WorldWideScience

Sample records for batteries put wind

  1. WIND DRIVEN MOBILE CHARGING OF AUTOMOBILE BATTERY

    Directory of Open Access Journals (Sweden)

    SUDHIR KUMAR SINHA

    2011-01-01

    Full Text Available This paper deals with implementation of mobile wind driven generator technology to produce electricity in charging of two wheeler (12V automobile battery. The use of PWM methodology with pulse charging method at a constant rate has been adopted for this purpose. The low speed PMSG driven by wind at speed of 15/40 km/hour has been used to eliminate gear box to achieve high efficiency. The output of three phase bridge rectifier is fed to boost converter which provides pulses of constant current to the battery.

  2. WIND DRIVEN MOBILE CHARGING OF AUTOMOBILE BATTERY

    OpenAIRE

    SUDHIR KUMAR SINHA; SUMIT KUMAR JHA,; DR S.N. SINGH,

    2011-01-01

    This paper deals with implementation of mobile wind driven generator technology to produce electricity in charging of two wheeler (12V) automobile battery. The use of PWM methodology with pulse charging method at a constant rate has been adopted for this purpose. The low speed PMSG driven by wind at speed of 15/40 km/hour has been used to eliminate gear box to achieve high efficiency. The output of three phase bridge rectifier is fed to boost converter which provides pulses of constant curren...

  3. Profitability Analysis of Residential Wind Turbines with Battery Energy Storage

    Science.gov (United States)

    She, Ying; Erdem, Ergin; Shi, Jing

    Residential wind turbines are often accompanied by an energy storage system for the off-the-grid users, instead of the on-the-grid users, to reduce the risk of black-out. In this paper, we argue that residential wind turbines with battery energy storage could actually be beneficial to the on-the-grid users as well in terms of monetary gain from differential pricing for buying electricity from the grid and the ability to sell electricity back to the grid. We develop a mixed-integer linear programming model to maximize the profit of a residential wind turbine system while meeting the daily household electricity consumption. A case study is designed to investigate the effects of differential pricing schemes and sell-back schemes on the economic output of a 2-kW wind turbine with lithium battery storage. Overall, based on the current settings in California, a residential wind turbine with battery storage carries more economical benefits than the wind turbine alone.

  4. Batteries for storage of wind-generated energy

    Science.gov (United States)

    Schwartz, H. J.

    1973-01-01

    Cost effectiveness characteristics of conventional-, metal gas-, and high energy alkali metal-batteries for wind generated energy storage are considered. A lead-acid battery with a power density of 20 to 30 watt/hours per pound is good for about 1500 charge-discharge cycles at a cost of about $80 per kilowatt hour. A zinc-chlorine battery that stores chlorine as solid chlorine hydrate at temperatures below 10 C eliminates the need to handle gaseous chlorine; its raw material cost are low and inexpensive carbon can be used for the chlorine electrode. This system has the best chance to replace lead-acid. Exotic alkali metal batteries are deemed too costly at the present stage of development.

  5. Hybrid Energy Storage System With A Special Battery Charger For Wind Power System

    OpenAIRE

    Dipu Varghese; Stany E George

    2014-01-01

    Generation systems including wind turbine generators, photovoltaic panels and storage batteries are used to build hybrid stand-alone generation systems that are reliable, economic and efficient. Battery energy storage is the current and typical means of smoothing wind or solar power generation fluctuations and improving the power quality. A new battery charger which is a buck-type power converter specially for the wind power system is developed. The converter provides pulsating charging curre...

  6. The Application of Batteries as a Backup of Large Wind Farms

    International Nuclear Information System (INIS)

    The largest disadvantage of the wind energy is its dependence on the climate conditions. Although much improved, the wind forecast is still very complicated and inaccurate. Furthermore, due to sudden and abrupt changes of the wind speed, the power output from a wind farm can have large fluctuations. To maintain reliable electricity supply, in this paper the possible technical employment of batteries as electricity storage for large wind farms is presented. Due to possible cost reduction, the use of the batteries can be very attractive in cooperation with HVDC transmission. At the beginning the working principle of wind farm and battery storage is explained and possible load flows between wind farm, battery and power grid are detailed. A battery storage system for one 300 MW wind farm has been chosen. The model of the battery which takes into account its charging/discharging time constants and power losses will be introduced. From the technical point of view two main applications of the battery storage will be distinguished: power and energy backup. Power backup is connected with very fast power fluctuations in the range of seconds up to several minutes. In this case the power output fluctuations from the wind farm have to be smoothed and the power at the connection point has to be kept constant. Also, in case of windstorm, when in a short time the whole wind farm has to be shut down, the battery storage has to deliver large amount of energy in a short period. The energy application of the batteries is in the time frame from several hours up to several days. Several typical cases have been analysed concerning wind and battery condition. Furthermore, the use of the batteries as 'market balance' to regulate the power output and maximize the profit of the wind farm will be treated. These analyses can be very important for possible future deployment of batteries, especially regarding the volatility of the electricity prices.

  7. Battery sizing for a stand alone passive wind system using statistical techniques

    OpenAIRE

    Belouda, Malek; Belhadj, Jamel; Sareni, Bruno; Roboam, Xavier

    2011-01-01

    In this paper, an original optimization method to jointly determine a reduced study term and an optimum battery sizing is investigated. This storage device is used to connect a passive wind turbine system with a stand alone network. A Weibull probability density function is used to generate different wind speed data. The passive wind system is composed of a wind turbine, a permanent magnet synchronous generator feeding a diode rectifier associated with a very low voltage DC battery bus. This ...

  8. Generation management using batteries in wind farms. Economical and technical analysis for Spain

    International Nuclear Information System (INIS)

    This paper presents an hourly management method for energy generated in grid-connected wind farms using battery storage (Wind-Batteries systems). The method proposed is analysed technically and economically. Electricity generation in wind farms does not usually coincide with the electrical demand curve. If the wind-power penetration becomes high in the Spanish electrical grid, energy management will become necessary for some wind farms. A method is proposed in this paper to adjust the generation curve to the demand curve by storing electrical energy in batteries during off-peak hours (low demand) and selling stored energy to the grid during peak hours (high demand). With the results obtained and reported in this paper, for a Wind-Batteries system to be economically as profitable as a Wind-Only system, the selling price of the energy provided by the batteries during peak hours should be between 22 and 66 cEUR/kWh, depending on the technology and cost of the batteries. Comparison with flexible thermal generation has been performed. Additionally, the results are compared with those obtained if using hydrogen (Wind-Hydrogen system, which uses an electrolyser, hydrogen tank, and fuel cell instead of batteries), concluding that the Wind-Batteries system is both economically and energetically far more suitable. (author)

  9. Generation management using batteries in wind farms: Economical and technical analysis for Spain

    International Nuclear Information System (INIS)

    This paper presents an hourly management method for energy generated in grid-connected wind farms using battery storage (Wind-Batteries systems). The method proposed is analysed technically and economically. Electricity generation in wind farms does not usually coincide with the electrical demand curve. If the wind-power penetration becomes high in the Spanish electrical grid, energy management will become necessary for some wind farms. A method is proposed in this paper to adjust the generation curve to the demand curve by storing electrical energy in batteries during off-peak hours (low demand) and selling stored energy to the grid during peak hours (high demand). With the results obtained and reported in this paper, for a Wind-Batteries system to be economically as profitable as a Wind-Only system, the selling price of the energy provided by the batteries during peak hours should be between 22 and 66 c Euro /kWh, depending on the technology and cost of the batteries. Comparison with flexible thermal generation has been performed. Additionally, the results are compared with those obtained if using hydrogen (Wind-Hydrogen system, which uses an electrolyser, hydrogen tank, and fuel cell instead of batteries), concluding that the Wind-Batteries system is both economically and energetically far more suitable

  10. Optimal Capacity Allocation of Large-Scale Wind-PV-Battery Units

    OpenAIRE

    2014-01-01

    An optimal capacity allocation of large-scale wind-photovoltaic- (PV-) battery units was proposed. First, an output power model was established according to meteorological conditions. Then, a wind-PV-battery unit was connected to the power grid as a power-generation unit with a rated capacity under a fixed coordinated operation strategy. Second, the utilization rate of renewable energy sources and maximum wind-PV complementation was considered and the objective function of full life cycle-net...

  11. Optimal Capacity Allocation of Large-Scale Wind-PV-Battery Units

    Directory of Open Access Journals (Sweden)

    Kehe Wu

    2014-01-01

    Full Text Available An optimal capacity allocation of large-scale wind-photovoltaic- (PV- battery units was proposed. First, an output power model was established according to meteorological conditions. Then, a wind-PV-battery unit was connected to the power grid as a power-generation unit with a rated capacity under a fixed coordinated operation strategy. Second, the utilization rate of renewable energy sources and maximum wind-PV complementation was considered and the objective function of full life cycle-net present cost (NPC was calculated through hybrid iteration/adaptive hybrid genetic algorithm (HIAGA. The optimal capacity ratio among wind generator, PV array, and battery device also was calculated simultaneously. A simulation was conducted based on the wind-PV-battery unit in Zhangbei, China. Results showed that a wind-PV-battery unit could effectively minimize the NPC of power-generation units under a stable grid-connected operation. Finally, the sensitivity analysis of the wind-PV-battery unit demonstrated that the optimization result was closely related to potential wind-solar resources and government support. Regions with rich wind resources and a reasonable government energy policy could improve the economic efficiency of their power-generation units.

  12. Optimal control of battery for grid-connected wind-storage system

    OpenAIRE

    L. Liang; Zhong, J.

    2012-01-01

    The penetration level of large-scale wind farms is restricted by the output uncertainties of wind power generations. Energy storage systems with fast response time and high operation efficiencies, such as, flywheel and battery could be used as one of the solutions for large-scale wind power integration to power grid. To mitigate the power fluctuation of wind farm, an optimal control method of battery energy storage system is proposed for grid-connected wind system in this paper. Based on one-...

  13. A Hybrid Spline Metamodel for Photovoltaic/Wind/Battery Energy Systems

    OpenAIRE

    Zaibi, Malek; LAYADI, Toufik Madani; Champenois, Gérard; Roboam, Xavier; Sareni, Bruno; Belhadj, Jamel

    2015-01-01

    This paper proposes a metamodel design for a Photovoltaic/Wind/Battery Energy System. The modeling of a hybrid PV/wind generator coupled with two kinds of storage i.e. electric (battery) and hydraulic (tanks) devices is investigated. A metamodel is carried out by hybrid spline interpolation to solve the relationships between several design variables i.e. the design parameters of different subsystems and their associate response variables i.e. system indicators performance. The developed model...

  14. Button batteries

    Science.gov (United States)

    Swallowing batteries ... These devices use button batteries: Calculators Cameras Hearing aids Penlights Watches ... If a person puts the battery up their nose and breathes it further in, ... problems Cough Pneumonia (if the battery goes unnoticed) ...

  15. Stand-alone wind system with Vanadium Redox Battery energy storage

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Barote, L.; Weissbach, R.;

    2008-01-01

    Energy storage devices are required for power balance and power quality in stand alone wind energy systems. A Vanadium Redox Flow Battery (VRB) system has many features which make its integration with a stand-alone wind energy system attractive. This paper proposes the integration of a VRB system...... with a typical stand-alone wind energy system during wind speed variation as well as transient performance under variable load. The investigated system consists of a variable speed wind turbine with permanent magnet synchronous generator (PMSG), diode rectifier bridge, buck-boost converter, bidirectional charge...

  16. Ramping Performance Analysis of the Kahuku Wind-Energy Battery Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, V. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Corbus, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-11-01

    High penetrations of wind power on the electrical grid can introduce technical challenges caused by resource variability. Such variability can have undesirable effects on the frequency, voltage, and transient stability of the grid. Energy storage devices can be an effective tool in reducing variability impacts on the power grid in the form of power smoothing and ramp control. Integrating anenergy storage system with a wind power plant can help smooth the variable power produced from wind. This paper explores the fast-response, megawatt-scale, wind-energy battery storage systems that were recently deployed throughout the Hawaiian islands to support wind and solar projects.

  17. Studies on battery storage requirement of PV fed wind-driven induction generators

    International Nuclear Information System (INIS)

    Highlights: ► Sizing of battery storage for PV fed wind-driven IG system is taken up. ► Battery storage is also used to supply reactive power for wind-driven IG. ► Computation of LPSP by incorporating uncertainties of irradiation and wind speed. ► Sizing of hybrid power system components to ensure zero LPSP. ► Calculated storage size satisfied the constraints and improves battery life. - Abstract: Hybrid stand-alone renewable energy systems based on wind–solar resources are considered to be economically better and reliable than stand-alone systems with a single source. An isolated hybrid wind–solar system has been considered in this work, where the storage (battery bank) is necessary to supply the required reactive power for a wind-driven induction generator (IG) during the absence of power from a photovoltaic (PV) array. In such a scheme, to ensure zero Loss of Power Supply Probability (LPSP) and to improve battery bank life, a sizing procedure has been proposed with the incorporation of uncertainties in wind-speed and solar-irradiation level at the site of erection of the plant. Based on the proposed procedure, the size of hybrid power system components and storage capacity are determined. Storage capacity has been calculated for two different requirements. The first requirement of storage capacity is common to any hybrid scheme, which is; to supply both real and reactive power in the absence of wind and solar sources. The second requirement is to supply reactive power alone for the IG during the absence of photovoltaic power, which is unique to the hybrid scheme considered in this work. Storage capacity calculations for different conditions using the proposed approach, satisfies the constraints of maintaining zero LPSP and also improved cycle life of the battery bank

  18. Utilizing a vanadium redox flow battery to avoid wind power deviation penalties in an electricity market

    International Nuclear Information System (INIS)

    Highlights: • Vanadium redox flow battery utilized for wind power grid integration was studied. • Technical and financial analyses at single wind farm level were performed. • 2 MW/6 MW h VRFB is suitable for mitigating power deviations for a 10 MW wind farm. • Economic incentives might be required in the short-term until the VRFB prices drop. - Abstract: Utilizing a vanadium redox flow battery (VRFB) for better market integration of wind power at a single wind farm level was evaluated. A model which combines a VRFB unit and a medium sized (10 MW) wind farm was developed and the battery was utilized to compensate for the deviations resulting from the forecast errors in an electricity market bidding structure. VRFB software model which was introduced in our previous paper was integrated with real wind power data, power forecasts and market data based on the Spanish electricity market. Economy of the system was evaluated by financial assessments which were done by considering the VRFB costs and the amount of deviation penalty payments resulting from forecast inaccuracies

  19. Applying wind turbines and battery storage to defer Orcas Power and Light Company distribution circuit upgrades

    International Nuclear Information System (INIS)

    The purpose of this study is to conduct a detailed assessment of the Orcas Power and Light Company (OPALCO) system to determine the potential for deferring the costly upgrade of the 25-kV Lopez- Eastsound circuit, by the application of a MW-scale wind farm and battery storage facilities as appropriate. Local wind resource data has been collected over the past year and used to determine MW-scale wind farm performance. This hourly wind farm performance data is used with measured hourly Eastsound load data, and recent OPALCO distribution system expansion plans and cost projections in performing this detailed benefit-cost assessment. The OPALCO distribution circuit expansion project and assumptions are described. MW-scale wind farm performance results are given. The economic benefit-cost results for the wind farm and battery storage applications on the OPALCO system using OPALCO system design criteria and cost assumptions are reported. A recalculation is presented of the benefit-cost results for similar potential wind farm and battery storage applications on other utility systems with higher marginal energy and demand costs. Conclusions and recommendations are presented. costs. Conclusions and recommendations are presented

  20. Lifetime and economic analyses of lithium-ion batteries for balancing wind power forecast error

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Ioan; Stroe, Ana-Irina;

    2015-01-01

    Wind power plant operators are often faced with extra charges when their power production does not match the forecasted power. Because the accuracy of wind power forecasts is limited, the use of energy storage systems is an attractive alternative even when large-scale aggregation of wind power is...... considered. In this paper, the economic feasibility of lithium-ion batteries for balancing the wind power forecast error is analysed. In order to perform a reliable assessment, an ageing model of lithium-ion battery was developed considering both cycling and calendar life. The economic analysis considers two...... different energy management strategies for the storage systems and it is performed for the Danish market. Analyses have shown that the price of the Li-ion BESS needs to decrease by 6.7 times in order to obtain a positive net present value considering the present prices on the Danish energy market. Moreover...

  1. A New Battery Energy Storage Charging/Discharging Scheme for Wind Power Producers in Real-Time Markets

    OpenAIRE

    Minh Y Nguyen; Dinh Hung Nguyen; Yong Tae Yoon

    2012-01-01

    Under a deregulated environment, wind power producers are subject to many regulation costs due to the intermittence of natural resources and the accuracy limits of existing prediction tools. This paper addresses the operation (charging/discharging) problem of battery energy storage installed in a wind generation system in order to improve the value of wind power in the real-time market. Depending on the prediction of market prices and the probabilistic information of wind generation, wind pow...

  2. A Novel Design and Optimization Software for Autonomous PV/Wind/Battery Hybrid Power Systems

    Directory of Open Access Journals (Sweden)

    Ali M. Eltamaly

    2014-01-01

    Full Text Available This paper introduces a design and optimization computer simulation program for autonomous hybrid PV/wind/battery energy system. The main function of the new proposed computer program is to determine the optimum size of each component of the hybrid energy system for the lowest price of kWh generated and the best loss of load probability at highest reliability. This computer program uses the hourly wind speed, hourly radiation, and hourly load power with several numbers of wind turbine (WT and PV module types. The proposed computer program changes the penetration ratio of wind/PV with certain increments and calculates the required size of all components and the optimum battery size to get the predefined lowest acceptable probability. This computer program has been designed in flexible fashion that is not available in market available software like HOMER and RETScreen. Actual data for Saudi sites have been used with this computer program. The data obtained have been compared with these market available software. The comparison shows the superiority of this computer program in the optimal design of the autonomous PV/wind/battery hybrid system. The proposed computer program performed the optimal design steps in very short time and with accurate results. Many valuable results can be extracted from this computer program that can help researchers and decision makers.

  3. Remote power supply by wind/diesel/battery systems - operational experience and economy

    Energy Technology Data Exchange (ETDEWEB)

    Kniehl, R. [CES - Consulting and Engineering Services, Heidelberg (Germany); Cramer, G.; Toenges, K.H. [SMA Regelsysteme GmbH, Niestetal (Germany)

    1995-12-31

    To continuously supply remote villages and settlements not connected to the public grid with electric power is an ambitious technical task considering ecological and economical points of view. The German company SMA has developed a modular supply system as a solution for this task in the range of 30 kW to 5 MW. Meanwhile more than 20 applications of these `Intelligent Power Systems (IPS)` have proved their technical reliability and economical competitiveness worldwide under different, and also extreme environmental conditions. Actually it is the first commercially available advanced Wind/Diesel/Battery System for remote area electrification. The modular autonomous electric supply systems realized by SMA basically consist of two or more diesel power sets, battery storage with converter, a rotating phaseshifter, and an optional number of wind turbines. All modules are coupled on the 3-phase AC system grid and run in various parallel configurations depending on the wind speed and the consumer power demand. The control system operates fully automatical and offers a very user-friendly graphical interface. This advanced system control also contains a remote control and operating data output via modem and telephone line. SMA and CES have considerable experience with Wind/Diesel/Battery Systems for more than eight years. In many cases wind energy converters in the power range of 30 to 40 kW were used, but it is also possible to use larger wind turbines (e.g. 250 kW). In the following the system technology is described in detail, experience of different system sizes in several countries of application is presented, and economical analyses for power supply by IPS are given in comparison to a conventional fully diesel power supply. (author)

  4. Remote power supply by wind/diesel/battery systems - operational experience and economy

    International Nuclear Information System (INIS)

    To continuously supply remote villages and settlements not connected to the public grid with electric power is an ambitious technical task considering ecological and economical points of view. The German company SMA has developed a modular supply system as a solution for this task in the range of 30 kW to 5 MW. Meanwhile more than 20 applications of these 'Intelligent Power Systems (IPS)' have proved their technical reliability and economical competitiveness worldwide under different, and also extreme environmental conditions. Actually it is the first commercially available advanced Wind/Diesel/Battery System for remote area electrification. The modular autonomous electric supply systems realized by SMA basically consist of two or more diesel power sets, battery storage with converter, a rotating phaseshifter, and an optional number of wind turbines. All modules are coupled on the 3-phase AC system grid and run in various parallel configurations depending on the wind speed and the consumer power demand. The control system operates fully automatical and offers a very user-friendly graphical interface. This advanced system control also contains a remote control and operating data output via modem and telephone line. SMA and CES have considerable experience with Wind/Diesel/Battery Systems for more than eight years. In many cases wind energy converters in the power range of 30 to 40 kW were used, but it is also possible to use larger wind turbines (e.g. 250 kW). In the following the system technology is described in detail, experience of different system sizes in several countries of application is presented, and economical analyses for power supply by IPS are given in comparison to a conventional fully diesel power supply. (author)

  5. Modeling and Operational Testing of an Isolated Variable Speed PMSG Wind Turbine with Battery Energy Storage

    Directory of Open Access Journals (Sweden)

    BAROTE, L.

    2012-05-01

    Full Text Available This paper presents the modeling and operational testing of an isolated permanent magnet synchronous generator (PMSG, driven by a small wind turbine with a battery energy storage system during wind speed and load variations. The whole system is initially modeled, including the PMSG, the boost converter and the storage system. The required power for the connected loads can be effectively delivered and supplied by the proposed wind turbine and energy storage systems, subject to an appropriate control method. Energy storage devices are required for power balance and power quality in stand alone wind energy systems. The main purpose is to supply 230 V / 50 Hz domestic appliances through a single-phase inverter. The experimental waveforms, compared to the simulation results, show a good prediction of the electrical variable parameters. Furthermore, it can be seen that the results validate the stability of the supply.

  6. Study of a Wind/PV/Battery hybrid system – Case study at Plaka in Greece

    Directory of Open Access Journals (Sweden)

    J. G. Fantidis

    2015-12-01

    Full Text Available The primary objective of this study is to determine the optimum hybrid system able to supply the necessary electrical load of a typical community in a remote location in Greece. The renewable energy systems were comprised of different combinations of PV modules and wind turbines supplemented with battery storage. A software tool, HOMER is used for the analysis. The hybrid system analysis has showed that the minimum cost of energy is 0.268 $/kWh with 10% annual capacity of shortage. The optimum hybrid system is comprised of 1.5 kW PV array, 1 wind generator, 3 kW power converter and 14 storage batteries.

  7. A wind-PV-battery hybrid power system at Sitakunda in Bangladesh

    International Nuclear Information System (INIS)

    The measured wind data of Local Government Engineering Department (LGED) for 2006 at 30 m height shows a good prospect for wind energy extraction at the site. For a few months and hours the speed is below the cut in speeds of the available turbines in the market. The predicted solar radiation data from directly related measured cloud cover and sunshine duration data of Bangladesh Meteorological Department (BMD) for 1992-2003 indicates that a reliable power system can be developed over the year if the solar energy technology is merged with the wind energy technologies for this site. This research work has studied on optimization of a wind-photovoltaic-battery hybrid system and its performance for a typical community load. The assessment shows that least cost of energy (COE) is about USD 0.363/kWh for a community using 169 kWh/day with 61 kW peak and having minimum amount of access or unused energy. Moreover, compared to the existing fossil fuel-based electricity supply, such an environment friendly system can mitigate about 25 t CO2/yr. The analysis also indicates that wind-PV-battery is economically viable as a replacement for conventional grid energy supply for a community at a minimum distance of about 17 km from grid.

  8. Using Atmospheric Pressure Tendency to Optimise Battery Charging in Off-Grid Hybrid Wind-Diesel Systems for Telecoms

    Directory of Open Access Journals (Sweden)

    Stephen Daniels

    2013-06-01

    Full Text Available Off grid telecom base stations in developing nations are powered by diesel generators. They are typically oversized and run at a fraction of their rated load for most of their operating lifetime. Running generators at partial load is inefficient and, over time, physically damages the engine. A hybrid configuration uses a battery bank, which powers the telecoms’ load for a portion of the time. The generator only operates when the battery bank needs to be charged. Adding a wind turbine further reduces the generator run hours and saves fuel. The generator is oblivious to the current wind conditions, which leads to simultaneous generator-wind power production. As the batteries become charged by the generator, the wind turbine controller is forced to dump surplus power as heat through a resistive load. This paper details how the relationship between barometric pressure and wind speed can be used to add intelligence to the battery charger. A Simulink model of the system is developed to test the different battery charging configurations. This paper demonstrates that if the battery charger is aware of upcoming wind conditions, it will provide modest fuel savings and reduce generator run hours in small-scale hybrid energy systems.

  9. Electric vehicle battery charging algorithm using PMSM windings and an inverter as an active rectifier

    OpenAIRE

    Zaja, Mario; Oprea, Matei-lon; Suárez, Carlos Gómez; Mathe, Laszlo

    2014-01-01

    A major setback for large scale electric vehicle market expansion compared to their internal combustion competitors consists in their high price and low driving range. One way of reducing the cost, dimensions and mass of electric vehicles is to eliminate the dedicated AC/DC converter used for battery charging. Alternatively, charging could be done using the motor windings as grid side inductors and controlling the inverter to operate as an active boost rectifier. The challenge in this approac...

  10. Frequency regulation for a power system with wind power and battery energy storage

    OpenAIRE

    L. Liang; Zhong, J.; Jiao, Z.

    2012-01-01

    With the increase of wind power penetration to a notable level in power systems, the requirement on frequency regulation services has increased accordingly in recent decades. Due to the limited ramp rate and economic factors of conventional generators, simply increase the capacity of conventional generators may not be an effective solution for providing frequency regulation services quickly. Large-scale battery energy storage system has been applied as a promising solution for frequency contr...

  11. Small wind generators for battery charging in Peru and Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Dunnett, S. [Intermediate Technology Development Group, Rugby (United Kingdom)

    2000-07-01

    The Intermediate Technology Development Group (ITDG) have developed a small wind generator (SWG) intended primarily for battery charging in Peru and Sri Lanka. The project is funded mainly by the Department for International Development (DfID) and aims to provide rural households and communities who do not have access to mains electricity with a form of electrification. This paper reports on progress to date and is correct at the time of going to press, but subsequent changes to specifications may occur. (Author)

  12. Optimized Sizing, Selection, and Economic Analysis of Battery Energy Storage for Grid-Connected Wind-PV Hybrid System

    OpenAIRE

    Hina Fathima; Palanisamy, K

    2015-01-01

    Energy storages are emerging as a predominant sector for renewable energy applications. This paper focuses on a feasibility study to integrate battery energy storage with a hybrid wind-solar grid-connected power system to effectively dispatch wind power by incorporating peak shaving and ramp rate limiting. The sizing methodology is optimized using bat optimization algorithm to minimize the cost of investment and losses incurred by the system in form of load shedding and wind curtailment. The ...

  13. Optimization of Performance Characteristics of Hybrid Wind Photovoltaic System with Battery Storage

    Directory of Open Access Journals (Sweden)

    C. Kathirvel

    2014-03-01

    Full Text Available This study concentrates on the Design and Implementation of a multi source hybrid Wind-Photovoltaic stand alone system with proposed energy management strategy. The method of investigation concerned with the definition of the system topology, interconnection of the various sources with maximum energy transfer, optimum control and energy management in order to maintain the DC bus voltage into a fixed value. An Energy management strategy was proposed using the Fuzzy logic controller such that enhancement in the performance of the system and optimization can be done. The Fuzzy logic controller takes the input from Solar (irradiation, Wind (speed, Power demand and the battery voltage which controls the respective subsystem and formulates into different operational modes of energy management. The role of Fuzzy threshold controller is to adjust continuously the threshold value for optimal performance based on expected wind, solar conditions, battery voltage and power demand. It is shown that when the fuzzy logic controller is used, the proposed DC bus voltage regulation strategy with different modes of operation have fast response and efficient operation which leads to a reduced operating cost.

  14. A New Battery Energy Storage Charging/Discharging Scheme for Wind Power Producers in Real-Time Markets

    Directory of Open Access Journals (Sweden)

    Minh Y Nguyen

    2012-12-01

    Full Text Available Under a deregulated environment, wind power producers are subject to many regulation costs due to the intermittence of natural resources and the accuracy limits of existing prediction tools. This paper addresses the operation (charging/discharging problem of battery energy storage installed in a wind generation system in order to improve the value of wind power in the real-time market. Depending on the prediction of market prices and the probabilistic information of wind generation, wind power producers can schedule the battery energy storage for the next day in order to maximize the profit. In addition, by taking into account the expenses of using batteries, the proposed charging/discharging scheme is able to avoid the detrimental operation of battery energy storage which can lead to a significant reduction of battery lifetime, i.e., uneconomical operation. The problem is formulated in a dynamic programming framework and solved by a dynamic programming backward algorithm. The proposed scheme is then applied to the study cases, and the results of simulation show its effectiveness.

  15. Optimized Sizing, Selection, and Economic Analysis of Battery Energy Storage for Grid-Connected Wind-PV Hybrid System

    Directory of Open Access Journals (Sweden)

    Hina Fathima

    2015-01-01

    Full Text Available Energy storages are emerging as a predominant sector for renewable energy applications. This paper focuses on a feasibility study to integrate battery energy storage with a hybrid wind-solar grid-connected power system to effectively dispatch wind power by incorporating peak shaving and ramp rate limiting. The sizing methodology is optimized using bat optimization algorithm to minimize the cost of investment and losses incurred by the system in form of load shedding and wind curtailment. The integrated system is then tested with an efficient battery management strategy which prevents overcharging/discharging of the battery. In the study, five major types of battery systems are considered and analyzed. They are evaluated and compared based on technoeconomic and environmental metrics as per Indian power market scenario. Technoeconomic analysis of the battery is validated by simulations, on a proposed wind-photovoltaic system in a wind site in Southern India. Environmental analysis is performed by evaluating the avoided cost of emissions.

  16. Power control for direct-driven permanent magnet wind generator system with battery storage.

    Science.gov (United States)

    Guang, Chu Xiao; Ying, Kong

    2014-01-01

    The objective of this paper is to construct a wind generator system (WGS) loss model that addresses the loss of the wind turbine and the generator. It aims to optimize the maximum effective output power and turbine speed. Given that the wind generator system has inertia and is nonlinear, the dynamic model of the wind generator system takes the advantage of the duty of the Buck converter and employs feedback linearization to design the optimized turbine speed tracking controller and the load power controller. According to that, this paper proposes a dual-mode dynamic coordination strategy based on the auxiliary load to reduce the influence of mode conversion on the lifetime of the battery. Optimized speed and power rapid tracking as well as the reduction of redundant power during mode conversion have gone through the test based on a 5 kW wind generator system test platform. The generator output power as the capture target has also been proved to be efficient. PMID:25050405

  17. Electric vehicle battery charging algorithm using PMSM windings and an inverter as an active rectifier

    DEFF Research Database (Denmark)

    Zaja, Mario; Oprea, Matei-lon; Suárez, Carlos Gómez;

    2014-01-01

    A major setback for large scale electric vehicle market expansion compared to their internal combustion competitors consists in their high price and low driving range. One way of reducing the cost, dimensions and mass of electric vehicles is to eliminate the dedicated AC/DC converter used for...... battery charging. Alternatively, charging could be done using the motor windings as grid side inductors and controlling the inverter to operate as an active boost rectifier. The challenge in this approach is the unequal phase inductances which depend on the rotor position. Another problem appears when the...

  18. Integrated sizing and scheduling of wind/PV/diesel/battery isolated systems

    KAUST Repository

    Malheiro, André

    2015-05-22

    In this paper we address the optimal sizing and scheduling of isolated hybrid systems using an optimization framework. The hybrid system features wind and photovoltaic conversion systems, batteries and diesel backup generators to supply electricity demand. A Mixed-Integer Linear Programming formulation is used to model system behavior over a time horizon of one year, considering hourly changes in both the availability of renewable resources and energy demand. The optimal solution is achieved with respect to the minimization of the levelized cost of energy (LCOE) over a lifetime of 20 years. Results for a case study show that the most economical solution features all four postulated subsystems. © 2015 Elsevier Ltd.

  19. Accelerated Lifetime Testing Methodology for Lifetime Estimation of Lithium-ion Batteries used in Augmented Wind Power Plants

    DEFF Research Database (Denmark)

    Stroe, Daniel Ioan; Swierczynski, Maciej Jozef; Stan, Ana-Irina;

    2014-01-01

    The development of lifetime estimation models for Lithium-ion battery cells, which are working under highly variable mission profiles characteristic for wind power plant applications, requires a lot of expenditures and time resources. Therefore, batteries have to be tested under accelerated...... lifetime ageing conditions. This paper presents a three-stage methodology used for accelerated lifetime testing of Lithium ion batteries. The results obtained at the end of the accelerated ageing process were used for the parametrization of a performance-degradation lifetime model, which is able to predict...... both the capacity fade and the power capability decrease of the selected Lithium-ion battery cells. In the proposed methodology both calendar and cycling lifetime tests were considered since both components are influencing the lifetime of Lithium-ion batteries. Furthermore, the proposed methodology was...

  20. Accelerated lifetime testing methodology for lifetime estimation of Lithium-ion batteries used in augmented wind power plants

    DEFF Research Database (Denmark)

    Stroe, Daniel Ioan; Swierczynski, Maciej Jozef; Stan, Ana-Irina;

    2013-01-01

    The development of lifetime estimation models for Lithium-ion battery cells, which are working under highly variable mission profiles characteristic for wind power plant applications, requires a lot of expenditures and time resources. Therefore, batteries have to be tested under accelerated...... lifetime ageing conditions. This paper presents a three-stage methodology used for accelerated lifetime testing of Lithium-ion batteries. The results obtained at the end of the accelerated ageing process can be used for the parametrization of a performance-degradation lifetime model. In the proposed...... methodology both calendar and cycling lifetime tests are considered since both components are influencing the lifetime of Lithium-ion batteries. The methodology proposes also a lifetime model verification stage, where Lithium-ion battery cells are tested at normal operating conditions using an application...

  1. Lithium ion battery energy storage system for augmented wind power plants

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef

    Future large Wind Power Plants (WPP) will be intended to function like today's conventional power plants seen from the transmission system point of view, by complying with future, more stringent, grid codes and providing ancillary services. This is possible to achieve by integrating WPPs with Bat......Future large Wind Power Plants (WPP) will be intended to function like today's conventional power plants seen from the transmission system point of view, by complying with future, more stringent, grid codes and providing ancillary services. This is possible to achieve by integrating WPPs...... with Battery Energy Storage Systems (BESSs) into the so called Virtual Power Plants (VPP). Relatively new energy storage technologies based on Lithium ion (Li-ion) batteries are constantly improving their performance and are becoming attractive for stationary energy storage applications due...... for VPP integration are selected based on the accelerated lifetime tests. The knowledge of the BESS lifetime is a key factor for their integration with WPPs. This is because an accurate knowledge of the BESS lifetime is a crucial factor in the project planning stage for the investigation on the BESS...

  2. Dispatching of Wind/Battery Energy Storage Hybrid Systems Using Inner Point Method-Based Model Predictive Control

    Directory of Open Access Journals (Sweden)

    Deyou Yang

    2016-08-01

    Full Text Available The application of large scale energy storage makes wind farms more dispatchable, which lowers operating risks to the grid from interconnected large scale wind farms. In order to make full use of the flexibility and controllability of energy storage to improve the schedulability of wind farms, this paper presents a rolling and dispatching control strategy with a battery energy storage system (BESS based on model predictive control (MPC. The proposed control scheme firstly plans expected output, i.e., dispatching order, of a wind/battery energy storage hybrid system based on the predicted output of the wind farm, then calculates the order in the predictive horizon with the receding horizon optimization and the limitations of energy storage such as state of charge and depth of charge/discharge to maintain the combination of active output of the wind farm and the BESS to track dispatching order at the extreme. The paper shows and analyses the effectiveness of the proposed strategy with different sizes of capacity of the BESS based on the actual output of a certain actual wind farm in the northeast of China. The results show that the proposed strategy that controls the BESS could improve the schedulability of the wind farm and maintain smooth output of wind/battery energy storage hybrid system while tracking the dispatching orders. When the capacity of the BESS is 20% or the rated capacity of the wind farm, the mean dispatching error is only 0.153% of the rated capacity of the wind farm.

  3. Off-grid hybrid electric power supply system, using a combination of solar cells, small scale wind turbine and batteries

    Energy Technology Data Exchange (ETDEWEB)

    Schroeter, W.

    1994-03-01

    The design of an off-grid electric power supply system consisting of a small scale wind turbine, a combination of solar cells and batteries is described. The robust, small scale FC 4000 wind turbine, which needs little maintenance, can be used under varying climatic conditions. It is equipped with a permanent-magnet generator with an output of 1.5 kW. The generator`s rotor is directly coupled with the wind turbine`s rotor and is without a gearbox, so the frequency and output varies according to wind speed. The 12 m{sup 2} solar cell system consists of round modules embedded in glass and with an efficiency of 13%. The lead acid batteries are used when power consumption exceeds production and store energy for future use. Further adjustments are necessary in order to optimize the performance of this hybrid system. (AB)

  4. Modeling and Utilizing a Vanadium Redox Flow Battery for Easier Grid and Market Integration of Wind Power

    OpenAIRE

    Türker, Burak

    2014-01-01

    Power grid and market integration of wind energy is a challenge due to the fluctuating and intermittent power output resulting from the variable nature of wind resource. Energy storage is a promising alternative for effective grid integration of renewable energy. One storage technology which is under the spotlight in the recent years is the vanadium redox flow battery (VRFB) which could have certain advantages when utilized at large-scale grid connected applications. In this study, a megawatt...

  5. A design scheme of control/optimization system for hybrid solar – wind and battery energy storages system

    OpenAIRE

    Singh, R.; Abbod, M; W. Balachandran

    2016-01-01

    This paper presents a design scheme of controlling – optimization system for solar – wind distribution renewable energy sources, its transmission, charging – discharging Battery Energy Storage System and connection to the grid distribution. The distribution renewable energy sources employs the Voltage Base Self – Intervention technique for solar – wind distribution renewable energy sources. The Hierarchical Switching Control Process technique is employed to switch, control, manage – supervise...

  6. Optimal sizing of small wind/battery systems considering the DC bus voltage stability effect on energy capture, wind speed variability, and load uncertainty

    International Nuclear Information System (INIS)

    Highlights: ► We propose a mathematical model for optimal sizing of small wind energy systems. ► No other previous work has considered all the aspects included in this paper. ► The model considers several parameters about batteries. ► Wind speed variability is considered by means of ARMA model. ► The results show how to minimize the expected energy that is not supplied. - Abstract: In this paper, a mathematical model for stochastic simulation and optimization of small wind energy systems is presented. This model is able to consider the operation of the charge controller, the coulombic efficiency during charge and discharge processes, the influence of temperature on the battery bank capacity, the wind speed variability, and load uncertainty. The joint effect of charge controller operation, ambient temperature, and coulombic efficiency is analyzed in a system installed in Zaragoza (Spain), concluding that if the analysis without considering these factors is carried out, the reliability level of the physical system could be lower than expected, and an increment of 25% in the battery bank capacity would be required to reach a reliability level of 90% in the analyzed case. Also, the effect of the wind speed variability and load uncertainty in the system reliability is analyzed. Finally, the uncertainty in the battery bank lifetime and its effect on the net present cost are discussed. The results showed that, considering uncertainty of 17.5% in the battery bank lifetime calculated using the Ah throughput model, about 12% of uncertainty in the net present cost is expected. The model presented in this research could be a useful stochastic simulation and optimization tool that allows the consideration of important uncertainty factors in techno-economic analysis.

  7. Winding aligned carbon nanotube composite yarns into coaxial fiber full batteries with high performances.

    Science.gov (United States)

    Weng, Wei; Sun, Qian; Zhang, Ye; Lin, Huijuan; Ren, Jing; Lu, Xin; Wang, Min; Peng, Huisheng

    2014-06-11

    Inspired by the fantastic and fast-growing wearable electronics such as Google Glass and Apple iWatch, matchable lightweight and weaveable energy storage systems are urgently demanded while remaining as a bottleneck in the whole technology. Fiber-shaped energy storage devices that can be woven into electronic textiles may represent a general and effective strategy to overcome the above difficulty. Here a coaxial fiber lithium-ion battery has been achieved by sequentially winding aligned carbon nanotube composite yarn cathode and anode onto a cotton fiber. Novel yarn structures are designed to enable a high performance with a linear energy density of 0.75 mWh cm(-1). A wearable energy storage textile is also produced with an areal energy density of 4.5 mWh cm(-2). PMID:24831023

  8. Prospects of Wind-Diesel Generator-Battery Hybrid Power System: A Feasibility Study in Algeria

    Directory of Open Access Journals (Sweden)

    Djohra Saheb-Koussa

    2013-01-01

    Full Text Available The present work analyses the feasibility of a wind-diesel generator-battery hybrid system. The wind energy resource data are collected from the weather station at the Renewable Energy Development Center of Bouzareah in Algeria. The recorded values vary from 5.5 m/s to 7 m/s at 25 m. The hybrid system analysis has shown that for a household consuming 1,270 kWh/yr, the cost of energy is 1.205 USD/kWh and produces 2,493 kWh/yr in which 93% of electricity comes from wind energy. From this study, it is clear that the optimized hybrid system is more cost effective compared to the diesel generator system alone where the NPC and COE are equal, respectively, to 19,561 USD and 1.205 USD/kWh and 47,932 USD and 2.952 USD/kWh. The sensitivity analysis predicts that the grid extension distance varies from 1.25 to 1.85 km depending on wind speed and fuel price which indicate a positive result to implement a stand-alone hybrid power system as an alternative to grid extension. In addition to the feasibility of this system, it can reduce the emission of the CO2, SO2, and NOx, respectively, from 4758 to 147, from 9.45 to 0.294, and from 105 to 3.23 kg/yr. Investments in autonomous renewable energy systems should be considered particularly in remote areas. They can be financed in the framework of the National Energy Action Plan of Algeria.

  9. Optimal Operation Method for Microgrid with Wind/PV/Diesel Generator/Battery and Desalination

    Directory of Open Access Journals (Sweden)

    Qingfeng Tang

    2014-01-01

    Full Text Available The power supply mode of island microgrid with a variety of complementary energy resources is one of the most effective ways to solve the problem of future island power supply. Based on the characteristics of seawater desalination system and water demand of island residents, a power allocation strategy for seawater desalination load, storage batteries, and diesel generators is proposed with the overall consideration of the economic and environmental benefits of system operation. Furthermore, a multiobjective optimal operation model for the island microgrid with wind/photovoltaic/diesel/storage and seawater desalination load is also proposed. It first establishes the objective functions which include the life loss of storage batteries and the fuel cost of diesel generators. Finally, the model is solved by the nondominated sorting genetic algorithm (NSGA-II. The island microgrid in a certain district is taken as an example to verify the effectiveness of the proposed optimal method. The results provide the theoretical and technical basis for the optimal operation of island microgrid.

  10. Analysis of the value of battery storage with wind and photovoltaic generation to the Sacramento Municipal Utility District

    Energy Technology Data Exchange (ETDEWEB)

    Zaininger, H.W. [Zaininger Engineering Co., Inc., Roseville, CA (United States)

    1998-08-01

    This report describes the results of an analysis to determine the economic and operational value of battery storage to wind and photovoltaic (PV) generation technologies to the Sacramento Municipal Utility District (SMUD) system. The analysis approach consisted of performing a benefit-cost economic assessment using established SMUD financial parameters, system expansion plans, and current system operating procedures. This report presents the results of the analysis. Section 2 describes expected wind and PV plant performance. Section 3 describes expected benefits to SMUD associated with employing battery storage. Section 4 presents preliminary benefit-cost results for battery storage added at the Solano wind plant and the Hedge PV plant. Section 5 presents conclusions and recommendations resulting from this analysis. The results of this analysis should be reviewed subject to the following caveat. The assumptions and data used in developing these results were based on reports available from and interaction with appropriate SMUD operating, planning, and design personnel in 1994 and early 1995 and are compatible with financial assumptions and system expansion plans as of that time. Assumptions and SMUD expansion plans have changed since then. In particular, SMUD did not install the additional 45 MW of wind that was planned for 1996. Current SMUD expansion plans and assumptions should be obtained from appropriate SMUD personnel.

  11. Technical and economic assessment of hybrid photovoltaic/wind system with battery storage in Corsica island

    Energy Technology Data Exchange (ETDEWEB)

    Diaf, S.; Louche, A. [Universite de Corse CNRS - UMR 6134, Vignola - Route des Sanguinaires, Ajaccio (France); Belhamel, M. [Centre de Developpement des Energies Renouvelables, B.P. 62 16340 Bouzareah, Algiers (Algeria); Haddadi, M. [Ecole Polytechnique d' El harrach, Algiers (Algeria)

    2008-02-15

    The sizing and techno-economical optimization of a stand-alone hybrid photovoltaic/wind system (HPWS) with battery storage is presented in this paper. The main objective of the present study is to find the optimum size of system, able to fulfill the energy requirements of a given load distribution, for three sites located at Corsica island and to analyze the impact of different parameters on the system size. The methodology used provides a useful and simple approach for sizing and analyzing an HPWS. In the proposed stand-alone system, a new concept such as the supply of wind power via a uninterruptible power supply (UPS) is introduced and therefore the energy produced by the wind generator can be sent directly to the load. In this context, an optimization sizing model is developed. It consists of three submodels; system components submodels, technical submodel based on the loss of power supply probability (LPSP) and the economical submodel based on the levelized cost of energy (LCE). Applying the developed model, a set of configurations meeting the desired LPSP are obtained. The configuration with the lowest LCE gives the optimal one. Analyzing the optimal system configurations used to satisfy the requirements of typical residential home (3 kWh/day), a significant reduction in system size is observed as the available renewable potential increases leading to a considerable decrease in LCE (case of Cape corse site). The 2 days storage capacity is found to be the best for the optimal configuration with the lowest LCE. On the other hand, for low energy requirements, the LCE is found relatively high and decreases sharply with the increase in load. However, for low LPSP values, the LCE is found to rise sharply for a little increase in LPSP. (author)

  12. Technical and economic assessment of hybrid photovoltaic/wind system with battery storage in Corsica island

    International Nuclear Information System (INIS)

    The sizing and techno-economical optimization of a stand-alone hybrid photovoltaic/wind system (HPWS) with battery storage is presented in this paper. The main objective of the present study is to find the optimum size of system, able to fulfill the energy requirements of a given load distribution, for three sites located at Corsica island and to analyze the impact of different parameters on the system size. The methodology used provides a useful and simple approach for sizing and analyzing an HPWS. In the proposed stand-alone system, a new concept such as the supply of wind power via a uninterruptible power supply (UPS) is introduced and therefore the energy produced by the wind generator can be sent directly to the load. In this context, an optimization sizing model is developed. It consists of three submodels; system components submodels, technical submodel based on the loss of power supply probability (LPSP) and the economical submodel based on the levelized cost of energy (LCE). Applying the developed model, a set of configurations meeting the desired LPSP are obtained. The configuration with the lowest LCE gives the optimal one. Analyzing the optimal system configurations used to satisfy the requirements of typical residential home (3 kWh/day), a significant reduction in system size is observed as the available renewable potential increases leading to a considerable decrease in LCE (case of Cape corse site). The 2 days storage capacity is found to be the best for the optimal configuration with the lowest LCE. On the other hand, for low energy requirements, the LCE is found relatively high and decreases sharply with the increase in load. However, for low LPSP values, the LCE is found to rise sharply for a little increase in LPSP

  13. A bi-directional DC/DC converter for hybrid wind generator/battery system with state machine control

    Energy Technology Data Exchange (ETDEWEB)

    Hua, C.C.; Liao, Y.C. [National Yunlin Univ. of Science and Technology, Yunlin, Taiwan (China). Dept. of Electrical Engineering

    2008-07-01

    A bi-directional DC to DC converter used in a hybrid wind generator/lead-acid battery power system was presented. A state machine control strategy was used to control both the system power flow and load distribution. It was also used to increase the power capacity of the system. The battery was also charged or discharged through the bi-directional DC to DC converter. Multi-stage current charging control of the batteries was accomplished by adjusting the duty cycle of the power converter. This also improved the charging efficiency by the maximum power point tracking algorithm. It was concluded that the proposed control method can be readily extended to other renewable energy conversion systems. 6 refs., 13 figs.

