WorldWideScience

Sample records for batteries put wind

  1. Wind driven mobile charging of automobile battery- A case study ...

    African Journals Online (AJOL)

    This paper deals with implementation of mobile wind driven generator technology to produce electricity in charging of two wheeler (12V) automobile battery. The use of PWM methodology with pulse charging method at a constant rate has been adopted for this purpose. The low speed PMSG driven by wind at speed of ...

  2. Optimizing small wind turbine performance in battery charging applications

    Science.gov (United States)

    Drouilhet, Stephen; Muljadi, Eduard; Holz, Richard; Gevorgian, Vahan

    1995-05-01

    Many small wind turbine generators (10 kW or less) consist of a variable speed rotor driving a permanent magnet synchronous generator (alternator). One application of such wind turbines is battery charging, in which the generator is connected through a rectifier to a battery bank. The wind turbine electrical interface is essentially the same whether the turbine is part of a remote power supply for telecommunications, a standalone residential power system, or a hybrid village power system, in short, any system in which the wind generator output is rectified and fed into a DC bus. Field experience with such applications has shown that both the peak power output and the total energy capture of the wind turbine often fall short of expectations based on rotor size and generator rating. In this paper, the authors present a simple analytical model of the typical wind generator battery charging system that allows one to calculate actual power curves if the generator and rotor properties are known. The model clearly illustrates how the load characteristics affect the generator output. In the second part of this paper, the authors present four approaches to maximizing energy capture from wind turbines in battery charging applications. The first of these is to determine the optimal battery bank voltage for a given WTG. The second consists of adding capacitors in series with the generator. The third approach is to place an optimizing DC/DC voltage converter between the rectifier and the battery bank. The fourth is a combination of the series capacitors and the optimizing voltage controller. They also discuss both the limitations and the potential performance gain associated with each of the four configurations.

  3. Batteries for storage of wind-generated energy

    Science.gov (United States)

    Schwartz, H. J.

    1973-01-01

    Cost effectiveness characteristics of conventional-, metal gas-, and high energy alkali metal-batteries for wind generated energy storage are considered. A lead-acid battery with a power density of 20 to 30 watt/hours per pound is good for about 1500 charge-discharge cycles at a cost of about $80 per kilowatt hour. A zinc-chlorine battery that stores chlorine as solid chlorine hydrate at temperatures below 10 C eliminates the need to handle gaseous chlorine; its raw material cost are low and inexpensive carbon can be used for the chlorine electrode. This system has the best chance to replace lead-acid. Exotic alkali metal batteries are deemed too costly at the present stage of development.

  4. Two-Stage Multi-Objective Collaborative Scheduling for Wind Farm and Battery Switch Station

    OpenAIRE

    Zhe Jiang; Xueshan Han; Zhimin Li; Wenbo Li; Mengxia Wang; Mingqiang Wang

    2016-01-01

    In order to deal with the uncertainties of wind power, wind farm and electric vehicle (EV) battery switch station (BSS) were proposed to work together as an integrated system. In this paper, the collaborative scheduling problems of such a system were studied. Considering the features of the integrated system, three indices, which include battery swapping demand curtailment of BSS, wind curtailment of wind farm, and generation schedule tracking of the integrated system are proposed. In additio...

  5. Generation management using batteries in wind farms: Economical and technical analysis for Spain

    International Nuclear Information System (INIS)

    Dufo-Lopez, Rodolfo; Bernal-Agustin, Jose L.; Dominguez-Navarro, Jose A.

    2009-01-01

    This paper presents an hourly management method for energy generated in grid-connected wind farms using battery storage (Wind-Batteries systems). The method proposed is analysed technically and economically. Electricity generation in wind farms does not usually coincide with the electrical demand curve. If the wind-power penetration becomes high in the Spanish electrical grid, energy management will become necessary for some wind farms. A method is proposed in this paper to adjust the generation curve to the demand curve by storing electrical energy in batteries during off-peak hours (low demand) and selling stored energy to the grid during peak hours (high demand). With the results obtained and reported in this paper, for a Wind-Batteries system to be economically as profitable as a Wind-Only system, the selling price of the energy provided by the batteries during peak hours should be between 22 and 66 c Euro /kWh, depending on the technology and cost of the batteries. Comparison with flexible thermal generation has been performed. Additionally, the results are compared with those obtained if using hydrogen (Wind-Hydrogen system, which uses an electrolyser, hydrogen tank, and fuel cell instead of batteries), concluding that the Wind-Batteries system is both economically and energetically far more suitable

  6. Simulation of Wind-Battery Microgrid Based on Short-Term Wind Power Forecasting

    Directory of Open Access Journals (Sweden)

    Konstantinos N. Genikomsakis

    2017-11-01

    Full Text Available The inherently intermittent and highly variable nature of wind necessitates the use of wind power forecasting tools in order to facilitate the integration of wind turbines in microgrids, among others. In this direction, the present paper describes the development of a short-term wind power forecasting model based on artificial neural network (ANN clustering, which uses statistical feature parameters in the input vector, as well as an enhanced version of this approach that adjusts the ANN output with the probability of lower misclassification (PLM method. Moreover, it employs the Monte Carlo simulation to represent the stochastic variation of wind power production and assess the impact of energy management decisions in a residential wind-battery microgrid using the proposed wind power forecasting models. The results indicate that there are significant benefits for the microgrid when compared to the naïve approach that is used for benchmarking purposes, while the PLM adjustment method provides further improvements in terms of forecasting accuracy.

  7. Optimal Capacity Allocation of Large-Scale Wind-PV-Battery Units

    Directory of Open Access Journals (Sweden)

    Kehe Wu

    2014-01-01

    Full Text Available An optimal capacity allocation of large-scale wind-photovoltaic- (PV- battery units was proposed. First, an output power model was established according to meteorological conditions. Then, a wind-PV-battery unit was connected to the power grid as a power-generation unit with a rated capacity under a fixed coordinated operation strategy. Second, the utilization rate of renewable energy sources and maximum wind-PV complementation was considered and the objective function of full life cycle-net present cost (NPC was calculated through hybrid iteration/adaptive hybrid genetic algorithm (HIAGA. The optimal capacity ratio among wind generator, PV array, and battery device also was calculated simultaneously. A simulation was conducted based on the wind-PV-battery unit in Zhangbei, China. Results showed that a wind-PV-battery unit could effectively minimize the NPC of power-generation units under a stable grid-connected operation. Finally, the sensitivity analysis of the wind-PV-battery unit demonstrated that the optimization result was closely related to potential wind-solar resources and government support. Regions with rich wind resources and a reasonable government energy policy could improve the economic efficiency of their power-generation units.

  8. A Wind Power and Load Prediction Based Frequency Control Approach for Wind-Diesel-Battery Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Chao Peng

    2015-01-01

    Full Text Available A frequency control approach based on wind power and load power prediction information is proposed for wind-diesel-battery hybrid power system (WDBHPS. To maintain the frequency stability by wind power and diesel generation as much as possible, a fuzzy control theory based wind and diesel power control module is designed according to wind power and load prediction information. To compensate frequency fluctuation in real time and enhance system disturbance rejection ability, a battery energy storage system real-time control module is designed based on ADRC (active disturbance rejection control. The simulation experiment results demonstrate that the proposed approach has a better disturbance rejection ability and frequency control performance compared with the traditional droop control approach.

  9. Model predictive control for power fluctuation supression in hybrid wind/PV/battery systems

    DEFF Research Database (Denmark)

    You, Shi; Liu, Zongyu; Zong, Yi

    2015-01-01

    A hybrid energy system, the combination of wind turbines, PV panels and battery storage with effective control mechanism, represents a promising solution to the power fluctuation problem when integrating renewable energy resources (RES) into conventional power systems. This paper proposes a model...... predictive control (MPC)-based algorithm for battery management in a hybrid wind/PV/battery system to suppress the short-term power fluctuation on the ‘minute’ scale. A case study with data collected from a practical hybrid system setup is used to demonstrate the effectiveness of the proposed algorithm...

  10. Stand-alone wind system with Vanadium Redox Battery energy storage

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Barote, L.; Weissbach, R.

    2008-01-01

    Energy storage devices are required for power balance and power quality in stand alone wind energy systems. A Vanadium Redox Flow Battery (VRB) system has many features which make its integration with a stand-alone wind energy system attractive. This paper proposes the integration of a VRB system...

  11. Wind-driven stand-alone DFIG with battery and pumped hydro ...

    Indian Academy of Sciences (India)

    Renewable energy electric conversion system; induction generators; wind power generation; energy storage; power converters. ... converter, (ii) wide speed operation of wind-driven DFIG, (iii) reduced battery capacity, (iv) high energy storage using PHSP and (v) availability of continuous power to the isolated loads.

  12. Comparative study of a small size wind generation system efficiency for battery charging

    Directory of Open Access Journals (Sweden)

    Mayouf Messaoud

    2013-01-01

    Full Text Available This paper presents an energetic comparison between two control strategies of a small size wind generation system for battery charging. The output voltage of the direct drive PMSG is connected to the battery through a switch mode rectifier. A DC-DC boost converter is used to regulate the battery bank current in order to achieve maximum power from the wind. A maximum powertracking algorithm calculates the current command that corresponds to maximum power output of the turbine. The DC-DC converter uses this current to calculate the duty cycle witch is necessary to control the pulse width modulated (PWM active switching device (IGPT. The system overview and modeling are presented including characteristics of wind turbine, generator, batteries, power converter, control system, and supervisory system. A simulation of the system is performed using MATLAB/SIMULINK.

  13. Ramping Performance Analysis of the Kahuku Wind-Energy Battery Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, V. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Corbus, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-11-01

    High penetrations of wind power on the electrical grid can introduce technical challenges caused by resource variability. Such variability can have undesirable effects on the frequency, voltage, and transient stability of the grid. Energy storage devices can be an effective tool in reducing variability impacts on the power grid in the form of power smoothing and ramp control. Integrating anenergy storage system with a wind power plant can help smooth the variable power produced from wind. This paper explores the fast-response, megawatt-scale, wind-energy battery storage systems that were recently deployed throughout the Hawaiian islands to support wind and solar projects.

  14. A Novel Design and Optimization Software for Autonomous PV/Wind/Battery Hybrid Power Systems

    OpenAIRE

    Ali M. Eltamaly; Mohamed A. Mohamed

    2014-01-01

    This paper introduces a design and optimization computer simulation program for autonomous hybrid PV/wind/battery energy system. The main function of the new proposed computer program is to determine the optimum size of each component of the hybrid energy system for the lowest price of kWh generated and the best loss of load probability at highest reliability. This computer program uses the hourly wind speed, hourly radiation, and hourly load power with several numbers of wind turbine (WT) an...

  15. Two-Stage Multi-Objective Collaborative Scheduling for Wind Farm and Battery Switch Station

    Directory of Open Access Journals (Sweden)

    Zhe Jiang

    2016-10-01

    Full Text Available In order to deal with the uncertainties of wind power, wind farm and electric vehicle (EV battery switch station (BSS were proposed to work together as an integrated system. In this paper, the collaborative scheduling problems of such a system were studied. Considering the features of the integrated system, three indices, which include battery swapping demand curtailment of BSS, wind curtailment of wind farm, and generation schedule tracking of the integrated system are proposed. In addition, a two-stage multi-objective collaborative scheduling model was designed. In the first stage, a day-ahead model was built based on the theory of dependent chance programming. With the aim of maximizing the realization probabilities of these three operating indices, random fluctuations of wind power and battery switch demand were taken into account simultaneously. In order to explore the capability of BSS as reserve, the readjustment process of the BSS within each hour was considered in this stage. In addition, the stored energy rather than the charging/discharging power of BSS during each period was optimized, which will provide basis for hour-ahead further correction of BSS. In the second stage, an hour-ahead model was established. In order to cope with the randomness of wind power and battery swapping demand, the proposed hour-ahead model utilized ultra-short term prediction of the wind power and the battery switch demand to schedule the charging/discharging power of BSS in a rolling manner. Finally, the effectiveness of the proposed models was validated by case studies. The simulation results indicated that the proposed model could realize complement between wind farm and BSS, reduce the dependence on power grid, and facilitate the accommodation of wind power.

  16. Stand-alone wind system with Vanadium Redox Battery energy storage

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Barote, L.; Weissbach, R.

    2008-01-01

    Energy storage devices are required for power balance and power quality in stand alone wind energy systems. A Vanadium Redox Flow Battery (VRB) system has many features which make its integration with a stand-alone wind energy system attractive. This paper proposes the integration of a VRB system...... with a typical stand-alone wind energy system during wind speed variation as well as transient performance under variable load. The investigated system consists of a variable speed wind turbine with permanent magnet synchronous generator (PMSG), diode rectifier bridge, buck-boost converter, bidirectional charge...... controller, transformer, inverter, ac loads and VRB (to store a surplus of wind energy and to supply power during a wind power shortage). The main purpose is to supply domestic appliances through a single phase 230V, 50Hz inverter. Simulations are accomplished in order to validate the stability of the supply....

  17. Studies on battery storage requirement of PV fed wind-driven induction generators

    International Nuclear Information System (INIS)

    Rajan Singaravel, M.M.; Arul Daniel, S.

    2013-01-01

    Highlights: ► Sizing of battery storage for PV fed wind-driven IG system is taken up. ► Battery storage is also used to supply reactive power for wind-driven IG. ► Computation of LPSP by incorporating uncertainties of irradiation and wind speed. ► Sizing of hybrid power system components to ensure zero LPSP. ► Calculated storage size satisfied the constraints and improves battery life. - Abstract: Hybrid stand-alone renewable energy systems based on wind–solar resources are considered to be economically better and reliable than stand-alone systems with a single source. An isolated hybrid wind–solar system has been considered in this work, where the storage (battery bank) is necessary to supply the required reactive power for a wind-driven induction generator (IG) during the absence of power from a photovoltaic (PV) array. In such a scheme, to ensure zero Loss of Power Supply Probability (LPSP) and to improve battery bank life, a sizing procedure has been proposed with the incorporation of uncertainties in wind-speed and solar-irradiation level at the site of erection of the plant. Based on the proposed procedure, the size of hybrid power system components and storage capacity are determined. Storage capacity has been calculated for two different requirements. The first requirement of storage capacity is common to any hybrid scheme, which is; to supply both real and reactive power in the absence of wind and solar sources. The second requirement is to supply reactive power alone for the IG during the absence of photovoltaic power, which is unique to the hybrid scheme considered in this work. Storage capacity calculations for different conditions using the proposed approach, satisfies the constraints of maintaining zero LPSP and also improved cycle life of the battery bank

  18. Utilizing a vanadium redox flow battery to avoid wind power deviation penalties in an electricity market

    International Nuclear Information System (INIS)

    Turker, Burak; Arroyo Klein, Sebastian; Komsiyska, Lidiya; Trujillo, Juan José; Bremen, Lueder von; Kühn, Martin; Busse, Matthias

    2013-01-01

    Highlights: • Vanadium redox flow battery utilized for wind power grid integration was studied. • Technical and financial analyses at single wind farm level were performed. • 2 MW/6 MW h VRFB is suitable for mitigating power deviations for a 10 MW wind farm. • Economic incentives might be required in the short-term until the VRFB prices drop. - Abstract: Utilizing a vanadium redox flow battery (VRFB) for better market integration of wind power at a single wind farm level was evaluated. A model which combines a VRFB unit and a medium sized (10 MW) wind farm was developed and the battery was utilized to compensate for the deviations resulting from the forecast errors in an electricity market bidding structure. VRFB software model which was introduced in our previous paper was integrated with real wind power data, power forecasts and market data based on the Spanish electricity market. Economy of the system was evaluated by financial assessments which were done by considering the VRFB costs and the amount of deviation penalty payments resulting from forecast inaccuracies

  19. Applying wind turbines and battery storage to defer Orcas Power and Light Company distribution circuit upgrades

    International Nuclear Information System (INIS)

    Zaininger, H.W.; Barnes, P.R.

    1997-03-01

    The purpose of this study is to conduct a detailed assessment of the Orcas Power and Light Company (OPALCO) system to determine the potential for deferring the costly upgrade of the 25-kV Lopez- Eastsound circuit, by the application of a MW-scale wind farm and battery storage facilities as appropriate. Local wind resource data has been collected over the past year and used to determine MW-scale wind farm performance. This hourly wind farm performance data is used with measured hourly Eastsound load data, and recent OPALCO distribution system expansion plans and cost projections in performing this detailed benefit-cost assessment. The OPALCO distribution circuit expansion project and assumptions are described. MW-scale wind farm performance results are given. The economic benefit-cost results for the wind farm and battery storage applications on the OPALCO system using OPALCO system design criteria and cost assumptions are reported. A recalculation is presented of the benefit-cost results for similar potential wind farm and battery storage applications on other utility systems with higher marginal energy and demand costs. Conclusions and recommendations are presented. costs. Conclusions and recommendations are presented

  20. Effect of wind speed and solar irradiation on the optimization of a PV-Wind-Battery system to supply a telecommunications station

    Energy Technology Data Exchange (ETDEWEB)

    Dufo-Lopez, Rodolfo; Bernal-Agustin, Jose L.; Lujano, Juan; Zubi, Ghassan [Zaragoza Univ. (Spain). Electrical Engineerign Dept.

    2010-07-01

    This paper shows the optimization of a PV-Wind hybrid system with batteries storage to supply the electrical power to a small telecommunications station. The load demanded by the station is 100 W continuously. We have considered 6 different wind speed profiles, from 2 m/s average speed (low wind speed in many places in Spain) to 8 m/s average (very high wind speed, in few places in Spain) and 3 different irradiation profiles, from the lowest average daily irradiation in Spain, about 2.5 kWh/m{sup 2}/day, to the highest one in Spain, about 5 kWh/m{sup 2}/day. Therefore we have considered 6 x 3 = 18 combinations of wind speed and irradiation profiles. For each combination of wind speed and irradiation profiles, we have optimized the PV-Wind-Battery system to supply the power demand, considering some different PV panels, wind turbines and batteries. We have also considered in the optimization non-hybrid systems (PV-Battery systems and Wind-Battery systems). The simulation of the system performance has been done hourly. The optimal system for each combination of wind speed and irradiation is the one which can supply the whole demand of the telecommunications station with the lowest Net Present Cost of the system. Simulation and optimization has been done using HOGA (Hybrid Optimization by Genetic Algorithms) software, developed by some of the authors. The results show that, with actual prices of PV panels and wind turbines, in 13 of the 18 combinations of wind speed and irradiation profiles the optimal system is a hybrid system (it includes PV panels, wind turbine and batteries). In the other 5 combinations (the ones with lowest wind speed and/or highest irradiation), the optimal system is PV-Battery, i.e., without wind turbine. We conclude that, in most of the places in Spain, the optimal system to supply the demand of a communications station (with continous demand profile) is a hybrid system (PV-Wind-Batteries) instead of a PV-Batteries system or a Wind-Batteries

  1. On maximizing profit of wind-battery supported power station based on wind power and energy price forecasting

    DEFF Research Database (Denmark)

    Khalid, Muhammad; Aguilera, Ricardo P.; Savkin, Andrey V.

    2017-01-01

    This paper proposes a framework to develop an optimal power dispatch strategy for grid-connected wind power plants containing a Battery Energy Storage System (BESS). Considering the intermittent nature of wind power and rapidly varying electricity market price, short-term forecasting...... Dynamic Programming tool which can incorporate the predictions of both wind power and market price simultaneously as inputs in a receding horizon approach. The proposed strategy is validated using real electricity market price and wind power data in different scenarios of BESS power and capacity...... of these variables is used for efficient energy management. The predicted variability trends in market price assist in earning additional income which subsequently increase the operational profit. Then on the basis of income improvement, optimal capacity of the BESS can be determined. The proposed framework utilizes...

  2. On maximizing profit of wind-battery supported power station based on wind power and energy price forecasting

    DEFF Research Database (Denmark)

    Khalid, Muhammad; Aguilera, Ricardo P.; Savkin, Andrey V.

    2017-01-01

    of these variables is used for efficient energy management. The predicted variability trends in market price assist in earning additional income which subsequently increase the operational profit. Then on the basis of income improvement, optimal capacity of the BESS can be determined. The proposed framework utilizes......This paper proposes a framework to develop an optimal power dispatch strategy for grid-connected wind power plants containing a Battery Energy Storage System (BESS). Considering the intermittent nature of wind power and rapidly varying electricity market price, short-term forecasting...... Dynamic Programming tool which can incorporate the predictions of both wind power and market price simultaneously as inputs in a receding horizon approach. The proposed strategy is validated using real electricity market price and wind power data in different scenarios of BESS power and capacity...

  3. Wind-driven stand-alone DFIG with battery and pumped hydro ...

    Indian Academy of Sciences (India)

    A simple control strategy has been implemented for maintaining the set values of voltage magnitude and frequency at the stator terminals of DFIG, which serve as a virtual grid for connecting ac loads and SCIM. Based on the availability of power in the wind, PHSP and battery, various operating modes of the proposed ...

  4. Electric Vehicle Based Battery Storages for Large Scale Wind Power Integration in Denmark

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna

    . In Denmark, there are many hours of surplus wind power production every year. This could be consumed locally through demand side management of electric vehicles by controlled charging of their batteries. Also, the EV batteries could discharge the stored electricity to the grid on demand, which...... is improving on a rapid scale and the battery cost is also reducing which could enable the electric cars to be competitive in the market. The electric vehicles could also benefit the electricity sector in supporting more renewable energy which is also one of the most important driving forces in its promotion...... the clean wind energy and latter could be expensive and limited as the neighbouring countries are also installing more renewable energy across their borders. One of the other alternative solutions lies with the local distributed storages which could be provided by the flexible, efficient and quick start...

  5. Optimization of an off-grid hybrid PV-wind-diesel-battery system

    Energy Technology Data Exchange (ETDEWEB)

    Merei, Ghada [RWTH Aachen Univ. (Germany). Electrochemical Energy Conversion and Storage Systems Group; Juelich Aachen Research Alliance, JARA-Energy (Germany); Sauer, Dirk Uwe [RWTH Aachen Univ. (Germany). Electrochemical Energy Conversion and Storage Systems Group; Juelich Aachen Research Alliance, JARA-Energy (Germany); RWTH Aachen Univ. (Germany). Inst. for Power Generation and Storage Systems (PGS)

    2012-07-01

    The power supply of remote sites and applications at minimal cost and with low emissions is an important issue when discussing future energy concepts. This paper presents the modelling and optimisation of a stand-alone hybrid energy system. The system consists of photovoltaic (PV) panels and a wind turbine as renewable power sources, a diesel generator for back-up power and batteries to store excess energy and to improve the system reliability. For storage the technologies of lithium-ion, lead-acid, vanadium redox-flow or a combination thereof are considered. In order to use different battery technologies at once, a battery management system (BMS) is needed. The presented BMS minimises operation cost while taking into account different battery operating points and ageing mechanisms. The system is modelled and implemented in Matlab/Simulink. As input, the model uses data of the irradiation, wind speed and air temperature measured in ten minute intervals for ten years in Aachen, Germany. The load is assumed to be that of a rural UMTS/GSM base station for telecommunication. For a timeframe of 20 years, the performance is evaluated and the total costs are determined. Using a genetic algorithm, component sizes and settings are then varied and the system re-evaluated to minimise the overall cost. The optimisation results show that using batteries in combination with the renewables is economic and ecologic. However, the best solution is to combine redox-flow batteries with the renewables. In addition, a power supply system consisting only of batteries, PV and wind generators can satisfy the power demand.

  6. A Novel Design and Optimization Software for Autonomous PV/Wind/Battery Hybrid Power Systems

    Directory of Open Access Journals (Sweden)

    Ali M. Eltamaly

    2014-01-01

    Full Text Available This paper introduces a design and optimization computer simulation program for autonomous hybrid PV/wind/battery energy system. The main function of the new proposed computer program is to determine the optimum size of each component of the hybrid energy system for the lowest price of kWh generated and the best loss of load probability at highest reliability. This computer program uses the hourly wind speed, hourly radiation, and hourly load power with several numbers of wind turbine (WT and PV module types. The proposed computer program changes the penetration ratio of wind/PV with certain increments and calculates the required size of all components and the optimum battery size to get the predefined lowest acceptable probability. This computer program has been designed in flexible fashion that is not available in market available software like HOMER and RETScreen. Actual data for Saudi sites have been used with this computer program. The data obtained have been compared with these market available software. The comparison shows the superiority of this computer program in the optimal design of the autonomous PV/wind/battery hybrid system. The proposed computer program performed the optimal design steps in very short time and with accurate results. Many valuable results can be extracted from this computer program that can help researchers and decision makers.

  7. Analysis of battery storage in wind-energy systems for commercial buildings

    Science.gov (United States)

    Caskey, D. L.; Broehl, J.; Skelton, J.

    1981-09-01

    The performance of wind energy systems in commercial buildings was analyzed with and without storage to assess the economic value of storage. The SOLSTOR program used in the simulations is briefly described. Life-cycle energy cost and performance measures were calculated for different wind turbine and storage capacity levels. The analyses focused on Dodge City (average wind speed of 5.8 m/s) and Washington, DC (wind speed 2.9 m/s). Levelized system costs are computed for warehouse and office applications. To assess the sensitivity of the system performance measures and cost, two series of sensitivity tests were performed. The first determined the increase in system cost for an increase of storage capacity, and the second examined the effect of doubling the battery cost for the office building application.

  8. Remote power supply by wind/diesel/battery systems - operational experience and economy

    Energy Technology Data Exchange (ETDEWEB)

    Kniehl, R. [CES - Consulting and Engineering Services, Heidelberg (Germany); Cramer, G.; Toenges, K.H. [SMA Regelsysteme GmbH, Niestetal (Germany)

    1995-12-31

    To continuously supply remote villages and settlements not connected to the public grid with electric power is an ambitious technical task considering ecological and economical points of view. The German company SMA has developed a modular supply system as a solution for this task in the range of 30 kW to 5 MW. Meanwhile more than 20 applications of these `Intelligent Power Systems (IPS)` have proved their technical reliability and economical competitiveness worldwide under different, and also extreme environmental conditions. Actually it is the first commercially available advanced Wind/Diesel/Battery System for remote area electrification. The modular autonomous electric supply systems realized by SMA basically consist of two or more diesel power sets, battery storage with converter, a rotating phaseshifter, and an optional number of wind turbines. All modules are coupled on the 3-phase AC system grid and run in various parallel configurations depending on the wind speed and the consumer power demand. The control system operates fully automatical and offers a very user-friendly graphical interface. This advanced system control also contains a remote control and operating data output via modem and telephone line. SMA and CES have considerable experience with Wind/Diesel/Battery Systems for more than eight years. In many cases wind energy converters in the power range of 30 to 40 kW were used, but it is also possible to use larger wind turbines (e.g. 250 kW). In the following the system technology is described in detail, experience of different system sizes in several countries of application is presented, and economical analyses for power supply by IPS are given in comparison to a conventional fully diesel power supply. (author)

  9. Lithium ion battery energy storage system for augmented wind power plants

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef

    to their characteristics such as high power, high efficiency, low self-discharge, and long lifetime. The family of the Li-ion batteries is wide and the selection of the most appropriate Liion chemistries for VPPs is one of the topics of this thesis, where different chemistries are compared and the most suitable ones......Future large Wind Power Plants (WPP) will be intended to function like today's conventional power plants seen from the transmission system point of view, by complying with future, more stringent, grid codes and providing ancillary services. This is possible to achieve by integrating WPPs...... with Battery Energy Storage Systems (BESSs) into the so called Virtual Power Plants (VPP). Relatively new energy storage technologies based on Lithium ion (Li-ion) batteries are constantly improving their performance and are becoming attractive for stationary energy storage applications due...

  10. Small wind generators for battery charging in Peru and Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Dunnett, S. [Intermediate Technology Development Group, Rugby (United Kingdom)

    2000-07-01

    The Intermediate Technology Development Group (ITDG) have developed a small wind generator (SWG) intended primarily for battery charging in Peru and Sri Lanka. The project is funded mainly by the Department for International Development (DfID) and aims to provide rural households and communities who do not have access to mains electricity with a form of electrification. This paper reports on progress to date and is correct at the time of going to press, but subsequent changes to specifications may occur. (Author)

  11. Using Atmospheric Pressure Tendency to Optimise Battery Charging in Off-Grid Hybrid Wind-Diesel Systems for Telecoms

    Directory of Open Access Journals (Sweden)

    Stephen Daniels

    2013-06-01

    Full Text Available Off grid telecom base stations in developing nations are powered by diesel generators. They are typically oversized and run at a fraction of their rated load for most of their operating lifetime. Running generators at partial load is inefficient and, over time, physically damages the engine. A hybrid configuration uses a battery bank, which powers the telecoms’ load for a portion of the time. The generator only operates when the battery bank needs to be charged. Adding a wind turbine further reduces the generator run hours and saves fuel. The generator is oblivious to the current wind conditions, which leads to simultaneous generator-wind power production. As the batteries become charged by the generator, the wind turbine controller is forced to dump surplus power as heat through a resistive load. This paper details how the relationship between barometric pressure and wind speed can be used to add intelligence to the battery charger. A Simulink model of the system is developed to test the different battery charging configurations. This paper demonstrates that if the battery charger is aware of upcoming wind conditions, it will provide modest fuel savings and reduce generator run hours in small-scale hybrid energy systems.

  12. Stackelberg Game Model of Wind Farm and Electric Vehicle Battery Switch Station

    Science.gov (United States)

    Jiang, Zhe; Li, Zhimin; Li, Wenbo; Wang, Mingqiang; Wang, Mengxia

    2017-05-01

    In this paper, a cooperation method between wind farm and Electric vehicle battery switch station (EVBSS) was proposed. In the pursuit of maximizing their own benefits, the cooperation between wind farm and EVBSS was formulated as a Stackelberg game model by treating them as decision makers in different status. As the leader, wind farm will determine the charging/discharging price to induce the charging and discharging behavior of EVBSS reasonably. Through peak load shifting, wind farm could increase its profits by selling more wind power to the power grid during time interval with a higher purchase price. As the follower, EVBSS will charge or discharge according to the price determined by wind farm. Through optimizing the charging /discharging strategy, EVBSS will try to charge with a lower price and discharge with a higher price in order to increase its profits. Since the possible charging /discharging strategy of EVBSS is known, the wind farm will take the strategy into consideration while deciding the charging /discharging price, and will adjust the price accordingly to increase its profits. The case study proved that the proposed cooperation method and model were feasible and effective.

  13. Optimised operation of an off-grid hybrid wind-diesel-battery system using genetic algorithm

    International Nuclear Information System (INIS)

    Gan, Leong Kit; Shek, Jonathan K.H.; Mueller, Markus A.

    2016-01-01

    Highlights: • Diesel generator’s operation is optimised in a hybrid wind-diesel-battery system. • Optimisation is performed using wind speed and load demand forecasts. • The objective is to maximise wind energy utilisation with limited battery storage. • Physical modelling approach (Simscape) is used to verify mathematical model. • Sensitivity analyses are performed with synthesised wind and load forecast errors. - Abstract: In an off-grid hybrid wind-diesel-battery system, the diesel generator is often not utilised efficiently, therefore compromising its lifetime. In particular, the general rule of thumb of running the diesel generator at more than 40% of its rated capacity is often unmet. This is due to the variation in power demand and wind speed which needs to be supplied by the diesel generator. In addition, the frequent start-stop of the diesel generator leads to additional mechanical wear and fuel wastage. This research paper proposes a novel control algorithm which optimises the operation of a diesel generator, using genetic algorithm. With a given day-ahead forecast of local renewable energy resource and load demand, it is possible to optimise the operation of a diesel generator, subjected to other pre-defined constraints. Thus, the utilisation of the renewable energy sources to supply electricity can be maximised. Usually, the optimisation studies of a hybrid system are being conducted through simple analytical modelling, coupled with a selected optimisation algorithm to seek the optimised solution. The obtained solution is not verified using a more realistic system model, for instance the physical modelling approach. This often led to the question of the applicability of such optimised operation being used in reality. In order to take a step further, model-based design using Simulink is employed in this research to perform a comparison through a physical modelling approach. The Simulink model has the capability to incorporate the electrical

  14. Power control for direct-driven permanent magnet wind generator system with battery storage.

    Science.gov (United States)

    Guang, Chu Xiao; Ying, Kong

    2014-01-01

    The objective of this paper is to construct a wind generator system (WGS) loss model that addresses the loss of the wind turbine and the generator. It aims to optimize the maximum effective output power and turbine speed. Given that the wind generator system has inertia and is nonlinear, the dynamic model of the wind generator system takes the advantage of the duty of the Buck converter and employs feedback linearization to design the optimized turbine speed tracking controller and the load power controller. According to that, this paper proposes a dual-mode dynamic coordination strategy based on the auxiliary load to reduce the influence of mode conversion on the lifetime of the battery. Optimized speed and power rapid tracking as well as the reduction of redundant power during mode conversion have gone through the test based on a 5 kW wind generator system test platform. The generator output power as the capture target has also been proved to be efficient.

  15. Power Control for Direct-Driven Permanent Magnet Wind Generator System with Battery Storage

    Science.gov (United States)

    Guang, Chu Xiao; Ying, Kong

    2014-01-01

    The objective of this paper is to construct a wind generator system (WGS) loss model that addresses the loss of the wind turbine and the generator. It aims to optimize the maximum effective output power and turbine speed. Given that the wind generator system has inertia and is nonlinear, the dynamic model of the wind generator system takes the advantage of the duty of the Buck converter and employs feedback linearization to design the optimized turbine speed tracking controller and the load power controller. According to that, this paper proposes a dual-mode dynamic coordination strategy based on the auxiliary load to reduce the influence of mode conversion on the lifetime of the battery. Optimized speed and power rapid tracking as well as the reduction of redundant power during mode conversion have gone through the test based on a 5 kW wind generator system test platform. The generator output power as the capture target has also been proved to be efficient. PMID:25050405

  16. A New Battery Energy Storage Charging/Discharging Scheme for Wind Power Producers in Real-Time Markets

    Directory of Open Access Journals (Sweden)

    Minh Y Nguyen

    2012-12-01

    Full Text Available Under a deregulated environment, wind power producers are subject to many regulation costs due to the intermittence of natural resources and the accuracy limits of existing prediction tools. This paper addresses the operation (charging/discharging problem of battery energy storage installed in a wind generation system in order to improve the value of wind power in the real-time market. Depending on the prediction of market prices and the probabilistic information of wind generation, wind power producers can schedule the battery energy storage for the next day in order to maximize the profit. In addition, by taking into account the expenses of using batteries, the proposed charging/discharging scheme is able to avoid the detrimental operation of battery energy storage which can lead to a significant reduction of battery lifetime, i.e., uneconomical operation. The problem is formulated in a dynamic programming framework and solved by a dynamic programming backward algorithm. The proposed scheme is then applied to the study cases, and the results of simulation show its effectiveness.

  17. Optimized Sizing, Selection, and Economic Analysis of Battery Energy Storage for Grid-Connected Wind-PV Hybrid System

    Directory of Open Access Journals (Sweden)

    Hina Fathima

    2015-01-01

    Full Text Available Energy storages are emerging as a predominant sector for renewable energy applications. This paper focuses on a feasibility study to integrate battery energy storage with a hybrid wind-solar grid-connected power system to effectively dispatch wind power by incorporating peak shaving and ramp rate limiting. The sizing methodology is optimized using bat optimization algorithm to minimize the cost of investment and losses incurred by the system in form of load shedding and wind curtailment. The integrated system is then tested with an efficient battery management strategy which prevents overcharging/discharging of the battery. In the study, five major types of battery systems are considered and analyzed. They are evaluated and compared based on technoeconomic and environmental metrics as per Indian power market scenario. Technoeconomic analysis of the battery is validated by simulations, on a proposed wind-photovoltaic system in a wind site in Southern India. Environmental analysis is performed by evaluating the avoided cost of emissions.

  18. A Simple Sizing Algorithm for Stand-Alone PV/Wind/Battery Hybrid Microgrids

    Directory of Open Access Journals (Sweden)

    Jing Li

    2012-12-01

    Full Text Available In this paper, we develop a simple algorithm to determine the required number of generating units of wind-turbine generator and photovoltaic array, and the associated storage capacity for stand-alone hybrid microgrid. The algorithm is based on the observation that the state of charge of battery should be periodically invariant. The optimal sizing of hybrid microgrid is given in the sense that the life cycle cost of system is minimized while the given load power demand can be satisfied without load rejection. We also report a case study to show the efficacy of the developed algorithm.

  19. Integrated sizing and scheduling of wind/PV/diesel/battery isolated systems

    KAUST Repository

    Malheiro, André

    2015-05-22

    In this paper we address the optimal sizing and scheduling of isolated hybrid systems using an optimization framework. The hybrid system features wind and photovoltaic conversion systems, batteries and diesel backup generators to supply electricity demand. A Mixed-Integer Linear Programming formulation is used to model system behavior over a time horizon of one year, considering hourly changes in both the availability of renewable resources and energy demand. The optimal solution is achieved with respect to the minimization of the levelized cost of energy (LCOE) over a lifetime of 20 years. Results for a case study show that the most economical solution features all four postulated subsystems. © 2015 Elsevier Ltd.

  20. Performance-degradation model for Li4Ti5O12-based battery cells used in wind power applications

    DEFF Research Database (Denmark)

    Stroe, Daniel Ioan; Swierczynski, Maciej Jozef; Stan, Ana-Irina

    2012-01-01

    Energy storage systems based on Lithium-ion batteries have the potential to mitigate the negative impact of wind power grid integration on the power system stability, which is caused by the characteristics of the wind. This paper presents a performance model for a Li4Ti5O12/LiMO2 battery cell....... For developing the performance model an EIS-based electrical modelling approach was followed. The obtained model is able to predict with high accuracy charge and discharge voltage profiles for different ages of the battery cell and for different charging/discharging current rates. Moreover, the ageing behaviour...... of the battery cell was analysed for the case of accelerated cycling ageing with a certain mission profile....

  1. Operation strategy for grid-tied DC-coupling power converter interface integrating wind/solar/battery

    Science.gov (United States)

    Jou, H. L.; Wu, J. C.; Lin, J. H.; Su, W. N.; Wu, T. S.; Lin, Y. T.

    2017-11-01

    The operation strategy for a small-capacity grid-tied DC-coupling power converter interface (GDPCI) integrating wind energy, solar energy and battery energy storage is proposed. The GDPCI is composed of a wind generator, a solar module set a battery bank, a boost DC-DC power converter (DDPC), a bidirectional DDPC power converter, an AC-DC power converter (ADPC) and a five-level DC-AC inverter (DAI). A solar module set, a wind generator and a battery bank are coupled to the common DC bus through the boost DDPC, the ADPC and the bidirectional DDPC, respectively. For verifying the performance of the GDPCI under different operation modes, computer simulation is carried out by PSIM.

  2. Using Atmospheric Pressure Tendency to Optimise Battery Charging in Off-Grid Hybrid Wind-Diesel Systems for Telecoms

    OpenAIRE

    Shane Phelan; Paula Meehan; Stephen Daniels

    2013-01-01

    Off grid telecom base stations in developing nations are powered by diesel generators. They are typically oversized and run at a fraction of their rated load for most of their operating lifetime. Running generators at partial load is inefficient and, over time, physically damages the engine. A hybrid configuration uses a battery bank, which powers the telecoms’ load for a portion of the time. The generator only operates when the battery bank needs to be charged. Adding a wind turbine further ...

  3. Accelerated lifetime testing methodology for lifetime estimation of Lithium-ion batteries used in augmented wind power plants

    DEFF Research Database (Denmark)

    Stroe, Daniel Ioan; Swierczynski, Maciej Jozef; Stan, Ana-Irina

    2013-01-01

    The development of lifetime estimation models for Lithium-ion battery cells, which are working under highly variable mission profiles characteristic for wind power plant applications, requires a lot of expenditures and time resources. Therefore, batteries have to be tested under accelerated...... lifetime ageing conditions. This paper presents a three-stage methodology used for accelerated lifetime testing of Lithium-ion batteries. The results obtained at the end of the accelerated ageing process can be used for the parametrization of a performance-degradation lifetime model. In the proposed...... methodology both calendar and cycling lifetime tests are considered since both components are influencing the lifetime of Lithium-ion batteries. The methodology proposes also a lifetime model verification stage, where Lithium-ion battery cells are tested at normal operating conditions using an application...

  4. Off-grid hybrid electric power supply system, using a combination of solar cells, small scale wind turbine and batteries

    Energy Technology Data Exchange (ETDEWEB)

    Schroeter, W.

    1994-03-01

    The design of an off-grid electric power supply system consisting of a small scale wind turbine, a combination of solar cells and batteries is described. The robust, small scale FC 4000 wind turbine, which needs little maintenance, can be used under varying climatic conditions. It is equipped with a permanent-magnet generator with an output of 1.5 kW. The generator`s rotor is directly coupled with the wind turbine`s rotor and is without a gearbox, so the frequency and output varies according to wind speed. The 12 m{sup 2} solar cell system consists of round modules embedded in glass and with an efficiency of 13%. The lead acid batteries are used when power consumption exceeds production and store energy for future use. Further adjustments are necessary in order to optimize the performance of this hybrid system. (AB)

  5. Power Management Based Current Control Technique for Photovoltaic-Battery Assisted Wind-Hydro Hybrid System

    Science.gov (United States)

    Ram Prabhakar, J.; Ragavan, K.

    2013-07-01

    This article proposes new power management based current control strategy for integrated wind-solar-hydro system equipped with battery storage mechanism. In this control technique, an indirect estimation of load current is done, through energy balance model, DC-link voltage control and droop control. This system features simpler energy management strategy and necessitates few power electronic converters, thereby minimizing the cost of the system. The generation-demand (G-D) management diagram is formulated based on the stochastic weather conditions and demand, which would likely moderate the gap between both. The features of management strategy deploying energy balance model include (1) regulating DC-link voltage within specified tolerances, (2) isolated operation without relying on external electric power transmission network, (3) indirect current control of hydro turbine driven induction generator and (4) seamless transition between grid-connected and off-grid operation modes. Furthermore, structuring of the hybrid system with appropriate selection of control variables enables power sharing among each energy conversion systems and battery storage mechanism. By addressing these intricacies, it is viable to regulate the frequency and voltage of the remote network at load end. The performance of the proposed composite scheme is demonstrated through time-domain simulation in MATLAB/Simulink environment.

  6. Accelerated Lifetime Testing Methodology for Lifetime Estimation of Lithium-ion Batteries used in Augmented Wind Power Plants

    DEFF Research Database (Denmark)

    Stroe, Daniel Ioan; Swierczynski, Maciej Jozef; Stan, Ana-Irina

    2014-01-01

    The development of lifetime estimation models for Lithium-ion battery cells, which are working under highly variable mission profiles characteristic for wind power plant applications, requires a lot of expenditures and time resources. Therefore, batteries have to be tested under accelerated...... lifetime ageing conditions. This paper presents a three-stage methodology used for accelerated lifetime testing of Lithium ion batteries. The results obtained at the end of the accelerated ageing process were used for the parametrization of a performance-degradation lifetime model, which is able to predict...... was validated by running a verification stage of the lifetime model, where Lithium-ion battery cells were tested at normal operating conditions using an application specific mission profile....

  7. Analysis of the value of battery storage with wind and photovoltaic generation to the Sacramento Municipal Utility District

    Energy Technology Data Exchange (ETDEWEB)

    Zaininger, H.W. [Zaininger Engineering Co., Inc., Roseville, CA (United States)

    1998-08-01

    This report describes the results of an analysis to determine the economic and operational value of battery storage to wind and photovoltaic (PV) generation technologies to the Sacramento Municipal Utility District (SMUD) system. The analysis approach consisted of performing a benefit-cost economic assessment using established SMUD financial parameters, system expansion plans, and current system operating procedures. This report presents the results of the analysis. Section 2 describes expected wind and PV plant performance. Section 3 describes expected benefits to SMUD associated with employing battery storage. Section 4 presents preliminary benefit-cost results for battery storage added at the Solano wind plant and the Hedge PV plant. Section 5 presents conclusions and recommendations resulting from this analysis. The results of this analysis should be reviewed subject to the following caveat. The assumptions and data used in developing these results were based on reports available from and interaction with appropriate SMUD operating, planning, and design personnel in 1994 and early 1995 and are compatible with financial assumptions and system expansion plans as of that time. Assumptions and SMUD expansion plans have changed since then. In particular, SMUD did not install the additional 45 MW of wind that was planned for 1996. Current SMUD expansion plans and assumptions should be obtained from appropriate SMUD personnel.

  8. Basic Study on Battery Capacity Evaluation for Load Frequency Control (LFC) in Power System with a Large Penetration of Wind Power Generation

    Science.gov (United States)

    Murakami, Akiko; Yokoyama, Akihiko; Tada, Yasuyuki

    In recent years, a lot of distributed power generation such as photovoltaic and wind power generation are going to be installed in power systems. However, the fluctuation of these generator outputs affects the system frequency. Therefore, introduction of battery system to the power system has been considered in order to level the fluctuation of the total power output of the distributed generation. In the present paper, the authors propose a systematic method to evaluate the appropriate battery storage capacity and the power converter capacity of the battery for the various type of wind power outputs. The minimum required capacity of the battery is determined reasonably from the viewpoints of battery cost and load frequency control system in a power system with a large penetration of wind power generation.

  9. Renewable rural electrification: Prediction of sustainability in South Africa: Case study: Wind and solar photo-voltaic with lead acid battery storage

    CSIR Research Space (South Africa)

    Rogers, DEC

    2008-11-01

    Full Text Available A case study methodology and assessment of renewable energy technology and sustainable development is applied to a DME rural village project. Wind, solar and lead acid battery energy storage technology were used for off-grid electrification...

  10. Multiple time-scale optimization scheduling for islanded microgrids including PV, wind turbine, diesel generator and batteries

    DEFF Research Database (Denmark)

    Xiao, Zhao xia; Nan, Jiakai; Guerrero, Josep M.

    2017-01-01

    the adjustment of the day-ahead scheduling and giving priority to the use of renewable energy. According to the forecast of the critical and noncritical load, the wind speed, and the solar irradiation, mixed integer linear programming (MILP) optimization method is used to solve the multi-objective optimization......A multiple time-scale optimization scheduling including day ahead and short time for an islanded microgrid is presented. In this paper, the microgrid under study includes photovoltaics (PV), wind turbine (WT), diesel generator (DG), batteries, and shiftable loads. The study considers the maximum...... efficiency operation area for the diesel engine and the cost of the battery charge/discharge cycle losses. The day-ahead generation scheduling takes into account the minimum operational cost and the maximum load satisfaction as the objective function. Short-term optimal dispatch is based on minimizing...

  11. A novel supervisory control approach to switching operations for hybrid wind/diesel/battery/mains energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Gu, T. [Guilin Inst. of Electronic Technology, School of Computer Engineering, Guilin (China); Keerthipala, W.W.; Islam, S.M.; Nayar, C.V. [Curtin Univ. of Technology, School of Electrical and Computer Engineering, Perth (Australia)

    2000-12-01

    Hybrid energy systems, integrating renewable energy technologies with diesel generators, batteries and inverters, can provide 24 h grid quality power to remote communities. Work in the Centre for Renewable Energy Systems Technology Australia (CRESTA) has been carried out to develop a new hybrid/wind/diesel/battery/mains energy system. In the system, the switching operations of different modes play an important role in the proper running of the system. From the view of discrete event dynamic systems, a novel supervisory control approach for the switching operations of modes has been explored, in which the switching actions are defined as events, switching modes as states and events take the system from one state to another. The supervisory controller for a prototype of the hybrid wind/diesel/battery mains energy system has been designed and it has been simulated in PSCAD/EMTDC. The results reveal that this technique could facilitate the analysis and design of supervisory controllers for switching operations, particularly in the complicated hybrid energy systems. (Author)

  12. Batteries

    Directory of Open Access Journals (Sweden)

    Yang Lijuan

    2016-01-01

    Full Text Available Fe3O4/carbon microspheres (Fe3O4/C were prepared by a facile hydrothermal reaction using cellulose and ferric trichloride as precursors. The resultant composite spheres have been investigated as anode materials for the lithium-ion batteries, and they show high capacity and good cycle stability (830mAhg−1 at a current density of 0.1C up to 70 cycles, as well as enhanced rate capability. The excellent electrochemical performance is attributed to the high structural stability and high rate of ionic/electronic conduction arising from the porous character and the synergetic effect of the carbon coated Fe3O4 structure and conductive carbon coating.

