WorldWideScience

Sample records for batteries isotopic

  1. Isotope heated thermal batteries

    International Nuclear Information System (INIS)

    A deferred action thermal battery is described that includes a quantity of radioactive isotope normally positioned so that only a small part of the thermal energy generated by the isotope is received by the battery, but adapted, when the battery is rendered active, to be moved automatically to a position where a large part of the thermal energy is received. The battery may comprise a chamber containing its cells and a second chamber part of which is remote from the cells for normal storage of the isotope and part of which is adjacent to the cells; the isotope is moved to the latter part when the battery is activated. The cell chamber is preferably toroidal and surrounds the second portion of the isotope chamber. The isotope may be contained in a carriage held by a retaining means adapted for release when the battery is activated, resilient means then moving the carriage to the active position. The retaining means may be a wire that disintegrates on the passage of electric current, the current also igniting a combustible composition to activate the battery. The object is to provide thermal batteries having an extended life. (U.K.)

  2. Button batteries

    Science.gov (United States)

    Swallowing batteries ... These devices use button batteries: Calculators Cameras Hearing aids Penlights Watches ... If a person puts the battery up their nose and breathes it further in, ... problems Cough Pneumonia (if the battery goes unnoticed) ...

  3. Battery Modeling

    OpenAIRE

    Jongerden, M.R.; Haverkort, B.R.

    2008-01-01

    The use of mobile devices is often limited by the capacity of the employed batteries. The battery lifetime determines how long one can use a device. Battery modeling can help to predict, and possibly extend this lifetime. Many different battery models have been developed over the years. However, with these models one can only compute lifetimes for specific discharge profiles, and not for workloads in general. In this paper, we give an overview of the different battery models that are availabl...

  4. Basic principles and developments of the radioisotope powered voltaic batteries

    International Nuclear Information System (INIS)

    The basic principles and some kinds of voltaic effect type radioisotope batteries are reviewed. This paper is focused on the micro-batteries based on radio-voltaic effect, which are widely used in micro-electromechanical systems (MEMs) and cardiac pacemakers. The prospects of such radio-voltaic isotope batteries are also reported. (authors)

  5. Paintable Battery

    OpenAIRE

    Singh, Neelam; Galande, Charudatta; Miranda, Andrea; Mathkar, Akshay; Gao, Wei; Reddy, Arava Leela Mohana; Vlad, Alexandru; Ajayan, Pulickel M.

    2012-01-01

    If the components of a battery, including electrodes, separator, electrolyte and the current collectors can be designed as paints and applied sequentially to build a complete battery, on any arbitrary surface, it would have significant impact on the design, implementation and integration of energy storage devices. Here, we establish a paradigm change in battery assembly by fabricating rechargeable Li-ion batteries solely by multi-step spray painting of its components on a variety of materials...

  6. Dry cell battery poisoning

    Science.gov (United States)

    Batteries - dry cell ... Acidic dry cell batteries contain: Manganese dioxide Ammonium chloride Alkaline dry cell batteries contain: Sodium hydroxide Potassium hydroxide Lithium dioxide dry cell batteries ...

  7. Thermoelectric battery

    International Nuclear Information System (INIS)

    The battery for the power supply of heart pacemakers consists of a cylindrical case with a thermoelectric module consisting of thermoelectric elements which are fastened to each other in the form of a thermal column and a heat source made of PU-238. In order to reduce the radial sensitivity to shocks of the battery, a spring cage is arranged around the heat source at the free end of the module. Cushioning against longitudinal shocks is provided by another spring. (DG)

  8. Memel's Batteries

    Directory of Open Access Journals (Sweden)

    Alexander F. Mitrofanov

    2015-12-01

    Full Text Available The article describes the history and equipment of the coastal and antiaircraft artillery batteries of German Navy (Kriegsmarine constructed in Memel area before and during the World War. There is given the brief description of the Soviet Navy stationed in the area in the postwar years.

  9. Batteries: Overview of Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Doeff, Marca M

    2010-07-12

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as

  10. Battery Monitoring System

    Directory of Open Access Journals (Sweden)

    Pavuluri Mounika* , M.Anil Kumar

    2013-04-01

    Full Text Available The project of BMS (Battery Monitoring System gives online and offline status of batteries which are monitored by the bank so that we can prevent the batteries prior to failure However, Battery Monitoring System specifically measure, record and analyze the individual cell and battery module parameters in detail.Continuous monitoring and analysis of these parameters can be used to identify battery or cell deterioration, hence prompting action to avoid unplanned power interruption.Battery Monitoring System (BMS is a microprocessor based intelligent system capable of monitoring the health of battery bank. BMS calculates the battery’s capacity, deterioration of batteries in battery bank during the charge / discharge cycles and actual efficiency of the batteries.It continuously monitors each cell in the battery bank to identify deterioration in the cell prior to failure,identifies the net charge in the battery bank by monitoring charging and discharging currents.

  11. Battery Safety Basics

    Science.gov (United States)

    Roy, Ken

    2010-01-01

    Batteries commonly used in flashlights and other household devices produce hydrogen gas as a product of zinc electrode corrosion. The amount of gas produced is affected by the batteries' design and charge rate. Dangerous levels of hydrogen gas can be released if battery types are mixed, batteries are damaged, batteries are of different ages, or…

  12. Batteries for Electric Vehicles

    Science.gov (United States)

    Conover, R. A.

    1985-01-01

    Report summarizes results of test on "near-term" electrochemical batteries - (batteries approaching commercial production). Nickel/iron, nickel/zinc, and advanced lead/acid batteries included in tests and compared with conventional lead/acid batteries. Batteries operated in electric vehicles at constant speed and repetitive schedule of accerlerating, coasting, and braking.

  13. Isotopic Biogeochemistry

    Science.gov (United States)

    Hayes, J. M.

    1985-01-01

    An overview is provided of the biogeochemical research. The funding, productivity, personnel and facilities are reviewed. Some of the technical areas covered are: carbon isotopic records; isotopic studies of banded iron formations; isotope effects in microbial systems; studies of organic compounds in ancient sediments; and development in isotopic geochemistry and analysis.

  14. Collecting battery data with Open Battery

    OpenAIRE

    Jones, Gareth L.; Harrison, Peter G.

    2012-01-01

    In this paper we present Open Battery, a tool for collecting data on mobile phone battery usage, describe the data we have collected so far and make some observations. We then introduce the fluid queue model which we hope may prove a useful tool in future work to describe mobile phone battery traces.

  15. Alkaline battery operational methodology

    Energy Technology Data Exchange (ETDEWEB)

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  16. Alkaline quinone flow battery

    OpenAIRE

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise Ann; Valle, Alvaro West; Hardee, D.; Gordon, Roy Gerald; Aziz, Michael J.; Marshak, M

    2015-01-01

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe f...

  17. Isotopic geology

    International Nuclear Information System (INIS)

    Born from the application to geology of nuclear physics techniques, the isotopic geology has revolutionized the Earth's sciences. Beyond the dating of rocks, the tracer techniques have permitted to reconstruct the Earth's dynamics, to measure the temperatures of the past (giving birth to paleoclimatology) and to understand the history of chemical elements thanks to the analysis of meteorites. Today, all domains of Earth sciences appeal more or less to the methods of isotopic geology. In this book, the author explains the principles, methods and recent advances of this science: 1 - isotopes and radioactivity; 2 - principles of isotope dating; 3 - radio-chronological methods; 4 - cosmogenic isotope chronologies; 5 - uncertainties and radio-chronological results; 6 - geochemistry of radiogenic isotopes; 7 - geochemistry of stable isotopes; 8 - isotopic geology and dynamical analysis of reservoirs. (J.S.)

  18. Isotopic clusters

    International Nuclear Information System (INIS)

    Spectra of isotopically mixed clusters (dimers of SF6) are calculated as well as transition frequencies. The result leads to speculations about the suitability of the laser-cluster fragmentation process for isotope separation. (Auth.)

  19. Advancement Of Tritium Powered Betavoltaic Battery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Staack, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Gaillard, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hitchcock, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Peters, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Colon-Mercado, H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Teprovich, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coughlin, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Neikirk, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fisher, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-14

    Due to their decades-long service life and reliable power output under extreme conditions, betavoltaic batteries offer distinct advantages over traditional chemical batteries, especially in applications where frequent battery replacement is hazardous, or cost prohibitive. Although many beta emitting isotopes exist, tritium is considered ideal in betavoltaic applications for several reasons: 1) it is a “pure” beta emitter, 2) the beta is not energetic enough to damage the semiconductor, 3) it has a moderately long half-life, and 4) it is readily available. Unfortunately, the widespread application of tritium powered betavoltaics is limited, in part, by their low power output. This research targets improving the power output of betavoltaics by increasing the flux of beta particles to the energy conversion device (the p-n junction) through the use of low Z nanostructured tritium trapping materials.

  20. Ionene membrane battery separator

    Science.gov (United States)

    Moacanin, J.; Tom, H. Y.

    1969-01-01

    Ionic transport characteristics of ionenes, insoluble membranes from soluble polyelectrolyte compositions, are studied for possible application in a battery separator. Effectiveness of the thin film of separator membrane essentially determines battery lifetime.

  1. Battery systems engineering

    CERN Document Server

    Rahn, Christopher D

    2012-01-01

    A complete all-in-one reference on the important interdisciplinary topic of Battery Systems Engineering Focusing on the interdisciplinary area of battery systems engineering, this book provides the background, models, solution techniques, and systems theory that are necessary for the development of advanced battery management systems. It covers the topic from the perspective of basic electrochemistry as well as systems engineering topics and provides a basis for battery modeling for system engineering of electric and hybrid electric vehicle platforms. This original

  2. Rechargeable batteries applications handbook

    CERN Document Server

    1998-01-01

    Represents the first widely available compendium of the information needed by those design professionals responsible for using rechargeable batteries. This handbook introduces the most common forms of rechargeable batteries, including their history, the basic chemistry that governs their operation, and common design approaches. The introduction also exposes reader to common battery design terms and concepts.Two sections of the handbook provide performance information on two principal types of rechargeable batteries commonly found in consumer and industrial products: sealed nickel-cad

  3. Battery Review Board

    Science.gov (United States)

    Vaughn, Chester

    1993-01-01

    The topics covered are presented in viewgraph form: NASA Battery Review Board Charter; membership, board chronology; background; statement of problem; summary of problems with 50 AH standard Ni-Cd; activities for near term programs utilizing conventional Ni-Cd; present projects scheduled to use NASA standard Ni-Cd; other near-term NASA programs requiring secondary batteries; recommended direction for future programs; future cell/battery procurement strategy; and the NASA Battery Program.

  4. Electric Vehicle Battery Challenge

    Science.gov (United States)

    Roman, Harry T.

    2014-01-01

    A serious drawback to electric vehicles [batteries only] is the idle time needed to recharge their batteries. In this challenge, students can develop ideas and concepts for battery change-out at automotive service stations. Such a capability would extend the range of electric vehicles.

  5. Alkaline quinone flow battery.

    Science.gov (United States)

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael R; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise; Valle, Alvaro W; Hardee, David; Gordon, Roy G; Aziz, Michael J; Marshak, Michael P

    2015-09-25

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe for use in residential and commercial environments. The battery operates efficiently with high power density near room temperature. These results demonstrate the stability and performance of redox-active organic molecules in alkaline flow batteries, potentially enabling cost-effective stationary storage of renewable energy. PMID:26404834

  6. 29 CFR 1926.441 - Batteries and battery charging.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Batteries and battery charging. 1926.441 Section 1926.441... for Special Equipment § 1926.441 Batteries and battery charging. (a) General requirements—(1... areas. (2) Ventilation shall be provided to ensure diffusion of the gases from the battery and...

  7. Electrochemical accumulators batteries; Accumulateurs electrochimiques batteries

    Energy Technology Data Exchange (ETDEWEB)

    Ansart, F.; Castillo, S.; Laberty- Robert, C.; Pellizon-Birelli, M. [Universite Paul Sabatier, Lab. de Chimie des Materiaux Inorganiques et Energetiques, CIRIMAT, UMR CNRS 5085, 31 - Toulouse (France)] [and others

    2000-07-01

    It is necessary to storage the electric power in batteries to join the production and the utilization. In this domain progresses are done every days in the technics and also in the available materials. These technical days present the state of the art in this domain. Many papers were presented during these two days giving the research programs and recent results on the following subjects: the lithium batteries, the electrolytes performances and behaviour, lead accumulators, economic analysis of the electrochemical storage market, the batteries applied to the transportation sector and the telephones. (A.L.B.)

  8. Electric-vehicle batteries

    Science.gov (United States)

    Oman, Henry; Gross, Sid

    1995-02-01

    Electric vehicles that can't reach trolley wires need batteries. In the early 1900's electric cars disappeared when owners found that replacing the car's worn-out lead-acid battery costs more than a new gasoline-powered car. Most of today's electric cars are still propelled by lead-acid batteries. General Motors in their prototype Impact, for example, used starting-lighting-ignition batteries, which deliver lots of power for demonstrations, but have a life of less than 100 deep discharges. Now promising alternative technology has challenged the world-wide lead miners, refiners, and battery makers into forming a consortium that sponsors research into making better lead-acid batteries. Horizon's new bipolar battery delivered 50 watt-hours per kg (Wh/kg), compared with 20 for ordinary transport-vehicle batteries. The alternatives are delivering from 80 Wh/kg (nickel-metal hydride) up to 200 Wh/kg (zinc-bromine). A Fiat Panda traveled 260 km on a single charge of its zinc-bromine battery. A German 3.5-ton postal truck traveled 300 km with a single charge in its 650-kg (146 Wh/kg) zinc-air battery. Its top speed was 110 km per hour.

  9. A Desalination Battery

    KAUST Repository

    Pasta, Mauro

    2012-02-08

    Water desalination is an important approach to provide fresh water around the world, although its high energy consumption, and thus high cost, call for new, efficient technology. Here, we demonstrate the novel concept of a "desalination battery", which operates by performing cycles in reverse on our previously reported mixing entropy battery. Rather than generating electricity from salinity differences, as in mixing entropy batteries, desalination batteries use an electrical energy input to extract sodium and chloride ions from seawater and to generate fresh water. The desalination battery is comprised by a Na 2-xMn 5O 10 nanorod positive electrode and Ag/AgCl negative electrode. Here, we demonstrate an energy consumption of 0.29 Wh l -1 for the removal of 25% salt using this novel desalination battery, which is promising when compared to reverse osmosis (∼ 0.2 Wh l -1), the most efficient technique presently available. © 2012 American Chemical Society.

  10. Batteries for Vehicular Applications

    Science.gov (United States)

    Srinivasan, Venkat

    2008-09-01

    This paper will describe battery technology as it relates to use in vehicular applications, including hybrid-electric vehicles (HEV), electric vehicles (EV), and plug-in-hybrid-electric vehicles (PHEV). The present status of rechargeable batteries, the requirements for each application, and the scientific stumbling blocks that stop batteries from being commercialized for these applications will be discussed. Focus will be on the class of batteries referred to as lithium batteries and the various chemistries that are the most promising for these applications. While Li-ion is expected in HEVs in the very near future, use in PHEVs are expected to be more gradual and dependent on solving the life, safety, and cost challenges. Finally, batteries for EVs remain problematic because of the range and charging-time issues.

  11. Lithium ion battery production

    International Nuclear Information System (INIS)

    Highlights: ► Sustainable battery manufacturing focus on more efficient methods and recycling. ► Temperature control and battery management system increase battery lifetime. ► Focus on increasing battery performance at low- and high temperatures. ► Production capacity of 100 MWh equals the need of 3000 full-electric cars. - Abstract: Recently, new materials and chemistry for lithium ion batteries have been developed. There is a great emphasis on electrification in the transport sector replacing part of motor powered engines with battery powered applications. There are plans both to increase energy efficiency and to reduce the overall need for consumption of non-renewable liquid fuels. Even more significant applications are dependent on energy storage. Materials needed for battery applications require specially made high quality products. Diminishing amounts of easily minable metal ores increase the consumption of separation and purification energy and chemicals. The metals are likely to be increasingly difficult to process. Iron, manganese, lead, zinc, lithium, aluminium, and nickel are still relatively abundant but many metals like cobalt and rare earths are becoming limited resources more rapidly. The global capacity of industrial-scale production of larger lithium ion battery cells may become a limiting factor in the near future if plans for even partial electrification of vehicles or energy storage visions are realized. The energy capacity needed is huge and one has to be reminded that in terms of cars for example production of 100 MWh equals the need of 3000 full-electric cars. Consequently annual production capacity of 106 cars requires 100 factories each with a 300 MWh capacity. Present day lithium ion batteries have limitations but significant improvements have been achieved recently . The main challenges of lithium ion batteries are related to material deterioration, operating temperatures, energy and power output, and lifetime. Increased lifetime

  12. Polyoxometalate flow battery

    Science.gov (United States)

    Anderson, Travis M.; Pratt, Harry D.

    2016-03-15

    Flow batteries including an electrolyte of a polyoxometalate material are disclosed herein. In a general embodiment, the flow battery includes an electrochemical cell including an anode portion, a cathode portion and a separator disposed between the anode portion and the cathode portion. Each of the anode portion and the cathode portion comprises a polyoxometalate material. The flow battery further includes an anode electrode disposed in the anode portion and a cathode electrode disposed in the cathode portion.

  13. Batteries in PV systems

    OpenAIRE

    Mohedano Martínez, Javier Bernabé

    2011-01-01

    This report presents fundamentals of battery technology and charge control strategies commonly used in stand-alone photovoltaic (PV) Systems,with an introduction on the PV Systems itself. This project is a compilation of information from several sources, including research reports and data from component manufacturers. Comparisons are given for various battery technologies, and considerations for battery subsystem design, auxiliary systems, maintenance and safety are discussed. Daily operatio...

  14. Lithium battery management system

    Science.gov (United States)

    Dougherty, Thomas J.

    2012-05-08

    Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

  15. Nanotubes for Battery Applications

    OpenAIRE

    Nordlinder, Sara

    2005-01-01

    Nanomaterials have attracted great interest in recent years, and are now also being considered for battery applications. Reducing the particle size of some electrode materials can increase battery performance considerably, especially with regard to capacity, power and rate capability. This thesis presents a study focused on the performance of such a material, vanadium oxide nanotubes, as cathode material for rechargeable lithium batteries. These nanotubes were synthesized by a sol-gel process...

  16. Battery Thermal Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Keyser, Matthew; Saxon, Aron; Powell, Mitchell; Shi, Ying

    2016-06-07

    This poster shows the progress in battery thermal characterization over the previous year. NREL collaborated with U.S. DRIVE and USABC battery developers to obtain thermal properties of their batteries, obtained heat capacity and heat generation of cells under various power profiles, obtained thermal images of the cells under various drive cycles, and used the measured results to validate thermal models. Thermal properties are used for the thermal analysis and design of improved battery thermal management systems to support achieve life and performance targets.

  17. Leatherback Isotopes

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — SWFSC is currently working on a project identifying global marine isotopes using leatherback turtles (Dermochelys coriacea) as the indicator species. We currently...

  18. Isotopic chirality

    Energy Technology Data Exchange (ETDEWEB)

    Floss, H.G. [Univ. of Washington, Seattle, WA (United States)

    1994-12-01

    This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.

  19. Electric vehicle battery research and development

    Science.gov (United States)

    Schwartz, H. J.

    1973-01-01

    High energy battery technology for electric vehicles is reviewed. The state-of-the-art in conventional batteries, metal-gas batteries, alkali-metal high temperature batteries, and organic electrolyte batteries is reported.

  20. Batteries: Charging ahead rationally

    Science.gov (United States)

    Freunberger, Stefan A.

    2016-06-01

    Redox mediators facilitate the oxidation of the highly insulating discharge product in metal–oxygen batteries during recharge and offer opportunities to achieve high reversible capacities. Now a design principle for selecting redox mediators that can recharge the batteries more efficiently is suggested.

  1. Hydrophobic, Porous Battery Boxes

    Science.gov (United States)

    Bragg, Bobby J.; Casey, John E., Jr.

    1995-01-01

    Boxes made of porous, hydrophobic polymers developed to contain aqueous potassium hydroxide electrolyte solutions of zinc/air batteries while allowing air to diffuse in as needed for operation. Used on other types of batteries for in-cabin use in which electrolytes aqueous and from which gases generated during operation must be vented without allowing electrolytes to leak out.

  2. Battery energy storage system

    NARCIS (Netherlands)

    Tol, C.S.P.; Evenblij, B.H.

    2009-01-01

    The ability to store electrical energy adds several interesting features to a ships distribution network, as silent power, peak shaving and a ride through in case of generator failure. Modern intrinsically safe Li-ion batteries bring these within reach. For this modern lithium battery applications t

  3. Computing Battery Lifetime Distributions

    NARCIS (Netherlands)

    Cloth, Lucia; Jongerden, Marijn R.; Haverkort, Boudewijn R.

    2007-01-01

    The usage of mobile devices like cell phones, navigation systems, or laptop computers, is limited by the lifetime of the included batteries. This lifetime depends naturally on the rate at which energy is consumed, however, it also depends on the usage pattern of the battery. Continuous drawing of a

  4. Battery Pack Thermal Design

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad

    2016-06-14

    This presentation describes the thermal design of battery packs at the National Renewable Energy Laboratory. A battery thermal management system essential for xEVs for both normal operation during daily driving (achieving life and performance) and off-normal operation during abuse conditions (achieving safety). The battery thermal management system needs to be optimized with the right tools for the lowest cost. Experimental tools such as NREL's isothermal battery calorimeter, thermal imaging, and heat transfer setups are needed. Thermal models and computer-aided engineering tools are useful for robust designs. During abuse conditions, designs should prevent cell-to-cell propagation in a module/pack (i.e., keep the fire small and manageable). NREL's battery ISC device can be used for evaluating the robustness of a module/pack to cell-to-cell propagation.

  5. Mathematical Storage-Battery Models

    Science.gov (United States)

    Chapman, C. P.; Aston, M.

    1985-01-01

    Empirical formula represents performance of electrical storage batteries. Formula covers many battery types and includes numerous coefficients adjusted to fit peculiarities of each type. Battery and load parameters taken into account include power density in battery, discharge time, and electrolyte temperature. Applications include electric-vehicle "fuel" gages and powerline load leveling.

  6. 49 CFR 173.159 - Batteries, wet.

    Science.gov (United States)

    2010-10-01

    ... Batteries, wet. (a) Electric storage batteries, containing electrolyte acid or alkaline corrosive battery... (h) of this section and in §§ 173.220 and 173.222; and any battery or battery-powered device must be..., but not limited to: (i) Packaging each battery or each battery-powered device when practicable,...

  7. Battery Technology Stores Clean Energy

    Science.gov (United States)

    2008-01-01

    Headquartered in Fremont, California, Deeya Energy Inc. is now bringing its flow batteries to commercial customers around the world after working with former Marshall Space Flight Center scientist, Lawrence Thaller. Deeya's liquid-cell batteries have higher power capability than Thaller's original design, are less expensive than lead-acid batteries, are a clean energy alternative, and are 10 to 20 times less expensive than nickel-metal hydride batteries, lithium-ion batteries, and fuel cell options.

  8. Nonlinear Dynamics Traction Battery Modeling

    OpenAIRE

    Szumanowski, Antoni

    2010-01-01

    The assumed method and effective model are very accurate according to error checking results of the NiMH and Li-Ion batteries. The modeling method is valid for different types of batteries. The model can be conveniently used for vehicle simulation because the battery model is accurately approximated by mathematical equations. The model provides the methodology for designing a battery management system and calculating the SOC. The influence of temperature on battery performance is analyzed acc...

  9. Bipolar battery construction

    Science.gov (United States)

    Rippel, Wally E. (Inventor); Edwards, Dean B. (Inventor)

    1981-01-01

    A lightweight, bipolar battery construction for lead acid batteries in which a plurality of thin, rigid, biplates each comprise a graphite fiber thermoplastic composition in conductive relation to lead stripes plated on opposite flat surfaces of the plates, and wherein a plurality of nonconductive thermoplastic separator plates support resilient yieldable porous glass mats in which active material is carried, the biplates and separator plates with active material being contained and maintained in stacked assembly by axial compression of the stacked assembly. A method of assembling such a bipolar battery construction.

  10. Isotope Spectroscopy

    CERN Document Server

    Caffau, E; Bonifacio, P; Ludwig, H -G; Monaco, L; Curto, G Lo; Kamp, I

    2013-01-01

    The measurement of isotopic ratios provides a privileged insight both into nucleosynthesis and into the mechanisms operating in stellar envelopes, such as gravitational settling. In this article, we give a few examples of how isotopic ratios can be determined from high-resolution, high-quality stellar spectra. We consider examples of the lightest elements, H and He, for which the isotopic shifts are very large and easily measurable, and examples of heavier elements for which the determination of isotopic ratios is more difficult. The presence of 6Li in the stellar atmospheres causes a subtle extra depression in the red wing of the 7Li 670.7 nm doublet which can only be detected in spectra of the highest quality. But even with the best spectra, the derived $^6$Li abundance can only be as good as the synthetic spectra used for their interpretation. It is now known that 3D non-LTE modelling of the lithium spectral line profiles is necessary to account properly for the intrinsic line asymmetry, which is produced ...

  11. Parallel flow diffusion battery

    Science.gov (United States)

    Yeh, Hsu-Chi; Cheng, Yung-Sung

    1984-08-07

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  12. Thermal battery degradation mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Missert, Nancy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brunke, Lyle Brent [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Diffuse reflectance IR spectroscopy (DRIFTS) was used to investigate the effect of accelerated aging on LiSi based anodes in simulated MC3816 batteries. DRIFTS spectra showed that the oxygen, carbonate, hydroxide and sulfur content of the anodes changes with aging times and temperatures, but not in a monotonic fashion that could be correlated to phase evolution. Bands associated with sulfur species were only observed in anodes taken from batteries aged in wet environments, providing further evidence for a reaction pathway facilitated by H2S transport from the cathode, through the separator, to the anode. Loss of battery capacity with accelerated aging in wet environments was correlated to loss of FeS2 in the catholyte pellets, suggesting that the major contribution to battery performance degradation results from loss of active cathode material.

  13. Battery packaging - Technology review

    International Nuclear Information System (INIS)

    This paper gives a brief overview of battery packaging concepts, their specific advantages and drawbacks, as well as the importance of packaging for performance and cost. Production processes, scaling and automation are discussed in detail to reveal opportunities for cost reduction. Module standardization as an additional path to drive down cost is introduced. A comparison to electronics and photovoltaics production shows 'lessons learned' in those related industries and how they can accelerate learning curves in battery production

  14. Lithium use in batteries

    Science.gov (United States)

    Goonan, Thomas G.

    2012-01-01

    Lithium has a number of uses but one of the most valuable is as a component of high energy-density rechargeable lithium-ion batteries. Because of concerns over carbon dioxide footprint and increasing hydrocarbon fuel cost (reduced supply), lithium may become even more important in large batteries for powering all-electric and hybrid vehicles. It would take 1.4 to 3.0 kilograms of lithium equivalent (7.5 to 16.0 kilograms of lithium carbonate) to support a 40-mile trip in an electric vehicle before requiring recharge. This could create a large demand for lithium. Estimates of future lithium demand vary, based on numerous variables. Some of those variables include the potential for recycling, widespread public acceptance of electric vehicles, or the possibility of incentives for converting to lithium-ion-powered engines. Increased electric usage could cause electricity prices to increase. Because of reduced demand, hydrocarbon fuel prices would likely decrease, making hydrocarbon fuel more desirable. In 2009, 13 percent of worldwide lithium reserves, expressed in terms of contained lithium, were reported to be within hard rock mineral deposits, and 87 percent, within brine deposits. Most of the lithium recovered from brine came from Chile, with smaller amounts from China, Argentina, and the United States. Chile also has lithium mineral reserves, as does Australia. Another source of lithium is from recycled batteries. When lithium-ion batteries begin to power vehicles, it is expected that battery recycling rates will increase because vehicle battery recycling systems can be used to produce new lithium-ion batteries.

  15. Intelligent Battery Management System Analyzing & Optimizing of Multicell Battery Voltage

    OpenAIRE

    Deepthi, C; P.M.Sarma; M. Chakravarthy

    2013-01-01

    The battery management system (BMS) is a critical component of electric and hybrid electric vehicles. The purpose of the BMS is to guarantee safe and reliable battery operation. To maintain the safety and reliability of the battery, state monitoring and evaluation, charge control, and cell balancing are functionalities that have been implemented in BMS. As an electrochemical product, a battery acts differently under different operational and environmental conditions. The uncertainty of a batt...

  16. Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems

    Science.gov (United States)

    Tuffner, Francis K.; Kintner-Meyer, Michael C. W.; Hammerstrom, Donald J.; Pratt, Richard M.

    2012-05-22

    Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

  17. Used batteries - REMINDER

    CERN Multimedia

    2006-01-01

    With colder weather drawing in, it is quite likely that older car batteries will fail. On this subject, the Safety Commission wishes to remind everyone that CERN is not responsible for the disposal of used batteries from private vehicles. So please refrain from abandoning them on pavements or around or inside buildings. Used batteries can be disposed of safely, free-of-charge and without any damage to the environment at waste disposal sites (déchetteries) close to CERN in both France (Ain and Haute-Savoie) and in the Canton of Geneva in Switzerland (Cheneviers). Since the average car battery lasts a number of years, this only represents a small effort on your part over the whole lifetime of your vehicle. Most people don't need reminding that car batteries contain concentrated sulphuric acid, which can cause severe burns. Despite this, we frequently find them casually dumped in scrap metal bins! For more information, please contact R. Magnier/SC-GS 160879 We all have a responsibility for safety and th...

  18. A Martian Air Battery Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will investigate an entirely new battery chemistry by developing A Martian Air Battery. Specifically the project will explore the concept of a Martian...

  19. Developments in redox flow batteries

    OpenAIRE

    Tangirala, Ravichandra

    2011-01-01

    This thesis describes the investigation of the electrochemistry principles, technology, construction and composition of the electrode materials, electrolyte and additives used in redox flow batteries. The aim was to study a flow battery system with an appreciable working performance. The study explores and compares mainly three different redox flow battery technologies; all-vanadium, soluble lead-acid and a novel copper-lead dioxide flow batteries. The first system is based in sulfuric acid e...

  20. Battery Monitoring Unit Using SCADA

    OpenAIRE

    Priyesh Pandya; Vikas Gupta

    2014-01-01

    Battery Management System (BMS) means different things to different people. To some it is simply battery monitoring, keeping a check on the key operational parameters during charging and discharging such as voltages and currents and the battery internal and ambient temperature. The monitoring circuits would normally provide inputs to protection device which would generate alarms or disconnects the battery from the load or charger should any of the parameters be...

  1. Rechargeable Battery Capacity Level Indicator

    OpenAIRE

    Ongere, Jared

    2015-01-01

    Technology on rechargeable batteries has advanced over the years as a result of the need to power portable devices that have risen in numbers in the last decade. Just like primary cells, rechargeable batteries work in the same way, only their chemical reactions are reversible. This project aimed at building a system that would indicate the capacity level of a Nickel Metal Hydride battery upon charging and discharging. The Nickel Metal Hydride battery was selected in this project due to it...

  2. Atomic Batteries: Energy from Radioactivity

    OpenAIRE

    Kumar, Suhas

    2015-01-01

    With alternate, sustainable, natural sources of energy being sought after, there is new interest in energy from radioactivity, including natural and waste radioactive materials. A study of various atomic batteries is presented with perspectives of development and comparisons of performance parameters and cost. We discuss radioisotope thermal generators, indirect conversion batteries, direct conversion batteries, and direct charge batteries. We qualitatively describe their principles of operat...

  3. Mesoporous Block Copolymer Battery Separators

    OpenAIRE

    Wong, David Tunmin

    2012-01-01

    In the past two decades, lithium-ion batteries have emerged as an increasingly important technology. They are used almost ubiquitously in laptops and cell phones because of their relatively high energy densities when compared to other battery chemistries. More recently, lithium-ion batteries have been employed in the automotive sector in both pure electric vehicles and hybrid electric vehicles. However, one of the major barriers in the widespread adoption of lithium-ion batteries in electric ...

  4. Intelligent battery charging system

    Science.gov (United States)

    Everett, Hobert R., Jr.

    1991-09-01

    The present invention is a battery charging system that provides automatic voltage selection, short circuit protection, and delayed output to prevent arcing or pitting. A second embodiment of the invention provides a homing beacon which transmits a signal so that a battery powered mobile robot may home in on and contact the invention to charge its battery. The invention includes electric terminals isolated from one another. One terminal is grounded and the other has a voltage applied to it through a resistor connected to the output of a DC power supply. A voltage scaler is connected between the resistor and the hot terminal. An On/Off controller and a voltage mode selector sense the voltage provided at the output of the voltage scaler.

  5. Safe battery solvents

    Science.gov (United States)

    Harrup, Mason K.; Delmastro, Joseph R.; Stewart, Frederick F.; Luther, Thomas A.

    2007-10-23

    An ion transporting solvent maintains very low vapor pressure, contains flame retarding elements, and is nontoxic. The solvent in combination with common battery electrolyte salts can be used to replace the current carbonate electrolyte solution, creating a safer battery. It can also be used in combination with polymer gels or solid polymer electrolytes to produce polymer batteries with enhanced conductivity characteristics. The solvents may comprise a class of cyclic and acyclic low molecular weight phosphazenes compounds, comprising repeating phosphorus and nitrogen units forming a core backbone and ion-carrying pendent groups bound to the phosphorus. In preferred embodiments, the cyclic phosphazene comprises at least 3 phosphorus and nitrogen units, and the pendent groups are polyethers, polythioethers, polyether/polythioethers or any combination thereof, and/or other groups preferably comprising other atoms from Group 6B of the periodic table of elements.

  6. Battery switch for downhole tools

    Science.gov (United States)

    Boling, Brian E.

    2010-02-23

    An electrical circuit for a downhole tool may include a battery, a load electrically connected to the battery, and at least one switch electrically connected in series with the battery and to the load. The at least one switch may be configured to close when a tool temperature exceeds a selected temperature.

  7. Batteries, from Cradle to Grave

    Science.gov (United States)

    Smith, Michael J.; Gray, Fiona M.

    2010-01-01

    As battery producers and vendors, legislators, and the consumer population become aware of the consequences of inappropriate disposal of batteries to landfill sites instead of responsible chemical neutralization and reuse, the topic of battery recycling has begun to appear on the environmental agenda. In the United Kingdom, estimates of annual…

  8. Lithium-ion batteries

    CERN Document Server

    Yoshio, Masaki; Kozawa, Akiya

    2010-01-01

    This book is a compilation of up-to-date information relative to Li-Ion technology. It provides the reader with a single source covering all important aspects of Li-Ion battery operations. It fills the gap between the old original Li-Ion technology and present state of the technology that has developed into a high state of practice. The book is designed to provide a single source for an up-to-date description of the technology associated with the Li-Ion battery industry. It will be useful to researchers interested in energy conversion for the direct conversion of chemical energy into electrica

  9. Automotive battery technology

    CERN Document Server

    Watzenig, Daniel

    2014-01-01

    The use of electrochemical energy storage systems in automotive applications also involves new requirements for modeling these systems, especially in terms of model depth and model quality. Currently, mainly simple application-oriented models are used to describe the physical behavior of batteries. This book provides a step beyond of state-of-the-art modeling showing various different approaches covering following aspects: system safety, misuse behavior (crash, thermal runaway), battery state estimation and electrochemical modeling with the needed analysis (pre/post mortem). All this different approaches are developed to support the overall integration process from a multidisciplinary point-of-view and depict their further enhancements to this process.

  10. Black Hole Battery

    Science.gov (United States)

    Levin, Janna; D'Orazio, Daniel

    2016-03-01

    Black holes are dark dead stars. Neutron stars are giant magnets. As the neutron star orbits the black hole, an electronic circuit forms that generates a blast of power just before the black hole absorbs the neutron star whole. The black hole battery conceivably would be observable at cosmological distances. Possible channels for luminosity include synchro-curvature radiation, a blazing fireball, or even an unstable, short-lived black hole pulsar. As suggested by Mingarelli, Levin, and Lazio, some fraction of the battery power could also be reprocessed into coherent radio emission to populate a subclass of fast radio bursts.

  11. Rechargeable lead-acid batteries.

    Science.gov (United States)

    1990-09-01

    Batteries used in medical equipment, like their counterparts in consumer products, attract little attention until they fail to function effectively. In some applications, such as in emergency medical devices, battery failure can have fatal consequences. While modern batteries are usually quite reliable, ECRI has received 53 written problem reports and countless verbal reports or questions related to battery problems in hospitals during the past five years. This large number of reports is due, at least in part, to the enormous quality of batteries used to operate or provide backup power in contemporary hospital equipment. As part of an ongoing evaluation of rehabilitation assistive equipment, ECRI has been studying the performance of 12 V rechargeable deep-cycle lead-acid batteries used in powered wheelchairs. During the course of this evaluation, it has become apparent that many professionals, both clinical and industrial, regard batteries as "black box" devices and know little about proper care and maintenance--and even less about battery selection and purchase. Because equipment performance and reliability can be strongly influenced by different battery models, an understanding of battery characteristics and how they affect performance is essential when selecting and purchasing batteries. The types of rechargeable batteries used most commonly in hospitals are lead-acid and nickel-cadmium (nicad), which we compare below; however, the guidance we provide in this article focuses on lead-acid batteries. While the examples given are for high-capacity 12 V deep-cycle batteries, similar analyses can be applied to smaller lead-acid batteries of different voltages. PMID:2211174

  12. Technical testing of portable isotope identification instruments

    International Nuclear Information System (INIS)

    Radiation detection technology exists in the form of pocket size, hand-held and portal radiation detectors that have the ability to detect radiation with great sensitivity and low false alarm rates. US Customs has chosen to implement pocket size detectors or radiation pagers as the personal tool of each inspector for the detection of radioactive material. First generation portable isotope identifiers were identified and evaluated by US Customs. Instruments from five vendors were put through a battery of tests according to delineated test procedures. The tests fell into five categories: basic operation verification; medical isotope identification; individual isotope identification; isotope pair identification; dose rate calculation. The tests can be summarized as an initial verification of correct instrument operation (including whatever calibration procedure was specified by the vendor), followed by three different isotope identification tests designed to verify the instrument's ability to correctly identify 19 isotopes specified by US Customs. The final test determined each instrument's ability to correctly display the dose rate from a wide energy range of gamma emitters. The individual isotope identification test and the isotope pair identification test were performed with three types of intervening shielding. The isotopes tested were broadly categorized as: special nuclear material, medical, and industrial. These included 17 gamma emitters, 1 beta emitter, and 1 neutron emitter. Each instrument's ability to identify several pairs of isotopes was determined. This test was intended to verify if the instrument could detect SNM when accompanied by a masking isotope. Finally, each instrument's dose rate response to different energy gamma emitters was measured. One section of this test was conducted at a very low exposure rate, 10 micro R/hr above background, and the second section conducted at 2 m R/hr above background. The latter dose rate represented the expected

  13. Battery testing for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Hund, T.

    1996-11-01

    Battery testing for photovoltaic (PV) applications is funded at Sandia under the Department of Energy`s (DOE) Photovoltaic Balance of Systems (BOS) Program. The goal of the PV BOS program is to improve PV system component design, operation, reliability, and to reduce overall life-cycle costs. The Sandia battery testing program consists of: (1) PV battery and charge controller market survey, (2) battery performance and life-cycle testing, (3) PV charge controller development, and (4) system field testing. Test results from this work have identified market size and trends, PV battery test procedures, application guidelines, and needed hardware improvements.

  14. Lightweight bipolar storage battery

    Science.gov (United States)

    Rowlette, John J. (Inventor)

    1992-01-01

    An apparatus [10] is disclosed for a lightweight bipolar battery of the end-plate cell stack design. Current flow through a bipolar cell stack [12] is collected by a pair of copper end-plates [16a,16b] and transferred edgewise out of the battery by a pair of lightweight, low resistance copper terminals [28a,28b]. The copper terminals parallel the surface of a corresponding copper end-plate [16a,16b] to maximize battery throughput. The bipolar cell stack [12], copper end-plates [16a,16b] and copper terminals [28a,28b] are rigidly sandwiched between a pair of nonconductive rigid end-plates [20] having a lightweight fiber honeycomb core which eliminates distortion of individual plates within the bipolar cell stack due to internal pressures. Insulating foam [30] is injected into the fiber honeycomb core to reduce heat transfer into and out of the bipolar cell stack and to maintain uniform cell performance. A sealed battery enclosure [ 22] exposes a pair of terminal ends [26a,26b] for connection with an external circuit.

  15. USED BATTERIES-REMINDER

    CERN Multimedia

    2002-01-01

    Note from the TIS Division: Although it is not an obligation for CERN to collect, store and dispose of used batteries from private vehicles, they are often found abandoned on the site and even in the scrap metal bins. As well as being very dangerous (they contain sulphuric acid which is highly corrosive), this practise costs CERN a non-negligible amount of money to dispose of them safely. The disposal of used batteries in the host state could not be simpler, there are 'déchetteries' in neighbouring France at Saint-Genis, Gaillard and Annemasse as well as in other communes. In Geneva Canton the centre de traitement des déchets spéciaux, at Cheneviers on the river Rhône a few kilometers from CERN, will dispose of your batterie free of charge. So we ask you to use a little common sense and to help protect the environnement from the lead and acid in these batteries and even more important, to avoid the possibility of a colleague being seriously injured. It doesn't take m...

  16. Stable isotope studies

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, T.

    1992-01-01

    The research has been in four general areas: (1) correlation of isotope effects with molecular forces and molecular structures, (2) correlation of zero-point energy and its isotope effects with molecular structure and molecular forces, (3) vapor pressure isotope effects, and (4) fractionation of stable isotopes. 73 refs, 38 figs, 29 tabs.

  17. Stable isotope studies

    International Nuclear Information System (INIS)

    The research has been in four general areas: (1) correlation of isotope effects with molecular forces and molecular structures, (2) correlation of zero-point energy and its isotope effects with molecular structure and molecular forces, (3) vapor pressure isotope effects, and (4) fractionation of stable isotopes. 73 refs, 38 figs, 29 tabs

  18. Method for separating isotopes

    Science.gov (United States)

    Jepson, B.E.

    1975-10-21

    Isotopes are separated by contacting a feed solution containing the isotopes with a cyclic polyether wherein a complex of one isotope is formed with the cyclic polyether, the cyclic polyether complex is extracted from the feed solution, and the isotope is thereafter separated from the cyclic polyether.