  14. Lifetime investigations of a lithium iron phosphate (LFP) battery system connected to a wind turbine for forecast improvement and output power gradient reduction

    OpenAIRE

    Swierczynski, Maciej Jozef; Teodorescu, Remus; RODRIGUEZ, Pedro

    2011-01-01

    Lithium Ion batteries and especially Lithium Iron Phosphate (LFP) batteries can be characterized by high power densities, relatively long life-time, no maintenance and a lot of research currently being done on increasing their performance. Therefore, they seem to be a good choice for integration with wind turbines. However, the current Lithium Ion energy storage price and its limited lifetime are the main obstacles to the integration of storage technologies with wind turbines. That is why pro...

  15. A minimal order observer based frequency control strategy for an integrated wind-battery-diesel power system

    International Nuclear Information System (INIS)

    Wind energy is a fluctuating resource which can diverge quickly and causes the frequency deviation. To overcome this problem, the current paper deals with a frequency control scheme for a small power system by a coordinated control strategy of a wind turbine generator (WTG) and a battery energy storage system (BESS). The small power system composes of a wind turbine, a battery storage and a diesel generator. A minimal order observer is utilized as a disturbance observer to estimate the load of the power system. The load deviations are considered in a frequency domain. The low frequency component is reduced by the pitch angle control system of the WTG, while the high frequency component is reduced by the charge/discharge of the BESS, respectively. The output power command of the BESS is determined according to the state of charge, the high frequency component of the frequency deviation and the load variation. The proposed method is compared with the conventional method in different cases. By using the proposed method, the capacity of the battery is decreased by the charge/discharge of the BESS in long term. To enhance the control performance, the generalized predictive control (GPC) method is introduced to the pitch angle control system of the WTG. Effectiveness of the proposed method is verified by the numerical simulations. -- Highlights: ► A coordinated control method for a WTG and a BESS in the small power system. ► To achieve this objective, a minimal order observer is utilized. ► The output power command of the WTG is based on the wind speed and the estimated frequency deviations. ► The output power the WTG is controlled by the GPC based robust pitch angle control system. ► The output power command of the BESS is determined by the state of charge and the estimated frequency deviations.

  16. Interactive smart battery storage for a PV and wind hybrid energy management control based on conservative power theory

    Science.gov (United States)

    Godoy Simões, Marcelo; Davi Curi Busarello, Tiago; Saad Bubshait, Abdullah; Harirchi, Farnaz; Antenor Pomilio, José; Blaabjerg, Frede

    2016-04-01

    This paper presents interactive smart battery-based storage (BBS) for wind generator (WG) and photovoltaic (PV) systems. The BBS is composed of an asymmetric cascaded H-bridge multilevel inverter (ACMI) with staircase modulation. The structure is parallel to the WG and PV systems, allowing the ACMI to have a reduction in power losses compared to the usual solution for storage connected at the DC-link of the converter for WG or PV systems. Moreover, the BBS is embedded with a decision algorithm running real-time energy costs, plus a battery state-of-charge manager and power quality capabilities, making the described system in this paper very interactive, smart and multifunctional. The paper describes how BBS interacts with the WG and PV and how its performance is improved. Experimental results are presented showing the efficacy of this BBS for renewable energy applications.

  17. Using A Battery Storage Wind / PV Hybrid Power Supply System Based Stand-Alone PSO To Determine The Most Appropriate.

    Directory of Open Access Journals (Sweden)

    Amam Hossain Bagdadee

    2014-08-01

    Full Text Available Wind / PV hybrid power systems, completed in time and geography, both economical and reliable than PV or wind turbine, but the hybrid system wind / PV to increase capacity. Installation of experience with traditional power design and optimization of design and operation cannot be seen with. To solve the problem in a comprehensive objective function to present the objective function of the solar wind. And reliability of the storage cells can be calculated with an investment of erosion format system resources, including the number of solar cells and batteries, but the type and amount of solar wind to change. As well as to improve not only to make the results more accurate investment costs and reliability cost of conversion optimization problems several optimization problems today.Improved optimization algorithms, PSO are used to solve nonlinear hybrid analysis is any integer optimization problem on the basis of PSO algorithm standard techniques then there is the first step convergence factor is applied to improve the detection performance of both migration are used to improve the ability of the algorithm to find the best in the whole world.

  18. Development of a VRLA battery with improved separators, and a charge controller, for low cost photovoltaic and wind powered installations

    Science.gov (United States)

    Fernandez, M.; Ruddell, A. J.; Vast, N.; Esteban, J.; Estela, F.

    setting charging point. The fourth objective was the design and implementation of a PV/wind demonstration system, to test all the PV components under real conditions. The project has been successful, having achieved a life increase of 50%, moving achievable life from previous 500-750 cycles for the new battery and system.

  19. Power Control for Direct-Driven Permanent Magnet Wind Generator System with Battery Storage

    OpenAIRE

    2014-01-01

    The objective of this paper is to construct a wind generator system (WGS) loss model that addresses the loss of the wind turbine and the generator. It aims to optimize the maximum effective output power and turbine speed. Given that the wind generator system has inertia and is nonlinear, the dynamic model of the wind generator system takes the advantage of the duty of the Buck converter and employs feedback linearization to design the optimized turbine speed tracking controller and the load p...

  20. Prospect of wind-PV-battery hybrid power system as an alternative to grid extension in Bangladesh

    International Nuclear Information System (INIS)

    A pre-feasibility of wind-PV-battery hybrid system has been performed for a small community in the east-southern part of Bangladesh. Solar radiation resources have been assessed from other meteorological parameters like sunshine duration and cloud cover as measured radiation data were not available at the site. The predicted monthly averaged daily global radiation over Chittagong is 4.36 kWh/m2/day. Measured wind speed at the site varies from 3 m/s to 5 m/s. For few months and hours the speed is below the cut in speeds of the available turbines in market. The hybrid system analysis has showed that for a small community consuming 53,317 kWh/year the cost energy is 0.47USD/kWh with 10% annual capacity of shortage and produces 89,151 kWh/year in which 53% electricity comes from wind and the remaining from solar energy. The sensitivity analysis showed that the hybrid system for the community is compatible with the 8 km-12 km grid extension depending on small variation of solar radiation and wind speed over the district whereas the proposed site is more away from the upper limit. Such a hybrid system will reduce about 25 tCO2/yr green house gases (GHG) emission in the local atmosphere.

  1. Techno-economic analysis of stand-alone photovoltaic/wind/battery/hydrogen systems for very small-scale applications

    Directory of Open Access Journals (Sweden)

    Stojković Saša M.

    2016-01-01

    Full Text Available The paper presents the results of a technical and economic analysis of three stand-alone hybrid power systems based on renewable energy sources which supply a specific group of low-power consumers. This particular case includes measuring sensors and obstacle lights on a meteorological mast for wind measurements requiring an uninterrupted power supply in cold climate conditions. Although these low-power (100 W measuring sensors and obstacle lights use little energy, their energy consumption is not the same as the available solar energy obtained on a daily or seasonal basis. In the paper, complementarity of renewable energy sources was analysed, as well as one of short-term lead-acid battery-based storage and seasonal, hydrogen-based (electrolyser, H2 tank, and fuel cells storage. These relatively complex power systems were proposed earlier for high-power consumers only, while this study specifically highlights the role of the hydrogen system for supplying low-power consumers. The analysis employed a numerical simulation method using the HOMER software tool. The results of the analysis suggest that solar and wind-solar systems, which involve meteorological conditions as referred to in this paper, include a relatively large number of lead-acid batteries. Additionally, the analysis suggests that the use of hydrogen power systems for supplying low power-consumers is entirely justifiable, as it significantly reduces the number of batteries (two at minimum in this particular case. It was shown that the increase in costs induced by the hydrogen system is acceptable.

  2. Fuzzy logic based power management strategy of a multi-MW doubly-fed induction generator wind turbine with battery and ultracapacitor

    International Nuclear Information System (INIS)

    Integrating energy storage systems (ESS) with wind turbines results to be an interesting option for improving the grid integration capability of wind energy. This paper presents and evaluates a wind hybrid system consisting of a 1.5 MW doubly-fed induction generator (DFIG) wind turbine and double battery-ultracapacitor ESS. Commercially available components are used in this wind hybrid system. A novel supervisory control system (SCS) is designed and implemented, which is responsible for setting the active and reactive power references for each component of the hybrid system. A fuzzy logic controller, taking into account the grid demand, power generation prediction, actual DFIG power generation and state-of-charge (SOC) of the ESSs, sets the active power references. The reactive power references are proportionally delivered to each element regarding their current limitations in the SCS. The appropriate control of the power converters allows each power source to achieve the operation defined by the SCS. The wind hybrid system and SCS are assessed by simulation under wind fluctuations, grid demand changes, and grid disturbances. Results show an improved performance in the overall response of the system with the implementation of the SCS. - Highlights: • We study a wind hybrid system based on DFIG wind turbine, battery and ultracapacitor. • A novel supervisory control system based on fuzzy logic is designed and implemented. • The control improves the system response under different operating conditions

  3. Optimal Operation Method for Microgrid with Wind/PV/Diesel Generator/Battery and Desalination

    OpenAIRE

    2014-01-01

    The power supply mode of island microgrid with a variety of complementary energy resources is one of the most effective ways to solve the problem of future island power supply. Based on the characteristics of seawater desalination system and water demand of island residents, a power allocation strategy for seawater desalination load, storage batteries, and diesel generators is proposed with the overall consideration of the economic and environmental benefits of system operation. Furthermore, ...

  4. Hybrid wind power balance control strategy using thermal power, hydro power and flow batteries

    OpenAIRE

    Gelazanskas, Linas; Baranauskas, Audrius; Gamage, Kelum; Azubalis, Mindaugas

    2016-01-01

    The increased number of renewable power plants pose threat to power system balance. Their intermittent nature makes it very difficult to predict power output, thus either additional reserve power plants or new storage and control technologies are required. Traditional spinning reserve cannot fully compensate sudden changes in renewable energy power generation. Using new storage technologies such as flow batteries, it is feasible to balance the variations in power and voltage within very short...

  5. Performance Analysis of Solar-Wind-Diesel-Battery Hybrid Energy System for KLIA Sepang Station of Malaysia

    Science.gov (United States)

    Shezan, S. K. A.; Saidur, R.; Hossain, A.; Chong, W. T.; Kibria, M. A.

    2015-09-01

    A large number of populations of the world live in rural or remote areas those are geographically isolated. Power supply and uninterrupted fuel transportation to produce electrical power for these remote areas poses a great challenge. Using renewable energy in hybrid energy system might be a pathway to solve this problem. Malaysia is a large hilly land with the gift of renewable energy resources. There is a good chance to utilize these renewable resources to produce electrical power and to limit the dependency on the fossil fuel as well as reduce the carbon emissions. In this perspective, a research is carried out to analyze the performance of a solar-wind-diesel-battery hybrid energy system for a remote area named “KLIA Sepang station” in the state of Selangor, Malaysia. In this study, a 56 kW hybrid energy system has been proposed that is capable to support more than 50 households and 6 shops in that area. Real time field data of solar radiation and wind speed is used for the simulation and optimization of operations using “Homer” renewable energy software. The proposed system can reduce CO2 emission by about 16 tons per year compared to diesel generator only. In the same time the Cost of energy (COE) of the optimized system is USD 5.126/kWh.The proposed hybrid energy system might be applicable for other parts of the world where the climate conditions are similar.

  6. Alkaline quinone flow battery

    OpenAIRE

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise Ann; Valle, Alvaro West; Hardee, D.; Gordon, Roy Gerald; Aziz, Michael J.; Marshak, M

    2015-01-01

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe f...

  7. Electric Vehicle Based Battery Storages for Large Scale Wind Power Integration in Denmark

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna

    operation of the power system. This research work shows that the overall operation and control efficiency of power systems can be improved by introducing the Vehicle-to-Grid systems as a future grid regulation ancillary service provider substituting the conventional generation reserves....... is collectively termed as the Vehicle-to-Grid (V2G) concept. Thus, the EV storage could operate as a controllable load or distributed generator to minimize the power fluctuations resulting from increased variable wind power. The 2025 Danish Energy Policy plans for fifty per cent wind power production replacing...... most of the conventional generators. This is not desirable for a reliable and safe power system operation and control. The strategies like wind power regulation or increased cross-border transmission capacity may not be sufficient enough to realize the power system balancing. The former strategy spills...

  8. Design of Experimental Platform for Wind/Solar/Battery Hybrid Power System%风光储发电系统实验平台设计

    Institute of Scientific and Technical Information of China (English)

    李凯; 邹见效; 郑宏

    2012-01-01

    An experimental platform about wind/solar/battery hybrid power system with 1KW is designed in this paper.It consists of wind turbine,solar panel,wind/solar controller,battery,converter and AC-load.Some important experiments could be implemented on this platform,such as the tracking of maximum power point of wind power and solar power,charge and discharge management of battery,the output waveform of converter,and so on.This experimental platform shows many advantages in visualization and pertinence,which is very suitable for some designable experiments.%设计开发了一套1kW的风光储发电系统实验平台。该平台由风力发电机、太阳能电池板、风光互补控制器、蓄电池、单相逆变器和交流负载组成,实验平台可以实现风能和太阳能的最大功率跟踪、蓄电池的充放电管理、逆变的波形控制等功能。该实验平台直观形象,针对性强,适合开展多种开放设计性实验。

  9. Model predictive control for power fluctuation supression in hybrid wind/PV/battery systems

    DEFF Research Database (Denmark)

    You, Shi; Liu, Zongyu; Zong, Yi

    2015-01-01

    together with a Monte Carlo simulation-based sensitivity analysis. In addition to illustrating the complementarity between the fluctuations of wind power and PV power, the results prove the proposed MPC algorithm is effective in fluctuation suppression but sensitive to factors such as forecast accuracy and...

  10. Wind farm battery energy storage technology based on power dispatching%基于电网调度的风电场蓄电池储能技术

    Institute of Scientific and Technical Information of China (English)

    孔飞飞; 晁勤; 袁铁江

    2012-01-01

    阐述了风电场蓄电池储能技术的原理和特点,分别介绍了国内外基于几种不同控制目标的风电场储能技术;分析了风电场储能容量估算的研究现状;提出了基于电网调度的风电场蓄电池储能技术是最可行的方案,并简要分析了应用基于电网调度的风电场蓄电池储能的技术课题.%The technical principle and application status of wind farm energy storage system were presented,several wind farm energy storage technologies based on different control goals at home and abroad were introduced respectively,the research status of wind farm energy storage capacity calculation were analyzed,the most feasible scheme,namely wind farm battery energy storage technology based on power dispatching was proposed,and some technical issues of applying wind farm battery energy storage technology based on power dispatching were simply analyzed.

  11. Optimal Power Scheduling for a Grid-Connected Hybrid PV-Wind-Battery Microgrid System

    DEFF Research Database (Denmark)

    Hernández, Adriana Carolina Luna; Aldana, Nelson Leonardo Diaz; Savaghebi, Mehdi;

    2016-01-01

    In this paper, a lineal mathematical model is proposed to schedule optimally the power references of the distributed energy resources in a grid-connected hybrid PVwind-battery microgrid. The optimization of the short term scheduling problem is addressed through a mixed-integer linear programming...... mathematical model, wherein the cost of energy purchased from the main grid is minimized and profits for selling energy generated by photovoltaic arrays are maximized by considering both physical constraints and requirements for a feasible deployment in the real system. The optimization model is tested by...... using a real-time simulation of the model and uploaded it in a digital control platform. The results show the economic benefit of the proposed optimal scheduling approach in two different scenarios....

  12. Battery Fault Detection with Saturating Transformers

    Science.gov (United States)

    Davies, Francis J. (Inventor); Graika, Jason R. (Inventor)

    2013-01-01

    A battery monitoring system utilizes a plurality of transformers interconnected with a battery having a plurality of battery cells. Windings of the transformers are driven with an excitation waveform whereupon signals are responsively detected, which indicate a health of the battery. In one embodiment, excitation windings and sense windings are separately provided for the plurality of transformers such that the excitation waveform is applied to the excitation windings and the signals are detected on the sense windings. In one embodiment, the number of sense windings and/or excitation windings is varied to permit location of underperforming battery cells utilizing a peak voltage detector.

  13. Performance-degradation model for Li4Ti5O12-based battery cells used in wind power applications

    DEFF Research Database (Denmark)

    Stroe, Daniel Ioan; Swierczynski, Maciej Jozef; Stan, Ana-Irina; Teodorescu, Remus; Andreasen, Søren Juhl

    2012-01-01

    Energy storage systems based on Lithium-ion batteries have the potential to mitigate the negative impact of wind power grid integration on the power system stability, which is caused by the characteristics of the wind. This paper presents a performance model for a Li4Ti5O12/LiMO2 battery cell. For...... developing the performance model an EIS-based electrical modelling approach was followed. The obtained model is able to predict with high accuracy charge and discharge voltage profiles for different ages of the battery cell and for different charging/discharging current rates. Moreover, the ageing behaviour...

  14. Evaluation of different operational strategies for lithium ion battery systems connected to a wind turbine for primary frequency regulation and wind power forecast accuracy improvement

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Ioan; Stan, Ana-Irina;

    2012-01-01

    High penetration levels of variable wind energy sources can cause problems with their grid integration. Energy storage systems connected to wind turbine/wind power plants can improve predictability of the wind power production and provide ancillary services to the grid. This paper investigates...

  15. 抑制风电功率波动的电池储能系统自适应控制策略设计%Inhibition of wind power fluctuations of battery energy storage system adaptive control strategy design

    Institute of Scientific and Technical Information of China (English)

    李军徽; 高天宇; 赵冰; 严干贵; 焦健

    2015-01-01

    为了增加电池储能系统针对大规模风电并网对电网系统的友好性,降低风电功率波动对电网的不利影响,本文提出以电池荷电状态和风电功率为反馈量,改变平抑时间常数和电池储能系统充放电目标功率为目标的平抑风电功率波动的自适应控制策略。经仿真验证,上述策略能有效避免电池的荷电状态大幅波动,延长电池使用寿命,从而减小电池储能系统的安装容量,最大限度地发挥电池储能系统的作用。%It is necessary to improve the friendly of the battery energy storage system for large scale grid connected wind system and reduce the negative impact of the wind power fluctuation on the power grid. Based on the battery charged state and wind electric power measurements and the slow time constant and battery energy storage system power identification, we proposed an adaptive control strategy for calming wind power fluctuations. Verified by simulation, this strategy can effectively avoid the fluctuation of battery charged state, prolong the service life of battery, so as to reduce the capacity of the battery energy storage system, maximize the role of battery energy storage system.

  16. Battery Cell Balancing System and Method

    Science.gov (United States)

    Davies, Francis J. (Inventor)

    2014-01-01

    A battery cell balancing system is operable to utilize a relatively small number of transformers interconnected with a battery having a plurality of battery cells to selectively charge the battery cells. Windings of the transformers are simultaneously driven with a plurality of waveforms whereupon selected battery cells or groups of cells are selected and charged. A transformer drive circuit is operable to selectively vary the waveforms to thereby vary a weighted voltage associated with each of the battery cells.

  17. Put Your Hands Together

    Centers for Disease Control (CDC) Podcasts

    2011-03-24

    In this podcast, learn how to help stop the spread of infection and stay healthy. It's easy when you 'Put Your Hands Together.'.  Created: 3/24/2011 by National Center for Preparedness, Detection, and Control of Infectious Diseases (NCPDCID) and National Center for Zoonotic, Vector-Borne, and Enteric Diseases (NCZVED).   Date Released: 3/24/2011.

  18. Alkaline quinone flow battery.

    Science.gov (United States)

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael R; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise; Valle, Alvaro W; Hardee, David; Gordon, Roy G; Aziz, Michael J; Marshak, Michael P

    2015-09-25

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe for use in residential and commercial environments. The battery operates efficiently with high power density near room temperature. These results demonstrate the stability and performance of redox-active organic molecules in alkaline flow batteries, potentially enabling cost-effective stationary storage of renewable energy. PMID:26404834

  19. Wind Farm Reliability Evaluation Considering Operation Characteristics of Battery Energy Storage Devices%计及电池储能设备运行特性的风电场可靠性评估

    Institute of Scientific and Technical Information of China (English)

    孟虹年; 谢开贵

    2012-01-01

    Based on time series model of output power of wind farm containing battery energy storage system, two series models to assess reliability of the wind farm containing power-type battery energy storage system and energy-type battery energy storage system are built respectively. Taking RTBS as calculation example, the reliability improvement extents of wind farm by the two kinds of battery energy storage systems are analyzed while three kinds of energy storage strategies are applied, and the impacts of operation parameters of energy storage system on reliability of wind power generation system are further analyzed. Calculation results of RBTS show that under the same capacity of battery energy storage system the reliability improvement extents of wind farm are not identical; under the same energy storage strategy the energy-type battery energy storage system can improve wind farm reliability better; operation parameter variation of battery energy storage system affects reliability index of wind farm a certain extent.%在含电池储能设备风电场功率时序模型的基础上,建立了含功率型和能量型电池储能设备的风电场可靠性时序评估模型。使用RBTS发电系统作为算例,分析了2类电池设备在不同储能策略下对风电系统可靠性改善的程度,并进一步分析了储能设备自身的运行参数对风电系统可靠性影响。算例结果表明:在具有同样设备容量的情况下,3种储能策略对可靠性的改善不尽相同;在同一储能策略下,能量型电池储能设备对系统的可靠性改善更佳;同时,设备运行参数变化对系统可靠性指标也有一定的影响。

  20. Control and Simulation of Wind-PV-Battery AC Microgrid%风光蓄交流微电网的控制与仿真

    Institute of Scientific and Technical Information of China (English)

    韩肖清; 曹增杰; 杨俊虎; 韩雄

    2013-01-01

    To research the control strategy of the microgrid and the impacts of the DG power change on the operation of the microgrid,a wind-PV-battery AC microgrid system is established by the Matlab/Simulink software.Different control strategies are designed for the different DGs.For battery energy storage device,V/f control strategy is used to ensure the stability of the voltage and frequency of the microgrid.For wind power generation unit and PV power generation unit,PQ control strategy is used to obtain the maximum utilization of the renewable energy.Simulation results show that the microgrid which uses these control strategies can supply power to users uninterruptedly both in islanded mode and grid-connected mode,and the switchover process is stable and reliable.%为了对微电网控制策略以及DG输出功率变化对微电网运行的影响进行深入研究,利用Matlab/Simulink仿真软件建立了风、光、蓄交流微电网仿真系统,在该系统中,蓄电池储能装置采用V/f控制策略,以维持微电网孤岛运行时的电压和频率的稳定;风力发电单元和光伏发电单元采用PQ控制策略,以获取可再生能源的最大利用率.仿真结果表明,在孤岛和联网两种模式下,采用该控制策略的微电网能向用户不间断的供应电力,并且模式切换过程稳定可靠.

  1. Simulation of electricity supply of an Atlantic island by offshore wind turbines and wave energy converters associated with a medium scale local energy storage

    OpenAIRE

    Babarit, Aurélien; Ben Ahmed, Hamid; Clément, Alain; Debusschere, Vincent; Duclos, Gaelle; Multon, Bernard; Robin, Gaël

    2006-01-01

    International audience This paper describes the problem of sizing an electricity storage for an island supplied by both marine renewables (offshore wind and waves) and the mainland grid. This problem is addressed by a case study based on a full year resource and consumption data. Generators (wave energy converters and wind turbines), transmission lines and battery storage (Lead acid technology) are accounted for through basic simplified models while the focus is put on electricity import/e...

  2. Optimization-based power management of hybrid power systems with applications in advanced hybrid electric vehicles and wind farms with battery storage

    Science.gov (United States)

    Borhan, Hoseinali

    Modern hybrid electric vehicles and many stationary renewable power generation systems combine multiple power generating and energy storage devices to achieve an overall system-level efficiency and flexibility which is higher than their individual components. The power or energy management control, "brain" of these "hybrid" systems, determines adaptively and based on the power demand the power split between multiple subsystems and plays a critical role in overall system-level efficiency. This dissertation proposes that a receding horizon optimal control (aka Model Predictive Control) approach can be a natural and systematic framework for formulating this type of power management controls. More importantly the dissertation develops new results based on the classical theory of optimal control that allow solving the resulting optimal control problem in real-time, in spite of the complexities that arise due to several system nonlinearities and constraints. The dissertation focus is on two classes of hybrid systems: hybrid electric vehicles in the first part and wind farms with battery storage in the second part. The first part of the dissertation proposes and fully develops a real-time optimization-based power management strategy for hybrid electric vehicles. Current industry practice uses rule-based control techniques with "else-then-if" logic and look-up maps and tables in the power management of production hybrid vehicles. These algorithms are not guaranteed to result in the best possible fuel economy and there exists a gap between their performance and a minimum possible fuel economy benchmark. Furthermore, considerable time and effort are spent calibrating the control system in the vehicle development phase, and there is little flexibility in real-time handling of constraints and re-optimization of the system operation in the event of changing operating conditions and varying parameters. In addition, a proliferation of different powertrain configurations may

  3. Selection and Performance-Degradation Modeling of LiMO2/Li4Ti5O12 and LiFePO4/C Battery Cells as Suitable Energy Storage Systems for Grid Integration With Wind Power Plants

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Ioan; Stan, Ana-Irina;

    2014-01-01

    requirement criterion while Li–ion batteries where found as the devices which could best fulfil this requirement. Since accurate and fast battery performance models are indispensable for studying the virtual power plant behavior under different operating conditions, impedance-based performance......Advances in the development of energy storage technologies are making them attractive for grid integration together with wind power plants. Thus, the new system, the virtual power plant, is able to emulate the characteristics of today’s conventional power plants. However, at present, energy storage...

  4. 储能型风电场系统的钒电池并联运行控制方法%Control method of parallel vanadium batteries operating in energy stored wind farm system

    Institute of Scientific and Technical Information of China (English)

    郭旭东; 葛宝明; 毕大强; 杨歆玉

    2013-01-01

    钒电池直接并联时存在电流分配不合理和环流现象.针对这个问题,提出一种基于SOC状态的钒电池并联运行分流控制策略,得出电流控制参数的公式,通过DC/DC变换器实现多个钒电池并联运行的分流控制,并有效地调节风电场出口处的并网功率.在Matlab/Simulink环境下,基于本文所提出的钒电池储能系统,建立了储能型风电场模型.仿真结果表明,该系统实现了对风电场出口处并网功率的调节,并且成功实现了钒电池按照SOC状态充放电,防止系统中钒电池的过冲或者过放,避免了环流,验证了所提出方法的有效性.%Wind farms with vanadium battery energy storage system are approved and welcomed. Against the phenomenon of unreasonable current distribution when vanadium batteries are directly paralleled, a control strategy of parallel vanadium battery based on the state of charge (SOC) is proposed. The current control formula is given in this paper. Vanadium batteries are paralleled to adjust the power grid at the exit of wind farms by bidirectional DC/ DC converter. A wind farm model with vanadium battery energy storage system is simulated on MATLAB/Simulink. The simulation results show that this system can adjust the power grid of wind farms, and achieve the goal that the charging and discharging of vanadium batteries are completed according to their SOC, so as to avoid the overcharge or over-discharge successfully. Due to the control of current of vanadium battery, vanadium batteries'working condition has been improved. The effectiveness of the proposed method can be verified well.

  5. 电池储能系统在跟踪风电计划出力中的需求分析%An analysis for the need of a battery energy storage system in tracking wind power schedule output

    Institute of Scientific and Technical Information of China (English)

    靳文涛; 李蓓; 谢志佳

    2013-01-01

      电池储能系统(battery energy storage system,BESS)在风储联合应用中具有多种功能,利用电池储能系统提高风电并网调度运行能力是当前研究的热点之一。文章基于我国北方某风电场历史运行数据与预测数据,依据预测误差评价指标和风电场预报考核指标的综合评价方法对风电场预测数据进行分析研究,归纳了预测误差的概率分布特征;提出利用电池储能系统提高风电跟踪计划出力能力,统计并量化出电池储能系统用于跟踪计划出力场合的作用范围;通过仿真验证电池储能系统在风储联合系统中提高风电跟踪计划出力控制策略的有效性和可行性。%There are variety of applications of battery energy storage system(battery energy storage system, BESS) used in the combined system of wind power and energy storage, and improving grid-connected wind power operation ability under dispatch by using battery energy storage system is currently one of the research focus. Based on forecast and historical operation data of a wind farm in northern China, this article reports an analysis on the wind farm forecast data to obtain the forecast error probability distribution characteristics by using an evaluation method combining the prediction error indicators and wind farm forecast assessment indicators. A battery energy storage system is then proposed to improve the ability to track wind power schedule output, followed by statistical analyses and quantification of the scope of racking schedule output. Finally, simulation verifications are performed of the effectiveness and viability of the control strategy for improving the ability of wind power tracking schedule output.

  6. Batteries and accumulators in France

    International Nuclear Information System (INIS)

    The present report gives an overview of the batteries and accumulators market in France in 2011 based on the data reported through ADEME's Register of Batteries and accumulators. In 2001, the French Environmental Agency, known as ADEME, implemented a follow-up of the batteries and accumulators market, creating the Observatory of batteries and accumulators (B and A). In 2010, ADEME created the National Register of producers of Batteries and Accumulators in the context of the implementation of the order issued on November 18, 2009. This is one of the four enforcement orders for the decree 2009-1139 issued on September 22, 2009, concerning batteries and accumulators put on the market and the disposal of waste batteries and accumulators, and which transposes the EU-Directive 2006/66/CE into French law. This Register follows the former Observatory for batteries and accumulators. This Register aims to record the producers on French territory and to collect the B and A producers and recycling companies' annual reporting: the regulation indeed requires that all B and A producers and recycling companies report annually on the Register the quantities of batteries and accumulators they put on the market, collect and treat. Based on this data analysis, ADEME issues an annual report allowing both the follow-up of the batteries and accumulators market in France and communication regarding the achievement of the collection and recovery objectives set by EU regulation. This booklet presents the situation in France in 2011

  7. 基于等可信容量的风光储电源优化配置方法%Optimal Configuration of Distributed Generation System Containing Wind PV Battery Power Sources Based on Equivalent Credible Capacity Theory

    Institute of Scientific and Technical Information of China (English)

    何俊; 邓长虹; 徐秋实; 刘翠琳; 潘华

    2013-01-01

    含风光储的发电系统容量优化问题中,所要考虑的不确定性不仅包括常规机组的随机停运,还包括风速和光照强度的随机变化对机组出力造成的波动。提出一种基于等可信容量的风光储容量优化配置方法,综合计及自然资源的随机波动和常规机组的随机停运影响,按照满足电力平衡的需求确定所需风光储发电系统的整体可信容量以及常规机组容量,通过蒙特卡罗仿真计算得到等可信容量所需的风光储机组组合,根据风光储容量优化配置模型,从上述组合集合中选出使全生命周期总投资成本最小的风、光、储容量配置。采用加入了风电和光伏发电后的某实际海岛算例验证了该方法的正确性和有效性。%In the capacity optimization of coordination power generation system containing wind farm, photovoltaic (PV) generation and battery hybrid system, the uncertainty factors to be considered include not only the random outage of conventional generation units, but also unit output fluctuation due to random variation of wind speed and illumination intensity. Based on equivalent credible capacity theory an optimal configuration method of wind PV battery hybrid generation system, in which the impacts due to random fluctuation of natural resources and random outage of conventional generation units are synthetically taken into account, is proposed and according to the demand on satisfying electric power balance the needed overall capacity of wind/PV/battery hybrid generation system and the capacity of conventional generation units are determined;then through Monte Carlo simulation the wind/PV/battery hybrid unit combinations needed by equivalent credible capacity are calculated; and then according to the optimal configuration model of wind/PV/battery capacity, the wind PV battery capacity configuration, which makes the total investment cost in full lifecycle minimized, is selected from

  8. Energy Transferring Dynamic Equalization for Battery Packs

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The equivalent circuit model of battery and the analytic model of series battery uniformities are setup. The analysis shows that it is the key to maintain small voltage difference between cells in order to improve uniformities. Therefore a new technique combining low voltage difference, big current charging and bi-directional charge equalizer system is put forward and designed. The test shows that the energy transferring dynamic equalization system betters the series battery uniformities and protection during charging and discharging, improves the battery performance and extends the use life of series battery.

  9. Batteries not included

    International Nuclear Information System (INIS)

    This article traces the development of clockwork wind-up battery chargers that can be used to recharge mobile phones, laptop computers, torches or radio batteries from the pioneering research of the British inventor Trevor Baylis to the marketing of the wind-up gadgets by Freeplay Energy who turned the idea into a commercial product. The amount of cranking needed to power wind-up devices is discussed along with a hand-cranked charger for mobile phones, upgrading the phone charger's mechanism, and drawbacks of the charger. Details are given of another invention using a hand-cranked generator with a supercapacitor as a storage device which has a very much higher capacity for storing electrical charge

  10. Research on Non-Grid-Connected Wind Power System with Energy Storage Based on Flow Battery%液流电池储能的非并网风电系统

    Institute of Scientific and Technical Information of China (English)

    王笑雷; 孙承奇; 潘庭龙

    2012-01-01

    文中设计了一种带储能装置的非并网风电系统.采用液流电池作为储能装置,以减小风能的波动性对供电质量带来的影响.在Matlab环境下建立了系统的仿真模型,通过仿真结果证明了系统的可行性与有效性.%A non-grid-connected wind power system with energy storage device is designed. The flow battery is selected as the energy sturage device to reduce the influence on supply power quality due to the instability of wind energy. System model is established with MATLAB, and the simulation results verify the feasibility and validity of the proposed system.

  11. Battery Modeling

    OpenAIRE

    Jongerden, M.R.; Haverkort, B.R.

    2008-01-01

    The use of mobile devices is often limited by the capacity of the employed batteries. The battery lifetime determines how long one can use a device. Battery modeling can help to predict, and possibly extend this lifetime. Many different battery models have been developed over the years. However, with these models one can only compute lifetimes for specific discharge profiles, and not for workloads in general. In this paper, we give an overview of the different battery models that are availabl...

  12. The Lifetime of the LiFePO4/C Battery Energy Storage System When Used For Smoothing of the Wind Power Plant Variations

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Ioan; Stan, Ana-Irina;

    2013-01-01

    Fulfilling ambitious goals of the full transition from the centralized, fossil fuel-based conventional generation units into distributed and eco-friendly renewables can be difficult to achieve without energy storage systems due to technical and economical challenges. Energy storage system addition...... to wind turbines/wind farms is one of the most promising solutions to problems related with the further integration of wind power into the grids with already high wind penetration....

  13. Putting Emotional Intelligence To Work

    CERN Document Server

    Ryback, David

    2012-01-01

    Putting Emotional Intelligence to Work offers a new paradigm of communication for the 21st-century workplace. Beginning with the thoughts of communication pioneer Carl Rogers, this book covers the origins and history of emotional intelligence, why it is essential at this point in the changing marketplace, how to delegate and negotiate more effectively, and how to change yourself to become a more effective player. An EQ (Emotional Quotient) survey helps you determine where you are on the scale of executive intelligence. Putting Emotional Intelligence to Work leaves you with a greater understand

  14. Hybrid Wind/Electric Powered Vehicle

    OpenAIRE

    Ahmad Atieh; Samir Al Shariff

    2015-01-01

    Hybrid wind/electric powered vehicle is built and demonstrated. The vehicle uses bank of batteries to drive it. The batteries drive 3-phase brushless DC motor which moves the vehicle. The motor can rotate up to 2900 revolution per minute (RPM) at 3HP. A wind turbine, which is mounted at 1.5m on the vehicle, uses wind energy to generate electricity and charges the battery bank. A smart charging subsystem is proposed to enable efficient charging of the batteries. The minimum required wind speed...

  15. Putting Interpersonal Communication to Work

    Science.gov (United States)

    Kachur, Donald

    2005-01-01

    Educators are continuously faced with a wide range of communication challenges. Only by self-examining one's own approaches to interpersonal communication and being willing to improve can one put better communication to work in meeting those challenges--whether they are part of one's personal or professional life. Four principles are addressed…

  16. Putting food on the table

    NARCIS (Netherlands)

    Candel, J.J.L.

    2016-01-01

    Putting food on the table: the European Union governance of the wicked problem of food security Jeroen Candel Food security concerns and arguments have made a revival in European Union (EU) governance since the 2007-8 and 2010 global food price crises. This renaissa

  17. 基于电池储能的并网变换器在风电系统中应用及其控制%Application and Control of Grid Converter Based on Battery Energy Storage in Wind Power System

    Institute of Scientific and Technical Information of China (English)

    王旻玮; 魏大洋; 刘悦

    2015-01-01

    In order to solve the problem that the direct output power of wind power system has great impacts on the power quality and stability of power grid. This paper proposed a grid converter based on battery energy storage. In wind power system the grid converter could smooth the wind power lfuctuations, supply the reactive power for the grid when grid faults occurred, and achieve the uninterruptible power supply for local loads under the conditions of grid-isolated operation and the rapid switching from grid-isolated to grid-connected with no impact after the grid resumed normal operation. By using MATLAB/ SIMULINK, this paper established the model of battery energy storage grid-connected system. The simulation results verify the correctness of the analysis.%为解决风力发电直接并网会对电网产生很大冲击的问题,提出了一种基于电池储能的并网变换器,该并网变换器在风电系统应用中能平抑风电功率波动,在电网发生故障时提供无功功率,孤岛运行状态下向当地负荷提供不间断供电,并在电网恢复正常运行后,实现从离网到并网的快速无冲击切换。在MATLAB/SIMULINK中搭建了基于电池储能的并网变换器模型,仿真结果验证了分析的正确性。

  18. Characterization of vanadium flow battery

    Energy Technology Data Exchange (ETDEWEB)

    Bindner, H.; Ekman, C.; Gehrke, O.; Isleifsson, F.

    2010-10-15

    This report summarizes the work done at Risoe DTU testing a vanadium flow battery as part of the project 'Characterisation of Vanadium Batteries' (ForskEl project 6555) with the partners PA Energy A/S and OI Electric A/S under the Danish PSO energy research program. A 15kW/120kWh vanadium battery has been installed as part of the distributed energy systems experimental facility, SYSLAB, at Risoe DTU. A test programme has been carried out to get hands-on experience with the technology, to characterize the battery from a power system point of view and to assess it with respect to integration of wind energy in the Danish power system. The battery has been in operation for 18 months. During time of operation the battery has not shown signs of degradation of performance. It has a round-trip efficiency at full load of approximately 60% (depending on temperature and SOC). The sources of the losses are power conversion in cell stacks/electrolyte, power converter, and auxiliary power consumption from pumps and controller. The response time for the battery is limited at 20kW/s by the ramp rate of the power converter. The battery can thus provide power and frequency support for the power system. Vanadium battery is a potential technology for storage based services to the power system provided investment and O and M cost are low enough and long term operation is documented. (Author)

  19. Paintable Battery

    OpenAIRE

    Singh, Neelam; Galande, Charudatta; Miranda, Andrea; Mathkar, Akshay; Gao, Wei; Reddy, Arava Leela Mohana; Vlad, Alexandru; Ajayan, Pulickel M.

    2012-01-01

    If the components of a battery, including electrodes, separator, electrolyte and the current collectors can be designed as paints and applied sequentially to build a complete battery, on any arbitrary surface, it would have significant impact on the design, implementation and integration of energy storage devices. Here, we establish a paradigm change in battery assembly by fabricating rechargeable Li-ion batteries solely by multi-step spray painting of its components on a variety of materials...

  20. Battery charging stations

    Energy Technology Data Exchange (ETDEWEB)

    Bergey, M.

    1997-12-01

    This paper discusses the concept of battery charging stations (BCSs), designed to service rural owners of battery power sources. Many such power sources now are transported to urban areas for recharging. A BCS provides the opportunity to locate these facilities closer to the user, is often powered by renewable sources, or hybrid systems, takes advantage of economies of scale, and has the potential to provide lower cost of service, better service, and better cost recovery than other rural electrification programs. Typical systems discussed can service 200 to 1200 people, and consist of stations powered by photovoltaics, wind/PV, wind/diesel, or diesel only. Examples of installed systems are presented, followed by cost figures, economic analysis, and typical system design and performance numbers.

  1. Optimizing Hybrid Wind/Diesel Generator System Using BAT Algorithm

    OpenAIRE

    Sudhir Sharma; Shivani Mehta

    2016-01-01

    Hybrid system comprising of Wind/Diesel generation system for a practical standalone application considers Wind turbine generators and diesel generator as primary power sources for generating electricity. Battery banks are considered as a backup power source. The total value of cost is reduced by meeting energy demand required by the customers. Bat optimization technique is implemented to optimize wind and battery modules. Wind and battery banks are considered as primary sources a...

  2. Putting Yantai on the Map

    Institute of Scientific and Technical Information of China (English)

    Ali; Ali

    2011-01-01

    Michel Humbert brings energy,innovation and investment to Yantai DESPITE being well known is certain circles for the legend of the Eight Immortals,who in Chinese mythology set across the high seas in order to attend a celestial conference,Yantai still remains an undiscovered gem to most foreign travelers. One foreigner has now made it his mission to put Yantai on the global map by heading up the Yantai Investment Develop-

  3. 用于提高风电场运行效益的电池储能配置优化模型%An Optimization Model of Battery Energy Storage System Configuration to Improve Benefits of Wind Farms

    Institute of Scientific and Technical Information of China (English)

    徐国栋; 程浩忠; 方斯顿; 马则良; 张建平; 朱忠烈

    2016-01-01

    More benefits can be earned for wind farms integrated with a battery energy storage system(BESS)by improving the acceptance of wind power.Firstly,this paper proposes a double optimization model for battery energy storage system considering grid structure. The optimal configuration node, power, capacity of BESS are determined with the aim of incremental benefits maximization for wind and storage joint system compared with wind farms only considering system security constraints in the outer planning model.The benefits maximization of wind and storage joint system is chosen as the objective function,and the output of generating units,wind farm,BESS as decision variables.In the constraints,power balance,spinning reserve, power and capacity of BESS are considered in the inner optimization model. A numerical optimization algorithm,which is based on an improved empirical competition algorithm is proposed to calculate the model. Finally,the validity of this model is verified in an improved IEEE 1 18-node system.Case results suggest that the best configuration of BESS can increase wind farm benefits,meanwhile both benefits increments and the improvement of abandoned wind show an increasing trend with reduction in investments or the increase in grid price.Furthermore,an appropriate initial capacity of BESS is able to improve the benefits of composite BESS and wind generation system.And on the premise of guaranteed convergence,the improved empirical competition algorithm can effectively increase the computing speed compared with the traditional one.%为风电场配置电池储能系统(BESS)可以有效提高风电接纳能力,增加风电场运行效益。首先,提出一种考虑网架结构的 BESS 配置双层优化模型。外层模型计及系统安全约束,以风储联合系统相较风电场单独运行的效益增加量最大化为目标,确定 BESS 最优配置节点、功率、容量;内层模型以风储联合运行效益最大化为目标,以

  4. Dry cell battery poisoning

    Science.gov (United States)

    Batteries - dry cell ... Acidic dry cell batteries contain: Manganese dioxide Ammonium chloride Alkaline dry cell batteries contain: Sodium hydroxide Potassium hydroxide Lithium dioxide dry cell batteries ...

  5. Characterization of vanadium flow battery. Revised

    Energy Technology Data Exchange (ETDEWEB)

    Bindner, H.; Ekman, C.; Gehrke, O.; Isleifsson, F.

