects of waste batteries leaching solution stress on resistance physiological indices of volatile constituents from Schizonepeta tenuifolia

    Institute of Scientific and Technical Information of China (English)

    魏金凤; 王俊霞; 康文艺

    2011-01-01

    Objective:The effect of waste batteries leaching on the seedling growth and volatile constituents in leaves of Schi-zonepeta tenuifolia was assayed. Method; The different concentrations of waste batteries leaching on the seedling growth were discussed. Volatile compounds were analyzed by solid-phase micro-extraction (SPME) coupled with gas chromatography-mass speetrome-try (GC-MS). Result; The results indicated that 5. Tenuifolia showed resistance to heavy metal polluting, but the high rate of waste batteries leaching had the inhibiting effect to seedlings growth. The waste batteries leaching cause the major volatile constituents in leaves of S. tenuifolia was changed greatly under waste batteries leaching solution stress. Conclusion; Heavy metal leached by waste batteries had great effect on growth of S. Tenuifolia, reducing its value for food and medical purposes.%目的:研究废旧电池浸出液对荆芥幼苗生长及叶片挥发性成分的影响.方法:探讨不同浓度废旧电池浸出液对荆芥幼苗生长的影响,并用固相微萃取技术与气相质谱联用对叶片中挥发性成分进行分析.结果:荆芥幼苗对废电池浸出液具有一定的抗性,但高质量分数废电池浸出液对荆芥的生长有一定的抑制作用;不同浓度废电池浸出液对荆芥挥发性成分影响较大.结论:废旧电池在水中渗出的化学物质对荆芥产生很大影响,降低荆芥的食用和药用价值.

  6. An online model-based method for state of energy estimation of lithium-ion batteries using dual filters

    Science.gov (United States)

    Dong, Guangzhong; Chen, Zonghai; Wei, Jingwen; Zhang, Chenbin; Wang, Peng

    2016-01-01

    The state-of-energy of lithium-ion batteries is an important evaluation index for energy storage systems in electric vehicles and smart grids. To improve the battery state-of-energy estimation accuracy and reliability, an online model-based estimation approach is proposed against uncertain dynamic load currents and environment temperatures. Firstly, a three-dimensional response surface open-circuit-voltage model is built up to improve the battery state-of-energy estimation accuracy, taking various temperatures into account. Secondly, a total-available-energy-capacity model that involves temperatures and discharge rates is reconstructed to improve the accuracy of the battery model. An extended-Kalman-filter and particle-filter based dual filters algorithm is then developed to establish an online model-based estimator for the battery state-of-energy. The extended-Kalman-filter is employed to update parameters of the battery model using real-time battery current and voltage at each sampling interval, while the particle-filter is applied to estimate the battery state-of-energy. Finally, the proposed approach is verified by experiments conducted on a LiFePO4 lithium-ion battery under different operating currents and temperatures. Experimental results indicate that the battery model simulates battery dynamics robustly with high accuracy, and the estimates of the dual filters converge to the real state-of-energy within an error of ±4%.

  7. A Novel Application of Lithium Heteropoly Blue as Non-aqueous Electrolyte in Polyacenic Semiconductor-Li Secondary Batteries

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Lithium heteropoly blue(Li5PWⅥ10WⅤ2O40) was used as a non-aqueous electrolyte in the polyacenic semiconductor (PAS)-Li secondary battery instead of LiClO4. The properties of the PAS-Li secondary battery, especially the effect of Li5PWⅥ10WⅤ2O40 on the capacity, the cycle property and the self-discharging of the battery have been investigated. The results indicate that not only Li5PWⅥ10WⅤ2O40 can overcome the disadvantages of LiClO4, which is apt to explode when heated or rammed, but also the PAS-Li secondary battery assembled with the novel electrolyte has a larger capacity and smaller self-discharging than that assembled with LiClO4. Therefore, it is believed that lithium heteropoly blue is a better and novel electrolyte for the PAS secondary battery and exhibits significant and practical application.

  8. Thermal battery degradation mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Missert, Nancy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brunke, Lyle Brent [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Diffuse reflectance IR spectroscopy (DRIFTS) was used to investigate the effect of accelerated aging on LiSi based anodes in simulated MC3816 batteries. DRIFTS spectra showed that the oxygen, carbonate, hydroxide and sulfur content of the anodes changes with aging times and temperatures, but not in a monotonic fashion that could be correlated to phase evolution. Bands associated with sulfur species were only observed in anodes taken from batteries aged in wet environments, providing further evidence for a reaction pathway facilitated by H2S transport from the cathode, through the separator, to the anode. Loss of battery capacity with accelerated aging in wet environments was correlated to loss of FeS2 in the catholyte pellets, suggesting that the major contribution to battery performance degradation results from loss of active cathode material.

  9. In situ and operando atomic force microscopy of high-capacity nano-silicon based electrodes for lithium-ion batteries

    Science.gov (United States)

    Breitung, Ben; Baumann, Peter; Sommer, Heino; Janek, Jürgen; Brezesinski, Torsten

    2016-07-01

    Silicon is a promising next-generation anode material for high-energy-density lithium-ion batteries. While the alloying of nano- and micron size silicon with lithium is relatively well understood, the knowledge of mechanical degradation and structural rearrangements in practical silicon-based electrodes during operation is limited. Here, we demonstrate, for the first time, in situ and operando atomic force microscopy (AFM) of nano-silicon anodes containing polymer binder and carbon black additive. With the help of this technique, the surface topography is analyzed while electrochemical reactions are occurring. In particular, changes in particle size as well as electrode structure and height are visualized with high resolution. Furthermore, the formation and evolution of the solid-electrolyte interphase (SEI) can be followed and its thickness determined by phase imaging and nano-indentation, respectively. Major changes occur in the first lithiation cycle at potentials below 0.6 V with respect to Li/Li+ due to increased SEI formation - which is a dynamic process - and alloying reactions. Overall, these results provide insight into the function of silicon-based composite electrodes and further show that AFM is a powerful technique that can be applied to important battery materials, without restriction to thin film geometries.Silicon is a promising next-generation anode material for high-energy-density lithium-ion batteries. While the alloying of nano- and micron size silicon with lithium is relatively well understood, the knowledge of mechanical degradation and structural rearrangements in practical silicon-based electrodes during operation is limited. Here, we demonstrate, for the first time, in situ and operando atomic force microscopy (AFM) of nano-silicon anodes containing polymer binder and carbon black additive. With the help of this technique, the surface topography is analyzed while electrochemical reactions are occurring. In particular, changes in particle

  10. Battery thermal models for hybrid vehicle simulations

    Science.gov (United States)

    Pesaran, Ahmad A.

    This paper summarizes battery thermal modeling capabilities for: (1) an advanced vehicle simulator (ADVISOR); and (2) battery module and pack thermal design. The National Renewable Energy Laboratory's (NREL's) ADVISOR is developed in the Matlab/Simulink environment. There are several battery models in ADVISOR for various chemistry types. Each one of these models requires a thermal model to predict the temperature change that could affect battery performance parameters, such as resistance, capacity and state of charges. A lumped capacitance battery thermal model in the Matlab/Simulink environment was developed that included the ADVISOR battery performance models. For thermal evaluation and design of battery modules and packs, NREL has been using various computer aided engineering tools including commercial finite element analysis software. This paper will discuss the thermal ADVISOR battery model and its results, along with the results of finite element modeling that were presented at the workshop on "Development of Advanced Battery Engineering Models" in August 2001.

  11. Capacity Optimal Modeling of Hybrid Energy Storage Systems Considering Battery Life%计及电池使用寿命的混合储能系统容量优化模型

    Institute of Scientific and Technical Information of China (English)

    韩晓娟; 程成; 籍天明; 马会萌

    2013-01-01

    为光伏电站配置适当容量的储能系统,可有效提高光伏发电的电能质量和经济效益。以电池-超级电容器混合储能系统为基础,采用雨流计算法计算电池放电深度,根据等效循环寿命曲线建立电池的使用寿命量化模型;通过分析储能系统的成本结构,建立以储能系统年均最小成本为目标函数,同时考虑波动率、置信度等约束条件的容量优化配置模型,利用粒子群算法对模型进行寻优。仿真实例验证了所提方法的有效性,采用混合储能系统替代单类型电池储能系统可以大幅降低运行成本,提高光储系统的经济性。%Incorporating energy storage system properly into the photovoltaic plant can improve the power quality and economic benefits effectively. Taking battery-supercapacitor hybrid energy storage system as an example, the paper calculated the depth of battery using the rain-flow-counting method, and established battery life quantitative model according to the equivalent cycle life curve. By analyzing the cost structure of the energy storage system, the paper established capacity allocation model using the minimum annual cost as objective, fluctuation rate and confidence as constraints. Simulation calculation used the particle swarm algorithm, and the results show the validity of the method. The simulation results also show that hybrid energy storage system can greatly reduce the operating costs and improve the economy of PV-energy storage system compared with a single type of battery energy storage system.

  12. Portable Battery Charger Berbasis Sel Surya

    Directory of Open Access Journals (Sweden)

    Budhi Anto

    2014-04-01

    Full Text Available A type of solar battery charger is introduced in this paper. This equipment functions as a medium size rechargeable battery that is needed to move culinary merchants and coastal fishermen living in area which is not supplied by electrical networks. The equipment consists of solar module mounted onto portable mechanical construction, a 12-V 7.5-Ah lead acid battery and charge controller. Solar module charges the battery through charge controller and then the battery can be discharged to power on electric lamps for lightening culinary wagon or fisherman’s boat at night. Charge controller charges the battery with float charging which is implemented by maintaining 13.5 Volt between battery terminals and limiting the charging current to 1.5 Amperes. Charge controller circuit is based on adjustable linear voltage regulator LM338. The battery is of sealed lead acid type. This type of battery is maintenance free and more hygiene than other types of lead acid battery. The field experiment of charging the baterry of 50% residual capacity from 8 am to 4 pm under sunny weather shows that the solar module has charged the battery to its full capacity under battery safe charging conditions.Keywords: portable solar battery charger, float charging, LM338

  13. Carrying Capacity

    DEFF Research Database (Denmark)

    Schroll, Henning; Andersen, Jan; Kjærgård, Bente

    2012-01-01

    A spatial planning act was introduced inIndonesia 1992 and renewed in 2008. It emphasised the planning role of decentralised authorities. The spatial planning act covers both spatial and environmental issues. It defines the concept of carrying capacity and includes definitions of supportive...... carrying capacity (SCC) and assimilative carrying capacity (ACC). The act mandates that the latter two aspects must be taken into consideration in the local spatial plans. The present study aimed at developing a background for a national guideline for carrying capacity in Indonesian provinces and districts...... standard or governmental political objective exists. In most cases it was possible to select a set of indicators, including thresholds that are workable in a carrying capacity planning at the local administrative levels. Not all relevant sectors at the decentralized level were included. Indicators of SCC...

  14. The Modeling Method of High Capacity Lead-acid Storage Battery%大容量动力铅酸蓄电池建模方法

    Institute of Scientific and Technical Information of China (English)

    杨占录; 张国庆; 王宗亮

    2012-01-01

    This paper introduces the battery's modeling method based on electrochemical mechanism, electrochemical empirical formula, equivalent circuit, and artificial neural networks. It reviews other modeling methods used for the battery, and compares the merits and shortcomings of those model methods.%分别介绍了基于电化学机理、电化学经验公式、等效电路以及基于神经网络的蓄电池建模方法,并对当前正在使用的其他蓄电池建模方法进行了概述。对建模方法的优缺点进行了对比。

  15. Improved sodium-storage performance of stannous sulfide@reduced graphene oxide composite as high capacity anodes for sodium-ion batteries

    Science.gov (United States)

    Wu, Lin; Lu, Haiyan; Xiao, Lifen; Ai, Xinping; Yang, Hanxi; Cao, Yuliang

    2015-10-01

    Stannous sulfide@reduced graphene oxide (SnS@RGO) composite is successfully synthesized via a facile precipitation route. The structural and morphological characterizations reveal SnS@RGO composites are composed of SnS nanoparticles of the size 5-10 nm, which are uniformly anchored on the surface of RGO. The electrochemical measurements demonstrate the reversible capacity of the SnS@RGO composite - that includes contributions from the conversion reaction of SnS to Sn and NaxS and the alloying reaction of Sn to NaxSn. The SnS@RGO electrode exhibits a reversible capacity of 457 mAh g-1 at 20 mA g-1, superior cycling stability (94% capacity retention over 100 cycles at 100 mA g-1) and adequate rate performance. Compared to the neat SnS nanoparticles, the enhanced electrochemical performance of the SnS@RGO composite is primarily due to the incorporation of RGO as a highly conductive, flexible component as well as possessing a large available surface area, which provides desirable properties such as improved electronic contact between active materials, aggregation suppression of intermediate products, and alleviation of the volume change during sodiation and desodiation. Encouraging experimental results suggest that the SnS@RGO composite is a promising material to achieve a high-capacity and stable anode for NIBs.

  16. Thin-film rechargeable lithium batteries for implantable devices

    Energy Technology Data Exchange (ETDEWEB)

    Bates, J.b.; Dudney, N.J.

    1997-05-01

    Thin films of LiCoO{sub 2} have been synthesized in which the strongest x-ray reflection is either weak or missing, indicating a high degree of preferred orientation. Thin-film solid state batteries with these textured cathode films can deliver practical capacities at high current densities. For example, for one of the cells 70% of the maximum capacity between 4.2 V and 3 V ({approximately}0.2 mAh/cm{sup 2}) was delivered at a current of 2 mA/cm{sup 2}. When cycled at rates of 0.1 mA/cm{sup 2}, the capacity loss was 0.001 %/cycle or less. The reliability and performance of Li-LiCoO{sub 2} thin-film batteries make them attractive for application in implantable devices such as neural stimulators, pacemakers, and defibrillators.

  17. Thin-film Rechargeable Lithium Batteries for Implantable Devices

    Science.gov (United States)

    Bates, J. B.; Dudney, N. J.

    1997-05-01

    Thin films of LiCoO{sub 2} have been synthesized in which the strongest x ray reflection is either weak or missing, indicating a high degree of preferred orientation. Thin film solid state batteries with these textured cathode films can deliver practical capacities at high current densities. For example, for one of the cells 70% of the maximum capacity between 4.2 V and 3 V ({approximately}0.2 mAh/cm{sup 2}) was delivered at a current of 2 mA/cm{sup 2}. When cycled at rates of 0.1 mA/cm{sup 2}, the capacity loss was 0.001%/cycle or less. The reliability and performance of Li LiCoO{sub 2} thin film batteries make them attractive for application in implantable devices such as neural stimulators, pacemakers, and defibrillators.

  18. The Cycle Performance of a Hybrid Carbon Battery.

    Science.gov (United States)

    Ahn, Sang-Yong; Kim, Sang-Chai; Jung, Ho-Young

    2016-02-01

    The behavior of a hybrid carbon battery is studied by using the Hg/Hg2SO4 reference electrode. The performance is confirmed in the discharge mode and a short-term cycle test. The capacities of the cell were 76.1, 60.3, 40.5, and 31.7 mAh at discharge currents of 150, 300, 600, and 900 mA, respectively. In the short-term cycle test, the capacity of the cell, 52.3 mAh at the first cycle, continuously increased to 66.7 mAh upon the fifth cycle (cut-off voltage 0.5 V in the deep cycle mode), indicating high feasibility of the hybrid carbon battery as a large-capacity energy storage system.

  19. Nano-structured electrocatalysts for high performance lithium sulfur batteries

    Science.gov (United States)

    Mosavati, Negar

    Ni nanoparticles has been investigated as a carbon-free cathode material for dissolved polysulfide Li-S battery. A series of Ni nanoparticles with nominal particle size of 20, 40, and 100 nm have been used as electrocatalysts, and the effect of particle size on Li-S battery performance has been investigated. In addition, graphene has been chosen as a support to anchor the Ni nanoparticles, and the synergetic effect of carbon material and Ni nanoparticles on Li-S battery electrochemical performance has been studied. The results indicated there is a strong particle size effect. Ni/graphene electrode exhibits a capacity of 753 mAh g-1 sulfur after 40 cycles due to its high conductivity and electrocatalytic activity toward polysulfide reduction reaction. This capacity is significantly higher than similar studies. Based on the understanding of the electrocathalytic effect of Ni and capacity fading mechanism, transition metal nitrides has been investigated as a new class of cathode materials. Titanium nitride (TiN) nanoparticle was studied as a novel cathode material for Li/dissolved polysulfide batteries. In addition, X-ray photoelectron spectroscopy (XPS) analysis was used to obtain a deeper understanding of the mechanism underlying polysulfide conversion reactions with TiN cathode, and during charge and discharge processes. TiN exhibited a superior performance in a Li/dissolved polysulfide battery configuration. Knowing the superior performance of TiN, the study was expanded to different transition metal nitrides to investigate the role of surface composition and morphology in enhancing the electrochemical performance of Li-S batteries. WN, Mo2N, and VN were synthesized and the electrochemical performance, surface composition, and oxidation/reduction mechanism of these cathodes electrodes were studied for lithium sulfur batteries. Understanding the fading mechanisms of dissolved polysulfide system for metal nitride cathodes, It was tried to enhance Li-S battery

  20. High capacity and high density functional conductive polymer and SiO anode for high-energy lithium-ion batteries.

    Science.gov (United States)

    Zhao, Hui; Yuca, Neslihan; Zheng, Ziyan; Fu, Yanbao; Battaglia, Vincent S; Abdelbast, Guerfi; Zaghib, Karim; Liu, Gao

    2015-01-14

    High capacity and high density functional conductive polymer binder/SiO electrodes are fabricated and calendered to various porosities. The effect of calendering is investigated in the reduction of thickness and porosity, as well as the increase of density. SiO particle size remains unchanged after calendering. When compressed to an appropriate density, an improved cycling performance and increased energy density are shown compared to the uncalendered electrode and overcalendered electrode. The calendered electrode has a high-density of ∼1.2 g/cm(3). A high loading electrode with an areal capacity of ∼3.5 mAh/cm(2) at a C/10 rate is achieved using functional conductive polymer binder and simple and effective calendering method.

  1. The Extravehicular Maneuvering Unit's New Long Life Battery and Lithium Ion Battery Charger

    Science.gov (United States)

    Russell, Samuel P.; Elder, Mark A.; Williams, Anthony G.; Dembeck, Jacob

    2010-01-01

    The Long Life (Lithium Ion) Battery is designed to replace the current Extravehicular Mobility Unit Silver/Zinc Increased Capacity Battery, which is used to provide power to the Primary Life Support Subsystem during Extravehicular Activities. The Charger is designed to charge, discharge, and condition the battery either in a charger-strapped configuration or in a suit-mounted configuration. This paper will provide an overview of the capabilities and systems engineering development approach for both the battery and the charger

  2. Rechargeable Mg battery cathode TiS3 with d-p orbital hybridized electronic structures

    Science.gov (United States)

    Taniguchi, Kouji; Gu, Yunpeng; Katsura, Yukari; Yoshino, Takafumi; Takagi, Hidenori

    2016-01-01

    Rechargeable performance is realized in Mg batteries using a TiS3 cathode without the nanometer-scale downsizing of electrode particles. The specific capacity is about 80 mAh/g for the first 50 cycles at room temperature. This observed specific capacity is comparable to that of the prototype cathode for Mg batteries. First-principles calculation indicates that TiS3 is a semiconductor with d-p orbital hybridized electronic structures around the Fermi level. The reversible electrode performance is likely assisted by the delocalized electronic distribution over metal-ligand units through d-p orbital hybridization.

  3. Lithium batteries, anodes, and methods of anode fabrication

    KAUST Repository

    Li, Lain-Jong

    2016-12-29

    Prelithiation of a battery anode carried out using controlled lithium metal vapor deposition. Lithium metal can be avoided in the final battery. This prelithiated electrode is used as potential anode for Li- ion or high energy Li-S battery. The prelithiation of lithium metal onto or into the anode reduces hazardous risk, is cost effective, and improves the overall capacity. The battery containing such an anode exhibits remarkably high specific capacity and a long cycle life with excellent reversibility.

  4. Economic Feasibility of V2G Frequency Regulation in Consideration of Battery Wear

    Directory of Open Access Journals (Sweden)

    Sekyung Han

    2013-02-01

    Full Text Available An economic feasibility study of vehicle-to-grid (V2G frequency regulation is performed in consideration of battery wear. Usually, a transaction for frequency regulation is made in terms of power capacity while the battery-wear proceeds in proportion to the absolute amount of energy transferred. In order to relate the two quantities, we first estimate the amount of transferred energy in terms of contracted power capacity, and hence regulation income, by analyzing actual regulation signals and transactions. On the other hand, the amount of transferrable energy during the life cycle of a battery is estimated analyzing some pervasive specifications for electric vehicle (EV batteries. The expected V2G income is then estimated and compared with battery prices to judge the economic feasibility of V2G regulation. In the latter part of the paper, the assessment result is validated with actual cycle life data of an EV battery cell. As a result, it is concluded that the estimated profit exceeds current market price of EV batteries, indicating that V2G regulation is an economically feasible service.

  5. Flexible lithium-ion planer thin-film battery

    KAUST Repository

    Kutbee, Arwa T.

    2016-02-03

    Commercialization of wearable electronics requires miniaturized, flexible power sources. Lithium ion battery is a strong candidate as the next generation high performance flexible battery. The development of flexible materials for battery electrodes suffers from the limited material choices. In this work, we present a flexible inorganic lithium-ion battery with no restrictions on the materials used. The battery showed an enhanced normalized capacity of 146 ??Ah/cm2.

  6. Mesoporous silica/ionic liquid quasi-solid-state electrolytes and their application in lithium metal batteries

    Science.gov (United States)

    Li, Xiaowei; Zhang, Zhengxi; Yin, Kun; Yang, Li; Tachibana, Kazuhiro; Hirano, Shin-ichi

    2015-03-01

    In this work, the ordered mesoporous silica, SBA-15, is chosen as the matrix for the first time to prepare quasi-solid-state electrolytes (QSSEs) with an ionic liquid, LiTFSI salt and PVdF-HFP. The as-obtained QSSEs are evaluated by electrochemical methods. Lithium metal batteries containing these QSSEs exhibit high discharge capacity and good cycle performance at room temperature, indicating successful battery operation.

  7. Nanowire Electrodes for Advanced Lithium Batteries

    Directory of Open Access Journals (Sweden)

    Lei eHuang

    2014-10-01

    Full Text Available Since the commercialization of lithium ion batteries (LIBs in the past two decades, rechargeable LIBs have become widespread power sources for portable devices used in daily life. However, current demands require higher energy density and power density of batteries. The electrochemical energy storage performance of LIBs could be improved by applying nanomaterial electrodes, but their fast capacity fading is still one of the key limitations and the mechanism needs to be clearly understood. Single nanowire electrode devices are considered as a versatile platform for in situ probing the direct relationship between electrical transport, structure change, and other properties of the single nanowire electrode along with the charge/discharge process. The results indicate the conductivity decrease of the nanowire electrode and the structural disorder/destruction during electrochemical reactions which limit the cycling performance of LIBs. Based on the in situ observations, some feasible structure architecture strategies, including prelithiation, coaxial structure, nanowire arrays and hierarchical structure architecture, are proposed and utilized to restrain the conductivity decrease and structural disorder/destruction. Further, the applications of nanowire electrodes in some beyond Li-ion batteries, such as Li-S and Li-air battery, are also described.

  8. Disease Activity in Psoriatic Arthritis: Comparison of the Discriminative Capacity and Construct Validity of Six Composite Indices in a Real World

    Directory of Open Access Journals (Sweden)

    Fausto Salaffi

    2014-01-01

    Full Text Available Objective. To compare, “in a real world,” the performance of the most common composite activity indices in a cohort of PsA patients. Methods. A total of 171 PsA patients were involved. The following variables were evaluated: peripheral joint assessment, patient reported of pain, physician and patient assessments of disease activity, patient general health status, dactylitis digit count, Leeds Enthesitis Index, Health Assessment Questionnaire (HAQ, physical and mental component summary score of the Medical Outcome Survey (SF-36, Psoriasis Area and Severity Index (PASI, Dermatology Life Quality Index, C-reactive protein (CRP, and erythrocyte sedimentation rate (ESR. To measure the disease activity, the Disease Activity Score (DAS28-ESR and DAS28-CRP, Simple Disease Activity Index (SDAI, Composite Psoriatic Disease Activity Index (CPDAI, disease activity in psoriatic arthritis (DAPSA, and Psoriatic Arthritis Disease Activity Score (PASDAS have been calculated. The criteria for minimal disease activity (MDA and remission were applied as external criterion. Results. The ROC were similar in all the composite measures. Only the CPDAI showed less discriminative ability. There was a high degree of correlation between all the indices (P<0.0001. The highest correlations were between DAPSA and SDAI (rho = 0.996 and between DAPSA and DAS28-CRP (rho = 0.957. CPDAI, DAPSA, and PASDAS had the most stringent definitions of remission and MDA category. DAS28-ESR and DAS28-CRP had the highest proportions in remission and MDA. Conclusions. Although a good concurrent validity and discriminant capacity of six disease activity indices were observed, the proportions of patients classified in the disease activity levels differed. In particular, the rate of patients in remission was clearly different among the respective indices.

  9. Prognostics of Lithium-Ion Batteries Based on Wavelet Denoising and DE-RVM.

    Science.gov (United States)

    Zhang, Chaolong; He, Yigang; Yuan, Lifeng; Xiang, Sheng; Wang, Jinping

    2015-01-01

    Lithium-ion batteries are widely used in many electronic systems. Therefore, it is significantly important to estimate the lithium-ion battery's remaining useful life (RUL), yet very difficult. One important reason is that the measured battery capacity data are often subject to the different levels of noise pollution. In this paper, a novel battery capacity prognostics approach is presented to estimate the RUL of lithium-ion batteries. Wavelet denoising is performed with different thresholds in order to weaken the strong noise and remove the weak noise. Relevance vector machine (RVM) improved by differential evolution (DE) algorithm is utilized to estimate the battery RUL based on the denoised data. An experiment including battery 5 capacity prognostics case and battery 18 capacity prognostics case is conducted and validated that the proposed approach can predict the trend of battery capacity trajectory closely and estimate the battery RUL accurately.

  10. the comparative analysis of indicators of quality of life and eyesight capacity among the patients after different types of eye mechanical injury

    Directory of Open Access Journals (Sweden)

    S. A. Kochergin

    2012-01-01

    Full Text Available Purpose: the comparative evaluation of indicators of quality of life and eyesight capacity among groups of patients with different types of eye mechanical trauma for studying of the possibility of the authentic qualitative and quantitative analysis.Methods: 120 patients (101 men and 19 women with a mechanical injury of an eye are included in research. the mean age was 42.3±17.4 years, from 18 to 74 years. Patients are divided according to the type of trauma: with a contusion — 67 patients (group A, with penetrating wounds — 53 patients (group B.Results: the study shows the expediency of early (at the stage of hospitalization determination by the patient his own condition, in order to trace dynamics in indicators of quality of life, timely reacting to them, making changes in treatment tactics in the post- traumatic period.Conclusion: Profound attention from experts for definition of strategy of recovering is demanded by a pain syndrome and a psy- chological stress of patients. the individual approach provides competent application of questionnaires, as tools of the assessment of quality of life.

  11. Assessing upper extremity capacity as a potential indicator of needs related to household activities for rehabilitation services in people with myotonic dystrophy type 1.

    Science.gov (United States)

    Raymond, Kateri; Auger, Louis-Pierre; Cormier, Marie-France; Vachon, Christine; St-Onge, Sabrina; Mathieu, Jean; Noreau, Luc; Gagnon, Cynthia

    2015-06-01

    This study aimed to assess upper extremity capacity as a potential indicator of needs related to household activities for rehabilitation services in people with myotonic dystrophy type 1 (DM1). A cross-sectional study was set in an outpatient neuromuscular clinic where 200 adults with a confirmed diagnosis of DM1 (121 women; mean age: 47 y) were selected from the registry of a neuromuscular clinic to participate. Housing-related activities were assessed using the "housing" section of the Assessment of Life Habits Questionnaire (LIFE-H). The upper extremity assessment included grip strength (Jamar dynamometer), lateral pinch strength (pinch gauge), gross dexterity (Box and Block Test) and fine dexterity (Purdue Pegboard Test). Correlations with the LIFE-H item "housing" were stronger for grip and lateral strength (r = 0.62; 0.61). When difficulties were present in "housing", the cut-off score associated with lateral pinch strength was 4.8 kg (sensitivity: 75.6%; specificity: 79.2%). Grip strength presented cut-off scores that clinically differed by gender. In conclusion, potential indicator of needs related to household activities for rehabilitation services with valid assessment tools were developed for people with DM1 who experience difficulties in housing-related activities. These criteria will assist health professionals in their attempt to refer DM1 patients to rehabilitation services at the appropriate time.

  12. A VRLA battery simulation model

    Energy Technology Data Exchange (ETDEWEB)

    Pascoe, P.E.; Anbuky, A.H. [Invensys Energy Systems NZ Limited, Christchurch (New Zealand)

    2004-05-01

    A valve regulated lead acid (VRLA) battery simulation model is an invaluable tool for the standby power system engineer. The obvious use for such a model is to allow the assessment of battery performance. This may involve determining the influence of cells suffering from state of health (SOH) degradation on the performance of the entire string, or the running of test scenarios to ascertain the most suitable battery size for the application. In addition, it enables the engineer to assess the performance of the overall power system. This includes, for example, running test scenarios to determine the benefits of various load shedding schemes. It also allows the assessment of other power system components, either for determining their requirements and/or vulnerabilities. Finally, a VRLA battery simulation model is vital as a stand alone tool for educational purposes. Despite the fundamentals of the VRLA battery having been established for over 100 years, its operating behaviour is often poorly understood. An accurate simulation model enables the engineer to gain a better understanding of VRLA battery behaviour. A system level multipurpose VRLA battery simulation model is presented. It allows an arbitrary battery (capacity, SOH, number of cells and number of strings) to be simulated under arbitrary operating conditions (discharge rate, ambient temperature, end voltage, charge rate and initial state of charge). The model accurately reflects the VRLA battery discharge and recharge behaviour. This includes the complex start of discharge region known as the coup de fouet. (author)

  13. Design of Second-Order Delta-Sigma Modulator for Measurement of Battery Capacity%用于电池电量测量的 Delta-Sigma调制器设计

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    In order to make the analog - digital converter can be directly used for various battery capacity measurement system without voltage conversion chip ,the modulator in the Delta -Sigma ADC is designed in second-order single-loop structure with 0 .35μm CMOS technology ,and its measurement scope of application range 1 .4 V to 4 .2 V with 12bits resolution at the 5V power supply .The ADC with this modulator has the advantages of wide measurement scope of range to batteries and low cost .%  为使模拟-数字信号转换芯片能直接用于各种电池电量测量的系统中而无需另加电压转换芯片,在应用于Delta-Sigma结构的ADC(模数转换器)的调制器设计中,使用0.35μm CMOS的集成电路工艺,采用二阶单环的电路结构,在5V供电的工作电压下可达到的电压测量范围为1.4V至4.2V ,测量精度为12位.因而采用此Del-ta-Sigma调制器的ADC可直接用于多种电池种类的电量测量,且具有制作成本低廉的特点.

  14. High power TiO2 and high capacity Sn-doped TiO2 nanomaterial anodes for lithium-ion batteries

    Science.gov (United States)

    Lübke, Mechthild; Johnson, Ian; Makwana, Neel M.; Brett, Dan; Shearing, Paul; Liu, Zhaolin; Darr, Jawwad A.