  19. Developing isotopic functions

    International Nuclear Information System (INIS)

    Isotopic functions, or ratios of two isotopic variables, are used to verify Pu and U measurements of spent fuels in reprocessing plants. Systematic methods have been developed for forming and evaluating isotopic functions. This paper describes the method used at Battelle to form and evaluate isotopic functions. The data base at Battelle contains measurements and calculations for the fuel from 35 reactors

  20. Modular Battery Charge Controller

    Science.gov (United States)

    Button, Robert; Gonzalez, Marcelo

    2009-01-01

    A new approach to masterless, distributed, digital-charge control for batteries requiring charge control has been developed and implemented. This approach is required in battery chemistries that need cell-level charge control for safety and is characterized by the use of one controller per cell, resulting in redundant sensors for critical components, such as voltage, temperature, and current. The charge controllers in a given battery interact in a masterless fashion for the purpose of cell balancing, charge control, and state-of-charge estimation. This makes the battery system invariably fault-tolerant. The solution to the single-fault failure, due to the use of a single charge controller (CC), was solved by implementing one CC per cell and linking them via an isolated communication bus [e.g., controller area network (CAN)] in a masterless fashion so that the failure of one or more CCs will not impact the remaining functional CCs. Each micro-controller-based CC digitizes the cell voltage (V(sub cell)), two cell temperatures, and the voltage across the switch (V); the latter variable is used in conjunction with V(sub cell) to estimate the bypass current for a given bypass resistor. Furthermore, CC1 digitizes the battery current (I1) and battery voltage (V(sub batt) and CC5 digitizes a second battery current (I2). As a result, redundant readings are taken for temperature, battery current, and battery voltage through the summation of the individual cell voltages given that each CC knows the voltage of the other cells. For the purpose of cell balancing, each CC periodically and independently transmits its cell voltage and stores the received cell voltage of the other cells in an array. The position in the array depends on the identifier (ID) of the transmitting CC. After eight cell voltage receptions, the array is checked to see if one or more cells did not transmit. If one or more transmissions are missing, the missing cell(s) is (are) eliminated from cell

  1. The isotopic contamination in electromagnetic isotope separators

    International Nuclear Information System (INIS)

    In the early years of isotope separation, and in particular electromagnetic isotope separation, needs for rapid results have conducted to empiric research. This paper describes fundamental research on the electromagnetic isotope separation to a better understanding of isotope separators as well as improving the performances. Focus has been made on the study of the principle of isotope contamination and the remedial action on the separator to improve the isotope separation ratio. In a first part, the author come back to the functioning of an electromagnetic separator and generalities on isotope contamination. Secondly, it describes the two stages separation method with two dispersive apparatus, an electromagnetic separation stage followed by an electrostatic separation stage, both separated by a diaphragm. The specifications of the electrostatic stage are given and its different settings and their consequences on isotope separation are investigated. In a third part, mechanisms and contamination factors in the isotope separation are discussed: natural isotope contamination, contamination by rebounding on the collector, contamination because of a low resolution, contamination by chromatism and diffusion effect, breakdown of condenser voltage. Analysis of experimental results shows the diffusion as the most important contamination factor in electromagnetic isotope separation. As contamination factors are dependent on geometric parameters, sector angle, radius of curvature in the magnetic field and clearance height are discussed in a fourth part. The better understanding of the mechanism of the different contamination factors and the study of influential parameters as pressure and geometric parameters lead to define a global scheme of isotope contamination and determinate optima separator design and experimental parameters. Finally, the global scheme of isotope contamination and hypothesis on optima specifications and experimental parameters has been checked during a

  2. Batteries and accumulators in France

    International Nuclear Information System (INIS)

    The present report gives an overview of the batteries and accumulators market in France in 2011 based on the data reported through ADEME's Register of Batteries and accumulators. In 2001, the French Environmental Agency, known as ADEME, implemented a follow-up of the batteries and accumulators market, creating the Observatory of batteries and accumulators (B and A). In 2010, ADEME created the National Register of producers of Batteries and Accumulators in the context of the implementation of the order issued on November 18, 2009. This is one of the four enforcement orders for the decree 2009-1139 issued on September 22, 2009, concerning batteries and accumulators put on the market and the disposal of waste batteries and accumulators, and which transposes the EU-Directive 2006/66/CE into French law. This Register follows the former Observatory for batteries and accumulators. This Register aims to record the producers on French territory and to collect the B and A producers and recycling companies' annual reporting: the regulation indeed requires that all B and A producers and recycling companies report annually on the Register the quantities of batteries and accumulators they put on the market, collect and treat. Based on this data analysis, ADEME issues an annual report allowing both the follow-up of the batteries and accumulators market in France and communication regarding the achievement of the collection and recovery objectives set by EU regulation. This booklet presents the situation in France in 2011

  3. Advanced Battery Manufacturing (VA)

    Energy Technology Data Exchange (ETDEWEB)

    Stratton, Jeremy

    2012-09-30

    LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATT’s work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease

  4. Separation of uranium isotopes

    International Nuclear Information System (INIS)

    This invention provides a method for separating uranium isotopes comprising the steps of selectively irradiating a photochemically-reactive uranyl source material at a wavelength selective to a desired isotope of uranium at an effective temperature for isotope spectral line splitting below about 77 K, further irradiating the source material within the fluorescent lifetime of the selectively irradiated source material to selectively photochemically reduce the selectively excited isotopic species, and chemically separating the reduced isotope species from the remaining uranyl salt compound

  5. 78 FR 55773 - Fourteenth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-09-11

    ... Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is issuing this notice to... Battery and Battery Systems--Small and Medium Size DATES: The meeting will be held October 1-3, 2013,...

  6. Batteries not included

    International Nuclear Information System (INIS)

    This article traces the development of clockwork wind-up battery chargers that can be used to recharge mobile phones, laptop computers, torches or radio batteries from the pioneering research of the British inventor Trevor Baylis to the marketing of the wind-up gadgets by Freeplay Energy who turned the idea into a commercial product. The amount of cranking needed to power wind-up devices is discussed along with a hand-cranked charger for mobile phones, upgrading the phone charger's mechanism, and drawbacks of the charger. Details are given of another invention using a hand-cranked generator with a supercapacitor as a storage device which has a very much higher capacity for storing electrical charge

  7. Battery charging stations

    Energy Technology Data Exchange (ETDEWEB)

    Bergey, M.

    1997-12-01

    This paper discusses the concept of battery charging stations (BCSs), designed to service rural owners of battery power sources. Many such power sources now are transported to urban areas for recharging. A BCS provides the opportunity to locate these facilities closer to the user, is often powered by renewable sources, or hybrid systems, takes advantage of economies of scale, and has the potential to provide lower cost of service, better service, and better cost recovery than other rural electrification programs. Typical systems discussed can service 200 to 1200 people, and consist of stations powered by photovoltaics, wind/PV, wind/diesel, or diesel only. Examples of installed systems are presented, followed by cost figures, economic analysis, and typical system design and performance numbers.

  8. Photoelectrochemical solar battery

    International Nuclear Information System (INIS)

    The invention relates to the field of solar energy conversion and can be used to the elaboration of photoelectrochemical solar batteries. Summary of the invention consists in the fact that in the photoelectrochemical solar battery comprising of a photo electrode and a counter-electrode, placed into an electrolyte solution, comprising the oxidation-reduction system, the photo electrode is made of a semiconductor of n-type ZnIn2S4 and as electrolyte is used aqueous solution Na2S4 - Na2S2. The technical result of the invention consists in the sulphur ions inter exchange from the photo electrode surface and from the electrolyte solution that leads to the reduction of photo electrode photo corrosion

  9. Battery separator manufacturing process

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, N.I.; Sugarman, N.

    1974-12-27

    A battery with a positive plate, a negative plate, and a separator of polymeric resin having a degree of undesirable hydrophobia, solid below 180/sup 0/F, extrudable as a hot melt, and resistant to degradation by at least either acids or alkalies positioned between the plates is described. The separator comprises a nonwoven mat of fibers, the fibers being comprised of the polymeric resin and a wetting agent in an amount of 0.5 to 20 percent by weight based on the weight of the resin with the amount being incompatible with the resin below the melting point of the resin such that the wetting agent will bloom over a period of time at ambient temperatures in a battery, yet being compatible with the resin at the extrusion temperature and bringing about blooming to the surface of the fibers when the fibers are subjected to heat and pressure.

  10. Block copolymer battery separator

    Energy Technology Data Exchange (ETDEWEB)

    Wong, David; Balsara, Nitash Pervez

    2016-04-26

    The invention herein described is the use of a block copolymer/homopolymer blend for creating nanoporous materials for transport applications. Specifically, this is demonstrated by using the block copolymer poly(styrene-block-ethylene-block-styrene) (SES) and blending it with homopolymer polystyrene (PS). After blending the polymers, a film is cast, and the film is submerged in tetrahydrofuran, which removes the PS. This creates a nanoporous polymer film, whereby the holes are lined with PS. Control of morphology of the system is achieved by manipulating the amount of PS added and the relative size of the PS added. The porous nature of these films was demonstrated by measuring the ionic conductivity in a traditional battery electrolyte, 1M LiPF.sub.6 in EC/DEC (1:1 v/v) using AC impedance spectroscopy and comparing these results to commercially available battery separators.

  11. Composite battery separator

    Science.gov (United States)

    Edwards, Dean B. (Inventor); Rippel, Wally E. (Inventor)

    1987-01-01

    A composite battery separator comprises a support element (10) having an open pore structure such as a ribbed lattice and at least one liquid permeable sheet (20,22) to distribute the compressive force evenly onto the surfaces of the layers (24, 26) of negative active material and positive active material. In a non-flooded battery cell the compressible, porous material (18), such as a glass mat which absorbs the electrolyte, is compressed into a major portion of the pores or openings (16) in the support element. The unfilled pores in the material (18) form a gas diffusion path as the channels (41) formed between adjacent ribs in the lattice element (30,36). Facing two lattice elements (30, 31) with acute angled cross-ribs (34, 38) facing each other prevents the elements from interlocking and distorting a porous, separator (42) disposed between the lattice elements.

  12. Advanced Small Rechargeable Batteries

    Science.gov (United States)

    Halpert, Gerald

    1989-01-01

    Lithium-based units offer highest performance. Paper reviews status of advanced, small rechargeable batteries. Covers aqueous systems including lead/lead dioxide, cadmium/nickel oxide, hydrogen/nickel oxide, and zinc/nickel oxide, as well as nonaqueous systems. All based on lithium anodes, nonaqueous systems include solid-cathode cells (lithium/molybdenum disulfide, lithium/titanium disulfide, and lithium/vanadium oxide); liquid-cathode cells (lithium/sulfur dioxide cells); and new category, lithium/polymer cells.

  13. Miniaturized nuclear battery

    International Nuclear Information System (INIS)

    The invention relates to a miniaturized nuclear battery, consisting of several in series connected cells, wherein each cell contains a support which acts as positive pole and which supports on one side a β-emitter, above said emitter is a radiation resisting insulation layer which is covered by an absorption layer, above which is a collector layer, and wherein the in series connected calls are disposed in an airtight case

  14. Automotive Battery Modelling and Management

    OpenAIRE

    N. M. Hammad

    2014-01-01

    The estimation of vehicle battery performance is typically addressed by testing the battery under specific operation conditions by using a model to represent the test results. Approaches for representing test results range from simple statistical models to neural networks to complex, physics-based models. Basing the model on test data could be problematical when testing becomes impractical with many years life time tests. So, real time estimation of battery performance, an important problem i...

  15. Waste battery collection and handling

    OpenAIRE

    Degenek, Marko

    2010-01-01

    In the following thesis, we focused on waste battery collection and handling. Since batteries are known for their possible containing of dangerous substances, it seems sensible to collect and reuse them - not only from the perspective of economy, but also when it comes to regaining some valuable raw materials. That is why the battery issue is not only topical, but also in need of thorough analysis and discussion. Wrongly disposed batterries are a huge environmental issue, since they pollute g...

  16. Air and metal hydride battery

    Energy Technology Data Exchange (ETDEWEB)

    Lampinen, M.; Noponen, T. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Applied Thermodynamics

    1998-12-31

    The main goal of the air and metal hydride battery project was to enhance the performance and manufacturing technology of both electrodes to such a degree that an air-metal hydride battery could become a commercially and technically competitive power source for electric vehicles. By the end of the project it was possible to demonstrate the very first prototype of the air-metal hydride battery at EV scale, achieving all the required design parameters. (orig.)

  17. Membranes in Lithium Ion Batteries

    OpenAIRE

    Junbo Hou; Min Yang

    2012-01-01

    Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separa...

  18. High energy density lithium batteries

    CERN Document Server

    Aifantis, Katerina E; Kumar, R Vasant

    2010-01-01

    Cell phones, portable computers and other electronic devices crucially depend on reliable, compact yet powerful batteries. Therefore, intensive research is devoted to improving performance and reducing failure rates. Rechargeable lithium-ion batteries promise significant advancement and high application potential for hybrid vehicles, biomedical devices, and everyday appliances. This monograph provides special focus on the methods and approaches for enhancing the performance of next-generation batteries through the use of nanotechnology. Deeper understanding of the mechanisms and strategies is

  19. Trends in Cardiac Pacemaker Batteries

    Directory of Open Access Journals (Sweden)

    Venkateswara Sarma Mallela

    2004-10-01

    Full Text Available Batteries used in Implantable cardiac pacemakers-present unique challenges to their developers and manufacturers in terms of high levels of safety and reliability. In addition, the batteries must have longevity to avoid frequent replacements. Technological advances in leads/electrodes have reduced energy requirements by two orders of magnitude. Micro-electronics advances sharply reduce internal current drain concurrently decreasing size and increasing functionality, reliability, and longevity. It is reported that about 600,000 pacemakers are implanted each year worldwide and the total number of people with various types of implanted pacemaker has already crossed 3 million. A cardiac pacemaker uses half of its battery power for cardiac stimulation and the other half for housekeeping tasks such as monitoring and data logging. The first implanted cardiac pacemaker used nickel-cadmium rechargeable battery, later on zinc-mercury battery was developed and used which lasted for over 2 years. Lithium iodine battery invented and used by Wilson Greatbatch and his team in 1972 made the real impact to implantable cardiac pacemakers. This battery lasts for about 10 years and even today is the power source for many manufacturers of cardiac pacemakers. This paper briefly reviews various developments of battery technologies since the inception of cardiac pacemaker and presents the alternative to lithium iodine battery for the near future.

  20. Battery Post-Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Post-test diagnostics of aged batteries can provide additional information regarding the cause of performance degradation, which, previously, could be only inferred...

  1. ZEBRA battery meets USABC goals

    Science.gov (United States)

    Dustmann, Cord-H.

    In 1990, the California Air Resources Board has established a mandate to introduce electric vehicles in order to improve air quality in Los Angeles and other capitals. The United States Advanced Battery Consortium has been formed by the big car companies, Electric Power Research Institute (EPRI) and the Department of Energy in order to establish the requirements on EV-batteries and to support battery development. The ZEBRA battery system is a candidate to power future electric vehicles. Not only because its energy density is three-fold that of lead acid batteries (50% more than NiMH) but also because of all the other EV requirements such as power density, no maintenance, summer and winter operation, safety, failure tolerance and low cost potential are fulfilled. The electrode material is plain salt and nickel in combination with a ceramic electrolyte. The cell voltage is 2.58 V and the capacity of a standard cell is 32 Ah. Some hundred cells are connected in series and parallel to form a battery with about 300 V OCV. The battery system including battery controller, main circuit-breaker and cooling system is engineered for vehicle integration and ready to be mounted in a vehicle [J. Gaub, A. van Zyl, Mercedes-Benz Electric Vehicles with ZEBRA Batteries, EVS-14, Orlando, FL, Dec. 1997]. The background of these features are described.

  2. Characterization of vanadium flow battery

    Energy Technology Data Exchange (ETDEWEB)

    Bindner, H.; Ekman, C.; Gehrke, O.; Isleifsson, F.

    2010-10-15

    This report summarizes the work done at Risoe DTU testing a vanadium flow battery as part of the project 'Characterisation of Vanadium Batteries' (ForskEl project 6555) with the partners PA Energy A/S and OI Electric A/S under the Danish PSO energy research program. A 15kW/120kWh vanadium battery has been installed as part of the distributed energy systems experimental facility, SYSLAB, at Risoe DTU. A test programme has been carried out to get hands-on experience with the technology, to characterize the battery from a power system point of view and to assess it with respect to integration of wind energy in the Danish power system. The battery has been in operation for 18 months. During time of operation the battery has not shown signs of degradation of performance. It has a round-trip efficiency at full load of approximately 60% (depending on temperature and SOC). The sources of the losses are power conversion in cell stacks/electrolyte, power converter, and auxiliary power consumption from pumps and controller. The response time for the battery is limited at 20kW/s by the ramp rate of the power converter. The battery can thus provide power and frequency support for the power system. Vanadium battery is a potential technology for storage based services to the power system provided investment and O and M cost are low enough and long term operation is documented. (Author)

  3. Battery Cell Balancing System and Method

    Science.gov (United States)

    Davies, Francis J. (Inventor)

    2014-01-01

    A battery cell balancing system is operable to utilize a relatively small number of transformers interconnected with a battery having a plurality of battery cells to selectively charge the battery cells. Windings of the transformers are simultaneously driven with a plurality of waveforms whereupon selected battery cells or groups of cells are selected and charged. A transformer drive circuit is operable to selectively vary the waveforms to thereby vary a weighted voltage associated with each of the battery cells.

  4. Advanced Battery Diagnosis for Electric Vehicles

    OpenAIRE

    Lamichhane, Chudamani

    2008-01-01

    Summary Literatures on battery technologies and diagnosis of its parameters were studied. The innovative battery technologies from basic knowledge to world standard testing procedures were analysed and discussed in the report. The established battery test station and flowchart was followed during the battery test preparation and testing. In order to understand and verify the battery performance, the well established test procedures developed by USABC (United States Advanced Battery Consorti...

  5. Single Switched Capacitor Battery Balancing System Enhancements

    OpenAIRE

    Joeri Van Mierlo; Peter Van den Bossche; Noshin Omar; Mailier Antoine; Mohamed Daowd

    2013-01-01

    Battery management systems (BMS) are a key element in electric vehicle energy storage systems. The BMS performs several functions concerning to the battery system, its key task being balancing the battery cells. Battery cell unbalancing hampers electric vehicles’ performance, with differing individual cell voltages decreasing the battery pack capacity and cell lifetime, leading to the eventual failure of the total battery system. Quite a lot of cell balancing topologies have been proposed, ...

  6. Optimised battery capacity utilisation within battery management systems

    NARCIS (Netherlands)

    Wilkins, S.; Rosca, B.; Jacob, J.; Hoedmaekers, E.

    2015-01-01

    Battery Management Systems (BMSs) play a key role in the performance of both hybrid and fully electric vehicles. Typically, the role of the BMS is to help maintain safety, performance, and overall efficiency of the battery pack. One important aspect of its operation is the estimation of the state of

  7. Isotopic geology; Geologie isotopique

    Energy Technology Data Exchange (ETDEWEB)

    Allegre, C. [Paris-7 Univ. Denis Diderot, 75 (France); Institut de physique du globe de Paris, 75 - Paris (France)

    2005-07-01

    Born from the application to geology of nuclear physics techniques, the isotopic geology has revolutionized the Earth's sciences. Beyond the dating of rocks, the tracer techniques have permitted to reconstruct the Earth's dynamics, to measure the temperatures of the past (giving birth to paleoclimatology) and to understand the history of chemical elements thanks to the analysis of meteorites. Today, all domains of Earth sciences appeal more or less to the methods of isotopic geology. In this book, the author explains the principles, methods and recent advances of this science: 1 - isotopes and radioactivity; 2 - principles of isotope dating; 3 - radio-chronological methods; 4 - cosmogenic isotope chronologies; 5 - uncertainties and radio-chronological results; 6 - geochemistry of radiogenic isotopes; 7 - geochemistry of stable isotopes; 8 - isotopic geology and dynamical analysis of reservoirs. (J.S.)

  8. Optical isotope shifts for unstable samarium isotopes

    International Nuclear Information System (INIS)

    Using a tunable dye laser beam intersecting a thermal atomic beam, optical isotope shifts and hyperfine splittings have been measured for the four unstable samarium isotopes between 144Sm and 154Sm, covering the well known transition region from spherical to deformed shapes. (orig.)

  9. Automotive Battery Modelling and Management

    Directory of Open Access Journals (Sweden)

    N. M. Hammad

    2014-06-01

    Full Text Available The estimation of vehicle battery performance is typically addressed by testing the battery under specific operation conditions by using a model to represent the test results. Approaches for representing test results range from simple statistical models to neural networks to complex, physics-based models. Basing the model on test data could be problematical when testing becomes impractical with many years life time tests. So, real time estimation of battery performance, an important problem in automotive applications, falls into this area. In vehicles it is important to know the state of charge of the batteries in order to prevent vehicle stranding and to ensure that the full range of the vehicle operation is exploited. In this paper, several battery models have studied including analytical, electrical circuits, stochastic and electro- chemical models. Valve Regulated Lead Acid “VRLA” battery has been modelled using electric circuit technique. This model is considered in the proposed Battery Monitoring System “BMS”. The proposed BMS includes data acquisition, data analysis and prediction of battery performance under a hypothetical future loads. Based on these criteria, a microprocessor based BMS prototype had been built and tested in automotive Lab,. The tests show promising results that can be used in industrial applications

  10. Battery system with temperature sensors

    Science.gov (United States)

    Wood, Steven J.; Trester, Dale B.

    2012-11-13

    A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

  11. Redox Flow Batteries, a Review

    OpenAIRE

    Weber, Adam Z.

    2013-01-01

    Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

  12. Which battery model to use?

    NARCIS (Netherlands)

    Jongerden, Marijn R.; Haverkort, Boudewijn R.

    2008-01-01

    The use of mobile devices like cell phones, navigation systems, or laptop computers, is limited by the lifetime of the included batteries. This lifetime depends naturally on the rate at which energy is consumed, however, it also depends on the usage pattern of the battery. Continuous drawing of a hi

  13. Redox Flow Batteries, a Review

    Energy Technology Data Exchange (ETDEWEB)

    Knoxville, U. Tennessee; U. Texas Austin; U, McGill; Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

    2011-07-15

    Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

  14. A Nation-Sized Battery?

    International Nuclear Information System (INIS)

    The Intermittency Challenge and the approaching need for massive storage of rapidly dispatchable energy has led the concept of the National Battery, a unified facility that holds the aggregated outputs from an array of intrinsically episodic renewable sources, releasing energy as demand requires. In this contribution, the original demonstration of Murphy that lead-acid batteries are inappropriate is first reviewed and then extended to show that no commercially available battery technology is at present appropriate. However, prospectively, underground pumped hydro storage could suffice, and at a lesser cost than suitable batteries. - Highlights: ► Renewable Energy poses an Intermittency Challenge requiring massive storage. ► This challenge will force the USA to store at least 5 TWd of dispatchable energy. ► No commercially available type of battery is demonstrably up to this task. ► Underground pumped hydro seems capable of meeting this need.

  15. Battery selection for space experiments

    Science.gov (United States)

    Francisco, David R.

    1992-10-01

    This paper will delineate the criteria required for the selection of batteries as a power source for space experiments. Four basic types of batteries will be explored, lead acid, silver zinc, alkaline manganese and nickel cadmium. A detailed description of the lead acid and silver zinc cells while a brief exploration of the alkaline manganese and nickel cadmium will be given. The factors involved in battery selection such as packaging, energy density, discharge voltage regulation, and cost will be thoroughly examined. The pros and cons of each battery type will be explored. Actual laboratory test data acquired for the lead acid and silver zinc cell will be discussed. This data will include discharging under various temperature conditions, after three months of storage and with different types of loads. A description of the required maintenance for each type of battery will be investigated. The lifetime and number of charge/discharge cycles will be discussed.

  16. Statistical clumped isotope signatures.

    Science.gov (United States)

    Röckmann, T; Popa, M E; Krol, M C; Hofmann, M E G

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168

  17. Alkaline battery, separator therefore

    Science.gov (United States)

    Schmidt, George F. (Inventor)

    1980-01-01

    An improved battery separator for alkaline battery cells has low resistance to electrolyte ion transfer and high resistance to electrode ion transfer. The separator is formed by applying an improved coating to an electrolyte absorber. The absorber, preferably, is a flexible, fibrous, and porous substrate that is resistant to strong alkali and oxidation. The coating composition includes an admixture of a polymeric binder, a hydrolyzable polymeric ester and inert fillers. The coating composition is substantially free of reactive fillers and plasticizers commonly employed as porosity promoting agents in separator coatings. When the separator is immersed in electrolyte, the polymeric ester of the film coating reacts with the electrolyte forming a salt and an alcohol. The alcohol goes into solution with the electrolyte while the salt imbibes electrolyte into the coating composition. When the salt is formed, it expands the polymeric chains of the binder to provide a film coating substantially permeable to electrolyte ion transfer but relatively impermeable to electrode ion transfer during use.

  18. 77 FR 8325 - Sixth Meeting: RTCA Special Committee 225, Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2012-02-14

    ... Batteries and Battery Systems, Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Batteries and Battery Systems, Small and Medium Size. SUMMARY: The FAA is issuing this notice to advise the public of the sixth meeting of RTCA Special Committee 225, Rechargeable Lithium Batteries and...

  19. 77 FR 20688 - Seventh Meeting: RTCA Special Committee 225, Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2012-04-05

    ... Batteries and Battery Systems, Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Batteries and Battery Systems, Small and Medium Size. SUMMARY: The FAA is issuing this notice to advise the public of the seventh meeting of RTCA Special Committee 225, Rechargeable Lithium Batteries and...

  20. 76 FR 54527 - Fourth Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2011-09-01

    ... and Battery Systems--Small and Medium Sizes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 225 meeting: Rechargeable Lithium Batteries and Battery Systems--Small... Special Committee 225: Rechargeable Lithium Batteries and Battery Systems--Small and Medium Sizes....

  1. 76 FR 38741 - Third Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2011-07-01

    ... and Battery Systems--Small and Medium Sizes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 225 meeting: Rechargeable Lithium Batteries and Battery Systems--Small... Special Committee 225: Rechargeable Lithium Batteries and Battery Systems--Small and Medium Sizes....

  2. 76 FR 6180 - First Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2011-02-03

    ... and Battery Systems--Small and Medium Sizes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 225 meeting: Rechargeable Lithium Batteries and Battery Systems--Small... Special Committee 225: Rechargeable Lithium Batteries and Battery Systems--Small and Medium Sizes....

  3. 76 FR 22161 - Second Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2011-04-20

    ... and Battery Systems--Small and Medium Sizes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 225 meeting: Rechargeable Lithium Batteries and Battery Systems--Small... Special Committee 225: Rechargeable Lithium Batteries and Battery Systems--Small and Medium Sizes....

  4. Production of nuclear sources and nuclear batteries by proton irradiation

    CERN Document Server

    Möller, S

    2016-01-01

    The decay of instable nuclei is being used in a broad range of applications from detector calibration to power sources. As the public acceptance of classical fission nuclear technology is decaying and its integral costs are enormous, alternative production routes are required. The mathematical formalism and fundamental considerations are presented for the use of ion accelerators for isotope production. A focus is put on the production of nuclear power sources to substitute Pu-238 based batteries. 20 MeV protons are found to produce {\\alpha} emitting polonium isotopes from bismuth with an energy efficiency of up to 0.031%. Some hours are required to produce a 1Wth power source of the 2.9 year half-life {\\alpha} emitter Po-208 with a suitable accelerator. The accelerator approach offers more flexibility for tailoring of nuclear products and less waste. The technical requirements are close to and compatible with the planned International Fusion Materials Irradiation Facility accelerator

  5. Isotopes in heterogeneous catalysis

    CERN Document Server

    Hargreaves, Justin SJ

    2006-01-01

    The purpose of this book is to review the current, state-of-the-art application of isotopic methods to the field of heterogeneous catalysis. Isotopic studies are arguably the ultimate technique in in situ methods for heterogeneous catalysis. In this review volume, chapters have been contributed by experts in the field and the coverage includes both the application of specific isotopes - Deuterium, Tritium, Carbon-14, Sulfur-35 and Oxygen-18 - as well as isotopic techniques - determination of surface mobility, steady state transient isotope kinetic analysis, and positron emission profiling.

  6. Al/Cl2 molten salt battery

    Science.gov (United States)

    Giner, J.

    1972-01-01

    Molten salt battery has been developed with theoretical energy density of 5.2 j/kg (650 W-h/lb). Battery, which operates at 150 C, can be used in primary mode or as rechargeable battery. Battery has aluminum anode and chlorine cathode. Electrolyte is mixture of AlCl3, NaCl, and some alkali metal halide such as KCl.

  7. High power battery systems for hybrid vehicles

    Science.gov (United States)

    Corson, Donald W.

    Pure electric and hybrid vehicles have differing demands on the battery system of a vehicle. This results in correspondingly different demands on the battery management of a hybrid vehicle. Examples show the differing usage patterns. The consequences for the battery cells and the battery management are discussed. The importance of good thermal management is underlined.

  8. 46 CFR 120.352 - Battery categories.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Battery categories. 120.352 Section 120.352 Shipping... and Distribution Systems § 120.352 Battery categories. This section applies to batteries installed to... sources of power to final emergency loads. (a) Large. A large battery installation is one connected to...

  9. 77 FR 28259 - Mailings of Lithium Batteries

    Science.gov (United States)

    2012-05-14

    ... Mailable Mailable No more than 3 (individual batteries). batteries. 3. Each secondary cell must not contain.... In addition, the Postal Service has moved the lithium battery standards as it relates to... than 1.0 gram (g) of lithium content per cell. 2. Each battery must contain no more than 2.0...

  10. 46 CFR 169.668 - Batteries.

    Science.gov (United States)

    2010-10-01

    ... § 169.668 Batteries. (a) Each battery must be in a location that allows the gas generated in charging to... this section, a battery must not be located in the same compartment with a gasoline tank or gasoline engine. (c) If compliance with paragraph (b) of this section is not practicable, the battery must...

  11. BLET:Battery Lifetime Enhancement Technology

    Institute of Scientific and Technical Information of China (English)

    Yong-Ju; Jang; Seongsoo; Lee

    2010-01-01

    <正>In recent years,mobile devices and high-hearth because of the multifunctional,battery capacity has been increased.In this paper,without the overhead by using the battery discharge characteristics,and application of technology to extend the battery life is explained. Experiment H.264 video transmission to take some losses and extended battery life was achieved.

  12. 46 CFR 111.15-5 - Battery installation.

    Science.gov (United States)

    2010-10-01

    ... REQUIREMENTS Storage Batteries and Battery Chargers: Construction and Installation § 111.15-5 Battery installation. (a) Large batteries. Each large battery installation must be in a room that is only for batteries... 46 Shipping 4 2010-10-01 2010-10-01 false Battery installation. 111.15-5 Section 111.15-5...

  13. Stable isotope applications

    International Nuclear Information System (INIS)

    The following domains of stable isotope applications are presented: - isotope dilution analyses as in trace analyses or volume and mass determinations; - stable isotopes as tracers as applied in environmental studies, agricultural research, products and objects authentification, transport phenomena, reaction mechanisms, determinations of structure and complex biological function, metabolism studies, diagnostic respiration tests, positron emission tomography; - equilibrium isotopic effects as investigated in measurements of effects, studies of equilibrium conditions, the mechanism of drug action, study of natural processes, water circuit, temperature measurements; - kinetic isotopic effects, as, for instance, reaction rates and mechanisms, solvent isotopic effects; - stable isotopes for advanced nuclear reactors as, for instance, uranium nitride with 15 N as nuclear fuel or 157 Gd for reactivity control. In spite of the difficulties regarding stable isotope use and first of all, of the difficult and costly analytical techniques, a continuous growth of the number of stable isotope applications in different fields is registered. The number of works and scientific meetings on the subject, as organized by the International Society of Isotopes and IAEA-Vienna, Gordon Conferences, regional meetings in Germany, France, etc. increase continuously. Development of the stable isotope application on a larger scale requires improving both their production technologies as well as those of labelled substances and, at the same time, the analytical methods

  14. Chromium isotope variations

    DEFF Research Database (Denmark)

    D'Arcy, Joan Mary

    Chromium (Cr) stable isotopes are a useful tracer of changes in redox conditions because changes in its oxidation state are accompanied by an isotopic fractionation. For this reason the Cr isotope system is being developed as a potential tool for paleo-redox reconstruction. Dissolved Cr in seawater...... is incorporated into carbonates. Hence, ancient carbonates can potentially record the Cr isotopic composition (δ53Cr ‰) of seawater in the geological past. Reliable application and interpretation of this proxy requires a detailed knowledge about processes that fractionate Cr on the Earth’s surface......, and the quantification the Cr isotope composition of major Cr fluxes into and out of ocean. This thesis adds to the current knowledge of the Cr isotope system and is divided into two studies. The focus of the first study was to determine what processes control the Cr isotopic compositionof river...

  15. Storage battery market: profiles and trade opportunities

    Science.gov (United States)

    Stonfer, D.

    1985-04-01

    The export market for domestically produced storage batteries is a modest one, typically averaging 6 to 7% of domestic industry shipments. Exports in 1984 totalled about $167 million. Canada and Mexico were the largest export markets for US storage batteries in 1984, accounting for slightly more than half of the total. The United Kingdom, Saudi Arabia, and the Netherlands round out the top five export markets. Combined, these five markets accounted for two-thirds of all US exports of storage batteries in 1984. On a regional basis, the North American (Canada), Central American, and European markets accounted for three-quarters of total storage battery exports. Lead-acid batteries accounted for 42% of total battery exports. Battery parts followed lead-acid batteries with a 29% share. Nicad batteries accounted for 16% of the total while other batteries accounted for 13%.

  16. Computing lifetimes for battery-powered devices

    OpenAIRE

    Jongerden, Marijn; Haverkort, Boudewijn

    2010-01-01

    The battery lifetime of mobile devices depends on the usage pattern of the battery, next to the discharge rate and the battery capacity. Therefore, it is important to include the usage pattern in battery lifetime computations. We do this by combining a stochastic workload, modeled as a continuous-time Markov model, with a well-known battery model. For this combined model, we provide new algorithms to efficiently compute the expected lifetime and the distribution and expected value of the deli...

  17. Models of novel battery architectures

    Science.gov (United States)

    Haney, Paul; Ruzmetov, Dmitry; Talin, Alec

    2013-03-01

    We use a 1-dimensional model of electronic and ionic transport, coupled with experimental data, to extract the interfacial electrochemical parameters for LiCoO2-LIPON-Si thin film batteries. TEM imaging of batteries has shown that charge/discharge cycles can lead to breakdown of the interfaces, which reduces the effective area through which further Li ion transfer can occur. This is modeled phenomenologically by changing the effective cross sectional area, in order to correlate this structural change with the change in charge/discharge I-V curves. Finally, by adopting the model to radial coordinates, the geometrical effect of nanowire architectures for batteries is investigated.

  18. Battery Ownership Model - Medium Duty HEV Battery Leasing & Standardization

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Ken; Smith, Kandler; Cosgrove, Jon; Prohaska, Robert; Pesaran, Ahmad; Paul, James; Wiseman, Marc

    2015-12-01

    Prepared for the U.S. Department of Energy, this milestone report focuses on the economics of leasing versus owning batteries for medium-duty hybrid electric vehicles as well as various battery standardization scenarios. The work described in this report was performed by members of the Energy Storage Team and the Vehicle Simulation Team in NREL's Transportation and Hydrogen Systems Center along with members of the Vehicles Analysis Team at Ricardo.

  19. Isotopic contamination in electromagnetic isotope separators

    International Nuclear Information System (INIS)

    The mechanisms producing isotopic contamination in the electromagnetic separation of isotopes are studied with the aid of the Separator of Saclay and an electrostatic analyzer in cascade. After a separate investigation the result of which is that no contamination comes from the spreading of initial energies of ions, two principal mechanisms are emphasized; scattering and instability of the regime of the sources. The characters of each type of contamination arising from both mechanisms are described in some detail. An unique scheme of isotopic contamination is then derived from the partial ones. This scheme is successfully verified in several experimental separations. The applications concern principally the performances of magnetic cascades and more complex apparatus. It is found that the isotopic purities that such machines can deliver are extremely high. (author)

  20. Photoelectrochemical solar battery

    International Nuclear Information System (INIS)

    The invention refers to the field of solar-to electric energy conservation and may be used for the creation of photoelectrochemical regenerating converters. Summary of the invention consists in that the photoelectrochemical solar battery includes a semiconducting photo-electrodes and a counter-electrode , placed into the electrolyte solution. The photo-electrode is made of the compounds A3B5, and in the capacity of electrolyte solution is used an aqueoua solution Na2SiO3. The result of the invention consists in the absorbtion from the electrtolyte solution of the ions SiO3 and HSiO3 on the photo-electrode working surface, that leads to a decrease in the corrosion of the latter

  1. Prognostics in Battery Health Management

    Data.gov (United States)

    National Aeronautics and Space Administration — Batteries represent complex systems whose internal state vari- ables are either inaccessible to sensors or hard to measure un- der operational conditions. This work...

  2. Electroactive materials for rechargeable batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huiming; Amine, Khalil; Abouimrane, Ali

    2015-04-21

    An as-prepared cathode for a secondary battery, the cathode including an alkaline source material including an alkali metal oxide, an alkali metal sulfide, an alkali metal salt, or a combination of any two or more thereof.

  3. Ultrasonic enhancement of battery diffusion.

    Science.gov (United States)

    Hilton, R; Dornbusch, D; Branson, K; Tekeei, A; Suppes, G J

    2014-03-01

    It has been demonstrated that sonic energy can be harnessed to enhance convection in Galvanic cells during cyclic voltammetry; however, the practical value of this approach is limited due to the lack of open volumes for convection patterns to develop in most batteries. This study evaluates the ability of ultrasonic waves to enhance diffusion in membrane separators commonly used in sandwich-architecture batteries. Studies include the measuring of open-circuit performance curves to interpret performances in terms of reductions in concentration overpotentials. The use of a 40 kHz sonicator bath can consistently increase the voltage of the battery and reduce overpotential losses up to 30%. This work demonstrates and quantifies battery enhancement due to enhanced diffusion made possible with ultrasonic energy. PMID:24210813

  4. Neutron Scattering for battery materials

    International Nuclear Information System (INIS)

    Batteries are a key technology in today’s society. They are used to power electric and hybrid electric vehicles and to store wind and solar energy in smart grids. Since the “lithium-ion” configuration has been widely accepted, significant efforts have been devoted to attain high energy and power densities to produce an excellent energy storage system without any safety issues. To improve battery characteristics, deep insights into the structure of the materials during the battery reactions are necessary. Neutron Scatteringclarifies a wide range of structures for battery materials; from local to long range structures, and these structure characteristics are related to the battery properties. New materials with high electrochemical properties are necessary to improve future battery systems. Structure and property relationships for the battery electrodes and electrolytes are important information for designing new energy storage systems. An example of new materials is solid electrolytes. An all solid-state configuration is the most promising for future devices to improve the reliability of batteries. Lithium superionic conductors, which can be used as solid electrolytes, promise the potential to replace organic liquid electrolytes and thereby improve the safety of batteries. The material, Li10GeP2S12 shows high ionic conductivity, which exceeds the conductivity value of liquid electrolyte. Neutron Scatteringis one of the best methods to provide information of structure containing lithium and conduction mechanism determined by Neutron Scattering makes the materials design concept clear. In-situ and perando experimental techniques are another important subjects for clarifying battery reactions. An in situ technique for directly observing surface structural changes has been developed that employs thin-film model electrodes and surface X-ray and Neutron Scattering techniques. The surface structural changes commence with the formation of an electrical double layer

  5. Tracing Waste Water with Li isotopes

    Science.gov (United States)

    Millot, R.; Desaulty, A. M.

    2015-12-01

    The contribution of human activities such as industries, agriculture and various domestic inputs, becomes more and more significant in the chemical composition of the dissolved load of rivers. Human factors act as a supplementary key process. Therefore the mass-balance for the budget of catchments and river basins include anthropogenic disturbances. In the present study, we investigate waste water tracing by the use of Li isotopes in a small river basin near Orléans in France (l'Egoutier, 15 km² and 5 km long). It is well known that Li has strategic importance for numerous industrial applications including its use in the production of batteries for both mobile devices (computers, tablets, smartphones, etc.) and electric vehicles, but also in pharmaceutical formulations. In the present work, we collected river waters samples before and after the release from a waste water treatment plant connected to an hospital. Lithium isotopic compositions are rather homogeneous in river waters with δ7Li values around -0.5‰ ± 1 along the main course of the stream (n=7). The waste water sample is very different from the natural background of the river basin with Li concentration being twice of the values without pollution and significant heavy lithium contribution (δ7Li = +4‰). These preliminary results will be discussed in relation with factors controlling the distribution of Li and its isotopes in this specific system and compared with the release of other metals such as Pb or Zn.

  6. Transparent lithium-ion batteries

    OpenAIRE

    Yang, Yuan; Jeong, Sangmoo; Hu, Liangbing; Wu, Hui; Lee, Seok Woo; Cui, Yi

    2011-01-01

    Transparent devices have recently attracted substantial attention. Various applications have been demonstrated, including displays, touch screens, and solar cells; however, transparent batteries, a key component in fully integrated transparent devices, have not yet been reported. As battery electrode materials are not transparent and have to be thick enough to store energy, the traditional approach of using thin films for transparent devices is not suitable. Here we demonstrate a grid-structu...

  7. Gate-controllable spin battery

    OpenAIRE

    Long, W.; Sun, QF; H. Guo; J. Wang(Institute of High Energy Physics, Chinese Academy of Sciences, Beijing)

    2003-01-01

    We propose a gate-controllable spin-battery for spin current. The spin battery consists of a lateral double quantum dot under a uniform magnetic field. A finite dc spin current is driven out of the device by controlling a set of gate voltages. Spin current can also be delivered in the absence of charge current. The proposed device should be realizable using present technology at low temperature. © 2003 American Institute of Physics.

  8. Iron-Air Rechargeable Battery

    Science.gov (United States)

    Narayan, Sri R. (Inventor); Prakash, G.K. Surya (Inventor); Kindler, Andrew (Inventor)

    2014-01-01

    Embodiments include an iron-air rechargeable battery having a composite electrode including an iron electrode and a hydrogen electrode integrated therewith. An air electrode is spaced from the iron electrode and an electrolyte is provided in contact with the air electrode and the iron electrodes. Various additives and catalysts are disclosed with respect to the iron electrode, air electrode, and electrolyte for increasing battery efficiency and cycle life.

  9. Modeling the Lithium Ion Battery

    Science.gov (United States)

    Summerfield, John

    2013-01-01

    The lithium ion battery will be a reliable electrical resource for many years to come. A simple model of the lithium ions motion due to changes in concentration and voltage is presented. The battery chosen has LiCoO[subscript 2] as the cathode, LiPF[subscript 6] as the electrolyte, and LiC[subscript 6] as the anode. The concentration gradient and…

  10. Separators for Lithium Ion Batteries

    Institute of Scientific and Technical Information of China (English)

    G.C.Li; H.P.Zhang; Y.P.Wu

    2007-01-01

    1 Results A separator for rechargeable batteries is a microporous membrane placed between electrodes of opposite polarity, keeping them apart to prevent electrical short circuits and at the same time allowing rapid transport of lithium ions that are needed to complete the circuit during the passage of current in an electrochemical cell, and thus plays a key role in determining the performance of the lithium ion battery. Here provides a comprehensive overview of various types of separators for lithium io...