    2011-02-15

    This report summarizes the work done at Risoe-DTU testing a vanadium flow battery as part of the project ''Characterisation of Vanadium Batteries'' (ForskEl project 6555) with the partners PA Energy A/S and OI Electric A/S under the Danish PSO energy research program. A 15kW/120kWh vanadium battery has been installed as part of the distributed energy systems experimental facility, SYSLAB, at Risoe DTU. A test programme has been carried out to get hands-on experience with the technology, to characterize the battery from a power system point of view and to assess it with respect to integration of wind energy in the Danish power system. The battery has been in operation for 18 months. During time of operation the battery has not shown signs of degradation of performance. It has a round-trip efficiency at full load of approximately 60% (depending on temperature and SOC). The sources of the losses are power conversion in cell stacks/electrolyte, power converter, and auxiliary power consumption from pumps and controller. The efficiency was not influenced by the cycling of the battery. The response time for the battery is limited at 20kW/s by the ramp rate of the power converter. The battery can thus provide power and frequency support for the power system. The battery was operated together with a 11kW stall-regulated Gaia wind turbine to smooth the output of the wind turbine and during the tests the battery proved capable of firming the output of the wind turbine. Vanadium battery is a potential technology for storage based services to the power system provided investment and O and M cost are low enough and long term operation is documented. (Author)

  6. Battery Charge Equalizer with Transformer Array

    Science.gov (United States)

    Davies, Francis

    2013-01-01

    High-power batteries generally consist of a series connection of many cells or cell banks. In order to maintain high performance over battery life, it is desirable to keep the state of charge of all the cell banks equal. A method provides individual charging for battery cells in a large, high-voltage battery array with a minimum number of transformers while maintaining reasonable efficiency. This is designed to augment a simple highcurrent charger that supplies the main charge energy. The innovation will form part of a larger battery charge system. It consists of a transformer array connected to the battery array through rectification and filtering circuits. The transformer array is connected to a drive circuit and a timing and control circuit that allow individual battery cells or cell banks to be charged. The timing circuit and control circuit connect to a charge controller that uses battery instrumentation to determine which battery bank to charge. It is important to note that the innovation can charge an individual cell bank at the same time that the main battery charger is charging the high-voltage battery. The fact that the battery cell banks are at a non-zero voltage, and that they are all at similar voltages, can be used to allow charging of individual cell banks. A set of transformers can be connected with secondary windings in series to make weighted sums of the voltages on the primaries.

  7. Small Wind Electric Energy Charging System Simulation and Application based on MPPT Algorithm and SEPIC Circuits

    Directory of Open Access Journals (Sweden)

    Suxiang Qian

    2013-08-01

    Full Text Available In this study, designed the work principle for the wind power system based on the PMSG and the framework for the system, induced the PMSG mathematic model and put up the control strategy for the whole system, including the output voltage control of the PMSG, the realization of the Maximum Power Point Tracing (MPPT method, the control strategy for the SEPIC converter. Then, the dissertation built the simulation model for the wind power system based on the PMSG using the MATLAB software. The use of this control strategy is described. To realize the power of the independent regulator and battery charging load design in detail. The control strategies mentioned in the above are simulated and simulation results are obtained, respectively in the condition of different wind speed. The laboratory results show the schemes are reasonable and practical.

  8. Secondary batteries with multivalent ions for energy storage

    OpenAIRE

    Chengjun Xu; Yanyi Chen; Shan Shi; Jia Li; Feiyu Kang; Dangsheng Su

    2015-01-01

    The use of electricity generated from clean and renewable sources, such as water, wind, or sunlight, requires efficiently distributed electrical energy storage by high-power and high-energy secondary batteries using abundant, low-cost materials in sustainable processes. American Science Policy Reports state that the next-generation “beyond-lithium” battery chemistry is one feasible solution for such goals. Here we discover new “multivalent ion” battery chemistry beyond lithium battery chemist...

  9. A Model Predictive Control Method of Battery Energy Storage for Smoothing Wind Power Fluctuation%电池储能平抑风电功率波动的预测控制方法

    Institute of Scientific and Technical Information of China (English)

    罗毅; 李达

    2015-01-01

    The fluctuation and randomness of wind power harmfully impacts on the security and stability of power system. In order to smooth the fluctuation of wind power, a new control strategy for battery energy storage system ( BESS) based on the model predictive control ( MPC) is proposed. Based on the super short⁃term power forecas⁃ting results, an optimal control of the energy storage system is realized through receding optimization with a number of constrains considered such as the fluctuation range of grid⁃connected wind power, the state⁃of⁃charge ( SOC) of the energy storage system and energy storage output size. Simulation studies demonstrate that the new method can not only smooth the short⁃term fluctuation, but also control the SOC range ahead, thus maintaining the smoothing performance of BESS and avoiding overcharging and discharging.%风电波动性和随机性严重影响电力系统安全稳定性。为了平抑风功率波动,提出了一种基于模型预测控制( MPC)原理的平抑风电功率波动的电池储能控制方法。该方法利用风电场超短期功率预测信息,以并网风电功率的波动范围、电池储能荷电状态( SOC)、储能出力大小等为约束,通过滚动优化实现对储能的优化控制。算例表明,该方法既能有效平抑风电功率波动,又能超前控制储能SOC值,维持储能的平滑能力,避免储能过充过放。

  10. Putting science on the agenda

    CERN Multimedia

    2012-01-01

    The job of CERN Director-General comes with a lot of responsibility, and that’s particularly true today. We’re living through a period of unique circumstances for science. Positive indicators, such as a renewal of interest in physical sciences at the University level and unprecedented public interest in the LHC, are aligning with storm clouds in the form of a prolonged economic crisis that will put downward pressure on everyone’s budgets.   That means that science has to make its voice heard if it’s to preserve support, and if it wants to be in a position to play the role it must in navigating the major societal challenges of our time. For that reason, I have been a fairly rare sight at CERN of late. Last week, I was in Davos for the annual meeting of the World Economic Forum. It was my second time at Davos, and I used the opportunity to argue that science should be more closely linked to the political thread of the meeting. I think my argument was he...

  11. Lithium-antimony-lead liquid metal battery for grid-level energy storage

    Science.gov (United States)

    Wang, Kangli; Jiang, Kai; Chung, Brice; Ouchi, Takanari; Burke, Paul J.; Boysen, Dane A.; Bradwell, David J.; Kim, Hojong; Muecke, Ulrich; Sadoway, Donald R.

    2014-10-01

    The ability to store energy on the electric grid would greatly improve its efficiency and reliability while enabling the integration of intermittent renewable energy technologies (such as wind and solar) into baseload supply. Batteries have long been considered strong candidate solutions owing to their small spatial footprint, mechanical simplicity and flexibility in siting. However, the barrier to widespread adoption of batteries is their high cost. Here we describe a lithium-antimony-lead liquid metal battery that potentially meets the performance specifications for stationary energy storage applications. This Li||Sb-Pb battery comprises a liquid lithium negative electrode, a molten salt electrolyte, and a liquid antimony-lead alloy positive electrode, which self-segregate by density into three distinct layers owing to the immiscibility of the contiguous salt and metal phases. The all-liquid construction confers the advantages of higher current density, longer cycle life and simpler manufacturing of large-scale storage systems (because no membranes or separators are involved) relative to those of conventional batteries. At charge-discharge current densities of 275 milliamperes per square centimetre, the cells cycled at 450 degrees Celsius with 98 per cent Coulombic efficiency and 73 per cent round-trip energy efficiency. To provide evidence of their high power capability, the cells were discharged and charged at current densities as high as 1,000 milliamperes per square centimetre. Measured capacity loss after operation for 1,800 hours (more than 450 charge-discharge cycles at 100 per cent depth of discharge) projects retention of over 85 per cent of initial capacity after ten years of daily cycling. Our results demonstrate that alloying a high-melting-point, high-voltage metal (antimony) with a low-melting-point, low-cost metal (lead) advantageously decreases the operating temperature while maintaining a high cell voltage. Apart from the fact that this finding

  12. Science 101: What Causes Wind?

    Science.gov (United States)

    Robertson, William C.

    2010-01-01

    There's a quick and easy answer to this question. The Sun causes wind. Exactly how the Sun causes wind takes a bit to explain. We'll begin with what wind is. You've no doubt heard that wind is the motion of air molecules, which is true. Putting aside the huge leap of faith it takes for us to believe that we are experiencing the motion of millions…

  13. Analysis of the operating behaviour of wind/Diesel systems with short term storage

    International Nuclear Information System (INIS)

    We are examining wind/Diesel systems with batteries and wind turbines of different sizes by simulation calculations. Apart from the fuel consumption and the number of starts of the Diesel engines, we determine the energy flow via the battery. We introduce dimensions of the battery for two special types of batteries and discuss the annual battery charge/discharge cycles to be expected. (orig.)

  14. From fuel cells to batteries: Synergies, scales and simulation methods

    OpenAIRE

    Bessler, Wolfgang G

    2011-01-01

    The recent years have shown a dynamic growth of battery research and development activities both in academia and industry, supported by large governmental funding initiatives throughout the world. A particular focus is being put on lithium-based battery technologies. This situation provides a stimulating environment for the fuel cell modeling community, as there are considerable synergies in the modeling and simulation methods for fuel cells and batteries. At the same time, batter...

  15. Mixed-Integer-Linear-Programming Based Energy Management System for Hybrid PV-wind-battery Microgrids: Modelling, Design and Experimental Verification

    DEFF Research Database (Denmark)

    Hernández, Adriana Carolina Luna; Aldana, Nelson Leonardo Diaz; Graells, Moises;

    2016-01-01

    Microgrids are energy systems that aggregate distributed energy resources, loads and power electronics devices in a stable and balanced way. They rely on energy management systems to schedule optimally the distributed energy resources. Conventionally, many scheduling problems have been solved by...... using complex algorithms that, even so, do not consider the operation of the distributed energy resources. This paper presents the modeling and design of a modular energy management system and its integration to a grid-connected battery-based microgrid. The scheduling model is a power generation......-side strategy, defined as a general mixed-integer linear programming by taking into account two stages for proper charging of the storage units. This model is considered as a deterministic problem that aims to minimize operating costs and promote self-consumption based on 24-hour ahead forecast data. The...

  16. Effect Analysis of Battery Energy Storage System on Output of Distributed Power Generation System with Wind Turbine and Photovoltaic in Grid-connection%储能系统对并网型风光分布式发电系统输出的影响分析

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    To solve the problem of voltage fluctuation and compromised power supply caused by the unsteady wind turbine and photovoltaic power output, we propose using the energy storage systems to improve stability of the power output and the power quality of the grid-network. The indirect combination modeling method is employed to establish the models of typical wind generator, photovoltaic generation and battery energy storage by PSCAD/EMTDC, based on which the Wind-Battery generation system model, solar-battery generation system model and wind-solar-battery hybrid generation system model in grid-connection are built. The simulations show that the power stability and the quality of the intermittent energy output can be improved using the proposed method.%  为解决风力发电和光伏发电等间歇式电源输出功率波动引起的电网电能质量下降问题,提出了利用储能系统来提高间歇式电源并网点的功率稳定性以及改善电能质量。采用间接组合建模的方法建立基于PSCAD/EMTDC的典型风力发电、光伏发电和蓄电池储能的单元模型,并在此基础上构建风电/储能、光伏/储能、风电/光伏/储能系统,并进行仿真和电能质量分析。系统仿真结果表明:储能系统能有效改善间歇式电源功率输出的稳定性和电能质量。

  17. Wind-energy storage

    Science.gov (United States)

    Gordon, L. H.

    1980-01-01

    Program SIMWEST can model wind energy storage system using any combination of five types of storage: pumped hydro, battery, thermal, flywheel, and pneumatic. Program is tool to aid design of optional system for given application with realistic simulation for further evaluation and verification.

  18. Thermoelectric battery

    International Nuclear Information System (INIS)

    The battery for the power supply of heart pacemakers consists of a cylindrical case with a thermoelectric module consisting of thermoelectric elements which are fastened to each other in the form of a thermal column and a heat source made of PU-238. In order to reduce the radial sensitivity to shocks of the battery, a spring cage is arranged around the heat source at the free end of the module. Cushioning against longitudinal shocks is provided by another spring. (DG)

  19. Sensorimotor Rhythm Neurofeedback Enhances Golf Putting Performance.

    Science.gov (United States)

    Cheng, Ming Yang; Huang, Chung Ju; Chang, Yu Kai; Koester, Dirk; Schack, Thomas; Hung, Tsung Min

    2015-12-01

    Sensorimotor rhythm (SMR) activity has been related to automaticity during skilled action execution. However, few studies have bridged the causal link between SMR activity and sports performance. This study investigated the effect of SMR neurofeedback training (SMR NFT) on golf putting performance. We hypothesized that preelite golfers would exhibit enhanced putting performance after SMR NFT. Sixteen preelite golfers were recruited and randomly assigned into either an SMR or a control group. Participants were asked to perform putting while electroencephalogram (EEG) was recorded, both before and after intervention. Our results showed that the SMR group performed more accurately when putting and exhibited greater SMR power than the control group after 8 intervention sessions. This study concludes that SMR NFT is effective for increasing SMR during action preparation and for enhancing golf putting performance. Moreover, greater SMR activity might be an EEG signature of improved attention processing, which induces superior putting performance. PMID:26866770

  20. Carbon-enhanced VRLA batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Enos, David George; Hund, Thomas D.; Shane, Rod (East Penn Manufacturing, Lyon Station, PA)

    2010-10-01

    The addition of certain forms of carbon to the negative plate in valve regulated lead acid (VRLA) batteries has been demonstrated to increase the cycle life of such batteries by an order of magnitude or more under high-rate, partial-state-of-charge operation. Such performance will provide a significant impact, and in some cases it will be an enabling feature for applications including hybrid electric vehicles, utility ancillary regulation services, wind farm energy smoothing, and solar photovoltaic energy smoothing. There is a critical need to understnd how the carbon interacts with the negative plate and achieves the aforementioned benefits at a fundamental level. Such an understanding will not only enable the performance of such batteries to be optimzied, but also to explore the feasibility of applying this technology to other battery chemistries. In partnership with the East Penn Manufacturing, Sandia will investigate the electrochemical function of the carbon and possibly identify improvements to its anti-sulfation properties. Shiomi, et al. (1997) discovered that the addition of carbon to the negative active material (NAM) substantially reduced PbSO{sub 4} accumulation in high rate, partial state of charge (HRPSoC) cycling applications. This improved performance with a minimal cost. Cycling applications that were uneconomical for traditional VRLA batteries are viable for the carbon enhanced VRLA. The overall goal of this work is to quantitatively define the role that carbon plays in the electrochemistry of a VRLA battery.

  1. Wind Turbines Wake Aerodynamics

    DEFF Research Database (Denmark)

    Vermeer, L.; Sørensen, Jens Nørkær; Crespo, A.

    2003-01-01

    The aerodynamics of horizontal axis wind turbine wakes is studied. The contents is directed towards the physics of power extraction by wind turbines and reviews both the near and the far wake region. For the near wake, the survey is restricted to uniform, steady and parallel flow conditions......, thereby excluding wind shear, wind speed and rotor setting changes and yawed conditions. The emphasis is put on measurements in controlled conditions.For the far wake, the survey focusses on both single turbines and wind farm effects, and the experimental and numerical work are reviewed; the main interest...... is to study how the far wake decays downstream, in order to estimate the effect produced in downstream turbines.The article is further restricted to horizontal axis wind turbines and excludes all other types of turbines....

  2. Wind turbine wake aerodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Vermeer, L.J. [Delft University of Technology (Netherlands). Section Wind Energy; Sorensen, J.N. [Technical University of Denmark, Lyngby (Denmark). Dept. of Mechanical Engineering; Crespo, A. [Universidad Politecnica de Madrid (Spain). Dpto. de Ingenieria Energetica y Fluidomecanica

    2003-10-01

    The aerodynamics of horizontal axis wind turbine wakes is studied. The contents is directed towards the physics of power extraction by wind turbines and reviews both the near and the far wake region. For the near wake, the survey is restricted to uniform, steady and parallel flow conditions, thereby excluding wind shear, wind speed and rotor setting changes and yawed conditions. The emphasis is put on measurements in controlled conditions. For the far wake, the survey focuses on both single turbines and wind farm effects, and the experimental and numerical work are reviewed; the main interest is to study how the far wake decays downstream, in order to estimate the effect produced in downstream turbines. The article is further restricted to horizontal axis wind turbines and excludes all other types of turbines. (author)

  3. Wind Farms: Modeling and Control

    DEFF Research Database (Denmark)

    Soleimanzadeh, Maryam

    2012-01-01

    is minimized. The controller is practically feasible. Yet, the results on load reduction in this approach are not very significant. In the second strategy, the wind farm control problem has been divided into below rated and above rated wind speed conditions. In the above rated wind speed pitch angle and power....... Distributed controller design commences with formulating the problem, where a structured matrix approach has been put in to practice. Afterwards, an H2 control problem is implemented to obtain the controller dynamics for a wind farm such that the structural loads on wind turbines are minimized.......The primary purpose of this work is to develop control algorithms for wind farms to optimize the power production and augment the lifetime of wind turbines in wind farms. In this regard, a dynamical model for wind farms was required to be the basis of the controller design. In the first stage...

  4. Neutron Scattering for battery materials

    International Nuclear Information System (INIS)

    Batteries are a key technology in today’s society. They are used to power electric and hybrid electric vehicles and to store wind and solar energy in smart grids. Since the “lithium-ion” configuration has been widely accepted, significant efforts have been devoted to attain high energy and power densities to produce an excellent energy storage system without any safety issues. To improve battery characteristics, deep insights into the structure of the materials during the battery reactions are necessary. Neutron Scatteringclarifies a wide range of structures for battery materials; from local to long range structures, and these structure characteristics are related to the battery properties. New materials with high electrochemical properties are necessary to improve future battery systems. Structure and property relationships for the battery electrodes and electrolytes are important information for designing new energy storage systems. An example of new materials is solid electrolytes. An all solid-state configuration is the most promising for future devices to improve the reliability of batteries. Lithium superionic conductors, which can be used as solid electrolytes, promise the potential to replace organic liquid electrolytes and thereby improve the safety of batteries. The material, Li10GeP2S12 shows high ionic conductivity, which exceeds the conductivity value of liquid electrolyte. Neutron Scatteringis one of the best methods to provide information of structure containing lithium and conduction mechanism determined by Neutron Scattering makes the materials design concept clear. In-situ and perando experimental techniques are another important subjects for clarifying battery reactions. An in situ technique for directly observing surface structural changes has been developed that employs thin-film model electrodes and surface X-ray and Neutron Scattering techniques. The surface structural changes commence with the formation of an electrical double layer

  5. Redox Species of Redox Flow Batteries: A Review

    OpenAIRE

    Feng Pan; Qing Wang

    2015-01-01

    Due to the capricious nature of renewable energy resources, such as wind and solar, large-scale energy storage devices are increasingly required to make the best use of the renewable power. The redox flow battery is considered suitable for large-scale applications due to its modular design, good scalability and flexible operation. The biggest challenge of the redox flow battery is the low energy density. The redox active species is the most important component in redox flow batteries, and the...

  6. Memel's Batteries

    Directory of Open Access Journals (Sweden)

    Alexander F. Mitrofanov

    2015-12-01

    Full Text Available The article describes the history and equipment of the coastal and antiaircraft artillery batteries of German Navy (Kriegsmarine constructed in Memel area before and during the World War. There is given the brief description of the Soviet Navy stationed in the area in the postwar years.

  7. Characterization of Vanadium Flow Battery

    DEFF Research Database (Denmark)

    Bindner, Henrik W.; Krog Ekman, Claus; Gehrke, Oliver;

    This report summarizes the work done at Risø-DTU testing a vanadium flow battery as part of the project “Characterisation of Vanadium Batteries” (ForskEl project 6555) with the partners PA Energy A/S and OI Electric A/S under the Danish PSO energy research program. A 15kW/120kWh vanadium battery...... has been installed as part of the distributed energy systems experimental facility, SYSLAB, at Risø DTU. A test programme has been carried out to get hands-on experience with the technology, to characterize the battery from a power system point of view and to assess it with respect to integration of...... wind energy in the Danish power system. The battery has been in operation for 18 months. During time of operation the battery has not shown signs of degradation of performance. It has a round-trip efficiency at full load of approximately 60% (depending on temperature and SOC). The sources of the losses...

  8. Putting New Laboratory Tests Into Practice

    Science.gov (United States)

    ... and put the latest headline news into appropriate context. It may take years for a new test ... Health Professionals ©2001 - by American Association for Clinical Chemistry • Contact Us | Terms of Use | Privacy We comply ...

  9. Teen Safety: Putting an End to Bullying

    Science.gov (United States)

    ... Print Share Teen Safety: Putting An End to Bullying Page Content Article Body The outbreak of school ... that has been allowed to go virtually unchecked: bullying. It turns out that many of these adolescent ...

  10. Batteries: Overview of Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Doeff, Marca M

    2010-07-12

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as

  11. Battery Monitoring System

    Directory of Open Access Journals (Sweden)

    Pavuluri Mounika* , M.Anil Kumar

    2013-04-01

    Full Text Available The project of BMS (Battery Monitoring System gives online and offline status of batteries which are monitored by the bank so that we can prevent the batteries prior to failure However, Battery Monitoring System specifically measure, record and analyze the individual cell and battery module parameters in detail.Continuous monitoring and analysis of these parameters can be used to identify battery or cell deterioration, hence prompting action to avoid unplanned power interruption.Battery Monitoring System (BMS is a microprocessor based intelligent system capable of monitoring the health of battery bank. BMS calculates the battery’s capacity, deterioration of batteries in battery bank during the charge / discharge cycles and actual efficiency of the batteries.It continuously monitors each cell in the battery bank to identify deterioration in the cell prior to failure,identifies the net charge in the battery bank by monitoring charging and discharging currents.

  12. Environmental consequences of the use of batteries in low carbon systems: The impact of battery production

    International Nuclear Information System (INIS)

    Highlights: ► Lithium based batteries show the most significant GHG and metal depletion impacts. ► Nickel metal hydride batteries perform worst in terms of cumulative energy demand. ► Charge and discharge cycles will have significant effect on the environmental impact. ► Limited data on the life cycle impacts of some types of batteries is available. - Abstract: Adoption of small scale micro-generation is sometimes coupled with the use of batteries in order to overcome daily variability in the supply and demand of energy. For example, photovoltaic cells and small wind turbines can be coupled with energy storage systems such as batteries. When used effectively with renewable energy production, batteries can increase the versatility of an energy system by providing energy storage that enables the systems to satisfy the highly variable electrical load of an individual dwelling, therefore changing usage patterns on the national grid. A significant shift towards electric or hybrid cars would also increase the number of batteries required. However, batteries can be inefficient and comprise of materials that have high environmental and energy impacts. In addition, some materials, such as lithium, are scarce natural resources. As a result, the overall impact of increasing our reliance on such “sustainable or “low carbon” systems may in fact have an additional detrimental impact. This paper reviews the currently available data and calculated and highlights the impact of the production of several types of battery in terms of energy, raw materials and greenhouse gases. The impact of the production of batteries is examined and presented in order that future studies may be able to include the impact of batteries more easily within any system. It is shown that lithium based batteries have the most significant impact in many environmental areas in terms of production. As the use phases of batteries are extremely variable within different situations this has not been

  13. Simulation of electricity supply of an Atlantic island by offshore wind turbines and wave energy converters associated with a medium scale local energy storage

    International Nuclear Information System (INIS)

    The problem of sizing an electricity storage for a 5000 inhabitants island supplied by both marine renewables (offshore wind and waves) and the mainland grid is addressed by a case study based on a full year resource and consumption data. Generators, transmission lines and battery storage are accounted for through basic simplified models while the focus is put on electricity import/export budget. Self-sufficiency does not seem a reasonable goal to pursue, but partial autonomy provided by renewable sources and a medium size storage would probably be profitable to the island community. (author)

  14. Battery Safety Basics

    Science.gov (United States)

    Roy, Ken

    2010-01-01

    Batteries commonly used in flashlights and other household devices produce hydrogen gas as a product of zinc electrode corrosion. The amount of gas produced is affected by the batteries' design and charge rate. Dangerous levels of hydrogen gas can be released if battery types are mixed, batteries are damaged, batteries are of different ages, or…

  15. Batteries for Electric Vehicles

    Science.gov (United States)

    Conover, R. A.

    1985-01-01

    Report summarizes results of test on "near-term" electrochemical batteries - (batteries approaching commercial production). Nickel/iron, nickel/zinc, and advanced lead/acid batteries included in tests and compared with conventional lead/acid batteries. Batteries operated in electric vehicles at constant speed and repetitive schedule of accerlerating, coasting, and braking.

  16. ENEL current knowledge on power batteries and relevant applications

    Energy Technology Data Exchange (ETDEWEB)

    Buonarota, A.; Menga, P. [ENEL (Italy)

    1995-10-01

    Activities carried out within ENEL CRE (Electrical Research Centre) in co-operation with CESI (Centro Elettrotecnico Sperimentale Italiano) concerning lead-acid batteries have provided a lot of knowledge allowing a more accurate battery dimensioning in connection with expected services, as well as the adoption of operating modalities capable of leading to a higher system reliability. A large part of this knowledge can potentially be transferred, already in short terms, to actual applications. In particular, the latter concern: the battery state of health diagnostics; an estimate of its state of charge; the optimum battery dimensioning in the system in connection with the expected service; the adoption of innovating recharging modalities; correct installation and use of VRLA batteries; the development level of innovating-type batteries. In the following, for each of these aspects, the available knowledge and the possible market applications, that can immediately or within short be put into practice are summarized.

  17. Second Life for Electric Vehicle Batteries: Answering Questions on Battery Degradation and Value

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, J. S.; Wood, E.; Pesaran, A.

    2015-05-04

    Battery second use – putting used plug-in electric vehicle (PEV) batteries into secondary service following their automotive tenure – has been proposed as a means to decrease the cost of PEVs while providing low cost energy storage to other fields (e.g. electric utility markets). To understand the value of used automotive batteries, however, we must first answer several key questions related to National Renewable Energy Laboratory (NREL) has developed a methodology and the requisite tools to answer these questions, including NREL’s Battery Lifetime Simulation Tool (BLAST). Herein we introduce these methods and tools, and demonstrate their application. We have found that capacity fade from automotive use has a much larger impact on second use value than resistance growth. Where capacity loss is driven by calendar effects more than cycling effects, average battery temperature during automotive service – which is often driven by climate – is found to be the single factor with the largest effect on remaining value. Installing hardware and software capabilities onboard the vehicle that can both infer remaining battery capacity from in-situ measurements, as well as track average battery temperature over time, will thereby facilitate the second use of automotive batteries.

  18. Wind: getting the facts straight

    Energy Technology Data Exchange (ETDEWEB)

    Wood, E.

    2006-03-15

    The wind industry in both the UK and the USA is working to overcome the media and public perception that wind turbines are unattractive and noisy machines and to correct the misinformation about them put about by a small number of wind power opponents. The article cites the example of a resident of Martha's Vineyard in the USA whose initial opposition has been transformed into active campaigning for wind farms. Both the American Wind Energy Association (AWEA) and British Wind Energy Association (BWEA) have recently launched 'myth busting' campaigns; the BWEA's 'Embrace the Revolution' (www.embracewind.com) campaign aims to convince people that wind energy is a realistic renewable energy solution to climate change, while the AWEA's 'Wind Energy Works' campaign is working with partners to promote wind power's benefits. The Wind Energy Works website (www.ifnotwind.org) compares the environmental impact of wind against nuclear, coal and natural gas fired generation, and sets the record straight about the number of bird deaths caused by wind turbines. It also tackles the reliability issue and points out the benefits of wind in helping to secure electricity supplies. The strategies adopted by the AWEA and the BWEA are different but both are confident that they can persuade the 'fence sitters' even if they do not manage to win over wind's staunchest critics.

  19. Bermuda-Put-Optionen nach Geske und Johnson: Konvergenzanalyse und Zusammenhang mit amerikanischen Put-Optionen

    OpenAIRE

    Boldin, Denis

    2013-01-01

    Der Idee von Geske und Johnson folgend wird der Preis einer amerikanischen Put-Option durch den Preis einer n-Bermuda-Put-Option approximiert. Die Problematik der Berechnung von der in der analytischen Bewertungsformeln von Geske und Johnson auftretenden multidimensionalen Normalverteilungsfunktionen wird hierbei durch die Early-Exercise-Prämie-Darstellung (EEP-Darstellung) für den Preis einer n-Bermuda- Put-Option umgangen. Es wird gezeigt, dass der Fehlerterm in der EEP-Darstellung von der ...

  20. Dynamic response of a floating offshore wind turbine

    OpenAIRE

    Stølsmark, Rasmus

    2010-01-01

    The ever increasing demand for renewable energy, combined with limited areas suitable for large wind farms, has put focus on the development of floating wind turbines. In this thesis the dynamic response of a floating wind turbine, subjected to forces from wind and waves, is analyzed. The wind turbine is of a spar buoy design, similar to Statoil's Hywind project. Simulations with two main type of load cases were run, based on the international offshore wind turbine standard IEC...

  1. An Effective Wind Energy System based on Buck-boost Controller

    Directory of Open Access Journals (Sweden)

    N. Prakash

    2013-06-01

    Full Text Available In Domestic Wind Machines, if the wind speed is low, the output voltage is not sufficient to charge the battery as it is lower than the rated charging voltage of the battery. This limits the overall efficiency of the Wind Machine to 20%. This study proposed to design and develop a Buck Boost Controller for the effective utilization of the wind machine. By implementing a controller based Buck Boost converter, the voltage produced at the lower wind speeds can also be utilized effectively by boosting it to the rated charging voltage of the battery. Also if the wind speed is high (>14 m/s, the DC output voltage will increase to more than 65 V. The converter bucks this high voltage to the nominal battery charging voltage (52 V, thereby protecting the battery from over charging voltage. Thus the effective utilization of the wind machine has been achieved by the use of the proposed Buck Boost Controller.

  2. Single stage grid converters for battery energy storage

    DEFF Research Database (Denmark)

    Trintis, Ionut; Munk-Nielsen, Stig; Teodorescu, Remus

    2010-01-01

    Integration of renewable energy systems in the power system network such as wind and solar is still a challenge in our days. Energy storage systems (ESS) can overcome the disadvantage of volatile generation of the renewable energy sources. This paper presents power converters for battery energy...... storage systems (BESS) which can interface mediumvoltage batteries to the grid. Converter topologies comparison is performed in terms of efficiency, common mode voltage and redundancy for a 6kV series connected medium voltage batteries with a nominal power of 5MVA to act as a battery charger/discharger....

  3. Performance of redox flow battery systems in Japan

    Institute of Scientific and Technical Information of China (English)

    Shibata Toshikazu; Kumamoto Takahiro; Nagaoko Yoshiyuki; Kawase Kazunori; Yano Keiji

    2013-01-01

    Renewable energies, such as solar and wind power, are increasingly being introduced as alternative energy sources on a glosbal scale toward a low-carbon society. For the next generation power network, which uses a large number of these distributed power generation sources, energy storage technologies will be indispensable. Among these technologies, battery energy storage technology is considered to be most viable. Sumitomo Electric Industries, Ltd. has developed a redox flow battery system suitable for large scale energy storage, and carried out several demonstration projects on the stabilization of renewable energy output using the redox flow battery system. This paper describes the advantages of the redox flow battery and reviews the demonstration projects.

  4. Evaluation of wind electric energy based on martian wind measurements

    Science.gov (United States)

    Nishikawa, Y.; Kurita, K.

    2012-12-01

    Since Mars is characterized by strong surface wind, electric power generation by the wind activity has been proposed as a possible power source for martian base station as well as that for exploration module (George James et al., 1999, Vimal Kumar et al., 2010). George and Vimal estimated total power as 19kW and 500W, which they conclude is sufficient value as a power source of small exploration module. These values seem comparable to that used in MER( 900Wh per day ). But their estimate largely depends on the model of wind velocity and reevaluation is necessary based on plausible wind model as well as more realistic assumptions about power generation. This study evaluates plausible range of available power by using surface wind model estimated by Viking Lander measurements. Meteorological package of Viking Lander measured wind velocity and its direction at 1.6m hight at every 60 min. for 200 sols. We estimate wind statistics by using Weibull distribution function and elevation offset. We calculate the wind energy by wind turbines as the integrated value of power produced in a Martian day, and compare with solar panel and nuclear battery under various conditions (Mars ground roughness, blade length, shape of wind turbine and rotor height from the ground). As a result of the calculations, we obtain reasonable amount of wind electricity (1000 Wh per day ), which can be used if we select proper locations and suitable wind turbine.

  5. Generate light with wind power

    OpenAIRE

    Iqbal, Fowad

    2013-01-01

    The report explain the steps taken to improve a product (SOLVINDEN), which uses sun and wind energy to generate light and is used for outdoor decoration. The research involves improvements in both designas well function. As the form follows function in the product functionality of the form is very important in selection of the form. Some of important topics which are considered are different way of using wind to charge batteries, blades profiles and shape, way of optimizing generator, ratio o...

  6. "Big Bang" project put off to 2008

    CERN Multimedia

    Evans, Robert

    2007-01-01

    "First tests in a scientific project aimed at solving myteries of the universe and the "Big Bang" that created it have been put off from November to late April or early May next year, an official said on Wednesday" (1/2 page)

  7. Putting Opportunism in the Back Seat

    DEFF Research Database (Denmark)

    Foss, Nicolai; Weber, Libby

    2013-01-01

    TCE and its applications in management research put more emphasis on opportunism than on bounded rationality. By augmenting the bounded rationality assumption to include interpretive limitations, we show that there are sources of costly conflict that are not rooted in opportunism. Moreover, we sh...

  8. DIST/AVC Out-Put Definition.

    Science.gov (United States)

    Wilkinson, Gene L.

    The first stage of development of a management information system for DIST/AVC (Division of Instructional Technology/Audio-Visual Center) is the definition of out-put units. Some constraints on the definition of output units are: 1) they should reflect goals of the organization, 2) they should reflect organizational structure and procedures, and…

  9. Big meeting puts the case for LHC

    International Nuclear Information System (INIS)

    It was a workshop on a scale to match the ultimate goal. When some 500 physicists met in Aachen, Germany, in October to put the research case for the proposed Large Hadron Collider (LHC) at CERN, the turnout was among the biggest attendances of the year

  10. Collecting battery data with Open Battery

    OpenAIRE

    Jones, Gareth L.; Harrison, Peter G.

    2012-01-01

    In this paper we present Open Battery, a tool for collecting data on mobile phone battery usage, describe the data we have collected so far and make some observations. We then introduce the fluid queue model which we hope may prove a useful tool in future work to describe mobile phone battery traces.

  11. ETK's experience in the application of VRLA batteries

    Energy Technology Data Exchange (ETDEWEB)

    Klaric, I. [Ericsson Nikola Tesla d.d., Zagreb (Croatia)

    2000-07-01

    This paper presents the experience of the company Ericsson Nikola Tesla (ETK) in the application of VRLA batteries. After a short comment on conventional lead acid batteries, the paper explains the reasons for introduction of VRLA batteries and presents our experience considering their quality, performance, hydrogen evolution, safety, service life etc. Stress is put on some internal and external factors which affect useful life, such as positive grid corrosion, ambient temperature and charging voltage. ETK also gained experience in relation to adaptation of some UPS systems to VRLA batteries. The article concludes with the list of important advantages and disadvantages of VRLA batteries compared with the flooded ones. (orig.)

  12. Modeling and verification of a lithium iron phosphate battery pack system for automotive applications

    Science.gov (United States)

    Guo, Lin

    In recent years, Lithium chemistry based batteries have gained popularity with all automotive manufacturers. Thousands of battery cells are put into a battery pack to satisfy the need of power consumption of vehicles using electric traction. Managing the battery pack for hybrid and electric vehicles is a challenging problem. Despite the advantage of power density and charge retaining capabilities, Lithium ion batteries do not handle over-charge and over-discharge very well compared to other battery chemistries. Therefore, creating an accurate model to predict the battery pack behavior is essential in research and development for battery management systems. This work presents a general technique to extend accepted modeling methodologies for single cells to models for large packs. The theoretical framework is accompanied by parameter identification process based on the circuit model, and experimental verification procedures supporting the validity of this approach.

  13. WIND ENERGY – ECOSUSTAINABILITY ENGINEERING SOLUTION

    Directory of Open Access Journals (Sweden)

    Roxana Gabriela POPA

    2013-05-01

    Full Text Available Renewables provides increased safety energy supply and limiting imports of energy resources, interms of sustainable economic development. The new requirements for sustainable development have determinedthe world to put the issue of energy production methods and increase the share of energy produced fromrenewable energy. This paper presents the history of wind power, advantages and disadvantages of renewableenergy, particularly wind energy as an alternative source of energy. Windmills can be horizontal axis or verticalaxis Savonius and Darrieus rotor. Latest innovations allow operation of variable speed wind turbines, or turbinespeed control based on wind speed. Wind energy is considered one of the most sustainable choices betweenvariants future wind resources are immense.

  14. Alkaline battery operational methodology

    Energy Technology Data Exchange (ETDEWEB)

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  15. Progress in Application of CNTs in Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Li Li

    2014-01-01

    Full Text Available The lithium-ion battery is widely used in the fields of portable devices and electric cars with its superior performance and promising energy storage applications. The unique one-dimensional structure formed by the graphene layer makes carbon nanotubes possess excellent mechanical, electrical, and electrochemical properties and becomes a hot material in the research of lithium-ion battery. In this paper, the applicable research progress of carbon nanotubes in lithium-ion battery is described, and its future development is put forward from its two aspects of being not only the anodic conductive reinforcing material and the cathodic energy storage material but also the electrically conductive framework material.

  16. Secondary batteries with multivalent ions for energy storage

    Science.gov (United States)

    Xu, Chengjun; Chen, Yanyi; Shi, Shan; Li, Jia; Kang, Feiyu; Su, Dangsheng

    2015-09-01

    The use of electricity generated from clean and renewable sources, such as water, wind, or sunlight, requires efficiently distributed electrical energy storage by high-power and high-energy secondary batteries using abundant, low-cost materials in sustainable processes. American Science Policy Reports state that the next-generation “beyond-lithium” battery chemistry is one feasible solution for such goals. Here we discover new “multivalent ion” battery chemistry beyond lithium battery chemistry. Through theoretic calculation and experiment confirmation, stable thermodynamics and fast kinetics are presented during the storage of multivalent ions (Ni2+, Zn2+, Mg2+, Ca2+, Ba2+, or La3+ ions) in alpha type manganese dioxide. Apart from zinc ion battery, we further use multivalent Ni2+ ion to invent another rechargeable battery, named as nickel ion battery for the first time. The nickel ion battery generally uses an alpha type manganese dioxide cathode, an electrolyte containing Ni2+ ions, and Ni anode. The nickel ion battery delivers a high energy density (340 Wh kg-1, close to lithium ion batteries), fast charge ability (1 minute), and long cycle life (over 2200 times).

  17. PUTTING RURAL POLICY ON THE FRONT BURNER

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A "new countryside" is not a new concept. In 1956, the Chinese Government set a goal of restructuring rural areas, hut that was not specified in its work agenda. In early 2006, the Central Government released its first major document of the year, which calls the construction of a "new socialist countryside" the foremost task facing China in the 2006-10 period. Why did the government put the goal on its agenda this year?Chen Xiwen, Deputy Director of the Office of the Central Financial Work Leading Group,...

  18. Storage possibilities for enabling higher wind energy penetration

    OpenAIRE

    Swierczynski, M.; Teodorescu, Remus; Rasmunssen, C. N.; Rodríguez Cortés, Pedro; Vikelgaard, H.

    2010-01-01

    As the installed worldwide wind energy capacity increases about 30% annually and Kyoto protocol that came in force in 2005, wind penetration level in power system is considered to significantly increase in near future. Due to increased penetration and nature of the wind, especially its intermittency, partly unpredictability and variability, wind power can put the operation of power system into risk. One of the possible solutions can be an addition of energy storage into wind power plant. This...

  19. Wind Power in Georgia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    opportunity Screening eight sites identified in the Wind Atlas of Georgia (2004) based on a preliminary assessment of the wind power potential, feasibility and construction costs of each site, points to Skra as the most feasible area for pilot development of wind power. The Skra site in Gori/Kareli regions has good (above 7 m/s at 100m) and steady wind resources, minimal land-use and environmental conflicts and high accessibility. An 80m wind measurement mast has recently been put up on the site by a Georgian company. The Skra site is estimated to potentially hold up to 35 3MW turbines (90m rotor diameter) or 45 2MW turbines (80m rotor diameter). The total capacity of the wind farm would thus be 105MW or 90MW respectively. A preliminary estimation for the annual energy production of the wind farm using 2,500 full-load-hours, gives production estimations of 260 GWh for a 105MW and 225 GWh for a 90MW wind farm on the site. Investment cost of the wind farm is estimated to be roughly 1.5 MEuro/MW, which amounts to 158 MEuro for a 105MW farm and 135 MEuro for a 90 MW farm. Several stakeholders in Georgia have expressed interest in using second hand turbines in order to reduce investment costs. Most available used turbines on the market are of sizes less than 2MW and the prize vary significantly depending especially on the capacity, age and make of the turbine. Other interesting sites in Georgia to explore further with an aim for wind power development include Chorokhi, Kutaisi, Samgori and Yagludja.(auth)

  20. Experiments Study on Charge Technology of Lead-Acid Electric Vehicle Batteries

    Institute of Scientific and Technical Information of China (English)

    LI Wen; ZHANG Cheng-ning

    2008-01-01

    The basic theory of the fast charge and several charge methods are introduced. In order to heighten charge efficiency of valve-regulated lead-acid battery and shorten the charge time, five charge methods are investigated with experiments done on the Digatron BNT 400-050 test bench. Battery current, terminal voltage, capacity, energy and terminal pole temperature during battery experiment were recorded, and corresponding curves were depicted. Battery capacity-time ratio, energy efficiency and energy-temperature ratio are put forward to be the appraising criteria of lead-acid battery on electric vehicle (EV). According to the appraising criteria and the battery curves, multistage-current/negative-pulse charge method is recommended to charge lead-acid EV battery.

  1. Modeling and Optimal Control of a Redox Flow Battery

    OpenAIRE

    Wrang, Daniel; Faulwasser, Timm; Billeter, Julien; Amstutz, Véronique; Vrubel, Heron; Battistel, Alberto; Girault, Hubert; Bonvin, Dominique

    2016-01-01

    Vanadium Redox Flow Batteries (VRFB) can be used as energy storage device, for example to account for wind or solar power fluctuations. In VRFBs charge is stored in two tanks containing two different vanadium solutions. This approach decouples the storage capacity and the power supply which is dependent only on the number and size of the cells [1]. A control specific model of a VRFB is proposed, which captures the essential dynamic properties of the battery while ignoring all fluid mechanica...

  2. A metal-free organic–inorganic aqueous flow battery

    OpenAIRE

    Huskinson, Brian Thomas; Marshak, Michael; Suh, Changwon; Er, Suleyman; Gerhardt, Michael; Galvin, Cooper J.; Chen, Xudong; Aspuru-Guzik, Alan; Gordon, Roy Gerald; Aziz, Michael J.

    2013-01-01

    As the fraction of electricity generation from intermittent renewable sources—such as solar or wind—grows, the ability to store large amounts of electrical energy is of increasing importance. Solid-electrode batteries maintain discharge at peak power for far too short a time to fully regulate wind or solar power output\\(^{1, 2}\\). In contrast, flow batteries can independently scale the power (electrode area) and energy (arbitrarily large storage volume) components of the system by maintainin...

  3. REDOX FLOW BATTERIES — PERSPECTIVE MEANS OF ELECTROCHEMICAL ENERGY STORAGE

    OpenAIRE

    Sakhnenko, M.; Ved, M.; Bairachna, T.; Shepelenko, O.; Ziubanova, S.

    2013-01-01

    The article comprises the overview of redox flow battery (RFB) technology. The RFBs are best known as perspective means of electrochemical energy storage to supplement such renewable but unfortunately intermittent and poorly predictable sources of energy as wind and/or solar energy. The description of RFB concept as well as its application, advantages and shortcomings in comparison with traditional lithium-based batteries are provided. The current state of research on RFBs is discussed. The l...

  4. Single stage grid converters for battery energy storage

    OpenAIRE

    Trintis, Ionut; Munk-Nielsen, Stig; Teodorescu, Remus

    2010-01-01

    Integration of renewable energy systems in the power system network such as wind and solar is still a challenge in our days. Energy storage systems (ESS) can overcome the disadvantage of volatile generation of the renewable energy sources. This paper presents power converters for battery energy storage systems (BESS) which can interface mediumvoltage batteries to the grid. Converter topologies comparison is performed in terms of efficiency, common mode voltage and redundancy for a 6kV series ...

  5. Ionene membrane battery separator

    Science.gov (United States)

    Moacanin, J.; Tom, H. Y.

    1969-01-01

    Ionic transport characteristics of ionenes, insoluble membranes from soluble polyelectrolyte compositions, are studied for possible application in a battery separator. Effectiveness of the thin film of separator membrane essentially determines battery lifetime.

  6. Renewable energies look for mega-batteries

    International Nuclear Information System (INIS)

    As the development of wind and photovoltaic energy raises the problem of energy storage because of the intermittent character of these both energies, this article proposes an overview of trends and projects for large scale energy storage. It notably evokes the liquid metal battery project which is expected to be experimented in 2014, and should be able to store 2 MWh for 500 kW. Its operation principle is described. It is inspired by a technique used in aluminium production. It does not need any expensive and fragile separation membrane, it is modular, and it could last about ten years. Two other technologies are then evoked: a sodium-sulphur battery manufactured by NGK in Japan for massive storage, and the lithium-ion battery which is already present in most of electric vehicles. For this last one, energy storage could be an opportunity for manufacturer as the electric vehicle market is not very dynamic

  7. Modeling and intelligent charge of storage batteries for wind energy electric vehicles%风能电动汽车储能电池的建模与智能充电

    Institute of Scientific and Technical Information of China (English)

    易芳; 易灵芝

    2012-01-01

    分析了锂电池的结构特点和非线性的数学模型以及充电形式,在Matlab/Simulink中建立了锂电池的非线性仿真模型,采用模糊控制跟踪最大可接受充电电流,通过仿真,验证了锂电池的非线性模型的正确性,在最大可接受充电电流下,锂电池的输出电压和荷电状态(SOC)值缓慢上升到期望值,实现了智能充电.%The structural features of lithium battery,intelligent charge model and its nonlinear mathematic model were researched,by means of Mattab/Simulink,a nonlinear model of lithium battery was established,and a fuzzy control was applied to track the maximum charging current.The Simulink results verified the correctness of the proposed nonlinear model of lithium battery.At the acceptable maximum charging current,the output voltage and state of charge (SOC) of the battery slowly rise to expectation,and the intelligent charging is achieved.

  8. Wind Power

    OpenAIRE

    Makhalas, Kharsan Al; Alsehlli, Faisal

    2015-01-01

    This Bachelor thesis has been written at the Blekinge Institute of Technology. This thesis concentrates on the wind power and their components, also the large wind farm is studied. The electrical power is generated by using the power in wind to drive a wind turbine to produce mechanical power. This mechanical power can be converted into electrical power by using electrical induction generators. There are two types of the wind turbines, the horizontal axis and vertical axis wind turbine, where...

