WorldWideScience

Sample records for batteries by chemical elements

  1. A battery element

    Energy Technology Data Exchange (ETDEWEB)

    Nakai, M.; Koboyasi, S.; Oisi, K.; Okadzaki, R.; Ota, A.

    1983-07-29

    An anode made of an alkaline or an alkaline earth metal and an electrolyte based on an organic solvent are used in the element. A mixture of Mn203 and Mn304 in a 9 to 1 to 3 to 7 ratio serves as the cathode. The element has a stable discharge curve at a nominal voltage of 1.5 volts.

  2. A battery element

    Energy Technology Data Exchange (ETDEWEB)

    Vatanabe, U.; Aoki, K.; Ito, K.; Ogava, K.; Okadzaki, R.

    1983-07-29

    An anode made of a light metal is used in the element, along with an anhydrous liquid electrolyte and a cathode made of CuC12(CFn)x or another material. The current tap of the anode is made from aluminum, gold, silver or another metal of the platinum group and the current tap may be coated with this metal. The thickness of the coating is 0.1 to 1 micrometer. The element has a long storage life.

  3. Zinc oxide nanostructures by chemical vapour deposition as anodes for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Laurenti, M., E-mail: marco.laurenti@iit.it [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento, 21, 10129 Turin (Italy); Department of Applied Science and Technology – DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Garino, N. [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento, 21, 10129 Turin (Italy); Porro, S.; Fontana, M. [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento, 21, 10129 Turin (Italy); Department of Applied Science and Technology – DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Gerbaldi, C., E-mail: claudio.gerbaldi@polito.it [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento, 21, 10129 Turin (Italy); Department of Applied Science and Technology – DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy)

    2015-08-15

    Highlights: • ZnO nanostructures are grown by simple chemical vapour deposition. • Polycrystalline nanostructured porous thin film is obtained. • Film exhibits stable specific capacity (∼400 mA h g{sup −1}) after prolonged cycling. • CVD-grown ZnO nanostructures show promising prospects as Li-ion battery anode. - Abstract: ZnO nanostructures are grown by a simple chemical vapour deposition method directly on a stainless steel disc current collector and successfully tested in lithium cells. The structural/morphological characterization points out the presence of well-defined polycrystalline nanostructures having different shapes and a preferential orientation along the c-axis direction. In addition, the high active surface of the ZnO nanostructures, which accounts for a large electrode/electrolyte contact area, and the complete wetting with the electrolyte solution are considered to be responsible for the good electrical transport properties and the adequate electrochemical behaviour, as confirmed by cyclic voltammetry and galvanostatic charge/discharge cycling. Indeed, despite no binder or conducting additives are used, when galvanostatically tested in lithium cells, after an initial decay, the ZnO nanostructures can provide a rather stable specific capacity approaching 70 μA h cm{sup −2} (i.e., around 400 mA h g{sup −1}) after prolonged cycling at 1 C, with very high Coulombic efficiency and an overall capacity retention exceeding 62%.

  4. Electro-chemical batteries for guided missiles

    Directory of Open Access Journals (Sweden)

    H. S. Jaggi

    1966-05-01

    Full Text Available Electro-chemical batteries owing to their simplicity and ease of stowage form one of the sources of electrical power inside a missile. However, all batteries are not suited for this application. This article describes the special features required of a missile borne battery pack and discusses the characteristics of various types of batteries available today in the world. Conclusions have been drawn as to the most suitable types of batteries for missile applications.

  5. Chemical elements distribution in cells

    Science.gov (United States)

    Ortega, R.

    2005-04-01

    Analysing, imaging and understanding the cellular chemistry, from macromolecules to monoatomic elements, is probably a major challenge for the scientific community after the conclusion of the genome project. In order to probe the distribution of elements in cells, especially the so-called inorganic elements, it is necessary to apply microanalytical techniques with sub-micrometer resolution and high chemical sensitivity. This paper presents the current status of chemical element imaging inside cells, and a comparison of the different analytical techniques available: nuclear microprobe, electron microprobe and electron energy loss spectroscopy, synchrotron radiation microprobe, secondary ion mass spectrometry and fluorescence microscopy methods. Examples of intracellular chemical elements distributions relevant to cancer pharmacology, medical imaging, metal carcinogenesis and neuropathology studies obtained by nuclear microprobe and other microanalytical techniques are presented.

  6. Study on the association between environmental chemical elements and fluorosis caused by coal-fire pollution

    Institute of Scientific and Technical Information of China (English)

    焦永卓

    2013-01-01

    Objective To understand the distribution of chemical elements in soil,to investigate the differences between patients under different state of fluorosis and normal population after preventive measurement was implemented to get rid of some chemical elements and to lower

  7. Extraction of Li and Co from Li-ion Batteries by Chemical Methods

    Science.gov (United States)

    Guzolu, Jafar Sharrivar; Gharabaghi, Mahdi; Mobin, Mohammad; Alilo, Hojat

    2016-05-01

    In this work a process involving ultrasonic washing and leaching and precipitation was used to recover Li and Co from spent Li-ion batteries. Ultrasonic washing was used to reduce energy consumption and pollution whereas hydrochloric acid was used as leaching reagent. 98 % of Li and nearly 99 % of Co were obtained under optimum condition of 5 M hydrochloric acid solution, temperature of 95 °C, reaction time of 70 min, and solid-liquid ratio of 10 g/L. In this process at first nickel, copper, iron, aluminum, cobalt, and manganese were precipitated from leaching solution using sodium hydroxide at pH f 12.5 and reaction time of 1 h and temperature was 55 °C and all metal recoveries were more than 99 %. In the precipitation experiments, lithium loss was only 18.34 %. In the next stage, white lithium carbonate was precipitated by addition of saturated sodium carbonate solution to the left filtrate from first precipitation step. The purity of the recovered powder of lithium was 95 %.

  8. Extraction of Li and Co from Li-ion Batteries by Chemical Methods

    Science.gov (United States)

    Guzolu, Jafar Sharrivar; Gharabaghi, Mahdi; Mobin, Mohammad; Alilo, Hojat

    2017-04-01

    In this work a process involving ultrasonic washing and leaching and precipitation was used to recover Li and Co from spent Li-ion batteries. Ultrasonic washing was used to reduce energy consumption and pollution whereas hydrochloric acid was used as leaching reagent. 98 % of Li and nearly 99 % of Co were obtained under optimum condition of 5 M hydrochloric acid solution, temperature of 95 °C, reaction time of 70 min, and solid-liquid ratio of 10 g/L. In this process at first nickel, copper, iron, aluminum, cobalt, and manganese were precipitated from leaching solution using sodium hydroxide at pH f 12.5 and reaction time of 1 h and temperature was 55 °C and all metal recoveries were more than 99 %. In the precipitation experiments, lithium loss was only 18.34 %. In the next stage, white lithium carbonate was precipitated by addition of saturated sodium carbonate solution to the left filtrate from first precipitation step. The purity of the recovered powder of lithium was 95 %.

  9. Chemical experiments with superheavy elements.

    Science.gov (United States)

    Türler, Andreas

    2010-01-01

    Unnoticed by many chemists, the Periodic Table of the Elements has been extended significantly in the last couple of years and the 7th period has very recently been completed with eka-Rn (element 118) currently being the heaviest element whose synthesis has been reported. These 'superheavy' elements (also called transactinides with atomic number > or = 104 (Rf)) have been artificially synthesized in fusion reactions at accelerators in minute quantities of a few single atoms. In addition, all isotopes of the transactinide elements are radioactive and decay with rather short half-lives. Nevertheless, it has been possible in some cases to investigate experimentally chemical properties of transactinide elements and even synthesize simple compounds. The experimental investigation of superheavy elements is especially intriguing, since theoretical calculations predict significant deviations from periodic trends due to the influence of strong relativistic effects. In this contribution first experiments with hassium (Hs, atomic number 108), copernicium (Cn, atomic number 112) and element 114 (eka-Pb) are reviewed.

  10. Adaptive Finite Element Method Assisted by Stochastic Simulation of Chemical Systems

    KAUST Repository

    Cotter, Simon L.

    2013-01-01

    Stochastic models of chemical systems are often analyzed by solving the corresponding Fokker-Planck equation, which is a drift-diffusion partial differential equation for the probability distribution function. Efficient numerical solution of the Fokker-Planck equation requires adaptive mesh refinements. In this paper, we present a mesh refinement approach which makes use of a stochastic simulation of the underlying chemical system. By observing the stochastic trajectory for a relatively short amount of time, the areas of the state space with nonnegligible probability density are identified. By refining the finite element mesh in these areas, and coarsening elsewhere, a suitable mesh is constructed and used for the computation of the stationary probability density. Numerical examples demonstrate that the presented method is competitive with existing a posteriori methods. © 2013 Society for Industrial and Applied Mathematics.

  11. The History and Use of Our Earth's Chemical Elements: A Reference Guide (by Robert E. Krebs)

    Science.gov (United States)

    Bracken, Reviewed By Jeffrey D.

    1999-04-01

    Greenwood Press: Westport, CT, 1998. 282 pp + 25 pp glossary + 37 pp index. 15.9 x 24.1 cm. ISBN 0-313-30123-9. $39.95. This book is an excellent resource for chemical educators at the high school and college levels. The format of the text is consistent and the writing style is clear and concise, making it ideally suited for student use also. The first three chapters serve to introduce the reader to a brief history of chemistry, early models of the atom, and the development of the periodic table. Names of the contributing scientists are mentioned whenever necessary, but the overall purpose of these introductory chapters is simply to lay a foundation for the subsequent seven chapters. A complete glossary of important scientific terms mentioned in the text should allow beginning students to use this book without feeling overwhelmed. Each entry for the 112 elements contains the following information: elemental symbol, atomic number, period, common valence, atomic weight, natural state, common isotopes, properties, characteristics, abundance, natural sources, history, common uses and compounds, and safety hazards. This information is well organized, with clear headings and separate sections making the book extremely user-friendly. Readers can easily obtain the information they desire without having to skim the full entry for a chosen element. One very nice feature of this book is that the elements entries are arranged by their locations in the periodic table. For example, chapter 4 contains the alkali metals and alkaline earth metals. This organizational scheme allows one to quickly see the patterns and trends within groups of elements. This format is significantly better than arranging the elements in alphabetical order, which places the entry for sodium far removed from the entries for lithium and potassium. I would highly recommend this book to high school teachers and college chemistry professors. It is well written and is an excellent source of information for

  12. Optimization of LiCoO2 powder extraction process from cathodes of lithium-ion batteries by chemical dissolution

    Directory of Open Access Journals (Sweden)

    Lucas Evangelista Sita

    2015-05-01

    Full Text Available A chemical process has been applied to extract LiCoO2 powder from cathodes of spent lithium-ion batteries by dissolution of the binder that agglutinate the powder particle each other as well to the Al collector surface. As solvents dimethylformamide (DMF and N-methyilpirrolidone (NMP were employed and the variables, cathode area, solution temperature, ultrasound bath power and solution stirring were chosen to optimize the extraction process. NMP solutions presented best results for powder extraction than DMF solutions. At 100 oC and under mechanical stirring or low power ultrasound bath NMP solution optimizes the binder dissolution. Powder extractions under DMF solutions are slow and an increase in the powder extraction efficiency was observed for crushed cathodes on solutions under ultrasound bath, at medium power. Filtration processes can separate the decanted LiCoO2 powder extracted upon DMF dissolution while the powder in suspension in the NMP solutions is separated by centrifugation techniques.

  13. Elements of chemical thermodynamics

    CERN Document Server

    Nash, Leonard K

    2005-01-01

    This survey of purely thermal data in calculating the position of equilibrium in a chemical reaction highlights the physical content of thermodynamics, as distinct from purely mathematical aspects. 1970 edition.

  14. Electrical performance and chemical composition studies on original and falsified Ni-MH batteries

    Directory of Open Access Journals (Sweden)

    Alexandre Urbano

    2010-12-01

    Full Text Available We show in this paper that falsifications on technological products have hit even rechargeable nickel metal hydride batteries (Ni-MH. The electrical performance and the electrode chemical composition were investigated for authentic and falsified AAA Ni-MH batteries, purchased in the Londrina market, Paraná State. Battery charge capacities were measured at 0,2 C discharge rate and average electrical power was measured at 0.2 and 0.8 C discharge rate. To perform chemical composition analysis, the batteries were vacuum dismantled and their electrodes were characterized by Energy Dispersive X-Ray Fluorescence (EDXRF and X-Ray Diffraction (XRD techniques. It was observed that the charge capacities for the authentic and falsified batteries were 920 and 154 mAh, respectively. The average electrical powers were 210 mW for authentic and 41 mW for falsified batteries. The cathode chemical composition was nickel hydroxide, (Ni(OH2, for both kinds of batteries. However, the anodes of these batteries were not composed by the same materials. The alloy LaNi5 was identified as the electroactive compound in the anode of the authentic battery, while cadmium hydroxide compound, (Cd (OH2, was identified in the falsified battery anode. The authentic battery therefore presented six times more charge capacity, five times more power at 0.2 C discharge rate and 6 times at 0.8 C than the falsified battery, and are yet less dangerous to environment due cadmium absence.