  11. Isotope enrichment systems

    International Nuclear Information System (INIS)

    This invention provides a system in which both phases of the countercurrent contact isotope exchange concentration process are recycled continuously and an isotope depleted liquid phase substance thereof has its prior content of the desired isotope of hydrogen and/or oxygen replenished in an isotope regenerator by direct contact isotope exchange with a flow of steam from a source external to the concentrating process, whereby such replenished liquid serves as the feed liquid for the concentration process. As the supply of steam is gaseous, all problems incident to mineral solids in solution in liquid water are eliminated. As the elevated temperature corresponds to that of the steam, the isotope replenishment of the process feed liquid may be conducted without materially altering the characteristics of the steam for use as an energy source in any system

  12. Functional materials for rechargeable batteries.

    Science.gov (United States)

    Cheng, Fangyi; Liang, Jing; Tao, Zhanliang; Chen, Jun

    2011-04-19

    There is an ever-growing demand for rechargeable batteries with reversible and efficient electrochemical energy storage and conversion. Rechargeable batteries cover applications in many fields, which include portable electronic consumer devices, electric vehicles, and large-scale electricity storage in smart or intelligent grids. The performance of rechargeable batteries depends essentially on the thermodynamics and kinetics of the electrochemical reactions involved in the components (i.e., the anode, cathode, electrolyte, and separator) of the cells. During the past decade, extensive efforts have been dedicated to developing advanced batteries with large capacity, high energy and power density, high safety, long cycle life, fast response, and low cost. Here, recent progress in functional materials applied in the currently prevailing rechargeable lithium-ion, nickel-metal hydride, lead acid, vanadium redox flow, and sodium-sulfur batteries is reviewed. The focus is on research activities toward the ionic, atomic, or molecular diffusion and transport; electron transfer; surface/interface structure optimization; the regulation of the electrochemical reactions; and the key materials and devices for rechargeable batteries. PMID:21394791

  13. Carbon-enhanced VRLA batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Enos, David George; Hund, Thomas D.; Shane, Rod (East Penn Manufacturing, Lyon Station, PA)

    2010-10-01

    The addition of certain forms of carbon to the negative plate in valve regulated lead acid (VRLA) batteries has been demonstrated to increase the cycle life of such batteries by an order of magnitude or more under high-rate, partial-state-of-charge operation. Such performance will provide a significant impact, and in some cases it will be an enabling feature for applications including hybrid electric vehicles, utility ancillary regulation services, wind farm energy smoothing, and solar photovoltaic energy smoothing. There is a critical need to understnd how the carbon interacts with the negative plate and achieves the aforementioned benefits at a fundamental level. Such an understanding will not only enable the performance of such batteries to be optimzied, but also to explore the feasibility of applying this technology to other battery chemistries. In partnership with the East Penn Manufacturing, Sandia will investigate the electrochemical function of the carbon and possibly identify improvements to its anti-sulfation properties. Shiomi, et al. (1997) discovered that the addition of carbon to the negative active material (NAM) substantially reduced PbSO{sub 4} accumulation in high rate, partial state of charge (HRPSoC) cycling applications. This improved performance with a minimal cost. Cycling applications that were uneconomical for traditional VRLA batteries are viable for the carbon enhanced VRLA. The overall goal of this work is to quantitatively define the role that carbon plays in the electrochemistry of a VRLA battery.

  14. Computer Aided Battery Engineering Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad

    2016-06-07

    A multi-national lab collaborative team was assembled that includes experts from academia and industry to enhance recently developed Computer-Aided Battery Engineering for Electric Drive Vehicles (CAEBAT)-II battery crush modeling tools and to develop microstructure models for electrode design - both computationally efficient. Task 1. The new Multi-Scale Multi-Domain model framework (GH-MSMD) provides 100x to 1,000x computation speed-up in battery electrochemical/thermal simulation while retaining modularity of particles and electrode-, cell-, and pack-level domains. The increased speed enables direct use of the full model in parameter identification. Task 2. Mechanical-electrochemical-thermal (MECT) models for mechanical abuse simulation were simultaneously coupled, enabling simultaneous modeling of electrochemical reactions during the short circuit, when necessary. The interactions between mechanical failure and battery cell performance were studied, and the flexibility of the model for various batteries structures and loading conditions was improved. Model validation is ongoing to compare with test data from Sandia National Laboratories. The ABDT tool was established in ANSYS. Task 3. Microstructural modeling was conducted to enhance next-generation electrode designs. This 3- year project will validate models for a variety of electrodes, complementing Advanced Battery Research programs. Prototype tools have been developed for electrochemical simulation and geometric reconstruction.

  15. Evaluation of Batteries for Safe Air Transport

    Directory of Open Access Journals (Sweden)

    Nicholas Williard

    2016-05-01

    Full Text Available Lithium-ion batteries are shipped worldwide with many limitations implemented to ensure safety and to prevent loss of cargo. Many of the transportation guidelines focus on new batteries; however, the shipment requirements for used or degraded batteries are less clear. Current international regulations regarding the air transport of lithium-ion batteries are critically reviewed. The pre-shipping tests are outlined and evaluated to assess their ability to fully mitigate risks during battery transport. In particular, the guidelines for shipping second-use batteries are considered. Because the electrochemical state of previously used batteries is inherently different from that of new batteries, additional considerations must be made to evaluate these types of cells. Additional tests are suggested that evaluate the risks of second-use batteries, which may or may not contain incipient faults.

  16. Redox-flow battery of actinide complexes

    International Nuclear Information System (INIS)

    Np battery and U battery were developed. We suggested that Np redox-flow battery should be (-)|Np3+,Np4+||NpO2+,NpO22+|(+), and U battery (-)|[UIIIT2]-,[UIVT2]0||[UVO2T]-,[UVIO2T]0|(+). The electromotive force at 50 % charge of Np and U battery is 1.10 V and 1.04 V, respectively. The energy efficiency of 70 mA/cm2 of Np and U battery shows 99 % and 98 %, respectively. V redox-flow battery, electrode reactions of An battery, Np battery, U battery and future of U battery are described. The concept of V redox-flow battery, comparison of energy efficiency of Np, U and V battery, oxidation state and ionic species of 3d transition metals and main An, Purbe diagram of Np and U aqueous solution, shift of redox potential of β-diketones by pKa, and specifications of three redox-flow batteries are reported. (S.Y.)

  17. Uses of stable isotopes

    International Nuclear Information System (INIS)

    The most important fields of stable isotope use with examples are presented. In isotope dilution analysis the stable isotopes are used in trace analysis, measurements of volumes and masses. In the field of stable isotope use as tracers the following applications are encountered: transport phenomena, environmental studies, agricultural research, authentication of products and objects, archaeometry, studies of reaction mechanisms, structure and function determination of complex biological entities, studies of metabolism, breath test for diagnostic. In the domain of isotope equilibrium effects applications in the study of mechanism of drug action, study of natural processes, investigation of equilibrium conditions and water cycle as well as in temperature measurements are encountered. Stable isotopes are also used in advanced nuclear reactors, particularly, the uranium nitride with 15 N as nuclear fuel and 157 Gd for reactor control. In spite of some difficulties of stable isotope use, especially related to analytical techniques, which are slow and expensive, the number of papers reporting this subject is steadily growing as well the number of scientific meetings organized by International Isotope Society and IAEA, Gordon Conferences, and regional meetings in Germany, France, etc. Stable isotope application development on large scale is ensured by improving their production technologies, as well as by development of new labelled compounds and of analytical techniques. (author)

  18. Isotopes in hydrogeology

    International Nuclear Information System (INIS)

    Questions of the application of radioactive isotopes in hydrogeology and seismology are considered, as well as their physico-chemical and geochemical properties and the regularities of their occurrence and migration in natural waters. The possibility of application of these isotopes in calculating the age of waters and in solving paleohydrogeological problems is studied. Elucidated are questions of utilization of helium and uranium isotope content in determining the effect of faults on the hydrogeological conditions of regions and in selecting burial sites for industrial wastes. Utilization of changes in the isotopic and gas composition of underground waters during the activization of tectonic movements for earthquake forecasts is considered

  19. PRINCIPAL ISOTOPE SELECTION REPORT

    International Nuclear Information System (INIS)

    Utilizing nuclear fuel to produce power in commercial reactors results in the production of hundreds of fission product and transuranic isotopes in the spent nuclear fuel (SNF). When the SNF is disposed of in a repository, the criticality analyses could consider all of the isotopes, some principal isotopes affecting criticality, or none of the isotopes, other than the initial loading. The selected set of principal isotopes will be the ones used in criticality analyses of the SNF to evaluate the reactivity of the fuel/waste package composition and configuration. This technical document discusses the process used to select the principal isotopes and the possible affect that these isotopes could have on criticality in the SNF. The objective of this technical document is to discuss the process used to select the principal isotopes for disposal criticality evaluations with commercial SNF. The principal isotopes will be used as supporting information in the ''Disposal Criticality Analysis Methodology Topical Report'' which will be presented to the United States Nuclear Regulatory Commission (NRC) when approved by the United States Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM)

  20. The isotope breathe test

    International Nuclear Information System (INIS)

    The foundations of the breath diagnostic test, based on application of the carbon compounds, labeled with the stable (13C) or radioactive isotope are presented. The methodology for conducting the breath isotope test and the apparatuses, making it possible to determine under clinical conditions the isotope composition of the carbon, contained in the expired air, depending on the introduced tracer type, is briefly described. The safety of the method and prospects of its application are discussed. The examples of the breath isotope test practical application are presented

  1. Advanced state prediction of lithium-ion traction batteries in hybrid and battery electric vehicle applications

    Energy Technology Data Exchange (ETDEWEB)

    Jadidi, Yasser

    2011-07-01

    Automotive power trains with high energy efficiencies - particularly to be found in battery and hybrid electric vehicles - find increasing attention in the focus of reduction of exhaust emissions and increase of mileage. The underlying concept, the electrification of the power train, is subject to the traction battery and its battery management system since the capability of the battery permits and restricts electric propulsion. Consequently, the overall vehicle efficiency and in particular the operation strategy performance strongly depends on the quality of information about the battery. Besides battery technology, the key challenges are given by both the accurate prediction of battery behaviour and the electrochemical battery degradation that leads to power and capacity fade of the traction battery. This book provides the methodology for development of a battery state monitoring and prediction algorithm for application in a battery management system that accounts for the effects of electrochemical degradation. (orig.)

  2. Vehicles testing of near-term batteries

    Science.gov (United States)

    Conover, R. C.; Hardy, K. S.; Sandberg, J. J.

    1980-01-01

    Vehicles test results are reported for nickel-iron, nickel-zinc, and improved lead-acid batteries developed under the Near-Term Battery Program sponsored by the Department of Energy. The batteries have demonstrated a range improvement of up to 90% over current lead-acid batteries due to improved energy density and ampere-hour capacity, combined with relatively small weight and volume. However, the nickel-iron battery requires a substantial development effort in packaging the circulating electrolyte system and handling the generated hydrogen volume, while the nickel-zinc batteries tested suffer from short cycle life.

  3. Intracellular Cadmium Isotope Fractionation

    Science.gov (United States)

    Horner, T. J.; Lee, R. B.; Henderson, G. M.; Rickaby, R. E.

    2011-12-01

    Recent stable isotope studies into the biological utilization of transition metals (e.g. Cu, Fe, Zn, Cd) suggest several stepwise cellular processes can fractionate isotopes in both culture and nature. However, the determination of fractionation factors is often unsatisfactory, as significant variability can exist - even between different organisms with the same cellular functions. Thus, it has not been possible to adequately understand the source and mechanisms of metal isotopic fractionation. In order to address this problem, we investigated the biological fractionation of Cd isotopes within genetically-modified bacteria (E. coli). There is currently only one known biological use or requirement of Cd, a Cd/Zn carbonic anhydrase (CdCA, from the marine diatom T. weissfloggii), which we introduce into the E. coli genome. We have also developed a cleaning procedure that allows for the treating of bacteria so as to study the isotopic composition of different cellular components. We find that whole cells always exhibit a preference for uptake of the lighter isotopes of Cd. Notably, whole cells appear to have a similar Cd isotopic composition regardless of the expression of CdCA within the E. coli. However, isotopic fractionation can occur within the genetically modified E. coli during Cd use, such that Cd bound in CdCA can display a distinct isotopic composition compared to the cell as a whole. Thus, the externally observed fractionation is independent of the internal uses of Cd, with the largest Cd isotope fractionation occurring during cross-membrane transport. A general implication of these experiments is that trace metal isotopic fractionation most likely reflects metal transport into biological cells (either actively or passively), rather than relating to expression of specific physiological function and genetic expression of different metalloenzymes.

  4. Mass independent isotope separations

    International Nuclear Information System (INIS)

    Mass independent separations between isotopes of an element were first observed by Clayton on 17 O and 18 O from the Allende meteorite and attributed then to nucleosynthesis. Anomalous ratios of isotope abundance known at that time were due to nuclear processes. Later, atmospheric ozone and stratospheric CO2 were shown to exhibit mass independent isotope composition of oxygen. Several formation mechanisms of these 'anomalous' molecules have been proposed, none being completely satisfactory. In the laboratory, these mass independent chemical separation effects were eventually reproduced. Anomalous separations were also obtained between isotopes of uranium, and even of light elements such as magnesium. These were first connected with irregularities in atomic nucleus volumes. Such effects are not recorded on natural terrestrial samples. Two main reasons prevent such observations from having been made. Firstly, laboratories investigating isotope compositions of elements, publish almost exclusively deltas of one isotope only. But, to look for possible anomalies, one needs to compare each isotope abundance in a sample similar to that in the standard used as origin of deltas. An example of such calculation will be given. Secondly, deltas of isotopes published by different laboratories are usually not comparable to better than a few per mil. The reason is that, to calculate deltas, most laboratories use working standards whose absolute values may not be exactly established as they are not crucial to their work. Several per mil differences will be shown to be implied between the 'absolute' isotope abundance of 13 C of standards, reputedly the same, used by different laboratories. Laboratories making surveys of natural samples should be encouraged, e.g. by IUPAC, to cover every isotope of multiple isotope elements, and to make, at not infrequent intervals, a close comparison of their working standards with internationally distributed ones. (author)

  5. Discovery of the Mercury Isotopes

    CERN Document Server

    Meierfrankenfeld, D

    2009-01-01

    Forty mercury isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  6. Discovery of the Einsteinium Isotopes

    OpenAIRE

    Bury, A.; Fritsch, A; Ginepro, J. Q.; Heim, M; Schuh, A.; Shore, A.; Thoennessen, M.

    2009-01-01

    Seventeen einsteinium isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  7. Discovery of the Titanium Isotopes

    OpenAIRE

    Meierfrankenfeld, D.; Thoennessen, M.

    2009-01-01

    Twentyfive titanium isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  8. Discovery of the Scandium Isotopes

    CERN Document Server

    Meierfrankenfeld, D

    2010-01-01

    Twenty-three scandium isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  9. Discovery of the Tungsten Isotopes

    OpenAIRE

    A. Fritsch; Ginepro, J. Q.; Heim, M.; Schuh, A.; SHORE, A.; Thoennessen, M

    2009-01-01

    Thirty-five tungsten isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  10. Discovery of the Vanadium Isotopes

    OpenAIRE

    SHORE, A.; A. Fritsch; Heim, M.; Schuh, A.; Thoennessen, M

    2009-01-01

    Twenty-four vanadium isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  11. Discovery of the Arsenic Isotopes

    OpenAIRE

    SHORE, A.; A. Fritsch; Heim, M.; Schuh, A.; Thoennessen, M

    2009-01-01

    Twenty-nine arsenic isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  12. Discovery of the Barium Isotopes

    OpenAIRE

    SHORE, A.; A. Fritsch; Ginepro, J. Q.; Heim, M.; Schuh, A.; Thoennessen, M

    2009-01-01

    Thirty-eight barium isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  13. Discovery of the Silver Isotopes

    OpenAIRE

    Schuh, A.; A. Fritsch; Ginepro, J. Q.; Heim, M.; SHORE, A.; Thoennessen, M

    2009-01-01

    Thirty-eight silver isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  14. Discovery of the Cadmium Isotopes

    OpenAIRE

    Amos, S.; Thoennessen, M

    2009-01-01

    Thirty-seven cadmium isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  15. Discovery of the Krypton Isotopes

    OpenAIRE

    Heim, M.; A. Fritsch; Schuh, A.; SHORE, A.; Thoennessen, M

    2009-01-01

    Thirty-two krypton isotopes have been observed so far; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  16. Discovery of the Iron Isotopes

    OpenAIRE

    Schuh, A.; A. Fritsch; Heim, M.; SHORE, A.; Thoennessen, M

    2009-01-01

    Twenty-eight iron isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  17. Discovery of the Gold Isotopes

    OpenAIRE

    Schuh, A.; A. Fritsch; Ginepro, J. Q.; Heim, M.; SHORE, A.; Thoennessen, M

    2009-01-01

    Thirty-six gold isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  18. Discovery of the Cobalt Isotopes

    OpenAIRE

    Szymanski, T; Thoennessen, M

    2009-01-01

    Twenty-six cobalt isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  19. Bifunctional redox flow battery

    International Nuclear Information System (INIS)

    A new bifunctional redox flow battery (BRFB) system, V(III)/V(II)-L-cystine(O2), was systematically investigated by using different separators. It is shown that during charge, water transfer is significantly restricted with increasing the concentration of HBr when the Nafion 115 cation exchange membrane is employed. The same result can be obtained when the gas diffusion layer (GDL) hot-pressed separator is used. The organic electro-synthesis is directly correlated with the crossover of vanadium. When employing the anion exchange membrane, the electro-synthesis efficiency is over 96% due to a minimal crossover of vanadium. When the GDL hot-pressed separator is applied, the crossover of vanadium and water transfer are noticeably prevented and the electro-synthesis efficiency of over 99% is obtained. Those impurities such as vanadium ions and bromine can be eliminated through the purification of organic electro-synthesized products. The purified product is identified to be L-cysteic acid by IR spectrum. The BRFB shows a favorable discharge performance at a current density of 20 mA cm-2. Best discharge performance is achieved by using the GDL hot-pressed separator. The coulombic efficiency of 87% and energy efficiency of about 58% can be obtained. The cause of major energy losses is mainly associated with the cross-contamination of anodic and cathodic active electrolytes

  20. Scintillator based beta batteries

    Science.gov (United States)

    Rensing, Noa M.; Tiernan, Timothy C.; Shirwadkar, Urmila; O'Dougherty, Patrick; Freed, Sara; Hawrami, Rastgo; Squillante, Michael R.

    2013-05-01

    Some long-term, remote applications do not have access to conventional harvestable energy in the form of solar radiation (or other ambient light), wind, environmental vibration, or wave motion. Radiation Monitoring Devices, Inc. (RMD) is carrying out research to address the most challenging applications that need power for many months or years and which have undependable or no access to environmental energy. Radioisotopes are an attractive candidate for this energy source, as they can offer a very high energy density combined with a long lifetime. Both large scale nuclear power plants and radiothermal generators are based on converting nuclear energy to heat, but do not scale well to small sizes. Furthermore, thermo-mechanical power plants depend on moving parts, and RTG's suffer from low efficiency. To address the need for compact nuclear power devices, RMD is developing a novel beta battery, in which the beta emissions from a radioisotope are converted to visible light in a scintillator and then the visible light is converted to electrical power in a photodiode. By incorporating 90Sr into the scintillator SrI2 and coupling the material to a wavelength-matched solar cell, we will create a scalable, compact power source capable of supplying milliwatts to several watts of power over a period of up to 30 years. We will present the latest results of radiation damage studies and materials processing development efforts, and discuss how these factors interact to set the operating life and energy density of the device.

  1. Portable Battery Charger Berbasis Sel Surya

    Directory of Open Access Journals (Sweden)

    Budhi Anto

    2014-04-01

    Full Text Available A type of solar battery charger is introduced in this paper. This equipment functions as a medium size rechargeable battery that is needed to move culinary merchants and coastal fishermen living in area which is not supplied by electrical networks. The equipment consists of solar module mounted onto portable mechanical construction, a 12-V 7.5-Ah lead acid battery and charge controller. Solar module charges the battery through charge controller and then the battery can be discharged to power on electric lamps for lightening culinary wagon or fisherman’s boat at night. Charge controller charges the battery with float charging which is implemented by maintaining 13.5 Volt between battery terminals and limiting the charging current to 1.5 Amperes. Charge controller circuit is based on adjustable linear voltage regulator LM338. The battery is of sealed lead acid type. This type of battery is maintenance free and more hygiene than other types of lead acid battery. The field experiment of charging the baterry of 50% residual capacity from 8 am to 4 pm under sunny weather shows that the solar module has charged the battery to its full capacity under battery safe charging conditions.Keywords: portable solar battery charger, float charging, LM338

  2. A nuclear micro battery for Mems devices

    International Nuclear Information System (INIS)

    Micro-electromechanical Systems (MEMS) have not gained wide use because they lack the on-device power required by many important applications. Several forms of energy could be considered to supply this needed power (solar, fossil fuels, etc), but nuclear sources provide an intriguing option in terms of power density and lifetime. This paper describes several approaches for establishing the viability of nuclear sources for powering realistic MEMS devices. Isotopes currently being used include alpha and low-energy beta emitters. The sources are in both solid and liquid form, and a technique for plating a solid source from a liquid source has been investigated. Several approaches are being explored for the production of MEMS power sources. The first concept is a junction-type battery. The second concept involves a more direct use of the charged particles produced by the decay: the creation of a resonator by inducing movement due to attraction or repulsion resulting from the collection of charged particles. Performance results are provided for each of these concepts. (authors)

  3. Stable isotopes labelled compounds

    International Nuclear Information System (INIS)

    The catalogue on stable isotopes labelled compounds offers deuterium, nitrogen-15, and multiply labelled compounds. It includes: (1) conditions of sale and delivery, (2) the application of stable isotopes, (3) technical information, (4) product specifications, and (5) the complete delivery programme

  4. (Carbon isotope fractionation inplants)

    Energy Technology Data Exchange (ETDEWEB)

    O' Leary, M.H.

    1990-01-01

    The objectives of this research are: To develop a theoretical and experimental framework for understanding isotope fractionations in plants; and to develop methods for using this isotope fractionation for understanding the dynamics of CO{sub 2} fixation in plants. Progress is described.

  5. Maximum abundant isotopes correlation

    International Nuclear Information System (INIS)

    The neutron excess of the most abundant isotopes of the element shows an overall linear dependence upon the neutron number for nuclei between neutron closed shells. This maximum abundant isotopes correlation supports the arguments for a common history of the elements during nucleosynthesis. (Auth.)

  6. Detecting isotopic ratio outliers

    International Nuclear Information System (INIS)

    An alternative method is proposed for improving isotopic ratio estimates. This method mathematically models pulse-count data and uses iterative reweighted Poisson regression to estimate model parameters to calculate the isotopic ratios. This computer-oriented approach provides theoretically better methods than conventional techniques to establish error limits and to identify outliers. 6 refs., 3 figs., 3 tabs

  7. Controllers for Battery Chargers and Battery Chargers Therefrom

    Science.gov (United States)

    Elmes, John (Inventor); Kersten, Rene (Inventor); Pepper, Michael (Inventor)

    2014-01-01

    A controller for a battery charger that includes a power converter has parametric sensors for providing a sensed Vin signal, a sensed Vout signal and a sensed Iout signal. A battery current regulator (BCR) is coupled to receive the sensed Iout signal and an Iout reference, and outputs a first duty cycle control signal. An input voltage regulator (IVR) receives the sensed Vin signal and a Vin reference. The IVR provides a second duty cycle control signal. A processor receives the sensed Iout signal and utilizes a Maximum Power Point Tracking (MPPT) algorithm, and provides the Vin reference to the IVR. A selection block forwards one of the first and second duty cycle control signals as a duty cycle control signal to the power converter. Dynamic switching between the first and second duty cycle control signals maximizes the power delivered to the battery.

  8. Principles of stable isotope distribution

    CERN Document Server

    Criss, Robert E

    1999-01-01

    1. Abundance and Measurement of Stable Isotopes 1.1. Discovery of Isotopes 1.2. Nuclide Types, Abundances, and Atomic Weights 1.3. Properties and Fractionation of Isotopic Molecules 1.4. Material Balance Relationships 1.5. Mass Spectrometers 1.6. Notation and Standards 1.7. Summary 1.8. Problems References 2. Isotopic Exchange and Equilibrium Fractionation 2.1. Isotopic Exchange Reactions 2.2. Basic Equations 2.3. Molecular Models 2.4. Theory of Isotopic Fractionation 2.5. Temperature Dependence of Isotopic Fractionation Factors 2.6. Rule of the Mean 2.7. Isotopic Thermometers

  9. Isotopes in Greenland Precipitation

    DEFF Research Database (Denmark)

    Faber, Anne-Katrine

    Greenland ice cores offer a unique opportunity to investigate the climate system behaviour. The objective of this PhD project is to investigate isotope modelling of present- day conditions and conduct model-data comparison using Greenland ice cores. Thus this thesis investigates how the integration...... of model and data can be used to improve the understanding of climate changes. This is done through analysis of isotope modelling, observations and ice core measurements. This dissertation comprises three projects: (1) Modelling the isotopic response to changes in Arctic sea surface conditions, (2......) Constructing a new Greenland database of observations and present-day ice core measurements, and (3) Performance test of isotope-enabled CAM5 for Greenland. The recent decades of rapid Arctic sea ice decline are used as a basis for an observational-based model experiment using the isotope-enabled CAM model 3...

  10. A terracotta bio-battery.

    Science.gov (United States)

    Ajayi, Folusho F; Weigele, Peter R

    2012-07-01

    Terracotta pots were converted into simple, single chamber, air-cathode bio-batteries. This bio-battery design used a graphite-felt anode and a conductive graphite coating without added catalyst on the exterior as a cathode. Bacteria enriched from river sediment served as the anode catalyst. These batteries gave an average OCV of 0.56 V ± 0.02, a Coulombic efficiency of 21 ± 5%, and a peak power of 1.06 mW ± 0.01(33.13 mW/m(2)). Stable current was also produced when the batteries were operated with hay extract in salt solution. The bacterial community on the anode of the batteries was tested for air tolerance and desiccation resistance over a period ranging from 2 days to 2 weeks. The results showed that the anode community could survive complete drying of the electrolyte for several days. These data support the further development of this technology as a potential power source for LED-based lighting in off-grid, rural communities. PMID:22609660

  11. Characterization of Vanadium Flow Battery

    DEFF Research Database (Denmark)

    Bindner, Henrik W.; Krog Ekman, Claus; Gehrke, Oliver;

    This report summarizes the work done at Risø-DTU testing a vanadium flow battery as part of the project “Characterisation of Vanadium Batteries” (ForskEl project 6555) with the partners PA Energy A/S and OI Electric A/S under the Danish PSO energy research program. A 15kW/120kWh vanadium battery...... has been installed as part of the distributed energy systems experimental facility, SYSLAB, at Risø DTU. A test programme has been carried out to get hands-on experience with the technology, to characterize the battery from a power system point of view and to assess it with respect to integration of...... wind energy in the Danish power system. The battery has been in operation for 18 months. During time of operation the battery has not shown signs of degradation of performance. It has a round-trip efficiency at full load of approximately 60% (depending on temperature and SOC). The sources of the losses...

  12. 78 FR 38093 - Thirteenth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-06-25

    ... Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is issuing this notice to advise the public of the twelfth meeting of the RTCA Special Committee 225, Rechargeable Lithium...

  13. 78 FR 16031 - Twelfth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-03-13

    ... Federal Aviation Administration Twelfth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is issuing this notice...

  14. 78 FR 6845 - Eleventh Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-01-31

    ... Federal Aviation Administration Eleventh Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is issuing this notice...

  15. 77 FR 39321 - Eighth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2012-07-02

    ... Federal Aviation Administration Eighth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Sizes AGENCY: Federal Aviation Administration (FAA), U.S... Lithium Battery and Battery Systems--Small and Medium Sizes. SUMMARY: The FAA is issuing this notice...

  16. Hubble Space Telescope Battery Capacity Update

    Science.gov (United States)

    Hollandsworth, Roger; Armantrout, Jon; Rao, Gopalakrishna M.

    2007-01-01

    Orbital battery performance for the Hubble Space Telescope is discussed and battery life is predicted which supports decision to replace orbital batteries by 2009-2010 timeframe. Ground characterization testing of cells from the replacement battery build is discussed, with comparison of data from battery capacity characterization with cell studies of Cycle Life and 60% Stress Test at the Naval Weapons Surface Center (NWSC)-Crane, and cell Cycle Life testing at the Marshal Space Flight Center (MSFC). The contents of this presentation includes an update to the performance of the on-orbit batteries, as well as a discussion of the HST Service Mission 4 (SM4) batteries manufactured in 1996 and activated in 2000, and a second set of SM4 backup replacement batteries which began manufacture Jan 11, 2007, with delivery scheduled for July 2008.

  17. Market for nickel-cadmium batteries

    Science.gov (United States)

    Putois, F.

    Besides the lead/acid battery market, which has seen a tremendous development linked with the car industry, the alkaline rechargeable battery market has also been expanded for more than twenty years, especially in the field of portable applications with nickel-cadmium batteries. Today, nickel-cadmium batteries have to face newcomers on the market, such as nickel-metal hydride, which is another alkaline couple, and rechargeable lithium batteries; these new battery systems have better performances in some areas. This work illustrates the status of the market for nickel-cadmium batteries and their applications. Also, for two major applications—the cordless tool and the electric vehicles—the competitive situation of nickel-cadmium batteries; facing new systems such as nickel-metal hydride and lithium ion cells are discussed.

  18. Validation of Battery Safety for Space Missions

    Science.gov (United States)

    Jeevarajan, Judith

    2012-01-01

    Presentation covers: (1) Safety Certification Process at NASA (2) Safety Testing for Lithium-ion Batteries (3) Limitations Observed with Li-ion Batteries in High Voltage and High Capacity Configurations.

  19. The NTS-2 nickel-hydrogen battery

    Science.gov (United States)

    Betz, F.

    1977-01-01

    Features of the first operational nickel hydrogen battery are described as well as experiences encountered during its testing and installation. Battery performance since launching of the NTS-2 satellite is discussed.

  20. Li-ion Battery Aging Datasets

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set has been collected from a custom built battery prognostics testbed at the NASA Ames Prognostics Center of Excellence (PCoE). Li-ion batteries were run...

  1. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    Science.gov (United States)

    Bockelmann, Thomas R.; Hope, Mark E.; Zou, Zhanjiang; Kang, Xiaosong

    2009-02-10

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  2. Membranes for Redox Flow Battery Applications

    OpenAIRE

    Maria Skyllas-Kazacos; Aishwarya Parasuraman; Tuti Mariana Lim; Suminto Winardi; Helen Prifti

    2012-01-01

    The need for large scale energy storage has become a priority to integrate renewable energy sources into the electricity grid. Redox flow batteries are considered the best option to store electricity from medium to large scale applications. However, the current high cost of redox flow batteries impedes the wide spread adoption of this technology. The membrane is a critical component of redox flow batteries as it determines the performance as well as the economic viability of the batteries. Th...

  3. Ion-batterier - "The Next Generation"

    DEFF Research Database (Denmark)

    Søndergaard, Martin; Becker, Jacob; Shen, Yanbin;

    2014-01-01

    Lithium-ion batterier er strømkilden, der har revolutioneret vores transportable elektronik. Familien af ion-batterier er imidlertid større end som så og har meget, meget mere at byde på.......Lithium-ion batterier er strømkilden, der har revolutioneret vores transportable elektronik. Familien af ion-batterier er imidlertid større end som så og har meget, meget mere at byde på....

  4. Principles and applications of lithium secondary batteries

    CERN Document Server

    Park, Jung-Ki

    2012-01-01

    Lithium secondary batteries have been key to mobile electronics since 1990. Large-format batteries typically for electric vehicles and energystorage systems are attracting much attention due to current energy and environmental issues. Lithium batteries are expected to play a centralrole in boosting green technologies. Therefore, a large number of scientists and engineers are carrying out research and development onlithium secondary batteries.The book is written in a straightforward fashion suitable for undergraduate and graduate students, as well as scientists, and engineer

  5. Novel Electrolytes for Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lucht, Brett L

    2014-12-12

    We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have been investigating the thermal stability of novel electrolytes for lithium ion batteries, in particular borate based salts. Second, we have been investigating novel additives to improve the calendar life of lithium ion batteries. Third, we have been investigating the thermal decomposition reactions of electrolytes for lithium-oxygen batteries.

  6. Alternator control for battery charging

    Science.gov (United States)

    Brunstetter, Craig A.; Jaye, John R.; Tallarek, Glen E.; Adams, Joseph B.

    2015-07-14

    In accordance with an aspect of the present disclosure, an electrical system for an automotive vehicle has an electrical generating machine and a battery. A set point voltage, which sets an output voltage of the electrical generating machine, is set by an electronic control unit (ECU). The ECU selects one of a plurality of control modes for controlling the alternator based on an operating state of the vehicle as determined from vehicle operating parameters. The ECU selects a range for the set point voltage based on the selected control mode and then sets the set point voltage within the range based on feedback parameters for that control mode. In an aspect, the control modes include a trickle charge mode and battery charge current is the feedback parameter and the ECU controls the set point voltage within the range to maintain a predetermined battery charge current.

  7. Vehicle Battery Safety Roadmap Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Doughty, D. H.

    2012-10-01

    The safety of electrified vehicles with high capacity energy storage devices creates challenges that must be met to assure commercial acceptance of EVs and HEVs. High performance vehicular traction energy storage systems must be intrinsically tolerant of abusive conditions: overcharge, short circuit, crush, fire exposure, overdischarge, and mechanical shock and vibration. Fail-safe responses to these conditions must be designed into the system, at the materials and the system level, through selection of materials and safety devices that will further reduce the probability of single cell failure and preclude propagation of failure to adjacent cells. One of the most important objectives of DOE's Office of Vehicle Technologies is to support the development of lithium ion batteries that are safe and abuse tolerant in electric drive vehicles. This Roadmap analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would further DOE's mission.

  8. Electrolytes for rechargeable lithium batteries

    International Nuclear Information System (INIS)

    There is growing interest in high specific energy lithium rechargeable batteries with improved discharge/charge cycles. Some of the promising battery systems under development are Li/CoO2, Li/V2O5 and Li/MnO2. A major factor that controls the specific performance of these batteries is the electrolyte. Recent advances made in the liquid electrolyte area for lithium high energy cathode systems are reviewed. Experimental work on the processing of solid thin film polymer electrolytes using plasticizers such as polyethylene glycol dimethoxy ether (PEGDME) and the properties such as conductivity and differential scanning calorimetry of polymer film electrolytes are presented. The advantages and the disadvantages of polymer thin film electrolytes are discussed

  9. Battery charging in float vs. cycling environments

    Energy Technology Data Exchange (ETDEWEB)

    COREY,GARTH P.

    2000-04-20

    In lead-acid battery systems, cycling systems are often managed using float management strategies. There are many differences in battery management strategies for a float environment and battery management strategies for a cycling environment. To complicate matters further, in many cycling environments, such as off-grid domestic power systems, there is usually not an available charging source capable of efficiently equalizing a lead-acid battery let alone bring it to a full state of charge. Typically, rules for battery management which have worked quite well in a floating environment have been routinely applied to cycling batteries without full appreciation of what the cycling battery really needs to reach a full state of charge and to maintain a high state of health. For example, charge target voltages for batteries that are regularly deep cycled in off-grid power sources are the same as voltages applied to stand-by systems following a discharge event. In other charging operations equalization charge requirements are frequently ignored or incorrectly applied in cycled systems which frequently leads to premature capacity loss. The cause of this serious problem: the application of float battery management strategies to cycling battery systems. This paper describes the outcomes to be expected when managing cycling batteries with float strategies and discusses the techniques and benefits for the use of cycling battery management strategies.

  10. 46 CFR 129.353 - Battery categories.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Battery categories. 129.353 Section 129.353 Shipping... INSTALLATIONS Power Sources and Distribution Systems § 129.353 Battery categories. This section applies to batteries installed to meet the requirements of § 129.310(a) for secondary sources of power to vital...

  11. 46 CFR 183.352 - Battery categories.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Battery categories. 183.352 Section 183.352 Shipping...) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.352 Battery categories. This section applies to batteries installed to meet the requirements of § 183.310 for secondary sources of power...

  12. Battery Charge Equalizer with Transformer Array

    Science.gov (United States)

    Davies, Francis

    2013-01-01

    High-power batteries generally consist of a series connection of many cells or cell banks. In order to maintain high performance over battery life, it is desirable to keep the state of charge of all the cell banks equal. A method provides individual charging for battery cells in a large, high-voltage battery array with a minimum number of transformers while maintaining reasonable efficiency. This is designed to augment a simple highcurrent charger that supplies the main charge energy. The innovation will form part of a larger battery charge system. It consists of a transformer array connected to the battery array through rectification and filtering circuits. The transformer array is connected to a drive circuit and a timing and control circuit that allow individual battery cells or cell banks to be charged. The timing circuit and control circuit connect to a charge controller that uses battery instrumentation to determine which battery bank to charge. It is important to note that the innovation can charge an individual cell bank at the same time that the main battery charger is charging the high-voltage battery. The fact that the battery cell banks are at a non-zero voltage, and that they are all at similar voltages, can be used to allow charging of individual cell banks. A set of transformers can be connected with secondary windings in series to make weighted sums of the voltages on the primaries.

  13. 33 CFR 183.420 - Batteries.

    Science.gov (United States)

    2010-07-01

    .... (a) Each installed battery must not move more than one inch in any direction when a pulling force of 90 pounds or twice the battery weight, whichever is less, is applied through the center of gravity of the battery as follows: (1) Vertically for a duration of one minute. (2) Horizontally and parallel...

  14. A rechargeable carbon-oxygen battery

    DEFF Research Database (Denmark)

    2014-01-01

    The invention relates to a rechargeable battery and a method to operate a rechargeable battery having high efficiency and high energy density for storing energy. The battery stores electrical energy in the bonds of carbon and oxygen atoms by converting carbon dioxide into solid carbon and oxygen....

  15. 46 CFR 120.354 - Battery installations.

    Science.gov (United States)

    2010-10-01

    ... PASSENGERS OR WITH OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS ELECTRICAL INSTALLATION Power Sources... installation must be located in a locker, room or enclosed box solely dedicated to the storage of batteries... batteries. Each small battery installation must be located in a well ventilated space and protected...

  16. Review of storage battery system cost estimates

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.R.; Russell, J.A.

    1986-04-01

    Cost analyses for zinc bromine, sodium sulfur, and lead acid batteries were reviewed. Zinc bromine and sodium sulfur batteries were selected because of their advanced design nature and the high level of interest in these two technologies. Lead acid batteries were included to establish a baseline representative of a more mature technology.

  17. Propagation testing multi-cell batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Orendorff, Christopher J.; Lamb, Joshua; Steele, Leigh Anna Marie; Spangler, Scott Wilmer

    2014-10-01

    Propagation of single point or single cell failures in multi-cell batteries is a significant concern as batteries increase in scale for a variety of civilian and military applications. This report describes the procedure for testing failure propagation along with some representative test results to highlight the potential outcomes for different battery types and designs.

  18. Electrothermal Analysis of Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, A.; Vlahinos, A.; Bharathan, D.; Duong, T.

    2006-03-01

    This report presents the electrothermal analysis and testing of lithium ion battery performance. The objectives of this report are to: (1) develop an electrothermal process/model for predicting thermal performance of real battery cells and modules; and (2) use the electrothermal model to evaluate various designs to improve battery thermal performance.

  19. Management of Deep Brain Stimulator Battery Failure: Battery Estimators, Charge Density, and Importance of Clinical Symptoms

    OpenAIRE

    Fakhar, Kaihan; Hastings, Erin; Butson, Christopher R.; Foote, Kelly D.; Zeilman, Pam; Okun, Michael S.

    2013-01-01

    Objective We aimed in this investigation to study deep brain stimulation (DBS) battery drain with special attention directed toward patient symptoms prior to and following battery replacement. Background Previously our group developed web-based calculators and smart phone applications to estimate DBS battery life (http://mdc.mbi.ufl.edu/surgery/dbs-battery-estimator). Methods A cohort of 320 patients undergoing DBS battery replacement from 2002–2012 were included in an IRB approved study. Sta...

  20. Allocation of Battery Production Impact between EVs and Battery Reuse Applications

    OpenAIRE

    Furuseth, Marta

    2014-01-01

    Significant environmental impacts associated with electric vehicle (EV) Li-ion battery pack production has lead to a desire to explore the possibility of offsetting some of the environmental burdens associated with the battery pack production from the EV to a post-vehicle application. In this study, different battery characteristics were calculated in order to allocate environmental EV Li-ion battery pack production impacts between an EV and selected reuse applications. The battery characteri...

  1. Management of Deep Brain Stimulator Battery Failure: Battery Estimators, Charge Density, and Importance of Clinical Symptoms

    OpenAIRE

    Kaihan Fakhar; Erin Hastings; Butson, Christopher R.; Foote, Kelly D.; Pam Zeilman; Okun, Michael S.

    2013-01-01

    OBJECTIVE: We aimed in this investigation to study deep brain stimulation (DBS) battery drain with special attention directed toward patient symptoms prior to and following battery replacement. BACKGROUND: Previously our group developed web-based calculators and smart phone applications to estimate DBS battery life (http://mdc.mbi.ufl.edu/surgery/dbs-battery-estimator). METHODS: A cohort of 320 patients undergoing DBS battery replacement from 2002-2012 were included in an IRB approved study. ...

  2. Survey of rechargeable battery technology

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    We have reviewed rechargeable battery technology options for a specialized application in unmanned high altitude aircraft. Consideration was given to all rechargeable battery technologies that are available commercially or might be available in the foreseeable future. The LLNL application was found to impose very demanding performance requirements which cannot be met by existing commercially available battery technologies. The most demanding requirement is for high energy density. The technology that comes closest to providing the LLNL requirements is silver-zinc, although the technology exhibits significant shortfalls in energy density, charge rate capability and cyclability. There is no battery technology available ``off-the-shelf` today that can satisfy the LLNL performance requirements. All rechargeable battery technologies with the possibility of approaching/meeting the energy density requirements were reviewed. Vendor interviews were carried out for all relevant technologies. A large number of rechargeable battery systems have been developed over the years, though a much smaller number have achieved commercial success and general availability. The theoretical energy densities for these systems are summarized. It should be noted that a generally useful ``rule-of-thumb`` is that the ratio of packaged to theoretical energy density has proven to be less than 30%, and generally less than 25%. Data developed for this project confirm the usefulness of the general rule. However, data shown for the silver-zinc (AgZn) system show a greater conversion of theoretical to practical energy density than would be expected due to the very large cell sizes considered and the unusually high density of the active materials.