  9. Development of a Charge Controller Dedicated to the Small Wind Turbine System

    OpenAIRE

    Ababacar Ndiaye; Cheikh M. F. Kébé; Vincent Sambou; Papa A. Ndiaye

    2014-01-01

    In this paper, we present the development of charge and discharge controller of battery used in low power wind applications. This controller allows on the one hand protecting the battery against overcharging and deep discharge. On the other hand, it helps to protect the turbine against strong winds. It is controlled by PIC microcontroller 16F877A. This control function is performed using an algorithm that continuously compares the battery voltage to the charge and discharge thresholds, and ti...

  10. Battery systems engineering

    CERN Document Server

    Rahn, Christopher D

    2012-01-01

    A complete all-in-one reference on the important interdisciplinary topic of Battery Systems Engineering Focusing on the interdisciplinary area of battery systems engineering, this book provides the background, models, solution techniques, and systems theory that are necessary for the development of advanced battery management systems. It covers the topic from the perspective of basic electrochemistry as well as systems engineering topics and provides a basis for battery modeling for system engineering of electric and hybrid electric vehicle platforms. This original

  11. Rechargeable batteries applications handbook

    CERN Document Server

    1998-01-01

    Represents the first widely available compendium of the information needed by those design professionals responsible for using rechargeable batteries. This handbook introduces the most common forms of rechargeable batteries, including their history, the basic chemistry that governs their operation, and common design approaches. The introduction also exposes reader to common battery design terms and concepts.Two sections of the handbook provide performance information on two principal types of rechargeable batteries commonly found in consumer and industrial products: sealed nickel-cad

  12. Battery Review Board

    Science.gov (United States)

    Vaughn, Chester

    1993-01-01

    The topics covered are presented in viewgraph form: NASA Battery Review Board Charter; membership, board chronology; background; statement of problem; summary of problems with 50 AH standard Ni-Cd; activities for near term programs utilizing conventional Ni-Cd; present projects scheduled to use NASA standard Ni-Cd; other near-term NASA programs requiring secondary batteries; recommended direction for future programs; future cell/battery procurement strategy; and the NASA Battery Program.

  13. Managing coherence via put/get windows

    Science.gov (United States)

    Blumrich, Matthias A.; Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Hoenicke, Dirk; Ohmacht, Martin

    2011-01-11

    A method and apparatus for managing coherence between two processors of a two processor node of a multi-processor computer system. Generally the present invention relates to a software algorithm that simplifies and significantly speeds the management of cache coherence in a message passing parallel computer, and to hardware apparatus that assists this cache coherence algorithm. The software algorithm uses the opening and closing of put/get windows to coordinate the activated required to achieve cache coherence. The hardware apparatus may be an extension to the hardware address decode, that creates, in the physical memory address space of the node, an area of virtual memory that (a) does not actually exist, and (b) is therefore able to respond instantly to read and write requests from the processing elements.

  14. Managing coherence via put/get windows

    Science.gov (United States)

    Blumrich, Matthias A.; Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Hoenicke, Dirk; Ohmacht, Martin

    2012-02-21

    A method and apparatus for managing coherence between two processors of a two processor node of a multi-processor computer system. Generally the present invention relates to a software algorithm that simplifies and significantly speeds the management of cache coherence in a message passing parallel computer, and to hardware apparatus that assists this cache coherence algorithm. The software algorithm uses the opening and closing of put/get windows to coordinate the activated required to achieve cache coherence. The hardware apparatus may be an extension to the hardware address decode, that creates, in the physical memory address space of the node, an area of virtual memory that (a) does not actually exist, and (b) is therefore able to respond instantly to read and write requests from the processing elements.

  15. Electric Vehicle Battery Challenge

    Science.gov (United States)

    Roman, Harry T.

    2014-01-01

    A serious drawback to electric vehicles [batteries only] is the idle time needed to recharge their batteries. In this challenge, students can develop ideas and concepts for battery change-out at automotive service stations. Such a capability would extend the range of electric vehicles.

  16. Scintillator based beta batteries

    Science.gov (United States)

    Rensing, Noa M.; Tiernan, Timothy C.; Shirwadkar, Urmila; O'Dougherty, Patrick; Freed, Sara; Hawrami, Rastgo; Squillante, Michael R.

    2013-05-01

    Some long-term, remote applications do not have access to conventional harvestable energy in the form of solar radiation (or other ambient light), wind, environmental vibration, or wave motion. Radiation Monitoring Devices, Inc. (RMD) is carrying out research to address the most challenging applications that need power for many months or years and which have undependable or no access to environmental energy. Radioisotopes are an attractive candidate for this energy source, as they can offer a very high energy density combined with a long lifetime. Both large scale nuclear power plants and radiothermal generators are based on converting nuclear energy to heat, but do not scale well to small sizes. Furthermore, thermo-mechanical power plants depend on moving parts, and RTG's suffer from low efficiency. To address the need for compact nuclear power devices, RMD is developing a novel beta battery, in which the beta emissions from a radioisotope are converted to visible light in a scintillator and then the visible light is converted to electrical power in a photodiode. By incorporating 90Sr into the scintillator SrI2 and coupling the material to a wavelength-matched solar cell, we will create a scalable, compact power source capable of supplying milliwatts to several watts of power over a period of up to 30 years. We will present the latest results of radiation damage studies and materials processing development efforts, and discuss how these factors interact to set the operating life and energy density of the device.

  17. Should You Put Sunscreen on Infants? Not Usually

    Science.gov (United States)

    ... Products For Consumers Home For Consumers Consumer Updates Should You Put Sunscreen on Infants? Not Usually Share ... Your 5-month-old baby is there, too. Should you put sunscreen on her? Not usually, according ...

  18. Putting in place the LHC computing organization

    CERN Multimedia

    Akesson, T

    2001-01-01

    Following the CERN review of computing, the ball is in the able hands of the CERN directorate to translate the review recommendations into the implementation of a LHC computing organization. From the ATLAS point of view it is rather clear what is needed: A credible set-up that can get into place the total computing infrastructure to match ATLAS global computing requirements, and not just at CERN. The next six months will demonstrate if CERN is on a good track to get operational an organization that can tackle this global challenge. CERN put forward to the 15th of June Council a paper that invites comments on a LHC Computing Grid Project as part of the CERN base program. In particular, it asked for new resources, of 25+25 MCHF, for CERN to build the CERN-part of a prototype that should be matched to the need of the experiments for the forthcoming data challenges. The intention of CERN now is to discuss with member-states in July to establish a sufficient resource-base to get approval at the September Commit...

  19. 29 CFR 1926.441 - Batteries and battery charging.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Batteries and battery charging. 1926.441 Section 1926.441... for Special Equipment § 1926.441 Batteries and battery charging. (a) General requirements—(1... areas. (2) Ventilation shall be provided to ensure diffusion of the gases from the battery and...

  20. Electrochemical accumulators batteries; Accumulateurs electrochimiques batteries

    Energy Technology Data Exchange (ETDEWEB)

    Ansart, F.; Castillo, S.; Laberty- Robert, C.; Pellizon-Birelli, M. [Universite Paul Sabatier, Lab. de Chimie des Materiaux Inorganiques et Energetiques, CIRIMAT, UMR CNRS 5085, 31 - Toulouse (France)] [and others

    2000-07-01

    It is necessary to storage the electric power in batteries to join the production and the utilization. In this domain progresses are done every days in the technics and also in the available materials. These technical days present the state of the art in this domain. Many papers were presented during these two days giving the research programs and recent results on the following subjects: the lithium batteries, the electrolytes performances and behaviour, lead accumulators, economic analysis of the electrochemical storage market, the batteries applied to the transportation sector and the telephones. (A.L.B.)

  1. Electric-vehicle batteries

    Science.gov (United States)

    Oman, Henry; Gross, Sid

    1995-02-01

    Electric vehicles that can't reach trolley wires need batteries. In the early 1900's electric cars disappeared when owners found that replacing the car's worn-out lead-acid battery costs more than a new gasoline-powered car. Most of today's electric cars are still propelled by lead-acid batteries. General Motors in their prototype Impact, for example, used starting-lighting-ignition batteries, which deliver lots of power for demonstrations, but have a life of less than 100 deep discharges. Now promising alternative technology has challenged the world-wide lead miners, refiners, and battery makers into forming a consortium that sponsors research into making better lead-acid batteries. Horizon's new bipolar battery delivered 50 watt-hours per kg (Wh/kg), compared with 20 for ordinary transport-vehicle batteries. The alternatives are delivering from 80 Wh/kg (nickel-metal hydride) up to 200 Wh/kg (zinc-bromine). A Fiat Panda traveled 260 km on a single charge of its zinc-bromine battery. A German 3.5-ton postal truck traveled 300 km with a single charge in its 650-kg (146 Wh/kg) zinc-air battery. Its top speed was 110 km per hour.

  2. A Desalination Battery

    KAUST Repository

    Pasta, Mauro

    2012-02-08

    Water desalination is an important approach to provide fresh water around the world, although its high energy consumption, and thus high cost, call for new, efficient technology. Here, we demonstrate the novel concept of a "desalination battery", which operates by performing cycles in reverse on our previously reported mixing entropy battery. Rather than generating electricity from salinity differences, as in mixing entropy batteries, desalination batteries use an electrical energy input to extract sodium and chloride ions from seawater and to generate fresh water. The desalination battery is comprised by a Na 2-xMn 5O 10 nanorod positive electrode and Ag/AgCl negative electrode. Here, we demonstrate an energy consumption of 0.29 Wh l -1 for the removal of 25% salt using this novel desalination battery, which is promising when compared to reverse osmosis (∼ 0.2 Wh l -1), the most efficient technique presently available. © 2012 American Chemical Society.

  3. Batteries for Vehicular Applications

    Science.gov (United States)

    Srinivasan, Venkat

    2008-09-01

    This paper will describe battery technology as it relates to use in vehicular applications, including hybrid-electric vehicles (HEV), electric vehicles (EV), and plug-in-hybrid-electric vehicles (PHEV). The present status of rechargeable batteries, the requirements for each application, and the scientific stumbling blocks that stop batteries from being commercialized for these applications will be discussed. Focus will be on the class of batteries referred to as lithium batteries and the various chemistries that are the most promising for these applications. While Li-ion is expected in HEVs in the very near future, use in PHEVs are expected to be more gradual and dependent on solving the life, safety, and cost challenges. Finally, batteries for EVs remain problematic because of the range and charging-time issues.

  4. Lithium ion battery production

    International Nuclear Information System (INIS)

    Highlights: ► Sustainable battery manufacturing focus on more efficient methods and recycling. ► Temperature control and battery management system increase battery lifetime. ► Focus on increasing battery performance at low- and high temperatures. ► Production capacity of 100 MWh equals the need of 3000 full-electric cars. - Abstract: Recently, new materials and chemistry for lithium ion batteries have been developed. There is a great emphasis on electrification in the transport sector replacing part of motor powered engines with battery powered applications. There are plans both to increase energy efficiency and to reduce the overall need for consumption of non-renewable liquid fuels. Even more significant applications are dependent on energy storage. Materials needed for battery applications require specially made high quality products. Diminishing amounts of easily minable metal ores increase the consumption of separation and purification energy and chemicals. The metals are likely to be increasingly difficult to process. Iron, manganese, lead, zinc, lithium, aluminium, and nickel are still relatively abundant but many metals like cobalt and rare earths are becoming limited resources more rapidly. The global capacity of industrial-scale production of larger lithium ion battery cells may become a limiting factor in the near future if plans for even partial electrification of vehicles or energy storage visions are realized. The energy capacity needed is huge and one has to be reminded that in terms of cars for example production of 100 MWh equals the need of 3000 full-electric cars. Consequently annual production capacity of 106 cars requires 100 factories each with a 300 MWh capacity. Present day lithium ion batteries have limitations but significant improvements have been achieved recently . The main challenges of lithium ion batteries are related to material deterioration, operating temperatures, energy and power output, and lifetime. Increased lifetime

  5. Polyoxometalate flow battery

    Science.gov (United States)

    Anderson, Travis M.; Pratt, Harry D.

    2016-03-15

    Flow batteries including an electrolyte of a polyoxometalate material are disclosed herein. In a general embodiment, the flow battery includes an electrochemical cell including an anode portion, a cathode portion and a separator disposed between the anode portion and the cathode portion. Each of the anode portion and the cathode portion comprises a polyoxometalate material. The flow battery further includes an anode electrode disposed in the anode portion and a cathode electrode disposed in the cathode portion.

  6. Batteries in PV systems

    OpenAIRE

    Mohedano Martínez, Javier Bernabé

    2011-01-01

    This report presents fundamentals of battery technology and charge control strategies commonly used in stand-alone photovoltaic (PV) Systems,with an introduction on the PV Systems itself. This project is a compilation of information from several sources, including research reports and data from component manufacturers. Comparisons are given for various battery technologies, and considerations for battery subsystem design, auxiliary systems, maintenance and safety are discussed. Daily operatio...

  7. Lithium battery management system

    Science.gov (United States)

    Dougherty, Thomas J.

    2012-05-08

    Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

  8. Nanotubes for Battery Applications

    OpenAIRE

    Nordlinder, Sara

    2005-01-01

    Nanomaterials have attracted great interest in recent years, and are now also being considered for battery applications. Reducing the particle size of some electrode materials can increase battery performance considerably, especially with regard to capacity, power and rate capability. This thesis presents a study focused on the performance of such a material, vanadium oxide nanotubes, as cathode material for rechargeable lithium batteries. These nanotubes were synthesized by a sol-gel process...

  9. An Elliptical Wind Field Model of Typhoons

    Institute of Scientific and Technical Information of China (English)

    WANG Xiuqin; QIAN Chengchun; WANG Wei; YAN Tong

    2004-01-01

    An elliptical wind field model of typhoons is put forward based on the characteristics of the typhoon wind fields occurring in the Yellow Sea and Bohai Sea. By contrasting it with the circular typhoon wind field model, it is found that the elliptical model can adequately represent the real wind field and trace the process of a typhoon storm surge. The numerically simulated results of storm surges by using the elliptical model are in good agreement with the observations and markedly better than those by using the circular model.

  10. Lead-acid battery use in the development of renewable energy systems in China

    International Nuclear Information System (INIS)

    Policies and laws encouraging the development of renewable energy systems in China have led to rapid progress in the past 2 years, particularly in the solar cell (photovoltaic) industry. The development of the photovoltaic (PV) and wind power markets in China is outlined in this paper, with emphasis on the utilization of lead-acid batteries. The storage battery is a key component of PV/wind power systems, yet many deficiencies remain to be resolved. Some experimental results are presented, along with examples of potential applications of valve regulated lead-acid (VRLA) batteries, both the absorbed glass mat (AGM) and gelled types. (author)

  11. Lead-acid battery use in the development of renewable energy systems in China

    Science.gov (United States)

    Chang, Yu; Mao, Xianxian; Zhao, Yanfang; Feng, Shaoli; Chen, Hongyu; Finlow, David

    Policies and laws encouraging the development of renewable energy systems in China have led to rapid progress in the past 2 years, particularly in the solar cell (photovoltaic) industry. The development of the photovoltaic (PV) and wind power markets in China is outlined in this paper, with emphasis on the utilization of lead-acid batteries. The storage battery is a key component of PV/wind power systems, yet many deficiencies remain to be resolved. Some experimental results are presented, along with examples of potential applications of valve regulated lead-acid (VRLA) batteries, both the absorbed glass mat (AGM) and gelled types.

  12. An Efficient Analog Maximum Power Point Tracking (MPPT Regulator for the Parallel Hybrid Photo Voltaic – Diesel and Wind Energy Systems

    Directory of Open Access Journals (Sweden)

    Anto Joseph

    2013-10-01

    Full Text Available In this research article we have proposed a new analog MPPT regulator with the high efficiency DC-DC converter for the photo voltaic and high efficient z- source converter for the variable speed wind energy systems. The both renewable energy output power is connected in parallel with the diesel generator and whole system provide the efficient hybrid energy systems to given the electrical power to the external grid. The MPPT regulator provides the control signal for the DC-DC converter and tracks the maximum power from the solar panel. In which here a logic truth table based perturbation and observation (P and O algorithm used for the maximum power point tracking (MPPT and hybrid bridge resonant DC-DC converter is giving the constant output voltage equal to the DC bus voltage by changing the proper modes. The parallel configuration is selected for the energy transformation from the solar panel, wind power and diesel systems to the load. The design includes a bidirectional inverter along with a dc-dc converter capable of interfacing a battery bank with the AC bus. The goals of the project included the implementation of two modes of operation: a battery discharge mode where current is being fed into the AC bus and a battery charging mode in which current is pulled from the grid and put into the batteries. A secondary goal of the design was to ensure that the current being injected into AC bus was at or near unity power factor by utilizing a hysteresis current control method.

  13. Battery Thermal Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Keyser, Matthew; Saxon, Aron; Powell, Mitchell; Shi, Ying

    2016-06-07

    This poster shows the progress in battery thermal characterization over the previous year. NREL collaborated with U.S. DRIVE and USABC battery developers to obtain thermal properties of their batteries, obtained heat capacity and heat generation of cells under various power profiles, obtained thermal images of the cells under various drive cycles, and used the measured results to validate thermal models. Thermal properties are used for the thermal analysis and design of improved battery thermal management systems to support achieve life and performance targets.

  14. Database on wind characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Hojstrup, J. [Riso National Lab., Roskilde (Denmark); Hansen, K.S. [Fluid Mechanics Section, Lyngby (Denmark)

    1996-12-31

    Wind data with high temporal resolution exist from a variety of sites, and is in demand by windturbine designers and wind engineers. Unfortunately it has always been a problem to gain access to a suitable amount of this data, because they are available from many different sources in different formats and with very different levels of documentation and quality control. We are now in the process of gaining access to a large amount of this type of data, checking the quality of the data and putting the data at the disposition of the windturbine designer community through easy Internet access. Online search will use summary statistics calculated for each series to help in the selection of data. The selected data can then be downloaded directly to the user. 3 figs.

  15. Database on wind characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Hoejstrup, J. [Risoe National Lab., Roskilde (Denmark). Dept. of Meterology and Wind Energy; Hansen, K.S. [DTU, Lyngby (Denmark). Fluid Mechanics Section

    1996-12-31

    Wind data with high temporal resolution exist from a variety of sites, and have been in demand by windturbine designers and wind engineers. Unfortunately it has always been a problem to gain access to a suitable amount of this data, because they are available from many different sources in different formats and with very different levels of documentation and quality control. We are in the process of gaining access to a large amount of this data, checking the quality of the data and putting the data at the disposition of the windturbine designer community through easy Internet access. Online search will use summary statistics calculated for each series to help in the selection of data. The selected data can then be downloaded directly to the user. (Author)

  16. Electric vehicle battery research and development

    Science.gov (United States)

    Schwartz, H. J.

    1973-01-01

    High energy battery technology for electric vehicles is reviewed. The state-of-the-art in conventional batteries, metal-gas batteries, alkali-metal high temperature batteries, and organic electrolyte batteries is reported.

  17. Wind energy

    International Nuclear Information System (INIS)

    Wind is not only free, it is inexhaustible. Wind energy has come a very long way since the prototypes of just 20 years ago. Today's wind turbines are state-of-the-art technology - modular and quick to install anywhere where there is sufficient wind potential to provide secure, centralised or distributed generation. It is a global phenomenon, the world's fastest growing energy sector, a clean and effective modern technology that completely avoids pollution and thus reducing the 'green house' effect. (Original)

  18. Neutrons put the brakes on stress

    International Nuclear Information System (INIS)

    Don't you hate it when you're driving along, put your foot on the brake and feel that juddering feeling through the pedal? It happens when the disc brake rotors become distorted through normal use of the brakes. To the car manufacturing industry it's called runout, and is a multimillion dollar warranty problem each year. Not to mention a pain for drivers! Dr Maurice Ripley and Dr Oliver Kirstein from the Australian Nuclear Science and Technology Organisation (ANSTO) wanted to figure out whether runout is caused by residual stresses from the manufacturing process or by normal use of the brake, so they decided to test and compare a used and new brake disc. 'To picture what metal looks like at the atomic level, imagine spheres stacked evenly around each other in all three dimensions,' explained Kirstein. The spheres represent atoms in the metal and the structure is called a metallic lattice.' We're familiar with the idea that metal expands when it gets hot - the atoms get excited with the heat and have the energy to move further away from each other, so spaces between the atoms in the lattice get larger. 'When parts of the metal are heated up and cool down at different rates, you may end up with a distorted lattice with some parts expanded and others not,' explained Kirstein. 'This unevenness in the lattice creates residual stress.' While a bunch of methods were available to test the discs, Kirstein and Ripley picked neutrons from ANSTO's HIFAR (High Flux Australian Reactor) as their tool of choice. 'Neutrons allow us to look at the inside of the metal without damaging it,' said Kirstein. 'They can penetrate through the iron, so we were able to take measurements at a series of points at different depths through the brake disc.' Word around the car industry is that when residual stresses are relaxed through heating of the brake disc during use, the discs could potentially distort, causing the runout and that juddering feeling. But everyone was clueless as to what

  19. Wind turbine

    International Nuclear Information System (INIS)

    The title invention concerns a wind turbine with a rotor, consisting of a number of blades, each with a front edge and an irregular shaped (sawtooth) back edge. This wind turbine aims at reducing the noise pollution of wind turbines. 1 fig

  20. Probabilistic performance assessment of autonomous solar-wind energy conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    Karaki, S.H.; Chedid, R.B.; Ramadan, R.

    1999-09-01

    This paper describes the development of a general probabilistic model of an autonomous solar-wind energy conversion system (SWECS) composed of several wind turbines (wind farm), several photovoltaic (PV) models (solar park), and a battery storage feeding a load. The model takes into consideration outages due to the primary energy fluctuations and hardware failure. It allows the simulation of wind farms and solar parks containing either identical or different types of wind turbines and PV modules with the load being fed from either the renewable sources, or the battery storage, or both. A methodology is also presented to determine an upper limit on the size of the battery storage required to satisfy a given load profile taking into consideration the charging/discharging of the batteries.

  1. Batteries: Charging ahead rationally

    Science.gov (United States)

    Freunberger, Stefan A.

    2016-06-01

    Redox mediators facilitate the oxidation of the highly insulating discharge product in metal–oxygen batteries during recharge and offer opportunities to achieve high reversible capacities. Now a design principle for selecting redox mediators that can recharge the batteries more efficiently is suggested.

  2. Hydrophobic, Porous Battery Boxes

    Science.gov (United States)

    Bragg, Bobby J.; Casey, John E., Jr.

    1995-01-01

    Boxes made of porous, hydrophobic polymers developed to contain aqueous potassium hydroxide electrolyte solutions of zinc/air batteries while allowing air to diffuse in as needed for operation. Used on other types of batteries for in-cabin use in which electrolytes aqueous and from which gases generated during operation must be vented without allowing electrolytes to leak out.

  3. Battery energy storage system

    NARCIS (Netherlands)

    Tol, C.S.P.; Evenblij, B.H.

    2009-01-01

    The ability to store electrical energy adds several interesting features to a ships distribution network, as silent power, peak shaving and a ride through in case of generator failure. Modern intrinsically safe Li-ion batteries bring these within reach. For this modern lithium battery applications t

  4. Isotope heated thermal batteries

    International Nuclear Information System (INIS)

    A deferred action thermal battery is described that includes a quantity of radioactive isotope normally positioned so that only a small part of the thermal energy generated by the isotope is received by the battery, but adapted, when the battery is rendered active, to be moved automatically to a position where a large part of the thermal energy is received. The battery may comprise a chamber containing its cells and a second chamber part of which is remote from the cells for normal storage of the isotope and part of which is adjacent to the cells; the isotope is moved to the latter part when the battery is activated. The cell chamber is preferably toroidal and surrounds the second portion of the isotope chamber. The isotope may be contained in a carriage held by a retaining means adapted for release when the battery is activated, resilient means then moving the carriage to the active position. The retaining means may be a wire that disintegrates on the passage of electric current, the current also igniting a combustible composition to activate the battery. The object is to provide thermal batteries having an extended life. (U.K.)

  5. Computing Battery Lifetime Distributions

    NARCIS (Netherlands)

    Cloth, Lucia; Jongerden, Marijn R.; Haverkort, Boudewijn R.

    2007-01-01

    The usage of mobile devices like cell phones, navigation systems, or laptop computers, is limited by the lifetime of the included batteries. This lifetime depends naturally on the rate at which energy is consumed, however, it also depends on the usage pattern of the battery. Continuous drawing of a

  6. Wind Structure and Wind Loading

    DEFF Research Database (Denmark)

    Brorsen, Michael

    The purpose of this note is to provide a short description of wind, i.e. of the flow in the atmosphere of the Earth and the loading caused by wind on structures. The description comprises: causes to the generation of windhe interaction between wind and the surface of the Earthhe stochastic nature...

  7. Optimal management of stationary lithium-ion battery system in electricity distribution grids

    Science.gov (United States)

    Purvins, Arturs; Sumner, Mark

    2013-11-01

    The present article proposes an optimal battery system management model in distribution grids for stationary applications. The main purpose of the management model is to maximise the utilisation of distributed renewable energy resources in distribution grids, preventing situations of reverse power flow in the distribution transformer. Secondly, battery management ensures efficient battery utilisation: charging at off-peak prices and discharging at peak prices when possible. This gives the battery system a shorter payback time. Management of the system requires predictions of residual distribution grid demand (i.e. demand minus renewable energy generation) and electricity price curves (e.g. for 24 h in advance). Results of a hypothetical study in Great Britain in 2020 show that the battery can contribute significantly to storing renewable energy surplus in distribution grids while being highly utilised. In a distribution grid with 25 households and an installed 8.9 kW wind turbine, a battery system with rated power of 8.9 kW and battery capacity of 100 kWh can store 7 MWh of 8 MWh wind energy surplus annually. Annual battery utilisation reaches 235 cycles in per unit values, where one unit is a full charge-depleting cycle depth of a new battery (80% of 100 kWh).

  8. Battery Pack Thermal Design

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad

    2016-06-14

    This presentation describes the thermal design of battery packs at the National Renewable Energy Laboratory. A battery thermal management system essential for xEVs for both normal operation during daily driving (achieving life and performance) and off-normal operation during abuse conditions (achieving safety). The battery thermal management system needs to be optimized with the right tools for the lowest cost. Experimental tools such as NREL's isothermal battery calorimeter, thermal imaging, and heat transfer setups are needed. Thermal models and computer-aided engineering tools are useful for robust designs. During abuse conditions, designs should prevent cell-to-cell propagation in a module/pack (i.e., keep the fire small and manageable). NREL's battery ISC device can be used for evaluating the robustness of a module/pack to cell-to-cell propagation.

  9. Wind power

    International Nuclear Information System (INIS)

    This book is a translation of the edition published in the USA under the title of ''wind power: renewable energy for home, farm and business''. In the wake of mass blackouts and energy crises, wind power remains a largely untapped resource of renewable energy. It is a booming worldwide industry whose technology, under the collective wing of aficionados like author Paul Gipe, is coming of age. Wind Power guides us through the emergent, sometimes daunting discourse on wind technology, giving frank explanations of how to use wind technology wisely and sound advice on how to avoid common mistakes. Since the mid-1970's, Paul Gipe has played a part in nearly every aspect of wind energy development from installing small turbines to promoting wind energy worldwide. As an American proponent of renewable energy, Gipe has earned the acclaim and respect of European energy specialists for years, but his arguments have often fallen on deaf ears at home. Today, the topic of wind power is cropping up everywhere from the beaches of Cape Cod to the Oregon-Washington border, and one wind turbine is capable of producing enough electricity per year to run 200 average American households. Now, Paul Gipe is back to shed light on this increasingly important energy source with a revised edition of Wind Power. Over the course of his career, Paul Gipe has been a proponent, participant, observer, and critic of the wind industry. His experience with wind has given rise to two previous books on the subject, Wind Energy Basics and Wind Power for Home and Business, which have sold over 50,000 copies. Wind Power for Home and Business has become a staple for both homeowners and professionals interested in the subject, and now, with energy prices soaring, interest in wind power is hitting an all-time high. With chapters on output and economics, Wind Power discloses how much you can expect from each method of wind technology, both in terms of energy and financial savings. The book updated models

  10. Nickel-Hydrogen and Lithium Ion Space Batteries

    Science.gov (United States)

    Reid, Robert O., II

    2004-01-01

    The tasks of the Electrochemistry Branch of NASA Glenn Research Center are to improve and develop high energy density and rechargeable, life-long batteries. It is with these batteries that people across the globe are able to power their cell phones, laptop computers, and cameras. Here, at NASA Glenn Research Center, the engineers and scientists of the Electrochemistry branch are leading the way in the development of more powerful, long life batteries that can be used to power space shuttles and satellites. As of now, the cutting edge research and development is being done on nickel-hydrogen batteries and lithium ion batteries. Presently, nickel-hydrogen batteries are common types of batteries that are used to power satellites, space stations, and space shuttles, while lithium batteries are mainly used to power smaller appliances such as portable computers and phones. However, the Electrochemistry Branch at NASA Glenn Research Center is focusing more on the development of lithium ion batteries for deep space use. Because of the limitless possibilities, lithium ion batteries can revolutionize the space industry for the better. When compared to nickel-hydrogen batteries, lithium ion batteries possess more advantages than its counterpart. Lithium ion batteries are much smaller than nickel-hydrogen batteries and also put out more power. They are more energy efficient and operate with much more power at a reduced weight than its counterpart. Lithium ion cells are also cheaper to make, possess flexibility that allow for different design modifications. With those statistics in hand, the Electrochemistry Branch of NASA Glenn has decided to shut down its Nickel-Hydrogen testing for lithium ion battery development. Also, the blackout in the summer of 2003 eliminated vital test data, which played a part in shutting down the program. from the nickel-hydrogen batteries and compare it to past data. My other responsibilities include superheating the electrolyte that is used in the

  11. 2014 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Daghouth, Naim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hoen, Ben [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mills, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hamachi LaCommare, Kristina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Millstein, Dev [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hansen, Dana [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Porter, Kevin [Exeter Associates, Columbia, MD (United States); Widiss, Rebecca [Exeter Associates, Columbia, MD (United States); Buckley, Michael [Exeter Associates, Columbia, MD (United States); Oteri, Frank [National Renewable Energy Lab. (NREL), Golden, CO (United States); Smith, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-08-06

    Wind power capacity additions in the United States rebounded in 2014, and continued growth through 2016 is anticipated. Recent and projected near-term growth is supported by the industry’s primary federal incentive—the production tax credit (PTC)—which is available for projects that began construction by the end of 2014. Wind additions are also being driven by recent improvements in the cost and performance of wind power technologies, which have resulted in the lowest power sales prices ever seen in the U.S. wind sector. Growing corporate demand for wind energy and state-level policies play important roles as well. Expectations for continued technological advancements and cost reductions may further boost future growth. At the same time, the prospects for growth beyond 2016 are uncertain. The PTC has expired, and its renewal remains in question. Continued low natural gas prices, modest electricity demand growth, and limited near-term demand from state renewables portfolio standards (RPS) have also put a damper on growth expectations. These trends, in combination with increasingly global supply chains, have limited the growth of domestic manufacturing of wind equipment. What they mean for wind power additions through the end of the decade and beyond will be dictated in part by future natural gas prices, fossil plant retirements, and policy decisions.

  12. Behavior of bats at wind turbines

    OpenAIRE

    Cryan, Paul M.; Gorresen, P. Marcos; Hein, Cris D.; Schirmacher, Michael R.; Diehl, Robert H.; Huso, Manuela M.; Hayman, David T. S.; Fricker, Paul D.; Bonaccorso, Frank J.; Johnson, Douglas H.; Heist, Kevin; Dalton, David C

    2014-01-01

    Bats are dying in unprecedented numbers at wind turbines, but causes of their susceptibility are unknown. Fatalities peak during low-wind conditions in late summer and autumn and primarily involve species that evolved to roost in trees. Common behaviors of “tree bats” might put them at risk, yet the difficulty of observing high-flying nocturnal animals has limited our understanding of their behaviors around tall structures. We used thermal surveillance cameras for, to our knowledge, the first...

  13. WIND ENERGY – ECOSUSTAINABILITY ENGINEERING SOLUTION

    OpenAIRE

    Roxana Gabriela POPA; Maria CALINOIU

    2013-01-01

    Renewables provides increased safety energy supply and limiting imports of energy resources, interms of sustainable economic development. The new requirements for sustainable development have determinedthe world to put the issue of energy production methods and increase the share of energy produced fromrenewable energy. This paper presents the history of wind power, advantages and disadvantages of renewableenergy, particularly wind energy as an alternative source of energy. Windmills can be h...

  14. Optimal Sizing ofStand-Alone Photovoltaic Energy Systems and Battery Storage Combination for Armidale NSW, Australia

    OpenAIRE

    Yasser Maklad

    2014-01-01

    Intermittency is an apparent characteristic of some renewable energy sources and this specifically applies to solar, wind and tidal renewable sources. Thus, battery storage is a real important element of any photo voltaic (PV) energy generation systems. As well, sizing of battery storage plays a vital role in achieving an optimal operation of such a system. Emphasis is greatly required to proper sizing of battery storage. In this context, daily global solar radiation data, for (14) years duri...

  15. Mathematical Storage-Battery Models

    Science.gov (United States)

    Chapman, C. P.; Aston, M.

    1985-01-01

    Empirical formula represents performance of electrical storage batteries. Formula covers many battery types and includes numerous coefficients adjusted to fit peculiarities of each type. Battery and load parameters taken into account include power density in battery, discharge time, and electrolyte temperature. Applications include electric-vehicle "fuel" gages and powerline load leveling.

  16. Battery Energy Storage Systems to Mitigate the Variability of Photovoltaic Power Generation

    Science.gov (United States)

    Gurganus, Heath Alan

    Methods of generating renewable energy such as through solar photovoltaic (PV) cells and wind turbines offer great promise in terms of a reduced carbon footprint and overall impact on the environment. However, these methods also share the attribute of being highly stochastic, meaning they are variable in such a way that is difficult to forecast with sufficient accuracy. While solar power currently constitutes a small amount of generating potential in most regions, the cost of photovoltaics continues to decline and a trend has emerged to build larger PV plants than was once feasible. This has brought the matter of increased variability to the forefront of research in the industry. Energy storage has been proposed as a means of mitigating this increased variability --- and thus reducing the need to utilize traditional spinning reserves --- as well as offering auxiliary grid services such as peak-shifting and frequency control. This thesis addresses the feasibility of using electrochemical storage methods (i.e. batteries) to decrease the ramp rates of PV power plants. By building a simulation of a grid-connected PV array and a typical Battery Energy Storage System (BESS) in the NetLogo simulation environment, I have created a parameterized tool that can be tailored to describe almost any potential PV setup. This thesis describes the design and function of this model, and makes a case for the accuracy of its measurements by comparing its simulated output to that of well-documented real world sites. Finally, a set of recommendations for the design and operational parameters of such a system are then put forth based on the results of several experiments performed using this model.

  17. 49 CFR 173.159 - Batteries, wet.

    Science.gov (United States)

    2010-10-01

    ... Batteries, wet. (a) Electric storage batteries, containing electrolyte acid or alkaline corrosive battery... (h) of this section and in §§ 173.220 and 173.222; and any battery or battery-powered device must be..., but not limited to: (i) Packaging each battery or each battery-powered device when practicable,...

  18. Probabilistic analysis of extreme wind events

    Energy Technology Data Exchange (ETDEWEB)

    Chaviaropoulos, P.K. [Center for Renewable Energy Sources (CRES), Pikermi Attikis (Greece)

    1997-12-31

    A vital task in wind engineering and meterology is to understand, measure, analyse and forecast extreme wind conditions, due to their significant effects on human activities and installations like buildings, bridges or wind turbines. The latest version of the IEC standard (1996) pays particular attention to the extreme wind events that have to be taken into account when designing or certifying a wind generator. Actually, the extreme wind events within a 50 year period are those which determine the ``static`` design of most of the wind turbine components. The extremes which are important for the safety of wind generators are those associated with the so-called ``survival wind speed``, the extreme operating gusts and the extreme wind direction changes. A probabilistic approach for the analysis of these events is proposed in this paper. Emphasis is put on establishing the relation between extreme values and physically meaningful ``site calibration`` parameters, like probability distribution of the annual wind speed, turbulence intensity and power spectra properties. (Author)

  19. Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Yeoman, J.C. Jr.

    1978-12-01

    This evaluation of wind turbines is part of a series of Technology Evaluations of possible components and subsystems of community energy systems. Wind turbines, ranging in size from 200 W to 10 MW, are discussed as candidates for prime movers in community systems. Estimates of performance characteristics and cost as a function of rated capacity and rated wind speed are presented. Data concerning material requirements, environmental effects, and operating procedures also are given and are represented empirically to aid computer simulation.

  20. Battery Technology Stores Clean Energy

    Science.gov (United States)

    2008-01-01

    Headquartered in Fremont, California, Deeya Energy Inc. is now bringing its flow batteries to commercial customers around the world after working with former Marshall Space Flight Center scientist, Lawrence Thaller. Deeya's liquid-cell batteries have higher power capability than Thaller's original design, are less expensive than lead-acid batteries, are a clean energy alternative, and are 10 to 20 times less expensive than nickel-metal hydride batteries, lithium-ion batteries, and fuel cell options.

  1. Nonlinear Dynamics Traction Battery Modeling

    OpenAIRE

    Szumanowski, Antoni

    2010-01-01

    The assumed method and effective model are very accurate according to error checking results of the NiMH and Li-Ion batteries. The modeling method is valid for different types of batteries. The model can be conveniently used for vehicle simulation because the battery model is accurately approximated by mathematical equations. The model provides the methodology for designing a battery management system and calculating the SOC. The influence of temperature on battery performance is analyzed acc...

  2. Bipolar battery construction

    Science.gov (United States)

    Rippel, Wally E. (Inventor); Edwards, Dean B. (Inventor)

    1981-01-01

    A lightweight, bipolar battery construction for lead acid batteries in which a plurality of thin, rigid, biplates each comprise a graphite fiber thermoplastic composition in conductive relation to lead stripes plated on opposite flat surfaces of the plates, and wherein a plurality of nonconductive thermoplastic separator plates support resilient yieldable porous glass mats in which active material is carried, the biplates and separator plates with active material being contained and maintained in stacked assembly by axial compression of the stacked assembly. A method of assembling such a bipolar battery construction.

  3. "Buried-Anode" Technology Leads to Advanced Lithium Batteries (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2011-02-01

    A technology developed at the National Renewable Energy Laboratory has sparked a start-up company that has attracted funding from the Advanced Projects Research Agency-Energy (ARPA-E). Planar Energy, Inc. has licensed NREL's "buried-anode" technology and put it to work in solid-state lithium batteries. The company claims its large-format batteries can achieve triple the performance of today's lithium-ion batteries at half the cost, and if so, they could provide a significant boost to the emerging market for electric and plug-in hybrid vehicles.

  4. Wind Energy

    Energy Technology Data Exchange (ETDEWEB)

    Ganley, Jason; Zhang, Jie; Hodge, Bri-Mathias

    2016-03-15

    Wind energy is a variable and uncertain renewable resource that has long been used to produce mechanical work, and has developed into a large producer of global electricity needs. As renewable sources of energy and feedstocks become more important globally to produce sustainable products, many different processes have started adopting wind power as an energy source. Many times this is through a conversion to hydrogen through electrolysis that allows for a more continuous process input. Other important pathways include methanol and ammonia. As the demand for sustainable products and production pathways increases, and wind power capital costs decrease, the role of wind power in chemical and energy production seems poised to increase significantly.

  5. Wind power impacts and electricity storage - a time scale perspective

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Meibom, Peter

    2012-01-01

    Integrating large amounts of wind power in energy systems poses balancing challenges due to the variable and only partly predictable nature of wind. The challenges cover different time scales from intra-hour, intra-day/day-ahead to several days and seasonal level. Along with flexible electricity...... technologies – batteries, flow batteries, compressed air energy storage, electrolysis combined with fuel cells, and electric vehicles – are moreover categorised with respect to the time scales at which they are suited to support wind power integration. While all of these technologies are assessed suitable for...... demand options, various electricity storage technologies are being discussed as candidates for contributing to large-scale wind power integration and these also differ in terms of the time scales at which they can operate. In this paper, using the case of Western Denmark in 2025 with an expected 57% wind...

  6. A Control Strategy for Battery Energy Storage System to Level Wind Power Output%平抑风电功率的电池储能系统控制策略

    Institute of Scientific and Technical Information of China (English)

    李蓓; 郭剑波

    2012-01-01

      为缩小0~24h 时间尺度内的风电功率波动幅度,抑制风电输出较大峰谷差,提高风电可靠性,改善电网调峰能力,基于风电功率短期预测技术,提出了平抑风电功率波动的全钒电池储能系统(Vanadium redox flow battery energy storage system,VRB-ESS)运行控制策略,并给出控制算法流程。应用上述储能控制方法,以典型风电场为例,将风电输出功率波动限设置为10%进行风储联合仿真分析,结果证明该控制策略在风电部分削峰填谷方面有效、可行。

  7. Modelling and controlling of vanadium redox flow battery to smooth wind power fluctuations%钒液流储能电池建模及其平抑风电波动研究

    Institute of Scientific and Technical Information of China (English)

    李国杰; 唐志伟; 聂宏展; 谭靖

    2010-01-01

    由于风电的随机波动性,大量风电的并网给电网带来了影响,利用储能系统平抑风功率波动的研究变得愈加重要.以钒液流电池(Vanadium Redox Flow Battery,VRFB)为储能元件研究其风电平抑控制策略,建立反映VRFB充放电特性的仿真模型.以钒氧化还原液流电池电化学交流阻抗等效电路为基础,对等效电路重要参数的变化规律做了分析与简化,建立了反映钒液流电池充放电特性的数学模型.以AC/DC变换器的功率解耦控制为基础,建立了基于VRFB储能系统的平抑风电波动控制策略.以某风场的实测风速数据和1.5 MW双馈电机为例,利用PSCAD/EMTDC仿真软件,验证了控制策略的有效性和可行性.

  8. Parallel flow diffusion battery

    Science.gov (United States)

    Yeh, Hsu-Chi; Cheng, Yung-Sung

    1984-08-07

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  9. Thermal battery degradation mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Missert, Nancy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brunke, Lyle Brent [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Diffuse reflectance IR spectroscopy (DRIFTS) was used to investigate the effect of accelerated aging on LiSi based anodes in simulated MC3816 batteries. DRIFTS spectra showed that the oxygen, carbonate, hydroxide and sulfur content of the anodes changes with aging times and temperatures, but not in a monotonic fashion that could be correlated to phase evolution. Bands associated with sulfur species were only observed in anodes taken from batteries aged in wet environments, providing further evidence for a reaction pathway facilitated by H2S transport from the cathode, through the separator, to the anode. Loss of battery capacity with accelerated aging in wet environments was correlated to loss of FeS2 in the catholyte pellets, suggesting that the major contribution to battery performance degradation results from loss of active cathode material.

  10. SIMWEST: A simulation model for wind and photovoltaic energy storage systems (CDC user's manual), volume 1

    Science.gov (United States)

    Warren, A. W.; Esinger, A. W.

    1979-01-01

    Procedures are given for using the SIMWEST program on CDC 6000 series computers. This expanded software package includes wind and/or photovoltaic systems utilizing any combination of five types of storage (pumped hydro, battery, thermal, flywheel, and pneumatic).

  11. Battery packaging - Technology review

    International Nuclear Information System (INIS)

    This paper gives a brief overview of battery packaging concepts, their specific advantages and drawbacks, as well as the importance of packaging for performance and cost. Production processes, scaling and automation are discussed in detail to reveal opportunities for cost reduction. Module standardization as an additional path to drive down cost is introduced. A comparison to electronics and photovoltaics production shows 'lessons learned' in those related industries and how they can accelerate learning curves in battery production

  12. Active control: Wind turbine model

    DEFF Research Database (Denmark)

    Bindner, H.

    1999-01-01

    This report is a part of the reporting of the work done in the project 'Active Control of Wind Turbines'. This project aim is to develop a simulation model for design of control systems for turbines with pitch control and to use that model to designcontrollers. This report describes the model...... developed for controller design and analysis. Emphasis has been put on establishment of simple models describing the dynamic behavior of the wind turbine in adequate details for controller design. This hasbeen done with extensive use of measurements as the basis for selection of model complexity and model....... The models are all formulated as linear differential equations. The models are validated throughcomparisons with measurements performed on a Vestas WD 34 400 kW wind turbine. It is shown from a control point of view simple linear models can be used to describe the dynamic behavior of a pitch...

  13. Harmonic Resonances in Wind Power Plants

    DEFF Research Database (Denmark)

    Fernandez, Francisco Daniel Freijedo; Chaudhary, Sanjay; Teodorescu, Remus;

    2015-01-01

    This work reviews the state-of-the-art in the field of harmonic resonance problems in Wind Power Plants (WPPs). Firstly, a generic WPP is modeled according to the equivalent circuits of its passive and active components. Main focus is put on modeling active components, i.e. the ones based on power...

  14. Harnessing Wind

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    China’s wind power industry shifts into full gear The global oil crunch and environmental degradation have given rise to an ardent search for alternative and green energies throughout the world. For China, wind power is a choice one and its development is sizzling hot backed by

  15. Possibilities for wind energy on the Kola peninsula

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, J.; Rathmann, O.; Lundsager, P. [and others

    1999-03-01

    This paper presents an extensive feasibility study regarding the introduction of wind energy in the energy supply of the Kola peninsula in north-western Russia that was carried out during 1996-97. The study covers as well grid connected wind turbines as autonomous systems and a wind atlas was prepared. Special emphasis is put on non-technical activities and objectives like financing models, international funding and a sound politic support. The wind resources on the Kola peninsula are excellent and there are still no reasons to why wind energy installations couldn`t be carried out successfully. Recommendations for starting this development are presented. (au)

  16. 300,000-tonnage Crude Oil Dock Put into Operation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Aproject of Jointly establishing 300,000-tonnage crude oil dock of Tianjin Port has been put into operations, thanks to its outut grid successfully connected with oil pipeline of Sinopec Tanggu reservior.