  13. Optimal Sizing for Wind/PV/Battery System Using Fuzzy c-Means Clustering with Self-Adapted Cluster Number

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2017-01-01

    Full Text Available Integrating wind generation, photovoltaic power, and battery storage to form hybrid power systems has been recognized to be promising in renewable energy development. However, considering the system complexity and uncertainty of renewable energies, such as wind and solar types, it is difficult to obtain practical solutions for these systems. In this paper, optimal sizing for a wind/PV/battery system is realized by trade-offs between technical and economic factors. Firstly, the fuzzy c-means clustering algorithm was modified with self-adapted parameters to extract useful information from historical data. Furthermore, the Markov model is combined to determine the chronological system states of natural resources and load. Finally, a power balance strategy is introduced to guide the optimization process with the genetic algorithm to establish the optimal configuration with minimized cost while guaranteeing reliability and environmental factors. A case of island hybrid power system is analyzed, and the simulation results are compared with the general FCM method and chronological method to validate the effectiveness of the mentioned method.

  14. Prospect of wind-PV-battery hybrid power system as an alternative to grid extension in Bangladesh

    International Nuclear Information System (INIS)

    Nandi, Sanjoy Kumar; Ghosh, Himangshu Ranjan

    2010-01-01

    A pre-feasibility of wind-PV-battery hybrid system has been performed for a small community in the east-southern part of Bangladesh. Solar radiation resources have been assessed from other meteorological parameters like sunshine duration and cloud cover as measured radiation data were not available at the site. The predicted monthly averaged daily global radiation over Chittagong is 4.36 kWh/m 2 /day. Measured wind speed at the site varies from 3 m/s to 5 m/s. For few months and hours the speed is below the cut in speeds of the available turbines in market. The hybrid system analysis has showed that for a small community consuming 53,317 kWh/year the cost energy is 0.47USD/kWh with 10% annual capacity of shortage and produces 89,151 kWh/year in which 53% electricity comes from wind and the remaining from solar energy. The sensitivity analysis showed that the hybrid system for the community is compatible with the 8 km-12 km grid extension depending on small variation of solar radiation and wind speed over the district whereas the proposed site is more away from the upper limit. Such a hybrid system will reduce about 25 tCO 2 /yr green house gases (GHG) emission in the local atmosphere.

  15. Renewable energy management through microgrid central controller design: An approach to integrate solar, wind and biomass with battery

    Directory of Open Access Journals (Sweden)

    Zaheeruddin

    2015-11-01

    Full Text Available In this study, an isolated microgrid comprising of renewable energy (RE sources like wind, solar, biogas and battery is considered. Provision of utility grid insertion is also given if total microgrid sources falls short of supplying the total load. To establish an efficient energy management strategy, a central controller takes the decision based on the status of the loads and sources. The status is obtained with the assistance of multi-agent concept (treating each source and load as an agent. The data acquisition system of these renewable sources and loads consists of multiple sensors interconnected through Low Power Radio over one of many GPRS communication. The Microgrid Central Controller (MGCC would use an embedded energy management algorithm to take decisions, which are then transmitted to the controllable RE systems to manage the utilization of their power outputs as per the load-supply power balance. A control strategy is adopted to regulate the power output from the battery in case of supply shortage, which results in a floating battery scheme in steady state.

  16. Power and Energy Management with Battery Storage for a Hybrid Residential PV-Wind System – A Case Study for Denmark

    DEFF Research Database (Denmark)

    Stroe, Daniel-Ioan; Zaharof, Andreea; Iov, Florin

    2018-01-01

    The energy generation paradigm is shifting from centralized fossil-fuel-based generation to distributed-based renewable generation. Thus, hybrid residential energy systems based on wind turbines, PV panels and/or micro-turbines are gaining more and more terrain. Nevertheless, such a system needs...... to be coupled with an energy storage solution, most often a battery, in order to mitigate its power generation variability and to ensure a stable and reliable operation. In this work, two power and energy management strategies for a hybrid residential PV-wind system with battery energy storage were evaluated...

  17. Techno-economic analysis of stand-alone photovoltaic/wind/battery/hydrogen systems for very small-scale applications

    Directory of Open Access Journals (Sweden)

    Stojković Saša M.

    2016-01-01

    Full Text Available The paper presents the results of a technical and economic analysis of three stand-alone hybrid power systems based on renewable energy sources which supply a specific group of low-power consumers. This particular case includes measuring sensors and obstacle lights on a meteorological mast for wind measurements requiring an uninterrupted power supply in cold climate conditions. Although these low-power (100 W measuring sensors and obstacle lights use little energy, their energy consumption is not the same as the available solar energy obtained on a daily or seasonal basis. In the paper, complementarity of renewable energy sources was analysed, as well as one of short-term lead-acid battery-based storage and seasonal, hydrogen-based (electrolyser, H2 tank, and fuel cells storage. These relatively complex power systems were proposed earlier for high-power consumers only, while this study specifically highlights the role of the hydrogen system for supplying low-power consumers. The analysis employed a numerical simulation method using the HOMER software tool. The results of the analysis suggest that solar and wind-solar systems, which involve meteorological conditions as referred to in this paper, include a relatively large number of lead-acid batteries. Additionally, the analysis suggests that the use of hydrogen power systems for supplying low power-consumers is entirely justifiable, as it significantly reduces the number of batteries (two at minimum in this particular case. It was shown that the increase in costs induced by the hydrogen system is acceptable.

  18. Fuzzy logic based power management strategy of a multi-MW doubly-fed induction generator wind turbine with battery and ultracapacitor

    International Nuclear Information System (INIS)

    Sarrias-Mena, Raúl; Fernández-Ramírez, Luis M.; García-Vázquez, Carlos Andrés; Jurado, Francisco

    2014-01-01

    Integrating energy storage systems (ESS) with wind turbines results to be an interesting option for improving the grid integration capability of wind energy. This paper presents and evaluates a wind hybrid system consisting of a 1.5 MW doubly-fed induction generator (DFIG) wind turbine and double battery-ultracapacitor ESS. Commercially available components are used in this wind hybrid system. A novel supervisory control system (SCS) is designed and implemented, which is responsible for setting the active and reactive power references for each component of the hybrid system. A fuzzy logic controller, taking into account the grid demand, power generation prediction, actual DFIG power generation and state-of-charge (SOC) of the ESSs, sets the active power references. The reactive power references are proportionally delivered to each element regarding their current limitations in the SCS. The appropriate control of the power converters allows each power source to achieve the operation defined by the SCS. The wind hybrid system and SCS are assessed by simulation under wind fluctuations, grid demand changes, and grid disturbances. Results show an improved performance in the overall response of the system with the implementation of the SCS. - Highlights: • We study a wind hybrid system based on DFIG wind turbine, battery and ultracapacitor. • A novel supervisory control system based on fuzzy logic is designed and implemented. • The control improves the system response under different operating conditions

  19. Analysis of a utility-interactive wind-photovoltaic hybrid system with battery storage using neural network

    Science.gov (United States)

    Giraud, Francois

    1999-10-01

    This dissertation investigates the application of neural network theory to the analysis of a 4-kW Utility-interactive Wind-Photovoltaic System (WPS) with battery storage. The hybrid system comprises a 2.5-kW photovoltaic generator and a 1.5-kW wind turbine. The wind power generator produces power at variable speed and variable frequency (VSVF). The wind energy is converted into dc power by a controlled, tree-phase, full-wave, bridge rectifier. The PV power is maximized by a Maximum Power Point Tracker (MPPT), a dc-to-dc chopper, switching at a frequency of 45 kHz. The whole dc power of both subsystems is stored in the battery bank or conditioned by a single-phase self-commutated inverter to be sold to the utility at a predetermined amount. First, the PV is modeled using Artificial Neural Network (ANN). To reduce model uncertainty, the open-circuit voltage VOC and the short-circuit current ISC of the PV are chosen as model input variables of the ANN. These input variables have the advantage of incorporating the effects of the quantifiable and non-quantifiable environmental variants affecting the PV power. Then, a simplified way to predict accurately the dynamic responses of the grid-linked WPS to gusty winds using a Recurrent Neural Network (RNN) is investigated. The RNN is a single-output feedforward backpropagation network with external feedback, which allows past responses to be fed back to the network input. In the third step, a Radial Basis Functions (RBF) Network is used to analyze the effects of clouds on the Utility-Interactive WPS. Using the irradiance as input signal, the network models the effects of random cloud movement on the output current, the output voltage, the output power of the PV system, as well as the electrical output variables of the grid-linked inverter. Fourthly, using RNN, the combined effects of a random cloud and a wind gusts on the system are analyzed. For short period intervals, the wind speed and the solar radiation are considered as

  20. Optimal allocation and sizing of PV/Wind/Split-diesel/Battery hybrid energy system for minimizing life cycle cost, carbon emission and dump energy of remote residential building

    International Nuclear Information System (INIS)

    Ogunjuyigbe, A.S.O.; Ayodele, T.R.; Akinola, O.A.

    2016-01-01

    Highlights: • Genetic Algorithm is used for tri-objective design of hybrid energy system. • The objective is minimizing the Life Cycle Cost, CO 2 emissions and dump energy. • Small split diesel generators are used in place of big single diesel generator. • The split diesel generators are aggregable based on certain set of rules. • The proposed algorithm achieves the set objectives (LCC, CO 2 emission and dump). - Abstract: In this paper, a Genetic Algorithm (GA) is utilized to implement a tri-objective design of a grid independent PV/Wind/Split-diesel/Battery hybrid energy system for a typical residential building with the objective of minimizing the Life Cycle Cost (LCC), CO 2 emissions and dump energy. To achieve some of these objectives, small split Diesel generators are used in place of single big Diesel generator and are aggregable based on certain set of rules depending on available renewable energy resources and state of charge of the battery. The algorithm was utilized to study five scenarios (PV/Battery, Wind/Battery, Single big Diesel generator, aggregable 3-split Diesel generators, PV/Wind/Split-diesel/Battery) for a typical load profile of a residential house using typical wind and solar radiation data. The results obtained revealed that the PV/Wind/Split-diesel/Battery is the most attractive scenario (optimal) having LCC of $11,273, COE of 0.13 ($/kW h), net dump energy of 3 MW h, and net CO 2 emission of 13,273 kg. It offers 46%, 28%, 82% and 94% reduction in LCC, COE, CO 2 emission and dump energy respectively when compared to a single big Diesel generator scenario.

  1. Hybrid PV/Wind Power Systems Incorporating Battery Storage and Considering the Stochastic Nature of Renewable Resources

    Science.gov (United States)

    Barnawi, Abdulwasa Bakr

    Hybrid power generation system and distributed generation technology are attracting more investments due to the growing demand for energy nowadays and the increasing awareness regarding emissions and their environmental impacts such as global warming and pollution. The price fluctuation of crude oil is an additional reason for the leading oil producing countries to consider renewable resources as an alternative. Saudi Arabia as the top oil exporter country in the word announced the "Saudi Arabia Vision 2030" which is targeting to generate 9.5 GW of electricity from renewable resources. Two of the most promising renewable technologies are wind turbines (WT) and photovoltaic cells (PV). The integration or hybridization of photovoltaics and wind turbines with battery storage leads to higher adequacy and redundancy for both autonomous and grid connected systems. This study presents a method for optimal generation unit planning by installing a proper number of solar cells, wind turbines, and batteries in such a way that the net present value (NPV) is minimized while the overall system redundancy and adequacy is maximized. A new renewable fraction technique (RFT) is used to perform the generation unit planning. RFT was tested and validated with particle swarm optimization and HOMER Pro under the same conditions and environment. Renewable resources and load randomness and uncertainties are considered. Both autonomous and grid-connected system designs were adopted in the optimal generation units planning process. An uncertainty factor was designed and incorporated in both autonomous and grid connected system designs. In the autonomous hybrid system design model, the strategy including an additional amount of operation reserve as a percent of the hourly load was considered to deal with resource uncertainty since the battery storage system is the only backup. While in the grid-connected hybrid system design model, demand response was incorporated to overcome the impact of

  2. A Combined Energy Management Algorithm for Wind Turbine/Battery Hybrid System

    Science.gov (United States)

    Altin, Necmi; Eyimaya, Süleyman Emre

    2018-03-01

    From an energy management standpoint, natural phenomena such as solar irradiation and wind speed are uncontrolled variables, so the correlation between the energy generated by renewable energy sources and energy demand cannot always be predicted. For this reason, energy storage systems are used to provide more efficient renewable energy systems. In these systems, energy management systems are used to control the energy storage system and establish a balance between the generated power and the power demand. In addition, especially in wind turbines, rapidly varying wind speeds cause wind power fluctuations, which threaten the power system stability, especially at high power levels. Energy storage systems are also used to mitigate the power fluctuations and sustain the power system's stability. In these systems, another controller which controls the energy storage system power to mitigate power fluctuations is required. These two controllers are different from each other. In this study, a combined energy management algorithm is proposed which can perform both as an energy control system and a power fluctuation mitigation system. The proposed controller is tested with wind energy conversion system modeled in MATLAB/Simulink. Simulation results show that the proposed controller acts as an energy management system while, at the same time, mitigating power fluctuations.

  3. Performance Analysis of Solar-Wind-Diesel-Battery Hybrid Energy System for KLIA Sepang Station of Malaysia

    Science.gov (United States)

    Shezan, S. K. A.; Saidur, R.; Hossain, A.; Chong, W. T.; Kibria, M. A.

    2015-09-01

    A large number of populations of the world live in rural or remote areas those are geographically isolated. Power supply and uninterrupted fuel transportation to produce electrical power for these remote areas poses a great challenge. Using renewable energy in hybrid energy system might be a pathway to solve this problem. Malaysia is a large hilly land with the gift of renewable energy resources. There is a good chance to utilize these renewable resources to produce electrical power and to limit the dependency on the fossil fuel as well as reduce the carbon emissions. In this perspective, a research is carried out to analyze the performance of a solar-wind-diesel-battery hybrid energy system for a remote area named “KLIA Sepang station” in the state of Selangor, Malaysia. In this study, a 56 kW hybrid energy system has been proposed that is capable to support more than 50 households and 6 shops in that area. Real time field data of solar radiation and wind speed is used for the simulation and optimization of operations using “Homer” renewable energy software. The proposed system can reduce CO2 emission by about 16 tons per year compared to diesel generator only. In the same time the Cost of energy (COE) of the optimized system is USD 5.126/kWh.The proposed hybrid energy system might be applicable for other parts of the world where the climate conditions are similar.

  4. Optimal Power Scheduling for a Grid-Connected Hybrid PV-Wind-Battery Microgrid System

    DEFF Research Database (Denmark)

    Hernández, Adriana Carolina Luna; Aldana, Nelson Leonardo Diaz; Savaghebi, Mehdi

    2016-01-01

    In this paper, a lineal mathematical model is proposed to schedule optimally the power references of the distributed energy resources in a grid-connected hybrid PVwind-battery microgrid. The optimization of the short term scheduling problem is addressed through a mixed-integer linear programming...... mathematical model, wherein the cost of energy purchased from the main grid is minimized and profits for selling energy generated by photovoltaic arrays are maximized by considering both physical constraints and requirements for a feasible deployment in the real system. The optimization model is tested...

  5. Mixed-Integer-Linear-Programming-Based Energy Management System for Hybrid PV-Wind-Battery Microgrids

    DEFF Research Database (Denmark)

    Hernández, Adriana Carolina Luna; Aldana, Nelson Leonardo Diaz; Graells, Moises

    2017-01-01

    by using complex algorithms that, even so, do not consider the operation of the distributed energy resources. This paper presents the modeling and design of a modular energy management system and its integration to a grid-connected battery-based microgrid. The scheduling model is a power generation......-side strategy, defined as a general mixed-integer linear programming by taking into account two stages for proper charging of the storage units. This model is considered as a deterministic problem that aims to minimize operating costs and promote self-consumption based on 24-hour ahead forecast data....... The operation of the microgrid is complemented with a supervisory control stage that compensates any mismatch between the offline scheduling process and the real time microgrid operation. The proposal has been tested experimentally in a hybrid microgrid at the Microgrid Research Laboratory in Aalborg University....

  6. A Novel Numerical Algorithm for Optimal Sizing of a Photovoltaic/Wind/Diesel Generator/Battery Microgrid Using Loss of Load Probability Index

    Directory of Open Access Journals (Sweden)

    Hussein A. Kazem

    2013-01-01

    Full Text Available This paper presents a method for determining optimal sizes of PV array, wind turbine, diesel generator, and storage battery installed in a building integrated system. The objective of the proposed optimization is to design the system that can supply a building load demand at minimum cost and maximum availability. The mathematical models for the system components as well as meteorological variables such as solar energy, temperature, and wind speed are employed for this purpose. Moreover, the results showed that the optimum sizing ratios (the daily energy generated by the source to the daily energy demand for the PV array, wind turbine, diesel generator, and battery for a system located in Sohar, Oman, are 0.737, 0.46, 0.22, and 0.17, respectively. A case study represented by a system consisting of 30 kWp PV array (36%, 18 kWp wind farm (55%, and 5 kVA diesel generator (9% is presented. This system is supposed to power a 200 kWh/day load demand. It is found that the generated energy share of the PV array, wind farm, and diesel generator is 36%, 55%, and 9%, respectively, while the cost of energy is 0.17 USD/kWh.

  7. Evaluation of different operational strategies for lithium ion battery systems connected to a wind turbine for primary frequency regulation and wind power forecast accuracy improvement

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Ioan; Stan, Ana-Irina

    2012-01-01

    High penetration levels of variable wind energy sources can cause problems with their grid integration. Energy storage systems connected to wind turbine/wind power plants can improve predictability of the wind power production and provide ancillary services to the grid. This paper investigates...... economics of different operational strategies for Li-ion systems connected to wind turbines for wind power forecast accuracy improvement and primary frequency regulation....

  8. An Improved Interval Fuzzy Modeling Method: Applications to the Estimation of Photovoltaic/Wind/Battery Power in Renewable Energy Systems

    Directory of Open Access Journals (Sweden)

    Nguyen Gia Minh Thao

    2018-02-01

    Full Text Available This paper proposes an improved interval fuzzy modeling (imIFML technique based on modified linear programming and actual boundary points of data. The imIFML technique comprises four design stages. The first stage is based on conventional interval fuzzy modeling (coIFML with first-order model and linear programming. The second stage defines reference lower and upper bounds of data using MATLAB. The third stage initially adjusts scaling parameters in the modified linear programming. The last stage automatically fine-tunes parameters in the modified linear programming to realize the best possible model. Lower and upper bounds approximated by the imIFML technique are closely fitted to the reference lower and upper bounds, respectively. The proposed imIFML is thus significantly less conservative in cases of large variation in data, while robustness is inherited from the coIFML. Design flowcharts, equations, and sample MATLAB code are presented for reference in future experiments. Performance and efficacy of the introduced imIFML are evaluated to estimate solar photovoltaic, wind and battery power in a demonstrative renewable energy system under large data changes. The effectiveness of the proposed imIFML technique is also compared with the coIFML technique.

  9. Battery Fault Detection with Saturating Transformers

    Science.gov (United States)

    Davies, Francis J. (Inventor); Graika, Jason R. (Inventor)

    2013-01-01

    A battery monitoring system utilizes a plurality of transformers interconnected with a battery having a plurality of battery cells. Windings of the transformers are driven with an excitation waveform whereupon signals are responsively detected, which indicate a health of the battery. In one embodiment, excitation windings and sense windings are separately provided for the plurality of transformers such that the excitation waveform is applied to the excitation windings and the signals are detected on the sense windings. In one embodiment, the number of sense windings and/or excitation windings is varied to permit location of underperforming battery cells utilizing a peak voltage detector.

  10. Techno-economic feasibility of hybrid diesel/PV/wind/battery electricity generation systems for non-residential large electricity consumers under southern Iran climate conditions

    International Nuclear Information System (INIS)

    Baneshi, Mehdi; Hadianfard, Farhad

    2016-01-01

    Highlights: • A hybrid electricity generation system for a large electricity consumer was studied. • The PV and wind electricity potentials under given climate conditions were evaluated. • Technical, economical, and environmental issues of different systems were discussed. • The optimum configuration of components was obtained. • The impacts of governmental incentives on economic viability of systems were examined. - Abstract: This paper aims to study the techno-economical parameters of a hybrid diesel/PV/wind/battery power generation system for a non-residential large electricity consumer in the south of Iran. As a case study, the feasibility of running a hybrid system to meet a non-residential community’s load demand of 9911 kWh daily average and 725 kW peak load demand was investigated. HOMER Pro software was used to model the operation of the system and to identify the appropriate configuration of it based on comparative technical, economical, and environmental analysis. Both stand alone and grid connected systems were modeled. The impacts of annual load growth and governmental energy policies such as providing low interest loan to renewable energy projects, carbon tax, and modifying the grid electricity price on viability of the system were discussed. Results show that for off-grid systems the cost of electricity (COE) and the renewable fraction of 9.3–12.6 ₵/kWh and 0–43.9%, respectively, are achieved with photovoltaic (PV) panel, wind turbine, and battery sizes of 0–1000 kW, 0–600 kW, and 1300 kWh, respectively. For on grid systems without battery storage the range of COE and renewable fraction are 5.7–8.4 ₵/kWh and 0–53%, respectively, for the same sizes of PV panel and wind turbine.

  11. Optimal Power Flow Management Control for Grid Connected Photovoltaic/Wind turbine/Diesel generator (GCPWD) Hybrid System with Batteries

    OpenAIRE

    Murugan, Bala; S., Manoharan

    2016-01-01

    This paper proposes a Optimal Power Flow Management control for Grid Connected Photovoltaic/Wind turbine/ Diesel generator (GCPWD) Hybrid System with hybrid storage system. The energy system having a photo voltaic (PV) panel, wind turbine (WT) and diesel generator (DG) for continuous power flow management. A diesel generator is added to ensure uninterrupted power supply due to the discontinuous nature of solar and wind resources. The developed Grid Connected Photovoltaic/Wind turbine/ Diesel ...

  12. Optimized Fuzzy-Cuckoo Controller for Active Power Control of Battery Energy Storage System, Photovoltaic, Fuel Cell and Wind Turbine in an Isolated Micro-Grid

    Directory of Open Access Journals (Sweden)

    Mohsen Einan

    2017-08-01

    Full Text Available This paper presents a new control strategy for isolated micro-grids including wind turbines (WT, fuel cells (FC, photo-voltaic (PV and battery energy storage systems (BESS. FC have been used in parallel with BESSs in order to increase their lifetime and efficiency. The changes in some parameters such as wind speed, sunlight, and consumption, lead to improper performance of droop. To overcome this challenge, a new intelligent method using a combination of fuzzy controller and cuckoo optimization algorithm (COA techniques for active power controllers in isolated networks is proposed. In this paper, COA is compared with genetic algorithm (GA and particles swarm optimization algorithm (PSO. In order to show efficiency of the proposed controller, this optimal controller has been compared with droop, optimized droop, and conventional fuzzy methods, the dynamic analysis of the island is implemented to assess the behavior of isolated generations accurately and simulation results are reported.

  13. Using atmospheric pressure tendency to optimise battery charging in o-grid hybrid wind-diesel systems for telecoms

    OpenAIRE

    Phelan, Shane

    2014-01-01

    Off grid telecom base stations in developing nations are powered by diesel generators. They are typically oversized and run at a fraction of their rated load for most of their lifetime. Operating these generators at partial load is inefficient and over time physically damages the engine. A hybrid configuration,which is the combination of multiple energy sources, uses a battery bank which powers the telecoms load for a portion of the time. The generator only operates when the battery ban...

  14. Ballistic negatron battery

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, M.S.R. [Koneru Lakshmiah Univ.. Dept. of Electrical and Electronics Engineering, Green fields, Vaddeswaram (India)

    2012-07-01

    If we consider the Statistics there is drastic increase in dependence of batteries from year to year, due to necessity of power storage equipment at homes, power generating off grid and on grid Wind, PV systems, etc.. Where wind power is leading in renewable sector, there is a need to look at its development. Considering the scenario in India, most of the wind resource areas are far away from grid and the remaining areas which are near to grid are of low wind currents which is of no use connecting these equipment directly to grid. So, there is a need for a power storage utility to be integrated, such as the BNB (Ballistic Negatron Battery). In this situation a country like India need a battery which should be reliable, cheap and which can be industrialized. So this paper presents the concept of working, design, operation, adaptability of a Ballistic Negatron Battery. Unlike present batteries with low energy density, huge size, more weight, more charging time and low resistant to wear level, this Ballistic Negatron Battery comes with, 1) High energy storage capability (many multiples more than the present most advanced battery). 2) Very compact in size. 3) Almost negligible in weight compared to present batteries. 4) Charges with in very less time. 5) Never exhibits a wear level greater than zero. Seems like inconceivable but adoptable with simple physics. This paper will explains in detail the principle, model, design, construction and practical considerations considered in making this battery. (Author)

  15. Battery Cell Balancing System and Method

    Science.gov (United States)

    Davies, Francis J. (Inventor)

    2014-01-01

    A battery cell balancing system is operable to utilize a relatively small number of transformers interconnected with a battery having a plurality of battery cells to selectively charge the battery cells. Windings of the transformers are simultaneously driven with a plurality of waveforms whereupon selected battery cells or groups of cells are selected and charged. A transformer drive circuit is operable to selectively vary the waveforms to thereby vary a weighted voltage associated with each of the battery cells.

  16. Optimization-based power management of hybrid power systems with applications in advanced hybrid electric vehicles and wind farms with battery storage

    Science.gov (United States)

    Borhan, Hoseinali

    Modern hybrid electric vehicles and many stationary renewable power generation systems combine multiple power generating and energy storage devices to achieve an overall system-level efficiency and flexibility which is higher than their individual components. The power or energy management control, "brain" of these "hybrid" systems, determines adaptively and based on the power demand the power split between multiple subsystems and plays a critical role in overall system-level efficiency. This dissertation proposes that a receding horizon optimal control (aka Model Predictive Control) approach can be a natural and systematic framework for formulating this type of power management controls. More importantly the dissertation develops new results based on the classical theory of optimal control that allow solving the resulting optimal control problem in real-time, in spite of the complexities that arise due to several system nonlinearities and constraints. The dissertation focus is on two classes of hybrid systems: hybrid electric vehicles in the first part and wind farms with battery storage in the second part. The first part of the dissertation proposes and fully develops a real-time optimization-based power management strategy for hybrid electric vehicles. Current industry practice uses rule-based control techniques with "else-then-if" logic and look-up maps and tables in the power management of production hybrid vehicles. These algorithms are not guaranteed to result in the best possible fuel economy and there exists a gap between their performance and a minimum possible fuel economy benchmark. Furthermore, considerable time and effort are spent calibrating the control system in the vehicle development phase, and there is little flexibility in real-time handling of constraints and re-optimization of the system operation in the event of changing operating conditions and varying parameters. In addition, a proliferation of different powertrain configurations may

  17. Environmental/Economic Operation Management of a Renewable Microgrid with Wind/PV/FC/MT and Battery Energy Storage Based on MSFLA

    Directory of Open Access Journals (Sweden)

    Morteza Haghshenas

    2016-03-01

    Full Text Available Microgrids (MGs are local grids consisting of Distributed generators, energy storage systems and dispersed loads which may operate in both grid-connected and islanded modes. This paper aims to optimize the operation of a typical grid-connected MG which comprises a variety of DGs and storage devices in order to minimize both total operation cost and environmental impacts resulted from supplying local demands. Furthermore we will try to achieve an intelligent schedule to charge and discharge storage devices that provides the opportunity to benefit from market price fluctuations. The presented optimization framework is based on multiobjective modified shuffled frog leaping algorithm (MSFLA. To solve environmental/economic operation management (EEOM problem using MSFLA, a new frog leaping rule, associated with a new strategy for frog distribution into memeplexes, is proposed to improve the local exploration and performance of the ordinary shuffled frog leaping algorithm. The proposed method is examined and tested on a grid-connected MG including fuel cell, wind turbine, photovoltaic, gas-fired microturbine, and battery energy storage devices. The simulation results for three scenarios involving the economic operation management of MG, environmental operation management of MG, and environmental/economic operation management of MG are presented separately. The obtained results compared with results of well-known methods reported in the literature and prove the efficiency of the proposed approach to solve the both single objective and multiobjective operation management of the MG.

  18. Shot-put kinematics

    Science.gov (United States)

    DeLuca, R.

    2005-11-01

    The problem of the optimum throw in the shot-put discipline is analysed by relaxing the assumption that the height H, from which the athlete releases the shot, does not depend on the angle θ which the arm of the putter makes with the horizontal axis. In this context, the kinematics of the shot-put is studied and results are compared with the traditional analysis, which considers the height H, the angle θ and the modulus V0 of the initial velocity of the metal sphere as independent parameters.

  19. Batteries and accumulators in France

    International Nuclear Information System (INIS)

    2012-12-01

    The present report gives an overview of the batteries and accumulators market in France in 2011 based on the data reported through ADEME's Register of Batteries and accumulators. In 2001, the French Environmental Agency, known as ADEME, implemented a follow-up of the batteries and accumulators market, creating the Observatory of batteries and accumulators (B and A). In 2010, ADEME created the National Register of producers of Batteries and Accumulators in the context of the implementation of the order issued on November 18, 2009. This is one of the four enforcement orders for the decree 2009-1139 issued on September 22, 2009, concerning batteries and accumulators put on the market and the disposal of waste batteries and accumulators, and which transposes the EU-Directive 2006/66/CE into French law. This Register follows the former Observatory for batteries and accumulators. This Register aims to record the producers on French territory and to collect the B and A producers and recycling companies' annual reporting: the regulation indeed requires that all B and A producers and recycling companies report annually on the Register the quantities of batteries and accumulators they put on the market, collect and treat. Based on this data analysis, ADEME issues an annual report allowing both the follow-up of the batteries and accumulators market in France and communication regarding the achievement of the collection and recovery objectives set by EU regulation. This booklet presents the situation in France in 2011

  20. Putting Participation into Practice

    African Journals Online (AJOL)

    a research project in which I partic- ipated in ... A list of combined themes was compiled and a model was constructed to depict the themes and their interrelatedness. ... towards facilitating the personal growth and development of patients (to nurture self-reliance). (SA Fam Pract 2004;46(5): 31-36). Original Research. Putting ...

  1. Batteries not included

    International Nuclear Information System (INIS)

    Cooper, M.

    2001-01-01

    This article traces the development of clockwork wind-up battery chargers that can be used to recharge mobile phones, laptop computers, torches or radio batteries from the pioneering research of the British inventor Trevor Baylis to the marketing of the wind-up gadgets by Freeplay Energy who turned the idea into a commercial product. The amount of cranking needed to power wind-up devices is discussed along with a hand-cranked charger for mobile phones, upgrading the phone charger's mechanism, and drawbacks of the charger. Details are given of another invention using a hand-cranked generator with a supercapacitor as a storage device which has a very much higher capacity for storing electrical charge

  2. Battery Modeling

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.

    2008-01-01

    The use of mobile devices is often limited by the capacity of the employed batteries. The battery lifetime determines how long one can use a device. Battery modeling can help to predict, and possibly extend this lifetime. Many different battery models have been developed over the years. However,

  3. Putting politics first.

    Science.gov (United States)

    Hacker, Jacob S

    2008-01-01

    The greatest lesson of the failure of comprehensive health reform in the early 1990s is that politics comes first. Even the best-laid policy plans are worthless if they lack the political support to pass. Putting politics first means avoiding the overarching mistake of the Clinton reformers: envisioning a grand policy compromise rather than hammering out a real political compromise. It also means addressing the inevitable fears of those who believe that they are well protected by our eroding employment-based system. And it means formulating political strategies that are premised on the contemporary realities of the hyperpolarized U.S. political environment, rather than wistfully recalled images of the bipartisan politics of old.

  4. Put order picking system

    Directory of Open Access Journals (Sweden)

    Đurđević Dragan D.

    2014-01-01

    Full Text Available Nowadays the warehouse is very important logistic component of the supply chain, where order-picking systems have important role. Due to the significant impact on logistics performance permanent goals are to increase efficiency and reduce the cost of these systems. To achieve these goals, there are different researches, and their success is determined by the achieved performances. Performances order picking process are dependent on the applied technology concepts of order-picking system, as well as the ways in which it is organized and managed. In addition to the standard conceptions (the man to good and good to the man is one of the newer, so-called. 'put' system - the inverse order-picking. The aim of this paper is to describe this concept, point out its core strengths and weaknesses and provide a basis that may be of importance in the development of warehouse technological solutions and application of this order-picking systems concept.

  5. Putting instruction sequences into effect

    NARCIS (Netherlands)

    Bergstra, J.A.

    2011-01-01

    An attempt is made to define the concept of execution of an instruction sequence. It is found to be a special case of directly putting into effect of an instruction sequence. Directly putting into effect of an instruction sequences comprises interpretation as well as execution. Directly putting into

  6. Lead/acid battery technology

    Science.gov (United States)

    Manders, J. E.; Lam, L. T.; Peters, K.; Prengaman, R. D.; Valeriote, E. M.

    Following the schedule of previous Asian Battery Conferences, the Proceedings closed with an expert panel of battery scientists and technologists who answered questions put by the assembled delegates. The subjects under consideration were as follows. Grid alloys: grain structure of lead-calcium and lead-calcium-tin alloys; dross problems; control of calcium content; cast-on-strap; terminal-post attack; porosity/acid-wicking problems; effect of silver; lead-cadmium alloys. Leady oxide: α-PbO:β-PbO ratio; influence on plate-processing and battery performance. Paste-mixing and curing: influence of amorphous material. Plate formation: black/powdery plates; effect of acid concentration; charge level. Valve-regulated batteries: mass balances; grid thickness; shelf life. Battery charging: overcharge effects; fast charging; temperature effects; string configurations; sodium sulfate additive.

  7. Multi-Objective Scheduling Optimization Based on a Modified Non-Dominated Sorting Genetic Algorithm-II in Voltage Source Converter−Multi-Terminal High Voltage DC Grid-Connected Offshore Wind Farms with Battery Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Ho-Young Kim

    2017-07-01

    Full Text Available Improving the performance of power systems has become a challenging task for system operators in an open access environment. This paper presents an optimization approach for solving the multi-objective scheduling problem using a modified non-dominated sorting genetic algorithm in a hybrid network of meshed alternating current (AC/wind farm grids. This approach considers voltage and power control modes based on multi-terminal voltage source converter high-voltage direct current (MTDC and battery energy storage systems (BESS. To enhance the hybrid network station performance, we implement an optimal process based on the battery energy storage system operational strategy for multi-objective scheduling over a 24 h demand profile. Furthermore, the proposed approach is formulated as a master problem and a set of sub-problems associated with the hybrid network station to improve the overall computational efficiency using Benders’ decomposition. Based on the results of the simulations conducted on modified institute of electrical and electronics engineers (IEEE-14 bus and IEEE-118 bus test systems, we demonstrate and confirm the applicability, effectiveness and validity of the proposed approach.

  8. Dry cell battery poisoning

    Science.gov (United States)

    Batteries - dry cell ... Acidic dry cell batteries contain: Manganese dioxide Ammonium chloride Alkaline dry cell batteries contain: Sodium hydroxide Potassium hydroxide Lithium dioxide dry cell batteries ...

  9. Convergent Validity of the PUTS

    Directory of Open Access Journals (Sweden)

    Valerie Cathérine Brandt

    2016-04-01

    Full Text Available Premonitory urges are a cardinal feature in Gilles de la Tourette syndrome. Severity of premonitory urges can be assessed with the Premonitory Urge for Tic Disorders Scale (PUTS. However, convergent validity of the measure has been difficult to assess due to the lack of other urge measures.We investigated the relationship between average real-time urge intensity assessed by an in-house developed real-time urge monitor, measuring urge intensity continuously for 5mins on a visual analogue scale, and general urge intensity assessed by the PUTS in 22 adult Tourette patients (mean age 29.8+/- 10.3; 19 male. Additionally, underlying factors of premonitory urges assessed by the PUTS were investigated in the adult sample using factor analysis and were replicated in 40 children and adolescents diagnosed with Tourette syndrome (mean age 12.05 +/- 2.83 SD, 31 male.Cronbach’s alpha for the PUTS10 was acceptable (α = .79 in the adult sample. Convergent validity between average real-time urge intensity scores (as assessed with the real-time urge monitor and the 10-item version of the PUTS (r = .64 and the 9-item version of the PUTS (r = .66 was good. A factor analysis including the 10 items of the PUTS and average real-time urge intensity scores revealed three factors. One factor included the average real-time urge intensity score and appeared to measure urge intensity, while the other two factors can be assumed to reflect the (sensory quality of urges and subjective control, respectively. The factor structure of the 10 PUTS items alone was replicated in a sample of children and adolescents.The results indicate that convergent validity between the PUTS and the real-time urge assessment monitor is good. Furthermore, the results suggest that the PUTS might assess more than one dimension of urges and it may be worthwhile developing different sub-scales of the PUTS assessing premonitory urges in terms of intensity and quality, as well as subjectively

  10. Science 101: What Causes Wind?

    Science.gov (United States)

    Robertson, William C.

    2010-01-01

    There's a quick and easy answer to this question. The Sun causes wind. Exactly how the Sun causes wind takes a bit to explain. We'll begin with what wind is. You've no doubt heard that wind is the motion of air molecules, which is true. Putting aside the huge leap of faith it takes for us to believe that we are experiencing the motion of millions…

  11. Battery Charge Equalizer with Transformer Array

    Science.gov (United States)

    Davies, Francis

    2013-01-01

    High-power batteries generally consist of a series connection of many cells or cell banks. In order to maintain high performance over battery life, it is desirable to keep the state of charge of all the cell banks equal. A method provides individual charging for battery cells in a large, high-voltage battery array with a minimum number of transformers while maintaining reasonable efficiency. This is designed to augment a simple highcurrent charger that supplies the main charge energy. The innovation will form part of a larger battery charge system. It consists of a transformer array connected to the battery array through rectification and filtering circuits. The transformer array is connected to a drive circuit and a timing and control circuit that allow individual battery cells or cell banks to be charged. The timing circuit and control circuit connect to a charge controller that uses battery instrumentation to determine which battery bank to charge. It is important to note that the innovation can charge an individual cell bank at the same time that the main battery charger is charging the high-voltage battery. The fact that the battery cell banks are at a non-zero voltage, and that they are all at similar voltages, can be used to allow charging of individual cell banks. A set of transformers can be connected with secondary windings in series to make weighted sums of the voltages on the primaries.

  12. Putting Emotional Intelligence To Work

    CERN Document Server

    Ryback, David

    2012-01-01

    Putting Emotional Intelligence to Work offers a new paradigm of communication for the 21st-century workplace. Beginning with the thoughts of communication pioneer Carl Rogers, this book covers the origins and history of emotional intelligence, why it is essential at this point in the changing marketplace, how to delegate and negotiate more effectively, and how to change yourself to become a more effective player. An EQ (Emotional Quotient) survey helps you determine where you are on the scale of executive intelligence. Putting Emotional Intelligence to Work leaves you with a greater understand

  13. Wind-energy storage

    Science.gov (United States)

    Gordon, L. H.

    1980-01-01

    Program SIMWEST can model wind energy storage system using any combination of five types of storage: pumped hydro, battery, thermal, flywheel, and pneumatic. Program is tool to aid design of optional system for given application with realistic simulation for further evaluation and verification.

  14. Heating being put into service

    CERN Multimedia

    2016-01-01

    The SMB-SE group would like to inform you that, the central heating will start this year, on Monday 3 October 2016, and will be progressively and depending on the weather forecast put into service throughout. All buildings will have heating within the following few days. Thank you for your understanding. The CERN heating team SMB-SE

  15. Putting Pow into Art Instruction

    Science.gov (United States)

    Berkowitz, Jay; Packer, Todd

    2004-01-01

    How would you like to put some "Pow!" into your art instruction? A lesson in comic books--history, design, story, and production--can make your classes come alive. The authors present a new approach to using comics to build artistic skills and involve students in art appreciation. Why Comics? Many art teachers have students who say, "I hate art!"…

  16. Wind Turbines Wake Aerodynamics

    DEFF Research Database (Denmark)

    Vermeer, L.; Sørensen, Jens Nørkær; Crespo, A.

    2003-01-01

    The aerodynamics of horizontal axis wind turbine wakes is studied. The contents is directed towards the physics of power extraction by wind turbines and reviews both the near and the far wake region. For the near wake, the survey is restricted to uniform, steady and parallel flow conditions......, thereby excluding wind shear, wind speed and rotor setting changes and yawed conditions. The emphasis is put on measurements in controlled conditions.For the far wake, the survey focusses on both single turbines and wind farm effects, and the experimental and numerical work are reviewed; the main interest...... is to study how the far wake decays downstream, in order to estimate the effect produced in downstream turbines.The article is further restricted to horizontal axis wind turbines and excludes all other types of turbines....

  17. Button batteries

    Science.gov (United States)

    ... recovery. Alternative Names Swallowing batteries References Hess JM, Lowell MJ. Esophagus, stomach and duodenum. In: Marx JA, ... Jacob L. Heller, MD, MHA, Emergency Medicine, Virginia Mason Medical Center, Seattle, WA. Also reviewed by David ...

  18. Optimal design of a hybrid solar-wind-battery system using the minimization of the annualized cost system and the minimization of the loss of power supply probability (LPSP)

    Energy Technology Data Exchange (ETDEWEB)

    Ould Bilal, B.; Sambou, V.; Ndiaye, P.A.; Kebe, C.M.F. [Centre International de Formation et de Recherche en Energie Solaire (C.I.F.R.E.S), ESP BP: 5085 Dakar Fann (Senegal); Ndongo, M. [Centre de Recherche Appliquee aux Energies Renouvelables de l' Eau et du Froid (CRAER)/FST/Universite de Nouakchott (Mauritania)

    2010-10-15

    Potou is an isolated site, located in the northern coast of Senegal. The populations living in this area have no easy access to electricity supply. The use of renewable energies can contribute to the improvement of the living conditions of these populations. The methodology used in this paper consists in Sizing a hybrid solar-wind-battery system optimized through multi-objective genetic algorithm for this site and the influence of the load profiles on the optimal configuration. The two principal aims are: the minimization of the annualized cost system and the minimization of the loss of power supply probability (LPSP). To study the load profile influence, three load profiles with the same energy (94 kW h/day) have been used. The achieved results show that the cost of the optimal configuration strongly depends on the load profile. For example, the cost of the optimal configuration decreases by 7% and 5% going from profile 1 to 2 and for those ones going from 1 to 3. (author)

  19. Wind Farms: Modeling and Control

    DEFF Research Database (Denmark)

    Soleimanzadeh, Maryam

    2012-01-01

    is minimized. The controller is practically feasible. Yet, the results on load reduction in this approach are not very significant. In the second strategy, the wind farm control problem has been divided into below rated and above rated wind speed conditions. In the above rated wind speed pitch angle and power....... Distributed controller design commences with formulating the problem, where a structured matrix approach has been put in to practice. Afterwards, an H2 control problem is implemented to obtain the controller dynamics for a wind farm such that the structural loads on wind turbines are minimized.......The primary purpose of this work is to develop control algorithms for wind farms to optimize the power production and augment the lifetime of wind turbines in wind farms. In this regard, a dynamical model for wind farms was required to be the basis of the controller design. In the first stage...

  20. The wind energy more controlled

    International Nuclear Information System (INIS)

    Jemain, A.

    2005-01-01

    The amendments put down at the French house of commons and at the senate to the energy orientation law will, if adopted, lead to the abandonment of about 95% of the wind energy projects (about 2500 MW). The minimum power to profit by the obligation of power purchase by Electricite de France or by local distribution companies is increased to 20 MW in order to favour the big structures and to protect the landscapes. This disposition is considered as catastrophic by the wind energy professionals and will lead to important geographical disparities between densely and weakly populated regions. In Germany, which is the first European wind power producing country with 160000 MW installed, the development of wind energy represents prohibitive investments. Nevertheless, Germany is now staking on offshore wind power. The first offshore wind farms will be put into service in 2006 in the Baltic sea. (J.S.)

  1. Carbon-enhanced VRLA batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Enos, David George; Hund, Thomas D.; Shane, Rod (East Penn Manufacturing, Lyon Station, PA)

    2010-10-01

    The addition of certain forms of carbon to the negative plate in valve regulated lead acid (VRLA) batteries has been demonstrated to increase the cycle life of such batteries by an order of magnitude or more under high-rate, partial-state-of-charge operation. Such performance will provide a significant impact, and in some cases it will be an enabling feature for applications including hybrid electric vehicles, utility ancillary regulation services, wind farm energy smoothing, and solar photovoltaic energy smoothing. There is a critical need to understnd how the carbon interacts with the negative plate and achieves the aforementioned benefits at a fundamental level. Such an understanding will not only enable the performance of such batteries to be optimzied, but also to explore the feasibility of applying this technology to other battery chemistries. In partnership with the East Penn Manufacturing, Sandia will investigate the electrochemical function of the carbon and possibly identify improvements to its anti-sulfation properties. Shiomi, et al. (1997) discovered that the addition of carbon to the negative active material (NAM) substantially reduced PbSO{sub 4} accumulation in high rate, partial state of charge (HRPSoC) cycling applications. This improved performance with a minimal cost. Cycling applications that were uneconomical for traditional VRLA batteries are viable for the carbon enhanced VRLA. The overall goal of this work is to quantitatively define the role that carbon plays in the electrochemistry of a VRLA battery.

  2. In Search of the Wind Energy Potential

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik

    2017-01-01

    The worldwide advancement of wind energy is putting high demands on a number of underlying technologies such as wind turbine aerodynamics, structural dynamics, gearbox design, electrical grid connections, and so on. As wind is the only fuel for wind power plants, naturally, wind......-meteorology and wind-climatology are essential for any utilization of wind energy. This is what we are concerned about here with a view on what has happened in wind energy potential assessments in the last 25 years where the utilization of wind turbines in national power supply has accelerated and what......., The New Worldwide Microscale Wind Resource Assessment Data on IRENA's Global Atlas (The EUDP Global Wind Atlas, 2015)], and finally, the perspective for the current work with the New European Wind Atlas [E. L. Petersen et al., Energy Bull. 17, 34–39 (2014); Environ. Res. Lett. 8(1), 011005 (2013...

  3. Développement d'un régulateur de charge / décharge de batterie ...

    African Journals Online (AJOL)

    In this article, we present the development work of a 24 V or 12 V battery regulator in a low power wind system. This regulator allows battery protection from overcharging and deep discharging. In addition, it makes to protect the wind mill against the strong winds. It is controlled by microcontroller PIC 16F778A. This function ...

  4. A 31-day battery-operated recording weather station.

    Science.gov (United States)

    Richard J. Barney

    1972-01-01

    The battery-powered recording weather station measures and records wet bulb temperature, dry bulb temperature, wind travel, and rainfall for 31 days. Assembly procedures and cost of supplies and components are discussed.