    2015-10-01

    A range of phase-pure anatase TiO2 (∼5 nm) and Sn-doped TiO2 nanoparticles with the formula Ti1-xSnxO2 (where x = 0, 0.06, 0.11 and 0.15) were synthesized using a continuous hydrothermal flow synthesis (CHFS) reactor. Charge/discharge cycling tests were carried out in two different potential ranges of 3 to 1 V and also a wider range of 3 to 0.05 V vs Li/Li+. In the narrower potential range, the undoped TiO2 nanoparticles display superior electrochemical performance to all the Sn-doped titania crystallites. In the wider potential range, the Sn-doped samples perform better than undoped TiO2. The sample with composition Ti0.85Sn0.15O2, shows a capacity of ca. 350 mAh g-1 at an applied constant current of 100 mA g-1 and a capacity of 192.3 mAh g-1 at a current rate of 1500 mA g-1. After 500 charge/discharge cycles (at a high constant current rate of 382 mA g-1), the same nanomaterial anode retains a relatively high specific capacity of 240 mAh g-1. The performance of these nanomaterials is notable, particularly as they are processed into electrodes, directly from the CHFS process (after drying) without any post-synthesis heat-treatment, and they are made without any conductive surface coating.

  15. Primary battery design and safety guidelines handbook

    Science.gov (United States)

    Bragg, Bobby J.; Casey, John E.; Trout, J. Barry

    1994-12-01

    This handbook provides engineers and safety personnel with guidelines for the safe design or selection and use of primary batteries in spaceflight programs. Types of primary batteries described are silver oxide zinc alkaline, carbon-zinc, zinc-air alkaline, manganese dioxide-zionc alkaline, mercuric oxide-zinc alkaline, and lithium anode cells. Along with typical applications, the discussions of the individual battery types include electrochemistry, construction, capacities and configurations, and appropriate safety measures. A chapter on general battery safety covers hazard sources and controls applicable to all battery types. Guidelines are given for qualification and acceptance testing that should precede space applications. Permissible failure levels for NASA applications are discussed.

  16. Li-S电池硫正极性能衰减机理分析及研究现状概述%Analysis of the Sulfur Cathode Capacity Fading Mechanism and Review of the Latest Development for Li-S Battery

    Institute of Scientific and Technical Information of China (English)

    刁岩; 谢凯; 洪晓斌; 熊仕昭

    2013-01-01

    be electronic insulators. So the cathode structure must contain electronic conductors (carbon or metal powder) which will decrease the energy density. Secondly, researchers impute the capacity fading into the residual Li2S2 and Li2S in sulfur cathode even at 100% depth of charge. The formation of Li2S2 and Li2S increasing with cycling results in active material loss. And the deposition of irreversible Li2S or Li2S2 at cracked surfaces of carbon particles causes cathode structural failure. Thirdly, high ordered lithium polysulfide (Li2Sn, 3≤n≤8) is soluble in electrolyte, but low ordered lithium polysulfide (Li2S2 and Li2S) is insoluble. Thus chemical precipitation/dissolution reactions occur during the electrochemical process resulting in active material transition between liquid phase and solid phase. But it is difficult for the high ordered lithium polysulfide to transfer completely from liquid phase to solid phase at the end of cycles, so that will lead to the active material loss. Fourthly, another serious problem is the irreversible oxidation of cathode active material. The formation of LixSOy species increasing with cycling indicates an important capacity fading mechanism of Li-S battery. In this paper, the main research directions and the latest development to enhance the performance of sulfur cathode are reviewed from the aspects of carbon conductive structure, polymer coatings and metal oxides additives, and also the problems in each research directions are analyzed. Finally, the further development of Li-S battery is discussed.

  17. Oxygen vacancies lead to loss of domain order, particle fracture, and rapid capacity fade in lithium manganospinel (LiMn₂O₄) batteries.

    Science.gov (United States)

    Hao, Xiaoguang; Lin, Xianke; Lu, Wei; Bartlett, Bart M

    2014-07-23

    Spinel-structured lithium manganese oxide (LiMn2O4) has attracted much attention because of its high energy density, low cost, and environmental impact. In this article, structural analysis methods such as powder neutron diffraction (PND), X-ray diffraction (XRD), and high-resolution transmission and scanning electron microscopies (TEM & SEM) reveal the capacity fading mechanism of LiMn2O4 as it relates to the mechanical degradation of the material. Micro-fractures form after the first charge (to 4.45 V vs. Li(+/0)) of a commercial lithium manganese oxide phase, best represented by the formula LiMn2O3.88. Diffraction methods show that the grain size decreases and multiple phases form after 850 electrochemical cycles at 0.2 C current. The microfractures are directly observed through microscopy studies as particle cracks propagate along the (1 1 1) planes, with clear lattice twisting observed along this direction. Long-term galvanostatic cycling results in increased charge-transfer resistance and capacity loss. Upon preparing samples with controlled oxygen contents, LiMn2O4.03 and LiMn2O3.87, the mechanical failure of the lithium manganese oxide can be correlated to the oxygen vacancies in the materials, providing guidance for better synthesis methods.

  18. A novel method to determine lithium battery state of charge

    Energy Technology Data Exchange (ETDEWEB)

    Milewits, M. [SPT, Rosharon, TX (United States)

    1997-12-31

    Methods for determining the remaining life of a special class of high performance batteries used in the down-hole oil service markets were discussed. Lithium thionyl chloride (LTC) batteries meet the stringent conditions of having high volumetric energy density, of operating in a wide temperature range and in confining environments. The remaining discharge capacity of an LTC battery was determined by altering the anode electrode construction to give an indication of depth of discharge upon application of a defined load at ambient temperatures. This approach makes use of cells with specially modified anode structures and a test method for these cells prior to intended re-use. The test can be performed using an inexpensive DC circuit. 3 refs., 1 tab., 7 figs.

  19. Multishelled NiO Hollow Spheres Decorated by Graphene Nanosheets as Anodes for Lithium-Ion Batteries with Improved Reversible Capacity and Cycling Stability

    Directory of Open Access Journals (Sweden)

    Lihua Chu

    2016-01-01

    Full Text Available Graphene-based nanocomposites attract many attentions because of holding promise for many applications. In this work, multishelled NiO hollow spheres decorated by graphene nanosheets nanocomposite are successfully fabricated. The multishelled NiO microspheres are uniformly distributed on the surface of graphene, which is helpful for preventing aggregation of as-reduced graphene sheets. Furthermore, the NiO/graphene nanocomposite shows much higher electrochemical performance with a reversible capacity of 261.5 mAh g−1 at a current density of 200 mA g−1 after 100 cycles tripled compared with that of pristine multishelled NiO hollow spheres, implying the potential application in modern science and technology.

  20. A low cost, high energy density and long cycle life potassium-sulfur battery for grid-scale energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiaochuan; Bowden, Mark E.; Sprenkle, Vincent L.; Liu, Jun

    2015-08-15

    Alkali metal-sulfur batteries are attractive for energy storage applications because of their high energy density. Among the batteries, lithium-sulfur batteries typically use liquid in the battery electrolyte, which causes problems in both performance and safety. Sodium-sulfur batteries can use a solid electrolyte such as beta alumina but this requires a high operating temperature. Here we report a novel potassium-sulfur battery with K+-conducting beta-alumina as the electrolyte. Our studies indicate that liquid potassium exhibits much better wettability on the surface of beta-alumina compared to liquid sodium at lower temperatures. Based on this observation, we develop a potassium-sulfur battery that can operate at as low as 150°C with excellent performance. In particular, the battery shows excellent cycle life with negligible capacity fade in 1000 cycles because of the dense ceramic membrane. This study demonstrates a new battery with a high energy density, long cycle life, low cost and high safety, which is ideal for grid-scale energy storage.

  1. High-intensity ultrasonication as a way to prepare graphene/amorphous iron oxyhydroxide hybrid electrode with high capacity in lithium battery.

    Science.gov (United States)

    González, José R; Menéndez, Rosa; Alcántara, Ricardo; Nacimiento, Francisco; Tirado, José L; Zhecheva, Ekaterina; Stoyanova, Radostina

    2015-05-01

    The preparation of graphene/iron oxyhydroxide hybrid electrode material with very homogeneous distribution and close contact of graphene and amorphous iron oxyhydroxide nanoparticles has been achieved by using high-intensity ultrasonication. Due to the negative charge of the graphene surface, iron ions are attracted toward the surface of dispersed graphene, according to the zeta potential measurements. The anchoring of the FeO(OH) particles to the graphene layers has been revealed by using mainly TEM, XPS and EPR. TEM observations show that the size of the iron oxide particles is about 4 nm. The ultrasonication treatment is the key parameter to achieve small particle size in these graphene/iron oxyhydroxide hybrid materials. The electrochemical behavior of composite graphene/amorphous iron oxyhydroxide prepared by using high-intensity ultrasonication is outstanding in terms of gravimetric capacity and cycling stability, particularly when metallic foam is used as both the substrate and current collector. The XRD-amorphous character of iron oxyhydroxide in the hybrid electrode material and the small particle size contribute to achieve the improved electrochemical performance.

  2. MoS2 Nanosheets Hosted in Polydopamine-Derived Mesoporous Carbon Nanofibers as Lithium-Ion Battery Anodes: Enhanced MoS2 Capacity Utilization and Underlying Mechanism.

    Science.gov (United States)

    Kong, Junhua; Zhao, Chenyang; Wei, Yuefan; Lu, Xuehong

    2015-11-01

    In this work, solid, hollow, and porous carbon nanofibers (SNFs, HNFs, and PNFs) were used as hosts to grow MoS2 nanosheets hydrothermally. The results show that the nanosheets on the surface of SNFs and HNFs are comprised of a few grains stacked together, giving direct carbon-MoS2 contact for the first grain and indirect contact for the rest. In contrast, the nanosheets inside of PNFs are of single-grain size and are distributed evenly in the mesopores of PNFs, providing efficient MoS2-carbon contact. Furthermore, the nanosheets grown on the polydopamine-derived carbon surface of HNFs and PNFs have larger interlayer spacing than those grown on polyacrylonitrile-derived carbon surface. As a result, the MoS2 nanosheets in PNFs possess the lowest charge-transfer resistance, the most accessible active sites for lithiation/delithiation, and can effectively buffer the volume variation of MoS2, leading to its best electrochemical performance as a lithium-ion battery anode among the three. The normalized reversible capacity of the MoS2 nanosheets in PNFs is about 1210 mAh g(-1) at 100 mA g(-1), showing the effective utilization of the electrochemical activity of MoS2.

  3. Research Progress of High Capacity Si Based Anode Material for Li-Ion Battery%锂离子电池用高容量合金类硅基负极材料研究进展

    Institute of Scientific and Technical Information of China (English)

    沈龙; 董爱想; 乔永民; 吴敏昌

    2012-01-01

      锡、硅负极材料由于具有高的比容量等优点,成为提高锂离子电池能量密度的首选负极材料。首先介绍了目前产业界开发锡、硅负极材料的进展,并从商业化的角度比较了这两类材料在开发工艺及实际使用电性能方面的区别。进一步从基础研发角度重点阐述了不同结构的硅基材料(单质硅、硅氧化物、硅碳复合物及硅合金)的电性能改性研究进展,指出了具有工业化前景的工艺方法。%  Tin and Silicon-based compounds are the research focuses of high capacity anode material for lithium ion batteries. The research progress of Si&Sn materials is introduced, and their process development from commercial perspective is also compared. The electrochemical behaviors modification progresses of Si materials, which are crystal silicon、silicon oxygen compound, Si/C composite and silicon alloy, have been reported. The process route which is fit for industrialization has been provided.

  4. A Cable-Shaped Lithium Sulfur Battery.

    Science.gov (United States)

    Fang, Xin; Weng, Wei; Ren, Jing; Peng, Huisheng

    2016-01-20

    A carbon nanostructured hybrid fiber is developed by integrating mesoporous carbon and graphene oxide into aligned carbon nanotubes. This hybrid fiber is used as a 1D cathode to fabricate a new cable-shaped lithium-sulfur battery. The fiber cathode exhibits a decent specific capacity and lifespan, which makes the cable-shaped lithium-sulfur battery rank far ahead of other fiber-shaped batteries.

  5. Towards a fully printable battery : robocast deposition of separators.

    Energy Technology Data Exchange (ETDEWEB)

    Atanassov, Plamen Borissov (University of New Mexico); Fenton, Kyle Ross (University of New Mexico); Apblett, Christopher Alan

    2010-04-01

    to keep the transport rates high within the cell during charge and discharge. In order to evaluate the effect of each layer being printed using the robocasting technique, coin cells using printed separator materials were assembled and cycled vs. Li/Li{sup +}. This allows for the standardization of a test procedure in order to evaluate each layer of a printed cell one layer at a time. A typical charge/discharge curve can be seen in Figure 2 using a printed LiFePO{sub 4} cathode and a printed separator with a commercial Celgard separator. This experiment was run to evaluate the loss in capacity and slowdown of transport within the cell due to the addition of the printed separator. This cell was cycled multiple times and showed a capacity of 75 mAh/g. The ability for this cell to cycle with good capacity indicates that a fully printable separator material is viable for use in a full lithium cell due to the retention of capacity. Most of the fully printed cathode and separator cells exhibit working capacities between 65 and 95 mAh/g up to this point. This capacity should increase as the efficiency of the printed separator increases. The ability to deposit each layer within the cell allows for intimate contact of each layer and ensures for a reduction of interfacial impedance of each layer within the cell. The overall effect of printing multiple layers within the cell will be an overall increase in the ionic conductivity during charge and discharge cycles. Several different polymer membranes have been investigated for use as a printed separator. The disadvantage of using polymer separators or solid electrolyte batteries is that they have relatively low conductivities at room temperature (10{sup -6} - 10{sup -8} S cm{sup -1}). This is orders of magnitude lower than the typically accepted 10{sup -3} S cm{sup -1} needed for proper ionic transport during battery discharge Because of their low conductivity, typical polymer separators such as polyethylene oxide (PEO) have a

  6. Electrochemical performance of fulvic acid-based electrospun hard carbon nanofibers as promising anodes for sodium-ion batteries

    Science.gov (United States)

    Zhao, Pin-Yi; Zhang, Jie; Li, Qi; Wang, Cheng-Yang

    2016-12-01

    The electrochemical performance of fulvic acid-based electrospun hard carbon nanofibers (PF-CNFs) as anodes for sodium-ion batteries is reported. PF-CNFs were prepared, stabilization in air at 280 °C and then carbonized in N2 at 800, 1000, 1300 or 1500 °C. The PF-CNFs prepared at 1300 °C had abundant oxygen functional groups, large interlayer spaces and stable morphologies and when used as anodes in sodium-ion batteries, a reversible sodium intercalation capacity of 248 mAh g-1 was obtained with capacity retention ratio of 91% after 100 cycles at a current density of 100 mA g-1. This large capacity combined with the superior cycling performance indicates that fulvic acid-based carbon nanofibers are promising electrode materials for use in rechargeable sodium-ion batteries.

  7. Molten Salt Electrolytically Produced Carbon/Tin Nanomaterial as the Anode in a Lithium Ion Battery

    Science.gov (United States)

    Das Gupta, Rajshekar; Schwandt, Carsten; Fray, Derek J.

    2017-03-01

    A carbon/tin nanomaterial, consisting of predominantly Sn-filled carbon nanotubes and nanoparticles, is prepared by molten salt electrochemistry, using electrodes of graphite and an electrolyte of LiCl salt containing a small admixture of SnCl2. The C/Sn hybrid material generated is incorporated into the active anode material of a lithium ion battery and tested with regard to storage capacity and cycling behavior. The results demonstrate that the C/Sn material has favorable properties, in terms of energy density and in particular long-term stability, that exceed those of the individual components alone. The initial irreversible capacity of the material is somewhat larger than that of conventional battery graphite which is due to its unique nanostructure. Overall the results would indicate the suitability of this material for use in the anodes of lithium ion batteries with high rate capability.

  8. Electrochemical Performance and EIS Analysis of Commercial Lithium-Ion Battery

    Institute of Scientific and Technical Information of China (English)

    LI Li; CHEN Ren-jie; WU Feng; CHEN Shi

    2008-01-01

    Degradation behavior is the main technical problem in the field of commercial application of lithium-ion batteries. According to the characteristics of voltage, discharge capacity and inner resistance during the charge/discharge process of commercial lithium-ion batteries of mobile telephone, degradation analysis and related mechanisms are put forward and discussed in the paper. The impedance spectra of prismatic commercial lithium-ion batteries are measured at various state of charge after different charge/discharge cycles. The measured impedance spectra are discussed with a proposed equivalent circuit. Results indicated that the structure change of electrode materials or swell and shrink of crystal lattice, decompose of electrolyte, dissolution of active materials and solid electrolyte interphase film formation are the main reasons leading to the capacity degradation.

  9. Molten Salt Electrolytically Produced Carbon/Tin Nanomaterial as the Anode in a Lithium Ion Battery

    Science.gov (United States)

    Das Gupta, Rajshekar; Schwandt, Carsten; Fray, Derek J.

    2016-12-01

    A carbon/tin nanomaterial, consisting of predominantly Sn-filled carbon nanotubes and nanoparticles, is prepared by molten salt electrochemistry, using electrodes of graphite and an electrolyte of LiCl salt containing a small admixture of SnCl2. The C/Sn hybrid material generated is incorporated into the active anode material of a lithium ion battery and tested with regard to storage capacity and cycling behavior. The results demonstrate that the C/Sn material has favorable properties, in terms of energy density and in particular long-term stability, that exceed those of the individual components alone. The initial irreversible capacity of the material is somewhat larger than that of conventional battery graphite which is due to its unique nanostructure. Overall the results would indicate the suitability of this material for use in the anodes of lithium ion batteries with high rate capability.

  10. Behaviour and reliability of lead-acid batteries in stand-alone photovoltaic systems; Comportamiento y durabilidad de baterias de plomo-acido en sistemas fotovoltaicos autonomos

    Energy Technology Data Exchange (ETDEWEB)

    Vela Barrionuevo, N.

    2007-07-01

    both characteristic voltages as function of current rate and temperature. From the regression analysis, temperature coefficients have been obtained. To conclude the characterisation works, an study of charge voltage evolution and overall charge discharge efficiency at different operating conditions (current rate and temperature) combined with different initial test conditions and variations of state of- charge has been performed. It has been observed that battery voltage, in many cases, could not be indicative of its actual state of charge, instead of this a strong dependence on the voltage evolution on initial battery condition has been obtained. With respect to battery reliability, an analysis of failures and degradation mechanisms of lead-acid batteries under specific PV operation condition is presented. From this analysis we can conclude that the main causes of degradation of lead-acid batteries in PV systems are due to extended periods working at overcharge or over discharge conditions and typical cycling condition. Because of this, different accelerated battery tests have been developed to reproduce these degradation mechanisms. The objective of these procedures is to considerably reduce the tests duration without causing any alteration to the physical meaning of the actual degradation mechanism. Results of applying these accelerated degradation tests to two different batteries are presented. Finally, in basis of the obtained results, a general qualification test sequence for lead-acid batteries in PV stand-alone systems has been proposed. The proposed sequence includes individual specific test procedures for: technical specifications included in the documentation supplied with the battery, visual inspection, characterisation (full charge, capacity and efficiency) and reliability (overcharge, over discharge and cycling). (Author)

  11. Electric batteries. Lithium batteries; Piles electrique. Piles au lithium

    Energy Technology Data Exchange (ETDEWEB)

    Sarrazin, Ch. [Delegation Generale pour l' Armement, DGA/DRET, 75 - Paris (France)

    2002-05-01

    Lithium has the most negative potential and the highest mass capacity of all solid anode materials. It is the metal that allows to reach the highest mass energies in batteries when associated to a high potential cathode. The search for high performance cathodes has led to many different types of lithium batteries (transition metal oxides or sulfides, halogenides, oxi-halogenides, carbon, organic compounds etc..). These batteries can have a solid cathode (Li/CuO, Li/MnO{sub 2}, Li/CF{sub x}, etc..), or a liquid cathode (Li/SOCl{sub 2}, Li/SO{sub 2}, etc..) and in some cases they can have also a solid electrolyte, but not all types of lithium battery led to important industrial fabrication. The increasing use of lithium batteries is linked with the development of portable equipments for which, the compactness of the energy source is a key point. This article examines only the lithium batteries that have been the object of a significant industrial fabrication: lithium-sulfur dioxide, lithium-thionyl chloride, lithium-manganese dioxide, lithium-copper oxide, lithium-carbon fluoride, lithium-iron disulfide, other types of lithium batteries. (J.S.)

  12. Comparing the Net Cost of CSP-TES to PV Deployed with Battery Storage

    Energy Technology Data Exchange (ETDEWEB)

    Jorgenson, Jennie; Mehos, Mark; Denholm, Paul

    2016-05-31

    Concentrated solar power with thermal energy storage (CSP-TES) is a unique source of renewable energy in that its energy can be shifted over time and it can provide the electricity system with dependable generation capacity. In this study, we provide a framework to determine if the benefits of CSP-TES (shiftable energy and the ability to provide firm capacity) exceed the benefits of PV and firm capacity sources such as long-duration battery storage or conventional natural gas combustion turbines (CTs). The results of this study using current capital cost estimates indicate that a combination of PV and conventional gas CTs provides a lower net cost compared to CSP-TES and PV with batteries. Some configurations of CSP-TES have a lower net cost than PV with batteries for even the lowest battery cost estimate. Using projected capital cost targets, however, some configurations of CSP-TES have a lower net cost than PV with either option for even the lowest battery cost estimate. The net cost of CSP-TES varies with configuration, and lower solar multiples coupled with less storage are more attractive at current cost levels, due to high component costs. However, higher solar multiples show a lower net cost using projected future costs for heliostats and thermal storage materials.

  13. Comparing the net cost of CSP-TES to PV deployed with battery storage

    Science.gov (United States)

    Jorgenson, Jennie; Mehos, Mark; Denholm, Paul

    2016-05-01

    Concentrated solar power with thermal energy storage (CSP-TES) is a unique source of renewable energy in that its energy can be shifted over time and it can provide the electricity system with dependable generation capacity. In this study, we provide a framework to determine if the benefits of CSP-TES (shiftable energy and the ability to provide firm capacity) exceed the benefits of PV and firm capacity sources such as long-duration battery storage or conventional natural gas combustion turbines (CTs). The results of this study using current capital cost estimates indicate that a combination of PV and conventional gas CTs provides a lower net cost compared to CSP-TES and PV with batteries. Some configurations of CSP-TES have a lower net cost than PV with batteries for even the lowest battery cost estimate. Using projected capital cost targets, however, some configurations of CSP-TES have a lower net cost than PV with either option for even the lowest battery cost estimate. The net cost of CSP-TES varies with configuration, and lower solar multiples coupled with less storage are more attractive at current cost levels, due to high component costs. However, higher solar multiples show a lower net cost using projected future costs for heliostats and thermal storage materials.

  14. Factors on Storage Performance of MH-Ni Battery

    Institute of Scientific and Technical Information of China (English)

    Zhang Zhong; Jia Chunming; Xing Zhiqiang; Li Li; Ma Yijun

    2004-01-01

    The open voltage of batteries shows different status after MH-Ni batteries are stored for a period of time.Some batteries with 0, 0.9 ~ 1.1V and above 1.1 V were chosen to study their corresponding internal resistances, open voltages and the reduction of capacities, etc.On the basis of battery reaction principle, battery samples were analyzed,and factors causing different storage performance were found out.Therefore, some references on the improvement of battery storage performance were provided.

  15. Non-Destructive Analysis of Degradation Mechanisms in Cycle-Aged Graphite/LiCoO2 Batteries

    Directory of Open Access Journals (Sweden)

    Liqiang Zhang

    2014-09-01

    Full Text Available Non-destructive analysis of degradation mechanisms can be very beneficial for the prognostics and health management (PHM study of lithium-ion batteries. In this paper, a type of graphite/LiCoO2 battery was cycle aged at high ambient temperature, then 25 parameters of the multi-physics model were identified. Nine key parameters degraded with the cycle life, and they were treated as indicators of battery degradation. Accordingly, the degradation mechanism was discussed by using the multi-physics model and key parameters, and the reasons for capacity fade and the internal resistance increase were analyzed in detail. All evidence indicates that the formation reaction of the solid electrolyte interface (SEI film is the main cause of battery degradation at high ambient temperature.

  16. Organic Cathode Materials for Rechargeable Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Ruiguo; Qian, Jiangfeng; Zhang, Jiguang; Xu, Wu

    2015-06-28

    This chapter will primarily focus on the advances made in recent years and specify the development of organic electrode materials for their applications in rechargeable lithium batteries, sodium batteries and redox flow batteries. Four various organic cathode materials, including conjugated carbonyl compounds, conducting polymers, organosulfides and free radical polymers, are introduced in terms of their electrochemical performances in these three battery systems. Fundamental issues related to the synthesis-structure-activity correlations, involved work principles in energy storage systems, and capacity fading mechanisms are also discussed.

  17. Electrical characterization of the Magellan batteries after storage

    Science.gov (United States)

    Deligiannis, Frank; Perrone, D.; Distefano, Sal; Timmerman, Paul

    1993-01-01

    Two 22 cell batteries designed by Martin Marietta were tested. The batteries were rated at 26.5 Amp-Hr. The battery design is characterized by the following: Gates Aerospace 42B030AB15, 11 pos/12 neg, Pellon 2536 separator, passivated pos/teflonated neg. The tests can be summarized as follows: (1) no noticeable capacity loss after storage period; and (2) batteries exhibited larger non-uniformity of cell voltages during constant current charge.

  18. Innovation Meets Performance Demands of Advanced Lithium-ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    2016-06-01

    Advancements in high capacity and low density battery technologies have led to a growing need for battery materials with greater charge capacity and therefore stability. NREL's developments in ALD and molecular layer MLD allow for thin film coatings to battery composite electrodes, which can improve battery lifespan, high charge capacity, and stability. Silicon, one of the best high-energy anode materials for Li-ion batteries, can experience capacity fade from volumetric expansion. Using MLD to examine how surface modification could stabilize silicon anode material in Li-ion batteries, researchers discovered a new reaction precursor that leads to a flexible surface coating that accommodates volumetric expansion of silicon electrodes.

  19. Nanostructured titanium nitride as a novel cathode for high performance lithium/dissolved polysulfide batteries

    Science.gov (United States)

    Mosavati, Negar; Chitturi, Venkateswara Rao; Salley, Steven O.; Ng, K. Y. Simon

    2016-07-01

    Lithium-sulfur (Lisbnd S) batteries could potentially revolutionize the rechargeable battery market due to their high energy density and low cost. However, low active material utilization, electrode volumetric expansion and a high rate of capacity fade due to the dissolution of lithium polysulfide intermediates in the liquid electrolyte are the main challenges facing further Lisbnd S battery development. Here, we enhanced Lisbnd S batteries active material utilization and decreased the volumetric expansion by using the lithium/dissolved polysulfide configuration. Moreover, a novel class of cathode materials, Titanium Nitride (TiN), was developed for polysulfide conversion reactions. The surface chemical environment of the TiN has been investigated by X-ray photoelectron spectroscopy (XPS) analysis. The existence of Ssbnd Tisbnd N bonding at the cathode electrode surface was observed, which indicates the strong interactions between TiN and polysulfides. Therefore, the TiN electrode retains the sulfur species on the cathode surface, minimizing the active material and surface area loss and consequently, improves the capacity retention. The resultant cells demonstrated a high initial capacity of 1524 mAh g-1 and a good capacity retention for 100 cycles at a C/10 current rate.

  20. A Li-O2/CO2 battery.

    Science.gov (United States)

    Takechi, Kensuke; Shiga, Tohru; Asaoka, Takahiko

    2011-03-28

    A new gas-utilizing battery using mixed gas of O(2) and CO(2) was developed and proved its very high discharge capacity. The capacity reached three times as much as that of a non-aqueous Li-air (O(2)) battery. The unique point of the battery is expected to be the rapid consumption of superoxide anion radical by CO(2) as well as the slow filling property of the Li(2)CO(3) in the cathode.

  1. The presence of high-affinity, low-capacity estradiol-17β binding in rainbow trout scale indicates a possible endocrine route for the regulation of scale resorption

    Science.gov (United States)

    Persson, Petra; Shrimpton, J.M.; McCormick, S.D.; Bjornsson, Bjorn Thrandur

    2000-01-01

    High-affinity, low-capacity estradiol-17β (E2) binding is present in rainbow trout scale. The Kd and Bmax of the scale E2 binding are similar to those of the liver E2 receptor (Kd is 1.6 ± 0.1 and 1.4 ± 0.1 nM, and Bmax is 9.1 ± 1.2 and 23.1 ± 2.2 fmol x mg protein-1, for scale and liver, respectively), but different from those of the high-affinity, low-capacity E2 binding in plasma (Kd is 4.0 ± 0.4 nM and Bmax is 625.4 ± 63.1 fmol x mg protein-1). The E2 binding in scale was displaced by testosterone, but not by diethylstilbestrol. Hence, the ligand binding specificity is different from that of the previously characterized liver E2 receptor, where E2 is displaced by diethylstilbestrol, but not by testosterone. The putative scale E2 receptor thus appears to bind both E2 and testosterone, and it is proposed that the increased scale resorption observed during sexual maturation in both sexes of several salmonid species may be mediated by this receptor. No high-affinity, low-capacity E2 binding could be detected in rainbow trout gill or skin.

  2. Comparison of reduction products from graphite oxide and graphene oxide for anode applications in lithium-ion batteries and sodium-ion batteries.

    Science.gov (United States)

    Sun, Yige; Tang, Jie; Zhang, Kun; Yuan, Jinshi; Li, Jing; Zhu, Da-Ming; Ozawa, Kiyoshi; Qin, Lu-Chang

    2017-02-16

    Hydrazine-reduced graphite oxide and graphene oxide were synthesized to compare their performances as anode materials in lithium-ion batteries and sodium-ion batteries. Reduced graphite oxide inherits the layer structure of graphite, with an average spacing between neighboring layers (d-spacing) of 0.374 nm; this exceeds the d-spacing of graphite (0.335 nm). The larger d-spacing provides wider channels for transporting lithium ions and sodium ions in the material. We showed that reduced graphite oxide as an anode in lithium-ion batteries can reach a specific capacity of 917 mA h g(-1), which is about three times of 372 mA h g(-1), the value expected for the LiC6 structures on the electrode. This increase is consistent with the wider d-spacing, which enhances lithium intercalation and de-intercalation on the electrodes. The electrochemical performance of the lithium-ion batteries and sodium-ion batteries with reduced graphite oxide anodes show a noticeable improvement compared to those with reduced graphene oxide anodes. This improvement indicates that reduced graphite oxide, with larger interlayer spacing, has fewer defects and is thus more stable. In summary, we found that reduced graphite oxide may be a more favorable form of graphene for the fabrication of electrodes for lithium-ion and sodium-ion batteries and other energy storage devices.

  3. Life testing of implantable batteries for a total artificial heart.

    Science.gov (United States)

    Powers, R A; Wolga, A E; Ochs, B D; Yu, L S; Kung, R T

    1993-01-01

    Although lithium cells may promise to be ideal as a rechargeable internal battery for a TAH, NiCd cells remain the most easily accessible off the shelf energy source. Twelve 1.2 A.hr prismatic NiCd (Sanyo, San Diego, CA) cells in series are being tested under the load condition of our TAH. The load consisted of a 1.5 A DC current with 1 A pulses of 40 msec duration at 3.33 Hz (100 bpm), a condition that can generate up to 8 L/min of cardiac output at physiologic pressures. Cells were tested at 37 degrees C. Cell voltages and temperatures were monitored. Testing was accelerated to five charge/discharge cycles per day. Discharge was terminated when any one cell dropped below 1.1 V. Charging (C/4) was continued until the battery voltage indicated a change in slope. Cell temperatures remained below 42 degrees C throughout the charge/discharge cycle. The battery pack settled to a nearly constant capacity of over 25 min after 10 cycles and has accumulated more than 1,000 cycles. Voltage differences among cells were small (SD mV), indicating consistency among cells. NiCd cells can serve as a reliable interim for TAH internal battery application.