  17. Wind energy.

    Science.gov (United States)

    Leithead, W E

    2007-04-15

    From its rebirth in the early 1980s, the rate of development of wind energy has been dramatic. Today, other than hydropower, it is the most important of the renewable sources of power. The UK Government and the EU Commission have adopted targets for renewable energy generation of 10 and 12% of consumption, respectively. Much of this, by necessity, must be met by wind energy. The US Department of Energy has set a goal of 6% of electricity supply from wind energy by 2020. For this potential to be fully realized, several aspects, related to public acceptance, and technical issues, related to the expected increase in penetration on the electricity network and the current drive towards larger wind turbines, need to be resolved. Nevertheless, these challenges will be met and wind energy will, very likely, become increasingly important over the next two decades. An overview of the technology is presented. PMID:17272245

  18. Fail safe controllable output improved version of the Electromechanical battery

    Science.gov (United States)

    Post, Richard F.

    1999-01-01

    Mechanical means are provided to control the voltages induced in the windings of a generator/motor. In one embodiment, a lever is used to withdraw or insert the entire stator windings from the cavity where the rotating field exists. In another embodiment, voltage control and/or switching off of the output is achievable with a variable-coupling generator/motor. A stator is made up of two concentric layers of windings, with a larger number of turns on the inner layer of windings than the outer layer of windings. The windings are to be connected in series electrically, that is, their voltages add vectorially. The mechanical arrangement is such that one or both of the windings can be rotated with respect to the other winding about their common central axis. Another improved design for the stator assembly of electromechanical batteries provides knife switch contacts that are in electrical contact with the stator windings. The operation of this embodiment depends on the fact that an abnormally large torque will be exerted on the stator structure during any short-circuit condition.

  19. Conditions for coastal wind turbines and small-scale wind farms; Rammer for kystnaere havmoeller og mindre havmoelleparker

    Energy Technology Data Exchange (ETDEWEB)

    2011-04-15

    The coastal wind turbine report recommends that research and demonstration projects be prioritised when determining the placement of 400 MW of coastal wind turbines in the coming years. Much of the capacity, however, is expected to be allotted to production wind turbines. A study will be carried out to identify the coastal areas best suited for the placement of wind turbines. Construction of offshore wind farms will be put out to tender in order to ensure that the best project is chosen at the lowest price. (ENS)

  20. The effect of retinal defocus on golf putting.

    Science.gov (United States)

    Bulson, Ryan C; Ciuffreda, Kenneth J; Hung, George K

    2008-07-01

    The purpose of this experiment was to determine the effect of type and magnitude of retinal defocus on golf putting accuracy, and on the related eye, head, and putter movements. Eye, head, and putter movements were assessed objectively along with putting accuracy in 16 young adult, visually normal inexperienced golfers during a fixed 9-foot golf putt. Convex spherical (+0.50 D, +1.00 D, +1.50 D, +2.00 D, +10.00 D) and cylindrical (+1.00 D x 90, +2.00 D x 90) lenses were added binocularly to create various types and magnitudes of retinal defocus. Putting accuracy was significantly reduced only under the highest spherical blur lens condition (+10.00 D). No significant differences were found between any other lens conditions for eye, head or putter movements. Small amounts of spherical and astigmatic retinal defocus had a minimal impact on overall golf putting performance, except for putting accuracy under the highest blur condition. This is consistent with the findings of related studies. For a fixed putting distance, factors other than quality of the retinal image, such as blur adaptation and motor learning, appeared to be sufficient to maintain a high level of motor performance. PMID:18565089

  1. Design of a shrouded wind turbine for low wind speeds / Jacobus Daniel Human

    OpenAIRE

    Human, Jacobus Daniel

    2014-01-01

    The use of renewable energy is promoted worldwide to be less dependent on fossil fuels and nuclear energy. Therefore research in the field is driven to increase efficiency of renewable energy systems. This study aimed to develop a wind turbine for low wind speeds in South Africa. Although there is a greater tendency to use solar panels because of the local weather conditions, there are some practical implications that have put the use of solar panels in certain areas to an end....

  2. Lithium use in batteries

    Science.gov (United States)

    Goonan, Thomas G.

    2012-01-01

    Lithium has a number of uses but one of the most valuable is as a component of high energy-density rechargeable lithium-ion batteries. Because of concerns over carbon dioxide footprint and increasing hydrocarbon fuel cost (reduced supply), lithium may become even more important in large batteries for powering all-electric and hybrid vehicles. It would take 1.4 to 3.0 kilograms of lithium equivalent (7.5 to 16.0 kilograms of lithium carbonate) to support a 40-mile trip in an electric vehicle before requiring recharge. This could create a large demand for lithium. Estimates of future lithium demand vary, based on numerous variables. Some of those variables include the potential for recycling, widespread public acceptance of electric vehicles, or the possibility of incentives for converting to lithium-ion-powered engines. Increased electric usage could cause electricity prices to increase. Because of reduced demand, hydrocarbon fuel prices would likely decrease, making hydrocarbon fuel more desirable. In 2009, 13 percent of worldwide lithium reserves, expressed in terms of contained lithium, were reported to be within hard rock mineral deposits, and 87 percent, within brine deposits. Most of the lithium recovered from brine came from Chile, with smaller amounts from China, Argentina, and the United States. Chile also has lithium mineral reserves, as does Australia. Another source of lithium is from recycled batteries. When lithium-ion batteries begin to power vehicles, it is expected that battery recycling rates will increase because vehicle battery recycling systems can be used to produce new lithium-ion batteries.

  3. Safety focused modeling of lithium-ion batteries: A review

    Science.gov (United States)

    Abada, S.; Marlair, G.; Lecocq, A.; Petit, M.; Sauvant-Moynot, V.; Huet, F.

    2016-02-01

    Safety issues pertaining to Li-ion batteries justify intensive testing all along their value chain. However, progress in scientific knowledge regarding lithium based battery failure modes, as well as remarkable technologic breakthroughs in computing science, now allow for development and use of prediction tools to assist designers in developing safer batteries. Subsequently, this paper offers a review of significant modeling works performed in the area with a focus on the characterization of the thermal runaway hazard and their relating triggering events. Progress made in models aiming at integrating battery ageing effect and related physics is also discussed, as well as the strong interaction with modeling-focused use of testing, and the main achievements obtained towards marketing safer systems. Current limitations and new challenges or opportunities that are expected to shape future modeling activity are also put in perspective. According to market trends, it is anticipated that safety may still act as a restraint in the search for acceptable compromise with overall performance and cost of lithium-ion based and post lithium-ion rechargeable batteries of the future. In that context, high-throughput prediction tools capable of screening adequate new components properties allowing access to both functional and safety related aspects are highly desirable.

  4. Wind Energy

    Energy Technology Data Exchange (ETDEWEB)

    Beurskens, H.J.M. [SET Analysis, Kievitlaan 26, 1742 AD Schagen (Netherlands); Brand, A.J. [Energy research Centre of the Netherlands ECN, Unit Wind Energy, P.O. Box 1, 1755 ZG Petten (Netherlands)

    2013-02-15

    Over the years, wind energy has become a major source of renewable energy worldwide. The present chapter addresses the wind resource, which is available for exploitation for large-scale electricity production, and its specific physical properties. Furthermore, the technical options available to convert the energy of the air flow into mechanical energy and electricity are described. Specific problems of large-scale integration of wind energy into the grid as well as the present and future market developments are described in this chapter. Finally, environmental aspects are discussed briefly.

  5. Intelligent Battery Management System Analyzing & Optimizing of Multicell Battery Voltage

    OpenAIRE

    Deepthi, C; P.M.Sarma; M. Chakravarthy

    2013-01-01

    The battery management system (BMS) is a critical component of electric and hybrid electric vehicles. The purpose of the BMS is to guarantee safe and reliable battery operation. To maintain the safety and reliability of the battery, state monitoring and evaluation, charge control, and cell balancing are functionalities that have been implemented in BMS. As an electrochemical product, a battery acts differently under different operational and environmental conditions. The uncertainty of a batt...

  6. Quiet eye training facilitates competitive putting performance in elite golfers

    Directory of Open Access Journals (Sweden)

    MarkR.Wilson

    2011-01-01

    Full Text Available The aim of this study was to examine the effectiveness of a brief Quiet Eye (QE training intervention aimed at optimising visuomotor control and putting performance of elite golfers under pressure, and in real competition. Twenty two elite golfers (mean handicap 2.7 recorded putting statistics over 10 rounds of competitive golf before attending training individually. Having been randomly assigned to either a QE training or Control group, participants were fitted with an ASL Mobile Eye tracker and performed 20 baseline (Pre-test putts from 10 feet. Training consisted of video feedback of their gaze behaviour while they completed 20 putts; however the QE-trained group received additional instructions related to maintaining a longer QE period. Participants then recorded their putting statistics over a further 10 competitive rounds and re-visited the laboratory for retention and pressure tests of their visuomotor control and putting performance. Overall, the results were supportive of the efficacy of the QE training intervention. QE duration predicted 43% of the variance in putting performance, underlying its critical role in the visuomotor control of putting. The QE-trained group maintained their optimal QE under pressure conditions, whereas the Control group experienced reductions in QE when anxious, with subsequent effects on performance. Although their performance was similar in the pre-test, the QE trained group holed more putts and left the ball closer to the hole on missed putts than their Control group counterparts in the pressure test. Importantly, these advantages transferred to the golf course, where QE-trained golfers made 1.9 fewer putts per round, compared to pre-training, whereas the Control group showed no change in their putting statistics. These results reveal that QE training, incorporated into a pre-shot routine, is an effective intervention to help golfers maintain control when anxious.

  7. Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems

    Science.gov (United States)

    Tuffner, Francis K.; Kintner-Meyer, Michael C. W.; Hammerstrom, Donald J.; Pratt, Richard M.

    2012-05-22

    Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

  8. Economic Operation of Power Systems with Significant Wind Power Penetration

    DEFF Research Database (Denmark)

    Farashbashi-Astaneh, Seyed-Mostafa

    This dissertation addresses economic operation of power systems with high penetration of wind power. Several studies are presented to address the economic operation of power systems with high penetration of variable wind power. The main concern in such power systems is high variability and...... unpredictability. Unlike conventional power plants, the output power of a wind farm is not controllable. This brings additional complexity to operation and planning of wind dominant power systems. The key solution in face of wind power uncertainty is to enhance power system flexibility. The enhanced flexibility....... Next, cooperative wind-storage operation is studied. Lithium-Ion battery units are chosen as storage units. A novel formulation is proposed to investigate optimal operation of a storage unit considering power system balancing conditions and wind power imbalances. An optimization framework is presented...

  9. Used batteries - REMINDER

    CERN Multimedia

    2006-01-01

    With colder weather drawing in, it is quite likely that older car batteries will fail. On this subject, the Safety Commission wishes to remind everyone that CERN is not responsible for the disposal of used batteries from private vehicles. So please refrain from abandoning them on pavements or around or inside buildings. Used batteries can be disposed of safely, free-of-charge and without any damage to the environment at waste disposal sites (déchetteries) close to CERN in both France (Ain and Haute-Savoie) and in the Canton of Geneva in Switzerland (Cheneviers). Since the average car battery lasts a number of years, this only represents a small effort on your part over the whole lifetime of your vehicle. Most people don't need reminding that car batteries contain concentrated sulphuric acid, which can cause severe burns. Despite this, we frequently find them casually dumped in scrap metal bins! For more information, please contact R. Magnier/SC-GS 160879 We all have a responsibility for safety and th...

  10. The contribution of vehicle-to-grid to balance fluctuating generation: Comparing different battery ageing approaches

    OpenAIRE

    Dallinger, David

    2013-01-01

    This paper analyzes how energy throughput and depth of discharge-based battery ageing affects vehicle-to-grid operation of plug-in electric vehicles. Plug-in electric vehicles are discussed as a grid resource to balance the fluctuating electricity generation of renewable energy sources, but their contri-bution to balance fluctuating generation strongly depends on battery ageing and costs to feed back electricity. Therefore, an electricity system scenario with a very high share of wind and sol...

  11. Mechanical and electrochemical response of all-solid-state lithium-ion batteries

    OpenAIRE

    Bucci, Giovanna; Carter, W. Craig; Chiang, Yet-Ming

    2014-01-01

    All-solid-state rechargeable lithium-ion batteries have attracted much interest because they have features particularly favorable for large-scale application to automotive applications and to stationary load-leveling for intermittent power generation from solar or wind energy. The replacement of an organic liquid electrolyte with a nonflammable and more reliable inorganic solid electrolyte (SE) simplifies the battery design and improves safety and durability of the system [1]. However, the me...

  12. A Martian Air Battery Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will investigate an entirely new battery chemistry by developing A Martian Air Battery. Specifically the project will explore the concept of a Martian...

  13. World Wind

    Data.gov (United States)

    National Aeronautics and Space Administration — World Wind allows any user to zoom from satellite altitude into any place on Earth, leveraging high resolution LandSat imagery and SRTM elevation data to experience...

  14. Redox Species of Redox Flow Batteries: A Review.

    Science.gov (United States)

    Pan, Feng; Wang, Qing

    2015-01-01

    Due to the capricious nature of renewable energy resources, such as wind and solar, large-scale energy storage devices are increasingly required to make the best use of the renewable power. The redox flow battery is considered suitable for large-scale applications due to its modular design, good scalability and flexible operation. The biggest challenge of the redox flow battery is the low energy density. The redox active species is the most important component in redox flow batteries, and the redox potential and solubility of redox species dictate the system energy density. This review is focused on the recent development of redox species. Different categories of redox species, including simple inorganic ions, metal complexes, metal-free organic compounds, polysulfide/sulfur and lithium storage active materials, are reviewed. The future development of redox species towards higher energy density is also suggested. PMID:26593894

  15. Redox Species of Redox Flow Batteries: A Review

    Directory of Open Access Journals (Sweden)

    Feng Pan

    2015-11-01

    Full Text Available Due to the capricious nature of renewable energy resources, such as wind and solar, large-scale energy storage devices are increasingly required to make the best use of the renewable power. The redox flow battery is considered suitable for large-scale applications due to its modular design, good scalability and flexible operation. The biggest challenge of the redox flow battery is the low energy density. The redox active species is the most important component in redox flow batteries, and the redox potential and solubility of redox species dictate the system energy density. This review is focused on the recent development of redox species. Different categories of redox species, including simple inorganic ions, metal complexes, metal-free organic compounds, polysulfide/sulfur and lithium storage active materials, are reviewed. The future development of redox species towards higher energy density is also suggested.

  16. Developments in redox flow batteries

    OpenAIRE

    Tangirala, Ravichandra

    2011-01-01

    This thesis describes the investigation of the electrochemistry principles, technology, construction and composition of the electrode materials, electrolyte and additives used in redox flow batteries. The aim was to study a flow battery system with an appreciable working performance. The study explores and compares mainly three different redox flow battery technologies; all-vanadium, soluble lead-acid and a novel copper-lead dioxide flow batteries. The first system is based in sulfuric acid e...

  17. Battery Monitoring Unit Using SCADA

    OpenAIRE

    Priyesh Pandya; Vikas Gupta

    2014-01-01

    Battery Management System (BMS) means different things to different people. To some it is simply battery monitoring, keeping a check on the key operational parameters during charging and discharging such as voltages and currents and the battery internal and ambient temperature. The monitoring circuits would normally provide inputs to protection device which would generate alarms or disconnects the battery from the load or charger should any of the parameters be...

  18. Rechargeable Battery Capacity Level Indicator

    OpenAIRE

    Ongere, Jared

    2015-01-01

    Technology on rechargeable batteries has advanced over the years as a result of the need to power portable devices that have risen in numbers in the last decade. Just like primary cells, rechargeable batteries work in the same way, only their chemical reactions are reversible. This project aimed at building a system that would indicate the capacity level of a Nickel Metal Hydride battery upon charging and discharging. The Nickel Metal Hydride battery was selected in this project due to it...

  19. Atomic Batteries: Energy from Radioactivity

    OpenAIRE

    Kumar, Suhas

    2015-01-01

    With alternate, sustainable, natural sources of energy being sought after, there is new interest in energy from radioactivity, including natural and waste radioactive materials. A study of various atomic batteries is presented with perspectives of development and comparisons of performance parameters and cost. We discuss radioisotope thermal generators, indirect conversion batteries, direct conversion batteries, and direct charge batteries. We qualitatively describe their principles of operat...

  20. Mesoporous Block Copolymer Battery Separators

    OpenAIRE

    Wong, David Tunmin

    2012-01-01

    In the past two decades, lithium-ion batteries have emerged as an increasingly important technology. They are used almost ubiquitously in laptops and cell phones because of their relatively high energy densities when compared to other battery chemistries. More recently, lithium-ion batteries have been employed in the automotive sector in both pure electric vehicles and hybrid electric vehicles. However, one of the major barriers in the widespread adoption of lithium-ion batteries in electric ...

  1. Intelligent battery charging system

    Science.gov (United States)

    Everett, Hobert R., Jr.

    1991-09-01

    The present invention is a battery charging system that provides automatic voltage selection, short circuit protection, and delayed output to prevent arcing or pitting. A second embodiment of the invention provides a homing beacon which transmits a signal so that a battery powered mobile robot may home in on and contact the invention to charge its battery. The invention includes electric terminals isolated from one another. One terminal is grounded and the other has a voltage applied to it through a resistor connected to the output of a DC power supply. A voltage scaler is connected between the resistor and the hot terminal. An On/Off controller and a voltage mode selector sense the voltage provided at the output of the voltage scaler.

  2. Safe battery solvents

    Science.gov (United States)

    Harrup, Mason K.; Delmastro, Joseph R.; Stewart, Frederick F.; Luther, Thomas A.

    2007-10-23

    An ion transporting solvent maintains very low vapor pressure, contains flame retarding elements, and is nontoxic. The solvent in combination with common battery electrolyte salts can be used to replace the current carbonate electrolyte solution, creating a safer battery. It can also be used in combination with polymer gels or solid polymer electrolytes to produce polymer batteries with enhanced conductivity characteristics. The solvents may comprise a class of cyclic and acyclic low molecular weight phosphazenes compounds, comprising repeating phosphorus and nitrogen units forming a core backbone and ion-carrying pendent groups bound to the phosphorus. In preferred embodiments, the cyclic phosphazene comprises at least 3 phosphorus and nitrogen units, and the pendent groups are polyethers, polythioethers, polyether/polythioethers or any combination thereof, and/or other groups preferably comprising other atoms from Group 6B of the periodic table of elements.

  3. Battery Energy Storage Technology for power systems-An overview

    DEFF Research Database (Denmark)

    Chandrashekhara, Divya K; Østergaard, Jacob

    2009-01-01

    the reliability and performance of these systems is to integrate energy storage devices into the power system network. Further, in the present deregulated markets these storage devices could also be used to increase the profit margins of wind farm owners and even provide arbitrage. This paper...... discusses the present status of battery energy storage technology and methods of assessing their economic viability and impact on power system operation. Further, a discussion on the role of battery storage systems of electric hybrid vehicles in power system storage technologies had been made. Finally, the......The penetration of renewable sources (particularly wind power) in to the power system network has been increasing in the recent years. As a result of this, there have been serious concerns over reliable and satisfactory operation of the power systems. One of the solutions being proposed to improve...

  4. Battery switch for downhole tools

    Science.gov (United States)

    Boling, Brian E.

    2010-02-23

    An electrical circuit for a downhole tool may include a battery, a load electrically connected to the battery, and at least one switch electrically connected in series with the battery and to the load. The at least one switch may be configured to close when a tool temperature exceeds a selected temperature.

  5. Batteries, from Cradle to Grave

    Science.gov (United States)

    Smith, Michael J.; Gray, Fiona M.

    2010-01-01

    As battery producers and vendors, legislators, and the consumer population become aware of the consequences of inappropriate disposal of batteries to landfill sites instead of responsible chemical neutralization and reuse, the topic of battery recycling has begun to appear on the environmental agenda. In the United Kingdom, estimates of annual…

  6. Lithium-ion batteries

    CERN Document Server

    Yoshio, Masaki; Kozawa, Akiya

    2010-01-01

    This book is a compilation of up-to-date information relative to Li-Ion technology. It provides the reader with a single source covering all important aspects of Li-Ion battery operations. It fills the gap between the old original Li-Ion technology and present state of the technology that has developed into a high state of practice. The book is designed to provide a single source for an up-to-date description of the technology associated with the Li-Ion battery industry. It will be useful to researchers interested in energy conversion for the direct conversion of chemical energy into electrica

  7. Automotive battery technology

    CERN Document Server

    Watzenig, Daniel

    2014-01-01

    The use of electrochemical energy storage systems in automotive applications also involves new requirements for modeling these systems, especially in terms of model depth and model quality. Currently, mainly simple application-oriented models are used to describe the physical behavior of batteries. This book provides a step beyond of state-of-the-art modeling showing various different approaches covering following aspects: system safety, misuse behavior (crash, thermal runaway), battery state estimation and electrochemical modeling with the needed analysis (pre/post mortem). All this different approaches are developed to support the overall integration process from a multidisciplinary point-of-view and depict their further enhancements to this process.

  8. Black Hole Battery

    Science.gov (United States)

    Levin, Janna; D'Orazio, Daniel

    2016-03-01

    Black holes are dark dead stars. Neutron stars are giant magnets. As the neutron star orbits the black hole, an electronic circuit forms that generates a blast of power just before the black hole absorbs the neutron star whole. The black hole battery conceivably would be observable at cosmological distances. Possible channels for luminosity include synchro-curvature radiation, a blazing fireball, or even an unstable, short-lived black hole pulsar. As suggested by Mingarelli, Levin, and Lazio, some fraction of the battery power could also be reprocessed into coherent radio emission to populate a subclass of fast radio bursts.

  9. Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles

    OpenAIRE

    Burke, Andrew

    2009-01-01

    This paper is concerned with batteries for use in plug-in electric vehicles. These vehicles use batteries that store a significant amount (kWh) of energy and thus will offer the possibilities for second-use in utility related applications such as residential and commercial backup systems and solar and wind generation systems. Cell test data are presented for the performance of lithium-ion batteries of several chemistries suitable for use in plug-in vehicles. The energy density of cells using ...

  10. Evaluation of Lithium-Ion Battery Equivalent Circuit Models for State of Charge Estimation by an Experimental Approach

    OpenAIRE

    Jinxin Fan; Hongwen He; Rui Xiong

    2011-01-01

    To improve the use of lithium-ion batteries in electric vehicle (EV) applications, evaluations and comparisons of different equivalent circuit models are presented in this paper. Based on an analysis of the traditional lithium-ion battery equivalent circuit models such as the Rint, RC, Thevenin and PNGV models, an improved Thevenin model, named dual polarization (DP) model, is put forward by adding an extra RC to simulate the electrochemical polarization and concentration polarization separat...

  11. Performance Analysis of a Grid connected Wind Energy system

    Directory of Open Access Journals (Sweden)

    Manju Khare

    2016-07-01

    Full Text Available This paper is concerned with the study of a small wind generation system used for battery charging. A topology that aims at the exploitation of maximum energy from the generator, generated at low speed is proposed. The characteristics of the wind turbine and the generator are discussed, providing the overview of the system modeling. Simulation tests of the system are obtained using MATLAB/SIMULINK. We adopt compact permanent magnet type synchronous generator, which doesn’t need exciting current, and step- up /down buck-boost chopper to wind power generating system of a few kW output with rotor speed sensor. In addition, we employ rectifier circuit using Diode Bridge instead of AC-DC converter with PWM method and a battery charging system. Using these methods we achieve a simple wind power generation system

  12. Application of Compound Options in the Evaluation of American Puts

    Directory of Open Access Journals (Sweden)

    Mauro Antonio Rincon

    2006-12-01

    Full Text Available In this article, a numerical method is developed to determine the value of a put, based in the solution of Black and Scholes (1973 for European option and on Richardson extrapolation that calculates the limit of an options sequence, whose time intervals tend to zero. In the beginning of the 70s, Black and Scholes (1973 and Merton (1973 they had developed partial differential equation, whose solution it determines the value of an European option. The boundary condition will go to determine the type of option (purchase or sale. Values for the put are calculated, priced and compared with methods of the numerical integration and the binomial approach.

  13. Novel Quinone-Based Couples for Flow Batteries

    OpenAIRE

    Huskinson, Brian Thomas; Nawar, Saraf; Gerhardt, Michael; Aziz, Michael J.

    2013-01-01

    Flow batteries are of interest for low-cost grid-scale electrical energy storage in the face of rising electricity production from intermittent renewables like wind and solar. We report on investigations of redox couples based on the reversible protonation of small organic molecules called quinones. These molecules can be very inexpensive and may therefore offer a low cost per kWh of electrical energy storage. Furthermore they are known to rapidly undergo oxidation and reduction with high rev...

  14. Rechargeable lead-acid batteries.

    Science.gov (United States)

    1990-09-01

    Batteries used in medical equipment, like their counterparts in consumer products, attract little attention until they fail to function effectively. In some applications, such as in emergency medical devices, battery failure can have fatal consequences. While modern batteries are usually quite reliable, ECRI has received 53 written problem reports and countless verbal reports or questions related to battery problems in hospitals during the past five years. This large number of reports is due, at least in part, to the enormous quality of batteries used to operate or provide backup power in contemporary hospital equipment. As part of an ongoing evaluation of rehabilitation assistive equipment, ECRI has been studying the performance of 12 V rechargeable deep-cycle lead-acid batteries used in powered wheelchairs. During the course of this evaluation, it has become apparent that many professionals, both clinical and industrial, regard batteries as "black box" devices and know little about proper care and maintenance--and even less about battery selection and purchase. Because equipment performance and reliability can be strongly influenced by different battery models, an understanding of battery characteristics and how they affect performance is essential when selecting and purchasing batteries. The types of rechargeable batteries used most commonly in hospitals are lead-acid and nickel-cadmium (nicad), which we compare below; however, the guidance we provide in this article focuses on lead-acid batteries. While the examples given are for high-capacity 12 V deep-cycle batteries, similar analyses can be applied to smaller lead-acid batteries of different voltages. PMID:2211174

  15. Battery testing for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Hund, T.

    1996-11-01

    Battery testing for photovoltaic (PV) applications is funded at Sandia under the Department of Energy`s (DOE) Photovoltaic Balance of Systems (BOS) Program. The goal of the PV BOS program is to improve PV system component design, operation, reliability, and to reduce overall life-cycle costs. The Sandia battery testing program consists of: (1) PV battery and charge controller market survey, (2) battery performance and life-cycle testing, (3) PV charge controller development, and (4) system field testing. Test results from this work have identified market size and trends, PV battery test procedures, application guidelines, and needed hardware improvements.

  16. ANALYSING SOLAR-WIND HYBRID POWER GENERATING SYSTEM

    OpenAIRE

    Mustafa ENGİN; Metin ÇOLAK

    2005-01-01

    In this paper, a solar-wind hybrid power generating, system that will be used for security lighting was designed. Hybrid system was installed and solar cells, wind turbine, battery bank, charge regulators and inverter performance values were measured through the whole year. Using measured values of overall system efficiency, reliability, demanded energy cost per kWh were calculated, and percentage of generated energy according to resources were defined. We also include in the paper a discussi...

  17. Historic and potential technology transition paths of grid battery storage: Co-evolution of energy grid, electric mobility and batteries

    OpenAIRE

    Baumann, Manuel

    2015-01-01

    Scarcity of fuels, changes in environmental policy and in society increased the interest in generating electric energy from renewable energy sources (RES) for a sustainable energy supply in the future. The main problem of RES as solar and wind energy, which represent a main pillar of this transition, is that they cannot supply constant power output. This results inter alia in an increased demand of backup technologies as batteries to assure electricity system safety. The diffusion of energy s...

  18. Galactic Winds

    Science.gov (United States)

    Veilleux, Sylvain

    Galactic winds have become arguably one of the hottest topics in extragalactic astronomy. This enthusiasm for galactic winds is due in part to the detection of winds in many, if not most, high-redshift galaxies. Galactic winds have also been invoked by theorists to (1) suppress the number of visible dwarf galaxies and avoid the "cooling catastrophe" at high redshift that results in the overproduction of massive luminous galaxies, (2) remove material with low specific angular momentum early on and help enlarge gas disks in CDM + baryons simulations, (3) reduce the dark mass concentrations in galaxies, (4) explain the mass-metallicity relation of galaxies from selective loss of metal-enriched gas from smaller galaxies, (5) enrich and "preheat" the ICM, (6) enrich the IGM without disturbing the Lyαforest significantly, and (7) inhibit cooling flows in galaxy clusters with active cD galaxies. The present paper highlights a few key aspects of galactic winds taken from a recent ARAA review by Veilleux, Cecil, &Bland-Hawthorn (2005; herafter VCBH). Readers interested in a more detailed discussion of this topic are encouraged to refer to the original ARAA article.

  19. Lightweight bipolar storage battery

    Science.gov (United States)

    Rowlette, John J. (Inventor)

    1992-01-01

    An apparatus [10] is disclosed for a lightweight bipolar battery of the end-plate cell stack design. Current flow through a bipolar cell stack [12] is collected by a pair of copper end-plates [16a,16b] and transferred edgewise out of the battery by a pair of lightweight, low resistance copper terminals [28a,28b]. The copper terminals parallel the surface of a corresponding copper end-plate [16a,16b] to maximize battery throughput. The bipolar cell stack [12], copper end-plates [16a,16b] and copper terminals [28a,28b] are rigidly sandwiched between a pair of nonconductive rigid end-plates [20] having a lightweight fiber honeycomb core which eliminates distortion of individual plates within the bipolar cell stack due to internal pressures. Insulating foam [30] is injected into the fiber honeycomb core to reduce heat transfer into and out of the bipolar cell stack and to maintain uniform cell performance. A sealed battery enclosure [ 22] exposes a pair of terminal ends [26a,26b] for connection with an external circuit.

  20. USED BATTERIES-REMINDER

    CERN Multimedia

    2002-01-01

    Note from the TIS Division: Although it is not an obligation for CERN to collect, store and dispose of used batteries from private vehicles, they are often found abandoned on the site and even in the scrap metal bins. As well as being very dangerous (they contain sulphuric acid which is highly corrosive), this practise costs CERN a non-negligible amount of money to dispose of them safely. The disposal of used batteries in the host state could not be simpler, there are 'déchetteries' in neighbouring France at Saint-Genis, Gaillard and Annemasse as well as in other communes. In Geneva Canton the centre de traitement des déchets spéciaux, at Cheneviers on the river Rhône a few kilometers from CERN, will dispose of your batterie free of charge. So we ask you to use a little common sense and to help protect the environnement from the lead and acid in these batteries and even more important, to avoid the possibility of a colleague being seriously injured. It doesn't take m...

  1. BESS for Wind Power "Peak Shaving" Control and Capacity Configuration%电池储能系统用于风电功率部分“削峰填谷”控制及容量配置

    Institute of Scientific and Technical Information of China (English)

    靳文涛; 李建林

    2013-01-01

    为缩减风电输出功率小时级的峰谷差,减小风电功率间歇性、波动性对规模化风电并网带来的不利影响,基于风电功率短期预测技术的小时级风电功率输出指令,提出风电功率部分“削峰填谷”控制策略,利用电池储能系统(battery energy storage system,BESS)缩减小时级尺度的风电功率峰谷差,并在各时间窗口内将风储合成出力的风电功率波动限制在一定的带宽范围以内;提出基于正态分布的储能功率计算方法,基于电池储能系统优化控制策略,分析电池储能系统实现部分“削峰填谷”控制策略与储能容量之间的关系.仿真实验结果验证该控制策略下储能容量配置的正确性与可行性.%In order to reduce the peak-to-valley D-value of hour-level wind power output power,and lower the negative impacts of the intermittence and fluctuation of the wind power on power grid,a wind power peak-shaving control strategy was proposed according to the hour-level wind power output instruction based on the short-term wind power forecast technology; the battery energy storage system (BESS)was used to lower the hour-level valley-to-peak difference of wind power,and the wind power fluctuation of the synthesized storage wind power output in every time scale was restricted within a certain limit of bandwidth.The paper put forward a normal distribution-based energy storage power calculation method and a BESS-based optimization control strategy,analyzed the relationship between the part peak-shaving control strategy by BESS and the energy storage capacity Simulation results proved that the energy storage capacity configuration was valid and feasible under such control strategy.

  2. Putting Writing Research into Practice: Applications for Teacher Professional Development

    Science.gov (United States)

    Troia, Gary A., Ed.; Shankland, Rebecca K., Ed.; Heintz, Anne, Ed.

    2010-01-01

    What are the most effective methods for teaching writing across grade levels and student populations? What kind of training do teachers need to put research-validated methods into practice? This unique volume combines the latest writing research with clear-cut recommendations for designing high-quality professional development efforts. Prominent…

  3. "Big Bang"test put off until May 2008

    CERN Multimedia

    2007-01-01

    "First tests in a scientific project aimed at solving mysteries of the universe and the "Big Bang" which created it have been put off from November to late april or early May next year, an official said yesterday." (2/3 page)

  4. Put Birth Control in Place Right After Childbirth

    Science.gov (United States)

    ... Drugs & Supplements Videos & Tools Español You Are Here: Home → Latest Health News → Article URL of this page: https://medlineplus.gov/news/fullstory_160088.html Put Birth Control in Place Right After Childbirth Placement of IUD, contraceptive implant after delivery helps ...

  5. Guangxi Huaying Bauxite Mine Put Into Production Upon Completion

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>On July 26,Guangxi Huaying bauxite mine was put into production upon its completion. With supportive function,the mine facilitates the 1.6-million-ton/year alumina project of Guangxi Huaying with annual capacity of 4 million tons of ores.The open-pit diaspore

  6. Using Learning Styles to Put Hamlet on Trial.

    Science.gov (United States)

    McKenna, John J.

    1990-01-01

    According to D. W. Merrill's schema, 60 percent of teachers fall into the "director" and "amiable" personality trait categories. Studies have shown that a high percentage of students find such teachers' methods somewhat ineffective. Class activities, such as putting a play's central character on trial, accommodate various learning styles. (JD)

  7. An on-line gasoline blending system put into production

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Anew system for online gasoline blending, which was developed by researchers from the CAS Institute of Automation (CASIA), has been put into production at China Petrochemical Corporation (SINOPEC) and PetroChina Corporation. It is expected to thoroughly renovate the technology in this regard and achieve maximal economic benefits in oil production stage.

  8. Ario Emulsion Sulfur Stabilizer Project Put into Production in Hainan

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The first stage of Ario emulsion sulfur stabilizer project has been recently completed and put into production in Dongfang Chemical Industrial City in Hainan following a four-month construction. CNPC Fuels Co. Ltd, a subsidiary of CNPC, has invested 18 million yuan for this project, which occupies an

  9. Some particular problems put by operating experimental reactors

    International Nuclear Information System (INIS)

    On basis of a six years experience in operating research reactors, the authors explain, first, the difference in their utilization between these piles and another similar ones and, after, in consequence, they set off corresponding servitudes. These servitudes put very particular problems in operating itself, maintenance, modifications or additions on these apparatus. (author)

  10. Wind turbine

    Science.gov (United States)

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  11. Storage Possibilities for Enabling Higher Wind Energy Penetration

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Teodorescu, Remus; Rodriguez, Pedro;

    2010-01-01

    intermittency, partly unpredictability and variability, wind power can put the operation of power system into risk. One of the possible solutions can be an addition of energy storage into wind power plant. This paper deals with state of the art of the Energy Storage (ES) technologies and their possibility of...... accommodation for wind turbines. Overview of ES technologies is done in respect to its suitability for Wind Power Plant (WPP). Services that energy storage can offer both to WPP and power system are discussed. Moreover examples of already existing installations are shown.......As the installed worldwide wind energy capacity increases about 30% annually and Kyoto protocol that came in force in 2005, wind penetration level in power system is considered to significantly increase in near future. Due to increased penetration and nature of the wind, especially its...

  12. Understanding wind power technology theory, deployment and optimisation

    CERN Document Server

    Schaffarczyk, Alois

    2014-01-01

    Wind energy technology has progressed enormously over the last decade. In coming years it will continue to develop in terms of power ratings, performance and installed capacity of large wind turbines worldwide, with exciting developments in offshore installations. Designed to meet the training needs of wind engineers, this introductory text puts wind energy in context, from the natural resource to the assessment of cost effectiveness and bridges the gap between theory and practice. The thorough coverage spans the scientific basics, practical implementations and the modern state of technology

  13. Wind energy market study Eastern Europe. Czech and Slovak Republics

    International Nuclear Information System (INIS)

    The main objective of the THERMIE Associated Measure WE05 is to study the conditions for utilising wind power and estimate the market for wind power in Eastern Europe. This report describes the results of a study of the conditions in the Czech and Slovak republics, which has been concentrated on the following areas: A collection of information on the wind energy potential in these countries and the present structure of the power production system including costs; A search for information concerning payback prices, subsidies, etc. with relation to renewable energy sources, especially wind power, existing wind turbines and their production; An estimate of the possibilities for co-production of wind turbines by Czech, Slovak, and EC factories; A compilation of information on rules and legislation pertaining to the establishment of wind turbines and to power production by wind, e.g. regulations related to grid connections, safety, and environmental production. In order to promote the utilisation of wind power in the Czech and Slovak Republics, some recommendations based on this study may be put forward: the operation of pilot plants should be evaluated in order to compare the recorded production with that which is estimated theoretically based on measured wind data. Existing wind data should be supplemented with new measurements especially at sites that based on current knowledge may be suitable for establishing wind parks. The economic feasibility of wind power in these countries should be calculated based on the best available physical and economic data. (EG)

  14. Impact of wind farms with energy storage on transient stability

    Science.gov (United States)

    Bowman, Douglas Allen

    Today's energy infrastructure will need to rapidly expand in terms of reliability and flexibility due to aging infrastructure, changing energy market conditions, projected load increases, and system reliability requirements. Over the few decades, several states in the U.S. are now requiring an increase in wind penetration. These requirements will have impacts on grid reliability given the inherent intermittency of wind generation and much research has been completed on the impact of wind on grid reliability. Energy storage has been proposed as a tool to provide greater levels of reliability; however, little research has occurred in the area of wind with storage and its impact on stability given different possible scenarios. This thesis addresses the impact of wind farm penetration on transient stability when energy storage is added. The results show that battery energy storage located at the wind energy site can improve the stability response of the system.

  15. The economics of wind energy in South Africa

    International Nuclear Information System (INIS)

    Battery charging and water pumping has been the only applications for wind energy in South Africa till now. A conservative estimate of the wind resource indicates that approximately 5% to 6% of the South African energy demands can be supplied from wind. However the low cost of electricity due to the abundance of cheap coal has made it difficult to justify the use of grid connected wind turbines. As with other countries where wind energy is now a part of the total energy package, South Africa will also have to go through a process of wind energy having to prove itself as a viable option while at the same time have a cost disadvantage. (Author)

  16. Modular Battery Charge Controller

    Science.gov (United States)

    Button, Robert; Gonzalez, Marcelo

    2009-01-01

    A new approach to masterless, distributed, digital-charge control for batteries requiring charge control has been developed and implemented. This approach is required in battery chemistries that need cell-level charge control for safety and is characterized by the use of one controller per cell, resulting in redundant sensors for critical components, such as voltage, temperature, and current. The charge controllers in a given battery interact in a masterless fashion for the purpose of cell balancing, charge control, and state-of-charge estimation. This makes the battery system invariably fault-tolerant. The solution to the single-fault failure, due to the use of a single charge controller (CC), was solved by implementing one CC per cell and linking them via an isolated communication bus [e.g., controller area network (CAN)] in a masterless fashion so that the failure of one or more CCs will not impact the remaining functional CCs. Each micro-controller-based CC digitizes the cell voltage (V(sub cell)), two cell temperatures, and the voltage across the switch (V); the latter variable is used in conjunction with V(sub cell) to estimate the bypass current for a given bypass resistor. Furthermore, CC1 digitizes the battery current (I1) and battery voltage (V(sub batt) and CC5 digitizes a second battery current (I2). As a result, redundant readings are taken for temperature, battery current, and battery voltage through the summation of the individual cell voltages given that each CC knows the voltage of the other cells. For the purpose of cell balancing, each CC periodically and independently transmits its cell voltage and stores the received cell voltage of the other cells in an array. The position in the array depends on the identifier (ID) of the transmitting CC. After eight cell voltage receptions, the array is checked to see if one or more cells did not transmit. If one or more transmissions are missing, the missing cell(s) is (are) eliminated from cell

  17. The lead-acid battery industry in China: outlook for production and recycling.

    Science.gov (United States)

    Tian, Xi; Wu, Yufeng; Gong, Yu; Zuo, Tieyong

    2015-11-01

    In 2013, more than four million (metric) tons (MT) of refined lead went into batteries in China, and 1.5 MT of scrap lead recycled from these batteries was reused in other secondary materials. The use of start-light-ignition (SLI), traction and energy storage batteries has spread in China in recent decades, with their proportions being 25.6%, 47.2% and 27.2%, respectively, in 2012. The total production of these batteries increased from 296,000 kVAh in 2001 to 205.23 MkVAh in 2013, with manufacturing located mainly in the middle and eastern provinces of the country. In this paper, we find that the market share of SLI batteries will decrease slightly, the share of traction batteries will continuously increase with the emergence of clean energy vehicles, and that of energy storage batteries will increase with the development of the wind energy and photovoltaic industries. Accounting for lead consumption in the main application industries, and the total social possession, it is calculated that used lead batteries could generate 2.4 MT of scrap lead in 2014, which is much higher than the 1.5 MT that was recycled in 2013. Thus, the current recycling rate is too low. It is suggested that while building large-scale recycling plants, small-scale plants should be banned or merged. PMID:26341636

  18. Wind tunnel investigation on wind turbine wakes and wind farms

    Science.gov (United States)

    Iungo, G. V.; Coëffé, J.; Porté-Agel, F.

    2012-04-01

    The interaction between atmospheric boundary layer and wind farms leads to flow modifications, which need to be deeply characterized in order to relate them to wind farm performance. The wake flow produced from a wind farm is the result of a strong interaction between multiple turbine wakes, so that the wind farm configuration turns out to be one of the dominant features to enhance power production. For the present work a wind tunnel investigation was carried out with hot-wire anemometry and velocity measurements performed with multi-hole pressure probes. The tested wind farms consist of miniature three-bladed wind turbine models. Preliminarily, the wake flow generated from a single wind turbine is surveyed, which is characterized by a strong velocity defect lying in proximity of the wind turbine hub height. The wake gradually recovers by moving downstream; the characteristics of the incoming boundary layer and wind turbulence intensity can strongly affect the wake recovery, and thus performance of following wind turbines. An increased turbulence level is typically detected downstream of each wind turbine for heights comparable to the wind turbine blade top-tip. These wake flow fluctuations produce increased fatigue loads on the following wind turbines within a wind farm, which could represent a significant hazard for real wind turbines. Dynamics of vorticity structures present in wind turbine wakes are also investigated; particular attention is paid to the downstream evolution of the tip helicoidal vortices and to oscillations of the hub vortex. The effect of wind farm layout on power production is deeply investigated. Particular emphasis is placed on studying how the flow adjusts as it moves inside the wind farm and can affect the power production. Aligned and staggered wind farm configurations are analysed, also with varying separation distances in the streamwise and spanwise directions. The present experimental results are being used to test and guide the

  19. Wind Turbines on CO2 Neutral Luminaries in Urban Areas

    DEFF Research Database (Denmark)

    Skrzypinski, Witold Robert; Bak, Christian; Beller, Christina;

    2013-01-01

    panels and batteries, detailed investigation of which is outside the scope of the present manuscript. Analysis of the turbines’ performance based on producer-supplied power curves is presented together with an estimation of the wind climate in Copenhagen district comprising 1-2 story single family...

  20. Wind Energy Japan

    Energy Technology Data Exchange (ETDEWEB)

    Komatsubara, Kazuyo [Embassy of the Kingdom of the Netherlands, Tokyo (Japan)

    2012-06-15

    An overview is given of wind energy in Japan: Background; Wind Energy in Japan; Japanese Wind Energy Industry; Government Supports; Useful Links; Major Japanese Companies; Profiles of Major Japanese Companies; Major Wind Energy Projects in Japan.

  1. Advanced Battery Manufacturing (VA)

    Energy Technology Data Exchange (ETDEWEB)

    Stratton, Jeremy

    2012-09-30

    LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATT’s work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease

  2. Effect of wind turbine generator model and siting on wind power changes out of large WECS arrays

    Science.gov (United States)

    Schleuter, R. A.; Park, G. L.; Lotfalian, M.; Dorsey, J.; Shayanfar, H.

    1981-01-01

    Methods of reducing the WECS generation change through selection of the wind turbine model for each site, selection of an appropriate siting configuration, and wind array controls are discussed. An analysis of wind generation change from an echelon and a farm for passage of a thunderstorm is presented. Reduction of the wind generation change over ten minutes is shown to reduce the increase in spinning reserve, unloadable generation and load following requirements on unit commitment when significant WECS generation is present and the farm penetration constraint is satisfied. Controls on the blade pitch angle of all wind turbines in an array or a battery control are shown to reduce both the wind generation change out of an array and the effective farm penetration in anticipation of a storm so that the farm penetration constraint may be satisfied.

  3. 78 FR 55773 - Fourteenth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-09-11

    ... Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is issuing this notice to... Battery and Battery Systems--Small and Medium Size DATES: The meeting will be held October 1-3, 2013,...

  4. Thermal management of cylindrical power battery module for extending the life of new energy electric vehicles

    International Nuclear Information System (INIS)

    Thermal management especially cooling plays an important role in power battery modules for electric vehicles. In order to comprehensively understand the heat transfer characteristics of air cooling system, the air cooling numerical simulation battery models for cylindrical lithium-ion power battery pack were established in this paper, and a detailed parametric investigation was undertaken to study effects of different ventilation types and velocities, gap spacing between neighbor batteries, temperatures of environment and entrance air, amount of single row cells and battery diameter on the thermal management performance of battery pack. The results showed that the local temperature difference increased firstly and then decreased with the increase of wind speed. Reversing the air flow direction between adjacent rows is not necessarily appropriate and the gap spacing should not be too small and too large. It is prone to thermal runaway when the ambient temperature is too high, and the most suitable value of S/D (the ratio of spacing distance between neighbor cells and cell diameter) is gradually reduced along with the increase of cell diameter. - Highlights: • Air cooling models were established for cylindrical lithium-ion power battery pack. • Local temperature difference increased firstly and then decreased with wind speed. • The gap spacing size of battery pack should not be too small and too large. • It is prone to thermal runaway when the ambient temperature is too high. • The ratio of S/D is gradually reduced with the increase of cell diameter

  5. Electromechanical battery design suitable for back-up power applications

    Science.gov (United States)

    Post, Richard F.