  5. Batteries: Overview of Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Doeff, Marca M

    2010-07-12

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as

  6. Wind energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role wind energy may have in the energy future of the US. The topics discussed in the chapter include historical aspects of wind energy use, the wind energy resource, wind energy technology including intermediate-size and small wind turbines and intermittency of wind power, public attitudes toward wind power, and environmental, siting and land use issues

  7. Put numbers on the sustainability

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky

    2014-01-01

    life cycle Environmental sustainability encompasses multiple types of environmental impact ranging from the global scale like climate change and stratospheric ozone depletion over regional impacts associated with air pollution impacts causing acidification, photochemical ozone formation and particle...... exposure of humans, to the local impacts associated with physical transformation of land and extraction of water. Chemicals can cause toxic impacts to humans and ecosystems on all scales. All these impacts need to be quantified if we want to put numbers on sustainability. The life cycle perspective......Sustainability is about meeting the needs of the present without compromising the possibilities for our future generations to meet their needs and is commonly perceived as comprising three dimensions – a social, an economic and an environmental dimension, e.g. in the triple bottom line thinking...

  8. Characterization of Vanadium Flow Battery

    DEFF Research Database (Denmark)

    Bindner, Henrik W.; Krog Ekman, Claus; Gehrke, Oliver

    This report summarizes the work done at Risø-DTU testing a vanadium flow battery as part of the project “Characterisation of Vanadium Batteries” (ForskEl project 6555) with the partners PA Energy A/S and OI Electric A/S under the Danish PSO energy research program. A 15kW/120kWh vanadium battery...... has been installed as part of the distributed energy systems experimental facility, SYSLAB, at Risø DTU. A test programme has been carried out to get hands-on experience with the technology, to characterize the battery from a power system point of view and to assess it with respect to integration...... of wind energy in the Danish power system. The battery has been in operation for 18 months. During time of operation the battery has not shown signs of degradation of performance. It has a round-trip efficiency at full load of approximately 60% (depending on temperature and SOC). The sources of the losses...

  9. Wind Power Prediction Considering Nonlinear Atmospheric Disturbances

    OpenAIRE

    Yagang Zhang; Jingyun Yang; Kangcheng Wang; Zengping Wang

    2015-01-01

    This paper considers the effect of nonlinear atmospheric disturbances on wind power prediction. A Lorenz system is introduced as an atmospheric disturbance model. Three new improved wind forecasting models combined with a Lorenz comprehensive disturbance are put forward in this study. Firstly, we define the form of the Lorenz disturbance variable and the wind speed perturbation formula. Then, different artificial neural network models are used to verify the new idea and obtain better wind spe...

  10. Battery Safety Basics

    Science.gov (United States)

    Roy, Ken

    2010-01-01

    Batteries commonly used in flashlights and other household devices produce hydrogen gas as a product of zinc electrode corrosion. The amount of gas produced is affected by the batteries' design and charge rate. Dangerous levels of hydrogen gas can be released if battery types are mixed, batteries are damaged, batteries are of different ages, or…

  11. Batteries for Electric Vehicles

    Science.gov (United States)

    Conover, R. A.

    1985-01-01

    Report summarizes results of test on "near-term" electrochemical batteries - (batteries approaching commercial production). Nickel/iron, nickel/zinc, and advanced lead/acid batteries included in tests and compared with conventional lead/acid batteries. Batteries operated in electric vehicles at constant speed and repetitive schedule of accerlerating, coasting, and braking.

  12. Putting science on the agenda

    CERN Multimedia

    2012-01-01

    The job of CERN Director-General comes with a lot of responsibility, and that’s particularly true today. We’re living through a period of unique circumstances for science. Positive indicators, such as a renewal of interest in physical sciences at the University level and unprecedented public interest in the LHC, are aligning with storm clouds in the form of a prolonged economic crisis that will put downward pressure on everyone’s budgets.   That means that science has to make its voice heard if it’s to preserve support, and if it wants to be in a position to play the role it must in navigating the major societal challenges of our time. For that reason, I have been a fairly rare sight at CERN of late. Last week, I was in Davos for the annual meeting of the World Economic Forum. It was my second time at Davos, and I used the opportunity to argue that science should be more closely linked to the political thread of the meeting. I think my argument was he...

  13. WIND ENERGY – ECOSUSTAINABILITY ENGINEERING SOLUTION

    Directory of Open Access Journals (Sweden)

    Roxana Gabriela POPA

    2013-05-01

    Full Text Available Renewables provides increased safety energy supply and limiting imports of energy resources, interms of sustainable economic development. The new requirements for sustainable development have determinedthe world to put the issue of energy production methods and increase the share of energy produced fromrenewable energy. This paper presents the history of wind power, advantages and disadvantages of renewableenergy, particularly wind energy as an alternative source of energy. Windmills can be horizontal axis or verticalaxis Savonius and Darrieus rotor. Latest innovations allow operation of variable speed wind turbines, or turbinespeed control based on wind speed. Wind energy is considered one of the most sustainable choices betweenvariants future wind resources are immense.

  14. Radioactive battery

    International Nuclear Information System (INIS)

    Deaton, R.L.; Silver, G.L.

    1975-01-01

    A radioactive battery is described that is comprised of a container housing an electrolyte, two electrodes immersed in the electrolyte and insoluble radioactive material disposed adjacent one electrode. Insoluble radioactive material of different intensity of radioactivity may be disposed adjacent the second electrode. If hydrobromic acid is used as the electrolyte, Br 2 will be generated by the radioactivity and is reduced at the cathode: Br 2 + 2e = 2 Br - . At the anode Br - is oxidized: 2Br - = Br 2 + 2e. (U.S.)

  15. Second Life for Electric Vehicle Batteries: Answering Questions on Battery Degradation and Value

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, J. S.; Wood, E.; Pesaran, A.

    2015-05-04

    Battery second use – putting used plug-in electric vehicle (PEV) batteries into secondary service following their automotive tenure – has been proposed as a means to decrease the cost of PEVs while providing low cost energy storage to other fields (e.g. electric utility markets). To understand the value of used automotive batteries, however, we must first answer several key questions related to National Renewable Energy Laboratory (NREL) has developed a methodology and the requisite tools to answer these questions, including NREL’s Battery Lifetime Simulation Tool (BLAST). Herein we introduce these methods and tools, and demonstrate their application. We have found that capacity fade from automotive use has a much larger impact on second use value than resistance growth. Where capacity loss is driven by calendar effects more than cycling effects, average battery temperature during automotive service – which is often driven by climate – is found to be the single factor with the largest effect on remaining value. Installing hardware and software capabilities onboard the vehicle that can both infer remaining battery capacity from in-situ measurements, as well as track average battery temperature over time, will thereby facilitate the second use of automotive batteries.

  16. Single stage grid converters for battery energy storage

    DEFF Research Database (Denmark)

    Trintis, Ionut; Munk-Nielsen, Stig; Teodorescu, Remus

    2010-01-01

    Integration of renewable energy systems in the power system network such as wind and solar is still a challenge in our days. Energy storage systems (ESS) can overcome the disadvantage of volatile generation of the renewable energy sources. This paper presents power converters for battery energy...... storage systems (BESS) which can interface mediumvoltage batteries to the grid. Converter topologies comparison is performed in terms of efficiency, common mode voltage and redundancy for a 6kV series connected medium voltage batteries with a nominal power of 5MVA to act as a battery charger/discharger....

  17. A telephone in the wind

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    QuebecTel Mobilite, a Quebec telecommunications company, is exploring the possibility of using wind as a new source of energy to charge the batteries of their repeater stations that make mobile telephone service outside of urban areas possible. The significance of this experiment lies in the fact that in Quebec many repeater stations and antennas are located in remote areas, sometimes on the tops of mountains, making it very costly to supply them with the electrical power necessary for the stations to operate. A small demonstration wind energy project to charge the batteries of one repeater station in Pointe-au-Pere, in the Gaspe region of Quebec, is under way. The project is computer controlled; the computer monitors the production and consumption of electricity, checks and recharges the station's batteries, thus assuring the proper functioning of the cellular phone system

  18. Wind Power in Georgia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    opportunity Screening eight sites identified in the Wind Atlas of Georgia (2004) based on a preliminary assessment of the wind power potential, feasibility and construction costs of each site, points to Skra as the most feasible area for pilot development of wind power. The Skra site in Gori/Kareli regions has good (above 7 m/s at 100m) and steady wind resources, minimal land-use and environmental conflicts and high accessibility. An 80m wind measurement mast has recently been put up on the site by a Georgian company. The Skra site is estimated to potentially hold up to 35 3MW turbines (90m rotor diameter) or 45 2MW turbines (80m rotor diameter). The total capacity of the wind farm would thus be 105MW or 90MW respectively. A preliminary estimation for the annual energy production of the wind farm using 2,500 full-load-hours, gives production estimations of 260 GWh for a 105MW and 225 GWh for a 90MW wind farm on the site. Investment cost of the wind farm is estimated to be roughly 1.5 MEuro/MW, which amounts to 158 MEuro for a 105MW farm and 135 MEuro for a 90 MW farm. Several stakeholders in Georgia have expressed interest in using second hand turbines in order to reduce investment costs. Most available used turbines on the market are of sizes less than 2MW and the prize vary significantly depending especially on the capacity, age and make of the turbine. Other interesting sites in Georgia to explore further with an aim for wind power development include Chorokhi, Kutaisi, Samgori and Yagludja.(auth)

  19. Wind Power Prediction Considering Nonlinear Atmospheric Disturbances

    Directory of Open Access Journals (Sweden)

    Yagang Zhang

    2015-01-01

    Full Text Available This paper considers the effect of nonlinear atmospheric disturbances on wind power prediction. A Lorenz system is introduced as an atmospheric disturbance model. Three new improved wind forecasting models combined with a Lorenz comprehensive disturbance are put forward in this study. Firstly, we define the form of the Lorenz disturbance variable and the wind speed perturbation formula. Then, different artificial neural network models are used to verify the new idea and obtain better wind speed predictions. Finally we separately use the original and improved wind speed series to predict the related wind power. This proves that the corrected wind speed provides higher precision wind power predictions. This research presents a totally new direction in the wind prediction field and has profound theoretical research value and practical guiding significance.

  20. Application Solar Energy for Charging Battery Mobile Phone

    OpenAIRE

    Elmahdi, Mohamed Abdulhadi; Suparman, Sudjito; Pramono, Sholeh Hadi

    2012-01-01

    Photovoltaic energy is the conversion of sunlight into electricity. A photovoltaic cell, commonly called a solar cell or PV, is the technology used to convert solar energy directly into electrical power. A battery charger is a device used to put energy into a secondary cell or recharge able battery by forcing an electric current through it. Digital devices, especially mobile phones, need electricity that can be obtained from local electricity station converted into direct current using propri...

  1. Alkaline battery operational methodology

    Science.gov (United States)

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  2. ETK's experience in the application of VRLA batteries

    Energy Technology Data Exchange (ETDEWEB)

    Klaric, I. [Ericsson Nikola Tesla d.d., Zagreb (Croatia)

    2000-07-01

    This paper presents the experience of the company Ericsson Nikola Tesla (ETK) in the application of VRLA batteries. After a short comment on conventional lead acid batteries, the paper explains the reasons for introduction of VRLA batteries and presents our experience considering their quality, performance, hydrogen evolution, safety, service life etc. Stress is put on some internal and external factors which affect useful life, such as positive grid corrosion, ambient temperature and charging voltage. ETK also gained experience in relation to adaptation of some UPS systems to VRLA batteries. The article concludes with the list of important advantages and disadvantages of VRLA batteries compared with the flooded ones. (orig.)

  3. Wind Energy

    International Nuclear Information System (INIS)

    Rodriguez D, J.M.

    1998-01-01

    The general theory of the wind energy conversion systems is presented. The availability of the wind resource in Colombia and the ranges of the speed of the wind in those which is possible economically to use the wind turbines are described. It is continued with a description of the principal technological characteristics of the wind turbines and are split into wind power and wind-powered pumps; and its use in large quantities grouped in wind farms or in autonomous systems. Finally, its costs and its environmental impact are presented

  4. Progress in Application of CNTs in Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Li Li

    2014-01-01

    Full Text Available The lithium-ion battery is widely used in the fields of portable devices and electric cars with its superior performance and promising energy storage applications. The unique one-dimensional structure formed by the graphene layer makes carbon nanotubes possess excellent mechanical, electrical, and electrochemical properties and becomes a hot material in the research of lithium-ion battery. In this paper, the applicable research progress of carbon nanotubes in lithium-ion battery is described, and its future development is put forward from its two aspects of being not only the anodic conductive reinforcing material and the cathodic energy storage material but also the electrically conductive framework material.

  5. Lithium-antimony-lead liquid metal battery for grid-level energy storage.

    Science.gov (United States)

    Wang, Kangli; Jiang, Kai; Chung, Brice; Ouchi, Takanari; Burke, Paul J; Boysen, Dane A; Bradwell, David J; Kim, Hojong; Muecke, Ulrich; Sadoway, Donald R

    2014-10-16

    The ability to store energy on the electric grid would greatly improve its efficiency and reliability while enabling the integration of intermittent renewable energy technologies (such as wind and solar) into baseload supply. Batteries have long been considered strong candidate solutions owing to their small spatial footprint, mechanical simplicity and flexibility in siting. However, the barrier to widespread adoption of batteries is their high cost. Here we describe a lithium-antimony-lead liquid metal battery that potentially meets the performance specifications for stationary energy storage applications. This Li||Sb-Pb battery comprises a liquid lithium negative electrode, a molten salt electrolyte, and a liquid antimony-lead alloy positive electrode, which self-segregate by density into three distinct layers owing to the immiscibility of the contiguous salt and metal phases. The all-liquid construction confers the advantages of higher current density, longer cycle life and simpler manufacturing of large-scale storage systems (because no membranes or separators are involved) relative to those of conventional batteries. At charge-discharge current densities of 275 milliamperes per square centimetre, the cells cycled at 450 degrees Celsius with 98 per cent Coulombic efficiency and 73 per cent round-trip energy efficiency. To provide evidence of their high power capability, the cells were discharged and charged at current densities as high as 1,000 milliamperes per square centimetre. Measured capacity loss after operation for 1,800 hours (more than 450 charge-discharge cycles at 100 per cent depth of discharge) projects retention of over 85 per cent of initial capacity after ten years of daily cycling. Our results demonstrate that alloying a high-melting-point, high-voltage metal (antimony) with a low-melting-point, low-cost metal (lead) advantageously decreases the operating temperature while maintaining a high cell voltage. Apart from the fact that this

  6. Secondary batteries with multivalent ions for energy storage.

    Science.gov (United States)

    Xu, Chengjun; Chen, Yanyi; Shi, Shan; Li, Jia; Kang, Feiyu; Su, Dangsheng

    2015-09-14

    The use of electricity generated from clean and renewable sources, such as water, wind, or sunlight, requires efficiently distributed electrical energy storage by high-power and high-energy secondary batteries using abundant, low-cost materials in sustainable processes. American Science Policy Reports state that the next-generation "beyond-lithium" battery chemistry is one feasible solution for such goals. Here we discover new "multivalent ion" battery chemistry beyond lithium battery chemistry. Through theoretic calculation and experiment confirmation, stable thermodynamics and fast kinetics are presented during the storage of multivalent ions (Ni(2+), Zn(2+), Mg(2+), Ca(2+), Ba(2+), or La(3+) ions) in alpha type manganese dioxide. Apart from zinc ion battery, we further use multivalent Ni(2+) ion to invent another rechargeable battery, named as nickel ion battery for the first time. The nickel ion battery generally uses an alpha type manganese dioxide cathode, an electrolyte containing Ni(2+) ions, and Ni anode. The nickel ion battery delivers a high energy density (340 Wh kg(-1), close to lithium ion batteries), fast charge ability (1 minute), and long cycle life (over 2200 times).

  7. Outback is put through its paces.

    Science.gov (United States)

    2017-06-03

    Ashley Rubens, winner of the competition to find the BVA member facing the toughest driving conditions in the UK, has spent the past few months putting a Subaru Outback through its paces. British Veterinary Association.

  8. The Leadership Puzzle, Putting the Pieces Together

    OpenAIRE

    Nelson, Cindy

    2017-01-01

    This curriculum relates leadership to putting together a puzzle, including the five steps of leadership, understanding the value of each person in the leadership process/puzzle, learning the four corners of leadership: communication, commitment, cooperation, and character.

  9. Recent advances in lithium-sulfur batteries

    Science.gov (United States)

    Chen, Lin; Shaw, Leon L.

    2014-12-01

    Lithium-sulfur (Li-S) batteries have attracted much attention lately because they have very high theoretical specific energy (2500 Wh kg-1), five times higher than that of the commercial LiCoO2/graphite batteries. As a result, they are strong contenders for next-generation energy storage in the areas of portable electronics, electric vehicles, and storage systems for renewable energy such as wind power and solar energy. However, poor cycling life and low capacity retention are main factors limiting their commercialization. To date, a large number of electrode and electrolyte materials to address these challenges have been investigated. In this review, we present the latest fundamental studies and technological development of various nanostructured cathode materials for Li-S batteries, including their preparation approaches, structure, morphology and battery performance. Furthermore, the development of other significant components of Li-S batteries including anodes, electrolytes, additives, binders and separators are also highlighted. Not only does the intention of our review article comprise the summary of recent advances in Li-S cells, but also we cover some of our proposals for engineering of Li-S cell configurations. These systematic discussion and proposed directions can enlighten ideas and offer avenues in the rational design of durable and high performance Li-S batteries in the near future.

  10. Wind turbine storage systems

    International Nuclear Information System (INIS)

    Ibrahim, H.; Ilinca, A.; Perron, J.

    2005-01-01

    Electric power is often produced in locations far from the point of utilization which creates a challenge in stabilizing power grids, particularly since electricity cannot be stored. The production of decentralized electricity by renewable energy sources offers a greater security of supply while protecting the environment. Wind power holds the greatest promise in terms of environmental protection, competitiveness and possible applications. It is known that wind energy production is not always in phase with power needs because of the uncertainty of wind. For that reason, energy storage is the key for the widespread integration of wind energy into the power grids. This paper proposed various energy storage methods that can be used in combination with decentralized wind energy production where an imbalance exists between electricity production and consumption. Energy storage can play an essential role in bringing value to wind energy, particularly if electricity is to be delivered during peak hours. Various types of energy storage are already in use or are being developed. This paper identified the main characteristics of various electricity storage techniques and their applications. They include stationary or embarked storage for long or short term applications. A comparison of characteristics made it possible to determine which types of electricity storage are best suited for wind energy. These include gravity energy; thermal energy; compressed air energy; coupled storage with natural gas; coupled storage with liquefied gas; hydrogen storage for fuel cells; chemical energy storage; storage in REDOX batteries; storage by superconductive inductance; storage in supercondensers; and, storage as kinetic energy. 21 refs., 21 figs

  11. Further Cost Reduction of Battery Manufacturing

    Directory of Open Access Journals (Sweden)

    Amir A. Asif

    2017-06-01

    Full Text Available The demand for batteries for energy storage is growing with the rapid increase in photovoltaics (PV and wind energy installation as well as electric vehicle (EV, hybrid electric vehicle (HEV and plug-in hybrid electric vehicle (PHEV. Electrochemical batteries have emerged as the preferred choice for most of the consumer product applications. Cost reduction of batteries will accelerate the growth in all of these sectors. Lithium-ion (Li-ion and solid-state batteries are showing promise through their downward price and upward performance trends. We may achieve further performance improvement and cost reduction for Li-ion and solid-state batteries through reduction of the variation in physical and electrical properties. These properties can be improved and made uniform by considering the electrical model of batteries and adopting novel manufacturing approaches. Using quantum-photo effect, the incorporation of ultra-violet (UV assisted photo-thermal processing can reduce metal surface roughness. Using in-situ measurements, advanced process control (APC can help ensure uniformity among the constituent electrochemical cells. Industrial internet of things (IIoT can streamline the production flow. In this article, we have examined the issue of electrochemical battery manufacturing of Li-ion and solid-state type from cell-level to battery-level process variability, and proposed potential areas where improvements in the manufacturing process can be made. By incorporating these practices in the manufacturing process we expect reduced cost of energy management system, improved reliability and yield gain with the net saving of manufacturing cost being at least 20%.

  12. Battery Aging and the Kinetic Battery Model

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.

    2016-01-01

    Batteries are omnipresent, and with the uprise of the electrical vehicles will their use will grow even more. However, the batteries can deliver their required power for a limited time span. They slowly degrade with every charge-discharge cycle. This degradation needs to be taken into account when

  13. Battery systems engineering

    CERN Document Server

    Rahn, Christopher D

    2012-01-01

    A complete all-in-one reference on the important interdisciplinary topic of Battery Systems Engineering Focusing on the interdisciplinary area of battery systems engineering, this book provides the background, models, solution techniques, and systems theory that are necessary for the development of advanced battery management systems. It covers the topic from the perspective of basic electrochemistry as well as systems engineering topics and provides a basis for battery modeling for system engineering of electric and hybrid electric vehicle platforms. This original

  14. Rechargeable batteries applications handbook

    CERN Document Server

    1998-01-01

    Represents the first widely available compendium of the information needed by those design professionals responsible for using rechargeable batteries. This handbook introduces the most common forms of rechargeable batteries, including their history, the basic chemistry that governs their operation, and common design approaches. The introduction also exposes reader to common battery design terms and concepts.Two sections of the handbook provide performance information on two principal types of rechargeable batteries commonly found in consumer and industrial products: sealed nickel-cad

  15. Micro Calorimeter for Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Santhanagopalan, Shriram [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-01

    As battery technology forges ahead and consumer demand for safer, more affordable, high-performance batteries grows, the National Renewable Energy Laboratory (NREL) has added a patented Micro Calorimeter to its existing family of R&D 100 Award-winning Isothermal Battery Calorimeters (IBCs). The Micro Calorimeter examines the thermal signature of battery chemistries early on in the design cycle using popular coin cell and small pouch cell designs, which are simple to fabricate and study.

  16. COTS Li-Ion Cells in High Voltage Batteries

    Science.gov (United States)

    Davies, Francis; Darcy, Eric; Jeevarajan, Judy; Cowles, Phil

    2003-01-01

    Testing at NASA JSC and COMDEV shows that Commercial Off the Shelf (COTS) Li Ion cells can not be used in high voltage batteries safely without considering the voltage stresses that may be put on the protective devices in them during failure modes.

  17. Wind Structure and Wind Loading

    DEFF Research Database (Denmark)

    Brorsen, Michael

    The purpose of this note is to provide a short description of wind, i.e. of the flow in the atmosphere of the Earth and the loading caused by wind on structures. The description comprises: causes to the generation of windhe interaction between wind and the surface of the Earthhe stochastic nature...... of windhe interaction between wind and structures, where it is shown that wind loading depends strongly on this interaction...

  18. Renewable energies look for mega-batteries

    International Nuclear Information System (INIS)

    Michaut, Cecile

    2013-01-01

    As the development of wind and photovoltaic energy raises the problem of energy storage because of the intermittent character of these both energies, this article proposes an overview of trends and projects for large scale energy storage. It notably evokes the liquid metal battery project which is expected to be experimented in 2014, and should be able to store 2 MWh for 500 kW. Its operation principle is described. It is inspired by a technique used in aluminium production. It does not need any expensive and fragile separation membrane, it is modular, and it could last about ten years. Two other technologies are then evoked: a sodium-sulphur battery manufactured by NGK in Japan for massive storage, and the lithium-ion battery which is already present in most of electric vehicles. For this last one, energy storage could be an opportunity for manufacturer as the electric vehicle market is not very dynamic

  19. Wind power impacts and electricity storage - a time scale perspective

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Meibom, Peter

    2012-01-01

    technologies – batteries, flow batteries, compressed air energy storage, electrolysis combined with fuel cells, and electric vehicles – are moreover categorised with respect to the time scales at which they are suited to support wind power integration. While all of these technologies are assessed suitable...

  20. Electric Vehicle Battery Challenge

    Science.gov (United States)

    Roman, Harry T.

    2014-01-01

    A serious drawback to electric vehicles [batteries only] is the idle time needed to recharge their batteries. In this challenge, students can develop ideas and concepts for battery change-out at automotive service stations. Such a capability would extend the range of electric vehicles.

  1. Research on Frequency Control of Grid Connected Sodium-Sulfur Battery

    Directory of Open Access Journals (Sweden)

    Zhang Fenglin

    2018-01-01

    Full Text Available Sodium sulfur battery is the only energy storage battery with large capacity and high energy density. It has a great application prospect in the peak load shifting of power grid, due to the lack of domestic research on it, it is urgent to evaluate the effect of grid-connection of sodium sulfur battery scientifically. According to the experimental data of the sodium sulfur battery project, the battery model is built. Compared with the real discharge curve, the error of the model simulation curve is small, so the battery model is effective. The AC / DC power grid model is built, and the rectifier and inverter control circuits are designed to simulate the scenario that the wind turbine and the battery are supplied to the passive load. The simulation results show that the grid-connected model of the sodium sulfur battery under the two control strategies can stabilize the larger frequency fluctuation.

  2. Wind prices are down - but are they too low?

    International Nuclear Information System (INIS)

    Milborrow, D.

    1998-01-01

    The highly competitive nature of the NFFO and SRO bidding processes may be putting undue pressure on manufacturers' profit margins, restricting funds for investment and RandD. Taking the wider view, RandD in the wind industry is very modest relative to its output. Nevertheless, the wind industry is delivering increasingly reliable and cost effective wind turbines. The needs for further RandD are critically examined and the paper includes assessments of future wind energy price trends. (Author)

  3. Joint optimisation of arbitrage profits and battery life degradation for grid storage application of battery electric vehicles

    Science.gov (United States)

    Kies, Alexander

    2018-02-01

    To meet European decarbonisation targets by 2050, the electrification of the transport sector is mandatory. Most electric vehicles rely on lithium-ion batteries, because they have a higher energy/power density and longer life span compared to other practical batteries such as zinc-carbon batteries. Electric vehicles can thus provide energy storage to support the system integration of generation from highly variable renewable sources, such as wind and photovoltaics (PV). However, charging/discharging causes batteries to degradate progressively with reduced capacity. In this study, we investigate the impact of the joint optimisation of arbitrage revenue and battery degradation of electric vehicle batteries in a simplified setting, where historical prices allow for market participation of battery electric vehicle owners. It is shown that the joint optimisation of both leads to stronger gains then the sum of both optimisation strategies and that including battery degradation into the model avoids state of charges close to the maximum at times. It can be concluded that degradation is an important aspect to consider in power system models, which incorporate any kind of lithium-ion battery storage.

  4. Electrochemical accumulators batteries; Accumulateurs electrochimiques batteries

    Energy Technology Data Exchange (ETDEWEB)

    Ansart, F.; Castillo, S.; Laberty- Robert, C.; Pellizon-Birelli, M. [Universite Paul Sabatier, Lab. de Chimie des Materiaux Inorganiques et Energetiques, CIRIMAT, UMR CNRS 5085, 31 - Toulouse (France)] [and others

    2000-07-01

    It is necessary to storage the electric power in batteries to join the production and the utilization. In this domain progresses are done every days in the technics and also in the available materials. These technical days present the state of the art in this domain. Many papers were presented during these two days giving the research programs and recent results on the following subjects: the lithium batteries, the electrolytes performances and behaviour, lead accumulators, economic analysis of the electrochemical storage market, the batteries applied to the transportation sector and the telephones. (A.L.B.)

  5. Database on wind characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Hojstrup, J. [Riso National Lab., Roskilde (Denmark); Hansen, K.S. [Fluid Mechanics Section, Lyngby (Denmark)

    1996-12-31

    Wind data with high temporal resolution exist from a variety of sites, and is in demand by windturbine designers and wind engineers. Unfortunately it has always been a problem to gain access to a suitable amount of this data, because they are available from many different sources in different formats and with very different levels of documentation and quality control. We are now in the process of gaining access to a large amount of this type of data, checking the quality of the data and putting the data at the disposition of the windturbine designer community through easy Internet access. Online search will use summary statistics calculated for each series to help in the selection of data. The selected data can then be downloaded directly to the user. 3 figs.

  6. THE IDIOM OF KRIVI PUT KOD SENJA

    Directory of Open Access Journals (Sweden)

    Ankica Čilaš Šimpraga

    2007-01-01

    Full Text Available The idiom of Krivi Put kod Senja is part of West-Štokavian dialect. The basics of phonological, morphological, syntactic and lexical characteristics of idiom are considered in this article. Research confirmed common features with idioms of Bunjevo beyond Velebit’s part of hinterland of Senj.

  7. DIST/AVC Out-Put Definition.

    Science.gov (United States)

    Wilkinson, Gene L.

    The first stage of development of a management information system for DIST/AVC (Division of Instructional Technology/Audio-Visual Center) is the definition of out-put units. Some constraints on the definition of output units are: 1) they should reflect goals of the organization, 2) they should reflect organizational structure and procedures, and…

  8. Megawatt wind turbines gaining momentum

    International Nuclear Information System (INIS)

    Oehlenschlaeger, K.; Madsen, B.T.

    1996-01-01

    Through the short history of the modern wind turbine, electric utilities have made it amply clear that they have held a preference for large scale wind turbines over smaller ones, which is why wind turbine builders through the years have made numerous attempts develop such machines - machines that would meet the technical, aesthetic and economic demands that a customer would require. Considerable effort was put into developing such wind turbines in the early 1980s. There was the U.S. Department of Energy's MOD 1-5 program, which ranged up to 3.2 MW, Denmark's Nibe A and B, 630 kW turbine and the 2 MW Tjaereborg machine, Sweden's Naesudden, 3 MW, and Germany's Growian, 3 MW. Most of these were dismal failures, though some did show the potential of MW technology. (au)

  9. Active control: Wind turbine model

    DEFF Research Database (Denmark)

    Bindner, H.

    1999-01-01

    This report is a part of the reporting of the work done in the project 'Active Control of Wind Turbines'. This project aim is to develop a simulation model for design of control systems for turbines with pitch control and to use that model to designcontrollers. This report describes the model...... developed for controller design and analysis. Emphasis has been put on establishment of simple models describing the dynamic behavior of the wind turbine in adequate details for controller design. This hasbeen done with extensive use of measurements as the basis for selection of model complexity and model....... The models are all formulated as linear differential equations. The models are validated throughcomparisons with measurements performed on a Vestas WD 34 400 kW wind turbine. It is shown from a control point of view simple linear models can be used to describe the dynamic behavior of a pitch controlled wind...

  10. Putting more power in your pocket

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Karena

    2013-07-18

    Representing the Northeastern Center for Chemical Energy Storage (NECCES), this document is one of the entries in the Ten Hundred and One Word Challenge. As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE energy. The mission of NECCEC is to identify the key atomic-scale processes which govern electrode function in rechargeable batteries, over a wide range of time and length scales, via the development and use of novel characterization and theoretical tools, and to use this information to identify and design new battery systems.

  11. Model predictive control for wind power gradients

    DEFF Research Database (Denmark)

    Hovgaard, Tobias Gybel; Boyd, Stephen; Jørgensen, John Bagterp

    2015-01-01

    We consider the operation of a wind turbine and a connected local battery or other electrical storage device, taking into account varying wind speed, with the goal of maximizing the total energy generated while respecting limits on the time derivative (gradient) of power delivered to the grid. We...... wind data and modern wind forecasting methods. The simulation results using real wind data demonstrate the ability to reject the disturbances from fast changes in wind speed, ensuring certain power gradients, with an insignificant loss in energy production....... ranges. The system dynamics are quite non-linear, and the constraints and objectives are not convex functions of the control inputs, so the resulting optimal control problem is difficult to solve globally. In this paper, we show that by a novel change of variables, which focuses on power flows, we can...

  12. Characterization of lithium batteries for application to photovoltaic systems

    International Nuclear Information System (INIS)

    Guzman Ortiz, S.

    2015-01-01

    This master's thesis addresses the characterization of four different types of Battery technologies; the li-ion, the LiFePO4, the lead crystal and the lead acid. Because these devices are used in electric applications, calculations were made to assess the capacities and energies of the batteries while at different discharges ratios in runs from 5 to 50 hours, which are the most common on the photovoltaic sector. Also, we observed the behavior of the batteries when put through a rise of temperature to measure the fluctuations in the voltage, capacity and energy. Tests were performed at constant power to observe the behavior of the discharge intensity. When making the comparisons of the capacity and the energy, the LiFePO4 battery proved to be the best and better behavior in the tests at constant discharge rates. (Author)

  13. Wind power

    International Nuclear Information System (INIS)

    Gipe, P.

    2007-01-01

    This book is a translation of the edition published in the USA under the title of ''wind power: renewable energy for home, farm and business''. In the wake of mass blackouts and energy crises, wind power remains a largely untapped resource of renewable energy. It is a booming worldwide industry whose technology, under the collective wing of aficionados like author Paul Gipe, is coming of age. Wind Power guides us through the emergent, sometimes daunting discourse on wind technology, giving frank explanations of how to use wind technology wisely and sound advice on how to avoid common mistakes. Since the mid-1970's, Paul Gipe has played a part in nearly every aspect of wind energy development from installing small turbines to promoting wind energy worldwide. As an American proponent of renewable energy, Gipe has earned the acclaim and respect of European energy specialists for years, but his arguments have often fallen on deaf ears at home. Today, the topic of wind power is cropping up everywhere from the beaches of Cape Cod to the Oregon-Washington border, and one wind turbine is capable of producing enough electricity per year to run 200 average American households. Now, Paul Gipe is back to shed light on this increasingly important energy source with a revised edition of Wind Power. Over the course of his career, Paul Gipe has been a proponent, participant, observer, and critic of the wind industry. His experience with wind has given rise to two previous books on the subject, Wind Energy Basics and Wind Power for Home and Business, which have sold over 50,000 copies. Wind Power for Home and Business has become a staple for both homeowners and professionals interested in the subject, and now, with energy prices soaring, interest in wind power is hitting an all-time high. With chapters on output and economics, Wind Power discloses how much you can expect from each method of wind technology, both in terms of energy and financial savings. The book updated models

  14. Lifetime Improvement by Battery Scheduling

    NARCIS (Netherlands)

    Jongerden, M.R.; Schmitt, Jens B.; Haverkort, Boudewijn R.H.M.

    The use of mobile devices is often limited by the lifetime of their batteries. For devices that have multiple batteries or that have the option to connect an extra battery, battery scheduling, thereby exploiting the recovery properties of the batteries, can help to extend the system lifetime. Due to

  15. Lifetime improvement by battery scheduling

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.

    The use of mobile devices is often limited by the lifetime of its battery. For devices that have multiple batteries or that have the option to connect an extra battery, battery scheduling, thereby exploiting the recovery properties of the batteries, can help to extend the system lifetime. Due to the

  16. A desalination battery.

    Science.gov (United States)

    Pasta, Mauro; Wessells, Colin D; Cui, Yi; La Mantia, Fabio

    2012-02-08

    Water desalination is an important approach to provide fresh water around the world, although its high energy consumption, and thus high cost, call for new, efficient technology. Here, we demonstrate the novel concept of a "desalination battery", which operates by performing cycles in reverse on our previously reported mixing entropy battery. Rather than generating electricity from salinity differences, as in mixing entropy batteries, desalination batteries use an electrical energy input to extract sodium and chloride ions from seawater and to generate fresh water. The desalination battery is comprised by a Na(2-x)Mn(5)O(10) nanorod positive electrode and Ag/AgCl negative electrode. Here, we demonstrate an energy consumption of 0.29 Wh l(-1) for the removal of 25% salt using this novel desalination battery, which is promising when compared to reverse osmosis (~ 0.2 Wh l(-1)), the most efficient technique presently available. © 2012 American Chemical Society

  17. A Desalination Battery

    KAUST Repository

    Pasta, Mauro

    2012-02-08

    Water desalination is an important approach to provide fresh water around the world, although its high energy consumption, and thus high cost, call for new, efficient technology. Here, we demonstrate the novel concept of a "desalination battery", which operates by performing cycles in reverse on our previously reported mixing entropy battery. Rather than generating electricity from salinity differences, as in mixing entropy batteries, desalination batteries use an electrical energy input to extract sodium and chloride ions from seawater and to generate fresh water. The desalination battery is comprised by a Na 2-xMn 5O 10 nanorod positive electrode and Ag/AgCl negative electrode. Here, we demonstrate an energy consumption of 0.29 Wh l -1 for the removal of 25% salt using this novel desalination battery, which is promising when compared to reverse osmosis (∼ 0.2 Wh l -1), the most efficient technique presently available. © 2012 American Chemical Society.

  18. Power control for wind turbines in weak grids: Concepts development

    DEFF Research Database (Denmark)

    Bindner, H.

    1999-01-01

    are to combine wind power with a pumped hydro power storage or with an AC/DC converter and battery storage. The AC/DC converter can either be an "add-on" typeor it can be designed as an integrated part of a variable speed wind turbine. The idea is that combining wind power with the power control concept...... and analyze methods and technologies for making it viable to utilize more of the wind potential in remote areas. The suggestion is to develop a power control concept for wind turbines which will even out thepower fluctuations and make it possible to increase the wind energy penetration. The main options...... will make wind power more firm and possible to connect to weaker grids. So, when the concept is matured, theexpectation is that for certain wind power installations, the cost of the power control is paid back as added wind power capacity value and saved grid reinforcement costs. Different systems...

  19. Selection and Performance-Degradation Modeling of LiMO2/Li4Ti5O12 and LiFePO4/C Battery Cells as Suitable Energy Storage Systems for Grid Integration With Wind Power Plants

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Ioan; Stan, Ana-Irina

    2014-01-01

    Advances in the development of energy storage technologies are making them attractive for grid integration together with wind power plants. Thus, the new system, the virtual power plant, is able to emulate the characteristics of today’s conventional power plants. However, at present, energy storage......-degradation models were developed for the two most suitable Li–ion chemistries for the primary frequency regulation service: LiMO2 /Li4Ti5O12 and LiFePO4/C....

  20. Lithium battery management system

    Science.gov (United States)

    Dougherty, Thomas J [Waukesha, WI

    2012-05-08

    Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

  1. Stereotype Fit Effects for Golf Putting Nonexperts.

    Science.gov (United States)

    Grimm, Lisa R; Lewis, Benjamin; Maddox, W Todd; Markman, Arthur B

    2016-02-01

    Research has connected stereotype threat and regulatory fit by showing improved performance for individuals with negative stereotypes when they focused on minimizing potential losses. In the current study, non-Black participants, who were non-experts at golf putting, were told that a golf-putting task was diagnostic of natural athletic ability (i.e., negative stereotype) or sports intelligence (i.e., positive stereotype). Participants tried to maximize earned points or minimize lost points assigned after every putt, which was calculated based on the distance to a target. We demonstrate better performance for participants experiencing a fit between their global task stereotype and the task goal, and argue that regulatory fit allows for increased attention on the strategies beneficial for task performance. Interestingly, we find that performance of individuals high in working memory capacity suffers greatly when those individuals experience a regulatory mismatch.

  2. Efficient estimator of probabilities of large power spills in an stand-alone system with wind generation and storage

    NARCIS (Netherlands)

    D. Bhaumik (Debarati); D.T. Crommelin (Daan); A.P. Zwart (Bert)

    2016-01-01

    textabstractThe challenges of integrating unpredictable wind energy into a power system can be alleviated using energy storage devices. We assessed a single domestic energy system with a wind turbine and a battery. We investigated the best operation mode of the battery such that the occurrence of

  3. Putting Opportunism in the Back Seat

    DEFF Research Database (Denmark)

    Foss, Nicolai; Weber, Libby

    2013-01-01

    TCE and its applications in management research put more emphasis on opportunism than on bounded rationality. By augmenting the bounded rationality assumption to include interpretive limitations, we show that there are sources of costly conflict that are not rooted in opportunism. Moreover, we sh...... that bounded rationality may drive opportunism. All hierarchal forms are inherently subject to specific bounded-rationality-based conflicts, thus have different capacities to mitigate bounded-rationality-based transaction costs....

  4. Putting Opportunism in the Back Seat

    DEFF Research Database (Denmark)

    Foss, Nicolai; Weber, Libby

    2013-01-01

    TCE and its applications in management research put more emphasis on opportunism than on bounded rationality. By augmenting the bounded rationality assumption to include interpretive limitations, we show that there are sources of costly conflict that are not rooted in opportunism. Moreover, we show...... that bounded rationality may drive opportunism. All hierarchal forms are inherently subject to specific bounded-rationality-based conflicts, thus have different capacities to mitigate bounded-rationality-based transaction costs....

  5. 2014 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Daghouth, Naim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hoen, Ben [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mills, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hamachi LaCommare, Kristina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Millstein, Dev [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hansen, Dana [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Porter, Kevin [Exeter Associates, Columbia, MD (United States); Widiss, Rebecca [Exeter Associates, Columbia, MD (United States); Buckley, Michael [Exeter Associates, Columbia, MD (United States); Oteri, Frank [National Renewable Energy Lab. (NREL), Golden, CO (United States); Smith, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-08-06

    Wind power capacity additions in the United States rebounded in 2014, and continued growth through 2016 is anticipated. Recent and projected near-term growth is supported by the industry’s primary federal incentive—the production tax credit (PTC)—which is available for projects that began construction by the end of 2014. Wind additions are also being driven by recent improvements in the cost and performance of wind power technologies, which have resulted in the lowest power sales prices ever seen in the U.S. wind sector. Growing corporate demand for wind energy and state-level policies play important roles as well. Expectations for continued technological advancements and cost reductions may further boost future growth. At the same time, the prospects for growth beyond 2016 are uncertain. The PTC has expired, and its renewal remains in question. Continued low natural gas prices, modest electricity demand growth, and limited near-term demand from state renewables portfolio standards (RPS) have also put a damper on growth expectations. These trends, in combination with increasingly global supply chains, have limited the growth of domestic manufacturing of wind equipment. What they mean for wind power additions through the end of the decade and beyond will be dictated in part by future natural gas prices, fossil plant retirements, and policy decisions.

  6. Nonleaking battery terminals.

    Science.gov (United States)

    Snider, W. E.; Nagle, W. J.

    1972-01-01

    Three different terminals were designed for usage in a 40 ampere/hour silver zinc battery which has a 45% KOH by weight electrolyte in a plastic battery case. Life tests, including thermal cycling, electrical charge and discharge for up to three years duration, were conducted on these three different terminal designs. Tests for creep rate and tensile strength were conducted on the polyphenylene oxide plastic battery cases. Some cases were unused and others containing KOH electrolyte were placed on life tests. The design and testing of nonleaking battery terminals for use with a KOH electrolyte in a plastic case are considered.

  7. Battery Thermal Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Keyser, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-08

    The operating temperature is critical in achieving the right balance between performance, cost, and life for both Li-ion batteries and ultracapacitors. The chemistries of advanced energy-storage devices - such as lithium-based batteries - are very sensitive to operating temperature. High temperatures degrade batteries faster while low temperatures decrease their power and capacity, affecting vehicle range, performance, and cost. Understanding heat generation in battery systems - from the individual cells within a module, to the inter-connects between the cells, and across the entire battery system - is imperative for designing effective thermal-management systems and battery packs. At NREL, we have developed unique capabilities to measure the thermal properties of cells and evaluate thermal performance of battery packs (air or liquid cooled). We also use our electro-thermal finite element models to analyze the thermal performance of battery systems in order to aid battery developers with improved thermal designs. NREL's tools are used to meet the weight, life, cost, and volume goals set by the U.S. Department of Energy for electric drive vehicles.

  8. Electronically commutated serial-parallel switching for motor windings

    Science.gov (United States)

    Hsu, John S [Oak Ridge, TN

    2012-03-27

    A method and a circuit for controlling an ac machine comprises controlling a full bridge network of commutation switches which are connected between a multiphase voltage source and the phase windings to switch the phase windings between a parallel connection and a series connection while providing commutation discharge paths for electrical current resulting from inductance in the phase windings. This provides extra torque for starting a vehicle from lower battery current.

  9. Optimal Sizing of wind power systems in three high wind potential zones in Kuwait for remote housing electrification

    OpenAIRE

    Hajiah, Ali; Sebzali, M.

    2016-01-01

    This paper presents a technical study for wind power systems in three sites in Kuwait namely Al-Wafra, Um-Omara and Al-Taweel. Hourly wind speed data for three years are used in order to optimally sizing the wind power systems. Firstly, the Wiebull, function is used to model the wind speed data for each sites. After that a numerical method is used to optimize the energy sources in the power system (wind turbine and battery) using MATLAB. After that the MATLAB is used to analyze the performanc...

  10. Batteries: from alkaline to zinc-air.

    Science.gov (United States)

    Dondelinger, Robert M

    2004-01-01

    There is no perfect disposable battery--one that will sit on the shelf for 20 years, then continually provide unlimited current, at a completely constant voltage until exhausted, without producing heat. There is no perfect rechargeable battery--one with all of the above characteristics and will also withstand an infinite overcharge while providing an equally infinite cycle life. There are only compromises. Every battery selection is a compromise between the ideally required characteristics, the advantages, and the limitations of each battery type. General selection of a battery type to power a medical device is largely outside the purview of the biomed. Initially, these are engineering decisions made at the time of medical equipment design and are intended to be followed in perpetuity. However, since newer cell types evolve and the manufacturer's literature is fixed at the time of printing, some intelligent substitutions may be made as long as the biomed understands the characteristics of both the recommended cell and the replacement cell. For example, when the manufacturer recommends alkaline, it is usually because of the almost constant voltage it produces under the devices' design load. Over time, other battery types may be developed that will meet the intent of the manufacturer, at a lower cost, providing longer operational life, at a lower environmental cost, or with a combination of these advantages. In the Obstetrical Doppler cited at the beginning of this article, the user had put in carbon-zinc cells, and the biomed had unknowingly replaced them with carbonzinc cells. If the alkaline cells recommended by the manufacturer had been used, there would have been the proper output voltage at the battery terminals when the [table: see text] cells were at their half-life. Instead, the device refused to operate since the battery voltage was below presumed design voltage. While battery-type substitutions may be easily and relatively successfully made in disposable

  11. Computing Battery Lifetime Distributions

    NARCIS (Netherlands)

    Cloth, L.; Haverkort, Boudewijn R.H.M.; Jongerden, M.R.

    The usage of mobile devices like cell phones, navigation systems, or laptop computers, is limited by the lifetime of the included batteries. This lifetime depends naturally on the rate at which energy is consumed, however, it also depends on the usage pattern of the battery. Continuous drawing of a

  12. Deep diode atomic battery

    International Nuclear Information System (INIS)

    Anthony, T.R.; Cline, H.E.

    1977-01-01

    A deep diode atomic battery is made from a bulk semiconductor crystal containing three-dimensional arrays of columnar and lamellar P-N junctions. The battery is powered by gamma rays and x-ray emission from a radioactive source embedded in the interior of the semiconductor crystal

  13. Battery energy storage system

    NARCIS (Netherlands)

    Tol, C.S.P.; Evenblij, B.H.

    2009-01-01

    The ability to store electrical energy adds several interesting features to a ships distribution network, as silent power, peak shaving and a ride through in case of generator failure. Modern intrinsically safe Li-ion batteries bring these within reach. For this modern lithium battery applications

  14. Battery Pack Thermal Design

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad

    2016-06-14

    This presentation describes the thermal design of battery packs at the National Renewable Energy Laboratory. A battery thermal management system essential for xEVs for both normal operation during daily driving (achieving life and performance) and off-normal operation during abuse conditions (achieving safety). The battery thermal management system needs to be optimized with the right tools for the lowest cost. Experimental tools such as NREL's isothermal battery calorimeter, thermal imaging, and heat transfer setups are needed. Thermal models and computer-aided engineering tools are useful for robust designs. During abuse conditions, designs should prevent cell-to-cell propagation in a module/pack (i.e., keep the fire small and manageable). NREL's battery ISC device can be used for evaluating the robustness of a module/pack to cell-to-cell propagation.