  4. Modeling and simulation of the zinc-nickel single flow batteries based on MATLAB/Simulink

    Science.gov (United States)

    Yao, Shouguang; Liao, Peng; Xiao, Min; Cheng, Jie; He, Ke

    2016-12-01

    Based on the working principle of the zinc-nickel single flow batteries (ZNBs), this paper builds the electrochemical model and mechanical model, analyzes the effect of electrolyte flux on the battery performance and obtains a single cell with a 216 Ah charge-discharge capacity as an example, and thereafter conducts a simulation to obtain several results under the condition of constant current charge and discharge. The simulation results are well matched in comparison with the experimental results. An optimal flux exists during the charge and discharge, which indicates that the model can well simulate the charge and discharge characteristics of the ZNBs under the condition of constant current.

  5. NiH2 capacity fade during early cycling

    Science.gov (United States)

    Zagrodnik, Jeffrey P.

    1993-01-01

    Tests were conducted on nickel hydrogen batteries to determine the charge efficiency of the nickel electrode as a function of rate and temperature, cell discharge capacity, and capacity fade. Test procedures and results are presented in outline and graphic form.

  6. Memel's Batteries

    Directory of Open Access Journals (Sweden)

    Alexander F. Mitrofanov

    2015-12-01

    Full Text Available The article describes the history and equipment of the coastal and antiaircraft artillery batteries of German Navy (Kriegsmarine constructed in Memel area before and during the World War. There is given the brief description of the Soviet Navy stationed in the area in the postwar years.

  7. Stand Alone Battery Thermal Management System

    Energy Technology Data Exchange (ETDEWEB)

    Brodie, Brad [Denso International America, Incorporated, Southfield, MI (United States)

    2015-09-30

    The objective of this project is research, development and demonstration of innovative thermal management concepts that reduce the cell or battery weight, complexity (component count) and/or cost by at least 20%. The project addresses two issues that are common problems with current state of the art lithium ion battery packs used in vehicles; low power at cold temperatures and reduced battery life when exposed to high temperatures. Typically, battery packs are “oversized” to satisfy the two issues mentioned above. The first phase of the project was spent making a battery pack simulation model using AMEsim software. The battery pack used as a benchmark was from the Fiat 500EV. FCA and NREL provided vehicle data and cell data that allowed an accurate model to be created that matched the electrical and thermal characteristics of the actual battery pack. The second phase involved using the battery model from the first phase and evaluate different thermal management concepts. In the end, a gas injection heat pump system was chosen as the dedicated thermal system to both heat and cool the battery pack. Based on the simulation model. The heat pump system could use 50% less energy to heat the battery pack in -20°C ambient conditions, and by keeping the battery cooler at hot climates, the battery pack size could be reduced by 5% and still meet the warranty requirements. During the final phase, the actual battery pack and heat pump system were installed in a test bench at DENSO to validate the simulation results. Also during this phase, the system was moved to NREL where testing was also done to validate the results. In conclusion, the heat pump system can improve “fuel economy” (for electric vehicle) by 12% average in cold climates. Also, the battery pack size, or capacity, could be reduced 5%, or if pack size is kept constant, the pack life could be increased by two years. Finally, the total battery pack and thermal system cost could be reduced 5% only if the

  8. Second Life for Electric Vehicle Batteries: Answering Questions on Battery Degradation and Value

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, J. S.; Wood, E.; Pesaran, A.

    2015-05-04

    Battery second use – putting used plug-in electric vehicle (PEV) batteries into secondary service following their automotive tenure – has been proposed as a means to decrease the cost of PEVs while providing low cost energy storage to other fields (e.g. electric utility markets). To understand the value of used automotive batteries, however, we must first answer several key questions related to National Renewable Energy Laboratory (NREL) has developed a methodology and the requisite tools to answer these questions, including NREL’s Battery Lifetime Simulation Tool (BLAST). Herein we introduce these methods and tools, and demonstrate their application. We have found that capacity fade from automotive use has a much larger impact on second use value than resistance growth. Where capacity loss is driven by calendar effects more than cycling effects, average battery temperature during automotive service – which is often driven by climate – is found to be the single factor with the largest effect on remaining value. Installing hardware and software capabilities onboard the vehicle that can both infer remaining battery capacity from in-situ measurements, as well as track average battery temperature over time, will thereby facilitate the second use of automotive batteries.

  9. Centrifugally-spun carbon microfibers and porous carbon microfibers as anode materials for sodium-ion batteries

    Science.gov (United States)

    Dirican, Mahmut; Zhang, Xiangwu

    2016-09-01

    Natural abundance and low cost of sodium resources bring forward the sodium-ion batteries as a promising alternative to widely-used lithium-ion batteries. However, insufficient energy density and low cycling stability of current sodium-ion batteries hinder their practical use for next-generation smart power grid and stationary storage applications. Electrospun carbon microfibers have recently been introduced as a high-performance anode material for sodium-ion batteries. However, electrospinning is not feasible for mass production of carbon microfibers due to its complex processing condition, low production rate and high cost. Herein, we report centrifugal spinning, a high-rate and low-cost microfiber production method, as an alternative approach to electrospinning for carbon microfiber production and introduce centrifugally-spun carbon microfibers (CMFs) and porous carbon microfibers (PCMFs) as anode materials for sodium-ion batteries. Electrochemical performance results indicated that the highly porous nature of centrifugally-spun PCMFs led to increased Na+ storage capacity and improved cycling stability. The reversible capacity of centrifugally-spun PCMF anodes at the 200th cycle was 242 mAh g-1, which was much higher than that of centrifugally-spun CMFs (143 mAh g-1). The capacity retention and coulombic efficiency of the centrifugally-spun PCMF anodes were 89.0% and 99.9%, respectively, even at the 200th cycle.

  10. Analysis of the draft genome of Pseudomonas fluorescens ATCC17400 indicates a capacity to take up iron from a wide range of sources, including different exogenous pyoverdines.

    Science.gov (United States)

    Ye, Lumeng; Matthijs, Sandra; Bodilis, Josselin; Hildebrand, Falk; Raes, Jeroen; Cornelis, Pierre

    2014-08-01

    All fluorescent pseudomonads (Pseudomonas aeruginosa, P. putida, P. fluorescens, P. syringae and others) are known to produce the high-affinity peptidic yellow-green fluorescent siderophore pyoverdine. These siderophores have peptide chains that are quite diverse and more than 50 pyoverdine structures have been elucidated. In the majority of the cases, a Pseudomonas species is also able to produce a second siderophore of lower affinity for iron. Pseudomonas fluorescens ATCC 17400 has been shown to produce a unique second siderophore, (thio)quinolobactin, which has an antimicrobial activity against the phytopathogenic Oomycete Pythium debaryanum. We show that this strain has the capacity to utilize 16 different pyoverdines, suggesting the presence of several ferripyoverdine receptors. Analysis of the draft genome of P. fluorescens ATCC 17400 confirmed the presence of 55 TonB-dependent receptors, the largest so far for Pseudomonas, among which 15 are predicted to be ferripyoverdine receptors (Fpv). Phylogenetic analysis revealed the presence of two different clades containing ferripyoverdine receptors, with sequences similar to the P. aeruginosa type II FpvA forming a separate cluster. Among the other receptors we confirmed the presence of the QbsI (thio)quinolobactin receptor, an ferri-achromobactin and an ornicorrugatin receptor, several catecholate and four putative heme receptors. Twenty five of the receptors genes were found to be associated with genes encoding extracytoplasmic sigma factors (ECF σ) and transmembrane anti-σ sensors.

  11. Novel composite polymer electrolyte for lithium air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Deng; Li, Ruoshi; Huang, Tao; Yu, Aishui [Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Fudan University, 220 Handan Road, Shanghai 200433 (China)

    2010-02-15

    Hydrophobic ionic liquid-silica-PVdF-HFP polymer composite electrolyte is synthesized and employed in lithium air batteries for the first time. Discharge performance of lithium air battery using this composite electrolyte membrane in ambient atmosphere shows a higher capacity of 2800 mAh g{sup -1} of carbon in the absence of O{sub 2} catalyst, whereas, the cell with pure ionic liquid as electrolyte delivers much lower discharge capacity of 1500 mAh g{sup -1}. When catalyzed by {alpha}-MnO{sub 2}, the initial discharge capacity of the cell with composite electrolyte can be extended to 4080 mAh g{sup -1} of carbon, which can be calculated as 2040 mAh g{sup -1} associated with the total mass of the cathode. The flat discharge plateau and large discharge capacity indicate that the hydrophobic ionic liquid-silica-PVdF-HFP polymer composite electrolyte membrane can effectively protect lithium from moisture invasion. (author)

  12. An indicator to map diffuse chemical river pollution considering buffer capacity of riparian vegetation--a pan-European case study on pesticides.

    Science.gov (United States)

    Weissteiner, Christof J; Pistocchi, Alberto; Marinov, Dimitar; Bouraoui, Fayçal; Sala, Serenella

    2014-06-15

    Vegetated riparian areas alongside streams are thought to be effective at intercepting and controlling chemical loads from diffuse agricultural sources entering water bodies. Based on a recently compiled European map of riparian zones and a simplified soil chemical balance model, we propose a new indicator at a continental scale. QuBES (Qualitative indicator of Buffered Emissions to Streams) allows a qualitative assessment of European rivers exposed to pesticide input. The indicator consists of normalised pesticide loads to streams computed through a simplified steady-state fate model that distinguishes various chemical groups according to physico-chemical behaviour (solubility and persistence). The retention of pollutants in the buffer zone is modelled according to buffer width and sorption properties. While the indicator may be applied for the study of a generic emission pattern and for a chemical of generic properties, we demonstrate it to the case of agricultural emissions of pesticides. Due to missing geo-spatial data of pesticide emissions, a total pesticide emission scenario is assumed. The QuBES indicator is easy to calculate and requires far less input data and parameterisation than typical chemical-specific models. At the same time, it allows mapping of (i) riparian buffer permeability, (ii) chemical runoff from soils, and (iii) the buffered load of chemicals to the stream network. When the purpose of modelling is limited to identifying chemical pollution patterns and understanding the relative importance of emissions and natural attenuation in soils and stream buffer strips, the indicator may be suggested as a screening level, cost-effective alternative to spatially distributed models of higher complexity.

  13. Mathematical modeling of a primary zinc/air battery

    Science.gov (United States)

    Mao, Z.; White, R. E.

    1992-01-01

    The mathematical model developed by Sunu and Bennion has been extended to include the separator, precipitation of both solid ZnO and K2Zn(OH)4, and the air electrode, and has been used to investigate the behavior of a primary Zn-Air battery with respect to battery design features. Predictions obtained from the model indicate that anode material utilization is predominantly limited by depletion of the concentration of hydroxide ions. The effect of electrode thickness on anode material utilization is insignificant, whereas material loading per unit volume has a great effect on anode material utilization; a higher loading lowers both the anode material utilization and delivered capacity. Use of a thick separator will increase the anode material utilization, but may reduce the cell voltage.

  14. Manganese Dioxide with High Specific Surface Area for Alkaline Battery

    Institute of Scientific and Technical Information of China (English)

    HUANG You-ju; LIN Yu-li; LI Wei-shan

    2012-01-01

    The authors reported a facile method for the synthesis of manganese dioxide without any template and catalyst at a low-temperature.The prepared sample was characterized with X-ray diffraction(XRD),scanning electron microscopy(SEM),Brunauer-Emmett-Teller(BET) surface analysis,Fourier transform infrared(FTIR) spectrometry,cyclic voltammetry,altemative current(AC) impedance test and battery discharge test.It is found that the prepared sample belongs to α-MnO2 and has a microsphere morphology and a large BET surface area.The electrochemical characterization indicates that the prepared sample displays a larger electrochemical capacitance than the commercial electrolytic manganese dioxides(EMD) in Na2SO4 solution,and exhibits larger discharge capacity than EMD,especially at a high rate discharge condition when it is used as cathode of alkaline Zn/MnO2 battery.

  15. Plasma acylcarnitine profiling indicates increased fatty acid oxidation relative to tricarboxylic acid cycle capacity in young, healthy low birth weight men

    DEFF Research Database (Denmark)

    Ribel-Madsen, Amalie; Ribel-Madsen, Rasmus; Brøns, Charlotte;

    2016-01-01

    measured fasting plasma levels of 45 acylcarnitine species in 18 LBW and 25 NBW men after an isocaloric control diet and a 5‐day high‐fat, high‐calorie diet. We demonstrated that LBW men had higher C2 and C4‐OH levels after the control diet compared with NBW men, indicating an increased fatty acid beta...

  16. Vehicle Battery Safety Roadmap Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Doughty, D. H.

    2012-10-01

    The safety of electrified vehicles with high capacity energy storage devices creates challenges that must be met to assure commercial acceptance of EVs and HEVs. High performance vehicular traction energy storage systems must be intrinsically tolerant of abusive conditions: overcharge, short circuit, crush, fire exposure, overdischarge, and mechanical shock and vibration. Fail-safe responses to these conditions must be designed into the system, at the materials and the system level, through selection of materials and safety devices that will further reduce the probability of single cell failure and preclude propagation of failure to adjacent cells. One of the most important objectives of DOE's Office of Vehicle Technologies is to support the development of lithium ion batteries that are safe and abuse tolerant in electric drive vehicles. This Roadmap analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would further DOE's mission.

  17. Life cycle assessment of lithium sulfur battery for electric vehicles

    Science.gov (United States)

    Deng, Yelin; Li, Jianyang; Li, Tonghui; Gao, Xianfeng; Yuan, Chris

    2017-03-01

    Lithium-sulfur (Li-S) battery is widely recognized as the most promising battery technology for future electric vehicles (EV). To understand the environmental sustainability performance of Li-S battery on future EVs, here a novel life cycle assessment (LCA) model is developed for comprehensive environmental impact assessment of a Li-S battery pack using a graphene sulfur composite cathode and a lithium metal anode protected by a lithium-ion conductive layer, for actual EV applications. The Li-S battery pack is configured with a 61.3 kWh capacity to power a mid-size EV for 320 km range. The life cycle inventory model is developed with a hybrid approach, based on our lab-scale synthesis of the graphene sulfur composite, our lab fabrication of Li-S battery cell, and our industrial partner's battery production processes. The impacts of the Li-S battery are assessed using the ReCiPe method and benchmarked with those of a conventional Nickle-Cobalt-Manganese (NCM)-Graphite battery pack under the same driving distance per charge. The environmental impact assessment results illustrate that Li-S battery is more environmentally friendly than conventional NCM-Graphite battery, with 9%-90% lower impact. Finally, the improvement pathways for the Li-S battery to meet the USABC (U.S. Advanced Battery Consortium) targets are presented with the corresponding environmental impact changes.

  18. Design of a thermophotovoltaic battery substitute

    Science.gov (United States)

    Doyle, Edward F.; Becker, Frederick E.; Shukla, Kailash C.; Fraas, Lewis M.

    1999-03-01

    Many military platforms that currently use the BA-5590 primary battery or the BB-390A/U rechargeable battery are limited in performance by low storage capacity and long recharge times. Thermo Power Corporation, with team members JX Crystals and Essential Research Inc. is developing an advanced thermophotovoltaic (TPV) battery substitute that will provide higher storage capacity, lower weight, and instantaneous recharging (by refueling). The TPV battery substitute incorporates several advanced design features including: an evacuated and sealed enclosure for the emitter and PV cells to minimize unwanted convection heat transfer from the emitter to PV cells; selective tungsten emitter with a well matched gallium antimonide PV cell receiver; optical filter to recycle nonconvertible radiant energy; and a silicon carbide thermal recuperator to recover thermal energy from exhaust gases.

  19. Silicene for Na-ion battery applications

    Science.gov (United States)

    Zhu, Jiajie; Schwingenschlögl, Udo

    2016-09-01

    Na-ion batteries are promising candidates to replace Li-ion batteries in large scale applications because of the advantages in natural abundance and cost of Na. Silicene has potential as the anode in Li-ion batteries but so far has not received attention with respect to Na-ion batteries. In this context, freestanding silicene, a graphene-silicene-graphene heterostructure, and a graphene-silicene superlattice are investigated for possible application in Na-ion batteries, using first-principles calculations. The calculated Na capacities of 954 mAh/g for freestanding silicene and 730 mAh/g for the graphene-silicene superlattice (10% biaxial tensile strain) are highly competitive and potentials of \\gt 0.3 {{V}} against the Na{}+/Na potential exceed the corresponding value of graphite. In addition, the diffusion barriers are predicted to be \\lt 0.3 {eV}.

  20. Coordinated discharge of a collection of batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sastry, Shivakumar; Gimdogmus, Omer; Hartley, Tom T.; Veillette, Robert J. [Department of Electrical and Computer Engineering, The University of Akron, Akron, OH 44325-3904 (United States)

    2007-03-30

    Collections of batteries are used to supply energy to a variety of applications. By utilizing the energy in such a collection efficiently, we can improve the lifetime over which energy can be supplied to the application. We say that the discharge of a collection of batteries is coordinated when, at the end of discharge, the difference in the remaining capacity of individual batteries is small. This paper presents a decision-maker based on a goal-seeking formulation that coordinates the discharge of a collection of batteries. This formulation allows us to use a simple battery model and simple decision-making algorithms. We present results from MATLAB simulations that demonstrate the performance of the decision-maker when energy is drawn out of the collection in three different discharge scenarios. The new decision-maker consistently improves the discharge efficiency obtained using scheduling methods. Our results show that when the discharge is coordinated, the lifetime of the collection is extended. (author)

  1. Silicene for Na-ion battery applications

    KAUST Repository

    Zhu, Jiajie

    2016-08-19

    Na-ion batteries are promising candidates to replace Li-ion batteries in large scale applications because of the advantages in natural abundance and cost of Na. Silicene has potential as the anode in Li-ion batteries but so far has not received attention with respect to Na-ion batteries. In this context, freestanding silicene, a graphene-silicene-graphene heterostructure, and a graphene-silicene superlattice are investigated for possible application in Na-ion batteries, using first-principles calculations. The calculated Na capacities of 954mAh/g for freestanding silicene and 730mAh/g for the graphenesilicene superlattice (10% biaxial tensile strain) are highly competitive and potentials of >0.3 V against the Na/Na potential exceed the corresponding value of graphite. In addition, the diffusion barriers are predicted to be <0.3 eV.

  2. 76 FR 57627 - Special Conditions: Cessna Aircraft Company Model M680 Airplane; Rechargeable Lithium-Ion Battery...

    Science.gov (United States)

    2011-09-16

    ... explosion. The severity of thermal runaway due to overcharging increases with increased battery capacity due... installation must preclude explosion in the event of those failures. (2) Design of lithium batteries must... amount of heat the battery can generate during a short circuit of the battery or of its individual...

  3. Plug-in hybrid electric vehicles: battery degradation, grid support, emissions, and battery size tradeoffs

    Science.gov (United States)

    Peterson, Scott B.

    Plug-in hybrid electric vehicles (PHEVs) may become a substantial part of the transportation fleet in a decade or two. This dissertation investigates battery degradation, and how introducing PHEVs may influence the electricity grid, emissions, and petroleum use in the US. It examines the effects of combined driving and vehicle-to-grid (V2G) usage on lifetime performance of commercial Li-ion cells. The testing shows promising capacity fade performance: more than 95% of the original cell capacity remains after thousands of driving days. Statistical analyses indicate that rapid vehicle motive cycling degraded the cells more than slower, V2G galvanostatic cycling. These data are used to examine the potential economic implications of using vehicle batteries to store grid electricity generated at off-peak hours for off-vehicle use during peak hours. The maximum annual profit with perfect market information and no battery degradation cost ranged from ˜US140 to 250 in the three cities. If measured battery degradation is applied the maximum annual profit decreases to ˜10-120. The dissertation predicts the increase in electricity load and emissions due to vehicle battery charging in PJM and NYISO with the current generators, with a 50/tonne CO2 price, and with existing coal generators retrofitted with 80% CO2 capture. It also models emissions using natural gas or wind+gas. We examined PHEV fleet percentages between 0.4 and 50%. Compared to 2020 CAFE standards, net CO2 emissions in New York are reduced by switching from gasoline to electricity; coal-heavy PJM shows smaller benefits unless coal units are fitted with CCS or replaced with lower CO2 generation. NOX is reduced in both RTOs, but there is upward pressure on SO2 emissions or allowance prices under a cap. Finally the dissertation compares increasing the all-electric range (AER) of PHEVs to installing charging infrastructure. Fuel use was modeled with National Household Travel Survey and Greenhouse Gasses, Regulated

  4. Humidity effect on electrochemical performance of Li-O2 batteries

    Science.gov (United States)

    Guo, Ziyang; Dong, Xiaoli; Yuan, Shouyi; Wang, Yonggang; Xia, Yongyao

    2014-10-01

    In this work, we compare the performance of Li-O2 batteries in pure/dry O2, pure O2 with a relative humidity (RH) of 15% and ambient air with an RH of 50%, and analyze the ambient humidity effect on the reactions in the carbon-based catalytic electrode. Electrochemical investigation indicates that discharge capacities of Li-O2 batteries increased with growth of RH value, but cyclic ability and rate performance are influenced in an opposite way. Ex-situ X-ray diffraction (XRD), Fourier transform-infrared spectrophotometer (FT-IR) and scanning electron microscope (SEM) investigations suggest that ambient humidity affects not only the Li2O2/O2 conversion, LiCO3/CO2 conversion and LiOH formation but also the morphology of discharge products in porous catalytic electrode over charge/discharge cycle. These results may be important for developing Li-air battery.

  5. The rechargeable aluminum-ion battery

    KAUST Repository

    Jayaprakash, N.

    2011-01-01

    We report a novel aluminium-ion rechargeable battery comprised of an electrolyte containing AlCl3 in the ionic liquid, 1-ethyl-3-methylimidazolium chloride, and a V2O5 nano-wire cathode against an aluminium metal anode. The battery delivered a discharge capacity of 305 mAh g-1 in the first cycle and 273 mAh g-1 after 20 cycles, with very stable electrochemical behaviour. © The Royal Society of Chemistry 2011.

  6. Survey of Commercial Small Lithium Polymer Batteries

    Science.gov (United States)

    2007-09-19

    Approved for public release; distribution is unlimited. Arnold M. Stux KAren Swider-lyonS Chemical Dynamics and Diagnostics Branch Chemistry Division i...stored per mole of material, M.W. is its molecular weight, and F is the Faraday constant (96,485 C/mol). The theoretical specific capacity of...phosphate, LiFePO4 , which will lead to higher power, but lower energy batteries. The driver for battery improvement will continue to be the toy and

  7. The rechargeable aluminum-ion battery.

    Science.gov (United States)

    Jayaprakash, N; Das, S K; Archer, L A

    2011-12-21

    We report a novel aluminium-ion rechargeable battery comprised of an electrolyte containing AlCl(3) in the ionic liquid, 1-ethyl-3-methylimidazolium chloride, and a V(2)O(5) nano-wire cathode against an aluminium metal anode. The battery delivered a discharge capacity of 305 mAh g(-1) in the first cycle and 273 mAh g(-1) after 20 cycles, with very stable electrochemical behaviour.

  8. The rechargeable aluminum-ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Navaneedhakrishnan, Jayaprakash; Das, Shyamal K; Archer, Lynden A.

    2011-01-01

    We report a novel aluminium-ion rechargeable battery comprised of an electrolyte containing AlCl₃ in the ionic liquid, 1-ethyl-3-methylimidazolium chloride, and a V₂O₅ nano-wire cathode against an aluminium metal anode. The battery delivered a discharge capacity of 305 mAh g⁻¹ in the first cycle and 273 mAh g⁻¹ after 20 cycles, with very stable electrochemical behaviour.

  9. Multicell LiSOCl sub 2 reserve battery

    Science.gov (United States)

    Baldwin, A. R.; Garoutte, K. F.

    Recent development work on reverse lithium thionyl chloride (RLTC) batteries at SNLA and Honeywell has included safety and performance evaluations. The RLTC battery is being considered for applications that were traditionally fulfilled by state-of-the-art thermal batteries and reserve silver oxide zinc electrochemical systems. These applications typically demand a reserve battery having a rapid voltage rise, high reliability, operational safety and useful active lifetime ranging from minutes to hours. The RLTC work reported here was directed toward a power battery capable of meeting or exceeding the design requirements. Performance and safety test data indicate that the RLTC battery may be better suited than thermal batteries for some long-life applications. A comparison between Li(Si)/FeS2 thermal battery and an RLTC battery, both of which were designed to fulfill the requirements is presented.

  10. Effect of Boron-Doping on the Graphene Aerogel Used as Cathode for the Lithium-Sulfur Battery.

    Science.gov (United States)

    Xie, Yang; Meng, Zhen; Cai, Tingwei; Han, Wei-Qiang

    2015-11-18

    A porous interconnected 3D boron-doped graphene aerogel (BGA) was prepared via a one-pot hydrothermal treatment. The BGA material was first loaded with sulfur to serve as cathode in lithium-sulfur batteries. Boron was positively polarized on the graphene framework, allowing for chemical adsorption of negative polysufide species. Compared with nitrogen-doped and undoped graphene aerogel, the BGA-S cathode could deliver a higher capacity of 994 mA h g(-1) at 0.2 C after 100 cycles, as well as an outstanding rate capability, which indicated the BGA was an ideal cathode material for lithium-sulfur batteries.

  11. Batteries used to Power Implantable Biomedical Devices

    Science.gov (United States)

    Bock, David C.; Marschilok, Amy C.; Takeuchi, Kenneth J.; Takeuchi, Esther S.

    2012-01-01

    Battery systems have been developed that provide years of service for implantable medical devices. The primary systems utilize lithium metal anodes with cathode systems including iodine, manganese oxide, carbon monofluoride, silver vanadium oxide and hybrid cathodes. Secondary lithium ion batteries have also been developed for medical applications where the batteries are charged while remaining implanted. While the specific performance requirements of the devices vary, some general requirements are common. These include high safety, reliability and volumetric energy density, long service life, and state of discharge indication. Successful development and implementation of these battery types has helped enable implanted biomedical devices and their treatment of human disease. PMID:24179249

  12. Batteries used to Power Implantable Biomedical Devices.

    Science.gov (United States)

    Bock, David C; Marschilok, Amy C; Takeuchi, Kenneth J; Takeuchi, Esther S

    2012-12-01

    Battery systems have been developed that provide years of service for implantable medical devices. The primary systems utilize lithium metal anodes with cathode systems including iodine, manganese oxide, carbon monofluoride, silver vanadium oxide and hybrid cathodes. Secondary lithium ion batteries have also been developed for medical applications where the batteries are charged while remaining implanted. While the specific performance requirements of the devices vary, some general requirements are common. These include high safety, reliability and volumetric energy density, long service life, and state of discharge indication. Successful development and implementation of these battery types has helped enable implanted biomedical devices and their treatment of human disease.

  13. Balancing Osmotic Pressure of Electrolytes for Nanoporous Membrane Vanadium Redox Flow Battery with a Draw Solute.

    Science.gov (United States)

    Yan, Ligen; Li, Dan; Li, Shuaiqiang; Xu, Zhi; Dong, Junhang; Jing, Wenheng; Xing, Weihong

    2016-12-28

    Vanadium redox flow batteries with nanoporous membranes (VRFBNM) have been demonstrated to be good energy storage devices. Yet the capacity decay due to permeation of vanadium and water makes their commercialization very difficult. Inspired by the forward osmosis (FO) mechanism, the VRFBNM battery capacity decrease was alleviated by adding a soluble draw solute (e.g., 2-methylimidazole) into the catholyte, which can counterbalance the osmotic pressure between the positive and negative half-cell. No change of the electrolyte volume has been observed after VRFBNM being operated for 55 h, revealing that the permeation of water and vanadium ions was effectively limited. Consequently, the Coulombic efficiency (CE) of nanoporous TiO2 vanadium redox flow battery (VRFB) was enhanced from 93.5% to 95.3%, meanwhile, its capacity decay was significantly suppressed from 60.7% to 27.5% upon the addition of soluble draw solute. Moreover, the energy capacity of the VRFBNM was noticeably improved from 297.0 to 406.4 mAh remarkably. These results indicate balancing the osmotic pressure via the addition of draw solute can restrict pressure-dependent vanadium permeation and it can be established as a promising method for up-scaling VRFBNM application.

  14. Failure statistics for commercial lithium ion batteries: A study of 24 pouch cells

    Science.gov (United States)

    Harris, Stephen J.; Harris, David J.; Li, Chen

    2017-02-01

    There are relatively few publications that assess capacity decline in enough commercial cells to quantify cell-to-cell variation, but those that do show a surprisingly wide variability. Capacity curves cross each other often, a challenge for efforts to measure the state of health and predict the remaining useful life (RUL) of individual cells. We analyze capacity fade statistics for 24 commercial pouch cells, providing an estimate for the time to 5% failure. Our data indicate that RUL predictions based on remaining capacity or internal resistance are accurate only once the cells have already sorted themselves into ;better; and ;worse; ones. Analysis of our failure data, using maximum likelihood techniques, provide uniformly good fits for a variety of definitions of failure with normal and with 2- and 3-parameter Weibull probability density functions, but we argue against using a 3-parameter Weibull function for our data. pdf fitting parameters appear to converge after about 15 failures, although business objectives should ultimately determine whether data from a given number of batteries provides sufficient confidence to end lifecycle testing. Increased efforts to make batteries with more consistent lifetimes should lead to improvements in battery cost and safety.

  15. Household batteries: Evaluation of collection methods

    Energy Technology Data Exchange (ETDEWEB)

    Seeberger, D.A.

    1992-01-01

    While it is difficult to prove that a specific material is causing contamination in a landfill, tests have been conducted at waste-to-energy facilities that indicate that household batteries contribute significant amounts of heavy metals to both air emissions and ash residue. Hennepin County, MN, used a dual approach for developing and implementing a special household battery collection. Alternative collection methods were examined; test collections were conducted. The second phase examined operating and disposal policy issues. This report describes the results of the grant project, moving from a broad examination of the construction and content of batteries, to a description of the pilot collection programs, and ending with a discussion of variables affecting the cost and operation of a comprehensive battery collection program. Three out-of-state companies (PA, NY) were found that accept spent batteries; difficulties in reclaiming household batteries are discussed.

  16. Household batteries: Evaluation of collection methods

    Energy Technology Data Exchange (ETDEWEB)

    Seeberger, D.A.

    1992-12-31

    While it is difficult to prove that a specific material is causing contamination in a landfill, tests have been conducted at waste-to-energy facilities that indicate that household batteries contribute significant amounts of heavy metals to both air emissions and ash residue. Hennepin County, MN, used a dual approach for developing and implementing a special household battery collection. Alternative collection methods were examined; test collections were conducted. The second phase examined operating and disposal policy issues. This report describes the results of the grant project, moving from a broad examination of the construction and content of batteries, to a description of the pilot collection programs, and ending with a discussion of variables affecting the cost and operation of a comprehensive battery collection program. Three out-of-state companies (PA, NY) were found that accept spent batteries; difficulties in reclaiming household batteries are discussed.

  17. Research, development, and demonstration of lead-acid batteries for electric-vehicle propulsion. Annual report, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    The first development effort in improving lead-acid batteries fore electric vehicles was the improvement of electric vehicle batteries using flat pasted positive plates and the second was for a tubular long life positive plate. The investigation of 32 component variables based on a flat pasted positive plate configuration is described. The experiment tested 96 - six volt batteries for characterization at 0, 25, and 40/sup 0/C and for cycle life capability at the 3 hour discharge rate with a one cycle, to 80% DOD, per day regime. Four positive paste formulations were selected. Two commercially available microporous separators were used in conjunction with a layer of 0.076 mm thick glass mat. Two concentrations of battery grade sulfuric acid were included in the test to determine if an increase in concentration would improve the battery capacity sufficient to offset the added weight of the more concentrated solution. Two construction variations, 23 plate elements with outside negative plates and 23 plate elements with outside positive plates, were included. The second development effort was an experiment designed to study the relationship of 32 component variables based on a tubular positive plate configuration. 96-six volt batteries were tested at various discharge rates at 0, 25, and 40/sup 0/C along with cycle life testing at 80% DOD of the 3 hour rate. 75 batteries remain on cycle life testing with 17 batteries having in excess of 365 life cycles. Preliminary conclusions indicate: the tubular positive plate is far more capable of withstanding deep cycles than is the flat pasted plate; as presently designed 40 Whr/kg can not be achieved, since 37.7 Whr/kg was the best tubular data obtained; electrolyte circulation is impaired due to the tight element fit in the container; and a redesign is required to reduce the battery weight which will improve the Whr/kg value. This redesign is complete and new molds have been ordered.