    2002-01-01

    The windings that couple energy into and out of the rotor of an electro-mechanical battery are modified. The normal stator windings of the generator/motor have been replaced by two orthogonal sets of windings. Because of their orthogonality, they are decoupled from each other electrically, though each can receive (or deliver) power flows from the rotating field produced by the array of permanent magnets. Due to the orthogonal design of the stator windings and the high mechanical inertia of the flywheel rotor, the resulting power delivered to the computer system is completely insensitive to any and all electrical transients and variabilities of the power from the main power source. This insensitivity includes complete failure for a period determined only by the amount of stored kinetic energy in the E-M battery modules that are supplied. Furthermore there is no need whatsoever for fast-acting, fractional-cycle switches, such as are employed in conventional systems, and which are complicated to implement.

  6. Cezi Island Crude Pier Put into Operation Successfully

    Institute of Scientific and Technical Information of China (English)

    Wang Jiangge; Liu Haijun; Diao Feng

    2006-01-01

    @@ On Feb. 25th, 2006, the 300,000-ton Cezi Island Pier,a State key construction project was finished. It began to receive crude oil smoothly. Cezi Island was one of the largest crude oil piers in China at present. Its putting into operation will enable the Ningbo - Shanghai - Nanjing pipeline network double its total transmitting capacity to reach 40 million tons a year.

  7. Putting open science into practice: A social dilemma?

    OpenAIRE

    Scheliga, Kaja; Friesike, Sascha

    2014-01-01

    Digital technologies carry the promise of transforming science and opening up the research process. We interviewed researchers from a variety of backgrounds about their attitudes towards and experiences with openness in their research practices. We observe a considerable discrepancy between the concept of open science and scholarly reality. While many researchers support open science in theory, the individual researcher is confronted with various difficulties when putting open science into pr...

  8. Application of Compound Options in the Evaluation of American Puts

    OpenAIRE

    Mauro Antonio Rincon; José Ferreira Marinho Junior

    2006-01-01

    In this article, a numerical method is developed to determine the value of a put, based in the solution of Black and Scholes (1973) for European option and on Richardson extrapolation that calculates the limit of an options sequence, whose time intervals tend to zero. In the beginning of the 70s, Black and Scholes (1973) and Merton (1973) they had developed partial differential equation, whose solution it determines the value of an European option. The boundary condition will go to determine ...

  9. Domestic abuse in the Archers: putting the storyline into context

    OpenAIRE

    Brown, Jennifer

    2016-01-01

    The eked out tale of the abusive relationship between the Titcheners in the long running BBC Radio 4 soap, The Archers, culminated on Sunday evening with a knife attack by the long suffering Helen on her psychologically controlling husband Rob. Here, Jennifer Brown puts the storyline in context, offering a forensic psychology perspective and outlining the frequency of similar cases in the UK alongside the recent legal provisions to legislate against such behaviour.

  10. Photoelectrochemical solar battery

    International Nuclear Information System (INIS)

    The invention relates to the field of solar energy conversion and can be used to the elaboration of photoelectrochemical solar batteries. Summary of the invention consists in the fact that in the photoelectrochemical solar battery comprising of a photo electrode and a counter-electrode, placed into an electrolyte solution, comprising the oxidation-reduction system, the photo electrode is made of a semiconductor of n-type ZnIn2S4 and as electrolyte is used aqueous solution Na2S4 - Na2S2. The technical result of the invention consists in the sulphur ions inter exchange from the photo electrode surface and from the electrolyte solution that leads to the reduction of photo electrode photo corrosion

  11. Battery separator manufacturing process

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, N.I.; Sugarman, N.

    1974-12-27

    A battery with a positive plate, a negative plate, and a separator of polymeric resin having a degree of undesirable hydrophobia, solid below 180/sup 0/F, extrudable as a hot melt, and resistant to degradation by at least either acids or alkalies positioned between the plates is described. The separator comprises a nonwoven mat of fibers, the fibers being comprised of the polymeric resin and a wetting agent in an amount of 0.5 to 20 percent by weight based on the weight of the resin with the amount being incompatible with the resin below the melting point of the resin such that the wetting agent will bloom over a period of time at ambient temperatures in a battery, yet being compatible with the resin at the extrusion temperature and bringing about blooming to the surface of the fibers when the fibers are subjected to heat and pressure.

  12. Block copolymer battery separator

    Energy Technology Data Exchange (ETDEWEB)

    Wong, David; Balsara, Nitash Pervez

    2016-04-26

    The invention herein described is the use of a block copolymer/homopolymer blend for creating nanoporous materials for transport applications. Specifically, this is demonstrated by using the block copolymer poly(styrene-block-ethylene-block-styrene) (SES) and blending it with homopolymer polystyrene (PS). After blending the polymers, a film is cast, and the film is submerged in tetrahydrofuran, which removes the PS. This creates a nanoporous polymer film, whereby the holes are lined with PS. Control of morphology of the system is achieved by manipulating the amount of PS added and the relative size of the PS added. The porous nature of these films was demonstrated by measuring the ionic conductivity in a traditional battery electrolyte, 1M LiPF.sub.6 in EC/DEC (1:1 v/v) using AC impedance spectroscopy and comparing these results to commercially available battery separators.

  13. Composite battery separator

    Science.gov (United States)

    Edwards, Dean B. (Inventor); Rippel, Wally E. (Inventor)

    1987-01-01

    A composite battery separator comprises a support element (10) having an open pore structure such as a ribbed lattice and at least one liquid permeable sheet (20,22) to distribute the compressive force evenly onto the surfaces of the layers (24, 26) of negative active material and positive active material. In a non-flooded battery cell the compressible, porous material (18), such as a glass mat which absorbs the electrolyte, is compressed into a major portion of the pores or openings (16) in the support element. The unfilled pores in the material (18) form a gas diffusion path as the channels (41) formed between adjacent ribs in the lattice element (30,36). Facing two lattice elements (30, 31) with acute angled cross-ribs (34, 38) facing each other prevents the elements from interlocking and distorting a porous, separator (42) disposed between the lattice elements.

  14. DOE/NREL supported wind energy activities in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Drouilhet, S.

    1997-12-01

    This paper describes three wind energy related projects which are underway in Indonesia. The first is a USAID/Winrock Wind for Island and Nongovernmental Development (WIND) project. The objectives of this project are to train local nongovernmental organizations (NGOs) in the siting, installation, operation, and maintenance of small wind turbines. Then to install up to 20 wind systems to provide electric power for productive end uses while creating micro-enterprises which will generate enough revenue to sustain the wind energy systems. The second project is a joint Community Power Corporation/PLN (Indonesian National Electric Utility) case study of hybrid power systems in village settings. The objective is to evaluate the economic viability of various hybrid power options for several different situations involving wind/photovoltaics/batteries/diesel. The third project is a World Bank/PLN preliminary market assessment for wind/diesel hybrid systems. The objective is to estimate the size of the total potential market for wind/diesel hybrid power systems in Indonesia. The study will examine both wind retrofits to existing diesel mini-grids and new wind-diesel plants in currently unelectrified villages.

  15. Advanced Small Rechargeable Batteries

    Science.gov (United States)

    Halpert, Gerald

    1989-01-01

    Lithium-based units offer highest performance. Paper reviews status of advanced, small rechargeable batteries. Covers aqueous systems including lead/lead dioxide, cadmium/nickel oxide, hydrogen/nickel oxide, and zinc/nickel oxide, as well as nonaqueous systems. All based on lithium anodes, nonaqueous systems include solid-cathode cells (lithium/molybdenum disulfide, lithium/titanium disulfide, and lithium/vanadium oxide); liquid-cathode cells (lithium/sulfur dioxide cells); and new category, lithium/polymer cells.

  16. Miniaturized nuclear battery

    International Nuclear Information System (INIS)

    The invention relates to a miniaturized nuclear battery, consisting of several in series connected cells, wherein each cell contains a support which acts as positive pole and which supports on one side a β-emitter, above said emitter is a radiation resisting insulation layer which is covered by an absorption layer, above which is a collector layer, and wherein the in series connected calls are disposed in an airtight case

  17. Automotive Battery Modelling and Management

    OpenAIRE

    N. M. Hammad

    2014-01-01

    The estimation of vehicle battery performance is typically addressed by testing the battery under specific operation conditions by using a model to represent the test results. Approaches for representing test results range from simple statistical models to neural networks to complex, physics-based models. Basing the model on test data could be problematical when testing becomes impractical with many years life time tests. So, real time estimation of battery performance, an important problem i...

  18. Waste battery collection and handling

    OpenAIRE

    Degenek, Marko

    2010-01-01

    In the following thesis, we focused on waste battery collection and handling. Since batteries are known for their possible containing of dangerous substances, it seems sensible to collect and reuse them - not only from the perspective of economy, but also when it comes to regaining some valuable raw materials. That is why the battery issue is not only topical, but also in need of thorough analysis and discussion. Wrongly disposed batterries are a huge environmental issue, since they pollute g...

  19. Air and metal hydride battery

    Energy Technology Data Exchange (ETDEWEB)

    Lampinen, M.; Noponen, T. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Applied Thermodynamics

    1998-12-31

    The main goal of the air and metal hydride battery project was to enhance the performance and manufacturing technology of both electrodes to such a degree that an air-metal hydride battery could become a commercially and technically competitive power source for electric vehicles. By the end of the project it was possible to demonstrate the very first prototype of the air-metal hydride battery at EV scale, achieving all the required design parameters. (orig.)

  20. Membranes in Lithium Ion Batteries

    OpenAIRE

    Junbo Hou; Min Yang

    2012-01-01

    Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separa...

  1. High energy density lithium batteries

    CERN Document Server

    Aifantis, Katerina E; Kumar, R Vasant

    2010-01-01

    Cell phones, portable computers and other electronic devices crucially depend on reliable, compact yet powerful batteries. Therefore, intensive research is devoted to improving performance and reducing failure rates. Rechargeable lithium-ion batteries promise significant advancement and high application potential for hybrid vehicles, biomedical devices, and everyday appliances. This monograph provides special focus on the methods and approaches for enhancing the performance of next-generation batteries through the use of nanotechnology. Deeper understanding of the mechanisms and strategies is

  2. Trends in Cardiac Pacemaker Batteries

    Directory of Open Access Journals (Sweden)

    Venkateswara Sarma Mallela

    2004-10-01

    Full Text Available Batteries used in Implantable cardiac pacemakers-present unique challenges to their developers and manufacturers in terms of high levels of safety and reliability. In addition, the batteries must have longevity to avoid frequent replacements. Technological advances in leads/electrodes have reduced energy requirements by two orders of magnitude. Micro-electronics advances sharply reduce internal current drain concurrently decreasing size and increasing functionality, reliability, and longevity. It is reported that about 600,000 pacemakers are implanted each year worldwide and the total number of people with various types of implanted pacemaker has already crossed 3 million. A cardiac pacemaker uses half of its battery power for cardiac stimulation and the other half for housekeeping tasks such as monitoring and data logging. The first implanted cardiac pacemaker used nickel-cadmium rechargeable battery, later on zinc-mercury battery was developed and used which lasted for over 2 years. Lithium iodine battery invented and used by Wilson Greatbatch and his team in 1972 made the real impact to implantable cardiac pacemakers. This battery lasts for about 10 years and even today is the power source for many manufacturers of cardiac pacemakers. This paper briefly reviews various developments of battery technologies since the inception of cardiac pacemaker and presents the alternative to lithium iodine battery for the near future.

  3. Battery Post-Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Post-test diagnostics of aged batteries can provide additional information regarding the cause of performance degradation, which, previously, could be only inferred...

  4. ZEBRA battery meets USABC goals

    Science.gov (United States)

    Dustmann, Cord-H.

    In 1990, the California Air Resources Board has established a mandate to introduce electric vehicles in order to improve air quality in Los Angeles and other capitals. The United States Advanced Battery Consortium has been formed by the big car companies, Electric Power Research Institute (EPRI) and the Department of Energy in order to establish the requirements on EV-batteries and to support battery development. The ZEBRA battery system is a candidate to power future electric vehicles. Not only because its energy density is three-fold that of lead acid batteries (50% more than NiMH) but also because of all the other EV requirements such as power density, no maintenance, summer and winter operation, safety, failure tolerance and low cost potential are fulfilled. The electrode material is plain salt and nickel in combination with a ceramic electrolyte. The cell voltage is 2.58 V and the capacity of a standard cell is 32 Ah. Some hundred cells are connected in series and parallel to form a battery with about 300 V OCV. The battery system including battery controller, main circuit-breaker and cooling system is engineered for vehicle integration and ready to be mounted in a vehicle [J. Gaub, A. van Zyl, Mercedes-Benz Electric Vehicles with ZEBRA Batteries, EVS-14, Orlando, FL, Dec. 1997]. The background of these features are described.

  5. Advanced Battery Diagnosis for Electric Vehicles

    OpenAIRE

    Lamichhane, Chudamani

    2008-01-01

    Summary Literatures on battery technologies and diagnosis of its parameters were studied. The innovative battery technologies from basic knowledge to world standard testing procedures were analysed and discussed in the report. The established battery test station and flowchart was followed during the battery test preparation and testing. In order to understand and verify the battery performance, the well established test procedures developed by USABC (United States Advanced Battery Consorti...

  6. Single Switched Capacitor Battery Balancing System Enhancements

    OpenAIRE

    Joeri Van Mierlo; Peter Van den Bossche; Noshin Omar; Mailier Antoine; Mohamed Daowd

    2013-01-01

    Battery management systems (BMS) are a key element in electric vehicle energy storage systems. The BMS performs several functions concerning to the battery system, its key task being balancing the battery cells. Battery cell unbalancing hampers electric vehicles’ performance, with differing individual cell voltages decreasing the battery pack capacity and cell lifetime, leading to the eventual failure of the total battery system. Quite a lot of cell balancing topologies have been proposed, ...

  7. Sizing PV-wind hybrid energy system for lighting

    Directory of Open Access Journals (Sweden)

    Mustafa Engin

    2012-09-01

    Full Text Available Sizing of wind and photovoltaic generators ensures lower operational costs and therefore, is considered as an important issue. An approach for sizing along with a best management technique for a PV-wind hybrid system with batteries is proposed in this paper, in which the best size for every component of the system could be optimized according to the weather conditions and the load profile. The average hourly values for wind speed and solar radiation for Izmir, Turkey has been used in the design of the systems, along with expected load profile. A hybrid power model is also developed for battery operation according to the power balance between generators and loads used in the software, to anticipate performances for the different systems according to the different weather conditions. The output of the program will display the performance of the system during the year, the total cost of the system, and the best size for the PV-generator, wind generator, and battery capacity. Using proposed procedure, a 1.2 kWp PV-wind hybrid system was designed for Izmir, and simulated and measured results are presented.

  8. Sizing and Simulation of PV-Wind Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Mustafa Engin

    2013-01-01

    Full Text Available A sizing procedure is developed for hybrid system with the aid of mathematical models for photovoltaic cell, wind turbine, and battery that are readily present in the literature. This sizing procedure can simulate the annual performance of different kinds of photovoltaic-wind hybrid power system structures for an identified set of renewable resources, which fulfills technical limitations with the lowest energy cost. The output of the program will display the performance of the system during the year, the total cost of the system, and the best size for the PV-generator, wind generator, and battery capacity. Security lightning application is selected, whereas system performance data and environmental operating conditions are measured and stored. This hybrid system, which includes a PV, wind turbine, inverter, and a battery, was installed to supply energy to 24 W lamps, considering that the renewable energy resources of this site where the system was installed were 1700 Wh/m2/day solar radiation and 3.43 m/s yearly average wind speed. Using the measured variables, the inverter and charge regulator efficiencies were calculated as 90% and 98%, respectively, and the overall system’s electrical efficiency is calculated as 72%. Life cycle costs per kWh are found to be $0.89 and LLP = 0.0428.

  9. Wind conditions for wind turbine design

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B.

    1999-04-01

    Delegates from Europe and USA attended the meeting and discussed general aspects of wind conditions for wind turbine design. The subjects and the presented papers covered a very broad range of aspects of wind conditions and related influence on the wind turbine. (EHS)

  10. Vertical Axis Wind Turbines : Tower Dynamics and Noise

    OpenAIRE

    Möllerström, Erik

    2015-01-01

    Vertical axis wind turbines (VAWTs) have with time been outrivaled by the today common and economically feasible horizontal axis wind turbines (HAWTs). However, VAWTs have several advantages such as the possibility to put the drive train at ground level, lower noise emissions and better scaling behavior which still make them interesting for research. The work within this thesis is made in collaboration between the Department of Construction and Energy Engineering at Halmstad University and th...

  11. Understanding electrochemical potentials of cathode materials in rechargeable batteries

    Directory of Open Access Journals (Sweden)

    Chaofeng Liu

    2016-03-01

    Full Text Available Presently, sustainable energy as well as efficient and economical energy conversion and storage technologies has become important work in light of the rising environmental issues and dependence on portable and uninterrupted power sources. Increasingly more researchers are focusing on harvesting and converting solar energy, mechanical vibration, waste heat, and wind to electricity. Electrical energy storage technologies play a significant role in the demand for green and sustainable energy. Rechargeable batteries or secondary batteries, such as Li-ion batteries, Na-ion batteries, and Mg-ion batteries, reversibly convert between electrical and chemical energy via redox reactions, thus storing the energy as chemical potential in their electrodes. The energy density of a rechargeable battery is determined collectively by the specific capacity of electrodes and the working voltage of the cell, which is the differential potential between the cathode and the anode. Over the past decades, a significant number of studies have focused on enhancing this specific capacity; however, studies to understand and manipulate the electrochemical potential of the electrode materials are limited. In this review, the material characteristics that determine and influence the electrochemical potentials of electrodes are discussed. In particular, the cathode materials that convert electricity and chemical potential through electrochemical intercalation reactions are investigated. In addition, we summarize the selection criteria for elements or compounds and the effect of the local atomic environment on the discharge potential, including the effects of site energy, defects, crystallinity, and microstructure, using LiMn2O4, V2O5, Mo6S8, LiFePO4, and LiCoO2 as model samples for discussion.

  12. Optimised battery capacity utilisation within battery management systems

    NARCIS (Netherlands)

    Wilkins, S.; Rosca, B.; Jacob, J.; Hoedmaekers, E.

    2015-01-01

    Battery Management Systems (BMSs) play a key role in the performance of both hybrid and fully electric vehicles. Typically, the role of the BMS is to help maintain safety, performance, and overall efficiency of the battery pack. One important aspect of its operation is the estimation of the state of

  13. Wind energy. From small wind turbines to offshore wind farms

    International Nuclear Information System (INIS)

    This bibliographical sheet presents a book in which the authors present and discuss the present and future developments, challenges and problematic of wind energy. They notably focus on offshore wind farms, their technical solutions and current French projects, with their potentials, economic, administrative and environmental aspects, their sizing issue, and so on. They also explain in detail the potential of wind energy and its conversion, present the different subsystems of a wind turbine and their operation, and describe how to build up a wind farm project. They also address the issues related to small wind turbines

  14. Wind Technologies & Evolving Opportunities (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Robichaud, R.

    2014-07-01

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  15. The optimal angle of Release in Shot Put

    CERN Document Server

    Lenz, Alexander

    2010-01-01

    We determine the optimal angle of release in shot put. The simplest model - mostly used in textbooks - gives a value of $45^\\circ$, while measurements of top athletes cluster around $37 - 38^\\circ$. Including simply the height of the athlete the theory prediction goes down to about $42^\\circ$ for typical parameters of top athletes. Taking further the correlations of the initial velocity of the shot, the angle of release and the height of release into account we predict values around $37 - 38^\\circ$, which coincide perfectly with the measurements.

  16. APOLLO 16: Putting the 'rover' thru its paces

    Science.gov (United States)

    1974-01-01

    APOLLO 16 : Cmdr Young puts the 'rover' thru a full field test... From the film documentary 'APOLLO 16: 'Nothing So Hidden'', part of a documentary series on the APOLLO missions made in the early '70's and narrated by Burgess Meredith. APOLLO 16: Fifth manned lunar landing mission with John W. Young, Ken Mattingly, and Charles M. Duke. Landed at Descartes on April 20 1972. Deployed camera and experiments; performed EVA with lunar roving vehicle. Deployed P&F subsattelite in lunar orbit. Mission Duration 265hrs. 51 min. 5sec.

  17. First in China Caprolactam Pelletizing Line Put on Stream

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ In August 2008 the caprolactam palletizing section at the Shijiazhuang Chemical Fiber Company was put on stream successfully at the first attempt during feeding of process streams. It is told that this is the only one caprolactam pel-letizing facility in China, which is imported from Germany rated at a production capacity of 56 kt/a. Compared to the caprolactam chips, the caprolactam pellets are not prone to moisture pickup and oxidation and can improve the packag-ing environment thanks to its minor amount of pulverized fines to fundamentally prevent safety hazards.

  18. Putting Information First Luciano Floridi and the Philosophy of Information

    CERN Document Server

    Allo, Patrick

    2011-01-01

    Putting Information First focuses on Luciano Floridi's contributions to the philosophy of information. Respected scholars stimulate the debate on the most distinctive and controversial views he defended, and present the philosophy of information as a specific way of doing philosophy.Contains eight essays by leading scholars, a reply by Luciano Floridi, and an epilogue by Terrell W. BynumExplains the importance of philosophy of information as a specific way of doing philosophyFocuses directly on the work of Luciano Floridi in the area of philosophy of information, but also connects to contempor

  19. Effects of variability and rate on battery charge storage and lifespan

    Science.gov (United States)

    Krieger, Elena Marie

    The growing prevalence of hybrid and electric vehicles, intermittent renewable energy sources, and other complex power systems has triggered a rapid increase in demand for energy storage. Unlike portable electronic devices, whose batteries can be recharged according to a pre-determined protocol simply by plugging them into the wall, many of these applications are characterized by highly variable charge and demand profiles. The central objective of this work is to assess the impact of power distribution and frequency on battery behavior in order to improve overall system efficiency and lifespan in these variable power applications. We first develop and experimentally verify a model to describe the trade-off between battery charging power and energy stored to assess how varying power input affects battery efficiency. This relationship is influenced both by efficiency losses at high powers and by premature voltage cutoffs, which contribute to incomplete battery charging and discharging. We experimentally study the impact of variable power on battery aging in lead-acid, nickel metal hydride, lithium-ion and lithium iron phosphate batteries. As a case study we focus on off-grid wind systems, and analyze the impact of both power distribution and frequency on charge acceptance and degradation in each of these chemistries. We suggest that lithium iron phosphate batteries may be more suitable for off-grid electrification projects than standard lead-acid batteries. We experimentally assess the impact of additional variable charging parameters on battery performance, including the interplay between efficiency, frequency of power oscillations, state-of-charge, incomplete charging and path dependence. We develop a frequency-domain model for hybrid energy storage systems that couples non-stationary frequency analysis of variable power signals to a frequency-based metric for energy storage device performance. The experimental and modeling work developed herein can be utilized to

  20. Automotive Battery Modelling and Management

    Directory of Open Access Journals (Sweden)

    N. M. Hammad

    2014-06-01

    Full Text Available The estimation of vehicle battery performance is typically addressed by testing the battery under specific operation conditions by using a model to represent the test results. Approaches for representing test results range from simple statistical models to neural networks to complex, physics-based models. Basing the model on test data could be problematical when testing becomes impractical with many years life time tests. So, real time estimation of battery performance, an important problem in automotive applications, falls into this area. In vehicles it is important to know the state of charge of the batteries in order to prevent vehicle stranding and to ensure that the full range of the vehicle operation is exploited. In this paper, several battery models have studied including analytical, electrical circuits, stochastic and electro- chemical models. Valve Regulated Lead Acid “VRLA” battery has been modelled using electric circuit technique. This model is considered in the proposed Battery Monitoring System “BMS”. The proposed BMS includes data acquisition, data analysis and prediction of battery performance under a hypothetical future loads. Based on these criteria, a microprocessor based BMS prototype had been built and tested in automotive Lab,. The tests show promising results that can be used in industrial applications

  1. Battery system with temperature sensors

    Science.gov (United States)

    Wood, Steven J.; Trester, Dale B.

    2012-11-13

    A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

  2. Redox Flow Batteries, a Review

    OpenAIRE

    Weber, Adam Z.

    2013-01-01

    Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

  3. Which battery model to use?

    NARCIS (Netherlands)

    Jongerden, Marijn R.; Haverkort, Boudewijn R.

    2008-01-01

    The use of mobile devices like cell phones, navigation systems, or laptop computers, is limited by the lifetime of the included batteries. This lifetime depends naturally on the rate at which energy is consumed, however, it also depends on the usage pattern of the battery. Continuous drawing of a hi

  4. Redox Flow Batteries, a Review

    Energy Technology Data Exchange (ETDEWEB)

    Knoxville, U. Tennessee; U. Texas Austin; U, McGill; Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

    2011-07-15

    Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

  5. Techno-Economic aspects on choosing alternative energy sources (sun and wind) compared with generator

    International Nuclear Information System (INIS)

    Independent alternative energy systems, such as wind and solar, need batteries to store produced energy in order to supply a reliable source of electricity when needed. Increasing reliability of these sources automatically influence the quality and availability of this type of power supply. Every solar and wind energy system includes a certain number of principle components : Photovoltaic arrays or wind generator, regulator/control unit to control charge/ discharge of the batteries and power supply to consumers, converters from AC to DC and DC to AC, batteries and load. The mode of system operation for both the independent or combined system is influenced by many complicated factors some of which are stochastic variables, time and location variables or constant. From the above complicated data one must choose the optimal system which answers the following criteria: a. Minimum cost which determines the inter relative array sizes for combined systems (photovoltaic cells wind generator and batteries). b. Reliability of power supply in general. c. Full consumption of power installation by obtaining maximum possible output under existing conditions at any time. This paper deals with the connected problems caused in a combined system of solar/photovoltaic cells, wind generator and batteries and will offer alternative economic and technical alternatives for power supply from fuel operated generators . Inverter components: photovoltaic cells and wind generators, which are the principle components without which solar and/or wind systems cannot exist, are discussed from the theoretical and physical aspects. Also, operation of the attached components, such as batteries, inverters, generators, regulators etc, is discussed. The last part of this paper discusses the choosing of the optimal system in a Techno-economic sense as opposed to energy supplied from generator, The work exhibited on these pages will contribute to better understanding of the different systems while

  6. Wind Power Meteorology

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Mortensen, Niels Gylling; Landberg, Lars;

    Wind power meteorology has evolved as an applied science, firmly founded on boundary-layer meteorology, but with strong links to climatology and geography. It concerns itself with three main areas: siting of wind turbines, regional wind resource assessment, and short-term prediction of the wind...... resource. The history, status and perspectives of wind power meteorology are presented, with emphasis on physical considerations and on its practical application. Following a global view of the wind resource, the elements of boundary layer meteorology which are most important for wind energy are reviewed......: wind profiles and shear, turbulence and gust, and extreme winds. The data used in wind power meteorology stem mainly from three sources: onsite wind measurements, the synoptic networks, and the re-analysis projects. Wind climate analysis, wind resource estimation and siting further require a detailed...

  7. SMES for wind energy systems

    Science.gov (United States)

    Paul Antony, Anish

    simulation results the utility of SMES in voltage sag mitigation for momentary interruptions. The 1MJ SMES mitigates voltage sags for a useful duration ~50 seconds. In conclusion (Chapter 7), we believe that in this dissertation, we have documented the design of SMES for both momentary and sustained interruptions in wind turbines. We have put forth some novel and relevant hypotheses, developed and performed suitable simulation studies to validate these hypotheses. By doing so, we have been able to expand our knowledge in our quest to grasp the underlying mechanisms of storage systems in wind energy integration. Although the resulting analysis has allowed us to gain valuable insight, we feel that it is only the tip of the iceberg, and that many yet unknown discoveries are to be made. We remain hopeful that the future of SMES for wind energy will only look brighter from here onward. (Abstract shortened by UMI.).

  8. A Nation-Sized Battery?

    International Nuclear Information System (INIS)

    The Intermittency Challenge and the approaching need for massive storage of rapidly dispatchable energy has led the concept of the National Battery, a unified facility that holds the aggregated outputs from an array of intrinsically episodic renewable sources, releasing energy as demand requires. In this contribution, the original demonstration of Murphy that lead-acid batteries are inappropriate is first reviewed and then extended to show that no commercially available battery technology is at present appropriate. However, prospectively, underground pumped hydro storage could suffice, and at a lesser cost than suitable batteries. - Highlights: ► Renewable Energy poses an Intermittency Challenge requiring massive storage. ► This challenge will force the USA to store at least 5 TWd of dispatchable energy. ► No commercially available type of battery is demonstrably up to this task. ► Underground pumped hydro seems capable of meeting this need.

  9. Battery selection for space experiments

    Science.gov (United States)

    Francisco, David R.

    1992-10-01

    This paper will delineate the criteria required for the selection of batteries as a power source for space experiments. Four basic types of batteries will be explored, lead acid, silver zinc, alkaline manganese and nickel cadmium. A detailed description of the lead acid and silver zinc cells while a brief exploration of the alkaline manganese and nickel cadmium will be given. The factors involved in battery selection such as packaging, energy density, discharge voltage regulation, and cost will be thoroughly examined. The pros and cons of each battery type will be explored. Actual laboratory test data acquired for the lead acid and silver zinc cell will be discussed. This data will include discharging under various temperature conditions, after three months of storage and with different types of loads. A description of the required maintenance for each type of battery will be investigated. The lifetime and number of charge/discharge cycles will be discussed.

  10. 含规模化电池储能系统的商业型虚拟电厂经济性分析%Economic Analysis of the Virtual Power Plants with Large-scale Battery Energy Storage Systems

    Institute of Scientific and Technical Information of China (English)

    闫涛; 渠展展; 惠东; 刘赟甲; 胡娟; 贾鹏飞

    2014-01-01

    为解决新能源发电过程中功率动态平衡困难、系统投资成本高昂两大突出问题,结合国内某风储系统示范项目,提出基于商业型虚拟电厂(virtual power plant,VPP)的储能系统运行方式。在建立 VPP 经济收益的目标函数以及风力发电厂和电池储能系统的收益、成本等数学模型的基础上,建立了可提供调峰和调频服务的 VPP 经济优化调度模型。以各时段内获得收益最大为目标,采用模拟退火算法计算得到风力发电厂和电池储能系统的出力。参考中国典型地区电价和已经投运的典型电池储能系统的成本为数据,构造算例进行分析。算例分析表明采用 VPP 运行方式可获得更大的收益。%In order to solve the two major problems in the new energy power generation process,namely,the difficultly in dynamic energy balance and high system operation costs,an operation mode of energy storage system based on the commercial virtual power plant(VPP) is put forward by referring to a demonstration project with wind power plants and energy storage systems.On the basis of the adoption of the objective function of VPP economic benefits and that of the benefits and costs of wind power plant and battery energy storage systems,an economical dispatching model for VPP able to provide services to peak load shifting and frequency control,is developed.With the goal of maximizing the profits in each period,the output power of wind power plants and battery energy storage systems is obtained by the simulated annealing algorithm.By referring to the data of electricity price of typical areas in China and the cost of typical battery energy storage system in operation,an example is presented to show that the adoption of the VPP operation mode proposed is able to yield greater benefits.

  11. Economic Analysis of the Virtual Power Plants with Large-scale Battery Energy Storage Systems%含规模化电池储能系统的商业型虚拟电厂经济性分析

    Institute of Scientific and Technical Information of China (English)

    闫涛; 渠展展; 惠东; 刘赟甲; 胡娟; 贾鹏飞

    2014-01-01

    In order to solve the two major problems in the new energy power generation process,namely,the difficultly in dynamic energy balance and high system operation costs,an operation mode of energy storage system based on the commercial virtual power plant(VPP) is put forward by referring to a demonstration project with wind power plants and energy storage systems.On the basis of the adoption of the objective function of VPP economic benefits and that of the benefits and costs of wind power plant and battery energy storage systems,an economical dispatching model for VPP able to provide services to peak load shifting and frequency control,is developed.With the goal of maximizing the profits in each period,the output power of wind power plants and battery energy storage systems is obtained by the simulated annealing algorithm.By referring to the data of electricity price of typical areas in China and the cost of typical battery energy storage system in operation,an example is presented to show that the adoption of the VPP operation mode proposed is able to yield greater benefits.%为解决新能源发电过程中功率动态平衡困难、系统投资成本高昂两大突出问题,结合国内某风储系统示范项目,提出基于商业型虚拟电厂(virtual power plant,VPP)的储能系统运行方式。在建立 VPP 经济收益的目标函数以及风力发电厂和电池储能系统的收益、成本等数学模型的基础上,建立了可提供调峰和调频服务的 VPP 经济优化调度模型。以各时段内获得收益最大为目标,采用模拟退火算法计算得到风力发电厂和电池储能系统的出力。参考中国典型地区电价和已经投运的典型电池储能系统的成本为数据,构造算例进行分析。算例分析表明采用 VPP 运行方式可获得更大的收益。

  12. Influence of Wind Plant Ancillary Frequency Control on System Small Signal Stability

    DEFF Research Database (Denmark)

    Su, Chi; Chen, Zhe

    2012-01-01

    Since large-scale wind farms are increasingly connected to modern power grids, the transmission system operators put more requirements as part of the grid codes on the integration of wind farms. System frequency control which is normally provided by conventional synchronous generators becomes a...

  13. Wind power plants

    Energy Technology Data Exchange (ETDEWEB)

    Stiller, W.

    1980-01-01

    Wind power plants have practically faded into oblivion in Germany. These wind power plants are systems converting wind power into other usable energy forms, mainly into electric current. The irregularity of wind currents requires storage of the energy produced. The cost situation is calculated for a small wind power plant.

  14. Careers in Wind Energy

    Science.gov (United States)

    Liming, Drew; Hamilton, James

    2011-01-01

    As a common form of renewable energy, wind power is generating more than just electricity. It is increasingly generating jobs for workers in many different occupations. Many workers are employed on wind farms: areas where groups of wind turbines produce electricity from wind power. Wind farms are frequently located in the midwestern, western, and…

  15. Wind-energy program

    Science.gov (United States)

    Mitchell, R.; Noun, R. J.; Flaim, T.; Deutsch, M.; Jacobs, E.; Hock, S.; Sklar, H.; Kelley, N. D.

    1982-05-01

    Progress on the wind energy tasks is summarized: program management and planning; WECS applications in nongenerating utilities; technical feasibility of stand-alone SWECS; WECS/storage assessment and options; WECS performance/value analysis; wind energy industry analysis; wind systems coordination; wind workshops; noise and television interference studies; and advanced and innovative wind energy concepts.

  16. Prospecting for Wind

    Science.gov (United States)

    Swapp, Andy; Schreuders, Paul; Reeve, Edward

    2011-01-01

    Many people use wind to help meet their needs. Over the years, people have been able to harness or capture the wind in many different ways. More recently, people have seen the rebirth of electricity-generating wind turbines. Thus, the age-old argument about technology being either good or bad can also be applied to the wind. The wind can be a…

  17. Design and developement of a bidirectional AC/DC battery charger for the sustainable auto rickshaws project

    OpenAIRE

    Montlló i Casabayó, Ernest

    2008-01-01

    The objective of this project is to design a 3 kW nickel‐metal hydride bidirectional battery charger with power factor correction. This electronic power converter is designed to charge batteries with energy from AC mains and also from a solar or wind energy sources, therefore it must be able to transfer energy from the renewable energy source to the net in case of excess. This battery charger is designed as a part of wider project: “Sustainable Transportation Solution for Au...

  18. Used battery collection camping in central Mexico: statics and metal content report, advances in recycling technology and legislative/regulatory situation analysis

    International Nuclear Information System (INIS)

    Nowadays, environmental pollution produced by the disposal of used cells and batteries is a major concern in Mexico. The regulatory law proposal (NMX-AA-104-SCFI-2006) establish a content limit 20, 7.5 and 5 fold higher in Hg, Cd and Pb, respectively, than the European directive 2006/66/CE. Furthermore, transnational companies refused to have participation on the collection/recycling process, putting forward that pollution comes only from illegal market batteries. (Author)

  19. Three essays on the effect of wind generation on power system planning and operations

    Science.gov (United States)

    Davis, Clay Duane

    modified methodology achieves expected costs for the UC-ED problem that are as low as the full stochastic model and markedly lower than the deterministic model. The final essay focuses on valuing energy storage located at a wind site through multiple revenue streams, where energy storage is valued from the perspective of a profit maximizing investor. Given the current state of battery storage technology, a battery capacity of zero is optimal in the setting considered in this essay. The results presented in this essay are dependent on a technological breakthrough that substantially reduces battery cost and conclude that allowing battery storage to simultaneously participate in multiple wholesale markets is optimal relative to participating in any one market alone. Also, co-locating battery storage and wind provides value by altering the optimal transmission line capacity to the battery and wind site. This dissertation considers problems of wind integration from an economic perspective and builds on existing work in this area. The economics of wind integration and utilization are important because wind generation levels are already significant and will likely become more so in the future. While this dissertation adds to the existing literature, additional work is needed in this area to ensure wind generation adds as much value to the overall system as possible.

  20. Effect of operating methods of wind turbine generator system on net power extraction under wind velocity fluctuations in fields

    Energy Technology Data Exchange (ETDEWEB)

    Wakui, Tetsuya; Yamaguchi, Kazuya; Hashizume, Takumi [Waseda Univ., Advanced Research Inst. for Science and Engineering, Tokyo (Japan); Outa, Eisuke [Waseda Univ., Mechanical Engineering Dept., Tokyo (Japan); Tanzawa, Yoshiaki [Nippon Inst. of Technology, Mechanical Engineering Dept., Saitama (Japan)

    1999-01-01

    The effect of how a wind turbine generator system is operated is discussed from the viewpoint of net power extraction with wind velocity fluctuation in relation to the scale and the dynamic behaviour of the system. On a wind turbine generator system consisting of a Darrieus-Savonius hybrid wind turbine, a load generator and a battery, we took up two operating methods: constant tip speed ratio operation for a stand-alone system (Scheme 1) and synchronous operation by connecting a grid (Scheme 2). With our simulation model, using the result of the net extracting power, we clarified that Scheme 1 is more effective than Scheme 2 for small-scale systems. Furthermore, in Scheme 1, the appropriate rated power output of the system under each wind condition can be confirmed. (Author)

  1. Attitudes towards wind power

    International Nuclear Information System (INIS)

    Planning permission for the construction of a small 'farm' of wind turbines at Delabole (Deli windfarm) had been obtained and it was intended to use this source of renewable energy by generating electricity and selling it to the electrical power companies for distribution through the National Grid. It was important, therefore, to establish just what the attitudes of local residents were to the proposed development. A programme of research was discussed with the developer and it was agreed that an attitude survey would be conducted in the local area in the summer of 1990, before the turbines were erected, and before the tourist season was completely spent in order to obtain the views of visitors as well. A similar survey would then be done one year later, when the Deli windfarm was established and running. In addition, control samples would be taken at these two times in Exeter to give baseline information on attitudes toward this topic. This proposal was put to the developer and agreement was reached with him and the UK Department of Energy who were providing financial support for the research. The results of the research are reported. (author)

  2. Alkaline battery, separator therefore

    Science.gov (United States)

    Schmidt, George F. (Inventor)

    1980-01-01

    An improved battery separator for alkaline battery cells has low resistance to electrolyte ion transfer and high resistance to electrode ion transfer. The separator is formed by applying an improved coating to an electrolyte absorber. The absorber, preferably, is a flexible, fibrous, and porous substrate that is resistant to strong alkali and oxidation. The coating composition includes an admixture of a polymeric binder, a hydrolyzable polymeric ester and inert fillers. The coating composition is substantially free of reactive fillers and plasticizers commonly employed as porosity promoting agents in separator coatings. When the separator is immersed in electrolyte, the polymeric ester of the film coating reacts with the electrolyte forming a salt and an alcohol. The alcohol goes into solution with the electrolyte while the salt imbibes electrolyte into the coating composition. When the salt is formed, it expands the polymeric chains of the binder to provide a film coating substantially permeable to electrolyte ion transfer but relatively impermeable to electrode ion transfer during use.

  3. Grid Converters for Stationary Battery Energy Storage Systems

    DEFF Research Database (Denmark)

    Trintis, Ionut

    The integration of renewable energy sources in the power system, with high percentage, is a well known challenge nowadays. Power sources like wind and solar are highly volatile, with uctuations on various time scales. One long term solution is to build a continentwide or worldwide supergrid...... hours, rated at MW and MWh, battery energy storage systems are suitable and ecient solutions. Grid connection of the storage system can be done at dierent voltage levels, depending on the location and application scenario. For high power and energy ratings, increase in the battery and converter voltage...... ratings can enhance the overall system eciency. This work is divided in two parts, "Control of DC-AC Grid Converters" and "Medium Voltage Grid Converters for Energy Storage". The rst part starts with a brief review of control strategies applied to grid connected DC-AC converters. A control implementation...

  4. 77 FR 8325 - Sixth Meeting: RTCA Special Committee 225, Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2012-02-14

    ... Batteries and Battery Systems, Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Batteries and Battery Systems, Small and Medium Size. SUMMARY: The FAA is issuing this notice to advise the public of the sixth meeting of RTCA Special Committee 225, Rechargeable Lithium Batteries and...

  5. 77 FR 20688 - Seventh Meeting: RTCA Special Committee 225, Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2012-04-05

    ... Batteries and Battery Systems, Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Batteries and Battery Systems, Small and Medium Size. SUMMARY: The FAA is issuing this notice to advise the public of the seventh meeting of RTCA Special Committee 225, Rechargeable Lithium Batteries and...

  6. 76 FR 54527 - Fourth Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2011-09-01

    ... and Battery Systems--Small and Medium Sizes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 225 meeting: Rechargeable Lithium Batteries and Battery Systems--Small... Special Committee 225: Rechargeable Lithium Batteries and Battery Systems--Small and Medium Sizes....

  7. 76 FR 38741 - Third Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2011-07-01

    ... and Battery Systems--Small and Medium Sizes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 225 meeting: Rechargeable Lithium Batteries and Battery Systems--Small... Special Committee 225: Rechargeable Lithium Batteries and Battery Systems--Small and Medium Sizes....

  8. 76 FR 6180 - First Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2011-02-03

    ... and Battery Systems--Small and Medium Sizes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 225 meeting: Rechargeable Lithium Batteries and Battery Systems--Small... Special Committee 225: Rechargeable Lithium Batteries and Battery Systems--Small and Medium Sizes....

  9. 76 FR 22161 - Second Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2011-04-20

    ... and Battery Systems--Small and Medium Sizes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 225 meeting: Rechargeable Lithium Batteries and Battery Systems--Small... Special Committee 225: Rechargeable Lithium Batteries and Battery Systems--Small and Medium Sizes....

  10. High energy sodium based room temperature flow batteries

    Science.gov (United States)

    Shamie, Jack

    As novel energy sources such as solar, wind and tidal energies are explored it becomes necessary to build energy storage facilities to load level the intermittent nature of these energy sources. Energy storage is achieved by converting electrical energy into another form of energy. Batteries have many properties that are attractive for energy storage including high energy and power. Among many different types of batteries, redox flow batteries (RFBs) offer many advantages. Unlike conventional batteries, RFBs store energy in a liquid medium rather than solid active materials. This method of storage allows for the separation of energy and power unlike conventional batteries. Additionally flow batteries may have long lifetimes because there is no expansion or contraction of electrodes. A major disadvantage of RFB's is its lower energy density when compared to traditional batteries. In this Thesis, a novel hybrid Na-based redox flow battery (HNFB) is explored, which utilizes a room temperature molten sodium based anode, a sodium ion conducting solid electrolyte and liquid catholytes. The sodium electrode leads to high voltages and energy and allows for the possibility of multi-electron transfer per molecule. Vanadium acetylacetonate (acac) and TEMPO have been investigated for their use as catholytes. In the vanadium system, 2 electrons transfers per vanadium atom were found leading to a doubling of capacity. In addition, degradation of the charged state was found to be reversible within the voltage range of the cell. Contamination by water leads to the formation of vanadyl acetylacetonate. Although it is believed that vanadyl complex need to be taken to low voltages to be reduced back to vanadium acac, a new mechanism is shown that begins at higher voltages (2.1V). Vanadyl complexes react with excess ligand and protons to reform the vanadium complex. During this reaction, water is reformed leading to the continuous cycle in which vanadyl is formed and then reduced back

  11. RELIABILITY OF MACHINE ELEMENTS IN WIND TURBINES

    Directory of Open Access Journals (Sweden)

    Willi GRUENDER

    2010-06-01

    Full Text Available Worldwide electrical energy production generated by wind turbines grows at a rate of 30 percent. This doubles the total production every three years. At the same time the power of individual stations goes up by 20 percent annually. Whereas today the towers, rotors and drive trains have to handle 5 MW, in about six to eight years they might produce up to fifteen MW. As a consequence, enormous pressure is put on the wind turbine manufacturers, the component suppliers and the operators. And because prototype and field testing is limited by its expense, the design of new turbines demands thorough analysis and simulation. Looking at the critical components of a wind turbine this paper describes advanced design tools which help to anticipate failures, but also assists in optimizing reliability and service life. Development of the software tools has been supported by research activities in many universities.

  12. Al/Cl2 molten salt battery

    Science.gov (United States)

    Giner, J.

    1972-01-01

    Molten salt battery has been developed with theoretical energy density of 5.2 j/kg (650 W-h/lb). Battery, which operates at 150 C, can be used in primary mode or as rechargeable battery. Battery has aluminum anode and chlorine cathode. Electrolyte is mixture of AlCl3, NaCl, and some alkali metal halide such as KCl.

  13. High power battery systems for hybrid vehicles

    Science.gov (United States)

    Corson, Donald W.

    Pure electric and hybrid vehicles have differing demands on the battery system of a vehicle. This results in correspondingly different demands on the battery management of a hybrid vehicle. Examples show the differing usage patterns. The consequences for the battery cells and the battery management are discussed. The importance of good thermal management is underlined.

  14. 46 CFR 120.352 - Battery categories.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Battery categories. 120.352 Section 120.352 Shipping... and Distribution Systems § 120.352 Battery categories. This section applies to batteries installed to... sources of power to final emergency loads. (a) Large. A large battery installation is one connected to...

  15. 77 FR 28259 - Mailings of Lithium Batteries

    Science.gov (United States)

    2012-05-14

    ... Mailable Mailable No more than 3 (individual batteries). batteries. 3. Each secondary cell must not contain.... In addition, the Postal Service has moved the lithium battery standards as it relates to... than 1.0 gram (g) of lithium content per cell. 2. Each battery must contain no more than 2.0...