  3. Status of life cycle inventories for batteries

    International Nuclear Information System (INIS)

    Highlights: ► Cradle-to-gate (ctg) energy and emissions compared among five battery systems. ► Calculate material production values fall well within observed ranges. ► Values based on recycled materials in poor agreement with observed ranges. ► Material production data needed for recycled and some virgin battery materials. ► Battery manufacturing data range widely and hence also need updating. - Abstract: This study reviews existing life-cycle inventory (LCI) results for cradle-to-gate (ctg) environmental assessments of lead-acid (PbA), nickel–cadmium (NiCd), nickel-metal hydride (NiMH), sodium-sulfur (Na/S), and lithium-ion (Li-ion) batteries. LCI data are evaluated for the two stages of cradle-to-gate performance: battery material production and component fabrication and assembly into purchase ready batteries. Using existing production data on battery constituent materials, overall battery material production values were calculated and contrasted with published values for the five battery technologies. The comparison reveals a more prevalent absence of material production data for lithium ion batteries, though such data are also missing or dated for a few important constituent materials in nickel metal hydride, nickel cadmium, and sodium sulfur batteries (mischmetal hydrides, cadmium, β-alumina). Despite the overall availability of material production data for lead acid batteries, updated results for lead and lead peroxide are also needed. On the other hand, LCI data for the commodity materials common to most batteries (steel, aluminum, plastics) are up to date and of high quality, though there is a need for comparable quality data for copper. Further, there is an almost total absence of published LCI data on recycled battery materials, an unfortunate state of affairs given the potential benefit of battery recycling. Although battery manufacturing processes have occasionally been well described, detailed quantitative information on energy and

  4. Solid-state lithium battery

    Energy Technology Data Exchange (ETDEWEB)

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  5. Characterization of Vanadium Flow Battery

    OpenAIRE

    Bindner, Henrik W.; Krog Ekman, Claus; Gehrke, Oliver; Isleifsson, Fridrik Rafn

    2010-01-01

    This report summarizes the work done at Risø-DTU testing a vanadium flow battery as part of the project “Characterisation of Vanadium Batteries” (ForskEl project 6555) with the partners PA Energy A/S and OI Electric A/S under the Danish PSO energy research program. A 15kW/120kWh vanadium battery has been installed as part of the distributed energy systems experimental facility, SYSLAB, at Risø DTU. A test programme has been carried out to get hands-on experience with the technology, to charac...

  6. Dielectric properties of battery electrolytes

    Science.gov (United States)

    1971-01-01

    An effort was made to determine the effects of electromagnetic radiation on the terminal properties of electrochemical cells. Various constituents of the battery were measured to determine basic electromagnetic properties. These properties were used to predict how much radiation would be absorbed by a battery in a particular field configuration. The frequency range covered from 0 to 40 GHz with the greatest emphasis on the microwave range from 2.6 to 40 GHz. The measurements were made on NiCd, AgZn, and Pb acid cells. Results from observation show nothing which suggested any interaction between radiation and cells, and no incidence of any peaks of energy absorption was observed.

  7. Microfluidic fuel cells and batteries

    CERN Document Server

    Kjeang, Erik

    2014-01-01

    Microfluidic fuel cells and batteries represent a special type of electrochemical power generators that can be miniaturized and integrated in a microfluidic chip. Summarizing the initial ten years of research and development in this emerging field, this SpringerBrief is the first book dedicated to microfluidic fuel cell and battery technology for electrochemical energy conversion and storage. Written at a critical juncture, where strategically applied research is urgently required to seize impending technology opportunities for commercial, analytical, and educational utility, the intention is

  8. Nickel cadmium battery expert system

    Science.gov (United States)

    1986-01-01

    The applicability of artificial intelligence methodologies for the automation of energy storage management, in this case, nickel cadmium batteries, is demonstrated. With the Hubble Space Telescope Electrical Power System (HST/EPS) testbed as the application domain, an expert system was developed which incorporates the physical characterization of the EPS, in particular, the nickel cadmium batteries, as well as the human's operational knowledge. The expert system returns not only fault diagnostics but also status and advice along with justifications and explanations in the form of decision support.

  9. Rotational-isotopic symmetries

    International Nuclear Information System (INIS)

    In this note we submit a nonlocal (integral) generalization of the rotational-isotopic symmetries O-circumflex(3) introduced in preceding works for nonlinear and nonhamiltonian systems in local approximation. By recalling that the Lie-isotopic theory naturally admits nonlocal terms when all embedded in the isounit, while the conventional symplectic geometry is strictly local-differential, we introduce the notion of symplectic-isotopic two-forms, which are exact symplectic two-forms admitting a factorization into the Kronecker product of a canonical two-form time the isotopic element of an underlying Euclidean-isotopic space. Topological consistency is then achieved by embedding all nonlocal terms in the isounit of the iso-cotangent bundle, while keeping the local topology for the canonical part. In this way, we identify the symplectic-isotopic geometry as being the natural geometrical counterpart of the Lie-isotopic theory. The results are used for the introduction of the notion of Birkhoffian angular momentum, that is, the generalization of the conventional canonical angular momentum which is applicable to Birkhoffian systems with generally nonlinear, nonlocal and nonhamiltonian internal forces. The generators J (and the parameters θ) coincide with the conventional quantities. Nevertheless, the quantity J is defined on the underlying Euclidean-isotopic space, by therefore acquiring a generalized magnitude. The isocommutation rules and isoexponentiation of the Birkhoffian angular momentum are explicitly computed and shown to characterize the most general known nonlinear and nonlocal realization of the isorotational symmetry. The local isomorphisms between the infinitely possible isotopes O-circumflex(3) and the conventional symmetry O(3) is proved. Finally the isosymmetries O-circumflex(3) are used to characterize the conserved, total, Birkhoffian angular momentum of closed nonselfadjoint systems. (author). 4 refs

  10. Isotopically controlled semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Haller, Eugene E.

    2006-06-19

    The following article is an edited transcript based on the Turnbull Lecture given by Eugene E. Haller at the 2005 Materials Research Society Fall Meeting in Boston on November 29, 2005. The David Turnbull Lectureship is awarded to recognize the career of a scientist who has made outstanding contributions to understanding materials phenomena and properties through research, writing, and lecturing, as exemplified by the life work of David Turnbull. Haller was named the 2005 David Turnbull Lecturer for his 'pioneering achievements and leadership in establishing the field of isotopically engineered semiconductors; for outstanding contributions to materials growth, doping and diffusion; and for excellence in lecturing, writing, and fostering international collaborations'. The scientific interest, increased availability, and technological promise of highly enriched isotopes have led to a sharp rise in the number of experimental and theoretical studies with isotopically controlled semiconductor crystals. This article reviews results obtained with isotopically controlled semiconductor bulk and thin-film heterostructures. Isotopic composition affects several properties such as phonon energies, band structure, and lattice constant in subtle, but, for their physical understanding, significant ways. Large isotope-related effects are observed for thermal conductivity in local vibrational modes of impurities and after neutron transmutation doping. Spectacularly sharp photoluminescence lines have been observed in ultrapure, isotopically enriched silicon crystals. Isotope multilayer structures are especially well suited for simultaneous self- and dopant-diffusion studies. The absence of any chemical, mechanical, or electrical driving forces makes possible the study of an ideal random-walk problem. Isotopically controlled semiconductors may find applications in quantum computing, nanoscience, and spintronics.

  11. Oxygen isotopes and lakes

    OpenAIRE

    Leng, Melanie; Dean, Jonathan

    2014-01-01

    Isotopes are variations of a particular chemical element. It is all to do with the number of neutrons. Oxygen has two main isotopes: 18O which has 10 neutrons and 8 protons; and 16O which has 8 neutrons and 8 protons. Although these variants have a different number of neutrons (and therefore a different atomic mass), the number of protons remains the same, and they are still classed as the same element. Isotopes are analysed in terms of ratios such as 18O/16O which is shortened to δ18O (δ...

  12. Carbon isotope techniques

    International Nuclear Information System (INIS)

    This book is a hands-on introduction to using carbon isotope tracers in experimental biology and ecology. It is a bench-top reference with protocols for the study of plants, animals, and soils. The 11C, 12C, 13C, and 14C carbon isotopes are considered and standard techniques are described by established authors. The compilation includes the following features: specific, well-established, user-oriented techniques; carbon cycles in plants, animals, soils, air, and water; isotopes in ecological research; examples and sample calculations

  13. Environmental assessment of batteries for photovoltaic systems

    International Nuclear Information System (INIS)

    A life cycle analysis (LCA) on 4 types of batteries for PV systems has been performed. in order to assess the environmental impacts of the various battery types, leading to recommendations for improvements in the production and use of batteries. The different battery types are compared on the basis of a functional unit: 240 kWh electric energy from PV modules delivered for household applications by one flat-plate lead-acid battery. An important product characteristic is the performance; in the study a Ni-Cd battery is taken to deliver 4 times as much energy as a flat plate battery (Pb-flat), a rod plate battery (Pb-rod) 3.4 times as much and a tubular plate battery (Pb-tube) 2.8 times as much. Environmental data was gathered from recent primary and secondary data in a database under internal quality control. Calculations were performed with an updated version of SIMAKOZA, a programme developed by the Centre of Environmental Science (CML), University of Leiden, Leiden, Netherlands. Of the types investigated, the Pb tube battery is to be preferred environmentally. Using one allocation method for recycling, the NiCd battery scores best on ozone depletion since no PVC is used (PVC production demands cooling with CFCs), on non-toxic waste and on disruption of ecosystems. The lead-bearing batteries score better on other aspects due to lower energy consumption during production and no emissions of cadmium. Using another allocation method for recycling the NiCd battery scores best on almost all environmental topics. Both allocation methods supplement each other. For resource depletion, regarding cadmium as an unavoidable by-product of zinc production renders NiCd batteries as much less problematic than lead/acid batteries, but taking account of the physical resources available would make the use of cadmium much more problematic than the use of lead. 37 figs., 20 tabs., 8 appendices, 109 refs

  14. Canadian consumer battery baseline study : final report

    International Nuclear Information System (INIS)

    This report provided information about the estimated number of consumer and household batteries sold, re-used, stored, recycled, and disposed each year in Canada. The report discussed the ways in which different batteries posed risks to human health and the environment, and legislative trends were also reviewed. Data used in the report were obtained from a literature review as well as through a series of interviews. The study showed that alkaline batteries are the most common primary batteries used by Canadians, followed by zinc carbon batteries. However, lithium primary batteries are gaining in popularity, and silver oxide and zinc air button cell batteries are also used in applications requiring a flat voltage and high energy. Secondary batteries used in laptop computers, and cell phones are often made of nickel-cadmium, nickel-metal-hydroxide, and lithium ion. Small sealed lead batteries are also commonly used in emergency lighting and alarm systems. Annual consumption statistics for all types of batteries were provided. Results of the study showed that the primary battery market is expected to decline. Total units of secondary batteries are expected to increase to 38.6 million units by 2010. The report also used a spreadsheet model to estimate the flow of consumer batteries through the Canadian waste management system. An estimated 347 million consumer batteries were discarded in 2004. By 2010, it is expected that an estimated 494 million units will be discarded by consumers. The study also considered issues related to lead, cadmium, mercury, and nickel disposal and the potential for groundwater contamination. It was concluded that neither Canada nor its provinces or territories have initiated legislative or producer responsibility programs targeting primary or secondary consumer batteries. 79 refs., 37 tabs., 1 fig

  15. Energy Transferring Dynamic Equalization for Battery Packs

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The equivalent circuit model of battery and the analytic model of series battery uniformities are setup. The analysis shows that it is the key to maintain small voltage difference between cells in order to improve uniformities. Therefore a new technique combining low voltage difference, big current charging and bi-directional charge equalizer system is put forward and designed. The test shows that the energy transferring dynamic equalization system betters the series battery uniformities and protection during charging and discharging, improves the battery performance and extends the use life of series battery.

  16. Lithium-ion batteries advances and applications

    CERN Document Server

    Pistoia, Gianfranco

    2014-01-01

    Lithium-Ion Batteries features an in-depth description of different lithium-ion applications, including important features such as safety and reliability. This title acquaints readers with the numerous and often consumer-oriented applications of this widespread battery type. Lithium-Ion Batteries also explores the concepts of nanostructured materials, as well as the importance of battery management systems. This handbook is an invaluable resource for electrochemical engineers and battery and fuel cell experts everywhere, from research institutions and universities to a worldwi

  17. Portable Battery Charger Berbasis Sel Surya

    OpenAIRE

    Budhi Anto; Edy Hamdani; Rizki Abdullah

    2014-01-01

    A type of solar battery charger is introduced in this paper. This equipment functions as a medium size rechargeable battery that is needed to move culinary merchants and coastal fishermen living in area which is not supplied by electrical networks. The equipment consists of solar module mounted onto portable mechanical construction, a 12-V 7.5-Ah lead acid battery and charge controller. Solar module charges the battery through charge controller and then the battery can be discharged to power ...

  18. Battery Fault Detection with Saturating Transformers

    Science.gov (United States)

    Davies, Francis J. (Inventor); Graika, Jason R. (Inventor)

    2013-01-01

    A battery monitoring system utilizes a plurality of transformers interconnected with a battery having a plurality of battery cells. Windings of the transformers are driven with an excitation waveform whereupon signals are responsively detected, which indicate a health of the battery. In one embodiment, excitation windings and sense windings are separately provided for the plurality of transformers such that the excitation waveform is applied to the excitation windings and the signals are detected on the sense windings. In one embodiment, the number of sense windings and/or excitation windings is varied to permit location of underperforming battery cells utilizing a peak voltage detector.

  19. Testing batteries for photovoltaic power systems

    Science.gov (United States)

    Verardo, A. E.; Butler, P. C.; Bush, D. M.; Miller, D. W.

    A battery evaluation laboratory was established to investigate the application of various battery technologies for energy storage in a photovoltaic power system. The evaluation laboratory provides a controlled test environment in which batteries can be exposed to any one or all of the following: (1) long term performance testing; (2) accelerated life testing; (3) simulated photovoltaic power system operational testing. Several battery systems are being tested. A description is presented of the laboratory and the tests currently being conducted and a brief description of the battery systems under test.

  20. Automatic Battery Swap System for Home Robots

    OpenAIRE

    Juan Wu; Guifang Qiao; Jian Ge; Hongtao Sun; Guangming Song

    2012-01-01

    This paper presents the design and implementation of an automatic battery swap system for the prolonged activities of home robots. A battery swap station is proposed to implement battery off‐line recharging and on‐line exchanging functions. It consists of a loading and unloading mechanism, a shifting mechanism, a locking device and a shell. The home robot is a palm‐sized wheeled robot with an onboard camera and a removable battery case in the front. It communicates with the battery swap stati...

  1. Models for Battery Reliability and Lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G. H.; Neubauer, J.; Pesaran, A.

    2014-03-01

    Models describing battery degradation physics are needed to more accurately understand how battery usage and next-generation battery designs can be optimized for performance and lifetime. Such lifetime models may also reduce the cost of battery aging experiments and shorten the time required to validate battery lifetime. Models for chemical degradation and mechanical stress are reviewed. Experimental analysis of aging data from a commercial iron-phosphate lithium-ion (Li-ion) cell elucidates the relative importance of several mechanical stress-induced degradation mechanisms.

  2. Certification Process for Commercial Batteries for Payloads

    Science.gov (United States)

    Jeevarajan, Judith

    2007-01-01

    This viewgraph document reviews the use of electric batteries in space applications. Batteries are high energy devices that are used to power hardware for space applications The applications include IVA (Intra-Vehicular Activity) and EVA (Extra-Vehicular Activity) use. High energy batteries pose hazards such as cell/battery venting leading to electrolyte (liquid or gas) leakage, high temperatures, fire and explosion (shrapnel). It reviews the process of certifying of Commercial batteries for space applications in view of the multi-national purchasing for the International Space Station. The documentation used in the certification is reviewed.

  3. Isotopically controlled semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Haller, E.E.

    2004-11-15

    A review of recent research involving isotopically controlled semiconductors is presented. Studies with isotopically enriched semiconductor structures experienced a dramatic expansion at the end of the Cold War when significant quantities of enriched isotopes of elements forming semiconductors became available for worldwide collaborations. Isotopes of an element differ in nuclear mass, may have different nuclear spins and undergo different nuclear reactions. Among the latter, the capture of thermal neutrons which can lead to neutron transmutation doping, can be considered the most important one for semiconductors. Experimental and theoretical research exploiting the differences in all the properties has been conducted and will be illustrated with selected examples. Manuel Cardona, the longtime editor-in-chief of Solid State Communications has been and continues to be one of the major contributors to this field of solid state physics and it is a great pleasure to dedicate this review to him.

  4. Method for isotope separation

    International Nuclear Information System (INIS)

    The inventor proposes a method for separating isotopes from gaseous compounds by selective excitation by means of laser beams for such cases where the reaction partners each consist of several isotopes. For example, separation of 235U and 238U in the form of UCl6 is mentioned with 35Cl and 37Cl existing in the natural composition of 76:24. According to the invention, after isolating the reaction product obtained in a way already known, the remaining fraction of the compound mixture is brought together with the reaction partner present in the natural isotope composition, in a heated flow path. Thereby by isotope exchange of the latter regeneration will take place, and the mixture can pass again through the separation plant in initial composition. (orig./PW)

  5. Isotope Production Facility (IPF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Los Alamos National Laboratory has produced radioactive isotopes for medicine and research since the mid 1970s, when targets were first irradiated using the 800...

  6. Calcium stable isotope geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Gausonne, Nikolaus [Muenster Univ. (Germany). Inst. fuer Mineralogie; Schmitt, Anne-Desiree [Strasbourg Univ. (France). LHyGeS/EOST; Heuser, Alexander [Bonn Univ. (Germany). Steinmann-Inst. fuer Geologie, Mineralogie und Palaeontologie; Wombacher, Frank [Koeln Univ. (Germany). Inst. fuer Geologie und Mineralogie; Dietzel, Martin [Technische Univ. Graz (Austria). Inst. fuer Angewandte Geowissenschaften; Tipper, Edward [Cambridge Univ. (United Kingdom). Dept. of Earth Sciences; Schiller, Martin [Copenhagen Univ. (Denmark). Natural History Museum of Denmark

    2016-08-01

    This book provides an overview of the fundamentals and reference values for Ca stable isotope research, as well as current analytical methodologies including detailed instructions for sample preparation and isotope analysis. As such, it introduces readers to the different fields of application, including low-temperature mineral precipitation and biomineralisation, Earth surface processes and global cycling, high-temperature processes and cosmochemistry, and lastly human studies and biomedical applications. The current state of the art in these major areas is discussed, and open questions and possible future directions are identified. In terms of its depth and coverage, the current work extends and complements the previous reviews of Ca stable isotope geochemistry, addressing the needs of graduate students and advanced researchers who want to familiarize themselves with Ca stable isotope research.

  7. Molten Air -- A new, highest energy class of rechargeable batteries

    CERN Document Server

    Licht, Stuart

    2013-01-01

    This study introduces the principles of a new class of batteries, rechargeable molten air batteries, and several battery chemistry examples are demonstrated. The new battery class uses a molten electrolyte, are quasi reversible, and have amongst the highest intrinsic battery electric energy storage capacities. Three examples of the new batteries are demonstrated. These are the iron, carbon and VB2 molten air batteries with respective intrinsic volumetric energy capacities of 10,000, 19,000 and 27,000 Wh per liter.

  8. Molten Air -- A new, highest energy class of rechargeable batteries

    OpenAIRE

    Licht, Stuart

    2013-01-01

    This study introduces the principles of a new class of batteries, rechargeable molten air batteries, and several battery chemistry examples are demonstrated. The new battery class uses a molten electrolyte, are quasi reversible, and have amongst the highest intrinsic battery electric energy storage capacities. Three examples of the new batteries are demonstrated. These are the iron, carbon and VB2 molten air batteries with respective intrinsic volumetric energy capacities of 10,000, 19,000 an...

  9. Rechargeable nickel-zinc batteries

    Science.gov (United States)

    Soltis, D. G.

    1977-01-01

    Device proves superiority in having two and one half to three times the energy content of popular lead-zinc or nickel-cadmium batteries. Application to electric utility vehicles improved acceleration rate and nearly doubled driving range between rechargings. Unit contributes substantially toward realization of practical urban electrical automobiles.

  10. Transparent lithium-ion batteries

    KAUST Repository

    Yang, Y.

    2011-07-25

    Transparent devices have recently attracted substantial attention. Various applications have been demonstrated, including displays, touch screens, and solar cells; however, transparent batteries, a key component in fully integrated transparent devices, have not yet been reported. As battery electrode materials are not transparent and have to be thick enough to store energy, the traditional approach of using thin films for transparent devices is not suitable. Here we demonstrate a grid-structured electrode to solve this dilemma, which is fabricated by a microfluidics-assisted method. The feature dimension in the electrode is below the resolution limit of human eyes, and, thus, the electrode appears transparent. Moreover, by aligning multiple electrodes together, the amount of energy stored increases readily without sacrificing the transparency. This results in a battery with energy density of 10 Wh/L at a transparency of 60%. The device is also flexible, further broadening their potential applications. The transparent device configuration also allows in situ Raman study of fundamental electrochemical reactions in batteries.

  11. Cathode material for lithium batteries

    Science.gov (United States)

    Park, Sang-Ho; Amine, Khalil

    2013-07-23

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  12. Cardiac pacemakers and nuclear batteries

    International Nuclear Information System (INIS)

    Following the introduction giving the indications for cardiac pacemaker therapy with special regard to the use of pacemakers powered by nuclear batteries, reference is made to the resulting radiation exposure of the patient. The activities of the Federal Health Office in this field such as recommendations and surveys including the entire Federal Republic are outlined. (orig.)

  13. Batteries for implantable biomedical devices

    International Nuclear Information System (INIS)

    The special requirements of power cells for a variety of medical applications and the technical means by which the needs have been met are taken up in 11 contributed chapters. Both chemicals (lithium/halogen, nickel/cadmium, etc.) and nuclear batteries are considered

  14. Batteries for energy storage. Examples, strategies, solutions

    International Nuclear Information System (INIS)

    This book presents the variety of battery technologies and describes their mobile and stationary applications and uses. The major social project of the energy transition requires a holistic approach that takes into account especially the issues of energy saving and efficiency in addition to the power generation and distribution from renewable resources. In addition, the book provides an outlook on the further development possibilities of battery technology and battery applications. Improved battery technology is an important factor to help electromobility and stationary applications of batteries as distributed energy storage breakthrough. Not least, the importance and the need for the recycling of batteries and the variety of battery technologies are presented that have the greatest importance in terms of resource conservation and resource security.

  15. Isotopes in everyday life

    International Nuclear Information System (INIS)

    Isotopes represent a tool which can do certain jobs better, easier, quicker, more simply and cheaper than competitive methods. Some measurements could not be done at all without the use of isotopes as there are no alternative methods available. A short review of these tools of science in their different fields is given: food and agriculture, human health applications, industry, hydrology, geology, geochemistry, geophysics and dating, environment, basic scientific research

  16. Canada's medical isotope strategy

    International Nuclear Information System (INIS)

    This paper details Canada's medical isotope strategy and the role of the Canadian Government in the security of the isotope supply chain. The government's role is to promote health and safety of Canadians, establish appropriate regulatory framework, allow the markets to work, facilitate international collaboration, fund high-risk early stage research and development, encourage private sector investment in innovation and support and respect environmental and non-proliferation goals.

  17. Separating isotopes by laser

    International Nuclear Information System (INIS)

    Isotope separation by laser radiation is proving a very promising method for obtaining large scale isotope production at low cost and is particularly relevant to the enrichment of 235U for the nuclear power industry. Various methods for laser separation, differing mainly in the way the selectively excited atoms or molecules are extracted, are discussed. The efficiency of the various methods, which is the controlling factor in determining their practical viability and some of the problems encountered are examined. (UK)

  18. Isotope toolbox turns 10

    DEFF Research Database (Denmark)

    Wenander, Fredrik; Riisager, Karsten

    2012-01-01

    REX-ISOLDE, one of CERN’s most compact accelerators, has just celebrated its 10th anniversary. The machine’s versatility provides radioactive ion beams across the range of nuclear isotopes.......REX-ISOLDE, one of CERN’s most compact accelerators, has just celebrated its 10th anniversary. The machine’s versatility provides radioactive ion beams across the range of nuclear isotopes....

  19. Isotopes in environmental research

    International Nuclear Information System (INIS)

    Radioactive and stable isotopes have long been considered a very efficient tool for studying physical and biological aspects of how the global ecosystem functions. Their applications in environmental research are numerous, embracing research at all levels. This article looks at only a few of the approaches to environmental problems that involve the use of isotopes. Special attention is given to studies of the Amazon Basin. Environmental isotopes are very efficient tools in water cycle studies. Tritium, a radioactive tracer, is especially useful in studying dynamics of water movement in different compartments of the hydrosphere, both on the local and global scales. Heavy stable isotopes of hydrogen and oxygen (deuterium and oxygen-18) provide information about steady-state characteristics of the water cycle. Isotope methods, some relatively new, have a major role in site-specific studies. Some indicative examples include: Studying turnover of organic matter. Changes in the carbon-13/carbon-12 isotopic ratio of organic matter were used to determine the respective contributions of organic carbon derived from forest and pasture. Studying biological nitrogen fixation. One of the ways nitrogen levels in soil can be maintained for productivity is by biological nitrogen fixation. Studying nitrogen availability and losses. The experimental use of nitrogen-15 is invaluable for defining losses of soil nitrogen to the atmosphere and to groundwater. Studies can similarly be done with stable and radioactive sulphur isotopes. This article indicates some potential uses of isotopes in environmental research. While the major problem of global climate change has not been specifically addressed here, the clearing of the Amazon forest, one focus of the IAEA's environmental programme, may have serious consequences for the global climate. These include substantial reduction of the amount of latent heat transported to the regions outside the tropics and acceleration of the greenhouse

  20. The Science of Battery Degradation.

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, John P; Fenton, Kyle R [Sandia National Laboratories, Albuquerque, NM; El Gabaly Marquez, Farid; Harris, Charles Thomas [Sandia National Laboratories, Albuquerque, NM; Hayden, Carl C.; Hudak, Nicholas [Sandia National Laboratories, Albuquerque, NM; Jungjohann, Katherine Leigh [Sandia National Laboratories, Albuquerque, NM; Kliewer, Christopher Jesse; Leung, Kevin [Sandia National Laboratories, Albuquerque, NM; McDaniel, Anthony H.; Nagasubramanian, Ganesan [Sandia National Laboratories, Albuquerque, NM; Sugar, Joshua Daniel; Talin, Albert Alec; Tenney, Craig M [Sandia National Laboratories, Albuquerque, NM; Zavadil, Kevin R. [Sandia National Laboratories, Albuquerque, NM

    2015-01-01

    This report documents work that was performed under the Laboratory Directed Research and Development project, Science of Battery Degradation. The focus of this work was on the creation of new experimental and theoretical approaches to understand atomistic mechanisms of degradation in battery electrodes that result in loss of electrical energy storage capacity. Several unique approaches were developed during the course of the project, including the invention of a technique based on ultramicrotoming to cross-section commercial scale battery electrodes, the demonstration of scanning transmission x-ray microscopy (STXM) to probe lithium transport mechanisms within Li-ion battery electrodes, the creation of in-situ liquid cells to observe electrochemical reactions in real-time using both transmission electron microscopy (TEM) and STXM, the creation of an in-situ optical cell utilizing Raman spectroscopy and the application of the cell for analyzing redox flow batteries, the invention of an approach for performing ab initio simulation of electrochemical reactions under potential control and its application for the study of electrolyte degradation, and the development of an electrochemical entropy technique combined with x-ray based structural measurements for understanding origins of battery degradation. These approaches led to a number of scientific discoveries. Using STXM we learned that lithium iron phosphate battery cathodes display unexpected behavior during lithiation wherein lithium transport is controlled by nucleation of a lithiated phase, leading to high heterogeneity in lithium content at each particle and a surprising invariance of local current density with the overall electrode charging current. We discovered using in-situ transmission electron microscopy that there is a size limit to lithiation of silicon anode particles above which particle fracture controls electrode degradation. From electrochemical entropy measurements, we discovered that entropy

  1. Crewed Space Vehicle Battery Safety Requirements

    Science.gov (United States)

    Jeevarajan, Judith A.; Darcy, Eric C.

    2014-01-01

    This requirements document is applicable to all batteries on crewed spacecraft, including vehicle, payload, and crew equipment batteries. It defines the specific provisions required to design a battery that is safe for ground personnel and crew members to handle and/or operate during all applicable phases of crewed missions, safe for use in the enclosed environment of a crewed space vehicle, and safe for use in launch vehicles, as well as in unpressurized spaces adjacent to the habitable portion of a space vehicle. The required provisions encompass hazard controls, design evaluation, and verification. The extent of the hazard controls and verification required depends on the applicability and credibility of the hazard to the specific battery design and applicable missions under review. Evaluation of the design and verification program results shall be completed prior to certification for flight and ground operations. This requirements document is geared toward the designers of battery systems to be used in crewed vehicles, crew equipment, crew suits, or batteries to be used in crewed vehicle systems and payloads (or experiments). This requirements document also applies to ground handling and testing of flight batteries. Specific design and verification requirements for a battery are dependent upon the battery chemistry, capacity, complexity, charging, environment, and application. The variety of battery chemistries available, combined with the variety of battery-powered applications, results in each battery application having specific, unique requirements pertinent to the specific battery application. However, there are basic requirements for all battery designs and applications, which are listed in section 4. Section 5 includes a description of hazards and controls and also includes requirements.

  2. The isotopic distribution conundrum.

    Science.gov (United States)

    Valkenborg, Dirk; Mertens, Inge; Lemière, Filip; Witters, Erwin; Burzykowski, Tomasz

    2012-01-01

    Although access to high-resolution mass spectrometry (MS), especially in the field of biomolecular MS, is becoming readily available due to recent advances in MS technology, the accompanied information on isotopic distribution in high-resolution spectra is not used at its full potential, mainly because of lack of knowledge and/or awareness. In this review, we give an insight into the practical problems related to calculating the isotopic distribution for large biomolecules, and present an overview of methods for the calculation of the isotopic distribution. We discuss the key events that triggered the development of various algorithms and explain the rationale of how and why the various isotopic-distribution calculations were performed. The review is focused around the developmental stages as briefly outlined below, starting with the first observation of an isotopic distribution. The observations of Beynon in the field of organic MS that chlorine appeared in a mass spectrum as two variants with odds 3:1 lie at the basis of the first wave of algorithms for the calculation of the isotopic distribution, based on the atomic composition of a molecule. From here on, we explain why more complex biomolecules such as peptides exhibit a highly complex isotope pattern when assayed by MS, and we discuss how combinatorial difficulties complicate the calculation of the isotopic distribution on computers. For this purpose, we highlight three methods, which were introduced in the 1980s. These are the stepwise procedure introduced by Kubinyi, the polynomial expansion from Brownawell and Fillippo, and the multinomial expansion from Yergey. The next development was instigated by Rockwood, who suggested to decompose the isotopic distribution in terms of their nucleon count instead of the exact mass. In this respect, we could claim that the term "aggregated" isotopic distribution is more appropriate. Due to the simplification of the isotopic distribution to its aggregated counterpart

  3. Analysis of an electric Equivalent Circuit Model of a Li-Ion battery to develop algorithms for battery states estimation.

    OpenAIRE

    Shamsi, Mohammad Haris

    2016-01-01

    Batteries have imparted momentum to the process of transition towards a green future. However, mass application of batteries is obstructed due to their explosive nature, a trait specific to Li-Ion batteries. To cater to an efficient battery utilization, an introduction of a battery management system would provide an ultimate solution. This thesis deals with different aspects crucial in designing a battery management system for high energy as well as high power applications. To build a battery...

  4. Technical testing of portable isotope identification instruments

    International Nuclear Information System (INIS)

    . First generation portable isotope identifiers were identified and evaluated by U.S. Customs. Instruments from five vendors were put through a battery of tests according to delineated test procedures. The tests fell into five categories: Basic operation verification; Medical isotope identification; Individual isotope identification; Isotope pair identification; Dose rate calculation. The tests can be summarized as an initial verification of correct instrument operation (including whatever calibration procedure was specified by the vendor), followed by three different isotope identification tests designed to verify the instrument's ability to correctly identify 19 isotopes specified by U.S. Customs. The final test determined each instrument's ability to correctly display the dose rate from a wide energy range of gamma emitters. The individual isotope identification test and the isotope pair identification test were performed with three types of intervening shielding. The first of these three types used the minimum packaging needed for safe source handling and was, in general, thin plastic. This type of shielding is virtually identical to a bare radiation source. The second type of shielding used 2.7 mm of steel to simulate the wall of a typical transportainer (or sea-tainer). The third type of shielding used 6.94 mm of lead to simulate typical industrial packaging or, perhaps, an attempt by the shipper to conceal the source without unduly increasing the weight of the shipment. The isotopes tested were broadly categorized as: Special nuclear material (SNM), Medical, and Industrial. These included 17 gamma emitters, 1 beta emitter, and 1 neutron emitter. Each instrument was subjected to the following testing regimen: First, each instrument was calibrated according to vendor's procedures. Instrument size and weight were recorded. Next, the instrument's response to medical isotopes in their usual shipping containers was measured. This represents the most commonly occurring

  5. Stand Alone Battery Thermal Management System

    Energy Technology Data Exchange (ETDEWEB)

    Brodie, Brad [Denso International America, Incorporated, Southfield, MI (United States)

    2015-09-30

    The objective of this project is research, development and demonstration of innovative thermal management concepts that reduce the cell or battery weight, complexity (component count) and/or cost by at least 20%. The project addresses two issues that are common problems with current state of the art lithium ion battery packs used in vehicles; low power at cold temperatures and reduced battery life when exposed to high temperatures. Typically, battery packs are “oversized” to satisfy the two issues mentioned above. The first phase of the project was spent making a battery pack simulation model using AMEsim software. The battery pack used as a benchmark was from the Fiat 500EV. FCA and NREL provided vehicle data and cell data that allowed an accurate model to be created that matched the electrical and thermal characteristics of the actual battery pack. The second phase involved using the battery model from the first phase and evaluate different thermal management concepts. In the end, a gas injection heat pump system was chosen as the dedicated thermal system to both heat and cool the battery pack. Based on the simulation model. The heat pump system could use 50% less energy to heat the battery pack in -20°C ambient conditions, and by keeping the battery cooler at hot climates, the battery pack size could be reduced by 5% and still meet the warranty requirements. During the final phase, the actual battery pack and heat pump system were installed in a test bench at DENSO to validate the simulation results. Also during this phase, the system was moved to NREL where testing was also done to validate the results. In conclusion, the heat pump system can improve “fuel economy” (for electric vehicle) by 12% average in cold climates. Also, the battery pack size, or capacity, could be reduced 5%, or if pack size is kept constant, the pack life could be increased by two years. Finally, the total battery pack and thermal system cost could be reduced 5% only if the

  6. Lithium sulfide compositions for battery electrolyte and battery electrode coatings

    Science.gov (United States)

    Liang, Chengdu; Liu, Zengcai; Fu, Wunjun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

    2013-12-03

    Methods of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electroytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one or .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

  7. Automatic Battery Swap System for Home Robots

    Directory of Open Access Journals (Sweden)

    Juan Wu

    2012-12-01

    Full Text Available This paper presents the design and implementation of an automatic battery swap system for the prolonged activities of home robots. A battery swap station is proposed to implement battery off‐line recharging and on‐line exchanging functions. It consists of a loading and unloading mechanism, a shifting mechanism, a locking device and a shell. The home robot is a palm‐sized wheeled robot with an onboard camera and a removable battery case in the front. It communicates with the battery swap station wirelessly through ZigBee. The influences of battery case deflection and robot docking deflection on the battery swap operations have been investigated. The experimental results show that it takes an average time of 84.2s to complete the battery swap operations. The home robot does not have to wait several hours for the batteries to be fully charged. The proposed battery swap system is proved to be efficient in home robot applications that need the robots to work continuously over a long period.

  8. 46 CFR 111.15-30 - Battery chargers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Battery chargers. 111.15-30 Section 111.15-30 Shipping... REQUIREMENTS Storage Batteries and Battery Chargers: Construction and Installation § 111.15-30 Battery chargers. Each battery charger enclosure must meet § 111.01-9. Additionally, each charger must be suitable...

  9. 46 CFR 112.55-10 - Storage battery charging.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Storage battery charging. 112.55-10 Section 112.55-10... AND POWER SYSTEMS Storage Battery Installation § 112.55-10 Storage battery charging. (a) Each storage battery installation for emergency lighting and power, and starting batteries for an emergency diesel...

  10. 46 CFR 111.15-3 - Battery categories.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Battery categories. 111.15-3 Section 111.15-3 Shipping... REQUIREMENTS Storage Batteries and Battery Chargers: Construction and Installation § 111.15-3 Battery categories. (a) A battery installation is classified as one of three types, based upon power output of...

  11. 76 FR 53056 - Outbound International Mailings of Lithium Batteries

    Science.gov (United States)

    2011-08-25

    ... aggregate lithium content must not exceed 2 g per battery. e. The batteries installed in the equipment must... (Wh) per cell. d. The total aggregate lithium content must not exceed 100 Wh per battery. e. Each battery must bear the ``Watt-hour'' or ``Wh'' marking on the battery to determine if it is within...

  12. 77 FR 68069 - Outbound International Mailings of Lithium Batteries

    Science.gov (United States)

    2012-11-15

    ... the final rule published on May 14, 2012, (77 FR 28259-28261), the Postal Service implemented new.... d. The total aggregate lithium content must not exceed 2 g per battery. e. The batteries installed... per battery. e. Each battery must bear the Wh marking on the battery to determine if it is within...

  13. Transportation of medical isotopes

    International Nuclear Information System (INIS)

    A Draft Technical Information Document (HNF-1855) is being prepared to evaluate proposed interim tritium and medical isotope production at the Fast Flux Test Facility (FFTF). This assessment examines the potential health and safety impacts of transportation operations associated with the production of medical isotopes. Incident-free and accidental impacts are assessed using bounding source terms for the shipment of nonradiological target materials to the Hanford Site, the shipment of irradiated targets from the FFTF to the 325 Building, and the shipment of medical isotope products from the 325 Building to medical distributors. The health and safety consequences to workers and the public from the incident-free transportation of targets and isotope products would be within acceptable levels. For transportation accidents, risks to works and the public also would be within acceptable levels. This assessment is based on best information available at this time. As the medical isotope program matures, this analysis will be revised, if necessary, to support development of a final revision to the Technical Information Document

  14. Separation of sulfur isotopes

    Science.gov (United States)

    DeWitt, Robert; Jepson, Bernhart E.; Schwind, Roger A.

    1976-06-22

    Sulfur isotopes are continuously separated and enriched using a closed loop reflux system wherein sulfur dioxide (SO.sub.2) is reacted with sodium hydroxide (NaOH) or the like to form sodium hydrogen sulfite (NaHSO.sub.3). Heavier sulfur isotopes are preferentially attracted to the NaHSO.sub.3, and subsequently reacted with sulfuric acid (H.sub.2 SO.sub.4) forming sodium hydrogen sulfate (NaHSO.sub.4) and SO.sub.2 gas which contains increased concentrations of the heavier sulfur isotopes. This heavy isotope enriched SO.sub.2 gas is subsequently separated and the NaHSO.sub.4 is reacted with NaOH to form sodium sulfate (Na.sub.2 SO.sub.4) which is subsequently decomposed in an electrodialysis unit to form the NaOH and H.sub.2 SO.sub.4 components which are used in the aforesaid reactions thereby effecting sulfur isotope separation and enrichment without objectionable loss of feed materials.

  15. The sodium-sulphur battery

    Science.gov (United States)

    Jones, I. W.

    1981-09-01

    The sodium-sulphur battery is considered as a candidate for electric vehicle and bulk storage applications markets estimated to exceed one billion pounds sterling globally by the turn of the century. The sodium-sulphur device offers five times the energy density of conventional batteries, potential cost reductions due to the use of cheap and readily available construction materials, and operates at the relatively low temperatures of 300-400 C. The cells have a solid electrolyte, made by sintering alumina containing 10% sodium oxide, while the electrodes are liquid at operating temperatures. Ceramic element lives in excess of 1000 cycles have been achieved. Attention is given such design details as the thermal and physical properties of glass/ceramic seals and current collector materials and structure.

  16. Cascade redox flow battery systems

    Science.gov (United States)

    Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak

    2014-07-22

    A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.

  17. Activation analysis study on Li-ion batteries for nuclear forensic applications

    International Nuclear Information System (INIS)

    The nuclear materials environment has been increasing significantly in complexity over the past couple of decades. The prevention of attacks from nuclear weapons is becoming more difficult, and nuclear forensics is a deterrent by providing detailed information on any type of nuclear event for proper attribution. One component of the nuclear forensic analysis is a measurement of the neutron spectrum. As an example, the neutron component provides information on the composition of the weapons, whether boosting is involved or the mechanisms used in creating a supercritical state. As 6Li has a large cross-section for thermal neutrons, the lithium battery is a primary candidate for assessing the neutron spectrum after detonation. The absorption process for 6Li yields tritium, which can be measured at a later point after the nuclear event, as long as the battery can be processed in a manner to successfully extract the tritium content. In addition, measuring the activated constituents after exposure provides a means to reconstruct the incident neutron spectrum. The battery consists of a spiral or folded layers of material that have unique, energy dependent interactions associated with the incident neutron flux. A detailed analysis on the batteries included a pre-irradiated mass spectrometry analysis to be used as input for neutron spectrum reconstruction. A set of batteries were exposed to a hard neutron spectrum delivered by the University of Massachusetts, Lowell research reactor Fast Neutron Irradiator (FNI). The gamma spectra were measured from the batteries within a few days and within a week after the exposure to obtain sufficient data on the activated materials in the batteries. The activity was calculated for a number of select isotopes, indicating the number of associated neutron interactions. The results from tritium extraction are marginal. A measurable increase in detected particles (gammas and betas) below 50 keV not self-attenuated by the battery was observed

  18. Activation analysis study on Li-ion batteries for nuclear forensic applications

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Erik B., E-mail: ejohnson@rmdinc.com [Radiation Monitoring Devices Inc., 44 Hunt Street, Watertown, MA 02472 (United States); Whitney, Chad [Radiation Monitoring Devices Inc., 44 Hunt Street, Watertown, MA 02472 (United States); Holbert, Keith E.; Zhang, Taipeng; Stannard, Tyler; Christie, Anthony; Harper, Peter; Anderson, Blake [Arizona State University, Tempe, AZ 85287 (United States); Christian, James F. [Radiation Monitoring Devices Inc., 44 Hunt Street, Watertown, MA 02472 (United States)

    2015-06-01

    The nuclear materials environment has been increasing significantly in complexity over the past couple of decades. The prevention of attacks from nuclear weapons is becoming more difficult, and nuclear forensics is a deterrent by providing detailed information on any type of nuclear event for proper attribution. One component of the nuclear forensic analysis is a measurement of the neutron spectrum. As an example, the neutron component provides information on the composition of the weapons, whether boosting is involved or the mechanisms used in creating a supercritical state. As {sup 6}Li has a large cross-section for thermal neutrons, the lithium battery is a primary candidate for assessing the neutron spectrum after detonation. The absorption process for {sup 6}Li yields tritium, which can be measured at a later point after the nuclear event, as long as the battery can be processed in a manner to successfully extract the tritium content. In addition, measuring the activated constituents after exposure provides a means to reconstruct the incident neutron spectrum. The battery consists of a spiral or folded layers of material that have unique, energy dependent interactions associated with the incident neutron flux. A detailed analysis on the batteries included a pre-irradiated mass spectrometry analysis to be used as input for neutron spectrum reconstruction. A set of batteries were exposed to a hard neutron spectrum delivered by the University of Massachusetts, Lowell research reactor Fast Neutron Irradiator (FNI). The gamma spectra were measured from the batteries within a few days and within a week after the exposure to obtain sufficient data on the activated materials in the batteries. The activity was calculated for a number of select isotopes, indicating the number of associated neutron interactions. The results from tritium extraction are marginal. A measurable increase in detected particles (gammas and betas) below 50 keV not self-attenuated by the battery

  19. Activation analysis study on Li-ion batteries for nuclear forensic applications

    Science.gov (United States)

    Johnson, Erik B.; Whitney, Chad; Holbert, Keith E.; Zhang, Taipeng; Stannard, Tyler; Christie, Anthony; Harper, Peter; Anderson, Blake; Christian, James F.