  18. Development of power storage system. Review of development for advanced battery technique in Yuasa Battery Co. , Ltd

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    Yuasa Battery Co., Ltd. selected the ceramic battery (Na/S) for power storage to establish the basic technique, to enlarge the capacity and to develop the 50kW/400kWh battery system. The ceramic battery is one where Na and S are combined and the beta alumina, that is, a special solid hydrolyte is utilized as the Na ion conductor. The battery system under development consists of 1120 batteries in which each nominal capacity is 540Wh, and which are connected to series and parallel and is put in a insulating electric furnace. The 76-77% energy efficiency in the constant power charging and discharging per every 8 hours specified, was established at the initial test of NO. 1 50kW/400kW power system. Other tests are conducting. (1 fig, 1 tab, 2 photo)

  19. Defective graphene as promising anode material for Na-ion battery and Ca-ion battery

    CERN Document Server

    Datta, Dibakar; Shenoy, Vivek B

    2013-01-01

    We have investigated adsorption of Na and Ca on graphene with divacancy (DV) and Stone-Wales (SW) defect. Our results show that adsorption is not possible on pristine graphene. However, their adsorption on defective sheet is energetically favorable. The enhanced adsorption can be attributed to the increased charge transfer between adatoms and underlying defective sheet. With the increase in defect density until certain possible limit, maximum percentage of adsorption also increases giving higher battery capacity. For maximum possible DV defect, we can achieve maximum capacity of 1459 mAh/g for Na-ion batteries (NIBs) and 2900 mAh/g for Ca-ion batteries (CIBs). For graphene full of SW defect, we find the maximum capacity of NIBs and CIBs is around 1071 mAh/g and 2142 mAh/g respectively. Our results will help create better anode materials with much higher capacity and better cycling performance for NIBs and CIBs.

  20. Advanced Battery Manufacturing (VA)

    Energy Technology Data Exchange (ETDEWEB)

    Stratton, Jeremy

    2012-09-30

    LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATT’s work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease

  1. Utility Battery Storage Systems Program report for FY93

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1994-02-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. In this capacity, Sandia is responsible for the engineering analyses, contract development, and testing of rechargeable batteries and systems for utility-energy-storage applications. This report details the technical achievements realized during fiscal year 1993.

  2. High energy density battery based on complex hydrides

    Science.gov (United States)

    Zidan, Ragaiy

    2016-04-26

    A battery and process of operating a battery system is provided using high hydrogen capacity complex hydrides in an organic non-aqueous solvent that allows the transport of hydride ions such as AlH.sub.4.sup.- and metal ions during respective discharging and charging steps.

  3. Color-Coded Batteries - Electro-Photonic Inverse Opal Materials for Enhanced Electrochemical Energy Storage and Optically Encoded Diagnostics.

    Science.gov (United States)

    O'Dwyer, Colm

    2016-07-01

    For consumer electronic devices, long-life, stable, and reasonably fast charging Li-ion batteries with good stable capacities are a necessity. For exciting and important advances in the materials that drive innovations in electrochemical energy storage (EES), modular thin-film solar cells, and wearable, flexible technology of the future, real-time analysis and indication of battery performance and health is crucial. Here, developments in color-coded assessment of battery material performance and diagnostics are described, and a vision for using electro-photonic inverse opal materials and all-optical probes to assess, characterize, and monitor the processes non-destructively in real time are outlined. By structuring any cathode or anode material in the form of a photonic crystal or as a 3D macroporous inverse opal, color-coded "chameleon" battery-strip electrodes may provide an amenable way to distinguish the type of process, the voltage, material and chemical phase changes, remaining capacity, cycle health, and state of charge or discharge of either existing or new materials in Li-ion or emerging alternative battery types, simply by monitoring its color change.

  4. Mesoporous CuCo2O4 nanoparticles as an efficient cathode catalyst for Li-O2 batteries

    Science.gov (United States)

    Wang, Peng-Xiang; Shao, Lin; Zhang, Nai-Qing; Sun, Ke-Ning

    2016-09-01

    Extremely high energy density and environment friendly reaction make Li-O2 batteries a promising energy storage system. In order to improve the energy efficiency and cycle life of Li-O2 battery, spinel mesoporous CuCo2O4 was successfully synthesized by a facile hydrothermal method and investigated in Li-O2 batteries. The electrochemical measurements show that mesoporous CuCo2O4 possess higher oxygen reduction and oxygen evolution activity than bulk CuCo2O4 both in alkaline and non-aqueous solution. Owing to the inherent catalytic activity, high conductivity and facile mass transfer of mesoporous CuCo2O4, Li-O2 battery shows enhanced electrochemical performances, including much lower charge overpotential and a high capacity up to 5288 mAh g-1. When restricting the discharge capacity at 500 mAh g-1, it could operate over 80 cycles and exhibit superior cycle stability. These results indicate that mesoporous CuCo2O4 nanoparticles are appropriate bifunctional catalysts for Li-O2 batteries.

  5. Binder-Free and Carbon-Free Nanoparticle Batteries: A Method for Nanoparticle Electrodes without Polymeric Binders or Carbon Black

    KAUST Repository

    Ha, Don-Hyung

    2012-10-10

    In this work, we have developed a new fabrication method for nanoparticle (NP) assemblies for Li-ion battery electrodes that require no additional support or conductive materials such as polymeric binders or carbon black. By eliminating these additives, we are able to improve the battery capacity/weight ratio. The NP film is formed by using electrophoretic deposition (EPD) of colloidally synthesized, monodisperse cobalt NPs that are transformed through the nanoscale Kirkendall effect into hollow Co 3O 4. EPD forms a network of NPs that are mechanically very robust and electrically connected, enabling them to act as the Li-ion battery anode. The morphology change through cycles indicates stable 5-10 nm NPs form after the first lithiation remained throughout the cycling process. This NP-film battery made without binders and conductive additives shows high gravimetric (>830 mAh/g) and volumetric capacities (>2100 mAh/cm 3) even after 50 cycles. Because similar films made from drop-casting do not perform well under equal conditions, EPD is seen as the critical step to create good contacts between the particles and electrodes resulting in this significant improvement in battery electrode assembly. This is a promising system for colloidal nanoparticles and a template for investigating the mechanism of lithiation and delithiation of NPs. © 2012 American Chemical Society.

  6. Wavelet-Transform-Based Power Management of Hybrid Vehicles with Multiple On-board Energy Sources Including Fuel Cell, Battery and Ultracapacitor

    Science.gov (United States)

    2008-09-12

    parameters are shown in Table II, which are based on experimental data from a 18650 lithium battery Page 13 of 20 cell. The nominal voltage of this battery...To obtain the sufficient current outputting ability, we place forty 18650 lithium battery cells in parallel. Additionally the nominal capacity of an... 18650 lithium battery cell is 1.4Ah, and the reference current for battery modeling is set to 1.4A. So the nominal power of the battery stack is

  7. Research on lithium batteries

    Science.gov (United States)

    Hill, I. R.; Goledzinowski, M.; Dore, R.

    1993-12-01

    Research was conducted on two types of lithium batteries. The first is a rechargeable Li-SO2 system using an all-inorganic electrolyte. A Li/liquid cathode system was chosen to obtain a relatively high discharge rate capability over the +20 to -30 C range. The fabrication and cycling performance of research cells are described, including the preparation and physical properties of porous polytetra fluoroethylene bonded carbon electrodes. Since the low temperature performance of the standard electrolyte was unsatisfactory, studies of electrolytes containing mixed salts were made. Raman spectroscopy was used to study the species present in these electrolytes and to identify discharge products. Infrared spectroscopy was used to measure electrolyte impurities. Film growth on the LiCl was also monitored. The second battery is a Li-thionyl chloride nonrechargeable system. Research cells were fabricated containing cobalt phthalo cyanine in the carbon cathode. The cathode was heat treated at different temperatures and the effect on cell discharge rate and capacity evaluated. Commercially obtained cells were used in an investigation of a way to identify substandard cells. The study also involved electrochemical impedance spectroscopy and cell discharging at various rates. The results are discussed in terms of LiCl passivation.

  8. MgO-decorated few-layered graphene as an anode for li-ion batteries.

    Science.gov (United States)

    Petnikota, Shaikshavali; Rotte, Naresh K; Reddy, M V; Srikanth, Vadali V S S; Chowdari, B V R

    2015-02-01

    Combustion of magnesium in dry ice and a simple subsequent acid treatment step resulted in a MgO-decorated few-layered graphene (FLG) composite that has a specific surface area of 393 m(2)/g and an average pore volume of 0.9 cm(3)/g. As an anode material in Li-ion batteries, the composite exhibited high reversible capacity and excellent cyclic performance in spite of high first-cycle irreversible capacity loss. A reversible capacity as high as 1052 mAh/g was measured during the first cycle. Even at the end of the 60th cycle, more than 83% of the capacity could be retained. Cyclic voltammetry results indicated pseudocapacitance behavior due to electrochemical absorption and desorption of lithium ions onto graphene. An increase in the capacity has been observed during long-term cycling owing to electrochemical exfoliation of graphene sheets. Owing to its good thermal stability and superior cyclic performance with high reversible capacities, MgO-decked FLG can be an excellent alternative to graphite as an anode material in Li-ion batteries, after suitable modifications.

  9. Station Capacity

    DEFF Research Database (Denmark)

    Landex, Alex

    2011-01-01

    Stations are often limiting the capacity of railway networks. This is due to extra need of tracks when trains stand still, trains turning around, and conflicting train routes. Although stations are often the capacity bottlenecks, most capacity analysis methods focus on open line capacity. Therefore......, this paper presents methods to analyze station capacity. Four methods to analyze station capacity are developed. The first method is an adapted UIC 406 capacity method that can be used to analyze switch zones and platform tracks at stations that are not too complex. The second method examines the need...... for platform tracks and the probability that arriving trains will not get a platform track immediately at arrival. The third method is a scalable method that analyzes the conflicts in the switch zone(s). In its simplest stage, the method just analyzes the track layout while the more advanced stages also take...

  10. Analysis and Modeling of Heat Generation in Overcharged Li-Ion Battery with Passive Cooling

    DEFF Research Database (Denmark)

    Coman, Paul Tiberiu; Veje, Christian

    2013-01-01

    This paper presents a dynamic model for simulating the heat generation in Lithium batteries and an investigation of the heat transfer as well as the capacity of Phase Change Materials (PCM’s) to store energy inside a battery cell module when the battery is overcharged. The study is performed by c...

  11. Complex hydrides as room-temperature solid electrolytes for rechargeable batteries

    NARCIS (Netherlands)

    de Jongh, P. E.; Blanchard, D.; Matsuo, M.; Udovic, T. J.; Orimo, S.

    2016-01-01

    A central goal in current battery research is to increase the safety and energy density of Li-ion batteries. Electrolytes nowadays typically consist of lithium salts dissolved in organic solvents. Solid electrolytes could facilitate safer batteries with higher capacities, as they are compatible with

  12. Hybrid aqueous battery based on Na3V2(PO4)3/C cathode and zinc anode for potential large-scale energy storage

    Science.gov (United States)

    Li, Guolong; Yang, Ze; Jiang, Yan; Zhang, Wuxing; Huang, Yunhui

    2016-03-01

    A hybrid aqueous rechargeable battery with Na3V2(PO4)3 as cathode and metal Zn as anode has been proposed. Na3V2(PO4)3 is co-incorporated by carbon and reduced graphene oxide. The battery delivers a capacity of 92 mAh g-1 at a current density of 50 mA g-1 with a high and flat operating voltage of 1.42 V. It exhibits a capacity of 60 mAh g-1 at a high current density of 2000 mA g-1, indicative of excellent rate capability. Such inexpensive and safe battery shows an energy density as high as 112 Wh kg-1, demonstrating that it is potential for future application in large-scale energy storage.

  13. Research, development, and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report for 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    Work performed during Oct. 1, 1979 to Sept. 30, 1980 for the development of lead-acid batteries for electric vehicle propulsion is described. During this report period many of the results frpm Globe Battery's design, materials and process development programs became evident in the achievement of the ISOA (Improved State of Art) specific energy, specific power, and energy efficiency goals while testing in progress also indicates that the cycle life goal can be met. These programs led to the establishment of a working pilot assembly line which produced the first twelve volt ISOA modules. Five of these modules were delivered to the National Battery Test Laboratory during the year for capacity, power and life testing, and assembly is in progress of three full battery systems for installation in vehicles. In the battery subsystem area, design of the acid circulation system for a ninety-six volt ISOA battery pack was completed and assembly of the first such system was initiated. Charger development has been slowed by problems encountered with reliability of some circuits but a prototype unit is being prepared which will meet the charging requirements of our ninety-six volt pack. This charger will be available during the 1981 fiscal year.

  14. Analysis of battery behavior in small photovoltaic systems; Analise do comportamento da bateria utilizada em sistemas fotovoltaicos de pequeno porte

    Energy Technology Data Exchange (ETDEWEB)

    Fraga, Jose Renato Castro Pompeia; Cagnon, Jose Angelo [Programa de Pos-Graduacao em Agronomia - Energia na Agricultura - FCA/UNESP, Botucatu, SP (Brazil); Dept. de Engenharia Eletrica - FEB/UNESP, Bauru, SP (Brazil)], e-mails: jrfraga@feb.unesp.br, jacagnon@feb.unesp.br

    2011-07-01

    This work aimed to analyze the electric energy storage system generated from a photovoltaic system with lead-acid batteries. The increasing claim for energy in the world in addition to the need of using renewable energy sources in order to preserve the environment makes necessary the development of efficient techniques of power supply and control. Two photovoltaic systems were used in this work, a conventional one with stationary solar panel and another with automatic solar position system. The comparative analysis has allowed assessing the advantages of both systems. The following characteristics were obtained during the development of this work: charge, discharge, battery capacity, operating time rate, auto-discharge reaction (through fluctuation state), among other important information that allows an extended life to the stationary battery studied. The obtained results indicate that the battery connected to the mobile system provides 36% of additional energy compared to the fixed system. When the battery was unable to provide energy to the load, the battery connected to the mobile system consumed about 33% less energy than that one connected to the fixed system (author)

  15. Kalman filter for onboard state of charge estimation and peak power capability analysis of lithium-ion batteries

    Science.gov (United States)

    Dong, Guangzhong; Wei, Jingwen; Chen, Zonghai

    2016-10-01

    To evaluate the continuous and instantaneous load capability of a battery, this paper describes a joint estimator for state-of-charge (SOC) and state-of-function (SOF) of lithium-ion batteries (LIB) based on Kalman filter (KF). The SOC is a widely used index for remain useful capacity left in a battery. The SOF represents the peak power capability of the battery. It can be determined by real-time SOC estimation and terminal voltage prediction, which can be derived from impedance parameters. However, the open-circuit-voltage (OCV) of LiFePO4 is highly nonlinear with SOC, which leads to the difficulties in SOC estimation. To solve these problems, this paper proposed an onboard SOC estimation method. Firstly, a simplified linearized equivalent-circuit-model is developed to simulate the dynamic characteristics of a battery, where the OCV is regarded as a linearized function of SOC. Then, the system states are estimated based on the KF. Besides, the factors that influence peak power capability are analyzed according to statistical data. Finally, the performance of the proposed methodology is demonstrated by experiments conducted on a LiFePO4 LIBs under different operating currents and temperatures. Experimental results indicate that the proposed approach is suitable for battery onboard SOC and SOF estimation.

  16. High Temperature Battery for In Situ Exploration of Venus Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of batteries capable of operational temperatures of 380?C and 486oC with a specific capacity 200 Wh/kg for use as a power source on the Venusian surface...

  17. Surface oxidized mesoporous carbons derived from porous silicon as dual polysulfide confinement and anchoring cathodes in lithium sulfur batteries

    Science.gov (United States)

    Carter, Rachel; Ejorh, Dennis; Share, Keith; Cohn, Adam P.; Douglas, Anna; Muralidharan, Nitin; Tovar, Trenton M.; Pint, Cary L.

    2016-10-01

    Despite widespread focus on porous carbons for lithium-sulfur battery cathode materials, electrode design to preserve mass-specific performance and sustained extended cycling stability remains a challenge. Here, we demonstrate electrochemically etched porous silicon as a sacrificial template to produce a new class of functional mesoporous carbons optimized for dual chemical and physical confinement of soluble polysulfides in lithium-sulfur battery cathodes. Melt infiltration loading of sulfur at 60 wt% enables initial discharge capacity of 1350 mAh/gsulfur at rates of 0.1 C - approaching theoretical capacity of 1675 mAh/gsulfur. Cycling performance measured at 0.2 C indicates 81% capacity retention measured over 100 cycles with 830 mAh/gsulfur capacity. Unlike other carbons, this template combines structural properties necessary for sulfur containment and polysulfide confinement to achieve high specific capacity, but also boasts surface-bound oxygen-containing functional groups that are able to chemically anchor the soluble Li2Sn species on the interior of the mesoporous carbon to sustain cycling performance. In turn, this elucidates a scalable and competitive material framework that is capable, without the addition of additional membranes or inactive anchoring materials, of providing the simultaneous anchoring and confinement effects necessary to overcome performance limitations in lithium sulfur batteries.

  18. Bacterial Acclimation Inside an Aqueous Battery.

    Directory of Open Access Journals (Sweden)

    Dexian Dong

    Full Text Available Specific environmental stresses may lead to induced genomic instability in bacteria, generating beneficial mutants and potentially accelerating the breeding of industrial microorganisms. The environmental stresses inside the aqueous battery may be derived from such conditions as ion shuttle, pH gradient, free radical reaction and electric field. In most industrial and medical applications, electric fields and direct currents are used to kill bacteria and yeast. However, the present study focused on increasing bacterial survival inside an operating battery. Using a bacterial acclimation strategy, both Escherichia coli and Bacillus subtilis were acclimated for 10 battery operation cycles and survived in the battery for over 3 days. The acclimated bacteria changed in cell shape, growth rate and colony color. Further analysis indicated that electrolyte concentration could be one of the major factors determining bacterial survival inside an aqueous battery. The acclimation process significantly improved the viability of both bacteria E. coli and B. subtilis. The viability of acclimated strains was not affected under battery cycle conditions of 0.18-0.80 mA cm(-2 and 1.4-2.1 V. Bacterial addition within 1.0×10(10 cells mL(-1 did not significantly affect battery performance. Because the environmental stress inside the aqueous battery is specific, the use of this battery acclimation strategy may be of great potential for the breeding of industrial microorganisms.

  19. A Pulsed Power System Design Using Lithium-ion Batteries and One Charger per Battery

    Science.gov (United States)

    2009-12-01

    manufacturers minimum discharge voltage can permanently damage the cells internal chemistry . This damage will reduce the capacity and lifetime of the...could permanently harm the internal chemistry of the battery. Table 3 summarizes these common lithium-ion battery characteristics [5], [7], [9...possible design to meet the identified requirements. • Chapter II discusses the theory of operation of the BMS and reviews the Simulink ® model

  20. The Science of Battery Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, John P. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Physics; El Gabaly Marquez, Farid [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Physics; McCarty, Kevin [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Physics; Sugar, Joshua Daniel [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Physics; Talin, Alec A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Physics; Fenton, Kyle R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Power Sources Design and Development; Nagasubramanian, Ganesan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Power Sources Design and Development; Harris, Charles Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nanosystems Synthesis/Analysis; Jungjohann, Katherine Leigh [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nanosystems Synthesis/Analysis; Hayden, Carl C. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Combustion Chemistry Dept.; Kliewer, Christopher Jesse [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Combustion Chemistry Dept.; Hudak, Nicholas S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Power Sources Research and Development; Leung, Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nanostructure Physics; McDaniel, Anthony H. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Hydrogen and Combustion Technology; Tenney, Craig M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Chemical and Biological Systems; Zavadil, Kevin R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Materials Lab.

    2015-01-01

    This report documents work that was performed under the Laboratory Directed Research and Development project, Science of Battery Degradation. The focus of this work was on the creation of new experimental and theoretical approaches to understand atomistic mechanisms of degradation in battery electrodes that result in loss of electrical energy storage capacity. Several unique approaches were developed during the course of the project, including the invention of a technique based on ultramicrotoming to cross-section commercial scale battery electrodes, the demonstration of scanning transmission x-ray microscopy (STXM) to probe lithium transport mechanisms within Li-ion battery electrodes, the creation of in-situ liquid cells to observe electrochemical reactions in real-time using both transmission electron microscopy (TEM) and STXM, the creation of an in-situ optical cell utilizing Raman spectroscopy and the application of the cell for analyzing redox flow batteries, the invention of an approach for performing ab initio simulation of electrochemical reactions under potential control and its application for the study of electrolyte degradation, and the development of an electrochemical entropy technique combined with x-ray based structural measurements for understanding origins of battery degradation. These approaches led to a number of scientific discoveries. Using STXM we learned that lithium iron phosphate battery cathodes display unexpected behavior during lithiation wherein lithium transport is controlled by nucleation of a lithiated phase, leading to high heterogeneity in lithium content at each particle and a surprising invariance of local current density with the overall electrode charging current. We discovered using in-situ transmission electron microscopy that there is a size limit to lithiation of silicon anode particles above which particle fracture controls electrode degradation. From electrochemical entropy measurements, we discovered that entropy

  1. The Science of Battery Degradation.

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, John P; Fenton, Kyle R [Sandia National Laboratories, Albuquerque, NM; El Gabaly Marquez, Farid; Harris, Charles Thomas [Sandia National Laboratories, Albuquerque, NM; Hayden, Carl C.; Hudak, Nicholas [Sandia National Laboratories, Albuquerque, NM; Jungjohann, Katherine Leigh [Sandia National Laboratories, Albuquerque, NM; Kliewer, Christopher Jesse; Leung, Kevin [Sandia National Laboratories, Albuquerque, NM; McDaniel, Anthony H.; Nagasubramanian, Ganesan [Sandia National Laboratories, Albuquerque, NM; Sugar, Joshua Daniel; Talin, Albert Alec; Tenney, Craig M [Sandia National Laboratories, Albuquerque, NM; Zavadil, Kevin R. [Sandia National Laboratories, Albuquerque, NM

    2015-01-01

    This report documents work that was performed under the Laboratory Directed Research and Development project, Science of Battery Degradation. The focus of this work was on the creation of new experimental and theoretical approaches to understand atomistic mechanisms of degradation in battery electrodes that result in loss of electrical energy storage capacity. Several unique approaches were developed during the course of the project, including the invention of a technique based on ultramicrotoming to cross-section commercial scale battery electrodes, the demonstration of scanning transmission x-ray microscopy (STXM) to probe lithium transport mechanisms within Li-ion battery electrodes, the creation of in-situ liquid cells to observe electrochemical reactions in real-time using both transmission electron microscopy (TEM) and STXM, the creation of an in-situ optical cell utilizing Raman spectroscopy and the application of the cell for analyzing redox flow batteries, the invention of an approach for performing ab initio simulation of electrochemical reactions under potential control and its application for the study of electrolyte degradation, and the development of an electrochemical entropy technique combined with x-ray based structural measurements for understanding origins of battery degradation. These approaches led to a number of scientific discoveries. Using STXM we learned that lithium iron phosphate battery cathodes display unexpected behavior during lithiation wherein lithium transport is controlled by nucleation of a lithiated phase, leading to high heterogeneity in lithium content at each particle and a surprising invariance of local current density with the overall electrode charging current. We discovered using in-situ transmission electron microscopy that there is a size limit to lithiation of silicon anode particles above which particle fracture controls electrode degradation. From electrochemical entropy measurements, we discovered that entropy

  2. International Ultraviolet Explorer (IUE) Battery History and Performance

    Science.gov (United States)

    Rao, Gopalskrishna M.; Tiller, Smith E.

    1999-01-01

    The "International Ultraviolet Explorer (IUE) Battery History and Performance" report provides the information on the cell/battery design, battery performance during the thirty eight (38) solar eclipse seasons and the end-of-life test data. It is noteworthy that IUE spacecraft was an in-house project and that the batteries were designed, fabricated and tested (Qualification and Acceptance) at the Goddard Space Flight Center. A detailed information is given on the cell and battery design criteria and the designs, on the Qualification and the Acceptance tests, and on the cell life cycling tests. The environmental, thermal, and vibration tests were performed on the batteries at the battery level as well as with the interface on the spacecraft. The telemetry data were acquired, analyzed, and trended for various parameters over the mission life. Rigorous and diligent battery management programs were developed and implemented from time to time to extend the mission life over eighteen plus years. Prior to the termination of spacecraft operation, special tests were conducted to check the battery switching operation, battery residual capacity, third electrode performance and battery impedance.

  3. Prognostics of Lithium-Ion Batteries Based on Battery Performance Analysis and Flexible Support Vector Regression

    Directory of Open Access Journals (Sweden)

    Shuai Wang

    2014-10-01

    Full Text Available Accurate prediction of the remaining useful life (RUL of lithium-ion batteries is important for battery management systems. Traditional empirical data-driven approaches for RUL prediction usually require multidimensional physical characteristics including the current, voltage, usage duration, battery temperature, and ambient temperature. From a capacity fading analysis of lithium-ion batteries, it is found that the energy efficiency and battery working temperature are closely related to the capacity degradation, which account for all performance metrics of lithium-ion batteries with regard to the RUL and the relationships between some performance metrics. Thus, we devise a non-iterative prediction model based on flexible support vector regression (F-SVR and an iterative multi-step prediction model based on support vector regression (SVR using the energy efficiency and battery working temperature as input physical characteristics. The experimental results show that the proposed prognostic models have high prediction accuracy by using fewer dimensions for the input data than the traditional empirical models.

  4. Membranes for Redox Flow Battery Applications

    Directory of Open Access Journals (Sweden)

    Maria Skyllas-Kazacos

    2012-06-01

    Full Text Available The need for large scale energy storage has become a priority to integrate renewable energy sources into the electricity grid. Redox flow batteries are considered the best option to store electricity from medium to large scale applications. However, the current high cost of redox flow batteries impedes the wide spread adoption of this technology. The membrane is a critical component of redox flow batteries as it determines the performance as well as the economic viability of the batteries. The membrane acts as a separator to prevent cross-mixing of the positive and negative electrolytes, while still allowing the transport of ions to complete the circuit during the passage of current. An ideal membrane should have high ionic conductivity, low water intake and excellent chemical and thermal stability as well as good ionic exchange capacity. Developing a low cost, chemically stable membrane for redox flow cell batteries has been a major focus for many groups around the world in recent years. This paper reviews the research work on membranes for redox flow batteries, in particular for the all-vanadium redox flow battery which has received the most attention.

  5. Membranes for redox flow battery applications.

    Science.gov (United States)

    Prifti, Helen; Parasuraman, Aishwarya; Winardi, Suminto; Lim, Tuti Mariana; Skyllas-Kazacos, Maria

    2012-06-19

    The need for large scale energy storage has become a priority to integrate renewable energy sources into the electricity grid. Redox flow batteries are considered the best option to store electricity from medium to large scale applications. However, the current high cost of redox flow batteries impedes the wide spread adoption of this technology. The membrane is a critical component of redox flow batteries as it determines the performance as well as the economic viability of the batteries. The membrane acts as a separator to prevent cross-mixing of the positive and negative electrolytes, while still allowing the transport of ions to complete the circuit during the passage of current. An ideal membrane should have high ionic conductivity, low water intake and excellent chemical and thermal stability as well as good ionic exchange capacity. Developing a low cost, chemically stable membrane for redox flow cell batteries has been a major focus for many groups around the world in recent years. This paper reviews the research work on membranes for redox flow batteries, in particular for the all-vanadium redox flow battery which has received the most attention.

  6. A Responsive Battery with Controlled Energy Release.

    Science.gov (United States)

    Wang, Xiaopeng; Gao, Jian; Cheng, Zhihua; Chen, Nan; Qu, Liangti

    2016-11-14

    A new type of responsive battery with the fascinating feature of pressure perceptibility has been developed, which can spontaneously, timely and reliably control the power outputs (e.g., current and voltage) in response to pressure changes. The device design is based on the structure of the Zn-air battery, in which graphene-coated sponge serves as pressure-sensitive air cathode that endows the whole system with the capability of self-controlled energy release. The responsive batteries exhibit superior battery performance with high open-circuit voltage (1.3 V), and competitive areal capacity of 1.25 mAh cm(-2) . This work presents an important move towards next-generation intelligent energy storage devices with energy management function.

  7. Recent advances in zinc-air batteries.

    Science.gov (United States)

    Li, Yanguang; Dai, Hongjie

    2014-08-07

    Zinc-air is a century-old battery technology but has attracted revived interest recently. With larger storage capacity at a fraction of the cost compared to lithium-ion, zinc-air batteries clearly represent one of the most viable future options to powering electric vehicles. However, some technical problems associated with them have yet to be resolved. In this review, we present the fundamentals, challenges and latest exciting advances related to zinc-air research. Detailed discussion will be organized around the individual components of the system - from zinc electrodes, electrolytes, and separators to air electrodes and oxygen electrocatalysts in sequential order for both primary and electrically/mechanically rechargeable types. The detrimental effect of CO2 on battery performance is also emphasized, and possible solutions summarized. Finally, other metal-air batteries are briefly overviewed and compared in favor of zinc-air.

  8. Nanoshell Encapsulated Li-ion Battery Anodes for Long Cycle Life Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A new high capacity rechargeable Li battery anode based on Li metal alloys protected by carbon nanoshells will be developed. A reversible Li-ion capacity exceeding...

  9. Bipolar batteries based on Ebonex ® technology

    Science.gov (United States)

    Loyns, A. C.; Hill, A.; Ellis, K. G.; Partington, T. J.; Hill, J. M.

    Continuing work by Atraverda on the production of a composite-laminate form of the Ebonex ® material, that can be cheaply formulated and manufactured to form substrate plates for bipolar lead-acid batteries, is described. Ebonex ® is the registered trade name of a range of titanium suboxide ceramic materials, typically Ti 4O 7 and Ti 5O 9, which combine electrical conductivity with high corrosion and oxidation resistance. Details of the structure of the composite, battery construction techniques and methods for filling and forming of batteries are discussed. In addition, lifetime and performance data obtained by Atraverda from laboratory bipolar lead-acid batteries and cells are presented. Battery production techniques for both conventional monopolar and bipolar batteries are reviewed. The findings indicate that substantial time and cost savings may be realised in the manufacture of bipolar batteries in comparison to conventional designs. This is due to the fewer processing steps required and more efficient formation. The results indicate that the use of Ebonex ® composite material as a bipolar substrate will provide lightweight and durable high-voltage lead-acid batteries suitable for a wide range of applications including advanced automotive, stationary power and portable equipment.

  10. On Uncertainty Quantification of Lithium-ion Batteries

    CERN Document Server

    Hadigol, Mohammad; Doostan, Alireza

    2015-01-01

    In this work, a stochastic, physics-based model for Lithium-ion batteries (LIBs) is presented in order to study the effects of model uncertainties on the cell capacity, voltage, and concentrations. To this end, the proposed uncertainty quantification (UQ) approach, based on sparse polynomial chaos expansions, relies on a small number of battery simulations. Within this UQ framework, the identification of most important uncertainty sources is achieved by performing a global sensitivity analysis via computing the so-called Sobol' indices. Such information aids in designing more efficient and targeted quality control procedures, which consequently may result in reducing the LIB production cost. An LiC$_6$/LiCoO$_2$ cell with 19 uncertain parameters discharged at 0.25C, 1C and 4C rates is considered to study the performance and accuracy of the proposed UQ approach. The results suggest that, for the considered cell, the battery discharge rate is a key factor affecting not only the performance variability of the ce...