  16. 46 CFR 169.668 - Batteries.

    Science.gov (United States)

    2010-10-01

    ... § 169.668 Batteries. (a) Each battery must be in a location that allows the gas generated in charging to... this section, a battery must not be located in the same compartment with a gasoline tank or gasoline engine. (c) If compliance with paragraph (b) of this section is not practicable, the battery must...

  17. BLET:Battery Lifetime Enhancement Technology

    Institute of Scientific and Technical Information of China (English)

    Yong-Ju; Jang; Seongsoo; Lee

    2010-01-01

    <正>In recent years,mobile devices and high-hearth because of the multifunctional,battery capacity has been increased.In this paper,without the overhead by using the battery discharge characteristics,and application of technology to extend the battery life is explained. Experiment H.264 video transmission to take some losses and extended battery life was achieved.

  18. Plug-in hybrid electric vehicles: battery degradation, grid support, emissions, and battery size tradeoffs

    Science.gov (United States)

    Peterson, Scott B.

    Plug-in hybrid electric vehicles (PHEVs) may become a substantial part of the transportation fleet in a decade or two. This dissertation investigates battery degradation, and how introducing PHEVs may influence the electricity grid, emissions, and petroleum use in the US. It examines the effects of combined driving and vehicle-to-grid (V2G) usage on lifetime performance of commercial Li-ion cells. The testing shows promising capacity fade performance: more than 95% of the original cell capacity remains after thousands of driving days. Statistical analyses indicate that rapid vehicle motive cycling degraded the cells more than slower, V2G galvanostatic cycling. These data are used to examine the potential economic implications of using vehicle batteries to store grid electricity generated at off-peak hours for off-vehicle use during peak hours. The maximum annual profit with perfect market information and no battery degradation cost ranged from ˜US140 to 250 in the three cities. If measured battery degradation is applied the maximum annual profit decreases to ˜10-120. The dissertation predicts the increase in electricity load and emissions due to vehicle battery charging in PJM and NYISO with the current generators, with a 50/tonne CO2 price, and with existing coal generators retrofitted with 80% CO2 capture. It also models emissions using natural gas or wind+gas. We examined PHEV fleet percentages between 0.4 and 50%. Compared to 2020 CAFE standards, net CO2 emissions in New York are reduced by switching from gasoline to electricity; coal-heavy PJM shows smaller benefits unless coal units are fitted with CCS or replaced with lower CO2 generation. NOX is reduced in both RTOs, but there is upward pressure on SO2 emissions or allowance prices under a cap. Finally the dissertation compares increasing the all-electric range (AER) of PHEVs to installing charging infrastructure. Fuel use was modeled with National Household Travel Survey and Greenhouse Gasses, Regulated

  19. Influence of Wind Plant Ancillary Voltage Control on System Small Signal Stability

    DEFF Research Database (Denmark)

    Su, Chi; Chen, Zhe

    2012-01-01

    As a common tendency, large-scale wind farms are increasingly connected to the transmission system of modern power grids. This introduces some new challenges to the connected power systems, and the transmission system operators (TSOs) have to put some new requirements as part of the grid codes on...... the integration of wind farms. One common requirement to wind farms is the function of system voltage control which can be implemented in the grid-side convertor controller of a variable speed wind turbine. This ancillary voltage control provided by wind farms could have some influence on the system...

  20. Wind power; Windenergie

    Energy Technology Data Exchange (ETDEWEB)

    Molly, J.P.

    2003-07-01

    The author reports about wind power in Germany: installed capacity, number of wind turbines, average installed power, annual increase in installation, share of energy consumption, size of turbines, global development of wind energy market. (uke)

  1. Wind energy program overview

    International Nuclear Information System (INIS)

    This overview emphasizes the amount of electric power that could be provided by wind power rather than traditional fossil fuels. New wind power markets, advances in technology, technology transfer, and wind resources are some topics covered in this publication

  2. The Impact of Wind Power on European Natural Gas Markets

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-06

    Due to its clean burning properties, low investment costs and flexibility in production, natural gas is often put forward as the ideal partner fuel for wind power and other renewable sources of electricity generation with strongly variable output. This working paper examines three vital questions associated with this premise: 1) Is natural gas indeed the best partner fuel for wind power? 2) If so, to what extent will an increasing market share of wind power in European electricity generation affect demand for natural gas in the power sector? and 3) Considering the existing European natural gas markets, is natural gas capable of fulfilling this role of partner for renewable sources of electricity?.

  3. 46 CFR 111.15-5 - Battery installation.

    Science.gov (United States)

    2010-10-01

    ... REQUIREMENTS Storage Batteries and Battery Chargers: Construction and Installation § 111.15-5 Battery installation. (a) Large batteries. Each large battery installation must be in a room that is only for batteries... 46 Shipping 4 2010-10-01 2010-10-01 false Battery installation. 111.15-5 Section 111.15-5...

  4. Feasibility Study of Energy Storage Systems in Wind/Diesel Applications Using the HOMER Model

    OpenAIRE

    Andrew Stiel; Maria Skyllas-Kazacos

    2012-01-01

    With an increased focus on solutions to the ensuing “climate crisis”, the need for energy storage systems is becoming increasingly important as a means to increase the penetration of renewable technologies such as wind energy. The Vanadium Redox Battery is one such energy storage system showing considerable potential owing to its flexibility in power output and capacity, high efficiency and long operating life. This study models the use of the Vanadium Redox Battery as an integration technolo...

  5. Putting a price on empathy: against incentivising moral enhancement.

    Science.gov (United States)

    Carter, Sarah

    2015-10-01

    Concerns that people would be disinclined to voluntarily undergo moral enhancement have led to suggestions that an incentivised programme should be introduced to encourage participation. This paper argues that, while such measures do not necessarily result in coercion or undue inducement (issues with which one may typically associate the use of incentives in general), the use of incentives for this purpose may present a taboo trade-off. This is due to empirical research suggesting that those characteristics likely to be affected by moral enhancement are often perceived as fundamental to the self; therefore, any attempt to put a price on such traits would likely be deemed morally unacceptable by those who hold this view. A better approach to address the possible lack of participation may be to instead invest in alternative marketing strategies and remove incentives altogether. PMID:26265725

  6. Medical Education and Curriculum Reform: Putting Reform Proposals in Context

    Directory of Open Access Journals (Sweden)

    Daniel Kam Yin Chan, MD, MB.BS, MHA

    2004-01-01

    Full Text Available The purpose of this paper is to elaborate criteria by which the principles of curriculum reform can be judged. To this end, the paper presents an overview of standard critiques of medical education and examines the ways medical curriculum reforms have responded to these critiques. The paper then sets out our assessment of these curriculum reforms along three parameters: pedagogy, educational context, and knowledge status. Following on from this evaluation of recent curriculum reforms, the paper puts forward four criteria with which to gauge the adequacy medical curriculum reform. These criteria enable us to question the extent to which new curricula incorporate methods and approaches for ensuring that its substance: overcomes the traditional opposition between clinical and resource dimensions of care; emphasizes that the clinical work needs to be systematized in so far as that it feasible; promotes multi-disciplinary team work, and balances clinical autonomy with accountability to non-clinical stakeholders.

  7. Denmark Wind Energy Programme

    DEFF Research Database (Denmark)

    Shen, Wen Zhong

    2014-01-01

    In this paper, a summary of some ongoing wind energy projects in Denmark is given. The research topics comprise computational model development, wind turbine design, low noise airfoil and blade design, control device development, wake modelling, and wind farm layout optimization.......In this paper, a summary of some ongoing wind energy projects in Denmark is given. The research topics comprise computational model development, wind turbine design, low noise airfoil and blade design, control device development, wake modelling, and wind farm layout optimization....

  8. Modelling Wind for Wind Farm Layout Optimization Using Joint Distribution of Wind Speed and Wind Direction

    OpenAIRE

    Ju Feng; Wen Zhong Shen

    2015-01-01

    Reliable wind modelling is of crucial importance for wind farm development. The common practice of using sector-wise Weibull distributions has been found inappropriate for wind farm layout optimization. In this study, we propose a simple and easily implementable method to construct joint distributions of wind speed and wind direction, which is based on the parameters of sector-wise Weibull distributions and interpolations between direction sectors. It is applied to the wind measurement data a...

  9. Feasibility Study of Energy Storage Systems in Wind/Diesel Applications Using the HOMER Model

    Directory of Open Access Journals (Sweden)

    Andrew Stiel

    2012-10-01

    Full Text Available With an increased focus on solutions to the ensuing “climate crisis”, the need for energy storage systems is becoming increasingly important as a means to increase the penetration of renewable technologies such as wind energy. The Vanadium Redox Battery is one such energy storage system showing considerable potential owing to its flexibility in power output and capacity, high efficiency and long operating life. This study models the use of the Vanadium Redox Battery as an integration technology in realistic large-scale remote wind/diesel power systems using the HOMER Micropower Optimization Model computer program developed by the US National Renewable Energy Laboratory. Results from this modelling demonstrate the significant financial and environmental benefits to be gained in installing energy storage in a wind farm. The storage system considered here was a Vanadium Redox Battery.

  10. Storage battery market: profiles and trade opportunities

    Science.gov (United States)

    Stonfer, D.

    1985-04-01

    The export market for domestically produced storage batteries is a modest one, typically averaging 6 to 7% of domestic industry shipments. Exports in 1984 totalled about $167 million. Canada and Mexico were the largest export markets for US storage batteries in 1984, accounting for slightly more than half of the total. The United Kingdom, Saudi Arabia, and the Netherlands round out the top five export markets. Combined, these five markets accounted for two-thirds of all US exports of storage batteries in 1984. On a regional basis, the North American (Canada), Central American, and European markets accounted for three-quarters of total storage battery exports. Lead-acid batteries accounted for 42% of total battery exports. Battery parts followed lead-acid batteries with a 29% share. Nicad batteries accounted for 16% of the total while other batteries accounted for 13%.

  11. Scrapping a Wind Turbine: Policy Changes, Scrapping Incentives and Why Wind Turbines in Good Locations Get Scrapped First

    OpenAIRE

    Mauritzen, Johannes

    2012-01-01

    The most common reason for scrapping a wind turbine in Denmark is to make room for a newer turbine. The decision to scrap a wind turbine is then highly dependent on an opportunity cost that comes from the interaction of scarce land resources, technological change and changes in subsidy policy. Using a Cox regression model I show that turbines that are located in areas with better wind resources are at a higher risk of being scrapped. Policies put in place in order to encourage the scrapping o...

  12. Performance evaluation of stand alone hybrid PV-wind generator

    Science.gov (United States)

    Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.; Jali, Mohd Hafiz; Bukhari, W. M.; Bohari, Z. H.; Yahaya, M. S.

    2015-05-01

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system is based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand.

  13. Performance evaluation of stand alone hybrid PV-wind generator

    International Nuclear Information System (INIS)

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system is based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand

  14. Performance evaluation of stand alone hybrid PV-wind generator

    Energy Technology Data Exchange (ETDEWEB)

    Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.; Jali, Mohd Hafiz; Bukhari, W. M.; Bohari, Z. H. [Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Melaka (Malaysia); Yahaya, M. S. [Faculty of Engineering Technology, Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Melaka (Malaysia)

    2015-05-15

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system is based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand.

  15. Wind for Schools (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, I.

    2010-05-01

    As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community "host" schools, by implementing teacher training with interactive curricula at each host school. This poster provides an overview of the first two years of the Wind for Schools project, primarily supporting activities in Colorado, Kansas, Nebraska, South Dakota, Montana, and Idaho.

  16. Advanced structural wind engineering

    CERN Document Server

    Kareem, Ahsan

    2013-01-01

    This book serves as a textbook for advanced courses as it introduces state-of-the-art information and the latest research results on diverse problems in the structural wind engineering field. The topics include wind climates, design wind speed estimation, bluff body aerodynamics and applications, wind-induced building responses, wind, gust factor approach, wind loads on components and cladding, debris impacts, wind loading codes and standards, computational tools and computational fluid dynamics techniques, habitability to building vibrations, damping in buildings, and suppression of wind-induced vibrations. Graduate students and expert engineers will find the book especially interesting and relevant to their research and work.

  17. Research of STATCOM Impact on Wind Farm LVRT and Protection

    Directory of Open Access Journals (Sweden)

    YI Hai-dong

    2012-12-01

    Full Text Available Because of the wind turbine which possesses low voltage ride through (LVRT capability can keep on working during the system fault, greatly reduce the adverse effects of power grid and ensure the relay protection reliability. However, the asynchronous wind turbine which widely used in home and abroad doesn’t have enough LVRT capability. So this paper proposes a method to enhance the LVRT capability of fixed speed induction generator (FSIG based on wind farm using static synchronous compensator (STATCOM. And this paper establishes the simulation model of asynchronous wind generator wind farm and STATCOM in Matlab/Simulink software; the research results show that the STATCOM device can improve asynchronous wind farm LVRT capability. Then analysis the asynchronous wind generator which possess LVRT ability characteristics and the time of the action protection relations.According to the current wind farm system protection configuration, studying the asynchronous wind farm which with STATCOM device effect on protection configuration of system and the existing problems. At last, putting forward some reasonable measures of improving LVRT cooperate with relay protection characteristics and minimizing probability of wind power units take off the grid.

  18. Power production simulation for wind power assisted systems

    International Nuclear Information System (INIS)

    The addition of WECS to electricity generating facilities increases the operational complexity of the system, since it becomes necessary to compensate for the intermittent and unpredictable output of the wind turbines in order to maintain security of supply. Consequently, when determining the economics of wind energy, their effect on the generating systems as a whole should be fairly assessed, and any operating penalty clearly identified. In this assessment process, the use of good simulation models and reliable wind data are recognized to be of equal importance and Sep, the Dutch Electricity Generating Board, has put substantial effort into improving both modelling techniques and wind data collection. The use of recorded wind data in conjunction with improved simulation models make it impossible to produce a more accurate assessment of the potential application of wind energy in the Netherlands. Some relevant results from the wind monitoring programmes of the past years are presented, together with a description of development in the area of improved modelling of a generating system incorporating wind generating capacity. Lastly, a presentation is given of the way knowledge of wind patterns is currently being applied in conjunction with new computational techniques in a sample case: a first approximation of the economics of 1000 MW installed wind power capacity in the Netherlands by the year 2000. (author). 11 figs, 2 tabs

  19. Simulation-based design of energy management system with storage battery for a refugee shelter in Japan

    Science.gov (United States)

    Kaji, K.; Zhang, J.; Horie, H.; Akimoto, H.; Tanaka, K.

    2013-12-01

    Since the massive earthquake hit eastern Japan in March, 2011, our team has participated in the recovery planning for Kesen Association, which is a group of cities in northeastern Japan. As one of our proposals for the recovery planning for the community, we are designing energy management system with renewable energy (RE) and storage batteries. Some public facilities in the area have been used as refugee shelters, but refugees had to put up with life without electricity for a while after the disaster. If RE generator and storage batteries are introduced into the facilities, it is possible to provide refugees with electricity. In this study, the sizes of photovoltaic (PV) appliances and storage batteries to be introduced into one public facility are optimized. The optimization is based on simulation, in which electric energy is managed by charge and discharge of storage battery.

  20. Simulation-based design of energy management system with storage battery for a refugee shelter in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kaji, K.; Zhang, J.; Horie, H.; Tanaka, K. [Department of Technology Management for Innovation, Graduate School of Engineering, The University of Tokyo (Japan); Akimoto, H. [Korea Advanced Institute of Science and Technology (Korea, Republic of)

    2013-12-10

    Since the massive earthquake hit eastern Japan in March, 2011, our team has participated in the recovery planning for Kesen Association, which is a group of cities in northeastern Japan. As one of our proposals for the recovery planning for the community, we are designing energy management system with renewable energy (RE) and storage batteries. Some public facilities in the area have been used as refugee shelters, but refugees had to put up with life without electricity for a while after the disaster. If RE generator and storage batteries are introduced into the facilities, it is possible to provide refugees with electricity. In this study, the sizes of photovoltaic (PV) appliances and storage batteries to be introduced into one public facility are optimized. The optimization is based on simulation, in which electric energy is managed by charge and discharge of storage battery.

  1. Simulation-based design of energy management system with storage battery for a refugee shelter in Japan

    International Nuclear Information System (INIS)

    Since the massive earthquake hit eastern Japan in March, 2011, our team has participated in the recovery planning for Kesen Association, which is a group of cities in northeastern Japan. As one of our proposals for the recovery planning for the community, we are designing energy management system with renewable energy (RE) and storage batteries. Some public facilities in the area have been used as refugee shelters, but refugees had to put up with life without electricity for a while after the disaster. If RE generator and storage batteries are introduced into the facilities, it is possible to provide refugees with electricity. In this study, the sizes of photovoltaic (PV) appliances and storage batteries to be introduced into one public facility are optimized. The optimization is based on simulation, in which electric energy is managed by charge and discharge of storage battery

  2. Computing lifetimes for battery-powered devices

    OpenAIRE

    Jongerden, Marijn; Haverkort, Boudewijn

    2010-01-01

    The battery lifetime of mobile devices depends on the usage pattern of the battery, next to the discharge rate and the battery capacity. Therefore, it is important to include the usage pattern in battery lifetime computations. We do this by combining a stochastic workload, modeled as a continuous-time Markov model, with a well-known battery model. For this combined model, we provide new algorithms to efficiently compute the expected lifetime and the distribution and expected value of the deli...

  3. Models of novel battery architectures

    Science.gov (United States)

    Haney, Paul; Ruzmetov, Dmitry; Talin, Alec

    2013-03-01

    We use a 1-dimensional model of electronic and ionic transport, coupled with experimental data, to extract the interfacial electrochemical parameters for LiCoO2-LIPON-Si thin film batteries. TEM imaging of batteries has shown that charge/discharge cycles can lead to breakdown of the interfaces, which reduces the effective area through which further Li ion transfer can occur. This is modeled phenomenologically by changing the effective cross sectional area, in order to correlate this structural change with the change in charge/discharge I-V curves. Finally, by adopting the model to radial coordinates, the geometrical effect of nanowire architectures for batteries is investigated.

  4. Understanding electrode materials of rechargeable lithium batteries via DFT calculations

    Institute of Scientific and Technical Information of China (English)

    Tianran Zhang; Daixin Li; Zhanliang Tao; Jun Chenn

    2013-01-01

    Rechargeable lithium batteries have achieved a rapid advancement and commercialization in the past decade owing to their high capacity and high power density. Different functional materials have been put forward progressively, and each possesses distinguishing structural features and electrochemical properties. In virtue of density functional theory (DFT) calculations, we can start from a specific structure to get a deep comprehension and accurate prediction of material properties and reaction mechanisms. In this paper, we review the main progresses obtained by DFT calculations in the electrode materials of rechargeable lithium batteries, aiming at a better understanding of the common electrode materials and gaining insights into the battery performance. The applications of DFT calculations involve in the following points of crystal structure modeling and stability investigations of delithiated and lithiated phases, average lithium intercalation voltage, prediction of charge distributions and band structures, and kinetic studies of lithium ion diffusion processes, which can provide atomic understanding of the capacity, reaction mechanism, rate capacity, and cycling ability. The results obtained from DFT are valuable to reveal the relationship between the structure and the properties, promoting the design of new electrode materials.

  5. A metal-free organic-inorganic aqueous flow battery

    Energy Technology Data Exchange (ETDEWEB)

    Huskinson, B; Marshak, MP; Suh, C; Er, S; Gerhardt, MR; Galvin, CJ; Chen, XD; Aspuru-Guzik, A; Gordon, RG; Aziz, MJ

    2014-01-08

    As the fraction of electricity generation from intermittent renewable sources-such as solar or wind-grows, the ability to store large amounts of electrical energy is of increasing importance. Solid-electrode batteries maintain discharge at peak power for far too short a time to fully regulate wind or solar power output(1,2). In contrast, flow batteries can independently scale the power (electrode area) and energy (arbitrarily large storage volume) components of the system by maintaining all of the electro-active species in fluid form(3-5). Wide-scale utilization of flow batteries is, however, limited by the abundance and cost of these materials, particularly those using redox-active metals and precious-metal electrocatalysts(6,7). Here we describe a class of energy storage materials that exploits the favourable chemical and electro-chemical properties of a family of molecules known as quinones. The example we demonstrate is ametal-free flow battery based on the redox chemistry of 9,10-anthraquinone-2,7-disulphonic acid (AQDS). AQDS undergoes extremely rapid and reversible two-electron two-proton reduction on a glassy carbon electrode in sulphuric acid. An aqueous flow battery with inexpensive carbon electrodes, combining the quinone/hydroquinone couple with the Br-2/Br- redox couple, yields a peak galvanic power density exceeding 0.6 W cm(-2) at 1.3 A cm(-2). Cycling of this quinone-bromide flow battery showed >99 per cent storage capacity retention per cycle. The organic anthraquinone species can be synthesized from inexpensive commodity chemicals(8). This organic approach permits tuning of important properties such as the reduction potential and solubility by adding functional groups: for example, we demonstrate that the addition of two hydroxy groups to AQDS increases the open circuit potential of the cell by 11% and we describe a pathway for further increases in cell voltage. The use of p-aromatic redox-active organic molecules instead of redox-active metals

  6. A metal-free organic-inorganic aqueous flow battery

    Science.gov (United States)

    Huskinson, Brian; Marshak, Michael P.; Suh, Changwon; Er, Süleyman; Gerhardt, Michael R.; Galvin, Cooper J.; Chen, Xudong; Aspuru-Guzik, Alán; Gordon, Roy G.; Aziz, Michael J.

    2014-01-01

    As the fraction of electricity generation from intermittent renewable sources--such as solar or wind--grows, the ability to store large amounts of electrical energy is of increasing importance. Solid-electrode batteries maintain discharge at peak power for far too short a time to fully regulate wind or solar power output. In contrast, flow batteries can independently scale the power (electrode area) and energy (arbitrarily large storage volume) components of the system by maintaining all of the electro-active species in fluid form. Wide-scale utilization of flow batteries is, however, limited by the abundance and cost of these materials, particularly those using redox-active metals and precious-metal electrocatalysts. Here we describe a class of energy storage materials that exploits the favourable chemical and electrochemical properties of a family of molecules known as quinones. The example we demonstrate is a metal-free flow battery based on the redox chemistry of 9,10-anthraquinone-2,7-disulphonic acid (AQDS). AQDS undergoes extremely rapid and reversible two-electron two-proton reduction on a glassy carbon electrode in sulphuric acid. An aqueous flow battery with inexpensive carbon electrodes, combining the quinone/hydroquinone couple with the Br2/Br- redox couple, yields a peak galvanic power density exceeding 0.6Wcm-2 at 1.3Acm-2. Cycling of this quinone-bromide flow battery showed >99 per cent storage capacity retention per cycle. The organic anthraquinone species can be synthesized from inexpensive commodity chemicals. This organic approach permits tuning of important properties such as the reduction potential and solubility by adding functional groups: for example, we demonstrate that the addition of two hydroxy groups to AQDS increases the open circuit potential of the cell by 11% and we describe a pathway for further increases in cell voltage. The use of π-aromatic redox-active organic molecules instead of redox-active metals represents a new and

  7. Battery Ownership Model - Medium Duty HEV Battery Leasing & Standardization

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Ken; Smith, Kandler; Cosgrove, Jon; Prohaska, Robert; Pesaran, Ahmad; Paul, James; Wiseman, Marc

    2015-12-01

    Prepared for the U.S. Department of Energy, this milestone report focuses on the economics of leasing versus owning batteries for medium-duty hybrid electric vehicles as well as various battery standardization scenarios. The work described in this report was performed by members of the Energy Storage Team and the Vehicle Simulation Team in NREL's Transportation and Hydrogen Systems Center along with members of the Vehicles Analysis Team at Ricardo.

  8. Photoelectrochemical solar battery

    International Nuclear Information System (INIS)

    The invention refers to the field of solar-to electric energy conservation and may be used for the creation of photoelectrochemical regenerating converters. Summary of the invention consists in that the photoelectrochemical solar battery includes a semiconducting photo-electrodes and a counter-electrode , placed into the electrolyte solution. The photo-electrode is made of the compounds A3B5, and in the capacity of electrolyte solution is used an aqueoua solution Na2SiO3. The result of the invention consists in the absorbtion from the electrtolyte solution of the ions SiO3 and HSiO3 on the photo-electrode working surface, that leads to a decrease in the corrosion of the latter

  9. MEMS wing technology for a battery-powered ornithopter

    OpenAIRE

    Pornsin-sirirak, T. Nick; Lee, S. W.; Nassef, H.; Grasmeyer, J.; Tai, Y.C.; Ho, C. M.; Keennon, M.

    2000-01-01

    The objective of this project is to develop a battery-powered ornithopter (flapping-wing) Micro Aerial Vehicle (MAV) with MEMS wings. In this paper, we present a novel MEMS-based wing technology that we developed using titanium-alloy metal as wingframe and parylene C as wing membrane. MEMS technology enables systematic research in terms of repeatablility, size control, and weight minimization. We constructed a high quality low-speed wind tunnel with velocity uniformity of 0.5% and speeds from...

  10. NedWind: Cost reduction for 500 kW wind turbines; Application of flexible elements not likely. NedWind zoekt prijsverlaging 500 kW windturbine niet in flexibele elementen

    Energy Technology Data Exchange (ETDEWEB)

    Voorter, P.H.C.

    1990-10-01

    The Dutch firms Newinco and Bouma, both active on the wind turbine market since 1976 and 1981, respectively, have decided to join forces in order to develop cost-efficient 250 kW and 500 kW wind turbines. Differences in wind turbine designs, for example stall regulated or pitch regulated wind turbines, will be phased out. The concept will be stall regulated wind turbines. Turbine blades will be polyester for the 250 kW, polyester or steel for the 500 kW wind turbine. Whether future developments include application of flexible elements (flexhat concepts) is uncertain. Cost calculations do not point in that direction at this moment. Reasons for this cooperation stem from plans of the joint Dutch electric utilities to realize 250 MW wind power in 1995. At the end of 1993 75 MW should be realized so the next two years three tenders for 25 MW each will be put out. 2 ills., 1 tab.

  11. Wind Energy and Transport Synergy: Electric Vehicle or Hydrogen Vehicle?; Sinergia Energia Eolica Transporte: vehiculo electrico o vehiculo de hidrogeno?

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, I.

    2009-07-01

    This article briefly analyzes the potential uses of hydrogen as a form of energy from wind power. It also briefly describes the different experiences gained in wind energy-based hydrogen production by water hydrolysis, and finally it concludes with a brief analysis of the competition between hydrogen and the new ion-lithium batteries used in motor vehicles as potential solutions to support wind energy management. (Author)

  12. Prognostics in Battery Health Management

    Data.gov (United States)

    National Aeronautics and Space Administration — Batteries represent complex systems whose internal state vari- ables are either inaccessible to sensors or hard to measure un- der operational conditions. This work...

  13. Electroactive materials for rechargeable batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huiming; Amine, Khalil; Abouimrane, Ali

    2015-04-21

    An as-prepared cathode for a secondary battery, the cathode including an alkaline source material including an alkali metal oxide, an alkali metal sulfide, an alkali metal salt, or a combination of any two or more thereof.

  14. Ultrasonic enhancement of battery diffusion.

    Science.gov (United States)

    Hilton, R; Dornbusch, D; Branson, K; Tekeei, A; Suppes, G J

    2014-03-01

    It has been demonstrated that sonic energy can be harnessed to enhance convection in Galvanic cells during cyclic voltammetry; however, the practical value of this approach is limited due to the lack of open volumes for convection patterns to develop in most batteries. This study evaluates the ability of ultrasonic waves to enhance diffusion in membrane separators commonly used in sandwich-architecture batteries. Studies include the measuring of open-circuit performance curves to interpret performances in terms of reductions in concentration overpotentials. The use of a 40 kHz sonicator bath can consistently increase the voltage of the battery and reduce overpotential losses up to 30%. This work demonstrates and quantifies battery enhancement due to enhanced diffusion made possible with ultrasonic energy. PMID:24210813

  15. Transparent lithium-ion batteries

    OpenAIRE

    Yang, Yuan; Jeong, Sangmoo; Hu, Liangbing; Wu, Hui; Lee, Seok Woo; Cui, Yi

    2011-01-01

    Transparent devices have recently attracted substantial attention. Various applications have been demonstrated, including displays, touch screens, and solar cells; however, transparent batteries, a key component in fully integrated transparent devices, have not yet been reported. As battery electrode materials are not transparent and have to be thick enough to store energy, the traditional approach of using thin films for transparent devices is not suitable. Here we demonstrate a grid-structu...

  16. Gate-controllable spin battery

    OpenAIRE

    Long, W.; Sun, QF; H. Guo; J. Wang(Institute of High Energy Physics, Chinese Academy of Sciences, Beijing)

    2003-01-01

    We propose a gate-controllable spin-battery for spin current. The spin battery consists of a lateral double quantum dot under a uniform magnetic field. A finite dc spin current is driven out of the device by controlling a set of gate voltages. Spin current can also be delivered in the absence of charge current. The proposed device should be realizable using present technology at low temperature. © 2003 American Institute of Physics.

  17. Iron-Air Rechargeable Battery

    Science.gov (United States)

    Narayan, Sri R. (Inventor); Prakash, G.K. Surya (Inventor); Kindler, Andrew (Inventor)

    2014-01-01

    Embodiments include an iron-air rechargeable battery having a composite electrode including an iron electrode and a hydrogen electrode integrated therewith. An air electrode is spaced from the iron electrode and an electrolyte is provided in contact with the air electrode and the iron electrodes. Various additives and catalysts are disclosed with respect to the iron electrode, air electrode, and electrolyte for increasing battery efficiency and cycle life.

  18. Modeling the Lithium Ion Battery

    Science.gov (United States)

    Summerfield, John

    2013-01-01

    The lithium ion battery will be a reliable electrical resource for many years to come. A simple model of the lithium ions motion due to changes in concentration and voltage is presented. The battery chosen has LiCoO[subscript 2] as the cathode, LiPF[subscript 6] as the electrolyte, and LiC[subscript 6] as the anode. The concentration gradient and…

  19. Separators for Lithium Ion Batteries

    Institute of Scientific and Technical Information of China (English)

    G.C.Li; H.P.Zhang; Y.P.Wu

    2007-01-01

    1 Results A separator for rechargeable batteries is a microporous membrane placed between electrodes of opposite polarity, keeping them apart to prevent electrical short circuits and at the same time allowing rapid transport of lithium ions that are needed to complete the circuit during the passage of current in an electrochemical cell, and thus plays a key role in determining the performance of the lithium ion battery. Here provides a comprehensive overview of various types of separators for lithium io...

  20. Functional materials for rechargeable batteries.

    Science.gov (United States)

    Cheng, Fangyi; Liang, Jing; Tao, Zhanliang; Chen, Jun

    2011-04-19

    There is an ever-growing demand for rechargeable batteries with reversible and efficient electrochemical energy storage and conversion. Rechargeable batteries cover applications in many fields, which include portable electronic consumer devices, electric vehicles, and large-scale electricity storage in smart or intelligent grids. The performance of rechargeable batteries depends essentially on the thermodynamics and kinetics of the electrochemical reactions involved in the components (i.e., the anode, cathode, electrolyte, and separator) of the cells. During the past decade, extensive efforts have been dedicated to developing advanced batteries with large capacity, high energy and power density, high safety, long cycle life, fast response, and low cost. Here, recent progress in functional materials applied in the currently prevailing rechargeable lithium-ion, nickel-metal hydride, lead acid, vanadium redox flow, and sodium-sulfur batteries is reviewed. The focus is on research activities toward the ionic, atomic, or molecular diffusion and transport; electron transfer; surface/interface structure optimization; the regulation of the electrochemical reactions; and the key materials and devices for rechargeable batteries. PMID:21394791

  1. Computer Aided Battery Engineering Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad

    2016-06-07

    A multi-national lab collaborative team was assembled that includes experts from academia and industry to enhance recently developed Computer-Aided Battery Engineering for Electric Drive Vehicles (CAEBAT)-II battery crush modeling tools and to develop microstructure models for electrode design - both computationally efficient. Task 1. The new Multi-Scale Multi-Domain model framework (GH-MSMD) provides 100x to 1,000x computation speed-up in battery electrochemical/thermal simulation while retaining modularity of particles and electrode-, cell-, and pack-level domains. The increased speed enables direct use of the full model in parameter identification. Task 2. Mechanical-electrochemical-thermal (MECT) models for mechanical abuse simulation were simultaneously coupled, enabling simultaneous modeling of electrochemical reactions during the short circuit, when necessary. The interactions between mechanical failure and battery cell performance were studied, and the flexibility of the model for various batteries structures and loading conditions was improved. Model validation is ongoing to compare with test data from Sandia National Laboratories. The ABDT tool was established in ANSYS. Task 3. Microstructural modeling was conducted to enhance next-generation electrode designs. This 3- year project will validate models for a variety of electrodes, complementing Advanced Battery Research programs. Prototype tools have been developed for electrochemical simulation and geometric reconstruction.

  2. The Effects of Multisensory Imagery in Conjunction with Physical Movement Rehearsal on Golf Putting Performance

    Science.gov (United States)

    Ploszay, A. J.; Gentner, Noah B.; Skinner, Christopher H.; Wrisberg, Craig A.

    2006-01-01

    A multiple-baseline design was used to evaluate the effects of a pre-shot putting routine on the putting performance of four NCAA Division I golfers. The routine involved a combination of multisensory imagery and simulated putting movements. Results suggested that the intervention was effective for some participants. Discussion focuses on…

  3. Evaluation of Batteries for Safe Air Transport

    Directory of Open Access Journals (Sweden)

    Nicholas Williard

    2016-05-01

    Full Text Available Lithium-ion batteries are shipped worldwide with many limitations implemented to ensure safety and to prevent loss of cargo. Many of the transportation guidelines focus on new batteries; however, the shipment requirements for used or degraded batteries are less clear. Current international regulations regarding the air transport of lithium-ion batteries are critically reviewed. The pre-shipping tests are outlined and evaluated to assess their ability to fully mitigate risks during battery transport. In particular, the guidelines for shipping second-use batteries are considered. Because the electrochemical state of previously used batteries is inherently different from that of new batteries, additional considerations must be made to evaluate these types of cells. Additional tests are suggested that evaluate the risks of second-use batteries, which may or may not contain incipient faults.

  4. Emergency wind erosion control

    Science.gov (United States)

    February through May is the critical time for wind erosion in Kansas, but wind erosion can happen any time when high winds occur on smooth, wide fields with low vegetation and poor soil structure. The most effective wind erosion control is to ensure a protective cover of residue or growing crop thro...

  5. Wind energy; Energie eolienne

    Energy Technology Data Exchange (ETDEWEB)

    Vachey, C.

    2000-05-01

    This public information paper presents the wind energy resource in the Languedoc Roussillon region, explains how a wind turbine works, the different types of utilization and the cost of the wind energy. The environmental impacts of the wind energy, on the noise and the landscape, are also discussed. (A.L.B.)

  6. Wind turbine state estimation

    DEFF Research Database (Denmark)

    Knudsen, Torben

    2014-01-01

    which was successful. Then the estimation of a wind turbine state including dynamic inflow was tested on a simulated NREL 5MW turbine was performed. This worked perfectly with wind speeds from low to nominal wind speed as the output prediction errors where white. In high wind where the pitch actuator...

  7. Resident selection: are we putting the cart before the horse?

    Science.gov (United States)

    White, Augustus A

    2002-06-01

    The selection of orthopaedic residents is a formidable task. We must put the horse, namely, the consideration of certain societal goals and responsibilities, before the cart, namely, the selection criteria and processes themselves. The recommendation is that the outcomes of our training programs produce, in addition to excellent clinical orthopaedists, some graduates with competence and talent in contribution to diversity, culturally competent care, assistance with elimination of healthcare disparities, skills in research, talent in leadership, skills in administration, and abilities in education. Once specific outcome goals are identified, efforts can be directed to learning to recognize and evaluate the potentials and success foreshadowing characteristics of applicants that predict, or are associated with, the desired outcome competencies. Traditional screening and selection of applicants based largely on grades, test scores, and election to Alpha Omega Alpha honorary society have certain historically based biases and limitations. The historic ethnocentric impacts on Western medical culture are profound, long-standing, and thoroughly interwoven into the fabric of our profession. It is necessary to substantially change our residency selection if we are to achieve some highly significant humanitarian and pragmatic societal goals. PMID:12011718

  8. Don’t put your family at risk

    CERN Multimedia

    Computer Security Team

    2013-01-01

    How easy is it to fall into the trap of cyber-criminals? Get one’s online banking password stolen? Lose photos to third parties? It's easier than you think. One single click to open a malicious attachment or a malicious web page is sufficient to put your family at risk.   Sometimes adversaries even call you in order to get their malicious job done. Once their malware is installed on your home computer, it records all your activity, monitors your online banking activities, steals your passwords, activates your computer’s microphone and camera, and sends all that data back to the adversary. This person can now do whatever they want: take money from your bank account, order books with your Amazon password, deface your Facebook profiles, send strange messages to your peers, or post the captured images of your daughter in front of the computer on dodgy web sites. Not only can you lose (lots of!) money, but having strange messages sent on your b...

  9. Households facing constraints. Fuel poverty put into context

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, Ute [ISG Business School, Paris (France); Meier, Helena [Koeln Univ. (Germany). Energiewirtschaftliches Inst.

    2014-02-15

    The present paper discusses the concept of fuel poverty taking into account the arbitrages made by households when they are facing economic constraints. Fuel poverty is still lacking a common definition throughout Europe: while the UK and France have (different) official definitions, there is still no definition in a country like Germany, or at the European level. Where definitions exist, they often consider that fuel poor households have high energy needs. The possibility of being fuel poor even without having high energy needs and the various arbitrage possibilities of households - i.e. to under-spend and use too little energy - are not systematically discussed. Our paper tries to fill that gap by putting fuel poverty into the larger context of constraints faced by households. Based on a graphical analysis, it shows that different situations of fuel poverty might occur. It results in the identification of two distinct fuel poverty problems: an ''energy inequality'' problem, reflected by the fact that some households pay disproportionately high energy bills, and an ''energy affordability'' problem that can affect a larger share of the population. It finally explores the two types of fuel poverty for European countries and discusses policy implications.

  10. Putting science at the heart of European policy

    CERN Multimedia

    2015-01-01

    One year ago, the incoming European Commission President Jean-Claude Juncker shocked the scientific world by scrapping the post of Chief Scientific Advisor. This week, the Commission made amends by launching a well-considered Scientific Advisory Mechanism (SAM) that not only puts science back at the heart of policy, but does so in a much more structured and robust way than conferring such responsibility on a single individual.     The SAM has two independent strands: an advisory group of seven scientists, and funding through the Horizon 2020 programme for national academies and learned societies to network and collaborate on policy issues. Both are backed up by a secretariat at Commission headquarters in Brussels. When Mr Juncker scrapped the role of Chief Scientific Advisor, it was against a backdrop of sometimes vitriolic attacks on the incumbent, Anne Glover, due to her outspoken views on GMOs. Mr Juncker’s move was seen by some as simply giving in to a powerful lob...

  11. Households facing constraints. Fuel poverty put into context

    International Nuclear Information System (INIS)

    The present paper discusses the concept of fuel poverty taking into account the arbitrages made by households when they are facing economic constraints. Fuel poverty is still lacking a common definition throughout Europe: while the UK and France have (different) official definitions, there is still no definition in a country like Germany, or at the European level. Where definitions exist, they often consider that fuel poor households have high energy needs. The possibility of being fuel poor even without having high energy needs and the various arbitrage possibilities of households - i.e. to under-spend and use too little energy - are not systematically discussed. Our paper tries to fill that gap by putting fuel poverty into the larger context of constraints faced by households. Based on a graphical analysis, it shows that different situations of fuel poverty might occur. It results in the identification of two distinct fuel poverty problems: an ''energy inequality'' problem, reflected by the fact that some households pay disproportionately high energy bills, and an ''energy affordability'' problem that can affect a larger share of the population. It finally explores the two types of fuel poverty for European countries and discusses policy implications.

  12. Case studies in control putting theory to work

    CERN Document Server

    Juričić, Đani

    2013-01-01

    Case Studies in Control presents a framework to facilitate the use of advanced control concepts in real systems based on two decades of research and over 150 successful applications for industrial end-users from various backgrounds. In successive parts the text approaches the problem of putting the theory to work from both ends, theoretical and practical. The first part begins with a stress on solid control theory and the shaping of that theory to solve particular instances of practical problems. It emphasizes the need to establish by experiment whether a model-derived solution will perform properly in reality. The second part focuses on real industrial applications based on the needs and requirements of end-users. Here, the engineering approach is dominant but with theoretical input of varying degree depending on the particular process involved. Following the illustrations of the progress that can be made from either extreme of the well-known theory–practice divide, the text proceeds to a third part relate...

  13. Fico and Miklos put forward the same idea

    International Nuclear Information System (INIS)

    Everybody is advocating a reduction in the fuel excise tax. This is not a good proposal in my opinion it is a bad proposal. These are the words of the then Finance Minister Ivan Miklos published in September 2005 in the daily SME. He was responding to a steep increase in petrol and oil prices as a result of Hurricane Katrina in the United States. Back then Robert Fico as the opposition leader, submitted a proposal for tax reduction to parliament five times, but to no avail. Three years later, the same proposal has been submitted to parliament for the sixth time. I. Miklos announced that if R. Fico does not intend to keep his pre-election promises, he would do it on his behalf. This time he is not putting forward arguments against the change in taxes which he presented as a minister. The situation is completely symmetrical: the current government refuses to reduce taxes and thus the chance for this proposal to be adopted is only theoretical, despite the arguments that high economic growth, good tax collection and the stronger crown make possible even more generous tax reduction as proposed in the revived pre-election promise of the Smer Party. (authors)

  14. Putting flexible animal prospection into context: escaping the theoretical box.

    Science.gov (United States)

    Osvath, Mathias

    2016-01-01

    The debate on non-human future-oriented cognition has long revolved around the question whether such cognition at all occurs. Closer inspection reveals just how much cognition in general-down to its simplest forms-is geared toward predicting the future in a bid to maintain homeostasis and fend off entropy. Over the course of life's existence on Earth, evolution and natural selection have, through a series of evolutionary arms races, gotten increasingly good at achieving this. Prospection has reached its current pinnacle based partly on a system for episodic cognition that-as research increasingly is showing-is not limited principally to human beings. Nevertheless, and despite some notable recent defections, many researchers remain convinced of the merits of the Bischof-Köhler Hypothesis with its claim that no species other than human beings is able to anticipate future needs or otherwise live in anything other than the immediate present moment. What might, at first, appear to be empirical disputes turn out to reveal largely unquestioned theoretical divides. Without due care, one risks setting out conditions for 'true' future orientation that are irrelevant for describing human cognition. In sorting out the theoretical and terminological muddle framing contemporary debate, this article makes a plea for moving beyond past dogmas while putting animal prospection research into the context of evolution and contemporary cognitive science. For further resources related to this article, please visit the WIREs website. PMID:26537868

  15. Redox-flow battery of actinide complexes

    International Nuclear Information System (INIS)

    Np battery and U battery were developed. We suggested that Np redox-flow battery should be (-)|Np3+,Np4+||NpO2+,NpO22+|(+), and U battery (-)|[UIIIT2]-,[UIVT2]0||[UVO2T]-,[UVIO2T]0|(+). The electromotive force at 50 % charge of Np and U battery is 1.10 V and 1.04 V, respectively. The energy efficiency of 70 mA/cm2 of Np and U battery shows 99 % and 98 %, respectively. V redox-flow battery, electrode reactions of An battery, Np battery, U battery and future of U battery are described. The concept of V redox-flow battery, comparison of energy efficiency of Np, U and V battery, oxidation state and ionic species of 3d transition metals and main An, Purbe diagram of Np and U aqueous solution, shift of redox potential of β-diketones by pKa, and specifications of three redox-flow batteries are reported. (S.Y.)

  16. Assessment of wind speed and wind power through three stations in Egypt, including air density variation and analysis results with rough set theory

    International Nuclear Information System (INIS)

    It is well known that the wind energy potential is proportional to both air density and the third power of the wind speed average over a suitable time period. The wind speed and air density have random variables depending on both time and location. The main objective of this work is to derive the most general wind energy potential of the wind formulation putting into consideration the time variable in both wind speed and air density. The correction factor is derived explicitly in terms of the cross-correlation and the coefficients of variation.The application is performed for environmental and wind speed measurements at the Cairo Airport, Kosseir and Hurguada, Egypt. Comparisons are made between Weibull, Rayleigh, and actual data distributions of wind speed and wind power of one year 2005. A Weibull distribution is the best match to the actual probability distribution of wind speed data for most stations. The maximum wind energy potential was 373 W/m2 in June at Hurguada (Red Sea coast) where the annual mean value was 207 W/m2. By Using Rough Set Theory, We Find That the Wind Power Depends on the Wind Speed with greater than air density

  17. Enhancement of micro-grid performance during islanding mode using storage batteries and new fuzzy logic pitch angle controller

    International Nuclear Information System (INIS)

    Research highlights: → Novel fuzzy pitch angle controller is proposed for smoothing wind fluctuation. → Storage batteries are used for performance improve of MG in islanding mode. → Those new techniques are compared with conventional PI pitch angle controller. -- Abstract: Power system deregulation, shortage of transmission capacities and needing to reduce green house gas have led to increase interesting in distributed generations (DGs) especially renewable sources. This study developed a complete model able to analysis and simulates in details the transient dynamic performance of the Micro-Grid (MG) during and subsequent islanding process. Wind speed fluctuations cause high fluctuations in output power of wind turbine which lead to fluctuations of frequency and voltages of the MG during the islanding mode. In this paper a new fuzzy logic pitch angle controller is proposed to smooth the output power of wind turbine to reduce MG frequency and voltage fluctuations during the islanding mode. The proposed fuzzy logic pitch controller is compared with the conventional PI pitch angle controller which usually used for wind turbine power control. Results proved the effectiveness of the proposed fuzzy controller in improvement of the MG performance. Also, this paper proposed using storage batteries technique to reduce the frequency deviation and fluctuations originated from wind power solar power fluctuations. Results indicate that the storage batteries technique is superior than fuzzy logic pitch controller in reducing frequency deviation, but with more expensive than the fuzzy controller. All models and controllers are built using Matlab (registered) Simulink (registered) environment.