  15. Green Energy Generation Using FLC Based WECS With Lithium Ion Polymer Batteries

    Directory of Open Access Journals (Sweden)

    Baskar M

    Full Text Available ABSTRACT Green Energy Generation Using Wind energy conversion system is achieved using Lithium Ion Polymer Batteries and Fuzzy logic controller. Presented scheme also provides the constant output power for the stand alone loads like Island, Hills Stations, Ships and Remote locations etc. A fuzzy-logic controller based Wind energy conversion system with permanent magnet synchronous machine is simulated using MATLAB Simulink. The controller provides the constant output voltage in Buck Boost Converter with the wind fluctuations. The SPWM based inverter can be used to produce the constant output voltage with constant frequency. Also a thin and light weight Lithium Ion Polymer Batteries provides the energy back to the Wind energy conversion system , when the wind speed decreases below the base wind velocity. Simulation results are provided to demonstrate the validity of the proposed fuzzy-logic-based controller and comply with the theoretical results. The performance of the system is compared using various controllers.

  16. Room Temperature Sulfur Battery Cathode Design and Processing Techniques

    Science.gov (United States)

    Carter, Rachel

    As the population grows and energy demand increases, climate change threatens causing energy storage research to focus on fulfilling the requirements of two major energy sectors with next generation batteries: (1) portable energy and (2) stationary storage.1 Where portable energy can decrease transportation-related harmful emissions and enable advanced next-generation technologies,1 and stationary storage can facilitate widespread deployment of renewable energy sources, alleviating the demand on fossil fuels and lowering emissions. Portable energy can enable zero-emission transportation and can deploy portable power in advanced electronics across fields including medical and defense. Currently fully battery powered cars are limited in driving distance, which is dictated by the energy density and weight of the state-of-the-art Li-ion battery, and similarly advancement of portable electronics is significantly hindered by heavy batteries with short charge lives. In attempt to enable advanced portable energy, significant research is aiming to improve the conventional Li-ion batteries and explore beyond Li-ion battery chemistries with the primary goal of demonstrating higher energy density to enable lighter weight cells with longer battery life. Further, with the inherent intermittency challenges of our most prominent renewable energy sources, wind and solar, discovery of batteries capable of cost effectively and reliably balancing the generation of the renewable energy sources with the real-time energy demand is required for grid scale viability. Stationary storage will provide load leveling to renewable resources by storing excess energy at peak generation and delivering stored excess during periods of lower generation. This application demands highly abundant, low-cost active materials and long-term cycle stability, since infrastructure costs (combined with the renewable) must compete with burning natural gas. Development of a battery with these characteristics will

  17. Battery materials for ultrafast charging and discharging.

    Science.gov (United States)

    Kang, Byoungwoo; Ceder, Gerbrand

    2009-03-12

    The storage of electrical energy at high charge and discharge rate is an important technology in today's society, and can enable hybrid and plug-in hybrid electric vehicles and provide back-up for wind and solar energy. It is typically believed that in electrochemical systems very high power rates can only be achieved with supercapacitors, which trade high power for low energy density as they only store energy by surface adsorption reactions of charged species on an electrode material. Here we show that batteries which obtain high energy density by storing charge in the bulk of a material can also achieve ultrahigh discharge rates, comparable to those of supercapacitors. We realize this in LiFePO(4) (ref. 6), a material with high lithium bulk mobility, by creating a fast ion-conducting surface phase through controlled off-stoichiometry. A rate capability equivalent to full battery discharge in 10-20 s can be achieved.

  18. Possibilities for wind energy on the Kola peninsula

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, J.; Rathmann, O.; Lundsager, P. [and others

    1999-03-01

    This paper presents an extensive feasibility study regarding the introduction of wind energy in the energy supply of the Kola peninsula in north-western Russia that was carried out during 1996-97. The study covers as well grid connected wind turbines as autonomous systems and a wind atlas was prepared. Special emphasis is put on non-technical activities and objectives like financing models, international funding and a sound politic support. The wind resources on the Kola peninsula are excellent and there are still no reasons to why wind energy installations couldn`t be carried out successfully. Recommendations for starting this development are presented. (au)

  19. Battery equalization active methods

    Science.gov (United States)

    Gallardo-Lozano, Javier; Romero-Cadaval, Enrique; Milanes-Montero, M. Isabel; Guerrero-Martinez, Miguel A.

    2014-01-01

    Many different battery technologies are available for the applications which need energy storage. New researches are being focused on Lithium-based batteries, since they are becoming the most viable option for portable energy storage applications. As most of the applications need series battery strings to meet voltage requirements, battery imbalance is an important matter to be taken into account, since it leads the individual battery voltages to drift apart over time, and premature cells degradation, safety hazards, and capacity reduction will occur. A large number of battery equalization methods can be found, which present different advantages/disadvantages and are suitable for different applications. The present paper presents a summary, comparison and evaluation of the different active battery equalization methods, providing a table that compares them, which is helpful to select the suitable equalization method depending on the application. By applying the same weight to the different parameters of comparison, switch capacitor and double-tiered switching capacitor have the highest ratio. Cell bypass methods are cheap and cell to cell ones are efficient. Cell to pack, pack to cell and cell to pack to cell methods present a higher cost, size, and control complexity, but relatively low voltage and current stress in high-power applications.

  20. Wind energy

    CERN Document Server

    Woll, Kris

    2016-01-01

    Across the country, huge open spaces are covered in gently turning wind turbines. In Wind Energy, explore how these machines generate electricity, learn about the history of wind power, and discover the latest advances in the field. Easy-to-read text, vivid images, and helpful back matter give readers a clear look at this subject. Features include a table of contents, infographics, a glossary, additional resources, and an index. Aligned to Common Core Standards and correlated to state standards. Core Library is an imprint of Abdo Publishing, a division of ABDO.

  1. HST Replacement Battery Initial Performance

    Science.gov (United States)

    Krol, Stan; Waldo, Greg; Hollandsworth, Roger

    2009-01-01

    The Hubble Space Telescope (HST) original Nickel-Hydrogen (NiH2) batteries were replaced during the Servicing Mission 4 (SM4) after 19 years and one month on orbit.The purpose of this presentation is to highlight the findings from the assessment of the initial sm4 replacement battery performance. The batteries are described, the 0 C capacity is reviewed, descriptions, charts and tables reviewing the State Of Charge (SOC) Performance, the Battery Voltage Performance, the battery impedance, the minimum voltage performance, the thermal performance, the battery current, and the battery system recharge ratio,

  2. Antidepressants & suicide: putting the risk in perspective.

    Science.gov (United States)

    Howland, Robert H

    2007-07-01

    Suicidal thoughts are a symptom of depression, and completed suicide is a tragic complication of depressive illness. Although pharmacotherapy is effective for the treatment of depression, the U.S. Food and Drug Administration has ordered that all antidepressant medications carry a warning indicating that they are associated with an increased risk of suicidal thinking, feeling, and behavior in children, adolescents, and young adults. These warnings have received much attention in the general media and have caused much controversy and debate about the relative safety of these commonly used drugs and the appropriateness of their use, especially in younger patients. In this article, I will discuss this issue with the goal of putting the risk in perspective.

  3. Managing coherence via put/get windows

    Energy Technology Data Exchange (ETDEWEB)

    Blumrich, Matthias A [Ridgefield, CT; Chen, Dong [Croton on Hudson, NY; Coteus, Paul W [Yorktown Heights, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Hoenicke, Dirk [Ossining, NY; Ohmacht, Martin [Yorktown Heights, NY

    2012-02-21

    A method and apparatus for managing coherence between two processors of a two processor node of a multi-processor computer system. Generally the present invention relates to a software algorithm that simplifies and significantly speeds the management of cache coherence in a message passing parallel computer, and to hardware apparatus that assists this cache coherence algorithm. The software algorithm uses the opening and closing of put/get windows to coordinate the activated required to achieve cache coherence. The hardware apparatus may be an extension to the hardware address decode, that creates, in the physical memory address space of the node, an area of virtual memory that (a) does not actually exist, and (b) is therefore able to respond instantly to read and write requests from the processing elements.

  4. Managing coherence via put/get windows

    Science.gov (United States)

    Blumrich, Matthias A [Ridgefield, CT; Chen, Dong [Croton on Hudson, NY; Coteus, Paul W [Yorktown Heights, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Hoenicke, Dirk [Ossining, NY; Ohmacht, Martin [Yorktown Heights, NY

    2011-01-11

    A method and apparatus for managing coherence between two processors of a two processor node of a multi-processor computer system. Generally the present invention relates to a software algorithm that simplifies and significantly speeds the management of cache coherence in a message passing parallel computer, and to hardware apparatus that assists this cache coherence algorithm. The software algorithm uses the opening and closing of put/get windows to coordinate the activated required to achieve cache coherence. The hardware apparatus may be an extension to the hardware address decode, that creates, in the physical memory address space of the node, an area of virtual memory that (a) does not actually exist, and (b) is therefore able to respond instantly to read and write requests from the processing elements.

  5. Design of a shrouded wind turbine for low wind speeds / Jacobus Daniel Human

    OpenAIRE

    Human, Jacobus Daniel

    2014-01-01

    The use of renewable energy is promoted worldwide to be less dependent on fossil fuels and nuclear energy. Therefore research in the field is driven to increase efficiency of renewable energy systems. This study aimed to develop a wind turbine for low wind speeds in South Africa. Although there is a greater tendency to use solar panels because of the local weather conditions, there are some practical implications that have put the use of solar panels in certain areas to an end....

  6. Battery Technology Stores Clean Energy

    Science.gov (United States)

    2008-01-01

    Headquartered in Fremont, California, Deeya Energy Inc. is now bringing its flow batteries to commercial customers around the world after working with former Marshall Space Flight Center scientist, Lawrence Thaller. Deeya's liquid-cell batteries have higher power capability than Thaller's original design, are less expensive than lead-acid batteries, are a clean energy alternative, and are 10 to 20 times less expensive than nickel-metal hydride batteries, lithium-ion batteries, and fuel cell options.

  7. Proline dehydrogenase activity of the transcriptional repressor PutA is required for induction of the put operon by proline.

    Science.gov (United States)

    Muro-Pastor, A M; Maloy, S

    1995-04-28

    The proline utilization (put) operon from Salmonella typhimurium consists of the putP gene, encoding a proline transporter, and the putA gene, encoding an enzyme with both proline dehydrogenase and 1-pyrroline-5-carboxylate dehydrogenase activities. In addition to these two enzymatic activities, the PutA protein is a transcriptional repressor that regulates the expression of putP and putA in response to the availability of proline. We report the isolation of super-repressor mutants of PutA that decrease expression from the putA promoter in the presence or absence of proline. None of the mutants exhibited increased affinity for the DNA in the put regulatory region in vitro. Although DNA binding by wild-type PutA was prevented by the addition of proline and an artificial electron acceptor, DNA binding by the two strongest super-repressors was not prevented under identical conditions. The proline dehydrogenase activity of the purified mutant proteins showed altered kinetic properties (increased Km(Pro), reduced Vmax, or a completely null phenotype). The observation that these mutations simultaneously affect induction by proline and proline dehydrogenase activity suggests that a single proline-binding site is involved in both proline dehydrogenase activity and induction of the expression of the put operon. Furthermore, the results indicate that the proline dehydrogenase activity of PutA is essential for induction of the put operon by proline.

  8. World Wind

    Data.gov (United States)

    National Aeronautics and Space Administration — World Wind allows any user to zoom from satellite altitude into any place on Earth, leveraging high resolution LandSat imagery and SRTM elevation data to experience...

  9. Investigation on wind energy-compressed air power system.

    Science.gov (United States)

    Jia, Guang-Zheng; Wang, Xuan-Yin; Wu, Gen-Mao

    2004-03-01

    Wind energy is a pollution free and renewable resource widely distributed over China. Aimed at protecting the environment and enlarging application of wind energy, a new approach to application of wind energy by using compressed air power to some extent instead of electricity put forward. This includes: explaining the working principles and characteristics of the wind energy-compressed air power system; discussing the compatibility of wind energy and compressor capacity; presenting the theoretical model and computational simulation of the system. The obtained compressor capacity vs wind power relationship in certain wind velocity range can be helpful in the designing of the wind power-compressed air system. Results of investigations on the application of high-pressure compressed air for pressure reduction led to conclusion that pressure reduction with expander is better than the throttle regulator in energy saving.

  10. Advanced batteries for load-leveling - The utility perspective on system integration

    Science.gov (United States)

    Delmonaco, J. L.; Lewis, P. A.; Roman, H. T.; Zemkoski, J.

    1982-09-01

    Rechargeable battery systems for applications as utility load-leveling units, particularly in urban areas, are discussed. Particular attention is given to advanced lead-acid, zinc-halogen, sodium-sulfer, and lithium-iron sulfide battery systems, noting that battery charging can proceed at light load hours and requires no fuel on-site. Each battery site will have a master site controller and related subsystems necessary for ensuring grid-quality power output from the batteries and charging when feasible. The actual interconnection with the grid is envisioned as similar to transmission, subtransmission, or distribution systems similar to cogeneration or wind-derived energy interconnections. Analyses are presented of factors influencing the planning economics, impacts on existing grids through solid-state converters, and operational and maintenance considerations. Finally, research directions towards large scale battery implementation are outlined.

  11. Fail safe controllable output improved version of the electromechanical battery

    Science.gov (United States)

    Post, R.F.

    1999-01-19

    Mechanical means are provided to control the voltages induced in the windings of a generator/motor. In one embodiment, a lever is used to withdraw or insert the entire stator windings from the cavity where the rotating field exists. In another embodiment, voltage control and/or switching off of the output is achievable with a variable-coupling generator/motor. A stator is made up of two concentric layers of windings, with a larger number of turns on the inner layer of windings than the outer layer of windings. The windings are to be connected in series electrically, that is, their voltages add vectorially. The mechanical arrangement is such that one or both of the windings can be rotated with respect to the other winding about their common central axis. Another improved design for the stator assembly of electromechanical batteries provides knife switch contacts that are in electrical contact with the stator windings. The operation of this embodiment depends on the fact that an abnormally large torque will be exerted on the stator structure during any short-circuit condition. 4 figs.

  12. Modeling control and simulation of a prototype wind turbine using S4WT

    OpenAIRE

    Evren, Sanem

    2012-01-01

    Wind energy is a renewable and sustainable kind of energy that is becoming increasingly important in the last decades. The technologies converting wind energy into usable forms of electricity are developed as alternatives to traditional power plants that rely on fossil fuels. The smallest wind turbines are used for applications such as battery charging or auxiliary power on boats; while large grid-connected wind turbines are designed to generate commercial electricity. This thesis focuses on ...

  13. 78 FR 29364 - Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4...

    Science.gov (United States)

    2013-05-20

    ...-005, QF07-257-004] Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4, LLC, Exelon Wind 5, LLC, Exelon Wind 6, LLC, Exelon Wind 7, LLC, Exelon Wind 8, LLC, Exelon Wind 9, LLC, Exelon Wind 10, LLC, Exelon Wind 11, LLC, High Plains Wind Power, LLC v. Xcel Energy...

  14. SIMWEST: A simulation model for wind and photovoltaic energy storage systems (CDC user's manual), volume 1

    Science.gov (United States)

    Warren, A. W.; Esinger, A. W.

    1979-01-01

    Procedures are given for using the SIMWEST program on CDC 6000 series computers. This expanded software package includes wind and/or photovoltaic systems utilizing any combination of five types of storage (pumped hydro, battery, thermal, flywheel, and pneumatic).

  15. A Novel Process for Recovering Valuable Materials from Spent Lithium-Ion Batteries

    Science.gov (United States)

    Dodbiba, Gjergj; Yamaji, Yuta; Murata, Kenji; Okaya, Katsunori; Shibayama, Atsushi; Fujita, Toyohisa

    The demand for lithium-ion batteries has been increasing due to the increasing demand for laptop computers, cellular phones, automobiles, etc. The positive electrode of the lithium-ion secondary battery is mainly made of lithium oxides well as cobalt, nickel, manganese, etc. Thus, an effective recycling method not only would collect cobalt and lithium, but also would enable the separation of other materials from the spent batteries. In this work, a novel processing flow sheet is put forward and its efficiency is evaluated. The aim was to obtain pure fractions of various constituents.

  16. Economic Operation of Power Systems with Significant Wind Power Penetration

    DEFF Research Database (Denmark)

    Farashbashi-Astaneh, Seyed-Mostafa

    This dissertation addresses economic operation of power systems with high penetration of wind power. Several studies are presented to address the economic operation of power systems with high penetration of variable wind power. The main concern in such power systems is high variability...... and unpredictability. Unlike conventional power plants, the output power of a wind farm is not controllable. This brings additional complexity to operation and planning of wind dominant power systems. The key solution in face of wind power uncertainty is to enhance power system flexibility. The enhanced flexibility......, cooperative wind-storage operation is studied. Lithium-Ion battery units are chosen as storage units. A novel formulation is proposed to investigate optimal operation of a storage unit considering power system balancing conditions and wind power imbalances. An optimization framework is presented to increase...

  17. Strain measurement based battery testing

    Science.gov (United States)

    Xu, Jeff Qiang; Steiber, Joe; Wall, Craig M.; Smith, Robert; Ng, Cheuk

    2017-05-23

    A method and system for strain-based estimation of the state of health of a battery, from an initial state to an aged state, is provided. A strain gauge is applied to the battery. A first strain measurement is performed on the battery, using the strain gauge, at a selected charge capacity of the battery and at the initial state of the battery. A second strain measurement is performed on the battery, using the strain gauge, at the selected charge capacity of the battery and at the aged state of the battery. The capacity degradation of the battery is estimated as the difference between the first and second strain measurements divided by the first strain measurement.

  18. Tourism's collapse puts Gambian women at risk.

    Science.gov (United States)

    Coker, M S

    1995-06-01

    Despite efforts of the Gambian government, which established a ministry in 1981 that would tackle gender issues, improve women's health, and promote empowerment, women are underrepresented in government and business, and 84% are illiterate. Child mortality is among the highest in Africa; 134 children per 1000 die before their fifth birthday. In the mid-1980s austerity measures adopted by the World Bank and IMF left the ministry without funds. Rice and vegetable production, the main source of income for women, fell in the 1990s. In 1994, paddy production dropped 23% from the previous year; this was due to a lack of technical and financial assistance. The collapse of tourism with Capt. Yahya Jammeh's seizure of power has put prostitutes catering to tourists out of work, but women who have lost jobs in the hotel industry may be pushed into local prostitution to survive. The impact of this on the HIV/AIDS epidemic is unclear. Although Gambia is one of the world's most aid-dependent countries (more than a quarter of the GNP before the coup), corruption and mismanagement in the nongovernmental sector is widespread. The director of the Women in Development Programme, a $15m World Bank project, was forced to resign over allegations of fraud. The political process sidelines women; only village chiefs, who are traditionally men, are allowed to vote when new heads are elected.

  19. Putting in place the LHC computing organization

    CERN Multimedia

    Akesson, T

    2001-01-01

    Following the CERN review of computing, the ball is in the able hands of the CERN directorate to translate the review recommendations into the implementation of a LHC computing organization. From the ATLAS point of view it is rather clear what is needed: A credible set-up that can get into place the total computing infrastructure to match ATLAS global computing requirements, and not just at CERN. The next six months will demonstrate if CERN is on a good track to get operational an organization that can tackle this global challenge. CERN put forward to the 15th of June Council a paper that invites comments on a LHC Computing Grid Project as part of the CERN base program. In particular, it asked for new resources, of 25+25 MCHF, for CERN to build the CERN-part of a prototype that should be matched to the need of the experiments for the forthcoming data challenges. The intention of CERN now is to discuss with member-states in July to establish a sufficient resource-base to get approval at the September Commit...

  20. Studies on the oxygen reduction catalyst for zinc-air battery electrode

    Science.gov (United States)

    Wang, Xianyou; Sebastian, P. J.; Smit, Mascha A.; Yang, Hongping; Gamboa, S. A.

    In this paper, perovskite type La 0.6Ca 0.4CoO 3 as a catalyst of oxygen reduction was prepared, and the structure and performance of the catalysts was examined by means of IR, X-ray diffraction (XRD), and thermogravimetric (TG). Mixed catalysts doped, some metal oxides were put also used. The cathodic polarization curves for oxygen reduction on various catalytic electrodes were measured by linear sweep voltammetry (LSV). A Zn-air battery was made with various catalysts for oxygen reduction, and the performance of the battery was measured with a BS-9300SM rechargeable battery charge/discharge device. The results showed that the perovskite type catalyst (La 0.6Ca 0.4CoO 3) doped with metal oxide is an excellent catalyst for the zinc-air battery, and can effectively stimulate the reduction of oxygen and improve the properties of zinc-air batteries, such as discharge capacity, etc.

  1. Lithium use in batteries

    Science.gov (United States)

    Goonan, Thomas G.

    2012-01-01

    Lithium has a number of uses but one of the most valuable is as a component of high energy-density rechargeable lithium-ion batteries. Because of concerns over carbon dioxide footprint and increasing hydrocarbon fuel cost (reduced supply), lithium may become even more important in large batteries for powering all-electric and hybrid vehicles. It would take 1.4 to 3.0 kilograms of lithium equivalent (7.5 to 16.0 kilograms of lithium carbonate) to support a 40-mile trip in an electric vehicle before requiring recharge. This could create a large demand for lithium. Estimates of future lithium demand vary, based on numerous variables. Some of those variables include the potential for recycling, widespread public acceptance of electric vehicles, or the possibility of incentives for converting to lithium-ion-powered engines. Increased electric usage could cause electricity prices to increase. Because of reduced demand, hydrocarbon fuel prices would likely decrease, making hydrocarbon fuel more desirable. In 2009, 13 percent of worldwide lithium reserves, expressed in terms of contained lithium, were reported to be within hard rock mineral deposits, and 87 percent, within brine deposits. Most of the lithium recovered from brine came from Chile, with smaller amounts from China, Argentina, and the United States. Chile also has lithium mineral reserves, as does Australia. Another source of lithium is from recycled batteries. When lithium-ion batteries begin to power vehicles, it is expected that battery recycling rates will increase because vehicle battery recycling systems can be used to produce new lithium-ion batteries.

  2. Recent Development of Carbonaceous Materials for Lithium–Sulphur Batteries

    Directory of Open Access Journals (Sweden)

    Xingxing Gu

    2016-11-01

    Full Text Available The effects of climate change are just beginning to be felt, and as such, society must work towards strategies of reducing humanity’s impact on the environment. Due to the fact that energy production is one of the primary contributors to greenhouse gas emissions, it is obvious that more environmentally friendly sources of power are required. Technologies such as solar and wind power are constantly being improved through research; however, as these technologies are often sporadic in their power generation, efforts must be made to establish ways to store this sustainable energy when conditions for generation are not ideal. Battery storage is one possible supplement to these renewable energy technologies; however, as current Li-ion technology is reaching its theoretical capacity, new battery technology must be investigated. Lithium–sulphur (Li–S batteries are receiving much attention as a potential replacement for Li-ion batteries due to their superior capacity, and also their abundant and environmentally benign active materials. In the spirit of environmental harm minimization, efforts have been made to use sustainable carbonaceous materials for applications as carbon–sulphur (C–S composite cathodes, carbon interlayers, and carbon-modified separators. This work reports on the various applications of carbonaceous materials applied to Li–S batteries, and provides perspectives for the future development of Li–S batteries with the aim of preparing a high energy density, environmentally friendly, and sustainable sulphur-based cathode with long cycle life.

  3. WIND TURBINES FOR WIND POWER INSTALLATIONS

    Directory of Open Access Journals (Sweden)

    Barladean A.S.

    2008-04-01

    Full Text Available The problem of wind turbine choice for wind power stations is examined in this paper. It is shown by comparison of parameters and characteristics of wind turbines, that for existing modes and speeds of wind in territory of Republic of Moldova it is necessary to use multi-blade small speed rotation wind turbines of fan class.

  4. Wind turbine

    Science.gov (United States)

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  5. Circulating current battery heater

    Science.gov (United States)

    Ashtiani, Cyrus N.; Stuart, Thomas A.

    2001-01-01

    A circuit for heating energy storage devices such as batteries is provided. The circuit includes a pair of switches connected in a half-bridge configuration. Unidirectional current conduction devices are connected in parallel with each switch. A series resonant element for storing energy is connected from the energy storage device to the pair of switches. An energy storage device for intermediate storage of energy is connected in a loop with the series resonant element and one of the switches. The energy storage device which is being heated is connected in a loop with the series resonant element and the other switch. Energy from the heated energy storage device is transferred to the switched network and then recirculated back to the battery. The flow of energy through the battery causes internal power dissipation due to electrical to chemical conversion inefficiencies. The dissipated power causes the internal temperature of the battery to increase. Higher internal temperatures expand the cold temperature operating range and energy capacity utilization of the battery. As disclosed, either fixed frequency or variable frequency modulation schemes may be used to control the network.

  6. Advanced battery development

    Science.gov (United States)

    In order to promote national security by ensuring that the United States has an adequate supply of safe, assured, affordable, and environmentally acceptable energy, the Storage Batteries Division at Sandia National Laboratories (SNL), Albuquerque, is responsible for engineering development of advanced rechargeable batteries for energy applications. This effort is conducted within the Exploratory Battery Technology Development and Testing (ETD) Lead center, whose activities are coordinated by staff within the Storage Batteries Division. The ETD Project, directed by SNL, is supported by the U.S. Department of Energy, Office of Energy Systems Research, Energy Storage and Distribution Division (DOE/OESD). SNL is also responsible for technical management of the Electric Vehicle Advanced Battery Systems (EV-ABS) Development Project, which is supported by the U.S. Department of Energy's Office of Transportation Systems (OTS). The ETD Project is operated in conjunction with the Technology Base Research (TBR) Project, which is under the direction of Lawrence Berkeley Laboratory. Together these two projects seek to establish the scientific feasibility of advanced electrochemical energy storage systems, and conduct the initial engineering development on systems suitable for mobile and stationary commercial applications.

  7. Used batteries - REMINDER

    CERN Multimedia

    2006-01-01

    With colder weather drawing in, it is quite likely that older car batteries will fail. On this subject, the Safety Commission wishes to remind everyone that CERN is not responsible for the disposal of used batteries from private vehicles. So please refrain from abandoning them on pavements or around or inside buildings. Used batteries can be disposed of safely, free-of-charge and without any damage to the environment at waste disposal sites (déchetteries) close to CERN in both France (Ain and Haute-Savoie) and in the Canton of Geneva in Switzerland (Cheneviers). Since the average car battery lasts a number of years, this only represents a small effort on your part over the whole lifetime of your vehicle. Most people don't need reminding that car batteries contain concentrated sulphuric acid, which can cause severe burns. Despite this, we frequently find them casually dumped in scrap metal bins! For more information, please contact R. Magnier/SC-GS 160879 We all have a responsibility for safety and th...

  8. Optimal Operation of Plug-In Electric Vehicles in Power Systems with High Wind Power Penetrations

    DEFF Research Database (Denmark)

    Hu, Weihao; Su, Chi; Chen, Zhe

    2013-01-01

    The Danish power system has a large penetration of wind power. The wind fluctuation causes a high variation in the power generation, which must be balanced by other sources. The battery storage based Plug-In Electric Vehicles (PEV) may be a possible solution to balance the wind power variations...... in the power systems with high wind power penetrations. In this paper, the integration of plug-in electric vehicles in the power systems with high wind power penetrations is proposed and discussed. Optimal operation strategies of PEV in the spot market are proposed in order to decrease the energy cost for PEV...... owners. Furthermore, the application of battery storage based aggregated PEV is analyzed as a regulation services provider in the power system with high wind power penetrations. The western Danish power system where the total share of annual wind power production is more than 27% of the electrical energy...

  9. Battery Vent Mechanism And Method

    Science.gov (United States)

    Ching, Larry K. W.

    2000-02-15

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

  10. Battery venting system and method

    Science.gov (United States)

    Casale, Thomas J.; Ching, Larry K. W.; Baer, Jose T.; Swan, David H.

    1999-01-05

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

  11. Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems

    Science.gov (United States)

    Tuffner, Francis K [Richland, WA; Kintner-Meyer, Michael C. W. [Richland, WA; Hammerstrom, Donald J [West Richland, WA; Pratt, Richard M [Richland, WA

    2012-05-22

    Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

  12. Wind energy market study Eastern Europe. Czech and Slovak Republics

    International Nuclear Information System (INIS)

    Skjerk Christensen, P.

    1994-06-01

    The main objective of the THERMIE Associated Measure WE05 is to study the conditions for utilising wind power and estimate the market for wind power in Eastern Europe. This report describes the results of a study of the conditions in the Czech and Slovak republics, which has been concentrated on the following areas: A collection of information on the wind energy potential in these countries and the present structure of the power production system including costs; A search for information concerning payback prices, subsidies, etc. with relation to renewable energy sources, especially wind power, existing wind turbines and their production; An estimate of the possibilities for co-production of wind turbines by Czech, Slovak, and EC factories; A compilation of information on rules and legislation pertaining to the establishment of wind turbines and to power production by wind, e.g. regulations related to grid connections, safety, and environmental production. In order to promote the utilisation of wind power in the Czech and Slovak Republics, some recommendations based on this study may be put forward: the operation of pilot plants should be evaluated in order to compare the recorded production with that which is estimated theoretically based on measured wind data. Existing wind data should be supplemented with new measurements especially at sites that based on current knowledge may be suitable for establishing wind parks. The economic feasibility of wind power in these countries should be calculated based on the best available physical and economic data. (EG)

  13. Battery Monitoring and Charging System

    National Research Council Canada - National Science Library

    Thivierge, Daniel P

    2007-01-01

    A battery monitoring device for a battery having cells grouped in modules. The device includes a monitoring circuit for each module which monitors the voltage in each cell and the overall module voltage...

  14. Understanding wind power technology theory, deployment and optimisation

    CERN Document Server

    Schaffarczyk, Alois

    2014-01-01

    Wind energy technology has progressed enormously over the last decade. In coming years it will continue to develop in terms of power ratings, performance and installed capacity of large wind turbines worldwide, with exciting developments in offshore installations. Designed to meet the training needs of wind engineers, this introductory text puts wind energy in context, from the natural resource to the assessment of cost effectiveness and bridges the gap between theory and practice. The thorough coverage spans the scientific basics, practical implementations and the modern state of technology

  15. Wind power

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the wind power. It presents the principles, the technology takes off, its applications and technology focus, the global market trends and the outlooks and Total commitments in the domain. (A.L.B.)

  16. Wind energy

    International Nuclear Information System (INIS)

    Portilla S, L.A.

    1995-01-01

    The wind energy or eolic energy is a consequence of solar energy, the one which is absorbed by the atmosphere and is transformed into energy of movement of large bulks of air. In this process the atmosphere acts as the filter to the solar radiation and demotes the ultraviolet beams that result fatal to life in the Earth. The ionosphere is the most external cap and this is ionized by means of absorption process of ultraviolet radiation arising to the Sun. The atmosphere also acts as a trap to the infrared radiation, it that results from the continual process of energetic degradation. In this way, the interaction between Earth - Atmospheres, is behaved as a great greenhouse, maintaining the constant temperatures, including in the dark nights. Processes as the natural convection (that occur by the thermodynamic phenomenon), equatorial calmness, trade winds and against trade winds and global distribution of the air currents are described. The other hand, techniques as the transformation of the wind into energy and its parameters also are shown

  17. Lithium-ion batteries

    CERN Document Server

    Yoshio, Masaki; Kozawa, Akiya

    2010-01-01

    This book is a compilation of up-to-date information relative to Li-Ion technology. It provides the reader with a single source covering all important aspects of Li-Ion battery operations. It fills the gap between the old original Li-Ion technology and present state of the technology that has developed into a high state of practice. The book is designed to provide a single source for an up-to-date description of the technology associated with the Li-Ion battery industry. It will be useful to researchers interested in energy conversion for the direct conversion of chemical energy into electrica

  18. Wind Energy Japan

    Energy Technology Data Exchange (ETDEWEB)

    Komatsubara, Kazuyo [Embassy of the Kingdom of the Netherlands, Tokyo (Japan)

    2012-06-15

    An overview is given of wind energy in Japan: Background; Wind Energy in Japan; Japanese Wind Energy Industry; Government Supports; Useful Links; Major Japanese Companies; Profiles of Major Japanese Companies; Major Wind Energy Projects in Japan.

  19. Charging system and method for multicell storage batteries

    Science.gov (United States)

    Cox, Jay A.

    1978-01-01

    A battery-charging system includes a first charging circuit connected in series with a plurality of battery cells for controlled current charging. A second charging circuit applies a controlled voltage across each individual cell for equalization of the cells to the fully charged condition. This controlled voltage is determined at a level above the fully charged open-circuit voltage but at a sufficiently low level to prevent corrosion of cell components by electrochemical reaction. In this second circuit for cell equalization, a transformer primary receives closely regulated, square-wave voltage which is coupled to a plurality of equal secondary coil windings. Each secondary winding is connected in parallel to each cell of a series-connected pair of cells through half-wave rectifiers and a shared, intermediate conductor.

  20. Impact resistant battery enclosure systems

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsui, Waterloo; Feng, Yuezhong; Chen, Weinong Wayne; Siegmund, Thomas Heinrich

    2017-10-31

    Battery enclosure arrangements for a vehicular battery system. The arrangements, capable of impact resistance include plurality of battery cells and a plurality of kinetic energy absorbing elements. The arrangements further include a frame configured to encase the plurality of the kinetic energy absorbing elements and the battery cells. In some arrangements the frame and/or the kinetic energy absorbing elements can be made of topologically interlocked materials.

  1. Redox Species of Redox Flow Batteries: A Review.

    Science.gov (United States)

    Pan, Feng; Wang, Qing

    2015-11-18

    Due to the capricious nature of renewable energy resources, such as wind and solar, large-scale energy storage devices are increasingly required to make the best use of the renewable power. The redox flow battery is considered suitable for large-scale applications due to its modular design, good scalability and flexible operation. The biggest challenge of the redox flow battery is the low energy density. The redox active species is the most important component in redox flow batteries, and the redox potential and solubility of redox species dictate the system energy density. This review is focused on the recent development of redox species. Different categories of redox species, including simple inorganic ions, metal complexes, metal-free organic compounds, polysulfide/sulfur and lithium storage active materials, are reviewed. The future development of redox species towards higher energy density is also suggested.

  2. A Call-Put Duality for Perpetual American Options

    OpenAIRE

    Alfonsi, Aurélien; Jourdain, Benjamin

    2006-01-01

    International audience; It is well known that in models with time-homogeneous local volatility functions and constant interest and dividend rates, the European Put prices are transformed into European Call prices by the simultaneous exchanges of the interest and dividend rates and of the strike and spot price of the underlying. This paper investigates such a Call Put duality for perpetual American options. It turns out that the perpetual American Put price is equal to the perpetual American C...

  3. Wind energy - The facts. Vol. 1: Technology

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, P.; Garrad, A.; Jamieson, P.; Snodin, H.; Tindal, A. (comps.) [Gerrad Hassan and partners (United Kingdom)

    2004-02-01

    The politics and economics of wind energy have played an important role in the development of the industry and contributed to its present success. Engineering is, however, pivotal. As the wind industry has become better established, the central place of engineering has become overshadowed by other issues. This is a tribute to the success of the engineers and their turbines. This volume addresses the key engineering Issues: 1) The turbines - their past achievements and future challenges - a remarkable tale of technical endeavour and entrepreneurship. 2) The wind - its characteristics and reliability - how can it be measured, quantified and harnessed? 3) The wind farms - an assembly of individual turbines into wind power stations or wind farms - their optimisation and development. 4) The grid - transporting the energy from remote locations with plentiful wind energy to the loads - the key technical and strategic challenges. This volume provides an historical overview of turbine development, describes the present status and considers future challenges. This is a remarkable story starting in the nineteenth century and then accelerating through the last two decades of the twentieth century on a course very similar to the early days of aeronautics. The story is far from finished but it has certainly started with a vengeance. Wind must be treated with great respect. The speed of the wind on a site has a very powerful effect on the economics of a wind farm; it provides both the fuel to generate electricity and the loads to destroy the turbine. This volume describes how it can be quantified, harnessed and put to work in an economic and predictable manner. The long-term behaviour of the wind is described as well as its short-term behaviour. The latter can be successfully forecast to allow wind energy to participate in electricity markets. In order for wind to live up to its raw potential promise, individual turbines must be assembled into wind farms or wind power stations

  4. Battery switch for downhole tools

    Science.gov (United States)

    Boling, Brian E.

    2010-02-23

    An electrical circuit for a downhole tool may include a battery, a load electrically connected to the battery, and at least one switch electrically connected in series with the battery and to the load. The at least one switch may be configured to close when a tool temperature exceeds a selected temperature.

  5. Sizing and Simulation of PV-Wind Hybrid Power System

    OpenAIRE

    Engin, Mustafa

    2013-01-01

    A sizing procedure is developed for hybrid system with the aid of mathematical models for photovoltaic cell, wind turbine, and battery that are readily present in the literature. This sizing procedure can simulate the annual performance of different kinds of photovoltaic-wind hybrid power system structures for an identified set of renewable resources, which fulfills technical limitations with the lowest energy cost. The output of the program will display the performance of the system during t...

  6. Hybrid Test Bed of Wind Electric Generator with Photovoltaic Panels

    OpenAIRE

    G.D.Anbarasi Jebaselvi; S.Paramasivam

    2014-01-01

    Driven by the increasing costs of power production and decreasing fossil fuel reserves with the addition of global environmental concerns, renewable energy is now becoming significant fraction of total electricity production in the world. Advancements in the field of wind electric generator technology and power electronics help to achieve rapid progress in hybrid power system which mainly involves wind, solar and diesel energy with a good battery back-up. Here the discussion brings about the ...

  7. 2012 wind technologies market report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Darghouth, Naim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hoen, Ben [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mills, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Weaver, Samantha [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Porter, Kevin [Exeter Assoc., Columbia, MD (United States); Buckley, Michael [Exeter Assoc., Columbia, MD (United States); Fink, Sari [Exeter Assoc., Columbia, MD (United States); Oteri, Frank [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-07-01

    Annual wind power capacity additions in the United States achieved record levels in 2012, motivated by the then-planned expiration of federal tax incentives at the end of 2012 and recent improvements in the cost and performance of wind power technology. At the same time, even with a short-term extension of federal tax incentives now in place, the U.S. wind power industry is facing uncertain times. It will take time to rebuild the project pipeline, ensuring a slow year for new capacity additions in 2013. Continued low natural gas prices, modest electricity demand growth, and limited near-term demand from state renewables portfolio standards (RPS) have also put a damper on industry growth expectations. In combination with global competition within the sector, these trends continue to impact the manufacturing supply chain. What these trends mean for the medium to longer term remains to be seen, dictated in part by future natural gas prices, fossil plant retirements, and policy decisions, although recent declines in the price of wind energy have boost ed the prospects for future growth

  8. Active control: Wind turbine model

    Energy Technology Data Exchange (ETDEWEB)

    Bindner, Henrik

    1999-07-01

    This report is a part of the reporting of the work done in the project `Active Control of Wind Turbines`. This project aim is to develop a simulation model for design of control systems for turbines with pitch control and to use that model to design controllers. This report describes the model developed for controller design and analysis. Emphasis has been put on establishment of simple models describing the dynamic behavior of the wind turbine in adequate details for controller design. This has been done with extensive use of measurements as the basis for selection of model complexity and model validation as well as parameter estimation. The model includes a simple model of the structure of the turbine including tower and flapwise blade bending, a detailed model of the gear box and induction generator, a linearized aerodynamic model including modelling of induction lag and actuator and sensor models. The models are all formulated as linear differential equations. The models are validated through comparisons with measurements performed on a Vestas WD 34 400 kW wind turbine. It is shown from a control point of view simple linear models can be used to describe the dynamic behavior of a pitch controlled wind turbine. The model and the measurements corresponds well in the relevant frequency range. The developed model is therefore applicable for controller design. (au) EFP-91. 18 ills., 22 refs.

  9. Remote RF Battery Charging

    NARCIS (Netherlands)

    Visser, H.J.; Pop, V.; Op het Veld, J.H.G.; Vullers, R.J.M.

    2011-01-01

    The design of a remote RF battery charger is discussed through the analysis and design of the subsystems of a rectenna (rectifying antenna): antenna, rectifying circuit and loaded DC-to-DC voltage (buck-boost) converter. Optimum system power generation performance is obtained by adopting a system

  10. USED BATTERIES-REMINDER

    CERN Multimedia

    2002-01-01

    Note from the TIS Division: Although it is not an obligation for CERN to collect, store and dispose of used batteries from private vehicles, they are often found abandoned on the site and even in the scrap metal bins. As well as being very dangerous (they contain sulphuric acid which is highly corrosive), this practise costs CERN a non-negligible amount of money to dispose of them safely. The disposal of used batteries in the host state could not be simpler, there are 'déchetteries' in neighbouring France at Saint-Genis, Gaillard and Annemasse as well as in other communes. In Geneva Canton the centre de traitement des déchets spéciaux, at Cheneviers on the river Rhône a few kilometers from CERN, will dispose of your batterie free of charge. So we ask you to use a little common sense and to help protect the environnement from the lead and acid in these batteries and even more important, to avoid the possibility of a colleague being seriously injured. It doesn't take m...

  11. Weston Standard battery

    CERN Multimedia

    This is a Weston AOIP standard battery with its calibration certificate (1956). Inside, the glassware forms an "H". Its name comes from the British physicist Edward Weston. A standard is the materialization of a given quantity whose value is known with great accuracy.

  12. Secondary alkaline batteries

    Science.gov (United States)

    McBreen, J.

    1984-03-01

    The overall reactions (charge/discharge characteristics); electrode structures and materials; and cell construction are studied for nickel oxide-cadmium, nickel oxide-iron, nickel oxide-hydrogen, nickel oxide-zinc, silver oxide-zinc, and silver oxide-cadmium, silver oxide-iron, and manganese dioxide-zinc batteries.

  13. Wind Loads on Structures

    DEFF Research Database (Denmark)

    Dyrbye, Claes; Hansen, Svend Ole

    Wind loads have to be taken into account when designing civil engineering structures. The wind load on structures can be systematised by means of the wind load chain: wind climate (global), terrain (wind at low height), aerodynamic response (wind load to pressure), mechanical response (wind...... pressure to structural response) and design criteria. Starting with an introduction of the wind load chain, the book moves on to meteorological considerations, atmospheric boundary layer, static wind load, dynamic wind load and scaling laws used in wind-tunnel tests. The dynamic wind load covers vibrations...... induced by wind turbulence, vortex shedding, flutter and galloping. The book gives a comprehensive treatment of wind effects on structures and it will be useful for consulting engineers designing wind-sensitive structures. It will also be valuable for students of civil engineering as textbook...

  14. Wind Turbine design and fabrication to power street lights

    Directory of Open Access Journals (Sweden)

    Khan Mohammad

    2017-01-01

    Full Text Available The objective of this work was to design and build a wind turbine which can be used to power small street lights. Considering the typical wind speeds in Abu Dhabi, UAE and ease of construction, the design of the wind turbine was chosen to be Sea Hawk design from vertical axis wind turbine category. A three phase AC generator was used for its availability over the DC motors within the region. A 12V battery was used for storage and a charge controller was used for controlling the charge flow into the battery and for controlling the turbine rotation when the battery is fully charged. The blades used in the turbine were made of foam board according to the NACA 0018 airfoil shape with a chord length of 15cm. The connecting shaft was made of stainless steel. Structural analysis and CFD analysis were performed along with other calculations. Testing was executed to calculate the voltage output from the turbine at different wind speeds. The maximum voltage the turbine produced at 6.4 m/s wind speed was 2.4Vand the rotational speed of the turbine was 60.3 rpm.

  15. Intermittent Smoothing Approaches for Wind Power Output: A Review

    Directory of Open Access Journals (Sweden)

    Muhammad Jabir

    2017-10-01

    Full Text Available Wind energy is one of the most common types of renewable energy resource. Due to its sustainability and environmental benefits, it is an emerging source for electric power generation. Rapid and random changes of wind speed makes it an irregular and inconsistent power source when connected to the grid, causing different technical problems in protection, power quality and generation dispatch control. Due to these problems, effective intermittent smoothing approaches for wind power output are crucially needed to minimize such problems. This paper reviews various intermittent smoothing approaches used in smoothing the output power fluctuations caused by wind energy. Problems associated with the inclusion of wind energy resources to grid are also briefly reviewed. From this review, it has been found that battery energy storage system is the most suitable and effective smoothing approach, provided that an effective control strategy is available for optimal utilization of battery energy system. This paper further demonstrates different control strategies built for battery energy storage system to obtain the smooth output wind power.

  16. Neutrons put the brakes on stress

    International Nuclear Information System (INIS)

    Gill, Katynna

    2006-01-01

    Don't you hate it when you're driving along, put your foot on the brake and feel that juddering feeling through the pedal? It happens when the disc brake rotors become distorted through normal use of the brakes. To the car manufacturing industry it's called r unout , and is a multimillion dollar warranty problem each year. Not to mention a pain for drivers! Dr Maurice Ripley and Dr Oliver Kirstein from the Australian Nuclear Science and Technology Organisation (ANSTO) wanted to figure out whether runout is caused by residual stresses from the manufacturing process or by normal use of the brake, so they decided to test and compare a used and new brake disc. 'To picture what metal looks like at the atomic level, imagine spheres stacked evenly around each other in all three dimensions,' explained Kirstein. T he spheres represent atoms in the metal and the structure is called a metallic lattice.' We're familiar with the idea that metal expands when it gets hot - the atoms get excited with the heat and have the energy to move further away from each other, so spaces between the atoms in the lattice get larger. 'When parts of the metal are heated up and cool down at different rates, you may end up with a distorted lattice with some parts expanded and others not,' explained Kirstein. 'This unevenness in the lattice creates residual stress.' While a bunch of methods were available to test the discs, Kirstein and Ripley picked neutrons from ANSTO's HIFAR (High Flux Australian Reactor) as their tool of choice. 'Neutrons allow us to look at the inside of the metal without damaging it,' said Kirstein. 'They can penetrate through the iron, so we were able to take measurements at a series of points at different depths through the brake disc.' Word around the car industry is that when residual stresses are relaxed through heating of the brake disc during use, the discs could potentially distort, causing the runout and that juddering feeling. But everyone was clueless as to what

  17. Grid Inertial Response with Lithium-ion Battery Energy Storage Systems

    DEFF Research Database (Denmark)

    Knap, Vaclav; Sinha, Rakesh; Swierczynski, Maciej Jozef

    2014-01-01

    of this paper is to evaluate the technical viability of utilizing energy storage systems based on Lithium-ion batteries for providing inertial response in grids with high penetration levels of wind power. In order to perform this evaluation, the 12-bus system grid model was used; the inertia of the grid...... was varied by decreasing the number of conventional power plants in the studied grid model while in the same time increasing the load and the wind power penetration levels. Moreover, in order to perform a realistic investigation, a dynamic model of the Lithium-ion battery was considered and parameterized...

  18. A novel iron-lead redox flow battery for large-scale energy storage

    Science.gov (United States)

    Zeng, Y. K.; Zhao, T. S.; Zhou, X. L.; Wei, L.; Ren, Y. X.