  11. 基于RBF的指标规范值的水资源承载力评价模型%Evaluation Model of Carrying Capacity of Water Resources Represented with Normalized Indices Values Based on Radial Basis Function Neural Network

    Institute of Scientific and Technical Information of China (English)

    臧蕾; 刘伟; 李祚泳

    2012-01-01

    [Objective ] The aim was to study the assessment model of carrying capacity of water resources represented with normalized indices values based on radial basis function network ( RBF). [ Method] On the basis of the normalized transformation for indices, the basis function of model was universal for various indices and made representative calculation greatly simplified, as mean as normalized values of standards at all levels as the normalized values of each component of center vector for the basis functions in hidden nodes. [ Result] The RBF model optimized weight values by monkey king algorithm was applied to assess the carrying capacities of water resources in three districts of Changwu County of Shaanxi Province, the evaluation results were basically consistent with that of fuzzy assessment method. [ Conclusion] RBF model is simple and practical, and has universality and generality.%[目的]研究基于指标规范值的区域水资源承载力评价的径向基函数网络模型(RBF).[方法]在对指标进行规范变换的基础上,将指标各级标准规范值的平均值作为RBF的隐层节点基函数中心矢量各分量的规范值,因而基函数对各指标具有普适性,使基函数的表示和计算大为简化.[结果]将猴王算法优化网络权值得到的RBF模型应用于陕西省长武县3个区域水资源承载力的评价,其评价结果与模糊综合评价结果基本一致.[结论]RBF模型具有简单、实用的特点,具有普适性和通用性.

  12. 基于RBF的指标规范值的水资源承载力评价模型(英文)%Evaluation Model of Carrying Capacity of Water Resources Based on Standardized Indices of Radial Basis Function

    Institute of Scientific and Technical Information of China (English)

    臧蕾; 李祚泳; 刘伟

    2012-01-01

    [目的]研究基于指标规范值的区域水资源承载力评价的径向基函数网络模型(RBF)。[方法]在对指标进行规范变换的基础上,将指标各级标准规范值的平均值作为RBF的隐层节点基函数中心矢量各分量的规范值,因而基函数对各指标具有普适性,使基函数的表示和计算大为简化。[结果]将猴王算法优化网络权值得到的RBF模型应用于陕西省长武县3个区域水资源承载力的评价,其评价结果与模糊综合评价结果基本一致。[结论]RBF模型具有简单、实用的特点,具有普适性和通用性。%[Objective] The aim was to study on RBF model about evaluation on carrying capacity of water resources based on standardized indices. [Method] The indices were transformed and the averages of standard values in different levels were taken as the standardized values of components of central vectors for basic functions of RBF hidden nodes. Hence, the basic functions are suitable for most indices, simplifying expression and calculation of basic functions. [Result] RBF models concluded through Monkey-king Genetic Algorithm with weights optimization are used in evaluation on water carrying capacity in three districts in Changwu County in Shaanxi Province, which were in consistent with that through fuzzy evaluation. [Conclusion] RBF, simple and practical, is universal and popular.

  13. A design optimization methodology for Li+ batteries

    Science.gov (United States)

    Golmon, Stephanie; Maute, Kurt; Dunn, Martin L.

    2014-05-01

    Design optimization for functionally graded battery electrodes is shown to improve the usable energy capacity of Li batteries predicted by computational simulations and numerically optimizing the electrode porosities and particle radii. A multi-scale battery model which accounts for nonlinear transient transport processes, electrochemical reactions, and mechanical deformations is used to predict the usable energy storage capacity of the battery over a range of discharge rates. A multi-objective formulation of the design problem is introduced to maximize the usable capacity over a range of discharge rates while limiting the mechanical stresses. The optimization problem is solved via a gradient based optimization. A LiMn2O4 cathode is simulated with a PEO-LiCF3SO3 electrolyte and both a Li Foil (half cell) and LiC6 anode. Studies were performed on both half and full cell configurations resulting in distinctly different optimal electrode designs. The numerical results show that the highest rate discharge drives the simulations and the optimal designs are dominated by Li+ transport rates. The results also suggest that spatially varying electrode porosities and active particle sizes provides an efficient approach to improve the power-to-energy density of Li+ batteries. For the half cell configuration, the optimal design improves the discharge capacity by 29% while for the full cell the discharge capacity was improved 61% relative to an initial design with a uniform electrode structure. Most of the improvement in capacity was due to the spatially varying porosity, with up to 5% of the gains attributed to the particle radii design variables.

  14. Multilayer Approach for Advanced Hybrid Lithium Battery

    KAUST Repository

    Ming, Jun

    2016-06-06

    Conventional intercalated rechargeable batteries have shown their capacity limit, and the development of an alternative battery system with higher capacity is strongly needed for sustainable electrical vehicles and hand-held devices. Herein, we introduce a feasible and scalable multilayer approach to fabricate a promising hybrid lithium battery with superior capacity and multivoltage plateaus. A sulfur-rich electrode (90 wt % S) is covered by a dual layer of graphite/Li4Ti5O12, where the active materials S and Li4Ti5O12 can both take part in redox reactions and thus deliver a high capacity of 572 mAh gcathode -1 (vs the total mass of electrode) or 1866 mAh gs -1 (vs the mass of sulfur) at 0.1C (with the definition of 1C = 1675 mA gs -1). The battery shows unique voltage platforms at 2.35 and 2.1 V, contributed from S, and 1.55 V from Li4Ti5O12. A high rate capability of 566 mAh gcathode -1 at 0.25C and 376 mAh gcathode -1 at 1C with durable cycle ability over 100 cycles can be achieved. Operando Raman and electron microscope analysis confirm that the graphite/Li4Ti5O12 layer slows the dissolution/migration of polysulfides, thereby giving rise to a higher sulfur utilization and a slower capacity decay. This advanced hybrid battery with a multilayer concept for marrying different voltage plateaus from various electrode materials opens a way of providing tunable capacity and multiple voltage platforms for energy device applications. © 2016 American Chemical Society.

  15. Pre-Study for a Battery Storage for a Kinetic Energy Storage System

    OpenAIRE

    2015-01-01

    This bachelor thesis investigates what kind of battery system that is suitable for an electric driveline equipped with a mechanical fly wheel, focusing on a battery with high specific energy capacity. Basic battery theory such as the principle of an electrochemical cell, limitations and C-rate is explained as well as the different major battery systems that are available. Primary and secondary cells are discussed, including the major secondary chemistries such as lead acid, nickel cadmium (Ni...

  16. A Comparative Study of Lithium Ion to Lead Acid Batteries for use in UPS Applications

    DEFF Research Database (Denmark)

    Stan, Ana-Irina; Swierczynski, Maciej Jozef; Stroe, Daniel Ioan

    2014-01-01

    Uninterruptible power supply (UPS) systems have incorporated in their structure an electrochemical battery which allows for smooth power supply when a power failure occurs. In general, UPS systems are based on lead acid batteries; mainly a valve regulated lead acid (VRLA) battery. Recently, lithium......, lithium iron phosphate (LFP) and lithium titanate oxide (LTO) were compared with lead acid batteries, in terms of their basics characteristics (e.g. capacity, internal resistance) and their dependence on the operating conditions....

  17. System dynamic model and charging control of lead-acid battery for stand-alone solar PV system

    KAUST Repository

    Huang, B.J.

    2010-05-01

    The lead-acid battery which is widely used in stand-alone solar system is easily damaged by a poor charging control which causes overcharging. The battery charging control is thus usually designed to stop charging after the overcharge point. This will reduce the storage energy capacity and reduce the service time in electricity supply. The design of charging control system however requires a good understanding of the system dynamic behaviour of the battery first. In the present study, a first-order system dynamics model of lead-acid battery at different operating points near the overcharge voltage was derived experimentally, from which a charging control system based on PI algorithm was developed using PWM charging technique. The feedback control system for battery charging after the overcharge point (14 V) was designed to compromise between the set-point response and the disturbance rejection. The experimental results show that the control system can suppress the battery voltage overshoot within 0.1 V when the solar irradiation is suddenly changed from 337 to 843 W/m2. A long-term outdoor test for a solar LED lighting system shows that the battery voltage never exceeded 14.1 V for the set point 14 V and the control system can prevent the battery from overcharging. The test result also indicates that the control system is able to increase the charged energy by 78%, as compared to the case that the charging stops after the overcharge point (14 V). © 2010 Elsevier Ltd. All rights reserved.

  18. Extraction of battery parameters of the equivalent circuit model using a multi-objective genetic algorithm

    Science.gov (United States)

    Brand, Jonathan; Zhang, Zheming; Agarwal, Ramesh K.

    2014-02-01

    A simple but reasonably accurate battery model is required for simulating the performance of electrical systems that employ a battery for example an electric vehicle, as well as for investigating their potential as an energy storage device. In this paper, a relatively simple equivalent circuit based model is employed for modeling the performance of a battery. A computer code utilizing a multi-objective genetic algorithm is developed for the purpose of extracting the battery performance parameters. The code is applied to several existing industrial batteries as well as to two recently proposed high performance batteries which are currently in early research and development stage. The results demonstrate that with the optimally extracted performance parameters, the equivalent circuit based battery model can accurately predict the performance of various batteries of different sizes, capacities, and materials. Several test cases demonstrate that the multi-objective genetic algorithm can serve as a robust and reliable tool for extracting the battery performance parameters.

  19. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 1: Cell embedding method and performance

    Science.gov (United States)

    Raghavan, Ajay; Kiesel, Peter; Sommer, Lars Wilko; Schwartz, Julian; Lochbaum, Alexander; Hegyi, Alex; Schuh, Andreas; Arakaki, Kyle; Saha, Bhaskar; Ganguli, Anurag; Kim, Kyung Ho; Kim, ChaeAh; Hah, Hoe Jin; Kim, SeokKoo; Hwang, Gyu-Ok; Chung, Geun-Chang; Choi, Bokkyu; Alamgir, Mohamed

    2017-02-01

    A key challenge hindering the mass adoption of Lithium-ion and other next-gen chemistries in advanced battery applications such as hybrid/electric vehicles (xEVs) has been management of their functional performance for more effective battery utilization and control over their life. Contemporary battery management systems (BMS) reliant on monitoring external parameters such as voltage and current to ensure safe battery operation with the required performance usually result in overdesign and inefficient use of capacity. More informative embedded sensors are desirable for internal cell state monitoring, which could provide accurate state-of-charge (SOC) and state-of-health (SOH) estimates and early failure indicators. Here we present a promising new embedded sensing option developed by our team for cell monitoring, fiber-optic sensors. High-performance large-format pouch cells with embedded fiber-optic sensors were fabricated. The first of this two-part paper focuses on the embedding method details and performance of these cells. The seal integrity, capacity retention, cycle life, compatibility with existing module designs, and mass-volume cost estimates indicate their suitability for xEV and other advanced battery applications. The second part of the paper focuses on the internal strain and temperature signals obtained from these sensors under various conditions and their utility for high-accuracy cell state estimation algorithms.

  20. A Bayesian nonlinear random effects model for identification of defective batteries from lot samples

    Science.gov (United States)

    Cripps, Edward; Pecht, Michael

    2017-02-01

    Numerous materials and processes go into the manufacture of lithium-ion batteries, resulting in variations across batteries' capacity fade measurements. Accounting for this variability is essential when determining whether batteries are performing satisfactorily. Motivated by a real manufacturing problem, this article presents an approach to assess whether lithium-ion batteries from a production lot are not representative of a healthy population of batteries from earlier production lots, and to determine, based on capacity fade data, the earliest stage (in terms of cycles) that battery anomalies can be identified. The approach involves the use of a double exponential function to describe nonlinear capacity fade data. To capture the variability of repeated measurements on a number of individual batteries, the double exponential function is then embedded as the individual batteries' trajectories in a Bayesian random effects model. The model allows for probabilistic predictions of capacity fading not only at the underlying mean process level but also at the individual battery level. The results show good predictive coverage for individual batteries and demonstrate that, for our data, non-healthy lithium-ion batteries can be identified in as few as 50 cycles.

  1. Electrical performance and chemical composition studies on original and falsified Ni-MH batteries

    Directory of Open Access Journals (Sweden)

    Alexandre Urbano

    2010-12-01

    Full Text Available We show in this paper that falsifications on technological products have hit even rechargeable nickel metal hydride batteries (Ni-MH. The electrical performance and the electrode chemical composition were investigated for authentic and falsified AAA Ni-MH batteries, purchased in the Londrina market, Paraná State. Battery charge capacities were measured at 0,2 C discharge rate and average electrical power was measured at 0.2 and 0.8 C discharge rate. To perform chemical composition analysis, the batteries were vacuum dismantled and their electrodes were characterized by Energy Dispersive X-Ray Fluorescence (EDXRF and X-Ray Diffraction (XRD techniques. It was observed that the charge capacities for the authentic and falsified batteries were 920 and 154 mAh, respectively. The average electrical powers were 210 mW for authentic and 41 mW for falsified batteries. The cathode chemical composition was nickel hydroxide, (Ni(OH2, for both kinds of batteries. However, the anodes of these batteries were not composed by the same materials. The alloy LaNi5 was identified as the electroactive compound in the anode of the authentic battery, while cadmium hydroxide compound, (Cd (OH2, was identified in the falsified battery anode. The authentic battery therefore presented six times more charge capacity, five times more power at 0.2 C discharge rate and 6 times at 0.8 C than the falsified battery, and are yet less dangerous to environment due cadmium absence.

  2. Liquid cathode primary batteries

    Science.gov (United States)

    Schlaikjer, Carl R.

    1985-03-01

    Lithium/liquid cathode/carbon primary batteries offer from 3 to 6 times the volumetric energy density of zinc/alkaline manganese cells, improved stability during elevated temperature storage, satisfactory operation at temperatures from -40 to +150 °C, and efficient discharge at moderate rates. he lithium/sulfur dioxide cell is the most efficient system at temperatures below 0 °C. Although chemical reactions leading to electrolyte degradation and lithium corrosion are known, the rates of these reactions are slow. While the normal temperature cell reaction produces lithium dithionite, discharge at 60 °C leads to a reduction in capacity due to side reactions involving sulfur dioxide and discharge intermediates. Lithium/thionyl chloride and lithium/sulfuryl chloride cells have the highest practical gravimetric and volumetric energy densities when compared with aqueous and most other nonaqueous systems. For thionyl chloride, discharge proceeds through a series of intermediates to sulfur, sulfur dioxide and lithium chloride. Catalysis, leading to improved rate capability and capacity, has been achieved. The causes of rapid reactions leading to thermal runaway are thought to be chemical in nature. Lithium/sulfuryl chloride cells, which produce sulfur dioxide and lithium chloride on discharge, experience more extensive anode corrosion. An inorganic cosolvent and suitable salt are capable of alleviating this corrosion. Calcium/oxyhalide cells have been studied because of their promise of increased safety without substantial sacrifice of energy density relative to lithium cells. Anode corrosion, particularly during discharge, has delayed practical development.

  3. Liquid cathode primary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Schlaikjer, C.R.

    1985-01-15

    Lithium/liquid cathode/carbon primary batteries offer from 3 to 6 times the volumetric energy density of zinc/alkaline manganese cells, improved stability during elevated temperature storage, satisfactory operation at temperatures from -40 to +150/sup 0/C, and efficient discharge at moderate rates. The lithium/sulfur dioxide cell is the most efficient system at temperatures below 0/sup 0/C. Although chemical reactions leading to electrolyte degradation and lithium corrosion are known, the rates of these reactions are slow. While the normal temperature cell reaction produces lithium dithionite, discharge at 60/sup 0/C leads to a reduction in capacity due to side reactions involving sulfur dioxide and discharge intermediates. Lithium/thionyl chloride and lithium/sulfuryl chloride cells have the highest practical gravimetric and volumetric energy densities when compared with aqueous and most other nonaqueous systems. For thionyl chloride, discharge proceeds through a series of intermediates to sulfur, sulfur dioxide and lithium chloride. Catalysis, leading to improved rate capability and capacity, has been achieved. The causes of rapid reactions leading to thermal runaway are thought to be chemical in nature. Lithium/sulfuryl chloride cells, which produce sulfur dioxide and lithium chloride on discharge, experience more extensive anode corrosion. An inorganic cosolvent and suitable salt are capable of alleviating this corrosion. Calcium/oxyhalide cells have been studied because of their promise of increased safety without substantial sacrifice of energy density relative to lithium cells. Anode corrosion, particularly during discharge, has delayed practical development.

  4. Flexible Grouping for Enhanced Energy Utilization Efficiency in Battery Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Weiping Diao

    2016-06-01

    Full Text Available As a critical subsystem in electric vehicles and smart grids, a battery energy storage system plays an essential role in enhancement of reliable operation and system performance. In such applications, a battery energy storage system is required to provide high energy utilization efficiency, as well as reliability. However, capacity inconsistency of batteries affects energy utilization efficiency dramatically; and the situation becomes more severe after hundreds of cycles because battery capacities change randomly due to non-uniform aging. Capacity mismatch can be solved by decomposing a cluster of batteries in series into several low voltage battery packs. This paper introduces a new analysis method to optimize energy utilization efficiency by finding the best number of batteries in a pack, based on capacity distribution, order statistics, central limit theorem, and converter efficiency. Considering both battery energy utilization and power electronics efficiency, it establishes that there is a maximum energy utilization efficiency under a given capacity distribution among a certain number of batteries, which provides a basic analysis for system-level optimization of a battery system throughout its life cycle. Quantitative analysis results based on aging data are illustrated, and a prototype of flexible energy storage systems is built to verify this analysis.

  5. Results of cycling with battery charging management; Resultats de cyclage avec gestion de charge au niveau batterie

    Energy Technology Data Exchange (ETDEWEB)

    Verniolle, J.; Fernandez, C. [European Space Research and Technology Centre, Noordwijk (Netherlands)

    1996-12-31

    In order to investigate the charging mode of an in-series assembly of lithium-carbon battery cells, a test has been performed on 5 commercial cells (18650) of 0.95 Ah nominal capacity. Results show that it is possible to cycle the cells at 80% of their output capacities during more than 2000 cycles. The management of the battery consists in maintaining a constant battery voltage as soon as a cell reaches its limit voltage during constant current charging. The initial dispersion of cells has been maintained practically constant during the cycling and the charge state of all cells has decreased progressively. (J.S.)

  6. Advances in understanding mechanisms underpinning lithium-air batteries

    Science.gov (United States)

    Aurbach, Doron; McCloskey, Bryan D.; Nazar, Linda F.; Bruce, Peter G.

    2016-09-01

    The rechargeable lithium-air battery has the highest theoretical specific energy of any rechargeable battery and could transform energy storage if a practical device could be realized. At the fundamental level, little was known about the reactions and processes that take place in the battery, representing a significant barrier to progress. Here, we review recent advances in understanding the chemistry and electrochemistry that govern the operation of the lithium-air battery, especially the reactions at the cathode. The mechanisms of O2 reduction to Li2O2 on discharge and the reverse process on charge are discussed in detail, as are their consequences for the rate and capacity of the battery. The various parasitic reactions involving the cathode and electrolyte during discharge and charge are also considered. We also provide views on understanding the stability of the cathode and electrolyte and examine design principles for better lithium-air batteries.

  7. Surface-Coating Regulated Lithiation Kinetics and Degradation in Silicon Nanowires for Lithium Ion Battery

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Langli; Yang, Hui; Yan, Pengfei; Travis, Jonathan J.; Lee, Younghee; Liu, Nian; Piper, Daniela M.; Lee, Se-Hee; Zhao, Peng; George, Steven M.; Zhang, Jiguang; Cui, Yi; Zhang, Sulin; Ban, Chunmei; Wang, Chong M.

    2015-05-26

    Silicon (Si)-based materials hold promise as the next-generation anodes for high-energy lithium (Li)-ion batteries. Enormous research efforts have been undertaken to mitigate the chemo-mechanical failure due to the large volume changes of Si during lithiation and delithiation cycles. It has been found nanostructured Si coated with carbon or other functional materials can lead to significantly improved cyclability. However, the underlying mechanism and comparative performance of different coatings remain poorly understood. Herein, using in situ transmission electron microscopy (TEM) through a nanoscale half-cell battery, in combination with chemo-mechanical simulation, we explored the effect of thin (~5 nm) alucone and Al2O3 coatings on the lithiation kinetics of Si nanowires (SiNWs). We observed that the alucone coating leads to a “V-shaped” lithiation front of the SiNWs , while the Al2O3 coating yields an “H-shaped” lithiation front. These observations indicate that the difference between the Li surface diffusivity and bulk diffusivity of the coatings dictates lithiation induced morphological evolution in the nanowires. Our experiments also indicate that the reaction rate in the coating layer can be the limiting step for lithiation and therefore critically influences the rate performance of the battery. Further, the failure mechanism of the Al2O3 coated SiNWs was also explored. Our studies shed light on the design of high capacity, high rate and long cycle life Li-ion batteries.

  8. Surface-coating regulated lithiation kinetics and degradation in silicon nanowires for lithium ion battery.

    Science.gov (United States)

    Luo, Langli; Yang, Hui; Yan, Pengfei; Travis, Jonathan J; Lee, Younghee; Liu, Nian; Piper, Daniela Molina; Lee, Se-Hee; Zhao, Peng; George, Steven M; Zhang, Ji-Guang; Cui, Yi; Zhang, Sulin; Ban, Chunmei; Wang, Chong-Min

    2015-05-26

    Silicon (Si)-based materials hold promise as the next-generation anodes for high-energy lithium (Li)-ion batteries. Enormous research efforts have been undertaken to mitigate the chemo-mechanical failure due to the large volume changes of Si during lithiation and delithiation cycles. It has been found that nanostructured Si coated with carbon or other functional materials can lead to significantly improved cyclability. However, the underlying mechanism and comparative performance of different coatings remain poorly understood. Herein, using in situ transmission electron microscopy (TEM) through a nanoscale half-cell battery, in combination with chemo-mechanical simulation, we explored the effect of thin (∼5 nm) alucone and Al2O3 coatings on the lithiation kinetics of Si nanowires (SiNWs). We observed that the alucone coating leads to a "V-shaped" lithiation front of the SiNWs, while the Al2O3 coating yields an "H-shaped" lithiation front. These observations indicate that the difference between the Li surface diffusivity and bulk lithiation rate of the coatings dictates lithiation induced morphological evolution in the nanowires. Our experiments also indicate that the reaction rate in the coating layer can be the limiting step for lithiation and therefore critically influences the rate performance of the battery. Further, the failure mechanism of the Al2O3 coated SiNWs was also explored. Our studies shed light on the design of high capacity, high rate and long cycle life Li-ion batteries.

  9. Ionene membrane battery separator

    Science.gov (United States)

    Moacanin, J.; Tom, H. Y.

    1969-01-01

    Ionic transport characteristics of ionenes, insoluble membranes from soluble polyelectrolyte compositions, are studied for possible application in a battery separator. Effectiveness of the thin film of separator membrane essentially determines battery lifetime.

  10. Two-dimensional layered compound based anode materials for lithium-ion batteries and sodium-ion batteries.

    Science.gov (United States)

    Xie, Xiuqiang; Wang, Shijian; Kretschmer, Katja; Wang, Guoxiu

    2017-03-20

    Rechargeable batteries, such as lithium-ion and sodium-ion batteries, have been considered as promising energy conversion and storage devices with applications ranging from small portable electronics, medium-sized power sources for electromobility, to large-scale grid energy storage systems. Wide implementations of these rechargeable batteries require the development of electrode materials that can provide higher storage capacities than current commercial battery systems. Within this greater context, this review will present recent progresses in the development of the 2D material as anode materials for battery applications represented by studies conducted on graphene, molybdenum disulfide, and MXenes. This review will also discuss remaining challenges and future perspectives of 2D materials in regards to a full utilization of their unique properties and interactions with other battery components.

  11. Rechargeable Room-Temperature Na-CO2 Batteries.

    Science.gov (United States)

    Hu, Xiaofei; Sun, Jianchao; Li, Zifan; Zhao, Qing; Chen, Chengcheng; Chen, Jun

    2016-05-23

    Developing rechargeable Na-CO2 batteries is significant for energy conversion and utilization of CO2 . However, the reported batteries in pure CO2 atmosphere are non-rechargeable with limited discharge capacity of 200 mAh g(-1) . Herein, we realized the rechargeability of a Na-CO2 battery, with the proposed and demonstrated reversible reaction of 3 CO2 +4 Na↔2 Na2 CO3 +C. The battery consists of a Na anode, an ether-based electrolyte, and a designed cathode with electrolyte-treated multi-wall carbon nanotubes, and shows reversible capacity of 60000 mAh g(-1) at 1 A g(-1) (≈1000 Wh kg(-1) ) and runs for 200 cycles with controlled capacity of 2000 mAh g(-1) at charge voltage CO2 .

  12. Prospects and Limits of Energy Storage in Batteries.

    Science.gov (United States)

    Abraham, K M

    2015-03-05

    Energy densities of Li ion batteries, limited by the capacities of cathode materials, must increase by a factor of 2 or more to give all-electric automobiles a 300 mile driving range on a single charge. Battery chemical couples with very low equivalent weights have to be sought to produce such batteries. Advanced Li ion batteries may not be able to meet this challenge in the near term. The state-of-the-art of Li ion batteries is discussed, and the challenges of developing ultrahigh energy density rechargeable batteries are identified. Examples of ultrahigh energy density battery chemical couples include Li/O2, Li/S, Li/metal halide, and Li/metal oxide systems. Future efforts are also expected to involve all-solid-state batteries with performance similar to their liquid electrolyte counterparts, biodegradable batteries to address environmental challenges, and low-cost long cycle-life batteries for large-scale energy storage. Ultimately, energy densities of electrochemical energy storage systems are limited by chemistry constraints.

  13. Rechargeable batteries applications handbook

    CERN Document Server

    1998-01-01

    Represents the first widely available compendium of the information needed by those design professionals responsible for using rechargeable batteries. This handbook introduces the most common forms of rechargeable batteries, including their history, the basic chemistry that governs their operation, and common design approaches. The introduction also exposes reader to common battery design terms and concepts.Two sections of the handbook provide performance information on two principal types of rechargeable batteries commonly found in consumer and industrial products: sealed nickel-cad

  14. Battery systems engineering

    CERN Document Server

    Rahn, Christopher D

    2012-01-01

    A complete all-in-one reference on the important interdisciplinary topic of Battery Systems Engineering Focusing on the interdisciplinary area of battery systems engineering, this book provides the background, models, solution techniques, and systems theory that are necessary for the development of advanced battery management systems. It covers the topic from the perspective of basic electrochemistry as well as systems engineering topics and provides a basis for battery modeling for system engineering of electric and hybrid electric vehicle platforms. This original

  15. Core/Double-Shell Type Gradient Ni-Rich LiNi0.76Co0.10Mn0.14O2 with High Capacity and Long Cycle Life for Lithium-Ion Batteries.

    Science.gov (United States)

    Liao, Jin-Yun; Oh, Seung-Min; Manthiram, Arumugam

    2016-09-21

    A concentration-gradient Ni-rich LiNi0.76Co0.1Mn0.14O2 layered oxide cathode has been developed by firing a core/double-shell [Ni0.9Co0.1]0.4[Ni0.7Co0.1Mn0.2]0.5[Ni0.5Co0.1Mn0.4]0.1(OH)2 hydroxide precursor with LiOH·H2O, where the Ni-rich interior (core) delivers high capacity and the Mn-rich exterior (shells) provides a protection layer to improve the cyclability and thermal stability for the Ni-rich oxide cathodes. The content of nickel and manganese, respectively, decreases and increases gradually from the center to the surface of each gradient sample particle, offering a high capacity with enhanced surface/structural stability and cyclability. The obtained concentration-gradient oxide cathode exhibits high-energy density with long cycle life in both half and full cells. With high-loading electrode half cells, the concentration-gradient sample delivers 3.3 mA h cm(-2) with 99% retention after 100 cycles. The material morphology, phase, and gradient structure are also maintained after cycling. The pouch-type full cells fabricated with a graphite anode delivers high capacity with 89% capacity retention after 500 cycles at C/3 rate.

  16. A Combined State of Charge Estimation Method for Lithium-Ion Batteries Used in a Wide Ambient Temperature Range

    Directory of Open Access Journals (Sweden)

    Fei Feng

    2014-05-01

    Full Text Available Ambient temperature is a significant factor that influences the characteristics of lithium-ion batteries, which can produce adverse effects on state of charge (SOC estimation. In this paper, an integrated SOC algorithm that combines an advanced ampere-hour counting (Adv Ah method and multistate open-circuit voltage (multi OCV method, denoted as “Adv Ah + multi OCV”, is proposed. Ah counting is a simple and general method for estimating SOC. However, the available capacity and coulombic efficiency in this method are influenced by the operating states of batteries, such as temperature and current, thereby causing SOC estimation errors. To address this problem, an enhanced Ah counting method that can alter the available capacity and coulombic efficiency according to temperature is proposed during the SOC calculation. Moreover, the battery SOCs between different temperatures can be mutually converted in accordance with the capacity loss. To compensate for the accumulating errors in Ah counting caused by the low precision of current sensors and lack of accurate initial SOC, the OCV method is used for calibration and as a complement. Given the variation of available capacities at different temperatures, rated/non-rated OCV–SOCs are established to estimate the initial SOCs in accordance with the Ah counting SOCs. Two dynamic tests, namely, constant- and alternated-temperature tests, are employed to verify the combined method at different temperatures. The results indicate that our method can provide effective and accurate SOC estimation at different ambient temperatures.

  17. Morphology control of lithium peroxide using Pd3Co as an additive in aprotic Li-O2 batteries

    Science.gov (United States)

    Cho, Sung Man; Yom, Jee Ho; Hwang, Sun Woo; Seong, Il Won; Kim, Jiwoong; Cho, Sung Ho; Yoon, Woo Young

    2017-02-01

    During discharge in aprotic Li-O2 batteries, lithium peroxide (Li2O2) can be formed by a surface- or solution-mediated route. In the surface-mediated process, a Li2O2 film is formed electrochemically on the cathode surface, leading to low capacity and rate capability. In contrast, in high donor or acceptor number electrolyte systems, Li2O2 toroids are formed by solution-mediated growth through a disproportionation reaction, resulting in high capacity and rate capability. However, during charging, high donor or acceptor number solvents cause poor rechargeability because of the high crystallinity of Li2O2 toroids and byproduct formation. Therefore, controlling the size of Li2O2 in a solution-mediated discharge process is the key to the development of Li-O2 batteries with high capacity and good rechargeability. We demonstrate the application of Pd3Co nanoparticles to enhance the rechargeability of a Li-O2 cell in a solution-mediated process. Scanning electron microscopy and X-ray diffraction studies indicate that the Li2O2 particles formed during discharge are small and the decomposition of the reaction products is reversible. A cell fabricated with Pd3Co nanoparticles exhibits a lower overpotential than the one without the nanoparticles. The additive may provide nucleation sites for Li2O2 particles, leading to enhanced rechargeability and appropriate capacity in a solution-mediated process for Li-O2 batteries.

  18. Sustainable Sulfur-rich Copolymer/Graphene Composite as Lithium-Sulfur Battery Cathode with Excellent Electrochemical Performance

    Science.gov (United States)

    Ghosh, Arnab; Shukla, Swapnil; Khosla, Gaganpreet Singh; Lochab, Bimlesh; Mitra, Sagar

    2016-04-01

    A sulfur-rich copolymer, poly(S-r-C-a) has been synthesized via a sustainable route, showing the utility of two major industrial wastes- elemental sulfur (petroleum waste) and cardanol (agro waste), to explore its potential as cathode material for Li-S batteries. The sulfur-rich copolymer exhibited a reduction in the active material dissolution into the electrolyte and a low self-discharge rate behavior during the rest time compared to an elemental sulfur cathode, indicating the chemical confinement of sulfur units. The presence of organosulfur moieties in copolymer suppress the irreversible deposition of end-discharge products on electrode surfaces and thus improve the electrochemical performances of Li-S batteries. This sulfur copolymer offered a reversible capacity of 892 mA h g‑1 at 2nd cycle and maintained the capacity of 528 mA h g‑1 after 50 cycles at 200 mA g‑1. Reduced graphene oxide (rGO) prepared via a sustainable route was used as a conductive filler to extract the better electrochemical performances from this sulfur copolymer. Such sustainable origin batteries prepared via economically viable showed an improved specific capacity of ~975 mA h g‑1 after 100 cycles at 200 mA g‑1 current rate with capacity fading of 0.15% per cycle and maintained a stable performance over 500 cycles at 2000 mA g‑1.