    2015-06-01

    The nuclear materials environment has been increasing significantly in complexity over the past couple of decades. The prevention of attacks from nuclear weapons is becoming more difficult, and nuclear forensics is a deterrent by providing detailed information on any type of nuclear event for proper attribution. One component of the nuclear forensic analysis is a measurement of the neutron spectrum. As an example, the neutron component provides information on the composition of the weapons, whether boosting is involved or the mechanisms used in creating a supercritical state. As 6Li has a large cross-section for thermal neutrons, the lithium battery is a primary candidate for assessing the neutron spectrum after detonation. The absorption process for 6Li yields tritium, which can be measured at a later point after the nuclear event, as long as the battery can be processed in a manner to successfully extract the tritium content. In addition, measuring the activated constituents after exposure provides a means to reconstruct the incident neutron spectrum. The battery consists of a spiral or folded layers of material that have unique, energy dependent interactions associated with the incident neutron flux. A detailed analysis on the batteries included a pre-irradiated mass spectrometry analysis to be used as input for neutron spectrum reconstruction. A set of batteries were exposed to a hard neutron spectrum delivered by the University of Massachusetts, Lowell research reactor Fast Neutron Irradiator (FNI). The gamma spectra were measured from the batteries within a few days and within a week after the exposure to obtain sufficient data on the activated materials in the batteries. The activity was calculated for a number of select isotopes, indicating the number of associated neutron interactions. The results from tritium extraction are marginal. A measurable increase in detected particles (gammas and betas) below 50 keV not self-attenuated by the battery was observed

  20. Organic active materials for batteries

    Energy Technology Data Exchange (ETDEWEB)

    Abouimrane, Ali; Weng, Wei; Amine, Khalil

    2016-08-16

    A rechargeable battery includes a compound having at least two active sites, R.sup.1 and R.sup.2; wherein the at least two active sites are interconnected by one or more conjugated moieties; each active site is coordinated to one or more metal ions M.sup.a+ or each active site is configured to coordinate to one or more metal ions; and "a" is 1, 2, or 3.

  1. Flow batteries : Status and potential

    OpenAIRE

    Dumancic, Dominik

    2011-01-01

    New ideas and solutions are necessary to face challenges in the electricity industry. The application of electricity storage systems (ESS) can improve the quality and stability of the existing electricity network. ESS can be used for peak shaving, instead of installing new generation or transmission units, renewable energy time-shift and many other services. There are few ESS technologies existing today: mechanical, electrical and electrochemical storage systems. Flow batteries are electroche...

  2. Control Algorithms Charge Batteries Faster

    Science.gov (United States)

    2012-01-01

    On March 29, 2011, NASA s Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft beamed a milestone image to Earth: the first photo of Mercury taken from orbit around the solar system s innermost planet. (MESSENGER is also the first spacecraft to orbit Mercury.) Like most of NASA s deep space probes, MESSENGER is enabled by a complex power system that allows its science instruments and communications to function continuously as it travels millions of miles from Earth. "Typically, there isn't one particular power source that can support the entire mission," says Linda Taylor, electrical engineer in Glenn Research Center s Power Systems Analysis Branch. "If you have solar arrays and you are in orbit, at some point you re going to be in eclipse." Because of this, Taylor explains, spacecraft like MESSENGER feature hybrid power systems. MESSENGER is powered by a two-panel solar array coupled with a nickel hydrogen battery. The solar arrays provide energy to the probe and charge the battery; when the spacecraft s orbit carries it behind Mercury and out of the Sun s light, the spacecraft switches to battery power to continue operations. Typically, hybrid systems with multiple power inputs and a battery acting alternately as storage and a power source require multiple converters to handle the power flow between the devices, Taylor says. (Power converters change the qualities of electrical energy, such as from alternating current to direct current, or between different levels of voltage or frequency.) This contributes to a pair of major concerns for spacecraft design. "Weight and size are big drivers for any space application," Taylor says, noting that every pound added to a space vehicle incurs significant costs. For an innovative solution to managing power flows in a lightweight, cost-effective manner, NASA turned to a private industry partner.

  3. Analysis of diffusion battery data

    International Nuclear Information System (INIS)

    A brief review is given of the use of diffusion batteries to obtain size information about ultrafine aerosol particles. Accurate formulas are included for the penetration functions of circular tube and parallel plate diffusion cells. After noting the usefulness of some previously suggested data inversion techniques, a new method for obtaining a 'complete' solution, is outlined. The techniques are illustrated by the analysis of some experimental data. (author)

  4. The lithium air battery fundamentals

    CERN Document Server

    Imanishi, Nobuyuki; Bruce, Peter G

    2014-01-01

    Lithium air rechargeable batteries are the best candidate for a power source for electric vehicles, because of their high specific energy density. In this book, the history, scientific background, status and prospects of the lithium air system are introduced by specialists in the field. This book will contain the basics, current statuses, and prospects for new technologies. This book is ideal for those interested in electrochemistry, energy storage, and materials science.

  5. Electrolytes for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

    2014-08-05

    A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

  6. Household batteries: Evaluation of collection methods

    Energy Technology Data Exchange (ETDEWEB)

    Seeberger, D.A.

    1992-12-31

    While it is difficult to prove that a specific material is causing contamination in a landfill, tests have been conducted at waste-to-energy facilities that indicate that household batteries contribute significant amounts of heavy metals to both air emissions and ash residue. Hennepin County, MN, used a dual approach for developing and implementing a special household battery collection. Alternative collection methods were examined; test collections were conducted. The second phase examined operating and disposal policy issues. This report describes the results of the grant project, moving from a broad examination of the construction and content of batteries, to a description of the pilot collection programs, and ending with a discussion of variables affecting the cost and operation of a comprehensive battery collection program. Three out-of-state companies (PA, NY) were found that accept spent batteries; difficulties in reclaiming household batteries are discussed.

  7. Household batteries: Evaluation of collection methods

    Energy Technology Data Exchange (ETDEWEB)

    Seeberger, D.A.

    1992-01-01

    While it is difficult to prove that a specific material is causing contamination in a landfill, tests have been conducted at waste-to-energy facilities that indicate that household batteries contribute significant amounts of heavy metals to both air emissions and ash residue. Hennepin County, MN, used a dual approach for developing and implementing a special household battery collection. Alternative collection methods were examined; test collections were conducted. The second phase examined operating and disposal policy issues. This report describes the results of the grant project, moving from a broad examination of the construction and content of batteries, to a description of the pilot collection programs, and ending with a discussion of variables affecting the cost and operation of a comprehensive battery collection program. Three out-of-state companies (PA, NY) were found that accept spent batteries; difficulties in reclaiming household batteries are discussed.

  8. Laser isotope separation techniques

    International Nuclear Information System (INIS)

    Having examined the high cost and low efficiency of existing processes for separating uranium isotopes in comparison with the encouraging assessed figures for laser separation processes and having considered the high potential separation factors which make possibly very low 235U concentrations in the depleted tailings from laser separation processes, the design of such a system is considered. There are two essential features. Firstly, only one isotope must absorb laser radiation, and secondly that absorption must lead to a successful physical or chemical separation of that species which has been optically excited. Such a scheme is illustrated and discussed. The important aspect of loss mechanisms which can depopulate the selectively excited levels and the ways in which isotopes may exhibit differences in optical absorption frequencies are considered. Examples are given to illustrate techniques used in the separation stage. Finally a summary is presented of those elements in which some enrichment has been achieved by optical techniques. (U.K.)

  9. Lithium isotope separation

    International Nuclear Information System (INIS)

    Published methods for 6Li-7Li lithium isotope separation have been reviewed. Future demand for 6Li, whose main use will be as a tritium breeder in blankets surrounding the core of DT fusion power reactors, is likely to exceed 5 Mg/a in the next century. The applicability of the various available methods to such a large scale production rate has been assessed. Research on improving the effectiveness of current lithium isotope separation processes has been carried out worldwide in several major areas during the past decade; these include two-phase chemical exchange systems, ion exchange resin chromatography, highly isotope-selective techniques like laser photoactivation and radiofrequency spectroscopy. Chemical exchange systems appear to offer good potential in the near term for 6Li enrichment

  10. The Extravehicular Maneuvering Unit's New Long Life Battery and Lithium Ion Battery Charger

    Science.gov (United States)

    Russell, Samuel P.; Elder, Mark A.; Williams, Anthony G.; Dembeck, Jacob

    2010-01-01

    The Long Life (Lithium Ion) Battery is designed to replace the current Extravehicular Mobility Unit Silver/Zinc Increased Capacity Battery, which is used to provide power to the Primary Life Support Subsystem during Extravehicular Activities. The Charger is designed to charge, discharge, and condition the battery either in a charger-strapped configuration or in a suit-mounted configuration. This paper will provide an overview of the capabilities and systems engineering development approach for both the battery and the charger

  11. Battery Management Systems: Accurate State-of-Charge Indication for Battery-Powered Applications

    OpenAIRE

    Pop, V.; Bergveld, H.J.; Danilov, D.; Regtien, P.P.L.; Notten, P.H.L.

    2008-01-01

    Battery Management Systems – Universal State-of-Charge indication for portable applications describes the field of State-of-Charge (SoC) indication for rechargeable batteries. With the emergence of battery-powered devices with an increasing number of power-hungry features, accurately estimating the battery SoC, and even more important the remaining time of use, becomes more and more important. Therefore, many leading semiconductor companies, e.g. NXP Semiconductors, Texas Instruments, Microch...

  12. Recycling abandoned lead battery sites

    International Nuclear Information System (INIS)

    In the past, automobile batteries were recycled principally for their lead content. The waste generated at battery wrecking facilities consisted of spent acid, crushed casings (ebonite and plastic), and where secondary smelting was involved, matte, slag, and carbon from the smelting process. These waste products were generally disposed in an on-site in a landfill or stored in piles. If the facility shut down because further commercial operations were not financially viable, the waste piles remained to be addressed at a later date through remedial action or reclamation programs. There are many of these facilities in the US. Nationally, about 28 sites have been discovered by the US Environmental Protection Agency (EPA) under the Superfund program and are under investigation or administrative orders for remedial action. A major remediation effort is now underway at the Gould Superfund Site in Portland, Oregon, which was operated as a secondary smelting facility between 1949 and 1981. This paper describes the nature of the contamination at the Gould site and the work conducted by Canonie Environmental Services Corp. (Canonie) to develop a process which would treat the waste from battery wrecking operations and produce revenue generating recyclable products while removing the source contamination (lead) from the site. The full-scale commercial plant is now operating and is expected to achieve a throughput rate of between 200 and 250 tons per day in the coming weeks

  13. Grace DAKASEP alkaline battery separator

    Science.gov (United States)

    Giovannoni, R. T.; Lundquist, J. T.; Choi, W. M.

    1987-01-01

    The Grace DAKASEP separator was originally developed as a wicking layer for nickel-zinc alkaline batteries. The DAKASEP is a filled non-woven separator which is flexible and heat sealable. Through modification of formulation and processing variables, products with a variety of properties can be produced. Variations of DAKASEP were tested in Ni-H2, Ni-Zn, Ni-Cd, and primary alkaline batteries with good results. The properties of DAKASEP which are optimized for Hg-Zn primary batteries are shown in tabular form. This separator has high tensile strength, 12 micron average pore size, relatively low porosity at 46-48 percent, and consequently moderately high resistivity. Versions were produced with greater than 70 percent porosity and resistivities in 33 wt percent KOH as low as 3 ohm cm. Performance data for Hg-Zn E-1 size cells containing DAKASEP with the properties shown in tabular form, are more reproducible than data obtained with a competitive polypropylene non-woven separator. In addition, utilization of active material is in general considerably improved.

  14. Polymer Electrolytes for Lithium/Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    The Nam Long Doan

    2012-08-01

    Full Text Available This review evaluates the characteristics and advantages of employing polymer electrolytes in lithium/sulfur (Li/S batteries. The main highlights of this study constitute detailed information on the advanced developments for solid polymer electrolytes and gel polymer electrolytes, used in the lithium/sulfur battery. This includes an in-depth analysis conducted on the preparation and electrochemical characteristics of the Li/S batteries based on these polymer electrolytes.

  15. Frontier battery development for hybrid vehicles

    OpenAIRE

    Lewis Heather; Park Haram; Paolini Maion

    2012-01-01

    Abstract Background Interest in hybrid-electric vehicles (HEVs) has recently spiked, partly due to an increasingly negative view toward the U.S. foreign oil dependency and environmental concerns. Though HEVs are becoming more common, they have a significant price premium over gasoline-powered vehicles. One of the primary drivers of this “hybrid premium” is the cost of the vehicles’ batteries. This paper focuses on these batteries used in hybrid vehicles, examines the types of batteries used f...

  16. Modelling of rechargeable NiMH batteries

    International Nuclear Information System (INIS)

    A new mathematical model has been developed for rechargeable NiMH batteries, which is based on the occurring physical-chemical processes inside. This model enables one to simultaneously simulate the battery voltage, internal gas pressures (both PO2 and PH2) and temperature during battery operation. The model takes into account the thermodynamics, kinetics and diffusion processes occurring at/in both electrodes and in the electrolyte

  17. Modelling of rechargeable NiMH batteries

    OpenAIRE

    Ledovskikh, A.; Verbitskiy, E.; Ayeb, A; Notten, P. H. L.

    2003-01-01

    A new mathematical model has been developed for rechargeable NiMH batteries, which is based on the occurring physical–chemical processes inside. This model enables one to simultaneously simulate the battery voltage, internal gas pressures (both PO2 and PH2) and temperature during battery operation. The model takes into account the thermodynamics, kinetics and diffusion processes occurring at/in both electrodes and in the electrolyte.

  18. Fiber optical sensors for enhanced battery safety

    Science.gov (United States)

    Meyer, Jan; Nedjalkov, Antonio; Doering, Alexander; Angelmahr, Martin; Schade, Wolfgang

    2015-05-01

    Over the last years, battery safety becomes more and more important due to the wide spread of high-capacity lithium ion batteries applied in e.g. consumer electronics and electrical power storages for vehicles or stationary energy storage systems. However, for these types of batteries, malfunctions could be highly dangerous and all aspects of safety issues are not sufficiently considered, yet. Therefore, the improvement of the battery safety behavior is one of the most important issues discussed in actual research projects. In this paper the application of fiber optical sensors for enhanced battery safety is presented. The temperature is one of the most critical parameters indicating a failure of the cell, but even state-to-the-art battery management systems (BMS) are not able to monitor and interpret the distributed temperature field of a total battery storage system sufficiently. Furthermore, the volume expansion of the battery cell, which could be monitored by the strain on the cells' surfaces, is one additional parameter not considered up to now. Both parameters could be simultaneous monitored by fiber optical sensor arrays, consisting of discrete fiber Bragg grating (FBG) elements. The FBG sensors are directly attached on the surface of the cell, recording the temperature as well as the strain distribution highly accurate and close-meshed. Failures and malfunction such as overcharging, gassing, and thermal runaway can be early predicted and avoided to extend the battery lifetime and enhance the operational battery safety. Moreover, battery aging effects lead to variations in the volume change behavior which can be detected additionally. Hence, a battery fully equipped with fiber optical sensor arrays in combination with an appropriate BMS enables a safe and continuous utilization of the energy storage system even under harsh conditions like rapid charging.

  19. On electric vehicle battery charger modeling

    OpenAIRE

    Sainz Sapera, Luis; Mesas García, Juan José; Balcells Sendra, Josep

    2011-01-01

    The increase of electric vehicle (EV) battery chargers connected to electric networks could lead to future harmonic problems in power systems. These loads are nonlinear devices that inject harmonic currents and pollute network voltages. Thus, battery charger modeling must be studied in detail to determine their harmonic emissions and prevent future problems. This paper investigates EV battery charger behavior, analyzes its equivalent circuit and reports a model for each ...

  20. Characterization of vanadium flow battery. Revised

    Energy Technology Data Exchange (ETDEWEB)

    Bindner, H.; Ekman, C.; Gehrke, O.; Isleifsson, F.

    2011-02-15

    This report summarizes the work done at Risoe-DTU testing a vanadium flow battery as part of the project ''Characterisation of Vanadium Batteries'' (ForskEl project 6555) with the partners PA Energy A/S and OI Electric A/S under the Danish PSO energy research program. A 15kW/120kWh vanadium battery has been installed as part of the distributed energy systems experimental facility, SYSLAB, at Risoe DTU. A test programme has been carried out to get hands-on experience with the technology, to characterize the battery from a power system point of view and to assess it with respect to integration of wind energy in the Danish power system. The battery has been in operation for 18 months. During time of operation the battery has not shown signs of degradation of performance. It has a round-trip efficiency at full load of approximately 60% (depending on temperature and SOC). The sources of the losses are power conversion in cell stacks/electrolyte, power converter, and auxiliary power consumption from pumps and controller. The efficiency was not influenced by the cycling of the battery. The response time for the battery is limited at 20kW/s by the ramp rate of the power converter. The battery can thus provide power and frequency support for the power system. The battery was operated together with a 11kW stall-regulated Gaia wind turbine to smooth the output of the wind turbine and during the tests the battery proved capable of firming the output of the wind turbine. Vanadium battery is a potential technology for storage based services to the power system provided investment and O and M cost are low enough and long term operation is documented. (Author)

  1. Isotopes in condensed matter

    Energy Technology Data Exchange (ETDEWEB)

    Plekhanov, Vladimir G. [Computer Science College, Tallinn (Estonia). Mathematics and Physics Dept.

    2013-07-01

    This book provides a concise introduction to the newly created sub-discipline of solid state physics isotopetronics. The role of isotopes in materials and their properties are describe in this book. The problem of the enigma of the atomic mass in microphysics is briefly discussed. The range of the applications of isotopes is wide: from biochemical process in living organisms to modern technical applications in quantum information. Isotopetronics promises to improve nanoelectronic and optoelectronic devices. With numerous illustrations this book is useful to researchers, engineers and graduate students.

  2. Isotopes in Condensed Matter

    CERN Document Server

    G Plekhanov, Vladimir

    2013-01-01

    This book provides a concise introduction to the newly created sub-discipline of solid state physics isotopetronics. The role of isotopes in materials and their properties are describe  in this book. The problem of the enigma of the atomic mass in microphysics is briefly discussed.  The range of the applications of isotopes is wide: from biochemical process in living organisms to modern technical applications in quantum information. Isotopetronics promises to improve nanoelectronic and optoelectronic devices. With numerous illustrations this book is useful to researchers, engineers and graduate students.

  3. Environmental isotope survey

    International Nuclear Information System (INIS)

    Work was initiated on the 1st of September 1971 with the objective of finding out how best to use environmental isotopes in the interpretation of the hydrology, particularly subsurface hydrology, of Cyprus through a sparse reconnaissance sampling of all the major aquifers and springs covering the whole island. The distribution of sampling was such that the survey in itself could assist in clarifying particular hydrogeologic problems, provide a better understanding of the water systems of the island, establish a general environmental isotope - framework of the hydrologic regimen of Cyprus as well as to provide the basis for specific, more detailed, studies to be undertaken subsequently

  4. Climate and isotopic tracers

    International Nuclear Information System (INIS)

    The applications of natural radioactivity and isotopic measurements in the sciences concerning Earth and its atmosphere, are numerous: carbon 14 dating with the Tandetron apparatus at the Cea, measurement of oxygen 18 in coral or sediment limestone for the determination of ocean temperature and salinity, carbon 14 dating of corals for the determination of sea level variations, deuterium content in polar ice-cap leads to temperature variations determination; isotopic measurements also enable the determination of present climate features such as global warming, oceanic general circulation

  5. Zinc isotope anomalies

    International Nuclear Information System (INIS)

    The Zn isotope composition in refractory-element-rich inclusions of the Allende meteorite are determined. Typical inclusions contain normal Zn. A unique inclusion of the Allende meteorite shows an excess for Zn-66 of 16.7 + or - 3.7 eu (1 eu = 0.01 percent) and a deficit for Zn-70 of 21 + or - 13 eu. These results indicate the preservation of exotic components even for volatile elements in this inclusion. The observed excess Zn-66 correlates with excesses for the neutron-rich isotopes of Ca-48, Ti-50, Cr-54, and Fe-58 in the same inclusion. 32 refs

  6. Stable Isotope Group 1983 progress report

    International Nuclear Information System (INIS)

    The work of the Stable Isotope Group of the Institute of Nuclear Sciences in the fields of isotope geology, isotope hydrology, geochronology, isotope biology and related fields, and mass spectrometer instrumentation, during 1983, is described

  7. Stable Isotope Group 1982 progress report

    International Nuclear Information System (INIS)

    The work of the Stable Isotope Group of the Institute of Nuclear Sciences during 1982, in the fields of isotope geology, isotope hydrology, geochronology, isotope biology and mass spectrometer instrumentation, is described

  8. Battery Management Systems: Accurate State-of-Charge Indication for Battery-Powered Applications

    NARCIS (Netherlands)

    Pop, V.; Bergveld, H.J.; Danilov, D.; Regtien, P.P.L.; Notten, P.H.L.

    2008-01-01

    Battery Management Systems – Universal State-of-Charge indication for portable applications describes the field of State-of-Charge (SoC) indication for rechargeable batteries. With the emergence of battery-powered devices with an increasing number of power-hungry features, accurately estimating the

  9. Organic Cathode Materials for Rechargeable Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Ruiguo; Qian, Jiangfeng; Zhang, Jiguang; Xu, Wu

    2015-06-28

    This chapter will primarily focus on the advances made in recent years and specify the development of organic electrode materials for their applications in rechargeable lithium batteries, sodium batteries and redox flow batteries. Four various organic cathode materials, including conjugated carbonyl compounds, conducting polymers, organosulfides and free radical polymers, are introduced in terms of their electrochemical performances in these three battery systems. Fundamental issues related to the synthesis-structure-activity correlations, involved work principles in energy storage systems, and capacity fading mechanisms are also discussed.

  10. Performance Simulation Of Photovoltaic System Battery

    Directory of Open Access Journals (Sweden)

    O. A. Babatunde

    2014-09-01

    Full Text Available Solar energy, despite being inexhaustible, has a major shortcoming; it is intermittent. As a result, there's a need for it to be stored for later use. The widely used energy storage in photovoltaic system applications is the lead-acid battery and the knowledge of its state-of-charge (SOC is important in effecting efficient control and energy management. However, SOC cannot be measured while the battery is connected to the system. This study adjusts and validates two estimation models: battery state-of-charge model using ampere-hour counting method and battery charge voltage model. For the battery state-of-charge model, the SOC is estimated by integrating the charge/discharge current over time while the battery charge voltage characteristic response is modelled by using the equation-fit method which expresses the battery charge voltage variations by a 5th order polynomial in terms of the state-of-charge and current. These models are realized using the MATLAB program. The battery charge voltage model is corrected for errors which may result from reduced charge voltage due to variation of solar radiation using the battery state-of-charge model. Moreover, the starting SOC needed in the state-of-charge model is estimated using the charge voltage model. The accuracies of the models are verified using various laboratory experiments.

  11. Lithium batteries and other electrochemical storage systems

    CERN Document Server

    Glaize, Christian

    2013-01-01

    Lithium batteries were introduced relatively recently in comparison to lead- or nickel-based batteries, which have been around for over 100 years. Nevertheless, in the space of 20 years, they have acquired a considerable market share - particularly for the supply of mobile devices. We are still a long way from exhausting the possibilities that they offer. Numerous projects will undoubtedly further improve their performances in the years to come. For large-scale storage systems, other types of batteries are also worthy of consideration: hot batteries and redox flow systems, for example.

  12. Batteries used to power implantable biomedical devices

    International Nuclear Information System (INIS)

    Battery systems have been developed that provide years of service for implantable medical devices. The primary systems utilize lithium metal anodes with cathode systems including iodine, manganese oxide, carbon monofluoride, silver vanadium oxide and hybrid cathodes. Secondary lithium ion batteries have also been developed for medical applications where the batteries are charged while remaining implanted. While the specific performance requirements of the devices vary, some general requirements are common. These include high safety, reliability and volumetric energy density, long service life, and state of discharge indication. Successful development and implementation of these battery types has helped enable implanted biomedical devices and their treatment of human disease.

  13. RTDS modelling of battery energy storage system

    OpenAIRE

    Rydberg, Lova

    2011-01-01

    This thesis describes the development of a simplified model of a battery energy storage. The battery energy storage is part of the ABB energy storage system DynaPeaQ®. The model has been built to be run in RTDS, a real time digital simulator. Batteries can be represented by equivalent electric circuits, built up of e.g voltage sources and resistances. The magnitude of the components in an equivalent circuit varies with a number of parameters, e.g. state of charge of the battery and current fl...

  14. Lithium-ion batteries fundamentals and applications

    CERN Document Server

    Wu, Yuping

    2015-01-01

    Lithium-Ion Batteries: Fundamentals and Applications offers a comprehensive treatment of the principles, background, design, production, and use of lithium-ion batteries. Based on a solid foundation of long-term research work, this authoritative monograph:Introduces the underlying theory and history of lithium-ion batteriesDescribes the key components of lithium-ion batteries, including negative and positive electrode materials, electrolytes, and separatorsDiscusses electronic conductive agents, binders, solvents for slurry preparation, positive thermal coefficient (PTC) materials, current col

  15. Advances and Future Challenges in Printed Batteries.

    Science.gov (United States)

    Sousa, Ricardo E; Costa, Carlos M; Lanceros-Méndez, Senentxu

    2015-11-01

    There is an increasing interest in thin and flexible energy storage devices to meet modern society's needs for applications such as radio frequency sensing, interactive packaging, and other consumer products. Printed batteries comply with these requirements and are an excellent alternative to conventional batteries for many applications. Flexible and microbatteries are also included in the area of printed batteries when fabricated using printing technologies. The main characteristics, advantages, disadvantages, developments, and printing techniques of printed batteries are presented and discussed in this Review. The state-of-the-art takes into account both the research and industrial levels. On the academic level, the research progress of printed batteries is divided into lithium-ion and Zn-manganese dioxide batteries and other battery types, with emphasis on the different materials for anode, cathode, and separator as well as in the battery design. With respect to the industrial state-of-the-art, materials, device formulations, and manufacturing techniques are presented. Finally, the prospects and challenges of printed batteries are discussed. PMID:26404647

  16. Bacterial Acclimation Inside an Aqueous Battery.

    Directory of Open Access Journals (Sweden)

    Dexian Dong

    Full Text Available Specific environmental stresses may lead to induced genomic instability in bacteria, generating beneficial mutants and potentially accelerating the breeding of industrial microorganisms. The environmental stresses inside the aqueous battery may be derived from such conditions as ion shuttle, pH gradient, free radical reaction and electric field. In most industrial and medical applications, electric fields and direct currents are used to kill bacteria and yeast. However, the present study focused on increasing bacterial survival inside an operating battery. Using a bacterial acclimation strategy, both Escherichia coli and Bacillus subtilis were acclimated for 10 battery operation cycles and survived in the battery for over 3 days. The acclimated bacteria changed in cell shape, growth rate and colony color. Further analysis indicated that electrolyte concentration could be one of the major factors determining bacterial survival inside an aqueous battery. The acclimation process significantly improved the viability of both bacteria E. coli and B. subtilis. The viability of acclimated strains was not affected under battery cycle conditions of 0.18-0.80 mA cm(-2 and 1.4-2.1 V. Bacterial addition within 1.0×10(10 cells mL(-1 did not significantly affect battery performance. Because the environmental stress inside the aqueous battery is specific, the use of this battery acclimation strategy may be of great potential for the breeding of industrial microorganisms.

  17. Lithium batteries advanced technologies and applications

    CERN Document Server

    Scrosati, Bruno; Schalkwijk, Walter A van; Hassoun, Jusef

    2013-01-01

    Explains the current state of the science and points the way to technological advances First developed in the late 1980s, lithium-ion batteries now power everything from tablet computers to power tools to electric cars. Despite tremendous progress in the last two decades in the engineering and manufacturing of lithium-ion batteries, they are currently unable to meet the energy and power demands of many new and emerging devices. This book sets the stage for the development of a new generation of higher-energy density, rechargeable lithium-ion batteries by advancing battery chemistry and ident

  18. Rechargeable batteries materials, technologies and new trends

    CERN Document Server

    Zhang, Zhengcheng

    2015-01-01

    This book updates the latest advancements in new chemistries, novel materials and system integration of rechargeable batteries, including lithium-ion batteries and batteries beyond lithium-ion and addresses where the research is advancing in the near future in a brief and concise manner. The book is intended for a wide range of readers from undergraduates, postgraduates to senior scientists and engineers. In order to update the latest status of rechargeable batteries and predict near research trend, we plan to invite the world leading researchers who are presently working in the field to write

  19. Advanced lithium battery chemistries for sustainable transportation

    OpenAIRE

    Monaco, Simone

    2014-01-01

    The specific energy of lithium-ion batteries (LIBs) is today 200 Wh/kg, a value not sufficient to power fully electric vehicles with a driving range of 400 km which requires a battery pack of 90 kWh. To deliver such energy the battery weight should be higher than 400 kg and the corresponding increase of vehicle mass would narrow the driving range to 280 km. Two main strategies are pursued to improve the energy of the rechargeable lithium batteries up to the transportation targets. The first i...

  20. Requirements for future automotive batteries - a snapshot

    Science.gov (United States)

    Karden, Eckhard; Shinn, Paul; Bostock, Paul; Cunningham, James; Schoultz, Evan; Kok, Daniel

    Introduction of new fuel economy, performance, safety, and comfort features in future automobiles will bring up many new, power-hungry electrical systems. As a consequence, demands on automotive batteries will grow substantially, e.g. regarding reliability, energy throughput (shallow-cycle life), charge acceptance, and high-rate partial state-of-charge (HRPSOC) operation. As higher voltage levels are mostly not an economically feasible alternative for the short term, the existing 14 V electrical system will have to fulfil these new demands, utilizing advanced 12 V energy storage devices. The well-established lead-acid battery technology is expected to keep playing a key role in this application. Compared to traditional starting-lighting-ignition (SLI) batteries, significant technological progress has been achieved or can be expected, which improve both performance and service life. System integration of the storage device into the vehicle will become increasingly important. Battery monitoring systems (BMS) are expected to become a commodity, penetrating the automotive volume market from both highly equipped premium cars and dedicated fuel-economy vehicles (e.g. stop/start). Battery monitoring systems will allow for more aggressive battery operating strategies, at the same time improving the reliability of the power supply system. Where a single lead-acid battery cannot fulfil the increasing demands, dual-storage systems may form a cost-efficient extension. They consist either of two lead-acid batteries or of a lead-acid battery plus another storage device.

  1. Bipolar Ag-Zn battery

    Science.gov (United States)

    Giltner, L. John

    1994-02-01

    The silver-zinc (AgZn) battery system has been unique in its ability to safely satisfy high power demand applications with low mass and volume. However, a new generation of defense, aerospace, and commercial applications will impose even higher power demands. These new power demands can be satisfied by the development of a bipolar battery design. In this configuration the power consuming, interelectrode current conductors are eliminated while the current is then conducted via the large cross-section electrode substrate. Negative and positive active materials are applied to opposite sides of a solid silver foil substrate. In addition to reducing the weight and volume required for a specified power level, the output voltage performance is also improved as follows. Reduced weight through: elimination of the plastic cell container; elimination of plate leads and intercell connector; and elimination of internal plate current collector. Increased voltage through: elimination of resistance of current collector; elimination of resistance of plate lead; and elimination of resistance of intercell connector. EPI worked previously on development of a secondary bipolar silver zinc battery. This development demonstrated the electrical capability of the system and manufacturing techniques. One difficulty with this development was mechanical problems with the seals. However, recent improvements in plastics and adhesives should eliminate the major problem of maintaining a seal around the periphery of the bipolar module. The seal problem is not as significant for a primary battery application or for a requirement for only a few discharge cycles. A second difficulty encountered was with activation (introducing electrolyte into the cell) and with venting gas from the cell without loss of electrolyte. During previous work, the following projections for energy density were made from test data for a high power system which demonstrated in excess of 50 discharge/charge cycles. Projected

  2. Research on Activators for Lead-Acid Batteries

    OpenAIRE

    Sugawara, Michio; Kozawa, Akiya

    2008-01-01

    Abstract : The ITE Battery Research group has developed a new organic battery activator for new and used lead-acid batteries. Ten years of investigation have established the validity of the ITE activator that prolongs the useful life of lead-acid batteries. It has been shown that the specific gravity of spent batteries can be restored to the original level in automotive, motive power; uninterruptible power supplies (UPS) and stationary energy storage batteries. Our results show that the disca...

  3. Discoveries of isotopes by fission

    Indian Academy of Sciences (India)

    M Thoennessen

    2015-09-01

    Of the about 3000 isotopes presently known, about 20% have been discovered in fission. The history of fission as it relates to the discovery of isotopes as well as the various reaction mechanisms leading to isotope discoveries involving fission are presented.

  4. Energy analysis of batteries in photovoltaic systems. Part II: Energy return factors and overall battery efficiencies

    International Nuclear Information System (INIS)

    Energy return factors and overall energy efficiencies are calculated for a stand-alone photovoltaic (PV)-battery system. Eight battery technologies are evaluated: lithium-ion (nickel), sodium-sulphur, nickel-cadmium, nickel-metal hydride, lead-acid, vanadium-redox, zinc-bromine and polysulphide-bromide. With a battery energy storage capacity three times higher than the daily energy output, the energy return factor for the PV-battery system ranges from 2.2 to 10 in our reference case. For a PV-battery system with a service life of 30 yr, this corresponds to energy payback times between 2.5 and 13 yr. The energy payback time is 1.8-3.3 yr for the PV array and 0.72-10 yr for the battery, showing the energy related significance of batteries and the large variation between different technologies. In extreme cases, energy return factors below one occur, implying no net energy output. The overall battery efficiency, including not only direct energy losses during operation but also energy requirements for production and transport of the charger, the battery and the inverter, is 0.41-0.80. For some batteries, the overall battery efficiency is significantly lower than the direct efficiency of the charger, the battery and the inverter (0.50-0.85). The ranking order of batteries in terms of energy efficiency, the relative importance of different battery parameters and the optimal system design and operation (e.g. the use of air conditioning) are, in many cases, dependent on the characterisation of the energy background system and on which type of energy efficiency measure is used (energy return factor or overall battery efficiency)

  5. Isotope hydrology experiments

    International Nuclear Information System (INIS)

    From the concentrations of H2 and O18 in the examined ground waters in the Lower Muschelkalk of the SW flank of the Asse mine it can be inferred that the flow field of the ground water with the isotopic composition of the recent precipitations has an effect down to a depth of only 611 to 744 m. (DG)

  6. Actinide isotopic analysis systems

    International Nuclear Information System (INIS)

    This manual provides instructions and procedures for using the Lawrence Livermore National Laboratory's two-detector actinide isotope analysis system to measure plutonium samples with other possible actinides (including uranium, americium, and neptunium) by gamma-ray spectrometry. The computer program that controls the system and analyzes the gamma-ray spectral data is driven by a menu of one-, two-, or three-letter options chosen by the operator. Provided in this manual are descriptions of these options and their functions, plus detailed instructions (operator dialog) for choosing among the options. Also provided are general instructions for calibrating the actinide isotropic analysis system and for monitoring its performance. The inventory measurement of a sample's total plutonium and other actinides content is determined by two nondestructive measurements. One is a calorimetry measurement of the sample's heat or power output, and the other is a gamma-ray spectrometry measurement of its relative isotopic abundances. The isotopic measurements needed to interpret the observed calorimetric power measurement are the relative abundances of various plutonium and uranium isotopes and americium-241. The actinide analysis system carries out these measurements. 8 figs

  7. GEOCHRONOMETRY & ISOTOPE GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20090432 Zhou Shuqing (School of Energy Resources, China University of Geosciences Beijing 100083, China); Huang Haiping Stable Isotopic Records vs. Important Events in Life Evolution and the Concurrent Environment (Geological Review, ISSN0371-5736, CN11-1952, 54(2), 2008, p.225-231, 3 illus., 1 table, 77 refs.)

  8. Isotopes in aquaculture research

    International Nuclear Information System (INIS)

    The applications of isotopes in aquaculture research include areas like aquatic production process, nutrient cycles and food chain dynamics, fish nutrition, fish physiology, genetics and immunology. The radioisotopes commonly used are beta emitters. The use of different radioisotopes in aquaculture research are presented. 2 tabs

  9. Forensic Stable Isotope Biogeochemistry

    Science.gov (United States)

    Cerling, Thure E.; Barnette, Janet E.; Bowen, Gabriel J.; Chesson, Lesley A.; Ehleringer, James R.; Remien, Christopher H.; Shea, Patrick; Tipple, Brett J.; West, Jason B.

    2016-06-01

    Stable isotopes are being used for forensic science studies, with applications to both natural and manufactured products. In this review we discuss how scientific evidence can be used in the legal context and where the scientific progress of hypothesis revisions can be in tension with the legal expectations of widely used methods for measurements. Although this review is written in the context of US law, many of the considerations of scientific reproducibility and acceptance of relevant scientific data span other legal systems that might apply different legal principles and therefore reach different conclusions. Stable isotopes are used in legal situations for comparing samples for authenticity or evidentiary considerations, in understanding trade patterns of illegal materials, and in understanding the origins of unknown decedents. Isotope evidence is particularly useful when considered in the broad framework of physiochemical processes and in recognizing regional to global patterns found in many materials, including foods and food products, drugs, and humans. Stable isotopes considered in the larger spatial context add an important dimension to forensic science.

  10. Isotopic geochemistry of calcretes

    International Nuclear Information System (INIS)

    Sr, C, O, U and Th isotopes have been studied in calcium carbonates accumulated in soils of semi-arid regions (calcretes). We have investigated 1) the role of in-situ weathering and climatic conditions in the genesis of calcretes from Central Spain (Toledo) and Atlantic Morocco (Sidi Ifni), 2) the origin of Ca, and 3) the age of these accumulations. Our results show that calcium carbonates replace the parent rock (granite) and preserve the bulk-volume. Sr isotopic data suggest that 90 % of Ca in the spanish calcretes is allochthonous and related to atmospheric input. O and C isotopic compositions of the carbonates are compatible with soil temperatures and respiration rates during the beginning of the summer season. U-series disequilibrium in the carbonates suggests ages ranging between 40 to 270 ky, commensurate with the climatic cycle. The Sr isotopic signatures of spanish and moroccan calcretes are similar to those of the Quaternary marine carbonates. Assuming that only Ca-rich aerosols have been the source for calcretes of the studied regions, we propose that the wide continental plateaus exposed during glacial periods (low sea level) provided a major part of the calcic input to the soils. Semi-arid conditions of Spain and Morocco allowed the percolation and precipitation in the soil profiles to form calcretes. (author)

  11. Updating United States Advanced Battery Consortium and Department of Energy battery technology targets for battery electric vehicles

    Science.gov (United States)

    Neubauer, Jeremy; Pesaran, Ahmad; Bae, Chulheung; Elder, Ron; Cunningham, Brian

    2014-12-01

    Battery electric vehicles (BEVs) offer significant potential to reduce the nation's consumption of petroleum based products and the production of greenhouse gases however, their widespread adoption is limited largely by the cost and performance limitations of modern batteries. With recent growth in efforts to accelerate BEV adoption (e.g. the Department of Energy's (DOE) EV Everywhere Grand Challenge) and the age of existing BEV battery technology targets, there is sufficient motivation to re-evaluate the industry's technology targets for battery performance and cost. Herein we document the analysis process that supported the selection of the United States Advanced Battery Consortium's (USABC) updated BEV battery technology targets. Our technology agnostic approach identifies the necessary battery performance characteristics that will enable the vehicle level performance required for a commercially successful, mass market full BEV, as guided by the workgroup's OEM members. The result is an aggressive target, implying that batteries need to advance considerably before BEVs can be both cost and performance competitive with existing petroleum powered vehicles.

  12. An averaging battery model for a lead-acid battery operating in an electric car

    Science.gov (United States)

    Bozek, J. M.

    1979-01-01

    A battery model is developed based on time averaging the current or power, and is shown to be an effective means of predicting the performance of a lead acid battery. The effectiveness of this battery model was tested on battery discharge profiles expected during the operation of an electric vehicle following the various SAE J227a driving schedules. The averaging model predicts the performance of a battery that is periodically charged (regenerated) if the regeneration energy is assumed to be converted to retrievable electrochemical energy on a one-to-one basis.

  13. Battery performance monitoring by internal ohmic measurements: Application guidelines for stationary batteries. Final report

    International Nuclear Information System (INIS)

    Various routine inspections and checks offer a general indication of a battery's health and its state of charge. However, none of these routine checks provide definitive information about a battery's actual capacity. Consequently, capacity discharge tests have been and remain the traditional means by which adequate battery discharge tests have been and remain the traditional means by which adequate battery capacity is confirmed. Although technically prudent, the time and expense associated with capacity discharge testing is increasingly at odds with pressures to reduce operating and maintenance budgets. These pressures, in combination with new battery types that cannot be inspected by conventional mans, spurred development efforts for more cost-effective battery test techniques. Resulting advancements in battery monitoring equipment have produced new methods of evaluating battery health and reliability. The results presented here are based on a detailed research program to determine the degree of correlation between capacity and internal ohmic measurements. For each evaluated battery, internal ohmic measurements were recorded for individual cells prior to conducting a capacity discharge test of the battery. The discharge test results were then evaluated with respect to the internal ohmic measurements to determine the degree of correlation between capacity and internal ohmic measurements. The project goal was to obtain the necessary data to demonstrate the technology's value while also providing users with practical information about (1) the relationship between battery capacity and internal ohmic measurements, (2) how to use the test equipment in the field for best results, and (3) suggested guidelines for interpreting the measurements

  14. Battery diagnosis and battery monitoring in hybrid electric vehicles; Batteriediagnostik und Batteriemonitoring in Hybridfahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, T.; Kowal, J.; Waag, W.; Gerschler, J.B.; Sauer, D.U. [RWTH Aachen (DE). Inst. fuer Stromrichtertechnik und Elektrische Antriebe (ISEA)

    2007-07-01

    Even in conventional passenger cars the load on the batteries is at its limit due to the increasing number of electrical loads. It is therefore of special importance to know the status and the power capability of the battery at any time. To fulfil these requirements it is necessary that the battery diagnostics has a precise current measurement available in addition to the voltage and temperature measurements. Battery diagnosis is most successful of different algorithms are combined and errors from the measurements and the algorithms are taken actively into account. The general structure of battery diagnosis algorithms can be used for lead-acid, lithium-ion and NiMH batteries. However, the complexity is highest for lead-acid batteries. (orig.)