  15. Influence of chemical elements on mammalian spermatozoa.

    Science.gov (United States)

    Marzec-Wróblewska, U; Kamiński, P; Lakota, P

    2012-01-01

    Exposure to heavy metals is the most important risk factor in the assessment of spermatogenesis. About 30-40 % cases of infertility are caused by the male factor, and most of them are due to the small quantity of spermatozoa or to inferior spermatozoa quality. The negative impact on sperm motility, morphology and concentration of such chemical elements as Al, Cr, Cd, Pb or Fe was observed, while positive influence was noticed for Zn, Mg, and Ca. The influence of Mn, Cu, Ni or Se on spermatozoa is ambiguous. Chemical elements known as necessary for capacitation and acrosome reaction are Zn, Mg and Ca, while Cd and Pb disturb initiation and progress of the acrosome reaction. The positive effect of chemical elements Al, Cd, Cr, Cu, Ni, Pb, Se, and Zn, lies in their protection against oxidative stress. On the other hand, Al, Cu and Ni induce structural changes in the testes and epididymis or influence interactions with other chemical elements.

  16. Origin of the Chemical Elements

    CERN Document Server

    Rauscher, T

    2010-01-01

    This review provides the necessary background from astrophysics, nuclear, and particle physics to understand the cosmic origin of the chemical elements. It reflects the year 2009 state of the art in this extremely quickly developing interdisciplinary research direction. The discussion summarizes the nucleosynthetic processes in the course of the evolution of the Universe and the galaxies contained within, including primordial nucleosynthesis, stellar evolution, and explosive nucleosynthesis in single and binary systems.

  17. Numerical simulation of isothermal chemical vapor infiltration process in fabrication of carbon-carbon composites by finite element method

    Institute of Scientific and Technical Information of China (English)

    李克智; 李贺军; 姜开宇

    2000-01-01

    The chemical vapor infiltration process in fabrication of carbon-carbon composites is highly inefficient and requires long processing time. These limitations add considerably to the cost of fabrication and restrict the application of this material. Efforts have been made to study the CVI process in fabrication of carbon-carbon composites by computer simulation and predict the process parameters, density, porosity, etc. According to the characteristics of CVI process, the basic principle of FEM and mass transport, the finite element model has been established. Incremental finite element equations and the elemental stiffness matrices have been derived for the first time. The finite element program developed by the authors has been used to simulate the ICVI process in fabrication of carbon-carbon composites. Computer color display of simulated results can express the densification and distributions of density and porosity in preform clearly. The influence of process parameters on the densification of prefo

  18. Caustic esophageal injury by impaction of cell batteries.

    Science.gov (United States)

    García Fernández, Francisco José; León Montañés, Rafael; Bozada Garcia, Juan Manuel

    2016-12-01

    The ingestion of cell batteries can cause serious complications (fistula, perforation or stenosis) at the esophageal level. The damage starts soon after ingestion (approximately 2 hours) and is directly related to the amount of time the battery is lodged in said location, the amount of electrical charge remaining in the battery, and the size of the battery itself. Injury is produced by the combination of electrochemical and chemical mechanisms and pressure necrosis. The ingestion of multiple cells and a size > = 20 mm are related with more severe and clinically significant outcomes. A female patient, 39 years old, with a history of previous suicide attempts, was admitted to the Emergency Room with chest pain and dysphagia after voluntary ingestion of 2 cell batteries. Two cell batteries are easily detected in a routine chest X-ray, presenting a characteristic double-ring shadow, or peripheral halo. Urgent oral endoscopy was performed 10 hours after ingestion, showing a greenish-gray lumpy magma-like consistency due to leakage of battery contents. The 2 batteries were sequentially removed with alligator-jaw forceps. After flushing and aspiration of the chemical material, a broad and circumferential injury with denudation of the mucosa and two deep ulcerations with necrosis were observed where the batteries had been. The batteries' seals were eroded, releasing chemical contents. Despite the severity of the injuries, the patient progressed favorably and there was no esophageal perforation. Esophageal impaction of cell batteries should always be considered an endoscopic urgency.

  19. Rare earth element recycling from waste nickel-metal hydride batteries.

    Science.gov (United States)

    Yang, Xiuli; Zhang, Junwei; Fang, Xihui

    2014-08-30

    With an increase in number of waste nickel-metal hydride batteries, and because of the importance of rare earth elements, the recycling of rare earth elements is becoming increasingly important. In this paper, we investigate the effects of temperature, hydrochloric acid concentration, and leaching time to optimize leaching conditions and determine leach kinetics. The results indicate that an increase in temperature, hydrochloric acid concentration, and leaching time enhance the leaching rate of rare earth elements. A maximum rare earth elements recovery of 95.16% was achieved at optimal leaching conditions of 70°C, solid/liquid ratio of 1:10, 20% hydrochloric acid concentration, -74μm particle size, and 100min leaching time. The experimental data were best fitted by a chemical reaction-controlled model. The activation energy was 43.98kJ/mol and the reaction order for hydrochloric acid concentration was 0.64. The kinetic equation for the leaching process was found to be: 1-(1-x)(1/3)=A/ρr0[HCl](0.64)exp-439,8008.314Tt. After leaching and filtration, by adding saturated oxalic solution to the filtrate, rare earth element oxalates were obtained. After removing impurities by adding ammonia, filtering, washing with dilute hydrochloric acid, and calcining at 810°C, a final product of 99% pure rare earth oxides was obtained.

  20. Standard chemical exergy of elements updated

    Energy Technology Data Exchange (ETDEWEB)

    Rivero, R. [Instituto Mexicano del Petroleo, Grupo de Exergia, Eje Central Lazaro Cardenas 152, 07730, Mexico, D.F. (Mexico)]. E-mail: rrivero@imp.mx; Garfias, M. [Instituto Mexicano del Petroleo, Grupo de Exergia, Eje Central Lazaro Cardenas 152, 07730, Mexico, D.F. (Mexico)

    2006-12-15

    The chemical exergy of a substance is the maximum work that can be obtained from it by taking it to chemical equilibrium with the reference environment at constant temperature and pressure. This exergy is normally taken or calculated from tabulated values obtained for standard conditions, i.e. an ambient temperature of 298.15 K, an atmospheric pressure of 1 atm, and a model of reference species which considers the concentration of the most common components of the atmosphere, the oceans and the Earth's crust. The model proposed by Szargut for the calculation of the standard chemical exergy of elements and organic and inorganic substances has been revised. As a result of this revision, updated values of standard chemical exergy of elements are presented and compared with the ones estimated by Szargut. Because of some anomalous behaviour in the chemical exergy when a different salinity of seawater is assumed, some different reference species than those used in the latest version of the Szargut model were proposed for the following elements: silver, gold, barium, calcium, cadmium, copper, mercury, magnesium, nickel, lead, strontium and zinc. A complete set of updated values of chemical exergies of elements for the standard conditions (298.15 K and 1 atm) is tabulated.

  1. Detection of trace elements in DI water and comparison of several water solutions by using EF-FLRD chemical sensors

    Science.gov (United States)

    Kaya, M.; Wang, C.

    2017-02-01

    Detection of trace elements in DI water and comparison of several types of water respons such as DI water, tap water, and ocean water were studied by using EF-FLRD chemical sensors. Solutions of Mg, Fe, P, and Cd elements with a concentration of 1000 µg/ml (1 mg/ml) which corresponds to 1000 ppm by weight were tested. DI water, tap water, and real ocean water were utilized as medium to observe refractive index difference of solutions. The EF sensing technique which is based on the EF scattering effect was employed for the detection of trace chemicals and recording of solution responses. Due to the refractive index differences between solutions, optical loss of the sensor was different when the sensor head was immersed into solutions of approximately 10 ml each. The differences of the refractive indices are presented by recording ringdown times when the sensor head was immersed into the solutions. Fast response (˜1s), high sensitive, and reproducible EF-FLRD chemical sensors were fabricated and tested in laboratory conditions. High sensitivity of the sensors due to being capability of detecting smaller differences between measurands without any additional components or treatment makes the EF-FLRD sensors more attractive. Enhanced sensitivity of the EF-FLRD chemical sensors as a result of the multi-pass nature of the FLRD technique has potential application in detecting of trace elements in monitoring of water quality.

  2. Formation of intermetallic compound at interface between rare earth elements and ferritic-martensitic steel by fuel cladding chemical interaction

    Institute of Scientific and Technical Information of China (English)

    Jun Hwan Kim; Byoung Oon Lee; Chan Bock Lee; Seung Hyun Jee; Young Soo Yoon

    2012-01-01

    The intermetallic compounds formation at interface between rare earth elements and clad material were investigated to demonstrate the effects of rare earth elements on fuel-cladding chemical interaction (FCCI) behavior.Mischmetal (70Ce-30La) and Nd were prepared as rare earth elements.Diffusion couple testing was performed on the rare earth elements and cladding (9Cr2W steel) near the operation temperature of(sodium-cooled fast reactor) SFR fuel.The performance of a diffusion barrier consisting of Zr and V metallic foil against the rare earth elements was also evaluated.Our results showed that Ce and Nd in the rare earth elements and Fe in the clad material interdiffused and reacted to form intermetallic species according to the parabolic rate law,describing the migration of the rare earth element.The diffusion of Fe limited the reaction progress such that the entire process was governed by the cubic rate law.Rare earth materials could be used as a surrogate for high burnup metallic fuels,and the performance of the barrier material was demonstrated to be effective.

  3. Predicion of Chemical Element Contents in Soils

    Institute of Scientific and Technical Information of China (English)

    KESHAN-ZHE; QIANJUN-LONG; 等

    1994-01-01

    Assuming that the regularity for the dynamic changes of the chrono-sequences of chemical element contents in tree rings follows a k-order constant coefficient differential equation and substituting the differential with the difference,we could obtain the inferred value ym+k+1 by the formula:ym+k+1=c1ym+1+c2Ym+2+…ckym+kEach coefficient ci in the formula may be ascertained by use of the measured data in the chrono-sequences,Extending the chrono-sequences on the assumption that the regularity of dynamic changes wouldn't change in the near future,the contents of chemical elements in the soils may be predicted in terms of a logarithmic linear correlation model.Also,this extension method could be used for the reproduction of the contents of chemical elemets in soils during different periods of time in the past.

  4. Wearable textile battery rechargeable by solar energy.

    Science.gov (United States)

    Lee, Yong-Hee; Kim, Joo-Seong; Noh, Jonghyeon; Lee, Inhwa; Kim, Hyeong Jun; Choi, Sunghun; Seo, Jeongmin; Jeon, Seokwoo; Kim, Taek-Soo; Lee, Jung-Yong; Choi, Jang Wook

    2013-01-01

    Wearable electronics represent a significant paradigm shift in consumer electronics since they eliminate the necessity for separate carriage of devices. In particular, integration of flexible electronic devices with clothes, glasses, watches, and skin will bring new opportunities beyond what can be imagined by current inflexible counterparts. Although considerable progresses have been seen for wearable electronics, lithium rechargeable batteries, the power sources of the devices, do not keep pace with such progresses due to tenuous mechanical stabilities, causing them to remain as the limiting elements in the entire technology. Herein, we revisit the key components of the battery (current collector, binder, and separator) and replace them with the materials that support robust mechanical endurance of the battery. The final full-cells in the forms of clothes and watchstraps exhibited comparable electrochemical performance to those of conventional metal foil-based cells even under severe folding-unfolding motions simulating actual wearing conditions. Furthermore, the wearable textile battery was integrated with flexible and lightweight solar cells on the battery pouch to enable convenient solar-charging capabilities.