    2017-04-01

    The redox flow battery (RFB) is one of the most promising large-scale energy storage technologies for the massive utilization of intermittent renewables especially wind and solar energy. This work presents a novel redox flow battery that utilizes inexpensive and abundant Fe(II)/Fe(III) and Pb/Pb(II) redox couples as redox materials. Experimental results show that both the Fe(II)/Fe(III) and Pb/Pb(II) redox couples have fast electrochemical kinetics in methanesulfonic acid, and that the coulombic efficiency and energy efficiency of the battery are, respectively, as high as 96.2% and 86.2% at 40 mA cm-2. Furthermore, the battery exhibits stable performance in terms of efficiencies and discharge capacities during the cycle test. The inexpensive redox materials, fast electrochemical kinetics and stable cycle performance make the present battery a promising candidate for large-scale energy storage applications.

  19. Stellar winds

    International Nuclear Information System (INIS)

    Weymann, R.J.

    1978-01-01

    It is known that a steady outflow of material at comparable rates of mass loss but vastly different speeds is now known to be ubiquitous phenomenon among both the luminous hot stars and the luminous but cool red giants. The flows are probably massive enough in both cases to give rise to significant effects on stellar evolution and the mass balance between stars and the interstellar medium. The possible mechanisms for these phenomena as well as the methods of observation used are described. In particular, the mass-loss processes in stars other than the sun that also involve a steady flow of matter are considered. The evidence for their existence is described, and then the question of whether the process thought to produce the solar wind is also responsible for producing these stellar winds is explored

  20. Effect of wind turbine generator model and siting on wind power changes out of large WECS arrays

    Science.gov (United States)

    Schleuter, R. A.; Park, G. L.; Lotfalian, M.; Dorsey, J.; Shayanfar, H.

    1981-01-01

    Methods of reducing the WECS generation change through selection of the wind turbine model for each site, selection of an appropriate siting configuration, and wind array controls are discussed. An analysis of wind generation change from an echelon and a farm for passage of a thunderstorm is presented. Reduction of the wind generation change over ten minutes is shown to reduce the increase in spinning reserve, unloadable generation and load following requirements on unit commitment when significant WECS generation is present and the farm penetration constraint is satisfied. Controls on the blade pitch angle of all wind turbines in an array or a battery control are shown to reduce both the wind generation change out of an array and the effective farm penetration in anticipation of a storm so that the farm penetration constraint may be satisfied.

  1. Wind conditions for wind turbine design

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B.

    1999-04-01

    Delegates from Europe and USA attended the meeting and discussed general aspects of wind conditions for wind turbine design. The subjects and the presented papers covered a very broad range of aspects of wind conditions and related influence on the wind turbine. (EHS)

  2. Effect of Putting Grip on Eye and Head Movements During the Golf Putting Stroke

    Directory of Open Access Journals (Sweden)

    George K. Hung

    2003-01-01

    Full Text Available The objective of this article is to determine the effect of three different putting grips (conventional, cross-hand, and one-handed on variations in eye and head movements during the putting stroke. Seven volunteer novice players, ranging in age from 21 to 22 years, participated in the study. During each experimental session, the subject stood on a specially designed platform covered with artificial turf and putted golf balls towards a standard golf hole. The three different types of grips were tested at two distances: 3 and 9 ft. For each condition, 20 putts were attempted. For each putt, data were recorded over a 3-s interval at a sampling rate of 100 Hz. Eye movements were recorded using a helmet-mounted eye movement monitor. Head rotation about an imaginary axis through the top of the head and its center-of-rotation was measured by means of a potentiometer mounted on a fixed frame and coupled to the helmet. Putter-head motion was measured using a linear array of infrared phototransistors embedded in the platform. The standard deviation (STD, relative to the initial level was calculated for eye and head movements over the duration of the putt (i.e., from the beginning of the backstroke, through the forward stroke, to impact. The averaged STD for the attempted putts was calculated for each subject. Then, the averaged STDs and other data for the seven subjects were statistically compared across the three grip conditions. The STD of eye movements were greater (p < 0.1 for conventional than cross-hand (9 ft and one-handed (3 and 9 ft grips. Also, the STD of head movements were greater (p < 0.1; 3 ft for conventional than cross-hand and one-handed grips. Vestibulo-ocular responses associated with head rotations could be observed in many 9 ft and some 3 ft putts. The duration of the putt was significantly longer (p < 0.05; 3 and 9 ft for the one-handed than conventional and cross-hand grips. Finally, performance, or percentage putts made, was

  3. Effect of putting grip on eye and head movements during the golf putting stroke.

    Science.gov (United States)

    Hung, George K

    2003-03-24

    The objective of this article is to determine the effect of three different putting grips (conventional, cross-hand, and one-handed) on variations in eye and head movements during the putting stroke. Seven volunteer novice players, ranging in age from 21 to 22 years, participated in the study. During each experimental session, the subject stood on a specially designed platform covered with artificial turf and putted golf balls towards a standard golf hole. The three different types of grips were tested at two distances: 3 and 9 ft. For each condition, 20 putts were attempted. For each putt, data were recorded over a 3-s interval at a sampling rate of 100 Hz. Eye movements were recorded using a helmet-mounted eye movement monitor. Head rotation about an imaginary axis through the top of the head and its center-of-rotation was measured by means of a potentiometer mounted on a fixed frame and coupled to the helmet. Putter-head motion was measured using a linear array of infrared phototransistors embedded in the platform. The standard deviation (STD, relative to the initial level) was calculated for eye and head movements over the duration of the putt (i.e., from the beginning of the backstroke, through the forward stroke, to impact). The averaged STD for the attempted putts was calculated for each subject. Then, the averaged STDs and other data for the seven subjects were statistically compared across the three grip conditions. The STD of eye movements were greater (p < 0.1) for conventional than cross-hand (9 ft) and one-handed (3 and 9 ft) grips. Also, the STD of head movements were greater (p < 0.1; 3 ft) for conventional than cross-hand and one-handed grips. Vestibulo-ocular responses associated with head rotations could be observed in many 9 ft and some 3 ft putts. The duration of the putt was significantly longer (p < 0.05; 3 and 9 ft) for the one-handed than conventional and cross-hand grips. Finally, performance, or percentage putts made, was significantly

  4. Modeling for Battery Prognostics

    Science.gov (United States)

    Kulkarni, Chetan S.; Goebel, Kai; Khasin, Michael; Hogge, Edward; Quach, Patrick

    2017-01-01

    For any battery-powered vehicles (be it unmanned aerial vehicles, small passenger aircraft, or assets in exoplanetary operations) to operate at maximum efficiency and reliability, it is critical to monitor battery health as well performance and to predict end of discharge (EOD) and end of useful life (EOL). To fulfil these needs, it is important to capture the battery's inherent characteristics as well as operational knowledge in the form of models that can be used by monitoring, diagnostic, and prognostic algorithms. Several battery modeling methodologies have been developed in last few years as the understanding of underlying electrochemical mechanics has been advancing. The models can generally be classified as empirical models, electrochemical engineering models, multi-physics models, and molecular/atomist. Empirical models are based on fitting certain functions to past experimental data, without making use of any physicochemical principles. Electrical circuit equivalent models are an example of such empirical models. Electrochemical engineering models are typically continuum models that include electrochemical kinetics and transport phenomena. Each model has its advantages and disadvantages. The former type of model has the advantage of being computationally efficient, but has limited accuracy and robustness, due to the approximations used in developed model, and as a result of such approximations, cannot represent aging well. The latter type of model has the advantage of being very accurate, but is often computationally inefficient, having to solve complex sets of partial differential equations, and thus not suited well for online prognostic applications. In addition both multi-physics and atomist models are computationally expensive hence are even less suited to online application An electrochemistry-based model of Li-ion batteries has been developed, that captures crucial electrochemical processes, captures effects of aging, is computationally efficient

  5. Wind Technologies & Evolving Opportunities (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Robichaud, R.

    2014-07-01

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  6. Measuring tropospheric wind with microwave sounders

    Science.gov (United States)

    Lambrigtsen, B.; Su, H.; Turk, J.; Hristova-Veleva, S. M.; Dang, V. T.

    2017-12-01

    In its 2007 "Decadal Survey" of earth science missions for NASA the U.S. National Research Council recommended that a Doppler wind lidar be developed for a three-dimensional tropospheric winds mission ("3D-Winds"). The technology required for such a mission has not yet been developed, and it is expected that the next Decadal Survey, planned to be released by the end of 2017, will put additional emphasis on the still pressing need for wind measurements from space. The first Decadal Survey also called for a geostationary microwave sounder (GMS) on a Precipitation and All-weather Temperature and Humidity (PATH) mission, which could be used to measure wind from space. Such a sounder, the Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR), has been developed at the Jet Propulsion Laboratory (JPL). The PATH mission has not yet been funded by NASA, but a low-cost subset of PATH, GeoStorm has been proposed as a hosted payload on a commercial communications satellite. Both PATH and GeoStorm would obtain frequent (every 15 minutes of better) measurements of tropospheric water vapor profiles, and they can be used to derive atmospheric motion vector (AMV) wind profiles, even in the presence of clouds. Measurement of wind is particularly important in the tropics, where the atmosphere is largely not in thermal balance and wind estimates cannot generally be derived from temperature and pressure fields. We report on simulation studies of AMV wind vectors derived from a GMS and from a cluster of low-earth-orbiting (LEO) small satellites (e.g., CubeSats). The results of two separate simulation studies are very encouraging and show that a ±2 m/s wind speed precision is attainable, which would satisfy WMO requirements. A GMS observing system in particular, which can be implemented now, would enable significant progress in the study of atmospheric dynamics. Copyright 2017 California Institute of Technology. Government sponsorship acknowledged

  7. The nuclear battery

    International Nuclear Information System (INIS)

    Kozier, K.S.; Rosinger, H.E.

    1988-01-01

    This paper reviews the evolution and present status of an Atomic Energy of Canada Limited program to develop a small, solid-state, passively cooled reactor power supply known as the Nuclear Battery. Key technical features of the Nuclear Battery reactor core include a heat-pipe primary heat transport system, graphite neutron moderator, low-enriched uranium TRISO coated-particle fuel and the use of burnable poisons for long-term reactivity control. An external secondary heat transport system extracts useful heat energy, which may be converted into electricity in an organic Rankine cycle engine or used to produce high-pressure steam. The present reference design is capable of producing about 2400 kW(t) (about 600 kW(e) net) for 15 full-power years. Technical and safety features are described along with recent progress in component hardware development programs and market assessment work. 19 refs

  8. Electric Vehicles for Improved Operation of Power Systems with High Wind Power Penetration

    OpenAIRE

    Larsen, Esben; Chandrashekhara, Divya K; Østergaard, Jacob

    2008-01-01

    In a power system with a high share of wind energy the wind fluctuation causes a variation in the power generation, which must be compensated from other sources. The situation in Denmark with a penetration of more than 20% wind in yearly average is presented. The introduction of electric drive vehicles (EDV) as flexible loads can improve the system operation. Bidirectional power exchange through batteries (vehicle to grid) can be seen as a storage system in the grid. An analysis of possible e...

  9. Preliminary Investigation on Generation of Electricity Using Micro Wind Turbines Placed on A Car

    OpenAIRE

    Yogendra Chaudhary; Vijaya Bangi; Ramesh Guduru; Kendrick Aung; Ganesh Reddy

    2017-01-01

    Wind energy is one of the prominent resources for renewable energy and it is traditionally extracted using stationary wind turbines. However, it can also be extracted using mini or micro wind turbines on a moving body, such as an automobile, while cruising at high speeds on freeways. If the electricity is produced using air flowing around the vehicle without affecting aerodynamic performance of the vehicle, it can be used to charge up the battery or power up additional accessories of the vehi...

  10. Modular Battery Controller

    Science.gov (United States)

    Button, Robert M (Inventor); Gonzalez, Marcelo C (Inventor)

    2017-01-01

    Some embodiments of the present invention describe a battery including a plurality of master-less controllers. Each controller is operatively connected to a corresponding cell in a string of cells, and each controller is configured to bypass a fraction of current around the corresponding cell when the corresponding cell has a greater charge than one or more other cells in the string of cells.

  11. Multifunctional Structural Composite Batteries

    Science.gov (United States)

    2007-09-01

    Conference held in Dallas, Texas on 6-9 November 2006. We are developing structural polymeric composites that both carry structural loads and store...structural polymeric composites that both carry structural loads and store electrochemical energy. These multifunctional batteries could replace inert...solid-state goal, and is compatible with our PEO -based resin electrolytes . The metal substrate provides structural support while acting as a

  12. Wind Power Meteorology

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Mortensen, Niels Gylling; Landberg, Lars

    Wind power meteorology has evolved as an applied science, firmly founded on boundary-layer meteorology, but with strong links to climatology and geography. It concerns itself with three main areas: siting of wind turbines, regional wind resource assessment, and short-term prediction of the wind...... resource. The history, status and perspectives of wind power meteorology are presented, with emphasis on physical considerations and on its practical application. Following a global view of the wind resource, the elements of boundary layer meteorology which are most important for wind energy are reviewed......: wind profiles and shear, turbulence and gust, and extreme winds. The data used in wind power meteorology stem mainly from three sources: onsite wind measurements, the synoptic networks, and the re-analysis projects. Wind climate analysis, wind resource estimation and siting further require a detailed...

  13. Wind technology development: Large and small turbines

    Science.gov (United States)

    Thresher, R. W.; Hock, S. M.; Loose, R. R.; Goldman, P.

    1994-12-01

    Wind technology has developed rapidly over the last decade with the design and development of advanced systems with improved performance, higher reliability, and lower costs. During the past several years, substantial gains have been made in wind turbine designs, lowering costs to an average of $0.05/kWh while further technology development is expected to allow the cost to drop below $0.04/kWh by 2000. As a result, wind is expected to be one of the least expensive forms of new electric generation in the next century. This paper will present the technology developments for both utility-scale wind turbines and remote, small-village wind turbines that are currently available or in development. Technology innovations are being adapted for remote and stand-alone power applications with smaller wind turbines. Hybrid power systems using smaller 1 to 50 (kW) wind turbines are being developed for non-grid-connected electrical generation applications. These village power systems typically use wind energy, photovoltaics, battery storage, and conventional diesel generators to power remote communities. Smaller turbines are being explored for application as distributed generation sources on utility grids to supply power during periods of peak demand, avoiding costly upgrades in distribution equipment. New turbine designs now account for turbulence-induced loads, unsteady aerodynamic stall effects, and complex fatigue loads, making use of new technology developments such as advanced airfoils. The new airfoils increase the energy capture, improve the operating efficiency, and reduce the sensitivity of the airfoils to operation roughness. Electronic controls are allowing variable rotor speed operation; while aerodynamic control devices, such as ailerons and flaps, are used to modulate power or stop the rotor in high-speed conditions. These technology trends and future turbine configurations are being sponsored and explored by the U.S. Department of Energy's Wind Energy Program.

  14. Nuclear battery materials and application of nuclear batteries

    International Nuclear Information System (INIS)

    Hao Shaochang; Lu Zhenming; Fu Xiaoming; Liang Tongxiang

    2006-01-01

    Nuclear battery has lots of advantages such as small volume, longevity, environal stability and so on, therefore, it was widely used in aerospace, deep-sea, polar region, heart pacemaker, micro-electromotor and other fields etc. The application of nuclear battery and the development of its materials promote each other. In this paper the development and the latest research progress of nuclear battery materials has been introduced from the view of radioisotope, electric energy conversion and encapsulation. And the current and potential applications of the nuclear battery are also summarized. (authors)

  15. Prospecting for Wind

    Science.gov (United States)

    Swapp, Andy; Schreuders, Paul; Reeve, Edward

    2011-01-01

    Many people use wind to help meet their needs. Over the years, people have been able to harness or capture the wind in many different ways. More recently, people have seen the rebirth of electricity-generating wind turbines. Thus, the age-old argument about technology being either good or bad can also be applied to the wind. The wind can be a…

  16. Careers in Wind Energy

    Science.gov (United States)

    Liming, Drew; Hamilton, James

    2011-01-01

    As a common form of renewable energy, wind power is generating more than just electricity. It is increasingly generating jobs for workers in many different occupations. Many workers are employed on wind farms: areas where groups of wind turbines produce electricity from wind power. Wind farms are frequently located in the midwestern, western, and…

  17. Wireless battery management control and monitoring system

    Science.gov (United States)

    Zumstein, James M.; Chang, John T.; Farmer, Joseph C.; Kovotsky, Jack; Lavietes, Anthony; Trebes, James Edward

    2018-01-16

    A battery management system using a sensor inside of the battery that sensor enables monitoring and detection of various events in the battery and transmission of a signal from the sensor through the battery casing to a control and data acquisition module by wireless transmission. The detection of threshold events in the battery enables remedial action to be taken to avoid catastrophic events.

  18. Sizing and Simulation of PV-Wind Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Mustafa Engin

    2013-01-01

    Full Text Available A sizing procedure is developed for hybrid system with the aid of mathematical models for photovoltaic cell, wind turbine, and battery that are readily present in the literature. This sizing procedure can simulate the annual performance of different kinds of photovoltaic-wind hybrid power system structures for an identified set of renewable resources, which fulfills technical limitations with the lowest energy cost. The output of the program will display the performance of the system during the year, the total cost of the system, and the best size for the PV-generator, wind generator, and battery capacity. Security lightning application is selected, whereas system performance data and environmental operating conditions are measured and stored. This hybrid system, which includes a PV, wind turbine, inverter, and a battery, was installed to supply energy to 24 W lamps, considering that the renewable energy resources of this site where the system was installed were 1700 Wh/m2/day solar radiation and 3.43 m/s yearly average wind speed. Using the measured variables, the inverter and charge regulator efficiencies were calculated as 90% and 98%, respectively, and the overall system’s electrical efficiency is calculated as 72%. Life cycle costs per kWh are found to be $0.89 and LLP = 0.0428.

  19. Sizing PV-wind hybrid energy system for lighting

    Directory of Open Access Journals (Sweden)

    Mustafa Engin

    2012-09-01

    Full Text Available Sizing of wind and photovoltaic generators ensures lower operational costs and therefore, is considered as an important issue. An approach for sizing along with a best management technique for a PV-wind hybrid system with batteries is proposed in this paper, in which the best size for every component of the system could be optimized according to the weather conditions and the load profile. The average hourly values for wind speed and solar radiation for Izmir, Turkey has been used in the design of the systems, along with expected load profile. A hybrid power model is also developed for battery operation according to the power balance between generators and loads used in the software, to anticipate performances for the different systems according to the different weather conditions. The output of the program will display the performance of the system during the year, the total cost of the system, and the best size for the PV-generator, wind generator, and battery capacity. Using proposed procedure, a 1.2 kWp PV-wind hybrid system was designed for Izmir, and simulated and measured results are presented.

  20. Membranes in Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Junbo Hou

    2012-07-01

    Full Text Available Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed.

  1. Air and metal hydride battery

    Energy Technology Data Exchange (ETDEWEB)

    Lampinen, M.; Noponen, T. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Applied Thermodynamics

    1998-12-31

    The main goal of the air and metal hydride battery project was to enhance the performance and manufacturing technology of both electrodes to such a degree that an air-metal hydride battery could become a commercially and technically competitive power source for electric vehicles. By the end of the project it was possible to demonstrate the very first prototype of the air-metal hydride battery at EV scale, achieving all the required design parameters. (orig.)

  2. High energy density lithium batteries

    CERN Document Server

    Aifantis, Katerina E; Kumar, R Vasant

    2010-01-01

    Cell phones, portable computers and other electronic devices crucially depend on reliable, compact yet powerful batteries. Therefore, intensive research is devoted to improving performance and reducing failure rates. Rechargeable lithium-ion batteries promise significant advancement and high application potential for hybrid vehicles, biomedical devices, and everyday appliances. This monograph provides special focus on the methods and approaches for enhancing the performance of next-generation batteries through the use of nanotechnology. Deeper understanding of the mechanisms and strategies is

  3. Joint Battery Industry Sector Study.

    Science.gov (United States)

    1994-08-31

    company, Yardney Technical Products, is a potential supplier of lithium systems to the military but, to date, has not produced any batteries . The...small,3 single pimary cell batteries used in commercial electoic devices. Yardney Technical Products, Inc. and BST Systems are the North Americ-m...primary reserve silver zinc batteries , there are three main suppliers - Yardney , Whittaker, and Eagle-Picher. Commercial primary silver zinc cells are

  4. 78 FR 38093 - Thirteenth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-06-25

    ... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal... Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. DATES: The meeting...

  5. 78 FR 55773 - Fourteenth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-09-11

    ... Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is issuing this notice to... Battery and Battery Systems--Small and Medium Size DATES: The meeting will be held October 1-3, 2013, from...

  6. Selection and impedance based model of a lithium ion battery technology for integration with virtual power plant

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Ioan; Stan, Ana-Irina

    2013-01-01

    The penetration of wind power into the power system has been increasing in the recent years. Therefore, a lot of concerns related to the reliable operation of the power system have been addressed. An attractive solution to minimize the limitations faced by the wind power grid integration is to in......The penetration of wind power into the power system has been increasing in the recent years. Therefore, a lot of concerns related to the reliable operation of the power system have been addressed. An attractive solution to minimize the limitations faced by the wind power grid integration...... is to integrate lithium-ion batteries into virtual power plants; thus, the power system stability and the energy quality can be increased. The selection of the best lithium-ion battery candidate for integration with wind power plants is a key aspect for the economic feasibility of the virtual power plant...

  7. Control design for an autonomous wind based hydrogen production system

    Energy Technology Data Exchange (ETDEWEB)

    Valenciaga, F.; Evangelista, C.A. [CONICET, Laboratorio de Electronica Industrial Control e Instrumentacion (LEICI), Facultad de Ingenieria, Universidad Nacional de La Plata, CC.91, C.P. 1900, La Plata (Argentina)

    2010-06-15

    This paper presents a complete control scheme to efficiently manage the operation of an autonomous wind based hydrogen production system. This system comprises a wind energy generation module based on a multipolar permanent magnet synchronous generator, a lead-acid battery bank as short term energy storage and an alkaline von Hoerner electrolyzer. The control is developed in two hierarchical levels. The higher control level or supervisor control determines the general operation strategy for the whole system according to the wind conditions and the state of charge of the battery bank. On the other hand, the lower control level includes the individual controllers that regulate the respective module operation assuming the set-points determined by the supervisor control. These last controllers are approached using second-order super-twisting sliding mode techniques. The performance of the closed-loop system is assessed through representative computer simulations. (author)

  8. Attitudes towards wind power

    International Nuclear Information System (INIS)

    Young, B.

    1993-01-01

    Planning permission for the construction of a small 'farm' of wind turbines at Delabole (Deli windfarm) had been obtained and it was intended to use this source of renewable energy by generating electricity and selling it to the electrical power companies for distribution through the National Grid. It was important, therefore, to establish just what the attitudes of local residents were to the proposed development. A programme of research was discussed with the developer and it was agreed that an attitude survey would be conducted in the local area in the summer of 1990, before the turbines were erected, and before the tourist season was completely spent in order to obtain the views of visitors as well. A similar survey would then be done one year later, when the Deli windfarm was established and running. In addition, control samples would be taken at these two times in Exeter to give baseline information on attitudes toward this topic. This proposal was put to the developer and agreement was reached with him and the UK Department of Energy who were providing financial support for the research. The results of the research are reported. (author)

  9. Measurement program to characterize the wind at a potential WECS site

    Energy Technology Data Exchange (ETDEWEB)

    Verholek, M.G.

    1978-03-01

    An onsite meteorological measurement program to characterize the wind at a potential wind turbine installation site is described. The basic informational requirements have been postulated, the analysis described, and an appropriate measurement program has been devised. This phase of siting measurements provides the information for the final installation decision process--which WECS to put at which site.

  10. Analysis and discussion on anti-thunder scheme of wind power generation system

    Science.gov (United States)

    Sun, Shuguang

    2017-01-01

    Anti-thunder scheme of wind power generation system is discussed in this paper. Through the research and analysis on the harm of the thunder, division of lightning protection zone and lightning protection measures are put forward, which has a certain practical significance on the design and application of wind power generation system.

  11. Book Review: Putting People First: African Priorities for the UN ...

    African Journals Online (AJOL)

    Abstract. Book Title: Putting People First: African Priorities for the UN Millennium Assembly (2000). Authors: Pandelani Mathoma, Greg Mills, John Stremlau (eds.) Johannesburg: South African Institute of International Affairs, 129 pp.

  12. Battery Post-Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Post-test diagnostics of aged batteries can provide additional information regarding the cause of performance degradation, which, previously, could be only inferred...

  13. ZEBRA battery meets USABC goals

    Science.gov (United States)

    Dustmann, Cord-H.

    In 1990, the California Air Resources Board has established a mandate to introduce electric vehicles in order to improve air quality in Los Angeles and other capitals. The United States Advanced Battery Consortium has been formed by the big car companies, Electric Power Research Institute (EPRI) and the Department of Energy in order to establish the requirements on EV-batteries and to support battery development. The ZEBRA battery system is a candidate to power future electric vehicles. Not only because its energy density is three-fold that of lead acid batteries (50% more than NiMH) but also because of all the other EV requirements such as power density, no maintenance, summer and winter operation, safety, failure tolerance and low cost potential are fulfilled. The electrode material is plain salt and nickel in combination with a ceramic electrolyte. The cell voltage is 2.58 V and the capacity of a standard cell is 32 Ah. Some hundred cells are connected in series and parallel to form a battery with about 300 V OCV. The battery system including battery controller, main circuit-breaker and cooling system is engineered for vehicle integration and ready to be mounted in a vehicle [J. Gaub, A. van Zyl, Mercedes-Benz Electric Vehicles with ZEBRA Batteries, EVS-14, Orlando, FL, Dec. 1997]. The background of these features are described.

  14. Influence of wind loading

    OpenAIRE

    MAVLONOV RAVSHANBEK ABDUJABBOROVICH; VAKKASOV KHAYRULLO SAYFULLAHANOVICH

    2015-01-01

    Each wind load is determined by a probabilistic-statistical method based on the concept of “equivalent static wind load”, on the assumption that structural frames and components/cladding behave elastically in strong wind.

  15. Tower Winds - Cape Kennedy

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Digitized data taken from Wind Gust Charts. Record contains hourly wind directions and speed with a peak wind recorded at the end of each day. Sorted by: station,...

  16. Wind energy program overview

    International Nuclear Information System (INIS)

    1992-02-01

    This overview emphasizes the amount of electric power that could be provided by wind power rather than traditional fossil fuels. New wind power markets, advances in technology, technology transfer, and wind resources are some topics covered in this publication

  17. Thermal management of cylindrical power battery module for extending the life of new energy electric vehicles

    International Nuclear Information System (INIS)

    Zhao, Jiateng; Rao, Zhonghao; Huo, Yutao; Liu, Xinjian; Li, Yimin

    2015-01-01

    Thermal management especially cooling plays an important role in power battery modules for electric vehicles. In order to comprehensively understand the heat transfer characteristics of air cooling system, the air cooling numerical simulation battery models for cylindrical lithium-ion power battery pack were established in this paper, and a detailed parametric investigation was undertaken to study effects of different ventilation types and velocities, gap spacing between neighbor batteries, temperatures of environment and entrance air, amount of single row cells and battery diameter on the thermal management performance of battery pack. The results showed that the local temperature difference increased firstly and then decreased with the increase of wind speed. Reversing the air flow direction between adjacent rows is not necessarily appropriate and the gap spacing should not be too small and too large. It is prone to thermal runaway when the ambient temperature is too high, and the most suitable value of S/D (the ratio of spacing distance between neighbor cells and cell diameter) is gradually reduced along with the increase of cell diameter. - Highlights: • Air cooling models were established for cylindrical lithium-ion power battery pack. • Local temperature difference increased firstly and then decreased with wind speed. • The gap spacing size of battery pack should not be too small and too large. • It is prone to thermal runaway when the ambient temperature is too high. • The ratio of S/D is gradually reduced with the increase of cell diameter

  18. Modelling Wind for Wind Farm Layout Optimization Using Joint Distribution of Wind Speed and Wind Direction

    OpenAIRE

    Ju Feng; Wen Zhong Shen

    2015-01-01

    Reliable wind modelling is of crucial importance for wind farm development. The common practice of using sector-wise Weibull distributions has been found inappropriate for wind farm layout optimization. In this study, we propose a simple and easily implementable method to construct joint distributions of wind speed and wind direction, which is based on the parameters of sector-wise Weibull distributions and interpolations between direction sectors. It is applied to the wind measurement data a...

  19. Denmark Wind Energy Programme

    DEFF Research Database (Denmark)

    Shen, Wen Zhong

    2014-01-01

    In this paper, a summary of some ongoing wind energy projects in Denmark is given. The research topics comprise computational model development, wind turbine design, low noise airfoil and blade design, control device development, wake modelling, and wind farm layout optimization.......In this paper, a summary of some ongoing wind energy projects in Denmark is given. The research topics comprise computational model development, wind turbine design, low noise airfoil and blade design, control device development, wake modelling, and wind farm layout optimization....

  20. Superconducting Wind Turbine Generators

    OpenAIRE

    Yunying Pan; Danhzen Gu

    2016-01-01

    Wind energy is well known as a renewable energy because its clean and less polluted characteristic, which is the foundation of development modern wind electricity. To find more efficient wind turbine is the focus of scientists around the world. Compared from conventional wind turbines, superconducting wind turbine generators have advantages at zero resistance, smaller size and lighter weight. Superconducting wind turbine will inevitably become the main trends in this area. This paper intends ...

  1. 46 CFR 120.354 - Battery installations.

    Science.gov (United States)

    2010-10-01

    ... PASSENGERS OR WITH OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 120.354 Battery installations. (a) Large batteries. Each large battery...

  2. Wind turbines, is it just wind?

    International Nuclear Information System (INIS)

    Boiteux, M.

    2012-01-01

    The author first outlines that wind energy is not only random, but almost absent in extreme situations when it would be needed (for example and notably, very cold weather without wind). He suggests the association of a gas turbine to each wind turbine, so that the gas turbine will replace non operating wind turbines. He notices that wind turbines are not proximity energy as they were said to be, and that profitability in fact requires tens of grouped giant wind turbines. He also outlines the high cost of construction of grids for the connection of these wind turbines. Thus, he states that wind energy is far from being profitable in the present conditions of electricity tariffs in France

  3. Optimised battery capacity utilisation within battery management systems

    NARCIS (Netherlands)

    Wilkins, S.; Rosca, B.; Jacob, J.; Hoedmaekers, E.

    2015-01-01

    Battery Management Systems (BMSs) play a key role in the performance of both hybrid and fully electric vehicles. Typically, the role of the BMS is to help maintain safety, performance, and overall efficiency of the battery pack. One important aspect of its operation is the estimation of the state of

  4. Advanced structural wind engineering

    CERN Document Server

    Kareem, Ahsan

    2013-01-01

    This book serves as a textbook for advanced courses as it introduces state-of-the-art information and the latest research results on diverse problems in the structural wind engineering field. The topics include wind climates, design wind speed estimation, bluff body aerodynamics and applications, wind-induced building responses, wind, gust factor approach, wind loads on components and cladding, debris impacts, wind loading codes and standards, computational tools and computational fluid dynamics techniques, habitability to building vibrations, damping in buildings, and suppression of wind-induced vibrations. Graduate students and expert engineers will find the book especially interesting and relevant to their research and work.

  5. Wind for Schools (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, I.

    2010-05-01

    As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community "host" schools, by implementing teacher training with interactive curricula at each host school. This poster provides an overview of the first two years of the Wind for Schools project, primarily supporting activities in Colorado, Kansas, Nebraska, South Dakota, Montana, and Idaho.

  6. Electric Vehicle Based Battery Storages for Future Power System Regulation Services

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2009-01-01

    The large grid integration of variable wind power adds to the imbalance of a power system. This necessitates the need for additional reserve power for regulation. In Denmark, the growing wind penetration aims for an expedited change of displacing the traditional generators which are currently...... supplying the reserve power requirements. This limited regulation services from conventional generators in the future power system calls for other new reserve power solutions like Electric Vehicle (EV) based battery storages. A generic aggregated EV based battery storage for long-term dynamic load frequency...... simulations is modelled. Further, it is analysed for regulation services using the case of a typical windy day in the West Denmark power system. The power deviations with other control areas in an interconnected system are minimised by the faster up and down regulation characteristics of the EV battery...

  7. The Impact of Wind Power on European Natural Gas Markets

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-06

    Due to its clean burning properties, low investment costs and flexibility in production, natural gas is often put forward as the ideal partner fuel for wind power and other renewable sources of electricity generation with strongly variable output. This working paper examines three vital questions associated with this premise: 1) Is natural gas indeed the best partner fuel for wind power? 2) If so, to what extent will an increasing market share of wind power in European electricity generation affect demand for natural gas in the power sector? and 3) Considering the existing European natural gas markets, is natural gas capable of fulfilling this role of partner for renewable sources of electricity?.

  8. Maximizing System Lifetime by Battery Scheduling

    OpenAIRE

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.; Bohnenkamp, H.C.; Katoen, Joost P.

    2009-01-01

    The use of mobile devices is limited by the battery lifetime. Some devices have the option to connect an extra battery, or to use smart battery-packs with multiple cells to extend the lifetime. In these cases, scheduling the batteries over the load to exploit recovery properties usually extends the system lifetime. Straightforward scheduling schemes, like round robin or choosing the best battery available, already provide a big improvement compared to a sequential discharge of the batteries. ...

  9. Lifetime Models for Lithium-ion Batteries used in Virtual Power Plant Applications

    DEFF Research Database (Denmark)

    Stroe, Daniel Ioan

    The penetration of wind power into the power system has been increasing in recent years. However, despite its environmental friendliness, the wind power grid integration at a large scale faces several limitations, mainly caused by the characteristics of the wind (i.e. intermittent, variable......; however, because of their advantages, which include fast response, high efficiency, long lifetime and environmental friendliness, Lithium-ion (Li-ion) batteries represent suitable candidates for integration within VPPs, especially when they are required to provide short- and medium-time services...

  10. Three essays on the effect of wind generation on power system planning and operations

    Science.gov (United States)

    Davis, Clay Duane

    modified methodology achieves expected costs for the UC-ED problem that are as low as the full stochastic model and markedly lower than the deterministic model. The final essay focuses on valuing energy storage located at a wind site through multiple revenue streams, where energy storage is valued from the perspective of a profit maximizing investor. Given the current state of battery storage technology, a battery capacity of zero is optimal in the setting considered in this essay. The results presented in this essay are dependent on a technological breakthrough that substantially reduces battery cost and conclude that allowing battery storage to simultaneously participate in multiple wholesale markets is optimal relative to participating in any one market alone. Also, co-locating battery storage and wind provides value by altering the optimal transmission line capacity to the battery and wind site. This dissertation considers problems of wind integration from an economic perspective and builds on existing work in this area. The economics of wind integration and utilization are important because wind generation levels are already significant and will likely become more so in the future. While this dissertation adds to the existing literature, additional work is needed in this area to ensure wind generation adds as much value to the overall system as possible.

  11. Batteries: Polymers switch for safety

    Energy Technology Data Exchange (ETDEWEB)

    Amine, Khalil

    2016-01-11

    Ensuring safety during operation is a major issue in the development of lithium-ion batteries. Coating the electrode current collector with thermoresponsive polymer composites is now shown to rapidly shut the battery down when it overheats, and to quickly resume its function when normal operating conditions return

  12. Redox Flow Batteries, a Review

    Energy Technology Data Exchange (ETDEWEB)

    Knoxville, U. Tennessee; U. Texas Austin; U, McGill; Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

    2011-07-15

    Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

  13. Battery system with temperature sensors

    Science.gov (United States)

    Wood, Steven J.; Trester, Dale B.

    2012-11-13

    A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

  14. Which battery model to use?

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.; Argent-Katwala, Ashok; Dingle, Nicholas J.; Harder, Uli

    2008-01-01

    The use of mobile devices like cell phones, navigation systems, or laptop computers, is limited by the lifetime of the included batteries. This lifetime depends naturally on the rate at which energy is consumed, however, it also depends on the usage pattern of the battery. Continuous drawing of a

  15. Electric vehicle battery charging controller

    DEFF Research Database (Denmark)

    2016-01-01

    to a battery management system in the electric vehicle to charge a battery therein, a first communication unit for receiving a charging message via a communication network, and a control unit for controlling a charging current provided from the charge source to the electric vehicle, the controlling at least...

  16. Which battery model to use?

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.

    2009-01-01

    The use of mobile devices like cell phones, navigation systems or laptop computers is limited by the lifetime of the included batteries. This lifetime depends naturally on the rate at which energy is consumed; however, it also depends on the usage pattern of the battery. Continuous drawing of a high

  17. Modeling & power management of standalone PV-Wind Hybrid energy system for remote location

    Science.gov (United States)

    Shawon, M. J. A.

    This thesis mainly focuses on a novel design of a standalone PV-Wind hybrid energy system for remote locations where grid extension is not feasible or is expensive. The Hybrid PV-Wind standalone energy system shows higher reliability compared to Wind or PV standalone systems as wind and solar are complementary. A Matlab/Simulink model of an integrated standalone PV-Wind hybrid system using a battery for storage and backup protection is presented. The individual component of the system is discussed and modeled. A novel and unique control strategy is designed and simulated to control the power flow of the system while maintaining the battery charging and discharging limit. In addition, different converter design and maximum power point tracking control are applied to ensure efficient and reliable power supply under various atmospheric and loading conditions.

  18. Battery selection for space experiments

    Science.gov (United States)

    Francisco, David R.

    1992-10-01

    This paper will delineate the criteria required for the selection of batteries as a power source for space experiments. Four basic types of batteries will be explored, lead acid, silver zinc, alkaline manganese and nickel cadmium. A detailed description of the lead acid and silver zinc cells while a brief exploration of the alkaline manganese and nickel cadmium will be given. The factors involved in battery selection such as packaging, energy density, discharge voltage regulation, and cost will be thoroughly examined. The pros and cons of each battery type will be explored. Actual laboratory test data acquired for the lead acid and silver zinc cell will be discussed. This data will include discharging under various temperature conditions, after three months of storage and with different types of loads. A description of the required maintenance for each type of battery will be investigated. The lifetime and number of charge/discharge cycles will be discussed.

  19. Performance evaluation of stand alone hybrid PV-wind generator

    Energy Technology Data Exchange (ETDEWEB)

    Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.; Jali, Mohd Hafiz; Bukhari, W. M.; Bohari, Z. H. [Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Melaka (Malaysia); Yahaya, M. S. [Faculty of Engineering Technology, Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Melaka (Malaysia)

    2015-05-15

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system is based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand.

  20. Performance evaluation of stand alone hybrid PV-wind generator

    Science.gov (United States)

    Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.; Jali, Mohd Hafiz; Bukhari, W. M.; Bohari, Z. H.; Yahaya, M. S.

    2015-05-01

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system is based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand.

  1. Performance evaluation of stand alone hybrid PV-wind generator

    International Nuclear Information System (INIS)

    Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.; Jali, Mohd Hafiz; Bukhari, W. M.; Bohari, Z. H.; Yahaya, M. S.

    2015-01-01

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system is based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand

  2. Multiphysics Modelling of Sodium Sulfur Battery

    Science.gov (United States)

    Mason, Jerry Hunter

    Due to global climate change and the desire to decrease greenhouse gas emissions, large scale energy storage has become a critical issue. Renewable energy sources such as wind and solar will not be a viable energy source unless the storage problem is solved. One of the practical and cost effective solutions for this problem is sodium sulfur batteries. These batteries are comprised of liquid electrode materials suspended in porous media and operate at relatively high temperatures (>300°C). The sodium anode and the sulfur/sodium-polysulfide cathode are separated by a solid electrolyte made of beta-alumina or NASICON material. Due to the use of porous materials in the electrodes, capillary pressure and the combination of capillary action and gravity become important. Capillary pressure has a strong dependence on the wetting phase (liquid electrode material) saturation; therefore sharp concentration gradients can occur between the inert gas and the electrode liquid, especially within the cathode. These concentration gradients can have direct impacts on the electrodynamics of the battery as they may produce areas of high electrical potential variation, which can decrease efficiency and even cause failures. Then, thermal management also becomes vital since the electrochemistry and material properties are sensitive to temperature gradients. To investigate these phenomena in detail and to attempt to improve upon battery design a multi-dimensional, multi-phase code has been developed and validated in this study. Then a porous media flow model is implemented. Transport equations for charge, mass and heat are solved in a time marching fashion using finite volume method. Material properties are calculated and updated as a function of time. The porous media model is coupled with the continuity equation and a separate diffusion equation for the liquid sodium in the melt. The total mass transport model is coupled with charge transport via Faraday's law. Results show that

  3. Sizing procedures for sun-tracking PV system with batteries

    Science.gov (United States)

    Nezih Gerek, Ömer; Başaran Filik, Ümmühan; Filik, Tansu

    2017-11-01

    Deciding optimum number of PV panels, wind turbines and batteries (i.e. a complete renewable energy system) for minimum cost and complete energy balance is a challenging and interesting problem. In the literature, some rough data models or limited recorded data together with low resolution hourly averaged meteorological values are used to test the sizing strategies. In this study, active sun tracking and fixed PV solar power generation values of ready-to-serve commercial products are recorded throughout 2015-2016. Simultaneously several outdoor parameters (solar radiation, temperature, humidity, wind speed/direction, pressure) are recorded with high resolution. The hourly energy consumption values of a standard 4-person household, which is constructed in our campus in Eskisehir, Turkey, are also recorded for the same period. During sizing, novel parametric random process models for wind speed, temperature, solar radiation, energy demand and electricity generation curves are achieved and it is observed that these models provide sizing results with lower LLP through Monte Carlo experiments that consider average and minimum performance cases. Furthermore, another novel cost optimization strategy is adopted to show that solar tracking PV panels provide lower costs by enabling reduced number of installed batteries. Results are verified over real recorded data.

  4. Wind engineering in Africa

    NARCIS (Netherlands)

    Wisse, J.A.; Stigter, C.J.

    2007-01-01

    The International Association for Wind Engineering (IAWE) has very few contacts in Africa, the second-largest continent. This paper reviews important wind-related African issues. They all require data on wind climate, which are very sparse in Africa. Wind engineering in Africa can assist in

  5. Wind energy; Energie eolienne

    Energy Technology Data Exchange (ETDEWEB)

    Vachey, C.

    2000-05-01

    This public information paper presents the wind energy resource in the Languedoc Roussillon region, explains how a wind turbine works, the different types of utilization and the cost of the wind energy. The environmental impacts of the wind energy, on the noise and the landscape, are also discussed. (A.L.B.)

  6. Battery Aging, Battery Charging and the Kinetic Battery Model : A First Exploration

    NARCIS (Netherlands)

    Jongerden, Marijn R.; Haverkort, Boudewijn R.; Bertrand, Nathalie; Bortolussi, Luca

    2017-01-01

    Rechargeable batteries are omnipresent and will be used more and more, for instance for wearables devices, electric vehicles or domestic energy storage. However, batteries can deliver power only for a limited time span. They slowly degrade with every charge-discharge cycle. This degradation needs to

  7. Effects of variability and rate on battery charge storage and lifespan

    Science.gov (United States)

    Krieger, Elena Marie

    The growing prevalence of hybrid and electric vehicles, intermittent renewable energy sources, and other complex power systems has triggered a rapid increase in demand for energy storage. Unlike portable electronic devices, whose batteries can be recharged according to a pre-determined protocol simply by plugging them into the wall, many of these applications are characterized by highly variable charge and demand profiles. The central objective of this work is to assess the impact of power distribution and frequency on battery behavior in order to improve overall system efficiency and lifespan in these variable power applications. We first develop and experimentally verify a model to describe the trade-off between battery charging power and energy stored to assess how varying power input affects battery efficiency. This relationship is influenced both by efficiency losses at high powers and by premature voltage cutoffs, which contribute to incomplete battery charging and discharging. We experimentally study the impact of variable power on battery aging in lead-acid, nickel metal hydride, lithium-ion and lithium iron phosphate batteries. As a case study we focus on off-grid wind systems, and analyze the impact of both power distribution and frequency on charge acceptance and degradation in each of these chemistries. We suggest that lithium iron phosphate batteries may be more suitable for off-grid electrification projects than standard lead-acid batteries. We experimentally assess the impact of additional variable charging parameters on battery performance, including the interplay between efficiency, frequency of power oscillations, state-of-charge, incomplete charging and path dependence. We develop a frequency-domain model for hybrid energy storage systems that couples non-stationary frequency analysis of variable power signals to a frequency-based metric for energy storage device performance. The experimental and modeling work developed herein can be utilized to

  8. Offshore Wind Farms

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Hasager, Charlotte Bay; Courtney, Michael

    2015-01-01

    The technology behind constructing wind farms offshore began to develop in 1991 when the Vindeby wind farm was installed off the Danish coast (11 Bonus 450 kW turbines). Resource assessment, grid connection, and wind farm operation are significant challenges for offshore wind power just...... concern are the problems associated with locating the turbines close together in a wind farm and the problems of placing several large wind farms in a confined area. The environmental impacts of offshore wind farms are also treated, but not the supply chain, that is, the harbors, the installation vessels...

  9. Aqueous cathode for next-generation alkali-ion batteries.

    Science.gov (United States)

    Lu, Yuhao; Goodenough, John B; Kim, Youngsik

    2011-04-20

    The lithium-ion batteries that ushered in the wireless revolution rely on electrode strategies that are being stretched to power electric vehicles. Low-cost, safe electrical-energy storage that enables better use of alternative energy sources (e.g., wind, solar, and nuclear) requires an alternative strategy. We report a demonstration of the feasibility of a battery having a thin, solid alkali-ion electrolyte separating a water-soluble redox couple as the cathode and lithium or sodium in a nonaqueous electrolyte as the anode. The cell operates without a catalyst and has high storage efficiency. The possibility of a flow-through mode for the cathode allows flexibility of the cell design for safe, large-capacity electrical-energy storage at an acceptable cost.

  10. Wind power. [electricity generation

    Science.gov (United States)

    Savino, J. M.

    1975-01-01

    A historical background on windmill use, the nature of wind, wind conversion system technology and requirements, the economics of wind power and comparisons with alternative systems, data needs, technology development needs, and an implementation plan for wind energy are presented. Considerable progress took place during the 1950's. Most of the modern windmills feature a wind turbine electricity generator located directly at the top of their rotor towers.

  11. The Perpetual American Put Option for Jump-Diffusions

    OpenAIRE

    Aase, Knut K.

    2010-01-01

    -This is the author's version of the article"The Perpetual American Put Option for Jump-Diffusions" Energy Systems pp 493-507. We solve a specific optimal stopping problem with an infinite time horizon, when the state variable follows a jump-diffusion. The novelty of the paper is related to the inclusion of a jump component in this stochastic process. Under certain conditions, our solution can be interpreted as the price of an American perpetual put option. We characterize the continuation...

  12. Open stack thermal battery tests

    Energy Technology Data Exchange (ETDEWEB)

    Long, Kevin N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Christine C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grillet, Anne M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Headley, Alexander J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fenton, Kyle [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wong, Dennis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ingersoll, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-04-17

    We present selected results from a series of Open Stack thermal battery tests performed in FY14 and FY15 and discuss our findings. These tests were meant to provide validation data for the comprehensive thermal battery simulation tools currently under development in Sierra/Aria under known conditions compared with as-manufactured batteries. We are able to satisfy this original objective in the present study for some test conditions. Measurements from each test include: nominal stack pressure (axial stress) vs. time in the cold state and during battery ignition, battery voltage vs. time against a prescribed current draw with periodic pulses, and images transverse to the battery axis from which cell displacements are computed. Six battery configurations were evaluated: 3, 5, and 10 cell stacks sandwiched between 4 layers of the materials used for axial thermal insulation, either Fiberfrax Board or MinK. In addition to the results from 3, 5, and 10 cell stacks with either in-line Fiberfrax Board or MinK insulation, a series of cell-free “control” tests were performed that show the inherent settling and stress relaxation based on the interaction between the insulation and heat pellets alone.