  15. Methods of Fabricating Scintillators with Radioisotopes for Beta Battery Applications

    Science.gov (United States)

    Rensing, Noa M.; Squillante, Michael R.; Tieman, Timothy C.; Higgins, William; Shiriwadkar, Urmila

    2013-01-01

    Technology has been developed for a class of self-contained, long-duration power sources called beta batteries, which harvest the energy contained in the radioactive emissions from beta decay isotopes. The new battery is a significant improvement over the conventional phosphor/solar cell concept for converting this energy in three ways. First, the thin phosphor is replaced with a thick scintillator that is transparent to its own emissions. By using a scintillator sufficiently thick to completely stop all the beta particles, efficiency is greatly improved. Second, since the energy of the beta particles is absorbed in the scintillator, the semiconductor photodetector is shielded from radiation damage that presently limits the performance and lifetime of traditional phosphor converters. Finally, instead of a thin film of beta-emitting material, the isotopes are incorporated into the entire volume of the thick scintillator crystal allowing more activity to be included in the converter without self-absorption. There is no chemical difference between radioactive and stable strontium beta emitters such as Sr-90, so the beta emitter can be uniformly distributed throughout a strontium based scintillator crystal. When beta emitter material is applied as a foil or thin film to the surface of a solar cell or even to the surface of a scintillator, much of the radiation escapes due to the geometry, and some is absorbed within the layer itself, leading to inefficient harvesting of the energy. In contrast, if the emitting atoms are incorporated within the scintillator, the geometry allows for the capture and efficient conversion of the energy of particles emitted in any direction. Any gamma rays associated with secondary decays or Bremsstrahlung photons may also be absorbed within the scintillator, and converted to lower energy photons, which will in turn be captured by the photocell or photodiode. Some energy will be lost in this two-stage conversion process (high-energy particle

  16. Integrated multilevel converter and battery management

    OpenAIRE

    K. Wilkie; Stone, D.; Bingham, C.; Foster, M.

    2008-01-01

    A cascaded H-bridge multilevel converter is proposed as a BLDC drive incorporating real-time battery management. Intelligent H-bridges are used to monitor battery cells whilst simultaneously increasing their performance by reducing the variation between cells and controlling their discharge profiles.

  17. Anodes for Rechargeable Lithium-Sulfur Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Ruiguo; Xu, Wu; Lu, Dongping; Xiao, Jie; Zhang, Jiguang

    2015-04-10

    In this work, we will review the recent developments on the protection of Li metal anode in Li-S batteries. Various strategies used to minimize the corrosion of Li anode and reducing its impedance increase will be analyzed. Other potential anodes used in sulfur based rechargeable batteries will also be discussed.

  18. Battery. [improved plates with magnetic flux

    Energy Technology Data Exchange (ETDEWEB)

    Borello, D.

    1977-08-16

    A battery is described in which, to improve its discharging performance, the liquid electrolyte is maintained at a specific gravity that is optimum for electrical conductivity, a magnetic flux is imposed upon the battery plates, and other such conditions which also favor electrical conductivity, saturation, storage, and desaturation are maintained. 2 figures.

  19. Bipolar batteries based on Ebonex ® technology

    Science.gov (United States)

    Loyns, A. C.; Hill, A.; Ellis, K. G.; Partington, T. J.; Hill, J. M.

    Continuing work by Atraverda on the production of a composite-laminate form of the Ebonex ® material, that can be cheaply formulated and manufactured to form substrate plates for bipolar lead-acid batteries, is described. Ebonex ® is the registered trade name of a range of titanium suboxide ceramic materials, typically Ti 4O 7 and Ti 5O 9, which combine electrical conductivity with high corrosion and oxidation resistance. Details of the structure of the composite, battery construction techniques and methods for filling and forming of batteries are discussed. In addition, lifetime and performance data obtained by Atraverda from laboratory bipolar lead-acid batteries and cells are presented. Battery production techniques for both conventional monopolar and bipolar batteries are reviewed. The findings indicate that substantial time and cost savings may be realised in the manufacture of bipolar batteries in comparison to conventional designs. This is due to the fewer processing steps required and more efficient formation. The results indicate that the use of Ebonex ® composite material as a bipolar substrate will provide lightweight and durable high-voltage lead-acid batteries suitable for a wide range of applications including advanced automotive, stationary power and portable equipment.

  20. 33 CFR 117.917 - Battery Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw...

  1. Reusable Energy and Power Sources: Rechargeable Batteries

    Science.gov (United States)

    Hsiung, Steve C.; Ritz, John M.

    2007-01-01

    Rechargeable batteries are very popular within consumer electronics. If one uses a cell phone or portable electric tool, she/he understands the need to have a reliable product and the need to remember to use the recharging systems that follow a cycle of charge/discharge. Rechargeable batteries are being called "green" energy sources. They are a…

  2. Batteries at NASA - Today and Beyond

    Science.gov (United States)

    Reid, Concha M.

    2015-01-01

    NASA uses batteries for virtually all of its space missions. Batteries can be bulky and heavy, and some chemistries are more prone to safety issues than others. To meet NASA's needs for safe, lightweight, compact and reliable batteries, scientists and engineers at NASA develop advanced battery technologies that are suitable for space applications and that can satisfy these multiple objectives. Many times, these objectives compete with one another, as the demand for more and more energy in smaller packages dictates that we use higher energy chemistries that are also more energetic by nature. NASA partners with companies and universities, like Xavier University of Louisiana, to pool our collective knowledge and discover innovative technical solutions to these challenges. This talk will discuss a little about NASA's use of batteries and why NASA seeks more advanced chemistries. A short primer on battery chemistries and their chemical reactions is included. Finally, the talk will touch on how the work under the Solid High Energy Lithium Battery (SHELiB) grant to develop solid lithium-ion conducting electrolytes and solid-state batteries can contribute to NASA's mission.

  3. Enhanced battery model including temperature effects

    NARCIS (Netherlands)

    Rosca, B.; Wilkins, S.

    2013-01-01

    Within electric and hybrid vehicles, batteries are used to provide/buffer the energy required for driving. However, battery performance varies throughout the temperature range specific to automotive applications, and as such, models that describe this behaviour are required. This paper presents a dy

  4. A Micro-Grid Battery Storage Management

    DEFF Research Database (Denmark)

    Mahat, Pukar; Escribano Jiménez, Jorge; Moldes, Eloy Rodríguez;

    2013-01-01

    systems under its administration. This paper presents an optimized scheduling of a micro-grid battery storage system that takes into account the next-day forecasted load and generation profiles and spot electricity prices. Simulation results show that the battery system can be scheduled close to optimal...

  5. The Ball Aptitude Battery (Test Review).

    Science.gov (United States)

    Hall, Alfred E.

    1985-01-01

    The 12 subtests of the Ball Aptitude Battery (BAB) listed in the administration manual were described. The reviewer believes this aptitude battery, designed for use with high school students and adults in job selection and placement, needs major improvements. It is suggested that the BAB be used solely for research purposes. (DWH)

  6. Sodium-Oxygen Battery: Steps Toward Reality.

    Science.gov (United States)

    Landa-Medrano, Imanol; Li, Chunmei; Ortiz-Vitoriano, Nagore; Ruiz de Larramendi, Idoia; Carrasco, Javier; Rojo, Teófilo

    2016-04-01

    Rechargeable metal-oxygen batteries are receiving significant interest as a possible alternative to current state of the art lithium ion batteries due to their potential to provide higher gravimetric energies, giving significantly lighter or longer-lasting batteries. Recent advances suggest that the Na-O2 battery, in many ways analogous to Li-O2 yet based on the reversible formation of sodium superoxide (NaO2), has many advantages such as a low charge overpotential (∼100 mV) resulting in improved efficiency. In this Perspective, we discuss the current state of knowledge in Na-O2 battery technology, with an emphasis on the latest experimental studies, as well as theoretical models. We offer special focus on the principle outstanding challenges and issues and address the advantages/disadvantages of the technology when compared with Li-O2 batteries as well as other state-of-the-art battery technologies. We finish by detailing the direction required to make Na-O2 batteries both commercially and technologically viable. PMID:26961215

  7. Mercury stable isotope biogeochemistry

    International Nuclear Information System (INIS)

    Full text: Methods for high precision measurement of natural Hg isotope ratios by multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) have been developed recently by our group and allow the use of Hg isotopes to trace the biogeochemistry of Hg. Mercury has seven stable isotopes ranging from 196 to 204 amu.We have found that the isotopic composition of Hg varies by both mass dependent fractionation (MDF) and mass independent fractionation (MIF). Even and odd isotopes of Hg are fractionated by mass-dependent processes, whereas odd isotopes are also fractionated in a mass-independent way by photochemical reactions. Isotope ratios are measured relative to the NIST 3133 Hg standard reference material. MDF is reported as δ202Hg (± 0.08 %o, 2 SD) which is the difference in 202Hg/198Hg between a sample and NIST 3133 in permil (%o). MIF is reported as Δ 201Hg (± 0.05 %o, 2 SD), which is the difference in 201Hg/198Hg ratio in permil from what the 201Hg/198Hg ratio would be if the fractionation were entirely mass dependent. In this presentation we summarize the range of Hg isotopic compositions of a variety of environmental and geological materials. In previous work we described biotic and abiotic laboratory fractionation experiments demonstrating the range of mass dependent and mass independent fractionation caused by mercury redox transformations in the surface environment. Thus far we have found that MIF occurs during photochemical reduction of methyl-Hg and Hg2+ following a Rayleigh-like fractionation. Bacterial reduction causes Rayleigh-like MDF but no MIF. Coastal-marine and freshwater fish from North America have positive Δ 201Hg values (0.2 to > 3 %o) reflecting transfer of methyl-Hg into the food web after partial reduction by photochemical reactions. Most coals and the organic horizons of soils from North America have negative Δ 201Hg values (-0.1 to -0.4 %o), possibly reflecting the influence of Hg that was photochemically reduced in

  8. Ensuring reliable medical isotope supply

    International Nuclear Information System (INIS)

    This paper describes the role of MDS Nordion and AECL in ensuring a reliable global supply of medical isotopes. The First part of the paper discusses the uses of medical isotopes, their importance to the medical community, and the benefits to patients of a secure supply of medical isotopes. The second part describes the role of the NRU reactor and the future role of the MAPLE reactors and New Processing Facility being commissioned at AECL's Chalk River Laboratories for production of medical isotopes to meet the world market demand for the next 40 years. MDS Nordion is the world's leading supplier of medical isotopes. These isotopes are used to conduct some 34,000 nuclear medicine procedures performed every day around the world, such as determining the severity of heart disease, the spread of cancer, and diagnosing brain disorders. These medical isotopes are currently produced primarily by AECL in the NRU reactor at Chalk River, Ontario, Canada. (author)

  9. Chromium isotope uptake in carbonates

    DEFF Research Database (Denmark)

    Rodler, Alexandra

    Chromium (Cr) is a redox sensitive element potentially capable of tracing fine-scale fluctuations of the oxygenation of Earth’s early surface environments and seawater. The Cr isotope composition of carbonates could perhaps be used as paleo-redox proxy to elucidate changes in the geological past....... Processes that potentially fractionate Cr isotopes, perhaps during deposition, burial and alteration need to be constrained.Previous studies have shown that Cr isotopes are fractionated during oxidative weathering on land, where heavy Cr isotopes are preferentially removed with Cr(VI) while residual soils...... retain an isotopically light Cr signature. Cr(VI) enriched in heavy Cr isotopes is then transported via river waters to the oceans and sequestered into marine sediments. Marine chemical sediments such asbanded iron formations and modern marine carbonates have proven useful in recording the Cr isotope...

  10. Planar high density sodium battery

    Science.gov (United States)

    Lemmon, John P.; Meinhardt, Kerry D.

    2016-03-01

    A method of making a molten sodium battery is disclosed. A first metallic interconnect frame having a first interconnect vent hole is provided. A second metallic interconnect frame having a second interconnect vent hole is also provided. An electrolyte plate having a cathode vent hole and an anode vent hole is interposed between the metallic interconnect frames. The metallic interconnect frames and the electrolyte plate are sealed thereby forming gaseous communication between an anode chamber through the anode vent hole and gaseous communication between a cathode chamber through the cathode vent hole.

  11. Lead-nickel electrochemical batteries

    CERN Document Server

    Glaize, Christian

    2012-01-01

    The lead-acid accumulator was introduced in the middle of the 19th Century, the diverse variants of nickel accumulators between the beginning and the end of the 20th Century. Although old, these technologies are always very present on numerous markets. Unfortunately they are still not used in optimal conditions, often because of the misunderstanding of the internal electrochemical phenomena.This book will show that batteries are complex systems, made commercially available thanks to considerable amounts of scientific research, empiricism and practical knowledge. However, the design of

  12. Lithium batteries: Status, prospects and future

    Science.gov (United States)

    Scrosati, Bruno; Garche, Jürgen

    Lithium batteries are characterized by high specific energy, high efficiency and long life. These unique properties have made lithium batteries the power sources of choice for the consumer electronics market with a production of the order of billions of units per year. These batteries are also expected to find a prominent role as ideal electrochemical storage systems in renewable energy plants, as well as power systems for sustainable vehicles, such as hybrid and electric vehicles. However, scaling up the lithium battery technology for these applications is still problematic since issues such as safety, costs, wide operational temperature and materials availability, are still to be resolved. This review focuses first on the present status of lithium battery technology, then on its near future development and finally it examines important new directions aimed at achieving quantum jumps in energy and power content.

  13. Prospect of MH-Ni Batteries Development

    Institute of Scientific and Technical Information of China (English)

    Xu Shaoping; Xing Zhiqiang; Liang Wanlong; Ma Yijun

    2004-01-01

    The development trend and promising application prospects of high-power MH-Ni battery were reviewed by studying and comparing the current high-power batteries research area.High-power MH-Ni batiery has good performlife with 500 ~ 1000 times, abundant material resource, especially abundant rare earth resource in China, high-rate discharging, rapid charging, good safety as well as no pollution, etc., which is regarded as the most promising storage battery for electric vehicles.The performance of high power MH-Ni battery can be brought into play fully and ensure electric vehicles performance if it is equipped with appropriate chargers, controlling system and electric motors.Facing opportunities and challenges, MH-Ni battery has promising application prospects on hybrid electric automobile, electric bicycle and a variety of small sized electric vehicles by improving its technology constantly and developing market actively.

  14. Lithium batteries: Status, prospects and future

    International Nuclear Information System (INIS)

    Lithium batteries are characterized by high specific energy, high efficiency and long life. These unique properties have made lithium batteries the power sources of choice for the consumer electronics market with a production of the order of billions of units per year. These batteries are also expected to find a prominent role as ideal electrochemical storage systems in renewable energy plants, as well as power systems for sustainable vehicles, such as hybrid and electric vehicles. However, scaling up the lithium battery technology for these applications is still problematic since issues such as safety, costs, wide operational temperature and materials availability, are still to be resolved. This review focuses first on the present status of lithium battery technology, then on its near future development and finally it examines important new directions aimed at achieving quantum jumps in energy and power content. (author)

  15. Impacts of EV battery production and recycling

    Energy Technology Data Exchange (ETDEWEB)

    Gaines, L.; Singh, M. [Argonne National Lab., IL (United States). Energy Systems Div.

    1996-06-01

    Electric vehicles batteries use energy and produce environmental residuals when they are produced and recycled. This study estimates, for four selected battery types (sodium-sulfur, nickel-metal hydride, nickel-cadmium, and advanced lead-acid), the impacts of production and recycling of the materials used in electric vehicle batteries. These impacts are compared, with special attention to the locations of the emissions. It is found that the choice among batteries for electric vehicles involves tradeoffs among impacts. Nickel-cadmium and nickel-metal hydride batteries are similar, for example, but energy requirements for the production of cadmium electrodes may be higher than those for metal hydride electrodes, while the latter may be more difficult to recycle.

  16. Battery selection for Space Shuttle experiments

    Science.gov (United States)

    Francisco, David R.

    1993-04-01

    This paper will delineate the criteria required for the selection of batteries as a power source for space experiments. Four basic types of batteries will be explored, lead acid, silver zinc, alkaline manganese, and nickel cadmium. A detailed description of the lead acid and silver zinc cells and a brief exploration of the alkaline manganese and nickel cadmium will be given. The factors involved in battery selection such as packaging, energy density, discharge voltage regulation, and cost will be thoroughly examined. The pros and cons of each battery type will be explored. Actual laboratory test data acquired for the lead acid and silver zinc cell will be discussed. This data will include discharging under various temperature conditions, after three months of storage, and with different types of loads. The lifetime and number of charge/discharge cycles will also be discussed. A description of the required maintenance for each type of battery will be investigated.

  17. New isotope 265Bh

    International Nuclear Information System (INIS)

    A new isotope 265Bh was produced and identified at the Sector Focus Cyclotron of the Heavy Ion Research Facility in Lanzhou. This experiment was performed via the reaction of an 243Am target with 168 MeV 26Mg ions. Identification was made by observation of correlated α -particle decays between the new isotope 265Bh and its 261Db and 257Lr daughter nuclei using a set of rotating-wheels system. A total of 8 correlated decay events of 265Bh and 4 decay events of 264Bh were observed. 265Bh decays with a 0.94 -0.31+0.70 s half-life by emission of α-particles with an average energy of 9.24 ±0.05 MeV. The half-life and α decay energy of 265Bh from this experiment are in agreement with theoretical predictions. (orig.)

  18. Cyclotrons for isotope production

    International Nuclear Information System (INIS)

    Cyclotrons continue to be efficient accelerators for radioisotope production. In recent years, developments in the accelerator technology have greatly increased the practical beam current in these machines while also improving the overall system reliability. These developments combined with the development of new isotopes for medicine and industry, and a retiring of older machines indicates a strong future for commercial cyclotrons. In this paper we will survey recent developments in the areas of cyclotron technology, and isotope production, as they relate to the new generation of commercial cyclotrons. We will also discuss the possibility of systems capable of extracted energies up to 100 MeV and extracted beam currents of up to 2.0 mA. (author). 6 refs., 2 tabs., 3 figs

  19. Isotope enrichment systems

    International Nuclear Information System (INIS)

    This patent provides a process for concentrating the heavy isotope of at least one element of the class consisting of hydrogen and oxygen by the dual temperature exchange of the heavy and light isotopes of the element between two separable fluids containing said element. One of the fluids is in the gaseous phase and the other in the liquid phase. The liquid phase is provided as a solution consisting essentially in minor molar proportion, of water and in major molar proportion, of material selected from the class consisting of the water miscible organic hydroxy and/or carboxy compounds which have a ratio of carbon atoms to their alcoholic and acidic hydroxyl groups not greater than 2

  20. Dual isotope assays

    International Nuclear Information System (INIS)

    Dual isotope assays for thyroid function are performed by carrying out a radio-immunoassay for two of thyroxine (T4), tri-iodothyronine (T3), thyroid stimulating hormone (TSH), and thyroxine binding globulin (TBG), by a method wherein a version of one of the thyroid components, preferably T4 or T3 is labelled with Selenium-75 and the version of the other thyroid component is labelled with a different radionuclide, preferably Iodine-125. (author)

  1. Carbon isotopes in photosynthesis

    International Nuclear Information System (INIS)

    The efficiency of photosynthesis continues to interest biochemists, biologists, and plant physiologists. Scientists interested in CO2 uptake are concerned about the extent to which the uptake rate is limited by such factors as stomatal diffusion and the chemistry of the CO2 absorption process. The fractionation of carbon isotopes that occurs during photosynthesis is one of the most useful techniques for investigating the efficiency of CO2 uptake

  2. Photochemical separation of isotopes

    International Nuclear Information System (INIS)

    A process for the photochemical separation of carbon 13 and oxygen 18 uses 123.54 nm resonance radiation from a gaseous discharge containing Kr and an inert gas to excite selectively 13C16O, 12C18O, or both with no significant excitation of 12C16O. The excited molecules react with ground state CO to yield CO2 and C3O2. The isotopically-enriched products are removed from the reactants by condensation

  3. Isotopes and agriculture

    International Nuclear Information System (INIS)

    The agriculture is defined as the art of desturbing the ecosystems in economical terms with the minimum of irreversible damage. Man survival in the biosphere will depend on its ability of using four technologies - mechanization, fertilizers, irrigation and pest disease control. The isotopes are usefull to establish means of producing more food and to preserve it; and clains of unbearable damages to the ecosystems caused by fertilizers and pesticides are not true, are presented. (author)

  4. Stable isotope laser spectroscopy

    Science.gov (United States)

    Becker, J. F.; Yaldaei, Ramil; Mckay, Christopher P.

    1989-01-01

    Recent advances in semiconductor laser technology have produced a reliable lightweight device ideally suited for a spacecraft high resolution molecular spectrometer. Lead-salt tunable diode lasers (TDL) emit in several spectral modes, each with a very narrow linewidth of -0.0003/cm. This spectral resolution is much narrower than typical Doppler broadened molecular linewidths in the mid-IR range. Thus it is possible to detect individual rotational lines within the vibrational band and measure their intensity, which can be used to determine gas concentration. The narrow spectral lines of any impurity gas tend to lie between the narrow lines of the gas of interest. This represents a major advantage over the accepted gas chromatograph mass spectrometer (GCMS) technique for measuring gas concentrations and isotope ratios. The careful and extensive gas purification procedures required to remove impurities for reliable GCMS measurements will not be required for an IR laser gas analysis. The infrared laser gas analysis technique is being developed to measure stable isotopic ratios of gases such as CO2, CH4, N2O, and NH3. This will eventually lead to development of instruments capable of in situ istopic measurements on planets such as Mars. The carbon (C-12, C-13) isotope ratio is indicative of the type of carbon fixation mechanisms (e.g., photosynthesis, respiration) in operation on a planet, while the nitrogen (N-14, N-15) isotope ratio can probably be used to date nitrogen-bearing Martian samples. The absorbance ratio of two adjacent lines of CO2 in the 2300/cm (4.3 micron) region of the spectrum was measured. The precision of the measurement is presently better than 1 percent and significant improvement is anticipated as rapid sweep-integration techniques and computer controlled data acquistion capabilities are incorporated.

  5. The isotope correlation experiment

    International Nuclear Information System (INIS)

    The ESARDA working group on Isotopic Correlation Techniques, ICT and Reprocessing Input Analysis performed an Isotope Correlation Experiment, ICE with the aim to check the feasibility of the new technique. Ten input batches of the reprocessing of the KWO fuel at the WAK plant were analysed by 4 laboratories. All information to compare ICT with the gravimetric and volumetric methods was available. ICT combined with simplified reactor physics calculation was included. The main objectives of the statistical data evaluation were detection of outliers, the estimation of random errors and of systematic errors of the measurements performed by the 4 laboratories. Different methods for outlier detection, analysis of variances, Grubbs' analysis for the constant-bias model and Jaech's non-constant-bias model were applied. Some of the results of the statistical analysis may seem inconsistent which is due to the following reasons. For the statistical evaluations isotope abundance data (weight percent) as well as nuclear concentration data (atoms/initial metal atoms) were subjected to different outlier criteria before being used for further statistical evaluations. None of the four data evaluation groups performed a complete statistical data analysis which would render possible a comparison of the different methods applied since no commonly agreed statistical evaluation procedure existed. The results prove that ICT is as accurate as conventional techniques which have to rely on costly mass spectrometric isotope dilution analysis. The potential of outlier detection by ICT on the basis of the results from a single laboratory is as good as outlier detection by costly interlaboratory comparison. The application of fission product or Cm-244 correlations would be more timely than remeasurements at safeguards laboratories

  6. Comparison study on the battery models used for the energy management of batteries in electric vehicles

    International Nuclear Information System (INIS)

    Highlights: ► The seven representative battery models are summarized. ► The model equations are built and the model parameters are identified with an online method. ► An evaluation is performed on the battery models by an experiment approach. ► The equivalent circuit model with two RC networks has an optimal performance. - Abstract: Battery model plays an important role in the simulation of electric vehicles (EVs) and states estimation of the batteries in the development of the model-based battery management system. To build a battery model with enough precision and suitable complexity, firstly this paper summarizes the seven representative battery models, which belong to the simplified electrochemical models or the equivalent circuit models. Then the model equations are built and the model parameters are identified with an online parameter identification method. The battery test bench is built and the experiment schedule is designed. Finally an evaluation is performed on the seven battery models by an experiment approach from the aspects of the estimation accuracy of the terminal voltages. To evaluate the effect of the number of RC networks on the model’s precision, the battery general equivalent circuit models (GECMs) with different RC networks are also discussed further. The results indicate the equivalent circuit model with two RC networks, the DP model, has an optimal performance.

  7. Brazilian policy on battery disposal and its practical effects on battery recycling

    Science.gov (United States)

    Crocce Romano Espinosa, Denise; Moura Bernardes, Andréa; Alberto Soares Tenório, Jorge

    The disposal of batteries is a problem that has grown in the last few years, due to the increase in the use of portable devices. Batteries may contain toxic metals such as cadmium, mercury and lead, so their disposal must be controlled. Brazil was the first country in Latin America to regulate the disposal and treatment of batteries. Limits were established on the concentration of heavy metals within batteries, so that they could be disposed along with domestic waste. Since batteries are products used broadly, it is very difficult to control their disposal. In order to have an efficient collection, the population must be engaged, and that can only happen if they are informed about the laws and regulations regarding the subject, as well as the importance of disposing of batteries with higher concentrations of heavy metals or toxic substances separately from domestic garbage. Around the world, there are some long-established recycling processes for batteries. In Brazil, automotive (lead-acid) batteries have been recycled for several years, whereas the recycling of other types of batteries is just starting. This work does an analysis of the Brazilian law for battery recycling and presents some suggestions and examples of the initiatives of other countries, in order to manage of this kind of dangerous waste.

  8. Environmental consequences of the use of batteries in low carbon systems: The impact of battery production

    International Nuclear Information System (INIS)

    Highlights: ► Lithium based batteries show the most significant GHG and metal depletion impacts. ► Nickel metal hydride batteries perform worst in terms of cumulative energy demand. ► Charge and discharge cycles will have significant effect on the environmental impact. ► Limited data on the life cycle impacts of some types of batteries is available. - Abstract: Adoption of small scale micro-generation is sometimes coupled with the use of batteries in order to overcome daily variability in the supply and demand of energy. For example, photovoltaic cells and small wind turbines can be coupled with energy storage systems such as batteries. When used effectively with renewable energy production, batteries can increase the versatility of an energy system by providing energy storage that enables the systems to satisfy the highly variable electrical load of an individual dwelling, therefore changing usage patterns on the national grid. A significant shift towards electric or hybrid cars would also increase the number of batteries required. However, batteries can be inefficient and comprise of materials that have high environmental and energy impacts. In addition, some materials, such as lithium, are scarce natural resources. As a result, the overall impact of increasing our reliance on such “sustainable or “low carbon” systems may in fact have an additional detrimental impact. This paper reviews the currently available data and calculated and highlights the impact of the production of several types of battery in terms of energy, raw materials and greenhouse gases. The impact of the production of batteries is examined and presented in order that future studies may be able to include the impact of batteries more easily within any system. It is shown that lithium based batteries have the most significant impact in many environmental areas in terms of production. As the use phases of batteries are extremely variable within different situations this has not been

  9. ISOTOPE METHODS IN HOMOGENEOUS CATALYSIS.

    Energy Technology Data Exchange (ETDEWEB)

    BULLOCK,R.M.; BENDER,B.R.

    2000-12-01

    The use of isotope labels has had a fundamentally important role in the determination of mechanisms of homogeneously catalyzed reactions. Mechanistic data is valuable since it can assist in the design and rational improvement of homogeneous catalysts. There are several ways to use isotopes in mechanistic chemistry. Isotopes can be introduced into controlled experiments and followed where they go or don't go; in this way, Libby, Calvin, Taube and others used isotopes to elucidate mechanistic pathways for very different, yet important chemistries. Another important isotope method is the study of kinetic isotope effects (KIEs) and equilibrium isotope effect (EIEs). Here the mere observation of where a label winds up is no longer enough - what matters is how much slower (or faster) a labeled molecule reacts than the unlabeled material. The most careti studies essentially involve the measurement of isotope fractionation between a reference ground state and the transition state. Thus kinetic isotope effects provide unique data unavailable from other methods, since information about the transition state of a reaction is obtained. Because getting an experimental glimpse of transition states is really tantamount to understanding catalysis, kinetic isotope effects are very powerful.

  10. 29 CFR 1917.157 - Battery charging and changing.

    Science.gov (United States)

    2010-07-01

    ... jumper battery is connected to a battery in a vehicle, the ground lead shall connect to ground away from the vehicle's battery. Ignition, lights and accessories on the vehicle shall be turned off before... 29 Labor 7 2010-07-01 2010-07-01 false Battery charging and changing. 1917.157 Section...

  11. SMS/GOES cell and battery data analysis report

    Science.gov (United States)

    Armantrout, J. D.

    1977-01-01

    The nickel-cadmium battery design developed for the Synchronous Meteorological Satellite (SMS) and Geostationary Operational Environmental Satellite (GOES) provided background and guidelines for future development, manufacture, and application of spacecraft batteries. SMS/GOES battery design, development, qualification testing, acceptance testing, and life testing/mission performance characteristics were evaluated for correlation with battery cell manufacturing process variables.

  12. Nickel-Cadmium Battery Operation Management Optimization Using Robust Design

    Science.gov (United States)

    Blosiu, Julian O.; Deligiannis, Frank; DiStefano, Salvador

    1996-01-01

    In recent years following several spacecraft battery anomalies, it was determined that managing the operational factors of NASA flight NiCd rechargeable battery was very important in order to maintain space flight battery nominal performance. The optimization of existing flight battery operational performance was viewed as something new for a Taguchi Methods application.

  13. 49 CFR 229.43 - Exhaust and battery gases.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Exhaust and battery gases. 229.43 Section 229.43... § 229.43 Exhaust and battery gases. (a) Products of combustion shall be released entirely outside the... conditions. (b) Battery containers shall be vented and batteries kept from gassing excessively....

  14. B#: A battery emulator and power-profiling instrument

    OpenAIRE

    Park, C. S.; Liu, J. F.; Chou, P H

    2005-01-01

    B# (B sharp) is a programmable power supply that emulates battery behavior. It measures current load, calls a battery simulation program to compute voltage in real time, and controls a linear regulator to mimic a battery's voltage output. The instrument enables validation of battery-aware power optimization techniques with accurate, controllable, reproducible results.

  15. 30 CFR 77.1106 - Battery-charging stations; ventilation.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Battery-charging stations; ventilation. 77.1106... COAL MINES Fire Protection § 77.1106 Battery-charging stations; ventilation. Battery-charging stations shall be located in well-ventilated areas. Battery-charging stations shall be equipped with...

  16. 46 CFR 112.55-15 - Capacity of storage batteries.

    Science.gov (United States)

    2010-10-01

    ... LIGHTING AND POWER SYSTEMS Storage Battery Installation § 112.55-15 Capacity of storage batteries. (a) A storage battery for an emergency lighting and power system must have the capacity— (1) To close all... time specified in paragraph (a) of this section, the potential of the storage battery must be at...

  17. 46 CFR 120.350 - Batteries-general.

    Science.gov (United States)

    2010-10-01

    ...) Each battery must be located as high above the bilge as practicable, secured to protect against...) Batteries must be accessible for maintenance and removal. (d) Connections must be made to battery terminals... the electrolyte. (f) Battery chargers must have an ammeter connected in the charging circuit. (g)...

  18. 14 CFR 27.1353 - Storage battery design and installation.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Storage battery design and installation. 27... Equipment § 27.1353 Storage battery design and installation. (a) Each storage battery must be designed and... result when the battery is recharged (after previous complete discharge)— (1) At maximum...

  19. Nickel isotopes and methanogens

    Science.gov (United States)

    Neubeck, A.; Ivarsson, M.

    2013-12-01

    Methanogens require Ni for their growth and as a consequence the microbial fractionation of Ni isotopes can be used as a biomarker for activity of methanogenic communities1. Anaerobic laboratory experiments was performed using methanogens to investigate methanogenic growth in a modified nutrient media2 with olivine Fo91 (5g/l) added as an additional mineral nutrient source and as the only H2 provider. One of the investigated methanogens showed an increased growth in the experiments with added olivine. There were also a close relationship between the mobilized Ni and the growth of the methanogen. Ni is an element that previously has been neglected in the study of fossilized microorganisms and their interaction with mineral substrates and, thus, there are no records or published data of Ni in association with microfossils. However, we have detected enrichments of Ni in fossilized microorganisms and ichno-fossils, respectively, from three separate locations. Ni is not present in the host rock in any of the samples. Thus, Ni is present in association with fossilized microorganisms from environments and more extensive analysis is required to understand the magnitude, uptake, preservation and fractionation of Ni in microfossils. In order to analyze Ni isotope fractionation from microbe-mineral interaction, we plan to use a high-resolution Laser-Ablation Time-of-Flight Mass Spectrometer (LMS)3. In situ profile ablation will provide detailed and localized data on fractionation patterns between microfossils and their host rock. Also, this technique will allow us to identify the change in Ni isotopic fractionation in rock samples caused by abiotic and biogenic processes in a faster and easier way and with less risk for contamination compared to the wet chemistry analyses of Ni isotopes. 1. Cameron, V., Vance, D., Archer, C. & House, C. H. A biomarker based on the stable isotopes of nickel. Proceedings of the National Academy of Sciences 106, 10944-10948 (2009). 2. Schn

  20. BATTERIES. Topological defect dynamics in operando battery nanoparticles.

    Science.gov (United States)

    Ulvestad, A; Singer, A; Clark, J N; Cho, H M; Kim, J W; Harder, R; Maser, J; Meng, Y S; Shpyrko, O G

    2015-06-19

    Topological defects can markedly alter nanomaterial properties. This presents opportunities for "defect engineering," where desired functionalities are generated through defect manipulation. However, imaging defects in working devices with nanoscale resolution remains elusive. We report three-dimensional imaging of dislocation dynamics in individual battery cathode nanoparticles under operando conditions using Bragg coherent diffractive imaging. Dislocations are static at room temperature and mobile during charge transport. During the structural phase transformation, the lithium-rich phase nucleates near the dislocation and spreads inhomogeneously. The dislocation field is a local probe of elastic properties, and we find that a region of the material exhibits a negative Poisson's ratio at high voltage. Operando dislocation imaging thus opens a powerful avenue for facilitating improvement and rational design of nanostructured materials. PMID:26089511

  1. Membranes for redox flow battery applications.

    Science.gov (United States)

    Prifti, Helen; Parasuraman, Aishwarya; Winardi, Suminto; Lim, Tuti Mariana; Skyllas-Kazacos, Maria

    2012-01-01

    The need for large scale energy storage has become a priority to integrate renewable energy sources into the electricity grid. Redox flow batteries are considered the best option to store electricity from medium to large scale applications. However, the current high cost of redox flow batteries impedes the wide spread adoption of this technology. The membrane is a critical component of redox flow batteries as it determines the performance as well as the economic viability of the batteries. The membrane acts as a separator to prevent cross-mixing of the positive and negative electrolytes, while still allowing the transport of ions to complete the circuit during the passage of current. An ideal membrane should have high ionic conductivity, low water intake and excellent chemical and thermal stability as well as good ionic exchange capacity. Developing a low cost, chemically stable membrane for redox flow cell batteries has been a major focus for many groups around the world in recent years. This paper reviews the research work on membranes for redox flow batteries, in particular for the all-vanadium redox flow battery which has received the most attention. PMID:24958177

  2. Membranes for Redox Flow Battery Applications

    Directory of Open Access Journals (Sweden)

    Maria Skyllas-Kazacos

    2012-06-01

    Full Text Available The need for large scale energy storage has become a priority to integrate renewable energy sources into the electricity grid. Redox flow batteries are considered the best option to store electricity from medium to large scale applications. However, the current high cost of redox flow batteries impedes the wide spread adoption of this technology. The membrane is a critical component of redox flow batteries as it determines the performance as well as the economic viability of the batteries. The membrane acts as a separator to prevent cross-mixing of the positive and negative electrolytes, while still allowing the transport of ions to complete the circuit during the passage of current. An ideal membrane should have high ionic conductivity, low water intake and excellent chemical and thermal stability as well as good ionic exchange capacity. Developing a low cost, chemically stable membrane for redox flow cell batteries has been a major focus for many groups around the world in recent years. This paper reviews the research work on membranes for redox flow batteries, in particular for the all-vanadium redox flow battery which has received the most attention.

  3. Mapping the Challenges of Magnesium Battery.

    Science.gov (United States)

    Song, Jaehee; Sahadeo, Emily; Noked, Malachi; Lee, Sang Bok

    2016-05-01

    Rechargeable Mg battery has been considered a major candidate as a beyond lithium ion battery technology, which is apparent through the tremendous works done in the field over the past decades. The challenges for realization of Mg battery are complicated, multidisciplinary, and the tremendous work done to overcome these challenges is very hard to organize in a regular review paper. Additionally, we claim that organization of the huge amount of information accumulated by the great scientific progress achieved by various groups in the field will shed the light on the unexplored research domains and give clear perspectives and guidelines for next breakthrough to take place. In this Perspective, we provide a convenient map of Mg battery research in a form of radar chart of Mg electrolytes, which evaluates the electrolyte under the important components of Mg batteries. The presented radar charts visualize the accumulated knowledge on Mg battery and allow for navigation of not only the current research state but also future perspective of Mg battery at a glance. PMID:27088555

  4. Flow Battery System Design for Manufacturability.

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

    2014-10-01

    Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

  5. Gelled-electrolyte batteries for electric vehicles

    Science.gov (United States)

    Tuphorn, Hans

    Increasing problems of air pollution have pushed activities of electric vehicle projects worldwide and in spite of projects for developing new battery systems for high energy densities, today lead/acid batteries are almost the single system, ready for technical usage in this application. Valve-regulated lead/acid batteries with gelled electrolyte have the advantage that no maintenance is required and because the gel system does not cause problems with electrolyte stratification, no additional appliances for central filling or acid addition are required, which makes the system simple. Those batteries with high density active masses indicate high endurance results and field tests with 40 VW-CityStromers, equipped with 96 V/160 A h gel batteries with thermal management show good results during four years. In addition, gelled lead/acid batteries possess superior high rate performance compared with conventional lead/acid batteries, which guarantees good acceleration results of the car and which makes the system recommendable for application in electric vehicles.

  6. Lifetime modelling of lead acid batteries

    Energy Technology Data Exchange (ETDEWEB)

    Bindner, H.; Cronin, T.; Lundsager, P.

    2005-04-01

    The performance and lifetime of energy storage in batteries are an important part of many renewable based energy systems. Not only do batteries impact on the system performance but they are also a significant expenditure when considering the whole life cycle costs. Poor prediction of lifetime can, therefore, lead to uncertainty in the viability of the system in the long term. This report details the work undertaken to investigate and develop two different battery life prediction methodologies with specific reference to their use in hybrid renewable energy systems. Alongside this, results from battery tests designed to exercise batteries in similar modes to those that they experience in hybrid systems have also been analysed. These have yielded battery specific parameters for use in the prediction software and the first results in the validation process of the software are also given. This work has been part of the European Union Benchmarking research project (ENK6-CT-2001-80576), funded by the European Union, the United States and Australian governments together with other European states and other public and private financing bodies. The project has concentrated on lead acid batteries as this technology is the most commonly used. Through this work the project partner institutions have intended to provide useful tools to improve the design capabilities of organizations, private and public, in remote power systems. (au)

  7. Hierarchically structured materials for lithium batteries

    International Nuclear Information System (INIS)

    The lithium-ion battery (LIB) is one of the most promising power sources to be deployed in electric vehicles, including solely battery powered vehicles, plug-in hybrid electric vehicles, and hybrid electric vehicles. With the increasing demand for devices of high-energy densities (>500 Wh kg−1), new energy storage systems, such as lithium–oxygen (Li–O2) batteries and other emerging systems beyond the conventional LIB, have attracted worldwide interest for both transportation and grid energy storage applications in recent years. It is well known that the electrochemical performance of these energy storage systems depends not only on the composition of the materials, but also on the structure of the electrode materials used in the batteries. Although the desired performance characteristics of batteries often have conflicting requirements with the micro/nano-structure of electrodes, hierarchically designed electrodes can be tailored to satisfy these conflicting requirements. This work will review hierarchically structured materials that have been successfully used in LIB and Li–O2 batteries. Our goal is to elucidate (1) how to realize the full potential of energy materials through the manipulation of morphologies, and (2) how the hierarchical structure benefits the charge transport, promotes the interfacial properties and prolongs the electrode stability and battery lifetime. (paper)

  8. Hierarchically structured materials for lithium batteries

    Science.gov (United States)

    Xiao, Jie; Zheng, Jianming; Li, Xiaolin; Shao, Yuyan; Zhang, Ji-Guang

    2013-10-01

    The lithium-ion battery (LIB) is one of the most promising power sources to be deployed in electric vehicles, including solely battery powered vehicles, plug-in hybrid electric vehicles, and hybrid electric vehicles. With the increasing demand for devices of high-energy densities (>500 Wh kg-1), new energy storage systems, such as lithium-oxygen (Li-O2) batteries and other emerging systems beyond the conventional LIB, have attracted worldwide interest for both transportation and grid energy storage applications in recent years. It is well known that the electrochemical performance of these energy storage systems depends not only on the composition of the materials, but also on the structure of the electrode materials used in the batteries. Although the desired performance characteristics of batteries often have conflicting requirements with the micro/nano-structure of electrodes, hierarchically designed electrodes can be tailored to satisfy these conflicting requirements. This work will review hierarchically structured materials that have been successfully used in LIB and Li-O2 batteries. Our goal is to elucidate (1) how to realize the full potential of energy materials through the manipulation of morphologies, and (2) how the hierarchical structure benefits the charge transport, promotes the interfacial properties and prolongs the electrode stability and battery lifetime.

  9. A Battery Health Monitoring Framework for Planetary Rovers

    Science.gov (United States)

    Daigle, Matthew J.; Kulkarni, Chetan Shrikant

    2014-01-01

    Batteries have seen an increased use in electric ground and air vehicles for commercial, military, and space applications as the primary energy source. An important aspect of using batteries in such contexts is battery health monitoring. Batteries must be carefully monitored such that the battery health can be determined, and end of discharge and end of usable life events may be accurately predicted. For planetary rovers, battery health estimation and prediction is critical to mission planning and decision-making. We develop a model-based approach utilizing computaitonally efficient and accurate electrochemistry models of batteries. An unscented Kalman filter yields state estimates, which are then used to predict the future behavior of the batteries and, specifically, end of discharge. The prediction algorithm accounts for possible future power demands on the rover batteries in order to provide meaningful results and an accurate representation of prediction uncertainty. The framework is demonstrated on a set of lithium-ion batteries powering a rover at NASA.