  19. Electric Vehicle Battery Challenge

    Science.gov (United States)

    Roman, Harry T.

    2014-01-01

    A serious drawback to electric vehicles [batteries only] is the idle time needed to recharge their batteries. In this challenge, students can develop ideas and concepts for battery change-out at automotive service stations. Such a capability would extend the range of electric vehicles.

  20. Battery charging system

    Energy Technology Data Exchange (ETDEWEB)

    Carollo, J.A.; Kalinsky, W.A.

    1984-02-21

    A battery charger utilizes three basic modes of operation that includes a maintenance mode, a rapid charge mode and time controlled limited charging mode. The device utilizes feedback from the battery being charged of voltage, current and temperature to determine the mode of operation and the time period during which the battery is being charged.

  1. Environmental impact assessment and end-of-life treatment policy analysis for Li-ion batteries and Ni-MH batteries.

    Science.gov (United States)

    Yu, Yajuan; Chen, Bo; Huang, Kai; Wang, Xiang; Wang, Dong

    2014-03-18

    Based on Life Cycle Assessment (LCA) and Eco-indicator 99 method, a LCA model was applied to conduct environmental impact and end-of-life treatment policy analysis for secondary batteries. This model evaluated the cycle, recycle and waste treatment stages of secondary batteries. Nickel-Metal Hydride (Ni-MH) batteries and Lithium ion (Li-ion) batteries were chosen as the typical secondary batteries in this study. Through this research, the following results were found: (1) A basic number of cycles should be defined. A minimum cycle number of 200 would result in an obvious decline of environmental loads for both battery types. Batteries with high energy density and long life expectancy have small environmental loads. Products and technology that help increase energy density and life expectancy should be encouraged. (2) Secondary batteries should be sorted out from municipal garbage. Meanwhile, different types of discarded batteries should be treated separately under policies and regulations. (3) The incineration rate has obvious impact on the Eco-indicator points of Nickel-Metal Hydride (Ni-MH) batteries. The influence of recycle rate on Lithium ion (Li-ion) batteries is more obvious. These findings indicate that recycling is the most promising direction for reducing secondary batteries' environmental loads. The model proposed here can be used to evaluate environmental loads of other secondary batteries and it can be useful for proposing policies and countermeasures to reduce the environmental impact of secondary batteries.

  2. Lithium-Air Batteries with Hybrid Electrolytes.

    Science.gov (United States)

    He, Ping; Zhang, Tao; Jiang, Jie; Zhou, Haoshen

    2016-04-07

    During the past decade, Li-air batteries with hybrid electrolytes have attracted a great deal of attention because of their exceptionally high capacity. Introducing aqueous solutions and ceramic lithium superionic conductors to Li-air batteries can circumvent some of the drawbacks of conventional Li-O2 batteries such as decomposition of organic electrolytes, corrosion of Li metal from humidity, and insoluble discharge product blocking the air electrode. The performance of this smart design battery depends essentially on the property and structure of the cell components (i.e., hybrid electrolyte, Li anode, and air cathode). In recent years, extensive efforts toward aqueous electrolyte-based Li-air batteries have been dedicated to developing the high catalytic activity of the cathode as well as enhancing the conductivity and stability of the hybrid electrolyte. Herein, the progress of all aspects of Li-air batteries with hybrid electrolytes is reviewed. Moreover, some suggestions and concepts for tailored design that are expected to promote research in this field are provided.

  3. Single Switched Capacitor Battery Balancing System Enhancements

    Directory of Open Access Journals (Sweden)

    Joeri van Mierlo

    2013-04-01

    Full Text Available Battery management systems (BMS are a key element in electric vehicle energy storage systems. The BMS performs several functions concerning to the battery system, its key task being balancing the battery cells. Battery cell unbalancing hampers electric vehicles’ performance, with differing individual cell voltages decreasing the battery pack capacity and cell lifetime, leading to the eventual failure of the total battery system. Quite a lot of cell balancing topologies have been proposed, such as shunt resistor, shuttling capacitor, inductor/transformer based and DC energy converters. The shuttling capacitor balancing systems in particular have not been subject to much research efforts however, due to their perceived low balancing speed and high cost. This paper tries to fill this gap by briefly discussing the shuttling capacitor cell balancing topologies, focusing on the single switched capacitor (SSC cell balancing and proposing a novel procedure to improve the SSC balancing system performance. This leads to a new control strategy for the SSC system that can decrease the balancing system size, cost, balancing time and that can improve the SSC balancing system efficiency.

  4. Li-Ion Batteries for Forensic Neutron Dosimetry

    Science.gov (United States)

    2016-03-01

    2 s-1 for the radiation generated is provided. γ indicates a gamma -ray of the specified energy, while β indicates beta particles with the...FNI at UMass is a vessel placed next to the research reactor core, where the vessel is lined with shielding material to attenuate gammas and slow...batteries on the periphery partially shield interior batteries, leading to a higher activity for the bottom battery (LiMnO2-1) compared with the other

  5. Confession of a Magnesium Battery.

    Science.gov (United States)

    Bucur, Claudiu B; Gregory, Thomas; Oliver, Allen G; Muldoon, John

    2015-09-17

    Magnesium is an ideal metal anode that has nearly double the volumetric capacity of lithium metal with a very negative reduction potential of -2.37 vs SHE. A significant advantage of magnesium is the apparent lack of dendrite formation during charging, which overcomes major safety and performance challenges encountered with using lithium metal anodes. Here, we highlight major recent advances in nonaqueous Mg electrochemistry, notably the development of electrolytes and cathodes, and discuss some of the challenges that must be overcome to realize a practical magnesium battery.

  6. Vertically oriented MoS2 nanoflakes coated on 3D carbon nanotubes for next generation Li-ion batteries

    Science.gov (United States)

    Patel, Mumukshu D.; Cha, Eunho; Choudhary, Nitin; Kang, Chiwon; Lee, Wonki; Hwang, Jun Yeon; Choi, Wonbong

    2016-12-01

    The advent of advanced electrode materials has led to performance enhancement of traditional lithium ion batteries (LIBs). We present novel binder-free MoS2 coated three-dimensional carbon nanotubes (3D CNTs) as an anode in LIBs. Scanning transmission electron microscopy analysis shows that vertically oriented MoS2 nanoflakes are strongly bonded to CNTs, which provide a high surface area and active electrochemical sites, and enhanced ion conductivity at the interface. The electrochemical performance shows a very high areal capacity of ~1.65 mAh cm-2 with an areal density of ~0.35 mg cm-2 at 0.5 C rate and coulombic efficiency of ~99% up to 50 cycles. The unique architecture of 3D CNTs-MoS2 is indicative to be a promising anode for next generation Li-ion batteries with high capacity and long cycle life.

  7. Capacity fade of Sony 18650 cells cycled at elevated temperatures. Part II. Capacity fade analysis

    Science.gov (United States)

    Ramadass, P.; Haran, Bala; White, Ralph; Popov, Branko N.

    A complete capacity fade analysis was carried out for Sony 18650 cells cycled at elevated temperatures. The major causes of capacity loss were identified and a complete capacity fade balance was carried out to account for the total capacity loss of Li-ion battery as a function of cycle number and temperature. The three most significant parameters that cause capacity loss were loss of secondary active material (LiCoO 2/carbon) and primary active material (Li +) and the rate capability losses. Intrinsic capacity measurements for both positive and negative electrode has been used to estimate the capacity loss due to secondary active material and a charge balance gives the capacity lost due to primary active material (Li +). Capacity fade has been quantified with secondary active material loss dominating the other losses.

  8. Two-Dimensional SnO Anodes with a Tunable Number of Atomic Layers for Sodium Ion Batteries

    KAUST Repository

    Zhang, Fan

    2017-01-18

    We have systematically changed the number of atomic layers stacked in 2D SnO nanosheet anodes and studied their sodium ion battery (SIB) performance. The results indicate that as the number of atomic SnO layers in a sheet decreases, both the capacity and cycling stability of the Na ion battery improve. The thinnest SnO nanosheet anodes (two to six SnO monolayers) exhibited the best performance. Specifically, an initial discharge and charge capacity of 1072 and 848 mAh g-1 were observed, respectively, at 0.1 A g-1. In addition, an impressive reversible capacity of 665 mAh g-1 after 100 cycles at 0.1 A g-1 and 452 mAh g-1 after 1000 cycles at a high current density of 1.0 A g-1 was observed, with excellent rate performance. As the average number of atomic layers in the anode sheets increased, the battery performance degraded significantly. For example, for the anode sheets with 10-20 atomic layers, only a reversible capacity of 389 mAh g-1 could be obtained after 100 cycles at 0.1 A g-1. Density functional theory calculations coupled with experimental results were used to elucidate the sodiation mechanism of the SnO nanosheets. This systematic study of monolayer-dependent physical and electrochemical properties of 2D anodes shows a promising pathway to engineering and mitigating volume changes in 2D anode materials for sodium ion batteries. It also demonstrates that ultrathin SnO nanosheets are promising SIB anode materials with high specific capacity, stable cyclability, and excellent rate performance.

  9. Effects of iron phthalocyanine on performance of MH/Ni battery

    Institute of Scientific and Technical Information of China (English)

    王芳; 吴锋

    2004-01-01

    Oxygen evolution causes a high inner pressure during charge and overcharge for MH/Ni battery, and an inappropriate eliminating way of the oxygen in the battery results in accumulation of heat. This is the main obstacle to develop and apply high capability and high power battery. How to reduce the ratio of the chemical catalysis rate to the electric catalysis rate in MH/Ni battery is considered as an urgent question. Iron phthalocyanine(FePc) was chosen as an electrochemical catalyst. The batteries were prepared by adding iron phthalocyanine with different dosages. The inner pressure, the capacity attenuation, the discharge voltage and capacity at high current of these three batteries were compared. The battery with 1 mg FePc in the negative electrode exhibits a good performance.

  10. Experiments Study on Charge Technology of Lead-Acid Electric Vehicle Batteries

    Institute of Scientific and Technical Information of China (English)

    LI Wen; ZHANG Cheng-ning

    2008-01-01

    The basic theory of the fast charge and several charge methods are introduced. In order to heighten charge efficiency of valve-regulated lead-acid battery and shorten the charge time, five charge methods are investigated with experiments done on the Digatron BNT 400-050 test bench. Battery current, terminal voltage, capacity, energy and terminal pole temperature during battery experiment were recorded, and corresponding curves were depicted. Battery capacity-time ratio, energy efficiency and energy-temperature ratio are put forward to be the appraising criteria of lead-acid battery on electric vehicle (EV). According to the appraising criteria and the battery curves, multistage-current/negative-pulse charge method is recommended to charge lead-acid EV battery.

  11. A new cathode material for super-valent battery based on aluminium ion intercalation and deintercalation.

    Science.gov (United States)

    Wang, Wei; Jiang, Bo; Xiong, Weiyi; Sun, He; Lin, Zheshuai; Hu, Liwen; Tu, Jiguo; Hou, Jungang; Zhu, Hongmin; Jiao, Shuqiang

    2013-11-29

    Due to their small footprint and flexible siting, rechargeable batteries are attractive for energy storage systems. A super-valent battery based on aluminium ion intercalation and deintercalation is proposed in this work with VO2 as cathode and high-purity Al foil as anode. First-principles calculations are also employed to theoretically investigate the crystal structure change and the insertion-extraction mechanism of Al ions in the super-valent battery. Long cycle life, low cost and good capacity are achieved in this battery system. At the current density of 50 mAg(-1), the discharge capacity remains 116 mAhg(-1) after 100 cycles. Comparing to monovalent Li-ion battery, the super-valent battery has the potential to deliver more charges and gain higher specific capacity.

  12. Reserve, flowing electrolyte, high rate lithium battery

    Science.gov (United States)

    Puskar, M.; Harris, P.

    Flowing electrolyte Li/SOCl2 tests in single cell and multicell bipolar fixtures have been conducted, and measurements are presented for electrolyte flow rates, inlet and outlet temperatures, fixture temperatures at several points, and the pressure drop across the fixture. Reserve lithium batteries with flowing thionyl-chloride electrolytes are found to be capable of very high energy densities with usable voltages and capacities at current densities as high as 500 mA/sq cm. At this current density, a battery stack 10 inches in diameter is shown to produce over 60 kW of power while maintaining a safe operating temperature.

  13. 76 FR 41142 - Special Conditions; Cessna Aircraft Company Model M680 Airplane; Lithium-ion Battery Installations

    Science.gov (United States)

    2011-07-13

    ... explosion. The severity of thermal runaway due to overcharging increases with increased battery capacity due... extremely remote. The Lithium-battery installation must preclude explosion in the event of those failures... effect on structure or essential systems caused by the maximum amount of heat the battery can...

  14. Practical state of health estimation of power batteries based on Delphi method and grey relational grade analysis

    Science.gov (United States)

    Sun, Bingxiang; Jiang, Jiuchun; Zheng, Fangdan; Zhao, Wei; Liaw, Bor Yann; Ruan, Haijun; Han, Zhiqiang; Zhang, Weige

    2015-05-01

    The state of health (SOH) estimation is very critical to battery management system to ensure the safety and reliability of EV battery operation. Here, we used a unique hybrid approach to enable complex SOH estimations. The approach hybridizes the Delphi method known for its simplicity and effectiveness in applying weighting factors for complicated decision-making and the grey relational grade analysis (GRGA) for multi-factor optimization. Six critical factors were used in the consideration for SOH estimation: peak power at 30% state-of-charge (SOC), capacity, the voltage drop at 30% SOC with a C/3 pulse, the temperature rises at the end of discharge and charge at 1C; respectively, and the open circuit voltage at the end of charge after 1-h rest. The weighting of these factors for SOH estimation was scored by the 'experts' in the Delphi method, indicating the influencing power of each factor on SOH. The parameters for these factors expressing the battery state variations are optimized by GRGA. Eight battery cells were used to illustrate the principle and methodology to estimate the SOH by this hybrid approach, and the results were compared with those based on capacity and power capability. The contrast among different SOH estimations is discussed.

  15. Experimental verification of a thermal equivalent circuit dynamic model on an extended range electric vehicle battery pack

    Science.gov (United States)

    Ramotar, Lokendra; Rohrauer, Greg L.; Filion, Ryan; MacDonald, Kathryn

    2017-03-01

    The development of a dynamic thermal battery model for hybrid and electric vehicles is realized. A thermal equivalent circuit model is created which aims to capture and understand the heat propagation from the cells through the entire pack and to the environment using a production vehicle battery pack for model validation. The inclusion of production hardware and the liquid battery thermal management system components into the model considers physical and geometric properties to calculate thermal resistances of components (conduction, convection and radiation) along with their associated heat capacity. Various heat sources/sinks comprise the remaining model elements. Analog equivalent circuit simulations using PSpice are compared to experimental results to validate internal temperature nodes and heat rates measured through various elements, which are then employed to refine the model further. Agreement with experimental results indicates the proposed method allows for a comprehensive real-time battery pack analysis at little computational expense when compared to other types of computer based simulations. Elevated road and ambient conditions in Mesa, Arizona are simulated on a parked vehicle with varying quiescent cooling rates to examine the effect on the diurnal battery temperature for longer term static exposure. A typical daily driving schedule is also simulated and examined.

  16. Stannous sulfate as an electrolyte additive for lead acid battery made from a novel ultrafine leady oxide

    Science.gov (United States)

    Wang, Qin; Liu, Jianwen; Yang, Danni; Yuan, Xiqing; Li, Lei; Zhu, Xinfeng; Zhang, Wei; Hu, Yucheng; Sun, Xiaojuan; Liang, Sha; Hu, Jingping; Kumar, R. Vasant; Yang, Jiakuan

    2015-07-01

    The effects of SnSO4 as an electrolyte additive on the microstructure of positive plate and electrochemical performance of lead acid battery made from a novel leady oxide are investigated. The novel leady oxide is synthesized through leaching of spent lead paste in citric acid solution. The novel leady oxides are used to prepare working electrode (WE) subjected to electrochemical cyclic voltammetry (CV) tests. Moreover, the novel leady oxides are used as active materials of positive plate assembled as a testing battery of 1.85 A h capacity. In CV tests, SEM/EDX results show that the major crystalline phase of the paste in WE after CV cycles is PbSO4. The larger column-shaped PbSO4 crystals easily generate in the paste of WE without an electrolyte additive of SnSO4. However, PbSO4 crystals significantly become smaller with the addition of SnSO4 in the electrolyte. In batteries testing, SEM results show that an electrolyte additive of SnSO4 could effectively decrease PbO2 particle size in the positive active materials of the teardown battery at the end of charging procedure. It is indicated that an electrolyte additive of SnSO4 could have a positive influence on restraining larger particles of irreversible sulfation in charge/discharge cycles of battery testing.

  17. Data pieces-based parameter identification for lithium-ion battery

    Science.gov (United States)

    Gao, Wei; Zou, Yuan; Sun, Fengchun; Hu, Xiaosong; Yu, Yang; Feng, Sen

    2016-10-01

    Battery characteristics vary with temperature and aging, it is necessary to identify battery parameters periodically for electric vehicles to ensure reliable State-of-Charge (SoC) estimation, battery equalization and safe operation. Aiming for on-board applications, this paper proposes a data pieces-based parameter identification (DPPI) method to identify comprehensive battery parameters including capacity, OCV (open circuit voltage)-Ah relationship and impedance-Ah relationship simultaneously only based on battery operation data. First a vehicle field test was conducted and battery operation data was recorded, then the DPPI method is elaborated based on vehicle test data, parameters of all 97 cells of the battery package are identified and compared. To evaluate the adaptability of the proposed DPPI method, it is used to identify battery parameters of different aging levels and different temperatures based on battery aging experiment data. Then a concept of "OCV-Ah aging database" is proposed, based on which battery capacity can be identified even though the battery was never fully charged or discharged. Finally, to further examine the effectiveness of the identified battery parameters, they are used to perform SoC estimation for the test vehicle with adaptive extended Kalman filter (AEKF). The result shows good accuracy and reliability.

  18. Cobalt silicate hierarchical hollow spheres for lithium-ion batteries

    Science.gov (United States)

    Yang, Jun; Guo, Yuanyuan; Zhang, Yufei; Sun, Chencheng; Yan, Qingyu; Dong, Xiaochen

    2016-09-01

    In this paper, the synthesis of cobalt silicate novel hierarchical hollow spheres via a facile hydrothermal method is presented. With a unique hollow structure, the Co2SiO4 provides a large surface area, which can shorten the lithium ions diffusion length and effectively accommodate the volumetic variation during the lithiation/de-lithiation process. Serving as an anode material in lithium-ion battery application, the Co2SiO4 electrode demonstrates a high reversible specific capacity (first-cycle charge capacity of 948.6 mAh g-1 at 100 mA g-1), a cycling durability (specific capacity of 791.4 mAh g-1 after 100 cycles at 100 mA g-1), and a good rate capability (specific capacity of 349.4 mAh g-1 at 10 A g-1). The results indicate that the cobalt silicate hierarchical hollow sphere holds the potential applications in energy storage electrodes.

  19. Electrochemical accumulators batteries; Accumulateurs electrochimiques batteries

    Energy Technology Data Exchange (ETDEWEB)

    Ansart, F.; Castillo, S.; Laberty- Robert, C.; Pellizon-Birelli, M. [Universite Paul Sabatier, Lab. de Chimie des Materiaux Inorganiques et Energetiques, CIRIMAT, UMR CNRS 5085, 31 - Toulouse (France)] [and others

    2000-07-01

    It is necessary to storage the electric power in batteries to join the production and the utilization. In this domain progresses are done every days in the technics and also in the available materials. These technical days present the state of the art in this domain. Many papers were presented during these two days giving the research programs and recent results on the following subjects: the lithium batteries, the electrolytes performances and behaviour, lead accumulators, economic analysis of the electrochemical storage market, the batteries applied to the transportation sector and the telephones. (A.L.B.)

  20. Carbonized cellulose paper as an effective interlayer in lithium-sulfur batteries

    Science.gov (United States)

    Li, Shiqi; Ren, Guofeng; Hoque, Md Nadim Ferdous; Dong, Zhihua; Warzywoda, Juliusz; Fan, Zhaoyang

    2017-02-01

    One of the several challenging problems hampering lithium-sulfur (Li-S) battery development is the so-called shuttling effect of the highly soluble intermediates (Li2S8-Li2S6). Using an interlayer inserted between the sulfur cathode and the separator to capture and trap these soluble intermediates has been found effective in diminishing this effect. Previously, most reported interlayer membranes were synthesized in a complex and expensive process, and might not be suitable for practical cheap batteries. Herein, a facile method is reported to pyrolyze the commonly used cellulose filter paper into highly flexible and conductive carbon fiber paper. When used as an interlayer, such a carbon paper can improve the cell capacity by several folds through trapping the soluble polysulfides. The enhanced electronic conductivity of the cathode, due to the interlayer, also significantly improves the cell rate performance. In addition, it was demonstrated that such an interlayer can also effectively mitigate the self-discharge problem of the Li-S batteries. This study indicates that the cost-effective pyrolyzed cellulose paper has potential as interlayer for practical Li-S batteries.

  1. Effects of dietary DL-2-hydroxy-4(methylthio)butanoic acid supplementation on growth performance, indices of ascites syndrome, and antioxidant capacity of broilers reared at low ambient temperature

    Science.gov (United States)

    Yang, G. L.; Zhang, K. Y.; Ding, X. M.; Zheng, P.; Luo, Y. H.; Bai, S. P.; Wang, J. P.; Xuan, Y.; Su, Z. W.; Zeng, Q. F.

    2016-08-01

    This study examined the effects of dietary DL-2-hydroxy-4(methylthio)butanoic acid (DL-HMTBA) supplementation on growth performance, antioxidant capacity, and ascites syndrome (AS) in broilers reared at low ambient temperature (LAT) from 7 to 28 days of age. Eight hundred 7-day-old broilers were randomly assigned to two ambient temperatures (LAT and normal ambient temperature [NAT]), four supplemental DL-HMTBA levels (0.17, 0.34, 0.51, and 0.68 %) of the basal diet in a 2 × 4 factorial arrangement (ten replicate pens; ten birds/pen). LAT and NAT indicate temperatures of 12-14 and 24-26 °C in two chambers, respectively, and broilers were reared at these temperatures from 7 to 28 days of age. LAT significantly decreased body weight gain ( P increased feed conversion ratio (FCR) ( P red blood cell (RBC) count ( P cell hemoglobin (day 14, P = 0.035; day 21, P = 0.003), and serum protein carbonyl level (day 21, P = 0.009), while significantly increased serum GSH content (day 14, P = 0.022; day 28, P = 0.001), SOD and GSH-Px activities at 21 days of age ( P < 0.001 and P = 0.037). The optimal supplemental DL-HMTBA levels in basal diet of broilers aged from 7 to 28 days under low or normal temperatures were similar, so the authors recommended supplemental of DL-HMTBA level was 0.46 %.

  2. Toward More Reliable Lithium-Sulfur Batteries: An All-Graphene Cathode Structure.

    Science.gov (United States)

    Fang, Ruopian; Zhao, Shiyong; Pei, Songfeng; Qian, Xitang; Hou, Peng-Xiang; Cheng, Hui-Ming; Liu, Chang; Li, Feng

    2016-09-27

    Lithium-sulfur (Li-S) batteries are attracting increasing interest due to their high theoretical specific energy density, low cost, and eco-friendliness. However, most reports of the high gravimetric specific capacity and long cyclic life are not practically reliable because of their low areal specific capacity derived from the low areal sulfur loading and low sulfur content. Here, we fabricated a highly porous graphene with high pore volume of 3.51 cm(3) g(-1) as the sulfur host, enabling a high sulfur content of 80 wt %, and based on this, we further proposed an all-graphene structure for the sulfur cathode with highly conductive graphene as the current collector and partially oxygenated graphene as a polysulfide-adsorption layer. This cathode structural design enables a 5 mg cm(-2) sulfur-loaded cathode showing both high initial gravimetric specific capacity (1500 mAh g(-1)) and areal specific capacity (7.5 mAh cm(-2)), together with excellent cycling stability for 400 cycles, indicating great promise for more reliable lithium-sulfur batteries.

  3. Low-Temperature Hydrogen Storage Alloy and Its Application in Ni-MH Battery

    Institute of Scientific and Technical Information of China (English)

    陶明大; 陈云贵; 吴朝玲; 付春艳; 涂铭旌

    2004-01-01

    Rare earth compositions, La, Ce and Pr in Mm(NiCoMnAl)5 hydrogen storage alloy, were arranged by uniform design method. The discharge performances and kinetics parameters including capacity, exchange current density, symmetry factor and hydrogen diffusion coefficient of the alloy at -40 ℃, were tested in standard tri-electrode cell. And linear regression method was used to analyze the effect of rare earth compositions on the performances of hydrogen storage alloys. The results show that the capacities of the alloys are positively correlative to the square of Ce content at -40 ℃ and under both 0.4 and 0.2C rate. The kinetics parameters and hydrogen diffusion coefficient indicate that the low-temperature performances of the alloys are mainly controlled by hydrogen diffusion process, and the surface electrochemical reaction affects the low-temperature performances to a certain extent. The low-temperature discharge capacities of the battery were also tested. The results show excellent low-temperature performances.The battery delivers 69.6% of its room-temperature capacity at -40 ℃ and 0.2C rate, 77.7% at -40 ℃ and 0.4C rate, 59.1% at -45 ℃ and 0.2C rate.

  4. Remarkable impact of water on the discharge performance of a silicon-air battery.

    Science.gov (United States)

    Cohn, Gil; Macdonald, Digby D; Ein-Eli, Yair

    2011-08-22

    Here, we report on a Si-air/ionic liquid electrolyte battery whose performance improves with small amounts of water in the electrolyte. The shift of the generation zone of the SiO(2) discharge product from the air cathode surface into the bulk region of the liquid electrolyte, caused by water addition, is demonstrated through various means. Addition of 15 vol% water leads to an increase of 40% in the discharge capacity as compared to the capacity obtained using a pure ionic liquid electrolyte. If the water content increases above 20 vol%, the Si-air cell capacity dramatically decreases. The water-ionic liquid electrolyte mixture shows a maximum in the ionic conductivity with a water content of 10 vol%. In-depth studies indicate a reduced amount of discharge product at the air electrode using 15 vol% H(2)O electrolyte. The morphology of the anode surface, as well as the developed surface film in the presence of water-containing ionic liquid, is reported. This study shows that exposing a Si-air battery to a humid environment does not result in capacity losses, but rather improves cell performance.

  5. Solar photovoltaic charging of lithium-ion batteries

    Science.gov (United States)

    Gibson, Thomas L.; Kelly, Nelson A.

    Solar photovoltaic (PV) charging of batteries was tested by using high efficiency crystalline and amorphous silicon PV modules to recharge lithium-ion battery modules. This testing was performed as a proof of concept for solar PV charging of batteries for electrically powered vehicles. The iron phosphate type lithium-ion batteries were safely charged to their maximum capacity and the thermal hazards associated with overcharging were avoided by the self-regulating design of the solar charging system. The solar energy to battery charge conversion efficiency reached 14.5%, including a PV system efficiency of nearly 15%, and a battery charging efficiency of approximately 100%. This high system efficiency was achieved by directly charging the battery from the PV system with no intervening electronics, and matching the PV maximum power point voltage to the battery charging voltage at the desired maximum state of charge for the battery. It is envisioned that individual homeowners could charge electric and extended-range electric vehicles from residential, roof-mounted solar arrays, and thus power their daily commuting with clean, renewable solar energy.

  6. Environmental Impact Assessment and End-of-Life Treatment Policy Analysis for Li-Ion Batteries and Ni-MH Batteries

    Directory of Open Access Journals (Sweden)

    Yajuan Yu

    2014-03-01

    Full Text Available Based on Life Cycle Assessment (LCA and Eco-indicator 99 method, a LCA model was applied to conduct environmental impact and end-of-life treatment policy analysis for secondary batteries. This model evaluated the cycle, recycle and waste treatment stages of secondary batteries. Nickel-Metal Hydride (Ni-MH batteries and Lithium ion (Li-ion batteries were chosen as the typical secondary batteries in this study. Through this research, the following results were found: (1 A basic number of cycles should be defined. A minimum cycle number of 200 would result in an obvious decline of environmental loads for both battery types. Batteries with high energy density and long life expectancy have small environmental loads. Products and technology that help increase energy density and life expectancy should be encouraged. (2 Secondary batteries should be sorted out from municipal garbage. Meanwhile, different types of discarded batteries should be treated separately under policies and regulations. (3 The incineration rate has obvious impact on the Eco-indicator points of Nickel-Metal Hydride (Ni-MH batteries. The influence of recycle rate on Lithium ion (Li-ion batteries is more obvious. These findings indicate that recycling is the most promising direction for reducing secondary batteries’ environmental loads. The model proposed here can be used to evaluate environmental loads of other secondary batteries and it can be useful for proposing policies and countermeasures to reduce the environmental impact of secondary batteries.

  7. Electric-vehicle batteries

    Science.gov (United States)

    Oman, Henry; Gross, Sid

    1995-02-01

    Electric vehicles that can't reach trolley wires need batteries. In the early 1900's electric cars disappeared when owners found that replacing the car's worn-out lead-acid battery costs more than a new gasoline-powered car. Most of today's electric cars are still propelled by lead-acid batteries. General Motors in their prototype Impact, for example, used starting-lighting-ignition batteries, which deliver lots of power for demonstrations, but have a life of less than 100 deep discharges. Now promising alternative technology has challenged the world-wide lead miners, refiners, and battery makers into forming a consortium that sponsors research into making better lead-acid batteries. Horizon's new bipolar battery delivered 50 watt-hours per kg (Wh/kg), compared with 20 for ordinary transport-vehicle batteries. The alternatives are delivering from 80 Wh/kg (nickel-metal hydride) up to 200 Wh/kg (zinc-bromine). A Fiat Panda traveled 260 km on a single charge of its zinc-bromine battery. A German 3.5-ton postal truck traveled 300 km with a single charge in its 650-kg (146 Wh/kg) zinc-air battery. Its top speed was 110 km per hour.

  8. Effect of Overcharge on Electrochemical Performance of Sealed-Type Nickel/Metal Hydride Batteries

    Institute of Scientific and Technical Information of China (English)

    LI Li; WU Feng; CHEN Ren-jie; CHEN Shi

    2005-01-01

    The effects of overcharge on electrochemical performance of AA size sealed-type nickel/metal hydride(Ni/MH) batteries and its degradation mechanism were investigated. The results indicated that the relationship between the effects of different overcharge currents on the increasing velocity of inner pressure and the degradation velocity of cycle life and discharge voltage remains in almost direct proportion. After overcharge cycles, the positive electrode materials remain the original structure, but there occur some breaks because of the irreversible expand of crystal lattice. And the negative electrode alloy particles have inconspicuous pulverization, but are covered with lots of corrosive products and its main component is rare earth hydroxide or oxide. These are all the main reasons leading to the degradation behavior of the discharge capacity and cycle life of Ni/MH batteries.

  9. High rate, long cycle life battery electrode materials with an open framework structure

    Energy Technology Data Exchange (ETDEWEB)

    Wessells, Colin; Huggins, Robert; Cui, Yi; Pasta, Mauro

    2015-02-10

    A battery includes a cathode, an anode, and an aqueous electrolyte disposed between the cathode and the anode and including a cation A. At least one of the cathode and the anode includes an electrode material having an open framework crystal structure into which the cation A is reversibly inserted during operation of the battery. The battery has a reference specific capacity when cycled at a reference rate, and at least 75% of the reference specific capacity is retained when the battery is cycled at 10 times the reference rate.