  13. Feasibility Study of Energy Storage Systems in Wind/Diesel Applications Using the HOMER Model

    Directory of Open Access Journals (Sweden)

    Andrew Stiel

    2012-10-01

    Full Text Available With an increased focus on solutions to the ensuing “climate crisis”, the need for energy storage systems is becoming increasingly important as a means to increase the penetration of renewable technologies such as wind energy. The Vanadium Redox Battery is one such energy storage system showing considerable potential owing to its flexibility in power output and capacity, high efficiency and long operating life. This study models the use of the Vanadium Redox Battery as an integration technology in realistic large-scale remote wind/diesel power systems using the HOMER Micropower Optimization Model computer program developed by the US National Renewable Energy Laboratory. Results from this modelling demonstrate the significant financial and environmental benefits to be gained in installing energy storage in a wind farm. The storage system considered here was a Vanadium Redox Battery.

  14. Computing lifetimes for battery-powered devices

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.

    The battery lifetime of mobile devices depends on the usage pattern of the battery, next to the discharge rate and the battery capacity. Therefore, it is important to include the usage pattern in battery lifetime computations. We do this by combining a stochastic workload, modeled as a

  15. Maximizing System Lifetime by Battery Scheduling

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.; Bohnenkamp, H.C.; Katoen, Joost P.

    2009-01-01

    The use of mobile devices is limited by the battery lifetime. Some devices have the option to connect an extra battery, or to use smart battery-packs with multiple cells to extend the lifetime. In these cases, scheduling the batteries over the load to exploit recovery properties usually extends the

  16. Photovoltaic / Diesel / Battery Hybrid Power Supply System

    CSIR Research Space (South Africa)

    Tazvinga, Henerica

    2010-10-01

    Full Text Available ............................................................................................. 62 5.3 Sizing the battery ................................................................................................ 65 5.4 Specifications for the battery bank ..................................................................... 67 5... of the system, the specific components required may include major components such as a DC-AC power inverter, battery bank, system and battery controller, auxiliary energy sources and sometimes the specified electrical load (appliances) The performance...

  17. Cell for making secondary batteries

    Science.gov (United States)

    Visco, S.J.; Liu, M.; DeJonghe, L.C.

    1992-11-10

    The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145 C (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium trifluorate (PEO[sub 8]LiCF[sub 3]SO[sub 3]), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS)[sub n], and carbon black, dispersed in a polymeric electrolyte. 2 figs.

  18. Used battery collection camping in central Mexico: statics and metal content report, advances in recycling technology and legislative/regulatory situation analysis

    International Nuclear Information System (INIS)

    Guevara-Garcia, J. A.; Montiel-Corona, V.; Juarez Galindo, A.; Mendoza Sarmiento, G.; Munoz Lopez, F.; Papalotzi Juarez, S.; Cruz Diaz, R. de la

    2009-01-01

    Nowadays, environmental pollution produced by the disposal of used cells and batteries is a major concern in Mexico. The regulatory law proposal (NMX-AA-104-SCFI-2006) establish a content limit 20, 7.5 and 5 fold higher in Hg, Cd and Pb, respectively, than the European directive 2006/66/CE. Furthermore, transnational companies refused to have participation on the collection/recycling process, putting forward that pollution comes only from illegal market batteries. (Author)

  19. Assessment and prediction of wind turbine noise

    International Nuclear Information System (INIS)

    Lowson, M.V.

    1993-01-01

    The significance of basic aerodynamic noise sources for wind turbine noise are assessed, using information on the aero-acoustic mechanisms of other rotors, which have been studied in depth for many years. From the analysis, areas of potential improvement in wind turbine noise prediction are defined. Suggestions are made for approaches to wind turbine noise control which separate the noise problems at cut-in from those at rated power. Some of these offer the possibility of noise reduction without unfavourable effects on performance. Based on this analysis, a new model for prediction of wind turbine noise is presented and comparisons made between prediction and experiment. The model is based on well established aeroacoustic theory and published laboratory data for the two principal sources, inflow turbulence and boundary layer trailing edge interaction. The new method gives good agreement with experiment with the case studied so far. Parametric trends and sensitivities for the model are presented. Comparisons with previous prediction methods are also given. A consequence of the new model is to put more emphasis on boundary layer trailing edge interaction as a noise source. There are prospects for reducing noise from this source detail changes to the wind turbine design. (author)

  20. Battery Ownership Model - Medium Duty HEV Battery Leasing & Standardization

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Ken; Smith, Kandler; Cosgrove, Jon; Prohaska, Robert; Pesaran, Ahmad; Paul, James; Wiseman, Marc

    2015-12-01

    Prepared for the U.S. Department of Energy, this milestone report focuses on the economics of leasing versus owning batteries for medium-duty hybrid electric vehicles as well as various battery standardization scenarios. The work described in this report was performed by members of the Energy Storage Team and the Vehicle Simulation Team in NREL's Transportation and Hydrogen Systems Center along with members of the Vehicles Analysis Team at Ricardo.

  1. Wind Energy and Transport Synergy: Electric Vehicle or Hydrogen Vehicle?; Sinergia Energia Eolica Transporte: vehiculo electrico o vehiculo de hidrogeno?

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, I.

    2009-07-01

    This article briefly analyzes the potential uses of hydrogen as a form of energy from wind power. It also briefly describes the different experiences gained in wind energy-based hydrogen production by water hydrolysis, and finally it concludes with a brief analysis of the competition between hydrogen and the new ion-lithium batteries used in motor vehicles as potential solutions to support wind energy management. (Author)

  2. Regulation of the put Operon in SALMONELLA TYPHIMURIUM: Characterization of Promoter and Operator Mutations

    OpenAIRE

    Hahn, Donald R.; Maloy, Stanley R.

    1986-01-01

    The two genes required for proline utilization by S. typhimurium form a divergent operon. Expression of the put operon is induced by proline and subject to catabolite repression. Genetic evidence suggests that putA protein autogenously represses transcription of the putA and putP genes. In order to establish the molecular mechanism of put operon regulation we isolated regulatory mutations in the put control region. These mutants were selected using two phenotypes: (1) the ability to degrad...

  3. Climatic wind tunnel for wind engineering tasks

    Czech Academy of Sciences Publication Activity Database

    Kuznetsov, Sergeii; Pospíšil, Stanislav; Král, Radomil

    2015-01-01

    Roč. 112, 2-B (2015), s. 303-316 ISSN 1897-628X R&D Projects: GA ČR(CZ) GA14-12892S Keywords : climatic tunnel * wind tunnel * atmospheric boundary layer * flow resistance * wind tunnel contraction Subject RIV: JM - Building Engineering https://suw.biblos.pk.edu.pl/resources/i5/i6/i6/i7/i6/r56676/KuznetsovS_ClimaticWind.pdf

  4. PUTTING COMMUNICATION FRONT AND CENTER IN INSTITUTIONAL THEORY AND ANALYSIS

    NARCIS (Netherlands)

    Cornelissen, J.P.; Durand, R.; Fiss, P.C.; Lammers, J.C.; Vaara, E.

    2015-01-01

    We conceptualize the roots of cognitive, linguistic, and communicative theories of institutions and outline the promise and potential of a stronger communication focus for institutional theory. In particular, we outline a theoretical approach that puts communication at the heart of theories of

  5. Flexible Multilingual Education: Putting Children's Needs First

    Science.gov (United States)

    Weber, Jean-Jacques

    2014-01-01

    This book examines the benefits of multilingual education that puts children's needs and interests above the individual languages involved. It advocates flexible multilingual education, which builds upon children's actual home resources and provides access to both the local and global languages that students need for their educational and…

  6. Putting Disability Studies to Work in Art Education

    Science.gov (United States)

    Penketh, Claire

    2014-01-01

    Putting disability studies to work in art education suggests a form of action or industry, a creative opportunity for something to be done, recognising the relationship between theory and practice. Drawing on discourse analysis, this article offers an initial theoretical discussion of some of the ways in which disability is revealed and created…

  7. Bounds for the American perpetual put on a stock index

    OpenAIRE

    Paulsen, V.

    2001-01-01

    Let us consider n stocks with dependent price processes each following a geometric Brownian motion. We want to investigate the American perpetual put on an index of those stocks. We will provide inner and outer boundaries for its early exercise region by using a decomposition technique for optimal stopping.

  8. The quark gluon plasma: Lattice computations put to experimental test

    Indian Academy of Sciences (India)

    journal of. November 2003 physics pp. 877–888. The quark gluon plasma: Lattice computations put to experimental test. SOURENDU GUPTA. Department of Theoretical Physics, Tata Institute ... lattice gauge theory is the only theoretical tool of direct relevance to experiments currently ... In this talk I will concentrate on other.

  9. Learner Centered Teaching: Putting the Research on Learning into Practice

    Science.gov (United States)

    Doyle, Terry

    2011-01-01

    This book presents the research-based case that Learner Centered Teaching (LCT) offers the best means to optimize student learning in college, and offers examples and ideas for putting it into practice, as well the underlying rationale. It also starts from the premise that many faculty are much closer to being learner centered teachers than they…

  10. "Big Bang"test put off until May 2008

    CERN Multimedia

    2007-01-01

    "First tests in a scientific project aimed at solving mysteries of the universe and the "Big Bang" which created it have been put off from November to late april or early May next year, an official said yesterday." (2/3 page)

  11. A metal-free organic-inorganic aqueous flow battery

    Energy Technology Data Exchange (ETDEWEB)

    Huskinson, B; Marshak, MP; Suh, C; Er, S; Gerhardt, MR; Galvin, CJ; Chen, XD; Aspuru-Guzik, A; Gordon, RG; Aziz, MJ

    2014-01-08

    As the fraction of electricity generation from intermittent renewable sources-such as solar or wind-grows, the ability to store large amounts of electrical energy is of increasing importance. Solid-electrode batteries maintain discharge at peak power for far too short a time to fully regulate wind or solar power output(1,2). In contrast, flow batteries can independently scale the power (electrode area) and energy (arbitrarily large storage volume) components of the system by maintaining all of the electro-active species in fluid form(3-5). Wide-scale utilization of flow batteries is, however, limited by the abundance and cost of these materials, particularly those using redox-active metals and precious-metal electrocatalysts(6,7). Here we describe a class of energy storage materials that exploits the favourable chemical and electro-chemical properties of a family of molecules known as quinones. The example we demonstrate is ametal-free flow battery based on the redox chemistry of 9,10-anthraquinone-2,7-disulphonic acid (AQDS). AQDS undergoes extremely rapid and reversible two-electron two-proton reduction on a glassy carbon electrode in sulphuric acid. An aqueous flow battery with inexpensive carbon electrodes, combining the quinone/hydroquinone couple with the Br-2/Br- redox couple, yields a peak galvanic power density exceeding 0.6 W cm(-2) at 1.3 A cm(-2). Cycling of this quinone-bromide flow battery showed >99 per cent storage capacity retention per cycle. The organic anthraquinone species can be synthesized from inexpensive commodity chemicals(8). This organic approach permits tuning of important properties such as the reduction potential and solubility by adding functional groups: for example, we demonstrate that the addition of two hydroxy groups to AQDS increases the open circuit potential of the cell by 11% and we describe a pathway for further increases in cell voltage. The use of p-aromatic redox-active organic molecules instead of redox-active metals

  12. Wind Atlas for Egypt

    DEFF Research Database (Denmark)

    Mortensen, Niels Gylling; Said Said, Usama; Badger, Jake

    2006-01-01

    The results of a comprehensive, 8-year wind resource assessment programme in Egypt are presented. The objective has been to provide reliable and accurate wind atlas data sets for evaluating the potential wind power output from large electricityproducing wind turbine installations. The regional wind...... climates of Egypt have been determined by two independent methods: a traditional wind atlas based on observations from more than 30 stations all over Egypt, and a numerical wind atlas based on long-term reanalysis data and a mesoscale model (KAMM). The mean absolute error comparing the two methods is about...... 10% for two large-scale KAMM domains covering all of Egypt, and typically about 5% for several smaller-scale regional domains. The numerical wind atlas covers all of Egypt, whereas the meteorological stations are concentrated in six regions. The Wind Atlas for Egypt represents a significant step...

  13. Wind Atlas for Egypt

    DEFF Research Database (Denmark)

    The results of a comprehensive, 8-year wind resource assessment programme in Egypt are presented. The objective has been to provide reliable and accurate wind atlas data sets for evaluating the potential wind power output from large electricityproducing wind turbine installations. The regional wind...... climates of Egypt have been determined by two independent methods: a traditional wind atlas based on observations from more than 30 stations all over Egypt, and a numerical wind atlas based on long-term reanalysis data and a mesoscale model (KAMM). The mean absolute error comparing the two methods is about...... 10% for two large-scale KAMM domains covering all of Egypt, and typically about 5% for several smaller-scale regional domains. The numerical wind atlas covers all of Egypt, whereas the meteorological stations are concentrated in six regions. The Wind Atlas for Egypt represents a significant step...

  14. Towards Safer Lithium-Ion Batteries

    OpenAIRE

    Herstedt, Marie

    2003-01-01

    Surface film formation at the electrode/electrolyte interface in lithium-ion batteries has a crucial impact on battery performance and safety. This thesis describes the characterisation and treatment of electrode interfaces in lithium-ion batteries. The focus is on interface modification to improve battery safety, in particular to enhance the onset temperature for thermally activated reactions, which also can have a negative influence on battery performance. Photoelectron Spectroscopy (PES) ...

  15. Extreme wind estimate for Hornsea wind farm

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo

    The purpose of this study is to provide estimation of the 50-year winds of 10 min and 1-s gust value at hub height of 100 m, as well as the design parameter shear exponent for the Hornsea offshore wind farm. The turbulence intensity required for estimating the gust value is estimated using two ap....... The greatest sector-wise extreme winds are from west to northwest. Different data, different periods and different methods have provided a range of values of the 50-year wind and accordingly the gust values, as summarized in Table 15.......The purpose of this study is to provide estimation of the 50-year winds of 10 min and 1-s gust value at hub height of 100 m, as well as the design parameter shear exponent for the Hornsea offshore wind farm. The turbulence intensity required for estimating the gust value is estimated using two...... approaches. One is through the measurements from the wind Doppler lidar, WindCube, which implies serious uncertainty, and the other one is through similarity theory for the atmospheric surface layer where the hub height is likely to belong to during strong storms. The turbulence intensity for storm wind...

  16. Battery storage for electric-powered vehicles; Batteriespeicher fuer Elektrofahrzeuge

    Energy Technology Data Exchange (ETDEWEB)

    Ledjeff, K. [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany)

    1994-12-31

    The individual traffic in urban areas contributes very much to the environmental load. Related to the discussion about the influence of CO{sub 2} and trace gases on the destruction of our climate, more and more political pressure is put on the automobile industry. Due to the Californian laws about the introduction of Zero Emission Vehicles starting in 1998 an international competition began for the development of electric-powered vehicles in series. The greatest challenge will be to provide appropriate batteries, with high energy and performance data, but at considerably low costs. The further development of batteries is supported on an international level and several new concepts are going to be developed not only for conventional systems but also for high energy batteries. (orig.) [Deutsch] Der Individualverkehr traegt in staedtischen Gebieten erheblich zur Umweltbelastung bei. Auch im Zusammenhang mit der Diskussion um die Einfluesse von CO2 uns Spurengasen auf die Schaedigung unseres Klimas, konzentriert sich der politische Druck zunehmend auf den Automobilbereich. Bedingt durch die kalifornischen Gesetze ueber die Einfuehrung der Zero Emission Vehicles ab 1998 wurde ein internationaler Wettkampf zur Entwicklung von serienreifen Elektrofahrzeugen gestartet. Die groesste Herausforderung stellt die Bereitstellung von geeigneten Batterien dar, mit hohen Energie- und Leistungsdaten, jedoch bei guenstigen Kosten. Die Batterieentwicklung wird international erheblich forciert, und es kristallisieren sich verschiedenen neuartige Konzepte heraus, sowohl bei den konventionellen Systemen, als auch bei den Hochenergiebatterien. (orig.)

  17. Coping with climate change and China's wind energy sustainable development

    Directory of Open Access Journals (Sweden)

    De-Xin He

    2016-03-01

    Full Text Available Greenhouse gas emissions are the main cause of today's climate change. To address this problem, the world is in an era of new round energy transformation, and the existing energy structure is being reformed. In this paper, according to the Chinese government's action plan for coping with climate change, the China's wind energy sustainable development goals and development route are discussed, and the countermeasures and suggestions are put forward. Wind energy is currently a kind of important renewable energy with matured technology which can be scale-up developed and put into commercial application, and in this transformation, wind energy will play a key role with other non-fossil energy sources. The development and utilization of wind energy is a systematic project, which needs to be solved from the aspects of policy, technology and management. At present, China is in the stage of transferring from “large wind power country” to “strong wind power country”, opportunities and challenges coexist, and the advantages of China's socialist system could be fully used, which can concentrate power to do big things and make contribution in the process of realizing global energy transformation.

  18. A zinc paste primary battery

    Science.gov (United States)

    Jasinski, R.; McCarron, R.; Brilmyer, G.

    1983-03-01

    It is pointed out that zinc/air batteries could, in principle, be used to power electric vehicles. One concept for enhancing the practical performance of this battery system involves the separation of energy density factors from power density factors. This concept can be implemented by employing the active negative plate material in the form of a zinc slurry, which is circulated from a reservoir through the negative electrode compartment. An extension of this fuel cell-battery concept is related to the utilization of the active material as a pumpable paste rather than as a slurry. The present investigation is concerned with preliminary experiments on formulating and characterizing pumpable zinc/zinc oxide pastes in the context of a primary zinc/oxygen battery. A 'paste' is defined as a thick viscous mass of solid, uniformly and semipermanently dispersed in a liquid phase. Attention is given to the physical basis for predicting which solid/liquid mixtures will provide pumpable pastes.

  19. Prognostics in Battery Health Management

    Data.gov (United States)

    National Aeronautics and Space Administration — Batteries represent complex systems whose internal state vari- ables are either inaccessible to sensors or hard to measure un- der operational conditions. This work...

  20. Flexible Hybrid Battery/Pseudocapacitor

    Science.gov (United States)

    Tucker, Dennis S.; Paley, Steven

    2015-01-01

    Batteries keep devices working by utilizing high energy density, however, they can run down and take tens of minutes to hours to recharge. For rapid power delivery and recharging, high-power density devices, i.e., supercapacitors, are used. The electrochemical processes which occur in batteries and supercapacitors give rise to different charge-storage properties. In lithium ion (Li+) batteries, the insertion of Li+, which enables redox reactions in bulk electrode materials, is diffusion controlled and can be slow. Supercapacitor devices, also known as electrical double-layer capacitors (EDLCs) store charge by adsorption of electrolyte ions onto the surface of electrode materials. No redox reactions are necessary, so the response to changes in potential without diffusion limitations is rapid and leads to high power. However, the charge in EDLCs is confined to the surface, so the energy density is lower than that of batteries.

  1. Wind power demonstration and siting problems. [for recharging electrically driven automobiles

    Science.gov (United States)

    Bergey, K. H.

    1973-01-01

    Technical and economic feasibility studies on a small windmill to provide overnight charging for an electrically driven car are reported. The auxiliary generator provides power for heating and cooling the vehicle which runs for 25 miles on battery power alone, and for 50 miles with the onboard charger operating. The blades for this windmill have a diameter of 12 feet and are coupled through to a conventional automobile alternator so that they are able to completely recharge car batteries in 8 hours. Optimization of a windmill/storage system requires detailed wind velocity information which permits rational sitting of wind power system stations.

  2. Offshore wind energy developments

    DEFF Research Database (Denmark)

    Stolpe, Mathias; Buhl, Thomas; Sumer, B. Mutlu

    2014-01-01

    This chapter will give a brief overview of a few of the activities within offshore wind energy research, specifically 1) Support structure optimization, 2) Blade coatings for wind turbines; 3) Scour protection of foundations, 4) Offshore HVDC and 5) Offshore wind services.......This chapter will give a brief overview of a few of the activities within offshore wind energy research, specifically 1) Support structure optimization, 2) Blade coatings for wind turbines; 3) Scour protection of foundations, 4) Offshore HVDC and 5) Offshore wind services....

  3. Wind energy information guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.

  4. Wind Power Career Chat

    Energy Technology Data Exchange (ETDEWEB)

    2011-01-01

    This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

  5. Arctic wind energy

    International Nuclear Information System (INIS)

    Peltola, E.; Holttinen, H.; Marjaniemi, M.; Tammelin, B.

    1998-01-01

    Arctic wind energy research was aimed at adapting existing wind technologies to suit the arctic climatic conditions in Lapland. Project research work included meteorological measurements, instrument development, development of a blade heating system for wind turbines, load measurements and modelling of ice induced loads on wind turbines, together with the development of operation and maintenance practices in arctic conditions. As a result the basis now exists for technically feasible and economically viable wind energy production in Lapland. New and marketable products, such as blade heating systems for wind turbines and meteorological sensors for arctic conditions, with substantial export potential, have also been developed. (orig.)

  6. Arctic wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Peltola, E. [Kemijoki Oy (Finland); Holttinen, H.; Marjaniemi, M. [VTT Energy, Espoo (Finland); Tammelin, B. [Finnish Meteorological Institute, Helsinki (Finland)

    1998-12-31

    Arctic wind energy research was aimed at adapting existing wind technologies to suit the arctic climatic conditions in Lapland. Project research work included meteorological measurements, instrument development, development of a blade heating system for wind turbines, load measurements and modelling of ice induced loads on wind turbines, together with the development of operation and maintenance practices in arctic conditions. As a result the basis now exists for technically feasible and economically viable wind energy production in Lapland. New and marketable products, such as blade heating systems for wind turbines and meteorological sensors for arctic conditions, with substantial export potential, have also been developed. (orig.)

  7. Wind power today

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This publication highlights initiatives of the US DOE`s Wind Energy Program. 1997 yearly activities are also very briefly summarized. The first article describes a 6-megawatt wind power plant installed in Vermont. Another article summarizes technical advances in wind turbine technology, and describes next-generation utility and small wind turbines in the planning stages. A village power project in Alaska using three 50-kilowatt turbines is described. Very brief summaries of the Federal Wind Energy Program and the National Wind Technology Center are also included in the publication.

  8. Modeling the Lithium Ion Battery

    Science.gov (United States)

    Summerfield, John

    2013-01-01

    The lithium ion battery will be a reliable electrical resource for many years to come. A simple model of the lithium ions motion due to changes in concentration and voltage is presented. The battery chosen has LiCoO[subscript 2] as the cathode, LiPF[subscript 6] as the electrolyte, and LiC[subscript 6] as the anode. The concentration gradient and…

  9. Iron-Air Rechargeable Battery

    Science.gov (United States)

    Narayan, Sri R. (Inventor); Prakash, G.K. Surya (Inventor); Kindler, Andrew (Inventor)

    2014-01-01

    Embodiments include an iron-air rechargeable battery having a composite electrode including an iron electrode and a hydrogen electrode integrated therewith. An air electrode is spaced from the iron electrode and an electrolyte is provided in contact with the air electrode and the iron electrodes. Various additives and catalysts are disclosed with respect to the iron electrode, air electrode, and electrolyte for increasing battery efficiency and cycle life.

  10. Integrated Inverter And Battery Charger

    Science.gov (United States)

    Rippel, Wally E.

    1988-01-01

    Circuit combines functions of dc-to-ac inversion (for driving ac motor in battery-powered vehicle) and ac-to-dc conversion (for charging battery from ac line when vehicle not in use). Automatically adapts to either mode. Design of integrated inverter/charger eliminates need for duplicate components, saves space, reduces weight and cost of vehicle. Advantages in other applications : load-leveling systems, standby ac power systems, and uninterruptible power supplies.

  11. Oxygen reactivity of PutA from Helicobacter species and proline-linked oxidative stress.

    Science.gov (United States)

    Krishnan, Navasona; Becker, Donald F

    2006-02-01

    Proline is converted to glutamate in two successive steps by the proline utilization A (PutA) flavoenzyme in gram-negative bacteria. PutA contains a proline dehydrogenase domain that catalyzes the flavin adenine dinucleotide (FAD)-dependent oxidation of proline to delta1-pyrroline-5-carboxylate (P5C) and a P5C dehydrogenase domain that catalyzes the NAD+-dependent oxidation of P5C to glutamate. Here, we characterize PutA from Helicobacter hepaticus (PutA(Hh)) and Helicobacter pylori (PutA(Hp)) to provide new insights into proline metabolism in these gastrointestinal pathogens. Both PutA(Hh) and PutA(Hp) lack DNA binding activity, in contrast to PutA from Escherichia coli (PutA(Ec)), which both regulates and catalyzes proline utilization. PutA(Hh) and PutA(Hp) display catalytic activities similar to that of PutA(Ec) but have higher oxygen reactivity. PutA(Hh) and PutA(Hp) exhibit 100-fold-higher turnover numbers (approximately 30 min(-1)) than PutA(Ec) (PutA(Hh) forms a reversible FAD-sulfite adduct. The significance of increased oxygen reactivity in PutA(Hh) and PutA(Hp) was probed by oxidative stress studies in E. coli. Expression of PutA(Ec) and PutA from Bradyrhizobium japonicum, which exhibit low oxygen reactivity, does not diminish stress survival rates of E. coli cell cultures. In contrast, PutA(Hp) and PutA(Hh) expression dramatically reduces E. coli cell survival and is correlated with relatively lower proline levels and increased hydrogen peroxide formation. The discovery of reduced oxygen species formation by PutA suggests that proline catabolism may influence redox homeostasis in the ecological niches of these Helicobacter species.

  12. The game changing 'Battery'

    International Nuclear Information System (INIS)

    Wallace, Paula

    2012-01-01

    Full text: A new energy storage system with the potential to change the way the world utilises electricity has been developed in South Australia. “ With the capability and flexibility to store energy generated by solar or wind power or capture off-peak power for later use, the ZEN Freedom Power Bank offers benefits to householders, businesses and utilities,” ZEN Energy Systems chief executive officer Richard Turner said. He recently represented Australia by invitation at the International Cleantech Forum in San Fransisco and used the spotlight to feature the technology he believes is a world-first and the 'holy grail' of renewable energy. The system is comprised of hi-density storage lithium ion batteries linked to innovative 'active' battery balancing and control software, allowing both 'on-grid' and 'off-grid' management options. The electronic software has been designed in a joint development project with ZEN sister company, US-based Greensmith Energy Management Systems. The units will be assembled in Australia for supply to the local market as well as for export. “This technology enables low cost, large format 'dumb' lithium ion cells to perform as effectively as, or better than, high cost 'smart' cells, virtually halving the cost of the batteries or providing twice the storage capacity for the same cost,” Turner said. “The control software then enables centralised control of large communities of systems to manage peak demand or other issues within the public power grid. The base residential/business system will be capable of managing and storing 20 kilowatt hours of energy per day, which is the daily consumption of an average Australian home. For larger properties, additional 20kWh energy storage modules can be easily added,” Turner explained. “Reliance on the public grid is greatly reduced and it provides up to 24-hour energy backup if the grid goes down.” In the future, the Power

  13. Optimization of station battery replacement

    International Nuclear Information System (INIS)

    Jancauskas, J.R.; Shook, D.A.

    1994-01-01

    During a loss of ac power at a nuclear generating station (including diesel generators), batteries provide the source of power which is required to operate safety-related components. Because traditional lead-acid batteries have a qualified life of 20 years, the batteries must be replaced a minimum of once during a station's lifetime, twice if license extension is pursued, and more often depending on actual in-service dates and the results of surveillance tests. Replacement of batteries often occurs prior to 20 years as a result of systems changes caused by factors such as Station Blackout Regulations, control system upgrades, incremental load growth, and changes in the operating times of existing equipment. Many of these replacement decisions are based on the predictive capabilities of manual design basis calculations. The inherent conservatism of manual calculations may result in battery replacements occurring before actually required. Computerized analysis of batteries can aid in optimizing the timing of replacements as well as in interpreting service test data. Computerized analysis also provides large benefits in maintaining the as-configured load profile and corresponding design margins, while also providing the capability of quickly analyze proposed modifications and response to internal and external audits

  14. Optimization of station battery replacement

    Science.gov (United States)

    Jancauskas, J. R.; Shook, D. A.

    1994-08-01

    During a loss of ac power at a nuclear generating station (including diesel generators), batteries provide the source of power which is required to operate safety-related components. Because traditional lead-acid batteries have a qualified life of 20 years, the batteries must be replaced a minimum of once during a station's lifetime, twice if license extension is pursued, and more often depending on actual in-service dates and the results of surveillance tests. Replacement of batteries often occurs prior to 20 years as a result of systems changes caused by factors such as Station Blackout Regulations, control system upgrades, incremental load growth, and changes in the operating times of existing equipment. Many of these replacement decisions are based on the predictive capabilities of manual design basis calculations. The inherent conservatism of manual calculations may result in battery replacements occurring before actually required. Computerized analysis of batteries can aid in optimizing the timing of replacements as well as in interpreting service test data. Computerized analysis also provides large benefits in maintaining the as-configured load profile and corresponding design margins, while also providing the capability to quickly analyze proposed modifications and respond to internal and external audits.

  15. Computer Aided Battery Engineering Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad

    2016-06-07

    A multi-national lab collaborative team was assembled that includes experts from academia and industry to enhance recently developed Computer-Aided Battery Engineering for Electric Drive Vehicles (CAEBAT)-II battery crush modeling tools and to develop microstructure models for electrode design - both computationally efficient. Task 1. The new Multi-Scale Multi-Domain model framework (GH-MSMD) provides 100x to 1,000x computation speed-up in battery electrochemical/thermal simulation while retaining modularity of particles and electrode-, cell-, and pack-level domains. The increased speed enables direct use of the full model in parameter identification. Task 2. Mechanical-electrochemical-thermal (MECT) models for mechanical abuse simulation were simultaneously coupled, enabling simultaneous modeling of electrochemical reactions during the short circuit, when necessary. The interactions between mechanical failure and battery cell performance were studied, and the flexibility of the model for various batteries structures and loading conditions was improved. Model validation is ongoing to compare with test data from Sandia National Laboratories. The ABDT tool was established in ANSYS. Task 3. Microstructural modeling was conducted to enhance next-generation electrode designs. This 3- year project will validate models for a variety of electrodes, complementing Advanced Battery Research programs. Prototype tools have been developed for electrochemical simulation and geometric reconstruction.

  16. Functional materials for rechargeable batteries.

    Science.gov (United States)

    Cheng, Fangyi; Liang, Jing; Tao, Zhanliang; Chen, Jun

    2011-04-19

    There is an ever-growing demand for rechargeable batteries with reversible and efficient electrochemical energy storage and conversion. Rechargeable batteries cover applications in many fields, which include portable electronic consumer devices, electric vehicles, and large-scale electricity storage in smart or intelligent grids. The performance of rechargeable batteries depends essentially on the thermodynamics and kinetics of the electrochemical reactions involved in the components (i.e., the anode, cathode, electrolyte, and separator) of the cells. During the past decade, extensive efforts have been dedicated to developing advanced batteries with large capacity, high energy and power density, high safety, long cycle life, fast response, and low cost. Here, recent progress in functional materials applied in the currently prevailing rechargeable lithium-ion, nickel-metal hydride, lead acid, vanadium redox flow, and sodium-sulfur batteries is reviewed. The focus is on research activities toward the ionic, atomic, or molecular diffusion and transport; electron transfer; surface/interface structure optimization; the regulation of the electrochemical reactions; and the key materials and devices for rechargeable batteries. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Simulation-based design of energy management system with storage battery for a refugee shelter in Japan

    Science.gov (United States)

    Kaji, K.; Zhang, J.; Horie, H.; Akimoto, H.; Tanaka, K.

    2013-12-01

    Since the massive earthquake hit eastern Japan in March, 2011, our team has participated in the recovery planning for Kesen Association, which is a group of cities in northeastern Japan. As one of our proposals for the recovery planning for the community, we are designing energy management system with renewable energy (RE) and storage batteries. Some public facilities in the area have been used as refugee shelters, but refugees had to put up with life without electricity for a while after the disaster. If RE generator and storage batteries are introduced into the facilities, it is possible to provide refugees with electricity. In this study, the sizes of photovoltaic (PV) appliances and storage batteries to be introduced into one public facility are optimized. The optimization is based on simulation, in which electric energy is managed by charge and discharge of storage battery.

  18. Simulation-based design of energy management system with storage battery for a refugee shelter in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kaji, K.; Zhang, J.; Horie, H.; Tanaka, K. [Department of Technology Management for Innovation, Graduate School of Engineering, The University of Tokyo (Japan); Akimoto, H. [Korea Advanced Institute of Science and Technology (Korea, Republic of)

    2013-12-10

    Since the massive earthquake hit eastern Japan in March, 2011, our team has participated in the recovery planning for Kesen Association, which is a group of cities in northeastern Japan. As one of our proposals for the recovery planning for the community, we are designing energy management system with renewable energy (RE) and storage batteries. Some public facilities in the area have been used as refugee shelters, but refugees had to put up with life without electricity for a while after the disaster. If RE generator and storage batteries are introduced into the facilities, it is possible to provide refugees with electricity. In this study, the sizes of photovoltaic (PV) appliances and storage batteries to be introduced into one public facility are optimized. The optimization is based on simulation, in which electric energy is managed by charge and discharge of storage battery.

  19. Simulation-based design of energy management system with storage battery for a refugee shelter in Japan

    International Nuclear Information System (INIS)

    Kaji, K.; Zhang, J.; Horie, H.; Tanaka, K.; Akimoto, H.

    2013-01-01

    Since the massive earthquake hit eastern Japan in March, 2011, our team has participated in the recovery planning for Kesen Association, which is a group of cities in northeastern Japan. As one of our proposals for the recovery planning for the community, we are designing energy management system with renewable energy (RE) and storage batteries. Some public facilities in the area have been used as refugee shelters, but refugees had to put up with life without electricity for a while after the disaster. If RE generator and storage batteries are introduced into the facilities, it is possible to provide refugees with electricity. In this study, the sizes of photovoltaic (PV) appliances and storage batteries to be introduced into one public facility are optimized. The optimization is based on simulation, in which electric energy is managed by charge and discharge of storage battery

  20. ANALYSING SOLAR-WIND HYBRID POWER GENERATING SYSTEM

    Directory of Open Access Journals (Sweden)

    Mustafa ENGİN

    2005-02-01

    Full Text Available In this paper, a solar-wind hybrid power generating, system that will be used for security lighting was designed. Hybrid system was installed and solar cells, wind turbine, battery bank, charge regulators and inverter performance values were measured through the whole year. Using measured values of overall system efficiency, reliability, demanded energy cost per kWh were calculated, and percentage of generated energy according to resources were defined. We also include in the paper a discussion of new strategies to improve hybrid power generating system performance and demanded energy cost per kWh.

  1. Wind Turbines on CO2 Neutral Luminaries in Urban Areas

    DEFF Research Database (Denmark)

    In the present work, an overview of three different wind turbines used in hybrid luminaries is presented. The turbines are: vertical-axis twisted Savonius, three-blade horizontal-axis, and vertical-axis three-blade helical H-rotor. The considered luminaries are also equipped with photovoltaic...... panels and batteries, detailed investigation of which is outside the scope of the present manuscript. Analysis of the turbines’ performance based on producer-supplied power curves is presented together with an estimation of the wind climate in Copenhagen district comprising 1-2 story single family...

  2. Wind Turbines on CO2 Neutral Luminaries in Urban Areas

    DEFF Research Database (Denmark)

    Skrzypinski, Witold Robert; Bak, Christian; Beller, Christina

    2013-01-01

    In the present work, an overview of three different wind turbines used in hybrid luminaries is presented. The turbines are: vertical-axis twisted Savonius, three-blade horizontal-axis, and vertical-axis three-blade helical H-rotor. The considered luminaries are also equipped with photovoltaic...... panels and batteries, detailed investigation of which is outside the scope of the present manuscript. Analysis of the turbines’ performance based on producer-supplied power curves is presented together with an estimation of the wind climate in Copenhagen district comprising 1-2 story single family...

  3. Enhancement of micro-grid performance during islanding mode using storage batteries and new fuzzy logic pitch angle controller

    International Nuclear Information System (INIS)

    Kamel, Rashad M.; Chaouachi, A.; Nagasaka, Ken

    2011-01-01

    Research highlights: → Novel fuzzy pitch angle controller is proposed for smoothing wind fluctuation. → Storage batteries are used for performance improve of MG in islanding mode. → Those new techniques are compared with conventional PI pitch angle controller. -- Abstract: Power system deregulation, shortage of transmission capacities and needing to reduce green house gas have led to increase interesting in distributed generations (DGs) especially renewable sources. This study developed a complete model able to analysis and simulates in details the transient dynamic performance of the Micro-Grid (MG) during and subsequent islanding process. Wind speed fluctuations cause high fluctuations in output power of wind turbine which lead to fluctuations of frequency and voltages of the MG during the islanding mode. In this paper a new fuzzy logic pitch angle controller is proposed to smooth the output power of wind turbine to reduce MG frequency and voltage fluctuations during the islanding mode. The proposed fuzzy logic pitch controller is compared with the conventional PI pitch angle controller which usually used for wind turbine power control. Results proved the effectiveness of the proposed fuzzy controller in improvement of the MG performance. Also, this paper proposed using storage batteries technique to reduce the frequency deviation and fluctuations originated from wind power solar power fluctuations. Results indicate that the storage batteries technique is superior than fuzzy logic pitch controller in reducing frequency deviation, but with more expensive than the fuzzy controller. All models and controllers are built using Matlab (registered) Simulink (registered) environment.

  4. TRNSYS HYBRID wind diesel PV simulator

    Energy Technology Data Exchange (ETDEWEB)

    Quinlan, P.J.A.; Mitchell, J.W.; Klein, S.A.; Beckman, W.A.; Blair, N.J. [Univ. of Wisconsin, Madison, WI (United States)

    1996-12-31

    The Solar Energy Laboratory (SEL) has developed a wind diesel PV hybrid systems simulator, UW-HYBRID 1.0, an application of the TRNSYS 14.2 time-series simulation environment. An AC/DC bus links up to five diesels and wind turbine models, along with PV modules, a battery bank, and an AC/DC converter. Multiple units can be selected. PV system simulations include solar angle and peak power tracking options. Weather data are Typical Meteorological Year data, parametrically generated synthesized data, or external data files. PV performance simulations rely on long-standing SEL-developed algorithms. Loads data are read as scalable time series. Diesel simulations include estimated fuel-use and waste heat output, and are dispatched using a least-cost of fuel strategy. Wind system simulations include varying air density, wind shear and wake effects. Time step duration is user-selectable. UW-HYBRID 1.0 runs in Windows{reg_sign}, with TRNSED providing a customizable user interface. 12 refs., 6 figs.

  5. Evolution of wind towards wind turbine

    NARCIS (Netherlands)

    Giyanani, A.H.; Bierbooms, W.A.A.M.; Van Bussel, G.J.W.

    2015-01-01

    Remote sensing of the atmospheric variables with the use of LiDAR is a relatively new technology field for wind resource assessment in wind energy. The validation of LiDAR measurements and comparisons is of high importance for further applications of the data.

  6. Identification and characterization of the DNA-binding domain of the multifunctional PutA flavoenzyme.

    Science.gov (United States)

    Gu, Dan; Zhou, Yuzhen; Kallhoff, Verena; Baban, Berevan; Tanner, John J; Becker, Donald F

    2004-07-23

    The PutA flavoprotein from Escherichia coli is a transcriptional repressor and a bifunctional enzyme that regulates and catalyzes proline oxidation. PutA represses transcription of genes putA and putP by binding to the control DNA region of the put regulon. The objective of this study is to define and characterize the DNA binding domain of PutA. The DNA binding activity of PutA, a 1320 amino acid polypeptide, has been localized to N-terminal residues 1-261. After exploring a potential DNA-binding region and an N-terminal deletion mutant of PutA, residues 1-90 (PutA90) were determined to contain DNA binding activity and stabilize the dimeric structure of PutA. Cell-based transcriptional assays demonstrate that PutA90 functions as a transcriptional repressor in vivo. The dissociation constant of PutA90 with the put control DNA was estimated to be 110 nm, which is slightly higher than that of the PutA-DNA complex (K(d) approximately 45 nm). Primary and secondary structure analysis of PutA90 suggested the presence of a ribbon-helix-helix DNA binding motif in residues 1-47. To test this prediction, we purified and characterized PutA47. PutA47 is shown to purify as an apparent dimer, to exhibit in vivo transcriptional activity, and to bind specifically to the put control DNA. In gel-mobility shift assays, PutA47 was observed to bind cooperatively to the put control DNA with an overall dissociation constant of 15 nm for the PutA47-DNA complex. Thus, N-terminal residues 1-47 are critical for DNA-binding and the dimeric structure of PutA. These results are consistent with the ribbon-helix-helix family of transcription factors.

  7. Proceedings of CanWEA's 24. annual conference and trade show : fast forward to wind

    International Nuclear Information System (INIS)

    2008-01-01

    The Canadian Wind Energy Association's conference and trade show provides an annual forum for wind developers, wind turbine manufacturers, component suppliers and electric utility operators to discuss issues currently facing the wind industry and measures that must be taken to ensure its future growth in Canada. As part of a range of renewable energy initiatives designed to help Canada reach its target commitments for the Kyoto Protocol, the expansion of the wind industry is expected to reduce the country's greenhouse gas (GHG) emissions and provide significant economic benefits to local communities. However, the wind industry is facing a number of challenges and constraints due to a lack of clear policies from provincial and federal governments. Significant infrastructure investments and financial incentives will need to be put in place in order to provide a secure foundation for future growth. The conference was divided into 3 tracks: (1) wind energy enhancement in Canada; (2) trends in wind research and development; and (3) the business of wind. Presentations examined solutions related to wind energy integration with electricity grids and discussed methods of building social acceptance of wind projects in communities. Advances in forecasting and computerized simulations were presented, and methods of negotiating environmental assessments and planning permit requirements were discussed. The conference also included a small wind pre-conference that addressed issues related to the growth and manufacturing of small wind turbines in Canada. The conference featured 88 presentations, of which 69 have been catalogued separately for inclusion in this database. tabs., figs

  8. Planners to the rescue: spatial planning facilitating the development of offshore wind energy.

    Science.gov (United States)

    Jay, Stephen

    2010-04-01

    The development of offshore wind energy has started to take place surprisingly quickly, especially in North European waters. This has taken the wind energy industry out of the territory of planning systems that usually govern the siting of wind farms on land, and into the world of departmental, sectoral regulation of marine activities. Although this has favoured the expansion of offshore wind energy in some respects, evidence suggests that the practice and principles of spatial planning can make an important contribution to the proper consideration of proposals for offshore wind arrays. This is especially so when a strategic planning process is put in place for marine areas, in which offshore wind is treated as part of the overall configuration of marine interests, so that adjustments can be made in the interests of wind energy. The current process of marine planning in the Netherlands is described as an illustration of this. (c) 2009 Elsevier Ltd. All rights reserved.

  9. Technical feasibility for commercialization of lithium ion battery as a substitute dry battery for motorcycle

    Science.gov (United States)

    Kurniyati, Indah; Sutopo, Wahyudi; Zakaria, Roni; Kadir, Evizal Abdul

    2017-11-01

    Dry battery on a motorcycle has a rapid rate of voltage drop, life time is not too long, and a long charging time. These are problems for users of dry battery for motorcycle. When the rate in the voltage decreases, the energy storage in the battery is reduced, then at the age of one to two years of battery will be dead and cannot be used, it makes the user should replace the battery. New technology development of a motorcycle battery is lithium ion battery. Lithium ion battery has a specification that has been tested and possible to replace dry battery. Characteristics of lithium ion battery can answer the question on the dry battery service life, the rate of decrease in voltage and charging time. This paper discusses about the technical feasibility for commercialization of lithium ion battery for motorcycle battery. Our proposed methodology of technical feasibility by using a goldsmith commercialization model of the technical feasibility and reconfirm the technical standard using the national standard of motorcycle battery. The battery has been through all the stages of the technical feasibility of the goldsmith model. Based on the results of the study, lithium ion batteries have the minimum technical requirements to be commercialized and has been confirmed in accordance with the standard motorcycle battery. This paper results that the lithium ion battery is visible to commercialized by the technical aspect.

  10. Wind Tunnel Measurements at LM Wind Power

    DEFF Research Database (Denmark)

    Bertagnolio, Franck

    2012-01-01

    The optimization of airfoil profiles specifically designed for wind turbine application was initiated in the late 80’s [67, 68, 30, 15]. The first attempts to reduce airfoil noise for wind turbines made use of airfoil trailing edge serration. Themodification of airfoil shapes targeted at noise...... reduction is more recent. An important effort was produced in this direction within the SIROCCO project. This latter work involved measurements on full size wind turbines and showed that trailing edge serration may proved a viable solution for mitigating wind turbine noise though it has not been implemented...... on commercial wind turbine yet. It should be mentioned here that the attenuation of turbulent inflow noise using wavy leading edge has recently been investigated [55], but this technique has still to be further validated for practical applications. In this paper, it is proposed to optimize an airfoil which...

  11. ARRA-Multi-Level Energy Storage and Controls for Large-Scale Wind Energy Integration

    Energy Technology Data Exchange (ETDEWEB)

    David Wenzhong Gao

    2012-09-30

    The Project Objective is to design innovative energy storage architecture and associated controls for high wind penetration to increase reliability and market acceptance of wind power. The project goals are to facilitate wind energy integration at different levels by design and control of suitable energy storage systems. The three levels of wind power system are: Balancing Control Center level, Wind Power Plant level, and Wind Power Generator level. Our scopes are to smooth the wind power fluctuation and also ensure adequate battery life. In the new hybrid energy storage system (HESS) design for wind power generation application, the boundary levels of the state of charge of the battery and that of the supercapacitor are used in the control strategy. In the controller, some logic gates are also used to control the operating time durations of the battery. The sizing method is based on the average fluctuation of wind profiles of a specific wind station. The calculated battery size is dependent on the size of the supercapacitor, state of charge of the supercapacitor and battery wear. To accommodate the wind power fluctuation, a hybrid energy storage system (HESS) consisting of battery energy system (BESS) and super-capacitor is adopted in this project. A probability-based power capacity specification approach for the BESS and super-capacitors is proposed. Through this method the capacities of BESS and super-capacitor are properly designed to combine the characteristics of high energy density of BESS and the characteristics of high power density of super-capacitor. It turns out that the super-capacitor within HESS deals with the high power fluctuations, which contributes to the extension of BESS lifetime, and the super-capacitor can handle the peaks in wind power fluctuations without the severe penalty of round trip losses associated with a BESS. The proposed approach has been verified based on the real wind data from an existing wind power plant in Iowa. An

  12. Wind resource in metropolitan France: assessment methods, variability and trends

    International Nuclear Information System (INIS)

    Jourdier, Benedicte

    2015-01-01

    France has one of the largest wind potentials in Europe, yet far from being fully exploited. The wind resource and energy yield assessment is a key step before building a wind farm, aiming at predicting the future electricity production. Any over-estimation in the assessment process puts in jeopardy the project's profitability. This has been the case in the recent years, when wind farm managers have noticed that they produced less than expected. The under-production problem leads to questioning both the validity of the assessment methods and the inter-annual wind variability. This thesis tackles these two issues. In a first part are investigated the errors linked to the assessment methods, especially in two steps: the vertical extrapolation of wind measurements and the statistical modelling of wind-speed data by a Weibull distribution. The second part investigates the inter-annual to decadal variability of wind speeds, in order to understand how this variability may have contributed to the under-production and so that it is better taken into account in the future. (author) [fr

  13. An evaluation of the WindEye wind lidar

    DEFF Research Database (Denmark)

    Dellwik, Ebba; Sjöholm, Mikael; Mann, Jakob

    Prevision of the wind field by remote sensing wind lidars has the potential to improve the performance of wind turbines. The functionality of a WindEye lidar developed by Windar Photonics A/S (Denmark) for the wind energy market was tested in a two months long field experiment. The WindEye sensor...... with a high accuracy during the whole campaign....