  5. Combination of lightweight elements and nanostructured materials for batteries.

    Science.gov (United States)

    Chen, Jun; Cheng, Fangyi

    2009-06-16

    In a society that increasingly relies on mobile electronics, demand is rapidly growing for both primary and rechargeable batteries that power devices from cell phones to vehicles. Existing batteries utilize lightweight active materials that use electrochemical reactions of ions such as H(+), OH(-) and Li(+)/Mg(2+) to facilitate energy storage and conversion. Ideal batteries should be inexpensive, have high energy density, and be made from environmentally friendly materials; batteries based on bulk active materials do not meet these requirements. Because of slow electrode process kinetics and low-rate ionic diffusion/migration, most conventional batteries demonstrate huge gaps between their theoretical and practical performance. Therefore, efforts are underway to improve existing battery technologies and develop new electrode reactions for the next generation of electrochemical devices. Advances in electrochemistry, surface science, and materials chemistry are leading to the use of nanomaterials for efficient energy storage and conversion. Nanostructures offer advantages over comparable bulk materials in improving battery performance. This Account summarizes our progress in battery development using a combination of lightweight elements and nanostructured materials. We highlight the benefits of nanostructured active materials for primary zinc-manganese dioxide (Zn-Mn), lithium-manganese dioxide (Li-Mn), and metal (Mg, Al, Zn)-air batteries, as well as rechargeable lithium ion (Li-ion) and nickel-metal hydride (Ni-MH) batteries. Through selected examples, we illustrate the effect of structure, shape, and size on the electrochemical properties of electrode materials. Because of their numerous active sites and facile electronic/ionic transfer and diffusion, nanostructures can improve battery efficiency. In particular, we demonstrate the properties of nanostructured active materials including Mg, Al, Si, Zn, MnO(2), CuV(2)O(6), LiNi(0.8)Co(0.2)O(2), LiFePO(4), Fe(2)O(3

  6. Enhanced performance of sulfur-infiltrated bimodal mesoporous carbon foam by chemical solution deposition as cathode materials for lithium sulfur batteries

    Science.gov (United States)

    Jeong, Tae-Gyung; Chun, Jinyong; Cho, Byung-Won; Lee, Jinwoo; Kim, Yong-Tae

    2017-02-01

    The porous carbon matrix is widely recognized to be a promising sulfur reservoir to improve the cycle life by suppressing the polysulfide dissolution in lithium sulfur batteries (LSB). Herein, we synthesized mesocellular carbon foam (MSUF-C) with bimodal mesopore (4 and 30 nm) and large pore volume (1.72 cm2/g) using MSUF silica as a template and employed it as both the sulfur reservoir and the conductive agent in the sulfur cathode. Sulfur was uniformly infiltrated into MSUF-C pores by a chemical solution deposition method (MSUF-C/S CSD) and the amount of sulfur loading was achieved as high as 73% thanks to the large pore volume with the CSD approach. MSUF-C/S CSD showed a high capacity (889 mAh/g after 100 cycles at 0.2 C), an improved rate capability (879 mAh/g at 1C and 420 mAh/g at 2C), and a good capacity retention with a fade rate of 0.16% per cycle over 100 cycles.

  7. Enhanced performance of sulfur-infiltrated bimodal mesoporous carbon foam by chemical solution deposition as cathode materials for lithium sulfur batteries

    Science.gov (United States)

    Jeong, Tae-Gyung; Chun, Jinyong; Cho, Byung-Won; Lee, Jinwoo; Kim, Yong-Tae

    2017-01-01

    The porous carbon matrix is widely recognized to be a promising sulfur reservoir to improve the cycle life by suppressing the polysulfide dissolution in lithium sulfur batteries (LSB). Herein, we synthesized mesocellular carbon foam (MSUF-C) with bimodal mesopore (4 and 30 nm) and large pore volume (1.72 cm2/g) using MSUF silica as a template and employed it as both the sulfur reservoir and the conductive agent in the sulfur cathode. Sulfur was uniformly infiltrated into MSUF-C pores by a chemical solution deposition method (MSUF-C/S CSD) and the amount of sulfur loading was achieved as high as 73% thanks to the large pore volume with the CSD approach. MSUF-C/S CSD showed a high capacity (889 mAh/g after 100 cycles at 0.2 C), an improved rate capability (879 mAh/g at 1C and 420 mAh/g at 2C), and a good capacity retention with a fade rate of 0.16% per cycle over 100 cycles. PMID:28165041

  8. Si nanowires grown by Al-catalyzed plasma-enhanced chemical vapor deposition: synthesis conditions, electrical properties and application to lithium battery anodes

    Science.gov (United States)

    Toan, Le Duc; Moyen, Eric; Zamfir, Mihai Robert; Joe, Jemee; Kim, Young Woo; Pribat, Didier

    2016-01-01

    Silicon nanowires have been synhesized using Al as a catalyst. Silane (SiH4) diluted in H2 carrier gas was employed as Si precursor in a plasma enhanced chemical vapor deposition system operated at various temperatures (450 °C and 550 °C). Those growth temperatures, which are lower than the eutectic temperature in the Al-Si system (577 °C) suggests a vapor-solid-solid growth mechanism. Four point resistance measurements and back-gated current-voltage measurements indicated that silicon nanowires were heavily doped (p type), with a doping concentration of a few 1019 cm-3. We have measured hole mobility values of ˜16 cm2 V-1 s-1 at 450 °C and ˜30 cm2 V-1 s-1 at 550 °C. Transmission electron microscope analyses showed that the silicon nanowires were highly twinned even when they grow epitaxially on (111) Si substrates. We have also evaluated the use of those highly doped Si nanowires for lithium-ion battery anodes. We have observed a good cycling behavior during the first 65 charge-discharge cycles, followed by a slow capacity decay. After 150 cycles at a charge-discharge rate of 0.1 C, the electrode capacity was still 1400 mAh g-1. The ageing mechanism seems to be related to the delamination of the SiNWs from the stainless steel substrate on which they were grown.

  9. Use of ab initio quantum chemical methods in battery technology

    Energy Technology Data Exchange (ETDEWEB)

    Deiss, E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Ab initio quantum chemistry can nowadays predict physical and chemical properties of molecules and solids. An attempt should be made to use this tool more widely for predicting technologically favourable materials. To demonstrate the use of ab initio quantum chemistry in battery technology, the theoretical energy density (energy per volume of active electrode material) and specific energy (energy per mass of active electrode material) of a rechargeable lithium-ion battery consisting of a graphite electrode and a nickel oxide electrode has been calculated with this method. (author) 1 fig., 1 tab., 7 refs.

  10. Nanoscale Polysulfides Reactors Achieved by Chemical Au-S Interaction: Improving the Performance of Li-S Batteries on the Electrode Level.

    Science.gov (United States)

    Fan, Chao-Ying; Xiao, Pin; Li, Huan-Huan; Wang, Hai-Feng; Zhang, Lin-Lin; Sun, Hai-Zhu; Wu, Xing-Long; Xie, Hai-Ming; Zhang, Jing-Ping

    2015-12-23

    In this work, the chemical interaction of cathode and lithium polysulfides (LiPSs), which is a more targeted approach for completely preventing the shuttle of LiPSs in lithium-sulfur (Li-S) batteries, has been established on the electrode level. Through simply posttreating the ordinary sulfur cathode in atmospheric environment just for several minutes, the Au nanoparticles (Au NPs) were well-decorated on/in the surface and pores of the electrode composed of commercial acetylene black (CB) and sulfur powder. The Au NPs can covalently stabilize the sulfur/LiPSs, which is advantageous for restricting the shuttle effect. Moreover, the LiPSs reservoirs of Au NPs with high conductivity can significantly control the deposition of the trapped LiPSs, contributing to the uniform distribution of sulfur species upon charging/discharging. The slight modification of the cathode with <3 wt % Au NPs has favorably prospered the cycle capacity and stability of Li-S batteries. Moreover, this cathode exhibited an excellent anti-self-discharge ability. The slight decoration for the ordinary electrode, which can be easily accessed in the industrial process, provides a facile strategy for improving the performance of commercial carbon-based Li-S batteries toward practical application.

  11. Characterization of rapidly-prototyped, battery-operated, argon-hydrogen microplasma on a hybrid chip for elemental analysis of microsamples by portable optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Weagant, Scott; Dulai, Gurjit; Li, Lu; Karanassios, Vassili, E-mail: vkaranassios@uwaterloo.ca

    2015-04-01

    A rapidly-prototyped, battery-operated, atmospheric-pressure, self-igniting Ar-H{sub 2} microplasma was interfaced to a portable fiber-optic spectrometer. The microplasma-spectrometer combination was used to document the spectral lines emitted when μL of dilute solutions of single element standards of Ag, Ba, Ca, Eu, Pd, Rb and Sr were first dried and then vaporized into the microplasma. A small-size, electrothermal vaporization system was used for microsample introduction. Identification of the prominent spectral lines for these elements is reported. It was found that the most prominent spectral line for Ba, Ca and Sr was different than that emitted from an inductively coupled plasma (ICP). In general, prominent spectral lines with low excitation energy were dominating, thus resulting in spectra simpler than those emitted from an ICP. Detection limits were between 45 and 180 pg (expressed in absolute amounts). When expressed in relative concentration units, they ranged between 15 and 60 μg/L (obtained using 3 μL diluted standards). Calibration curves were linear (on the average) for 1.5 orders-of-magnitude. Average precision was 15%. Analytical capability and utility was demonstrated using the determination of Ca and Mg in (medicinal) thermal spring water. - Highlights: • Microplasma emission spectra for Ag, Ba, Ca, Eu, Pd, Rb and Sr are reported. • Absolute amount detection limits ranged between 45 pg and 180 pg. • Relative unit detection limits ranged between 15 and 60 μg/L (using 3 μL). • The effect of vaporization temperature on analyte signals is reported. • Ca and Mg concentrations in (medicinal) thermal spring water were determined.

  12. A Coupled Dynamical Model of Redox Flow Battery Based on Chemical Reaction, Fluid Flow, and Electrical Circuit

    OpenAIRE

    Li, Minghua; Hikihara, Takashi

    2008-01-01

    The redox (Reduction-Oxidation) flow battery is one of the most promising rechargeable batteries due to its ability to average loads and output of power sources. The transient characteristics are well known as the remarkable feature of the battery. Then it can also compensate for a sudden voltage drop. The dynamics are governed by the chemical reactions, fluid flow, and electrical circuit of its structure. This causes the difficulty of the analysis at transient state. This paper discusses the...

  13. THE EFFECT OF DRAINAGE ON CHEMICAL ELEMENTS CONTENT OF MARSH

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper takes marsh in the Sanjiang Plain as an example in order to research the effect of draining on the chemical elements in marsh. The Sanjiang Ecological Test Station of Mire and Uetland serves as the resarch base. The authors selected soil samples in the Sanjiang Plain (the top and the end of the drain, marsh soil and degeneration marsh soil), mainly analyzed contents of main ions (HCO3-, Cl-, SO42-and NO3-), main heavy metals (Fe, Mn, Znand Cu), nutritive elements (N, P,K), organic matter and pH value. By testing these samples as above, the paper initially researches the effect on chemical elements content by draining by the means of the contrast of chemical elements contents between marsh soil and degenerative marsh soil and different characteristics of marsh soil elements. Results show that a lot of chemical elements had been lost because of draining.

  14. Chemical Shuttle Additives in Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Mary

    2013-03-31

    than NMC) and the DDB is useful for lithium ion cells with LFP cathodes (potential that is lower than NMC). A 4.5 V class redox shuttle provided by Argonne National Laboratory was evaluated which provides a few cycles of overcharge protection for lithium ion cells containing NMC cathodes but it is not stable enough for consideration. Thus, a redox shuttle with an appropriate redox potential and sufficient chemical and electrochemical stability for commercial use in larger format lithium ion cells with NMC cathodes was not found. Molecular imprinting of the redox shuttle molecule during solid electrolyte interphase (SEI) layer formation likely contributes to the successful reduction of oxidized redox shuttle species at carbon anodes. This helps to understand how a carbon anode covered with an SEI layer, that is supposed to be electrically insulating, can reduce the oxidized form of a redox shuttle.

  15. Reversible chemical delithiation/lithiation of LiFePO4: towards a redox flow lithium-ion battery.

    Science.gov (United States)

    Huang, Qizhao; Li, Hong; Grätzel, Michael; Wang, Qing

    2013-02-14

    Reversible chemical delithiation/lithiation of LiFePO(4) was successfully demonstrated using ferrocene derivatives, based on which a novel energy storage system--the redox flow lithium-ion battery (RFLB), was devised by integrating the operation flexibility of a redox flow battery and high energy density of a lithium-ion battery. Distinct from the recent semi-solid lithium rechargeable flow battery, the energy storage materials of RFLB stored in separate energy tanks remain stationary upon operation, giving us a fresh perspective on building large-scale energy storage systems with higher energy density and improved safety.

  16. Chemical identification and properties of element 112

    CERN Document Server

    Yakushev, A B; Zvára, I

    2002-01-01

    The second experiment on the chemical identification of element 112 performed at the FLNR (Dubna) is reported. Similar to the first test in 2000, the 2 mg/cm sup 2 sup n sup a sup t U target was bombarded with the 262-MeV sup 4 sup 8 Ca ions aiming at the production of sup 2 sup 8 sup 3 112, which as reported earlier decays by SF with a half-life of 3 min. The bombardment products recoiling from the target were thermalized in flowing helium and transported by the gas to detectors 25 m apart. Of all the heavy elements, the reaction products, only Hg, Rn and At were efficiently transported and thus selectively isolated. This time the beam dose was much higher (2.8 centre dot 10 sup 1 sup 8) and two different devices for detecting fission fragments and alpha particles were employed. The device used earlier was an assembly of sixteen PIPS detectors coated with Au to detect 'Hg-like' nuclides being adsorbed on Au at ambient temperature. The new one was a flow-through ionization chamber, 5000 cm sup 3 in volume, wh...