  10. Ambient operation of Li/Air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ji-Guang; Wang, Deyu; Xu, Wu; Xiao, Jie; Williford, R.E. [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA (United States)

    2010-07-01

    In this work, Li/air batteries based on nonaqueous electrolytes were investigated in ambient conditions (with an oxygen partial pressure of 0.21 atm and relative humidity of {proportional_to}20%). A heat-sealable polymer membrane was used as both an oxygen-diffusion membrane and as a moisture barrier for Li/air batteries. The membrane also can minimize the evaporation of the electrolyte from the batteries. Li/air batteries with this membrane can operate in ambient conditions for more than one month with a specific energy of 362 Wh kg{sup -1}, based on the total weight of the battery including its packaging. Among various carbon sources used in this work, Li/air batteries using Ketjenblack (KB) carbon-based air electrodes exhibited the highest specific energy. However, KB-based air electrodes expanded significantly and absorbed much more electrolyte than electrodes made from other carbon sources. The weight distribution of a typical Li/air battery using the KB-based air electrode was dominated by the electrolyte ({proportional_to}70%). Lithium metal anodes and KB-carbon account for only 5.12% and 5.78% of the battery weight, respectively. We also found that only {proportional_to}20% of the mesopore volume of the air electrode was occupied by reaction products after discharge. To further improve the specific energy of the Li/air batteries, the microstructure of the carbon electrode needs to be further improved to absorb much less electrolyte while still holding significant amounts of reaction products. (author)

  11. Therapeutic use of radioactive isotopes

    CERN Document Server

    Caroline Duc

    2013-01-01

    In December, researchers from ISOLDE-CERN, the Paul Scherrer Institute (PSI) and the Institut Laue-Langevin (ILL) published the results of an in vivo study which successfully proved the effectiveness of four terbium isotopes for diagnosing and treating cancerous tumours.   Four terbium isotopes suitable for clinical purposes. “ISOLDE is the only installation capable of supplying terbium isotopes of such purity and intensity in the case of three out of the four types used in this study,” explains Karl Johnson, a physicist at ISOLDE.  “Producing over a thousand different isotopes, our equipment offers the widest choice of isotopes in the world!” Initially intended for fundamental physics research, ISOLDE has diversified its activities over time to invest in various projects in the materials science, biochemistry and nuclear medicine fields. The proof-of-concept study has confirmed that the four terbium isotopes 149Tb, 152Tb, 155Tb produ...

  12. Laser Ablation Molecular Isotopic Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Richard E., E-mail: rerusso@lbl.gov [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Applied Spectra, Inc., 46661 Fremont Boulevard, Fremont, CA 94538 (United States); Bol' shakov, Alexander A. [Applied Spectra, Inc., 46661 Fremont Boulevard, Fremont, CA 94538 (United States); Mao Xianglei [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); McKay, Christopher P. [NASA-Ames Research Center, Moffett Field, CA 94035 (United States); Perry, Dale L.; Sorkhabi, Osman [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States)

    2011-02-15

    A new method of performing optical isotopic analysis of condensed samples in ambient air and at ambient pressure has been developed: Laser Ablation Molecular Isotopic Spectrometry (LAMIS). The technique uses radiative transitions from molecular species either directly vaporized from a sample or formed by associative mechanisms of atoms or ions in a laser ablation plume. This method is an advanced modification of a known atomic emission technique called laser-induced breakdown spectroscopy (LIBS). The new method - LAMIS - can determine not only chemical composition but also isotopic ratios of elements in the sample. Isotopic measurements are enabled by significantly larger isotopic shifts found in molecular spectra relative to atomic spectra. Analysis can be performed from a distance and in real time. No sample preparation or pre-treatment is required. Detection of the isotopes of hydrogen, boron, carbon, and oxygen are discussed to illustrate the technique.

  13. Laser Ablation Molecular Isotopic Spectrometry

    Science.gov (United States)

    Russo, Richard E.; Bol'shakov, Alexander A.; Mao, Xianglei; McKay, Christopher P.; Perry, Dale L.; Sorkhabi, Osman

    2011-02-01

    A new method of performing optical isotopic analysis of condensed samples in ambient air and at ambient pressure has been developed: Laser Ablation Molecular Isotopic Spectrometry (LAMIS). The technique uses radiative transitions from molecular species either directly vaporized from a sample or formed by associative mechanisms of atoms or ions in a laser ablation plume. This method is an advanced modification of a known atomic emission technique called laser-induced breakdown spectroscopy (LIBS). The new method — LAMIS — can determine not only chemical composition but also isotopic ratios of elements in the sample. Isotopic measurements are enabled by significantly larger isotopic shifts found in molecular spectra relative to atomic spectra. Analysis can be performed from a distance and in real time. No sample preparation or pre-treatment is required. Detection of the isotopes of hydrogen, boron, carbon, and oxygen are discussed to illustrate the technique.

  14. Isotope effects in lattice dynamics

    International Nuclear Information System (INIS)

    The large number of available stable isotopes and well developed isotope separation technology have enabled growing crystals of C, LiH, ZnO, CuCl, CuBr, Cu2O, CdS, α-Sn, Ge, Si, etc. with a controlled isotope composition. Experimental and theoretical studies provide evidence that the isotope effect has an influence on the thermal, elastic, and vibrational properties of crystals. In this paper it is shown that in Ge and C crystals isotope effect causes only weak phonon scattering whereas in LiH the scattering potential changes are so strong that they lead to experimentally observable phonon localization. It is emphasized that a systematic description of isotope effects requires that anharmonicity be taken into account. (reviews of topical problems)

  15. Primary and secondary battery consumption trends in Sweden 1996-2013: method development and detailed accounting by battery type.

    Science.gov (United States)

    Patrício, João; Kalmykova, Yuliya; Berg, Per E O; Rosado, Leonardo; Åberg, Helena

    2015-05-01

    In this article, a new method based on Material Flow Accounting is proposed to study detailed material flows in battery consumption that can be replicated for other countries. The method uses regularly available statistics on import, industrial production and export of batteries and battery-containing electric and electronic equipment (EEE). To promote method use by other scholars with no access to such data, several empirically results and their trends over time, for different types of batteries occurrence among the EEE types are provided. The information provided by the method can be used to: identify drivers of battery consumption; study the dynamic behavior of battery flows - due to technology development, policies, consumers behavior and infrastructures. The method is exemplified by the study of battery flows in Sweden for years 1996-2013. The batteries were accounted, both in units and weight, as primary and secondary batteries; loose and integrated; by electrochemical composition and share of battery use between different types of EEE. Results show that, despite a fivefold increase in the consumption of rechargeable batteries, they account for only about 14% of total use of portable batteries. Recent increase in digital convergence has resulted in a sharp decline in the consumption of primary batteries, which has now stabilized at a fairly low level. Conversely, the consumption of integrated batteries has increased sharply. In 2013, 61% of the total weight of batteries sold in Sweden was collected, and for the particular case of alkaline manganese dioxide batteries, the value achieved 74%. PMID:25782361

  16. 76 FR 70531 - Fifth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems-Small...

    Science.gov (United States)

    2011-11-14

    ... Federal Aviation Administration Fifth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is issuing this notice to advise...

  17. 77 FR 66084 - Tenth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems-Small...

    Science.gov (United States)

    2012-11-01

    ... Federal Aviation Administration Tenth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is issuing this notice...

  18. 77 FR 56253 - Ninth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems-Small...

    Science.gov (United States)

    2012-09-12

    ... Federal Aviation Administration Ninth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is issuing this notice...

  19. Prediction of Retained Capacity and EODV of Li-ion Batteries in LEO Spacecraft Batteries

    CERN Document Server

    Ramakrishnan, S; Jeyakumar, A Ebenezer

    2010-01-01

    In resent years ANN is widely reported for modeling in different areas of science including electro chemistry. This includes modeling of different technological batteries such as lead acid battery, Nickel cadmium batteries etc. Lithium ion batteries are advance battery technology which satisfy most of the space mission requirements. Low earth orbit (LEO)space craft batteries undergo large number of charge discharge cycles (about 25000 cycles)compared to other ground level or space applications. This study is indented to develop ANN model for about 25000 cycles, cycled under various temperature, Depth Of Discharge (DOD) settings with constant charge voltage limit to predict the retained capacity and End of Discharge Voltage (EODV). To extract firm conclusion and distinguish the capability of ANN method, the predicted values are compared with experimental result by statistical method and Bland Altman plot.

  20. Lightweight lead acid batteries for hybrid electric vehicle applications

    OpenAIRE

    Wallis, Lauren

    2015-01-01

    This report presents architectures, designs and chemistries for novel static soluble lead acid batteries, with the objective of producing a lightweight lead acid battery for improved specific energy. The demands for lightweight lead-acid batteries come from an expanding hybrid electric vehicle market demanding improved battery specific energy. There are several avenues for improving battery specific energy; the main two are improved active material utilisation efficiency and grid weight reduc...

  1. Ageing study of a supercapacitor-battery storage system

    OpenAIRE

    VULTURESCU, B; BUTTERBACH, S; Coquery, G.; FORGEZ, C; Friedrich, G

    2010-01-01

    This paper presents a preliminary study about a battery ageing methodology of a storage system formed by supercapacitors and lead-acid battery. The design of the hybrid system, based on a simple power flow management – the battery current clipping – is briefly summarized in order to outline the main benefit of the hybridization: the reduction of losses within the battery. The experimental setup will allow quantifying the impact of the hybridization on the battery lifetime by means...

  2. Constructing Battery-Aware Virtual Backbones in Wireless Sensor Networks

    OpenAIRE

    Chi Ma; Yuanyuan Yang; Zhenghao Zhang

    2007-01-01

    A critical issue in battery-powered sensor networks is to construct energy efficient virtual backbones for network routing. Recent study in battery technology reveals that batteries tend to discharge more power than needed and reimburse the over-discharged power if they are recovered. In this paper we first provide a mathematical battery model suitable for implementation in sensor networks. We then introduce the concept of battery-aware connected dominating set (BACDS) and show that in gener...

  3. Advances in development and application of aluminium batteries

    DEFF Research Database (Denmark)

    Qingfeng, Li; Zhuxian, Qiu

    2001-01-01

    Aluminium has long attracted attention as a potential battery anode because of its high theoretical voltage and specific energy. The protective oxide layer at aluminium surface is however detrimental to its performance to achieve its reversible potential, and also causing the delayed activation of...... aluminium batteres, especially aluminium-air batteries, and a wide range of their applications from emergency power supplies, reserve batteries field portable batteries, to batteries for electric vehicles and underwater propulsion....

  4. Battery model for electrical power system energy balance

    Science.gov (United States)

    Hafen, D. P.

    1983-01-01

    A model to simulate nickel-cadmium battery performance and response in a spacecraft electrical power system energy balance calculation was developed. The voltage of the battery is given as a function of temperature, operating depth-of-charge (DOD), and battery state-of-charge. Also accounted for is charge inefficiency. A battery is modeled by analysis of the results of a multiparameter battery cycling test at various temperatures and DOD's.

  5. Battery Health Estimation in Electric Vehicles

    OpenAIRE

    Klass, Verena

    2015-01-01

    For the broad commercial success of electric vehicles (EVs), it is essential to deeply understand how batteries behave in this challenging application. This thesis has therefore been focused on studying automotive lithium-ion batteries in respect of their performance under EV operation. Particularly, the  need  for  simple  methods  estimating  the  state-of-health  (SOH)  of batteries during EV operation has been addressed in order to ensure safe, reliable, and cost-effective EV operation. W...

  6. Lifetime modelling of lead acid batteries

    DEFF Research Database (Denmark)

    Bindner, H.; Cronin, T.; Lundsager, P.;

    2005-01-01

    , therefore, lead to uncertainty in the viability of the system in the long term. This report details the work undertaken to investigate and develop two different battery life prediction methodologies withspecific reference to their use in hybrid renewable energy systems. Alongside this, results from battery...... been part of the European Union Benchmarking research project (ENK6-CT-2001-80576), funded by theEuropean Union, the United States and Australian governments together with other European states and other public and private financing bodies. The project has concentrated on lead acid batteries as this...

  7. Fuzzy logic-based battery charge controller

    International Nuclear Information System (INIS)

    Photovoltaic power system are generally classified according to their functional and operational requirements, their component configurations, and how the equipment is connected to other power sources and electrical loads, photovoltaic systems can be designed to provide DC and/or AC power service, can operate interconnected with or independent of the utility grid, and can be connected with other energy sources and energy storage systems. Batteries are often used in PV systems for the purpose of storing energy produced by the PV array during the day, and to supply it to electrical loads as needed (during the night and periods of cloudy weather). The lead acid battery, although know for more than one hundred years, has currently offered the best response in terms of price, energetic efficiency and lifetime. The main function of controller or regulator in PV system is too fully charge the battery without permitting overcharge while preventing reverse current flow at night. If a no-self-regulating solar array is connected to lead acid batteries with no overcharge protection, battery life will be compromised. Simple controllers contain a transistor that disconnects or reconnects the PV in the charging circuit once a pre-set voltage is reached. More sophisticated controllers utilize pulse with modulation (PWM) to assure the battery is being fully charged. The first 70% to 80% of battery capacity is easily replaced, but the last 20% to 30% requires more attention and therefore more complexity. This complexity is avoided by using a skilled operators experience in the form of the rules. Thus a fuzzy control system seeks to control the battery that cannot be controlled well by a conventional control such as PID, PD, PI etc., due to the unavailability of an accurate mathematical model of the battery. In this paper design of an intelligent battery charger, in which the control algorithm is implemented with fuzzy logic is discussed. The digital architecture is implemented with

  8. A review of nickel hydrogen battery technology

    Science.gov (United States)

    Smithrick, John J.; Odonnell, Patricia M.

    1995-01-01

    This paper on nickel hydrogen batteries is an overview of the various nickel hydrogen battery design options, technical accomplishments, validation test results and trends. There is more than one nickel hydrogen battery design, each having its advantage for specific applications. The major battery designs are individual pressure vessel (IPV), common pressure vessel (CPV), bipolar and low pressure metal hydride. State-of-the-art (SOA) nickel hydrogen batteries are replacing nickel cadmium batteries in almost all geosynchronous orbit (GEO) applications requiring power above 1 kW. However, for the more severe low earth orbit (LEO) applications (greater than 30,000 cycles), the current cycle life of 4000 to 10,000 cycles at 60 percent DOD should be improved. A NASA Lewis Research Center innovative advanced design IPV nickel hydrogen cell led to a breakthrough in cycle life enabling LEO applications at deep depths of discharge (DOD). A trend for some future satellites is to increase the power level to greater than 6 kW. Another trend is to decrease the power to less than 1 kW for small low cost satellites. Hence, the challenge is to reduce battery mass, volume and cost. A key is to develop a light weight nickel electrode and alternate battery designs. A common pressure vessel (CPV) nickel hydrogen battery is emerging as a viable alternative to the IPV design. It has the advantage of reduced mass, volume and manufacturing costs. A 10 Ah CPV battery has successfully provided power on the relatively short lived Clementine Spacecraft. A bipolar nickel hydrogen battery design has been demonstrated (15,000 LEO cycles, 40 percent DOD). The advantage is also a significant reduction in volume, a modest reduction in mass, and like most bipolar designs, features a high pulse power capability. A low pressure aerospace nickel metal hydride battery cell has been developed and is on the market. It is a prismatic design which has the advantage of a significant reduction in volume and a

  9. All silicon lithium-ion batteries

    OpenAIRE

    Xu, Chao

    2015-01-01

    Lithium-ion batteries have been widely used as power supplies for portable electronic devices due to their higher gravimetric and volumetric energy densities compared to other electrochemical energy storage technologies, such as lead-acid, Ni-Cd and Ni-MH batteries. Developing a novel battery chemistry, ‘‘all silicon lithium-ion batteries’’, using lithium iron silicate as the cathode and silicon as the anode, is the primary aim of this Ph.D project. This licentiate thesis is focused on improv...

  10. Isotope thermometery in nuclear multifragmentation

    OpenAIRE

    Agrawal, B. K.; Samaddar, S. K.; Sil, Tapas; J. N.

    1998-01-01

    A systematic study of the effect of fragment$-$fragment interaction, quantum statistics, $\\gamma$-feeding and collective flow is made in the extraction of the nuclear temperature from the double ratio of the isotopic yields in the statistical model of one-step (Prompt) multifragmentation. Temperature is also extracted from the isotope yield ratios generated in the sequential binary-decay model. Comparison of the thermodynamic temperature with the extracted temperatures for different isotope r...

  11. Iodine isotopes in radiation hygiene

    International Nuclear Information System (INIS)

    Radioactive iodine isotopes belong among the factors of anthropogenic contamination of the biosphere. A radiation hygiene survey is presented of literary data and the author's own results of studies of the metabolism and biological effect of radioactive isotopes of iodine. The risk of their intake by the human organism is evaluated. Particular attention is paid to 132-135I and 129I. Data on the biological danger of these isotopes are scarce in the literature. (author)

  12. Develop improved battery charger (Turbo-Z Battery Charging System). Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    The output of this project was a flexible control board. The control board can be used to control a variety of rapid battery chargers. The control module will reduce development cost of rapid battery charging hardware. In addition, PEPCO's proprietary battery charging software have been pre-programmed into the control microprocessor. This product is being applied to the proprietary capacitive charging system now under development.

  13. Metal Stable Isotopes in Paleoceanography

    Science.gov (United States)

    Anbar, Ariel D.; Rouxel, Olivier

    2007-05-01

    Considered esoteric only a few years ago, research into the stable isotope geochemistry of transition metals is moving into the geoscience mainstream. Although initial attention focused on the potential use of some of these nontraditional isotope systems as biosignatures, they are now emerging as powerful paleoceanographic proxies. In particular, the Fe and Mo isotope systems are providing information about changes in oxygenation and metal cycling in ancient oceans. Zn, Cu, Tl, and a number of other metals and metalloids also show promise. Here we review the basis of stable isotope fractionation as it applies to these elements, analytical considerations, and the current status and future prospects of this rapidly developing research area.

  14. Solar batteries based on nanostructures

    International Nuclear Information System (INIS)

    Currently, 90 percent of the solar cells based on silicon are single batteries. The main factors preventing the photoenergetics extensive operation can be applied as follows: 1) the high cost of silicon production for solar cells, which is the main material; 2) the production of solar cells requires increased financial charges; 3) the relatively low efficiency of silicon solar cells (12-18 percent) and finally the last reason - there is no enough effective investment mechanism to solve the problem in most countries. One of the most promising ways to reduce the cost of solar electrical power is the creation of a new generation of solar cells based on semiconductor nanostructures. There are huge amount of research works being done in the field of constant theoretical and practical consequences of implementation of nanostructures

  15. Anodematerials for Metal Hydride Batteries

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf

    1997-01-01

    This report describes the work on development of hydride forming alloys for use as electrode materials in metal hydride batteries. The work has primarily been concentrated on calcium based alloys derived from the compound CaNi5. This compound has a higher capacity compared with alloys used in today...... was developed. The parameters milling time, milling intensity, number of balls and form of the alloying metals were investigated. Based on this a final alloying technique for the subsequent preparation of electrode materials was established. The technique comprises milling for 4 hours twice possibly...... followed by annealing at 700°C for 12 hours. The alloys appeared to be nanocrystalline with an average crystallite size around 10 nm before annealing. Special steel containers was developed for the annealing of the metal powders in inert atmosphere. The use of various annealing temperatures was...

  16. Heat tolerance of automotive lead-acid batteries

    Science.gov (United States)

    Albers, Joern

    Starter batteries have to withstand a quite large temperature range. In Europe, the battery temperature can be -30 °C in winter and may even exceed +60 °C in summer. In most modern cars, there is not much space left in the engine compartment to install the battery. So the mean battery temperature may be higher than it was some decades ago. In some car models, the battery is located in the passenger or luggage compartment, where ambient temperatures are more moderate. Temperature effects are discussed in detail. The consequences of high heat impact into the lead-acid battery may vary for different battery technologies: While grid corrosion is often a dominant factor for flooded lead-acid batteries, water loss may be an additional influence factor for valve-regulated lead-acid batteries. A model was set up that considers external and internal parameters to estimate the water loss of AGM batteries. Even under hot climate conditions, AGM batteries were found to be highly durable and superior to flooded batteries in many cases. Considering the real battery temperature for adjustment of charging voltage, negative effects can be reduced. Especially in micro-hybrid applications, AGM batteries cope with additional requirements much better than flooded batteries, and show less sensitivity to high temperatures than suspected sometimes.

  17. Optimized batteries for cars with dual electrical architecture

    Science.gov (United States)

    Douady, J. P.; Pascon, C.; Dugast, A.; Fossati, G.

    During recent years, the increase in car electrical equipment has led to many problems with traditional starter batteries (such as cranking failure due to flat batteries, battery cycling etc.). The main causes of these problems are the double function of the automotive battery (starter and service functions) and the difficulties in designing batteries well adapted to these two functions. In order to solve these problems a new concept — the dual-concept — has been developed with two separate batteries: one battery is dedicated to the starter function and the other is dedicated to the service function. Only one alternator charges the two batteries with a separation device between the two electrical circuits. The starter battery is located in the engine compartment while the service battery is located at the rear of the car. From the analysis of new requirements, battery designs have been optimized regarding the two types of functions: (i) a small battery with high specific power for the starting function; for this function a flooded battery with lead-calcium alloy grids and thin plates is proposed; (ii) for the service function, modified sealed gas-recombinant batteries with cycling and deep-discharge ability have been developed. The various advantages of the dual-concept are studied in terms of starting reliability, battery weight, and voltage supply. The operating conditions of the system and several dual electrical architectures have also been studied in the laboratory and the car. The feasibility of the concept is proved.

  18. Development of battery management system for nickel-metal hydride batteries in electric vehicle applications

    Science.gov (United States)

    Jung, Do Yang; Lee, Baek Haeng; Kim, Sun Wook

    Electric vehicle (EV) performance is very dependent on traction batteries. For developing electric vehicles with high performance and good reliability, the traction batteries have to be managed to obtain maximum performance under various operating conditions. Enhancement of battery performance can be accomplished by implementing a battery management system (BMS) that plays an important role in optimizing the control mechanism of charge and discharge of the batteries as well as monitoring the battery status. In this study, a BMS has been developed for maximizing the use of Ni-MH batteries in electric vehicles. This system performs several tasks: the control of charging and discharging, overcharge and over-discharge protection, the calculation and display of state-of-charge (SOC), safety, and thermal management. The BMS is installed in and tested in a DEV5-5 electric vehicle developed by Daewoo Motor Co. and the Institute for Advanced Engineering in Korea. Eighteen modules of a Panasonic nickel-metal hydride (Ni-MH) battery, 12 V, 95 A h, are used in the DEV5-5. High accuracy within a range of 3% and good reliability are obtained. The BMS can also improve the performance and cycle-life of the Ni-MH battery peak, as well as the reliability and the safety of the electric vehicles.

  19. All-graphene-battery: bridging the gap between supercapacitors and lithium ion batteries

    OpenAIRE

    Haegyeom Kim; Kyu-Young Park; Jihyun Hong; Kisuk Kang

    2014-01-01

    Herein, we propose an advanced energy-storage system: all-graphene-battery. It operates based on fast surface-reactions in both electrodes, thus delivering a remarkably high power density of 6,450 W kg−1 total electrode while also retaining a high energy density of 225 Wh kg−1 total electrode, which is comparable to that of conventional lithium ion battery. The performance and operating mechanism of all-graphene-battery resemble those of both supercapacitors and batteries, thereby blurring th...

  20. Modelling Thermal Effects of Battery Cells inside Electric Vehicle Battery Packs

    DEFF Research Database (Denmark)

    Khan, Mohammad Rezwan; Kær, Søren Knudsen

    The poster presents a methodology to account for thermal effects on battery cells to improve the typical thermal performances in a pack through heating calculations generally performed under the operating condition assumption. The aim is to analyze the issues based on battery thermo......-physical characteristics and their impact on the electrical state of battery cells(Khan, Mulder et al. 2013, Khan, Andreasen et al. 2014, Khan et al. 2014, Khan, Mulder et al. 2014, Khan, Nielsen et al. 2014). Based on this analysis, we derive strategies in achieving the goal, and then propose a battery thermal management...

  1. BATTERIES 2020 – A Joint European Effort towards European Competitive Automotive Batteries

    DEFF Research Database (Denmark)

    Timmermans, J.-M.; Rodriguez-Martinez, L.M.; Omar, N.;

    The Integrated Project “Batteries 2020” unites 9 European partners jointly working on the research and development of European competitive automotive batteries. The project aims at increasing lifetime and energy density of large format high-energy lithium-ion batteries towards the goals targeted...... for automotive batteries. Three parallel strategies will be followed in order to achieve those targets: (i) Highly focused materials development; two improved generations of NMC materials will allow the performance, stability and cyclability of state of the art cells to be improved. (ii) Understanding...

  2. Metal Hydrides for Rechargeable Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Valoeen, Lars Ole

    2000-03-01

    Rechargeable battery systems are paramount in the power supply of modern electronic and electromechanical equipment. For the time being, the most promising secondary battery systems for the future are the lithium-ion and the nickel metal hydride (NiMH) batteries. In this thesis, metal hydrides and their properties are described with the aim of characterizing and improving those. The thesis has a special focus on the AB{sub 5} type hydrogen storage alloys, where A is a rare earth metal like lanthanum, or more commonly misch metal, which is a mixture of rare earth metals, mainly lanthanum, cerium, neodymium and praseodymium. B is a transition metal, mainly nickel, commonly with additions of aluminium, cobalt, and manganese. The misch metal composition was found to be very important for the geometry of the unit cell in AB{sub 5} type alloys, and consequently the equilibrium pressure of hydrogen in these types of alloys. The A site substitution of lanthanum by misch metal did not decrease the surface catalytic properties of AB{sub 5} type alloys. B-site substitution of nickel with other transition elements, however, substantially reduced the catalytic activity of the alloy. If the internal pressure within the electrochemical test cell was increased using inert argon gas, a considerable increase in the high rate charge/discharge performance of LaNi{sub 5} was observed. An increased internal pressure would enable the utilisation of alloys with a high hydrogen equivalent pressure in batteries. Such alloys often have favourable kinetics and high hydrogen diffusion rates and thus have a potential for improving the high current discharge rates in metal hydride batteries. The kinetic properties of metal hydride electrodes were found to improve throughout their lifetime. The activation properties were found highly dependent on the charge/discharge current. Fewer charge/discharge cycles were needed to activate the electrodes if a small current was used instead of a higher

  3. Advanced isotope separation

    International Nuclear Information System (INIS)

    The Study Group briefly reviewed the technical status of the three Advanced Isotope Separation (AIS) processes. It also reviewed the evaluation work that has been carried out by DOE's Process Evaluation Board (PEB) and the Union Carbide Corporation-Nuclear Division (UCCND). The Study Group briefly reviewed a recent draft assessment made for DOE staff of the nonproliferation implications of the AIS technologies. The staff also very briefly summarized the status of GCEP and Advanced Centrifuge development. The Study Group concluded that: (1) there has not been sufficient progress to provide a firm scientific, technical or economic basis on which to select one of the three competing AIS processes for full-scale engineering development at this time; and (2) however, should budgetary restraints or other factors force such a selection, we believe that the evaluation process that is being carried out by the PEB provides the best basis available for making a decision. The Study Group recommended that: (1) any decisions on AIS processes should include a comparison with gas centrifuge processes, and should not be made independently from the plutonium isotope program; (2) in evaluating the various enrichment processes, all applicable costs (including R and D and sales overhead) and an appropriate discounting approach should be included in order to make comparisons on a private industry basis; (3) if the three AIS programs continue with limited resources, the work should be reoriented to focus only on the most pressing technical problems; and (4) if a decision is made to develop the Atomic Vapor Laser Isotope Separation process, the solid collector option should be pursued in parallel to alleviate the potential program impact of liquid collector thermal control problems

  4. Insects, isotopes and radiation

    International Nuclear Information System (INIS)

    The sterile insect technique (SIT), which uses radiation to sexually sterilize insects and prevent reproduction, is particularly effective in eradicating harmful insects. The Joint Division of the IAEA/FAO has been involved in the use of isotopes and radiation in insect control since 1964. Efforts by the IAEA and FAO to transfer the SIT technology to developing countries are continuing by providing valuable research and development support for field projects. The cooperative SIT project against the tse tse fly was very successful in eradicating this harmful pest from the north-central Nigeria. A similar SIT project is actually underway to eradicate the Mediteranean fruit fly in Mexico

  5. Cold regions isotope applications

    International Nuclear Information System (INIS)

    Pacific Northwest Laboratories (PNL) started the Cold Regions Isotope Applications Program in FY-1975 to identify special conditions in the Arctic and similar geographic areas (Cold Regions) where radioisotope power, heater, or sterilization systems would be desirable and economically viable. Significant progress was made in the first year of this program and all objectives for this initial 12-month period were achieved. The major conclusions and recommendations resulting for this effort are described below. The areas of interest covered include: radiosterilization of sewage; heating of septic tanks; and radioisotope thermoelectric generators as power sources for meteorological instruments and navigational aids

  6. Tank waste isotope contributions

    International Nuclear Information System (INIS)

    This document presents the results of a calculation to determine the relative contribution of selected isotopes to the inhalation and ingestion doses for a postulated release of Hanford tank waste. The fraction of the dose due to 90Sr, 90Y, 137Cs and the alpha emitters for single shell solids and liquids, double shell solids and liquids, aging waste solids and liquids and all solids and liquids. An effective dose conversion factor was also calculated for the alpha emitters for each composite of the tank waste

  7. ISOTOPE FRACTIONATION PROCESS

    Science.gov (United States)

    Clewett, G.H.; Lee, DeW.A.

    1958-05-20

    A new method is described for isotopic enrichment of uranium. It has been found that when an aqueous acidic solution of ionic tetravalent uraniunn is contacted with chelate complexed tetravalent uranium, the U/sup 238/ preferentially concentrates in the complexed phase while U/sup 235/ concentrates in the ionic phase. The effect is enhanced when the chelate compound is water insoluble and is dissolved in a water-immiscible organic solvent. Cupferron is one of a number of sultable complexing agents, and chloroform is a suitable organic solvent.

  8. Cold regions isotope applications

    Energy Technology Data Exchange (ETDEWEB)

    Perrigo, L.D.; Divine, T.E.

    1976-04-01

    Pacific Northwest Laboratories (PNL) started the Cold Regions Isotope Applications Program in FY-1975 to identify special conditions in the Arctic and similar geographic areas (Cold Regions) where radioisotope power, heater, or sterilization systems would be desirable and economically viable. Significant progress was made in the first year of this program and all objectives for this initial 12-month period were achieved. The major conclusions and recommendations resulting for this effort are described below. The areas of interest covered include: radiosterilization of sewage; heating of septic tanks; and radioisotope thermoelectric generators as power sources for meteorological instruments and navigational aids. (TFD)

  9. Isotope effect and isotope separation. A chemist's view

    International Nuclear Information System (INIS)

    What causes the isotope effects (IE)? This presentation will be centered around the equilibrium isotope effects due to the differences in the nuclear masses. The occurrence of the equilibrium constant, K, of isotope exchange reactions which differ from the values predicted by the classical theory of statistical mechanics, Kcl, is explored. The non-classical K corresponds to the unit-stage separation factor, α, that is different from unity and forms a basis of an isotope separation process involving the chemical exchange reaction. Here, the word 'chemical exchange' includes not only the isotope exchange chemical reactions between two or more chemical species but also the isotope exchanges involving the equilibria between liquid and vapor phases and liquid-gas, liquid solution-gas, liquid-liquid, and solid-liquid phases. In Section I, origins of the isotope effect phenomena will be explored and, in the process, various quantities used in discussions of isotope effect that have often caused confusions will be unambiguously defined. This Section will also correlate equilibrium constant with separation factor. In Section II, various forms of temperature-dependence of IE and separation factor will be discussed. (author)

  10. Advanced rechargeable sodium batteries with novel cathodes

    Science.gov (United States)

    Di Stefano, S.; Ratnakumar, B. V.; Bankston, C. P.

    1990-01-01

    Various high energy density rechargeable batteries are being considered for future space applications. Of these, the sodium-sulfur battery is one of the leading candidates. The primary advantage is the high energy density (760 W h/kg theoretical). Energy densities in excess of 180 W h/kg have been realized in practical batteries. More recently, cathodes other than sulfur are being evaluated. Various new cathode materials are presently being evaluated for use in high energy density sodium batteries for advanced space applications. The approach is to carry out basic electrochemical studies of these materials in a sodium cell configuration in order to understand their fundamental behaviors. Thus far, the studies have focussed on alternative metal chlorides such as CuCl2 and organic cathode materials such as TCNE.

  11. Fuel Cell and Battery Powered Forklifts

    DEFF Research Database (Denmark)

    Zhang, Zhe; Mortensen, Henrik H.; Jensen, Jes Vestervang;

    2013-01-01

    propulsion similar to batteries. In this paper, the performance of a forklift powered by PEM fuel cells and lead acid batteries as auxiliary energy source is introduced and investigated. In this electromechanical propulsion system with hybrid energy/power sources, fuel cells will deliver average power......A hydrogen-powered materials handling vehicle with a fuel cell combines the advantages of diesel/LPG and battery powered vehicles. Hydrogen provides the same consistent power and fast refueling capability as diesel and LPG, whilst fuel cells provide energy efficient and zero emission Electric......, whilst batteries will handle all the load dynamics, such as acceleration, lifting, climbing and so on. The electrical part of the whole propulsion system for forklift has been investigated in details. The energy management strategy is explained and verified through simulation. Finally, experimental...

  12. Sealed Cylindrical Silver/Zinc Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — RBC Technologies has significanly improved the cycle life and wet life of silver/zinc battery technology through novel separator and anode formulations. This...

  13. Electrochemistry-based Battery Modeling for Prognostics

    Science.gov (United States)

    Daigle, Matthew J.; Kulkarni, Chetan Shrikant

    2013-01-01

    Batteries are used in a wide variety of applications. In recent years, they have become popular as a source of power for electric vehicles such as cars, unmanned aerial vehicles, and commericial passenger aircraft. In such application domains, it becomes crucial to both monitor battery health and performance and to predict end of discharge (EOD) and end of useful life (EOL) events. To implement such technologies, it is crucial to understand how batteries work and to capture that knowledge in the form of models that can be used by monitoring, diagnosis, and prognosis algorithms. In this work, we develop electrochemistry-based models of lithium-ion batteries that capture the significant electrochemical processes, are computationally efficient, capture the effects of aging, and are of suitable accuracy for reliable EOD prediction in a variety of usage profiles. This paper reports on the progress of such a model, with results demonstrating the model validity and accurate EOD predictions.

  14. Predicting Battery Life for Electric UAVs

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper presents a novel battery health management technology for the new generation of electric unmanned aerial vehicles powered by long-life, high-density,...

  15. Membrane-less hydrogen bromine flow battery

    CERN Document Server

    Braff, W A; Buie, C R

    2014-01-01

    In order for the widely discussed benefits of flow batteries for electrochemical energy storage to be applied at large scale, the cost of the electrochemical stack must come down substantially. One promising avenue for reducing stack cost is to increase the system power density while maintaining efficiency, enabling smaller stacks. Here we report on a membrane-less, hydrogen bromine laminar flow battery as a potential high power density solution. The membrane-less design enables power densities of 0.795 W cm$^{-2}$ at room temperature and atmospheric pressure, with a round-trip voltage efficiency of 92\\% at 25\\% of peak power. Theoretical solutions are also presented to guide the design of future laminar flow batteries. The high power density achieved by the hydrogen bromine laminar flow battery, along with the potential for rechargeable operation, will translate into smaller, inexpensive systems that could revolutionize the fields of large-scale energy storage and portable power systems.

  16. Battery Health Management System for Electric UAVs

    Data.gov (United States)

    National Aeronautics and Space Administration — In summary, this paper lays out a novel battery health management technique for application onboard an electric UAV. This technique is also applicable to other...

  17. Multi-Cell Thermal Battery Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The multi-cell thermal battery (MCTB) is a device that can recover a large fraction of the thermal energy from heated regolith and subsequently apply this energy to...

  18. 5 KV low-induction capactitor battery

    International Nuclear Information System (INIS)

    A 1.2 MJ capacitor battery is developed and constructed for creating strong magnetic fields for thermonuclear facilities, pumping of laser active media. The capacitor battery is assembled of 512 IMU5-150 and 128 IS5-200 capacitors. The design is based on division of the capacitor battery in 40 sections. The energy commutation is performed by air spark gaps of the trigatron type with 24 to 60 nH inductance. Electromagnetic switches are made on the base of the EP 41V-33 relay. A low-induction generator is developed for spark gap ignition. The capacitor sections, each of them comprising 16 capacitors, and loadings are switched-in either by means of cables or flat lines. Accidents were not observed during operation of 20 sections of the capacitor battery (capacitors break-down, break of polyethylene isolation, deformation of tyre-wires)

  19. Novel Lithium Ion High Energy Battery Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Under this SBIR project a new chemistry for Li-ion cells will be developed that will enable a major advance in secondary battery gravimetric and volumetric energy...

  20. Lithium ion batteries based on nanoporous silicon

    Science.gov (United States)

    Tolbert, Sarah H.; Nemanick, Eric J.; Kang, Chris Byung-Hwa

    2015-09-22

    A lithium ion battery that incorporates an anode formed from a Group IV semiconductor material such as porous silicon is disclosed. The battery includes a cathode, and an anode comprising porous silicon. In some embodiments, the anode is present in the form of a nanowire, a film, or a powder, the porous silicon having a pore diameters within the range between 2 nm and 100 nm and an average wall thickness of within the range between 1 nm and 100 nm. The lithium ion battery further includes, in some embodiments, a non-aqueous lithium containing electrolyte. Lithium ion batteries incorporating a porous silicon anode demonstrate have high, stable lithium alloying capacity over many cycles.

  1. The Breakthrough Behind the Chevy Volt Battery

    Science.gov (United States)

    Lerner, Louise

    2011-03-28

    A revolutionary breakthrough cathode for lithium-ion batteries—the kind in your cell phone, laptop and new hybrid cars—makes them last longer, run more safely and perform better than batteries currently on the market.

  2. 400 Wh/kg Secondary Battery Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Summary Lithium-ion battery technology will not provide significant breakthroughs beyond 200 Wh/kg. It will not provide adequate specific energy and cycle life for...

  3. Efficient Electrolytes for Lithium-Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    Natarajan eAngulakshmi

    2015-05-01

    Full Text Available This review article mainly encompasses on the state-of-the-art electrolytes for lithium–sulfur batteries. Different strategies have been employed to address the issues of lithium-sulfur batteries across the world. One among them is identification of electrolytes and optimization of their properties for the applications in lithium-sulfur batteries. The electrolytes for lithium-sulfur batteries are broadly classified as (i non-aqueous liquid electrolytes, (ii ionic liquids, (iii solid polymer and (iv glass-ceramic electrolytes. This article presents the properties, advantages and limitations of each type of electrolytes. Also the importance of electrolyte additives on the electrochemical performance of Li-S cells is discussed.

  4. Regulatory trends in the battery industry

    International Nuclear Information System (INIS)

    The scope of regulations in the battery industry is extensive and also complex. In the future, regulations will become more demanding and will encompass issues not currently considered. Increased focus on environmental issues by government bodies, environmental groups, local communities will result in more strict compliance standards. The USA is currently leading the world's battery industries in the scope and compliance level of regulations. By studying trends in the USA, the rest of the battery industry can prepare itself for the future operating environment. This paper reviews the most critical areas of air pollution, blood-lead levels and recycling. The paper concludes that the battery industry must adopt a culture of exceeding current compliance standards. (orig.)

  5. Catastrophic event modeling. [lithium thionyl chloride batteries

    Science.gov (United States)

    Frank, H. A.

    1981-01-01

    A mathematical model for the catastrophic failures (venting or explosion of the cell) in lithium thionyl chloride batteries is presented. The phenomenology of the various processes leading to cell failure is reviewed.

  6. High Temperature Rechargeable Battery Development Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This small business innovation research is intended to develop and proof the concept of a highly efficient, high temperature rechargeable battery for supporting...

  7. Methods testing electrodes for advanced batteries

    Czech Academy of Sciences Publication Activity Database

    Novák, V.; Vondrák, Jiří

    Vol. 2. Brno: Akademické nakladatelství CERM, 2000 - (Vondrák, J.; Sedlaříková, M.), s. 13.1-13.4 ISBN 80-214-1615-7. [Advanced Batteries and Accumulators /1./. Brno (CZ), 28.08.2000-01.09.2000] R&D Projects: GA AV ČR IAA4032002 Institutional research plan: CEZ:AV0Z4032918 Keywords : electrodes * batteries * electrochemistry Subject RIV: CG - Electrochemistry

  8. The Electric Vehicle Lithium Battery Monitoring System

    OpenAIRE

    Lei Lin; Yuankai Liu; Wang Ping; Fang Hong

    2013-01-01

    With the global increase in the number of vehicles, environmental protection and energy issues had become increasingly prominent. People paid more and more attention to the electric vehicle as the future direction of the vehicle, but because the battery technology was relatively backward, it had become the bottleneck in the development of electric vehicles. So in the existing conditions, a perfect battery Monitoring technology had become more and more important. This paper firstly analyzed th...

  9. Negative Electrodes for Li-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Kim; Zaghib, Karim

    2001-10-01

    Graphitized carbons have played a key role in the successful commercialization of Li-ion batteries. The physicochemical properties of carbon cover a wide range; therefore identifying the optimum active electrode material can be time consuming. The significant physical properties of negative electrodes for Li-ion batteries are summarized, and the relationship of these properties to their electrochemical performance in nonaqueous electrolytes, are discussed in this paper.

  10. Micro-battery Development using beta radioisotope

    International Nuclear Information System (INIS)

    Nuclear battery which use the beta radiation sources emitting the low penetration radiation energy from radioisotope can be applied as the long term (more than 10 years) micro power source in MEMS and nano components. This report describes the basic concept and principles of nuclear micro-battery and its fabrication in space and military field. In particular direct conversion method is described by investigating the electron-hole generation and recombination in p-n junction of silicon betavoltaics with beta radiation

  11. Lithium Ion Battery Anode Aging Mechanisms

    Directory of Open Access Journals (Sweden)

    Victor Agubra

    2013-03-01

    Full Text Available Degradation mechanisms such as lithium plating, growth of the passivated surface film layer on the electrodes and loss of both recyclable lithium ions and electrode material adversely affect the longevity of the lithium ion battery. The anode electrode is very vulnerable to these degradation mechanisms. In this paper, the most common aging mechanisms occurring at the anode during the operation of the lithium battery, as well as some approaches for minimizing the degradation are reviewed.

  12. Performance Simulation Of Photovoltaic System Battery

    OpenAIRE

    O. A. Babatunde; M. B. Shitta

    2014-01-01

    Solar energy, despite being inexhaustible, has a major shortcoming; it is intermittent. As a result, there's a need for it to be stored for later use. The widely used energy storage in photovoltaic system applications is the lead-acid battery and the knowledge of its state-of-charge (SOC) is important in effecting efficient control and energy management. However, SOC cannot be measured while the battery is connected to the system. This study adjusts and validates two estimation models: batter...