  14. Wind electric power generation

    International Nuclear Information System (INIS)

    Koch, M.K.; Wind, L.; Canter, B.; Moeller, T.

    2001-01-01

    The monthly statistics of wind electric power generation in Denmark are compiled from information given by the owners of the private wind turbines. For each wind turbine the name of the site and of the type of turbine is given, and the power generation data are given for the month in question together with the total production in 1999 and 2000. Also the data of operation start are given. On the map of Denmark the sites of the wind turbines are marked. (CLS)

  15. The Irish Wind Atlas

    Energy Technology Data Exchange (ETDEWEB)

    Watson, R. [Univ. College Dublin, Dept. of Electronic and Electrical Engineering, Dublin (Ireland); Landberg, L. [Risoe National Lab., Meteorology and Wind Energy Dept., Roskilde (Denmark)

    1999-03-01

    The development work on the Irish Wind Atlas is nearing completion. The Irish Wind Atlas is an updated improved version of the Irish section of the European Wind Atlas. A map of the irish wind resource based on a WA{sup s}P analysis of the measured data and station description of 27 measuring stations is presented. The results of previously presented WA{sup s}P/KAMM runs show good agreement with these results. (au)

  16. Turbulence and wind turbines

    DEFF Research Database (Denmark)

    Brand, Arno J.; Peinke, Joachim; Mann, Jakob

    2011-01-01

    The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed.......The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed....

  17. Redox properties of the PutA protein from Escherichia coli and the influence of the flavin redox state on PutA-DNA interactions.

    Science.gov (United States)

    Becker, D F; Thomas, E A

    2001-04-17

    The PutA flavoprotein from Escherichia coli is both a transcriptional repressor and a membrane-associated proline dehydrogenase. PutA represses transcription of the putA and putP genes by binding to the control region DNA of the put regulon (put intergenic DNA). Previous work has shown that FAD has a role in regulating the transcriptional repressor and membrane binding functions of the PutA protein. To test the influence of the FAD redox state on PutA--DNA interactions, we characterized the redox properties of the PutA flavoprotein from E. coli. At pH 7.5, an E(m)(E--FAD/E--FADH(2)) of --0.076 V for the two-electron reduction of PutA-bound FAD was determined by potentiometric titrations. Stabilization of semiquinone species was not observed during potentiometric measurements. Dithionite reduction of PutA, however, caused formation of red anionic semiquinone. The E(m) value for the proline/Delta(1)-pyrroline-5-carboxylate couple was determined to be --0.123 V, demonstrating the reduction of PutA by proline is favored by a potential difference (Delta E degrees ') of more than 0.045 V. Characterization of the PutA redox properties in the presence of put intergenic DNA revealed an E(m)(E(DNA)--FAD/E(DNA)--FADH(2)) of --0.086 V. The 10 mV negative shift in E(m) corresponds to just a 2.3-fold increase in the dissociation constant of PutA with the DNA upon reduction of FAD. Thus, it appears the FAD redox state has little influence on the overall PutA--DNA interactions.

  18. Fraction in shot-put: A learning trajectory

    Science.gov (United States)

    Putri, R. I. I.; Zulkardi

    2017-08-01

    This research was aimed to produce a learning trajectory that can help students in the fractions learning by using shot-put context at the fourth grade. The method used in this research was research design which has three stages: preparing for the experiment, the design experiment, and the retrospective analysis. Data collection techniques used was interviews, video recordings and photographs, written tests, observation and field notes. This research involved six students who have the high capability, medium capability and low capability at the first cycle and 34 students at the second cycle. The research which was conducted produced learning trajectory that consisted of a series of learning in three mathematics activities. The results showed that by using shot-put context can help students in subtraction of fractions learning and can solve the problems dealing with subtraction of fractions in daily life by using PMRI.

  19. Empirical Study Of Wind Energy Potential In Calabar Cross River State Nigeria

    Directory of Open Access Journals (Sweden)

    Uquetan

    2015-08-01

    Full Text Available Abstract This paper focuses on wind energy potentials in Calabar a coastal city. The wind speed data were collected from Margaret Ekpo International Airport Calabar NIMET. The Objective of this study is to examine whether the wind energy in Calabar can generate sufficient energy to supplement electricity generation for the Calabar region. The primary data obtained is monthly mean in the form of wind speed for a period of 5year 2008 - 2012. These was used to estimate the available wind energy potential in calabar. The results show that the annual wind is 1.3 ms indicating Calabar as a low wind speed region. The wind power density value of 3.11Wm2 indicates that Calabar wind can only be used for small stand-alone wind power systems such as battery charging and for powering street light and water pumps fig 1 2 3 amp 4. The weibull probability distribution scale parameters k are higher in values and variability than the shape parameter c for the monthly distribution. Calabar wind cannot be used to generate electricity because the wind speed data at 10m height doesnt exceed 2.5ms due to the standard cut in speed.

  20. Harmonic Resonances in Wind Power Plants

    DEFF Research Database (Denmark)

    Fernandez, Francisco Daniel Freijedo; Chaudhary, Sanjay; Teodorescu, Remus

    2015-01-01

    This work reviews the state-of-the-art in the field of harmonic resonance problems in Wind Power Plants (WPPs). Firstly, a generic WPP is modeled according to the equivalent circuits of its passive and active components. Main focus is put on modeling active components, i.e. the ones based on power...... converters. Subsequently, pros and cons of frequency and time domain analysis methods are outlined. The next sections are devoted to mitigation methods implemented in the power electronics converters. From the wind turbine perspective, different techniques to enhance the robustness of the controller...... are analyzed. Subsequently, the suitability for active damping of harmonics using STATCOM devices is assessed, with focus both on control techniques and power converter technologies....

  1. Wind Power Now!

    Science.gov (United States)

    Inglis, David Rittenhouse

    1975-01-01

    The government promotes and heavily subsidizes research in nuclear power plants. Federal development of wind power is slow in comparison even though much research with large wind-electric machines has already been conducted. Unless wind power programs are accelerated it will not become a major energy alternative to nuclear power. (MR)

  2. Power from the Wind

    Science.gov (United States)

    Roman, Harry T.

    2004-01-01

    Wind energy is the fastest-growing renewable energy source in the world. Over the last 20 years, the wind industry has done a very good job of engineering machines, improving materials, and economies of production, and making this energy source a reality. Like all renewable energy forms, wind energy's successful application is site specific. Also,…

  3. Extreme winds in Denmark

    DEFF Research Database (Denmark)

    Kristensen, L.; Rathmann, O.; Hansen, S.O.

    1999-01-01

    Wind-speed data from four sites in Denmark have been analyzed in order to obtain estimates of the basic wind velocity, defined as the 50-year wind speed (ten minute averages) under standard conditions, i.e. 10 meter over a homogeneous terrain with the roughness length 0.05 m. The sites are Skjern...

  4. Extreme winds in Denmark

    DEFF Research Database (Denmark)

    Kristensen, L.; Rathmann, Ole; Hansen, S.O.

    1999-01-01

    Wind-speed data from four sites in Denmark have been analyzed in order to obtain estimates of the basic wind velocity which is defined as the 50-year wind speed under standard conditions, i.e. ten-minute averages at the height 10 m over a uniform terrainwith the roughness length 0.05 m. The sites...

  5. Modelling Wind for Wind Farm Layout Optimization Using Joint Distribution of Wind Speed and Wind Direction

    DEFF Research Database (Denmark)

    Feng, Ju; Shen, Wen Zhong

    2015-01-01

    Reliable wind modelling is of crucial importance for wind farm development. The common practice of using sector-wise Weibull distributions has been found inappropriate for wind farm layout optimization. In this study, we propose a simple and easily implementable method to construct joint distribu......Reliable wind modelling is of crucial importance for wind farm development. The common practice of using sector-wise Weibull distributions has been found inappropriate for wind farm layout optimization. In this study, we propose a simple and easily implementable method to construct joint...... quite well in terms of the coefficient of determination R-2. Then, the best of these joint distributions is used in the layout optimization of the Horns Rev 1 wind farm and the choice of bin sizes for wind speed and wind direction is also investigated. It is found that the choice of bin size for wind...... direction is especially critical for layout optimization and the recommended choice of bin sizes for wind speed and wind direction is finally presented....

  6. Wind and Yaw correlation

    DEFF Research Database (Denmark)

    Federici, Paolo; Kock, Carsten Weber

    The report describes measurements carried out on a given turbine and period. The measurements are carried out in accordance to Ref. [1]. A comparison between wind speed and wind direction on the met mast and nacelle wind speed and yaw direction is made in accordance to Ref. [2] and the results...... are presented on graphs and in a table....

  7. Wind power soars

    Energy Technology Data Exchange (ETDEWEB)

    Flavin, C. [Worldwatch Inst., Washington, DC (United States)

    1996-12-31

    Opinions on the world market for wind power are presented in this paper. Some data for global wind power generating capacity are provided. European and other markets are discussed individually. Estimated potential for wind power is given for a number of countries. 3 figs.

  8. Wind power outlook 2006

    Energy Technology Data Exchange (ETDEWEB)

    anon.

    2006-04-15

    This annual brochure provides the American Wind Energy Association's up-to-date assessment of the wind industry in the United States. This 2006 general assessment shows positive signs of growth, use and acceptance of wind energy as a vital component of the U.S. energy mix.

  9. Wind and Yaw correlation

    DEFF Research Database (Denmark)

    Federici, Paolo; Kock, Carsten Weber

    The report describes measurements carried out on a given turbine and period. The measurements are carried out in accordance to Ref. [1]. A comparison between wind speed and wind direction on the met mast and nacelle wind speed and yaw direction is made in accordance to Ref. [2] and the results...

  10. Wind: French revolutions

    International Nuclear Information System (INIS)

    Jones, C.

    2006-01-01

    Despite having the second best wind resources in Europe after the UK, the wind industry in France lags behind its European counterparts with just 6 W of installed wind capacity per person. The electricity market in France is dominated by the state-owned Electricite de France (EdF) and its nuclear power stations. However, smaller renewable generators are now in theory allowed access to the market and France has transposed the EU renewables directive into national law. The French governement has set a target of generating 10,000 MW of renewable capacity by 2010. The announcement of an increased feed-in tariff and the introduction of 'development zones' (ZDEs) which could allow fast-tracking of planning for wind projects are also expected to boost wind projects. But grid access and adminstrative burdens remain major barriers. In addition, French politicians and local authorities remain committed to nuclear, though encouraged by the European Commission, wind is beginning to gain acceptance; some 325 wind farms (representing 1557 MW of capacity) were approved between February 2004 and January 2005. France is now regarded by the international wind energy sector as a target market. One of France's leading independent wind developers and its only listed wind company, Theolia, is expected to be one of the major beneficiaries of the acceleration of activity in France, though other companies are keen to maximise the opportunities for wind. France currently has only one indigenous manufacturer of wind turbines, but foreign suppliers are winning orders

  11. Denmark Wind Energy Programme

    DEFF Research Database (Denmark)

    Shen, Wen Zhong

    2015-01-01

    In this chapter, a summary of some ongoing wind energy projects in Denmark is given. The research topics comprise computational model development, wind turbine (WT) design, low-noise airfoil and blade design, control device development, wake modelling and wind farm layout optimization....

  12. The role of anxiety in golf putting performance

    OpenAIRE

    Kenny, Ian; MacNamara, Aine; Shafat, Amir; Dunphy, Orla; Murphy, Sinead; O'Connor, Kenneth; Ryan, Tara; Waldron, Gerry

    2009-01-01

    peer-reviewed INTRODUCTION: Anxiety???s influence on performance continues to be one of the main research interests for sport psychologists (Hanin, 2000). It is apparent, though, that there is a lack of empirical research characterising the multi-disciplinary effect of anxiety on sports performance. The current study aimed to ascertain biomechanical (accuracy, movement variability) and psychological (anxiety) markers to determine how anxiety affects golf putting. METHOD: 22 healthy s...

  13. Wind energy in Mediterranean Basin

    International Nuclear Information System (INIS)

    Gaudiosi, G.

    1991-01-01

    In its examination of wind energy potential in the Mediterranean Basin, this paper provides brief notes on the Basin's geography; indicates power production and demand; describes the area's wind characteristics and wind monitoring activities; illustrates wind velocity distributions; estimates local wind power production potential; reviews the Basin's wind energy marketing situation and each bordering country's wind energy programs; surveys installed wind energy farms; and assesses national research and commercialization efforts

  14. SIMWEST - A simulation model for wind energy storage systems

    Science.gov (United States)

    Edsinger, R. W.; Warren, A. W.; Gordon, L. H.; Chang, G. C.

    1978-01-01

    This paper describes a comprehensive and efficient computer program for the modeling of wind energy systems with storage. The level of detail of SIMWEST (SImulation Model for Wind Energy STorage) is consistent with evaluating the economic feasibility as well as the general performance of wind energy systems with energy storage options. The software package consists of two basic programs and a library of system, environmental, and control components. The first program is a precompiler which allows the library components to be put together in building block form. The second program performs the technoeconomic system analysis with the required input/output, and the integration of system dynamics. An example of the application of the SIMWEST program to a current 100 kW wind energy storage system is given.

  15. Environmental Benefits of Using Wind Generation to Power Plug-In Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Mahdi Hajian

    2011-08-01

    Full Text Available As alternatives to conventional vehicles, Plug-in Hybrid Electric Vehicles (PHEVs running off electricity stored in batteries could decrease oil consumption and reduce carbon emissions. By using electricity derived from clean energy sources, even greater environmental benefits are obtainable. This study examines the potential benefits arising from the widespread adoption of PHEVs in light of Alberta’s growing interest in wind power. It also investigates PHEVs’ capacity to mitigate natural fluctuations in wind power generation.

  16. Energy Storage System with Voltage Equalization Strategy for Wind Energy Conversion

    OpenAIRE

    Tsai, Cheng-Tao

    2012-01-01

    In this paper, an energy storage system with voltage equalization strategy for wind energy conversion is presented. The proposed energy storage system provides a voltage equalization strategy for series-connected lead-acid batteries to increase their total storage capacity and lifecycle. In order to draw the maximum power from the wind energy, a perturbation-and-observation method and digital signal processor (DSP) are incorporated to implement maximum power point tracking (MPPT) algorithm an...

  17. Proper battery system design for GAS experiments

    Science.gov (United States)

    Calogero, Stephen A.

    1992-10-01

    The purpose of this paper is to help the GAS experimenter to design a battery system that meets mission success requirements while at the same time reducing the hazards associated with the battery system. Lead-acid, silver-zinc and alkaline chemistry batteries will be discussed. Lithium batteries will be briefly discussed with emphasis on back-up power supply capabilities. The hazards associated with different battery configurations will be discussed along with the controls necessary to make the battery system two-fault tolerant.

  18. Financial analysis of utility scale photovoltaic plants with battery energy storage

    International Nuclear Information System (INIS)

    Rudolf, Viktor; Papastergiou, Konstantinos D.

    2013-01-01

    Battery energy storage is a flexible and responsive form of storing electrical energy from Renewable generation. The need for energy storage mainly stems from the intermittent nature of solar and wind energy sources. System integrators are investigating ways to design plants that can provide more stable output power without compromising the financial performance that is vital for investors. Network operators on the other side set stringent requirements for the commissioning of new generation, including preferential terms for energy providers with a well-defined generation profile. The aim of this work is to highlight the market and technology drivers that impact the feasibility of battery energy storage in a Utility-scale solar PV project. A simulation tool combines a battery cycling and lifetime model with a solar generation profile and electricity market prices. The business cases of the present market conditions and a projected future scenario are analyzed. - Highlights: • Generation shifting with batteries allows PV projects to generate additional revenues. • Battery lifetime, lifecycles and price are less relevant than electricity market prices. • Installed battery capacity of up to 50% of the daily PV energy boosts project economy. • A 25% higher premium for energy storage could improve NPV by approximately 65%

  19. Mathematical analysis and coordinated current allocation control in battery power module systems

    Science.gov (United States)

    Han, Weiji; Zhang, Liang

    2017-12-01

    As the major energy storage device and power supply source in numerous energy applications, such as solar panels, wind plants, and electric vehicles, battery systems often face the issue of charge imbalance among battery cells/modules, which can accelerate battery degradation, cause more energy loss, and even incur fire hazard. To tackle this issue, various circuit designs have been developed to enable charge equalization among battery cells/modules. Recently, the battery power module (BPM) design has emerged to be one of the promising solutions for its capability of independent control of individual battery cells/modules. In this paper, we propose a new current allocation method based on charging/discharging space (CDS) for performance control in BPM systems. Based on the proposed method, the properties of CDS-based current allocation with constant parameters are analyzed. Then, real-time external total power requirement is taken into account and an algorithm is developed for coordinated system performance control. By choosing appropriate control parameters, the desired system performance can be achieved by coordinating the module charge balance and total power efficiency. Besides, the proposed algorithm has complete analytical solutions, and thus is very computationally efficient. Finally, the efficacy of the proposed algorithm is demonstrated using simulations.

  20. Controllers for Battery Chargers and Battery Chargers Therefrom

    Science.gov (United States)

    Elmes, John (Inventor); Kersten, Rene (Inventor); Pepper, Michael (Inventor)

    2014-01-01

    A controller for a battery charger that includes a power converter has parametric sensors for providing a sensed Vin signal, a sensed Vout signal and a sensed Iout signal. A battery current regulator (BCR) is coupled to receive the sensed Iout signal and an Iout reference, and outputs a first duty cycle control signal. An input voltage regulator (IVR) receives the sensed Vin signal and a Vin reference. The IVR provides a second duty cycle control signal. A processor receives the sensed Iout signal and utilizes a Maximum Power Point Tracking (MPPT) algorithm, and provides the Vin reference to the IVR. A selection block forwards one of the first and second duty cycle control signals as a duty cycle control signal to the power converter. Dynamic switching between the first and second duty cycle control signals maximizes the power delivered to the battery.

  1. Offshore wind resource estimation for wind energy

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Mouche, A.

    2010-01-01

    Satellite remote sensing from active and passive microwave instruments is used to estimate the offshore wind resource in the Northern European Seas in the EU-Norsewind project. The satellite data include 8 years of Envisat ASAR, 10 years of QuikSCAT, and 23 years of SSM/I. The satellite observati......Satellite remote sensing from active and passive microwave instruments is used to estimate the offshore wind resource in the Northern European Seas in the EU-Norsewind project. The satellite data include 8 years of Envisat ASAR, 10 years of QuikSCAT, and 23 years of SSM/I. The satellite...... observations are compared to selected offshore meteorological masts in the Baltic Sea and North Sea. The overall aim of the Norsewind project is a state-of-the-art wind atlas at 100 m height. The satellite winds are all valid at 10 m above sea level. Extrapolation to higher heights is a challenge. Mesoscale...... modeling of the winds at hub height will be compared to data from wind lidars observing at 100 m above sea level. Plans are also to compare mesoscale model results and satellite-based estimates of the offshore wind resource....

  2. A terracotta bio-battery.

    Science.gov (United States)

    Ajayi, Folusho F; Weigele, Peter R

    2012-07-01

    Terracotta pots were converted into simple, single chamber, air-cathode bio-batteries. This bio-battery design used a graphite-felt anode and a conductive graphite coating without added catalyst on the exterior as a cathode. Bacteria enriched from river sediment served as the anode catalyst. These batteries gave an average OCV of 0.56 V ± 0.02, a Coulombic efficiency of 21 ± 5%, and a peak power of 1.06 mW ± 0.01(33.13 mW/m(2)). Stable current was also produced when the batteries were operated with hay extract in salt solution. The bacterial community on the anode of the batteries was tested for air tolerance and desiccation resistance over a period ranging from 2 days to 2 weeks. The results showed that the anode community could survive complete drying of the electrolyte for several days. These data support the further development of this technology as a potential power source for LED-based lighting in off-grid, rural communities. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. A Power Smoothing Control Strategy and Optimized Allocation of Battery Capacity Based on Hybrid Storage Energy Technology

    Directory of Open Access Journals (Sweden)

    Yong Li

    2012-05-01

    Full Text Available Wind power parallel operation is an effective way to realize the large scale use of wind power, but the fluctuations of power output from wind power units may have great influence on power quality, hence a new method of power smoothing and capacity optimized allocation based on hybrid energy storage technology is proposed in terms of the uncontrollable and unexpected characteristics of wind speed in wind farms. First, power smoothing based on a traditional Inertial Filter is introduced and the relationship between the time constant, its smoothing effect and capacity allocation are analyzed and combined with Proportional Integral Differential (PID control to realize power smoothing control of wind power. Then wavelet theory is adopted to realize a multi-layer decomposition of power output in some wind farms, a power smoothing model based on hybrid energy storage technology is constructed combining the characteristics of the Super Capacitor (SC and Battery Energy Storage System (BESS technologies. The hybrid energy storage system is available for power fluctuations with high frequency-low energy and low frequency-high energy to achieve good smoothing effects compared with a single energy storage system. The power fluctuations filtered by the Wavelet Transform is regarded as the target value of BESS, the charging and discharging control for battery is completed quickly by Model Algorithm Control (MAC. Because of the influence of the inertia and the response speed of the battery, its actual output is not completely equal to the target value which mainly reflects in high-frequency part, the difference part uses SC to compensate and makes the output of battery and SC closer to the target value on the whole. Compared with the traditional Inertial Filter and PID control method, the validity of the model was verified by simulation results. Finally under the premise of power grid standards, the corresponding capacity design had been given to reduce the

  4. Potentials of wind power

    International Nuclear Information System (INIS)

    Bezrukikh, P.P.; Bezrukikh, P.P.

    2000-01-01

    The ecological advantages of the wind power facilities (WPF) are considered. The possibilities of small WPF, generating the capacity from 40 W up to 10 kW, are discussed. The basic technical data on the national and foreign small WPF are presented. The combined wind power systems are considered. Special attention is paid to the most perspective wind-diesel systems, which provide for all possible versions of the electro-power supply. Useful recommendations and information on the wind power engineering are given for those, who decided to build up a wind facility [ru

  5. Visualization of wind farms

    International Nuclear Information System (INIS)

    Pahlke, T.

    1994-01-01

    With the increasing number of wind energy installations the visual impact of single wind turbines or wind parks is a growing problem for landscape preservation, leading to resistance of local authorities and nearby residents against wind energy projects. To increase acceptance and to form a basis for planning considerations, it is necessary to develop instruments for the visualization of planned wind parks, showing their integration in the landscape. Photorealistic montages and computer animation including video sequences may be helpful in 'getting the picture'. (orig.)

  6. Mapping Wind Energy Controversies

    DEFF Research Database (Denmark)

    Munk, Anders Kristian

    As part the Wind2050 project funded by the Danish Council for Strategic Research we have mapped controversies on wind energy as they unfold online. Specifically we have collected two purpose built datasets, a web corpus containing information from 758 wind energy websites in 6 different countries......, and a smaller social media corpus containing information from 14 Danish wind energy pages on Facebook. These datasets have been analyzed to answer questions like: How do wind proponents and opponents organize online? Who are the central actors? And what are their matters of concern? The purpose of this report...

  7. Wind energy applications guide

    Energy Technology Data Exchange (ETDEWEB)

    anon.

    2001-01-01

    The brochure is an introduction to various wind power applications for locations with underdeveloped transmission systems, from remote water pumping to village electrification. It includes an introductory section on wind energy, including wind power basics and system components and then provides examples of applications, including water pumping, stand-alone systems for home and business, systems for community centers, schools, and health clinics, and examples in the industrial area. There is also a page of contacts, plus two specific example applications for a wind-diesel system for a remote station in Antarctica and one on wind-diesel village electrification in Russia.

  8. Wind energy systems

    International Nuclear Information System (INIS)

    Richardson, R.D.; McNerney, G.M.

    1993-01-01

    Wind energy has matured to a level of development where it is ready to become a generally accepted utility generation technology. A brief discussion of this development is presented, and the operating and design principles are discussed. Alternative designs for wind turbines and the tradeoffs that must be considered are briefly compared. Development of a wind energy system and the impacts on the utility network including frequency stability, voltage stability, and power quality are discussed. The assessment of wind power station economics and the key economic factors that determine the economic viability of a wind power plant are presented

  9. Analytic Theory of Wind-Driven Sea

    Science.gov (United States)

    Zakharov, V. E.

    2016-12-01

    Wind-driven sea is characterized by the spatial energy spectrum E(k), k - is a wave vector. The spectrum has a sharp maximum at k ≈ kp is defined by the wind velocity U and by the "wave-age" - degree of the sea development. For the"well developed sea" kp ≈ g/U2. For a typical value of U ≈ 15 m/sec (moderate gale) λp = 2π/kp≈ 100m. The minimalscale λcap λ > λcrit, λcrit ≈ 10-2λp. This range of scales contains more then 90% of wave energy. Wave dissipation in this range is negligibly small.2. Region of energy dissipation λ 5m/sec, the sea is also smooth and the dissipation is provided by transformation of gravity waves to capillary waves. For strong winds the dissipation is realized due to wave breaking. In this case one can observe the range of scales 5•10-2m method of theoretical physics. The statistical description of this part of the wind driven sea is described by the Hasselmann kinetic equation for the energy spectrum. This kinetic equation has a rich family of exact solutions, both stationary and time-dependent. It allows a comfortable and fast numerical simulations. Putting together results of the analytical theory and numerical simulations of waves it is possible to explain a bulk of facts, accumulated by experimentalists for decades.

  10. Fault Tolerant Wind Farm Control

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2013-01-01

    In the recent years the wind turbine industry has focused on optimizing the cost of energy. One of the important factors in this is to increase reliability of the wind turbines. Advanced fault detection, isolation and accommodation are important tools in this process. Clearly most faults are dealt...... with best at a wind turbine control level. However, some faults are better dealt with at the wind farm control level, if the wind turbine is located in a wind farm. In this paper a benchmark model for fault detection and isolation, and fault tolerant control of wind turbines implemented at the wind farm...... control level is presented. The benchmark model includes a small wind farm of nine wind turbines, based on simple models of the wind turbines as well as the wind and interactions between wind turbines in the wind farm. The model includes wind and power references scenarios as well as three relevant fault...

  11. Wind Tunnel Measurements at LM Wind Power

    DEFF Research Database (Denmark)

    Bertagnolio, Franck

    2012-01-01

    This section presents the results obtained during the experimental campaign that was conducted in the wind tunnel at LM Wind Power in Lunderskov from August 16th to 26th, 2010. The goal of this study is to validate the so-called TNO trailing edge noise model through measurements of the boundary...... layer turbulence characteristics and the far-field noise generated by the acoustic scattering of the turbulent boundary layer vorticies as they convect past the trailing edge. This campaign was conducted with a NACA0015 airfoil section that was placed in the wind tunnel section. It is equipped with high...

  12. Unique Structural Features and Sequence Motifs of Proline Utilization A (PutA)

    OpenAIRE

    Singh, Ranjan K.; Tanner, John J.

    2012-01-01

    Proline utilization A proteins (PutAs) are bifunctional enzymes that catalyze the oxidation of proline to glutamate using spatially separated proline dehydrogenase and pyrroline-5-carboxylate dehydrogenase active sites. Here we use the crystal structure of the minimalist PutA from Bradyrhizobium japonicum (BjPutA) along with sequence analysis to identify unique structural features of PutAs. This analysis shows that PutAs have secondary structural elements and domains not found in the related ...

  13. Application genetic algorithms for load management in refrigerated warehouses with wind power penetration

    DEFF Research Database (Denmark)

    Zong, Yi; Cronin, Tom; Gehrke, Oliver

    2009-01-01

    Wind energy is produced at random times, whereas the energy consumption pattern shows distinct demand peaks during day-time and low levels during the night. The use of a refrigerated warehouse as a giant battery for wind energy is a new possibility that is being studied for wind energy integration...... as well as a way to store electricity produced during night-time by wind turbines. The controller for load management in a refrigerated warehouse with wind power penetration by GA-based is introduced in this paper. The objective function is to minimize the energy consumption for operating the refrigerated...... warehouse. It can be seen that the GA-based control strategy achieves feasible results for operating the temperature in refrigerated warehouse. Balancing the wind power production with refrigerated warehouse load management promises to be a clean and cost effective method. For refrigerated warehouse owners...

  14. Wind energy in Europe

    International Nuclear Information System (INIS)

    Evans, L.C.

    1992-01-01

    Wind energy should be an important part of the energy supply mix, both at home and abroad, to provide cleaner air and a more stable fuel supply. Not only can wind energy contribute to solving complex global issues, it also can provide a large market for American technological leadership. Even though utilities are paying more attention to wind in a number of states, there are no plans for major installations of wind power plants in the United States. At the same time, European nations have developed aggressive wind energy development programs, including both ambitious research and development efforts and market incentives. Many countries recognize the importance of the clean energy provided by wind technology and are taking steps to promote their fledgling domestic industries. The emphasis on market incentives is starting to pay off. In 1991, European utilities and developers installed nearly twice as much wind capacity as Americans did. In 1992 the gap will be even greater. This article reviews aggressive incentives offered by European governments to boost their domestic wind industries at home and abroad in this almost $1 billion per year market. By offering substantial incentives - considerably more than the American Wind Energy Association (AWEA) is proposing - European nations are ensuring dramatic near-term wind energy development and are taking a major step toward dominating the international wind industry of the 21st century

  15. Kansas Wind Energy Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Gruenbacher, Don [Kansas State Univ., Manhattan, KS (United States)

    2015-12-31

    This project addresses both fundamental and applied research problems that will help with problems defined by the DOE “20% Wind by 2030 Report”. In particular, this work focuses on increasing the capacity of small or community wind generation capabilities that would be operated in a distributed generation approach. A consortium (KWEC – Kansas Wind Energy Consortium) of researchers from Kansas State University and Wichita State University aims to dramatically increase the penetration of wind energy via distributed wind power generation. We believe distributed generation through wind power will play a critical role in the ability to reach and extend the renewable energy production targets set by the Department of Energy. KWEC aims to find technical and economic solutions to enable widespread implementation of distributed renewable energy resources that would apply to wind.

  16. Wind Turbine Technologies

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela

    2017-01-01

    The wind turbine technology is a very complex technology involving multidisciplinary and broad technical disciplines such as aerodynamics, mechanics, structure dynamics, meteorology as well as electrical engineering addressing the generation, transmission, and integration of wind turbines...... into the power system. Wind turbine technology has matured over the years and become the most promising and reliable renewable energy technology today. It has moved very fast, since the early 1980s, from wind turbines of a few kilowatts to today’s multimegawatt-sized wind turbines [13]. Besides their size......, the design of wind turbines has changed from being convention driven to being optimized driven within the operating regime and market environment. Wind turbine designs have progressed from fixed speed, passive controlled and with drive trains with gearboxes, to become variable speed, active controlled...

  17. Wind tower service lift

    Science.gov (United States)

    Oliphant, David; Quilter, Jared; Andersen, Todd; Conroy, Thomas

    2011-09-13

    An apparatus used for maintaining a wind tower structure wherein the wind tower structure may have a plurality of legs and may be configured to support a wind turbine above the ground in a better position to interface with winds. The lift structure may be configured for carrying objects and have a guide system and drive system for mechanically communicating with a primary cable, rail or other first elongate member attached to the wind tower structure. The drive system and guide system may transmit forces that move the lift relative to the cable and thereby relative to the wind tower structure. A control interface may be included for controlling the amount and direction of the power into the guide system and drive system thereby causing the guide system and drive system to move the lift relative to said first elongate member such that said lift moves relative to said wind tower structure.

  18. Turning to the wind

    Science.gov (United States)

    Sorensen, B.

    1981-10-01

    Consideration is given the economic and technological aspects of both free-stream (horizontal-axis) and cross-wind (vertical-axis) wind energy conversion systems, with attention to operational devices ranging in rotor diameter from 10 to 40 m and in output from 22 to 630 kW. After a historical survey of wind turbine design and applications development, the near-term technical feasibility and economic attractiveness of combined wind/fossil-fueled generator and wind/hydroelectric systems are assessed. Also presented are estimates of wind energy potential extraction in the U.S. and Denmark, the industrial requirements of large-scale implementation, energy storage possibilities such as pumped hydro and flywheels, and cost comparisons of electrical generation by large and small wind systems, coal-fired plants, and light-water fission reactors.

  19. Wind power takes over

    International Nuclear Information System (INIS)

    2002-01-01

    All over the industrialized world concentrated efforts are being made to make wind turbines cover some of the energy demand in the coming years. There is still a long way to go, however, towards a 'green revolution' as far as energy is concerned, for it is quite futile to use wind power for electric heating. The article deals with some of the advantages and disadvantages of developing wind power. In Norway, for instance, environmentalists fear that wind power plants along the coast may have serious consequences for the stocks of white-tailed eagle and golden eagle. An other factor that delays the large-scale application of wind power in Norway is the low price of electricity. Some experts, however, maintain that wind power may already compete with new hydroelectric power of intermediate cost. The investment costs are expected to go down with one third by 2020, when wind power may be the most competitive energy source to utilize

  20. Wind energy conversion system

    Science.gov (United States)

    Longrigg, Paul

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  1. China, Norway and offshore wind development. A win-win wind relationship?

    Energy Technology Data Exchange (ETDEWEB)

    Enslow, Rachel

    2010-03-15

    This study published by WWF Norway, outlines the status of offshore wind power development in China and looks at how the Norwegian offshore industry can contribute to speed it up. Today China is the world's fastest growing market for renewable energy. China's annual offshore wind energy generation potential is 11,000 TWh, similar to that of the North Sea. The study estimates that in the next decade China will install 30 GW of offshore wind energy generation capacity. This could mitigate 1.3 billion tons of CO{sub 2} over the 20 year asset lifetime (more than the total Norwegian emissions forecast over the same period). To unleash China's potential and speed up development of offshore wind energy production, however, bridges must to be built between stakeholders with the relevant experience and the best available technology and policy makers and project developers in China. This study puts forward possible ways for future cooperation between China and Norway - a country with a world leading offshore industry cluster - in order to leverage mutual strengths to upscale and commercialize offshore wind technology for the global market. (Author)

  2. Distributed generation system using wind/photovoltaic/fuel cell

    Science.gov (United States)

    Buasri, Panhathai

    This dissertation investigates the performance and the operation of a distributed generation (DG) power system using wind/photovoltaic/fuel cell (W/PV/FC). The power system consists of a 2500 W photovoltaic array subsystem, a 500 W proton exchange membrane fuel cell (PEMFC) stack subsystem, 300 W wind turbine, 500 W wind turbine, and 1500 W wind energy conversion subsystems. To extract maximum power from the PV, a maximum power point tracker was designed and fabricated. A 4 kW single phase inverter was used to convert the DC voltage to AC voltage; also a 44 kWh battery bank was used to store energy and prevent fluctuation of the power output of the DG system. To connect the fuel cell to the batteries, a DC/DC controller was designed and fabricated. To monitor and study the performance of the DG system under variable conditions, a data acquisition system was designed and installed. The fuel cell subsystem performance was evaluated under standalone operation using a variable resistance and under interactive mode, connected to the batteries. The manufacturing data and the experimental data were used to develop an electrical circuit model to the fuel cell. Furthermore, harmonic analysis of the DG system was investigated. For an inverter, the AC voltage delivered to the grid changed depending on the time, load, and electronic equipment that was connected. The quality of the DG system was evaluated by investigating the harmonics generated by the power electronics converters. Finally, each individual subsystem of the DG system was modeled using the neuro-fuzzy approach. The model was used to predict the performance of the DG system under variable conditions, such as passing clouds and wind gust conditions. The steady-state behaviors of the model were validated by the experimental results under different operating conditions.

  3. Kinetic and thermodynamic analysis of Bradyrhizobium japonicum PutA-membrane associations.

    Science.gov (United States)

    Zhang, Weimin; Krishnan, Navasona; Becker, Donald F

    2006-01-01

    In Escherichia coli, proline induces tight membrane binding of the PutA flavoenzyme and transforms PutA from a transcriptional repressor to a membrane-associated proline catabolic enzyme. In other gram-negative bacteria such as Bradyrhizobium japonicum, PutA lacks DNA binding activity and functions only as a proline catabolic enzyme. Here, we characterize the membrane binding properties of PutA from B. japonicum (BjPutA) to address whether proline regulates BjPutA-lipid binding similar to Escherichia coli PutA (EcPutA). Surface plasmon resonance (SPR) kinetic measurements of BjPutA-lipid binding show BjPutA forms a complex with lipids in the absence and presence of proline with similar dissociation constant (K(D)) values of 2.5 and 1.7nM, respectively. SPR experiments using differently charged lipid bilayers indicate BjPutA selectively binds negatively charged lipids, which contrasts with the charge independent membrane binding of EcPutA. Analysis of BjPutA-lipid binding by isothermal titration calorimetry at 25 degrees C revealed an endothermic binding reaction that is entropically driven. This work shows that BjPutA-membrane associations vary significantly from EcPutA.

  4. Wind, photovoltaic and fuel cell energy for communication stations; Energia eolica, fotovoltaica e de celula a combustivel para estacoes de comunicacao

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Iolanda; Pereira, Jose; Alcobia, Hernani [Net Plan Telecomunicacoes e Energia, Lisboa (Portugal); Pereirinha, Paulo [Instituto Politecnico de Coimbra (Portugal); Instituto para Engenharia de Sistemas e Computadores de Coimbra (Portugal)

    2011-10-15

    This paper presents a hybrid system that provides power to a remote and autonomously telecommunications station by means of electrical solar generators, wind and hydrogen fuel cell. In the absence of sufficient sun and wind, a bank of batteries and hydrogen produced on-site guarantee the power supply. The station can still be remote monitored and managed.

  5. A Vertical-Axis Off-Grid Squirrel-Cage Induction Generator Wind Power System

    Directory of Open Access Journals (Sweden)

    Peifeng Xu

    2016-10-01

    Full Text Available In order to broaden the limited utilization range of wind power and improve the charging and discharging control performance of the storage battery in traditional small wind power generation systems, a wind power system based on a vertical-axis off-grid induction generator is proposed in this paper. The induction generator not only can run in a wide wind speed range but can also assist the vertical-axis wind turbine to realize self-starting at low wind speed. Combined with the maximum power point tracking method, the slip frequency control strategy is employed to regulate the pulse width modulation (PWM converter to control the output power of the proposed system when the wind speed and load change. The charge and discharge of the storage battery is realized by the segmented current-limiting control strategy by means of an electric power unloader device connected to the DC bus. All these implement a balanced and stable operation of the proposed power generation system. The experimental research on the 5.5 kW prototype system is developed, and the corresponding results verify the correctness and feasibility of the system design and control strategy. Some comparison experiments with a magnetic suspension permanent magnet synchronous generator (PMSG demonstrate the application prospect of the proposed vertical-axis off-grid induction generator wind power system.

  6. Vehicle Battery Safety Roadmap Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Doughty, D. H.

    2012-10-01

    The safety of electrified vehicles with high capacity energy storage devices creates challenges that must be met to assure commercial acceptance of EVs and HEVs. High performance vehicular traction energy storage systems must be intrinsically tolerant of abusive conditions: overcharge, short circuit, crush, fire exposure, overdischarge, and mechanical shock and vibration. Fail-safe responses to these conditions must be designed into the system, at the materials and the system level, through selection of materials and safety devices that will further reduce the probability of single cell failure and preclude propagation of failure to adjacent cells. One of the most important objectives of DOE's Office of Vehicle Technologies is to support the development of lithium ion batteries that are safe and abuse tolerant in electric drive vehicles. This Roadmap analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would further DOE's mission.

  7. Alternator control for battery charging

    Science.gov (United States)

    Brunstetter, Craig A.; Jaye, John R.; Tallarek, Glen E.; Adams, Joseph B.

    2015-07-14

    In accordance with an aspect of the present disclosure, an electrical system for an automotive vehicle has an electrical generating machine and a battery. A set point voltage, which sets an output voltage of the electrical generating machine, is set by an electronic control unit (ECU). The ECU selects one of a plurality of control modes for controlling the alternator based on an operating state of the vehicle as determined from vehicle operating parameters. The ECU selects a range for the set point voltage based on the selected control mode and then sets the set point voltage within the range based on feedback parameters for that control mode. In an aspect, the control modes include a trickle charge mode and battery charge current is the feedback parameter and the ECU controls the set point voltage within the range to maintain a predetermined battery charge current.

  8. The Philadelphia Face Perception Battery

    Science.gov (United States)

    Thomas, Amy; Lawler, Kathy; Olson, Ingrid R; Aguirre, Geoffrey K

    2008-01-01

    The Philadelphia Face Perception Battery (PFPB) tests four aspects of face perception: discrimination of facial similarity, attractiveness, gender, and age. Calibration with 116 neurologically intact subjects yielded average performance of ~90%. Across subjects, there was a low correlation (perception. There were modest effects of subject demographic factors upon performance, and test-retest reliability scores (between 0.37 and 0.75) were comparable to other neuropsychological batteries. Modification of the stimuli to obscure internal facial features lowered performance on the age, gender, and attractiveness discrimination tests between 2 and 4 standard deviations. The clinical sensitivity of the battery was demonstrated by testing a patient with acquired prosopagnosia. She showed performance impairments of between 2 and 4 standard deviations on all sub-tests. The PFPB is freely available for non-commercial use. PMID:18082362

  9. International cooperation on wind energy for rural areas in China

    International Nuclear Information System (INIS)

    Pengfei, Shi

    1991-01-01

    An overview of the recent wind energy activities in China is given. China has a long history in harnessing the wind; modern development started during the late seventies. The Chinese wind potential is mainly in the coastal regions (North East and South East) and in Inner Mongolia. The actual total installed wind power is estimated to be 15 MW. For low lift (within 2 meters), high volume applications, e.g. salt making in salt pans along the coast, of mechanical windmills coupled to screw pumps have been developed. In Inner Mongolia, small portable wind generators (50-200 MW) charging car batteries are supplying some 100,000 farmer and herdsman families with electricity for television and lighting. The average energy consumption is between 200 and 300 kWh per year and the corresponding kWh price 0.40 to 0.50 US$. Since 1988 the demand for small wind generators declined due to the lower wool prices on the world market, affecting the income of the herdsman, and due to the fact that the machines have to be marketed in remote, less accesible rural areas. Various demonstration projects have been set up, f.e. a decentralized energy system on Dachen Island, including a wind diesel hybrid system. On Kongdon Island a 60 kW wind turbine and a 60 kW diesel generator were installed. With several foreign wind turbine manufacturers cooperations have been set up for licensed production in China. Also wind farms have been installed. The largest Chinese prototype at the moment is a 32 meter diameter, 200 kW machine. Western organizations or manufacturers are involved in most of the cooperatives. For the next five years the focus is on development of a large 150 and 200 kW machine and a windmill coupled to a centrifugal pump for lifting heads between 2 and 5 meter. 1 fig., 3 refs

  10. Simulation and optimum design of hybrid solar-wind and solar-wind-diesel power generation systems

    Science.gov (United States)

    Zhou, Wei

    Solar and wind energy systems are considered as promising power generating sources due to its availability and topological advantages in local power generations. However, a drawback, common to solar and wind options, is their unpredictable nature and dependence on weather changes, both of these energy systems would have to be oversized to make them completely reliable. Fortunately, the problems caused by variable nature of these resources can be partially overcome by integrating these two resources in a proper combination to form a hybrid system. However, with the increased complexity in comparison with single energy systems, optimum design of hybrid system becomes more complicated. In order to efficiently and economically utilize the renewable energy resources, one optimal sizing method is necessary. This thesis developed an optimal sizing method to find the global optimum configuration of stand-alone hybrid (both solar-wind and solar-wind-diesel) power generation systems. By using Genetic Algorithm (GA), the optimal sizing method was developed to calculate the system optimum configuration which offers to guarantee the lowest investment with full use of the PV array, wind turbine and battery bank. For the hybrid solar-wind system, the optimal sizing method is developed based on the Loss of Power Supply Probability (LPSP) and the Annualized Cost of System (ACS) concepts. The optimization procedure aims to find the configuration that yields the best compromise between the two considered objectives: LPSP and ACS. The decision variables, which need to be optimized in the optimization process, are the PV module capacity, wind turbine capacity, battery capacity, PV module slope angle and wind turbine installation height. For the hybrid solar-wind-diesel system, minimization of the system cost is achieved not only by selecting an appropriate system configuration, but also by finding a suitable control strategy (starting and stopping point) of the diesel generator. The

  11. Scale-free texture of the fast solar wind

    Science.gov (United States)

    Hnat, B.; Chapman, S. C.; Gogoberidze, G.; Wicks, R. T.

    2011-12-01

    The higher-order statistics of magnetic field magnitude fluctuations in the fast quiet solar wind are quantified systematically, scale by scale. We find a single global non-Gaussian scale-free behavior from minutes to over 5 h. This spans the signature of an inertial range of magnetohydrodynamic turbulence and a ˜1/f range in magnetic field components. This global scaling in field magnitude fluctuations is an intrinsic component of the underlying texture of the solar wind and puts a strong constraint on any theory of solar corona and the heliosphere. Intriguingly, the magnetic field and velocity components show scale-dependent dynamic alignment outside of the inertial range.

  12. Investigation of competition within the international wind power market

    International Nuclear Information System (INIS)

    1995-11-01

    The aim was to investigate the nature of the competition within the international wind power market. This includes an evaluation of new commercial structures and the strong and weaker aspects of the competence and abilities of adaptation observed in relation to the Danish wind power industry. Emphasis is also put on the description of windmill-producing firms located abroad, their market development, competitiveness, level of activities and economic power. The results of this investigation are given in detail, illustrated with statistical data. (AB)

  13. Validation of Battery Safety for Space Missions

    Science.gov (United States)

    Jeevarajan, Judith

    2012-01-01

    Presentation covers: (1) Safety Certification Process at NASA (2) Safety Testing for Lithium-ion Batteries (3) Limitations Observed with Li-ion Batteries in High Voltage and High Capacity Configurations.

  14. Li-air batteries: Decouple to stabilize

    Science.gov (United States)

    Xu, Ji-Jing; Zhang, Xin-Bo

    2017-09-01

    The utilization of porous carbon cathodes in lithium-air batteries is hindered by their severe decomposition during battery cycling. Now, dual redox mediators are shown to decouple the complex electrochemical reactions at the cathode, avoiding cathode passivation and decomposition.

  15. Li-ion Battery Aging Datasets

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set has been collected from a custom built battery prognostics testbed at the NASA Ames Prognostics Center of Excellence (PCoE). Li-ion batteries were run...

  16. Battery failure model derived from flaw theory

    Science.gov (United States)

    Schulman, I.

    1981-01-01

    A previously derived failure model for battery lifetime is discussed in terms of growth rate of the flaw, distribution of flaw sizes, and number of flaws. Equations are presented for determining the failure model for a nickel cadmium battery.

  17. 46 CFR 129.353 - Battery categories.

    Science.gov (United States)

    2010-10-01

    ... INSTALLATIONS Power Sources and Distribution Systems § 129.353 Battery categories. This section applies to batteries installed to meet the requirements of § 129.310(a) for secondary sources of power to vital loads...

  18. Specification For ST-5 Li Ion Battery

    Science.gov (United States)

    Castell, Karen D.; Day, John H. (Technical Monitor)

    2000-01-01

    This Specification defines the general requirements for rechargeable Space Flight batteries intended for use in the ST-5 program. The battery chemistry chosen for this mission is lithium ion (Li-Ion).

  19. Materials science: Pulley protection in batteries

    Science.gov (United States)

    McDowell, Matthew T.