  17. Influence of residual elements in lead on oxygen- and hydrogen-gassing rates of lead-acid batteries

    Science.gov (United States)

    Lam, L. T.; Ceylan, H.; Haigh, N. P.; Lwin, T.; Rand, D. A. J.

    Raw lead materials contain many residual elements. With respect to setting 'safe' levels for these elements, each country has its own standard, but the majority of the present specifications for the lead used to prepare battery oxide apply to flooded batteries that employ antimonial grids. In these batteries, the antimony in the positive and negative grids dominates gassing characteristics so that the influence of residual elements is of little importance. This is, however, not the case for valve-regulated lead-acid (VRLA) batteries, which use antimony-free grids and less sulfuric acid solution. Thus, it is necessary to specify 'acceptable' levels of residual elements for the production of VRLA batteries. In this study, 17 elements are examined, namely: antimony, arsenic, bismuth, cadmium, chromium, cobalt, copper, germanium, iron, manganese, nickel, selenium, silver, tellurium, thallium, tin, and zinc. The following strategy has been formulated to determine the acceptable levels: (i) selection of a control oxide; (ii) determination of critical float, hydrogen and oxygen currents; (iii) establishment of a screening plan for the elements; (iv) development of a statistical method for analysis of the experimental results. The critical values of the float, hydrogen and oxygen currents are calculated from a field survey of battery failure data. The values serve as a base-line for comparison with the corresponding measured currents from cells using positive and negative plates produced either from the control oxide or from oxide doped with different levels of the 17 elements in combination. The latter levels are determined by means of a screening plan which is based on the Plackett-Burman experimental design. Following this systematic and thorough exercise, two specifications are proposed for the purity of the lead to be used in oxide production for VRLA technology.

  18. Multi-layered, chemically bonded lithium-ion and lithium/air batteries

    Science.gov (United States)

    Narula, Chaitanya Kumar; Nanda, Jagjit; Bischoff, Brian L; Bhave, Ramesh R

    2014-05-13

    Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.

  19. Physical-chemical studies of transuranium elements

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, J.R.

    1991-01-01

    Major advances in our continuing program to determine, interpret, and correlate the basic chemical and physical properties of the transuranium elements are summarized. Research topics include: Molar enthalpies of formation of BaCmO{sub 3} and BaCfO{sub 3}; luminescence of europium oxychloride at various pressures; and anti-stokes luminescence of selected actinide (III) compounds. 42 refs., 4 figs., 2 tabs.

  20. Use of chemical elements of 1A family by tropical tree species; Uso de elementos quimicos da familia 1A por especies arboreas tropicais

    Energy Technology Data Exchange (ETDEWEB)

    Carmo, Andrius M.J.; Paiva, Jose Daniel S. de; Magalhaes, Marcelo R.L. de; Franca, Elvis J. de; Hazin, Clovis A., E-mail: ejfranca@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Bacchi, Marcio A.; Fernandes, Elisabete A.N., E-mail: mabacchi@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil).

    2013-07-01

    This study aims to evaluate the distribution of K, Rb and Cs in leaves of trees of the Atlantic Forest through studies of correlation between the chemical elements. For this, we used the Instrumental Neutron Activation Analysis for the quantification of the chemical elements. The concentration ranges found were 6700-24000 mg / kg for K, 16 to 72mg / kg for Rb and 0.08 to 0,92mg / kg for Cs. As Rb has chemical similarity to K, is easily absorbed by plants, leading to a high value (0.9) of the Pearson correlation. For the correlation between K and Cs, no significant values were detected except for some species of the Myrtaceae family. However, average correlations (0.6 by plants showed great complexity in the distribution of chemical elements in the ecosystem.

  1. Chemical studies of H chondrites-10 : contents of thermally labile trace elements are unaffected by late heating.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M.-S.; Wolf, S. F.; Lipschutz, M. E.; Chemical Engineering; Purdue Univ.

    1999-09-01

    We have used radiochemical neutron activation analysis (RNAA) to determine 15 trace elements, including 10 moderately and highly volatile ones - Rb, Ag, Se, Cs, Te, Zn, Cd, Bi, Tl, In (in increasing volatility order) - in 6 H chondrite falls with low 3He contents. These plus prior RNAA data provide a compositional database of 92 H4-6 chondrite falls. Three suites of samples can be identified from their noble gas contents: 44 with 'normal' contents, and, therefore, 'normal' orbits and cosmic ray exposure histories; 8 that lost radiogenic gases, presumably by shock late in their histories; and 17 that lost cosmogenic gases by heating during close solar approach. We used the standard multivariate statistical techniques of linear discriminant analysis and logistic regression to compare contents of the 10 moderately and highly volatile trace elements, listed above, in these 3 suites. We found no significant differences. This contrasts sharply with similar comparisons involving random falls and H4-6 chondrites that landed on Earth at specific time intervals. Apparently, contents of volatile trace elements in H4-6 chondrites were established early in their histories and they are so retentively sited that loss during later heating episodes did not occur.

  2. Final treatment of spent batteries by thermal plasma.

    Science.gov (United States)

    Cubas, Anelise Leal Vieira; Machado, Marina de Medeiros; Machado, Marília de Medeiros; Dutra, Ana Regina de Aguiar; Moecke, Elisa Helena Siegel; Fiedler, Haidi D; Bueno, Priscila

    2015-08-15

    The growth in the use of wireless devices, notebooks and other electronic products has led to an ever increasing demand for batteries, leading to these products being commonly found in inappropriate locations, with adverse effects on the environment and human health. Due to political pressure and according to the environmental legislation which regulates the destination of spent batteries, in several countries the application of reverse logistics to hazardous waste is required. Thus, some processes have been developed with the aim of providing an appropriate destination for these products. In this context, a method for the treatment of spent batteries using thermal plasma technology is proposed herein. The efficiency of the method was tested through the determination of parameters, such as total organic carbon, moisture content and density, as well as analysis by atomic absorption spectrometry, scanning electron microscopy and X-ray fluorescence using samples before and after inertization. The value obtained for the density was 19.15%. The TOC results indicated 8.05% of C in the batteries prior to pyrolisis and according to the XRF analysis Fe, S, Mn and Zn were the most stable elements in the samples (highest peaks). The efficiency of the paste inertization was 97% for zinc and 99.74% for manganese. The results also showed that the most efficient reactor was that with the DC transferred arc plasma torch and quartzite sand positively influenced by the vitrification during the pyrolysis of the electrolyte paste obtain from batteries.

  3. HISTORY OF THE ORIGIN OF THE CHEMICAL ELEMENTS AND THEIR DISCOVERIES.

    Energy Technology Data Exchange (ETDEWEB)

    HOLDEN,N.E.

    2001-06-29

    What do we mean by a chemical element? A chemical element is matter, all of whose atoms are alike in having the same positive charge on the nucleus and the same number of extra-nuclear electrons. As we shall see in the following elemental review, the origin of the chemical elements show a wide diversity with some of these elements having an origin in antiquity, other elements having been discovered within the past few hundred years and still others have been synthesized within the past fifty years via nuclear reactions on heavy elements since these other elements are unstable and radioactive and do not exist in nature.

  4. The System of Chemical Elements Distribution in the Hydrosphere

    Science.gov (United States)

    Korzh, Vyacheslav D.

    2013-04-01

    The chemical composition of the hydrosphere is a result of substance migration and transformation on lithosphere-river, river-sea, and ocean-atmosphere boundaries. The chemical elements composition of oceanic water is a fundamental multi-dimensional constant for our planet. Detailed studies revealed three types of chemical element distribution in the ocean: 1) Conservative: concentration normalized to salinity is the constant in space and time; 2) Nutrient-type: element concentration in the surface waters decreases due to the biosphere consumption; and 3) Litho-generative: complex character of distribution of elements, which enter the ocean with the river runoff and interred almost entirely in sediments. The correlation between the chemical elements compositions of the river and oceanic water is high (r = 0.94). We conclude that biogeochemical features of each chemical element are determined by the relationship between its average concentration in the ocean and the intensity of its migration through hydrosphere boundary zones. In our presentation, we shall show intensities of global migration and average concentrations in the ocean in the co ordinates lgC - lg [tau], where C is an average element concentration and [tau] is its residence time in the ocean. We have derived a relationship between three main geochemical parameters of the dissolved forms of chemical elements in the hydrosphere: 1) average concentration in the ocean, 2) average concentration in the river runoff and 3) the type of distribution in oceanic water. Using knowledge of two of these parameters, it allows gaining theoretical knowledge of the third. The System covers all chemical elements for the entire range of observed concentrations. It even allows to predict the values of the annual river transport of dissolved Be, C, N, Ge, Tl, Re, to refine such estimates for P, V, Zn, Br, I, and to determine the character of distribution in the ocean for Au and U. Furthermore, the System allowed estimating

  5. The study of chemical composition and elemental mappings of colored over-glaze porcelain fired in Qing Dynasty by micro-X-ray fluorescence

    Science.gov (United States)

    Lin, Cheng; Meitian, Li; Youshi, Kim; Changsheng, Fan; Shanghai, Wang; Qiuli, Pan; Zhiguo, Liu; Rongwu, Li

    2011-02-01

    It is very difficult to measure the chemical composition of colored pigments of over-glaze porcelain by X-ray fluorescence because it contains high concentration of Pb. One of the disadvantages of our polycapillary optics is that it has low transmission efficiency to the high energy X-ray. However, it is beneficial to measure the chemical compositions of rich Pb sample. In this paper, we reported the performances of a tabletop setup of micro-X-ray fluorescence system base on slightly focusing polycapillary and its applications for analysis of rich Pb sample. A piece of Chinese ancient over-glaze porcelain was analyzed by micro-X-ray fluorescence. The experimental results showed that the Cu, Fe and Mn are the major color elements. The possibilities of the process of decorative technology were discussed in this paper, also.

  6. Elements--A Card Game of Chemical Names and Symbols

    Science.gov (United States)

    Sevcik, Richard S.; Hicks, O'Dell; Schultz, Linda D.; Alexander, Susan V.

    2008-01-01

    "Elements" is a competitive card game designed to help middle school students recognize and correlate the names and symbols of the most significant chemical elements. Each student is required to construct his or her own decks of playing cards--one with the names of the chemical elements and one with their corresponding symbols--and compete against…

  7. Sodium-Oxygen Batteries: A Comparative Review from Chemical and Electrochemical Fundamentals to Future Perspective.

    Science.gov (United States)

    Yadegari, Hossein; Sun, Qian; Sun, Xueliang

    2016-09-01

    Alkali metal-oxygen (Li-O2 , Na-O2 ) batteries have attracted a great deal of attention recently due to their high theoretical energy densities, comparable to gasoline, making them attractive candidates for application in electrical vehicles. However, the limited cycling life and low energy efficiency (high charging overpotential) of these cells hinder their commercialization. The Li-O2 battery system has been extensively studied in this regard during the past decade. Compared to the numerous reports of Li-O2 batteries, the research on Na-O2 batteries is still in its infancy. Although, Na-O2 batteries show a number of attractive properties such as low charging overpotential and high round-trip energy efficiency, their cycling life is currently limited to a few tens of cycles. Therefore, understanding the chemistry behind Na-O2 cells is critical towards enhancing their performance and advancing their development. Chemical and electrochemical reactions of Na-O2 batteries are reviewed and compared with those of Li-O2 batteries in the present review, as well as recent works on the chemical composition and morphology of the discharge products in these batteries. Furthermore, the determining kinetics factors for controlling the chemical composition of the discharge products in Na-O2 cells are discussed and the potential research directions toward improving Na-O2 cells are proposed.