  13. High-discharge-rate lithium ion battery

    Science.gov (United States)

    Liu, Gao; Battaglia, Vincent S; Zheng, Honghe

    2014-04-22

    The present invention provides for a lithium ion battery and process for creating such, comprising higher binder to carbon conductor ratios than presently used in the industry. The battery is characterized by much lower interfacial resistances at the anode and cathode as a result of initially mixing a carbon conductor with a binder, then with the active material. Further improvements in cycleability can also be realized by first mixing the carbon conductor with the active material first and then adding the binder.

  14. Overview of battery technology for HEV

    OpenAIRE

    Smets, S; Debal, P.; Conte, V; Alaküla, M.; D. Santini; Duvall, M.; Van Winkel, R.; Badin, F.

    2006-01-01

    Several electric energy storage systems exist with different principles and characteristics. On the other hand, there are also various hybrid electric vehicles with specific requirements. This paper gives an overview of the advantages/disadvantages and practical aspects of battery technologies and ultracapacitors which can be used in hybrid electric vehicle applications. The summary is limited to only likely candidates. This paper is not aimed at specialists of battery technology, but should ...

  15. Battery and Power Consumption of Pocket PCs

    OpenAIRE

    Assim Sagahyroon

    2012-01-01

    Due to the increased functionality in today’s portable devices, battery life and energy consumption continue to be a major concern for both designers and users. Unfortunately battery technology is not keeping pace with the energy requirements of these devices and therefore energy-efficient hardware design techniques, software optimization, energy management, and the design of efficient communication protocols continue to be explored by researches as viable means that would assist in the...

  16. Nye materialer til fremtidens genopladelige batterier

    DEFF Research Database (Denmark)

    Christensen, Christian Kolle; Henriksen, Christian; Ravnsbæk, Dorthe Bomholdt

    2015-01-01

    Udnyttelse af genopladelige batterier i el-biler og til opbevaring af vedvarende energi sætter nye krav til batteriets ydeevne, effektivitet, sikkerhed og ikke mindst pris. I udviklingen af nye batterimaterialer er detaljeret forståelse af de processer, der sker på atomar skala, når batteriet af......- og oplades, essentielt for udviklingen af designkriterier for fremtidens forbedrede batterier....

  17. The rechargeable aluminum-ion battery

    KAUST Repository

    Jayaprakash, N.

    2011-01-01

    We report a novel aluminium-ion rechargeable battery comprised of an electrolyte containing AlCl3 in the ionic liquid, 1-ethyl-3-methylimidazolium chloride, and a V2O5 nano-wire cathode against an aluminium metal anode. The battery delivered a discharge capacity of 305 mAh g-1 in the first cycle and 273 mAh g-1 after 20 cycles, with very stable electrochemical behaviour. © The Royal Society of Chemistry 2011.

  18. Molten salt battery having inorganic paper separator

    Science.gov (United States)

    Walker, Jr., Robert D.

    1977-01-01

    A high temperature secondary battery comprises an anode containing lithium, a cathode containing a chalcogen or chalcogenide, a molten salt electrolyte containing lithium ions, and a separator comprising a porous sheet comprising a homogenous mixture of 2-20 wt.% chrysotile asbestos fibers and the remainder inorganic material non-reactive with the battery components. The non-reactive material is present as fibers, powder, or a fiber-powder mixture.

  19. Upgrading Li-battery performance via nanotechnology

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Lithium batteries,as a main or back-up power source for mobile communication devices,portable electronic devices and the like,have attracted much attention in the scientific and industrial fields due to their high electromotive force and high energy density.To meet the demand for batteries with higher energy density and improved cycle characteristics in recent years,many attempts have been made to develop new electrode materials or design new structures of electrode materials.

  20. Hydrogen isotope exchange reactions

    International Nuclear Information System (INIS)

    The two most widely used methods for following hydrogen isotope exchange reactions, namely dedeuteriation and detritiation, involve in the first place the synthesis of an appropriately labelled compound. Rates of dedeuteriation are usually followed by measuring changes in the 1H n.m.r. spectrum of the substrate (examples are given); the method not only gives the rate but also the site(s) of exchange. It is limited to rather slow reactions and is not as accurate as some of the other methods. The development of deuterium n.m.r. spectroscopy means that changes in the 2H n.m.r. spectrum can also be used to measure rates of dedeuteriation. The development of liquid scintillation counting greatly eased the problem of how to detect weak β emitters; the attractions of tritium as a tracer were thereby much enhanced. Nowadays the study of rates of detritiation constitutes one of the most versatile and accurate methods of following hydrogen isotope exchange. Examples of the technique are given. (U.K.)

  1. Isotope techniques for hydrology

    International Nuclear Information System (INIS)

    In the body of the Panel's report specific conclusions and recommendations are presented in the context of each subject. The general consensus of the Panel is as follows: by the study of this report, the 1961 Panel report, the Proceedings of the March 1963 Tokyo Symposium and other reports of research and technological advances, isotope-technique applications to hydrologic problems have provided some useful avenues for understanding the nature of the hydrologic cycle and in the solution of specific engineering problems. Some techniques are developed thoroughly enough for fairly routine application as tools for use in the solution of practical problems, but further research and development is needed on other concepts to determined whether or not they can be beneficially applied to either research or engineering problems. A concerted effort is required on the part of both hydrologists and isotope specialists working as teams to assure that proper synthesis of scientific advances in the respective fields and translation of these advances into practical technology is achieved

  2. Desalination and isotope hydrology

    International Nuclear Information System (INIS)

    With ever increasing demand for fresh water, the need to look at new sources of water is becoming imperative. Isotope hydrology is a powerful technique to explore such new sources of ground water and to also understand the origins of contamination of water. The sea is also becoming important as the only perennial source of water. Moreover, groundwater is increasingly becoming saline due to over-withdrawal, and there is a need to improve its quality. Desalination is the process that removes salts from water or water from salts, the end objective being fresh water. The former represents the case where it is the minor constituents that are actually removed-as, for example, in electrodialysis-whereas the latter would represent the case of removing the major constituent, i.e., water itself, distillation being the most common example. Despite the seeming attractiveness of removing minor constituents, the reality is that in most approaches to practical desalination it is the major constituent, i.e., water, which is removed. The presentation will dwell on the twin aspects of identification of newer ground water sources and also increasing the public water supply through desalination. More particularly, our focus will be on the science behind the technologies of isotope hydrology and desalination. Given that desalination requires external energy input, the available options for desalination will be shown to rest largely on the appropriateness of energy supply and the level of sophistication of operation desirable. (author)

  3. Si Isotopes of Brownleeite

    Science.gov (United States)

    Nakamura-Messenger, K.; Messenger, Scott R.; Ito, M.; Keller, L. P.; Clemett, S. J.; Jones, J. H.; Tatsuoka, H.; Zolensky, M. E.; Tatsuoka, H.

    2010-01-01

    Brownleeite is a manganese silicide, ideally stoichiometric MnSi, not previously observed in nature until its discovery within an interplanetary dust particle (IDP) that likely originated from a comet [1]. Three discrete brownleeite grains in the IDP L2055 I3 (4 microns in size, hereafter IDP I3) were identified with maximum dimensions of 100, 250 and 600 nm and fully analyzed using scanning-transmission electron microscopy (STEM) [1]. One of the grains (100 nm in size) was poikilitically enclosed by low-Fe, Mn-enriched (LIME) olivine. LIME olivine is epitaxial to the brownleeite with the brownleeite (200) parallel to the olivine c* [1]. LIME olivine is an enigmatic phase first reported from chondritic porous IDPs and some unequilibrated ordinary chondrites [ 2], that is commonly observed in chondritic-porous IDPs. Recently, LIME olivine has been also found in comet Wild-2 (Stardust) samples [3], indicating that LIME olivine is a common mineral component of comets. LIME olivine has been proposed to form as a high temperature condensate in the protosolar nebula [2]. Brownleeite grains also likely formed as high-temperature condensates either in the early Solar System or in the outflow of an evolved star or supernova explosion [1]. The isotopic composition of the brownleeite grains may strongly constrain their ultimate source. To test this hypothesis, we performed isotopic analyses of the brownleeite and the associated LIME olivine, using the NASA/JSC NanoSIMS 50L ion microprobe.

  4. Isotopic geochemistry at Wairakei

    International Nuclear Information System (INIS)

    Deuterium measurements on geothermal water at Wairakei are consistent with the water being derived from rainfall which has percolated down from the surface. The oxygen-18 content, however, is enriched compared to average rainfall. This 18O shift is due to isotopic exchange between water and rock at greater-than-explored depths. The magnitude of the shift implied that the mass ration (W/R) of water that has passed through the system (W) to the rock it has exchanged with (R) is about 1 assuming open (i.e. single-pass) conditions. (The ratio is about 2 if it has been a closed system, but this is thought to be less likely). The residence time of water underground cannot be determined from tritium and carbon-14 measurements at present, but arguments based on the argon isotope and deuterium contents suggest mean residence times of a few tens of thousand years. The water-rock ratio and large natural outflow of thermal water prior to exploitation are consistent with this. The 18O content of the water has changed only slightly, and the D content not at all, during exploitation at Wairakei (measurements from 1963, 1974 and 1981). An initial tendency for the 18O to increase because of steam loss (also shown more clearly by chloride), has been followed by decrease of 18O (and chloride) because of dilution with infiltrating near-surface water in parts of the field

  5. Laser isotope separation

    International Nuclear Information System (INIS)

    A gas mixture of 235UF6, and carrier gas is pushed through a converging - diverging nozzle with supersonic speed and is than adiabatically expanded in order to produce an oversaturated gas cooled down to about 125 K. According to the two-photon method the oversaturated mixture is a) irradiated with infrared laser light of a frequency selectively exciting only UF6 molecules containing 235U and at the same time b) irradiated with ultraviolet laser light of a frequency producing photodissociation of those UF6 molecules being selectively excited by the infrared laser light. The products of photodissociation containing 235U are separated from the non-excited UF6 according to a known method. The application of the method according to the invention is not limited to the uranium isotopes mentioned above, but extends to all uranium isotopes. The application further is not limited to fluorides of uranium. The method may be extended to all halides of uranium. (GG) 891 GG

  6. Management of deep brain stimulator battery failure: battery estimators, charge density, and importance of clinical symptoms.

    Directory of Open Access Journals (Sweden)

    Kaihan Fakhar

    Full Text Available OBJECTIVE: We aimed in this investigation to study deep brain stimulation (DBS battery drain with special attention directed toward patient symptoms prior to and following battery replacement. BACKGROUND: Previously our group developed web-based calculators and smart phone applications to estimate DBS battery life (http://mdc.mbi.ufl.edu/surgery/dbs-battery-estimator. METHODS: A cohort of 320 patients undergoing DBS battery replacement from 2002-2012 were included in an IRB approved study. Statistical analysis was performed using SPSS 20.0 (IBM, Armonk, NY. RESULTS: The mean charge density for treatment of Parkinson's disease was 7.2 µC/cm(2/phase (SD = 3.82, for dystonia was 17.5 µC/cm(2/phase (SD = 8.53, for essential tremor was 8.3 µC/cm(2/phase (SD = 4.85, and for OCD was 18.0 µC/cm(2/phase (SD = 4.35. There was a significant relationship between charge density and battery life (r = -.59, p<.001, as well as total power and battery life (r = -.64, p<.001. The UF estimator (r = .67, p<.001 and the Medtronic helpline (r = .74, p<.001 predictions of battery life were significantly positively associated with actual battery life. Battery status indicators on Soletra and Kinetra were poor predictors of battery life. In 38 cases, the symptoms improved following a battery change, suggesting that the neurostimulator was likely responsible for symptom worsening. For these cases, both the UF estimator and the Medtronic helpline were significantly correlated with battery life (r = .65 and r = .70, respectively, both p<.001. CONCLUSIONS: Battery estimations, charge density, total power and clinical symptoms were important factors. The observation of clinical worsening that was rescued following neurostimulator replacement reinforces the notion that changes in clinical symptoms can be associated with battery drain.

  7. Transient Rechargeable Batteries Triggered by Cascade Reactions.

    Science.gov (United States)

    Fu, Kun; Liu, Zhen; Yao, Yonggang; Wang, Zhengyang; Zhao, Bin; Luo, Wei; Dai, Jiaqi; Lacey, Steven D; Zhou, Lihui; Shen, Fei; Kim, Myeongseob; Swafford, Laura; Sengupta, Louise; Hu, Liangbing

    2015-07-01

    Transient battery is a new type of technology that allows the battery to disappear by an external trigger at any time. In this work, we successfully demonstrated the first transient rechargeable batteries based on dissoluble electrodes including V2O5 as the cathode and lithium metal as the anode as well as a biodegradable separator and battery encasement (PVP and sodium alginate, respectively). All the components are robust in a traditional lithium-ion battery (LIB) organic electrolyte and disappear in water completely within minutes due to triggered cascade reactions. With a simple cut-and-stack method, we designed a fully transient device with an area of 0.5 cm by 1 cm and total energy of 0.1 J. A shadow-mask technique was used to demonstrate the miniature device, which is compatible with transient electronics manufacturing. The materials, fabrication methods, and integration strategy discussed will be of interest for future developments in transient, self-powered electronics. The demonstration of a miniature Li battery shows the feasibility toward system integration for all transient electronics. PMID:26083530

  8. Single Switched Capacitor Battery Balancing System Enhancements

    Directory of Open Access Journals (Sweden)

    Joeri van Mierlo

    2013-04-01

    Full Text Available Battery management systems (BMS are a key element in electric vehicle energy storage systems. The BMS performs several functions concerning to the battery system, its key task being balancing the battery cells. Battery cell unbalancing hampers electric vehicles’ performance, with differing individual cell voltages decreasing the battery pack capacity and cell lifetime, leading to the eventual failure of the total battery system. Quite a lot of cell balancing topologies have been proposed, such as shunt resistor, shuttling capacitor, inductor/transformer based and DC energy converters. The shuttling capacitor balancing systems in particular have not been subject to much research efforts however, due to their perceived low balancing speed and high cost. This paper tries to fill this gap by briefly discussing the shuttling capacitor cell balancing topologies, focusing on the single switched capacitor (SSC cell balancing and proposing a novel procedure to improve the SSC balancing system performance. This leads to a new control strategy for the SSC system that can decrease the balancing system size, cost, balancing time and that can improve the SSC balancing system efficiency.

  9. Preparation of organic rechargeable battery using phenols

    International Nuclear Information System (INIS)

    Phenols are antioxidant compounds and have the property of electrochemical oxidation. Exploiting the antioxidant properties of the phenol a rechargeable battery was prepared by coupling phenol with resorcinol through salt bridge. The voltage power and stability of this battery was found to depend upon the concentration of the phenols, concentration of the electrolyte, power/voltage of charger and porosity of the salt bridge which connects the two solutions. The salt bridges used for this battery include piece of card board and wicks made of the loose and tightly woven cotton threads i.e. the wick of spirit lamp and the wick used in lantern. Sodium hydroxide solution was used as electrolyte and conductivity improving medium. The concentration of the electrolyte was investigated using its solutions of various concentrations in separate experiments. The voltage of the charger was investigated by using charger/transformers of 6.15 and 3 volt. This five cell phenol battery gives a maximum voltage of 8000 milli volt at the optimum conditions. This battery was recharged using a 15 volt Dc power supply. The charging and theoretical aspects of the battery are also discussed in this communication. (author)

  10. The importance of batteries in unmanned missions

    Science.gov (United States)

    Klein, John W.

    1989-12-01

    The planetary program has historically used batteries to supply peak power needs for mission specific applications. Any time that additional power has been required in order to meet peak power demands or those applications where only limited amounts of power were required, batteries have always been used. Up until the mid to late 70's they have performed their task admirably. Recently, however, we have all become aware of the growing problem of developing reliable NiCd batteries for long mission and high cycle life applications. Here, the role rechargeable batteries will play for future planetary and earth observing spacecraft is discussed. In conclusion, NiCds have been and will continue to be the mainstay of the power system engineers tools for peak power production. Recent experience has tarnished its once sterling reputation. However, the industry has stood up to this challenge and implemented wide ranging plans to rectify the situation. These efforts should be applauded and supported as new designs and materials become available. In addition, project managers must become aware of their responsibility to test their batteries and insure quality and mission operating characteristics. Without this teamwork, the role of NiCds in the future will diminish, and other batteries, not as optimum for high performance applications (low mass and volume) will take their place.

  11. Performance Comparison of Commercial Mobile Phone Battery

    Science.gov (United States)

    Mat, Azrulnizam; Buniran, Surani; Sulaiman, Mohd Ali

    2002-12-01

    Mobile phone is not only accepted as a communication apparatus, but also as a contemporary life style. Multifunctional mobile phone requires high energy density battery and at the same time, the miniaturization of the device requires slimmer and lighter battery. There are many brands of lithium-ion battery manufactured by different companies available in the market. In order to focus on the perspective of the battery performance, a study on the performance of the commercial battery was conducted. Various brands and designs of lithium-ion batteries manufactured by different companies from different countries were purchased from open market. Samples were analyzed based on the cycle life and discharging rate. The cycle life tests were performed with 1C current discharge, whereas the discharge rate was performed using discharge current at 0.2C, 0.5C, 1C and 2C. Recovery capacity at high rate discharge, 2C is about 90 to 96% of 0.2C capacity. Cycle life performance is above 300 cycles and some good sample can achieve more than 500 cycles.

  12. Isotope separation with improved selective ionization

    International Nuclear Information System (INIS)

    Method and apparatus for isotope separation by selective ionization of a desired isotope in an environment of plural isotopes without corresponding ionization of the other isotopes in the environment. The selective ionization is achieved through a three step excitation of atoms of the desired isotope in response to laser radiations applied to the environment. The transition for each step is selected to be less than one half the ionization potential for the isotopes to avoid two step nonselective ionization

  13. Calcium isotopes in wine

    Science.gov (United States)

    Holmden, C. E.

    2011-12-01

    The δ 44/40Ca values of bottled wine vary between -0.76% to -1.55% on the seawater scale and correlate weakly with inverse Ca concentration and Mg/Ca ratio, such that the lowest δ 44/40Ca values have the highest Ca concentrations and lowest Mg/Ca ratios. The correlation is notable in the sense that the measured wines include both whites and reds sampled from different wine growing regions of the world, and cover a wide range of quality. Trends among the data yield clues regarding the cause of the observed isotopic fractionation. White wines, and wines generally perceived to be of lower quality, have lower δ 44/40Ca values compared to red wines and wines of generally perceived higher quality. Quality was assessed qualitatively through sensory evaluation, price, and scores assigned by critics. The relationship between δ 44/40Ca and wine quality was most apparent when comparing wines of one varietal from one producer from the same growing region. In the vineyard, wine quality is related to factors such as the tonnage of the crop and the ripeness of the grapes at the time of harvesting, the thickness of the skins for reds, the age of the vines, as well as the place where the grapes were grown (terroir). Quality is also influenced by winemaking practices such as fermentation temperature, duration of skin contact, and barrel ageing. Accordingly, the relationship between δ 44/40Ca and wine quality may originate during grape ripening in the vineyard or during winemaking in the cellar. We tested the grape ripening hypothesis using Merlot grapes sampled from a vineyard in the Okanagan, British Columbia, using sugar content (degrees Brix) as an indicator of ripeness. The grapes were separated into pulp, skin, and pip fractions and were analyzed separately. Thus far, there is no clear evidence for a systematic change in δ 44/40Ca values associated with progressive ripening of grapes in the vineyard. On the day of harvesting, the δ 44/40Ca value of juice squeezed from

  14. Dynamic battery cell model and state of charge estimation

    Science.gov (United States)

    Wijewardana, S.; Vepa, R.; Shaheed, M. H.

    2016-03-01

    Mathematical modelling and the dynamic simulation of battery storage systems can be challenging and demanding due to the nonlinear nature of the battery chemistry. This paper introduces a new dynamic battery model, with application to state of charge estimation, considering all possible aspects of environmental conditions and variables. The aim of this paper is to present a suitable convenient, generic dynamic representation of rechargeable battery dynamics that can be used to model any Lithium-ion rechargeable battery. The proposed representation is used to develop a dynamic model considering the thermal balance of heat generation mechanism of the battery cell and the ambient temperature effect including other variables such as storage effects, cyclic charging, battery internal resistance, state of charge etc. The results of the simulations have been used to study the characteristics of a Lithium-ion battery and the proposed battery model is shown to produce responses within 98% of known experimental measurements.

  15. Primary and secondary battery consumption trends in Sweden 1996–2013: Method development and detailed accounting by battery type

    International Nuclear Information System (INIS)

    Highlights: • Developed MFA method was validated by the national statistics. • Exponential increase of EEE sales leads to increase in integrated battery consumption. • Digital convergence is likely to be a cause for primary batteries consumption decline. • Factors for estimation of integrated batteries in EE are provided. • Sweden reached the collection rates defined by European Union. - Abstract: In this article, a new method based on Material Flow Accounting is proposed to study detailed material flows in battery consumption that can be replicated for other countries. The method uses regularly available statistics on import, industrial production and export of batteries and battery-containing electric and electronic equipment (EEE). To promote method use by other scholars with no access to such data, several empirically results and their trends over time, for different types of batteries occurrence among the EEE types are provided. The information provided by the method can be used to: identify drivers of battery consumption; study the dynamic behavior of battery flows – due to technology development, policies, consumers behavior and infrastructures. The method is exemplified by the study of battery flows in Sweden for years 1996–2013. The batteries were accounted, both in units and weight, as primary and secondary batteries; loose and integrated; by electrochemical composition and share of battery use between different types of EEE. Results show that, despite a fivefold increase in the consumption of rechargeable batteries, they account for only about 14% of total use of portable batteries. Recent increase in digital convergence has resulted in a sharp decline in the consumption of primary batteries, which has now stabilized at a fairly low level. Conversely, the consumption of integrated batteries has increased sharply. In 2013, 61% of the total weight of batteries sold in Sweden was collected, and for the particular case of alkaline manganese

  16. Laser isotope separation of gadolinium

    International Nuclear Information System (INIS)

    Basic studies on laser isotope separation of gadolinium were performed. Spectroscopic data were obtained such as isotope shifts and hyperfine structures using an atomic beam. Enrichment of 157Gd up to 80% was observed by three-step photoionization experiment using linearly polarized dye lasers. Design of an separation system was discussed by the help of computer calculation of excitation dynamics. (author)

  17. Dielectrophoretic separation of gaseous isotopes

    International Nuclear Information System (INIS)

    Gaseous isotopes are separated from a mixture in a vertically elongated chamber by subjecting the mixture to a nonuniform transverse electric field. Dielectrophoretic separation of the isotopes is effected, producing a transverse temperature gradient in the chamber, thereby enhancing the separation by convective countercurrent flow. In the example given, the process and apparatus are applied to the production of heavy water from steam

  18. Boron isotopes in geothermal systems

    International Nuclear Information System (INIS)

    Boron is a highly mobile element and during water-rock reactions, boron is leached out of rocks with no apparent fractionation. In geothermal systems where the water recharging the systems are meteoric in origin, the B isotope ratio of the geothermal fluid reflects the B isotope ratio of the rocks. Seawater has a distinctive B isotope ratio and where seawater recharges the geothermal system, the B isotope ratio of the geothermal system reflects the mixing of rock derived B and seawater derived B. Any deviations of the actual B isotope ratio of a mixture reflects subtle differences in the water-rock ratios in the cold downwelling limb of the hydrothermal system. This paper will present data from a variety of different geothermal systems, including New Zealand; Iceland; Yellowston, USA; Ibusuki, Japan to show the range in B isotope ratios in active geothermal systems. Some of these systems show well defined mixing trends between seawater and the host rocks, whilst others show the boron isotope ratios of the host rock only. In geothermal systems containing high amounts of CO2 boron isotope ratios from a volatile B source can also be inferred. (auth)

  19. Exotic structure of carbon isotopes

    International Nuclear Information System (INIS)

    Ground state properties of C isotopes, deformation and electromagnetic moments, as well as electric dipole transition strength are investigated. We first study the ground state properties of C isotopes using a deformed Hartree-Fock (HF) + BCS model with Skyrme interactions. Isotope dependence of the deformation properties is investigated. Shallow deformation minima are found in several neutron-rich C isotopes. It is also shown that the deformation minima appear in both the oblate and the prolate sides in 17C and 19C having almost the same binding energies. Next, we carry out shell model calculations to study electromagnetic moments and electric dipole transitions of C isotopes. We point out the clear configuration dependence of the quadrupole and magnetic moments in the odd C isotopes, which will be useful to find out the deformation and spin-parties of the ground states of these nuclei. Electric dipole states of C isotopes are studied focusing on the interplay between low energy Pigmy strength and giant dipole resonances. Low peak energies, two-peak structure and large widths of the giant resonances show deformation effects. Calculated transition strength below dipole giant resonance in heavier C isotopes than 15C is found to exhaust 12∼15% of the Thomas-Reiche-Kuhn sum rule value and 50∼ 80% of the cluster sum rule value. (author)

  20. Second Life for Electric Vehicle Batteries: Answering Questions on Battery Degradation and Value

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, J. S.; Wood, E.; Pesaran, A.

    2015-05-04

    Battery second use – putting used plug-in electric vehicle (PEV) batteries into secondary service following their automotive tenure – has been proposed as a means to decrease the cost of PEVs while providing low cost energy storage to other fields (e.g. electric utility markets). To understand the value of used automotive batteries, however, we must first answer several key questions related to National Renewable Energy Laboratory (NREL) has developed a methodology and the requisite tools to answer these questions, including NREL’s Battery Lifetime Simulation Tool (BLAST). Herein we introduce these methods and tools, and demonstrate their application. We have found that capacity fade from automotive use has a much larger impact on second use value than resistance growth. Where capacity loss is driven by calendar effects more than cycling effects, average battery temperature during automotive service – which is often driven by climate – is found to be the single factor with the largest effect on remaining value. Installing hardware and software capabilities onboard the vehicle that can both infer remaining battery capacity from in-situ measurements, as well as track average battery temperature over time, will thereby facilitate the second use of automotive batteries.

  1. Battery-powered transport systems. Possible methods of automatically charging drive batteries

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    In modern driverless transport systems, not only easy maintenance of the drive battery is important but also automatic charging during times of standstill. Some systems are presented; one system is pointed out in particular in which 100 batteries can be charged at the same time.

  2. High Threshold for Lead Accumulators Helps the Battery Industry to Recover in Q2

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>Along with release of relevant access conditions of the lead acid accumulator industry and increasing popularity of new-type batteries including lithium battery and lead-carbon battery, etc., the battery industry recovered in the first

  3. Lithium batteries for electric road vehicle applications

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Bo; Hallgren, B.; Johansson, Arne; Selaanger, P. [Catella Generics, Kista (Sweden)

    1995-12-31

    Lithium is one of the most promising negative electrode materials to be used for the manufacturing of batteries. It is the most electronegative material in the table of standard potentials and its low weight will facilitate a high gravimetric coulombic density. Theoretically, as high values as 6 kWh/kg could be reached for lithium based batteries. The aim of this study has been to make an inventory of what is internationally known about lithium batteries suitable for electric vehicle applications. It is representative for the development status by the summer of 1995. Both high and ambient temperature lithium batteries are described in the study even if the analysis is concentrated on the latter. Ambient temperature systems has gathered the major interest, especially from manufacturers in the `3Cs` market segment (Consumer electronics, Communications and Computers). There is no doubt, a bright future for lithium rechargeable batteries. Depending on the ambition of a national research programme, one can await the ongoing development of batteries for the 3Cs market segment or take the lead in a near-term or advanced system R and D for EV batteries. In the zero ambition EV battery programme, we recommend allocation of funds to follow the development within the 3Cs sector. The corresponding funding level is 1-2 MSEK/year granted to a stable receiver. In a low ambition EV programme, we recommend to keep a few groups active in the front-line of specific research areas. The purpose is to keep a link for communication open to the surrounding battery world. The cost level is 4-6 MSEK per year continually. In a high ambition programme we recommend the merging of Swedish resources with international EV battery R and D programmes, e.g. the EUCAR project. The research team engaged should be able to contribute to the progress of the overall project. The cost for the high ambition programme is estimated at the level 15-20 MSEK per year continually. 47 refs, 17 figs, 16 tabs

  4. Standby battery requirements for telecommunications power

    Science.gov (United States)

    May, G. J.

    The requirements for standby power for telecommunications are changing as the network moves from conventional systems to Internet Protocol (IP) telephony. These new systems require higher power levels closer to the user but the level of availability and reliability cannot be compromised if the network is to provide service in the event of a failure of the public utility. Many parts of these new networks are ac rather than dc powered with UPS systems for back-up power. These generally have lower levels of reliability than dc systems and the network needs to be designed such that overall reliability is not reduced through appropriate levels of redundancy. Mobile networks have different power requirements. Where there is a high density of nodes, continuity of service can be reasonably assured with short autonomy times. Furthermore, there is generally no requirement that these networks are the provider of last resort and therefore, specifications for continuity of power are directed towards revenue protection and overall reliability targets. As a result of these changes, battery requirements for reserve power are evolving. Shorter autonomy times are specified for parts of the network although a large part will continue to need support for hours rather minutes. Operational temperatures are increasing and battery solutions that provide longer life in extreme conditions are becoming important. Different battery technologies will be discussed in the context of these requirements. Conventional large flooded lead/acid cells both with pasted and tubular plates are used in larger central office applications but the majority of requirements are met with valve-regulated lead/acid (VRLA) batteries. The different types of VRLA battery will be described and their suitability for various applications outlined. New developments in battery construction and battery materials have improved both performance and reliability in recent years. Alternative technologies are also being proposed

  5. Automated Battery Swap and Recharge to Enable Persistent UAV Missions

    OpenAIRE

    Toksoz, Tuna; Redding, Joshua; Michini, Matthew; Vavrina, Matthew; Vian, John; Michini, Bernard J.; How, Jonathan P.

    2011-01-01

    This paper introduces a hardware platform for automated battery changing and charging for multiple UAV agents. The automated station holds a bu er of 8 batteries in a novel dual-drum structure that enables a "hot" battery swap, thus allowing the vehicle to remain powered on throughout the battery changing process. Each drum consists of four battery bays, each of which is connected to a smart-charger for proper battery maintenance and charging. The hot-swap capability in combination with local...

  6. Solar Battery Charger in CMOS 0.25 um Technology

    OpenAIRE

    Tao Wang; Chang-Ching Huang; Tian-Jen Wang

    2014-01-01

    A solar cell powered Li-ion battery charger in CMOS 0.25um is proposed. The solar battery charger consists of a DC/DC boost converter and a battery charger. The voltage generated by a solar cell is up converted from 0.65V to 1.8V, which is used as the VDD of the battery charger.  In this way, the solar battery charger automatically converts solar energy to electricity and stores it directly to a Li-ion rechargeable battery. In this system, a super capacitor is needed as a charge buffer betwee...

  7. Ensure the electric power system's durability through battery monitoring

    OpenAIRE

    Andersson, Jonas

    2015-01-01

    Battery monitoring is used to acquire information about battery conditions. It’s a regular technology that most of us uses on daily bases. The charge gauge in a cellphone, consisting of bars which indicate the degree of charge left in the battery is an example. Battery monitoring gives the cellphone user information about the battery. The background to the thesis work is that this technology is requested for vehicles because empty or broken batteries are one of the most common causes for invo...

  8. Sodium-sulfur batteries for spacecraft energy storage

    Science.gov (United States)

    Dueber, R. E.

    1986-01-01

    Power levels for future space missions will be much higher than are presently attainable using nickel-cadmium and nickel-hydrogen batteries. Development of a high energy density rechargeable battery is essential in being able to provide these higher power levels without tremendous weight penalties. Studies conducted by both the Air Force and private industry have identified the sodium-sulfur battery as the best candidate for a next generation battery system. The advantages of the sodium-sulfur battery over the nickel-cadmium battery are discussed.

  9. Factors on Storage Performance of MH-Ni Battery

    Institute of Scientific and Technical Information of China (English)

    Zhang Zhong; Jia Chunming; Xing Zhiqiang; Li Li; Ma Yijun

    2004-01-01

    The open voltage of batteries shows different status after MH-Ni batteries are stored for a period of time.Some batteries with 0, 0.9 ~ 1.1V and above 1.1 V were chosen to study their corresponding internal resistances, open voltages and the reduction of capacities, etc.On the basis of battery reaction principle, battery samples were analyzed,and factors causing different storage performance were found out.Therefore, some references on the improvement of battery storage performance were provided.

  10. Efficient and powerful batteries for driverless transportation systems

    Energy Technology Data Exchange (ETDEWEB)

    1986-11-01

    In driverless transportation systems batteries are playing an essential role. The capacitive operation or cycling of driverless systems require the use of different battery systems. Energy supply concepts have to be based on the perspective functional descriptions. The required data comprise full details on discharging processes (temporal current flows), intermediate and complete charging, ambient temperature ranges (which determine the type of battery to be used), and the minimum discharge voltage. Data on the exchange of batteries as well as on the maximum weight and volume of batteries complete the list of data. Any systems evaluation of the batteries to be used has to take account of the operating conditions.

  11. A Thermal Runaway Simulation on a Lithium Titanate Battery and the Battery Module

    Directory of Open Access Journals (Sweden)

    Man Chen

    2015-01-01

    Full Text Available Based on the electrochemical and thermal model, a coupled electro-thermal runaway model was developed and implemented using finite element methods. The thermal decomposition reactions when the battery temperature exceeds the material decomposition temperature were embedded into the model. The temperature variations of a lithium titanate battery during a series of charge-discharge cycles under different current rates were simulated. The results of temperature and heat generation rate demonstrate that the greater the current, the faster the battery temperature is rising. Furthermore, the thermal influence of the overheated cell on surrounding batteries in the module was simulated, and the variation of temperature and heat generation during thermal runaway was obtained. It was found that the overheated cell can induce thermal runaway in other adjacent cells within 3 mm distance in the battery module if the accumulated heat is not dissipated rapidly.

  12. Isotopically labelled benzodiazepines

    International Nuclear Information System (INIS)

    This paper reports on the benzodiazepines which are a class of therapeutic agents. Improvements in the analytical methodology in the areas of biochemistry and pharmacology were significant, particularly in the application of chromatographic and spectroscopic techniques. In addition, the discovery and subsequent development of tritium and carbon-14 as an analytical tool in the biological sciences were essentially post-world war II phenomena. Thus, as these new chemical entities were found to be biologically active, they could be prepared in labeled form for metabolic study, biological half-life determination (pharmacokinetics), tissue distribution study, etc. This use of tracer methodology has been liberally applied to the benzodiazepines and also more recently to the study of receptor-ligand interactions, in which tritium, carbon-11 or fluorine-18 isotopes have been used. The history of benzodiazepines as medicinal agents is indeed an interesting one; an integral part of that history is their use in just about every conceivable labeled form

  13. Container for hydrogen isotopes

    International Nuclear Information System (INIS)

    A container for the storage, shipping and dispensing of hydrogen isotopes such as hydrogen, deuterium, tritium, or mixtures of the same which has compactness, which is safe against fracture or accident, and which is reusable is described. The container consists of an outer housing with suitable inlet and outlet openings and electrical feed elements, the housing containing an activated sorber material in the form, for example, of titanium sponge or an activated zirconium aluminate cartridge. The gas to be stored is introduced into the chamber under conditions of heat and vacuum and will be retained in the sorber material. Subsequently, it may be released by heating the unit to drive off the stored gas at desired rates

  14. Container for hydrogen isotopes

    Science.gov (United States)

    Solomon, David E.

    1977-01-01

    A container for the storage, shipping and dispensing of hydrogen isotopes such as hydrogen, deuterium, tritium, or mixtures of the same which has compactness, which is safe against fracture or accident, and which is reusable. The container consists of an outer housing with suitable inlet and outlet openings and electrical feed elements, the housing containing an activated sorber material in the form, for example, of titanium sponge or an activated zirconium aluminate cartridge. The gas to be stored is introduced into the chamber under conditions of heat and vacuum and will be retained in the sorber material. Subsequently, it may be released by heating the unit to drive off the stored gas at desired rates.

  15. Battery Resistance Analysis of ISS Power System

    Science.gov (United States)

    Newstadt, Gregory E.

    2004-01-01

    The computer package, SPACE (Systems Power Analysis for Capability Evaluation) was created by the members of LT-9D to perform power analysis and modeling of the electrical power system on the International Space Station (ISS). Written in FORTRAN, SPACE comprises thousands of lines of code and has been used profficiently in analyzing missions to the ISS. LT-9D has also used its expertise recently to investigate the batteries onboard the Hubble telescope. During the summer of 2004, I worked with the members of LT-9D, under the care of Dave McKissock. Solar energy will power the ISS through eight solar arrays when the ISS is completed, although only two arrays are currently connected. During the majority of the periods of sunlight, the solar arrays provide enough energy for the ISS. However, rechargeable Nickel-Hydrogen batteries are used during eclipse periods or at other times when the solar arrays cannot be used (at docking for example, when the arrays are turned so that they will not be damaged by the Shuttle). Thirty-eight battery cells are connected in series, which make up an ORU (Orbital Replacement Unit). An ISS "battery" is composed of two ORUs. a great deal of time into finding the best way to represent them in SPACE. During my internship, I investigated the resistance of the ISS batteries. SPACE constructs plots of battery charge and discharge voltages vs. time using a constant current. To accommodate for a time-varying current, the voltages are adjusted using the formula, DeltaV = DeltaI * Cell Resistance. To enhance our model of the battery resistance, my research concentrated on several topics: investigating the resistance of a qualification unit battery (using data gathered by LORAL), comparing the resistance of the qualification unit to SPACE, looking at the internal resistance and wiring resistance, and examining the impact of possible recommended changes to SPACE. The ISS batteries have been found to be very difficult to model, and LT-9D has

  16. Radioactive and stable isotope geology

    International Nuclear Information System (INIS)

    Aimed at post-graduate and post-doctoral researchers in geochemistry, this book reflects the rapid changes in the applications of radioactive and stable isotope analysis to a range of geological and geochemical problems. Isotropic chemistry and methods used in mass spectroscopy are discussed initially. The second section deals with radiometric dating methods. The role of isotopes in climate and environmental research is also explored. The book closes with a section on extra-terrestrial matter, geothermometry and the isotopic geochemistry of the Earth's lithosphere. (UK)

  17. Compelling Research Opportunities using Isotopes

    International Nuclear Information System (INIS)

    Isotopes are vital to the science and technology base of the US economy. Isotopes, both stable and radioactive, are essential tools in the growing science, technology, engineering, and health enterprises of the 21st century. The scientific discoveries and associated advances made as a result of the availability of isotopes today span widely from medicine to biology, physics, chemistry, and a broad range of applications in environmental and material sciences. Isotope issues have become crucial aspects of homeland security. Isotopes are utilized in new resource development, in energy from bio-fuels, petrochemical and nuclear fuels, in drug discovery, health care therapies and diagnostics, in nutrition, in agriculture, and in many other areas. The development and production of isotope products unavailable or difficult to get commercially have been most recently the responsibility of the Department of Energy's Nuclear Energy program. The President's FY09 Budget request proposed the transfer of the Isotope Production program to the Department of Energy's Office of Science in Nuclear Physics and to rename it the National Isotope Production and Application program (NIPA). The transfer has now taken place with the signing of the 2009 appropriations bill. In preparation for this, the Nuclear Science Advisory Committee (NSAC) was requested to establish a standing subcommittee, the NSAC Isotope Subcommittee (NSACI), to advise the DOE Office of Nuclear Physics. The request came in the form of two charges: one, on setting research priorities in the short term for the most compelling opportunities from the vast array of disciplines that develop and use isotopes and two, on making a long term strategic plan for the NIPA program. This is the final report to address charge 1. NSACI membership is comprised of experts from the diverse research communities, industry, production, and homeland security. NSACI discussed research opportunities divided into three areas: (1) medicine

  18. Compelling Research Opportunities using Isotopes

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-04-23

    Isotopes are vital to the science and technology base of the US economy. Isotopes, both stable and radioactive, are essential tools in the growing science, technology, engineering, and health enterprises of the 21st century. The scientific discoveries and associated advances made as a result of the availability of isotopes today span widely from medicine to biology, physics, chemistry, and a broad range of applications in environmental and material sciences. Isotope issues have become crucial aspects of homeland security. Isotopes are utilized in new resource development, in energy from bio-fuels, petrochemical and nuclear fuels, in drug discovery, health care therapies and diagnostics, in nutrition, in agriculture, and in many other areas. The development and production of isotope products unavailable or difficult to get commercially have been most recently the responsibility of the Department of Energy's Nuclear Energy program. The President's FY09 Budget request proposed the transfer of the Isotope Production program to the Department of Energy's Office of Science in Nuclear Physics and to rename it the National Isotope Production and Application program (NIPA). The transfer has now taken place with the signing of the 2009 appropriations bill. In preparation for this, the Nuclear Science Advisory Committee (NSAC) was requested to establish a standing subcommittee, the NSAC Isotope Subcommittee (NSACI), to advise the DOE Office of Nuclear Physics. The request came in the form of two charges: one, on setting research priorities in the short term for the most compelling opportunities from the vast array of disciplines that develop and use isotopes and two, on making a long term strategic plan for the NIPA program. This is the final report to address charge 1. NSACI membership is comprised of experts from the diverse research communities, industry, production, and homeland security. NSACI discussed research opportunities divided into three areas: (1

  19. Photovoltaic battery charging experience in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, S.T. Jr.

    1997-12-01

    With the turn of the century, people in remote areas still live without electricity. Conventional electrification will hardly reach the remaining 50% of the population of the Philippines in remote areas. With photovoltaic technology, the delivery of electricity to remote areas can be sustainable. Malalison island was chosen as a project site for electrification using photovoltaic technology. With the fragile balance of ecology and seasonal income in this island, the PV electrification proved to be a better option than conventional fossil based electrification. The Solar Battery Charging Station (SBCS) was used to suit the economic and geographical condition of the island. Results showed that the system can charge as many as three batteries in a day for an average fee of $0.54 per battery. Charging is measured by an ampere-hour counter to determine the exact amount of charge the battery received. The system was highly accepted by the local residents and the demand easily outgrew the system within four months. A technical, economic and social evaluation was done. A recovery period of seven years and five months is expected when competed with the conventional battery charging in the mainland. The technical, economic, institutional and social risks faced by the project were analyzed. Statistics showed that there is a potential of 920,000 households that can benefit from PV electrification in the Philippines. The data and experiences gained in this study are valuable in designing SBCS for remote unelectrified communities in the Philippines and other developing countries.

  20. Radiographic identification of ingested disc batteries

    International Nuclear Information System (INIS)

    Recently, the hazards by posed the accidental ingestion and impaction of small disc batteries have been widely publicized in the medical and lay press. These foreign bodies, when lodged in the esophagus, leak a caustic solution of 26 to 45% sodium or potassium hydroxide which can cause a burn injury to the esophagus in a very short period of time. Because of the considerable clinical morbidity and mortality from this foreign body, it becomes imperative for the radiologist to quickly and accurately identify disc batteries on plain radiographs. This communication offers a series of radiologic signs important in the identification of disc batteries demonstrate a double density shadow due to the bilaminar structure of the battery. On lateral view, the edges of most disc batteries are round and again present a step-off at the junction of the cathode and anode. These findings are differentiated from the more common esophageal foreign body of a coin which does not have a double density on frontal projection, has a much sharper edge and no visible stepoff. (orig.)