    2017-09-01

    High-energy battery electrodes can break apart during operation. Conventional rope-and-pulley systems have inspired the development of a polymer that holds electrodes together at the molecular scale, enabling durable batteries to be made.

  20. Practical Methods in Li-ion Batteries

    DEFF Research Database (Denmark)

    Barreras, Jorge Varela

    This thesis presents, as a collection of papers, practical methods in Li-ion batteries for simplified modeling (Manuscript I and II), battery electric vehicle design (III), battery management system testing (IV and V) and balancing system control (VI and VII). • Manuscript I tackles methodologies...... to parameterize battery models based solely on manufacturer’s datasheets • Manuscript II presents a parameterization method for battery models based on the notion of direct current resistance • Manuscript III proposes a battery electric vehicle design that combines fixed and swappable packs • Manuscript IV...... develops a battery system model for battery management system testing on a hardware-in-the-loop simulator • Manuscript V extends the previous work, introducing theoretical principles and presenting a practical method to develop ad hoc software and strategies for testing • Manuscript VI presents...

  1. Controlling fires in silver/zinc batteries

    Science.gov (United States)

    Boshers, W. A.; Britz, W. A.

    1977-01-01

    Silver/zinc storage battery fires are often difficult to extinguish. Improved technique employs manifold connected to central evacuation chamber to rapidly vent combustion-supporting gases generated by battery plate oxides.

  2. Survey of rechargeable battery technology

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    We have reviewed rechargeable battery technology options for a specialized application in unmanned high altitude aircraft. Consideration was given to all rechargeable battery technologies that are available commercially or might be available in the foreseeable future. The LLNL application was found to impose very demanding performance requirements which cannot be met by existing commercially available battery technologies. The most demanding requirement is for high energy density. The technology that comes closest to providing the LLNL requirements is silver-zinc, although the technology exhibits significant shortfalls in energy density, charge rate capability and cyclability. There is no battery technology available ``off-the-shelf` today that can satisfy the LLNL performance requirements. All rechargeable battery technologies with the possibility of approaching/meeting the energy density requirements were reviewed. Vendor interviews were carried out for all relevant technologies. A large number of rechargeable battery systems have been developed over the years, though a much smaller number have achieved commercial success and general availability. The theoretical energy densities for these systems are summarized. It should be noted that a generally useful ``rule-of-thumb`` is that the ratio of packaged to theoretical energy density has proven to be less than 30%, and generally less than 25%. Data developed for this project confirm the usefulness of the general rule. However, data shown for the silver-zinc (AgZn) system show a greater conversion of theoretical to practical energy density than would be expected due to the very large cell sizes considered and the unusually high density of the active materials.

  3. Introduction effect of a load levelling system in an electric power system with a photovoltaic and wind system; Taiyoko/furyoku hatsuden wo donyu shita denryoku keito ni okeru fuka heijunka shisutemu no donyu koka

    Energy Technology Data Exchange (ETDEWEB)

    Kenmoku, Y.; Sakakibara, T. [Toyohashi University of Technology, Aichi (Japan); Nakagawa, S. [Maizuru College of Technology, Kyoto (Japan); Kawamoto, T. [Shizuoka University, Shizuoka (Japan)

    1998-12-05

    Introduction effect of load levelling system by a battery in an electric power system by a battery in an electric power system with a PV and wind system is investigated. Charge and discharge power of the battery are determined from a load curve and every hour data of PV and wind output. Annual cost of the power system is calculated from the generating power and the capacity of each source via the installed utility capacity and the capacity factor. It is found that (1) the battery system reduces the maximum demand and improves the load factor, (2) the cost effect of the battery system when introducing the PV system is higher than that when introducing the wind system. (author)

  4. From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises.

    Science.gov (United States)

    Nayak, Prasant Kumar; Yang, Liangtao; Brehm, Wolfgang; Adelhelm, Philipp

    2018-01-02

    Mobile and stationary energy storage by rechargeable batteries is a topic of broad societal and economical relevance. Lithium-ion battery (LIB) technology is at the forefront of the development, but a massively growing market will likely put severe pressure on resources and supply chains. Recently, sodium-ion batteries (SIBs) have been reconsidered with the aim of providing a lower-cost alternative that is less susceptible to resource and supply risks. On paper, the replacement of lithium by sodium in a battery seems straightforward at first, but unpredictable surprises are often found in practice. What happens when replacing lithium by sodium in electrode reactions? This review provides a state-of-the art overview on the redox behavior of materials when used as electrodes in lithium-ion and sodium-ion batteries, respectively. Advantages and challenges related to the use of sodium instead of lithium are discussed. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Interrupt-Based Step-Counting to Extend Battery Life in an Activity Monitor

    Directory of Open Access Journals (Sweden)

    Seung Young Kim

    2016-01-01

    Full Text Available Most activity monitors use an accelerometer and gyroscope sensors to characterize the wearer’s physical activity. The monitor measures the motion by polling an accelerometer or gyroscope sensor or both every 20–30 ms and frequent polling affects the battery life of a wearable device. One of the key features of a commercial daily-activity monitoring device is longer battery life so that the user can keep track of his or her activity for a week or so without recharging the battery of the monitoring device. Many low-power approaches for a step-counting system use either a polling-based algorithm or an interrupt-based algorithm. In this paper, we propose a novel approach that uses the tap interrupt of an accelerometer to count steps while consuming low power. We compared the accuracy of step counting and measured system-level power consumption to a periodic sensor-reading algorithm. Our tap interrupt approach shows a battery lifetime that is 175% longer than that of a 30 ms polling method without gyroscope. The battery lifetime can be extended up to 863% with a gyroscope by putting both the processor and the gyroscope into sleep state during the majority of operation time.

  6. Second wind in the offshore wind industry

    International Nuclear Information System (INIS)

    Philippe, Edouard; Neyme, Eric; Deboos, Christophe; Villageois, Jean-Remy; Gouverneur, Philippe; Gerard, Bernard; Fournier, Eric; Petrus, Raymond; Lemarquis, David; Dener, Marc; Bivaud, Jean-Pierre; Lemaire, Etienne; Nielsen, Steffen; Lafon, Xavier; Lagandre, Pierre; Nadai, Alain; Pinot de Villechenon, Edouard; Westhues, Markus; Herpers, Frederick; Bisiaux, Christophe; Sperlich, Miriam; Bales, Vincent; Vandenbroeck, Jan; His, Stephane; Derrey, Thierry; Barakat, Georges; Dakyo, Brayima; Carme, Laurent; Petit, Frederic; Ytournel, Sophie; Westhues, Markus; Diller, Armin; Premont, Antoine de; Ruer, Jacques; Lanoe, Frederic; Declercq, Jan; Holmager, Morten; Fidelin, Daniel; Guillet, Jerome; Dudziak, Gregory; Lapierre, Anne; Couturier, Ludovic; Audineau, Jean-Pierre; Rouaix, Eric; De Roeck, Yann-Herve; Quesnel, Louis; Duguet, Benjamin

    2011-06-01

    After several keynote addresses, this publication contains contributions and Power Point presentations proposed during this conference on the development of offshore wind energy. The successive sessions addressed the following issues: the offshore mass production of electricity (examples of Denmark and Belgium, laying and protecting offshore cables), the space, economic and environmental planning (the Danish experience, the role of the Coastal area integrated management, importance of the public debate, so on), the logistics of port infrastructures (simulation tools, example of Bremerhaven, issues related to project management), innovation at the core of industrial strategies (high power wind turbines, the 6 MW Alstom turbine, chain value and innovation in offshore wind energy, the Vertiwing innovating project of a floating wind turbine, a bench test in Charleston, foundations, gravity base structures, the British experience, the Danish experience), the economic and organisational conditions for development, the validation and certification of technologies

  7. 78 FR 16031 - Twelfth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-03-13

    ... Federal Aviation Administration Twelfth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is issuing this notice to...

  8. 77 FR 39321 - Eighth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2012-07-02

    ... Federal Aviation Administration Eighth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Sizes AGENCY: Federal Aviation Administration (FAA), U.S... Lithium Battery and Battery Systems--Small and Medium Sizes. SUMMARY: The FAA is issuing this notice to...

  9. Battery Peak Power Shaving Strategy to Prolong Battery Life for Electric Buses

    NARCIS (Netherlands)

    Pham, T.H.; Rosea, B.; Wilkins, S.

    2016-01-01

    This paper presents a battery peak power shaving strategy for battery electric buses. The developed strategy restricts the battery charge/discharge power when the propulsion power demand is high to avoid high deterioration of the battery capacity during operation. Without reducing the propulsion

  10. Microfluidic fuel cells and batteries

    CERN Document Server

    Kjeang, Erik

    2014-01-01

    Microfluidic fuel cells and batteries represent a special type of electrochemical power generators that can be miniaturized and integrated in a microfluidic chip. Summarizing the initial ten years of research and development in this emerging field, this SpringerBrief is the first book dedicated to microfluidic fuel cell and battery technology for electrochemical energy conversion and storage. Written at a critical juncture, where strategically applied research is urgently required to seize impending technology opportunities for commercial, analytical, and educational utility, the intention is

  11. Solid-state lithium battery

    Science.gov (United States)

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  12. Aluminum-air battery crystallizer

    Science.gov (United States)

    Maimoni, A.

    1987-01-01

    A prototype crystallizer system for the aluminum-air battery operated reliably through simulated startup and shutdown cycles and met its design objectives. The crystallizer system allows for crystallization and removal of the aluminium hydroxide reaction product; it is required to allow steady-state and long-term operation of the aluminum-air battery. The system has to minimize volume and maintain low turbulence and shear to minimize secondary nucleation and energy consumption while enhancing agglomeration. A lamella crystallizer satisfies system constraints.

  13. 46 CFR 111.15-5 - Battery installation.

    Science.gov (United States)

    2010-10-01

    ... REQUIREMENTS Storage Batteries and Battery Chargers: Construction and Installation § 111.15-5 Battery... must be as close as possible to the engine or engines. (c) Small batteries. Small size battery... and, for a lead-acid battery, the fully charged specific gravity value. This information must be...

  14. Principles and applications of lithium secondary batteries

    CERN Document Server

    Park, Jung-Ki

    2012-01-01

    Lithium secondary batteries have been key to mobile electronics since 1990. Large-format batteries typically for electric vehicles and energystorage systems are attracting much attention due to current energy and environmental issues. Lithium batteries are expected to play a centralrole in boosting green technologies. Therefore, a large number of scientists and engineers are carrying out research and development onlithium secondary batteries.The book is written in a straightforward fashion suitable for undergraduate and graduate students, as well as scientists, and engineer

  15. Novel Electrolytes for Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lucht, Brett L. [Univ. of Rhode Island, Kingston, RI (United States). Dept. of Chemistry

    2014-12-12

    We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have been investigating the thermal stability of novel electrolytes for lithium ion batteries, in particular borate based salts. Second, we have been investigating novel additives to improve the calendar life of lithium ion batteries. Third, we have been investigating the thermal decomposition reactions of electrolytes for lithium-oxygen batteries.

  16. The emerging chemistry of sodium ion batteries for electrochemical energy storage.

    Science.gov (United States)

    Kundu, Dipan; Talaie, Elahe; Duffort, Victor; Nazar, Linda F

    2015-03-09

    Energy storage technology has received significant attention for portable electronic devices, electric vehicle propulsion, bulk electricity storage at power stations, and load leveling of renewable sources, such as solar energy and wind power. Lithium ion batteries have dominated most of the first two applications. For the last two cases, however, moving beyond lithium batteries to the element that lies below-sodium-is a sensible step that offers sustainability and cost-effectiveness. This requires an evaluation of the science underpinning these devices, including the discovery of new materials, their electrochemistry, and an increased understanding of ion mobility based on computational methods. The Review considers some of the current scientific issues underpinning sodium ion batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. BATTERIES 2020 – A Joint European Effort towards European Competitive Automotive Batteries

    DEFF Research Database (Denmark)

    Timmermans, J.-M.; Rodriguez-Martinez, L.M.; Omar, N.

    The Integrated Project “Batteries 2020” unites 9 European partners jointly working on the research and development of European competitive automotive batteries. The project aims at increasing lifetime and energy density of large format high-energy lithium-ion batteries towards the goals targeted...... of degradation processes. (iii) Reduction of battery cost; a way to reduce costs, increase battery residual value and improve sustainability is to consider second life uses of batteries used in EV. These batteries are still operational and suitable to less restrictive conditions, such as those for stationary...

  18. The Human Dimension: Putting the Person into Personalised Medicine.

    Science.gov (United States)

    Horne, Rob

    2017-04-01

    Technological advances enabling us to personalise medical interventions at the biological level must be matched by parallel advances in how we support the informed choices essential to patient and public participation. We cannot take participation for granted. To be truly personalised, medicine must take account of the perceptions and capabilities that shape participation. To do this, we need a better understanding of how people perceive personalised medicine and how they judge its value and risks. To realise the promise of 4P medicine we need to personalise at the psychosocial as well as biological dimension, putting the person into personalised medicine.

  19. A Battery Power Bank with Series-Connected Buck–Boost-Type Battery Power Modules

    Directory of Open Access Journals (Sweden)

    Tsung-Hsi Wu

    2017-05-01

    Full Text Available The operation of a battery power bank with series-connected buck–boost-type battery power modules (BPMs was investigated in this study. Each BPM consisted of a battery pack with an associated buck–boost converter for individually controlling battery currents. With a proposed discharging scenario, load voltage regulation with charge equalization among batteries was performed by controlling the battery currents in accordance with their state-of-charges (SOCs estimated by real-time battery-loaded voltages detected under the same operating condition. In addition, the fault tolerance was executed to isolate exhausted or faulty batteries from the battery power bank without interrupting the system operation. Experiments were conducted to verify the effectiveness of the discharging scenario for a laboratory battery power bank with four series buck–boost BPMs.

  20. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    Science.gov (United States)

    Bockelmann, Thomas R [Battle Creek, MI; Hope, Mark E [Marshall, MI; Zou, Zhanjiang [Battle Creek, MI; Kang, Xiaosong [Battle Creek, MI

    2009-02-10

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  1. Observability of wind power

    International Nuclear Information System (INIS)

    Gonot, J.P.; Fraisse, J.L.

    2009-01-01

    The total installed capacity of wind power grows from a few hundred MW at the beginning of 2005 to 3400 MW at the end of 2008. With such a trend, a total capacity of 7000 MW could be reached by 2010. The natural variability of wind power and the difficulty of its predictability require a change in the traditional way of managing supply/demand balance, day-ahead margins and the control of electrical flows. As a consequence, RTE operators should be informed quickly and reliably of the real time output power of wind farms and of its evolvement some hours or days ahead to ensure the reliability of the French electrical power system. French specificities are that wind farms are largely spread over the territory, that 95 % of wind farms have an output power below 10 MW and that they are connected to the distribution network. In this context, new tools were necessary to acquire as soon as possible data concerning wind power. In two years long, RTE set up an observatory of wind production 'IPES system' enable to get an access to the technical characteristics of the whole wind farms, to observe in real time 75 % of the wind generation and to implement a forecast model related to wind generation. (authors)

  2. Financing wind projects

    International Nuclear Information System (INIS)

    Manson, J.

    2006-01-01

    This presentation reviewed some of the partnership opportunities available from GE Energy. GE Energy's ecomagination commitment has promised to double research investment, make customers true partners and reduce greenhouse gases (GHGs). GE Energy's renewable energy team provides a broad range of financial products, and has recently funded 30 wind farms and 2 large solar projects. The company has a diverse portfolio of technology providers and wind regimes, and is increasing their investment in technology. GE Energy recognizes that the wind industry is growing rapidly and has received increased regulatory support that is backed by strong policy and public support. It is expected that Canada will have 3006 wind projects either planned or under construction by 2007. According to GE Energy, successful wind financing is dependent on the location of the site and its wind resources, as well as on the wind developer's power sales agreement. The success of a wind project is also determined by clear financing goals. Site-specific data is needed to determine the quality of wind resource, and off-site data can also be used to provide validation. Proximity to load centres will help to minimize capital costs. Power sales agreements should be based on the project's realistic net capacity factor as well as on the cost of the turbines. The economics of many wind farms is driven by the size of the turbines used. Public consultations are also needed to ensure the success of wind power projects. It was concluded that a good partner will have staying power in the wind power industry, and will understand the time-lines and needs that are peculiar to wind energy developers. refs., tabs., figs

  3. Battery impedance spectroscopy using bidirectional grid connected ...

    Indian Academy of Sciences (India)

    Shimul Kumar Dam

    Impedance spectroscopy; grid connection; battery converter; state of charge; health monitoring. 1. Introduction. Batteries play an important role as energy storage devices for renewable energy sources, electric vehicle and many other applications. A battery bank is interfaced to load through a power converter, which controls ...

  4. Review of storage battery system cost estimates

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.R.; Russell, J.A.

    1986-04-01

    Cost analyses for zinc bromine, sodium sulfur, and lead acid batteries were reviewed. Zinc bromine and sodium sulfur batteries were selected because of their advanced design nature and the high level of interest in these two technologies. Lead acid batteries were included to establish a baseline representative of a more mature technology.

  5. Top ten reasons why coke batteries fail

    Energy Technology Data Exchange (ETDEWEB)

    Dohle, H.; Schulte, H.; Ramani, R.V. [ThyssenKrupp EnCoke GmbH, Bochum (Germany)

    2002-07-01

    The reasons for the failure of coke batteries are varied and interrelated. Identifying them and taking precautionary measures against them will help with the possible extension of the service life of the batteries. Most of the contributory factors are interrelated and in combination they encourage faster deterioration of the battery. 6 refs., 12 figs.

  6. A rechargeable carbon-oxygen battery

    DEFF Research Database (Denmark)

    2014-01-01

    The invention relates to a rechargeable battery and a method to operate a rechargeable battery having high efficiency and high energy density for storing energy. The battery stores electrical energy in the bonds of carbon and oxygen atoms by converting carbon dioxide into solid carbon and oxygen....

  7. Battery impedance spectroscopy using bidirectional grid connected ...

    Indian Academy of Sciences (India)

    Battery impedance can provide valuable insight into the condition of the battery. Commercially available impedance measurement instruments are expensive. Hence their direct use in a battery management system is not justifiable. In this work, a 3-kW bi-directional converter for charging and discharging a batterybank has ...

  8. Energy transition. To put an end to generally accepted ideas

    International Nuclear Information System (INIS)

    2017-03-01

    In a set of brief texts, this publication shows that many commonly heard statements regarding energy are wrong. These wrong statements are: Germany has replaced its nuclear by coal which is even more polluting and harmful for the climate; Renewable energies will never cover all our electricity needs, and we'll still need nuclear or gas when wind turbines and solar arrays do not produce; French people are largely opposed to renewable energies, notably those located at the proximity of wind energy projects; Doing without nuclear is depriving of an electricity which is lastingly cheaper than that of our neighbours; Closing nuclear and coal plants will automatically increase unemployment, that which is unacceptable in these times of crisis; Renewable energies will have negative impacts on landscapes as territories will be covered with wind turbines and solar arrays; Renewable energies are harmful for the environment (wind turbine kill huge amounts of birds, and solar arrays use rare earth materials); Ecologists always want to create more additional taxes; Car is necessary, notably in rural areas where there is no public transports; Pollution peaks are mainly caused by pollution coming from Germany and by chimneys and farmers, and cars are not responsible for that; Eating organic food is much more expensive; Helping countries of the South to struggle against climate change is an expense France cannot afford; France almost does not emit greenhouse gases in comparison with China and the USA, and thus, why should we make efforts when other countries do not make them?; Thanks to nuclear, France is more energetically independent; Nuclear does not emit greenhouse gases, it's a clean energy

  9. Market, Legislation Make Wind an Attractive Investment in Texas

    Energy Technology Data Exchange (ETDEWEB)

    2001-06-01

    This brochure, part of the SEP Stellar Projects series, covers development of wind energy in Texas due to favorable legislation and public policy and favorable market forces. Those odd shaped structures popping up out in West Texas aren't funny looking oil rigs and they're not genetically altered cotton plants. They're wind turbines, an old technology with a 21st century update. Once too expensive for commercial production, the addition of computers to wind turbines and the rise in fossil fuel prices has brought the cost of wind-generated electricity in line with other power sources. A push by the 1999 Legislature to restructure the retail electric power market put in place rules that encourage wind generation. One rule requires Texas utilities to get an additional 2,000 megawatts of their power from renewable resources such as wind and solar power by 2009. Rules easing the cost of transmitting electricity from remote areas also aid the development of wind farms in West Texas.

  10. Strategy Design of Hybrid Energy Storage System for Smoothing Wind Power Fluctuations

    Directory of Open Access Journals (Sweden)

    Jingyu Liu

    2016-11-01

    Full Text Available With the increasing contribution of wind power plants, the reliability and security of modern power systems have become a huge challenge due to the uncertainty and intermittency of wind energy sources. In this paper, a hybrid energy storage system (HESS consisting of battery and supercapacitor is built to smooth the power fluctuations of wind power. A power allocation strategy is proposed to give full play to the respective advantages of the two energy storage components. In the proposed strategy, the low-frequency and high-frequency components of wind power fluctuations are absorbed by battery groups and supercapacitor groups, respectively. By inhibiting the low-frequency components of supercapacitor current, the times of charging-discharging of battery groups can be significantly reduced. A DC/AC converter is applied to achieve the power exchange between the HESS and the grid. Adjustment rules for regulating state-of-charge (SOC of energy storage elements are designed to avoid overcharge and deep discharge considering the safety and the high efficiency of the energy storage elements. Experimental results on the test platform verify the effectiveness of the proposed power allocation strategy in DC/AC converter and battery SOC adjustment rules for regulating SOC levels.

  11. Frequency participation by using virtual inertia in wind turbines including energy storage

    DEFF Research Database (Denmark)

    Xiao, Zhao xia; Huang, Yu; Guerrero, Josep M.

    2017-01-01

    (WT) and battery unit (BU). A central controller forecasts wind speed and determines system operation states to be sent to the local controllers. These local controllers include MPPT, virtual inertia, and pitch control for the WT; and power control loops for the BU. The proposed approach achieve...

  12. Regulation of flavin dehydrogenase compartmentalization: requirements for PutA-membrane association in Salmonella typhimurium.

    Science.gov (United States)

    Surber, M W; Maloy, S

    1999-09-21

    PutA is a multifunctional, peripheral membrane protein which functions both as an autogenous transcriptional repressor and the enzyme which catalyzes the two-step conversion of proline to glutamate in Salmonella typhimurium and Escherichia coli. To understand how PutA associates with the membrane, we determined the role of FAD redox and membrane components in PutA-membrane association. Reduction of the tightly bound FAD is required for both derepression of the put operon and membrane association of PutA. FADH(2) alters the conformation of PutA, resulting in an increased hydrophobicity. Previous studies used enzymatic activity as an assay for membrane association and concluded that electron transfer from the reduced FAD in PutA to the membrane is required for the PutA-membrane interaction. However, direct physical assays of PutA association with membrane vesicles from quinone deficient mutants demonstrated that although electron transfer is essential for proline dehydrogenase activity, it is not required for PutA-membrane association per se. Furthermore, PutA efficiently associated with liposomes, indicating that PutA-membrane association does not require interactions with other membrane proteins. PutA enzymatic activity can be efficiently reconstituted with liposomes containing ubiquinone and cytochrome bo, confirming that proline dehydrogenase can pass electrons directly to the quinone pool. These results indicate that PutA-membrane association is due strictly to a protein-lipid interaction initiated by reduction of FAD.

  13. Examples of using CFD for wind turbine aerodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, M.O.L.; Soerensen, J.N. [Technical Univ. of Denmark, Dept. of Energy Engineering (Denmark); Soerensen, N.N. [Risoe National Lab., Test Station for Wind Turbines (Denmark)

    1997-12-31

    Overall it is concluded that in order to improve the results from CFD (Computational Fluid Dynamics) for wind turbine aerodynamics characterized by: high angles of attack; thick airfoils; 3-D effects; instationary effects. Extreme care must be put on turbulence and transition models, and fine grids are necessary especially at the suction peak. If these precautions are taken CFD can be used as a tool for obtaining lift and drag coefficients for the BEM (Blade Element Momentum) model. (au)

  14. A Project Assessment of Stabilizing System of WT Generation using Rechargeable Battery

    Science.gov (United States)

    Kojima, Yasuhiro; Takano, Tomihiro; Tanikawa, Ryoichi; Takagi, Tetsuro; Hirooka, Koutaro; Kumagai, Sadatoshi

    The expansion of the renewable energy introduction is examined as measures for controlling global warming. Wind power generation is expected as effective power resource, but the negative impact from the difficulty of an unstable output is concerned. In recent years, WT generation with contract of cut-of with shorting adjusting power and with rechargeable battery for stabilizing control are examined, but the introduction has not been accelerated yet because there is an influence in WT generation entrepreneur's business. In this paper, we make a brief summary of relation between the fluctuation of wind power generation and stability of electric power operation, and two types of approach; cut-off contract and stabilization using rechargeable battery. For the stabilization using battery, there are two methods, one is reduction control and the other is constant control. We propose a new control method for constant control based on profit optimization considering WT generation forecast and its risk of deviation. We also propose the estimation method for the .limitation of battery installation. Simulation results show the efficiency of our proposed methods.

  15. Put an end to population growth and improve productivity.

    Science.gov (United States)

    Chung, U W

    1999-01-01

    The representative from Korea at the 15th Asian Parliamentarians' Meeting discussed issues concerning the environment, food security, and population growth. The implementation of population control programs is an issue that warrants continuous attention and efforts. The imbalance in the sexes, the decrease in the labor force, the rapid increase in number of senior citizens, insufficient food, unbalanced population distribution due to urbanization, and pollution are some of the new threats humanity faces. Like other developing countries, Korea put environmental protection on the back burner and its economic development took precedence over environmental concerns. As a result, Korea fostered industries that consume massive amounts of energy and resources, polluting the environment. Not only environmental hazards, but also social ills such as population concentration in urban areas, security problems, deteriorating living conditions, and crimes, developed due to industrialization and urbanization. The main priority should be the revival of the earth and the study of the effects of population growth on the environment. The root causes of environmental destruction consist of explosive population growth, industrial pollution, and development; the best way to restrain these destructive forces is to put an end to population growth. To improve food security, humanity needs to make specific action plans to implement the Hague Declaration urging the establishment of the World Food Bank.

  16. Putting Reusability First: A Paradigm Switch in Remote Laboratories Engineering

    Directory of Open Access Journals (Sweden)

    Romain Vérot

    2009-02-01

    Full Text Available In this paper, we present a new devices brought online thanks to our Collaborative Remote Laboratories framework. Whereas previous devices integrated in our remote laboratory belongs to the domain of electronics, such as Vector Network Analyzers, the devices at the concern in this paper are, on one hand, an antenna workbench, and on the other, an homemade switching device, which embeds several electronic components. Because the middleware and framework for our environment were designed to be reusable, we wanted to put it to the test by integrating new and different devices in our Online Engineering catalog. After presenting the devices to be put online, we will expose the software development efforts required in regards to the reusability of the solution. As a consequence, the expose work and results tend to make the Online Engineering software architects to think reusability first, breaking with the current trends to implement Remote Labs one after the other, without much reusability, apart the capitalized experience. In this, we defend a paradigm switch in our current engineering approaches for Remote Laboratories implementations: Reusability should be thought first.

  17. Transfer of mechanical energy during the shot put

    Directory of Open Access Journals (Sweden)

    Błażkiewicz Michalina

    2016-09-01

    Full Text Available The aim of this study was to analyse transfer of mechanical energy between body segments during the glide shot put. A group of eight elite throwers from the Polish National Team was analysed in the study. Motion analysis of each throw was recorded using an optoelectronic Vicon system composed of nine infrared camcorders and Kistler force plates. The power and energy were computed for the phase of final acceleration of the glide shot put. The data were normalized with respect to time using the algorithm of the fifth order spline and their values were interpolated with respect to the percentage of total time, assuming that the time of the final weight acceleration movement was different for each putter. Statistically significant transfer was found in the study group between the following segments: Right Knee – Right Hip (p = 0.0035, Left Hip - Torso (p = 0.0201, Torso – Right Shoulder (p = 0.0122 and Right Elbow – Right Wrist (p = 0.0001. Furthermore, the results of cluster analysis showed that the kinetic chain used during the final shot acceleration movement had two different models. Differences between the groups were revealed mainly in the energy generated by the hips and trunk.

  18. Offshore Wind Power Data

    DEFF Research Database (Denmark)

    Cutululis, Nicolaos Antonio; Litong-Palima, Marisciel; Zeni, Lorenzo

    2012-01-01

    Wind power development scenarios are critical when trying to assess the impact of the demonstration at national and European level. The work described in this report had several objectives. The main objective was to prepare and deliver the proper input necessary for assessing the impact of Demo 4...... – Storm management at national and European level. For that, detailed scenarios for offshore wind power development by 2020 and 2030 were required. The aggregation level that is suitable for the analysis to be done is at wind farm level. Therefore, the scenarios for offshore wind power development offer...... details about the wind farms such as: capacity and coordinates. Since the focus is on the impact of storm fronts passage in Northen Europe, the offshore wind power scenarios were estimated only for the countries at North and Baltic Sea. The sources used are public sources, mentioned in the reference list...

  19. Wind farm economics

    International Nuclear Information System (INIS)

    Milborrow, D.J.

    1995-01-01

    The economics of wind energy are changing rapidly, with improvements in machine performance and increases in size both contributing to reduce costs. These trends are examined and future costs assessed. Although the United Kingdom has regions of high wind speed, these are often in difficult terrain and construction costs are often higher than elsewhere in Europe. Nevertheless, wind energy costs are converging with those of the conventional thermal sources. At present, bank loan periods for wind projects are shorter than for thermal plant, which means that energy prices are higher. Ways of overcoming this problem are explored. It is important, also, to examine the value of wind energy. It is argued that wind energy has a higher value than energy from centralized plant, since it is fed into the low-voltage distribution network. (Author)

  20. Wind power in France

    International Nuclear Information System (INIS)

    Tuille, F.; Courtel, J.

    2015-01-01

    After 3 years of steady decreasing, wind power has resumed growth in 2014 in France and the preliminary figures of 2015 confirm this trend. About 1100 MW were installed in 2014 which was almost twice as much as it was installed the year before. This renaissance is mostly due to the implementation of Brottes' law that eases the installations of wind farms by suppressing the wind power development areas (that were interfering with regional wind power schemes) and by suppressing the minimum number of 5 turbines for any new wind farms. Another important incentive measure was the announcement in January 2015 of a new financial support scheme in replacement of the policy of guaranteed purchase price for the electricity produced. In 2014 the total wind power produced in mainland France reached 17 TW which represented 3.1% of the production of electricity. (A.C.)

  1. Extreme winds in Denmark

    DEFF Research Database (Denmark)

    Kristensen, L.; Rathmann, O.; Hansen, S.O.

    2000-01-01

    ), Kegnaes (7 yr), Sprogo (20 yr), and Tystofte (16 yr). The measured data are wind speed, wind direction, temperature and pressure. The wind records are cleaned for terrain effects by means of WASP (Mortensew ct al., Technical Report I-666 (EN), Riso National Laboratory, 1993. Vol. 2. User's Guide......): assuming geostrophic balance, all the wind-velocity data are transformed to friction velocity u(*) and direction at standard conditions by means of the geostrophic drag law for neutral stratification. The basic wind velocity in 30 degrees sectors are obtained through ranking of the largest values...... of the friction velocity pressure pu(*)(2)/2 taken once every two months. The main conclusion is that the basic wind velocity is significantly larger at the west coast of Jutland (25 +/- 1 m/s) than at any of the other sites (22 +/- 1 m/s). These results are in agreement with those obtained by Jensen and Franck...

  2. Wind turbine state estimation

    DEFF Research Database (Denmark)

    Knudsen, Torben

    2014-01-01

    the results using full-scale wind turbine data. The previously developed methods were based on extended Kalman filtering. This method has several drawback compared to unscented Kalman filtering which has therefore been developed. The unscented Kalman filter was first tested on linear and non-linear test cases......Dynamic inflow is an effect which is normally not included in the models used for wind turbine control design. Therefore, potential improvement from including this effect exists. The objective in this project is to improve the methods previously developed for this and especially to verify...... which was successful. Then the estimation of a wind turbine state including dynamic inflow was tested on a simulated NREL 5MW turbine was performed. This worked perfectly with wind speeds from low to nominal wind speed as the output prediction errors where white. In high wind where the pitch actuator...

  3. Noise from wind turbines

    International Nuclear Information System (INIS)

    Andersen, B.; Jakobsen, J.

    1992-11-01

    Based on a previous project concerning the calculation of the amount of noise emanating from wind turbine arrays, this one examines the subject further by investigating whether there could be significant differences in the amount of noise made by individual wind turbines in an array, and whether the noise is transmitted in varying directions - so that when it is carried in the same direction as the wind blows it would appear to be louder. The aim was also to determine whether the previously used method of calculation lacked precision. It was found that differences in noise niveaux related to individual wind turbines were insignificant and that noise was not so loud when it was not borne in the direction of the wind. It was necessary to change the method of calculation as reckoning should include the influence of the terrain, wind velocity and distance. The measuring and calculation methods are exemplified and the resulting measurements are presented in detail. (AB)

  4. Wind turbine pitch optimization

    DEFF Research Database (Denmark)

    Biegel, Benjamin; Juelsgaard, Morten; Stoustrup, Jakob

    2011-01-01

    We consider a static wind model for a three-bladed, horizontal-axis, pitch-controlled wind turbine. When placed in a wind field, the turbine experiences several mechanical loads, which generate power but also create structural fatigue. We address the problem of finding blade pitch profiles......% compared to any constant pitch profile while sacrificing at most 7% of the maximum attainable output power. Using iterative learning, we show that very similar performance can be achieved by using only load measurements, with no knowledge of the wind field or wind turbine model....... for maximizing power production while simultaneously minimizing fatigue loads. In this paper, we show how this problem can be approximately solved using convex optimization. When there is full knowledge of the wind field, numerical simulations show that force and torque RMS variation can be reduced by over 96...

  5. SERI Wind Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    Noun, R. J.

    1983-06-01

    The SERI Wind Energy Program manages the areas or innovative research, wind systems analysis, and environmental compatibility for the U.S. Department of Energy. Since 1978, SERI wind program staff have conducted in-house aerodynamic and engineering analyses of novel concepts for wind energy conversion and have managed over 20 subcontracts to determine technical feasibility; the most promising of these concepts is the passive blade cyclic pitch control project. In the area of systems analysis, the SERI program has analyzed the impact of intermittent generation on the reliability of electric utility systems using standard utility planning models. SERI has also conducted methodology assessments. Environmental issues related to television interference and acoustic noise from large wind turbines have been addressed. SERI has identified the causes, effects, and potential control of acoustic noise emissions from large wind turbines.

  6. Wind Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke

    2017-01-01

    Wind power now represents a major and growing source of renewable energy. Large wind turbines (with capacities of up to 6-8 MW) are widely installed in power distribution networks. Increasing numbers of onshore and offshore wind farms, acting as power plants, are connected directly to power...... transmission networks at the scale of hundreds of megawatts. As its level of grid penetration has begun to increase dramatically, wind power is starting to have a significant impact on the operation of the modern grid system. Advanced power electronics technologies are being introduced to improve...... the characteristics of the wind turbines, and make them more suitable for integration into the power grid. Meanwhile, there are some emerging challenges that still need to be addressed. This paper provides an overview and discusses some trends in the power electronics technologies used for wind power generation...

  7. Danish Wind Power

    DEFF Research Database (Denmark)

    Lund, Henrik; Hvelplund, Frede; Østergaard, Poul Alberg

    In a normal wind year, Danish wind turbines generate the equivalent of approx. 20 percent of the Danish electricity demand. This paper argues that only approx. 1 percent of the wind power production is exported. The rest is used to meet domestic Danish electricity demands. The cost of wind power......, a study made by the Danish think tank CEPOS claimed the opposite, i.e. that most of the Danish wind power has been exported in recent years. However, this claim is based on an incorrect interpretation of statistics and a lack of understanding of how the international electricity markets operate...... is paid solely by the electricity consumers and the net influence on consumer prices was as low as 1-3 percent on average in the period 2004-2008. In 2008, the net influence even decreased the average consumer price, although only slightly. In Denmark, 20 percent wind power is integrated by using both...

  8. Transparent lithium-ion batteries

    KAUST Repository

    Yang, Y.

    2011-07-25

    Transparent devices have recently attracted substantial attention. Various applications have been demonstrated, including displays, touch screens, and solar cells; however, transparent batteries, a key component in fully integrated transparent devices, have not yet been reported. As battery electrode materials are not transparent and have to be thick enough to store energy, the traditional approach of using thin films for transparent devices is not suitable. Here we demonstrate a grid-structured electrode to solve this dilemma, which is fabricated by a microfluidics-assisted method. The feature dimension in the electrode is below the resolution limit of human eyes, and, thus, the electrode appears transparent. Moreover, by aligning multiple electrodes together, the amount of energy stored increases readily without sacrificing the transparency. This results in a battery with energy density of 10 Wh/L at a transparency of 60%. The device is also flexible, further broadening their potential applications. The transparent device configuration also allows in situ Raman study of fundamental electrochemical reactions in batteries.

  9. Phthalocyanines in batteries and supercapacitors

    CSIR Research Space (South Africa)

    Oni, J

    2012-08-01

    Full Text Available of their lower cost. This review article looks through a very narrow window of the applications of phthalocyanines in batteries and supercapacitors as a means of improving the qualities such as cycle property, energy density, capacity, open circuit voltage, etc...

  10. A nanoview of battery operation

    DEFF Research Database (Denmark)

    Schougaard, Steen Brian

    2016-01-01

    The redox-active materials in lithium-ion batteries have relatively poor electronic and ionic conduction and may experience stress from charge-discharge volume changes, so their formulation into structures with nanosized features is highly desirable. On page 566 of this issue, Lim et al. (1...

  11. Offshore wind energy: the Nantes administrative court gives its first decisions

    International Nuclear Information System (INIS)

    Deharbe, David; Deldique, Lou

    2017-01-01

    In May 2017, the Nantes administrative court gave a restrictive appraisal to the acting interest of associations and cities contesting the installation and exploitation approval of a wind farm off Saint Nazaire coast and rejected the different arguments put forward by the opponents of the project. This decision suggests a probably favorable jurisprudence for the forthcoming offshore wind farm projects. This paper presents the explanatory statement and comments the conclusions of the judgement

  12. Environmental assessment of batteries for photovoltaic systems

    International Nuclear Information System (INIS)

    Brouwer, J.M.; Lindeijer, E.W.

    1993-10-01

    A life cycle analysis (LCA) on 4 types of batteries for PV systems has been performed. in order to assess the environmental impacts of the various battery types, leading to recommendations for improvements in the production and use of batteries. The different battery types are compared on the basis of a functional unit: 240 kWh electric energy from PV modules delivered for household applications by one flat-plate lead-acid battery. An important product characteristic is the performance; in the study a Ni-Cd battery is taken to deliver 4 times as much energy as a flat plate battery (Pb-flat), a rod plate battery (Pb-rod) 3.4 times as much and a tubular plate battery (Pb-tube) 2.8 times as much. Environmental data was gathered from recent primary and secondary data in a database under internal quality control. Calculations were performed with an updated version of SIMAKOZA, a programme developed by the Centre of Environmental Science (CML), University of Leiden, Leiden, Netherlands. Of the types investigated, the Pb tube battery is to be preferred environmentally. Using one allocation method for recycling, the NiCd battery scores best on ozone depletion since no PVC is used (PVC production demands cooling with CFCs), on non-toxic waste and on disruption of ecosystems. The lead-bearing batteries score better on other aspects due to lower energy consumption during production and no emissions of cadmium. Using another allocation method for recycling the NiCd battery scores best on almost all environmental topics. Both allocation methods supplement each other. For resource depletion, regarding cadmium as an unavoidable by-product of zinc production renders NiCd batteries as much less problematic than lead/acid batteries, but taking account of the physical resources available would make the use of cadmium much more problematic than the use of lead. 37 figs., 20 tabs., 8 appendices, 109 refs

  13. 77 FR 29633 - Alta Wind VII, LLC, Alta Wind IX, LLC, Alta Wind X, LLC, Alta Wind XI, LLC, Alta Wind XII, LLC...

    Science.gov (United States)

    2012-05-18

    ..., Alta Wind XIV, LLC, Alta Wind XV, LLC, Alta Windpower Development, LLC, TGP Development Company, LLC... XIII, LLC, Alta Wind XIV, LLC, Alta Wind XV, LLC, Alta Windpower Development, LLC, and TGP Development...

  14. Influence of Wind Plant Ancillary Voltage Control on System Small Signal Stability

    DEFF Research Database (Denmark)

    Su, Chi; Chen, Zhe

    2012-01-01

    As a common tendency, large-scale wind farms are increasingly connected to the transmission system of modern power grids. This introduces some new challenges to the connected power systems, and the transmission system operators (TSOs) have to put some new requirements as part of the grid codes...... on the integration of wind farms. One common requirement to wind farms is the function of system voltage control which can be implemented in the grid-side convertor controller of a variable speed wind turbine. This ancillary voltage control provided by wind farms could have some influence on the system small signal...... stability. This paper implements an ancillary voltage control strategy on a direct-drive-full-convertor-based wind farm and studies its influence on the damping ratio values of the dominant oscillation mode within the connected power system. All the calculations and simulations are conducted in DIg...

  15. The Science of Battery Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, John P. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Physics; El Gabaly Marquez, Farid [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Physics; McCarty, Kevin [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Physics; Sugar, Joshua Daniel [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Physics; Talin, Alec A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Physics; Fenton, Kyle R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Power Sources Design and Development; Nagasubramanian, Ganesan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Power Sources Design and Development; Harris, Charles Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nanosystems Synthesis/Analysis; Jungjohann, Katherine Leigh [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nanosystems Synthesis/Analysis; Hayden, Carl C. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Combustion Chemistry Dept.; Kliewer, Christopher Jesse [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Combustion Chemistry Dept.; Hudak, Nicholas S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Power Sources Research and Development; Leung, Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nanostructure Physics; McDaniel, Anthony H. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Hydrogen and Combustion Technology; Tenney, Craig M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Chemical and Biological Systems; Zavadil, Kevin R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Materials Lab.

    2015-01-01

    This report documents work that was performed under the Laboratory Directed Research and Development project, Science of Battery Degradation. The focus of this work was on the creation of new experimental and theoretical approaches to understand atomistic mechanisms of degradation in battery electrodes that result in loss of electrical energy storage capacity. Several unique approaches were developed during the course of the project, including the invention of a technique based on ultramicrotoming to cross-section commercial scale battery electrodes, the demonstration of scanning transmission x-ray microscopy (STXM) to probe lithium transport mechanisms within Li-ion battery electrodes, the creation of in-situ liquid cells to observe electrochemical reactions in real-time using both transmission electron microscopy (TEM) and STXM, the creation of an in-situ optical cell utilizing Raman spectroscopy and the application of the cell for analyzing redox flow batteries, the invention of an approach for performing ab initio simulation of electrochemical reactions under potential control and its application for the study of electrolyte degradation, and the development of an electrochemical entropy technique combined with x-ray based structural measurements for understanding origins of battery degradation. These approaches led to a number of scientific discoveries. Using STXM we learned that lithium iron phosphate battery cathodes display unexpected behavior during lithiation wherein lithium transport is controlled by nucleation of a lithiated phase, leading to high heterogeneity in lithium content at each particle and a surprising invariance of local current density with the overall electrode charging current. We discovered using in-situ transmission electron microscopy that there is a size limit to lithiation of silicon anode particles above which particle fracture controls electrode degradation. From electrochemical entropy measurements, we discovered that entropy

  16. Electric Vehicles for Improved Operation of Power Systems with High Wind Power Penetration

    DEFF Research Database (Denmark)

    Larsen, Esben; Chandrashekhara, Divya K; Østergaard, Jacob

    2008-01-01

    In a power system with a high share of wind energy the wind fluctuation causes a variation in the power generation, which must be compensated from other sources. The situation in Denmark with a penetration of more than 20% wind in yearly average is presented. The introduction of electric drive...... vehicles (EDV) as flexible loads can improve the system operation. Bidirectional power exchange through batteries (vehicle to grid) can be seen as a storage system in the grid. An analysis of possible economical incentives for the vehicle owners will be shown. By control of EDV charging through a price...

  17. Experiment and Analysis of Car Alternator for Wind Turbine Application

    Directory of Open Access Journals (Sweden)

    Pudji Irasari

    2012-03-01

    Full Text Available This paper discusses experiment and analysis to find out the feasibility of a car alternator to be used as a generator for wind turbine. The experiment was conducted twice. The first experiment was to characterize the alternator to determine the mechanical transmission ratio. In this experiment the alternator was driven by a lathe machine and its output power was supplied to charge a battery. In the second experiment the alternator was integrated with the turbine blades and they were tested as a unit system. In both experiments, the electric generation of alternator was executed with fixed excitation current method. The correlation between the alternator characteristic and the tip speed ratio gives the mechanical transmission ratio of 1 : 3. The experiment results show that the efficiency of alternator is around 50% and cut-in wind speed (after correction is 6.35 m/s indicating that alternator is not feasible for wind turbine system application. 

  18. Enabling Wind Power Nationwide

    Energy Technology Data Exchange (ETDEWEB)

    Jose Zayas, Michael Derby, Patrick Gilman and Shreyas Ananthan,

    2015-05-01

    Leveraging this experience, the U.S. Department of Energy’s (DOE’s) Wind and Water Power Technologies Office has evaluated the potential for wind power to generate electricity in all 50 states. This report analyzes and quantifies the geographic expansion that could be enabled by accessing higher above ground heights for wind turbines and considers the means by which this new potential could be responsibly developed.

  19. Wind and Yaw correlation

    DEFF Research Database (Denmark)

    Kock, Carsten Weber; Vesth, Allan

    The report describes measurements carried out on a given wind turbine. A comparison between wind speed on the metmast and Nacelle Windspeed are made and the results are presented on graphs and in a table. The data used for the comparison are identical with the data used for the Risø-I-3246(EN......) power curve report. The measurements are carried out in accordance to Ref. [1] and the wind and yaw correlation is analyzed in accordance to Ref. [2]....

  20. Nanotechnologies for efficient solar and wind energy harvesting and storage

    Science.gov (United States)

    Eldada, Louay A.

    2010-08-01

    We describe nanotechnologies used to improve the efficient harvest of energy from the Sun and the wind, and the efficient storage of energy in secondary batteries and ultracapacitors, for use in a variety of applications including smart grids, electric vehicles, and portable electronics. We demonstrate high-quality nanostructured copper indium gallium selenide (CIGS) thin films for photovoltaic (PV) applications. The self-assembly of nanoscale p-n junction networks creates n-type networks that act as preferential electron pathways, and p-type networks that act as preferential hole pathways, allowing positive and negative charges to travel to the contacts in physically separated paths, reducing charge recombination. We also describe PV nanotechnologies used to enhance light trapping, photon absorption, charge generation, charge transport, and current collection. Furthermore, we describe nanotechnologies used to improve the efficiency of power-generating wind turbines. These technologies include nanoparticle-containing lubricants that reduce the friction generated from the rotation of the turbines, nanocoatings for de-icing and self-cleaning technologies, and advanced nanocomposites that provide lighter and stronger wind blades. Finally, we describe nanotechnologies used in advanced secondary batteries and ultracapacitors. Nanostructured powder-based and carbon-nanotube-based cathodes and anodes with ultra-high surface areas boost the energy and power densities in secondary batteries, including lithium-ion and sodium-sulfur batteries. Nanostructured carbon materials are also controlled on a molecular level to offer large surface areas for the electrodes of ultracapacitors, allowing to store and supply large bursts of energy needed in some applications.