  8. Finite Element Analysis of Silicon Thin Films on Soft Substrates as Anodes for Lithium Ion Batteries

    Science.gov (United States)

    Shaffer, Joseph

    2011-12-01

    The wide-scale use of green technologies such as electric vehicles has been slowed due to insufficient means of storing enough portable energy. Therefore it is critical that efficient storage mediums be developed in order to transform abundant renewable energy into an on-demand source of power. Lithium (Li) ion batteries are seeing a stream of improvements as they are introduced into many consumer electronics, electric vehicles and aircraft, and medical devices. Li-ion batteries are well suited for portable applications because of their high energy-to-weight ratios, high energy densities, and reasonable life cycles. Current research into Li-ion batteries is focused on enhancing its energy density, and by changing the electrode materials, greater energy capacities can be realized. Silicon (Si) is a very attractive option because it has the highest known theoretical charge capacity. Current Si anodes, however, suffer from early capacity fading caused by pulverization from the stresses induced by large volumetric changes that occur during charging and discharging. An innovative system aimed at resolving this issue is being developed. This system incorporates a thin Si film bonded to an elastomeric substrate which is intended to provide the desired stress relief. Non-linear finite element simulations have shown that a significant amount of deformation can be accommodated until a critical threshold of Li concentration is reached; beyond which buckling is induced and a wavy structure appears. When compared to a similar system using rigid substrates where no buckling occurs, the stress is reduced by an order of magnitude, significantly prolonging the life of the Si anode. Thus the stress can be released at high Li-ion diffusion induced strains by buckling the Si thin film. Several aspects of this anode system have been analyzed including studying the effects of charge rate and thin film plasticity, and the results are compared with preliminary empirical measurements to

  9. Elemental diffusion during the droplet epitaxy growth of In(Ga)As/GaAs(001) quantum dots by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z. B.; Chen, B.; Wang, Y. B.; Liao, X. Z., E-mail: xiaozhou.liao@sydney.edu.au [School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Lei, W. [School of Electrical, Electronic and Computer Engineering, The University of Western Australia, Perth, WA 6009 (Australia); Tan, H. H.; Jagadish, C. [Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia); Zou, J. [Materials Engineering and Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD 4072 (Australia); Ringer, S. P. [School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006 (Australia)

    2014-01-13

    Droplet epitaxy is an important method to produce epitaxial semiconductor quantum dots (QDs). Droplet epitaxy of III-V QDs comprises group III elemental droplet deposition and the droplet crystallization through the introduction of group V elements. Here, we report that, in the droplet epitaxy of InAs/GaAs(001) QDs using metal-organic chemical vapor deposition, significant elemental diffusion from the substrate to In droplets occurs, resulting in the formation of In(Ga)As crystals, before As flux is provided. The supply of As flux suppresses the further elemental diffusion from the substrate and promotes surface migration, leading to large island formation with a low island density.

  10. Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility

    Science.gov (United States)

    Wedege, Kristina; Dražević, Emil; Konya, Denes; Bentien, Anders

    2016-12-01

    Organic molecules are currently investigated as redox species for aqueous low-cost redox flow batteries (RFBs). The envisioned features of using organic redox species are low cost and increased flexibility with respect to tailoring redox potential and solubility from molecular engineering of side groups on the organic redox-active species. In this paper 33, mainly quinone-based, compounds are studied experimentially in terms of pH dependent redox potential, solubility and stability, combined with single cell battery RFB tests on selected redox pairs. Data shows that both the solubility and redox potential are determined by the position of the side groups and only to a small extent by the number of side groups. Additionally, the chemical stability and possible degradation mechanisms leading to capacity loss over time are discussed. The main challenge for the development of all-organic RFBs is to identify a redox pair for the positive side with sufficiently high stability and redox potential that enables battery cell potentials above 1 V.

  11. Advances in chemical investigations of the heaviest elements

    Science.gov (United States)

    Türler, Andreas

    2016-12-01

    Although somewhat in the shadow of the discoveries of new elements, experimental chemical investigations of the heaviest elements have made tremendous progress in the last decades. Indeed, it was possible to experimentally determine thermochemical properties of heavy transactinide elements such as copernicium or flerovium. But will it be possible to chemically study all currently known elements of the periodic table up to element 118? While it is experimentally feasible to work with single atoms, the short half-lives of even the longest currently known isotopes of elements 115 through 118 call for new experimental approaches.

  12. Advances in chemical investigations of the heaviest elements

    Directory of Open Access Journals (Sweden)

    Türler Andreas

    2016-01-01

    Full Text Available Although somewhat in the shadow of the discoveries of new elements, experimental chemical investigations of the heaviest elements have made tremendous progress in the last decades. Indeed, it was possible to experimentally determine thermochemical properties of heavy transactinide elements such as copernicium or flerovium. But will it be possible to chemically study all currently known elements of the periodic table up to element 118? While it is experimentally feasible to work with single atoms, the short half-lives of even the longest currently known isotopes of elements 115 through 118 call for new experimental approaches.

  13. Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction

    Science.gov (United States)

    Nan, Junmin; Han, Dongmei; Zuo, Xiaoxi

    This paper describes a new recycling process of metal values from spent lithium-ion batteries (LIBs). After the dismantling of the spent batteries steel crusts, the leaching of battery internal substances with alkaline solution and the dissolving of the residues with H 2SO 4 solution were carried out. Then mass cobalt was chemically deposited as oxalate, and Acorga M5640 and Cyanex272 extracted the small quantities of copper and cobalt, respectively. Lithium was recovered as deposition of lithium carbonate. It is shown that about 90% cobalt was deposited as oxalate with less than 0.5% impurities, and Acorga M5640 and Cyanex272 were efficient and selective for the extraction of copper and cobalt in sulfate solution. Over 98% of the copper and 97% of the cobalt was recovered in the given process. In addition, the waste solution was treated innocuously, and LiCoO 2 positive electrode material with good electrochemical performance was also synthesized by using the recovered compounds of cobalt and lithium as precursors. The process is feasible for the recycling of spent LIBs in scale-up.

  14. Membrane-less hybrid flow battery based on low-cost elements

    Science.gov (United States)

    Leung, P. K.; Martin, T.; Shah, A. A.; Mohamed, M. R.; Anderson, M. A.; Palma, J.

    2017-02-01

    The capital cost of conventional redox flow batteries is relatively high (>USD 200/kWh) due to the use of expensive active materials and ion-exchange membranes. This paper presents a membrane-less hybrid organic-inorganic flow battery based on the low-cost elements zinc (92.7% with the use of carbon felt electrodes. In the presence of a fully oxidized active species close to its solubility limit, dissolution of the deposited anode is relatively slow (<2.37 g h-1 cm-2) with an equivalent corrosion current density of <1.9 mA cm-2. In a parallel plate flow configuration, the resulting battery was charge-discharge cycled at 30 mA cm-2 with average coulombic and energy efficiencies of c.a. 71.8 and c.a. 42.0% over 20 cycles, respectively.

  15. Aging in chemically prepared divalent silver oxide electrodes for silver/zinc reserve batteries

    Science.gov (United States)

    Smith, David F.; Brown, Curtis

    The instability of silver(II) oxide electrodes used in silver/zinc reserve batteries is the well known cause of capacity loss and delayed activation in reserve batteries after they are stored in the dry, unactivated state for extended periods of time. Metal contaminants in sintered/electroformed electrodes destabilize the oxide and the solid state reaction between AgO and elemental silver results in the formation of the lower capacity monovalent oxide Ag 2O. Chemically prepared (CP) AgO can be used to avoid the metal contaminants and to minimize the interfacial contact area between AgO and Ag, thus minimizing the affects of aging on the electrodes. Electrodes were fabricated with CP AgO and polytetrafluoroethylene (PTFE) binder and expanded silver metal current collectors. Experimentally, both electrode active material compacts (AgO and binder only) and electrodes complete with AgO/binder and silver current collector were tested to evaluate the influence of the current collector on aging. The electrode samples were discharged at a constant rate of 50 mA cm -2 before and after storage at 60°C for 21 days as well as after storage at room ambient temperature conditions for 91 months. The results indicate that the affects of aging upon the AgO/binder compacts are insignificant for long term storage at room temperature. However, thermally accelerated aging at high temperature (60°C) affects both transient and stabilized load voltage as well as capacity. In terms of capacity, the AgO/binder mix itself looses about 5% capacity after 21 days dry storage at 60°C while electrodes complete with current collector loose about 8%. The 60% increase in capacity loss is attributed to the solid state reaction between AgO and elemental silver.

  16. X-ray Absorption Measurements on Nickel Cathode of Sodium-beta Alumina batteries: Fe-Ni-CI Chemical Associations

    Energy Technology Data Exchange (ETDEWEB)

    Bowden, Mark E.; Alvine, Kyle J.; Fulton, John L.; Lemmon, John P.; Lu, Xiaochuan; Webb-Robertson, Bobbie-Jo M.; Heald, Steve M.; Balasubramanian, Mahalingam; Mortensen, Devon R.; Seidler, Gerald T.; Hess, Nancy J.

    2014-02-01

    Sections of Na-Al-NiCl2 cathodes from sodium-beta alumina ZEBRA batteries have been characterized with X-ray fluorescence mapping, and XANES measurements to probe the microstructure, elemental correlation, and chemical speciation after voltage cycling. Cycling was performed under identical load conditions at either 240 or 280 °C operating temperature and subsequently quenched in either the charged or discharged state. X-ray fluorescence mapping and XANES measurements were made adjacent to the current collector and β"-Al2O3 solid electrolyte interfaces to detect possible gradients in chemical properties across the cathode. An FeS additive, introduced during battery synthesis, was found to be present as either Fe metal or an Fe(II) chloride in all cathode samples. X-ray fluorescence mapping reveals an operating temperature and charge-state dependent spatial correlation between Fe, Ni, and Cl concentration. XANES measurements indicate that both Ni and Fe are chemically reactive and shift between metallic and chloride phases in the charged and discharged states, respectively. However the percentage of chemically active Ni and Fe is significantly less in the cell operated at lower temperature. Additionally, the cathode appeared chemically homogeneous at the scale of our X-ray measurements.

  17. Analysis of heat generation of lithium ion rechargeable batteries used in implantable battery systems for driving undulation pump ventricular assist device.

    Science.gov (United States)

    Okamoto, Eiji; Nakamura, Masatoshi; Akasaka, Yuhta; Inoue, Yusuke; Abe, Yusuke; Chinzei, Tsuneo; Saito, Itsuro; Isoyama, Takashi; Mochizuki, Shuichi; Imachi, Kou; Mitamura, Yoshinori

    2007-07-01

    We have developed internal battery systems for driving an undulation pump ventricular assist device using two kinds of lithium ion rechargeable batteries. The lithium ion rechargeable batteries have high energy density, long life, and no memory effect; however, rise in temperature of the lithium ion rechargeable battery is a critical issue. Evaluation of temperature rise by means of numerical estimation is required to develop an internal battery system. Temperature of the lithium ion rechargeable batteries is determined by ohmic loss due to internal resistance, chemical loss due to chemical reaction, and heat release. Measurement results of internal resistance (R(cell)) at an ambient temperature of 37 degrees C were 0.1 Omega in the lithium ion (Li-ion) battery and 0.03 Omega in the lithium polymer (Li-po) battery. Entropy change (DeltaS) of each battery, which leads to chemical loss, was -1.6 to -61.1 J/(mol.K) in the Li-ion battery and -9.6 to -67.5 J/(mol.K) in the Li-po battery depending on state of charge (SOC). Temperature of each lithium ion rechargeable battery under a discharge current of 1 A was estimated by finite element method heat transfer analysis at an ambient temperature of 37 degrees C configuring with measured R(cell) and measured DeltaS in each SOC. Results of estimation of time-course change in the surface temperature of each battery coincided with results of measurement results, and the success of the estimation will greatly contribute to the development of an internal battery system using lithium ion rechargeable batteries.

  18. Structural interpretation of chemically synthesized ZnO nanorod and its application in lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Samapti; Sain, Sumanta [Materials Science Division, Department of Physics, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal (India); Yoshio, Masaki [Advanced Research and Education Centre, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan); Kar, Tanusree [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal (India); Gunawardhana, Nanda, E-mail: nandagunawardhana@pdn.ac.lk [International Research Centre, Senate Building, University of Peradeniya, Peradeniya 20400 (Sri Lanka); Pradhan, Swapan Kumar, E-mail: skpradhan@phys.buruniv.ac.in [Materials Science Division, Department of Physics, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal (India)

    2015-02-28

    Graphical abstract: - Highlights: • ZnO nanorods are synthesized at room temperature via a simple chemical route. • Growth direction of ZnO nanorods has been determined along 〈0 0 2〉. • ZnO nanorods constructed anode shows a high discharge capacity in first cycle. • It retains good reversible capacity compared to other ZnO morphologies. - Abstract: ZnO nanorods are synthesized at room temperature via a simple chemical route without using any template or capping agent and its importance is evaluated as a suitable candidate for anode material in lithium ion battery. Structural and microstructure characterizations of these nanorods are made by analyzing the X-ray diffraction data employing the Rietveld method of powder structure refinement. It reveals that the ZnO nanorods are grown up with a preferred orientation and elongated along 〈0 0 2〉. FESEM images reveal that these uniform cylindrical shaped nanorods are of different lengths and diameters. These synthesized ZnO nanorods are tested as an anode material for lithium ion batteries. The nano grain size of the ZnO rods results in less volume expansion and/or contraction during the alloying/de-alloying process and causes in good cyclability. In addition, synthesized ZnO nanorods deliver high charge/discharge capacities compared to other reported ZnO materials.