  10. Cu2+1O coated polycrystalline Si nanoparticles as anode for lithium-ion battery.

    Science.gov (United States)

    Zhang, Junying; Zhang, Chunqian; Wu, Shouming; Liu, Zhi; Zheng, Jun; Zuo, Yuhua; Xue, Chunlai; Li, Chuanbo; Cheng, Buwen

    2016-12-01

    Cu2+1O coated Si nanoparticles were prepared by simple hydrolysis and were investigated as an anode material for lithium-ion battery. The coating of Cu2+1O on the surface of Si particles remarkably improves the cycle performance of the battery than that made by the pristine Si. The battery exhibits an initial reversible capacity of 3063 mAh/g and an initial coulombic efficiency (CE) of 82.9 %. With a current density of 300 mA/g, its reversible capacity can remains 1060 mAh/g after 350 cycles, corresponding to a CE ≥ 99.8 %. It is believed that the Cu2+1O coating enhances the electrical conductivity, and the elasticity of Cu2+1O further helps buffer the volume changes during lithiation/delithiation processes. Experiment results indicate that the electrode maintained a highly integrated structure after 100 cycles and it is in favour of the formation of stable solid electrolyte interface (SEI) on the Si surface to keep the extremely high CE during long charge and discharge cycles.

  11. Size and Composition Effects in Sb-Carbon Nanocomposites for Sodium-Ion Batteries.

    Science.gov (United States)

    Ramireddy, Thrinathreddy; Sharma, Neeraj; Xing, Tan; Chen, Ying; Leforestier, Jeremie; Glushenkov, Alexey M

    2016-11-09

    Sodium-ion batteries are in the spotlight as viable alternatives to lithium-ion batteries in stationary storage and power grid applications. Among possible anode materials, Sb is one of the interesting candidates due to a combination of battery-type potential plateaus in the charge-discharge profiles, high capacity (theoretical capacity of 660 mAh g(-1)), and demonstrated good cyclic stability. The influence of Sb particle size (particularly at the nanoscale range) and the composition of Sb-carbon composites on the electrode performance, stability, and charge storage mechanism is systematically evaluated here for the first time. A range of Sb-carbon nanocomposites with varied Sb particle size (between 50 and ∼1 nm) are studied. The control of the particle size is achieved via varying the carbon and Sb weight ratio in the precursors. The shape of charge-discharge profiles, hysteresis, and the difference in cyclic stabilities and rate performance are analyzed. The nanocomposite with the smallest particle size (∼1 nm) and the largest carbon content provides the most stable cyclic behavior and a better rate capability but suffers from an increased hysteresis between charge and discharge curves. In situ synchrotron X-ray diffraction experiments indicate that the storage mechanism in the Sb-carbon nanocomposites containing Sb nanoparticles is different from the electrodes with bulkier, micron-sized Sb particles, and the electrochemical reaction proceeds through a number of crystalline intermediates.

  12. Effect of lead foam grid on performance of lead-acid battery

    Institute of Scientific and Technical Information of China (English)

    DAI Chang-song; WANG Dian-long; HU Xin-guo; JIANG Zhao-hua; YAN Zhi-gang

    2005-01-01

    In order to increase the specific energy and specific power of a lead-acid battery, lead foam grid was prepared by electrodepositing Pb-Sn alloy on a copper foam substrate and used as negative current collector for a lead acid battery whose capacity was limited by the negative plate. Comparing the effect of the cast grid, under the same conditions, the mass of lead foam grid decreases by 35% , and the area of lead foam contacted with active material increases by about 20 times. Under 2 h rate discharge condition, with a high current (3.0 I2 ) e and low-temperature ( - 10 ℃, I2 ) discharge system, the lead foam grid markedly boosts the discharge performance of lead acid battery. It increases not only the negative electrode mass specific capacity by 27% ,37%and 29% ,but also the utilization efficiency of the negative active material by 5%. Compared with the negative electrode of cast grid, XRD and SEM results show that after 20 cycles at the state of charge, the sponge lead in the negative lead foam electrode has smaller crystals and less PbSO4 on its surface. Meanwhile, at the state of full discharge, the PbSO4 crystals are smaller and occur less on the surface of lead foam electrode. This indicates its active material reacts more uniformly.

  13. Safety considerations for fabricating lithium battery packs

    Science.gov (United States)

    Ciesla, J. J.

    1986-09-01

    Lithium cell safety is a major issue with both manufacturers and end users. Most manufacturers have taken great strides to develop the safest cells possible while still maintaining performance characteristics. The combining of lithium cells for higher voltages, currents, and capacities requires the fabricator of lithium battery packs to be knowledgable about the specific electrochemical system being used. Relatively high rate, spirally wound (large surface area) sulfur oxychloride cells systems, such as Li/Thionyl or Sulfuryl chloride are considered. Prior to the start of a design of a battery pack, a review of the characterization studies for the cells should be conducted. The approach for fabricating a battery pack might vary with cell size.

  14. High-Power-Density Organic Radical Batteries.

    Science.gov (United States)

    Friebe, Christian; Schubert, Ulrich S

    2017-02-01

    Batteries that are based on organic radical compounds possess superior charging times and discharging power capability in comparison to established electrochemical energy-storage technologies. They do not rely on metals and, hence, feature a favorable environmental impact. They furthermore offer the possibility of roll-to-roll processing through the use of different printing techniques, which enables the cost-efficient fabrication of mechanically flexible devices. In this review, organic radical batteries are presented with the focus on the hitherto developed materials and the key properties thereof, e.g., voltage, capacity, and cycle life. Furthermore, basic information, such as significant characteristics, housing approaches, and applied additives, are presented and discussed in the context of organic radical batteries.

  15. Electrochemical stiffness in lithium-ion batteries

    Science.gov (United States)

    Tavassol, Hadi; Jones, Elizabeth M. C.; Sottos, Nancy R.; Gewirth, Andrew A.

    2016-11-01

    Although lithium-ion batteries are ubiquitous in portable electronics, increased charge rate and discharge power are required for more demanding applications such as electric vehicles. The high-rate exchange of lithium ions required for more power and faster charging generates significant stresses and strains in the electrodes that ultimately lead to performance degradation. To date, electrochemically induced stresses and strains in battery electrodes have been studied only individually. Here, a new technique is developed to probe the chemomechanical response of electrodes by calculating the electrochemical stiffness via coordinated in situ stress and strain measurements. We show that dramatic changes in electrochemical stiffness occur due to the formation of different graphite-lithium intercalation compounds during cycling. Our analysis reveals that stress scales proportionally with the lithiation/delithiation rate and strain scales proportionally with capacity (and inversely with rate). Electrochemical stiffness measurements provide new insights into the origin of rate-dependent chemomechanical degradation and the evaluation of advanced battery electrodes.

  16. Management of deep brain stimulator battery failure: battery estimators, charge density, and importance of clinical symptoms.

    Directory of Open Access Journals (Sweden)

    Kaihan Fakhar

    Full Text Available OBJECTIVE: We aimed in this investigation to study deep brain stimulation (DBS battery drain with special attention directed toward patient symptoms prior to and following battery replacement. BACKGROUND: Previously our group developed web-based calculators and smart phone applications to estimate DBS battery life (http://mdc.mbi.ufl.edu/surgery/dbs-battery-estimator. METHODS: A cohort of 320 patients undergoing DBS battery replacement from 2002-2012 were included in an IRB approved study. Statistical analysis was performed using SPSS 20.0 (IBM, Armonk, NY. RESULTS: The mean charge density for treatment of Parkinson's disease was 7.2 µC/cm(2/phase (SD = 3.82, for dystonia was 17.5 µC/cm(2/phase (SD = 8.53, for essential tremor was 8.3 µC/cm(2/phase (SD = 4.85, and for OCD was 18.0 µC/cm(2/phase (SD = 4.35. There was a significant relationship between charge density and battery life (r = -.59, p<.001, as well as total power and battery life (r = -.64, p<.001. The UF estimator (r = .67, p<.001 and the Medtronic helpline (r = .74, p<.001 predictions of battery life were significantly positively associated with actual battery life. Battery status indicators on Soletra and Kinetra were poor predictors of battery life. In 38 cases, the symptoms improved following a battery change, suggesting that the neurostimulator was likely responsible for symptom worsening. For these cases, both the UF estimator and the Medtronic helpline were significantly correlated with battery life (r = .65 and r = .70, respectively, both p<.001. CONCLUSIONS: Battery estimations, charge density, total power and clinical symptoms were important factors. The observation of clinical worsening that was rescued following neurostimulator replacement reinforces the notion that changes in clinical symptoms can be associated with battery drain.

  17. Developing Polymer Cathode Material for the Chloride Ion Battery.

    Science.gov (United States)

    Zhao, Xiangyu; Zhao, Zhigang; Yang, Meng; Xia, Hui; Yu, Tingting; Shen, Xiaodong

    2017-01-25

    The chloride ion battery is an attractive rechargeable battery owing to its high theoretical energy density and sustainable components. An important challenge for research and development of chloride ion batteries lies in the innovation of the cathode materials. Here we report a nanostructured chloride ion-doped polymer, polypyrrole chloride, as a new type of potential cathode material for the chloride ion battery. The as-prepared polypyrrole chloride@carbon nanotubes (PPyCl@CNTs) cathode shows a high reversible capacity of 118 mAh g(-1) and superior cycling stability. Reversible electrochemical reactions of the PPyCl@CNTs cathode based on the redox reactions of nitrogen species and chloride ion transfer are demonstrated. Our work may guide and offer electrode design principles for accelerating the development of rechargeable batteries with anion transfer.

  18. Primary zinc-air batteries for space power

    Science.gov (United States)

    Bragg, Bobby J.; Bourland, Deborah S.; Merry, Glenn; Putt, Ron

    1992-01-01

    Prismatic HR and LC cells and batteries were built and tested, and they performed well with respect to the program goals of high capacity and high rate capability at specific energies. The HR batteries suffered reduced utilizations owing to dryout at the 2 and 3 A rates for the 50 C tests owing to the requirement for forced convection. The LC batteries suffered reduced utilizations under all conditions owing to the chimney effect at 1 G, although this effect would not occur at 0 G. An empirical model was developed which accurately predicted utilizations and average voltages for single cells, although thermal effects encountered during battery testing caused significant deviations, both positive and negative, from the model. Based on the encouraging results of the test program, we believe that the zinc-air primary battery of a flat, stackable configuration can serve as a high performance and safe power source for a range of space applications.

  19. Flexible fiber batteries for applications in smart textiles

    Science.gov (United States)

    Qu, Hang; Semenikhin, Oleg; Skorobogatiy, Maksim

    2015-02-01

    In this paper, we demonstrate flexible fiber-based Al-NaOCl galvanic cells fabricated using fiber drawing process. Aluminum and copper wires are used as electrodes, and they are introduced into the fiber structure during drawing of the low-density polyethylene microstructured jacket. NaOCl solution is used as electrolyte, and it is introduced into the battery after the drawing process. The capacity of a 1 m long fiber battery is measured to be ˜10 mAh. We also detail assembly and optimization of the electrical circuitry in the energy-storing fiber battery textiles. Several examples of their applications are presented including lighting up an LED, driving a wireless mouse and actuating a screen with an integrated shape-memory nitinol wire. The principal advantages of the presented fiber batteries include: ease of fabrication, high flexibility, simple electrochemistry and use of widely available materials in the battery design.

  20. Potassium Secondary Batteries.

    Science.gov (United States)

    Eftekhari, Ali; Jian, Zelang; Ji, Xiulei

    2017-02-08

    Potassium may exhibit advantages over lithium or sodium as a charge carrier in rechargeable batteries. Analogues of Prussian blue can provide millions of cyclic voltammetric cycles in aqueous electrolyte. Potassium intercalation chemistry has recently been demonstrated compatible with both graphite and nongraphitic carbons. In addition to potassium-ion batteries, potassium-O2 (or -air) and potassium-sulfur batteries are emerging. Additionally, aqueous potassium-ion batteries also exhibit high reversibility and long cycling life. Because of potentially low cost, availability of basic materials, and intriguing electrochemical behaviors, this new class of secondary batteries is attracting much attention. This mini-review summarizes the current status, opportunities, and future challenges of potassium secondary batteries.

  1. A desalination battery.

    Science.gov (United States)

    Pasta, Mauro; Wessells, Colin D; Cui, Yi; La Mantia, Fabio

    2012-02-08

    Water desalination is an important approach to provide fresh water around the world, although its high energy consumption, and thus high cost, call for new, efficient technology. Here, we demonstrate the novel concept of a "desalination battery", which operates by performing cycles in reverse on our previously reported mixing entropy battery. Rather than generating electricity from salinity differences, as in mixing entropy batteries, desalination batteries use an electrical energy input to extract sodium and chloride ions from seawater and to generate fresh water. The desalination battery is comprised by a Na(2-x)Mn(5)O(10) nanorod positive electrode and Ag/AgCl negative electrode. Here, we demonstrate an energy consumption of 0.29 Wh l(-1) for the removal of 25% salt using this novel desalination battery, which is promising when compared to reverse osmosis (~ 0.2 Wh l(-1)), the most efficient technique presently available.

  2. A Desalination Battery

    KAUST Repository

    Pasta, Mauro

    2012-02-08

    Water desalination is an important approach to provide fresh water around the world, although its high energy consumption, and thus high cost, call for new, efficient technology. Here, we demonstrate the novel concept of a "desalination battery", which operates by performing cycles in reverse on our previously reported mixing entropy battery. Rather than generating electricity from salinity differences, as in mixing entropy batteries, desalination batteries use an electrical energy input to extract sodium and chloride ions from seawater and to generate fresh water. The desalination battery is comprised by a Na 2-xMn 5O 10 nanorod positive electrode and Ag/AgCl negative electrode. Here, we demonstrate an energy consumption of 0.29 Wh l -1 for the removal of 25% salt using this novel desalination battery, which is promising when compared to reverse osmosis (∼ 0.2 Wh l -1), the most efficient technique presently available. © 2012 American Chemical Society.

  3. Polyoxometalate flow battery

    Science.gov (United States)

    Anderson, Travis M.; Pratt, Harry D.

    2016-03-15

    Flow batteries including an electrolyte of a polyoxometalate material are disclosed herein. In a general embodiment, the flow battery includes an electrochemical cell including an anode portion, a cathode portion and a separator disposed between the anode portion and the cathode portion. Each of the anode portion and the cathode portion comprises a polyoxometalate material. The flow battery further includes an anode electrode disposed in the anode portion and a cathode electrode disposed in the cathode portion.

  4. Baterias de níquel-hidreto metálico, uma alternativa para as baterias de níquel-cádmio Nickel-metal hydride batteries, an alternative for the nickel-cadmium batteries

    OpenAIRE

    2001-01-01

    Nickel metal hydride (Ni-MH) batteries have emerged as an alternative for replacement of nickel-cadmium batteries, because of their more environmental compatibility and high energy capacity. In this article, we described the properties and applications for Ni-MH batteries, giving some emphasis on the metal-hydride electrode, including the description of composition, the charge storage capacity and the discharge profile. The key component of the nickel-metal hydride electrode is a hydrogen sto...

  5. Electronically configured battery pack

    Energy Technology Data Exchange (ETDEWEB)

    Kemper, D.

    1997-03-01

    Battery packs for portable equipment must sometimes accommodate conflicting requirements to meet application needs. An electronically configurable battery pack was developed to support two highly different operating modes, one requiring very low power consumption at a low voltage and the other requiring high power consumption at a higher voltage. The configurable battery pack optimizes the lifetime and performance of the system by making the best use of all available energy thus enabling the system to meet its goals of operation, volume, and lifetime. This paper describes the cell chemistry chosen, the battery pack electronics, and tradeoffs made during the evolution of its design.

  6. Ballistic negatron battery

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, M.S.R. [Koneru Lakshmiah Univ.. Dept. of Electrical and Electronics Engineering, Green fields, Vaddeswaram (India)

    2012-07-01

    If we consider the Statistics there is drastic increase in dependence of batteries from year to year, due to necessity of power storage equipment at homes, power generating off grid and on grid Wind, PV systems, etc.. Where wind power is leading in renewable sector, there is a need to look at its development. Considering the scenario in India, most of the wind resource areas are far away from grid and the remaining areas which are near to grid are of low wind currents which is of no use connecting these equipment directly to grid. So, there is a need for a power storage utility to be integrated, such as the BNB (Ballistic Negatron Battery). In this situation a country like India need a battery which should be reliable, cheap and which can be industrialized. So this paper presents the concept of working, design, operation, adaptability of a Ballistic Negatron Battery. Unlike present batteries with low energy density, huge size, more weight, more charging time and low resistant to wear level, this Ballistic Negatron Battery comes with, 1) High energy storage capability (many multiples more than the present most advanced battery). 2) Very compact in size. 3) Almost negligible in weight compared to present batteries. 4) Charges with in very less time. 5) Never exhibits a wear level greater than zero. Seems like inconceivable but adoptable with simple physics. This paper will explains in detail the principle, model, design, construction and practical considerations considered in making this battery. (Author)

  7. High energy lithium-oxygen batteries - Transport barriers and thermodynamics

    KAUST Repository

    Das, Shyamal K.

    2012-01-01

    We show that it is possible to achieve higher energy density lithium-oxygen batteries by simultaneously lowering the discharge overpotential and increasing the discharge capacity via thermodynamic variables alone. By assessing the relative effects of temperature and pressure on the cell discharge profiles, we characterize and diagnose the critical roles played by multiple dynamic processes that have hindered implementation of the lithium-oxygen battery. © 2012 The Royal Society of Chemistry.

  8. Renewable-Biomolecule-Based Full Lithium-Ion Batteries.

    Science.gov (United States)

    Hu, Pengfei; Wang, Hua; Yang, Yun; Yang, Jie; Lin, Jie; Guo, Lin

    2016-05-01

    A renewable-biomolecule-based full lithium-ion battery is successfully fabricated for the first time. Naturally derivable emodin and humic acid based electrodes are used as cathode and anode, respectively. The as-assembled batteries exhibit superb specific capacity and substantial operating voltage capable of powering a wearable electronic watch, suggesting the great potential for practical applications with the significant merits of sustainability and biocompatibility.

  9. Capacity Utilization in European Railways

    DEFF Research Database (Denmark)

    Khadem Sameni, Melody; Landex, Alex

    2013-01-01

    At the strategic level, railways currently use different indices to estimate how ‘value’ is generated by using railway capacity. However, railway capacity is a multidisciplinary area, and attempts to develop various indices cannot provide a holistic measure of operational efficiency. European...... railways are facing a capacity challenge which is caused by passenger and freight demand exceeding the track capacity supply. In the absence of a comprehensive railway capacity manual, methodologies are needed to assess how well railways use their track capacity. This paper presents a novel...... and unprecedented approach for this aim. Relative operational efficiency of 24 European railways in capacity utilization is studied for the first time by data envelopment analysis (DEA). It deviates from previous applications of DEA in the railway industry that are conducted to analyze cost efficiency of railways...

  10. A working memory test battery for MATLAB.

    Science.gov (United States)

    Lewandowsky, Stephan; Oberauer, Klaus; Yang, Lee-Xieng; Ecker, Ullrich K H

    2010-05-01

    We present a battery of four working memory tasks that are implemented using MATLAB and the free Psychophysics Toolbox. The package includes preprocessing scripts in R and SPSS to facilitate data analysis. The four tasks consist of a sentence-span task, an operation-span task, a spatial short-term memory test, and a memory updating task. These tasks were chosen in order to provide a heterogeneous set of measures of working memory capacity, thus reducing method variance and tapping into two content domains of working memory (verbal, including numerical, vs. spatial) and two of its functional aspects (storage in the context of processing and relational integration). The task battery was validated in three experiments conducted in two languages (English and Chinese), involving more than 350 participants. In all cases, the tasks were found to load on a single latent variable. In a further experiment, the latent working memory variable was found to correlate highly but not perfectly with performance on Raven's matrices test of fluid intelligence. We suggest that the battery constitutes a versatile tool to assess working memory capacity with either English- or Chinese-speaking participants. The battery can be downloaded from www.cogsciwa.com ("Software" button).

  11. The work ability index and functional capacity among older workers

    Directory of Open Access Journals (Sweden)

    Rosimeire S. Padula

    2013-08-01

    Full Text Available BACKGROUND: Decreases in functional ability due to aging can impair work capacity and productivity among older workers. OBJECTIVE: This study compares the sociodemographics, health conditions, and physical functioning abilities of young and old workers as well as correlates of physical functioning capacity with the work ability index (WAI. METHOD: This exploratory, cross-sectional study examined employees of a higher education institution (HEI and those of a metallurgical industry. Older workers (50 years old or above were matched for gender and occupation type with younger workers (less than 50 years old. The following evaluations were applied: the multidimensional assessment questionnaire (which included sociodemographic, clinical, health perception, and physical health indices, the WAI, and a battery of physical functional tests. RESULTS: Diseases and regularly used medications were more common among the group of aging workers. The WAI did not differ between groups (p=0.237. Both groups showed similar physical functional capacity performances with regard to walking speed, muscle strength, and lower limb physical functioning. Aging workers showed a poorer performance on a test of right-leg support (p=0.004. The WAI was moderately correlated with the sit-to-stand test among older female workers (r=0.573, p=0.051. CONCLUSIONS: Unfavorable general health conditions did not affect the assessment of work ability or most of the tests of physical functional capacity in the aging group.

  12. Graphene-based battery electrodes having continuous flow paths

    Science.gov (United States)

    Zhang, Jiguang; Xiao, Jie; Liu, Jun; Xu, Wu; Li, Xiaolin; Wang, Deyu

    2014-05-24

    Some batteries can exhibit greatly improved performance by utilizing electrodes having randomly arranged graphene nanosheets forming a network of channels defining continuous flow paths through the electrode. The network of channels can provide a diffusion pathway for the liquid electrolyte and/or for reactant gases. Metal-air batteries can benefit from such electrodes. In particular Li-air batteries show extremely high capacities, wherein the network of channels allow oxygen to diffuse through the electrode and mesopores in the electrode can store discharge products.

  13. Current distribution within parallel-connected battery cells

    Science.gov (United States)

    Brand, Martin J.; Hofmann, Markus H.; Steinhardt, Marco; Schuster, Simon F.; Jossen, Andreas

    2016-12-01

    Parallel connections can be found in many battery applications. Therefore, it is of high interest to understand how the current distributes within parallel battery cells. However, the number of publications on this topic is comparably low. Furthermore, the measurement set-ups are often not clearly defined in existing publications and it is likely that additional impedances distorted the measured current distributions. In this work, the principles of current distributions within parallel-connected battery cells are investigated theoretically, with an equivalent electric circuit model, and by measurements. A measurement set-up is developed that does not significantly influence the measurements, as proven by impedance spectroscopy. On this basis, two parameter scenarios are analyzed: the ΔR scenario stands for battery cells with differing impedances but similar capacities and the ΔC scenario for differing capacities and similar impedances. Out of 172 brand-new lithium-ion battery cells, pairs are built to practically represent the ΔR and ΔC scenarios. If a charging pulse is applied to the ΔR scenario, currents initially divide according to the current divider but equalize in constant current phases. The current divider has no effect on ΔC pairs but, as a rule of thumb for long-term loads, currents divide according to the battery cell capacities.

  14. Enhanced test methods to characterise automotive battery cells

    Science.gov (United States)

    Mulder, Grietus; Omar, Noshin; Pauwels, Stijn; Leemans, Filip; Verbrugge, Bavo; De Nijs, Wouter; Van den Bossche, Peter; Six, Daan; Van Mierlo, Joeri

    This article evaluates the methods to characterise the behaviour of lithium ion cells of several chemistries and a nickel metal hydride cell for automotive applications like (plug-in) hybrid vehicles and battery electric vehicles. Although existing characterisation test methods are used, it was also indicated to combine test methods in order to speed up the test time and to create an improved comparability of the test results. Also, the existing capacity tests ignore that cells can be charged at several current rates. However, this is of interest for, e.g. fast charging and regenerative braking. Tests for high power and high energy application have been integrated in the enhanced method. The article explains the rationale to ameliorate the test methods. The test plan should make it possible to make an initial division in a group of cells purchased from several suppliers.

  15. Lithium/cobalt sulfide pulse power battery

    Science.gov (United States)

    Seiger, Harvey N.

    The author describes a bipolar battery having a Li alloy anode, CoS2 cathode material, and electrolyte of mixed Li halides. The system is semi-dry because the amount of electrolyte is limited. Fundamental investigations to determine operating voltage limits, active material utilizations, capacity ratios, states of charge, and capacity reserves need to be determined in semi-dry conditions to be unequivocal. This requirement precludes a reference electrode and, instead, the function of a counter-electrode and reference electrodes were combined. The author describes methods and shows comparisons with literature voltammetry data and use of galvanostatic procedures. The results obtained with several Li alloys and with CoS2 electrodes are discussed along with application of these electrochemical design of pulse batteries.

  16. Surface treatment of zinc anodes to improve discharge capacity and suppress hydrogen gas evolution

    Science.gov (United States)

    Cho, Yung-Da; Fey, George Ting-Kuo

    The shape change and redistribution of zinc anode material over the electrode during repeated cycling have been identified as the main factors that can limit the life of alkaline zinc-air batteries. Li 2O-2B 2O 3 (lithium boron oxide, LBO) glass with high Li + conductivity and stability can be coated on the surface of zinc powders. The structures of the surface-treated and pristine zinc powders were characterized by XRD, SEM, TEM, ESCA and BET analyses. XRD patterns of LBO-coated zinc powders revealed that the coating did not affect the crystal structure. TEM images of LBO-coated on the zinc particles were compact with an average passivation layer of about 250 nm. The LBO layer can prevent zinc from coming into direct contact with the KOH electrolyte and minimize the side reactions within the batteries. The 0.1 wt.% LBO-coated zinc anode material provided an initial discharge capacity of 1.70 Ah at 0.5 V, while the pristine zinc electrode delivered only 1.57 Ah. A surface-treated zinc electrode can increase discharge capacity, decrease hydrogen evolution reaction, and reduce self-discharge. The results indicated that surface treatment should be effective for improving the comprehensive properties of anode materials for zinc-air batteries.

  17. Comparison of the capacity fade of Sony US 18650 cells charged with different protocols

    Science.gov (United States)

    Sikha, G.; Ramadass, P.; Haran, B. S.; White, R. E.; Popov, Branko N.

    A new varying current decay (VCD) protocol, which charges the Li-ion battery at a faster rate, was developed. The performance of the battery charged using the VCD protocol was compared with the performance of batteries charged with conventional constant current-constant voltage (CC-CV) and constant voltage (CV) protocols. The destructive physical analysis tests at the end of 150 cycles indicated higher impedance for the cells cycled using the VCD protocol compared to the cell charged using the conventional (CC-CV) mode. The observed increase of the impedance was due to a small increase of the potential above the cut-off value of 4.2 for short times. A complete capacity fade material balance as a function of number of cycles was performed in order to account for the total capacity loss due to different charging protocols used. The loss of primary active material (Li +), the secondary active material (LiCoO 2/carbon) and the rate capability losses were determined for Sony US 18650 Li-ion cells and compared for different charging protocols.

  18. A rechargeable Na-Zn hybrid aqueous battery fabricated with nickel hexacyanoferrate and nanostructured zinc

    Science.gov (United States)

    Lu, Ke; Song, Bin; Zhang, Jintao; Ma, Houyi

    2016-07-01

    Rechargeable aqueous batteries are very attractive as a promising alternative energy storage system, although their reversible capacity is typically limited. A new rechargeable Na-Zn hybrid aqueous battery with nickel hexacyanoferrate (NiHCF) cathode and the nanostructured zinc anode is fabricated. The rational combination of two materials with mild aqueous electrolyte renders the devices with an average operating voltage close to 1.5 V, higher specific capacity of 76.2 mAh g-1, and a good cycling stability with 81% capacity retention for 1000 cycles. These remarkable features can provide guidance for the development of rechargeable batteries from the naturally abundant electrode materials with neutral aqueous electrolytes.

  19. Utility Battery Storage Systems Program plan: FY 1994--FY 1998

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    The Utility Battery Storage Systems Program, sponsored by the US Department of Energy (DOE), is addressing needed improvements so that the full benefits of these systems can be realized. A key element of the Program is the quantification of the benefits of batteries used in utility applications. The analyses of the applications and benefits are ongoing, but preliminary results indicate that the widespread introduction of battery storage by utilities could benefit the US economy by more than $26 billion by 2010 and create thousands of new jobs. Other critical elements of the DOE Program focus on improving the batteries, power electronics, and control subsystems and reducing their costs. These subsystems are then integrated and the systems undergo field evaluation. Finally, the most important element of the Program is the communication of the capabilities and benefits of battery systems to utility companies. Justifiably conservative, utilities must have proven, reliable equipment that is economical before they can adopt new technologies. While several utilities are leading the industry by demonstrating battery systems, a key task of the DOE program is to inform the entire industry of the value, characteristics, and availability of utility battery systems so that knowledgeable decisions can be made regarding future investments. This program plan for the DOE Utility Battery Storage Systems Program describes the technical and programmatic activities needed to bring about the widespread use of batteries by utilities. By following this plan, the DOE anticipates that many of the significant national benefits from battery storage will be achieved in the near future.

  20. Development of carbon-based cathodes for Li-air batteries: Present and future

    Science.gov (United States)

    Woo, Hyungsub; Kang, Joonhyeon; Kim, Jaewook; Kim, Chunjoong; Nam, Seunghoon; Park, Byungwoo

    2016-09-01

    Rechargeable lithium-air (Li-air) batteries are regarded as one of the most fascinating energy storage devices for use in the future electric vehicles, since Li-air batteries provide ten-times-higher theoretical capacities than those from current Li-ion batteries. Nonetheless, Li-air batteries have not yet been implemented to the market because of several major drawbacks such as low capacity, poor cycle life, and low round-trip efficiency. These battery performances are highly dependent on the design of air cathodes, thus much effort has been devoted to the development of high performance cathode. Among various materials, carbonaceous materials have been widely studied as the basis of air cathodes especially for non-aqueous Li-O2 cells due to their high electric conductivity, low cost, and ease of fabrication. This review summarizes the history, scientific background, and perspectives of Liair batteries, particularly from the viewpoint of carbon-based air cathodes.

  1. Composite electrodes for lithium batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Hackney, S. A.; Johnson, C. S.; Kahaian, A. J.; Kepler, K. D.; Shao-Horn, Y.; Thackeray, M. M.; Vaughey, J. T.

    1999-02-03

    The stability of composite positive and negative electrodes for rechargeable lithium batteries is discussed. Positive electrodes with spinel-type structures that are derived from orthorhombic-LiMnO{sub 2} and layered-MnO{sub 2} are significantly more stable than standard spinel Li[Mn{sub 2}]O{sub 4} electrodes when cycled electrochemically over both the 4-V and 3-V plateaus in lithium cells. Transmission electron microscope data of cycled electrodes have indicated that a composite domain structure accounts for this greater electrochemical stability. The performance of composite Cu{sub x}Sn materials as alternative negative electrodes to amorphous SnO{sub x} electrodes for lithium-ion batteries is discussed in terms of the importance of the concentration of the electrochemically inactive copper component in the electrode.

  2. Nanomaterials for sodium-ion batteries

    Science.gov (United States)

    Liu, Jun; Cao, Yuliang; Xiao, Lifen; Yang, Zhenguo; Wang, Wei; Choi, Daiwon; Nie, Zimin

    2015-05-05

    A crystalline nanowire and method of making a crystalline nanowire are disclosed. The method includes dissolving a first nitrate salt and a second nitrate salt in an acrylic acid aqueous solution. An initiator is added to the solution, which is then heated to form polyacrylatyes. The polyacrylates are dried and calcined. The nanowires show high reversible capacity, enhanced cycleability, and promising rate capability for a battery or capacitor.