  18. Model predictive control for wind power gradients

    DEFF Research Database (Denmark)

    Hovgaard, Tobias Gybel; Boyd, Stephen; Jørgensen, John Bagterp

    2015-01-01

    We consider the operation of a wind turbine and a connected local battery or other electrical storage device, taking into account varying wind speed, with the goal of maximizing the total energy generated while respecting limits on the time derivative (gradient) of power delivered to the grid. We...... use the turbine inertia as an additional energy storage device, by varying its speed over time, and coordinate the flows of energy to achieve the goal. The control variables are turbine pitch, generator torque and charge/discharge rates for the storage device, each of which can be varied over given...... ranges. The system dynamics are quite non-linear, and the constraints and objectives are not convex functions of the control inputs, so the resulting optimal control problem is difficult to solve globally. In this paper, we show that by a novel change of variables, which focuses on power flows, we can...

  19. Wind Loads on Structures

    DEFF Research Database (Denmark)

    Dyrbye, Claes; Hansen, Svend Ole

    pressure to structural response) and design criteria. Starting with an introduction of the wind load chain, the book moves on to meteorological considerations, atmospheric boundary layer, static wind load, dynamic wind load and scaling laws used in wind-tunnel tests. The dynamic wind load covers vibrations...... background material. It derives the theoretical background of wind loaded structures and gives practical applications for a large variety of structures, such as low rise static structures, buildings, chimneys and cable-supported bridges. The European Prestandard on Wind Actions, ENV 1991-2-4, is used...

  20. Financial analysis of utility scale photovoltaic plants with battery energy storage

    International Nuclear Information System (INIS)

    Battery energy storage is a flexible and responsive form of storing electrical energy from Renewable generation. The need for energy storage mainly stems from the intermittent nature of solar and wind energy sources. System integrators are investigating ways to design plants that can provide more stable output power without compromising the financial performance that is vital for investors. Network operators on the other side set stringent requirements for the commissioning of new generation, including preferential terms for energy providers with a well-defined generation profile. The aim of this work is to highlight the market and technology drivers that impact the feasibility of battery energy storage in a Utility-scale solar PV project. A simulation tool combines a battery cycling and lifetime model with a solar generation profile and electricity market prices. The business cases of the present market conditions and a projected future scenario are analyzed. - Highlights: • Generation shifting with batteries allows PV projects to generate additional revenues. • Battery lifetime, lifecycles and price are less relevant than electricity market prices. • Installed battery capacity of up to 50% of the daily PV energy boosts project economy. • A 25% higher premium for energy storage could improve NPV by approximately 65%

  1. Advanced state prediction of lithium-ion traction batteries in hybrid and battery electric vehicle applications

    Energy Technology Data Exchange (ETDEWEB)

    Jadidi, Yasser

    2011-07-01

    Automotive power trains with high energy efficiencies - particularly to be found in battery and hybrid electric vehicles - find increasing attention in the focus of reduction of exhaust emissions and increase of mileage. The underlying concept, the electrification of the power train, is subject to the traction battery and its battery management system since the capability of the battery permits and restricts electric propulsion. Consequently, the overall vehicle efficiency and in particular the operation strategy performance strongly depends on the quality of information about the battery. Besides battery technology, the key challenges are given by both the accurate prediction of battery behaviour and the electrochemical battery degradation that leads to power and capacity fade of the traction battery. This book provides the methodology for development of a battery state monitoring and prediction algorithm for application in a battery management system that accounts for the effects of electrochemical degradation. (orig.)

  2. Vehicles testing of near-term batteries

    Science.gov (United States)

    Conover, R. C.; Hardy, K. S.; Sandberg, J. J.

    1980-01-01

    Vehicles test results are reported for nickel-iron, nickel-zinc, and improved lead-acid batteries developed under the Near-Term Battery Program sponsored by the Department of Energy. The batteries have demonstrated a range improvement of up to 90% over current lead-acid batteries due to improved energy density and ampere-hour capacity, combined with relatively small weight and volume. However, the nickel-iron battery requires a substantial development effort in packaging the circulating electrolyte system and handling the generated hydrogen volume, while the nickel-zinc batteries tested suffer from short cycle life.

  3. Assessment and prediction of wind turbine noise

    International Nuclear Information System (INIS)

    The significance of basic aerodynamic noise sources for wind turbine noise are assessed, using information on the aero-acoustic mechanisms of other rotors, which have been studied in depth for many years. From the analysis, areas of potential improvement in wind turbine noise prediction are defined. Suggestions are made for approaches to wind turbine noise control which separate the noise problems at cut-in from those at rated power. Some of these offer the possibility of noise reduction without unfavourable effects on performance. Based on this analysis, a new model for prediction of wind turbine noise is presented and comparisons made between prediction and experiment. The model is based on well established aeroacoustic theory and published laboratory data for the two principal sources, inflow turbulence and boundary layer trailing edge interaction. The new method gives good agreement with experiment with the case studied so far. Parametric trends and sensitivities for the model are presented. Comparisons with previous prediction methods are also given. A consequence of the new model is to put more emphasis on boundary layer trailing edge interaction as a noise source. There are prospects for reducing noise from this source detail changes to the wind turbine design. (author)

  4. 空间氢镍电池技术的发展%Progress of nickel hydrogen battery for space application

    Institute of Scientific and Technical Information of China (English)

    王传东

    2012-01-01

    简要叙述了空间氢镍电池技术的发展,主要对共用压力容器(CPV)氢镍电池和单一压力容器(SPV)氢镍电池的技术发展及应用进行了介绍.认为氢镍电池作为储能电源应用于航天领域的前景是光明的.%Wind, PV and other renewable energy distributed generation (OG) are intermittent and random generation by the occurring weather and climate, and its unstability is the major obstacle to its extensive development The development and application of energy storage technology solves the problem of connection of the wind power and photovoltaic power generation to the grid and eliminates the consumption problem. The technology development, structure and principle of energy storage of primary chemical storage batteries including lead acid batten/, flow battery, sodium sulfur battery and lithium battery were described, their performance and characteristics were compared, and especially, their energy density, power density and power level were introduced in detail, which was the key to select the battery energy storage system. Finally, the future application and development of energy storage batteries was proposed.

  5. An Icelandic wind atlas

    Science.gov (United States)

    Nawri, Nikolai; Nína Petersen, Gudrun; Bjornsson, Halldór; Arason, Þórður; Jónasson, Kristján

    2013-04-01

    While Iceland has ample wind, its use for energy production has been limited. Electricity in Iceland is generated from renewable hydro- and geothermal source and adding wind energy has not be considered practical or even necessary. However, adding wind into the energy mix is becoming a more viable options as opportunities for new hydro or geothermal power installation become limited. In order to obtain an estimate of the wind energy potential of Iceland a wind atlas has been developed as a part of the Nordic project "Improved Forecast of Wind, Waves and Icing" (IceWind). The atlas is based on mesoscale model runs produced with the Weather Research and Forecasting (WRF) Model and high-resolution regional analyses obtained through the Wind Atlas Analysis and Application Program (WAsP). The wind atlas shows that the wind energy potential is considerable. The regions with the strongest average wind are nevertheless impractical for wind farms, due to distance from road infrastructure and power grid as well as harsh winter climate. However, even in easily accessible regions wind energy potential in Iceland, as measured by annual average power density, is among the highest in Western Europe. There is a strong seasonal cycle, with wintertime power densities throughout the island being at least a factor of two higher than during summer. Calculations show that a modest wind farm of ten medium size turbines would produce more energy throughout the year than a small hydro power plants making wind energy a viable additional option.

  6. ARRA-Multi-Level Energy Storage and Controls for Large-Scale Wind Energy Integration

    Energy Technology Data Exchange (ETDEWEB)

    David Wenzhong Gao

    2012-09-30

    The Project Objective is to design innovative energy storage architecture and associated controls for high wind penetration to increase reliability and market acceptance of wind power. The project goals are to facilitate wind energy integration at different levels by design and control of suitable energy storage systems. The three levels of wind power system are: Balancing Control Center level, Wind Power Plant level, and Wind Power Generator level. Our scopes are to smooth the wind power fluctuation and also ensure adequate battery life. In the new hybrid energy storage system (HESS) design for wind power generation application, the boundary levels of the state of charge of the battery and that of the supercapacitor are used in the control strategy. In the controller, some logic gates are also used to control the operating time durations of the battery. The sizing method is based on the average fluctuation of wind profiles of a specific wind station. The calculated battery size is dependent on the size of the supercapacitor, state of charge of the supercapacitor and battery wear. To accommodate the wind power fluctuation, a hybrid energy storage system (HESS) consisting of battery energy system (BESS) and super-capacitor is adopted in this project. A probability-based power capacity specification approach for the BESS and super-capacitors is proposed. Through this method the capacities of BESS and super-capacitor are properly designed to combine the characteristics of high energy density of BESS and the characteristics of high power density of super-capacitor. It turns out that the super-capacitor within HESS deals with the high power fluctuations, which contributes to the extension of BESS lifetime, and the super-capacitor can handle the peaks in wind power fluctuations without the severe penalty of round trip losses associated with a BESS. The proposed approach has been verified based on the real wind data from an existing wind power plant in Iowa. An

  7. Bifunctional redox flow battery

    International Nuclear Information System (INIS)

    A new bifunctional redox flow battery (BRFB) system, V(III)/V(II)-L-cystine(O2), was systematically investigated by using different separators. It is shown that during charge, water transfer is significantly restricted with increasing the concentration of HBr when the Nafion 115 cation exchange membrane is employed. The same result can be obtained when the gas diffusion layer (GDL) hot-pressed separator is used. The organic electro-synthesis is directly correlated with the crossover of vanadium. When employing the anion exchange membrane, the electro-synthesis efficiency is over 96% due to a minimal crossover of vanadium. When the GDL hot-pressed separator is applied, the crossover of vanadium and water transfer are noticeably prevented and the electro-synthesis efficiency of over 99% is obtained. Those impurities such as vanadium ions and bromine can be eliminated through the purification of organic electro-synthesized products. The purified product is identified to be L-cysteic acid by IR spectrum. The BRFB shows a favorable discharge performance at a current density of 20 mA cm-2. Best discharge performance is achieved by using the GDL hot-pressed separator. The coulombic efficiency of 87% and energy efficiency of about 58% can be obtained. The cause of major energy losses is mainly associated with the cross-contamination of anodic and cathodic active electrolytes

  8. A feasibility study of a stand-alone hybrid solar–wind–battery system for a remote island

    International Nuclear Information System (INIS)

    Highlights: • A feasibility study of a hybrid solar–wind–battery system is carried out. • Techno-economic evaluation is conducted for this proposed system. • Thousands of cases are simulated to achieve an optimal system configuration. • The performance of the proposed system is analyzed in detail. • A sensitivity analysis on its load and renewable energy resource is performed. - Abstract: This paper presents a detailed feasibility study and techno-economic evaluation of a standalone hybrid solar–wind system with battery energy storage for a remote island. The solar radiation and wind data on this island in 2009 was recorded for this study. The HOMER software was employed to do the simulations and perform the techno-economic evaluation. Thousands of cases have been carried out to achieve an optimal autonomous system configuration, in terms of system net present cost (NPC) and cost of energy (COE). A detailed analysis, description and expected performance of the proposed system were presented. Moreover, the effects of the PV panel sizing, wind turbine sizing and battery bank capacity on the system’s reliability and economic performance were examined. Finally, a sensitivity analysis on its load consumption and renewable energy resource was performed to evaluate the robustness of economic analysis and identify which variable has the greatest impact on the results. The results demonstrate the techno-economic feasibility of implementing the solar–wind battery system to supply power to this island

  9. Coping with climate change and China's wind energy sustainable development

    Directory of Open Access Journals (Sweden)

    De-Xin He

    2016-03-01

    Full Text Available Greenhouse gas emissions are the main cause of today's climate change. To address this problem, the world is in an era of new round energy transformation, and the existing energy structure is being reformed. In this paper, according to the Chinese government's action plan for coping with climate change, the China's wind energy sustainable development goals and development route are discussed, and the countermeasures and suggestions are put forward. Wind energy is currently a kind of important renewable energy with matured technology which can be scale-up developed and put into commercial application, and in this transformation, wind energy will play a key role with other non-fossil energy sources. The development and utilization of wind energy is a systematic project, which needs to be solved from the aspects of policy, technology and management. At present, China is in the stage of transferring from “large wind power country” to “strong wind power country”, opportunities and challenges coexist, and the advantages of China's socialist system could be fully used, which can concentrate power to do big things and make contribution in the process of realizing global energy transformation.

  10. Wind Turbines on CO2 Neutral Luminaries in Urban Areas

    OpenAIRE

    Skrzypinski, Witold Robert; Bak, Christian; Beller, Christina; Thorseth, Anders; Bühler, Fabian; Poulsen, Peter Behrensdorff; Andresen, Christian

    2013-01-01

    In the present work, an overview of three different wind turbines used in hybrid luminaries is presented. The turbines are: vertical-axis twisted Savonius, three-blade horizontal-axis, and vertical-axis three-blade helical H-rotor. The considered luminaries are also equipped with photovoltaic panels and batteries, detailed investigation of which is outside the scope of the present manuscript. Analysis of the turbines’ performance based on producer-supplied power curves is presented together w...

  11. Portable Battery Charger Berbasis Sel Surya

    Directory of Open Access Journals (Sweden)

    Budhi Anto

    2014-04-01

    Full Text Available A type of solar battery charger is introduced in this paper. This equipment functions as a medium size rechargeable battery that is needed to move culinary merchants and coastal fishermen living in area which is not supplied by electrical networks. The equipment consists of solar module mounted onto portable mechanical construction, a 12-V 7.5-Ah lead acid battery and charge controller. Solar module charges the battery through charge controller and then the battery can be discharged to power on electric lamps for lightening culinary wagon or fisherman’s boat at night. Charge controller charges the battery with float charging which is implemented by maintaining 13.5 Volt between battery terminals and limiting the charging current to 1.5 Amperes. Charge controller circuit is based on adjustable linear voltage regulator LM338. The battery is of sealed lead acid type. This type of battery is maintenance free and more hygiene than other types of lead acid battery. The field experiment of charging the baterry of 50% residual capacity from 8 am to 4 pm under sunny weather shows that the solar module has charged the battery to its full capacity under battery safe charging conditions.Keywords: portable solar battery charger, float charging, LM338

  12. Interrupt-Based Step-Counting to Extend Battery Life in an Activity Monitor

    Directory of Open Access Journals (Sweden)

    Seung Young Kim

    2016-01-01

    Full Text Available Most activity monitors use an accelerometer and gyroscope sensors to characterize the wearer’s physical activity. The monitor measures the motion by polling an accelerometer or gyroscope sensor or both every 20–30 ms and frequent polling affects the battery life of a wearable device. One of the key features of a commercial daily-activity monitoring device is longer battery life so that the user can keep track of his or her activity for a week or so without recharging the battery of the monitoring device. Many low-power approaches for a step-counting system use either a polling-based algorithm or an interrupt-based algorithm. In this paper, we propose a novel approach that uses the tap interrupt of an accelerometer to count steps while consuming low power. We compared the accuracy of step counting and measured system-level power consumption to a periodic sensor-reading algorithm. Our tap interrupt approach shows a battery lifetime that is 175% longer than that of a 30 ms polling method without gyroscope. The battery lifetime can be extended up to 863% with a gyroscope by putting both the processor and the gyroscope into sleep state during the majority of operation time.

  13. Offshore wind resource estimation for wind energy

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Mouche, A.;

    2010-01-01

    Satellite remote sensing from active and passive microwave instruments is used to estimate the offshore wind resource in the Northern European Seas in the EU-Norsewind project. The satellite data include 8 years of Envisat ASAR, 10 years of QuikSCAT, and 23 years of SSM/I. The satellite...... observations are compared to selected offshore meteorological masts in the Baltic Sea and North Sea. The overall aim of the Norsewind project is a state-of-the-art wind atlas at 100 m height. The satellite winds are all valid at 10 m above sea level. Extrapolation to higher heights is a challenge. Mesoscale...... modeling of the winds at hub height will be compared to data from wind lidars observing at 100 m above sea level. Plans are also to compare mesoscale model results and satellite-based estimates of the offshore wind resource....

  14. A Power Smoothing Control Strategy and Optimized Allocation of Battery Capacity Based on Hybrid Storage Energy Technology

    Directory of Open Access Journals (Sweden)

    Yong Li

    2012-05-01

    Full Text Available Wind power parallel operation is an effective way to realize the large scale use of wind power, but the fluctuations of power output from wind power units may have great influence on power quality, hence a new method of power smoothing and capacity optimized allocation based on hybrid energy storage technology is proposed in terms of the uncontrollable and unexpected characteristics of wind speed in wind farms. First, power smoothing based on a traditional Inertial Filter is introduced and the relationship between the time constant, its smoothing effect and capacity allocation are analyzed and combined with Proportional Integral Differential (PID control to realize power smoothing control of wind power. Then wavelet theory is adopted to realize a multi-layer decomposition of power output in some wind farms, a power smoothing model based on hybrid energy storage technology is constructed combining the characteristics of the Super Capacitor (SC and Battery Energy Storage System (BESS technologies. The hybrid energy storage system is available for power fluctuations with high frequency-low energy and low frequency-high energy to achieve good smoothing effects compared with a single energy storage system. The power fluctuations filtered by the Wavelet Transform is regarded as the target value of BESS, the charging and discharging control for battery is completed quickly by Model Algorithm Control (MAC. Because of the influence of the inertia and the response speed of the battery, its actual output is not completely equal to the target value which mainly reflects in high-frequency part, the difference part uses SC to compensate and makes the output of battery and SC closer to the target value on the whole. Compared with the traditional Inertial Filter and PID control method, the validity of the model was verified by simulation results. Finally under the premise of power grid standards, the corresponding capacity design had been given to reduce the

  15. Wind turbine wakes for wind energy

    OpenAIRE

    Gunner C. Larsen; Crespo Martínez, Antonio

    2011-01-01

    During recent years, wind energy has moved from an emerging technology to a nearly competitive technology. This fact, coupled with an increasing global focus on environmental concern and a political desire of a certain level of diversification in the energy supply, ensures wind energy an important role in the future electricity market. For this challenge to be met in a cost-efficient way, a substantial part of new wind turbine installations is foreseen to be erected in big onshore or offshore...

  16. Wind speed forecasting for wind energy applications

    Science.gov (United States)

    Liu, Hong

    With more wind energy being integrated into our grid systems, forecasting wind energy has become a necessity for all market participants. Recognizing the market demands, a physical approach to site-specific hub-height wind speed forecasting system has been developed. This system is driven by the outputs from the Canadian Global Environmental Multiscale (GEM) model. A simple interpolation approach benchmarks the forecasting accuracy inherited from GEM. Local, site specific winds are affected on a local scale by a variety of factors including representation of the land surface and local boundary-layer process over heterogeneous terrain which have been a continuing challenge in NWP models like GEM with typical horizontal resolution of order 15-km. In order to resolve these small scale effects, a wind energy industry standard model, WAsP, is coupled with GEM to improve the forecast. Coupling the WAsP model with GEM improves the overall forecasts, but remains unsatisfactory for forecasting winds with abrupt surface condition changes. Subsequently in this study, a new coupler that uses a 2-D RANS model of boundary-layer flow over surface condition changes with improved physics has been developed to further improve the forecasts when winds coming from a water surface to land experience abrupt changes in surface conditions. It has been demonstrated that using vertically averaged wind speeds to represent geostrophic winds for input into the micro-scale models could reduce forecast errors. The hub-height wind speed forecasts could be further improved using a linear MOS approach. The forecasting system has been evaluated, using a wind energy standard evaluation matrix, against data from an 80-m mast located near the north shore of Lake Erie. Coupling with GEM-LAM and a power conversion model using a theoretical power curve have also been investigated. For hub-height wind speeds GEM appears to perform better with a 15-Ian grid than the high resolution GEM-2.5Ian version at the

  17. Climatic wind tunnel for wind engineering tasks

    Czech Academy of Sciences Publication Activity Database

    Kuznetsov, Sergeii; Pospíšil, Stanislav; Král, Radomil

    2015-01-01

    Roč. 112, 2-B (2015), s. 303-316. ISSN 1897-628X R&D Projects: GA ČR(CZ) GA14-12892S Keywords : climatic tunnel * wind tunnel * atmospheric boundary layer * flow resistance * wind tunnel contraction Subject RIV: JM - Building Engineering https://suw.biblos.pk.edu.pl/resources/i5/i6/i6/i7/i6/r56676/KuznetsovS_ClimaticWind.pdf

  18. Technical and Economic Study of Wind Power for an Educational Space in Hormozgan Provinc

    OpenAIRE

    Hassan Davari; Ashkan Noormohamadi; Toofan Parnian; Nader Zarnegarian

    2014-01-01

    In this research, power supply project of a school with 5 classrooms in Hormozgan Province in south of Iran through wind energy was studied. First, rate of the required energy of this school was estimated by reviewing electrical structures of the project. In the next phase, considering the required energy of this training place, the equipment required for the wind power including turbine, controller charge, inverter and battery bank has been calculated. Considering the cost price of this equi...

  19. Control of a Stand-Alone Variable Speed Wind Energy Supply System †

    OpenAIRE

    Mohamed M. Hamada; Mohamed A. A. Wahab; Tomonobu Senjyu; Mohamed Orabi; Mahmoud M. Hussein

    2013-01-01

    This paper presents a simple control strategy for the operation of a variable speed stand-alone wind turbine with a permanent magnet synchronous generator (PMSG). The PMSG is connected to a three phase resistive load through a switch mode rectifier and a voltage source inverter. Control of the generator side converter is used to achieve maximum power extraction from the available wind power. Control of the DC-DC bidirectional buck-boost converter, which is connected between batteries bank and...

  20. Energy Storage System with Voltage Equalization Strategy for Wind Energy Conversion

    OpenAIRE

    Cheng-Tao Tsai

    2012-01-01

    In this paper, an energy storage system with voltage equalization strategy for wind energy conversion is presented. The proposed energy storage system provides a voltage equalization strategy for series-connected lead-acid batteries to increase their total storage capacity and lifecycle. In order to draw the maximum power from the wind energy, a perturbation-and-observation method and digital signal processor (DSP) are incorporated to implement maximum power point tracking (MPPT) algorithm an...

  1. Energy Coordinative Optimization of Wind-Storage-Load Microgrids Based on Short-Term Prediction

    OpenAIRE

    Changbin Hu; Shanna Luo; Zhengxi Li; Xin Wang; Li Sun

    2015-01-01

    According to the topological structure of wind-storage-load complementation microgrids, this paper proposes a method for energy coordinative optimization which focuses on improvement of the economic benefits of microgrids in the prediction framework. First of all, the external characteristic mathematical model of distributed generation (DG) units including wind turbines and storage batteries are established according to the requirements of the actual constraints. Meanwhile, using the minimum ...

  2. Controllers for Battery Chargers and Battery Chargers Therefrom

    Science.gov (United States)

    Elmes, John (Inventor); Kersten, Rene (Inventor); Pepper, Michael (Inventor)

    2014-01-01

    A controller for a battery charger that includes a power converter has parametric sensors for providing a sensed Vin signal, a sensed Vout signal and a sensed Iout signal. A battery current regulator (BCR) is coupled to receive the sensed Iout signal and an Iout reference, and outputs a first duty cycle control signal. An input voltage regulator (IVR) receives the sensed Vin signal and a Vin reference. The IVR provides a second duty cycle control signal. A processor receives the sensed Iout signal and utilizes a Maximum Power Point Tracking (MPPT) algorithm, and provides the Vin reference to the IVR. A selection block forwards one of the first and second duty cycle control signals as a duty cycle control signal to the power converter. Dynamic switching between the first and second duty cycle control signals maximizes the power delivered to the battery.

  3. TRNSYS HYBRID wind diesel PV simulator

    Energy Technology Data Exchange (ETDEWEB)

    Quinlan, P.J.A.; Mitchell, J.W.; Klein, S.A.; Beckman, W.A.; Blair, N.J. [Univ. of Wisconsin, Madison, WI (United States)

    1996-12-31

    The Solar Energy Laboratory (SEL) has developed a wind diesel PV hybrid systems simulator, UW-HYBRID 1.0, an application of the TRNSYS 14.2 time-series simulation environment. An AC/DC bus links up to five diesels and wind turbine models, along with PV modules, a battery bank, and an AC/DC converter. Multiple units can be selected. PV system simulations include solar angle and peak power tracking options. Weather data are Typical Meteorological Year data, parametrically generated synthesized data, or external data files. PV performance simulations rely on long-standing SEL-developed algorithms. Loads data are read as scalable time series. Diesel simulations include estimated fuel-use and waste heat output, and are dispatched using a least-cost of fuel strategy. Wind system simulations include varying air density, wind shear and wake effects. Time step duration is user-selectable. UW-HYBRID 1.0 runs in Windows{reg_sign}, with TRNSED providing a customizable user interface. 12 refs., 6 figs.

  4. Wind Tunnel Measurements at LM Wind Power

    DEFF Research Database (Denmark)

    Bertagnolio, Franck

    2012-01-01

    The optimization of airfoil profiles specifically designed for wind turbine application was initiated in the late 80’s [67, 68, 30, 15]. The first attempts to reduce airfoil noise for wind turbines made use of airfoil trailing edge serration. Themodification of airfoil shapes targeted at noise re...... constraints at the same time. In this way, the resulting airfoil should remain a realistic candidate for wind turbine applications and comparisons between the original and optimized airfoils remain fair. As for the verification in wind tunnel, the reader is referred to Section 7.3....

  5. A terracotta bio-battery.

    Science.gov (United States)

    Ajayi, Folusho F; Weigele, Peter R

    2012-07-01

    Terracotta pots were converted into simple, single chamber, air-cathode bio-batteries. This bio-battery design used a graphite-felt anode and a conductive graphite coating without added catalyst on the exterior as a cathode. Bacteria enriched from river sediment served as the anode catalyst. These batteries gave an average OCV of 0.56 V ± 0.02, a Coulombic efficiency of 21 ± 5%, and a peak power of 1.06 mW ± 0.01(33.13 mW/m(2)). Stable current was also produced when the batteries were operated with hay extract in salt solution. The bacterial community on the anode of the batteries was tested for air tolerance and desiccation resistance over a period ranging from 2 days to 2 weeks. The results showed that the anode community could survive complete drying of the electrolyte for several days. These data support the further development of this technology as a potential power source for LED-based lighting in off-grid, rural communities. PMID:22609660

  6. 78 FR 38093 - Thirteenth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-06-25

    ... Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is issuing this notice to advise the public of the twelfth meeting of the RTCA Special Committee 225, Rechargeable Lithium...

  7. 78 FR 16031 - Twelfth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-03-13

    ... Federal Aviation Administration Twelfth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is issuing this notice...

  8. 78 FR 6845 - Eleventh Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-01-31

    ... Federal Aviation Administration Eleventh Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is issuing this notice...

  9. 77 FR 39321 - Eighth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2012-07-02

    ... Federal Aviation Administration Eighth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Sizes AGENCY: Federal Aviation Administration (FAA), U.S... Lithium Battery and Battery Systems--Small and Medium Sizes. SUMMARY: The FAA is issuing this notice...

  10. 77 FR 29633 - Alta Wind VII, LLC, Alta Wind IX, LLC, Alta Wind X, LLC, Alta Wind XI, LLC, Alta Wind XII, LLC...

    Science.gov (United States)

    2012-05-18

    ... Energy Regulatory Commission Alta Wind VII, LLC, Alta Wind IX, LLC, Alta Wind X, LLC, Alta Wind XI, LLC... Practice and Procedure, 18 CFR 385.207, Alta Wind VII, LLC, Alta Wind IX, LLC, Alta Wind X, LLC, Alta Wind... to firm transmission rights to the capacity of three transmission lines to be constructed by Alta...

  11. Hubble Space Telescope Battery Capacity Update

    Science.gov (United States)

    Hollandsworth, Roger; Armantrout, Jon; Rao, Gopalakrishna M.

    2007-01-01

    Orbital battery performance for the Hubble Space Telescope is discussed and battery life is predicted which supports decision to replace orbital batteries by 2009-2010 timeframe. Ground characterization testing of cells from the replacement battery build is discussed, with comparison of data from battery capacity characterization with cell studies of Cycle Life and 60% Stress Test at the Naval Weapons Surface Center (NWSC)-Crane, and cell Cycle Life testing at the Marshal Space Flight Center (MSFC). The contents of this presentation includes an update to the performance of the on-orbit batteries, as well as a discussion of the HST Service Mission 4 (SM4) batteries manufactured in 1996 and activated in 2000, and a second set of SM4 backup replacement batteries which began manufacture Jan 11, 2007, with delivery scheduled for July 2008.

  12. Market for nickel-cadmium batteries

    Science.gov (United States)

    Putois, F.

    Besides the lead/acid battery market, which has seen a tremendous development linked with the car industry, the alkaline rechargeable battery market has also been expanded for more than twenty years, especially in the field of portable applications with nickel-cadmium batteries. Today, nickel-cadmium batteries have to face newcomers on the market, such as nickel-metal hydride, which is another alkaline couple, and rechargeable lithium batteries; these new battery systems have better performances in some areas. This work illustrates the status of the market for nickel-cadmium batteries and their applications. Also, for two major applications—the cordless tool and the electric vehicles—the competitive situation of nickel-cadmium batteries; facing new systems such as nickel-metal hydride and lithium ion cells are discussed.

  13. Validation of Battery Safety for Space Missions

    Science.gov (United States)

    Jeevarajan, Judith

    2012-01-01

    Presentation covers: (1) Safety Certification Process at NASA (2) Safety Testing for Lithium-ion Batteries (3) Limitations Observed with Li-ion Batteries in High Voltage and High Capacity Configurations.

  14. The NTS-2 nickel-hydrogen battery

    Science.gov (United States)

    Betz, F.

    1977-01-01

    Features of the first operational nickel hydrogen battery are described as well as experiences encountered during its testing and installation. Battery performance since launching of the NTS-2 satellite is discussed.

  15. Li-ion Battery Aging Datasets

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set has been collected from a custom built battery prognostics testbed at the NASA Ames Prognostics Center of Excellence (PCoE). Li-ion batteries were run...

  16. Strategic integration of new technologies for a wind-power system adapted to remote areas : concept review

    Energy Technology Data Exchange (ETDEWEB)

    Lautier, P. [Envitech Automation Inc., Pointe Claire, PQ (Canada); Dery, J. [Dermond Inc., Ada, MI (United States); Houasnia, A. [Quebec Univ., Trois-Rivieres, PQ (Canada). Groupe de Recherche en Electronique Industrielle

    2005-07-01

    This paper presented a new renewable energy system (RES) based on wind energy associated with auxiliary power sources. The system is based on the variable speed vertical axis wind turbine and can integrate various types of power equipment, including batteries, diesel generators and dump loads. A 100 kW wind turbine prototype was installed in October 2004 in Rouyn-Noranda and a 200 kW wind turbine is under development and commercialization. The systems should be commissioned in 2006. This paper reviewed the power structure and advanced control strategies of the entire RES. Each element of the power generation system were described along with details of the control techniques developed to comply with grid-connected and off-grid requirements. The power system integrator and system control architecture were also presented. It was shown that power quality can be greatly improved through adequate control of the wind turbine and battery bank. 14 refs., 12 figs.

  17. Global energy prospects in the 21st century: a battery-based society

    Science.gov (United States)

    Yoda, Susumu; Ishihara, Kaoru

    Current energy needs are nearly totally dependent on fossil fuels. This is causing global warming and exhaustion of resources; it is important to switch to more efficient and effective energy use. These circumstances are expanding the role of secondary batteries. Non-fossil fuels such as photovoltaic cells and wind energy are unstable, but combining them with secondary batteries improves their stability as electric power sources. If electrical load leveling between day and night can be achieved by storing electric power, it will be possible to achieve a high capacity utilization rate for generating facilities that have high generating efficiency and produce little CO 2. Depending on the generating mix, the practicalization of electric vehicles will serve not only to alleviate air pollution, but also to limit CO 2 emissions. There are hopes for the development of large-capacity lithium secondary batteries with long cycle life, high energy density, high power density, and high energy efficiency.

  18. Wind power today

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This publication highlights initiatives of the US DOE`s Wind Energy Program. 1997 yearly activities are also very briefly summarized. The first article describes a 6-megawatt wind power plant installed in Vermont. Another article summarizes technical advances in wind turbine technology, and describes next-generation utility and small wind turbines in the planning stages. A village power project in Alaska using three 50-kilowatt turbines is described. Very brief summaries of the Federal Wind Energy Program and the National Wind Technology Center are also included in the publication.

  19. Offshore wind energy developments

    DEFF Research Database (Denmark)

    Stolpe, Mathias; Buhl, Thomas; Sumer, B. Mutlu;

    2014-01-01

    This chapter will give a brief overview of a few of the activities within offshore wind energy research, specifically 1) Support structure optimization, 2) Blade coatings for wind turbines; 3) Scour protection of foundations, 4) Offshore HVDC and 5) Offshore wind services.......This chapter will give a brief overview of a few of the activities within offshore wind energy research, specifically 1) Support structure optimization, 2) Blade coatings for wind turbines; 3) Scour protection of foundations, 4) Offshore HVDC and 5) Offshore wind services....

  20. Wind Power Career Chat

    Energy Technology Data Exchange (ETDEWEB)

    2011-01-01

    This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

  1. Wind energy information guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.

  2. Arctic wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Peltola, E. [Kemijoki Oy (Finland); Holttinen, H.; Marjaniemi, M. [VTT Energy, Espoo (Finland); Tammelin, B. [Finnish Meteorological Institute, Helsinki (Finland)

    1998-12-31

    Arctic wind energy research was aimed at adapting existing wind technologies to suit the arctic climatic conditions in Lapland. Project research work included meteorological measurements, instrument development, development of a blade heating system for wind turbines, load measurements and modelling of ice induced loads on wind turbines, together with the development of operation and maintenance practices in arctic conditions. As a result the basis now exists for technically feasible and economically viable wind energy production in Lapland. New and marketable products, such as blade heating systems for wind turbines and meteorological sensors for arctic conditions, with substantial export potential, have also been developed. (orig.)

  3. Arctic wind energy

    International Nuclear Information System (INIS)

    Arctic wind energy research was aimed at adapting existing wind technologies to suit the arctic climatic conditions in Lapland. Project research work included meteorological measurements, instrument development, development of a blade heating system for wind turbines, load measurements and modelling of ice induced loads on wind turbines, together with the development of operation and maintenance practices in arctic conditions. As a result the basis now exists for technically feasible and economically viable wind energy production in Lapland. New and marketable products, such as blade heating systems for wind turbines and meteorological sensors for arctic conditions, with substantial export potential, have also been developed. (orig.)

  4. Empirical Study Of Wind Energy Potential In Calabar Cross River State Nigeria

    Directory of Open Access Journals (Sweden)

    Uquetan

    2015-08-01

    Full Text Available Abstract This paper focuses on wind energy potentials in Calabar a coastal city. The wind speed data were collected from Margaret Ekpo International Airport Calabar NIMET. The Objective of this study is to examine whether the wind energy in Calabar can generate sufficient energy to supplement electricity generation for the Calabar region. The primary data obtained is monthly mean in the form of wind speed for a period of 5year 2008 - 2012. These was used to estimate the available wind energy potential in calabar. The results show that the annual wind is 1.3 ms indicating Calabar as a low wind speed region. The wind power density value of 3.11Wm2 indicates that Calabar wind can only be used for small stand-alone wind power systems such as battery charging and for powering street light and water pumps fig 1 2 3 amp 4. The weibull probability distribution scale parameters k are higher in values and variability than the shape parameter c for the monthly distribution. Calabar wind cannot be used to generate electricity because the wind speed data at 10m height doesnt exceed 2.5ms due to the standard cut in speed.

  5. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    Science.gov (United States)

    Bockelmann, Thomas R.; Hope, Mark E.; Zou, Zhanjiang; Kang, Xiaosong

    2009-02-10

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  6. Membranes for Redox Flow Battery Applications

    OpenAIRE

    Maria Skyllas-Kazacos; Aishwarya Parasuraman; Tuti Mariana Lim; Suminto Winardi; Helen Prifti

    2012-01-01

    The need for large scale energy storage has become a priority to integrate renewable energy sources into the electricity grid. Redox flow batteries are considered the best option to store electricity from medium to large scale applications. However, the current high cost of redox flow batteries impedes the wide spread adoption of this technology. The membrane is a critical component of redox flow batteries as it determines the performance as well as the economic viability of the batteries. Th...

  7. Ion-batterier - "The Next Generation"

    DEFF Research Database (Denmark)

    Søndergaard, Martin; Becker, Jacob; Shen, Yanbin;

    2014-01-01

    Lithium-ion batterier er strømkilden, der har revolutioneret vores transportable elektronik. Familien af ion-batterier er imidlertid større end som så og har meget, meget mere at byde på.......Lithium-ion batterier er strømkilden, der har revolutioneret vores transportable elektronik. Familien af ion-batterier er imidlertid større end som så og har meget, meget mere at byde på....

  8. Principles and applications of lithium secondary batteries

    CERN Document Server

    Park, Jung-Ki

    2012-01-01

    Lithium secondary batteries have been key to mobile electronics since 1990. Large-format batteries typically for electric vehicles and energystorage systems are attracting much attention due to current energy and environmental issues. Lithium batteries are expected to play a centralrole in boosting green technologies. Therefore, a large number of scientists and engineers are carrying out research and development onlithium secondary batteries.The book is written in a straightforward fashion suitable for undergraduate and graduate students, as well as scientists, and engineer

  9. Novel Electrolytes for Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lucht, Brett L

    2014-12-12

    We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have been investigating the thermal stability of novel electrolytes for lithium ion batteries, in particular borate based salts. Second, we have been investigating novel additives to improve the calendar life of lithium ion batteries. Third, we have been investigating the thermal decomposition reactions of electrolytes for lithium-oxygen batteries.

  10. Put recent experience to work in nuclear welding repairs

    International Nuclear Information System (INIS)

    The winding down of US nuclear-plant construction for what may well be the rest of this century has been accompanied by an inevitable upsurge in the maintenance effort needed for existing and soon-to-appear nuclear units. There are several distinct areas of interest here for nuclear piping. Intergranular stress-corrosion cracking (IGSCC) in boiling-water reactor (BWR) plants is one highly visible example. Ordinary wear and tear on piping and valves, however, brings serious problems in nuclear power plants. This is because of environmental constraints, with heat and radiation calling for attention, and also because of close clearances, heat-treating requirements, inspection needs, and cleanliness demands for piping interior surfaces. Often, a balance must be struck between theoretical desired conditions and the realities of power generation. The reduction in the required number of snubbers and restraints on piping in the past few years is an example of this. Sometimes, however, it is a better understanding of actual need that leads to the loosening of restrictions. The new welding repairs to piping may be examples of this. New tools, new techniques, and new analyses are all helping to reduce nuclear-plant maintenance costs, keep availability high, and in some cases even make continued operation of the units possible. The recent American Welding Society conference in Knoxville, Tennessee, on maintenance welding in nuclear plants provided a broad range of state-of-the-art technology in the field, plus indications of what is needed or can be expected in the immediate future

  11. Wind, photovoltaic and fuel cell energy for communication stations; Energia eolica, fotovoltaica e de celula a combustivel para estacoes de comunicacao

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Iolanda; Pereira, Jose; Alcobia, Hernani [Net Plan Telecomunicacoes e Energia, Lisboa (Portugal); Pereirinha, Paulo [Instituto Politecnico de Coimbra (Portugal); Instituto para Engenharia de Sistemas e Computadores de Coimbra (Portugal)

    2011-10-15

    This paper presents a hybrid system that provides power to a remote and autonomously telecommunications station by means of electrical solar generators, wind and hydrogen fuel cell. In the absence of sufficient sun and wind, a bank of batteries and hydrogen produced on-site guarantee the power supply. The station can still be remote monitored and managed.

  12. Overview of the Energy Storage Systems for the Wind Power Integration Enhancement

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Teodorescu, Remus; Rasmussen, Claus Nygaard;

    2010-01-01

    intermittency, partly unpredictability and variability, wind power can put the operation of power system into risk. This can lead to problems with grid stability, reliability and the energy quality. One of the possible solutions can be an addition of energy storage into wind power plant. This paper deals with...... state of the art of the Energy Storage (ES) technologies and their possibility of accommodation for wind turbines. Overview of ES technologies is done in respect to its suitability for Wind Power Plant (WPP). Services that energy storage can offer both to WPP and power system are discussed. Moreover......As the installed worldwide wind energy capacity increases about 30% annually and Kyoto protocol that came in force in 2005, wind penetration level in power system is considered to significantly increase in near future. Due to increased penetration and nature of the wind, especially its...

  13. Planners to the rescue: spatial planning facilitating the development of offshore wind energy.

    Science.gov (United States)

    Jay, Stephen

    2010-04-01

    The development of offshore wind energy has started to take place surprisingly quickly, especially in North European waters. This has taken the wind energy industry out of the territory of planning systems that usually govern the siting of wind farms on land, and into the world of departmental, sectoral regulation of marine activities. Although this has favoured the expansion of offshore wind energy in some respects, evidence suggests that the practice and principles of spatial planning can make an important contribution to the proper consideration of proposals for offshore wind arrays. This is especially so when a strategic planning process is put in place for marine areas, in which offshore wind is treated as part of the overall configuration of marine interests, so that adjustments can be made in the interests of wind energy. The current process of marine planning in the Netherlands is described as an illustration of this. PMID:20004920

  14. Alternator control for battery charging

    Science.gov (United States)

    Brunstetter, Craig A.; Jaye, John R.; Tallarek, Glen E.; Adams, Joseph B.

    2015-07-14

    In accordance with an aspect of the present disclosure, an electrical system for an automotive vehicle has an electrical generating machine and a battery. A set point voltage, which sets an output voltage of the electrical generating machine, is set by an electronic control unit (ECU). The ECU selects one of a plurality of control modes for controlling the alternator based on an operating state of the vehicle as determined from vehicle operating parameters. The ECU selects a range for the set point voltage based on the selected control mode and then sets the set point voltage within the range based on feedback parameters for that control mode. In an aspect, the control modes include a trickle charge mode and battery charge current is the feedback parameter and the ECU controls the set point voltage within the range to maintain a predetermined battery charge current.

  15. Vehicle Battery Safety Roadmap Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Doughty, D. H.

    2012-10-01

    The safety of electrified vehicles with high capacity energy storage devices creates challenges that must be met to assure commercial acceptance of EVs and HEVs. High performance vehicular traction energy storage systems must be intrinsically tolerant of abusive conditions: overcharge, short circuit, crush, fire exposure, overdischarge, and mechanical shock and vibration. Fail-safe responses to these conditions must be designed into the system, at the materials and the system level, through selection of materials and safety devices that will further reduce the probability of single cell failure and preclude propagation of failure to adjacent cells. One of the most important objectives of DOE's Office of Vehicle Technologies is to support the development of lithium ion batteries that are safe and abuse tolerant in electric drive vehicles. This Roadmap analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would further DOE's mission.

  16. Electrolytes for rechargeable lithium batteries

    International Nuclear Information System (INIS)

    There is growing interest in high specific energy lithium rechargeable batteries with improved discharge/charge cycles. Some of the promising battery systems under development are Li/CoO2, Li/V2O5 and Li/MnO2. A major factor that controls the specific performance of these batteries is the electrolyte. Recent advances made in the liquid electrolyte area for lithium high energy cathode systems are reviewed. Experimental work on the processing of solid thin film polymer electrolytes using plasticizers such as polyethylene glycol dimethoxy ether (PEGDME) and the properties such as conductivity and differential scanning calorimetry of polymer film electrolytes are presented. The advantages and the disadvantages of polymer thin film electrolytes are discussed

  17. Influence of Wind Plant Ancillary Voltage Control on System Small Signal Stability

    OpenAIRE

    Su, Chi; Chen, Zhe

    2012-01-01

    As a common tendency, large-scale wind farms are increasingly connected to the transmission system of modern power grids. This introduces some new challenges to the connected power systems, and the transmission system operators (TSOs) have to put some new requirements as part of the grid codes on the integration of wind farms. One common requirement to wind farms is the function of system voltage control which can be implemented in the grid-side convertor controller of a variable speed wind t...

  18. Grid Inertial Response with Lithium-ion Battery Energy Storage Systems

    DEFF Research Database (Denmark)

    Knap, Vaclav; Sinha, Rakesh; Swierczynski, Maciej Jozef;

    2014-01-01

    this paper is to evaluate the technical viability of utilizing energy storage systems based on Lithium-ion batteries for providing inertial response in grids with high penetration levels of wind power. In order to perform this evaluation, the 12-bus system grid model was used; the inertia of the grid......The increased grid-penetration levels of energy produced by renewable sources, which have almost no inertia, might have a negative impact on the reliable and stable operation of the power system. Various solutions for mitigating the aforementioned problem were proposed in the literature. The aim of...... was varied by decreasing the number of conventional power plants in the studied grid model while in the same time increasing the load and the wind power penetration levels. Moreover, in order to perform a realistic investigation, a dynamic model of the Lithium-ion battery was considered and...

  19. Battery charging in float vs. cycling environments

    Energy Technology Data Exchange (ETDEWEB)

    COREY,GARTH P.

    2000-04-20

    In lead-acid battery systems, cycling systems are often managed using float management strategies. There are many differences in battery management strategies for a float environment and battery management strategies for a cycling environment. To complicate matters further, in many cycling environments, such as off-grid domestic power systems, there is usually not an available charging source capable of efficiently equalizing a lead-acid battery let alone bring it to a full state of charge. Typically, rules for battery management which have worked quite well in a floating environment have been routinely applied to cycling batteries without full appreciation of what the cycling battery really needs to reach a full state of charge and to maintain a high state of health. For example, charge target voltages for batteries that are regularly deep cycled in off-grid power sources are the same as voltages applied to stand-by systems following a discharge event. In other charging operations equalization charge requirements are frequently ignored or incorrectly applied in cycled systems which frequently leads to premature capacity loss. The cause of this serious problem: the application of float battery management strategies to cycling battery systems. This paper describes the outcomes to be expected when managing cycling batteries with float strategies and discusses the techniques and benefits for the use of cycling battery management strategies.

  20. 46 CFR 129.353 - Battery categories.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Battery categories. 129.353 Section 129.353 Shipping... INSTALLATIONS Power Sources and Distribution Systems § 129.353 Battery categories. This section applies to batteries installed to meet the requirements of § 129.310(a) for secondary sources of power to vital...