  19. Chemical Extraction Preparation of Delithiated Cathode Materials of Li-ion Battery

    Institute of Scientific and Technical Information of China (English)

    YAN Shijian; ZHANG Mingang; CHAI Yuesheng; TIAN Wenhuai

    2009-01-01

    A method of conventional chemical reaction to prepare delithiated cathode materials of Li-ion battery was introduced.The cathode material of Li-ion battery was mixed with oxidizing agent Na_2S_2O_8 in water solution,and the solution was stirred continuously to make the chemical re-action proceed sufficiently,then the reaction product was filtered and finally the insoluble delithiated cathode material was obtained.A series of tests were conducted to verify the composition,crystal structure and electrochemical property of the delithiated cathode materials were all desirable.This method overcomes the shortcomings of battery charging preparation and chemical extraction prepa-ration employing other oxidizing agents.

  20. Primary and secondary battery consumption trends in Sweden 1996–2013: Method development and detailed accounting by battery type

    Energy Technology Data Exchange (ETDEWEB)

    Patrício, João, E-mail: joao.patricio@chalmers.se [Department of Civil and Environmental Engineering, Chalmers University of Technology, 412 96 Gothenburg (Sweden); Kalmykova, Yuliya; Berg, Per E.O.; Rosado, Leonardo [Department of Civil and Environmental Engineering, Chalmers University of Technology, 412 96 Gothenburg (Sweden); Åberg, Helena [The Faculty of Education, University of Gothenburg, 40530 Gothenburg (Sweden)

    2015-05-15

    Highlights: • Developed MFA method was validated by the national statistics. • Exponential increase of EEE sales leads to increase in integrated battery consumption. • Digital convergence is likely to be a cause for primary batteries consumption decline. • Factors for estimation of integrated batteries in EE are provided. • Sweden reached the collection rates defined by European Union. - Abstract: In this article, a new method based on Material Flow Accounting is proposed to study detailed material flows in battery consumption that can be replicated for other countries. The method uses regularly available statistics on import, industrial production and export of batteries and battery-containing electric and electronic equipment (EEE). To promote method use by other scholars with no access to such data, several empirically results and their trends over time, for different types of batteries occurrence among the EEE types are provided. The information provided by the method can be used to: identify drivers of battery consumption; study the dynamic behavior of battery flows – due to technology development, policies, consumers behavior and infrastructures. The method is exemplified by the study of battery flows in Sweden for years 1996–2013. The batteries were accounted, both in units and weight, as primary and secondary batteries; loose and integrated; by electrochemical composition and share of battery use between different types of EEE. Results show that, despite a fivefold increase in the consumption of rechargeable batteries, they account for only about 14% of total use of portable batteries. Recent increase in digital convergence has resulted in a sharp decline in the consumption of primary batteries, which has now stabilized at a fairly low level. Conversely, the consumption of integrated batteries has increased sharply. In 2013, 61% of the total weight of batteries sold in Sweden was collected, and for the particular case of alkaline manganese

  1. Chemical elements in invertebrate orders for environmental quality studies

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes, Marcelo R.L.; Franca, Elvis J.; Paiva, Jose D.S.; Hazin, Clovis A., E-mail: marcelo_rlm@hotmail.com, E-mail: ejfranca@cnen.gov.br, E-mail: dan-paiva@hotmail.com, E-mail: chazin@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Fonseca, Felipe Y.; Fernandes, Elisabete A. de Nadai; Bacchi, Marcio A., E-mail: felipe-yamada@hotmail.com, E-mail: lis@cena.usp.br, E-mail: mabacchi@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil)

    2013-07-01

    Among the biomonitors of environmental quality, there is a lack of studies on using invertebrates to evaluate quantitatively chemical elements in ecosystems. This group of animals is quite numerous, widely distributed and adaptable to the most diverse environmental conditions. These features are very useful for the environmental quality assessment, as well as the several occurring insect-plant interactions performing essential functions in ecosystems. The objective of this work is to study the variability of chemical composition of invertebrate orders for using in environmental quality monitoring studies. Instrumental neutron activation analysis - INAA was applied to determine some nutrients and trace elements in invertebrate samples. Sampling by pitfall traps was carried out in riverine ecosystems from the urban area from the Piracicaba Municipality, State of Sao Paulo, Brazil. Invertebrate and reference material samples were irradiated in the nuclear research reactor IEA-R1, Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN. Fragments of a Ni-Cr alloy were irradiated for monitoring the thermal neutron flux. Hymenoptera order was considered the most representative according to the total number of sampled species (about 60%). Significant amounts of Ba, Br, Fe and Sc were found in invertebrates of the order Opiliones. Potassium, rubidium and zinc were highly accumulated in species from Blattodea order, indicating a consistent pattern of accumulation for this invertebrate order. Taking into account the abundance of Hymenoptera order, the chemical composition of its species was significant different at the 95% confidence level for Br and Na in the sampled locals. (author)

  2. An Alternate Graphical Representation of Periodic table of Chemical Elements

    OpenAIRE

    Abubakr, Mohd

    2009-01-01

    Periodic table of chemical elements symbolizes an elegant graphical representation of symmetry at atomic level and provides an overview on arrangement of electrons. It started merely as tabular representation of chemical elements, later got strengthened with quantum mechanical description of atomic structure and recent studies have revealed that periodic table can be formulated using SO(4,2)* SU(2) group. IUPAC, the governing body in Chemistry, doesn't approve any periodic table as a standard...

  3. A finite element simulation on transient large deformation and mass diffusion in electrodes for lithium ion batteries

    Science.gov (United States)

    An, Yonghao; Jiang, Hanqing

    2013-10-01

    Lithium-ion batteries have attracted great deal of attention recently. Silicon is one of the most promising anode materials for high-performance lithium-ion batteries, due to its highest theoretical specific capacity. However, the short lifetime confined by mechanical failure in the silicon anode is now considered to be the biggest challenge in desired applications. High stress induced by the huge volume change due to lithium insertion/extraction is the main reason underlying this problem. Some theoretical models have been developed to address this issue. In order to properly implement these models, we develop a finite element based numerical method using a commercial software package, ABAQUS, as a platform at the continuum level to study fully coupled large deformation and mass diffusion problem. Using this method, large deformation, elasticity-plasticity of the electrodes, various spatial and temporal conditions, arbitrary geometry and dimension could be fulfilled. The interaction between anode and other components of the lithium ion batteries can also be studied as an integrated system. Several specific examples are presented to demonstrate the capability of this numerical platform.

  4. Chemical Fabrication and Electrochemical Characterization of Graphene Nanosheets Using a Lithium Battery Platform

    Science.gov (United States)

    Blake, Aaron J.; Huang, Hong

    2015-01-01

    Graphene has opened up new opportunities for scientific and technological innovations because of its astonishing electrical, mechanical, chemical, and thermal properties. For instance, graphene-based nanocomposites have found extensive applications in Li-ion batteries (LIBs) as scientists and engineers seek to achieve superior electrochemical…

  5. Why Do Lithium-Oxygen Batteries Fail: Parasitic Chemical Reactions and Their Synergistic Effect.

    Science.gov (United States)

    Yao, Xiahui; Dong, Qi; Cheng, Qingmei; Wang, Dunwei

    2016-09-12

    As an electrochemical energy-storage technology with the highest theoretical capacity, lithium-oxygen batteries face critical challenges in terms of poor stabilities and low charge/discharge round-trip efficiencies. It is generally recognized that these issues are connected to the parasitic chemical reactions at the anode, electrolyte, and cathode. While the detailed mechanisms of these reactions have been studied separately, the possible synergistic effects between these reactions remain poorly understood. To fill in the knowledge gap, this Minireview examines literature reports on the parasitic chemical reactions and finds the reactive oxygen species a key chemical mediator that participates in or facilitates nearly all parasitic chemical reactions. Given the ubiquitous presence of oxygen in all test cells, this finding is important. It offers new insights into how to stabilize various components of lithium-oxygen batteries for high-performance operations and how to eventually materialize the full potentials of this promising technology.

  6. Chemical and nuclear properties of Rutherfordium (Element 104)

    Energy Technology Data Exchange (ETDEWEB)

    Kacher, C.D.

    1995-10-30

    The chemical-properties of rutherfordium (Rf) and its group 4 homologs were studied by sorption on glass support surfaces coated with cobalt(II)ferrocyanide and by solvent extraction with tributylphosphate (TBP) and triisooctylamine (TIOA). The surface studies showed that the hydrolysis trend in the group 4 elements and the pseudogroup 4 element, lb, decreases in the order Rf>Zr{approx}Hf>Th. This trend was attributed to relativistic effects which predicted that Rf would be more prone to having a coordination number of 6 than 8 in most aqueous solutions due to a destabilization of the 6d{sub 5/2} shell and a stabilization of the 7p{sub l/2} shell. This hydrolysis trend was confirmed in the TBP/HBr solvent extraction studies which showed that the extraction trend decreased in the order Zr>Hf>Rf?Ti for HBr, showing that Rf and Ti did not extract as well because they hydrolyzed more easily than Zr and Hf. The TIOA/HF solvent extraction studies showed that the extraction trend for the group 4 elements decreased in the order Ti>Zr{approx}Hf>Rf, in inverse order from the trend of ionic radii Rf>Zr{approx}Hf>Ti. An attempt was made to produce {sup 263}Rf (a) via the {sup 248}Cm({sup 22}Ne, {alpha}3n) reaction employing thenoyltrifluoroacetone (TTA) solvent extraction chemistry and (b) via the {sup 249}Bk({sup 18}O,4n) reaction employing the Automated Rapid Chemistry Apparatus (ARCA). In the TTA studies, 16 fissions were observed but were all attributed to {sup 256}Fm. No alpha events were observed in the Rf chemical fraction. A 0.2 nb upper limit production cross section for the {sup 248}Cm({sup 22}Ne, {alpha}3n){sup 263}Rf reaction was calculated assuming the 500-sec half-life reported previously by Czerwinski et al. [CZE92A].

  7. Correlation Between Chemical Element Contents in Tree Rings and Soils

    Institute of Scientific and Technical Information of China (English)

    QIANJUN-LONG; KESHAN-ZHE; 等

    1993-01-01

    The annual growth rings of ten trees and the soils near the tree roots were sampled from the mining ares of lead-and zinc-dominant metals in the Xixia Mountain,Nanjing,for the determination of chemical element contents.The study results showed that the elemental contents in the tree rings were correlated with those in the soils,i.e.,the elemental contents in the tree rings increased with those in the soils,even in the cases of different environments and different tree species.Therefore,a time-concentration sequence could be set up on the basis of determining the elemental contents in the successive annual growth rings of trees to qualitatively reflect the annual variations of relevant elements in the soils,and a time-concentration sequence of elemental contents in soils could also be established in terms of related model to reproduce the dynamic changes of the surroundings.

  8. Functional Observational Battery Testing for Nervous System Effects of Drugs and Other Chemicals

    Science.gov (United States)

    Screening for behavioral toxicity, or neurotoxicity, has become standard practice in preclinical safety pharmacology and toxicology. Behavior represents the integrated sum of activities mediated by the nervous system. Current screening batteries, such as the functional observat...

  9. High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements

    Science.gov (United States)

    Orikasa, Yuki; Masese, Titus; Koyama, Yukinori; Mori, Takuya; Hattori, Masashi; Yamamoto, Kentaro; Okado, Tetsuya; Huang, Zhen-Dong; Minato, Taketoshi; Tassel, Cédric; Kim, Jungeun; Kobayashi, Yoji; Abe, Takeshi; Kageyama, Hiroshi; Uchimoto, Yoshiharu

    2014-07-01

    Rechargeable magnesium batteries are poised to be viable candidates for large-scale energy storage devices in smart grid communities and electric vehicles. However, the energy density of previously proposed rechargeable magnesium batteries is low, limited mainly by the cathode materials. Here, we present new design approaches for the cathode in order to realize a high-energy-density rechargeable magnesium battery system. Ion-exchanged MgFeSiO4 demonstrates a high reversible capacity exceeding 300 mAh.g-1 at a voltage of approximately 2.4 V vs. Mg. Further, the electronic and crystal structure of ion-exchanged MgFeSiO4 changes during the charging and discharging processes, which demonstrates the (de)insertion of magnesium in the host structure. The combination of ion-exchanged MgFeSiO4 with a magnesium bis(trifluoromethylsulfonyl)imide-triglyme electrolyte system proposed in this work provides a low-cost and practical rechargeable magnesium battery with high energy density, free from corrosion and safety problems.