  3. 独立海岛微电网容量多目标优化配置设计与研究%Configuration Optimization of Capacity of Stand-alone PV-Wind-Diesel-Battery-Seawater Desalination Hybrid Microgrid

    Institute of Scientific and Technical Information of China (English)

    肖锐; 董睿; 殷红旭; 蒋毅舟; 沈福鑫; 张奇峰

    2015-01-01

    This paper proposed a capacity optimization of stand-alone microgrid consisting of wind power generator,PV,diesel generator,energy storage system and seawater desalination system,taking economy,re-liability and environment protection into account.Based on the dispatching strategy and constraints of this hybrid system which includes the range of decision variables,the operation characteristics of micro power sources and desalination units, the capacity of different power sources are optimized with the minimum composite cost and maximum reliability as optimization objective.Composite cost includes initial investment cost,operation and maintenance cost,fuel cost,pollution treatment cost and punishment cost of wasted renewable energy.Reliability takes both the amount and time of power supply interruption into consideration. This model can decrease the cost as much as possible with the load's demand satisfied.Meanwhile,renewable energy can be taken full advantage of and environment pollution can be effectively relieved.The reasonableness of the proposed model is verified by a case study.%针对包含风力发电机、光伏电池、柴油发电机、储能及海水淡化的独立微电网系统,提出了一种兼顾经济性、可靠性和环保性的容量优化配置模型。根据系统的调度策略,在满足决策变量变化范围、各微源及海水淡化机组运行要求的条件下,以最小化系统综合成本和最大化供电可靠性为目标,对风力发电机、光伏电池、柴油发电机和蓄电池的容量进行优化。系统综合成本包括初始投资成本、运行维护成本、燃料成本、治污成本及可再生能源浪费惩罚成本。可靠性综合考虑了缺电量及停电时间的影响。该模型可在满足负荷用电需求的前提下,尽可能地减少冗余投资,并充分利用清洁能源发电,减少环境污染。算例结果验证了模型的合理性。

  4. Application of PVDF composite for lithium-ion battery separator

    Science.gov (United States)

    Sabrina, Q.; Majid, N.; Prihandoko, B.

    2016-11-01

    In this study a composite observed in PVDF composite as lithium ion battery separator. Observation of performance cell battery with cyclic voltametry and charge discharge capacity. Surface morphology PVDF separator and commercial separator observed with Scanning electron microscopy (SEM). Cyclic Voltamerty test (CV) and Charge Discharge (CD) showed a capacity value on the coin cell. Coin cell is composed of material LiFePO4 cathode, anode material of lithium metal and varies as graphite, liquid electrolyte varied use LiBOB and LiPF6. While the PVDF as compared to the commercial separator. Coin cell commercial separator has a better high capacity value when compared with Coin cell with the PVDF separator. Life cycle coin cell with the commercial separator material is still longer than coin cell separator with PVDF Copolymer. Development of PVDF as separator remains to be done in order to improve the performance of the battery exceeds the usage of commercial material.

  5. Hollow Nanostructured Anode Materials for Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Liu Jun

    2010-01-01

    Full Text Available Abstract Hollow nanostructured anode materials lie at the heart of research relating to Li-ion batteries, which require high capacity, high rate capability, and high safety. The higher capacity and higher rate capability for hollow nanostructured anode materials than that for the bulk counterparts can be attributed to their higher surface area, shorter path length for Li+ transport, and more freedom for volume change, which can reduce the overpotential and allow better reaction kinetics at the electrode surface. In this article, we review recent research activities on hollow nanostructured anode materials for Li-ion batteries, including carbon materials, metals, metal oxides, and their hybrid materials. The major goal of this review is to highlight some recent progresses in using these hollow nanomaterials as anode materials to develop Li-ion batteries with high capacity, high rate capability, and excellent cycling stability.

  6. Silicon Betavoltaic Batteries Structures

    Directory of Open Access Journals (Sweden)

    V.N. Murashev

    2015-12-01

    Full Text Available For low-power miniature energy creation sources the particular interest is nickel Ni63. This paper discusses the main types of betavoltaic battery structures with the prospects for industrial application using - isotope of nickel Ni63. It is shown that the prospects for improving the effective efficiency are planar multijunction betavoltaic batteries.

  7. Computing Battery Lifetime Distributions

    NARCIS (Netherlands)

    Cloth, Lucia; Jongerden, Marijn R.; Haverkort, Boudewijn R.

    2007-01-01

    The usage of mobile devices like cell phones, navigation systems, or laptop computers, is limited by the lifetime of the included batteries. This lifetime depends naturally on the rate at which energy is consumed, however, it also depends on the usage pattern of the battery. Continuous drawing of a

  8. Hydrophobic, Porous Battery Boxes

    Science.gov (United States)

    Bragg, Bobby J.; Casey, John E., Jr.

    1995-01-01

    Boxes made of porous, hydrophobic polymers developed to contain aqueous potassium hydroxide electrolyte solutions of zinc/air batteries while allowing air to diffuse in as needed for operation. Used on other types of batteries for in-cabin use in which electrolytes aqueous and from which gases generated during operation must be vented without allowing electrolytes to leak out.

  9. Battery energy storage system

    NARCIS (Netherlands)

    Tol, C.S.P.; Evenblij, B.H.

    2009-01-01

    The ability to store electrical energy adds several interesting features to a ships distribution network, as silent power, peak shaving and a ride through in case of generator failure. Modern intrinsically safe Li-ion batteries bring these within reach. For this modern lithium battery applications t

  10. Battery thermal management unit

    Science.gov (United States)

    Sanders, Nicholas A.

    1989-03-01

    A battery warming device has been designed which uses waste heat from an operating internal combustion engine to warm a battery. A portion of the waste heat is stored in the sensible and latent heat of a phase change type material for use in maintaining the battery temperature after the engine is shut off. The basic design of the device consists of a Phase Change Material (PCM) reservoir and a simple heat exchanger connected to the engineer's cooling system. Two types of units were built, tested and field trialed. A strap-on type which was strapped to the side of an automotive battery and was intended for the automotive after-market and a tray type on which a battery or batteries sat. This unit was intended for the heavy duty truck market. It was determined that both types of units increased the average cranking power of the batteries they were applied to. Although there were several design problems with the units such as the need for an automatic thermostatically controlled bypass valve, the overall feeling is that there is a market opportunity for both the strap-on and tray type battery warming units.

  11. Bulk-Type All-Solid-State Lithium-Ion Batteries: Remarkable Performances of a Carbon Nanofiber-Supported MgH2 Composite Electrode.

    Science.gov (United States)

    Zeng, Liang; Ichikawa, Takayuki; Kawahito, Koji; Miyaoka, Hiroki; Kojima, Yoshitsugu

    2017-01-25

    Magnesium hydride, MgH2, a recently developed compound for lithium-ion batteries, is considered to be a promising conversion-type negative electrode material due to its high theoretical lithium storage capacity of over 2000 mA h g(-1), suitable working potential, and relatively small volume expansion. Nevertheless, it suffers from unsatisfactory cyclability, poor reversibility, and slow kinetics in conventional nonaqueous electrolyte systems, which greatly limit the practical application of MgH2. In this work, a vapor-grown carbon nanofiber was used to enhance the electrical conductivity of MgH2 using LiBH4 as the solid-state electrolyte. It shows that a reversible capacity of over 1200 mA h g(-1) with an average voltage of 0.5 V (vs Li/Li(+)) can be obtained after 50 cycles at a current density of 1000 mA g(-1). In addition, the capacity of MgH2 retains over 1100 mA h g(-1) at a high current density of 8000 mA g(-1), which indicates the possibility of using MgH2 as a negative electrode material for high power and high capacity lithium-ion batteries in future practical applications. Moreover, the widely studied sulfide-based solid electrolyte was also used to assemble battery cells with MgH2 electrode in the same system, and the electrochemical performance was as good as that using LiBH4 electrolyte.

  12. Aging in chemically prepared divalent silver oxide electrodes for silver/zinc reserve batteries

    Science.gov (United States)

    Smith, David F.; Brown, Curtis

    The instability of silver(II) oxide electrodes used in silver/zinc reserve batteries is the well known cause of capacity loss and delayed activation in reserve batteries after they are stored in the dry, unactivated state for extended periods of time. Metal contaminants in sintered/electroformed electrodes destabilize the oxide and the solid state reaction between AgO and elemental silver results in the formation of the lower capacity monovalent oxide Ag 2O. Chemically prepared (CP) AgO can be used to avoid the metal contaminants and to minimize the interfacial contact area between AgO and Ag, thus minimizing the affects of aging on the electrodes. Electrodes were fabricated with CP AgO and polytetrafluoroethylene (PTFE) binder and expanded silver metal current collectors. Experimentally, both electrode active material compacts (AgO and binder only) and electrodes complete with AgO/binder and silver current collector were tested to evaluate the influence of the current collector on aging. The electrode samples were discharged at a constant rate of 50 mA cm -2 before and after storage at 60°C for 21 days as well as after storage at room ambient temperature conditions for 91 months. The results indicate that the affects of aging upon the AgO/binder compacts are insignificant for long term storage at room temperature. However, thermally accelerated aging at high temperature (60°C) affects both transient and stabilized load voltage as well as capacity. In terms of capacity, the AgO/binder mix itself looses about 5% capacity after 21 days dry storage at 60°C while electrodes complete with current collector loose about 8%. The 60% increase in capacity loss is attributed to the solid state reaction between AgO and elemental silver.

  13. Capacity and Capacity Utilization in Fishing Industries

    OpenAIRE

    Kirkley, James E; Squires, Dale

    1999-01-01

    Excess capacity of fishing fleets is one of the most pressing problems facing the world's fisheries and the sustainable harvesting of resource stocks. Considerable confusion persists over the definition and measurement of capacity and capacity utilization in fishing. Fishing capacity and capacity utilization, rather than capital (or effort) utilization, provide the appropriate framework. This paper provides both technological-economic and economic definitions of capacity and excess capacity i...

  14. Novel Battery Thermal Management System for Greater Lifetime Ratifying Current Quality and Safety Standard

    DEFF Research Database (Denmark)

    Khan, Mohammad Rezwan; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2014-01-01

    Temperature excursions and non-uniformity of the temperature inside the battery systems are the main concern and drawback for any attempt to scale-up battery cells to the larger sizes as required for high power applications. The applications may include electric generating stations, substations......, vehicles, telecommunications installations, large industrial and commercial installations, large uninterruptible power supply (UPS) installations and renewable energy plant installations etc. The capacity of the battery pack increases as the operating temperature is raised for a battery pack however...... this come with the very high expense of accelerated capacity fade i.e. ageing. Subsequently the lifetime of the battery system is reduced. Moreover poor performance (limited capacity availability) is observed at low operating temperature. In addition, excessive or uneven temperature rise in a system or pack...

  15. Shelf life degradation study of a reserve zinc-silver oxide battery

    Science.gov (United States)

    Lander, J. J.; Sowder, T. R.

    The considered battery is hermetically sealed. It is piston-cylinder actuated by means of a gas generator for electrolyte delivery. The cell block contains 20 cells, and each cell contains 19 plates. The new battery delivers about 11 A-hr to 23 V at an average 164 A. Sample batteries were periodically discharged to establish performance degradation rates. The values of various battery parameters were obtained as a function of age. These parameters include the oxygen content of the positive plates, individual plate and whole cell capacities, positive plate active material resistance, and the resistance of positive active material to the grid. It was found that run time of the zinc plate limits capacity. Failure to meet performance requirements is expected to be limited by capacity, not first pulse voltage. If a linear projection of both descriptors can be made, an average of 38 year battery shelf life is anticipated.

  16. Battery Pack Thermal Design

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad

    2016-06-14

    This presentation describes the thermal design of battery packs at the National Renewable Energy Laboratory. A battery thermal management system essential for xEVs for both normal operation during daily driving (achieving life and performance) and off-normal operation during abuse conditions (achieving safety). The battery thermal management system needs to be optimized with the right tools for the lowest cost. Experimental tools such as NREL's isothermal battery calorimeter, thermal imaging, and heat transfer setups are needed. Thermal models and computer-aided engineering tools are useful for robust designs. During abuse conditions, designs should prevent cell-to-cell propagation in a module/pack (i.e., keep the fire small and manageable). NREL's battery ISC device can be used for evaluating the robustness of a module/pack to cell-to-cell propagation.

  17. Electrolytes for advanced batteries

    Energy Technology Data Exchange (ETDEWEB)

    Blomgren, G.E. [Energizer, Westlake, OH (United States)

    1999-09-01

    The choices of the components of the electrolyte phase for advanced batteries (lithium and lithium ion batteries) are very sensitive to the electrodes which are used. There are also a number of other requirements for the electrolyte phase, which depend on the cell design and the materials chosen for the battery. The difficulty of choice is compounded when the cell is a rechargeable one. This paper looks at each of these requirements and the degree to which they are met for lithium and lithium ion batteries. The discussion is broken into sections on anode or negative electrode stability requirements, cathode or positive electrode stability requirements, conductivity needs, viscosity and wetting requirements. The effects of these properties and interactions on the performance of batteries are also discussed. (orig.)

  18. Metallization pattern on solid electrolyte or porous support of sodium battery process

    Science.gov (United States)

    Kim, Jin Yong; Li, Guosheng; Lu, Xiaochuan; Sprenkle, Vincent L.; Lemmon, John P.

    2016-05-31

    A new battery configuration and process are detailed. The battery cell includes a solid electrolyte configured with an engineered metallization layer that distributes sodium across the surface of the electrolyte extending the active area of the cathode in contact with the anode during operation. The metallization layer enhances performance, efficiency, and capacity of sodium batteries at intermediate temperatures at or below about 200.degree. C.

  19. Next-generation batteries and fuel cells for commercial, military, and space applications

    CERN Document Server

    Jha, A R

    2012-01-01

    Distilling complex theoretical physical concepts into an understandable technical framework, Next-Generation Batteries and Fuel Cells for Commercial, Military, and Space Applications describes primary and secondary (rechargeable) batteries for various commercial, military, spacecraft, and satellite applications for covert communications, surveillance, and reconnaissance missions. It emphasizes the cost, reliability, longevity, and safety of the next generation of high-capacity batteries for applications where high energy density, minimum weight and size, and reliability in harsh conditions are

  20. Nickel-hydrogen battery design for the Transporter Energy Storage Subsystem (TESS)

    Science.gov (United States)

    Lapinski, John R.; Bourland, Deborah S.

    1992-01-01

    Information is given in viewgraph form on nickel hydrogen battery design for the transporter energy storage subsystem (TESS). Information is given on use in the Space Station Freedom, the launch configuration, use in the Mobile Servicing Center, battery design requirements, TESS subassembley design, proof of principle testing of a 6-cell battery, possible downsizing of TESS to support the Mobile Rocket Servicer Base System (MBS) redesign, TESS output capacity, and cell testing.

  1. Mesoporous Cladophora cellulose separators for lithium-ion batteries

    Science.gov (United States)

    Pan, Ruijun; Cheung, Ocean; Wang, Zhaohui; Tammela, Petter; Huo, Jinxing; Lindh, Jonas; Edström, Kristina; Strømme, Maria; Nyholm, Leif

    2016-07-01

    Much effort is currently made to develop inexpensive and renewable materials which can replace the polyolefin microporous separators conventionally used in contemporary lithium-ion batteries. In the present work, it is demonstrated that mesoporous Cladophora cellulose (CC) separators constitute very promising alternatives based on their high crystallinity, good thermal stability and straightforward manufacturing. The CC separators, which are fabricated using an undemanding paper-making like process involving vacuum filtration, have a typical thickness of about 35 μm, an average pore size of about 20 nm, a Young's modulus of 5.9 GPa and also exhibit an ionic conductivity of 0.4 mS cm-1 after soaking with 1 M LiPF6 EC: DEC (1/1, v/v) electrolyte. The CC separators are demonstrated to be thermally stable at 150 °C and electrochemically inert in the potential range between 0 and 5 V vs. Li+/Li. A LiFePO4/Li cell containing a CC separator showed good cycling stability with 99.5% discharge capacity retention after 50 cycles at a rate of 0.2 C. These results indicate that the renewable CC separators are well-suited for use in high-performance lithium-ion batteries.

  2. Poly(Aniline/o-Nitroaniline) : A High Capacity Cathode Material for Lithium Ion Batteries%苯胺-邻硝基苯胺共聚物——高比容量锂二次电池新型正极材料

    Institute of Scientific and Technical Information of China (English)

    赵瑞瑞; 朱利敏; 钱江锋; 杨汉西

    2012-01-01

    Polyaniline can be used as a high capacity cathode material due to the advantages of material abun-dance and synthetic simplicity. However, its practical application in battery has been hindered by poor electro-chemical utilization and cycling instability. To solve these problems, we synthesized the poly ( aniline/o-Nitro-aniline) (P(AN-oNA) ) by introducing the electron-drawing group-nitroaniline onto the polyaniline chains, so as to enhance electrochemical utilization and stability of the polyaniline derivative. The as-prepared Li/P( AN- oNA) copolymer shows a greatly enhanced discharge capacities of 186 mAh·g^-1 at initial cycles, about 37 % higher than its parent PAN, and remains 168 mAh·g^-1 after 60th cycle. Also, the Li/P(AN-oNA) copolymer exhibits ,Jery similar charge and discharge profiles, demonstrating a significantly decreased polarization. This structural modification of PAN and the resulting improved performances of the Li/P (AN-oNA) copolymer suggest an effective way to develop high capacity organic cathode materials for Li-ion batteries.%聚苯胺作为锂离子电池典型的有机正极材料,合成简单、资源丰富,但其电化学比容量与循环寿命始终难以满足实用要求.作者采用化学氧化聚合法合成了苯胺一邻硝基苯胺共聚物(Poly(Aniline/o—Nitroanil—ine,P(AN—oNA)),通过在聚苯胺主链引入强拉电子基团——硝基苯胺,增大共聚物的电子共轭体系,改善共聚物链段的稳定性,利用硝基苯胺基团的电化学可逆性提高共聚物的电化学活性.结果表明,P(AN—oNA)的初始充放电比容量高达186mAh·g^-1,比聚苯胺提高近37%,60周循环仍能维持168mAh·g^-1.此外,P(AN—oNA)电极的充放电电位平阶十分接近,电极的极化明显降低,电子转移反应速率加快.这种新型共聚物结构与性能对于发展有机正极材料具有重要的参考意义.

  3. CuO nanorods/graphene nanocomposites for high-performance lithium-ion battery anodes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qi; Zhao, Jun; Shan, Wanfei; Xia, Xinbei; Xing, Lili; Xue, Xinyu, E-mail: xuexinyu@mail.neu.edu.cn

    2014-03-25

    Highlights: • CuO/GNS nanocomposites are synthesized by a hydrothermal method. • CuO/GNSs as LIB anodes exhibit much higher cyclability and capacity than CuO nanostructures. • Such excellent performances can be attributed to the synergistic effect between CuO and GNSs. -- Abstract: CuO/graphene nanocomposites are synthesized by a hydrothermal method, and their application as anodes of lithium-ion batteries has been investigated. CuO nanorods are uniformly coating on the surface of graphene nanosheets. CuO/graphene nanocomposites exhibit high cyclability and capacity. After 50 cycles, the capacity can maintain at 692.5 mA h g{sup −1} at 0.1 C rate (10 h per half cycle). Such a high performance can be attributed to the synergistic effect between graphene nanosheets and CuO nanorods. The present results indicate that CuO/graphene nanocomposites have potential applications in the anodes of lithium-ion battery.

  4. Preparation and Characterisation of LiFePO4/CNT Material for Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Rushanah Mohamed

    2011-01-01

    Full Text Available Li-ion battery cathode materials were synthesised via a mechanical activation and thermal treatment process and systematically studied. LiFePO4/CNT composite cathode materials were successfully prepared from LiFePO4 material. The synthesis technique involved growth of carbon nanotubes onto the LiFePO4 using a novel spray pyrolysis-modified CVD technique. The technique yielded LiFePO4/CNT composite cathode material displaying good electrochemical activity. The composite cathode exhibited excellent electrochemical performances with 163 mAh/g discharge capacity with 94% cycle efficiency at a 0.1 C discharge rate in the first cycle, with a capacity fade of approximately 10% after 30 cycles. The results indicate that carbon nanotube addition can enable LiFePO4 to display a higher discharge capacity at a fast rate with high efficiency. The research is of potential interest for the application of carbon nanotubes as a new conducting additive in cathode preparation and for the development of high-power Li-ion batteries for hybrid electric vehicles.

  5. Carbon matrix/SiNWs heterogeneous block as improved reversible anodes material for lithium ion batteries

    Institute of Scientific and Technical Information of China (English)

    Yao; Wang; Long; Ren; Yundan; Liu; Xuejun; Liu; Kai; Huang; Xiaolin; Wei; Jun; Li; Xiang; Qi; Jianxin; Zhong

    2014-01-01

    A novel carbon matrix/silicon nanowires(SiNWs) heterogeneous block was successfully produced by dispersing SiNWs into templated carbon matrix via a modified evaporation induced self-assembly method. The heterogeneous block was determined by X-ray diffraction, Raman spectra and scanning electron microscopy. As an anode material for lithium batteries, the block was investigated by cyclic voltammograms(CV), charge/discharge tests, galvanostatic cycling performance and A. C. impedance spectroscopy. We show that the SiNWs disperse into the framework, and are nicely wrapped by the carbon matrix. The heterogeneous block exhibits superior electrochemical reversibility with a high specific capacity of 529.3 mAh/g in comparison with bare SiNWs anode with merely about 52.6 mAh/g capacity retention. The block presents excellent cycle stability and capacity retention which can be attributed to the improvement of conductivity by the existence of carbon matrix and the enhancement of ability to relieve the large volume expansion of SiNWs during the lithium insertion/extraction cycle. The results indicate that the as-prepared carbon matrix/SiNWs heterogeneous block can be an attractive and potential anode material for lithium-ion battery applications.

  6. Optimization of reserve lithium thionyl chloride battery electrochemical design parameters

    Science.gov (United States)

    Doddapaneni, N.; Godshall, N. A.

    The performance of Reserve Lithium Thionyl Chloride (RLTC) batteries was optimized by conducting a parametric study of seven electrochemical parameters: electrode compression, carbon thickness, presence of catalyst, temperature, electrode limitation, discharge rate, and electrolyte acidity. Increasing electrode compression (from 0 to 15 percent) improved battery performance significantly (10 percent greater carbon capacity density). Although thinner carbon cathodes yielded less absolute capacity than did thicker cathodes, they did so with considerably higher volume efficiencies. The effect of these parameters, and their synergistic interactions, on electrochemical cell performance is illustrated.

  7. High cycling stability of zinc-anode/conducting polymer rechargeable battery with non-aqueous electrolyte

    Science.gov (United States)

    Guerfi, A.; Trottier, J.; Boyano, I.; De Meatza, I.; Blazquez, J. A.; Brewer, S.; Ryder, K. S.; Vijh, A.; Zaghib, K.

    2014-02-01

    A non-aqueous zinc-polyaniline secondary battery was fabricated with polyaniline Emeraldine base as cathode and zinc metal as anode in an electrolyte consisting of 0.3 M zinc-bis(trifluoromethyl-sulfonyl)imide Zn(TFSI)2 dissolved in propylene carbonate. We observed that the formation of the battery required a prerequisite condition to stabilize the interfaces in order to maintain a stable capacity. The battery suffered from Zn dissolution which induces a competition between concurrent Zn dissolution and plating when the battery is in charge mode, and thus inefficient cycles are obtained. The capacity and coulombic efficiency of the battery depends on the charge-discharge rates. We propose cycling protocols at different rates to determine the steady-state rates of competing reactions. When the cell is cycled at ≥1 C rate, the coulombic efficiency improves. The maximum capacity and energy densities of the battery are 148 mAhg-1 and 127 mWhg-1, respectively for discharge at C/2. The battery was successively charged/discharged at constant current densities (1C rate), and high cycling stability was obtained for more than 1700 cycles at 99.8% efficiency. Zinc dissolution and self discharge of the battery were investigated after 24 h of standby. The investigation showed that the battery experiences a severe self-discharge of 48% per day.

  8. Mathematical Storage-Battery Models

    Science.gov (United States)

    Chapman, C. P.; Aston, M.

    1985-01-01

    Empirical formula represents performance of electrical storage batteries. Formula covers many battery types and includes numerous coefficients adjusted to fit peculiarities of each type. Battery and load parameters taken into account include power density in battery, discharge time, and electrolyte temperature. Applications include electric-vehicle "fuel" gages and powerline load leveling.

  9. Geothermal Plant Capacity Factors

    Energy Technology Data Exchange (ETDEWEB)

    Greg Mines; Jay Nathwani; Christopher Richard; Hillary Hanson; Rachel Wood

    2015-01-01

    The capacity factors recently provided by the Energy Information Administration (EIA) indicated this plant performance metric had declined for geothermal power plants since 2008. Though capacity factor is a term commonly used by geothermal stakeholders to express the ability of a plant to produce power, it is a term frequently misunderstood and in some instances incorrectly used. In this paper we discuss how this capacity factor is defined and utilized by the EIA, including discussion on the information that the EIA requests from operations in their 923 and 860 forms that are submitted both monthly and annually by geothermal operators. A discussion is also provided regarding the entities utilizing the information in the EIA reports, and how those entities can misinterpret the data being supplied by the operators. The intent of the paper is to inform the facility operators as the importance of the accuracy of the data that they provide, and the implications of not providing the correct information.

  10. Weather and road capacity

    DEFF Research Database (Denmark)

    Jensen, Thomas Christian

    2014-01-01

    The paper presents estimations of the effect of bad weather on the observed speed on a Danish highway section; Køge Bugt Motorvejen. The paper concludes that weather, primarily precipitation and snow, has a clear negative effect on speed when the road is not in hypercongestion mode. Furthermore......, the capacity of the highway seems to be reduced in bad weather and there are indications that travel time variability is also increased, at least in free-flow conditions. Heavy precipitation reduces speed and capacity by around 5-8%, whereas snow primarily reduces capacity. Other weather variables......-parametrically against traffic density and in step 2 the residuals from step 1 are regressed linearly against the weather variables. The choice of a non-parametric method is made to avoid constricting ties from a parametric specification and because the focus here is not on the relationship between traffic flow...

  11. Interface-Induced Renormalization of Electrolyte Energy Levels in Magnesium Batteries

    DEFF Research Database (Denmark)

    Kumar, Nitin; Siegel, Donald J.

    2016-01-01

    A promising strategy for increasing the energy density of Li-ion batteries is to substitute a multivalent (MV) metal for the commonly used lithiated carbon anode. Magnesium is a prime candidate for such a MV battery due to its high volumetric capacity, abundance, and limited tendency to form...

  12. A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li-S batteries.

    Science.gov (United States)

    Zhou, Guangmin; Li, Lu; Wang, Da-Wei; Shan, Xu-Yi; Pei, Songfeng; Li, Feng; Cheng, Hui-Ming

    2015-01-27

    A flexible Li-S battery based on an integrated structure of sulfur and graphene on a separator is developed. The internal graphene current collector offers a continuous conductive pathway, a modified interface with sulfur, and a good barrier to and an effective reservoir for dissolved polysulfides, consequently improving the capacity and cyclic life of the Li-S battery.

  13. Alkaline manganese--zinc battery. [2000 Ah, 100 Wh/kg

    Energy Technology Data Exchange (ETDEWEB)

    Naumenko, V.A.; Lyapuntsova, T.G.; Lidorenko, N.S.; Lebedeva, E.S.; Penkova, L.F.; Aleshin, V.N.

    1975-02-12

    The battery described consisted of flat electrodes assembled in a pack. Cathodes were enclosed in perforated metal frames, while the anodes were metal plates coated with zinc. The batteries had capacities of about 2000 Ah and power--weight ratios of 100 Wh/kg and were resistant to shock and vibration. (RWR)

  14. Impedance-Based Battery Management for Metal-O2 Systems

    DEFF Research Database (Denmark)

    Christensen, Andreas Elkjær; Højberg, Jonathan; Norby, Poul

    2015-01-01

    In electric vehicles, reliable estimation of the state-of-charge (SoC) is crucial to determine the remaining capacity, but the electrochemical processes in metal-O2 batteries are very different to the Li-ion batteries used today, and current SoC-estimation methods prove insufficient. In Li-O2 bat...

  15. Operando Characterization of Intermediates Produced in a Lithium-Sulfur Battery

    NARCIS (Netherlands)

    Gorlin, Y.; Siebel, A.; Piana, M.; Huthwelker, T.; Jha, H.; Monsch, G.; Kraus, F.; Gasteiger, H.A.; Tromp, M.

    2015-01-01

    One of the technological barriers to electrification of transport is the insufficient storage capacity of the Li-ion batteries on which the current electric cars are based. The lithium-sulfur (Li-S) battery is an advanced technology whose successful commercialization can lead to significant gains in

  16. Ecological and biomedical effects of effluents from near-term electric vehicle storage battery cycles

    Science.gov (United States)

    1980-05-01

    The lead/acid battery cycle from mining and milling of raw materials through recycling of scrap batteries and disposal of wastes is described. Material flows and emissions for various phases of the total cycle are estimated for per megawatt hour of installed capacity and for a scenario of three million lead/acid electric vehicles on the road by the year 2000.

  17. Tendencies of Development of Global Battery Market with Emphasis on Republic of Croatia

    OpenAIRE

    Ivan Miloloža

    2013-01-01

    Starter and traction batteries are build in vehicles with internal combustion engine or electric engine. Similar, stationary batteries supply power to communication or computer centres. The use of these products indicates the specific market for them, because the battery producer is not often in connection with the final consumer, almost always there is someone between them, connecting them. Thus, between the user and the battery manufacturer intermediate distributors, service installations i...

  18. Anodematerials for Metal Hydride Batteries

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf

    1997-01-01

    by annealing at 700°C for 12 hours. The alloys appeared to be nanocrystalline with an average crystallite size around 10 nm before annealing. Special steel containers was developed for the annealing of the metal powders in inert atmosphere. The use of various annealing temperatures was investigated......This report describes the work on development of hydride forming alloys for use as electrode materials in metal hydride batteries. The work has primarily been concentrated on calcium based alloys derived from the compound CaNi5. This compound has a higher capacity compared with alloys used in today...... was developed. The parameters milling time, milling intensity, number of balls and form of the alloying metals were investigated. Based on this a final alloying technique for the subsequent preparation of electrode materials was established. The technique comprises milling for 4 hours twice possibly followed...

  19. Evaluating the Degradation Mechanism and State of Health of LiFePO4 Lithium-Ion Batteries in Real-World Plug-in Hybrid Electric Vehicles Application for Different Ageing Paths

    Directory of Open Access Journals (Sweden)

    Chi Zhang

    2017-01-01

    Full Text Available Accurate determination of the performance and precise prediction of the state of health (SOH of lithium-ion batteries are necessary to ensure reliability and efficiency in real-world application. However, most SOH offline studies were based on dynamic stress tests, which only reflect the universal rule of degradation, but are not necessarily applicable for real-world applications. This paper presents an experimental evaluation of two different operations of real-world plug-in hybrid electric vehicles with LiFePO4 batteries as energy-storage systems. First, the LiFePO4 batteries were subjected to a set of comparative experimental tests that consider the effects of charge depleting (CD and charge sustaining (CS operations. Then, different voltage analysis along with the close-to-equilibrium open circle voltage was utilized to evaluate the performance of the batteries in life cycles. Finally, a qualitative relationship between the external factors (the percentage of time of CD/CS operations during the entire driving range and the degradation mechanism was built with the help of the proposed methods. Results indicated that the external factors affect the degree of the batteries degradation, but not up to the point when the capacity fading stage occurs. This relationship contributes to the foundation for plug-in hybrid electric vehicles’ (PHEVs’ energy management strategy or battery management system control strategy.

  20. Battery Technology Stores Clean Energy

    Science.gov (United States)

    2008-01-01

    Headquartered in Fremont, California, Deeya Energy Inc. is now bringing its flow batteries to commercial customers around the world after working with former Marshall Space Flight Center scientist, Lawrence Thaller. Deeya's liquid-cell batteries have higher power capability than Thaller's original design, are less expensive than lead-acid batteries, are a clean energy alternative, and are 10 to 20 times less expensive than nickel-metal hydride batteries, lithium-ion batteries, and fuel cell options.