  10. Chemical analysis of solid materials by a LIMS instrument designed for space research: 2D elemental imaging, sub-nm depth profiling and molecular surface analysis

    Science.gov (United States)

    Moreno-García, Pavel; Grimaudo, Valentine; Riedo, Andreas; Neuland, Maike B.; Tulej, Marek; Broekmann, Peter; Wurz, Peter

    2016-04-01

    Direct quantitative chemical analysis with high lateral and vertical resolution of solid materials is of prime importance for the development of a wide variety of research fields, including e.g., astrobiology, archeology, mineralogy, electronics, among many others. Nowadays, studies carried out by complementary state-of-the-art analytical techniques such as Auger Electron Spectroscopy (AES), X-ray Photoelectron Spectroscopy (XPS), Secondary Ion Mass Spectrometry (SIMS), Glow Discharge Time-of-Flight Mass Spectrometry (GD-TOF-MS) or Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) provide extensive insight into the chemical composition and allow for a deep understanding of processes that might have fashioned the outmost layers of an analyte due to its interaction with the surrounding environment. Nonetheless, these investigations typically employ equipment that is not suitable for implementation on spacecraft, where requirements concerning weight, size and power consumption are very strict. In recent years Laser Ablation/Ionization Mass Spectrometry (LIMS) has re-emerged as a powerful analytical technique suitable not only for laboratory but also for space applications.[1-3] Its improved performance and measurement capabilities result from the use of cutting edge ultra-short femtosecond laser sources, improved vacuum technology and fast electronics. Because of its ultimate compactness, simplicity and robustness it has already proven to be a very suitable analytical tool for elemental and isotope investigations in space research.[4] In this contribution we demonstrate extended capabilities of our LMS instrument by means of three case studies: i) 2D chemical imaging performed on an Allende meteorite sample,[5] ii) depth profiling with unprecedented sub-nm vertical resolution on Cu electrodeposited interconnects[6,7] and iii) preliminary molecular desorption of polymers without assistance of matrix or functionalized substrates.[8] On the whole

  11. FINITE ELEMENT METHOD AND ANALYSIS FOR CHEMICAL-FLOODING SIMULATION

    Institute of Scientific and Technical Information of China (English)

    YUAN Yirang

    2000-01-01

    This article discusses the enhanced oil recovery numerical simulation of the chemical-flooding (such as surfactants, alcohol, polymers) composed of three-dimensional multicomponent, multiphase and incompressible mixed fluids. The mathematical model can be described as a coupled system of nonlinear partial differential equations with initialboundary value problems. From the actual conditions such as the effect of cross interference and the three-dimensional characteristic of large-scale science-engineering computation, this article puts forward a kind of characteristic finite element fractional step schemes and obtain the optimal order error estimates in L2 norm. Thus we have thoroughly solved the well-known theoretical problem proposed by a famous scientist, R. E. Ewing.

  12. An Educational Card Game for Learning Families of Chemical Elements

    Science.gov (United States)

    Mariscal, Antonio Joaquin Franco; Martinez, Jose Maria Oliva; Marquez, Serafin Bernal

    2012-01-01

    This paper describes an educational card game designed to help high school students (grade 10, 15-16 years old) "understand," as opposed to memorize, the periodic table. The game may also be used to identify different chemical elements found in daily life objects. As an additional value, students learn the names and symbols of the displayed…

  13. PETROS - Worldwide Databank of Major Element Chemical Analyses of Igneous Rocks

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — PETROS is a worldwide data bank of major element chemical analyses of igneous rocks compiled for research and teaching purposes by Dr. Felix Mutschler and Staff at...

  14. Chemically Etched Silicon Nanowires as Anodes for Lithium-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    West, Hannah Elise [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-08-01

    This study focused on silicon as a high capacity replacement anode for Lithium-ion batteries. The challenge of silicon is that it expands ~270% upon lithium insertion which causes particles of silicon to fracture, causing the capacity to fade rapidly. To account for this expansion chemically etched silicon nanowires from the University of Maine were studied as anodes. They were built into electrochemical half-cells and cycled continuously to measure the capacity and capacity fade.

  15. A Step-by-Step Design Methodology for a Base Case Vanadium Redox-Flow Battery

    Science.gov (United States)

    Moore, Mark; Counce, Robert M.; Watson, Jack S.; Zawodzinski, Thomas A.; Kamath, Haresh

    2012-01-01

    The purpose of this work is to develop an evolutionary procedure to be used by Chemical Engineering students for the base-case design of a Vanadium Redox-Flow Battery. The design methodology is based on the work of Douglas (1985) and provides a profitability analysis at each decision level so that more profitable alternatives and directions can be…

  16. Pyrometallurgical Extraction of Valuable Elements in Ni-Metal Hydride Battery Electrode Materials

    Science.gov (United States)

    Jiang, Yin-ju; Deng, Yong-chun; Bu, Wen-gang

    2015-10-01

    Gas selective reduction-oxidation (redox) and melting separation were consecutively applied to electrode materials of AB5-type Ni-metal hydride batteries leading to the production of a Ni-Co alloy and slag enriched with rare earth oxides (REO). In the selective redox process, electrode materials were treated with H2/H2O at 1073 K and 1173 K (800 °C and 900 °C). Active elements such as REs, Al, and Mn were oxidized whereas relatively inert elements such as Ni and Co were transformed into their elemental states in the treated materials. SiO2 and Al2O3 powders were added into the treated materials as fluxes which were then melted at 1823 K (1550 °C) to yield a Ni-Co alloy and a REO-SiO2-Al2O3-MnO slag. The high-purity Ni-Co alloy produced can be used as a raw material for AB5-type hydrogen-storage alloy. The REO content in slag was very high, i.e., 48.51 pct, therefore it can be used to recycle rare earth oxides.

  17. Three Packets of Minerals of the Periodic Table of Chemical Elements and Chemical Compounds

    CERN Document Server

    Labushev, Mikhail M

    2013-01-01

    The concepts of alpha- and beta-packets of the periodic table of chemical elements and chemical compounds are defined. The first of the 47 minerals alpha-packets is composed. In it all minerals are arranged in increasing Iav index of proportionality of atomic weights of composing chemical elements, the same way as chemical elements are located in increasing atomic weights in the Periodic table. The packet includes 93 known minerals and two compounds - N2O5 and CO2 - being actually minerals. Beta-packet of oxides and hydroxides minerals includes 88 known minerals and five chemical compounds - N2O5, CO2, CO, SO3 and SO2. Two minerals of the packet have not been determined yet. Besides, beta-packet of minerals with sulfur, selenium or arsenic is composed, with one mineral not defined yet. The results of the calculations can be used for further development of the Periodic Table of Chemical Elements and Chemical Compounds and their properties investigation.

  18. Bragg grating chemical sensor with hydrogel as sensitive element

    Institute of Scientific and Technical Information of China (English)

    Xiaomei Liu(刘小梅); Shilie Zheng(郑史烈); Xianmin Zhang(章献民); Jun Cong(丛军); Kangsheng Chen(陈抗生); Jian Xu(徐坚)

    2004-01-01

    A novel fiber Bragg grating (FBG) based chemical sensor using hydrogel, a swellable polymer, as sensitive element is demonstrated. The sensing mechanism relies on the shift of Bragg wavelength due to the stress resulted from volume change of sensitive swellable hydrogel responding to the change of external environment. A polyacrylamide hydrogel fiber grating chemical sensor is made, and the experiments on its sensitivity to the salinity are performed. The sensitivity is low due to the less stress from the shrinking or swelling of hydrogels. Reducing the cross diameter of the grating through etching with hydrofluoric acid can greatly improve the sensitivity of the sensor.

  19. Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries.

    Science.gov (United States)

    Song, Jiangxuan; Yu, Zhaoxin; Gordin, Mikhail L; Hu, Shi; Yi, Ran; Tang, Duihai; Walter, Timothy; Regula, Michael; Choi, Daiwon; Li, Xiaolin; Manivannan, Ayyakkannu; Wang, Donghai

    2014-11-12

    Room temperature sodium-ion batteries are of great interest for high-energy-density energy storage systems because of low-cost and natural abundance of sodium. Here, we report a novel phosphorus/graphene nanosheet hybrid as a high performance anode for sodium-ion batteries through facile ball milling of red phosphorus and graphene stacks. The graphene stacks are mechanically exfoliated to nanosheets that chemically bond with the surfaces of phosphorus particles. This chemical bonding can facilitate robust and intimate contact between phosphorus and graphene nanosheets, and the graphene at the particle surfaces can help maintain electrical contact and stabilize the solid electrolyte interphase upon the large volume change of phosphorus during cycling. As a result, the phosphorus/graphene nanosheet hybrid nanostructured anode delivers a high reversible capacity of 2077 mAh/g with excellent cycling stability (1700 mAh/g after 60 cycles) and high Coulombic efficiency (>98%). This simple synthesis approach and unique nanostructure can potentially be applied to other phosphorus-based alloy anode materials for sodium-ion batteries.

  20. Geothermal chemical elements in lichens of Yellowstone National Park

    Science.gov (United States)

    Bennett, J.P.; Wetmore, C.M.

    1999-01-01

    Geothermal features (e.g. geysers, fumaroles, vents, and springs) emit gaseous mercury, sulfur and heavy metals and therefore, are natural sources of these elements in the atmosphere. Field studies of heavy metals in lichens in Italy have detected elevated concentrations near geothermal power plants, and have determined that the origin of mercury is from soil degassing, not soil particles. We studied this phenomenon in a geothermal area without power plants to determine the natural levels of mercury and other elements. Two common and abundant species of epiphytic Lichens, Bryoria fremontii and Letharia vulpina, were collected at six localities in Yellowstone National Park, USA in 1998 and analyzed for 22 chemical elements. Thirteen elements differed significantly between species. Some elements were significantly higher in the southern part of the park, while others were higher in the north. Levels of most elements were comparable with those in other national parks and wilderness areas in the region, except Hg, which was unusually high. The most likely sources of this element are the geothermal features, which are known emitters of Hg. Multivariate analyses revealed strong positive associations of Hg with S, and negative associations with soil elements, providing strong evidence that the Hg in the lichens is the result of soil degassing of elemental Hg rather than particulate Hg directly from soils. Average Hg levels in the lichens were 140 p.p.b. in Bryoria and 110 p.p.b. in Letharia, but maxima were 291 and 243 p.p.b., respectively. In spite of this, both species were healthy and abundant throughout the park.

  1. A facile chemical route for recovery of high quality zinc oxide nanoparticles from spent alkaline batteries.

    Science.gov (United States)

    Deep, Akash; Sharma, Amit L; Mohanta, Girish C; Kumar, Parveen; Kim, Ki-Hyun

    2016-05-01

    Recycling of spent domestic batteries has gained a great environmental significance. In the present research, we propose a new and simple technique for the recovery of high-purity zinc oxide nanoparticles from the electrode waste of spent alkaline Zn-MnO2 batteries. The electrode material was collected by the manual dismantling and mixed with 5M HCl for reaction with a phosphine oxide reagent Cyanex 923® at 250°C for 30min. The desired ZnO nanoparticles were restored from the Zn-Cyanex 923 complex through an ethanolic precipitation step. The recovered particle product with about 5nm diameter exhibited fluorescent properties (emission peak at 400nm) when excited by UV radiation (excitation energy of 300nm). Thus, the proposed technique offered a simple and efficient route for recovering high purity ZnO nanoparticles from spent alkaline batteries.

  2. A simple and general method for solving detailed chemical evolution with delayed production of iron and other chemical elements

    CERN Document Server

    Vincenzo, Fiorenzo; Spitoni, Emanuele

    2016-01-01

    In this Letter, we present a new theoretical method for solving the chemical evolution of galaxies, by assuming the instantaneous recycling approximation for chemical elements restored by massive stars and the Delay Time Distribution formalism for the delayed chemical enrichment by Type Ia Supernovae. The galaxy gas mass assembly history, together with the assumed stellar yields and initial mass function, represent the starting point of this method. We derive a very simple and general equation which closely relates the Laplace transforms of the galaxy gas accretion and star formation history, which can be used to simplify the problem of retrieving these quantities in most of current galaxy evolution models. We find that - once the galaxy star formation history has been reconstructed from our assumptions - the differential equation for the evolution of the chemical element $X$ can be suitably solved with classical methods. We apply our model to reproduce the $[\\text{O/Fe}]$ and $[\\text{Si/Fe}]$ vs. $[\\text{Fe/...

  3. Wet Chemical Synthesis of Graphene for Battery Applications

    OpenAIRE

    Johansen, Ida

    2014-01-01

    In this thesis, an improved Hummers method is used to produce graphene oxide, while thermal treatment has been used as the reduction process to form reduced graphene oxide. This modified version of Hummers method differs from the original one by the exclusion of NaNO3. This modification eliminates the evolution of NO2/N2O4 toxic gasses.Several syntheses are done, where parameters such as particle size and oxidation time are varied. In addition, the thermal reduction process has also been inv...

  4. Reductive dechlorination of TCE by chemical model systems in comparison to dehalogenating bacteria: insights from dual element isotope analysis (13C/12C, 37Cl/35Cl).

    Science.gov (United States)

    Cretnik, Stefan; Thoreson, Kristen A; Bernstein, Anat; Ebert, Karin; Buchner, Daniel; Laskov, Christine; Haderlein, Stefan; Shouakar-Stash, Orfan; Kliegman, Sarah; McNeill, Kristopher; Elsner, Martin

    2013-07-02

    Chloroethenes like trichloroethene (TCE) are prevalent environmental contaminants, which may be degraded through reductive dechlorination. Chemical models such as cobalamine (vitamin B12) and its simplified analogue cobaloxime have served to mimic microbial reductive dechlorination. To test whether in vitro and in vivo mechanisms agree, we combined carbon and chlorine isotope measurements of TCE. Degradation-associated enrichment factors ε(carbon) and ε(chlorine) (i.e., molecular-average isotope effects) were -12.2‰ ± 0.5‰ and -3.6‰ ± 0.1‰ with Geobacter lovleyi strain SZ; -9.1‰ ± 0.6‰ and -2.7‰ ± 0.6‰ with Desulfitobacterium hafniense Y51; -16.1‰ ± 0.9‰ and -4.0‰ ± 0.2‰ with the enzymatic cofactor cobalamin; -21.3‰ ± 0.5‰ and -3.5‰ ± 0.1‰ with cobaloxime. Dual element isotope slopes m = Δδ(13)C/ Δδ(37)Cl ≈ ε(carbon)/ε(chlorine) of TCE showed strong agreement between biotransformations (3.4 to 3.8) and cobalamin (3.9), but differed markedly for cobaloxime (6.1). These results (i) suggest a similar biodegradation mechanism despite different microbial strains, (ii) indicate that transformation with isolated cobalamin resembles in vivo transformation and (iii) suggest a different mechanism with cobaloxime. This model reactant should therefore be used with caution. Our results demonstrate the power of two-dimensional isotope analyses to characterize and distinguish between reaction mechanisms in whole cell experiments and in vitro model systems.

  5. 40 CFR 63.302 - Standards for by-product coke oven batteries.

    Science.gov (United States)

    2010-07-01

    ... batteries. 63.302 Section 63.302 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... National Emission Standards for Coke Oven Batteries § 63.302 Standards for by-product coke oven batteries... oven emissions from each affected existing by-product coke oven battery that exceed any of...

  6. EDXRF for determination of chemical elements in the beetle Alphitobius diaperinus

    Energy Technology Data Exchange (ETDEWEB)

    Cantinha, Rebeca S.; Farias, Emerson E.G. de; Magalhaes, Marcelo L.R. de; Franca, Elvis J. de, E-mail: rebecanuclear@gmail.com, E-mail: emersonemiliano@yahoo.com.br, E-mail: marcelo_rlm@hotmail.com, E-mail: ejfranca@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Cunha, Franklin M. da; Zacarias, Vyvyane L., E-mail: ukento@yahoo.com.br, E-mail: vyvyanebiologicas@gmail.com [Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE (Brazil)

    2015-07-01

    Energy Dispersion X-Ray Fluorescence (EDXRF) spectrometry has been widely employed for chemical element determination of biological matrices, including insects. The beetle Alphitobius diaperinus is a major problem in poultry production, thereby infesting poultry litter and stored grains. Up to now, little is known about the behavior, physiology and environmental interactions of this insect. In this paper, EDXRF was applied to quantify the main chemical elements in A. diaperinus. For the quality of the analytical protocol, certified reference materials produced by National Institute of Standards and Technology - NIST were analyzed together with the samples. The technique was able to quantify Cl, P, S and Zn in this insect, presenting no significant variation at the 95% confidence level among the repetitions (n = 4). A different pattern of chemical element accumulation in this beetle was noticed compared to other Coleoptera species, in which the concentration of the chemical elements were markedly lower in A. diaperinus, probably associated to the restricted availability of chemical elements in food. Since no result has been found in the literature before, A. diaperinus was firstly chemically characterized in this paper. (author)

  7. A Desalination Battery

    KAUST Repository

    Pasta, Mauro

    2012-02-08

    Water desalination is an important approach to provide fresh water around the world, although its high energy consumption, and thus high cost, call for new, efficient technology. Here, we demonstrate the novel concept of a "desalination battery", which operates by performing cycles in reverse on our previously reported mixing entropy battery. Rather than generating electricity from salinity differences, as in mixing entropy batteries, desalination batteries use an electrical energy input to extract sodium and chloride ions from seawater and to generate fresh water. The desalination battery is comprised by a Na 2-xMn 5O 10 nanorod positive electrode and Ag/AgCl negative electrode. Here, we demonstrate an energy consumption of 0.29 Wh l -1 for the removal of 25% salt using this novel desalination battery, which is promising when compared to reverse osmosis (∼ 0.2 Wh l -1), the most efficient technique presently available. © 2012 American Chemical Society.

  8. Rare Earth Elements-Doped LiCoO2 Cathode Material for Lithium-Ion Batteries

    Institute of Scientific and Technical Information of China (English)

    魏进平; 曹晓燕; 潘桂玲; 叶茂; 阎杰

    2003-01-01

    Some compounds of LiCo1-xRExO2 (RE=rare earth elements and x=0.01~0.03) were prepared by doping rare earth elements to LiCoO2 via solid state synthesis. The microstructure characteristics of the LiCo1-xRExO2 were investigated by XRD. It was found that the lattice parameters c are increased and the lattice volumes are enlarged compared to that of LiCoO2. Moreover, the performance of LiCo1-xRExO2 as the cathode material in lithium ion battery is improved, especially LiCo1-xYxO2 and LiCo1-xLaxO2. The initial charge/discharge capacities of LiCo0.99Y0.01O2 and LiCo0.99La0.01O2 are 174/154 (mAh*g-1) and 159/149 (mAh*g-1) respectively, while those for LiCoO2 working in the same way are only 139/131 (mAh*g-1).

  9. On the occurrence of metallic character in the periodic table of the chemical elements.

    Science.gov (United States)

    Hensel, Friedrich; Slocombe, Daniel R; Edwards, Peter P

    2015-03-13

    The classification of a chemical element as either 'metal' or 'non-metal' continues to form the basis of an instantly recognizable, universal representation of the periodic table (Mendeleeff D. 1905 The principles of chemistry, vol. II, p. 23; Poliakoff M. & Tang S. 2015 Phil. Trans. R. Soc. A 373: , 20140211). Here, we review major, pre-quantum-mechanical innovations (Goldhammer DA. 1913 Dispersion und Absorption des Lichtes; Herzfeld KF. 1927 Phys. Rev. 29: , 701-705) that allow an understanding of the metallic or non-metallic status of the chemical elements under both ambient and extreme conditions. A special emphasis will be placed on recent experimental advances that investigate how the electronic properties of chemical elements vary with temperature and density, and how this invariably relates to a changing status of the chemical elements. Thus, the prototypical non-metals, hydrogen and helium, becomes metallic at high densities; and the acknowledged metals, mercury, rubidium and caesium, transform into their non-metallic forms at low elemental densities. This reflects the fundamental fact that, at temperatures above the absolute zero of temperature, there is therefore no clear dividing line between metals and non-metals. Our conventional demarcation of chemical elements as metals or non-metals within the periodic table is of course governed by our experience of the nature of the elements under ambient conditions. Examination of these other situations helps us to examine the exact divisions of the chemical elements into metals and non-metals (Mendeleeff D. 1905 The principles of chemistry, vol. II, p. 23).

  10. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries.

    Science.gov (United States)

    Lin, Feng; Markus, Isaac M; Nordlund, Dennis; Weng, Tsu-Chien; Asta, Mark D; Xin, Huolin L; Doeff, Marca M

    2014-03-27

    The present study sheds light on the long-standing challenges associated with high-voltage operation of LiNi(x)Mn(x)Co(1-2x)O2 cathode materials for lithium-ion batteries. Using correlated ensemble-averaged high-throughput X-ray absorption spectroscopy and spatially resolved electron microscopy and spectroscopy, here we report structural reconstruction (formation of a surface reduced layer, to transition) and chemical evolution (formation of a surface reaction layer) at the surface of LiNi(x)Mn(x)Co(1-2x)O2 particles. These are primarily responsible for the prevailing capacity fading and impedance buildup under high-voltage cycling conditions, as well as the first-cycle coulombic inefficiency. It was found that the surface reconstruction exhibits a strong anisotropic characteristic, which predominantly occurs along lithium diffusion channels. Furthermore, the surface reaction layer is composed of lithium fluoride embedded in a complex organic matrix. This work sets a refined example for the study of surface reconstruction and chemical evolution in battery materials using combined diagnostic tools at complementary length scales.

  11. Study on the improved reliability and safety of lithium batteries by the use of electrochemical noise measurement, volume 1

    Science.gov (United States)

    Nip, Wing S.; Patraboy, Timothy J.; Anderson, James S.; Rodgers, Geoff; Farrington, Michael D.

    1992-02-01

    Investigations were conducted into the applicability of electrochemical noise measurement as a tool for diagnosing the state of health and state of charge in lithium batteries. Electrochemical noise is understood to mean the alternating current component of an otherwise direct current measured at the external terminals of the battery, especially random or periodic fluctuations at a microscopic level. A survey of ten commercial primary lithium cell products included three chemical systems (SO2, SOCl2, and MnO2) in a variety of sizes from coin cells to D size from several manufacturers. The cells were subjected to a systematic study of the relationship between noise and rate of discharge, temperature of discharge, temperature cycling, high temperature storage, and vibration exposure. Noise measurements were paralleled with alternating current impedance measurements for comparison. It became clear during the investigations that when a noise measurement identified a cell that was significantly different from the norm, it was a bad cell that would fail to deliver its rated capacity or would present a safety hazard. Often changes in the noise from a given cell were accompanied by changes in some impedance parameters; these changes appeared to be related. Noise measurements were sensitive to many elements of the cell history.

  12. Summaries of FY 1993 research in the chemical sciences

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The summaries in photochemical and radiation sciences, chemical physics, atomic physics, chemical energy, separations and analysis, heavy element chemistry, chemical engineering sciences, and advanced battery technology are arranged according to national laboratories and offsite institutions. Small business innovation research projects are also listed. Special facilities supported wholly or partly by the Division of Chemical Sciences are described. Indexes are provided for selected topics of general interest, institutions, and investigators.

  13. Theoretical study of the electronic structure of f-element complexes by quantum chemical methods; Analyse de la structure electronique des complexes contenant des elements F par des methodes de la chimie quantique

    Energy Technology Data Exchange (ETDEWEB)

    Vetere, V

    2002-09-15

    This thesis is related to comparative studies of the chemical properties of molecular complexes containing lanthanide or actinide trivalent cations, in the context of the nuclear waste disposal. More precisely, our aim was a quantum chemical analysis of the metal-ligand bonding in such species. Various theoretical approaches were compared, for the inclusion of correlation (density functional theory, multiconfigurational methods) and of relativistic effects (relativistic scalar and 2-component Hamiltonians, relativistic pseudopotentials). The performance of these methods were checked by comparing computed structural properties to published experimental data, on small model systems: lanthanide and actinide tri-halides and on X{sub 3}M-L species (X=F, Cl; M=La, Nd, U; L = NH{sub 3}, acetonitrile, CO). We have thus shown the good performance of density functionals combined with a quasi-relativistic method, as well as of gradient-corrected functionals associated with relativistic pseudopotentials. In contrast, functionals including some part of exact exchange are less reliable to reproduce experimental trends, and we have given a possible explanation for this result . Then, a detailed analysis of the bonding has allowed us to interpret the discrepancies observed in the structural properties of uranium and lanthanides complexes, based on a covalent contribution to the bonding, in the case of uranium(III), which does not exist in the lanthanide(III) homologues. Finally, we have examined more sizeable systems, closer to experimental species, to analyse the influence of the coordination number, of the counter-ions and of the oxidation state of uranium, on the metal-ligand bonding. (author)

  14. Chemical and microstructural transformations in lithium iron phosphate battery electrodes following pulsed laser exposure

    Energy Technology Data Exchange (ETDEWEB)

    Lutey, Adrian H.A., E-mail: adrian.lutey2@unibo.it [DIN, Università di Bologna, viale Risorgimento, 2, Bologna (Italy); Fiorini, Maurizio [DICAM, Università di Bologna, via Terracini, 28, Bologna (Italy); Fortunato, Alessandro; Ascari, Alessandro [DIN, Università di Bologna, viale Risorgimento, 2, Bologna (Italy)

    2014-12-15

    Highlights: • Lithium iron phosphate battery electrodes are exposed to pulsed laser radiation. • Raman spectroscopy is performed on regions approaching the incisions and cuts. • Chemical and microstructural changes in the active electrode layers are limited to the visible HAZ. • Some oxidation and degradation of the olive LiFePO{sub 4} cathode active material takes place in the HAZ. • The anode polycrystalline graphite structure becomes less ordered (higher D/G ratio) in the HAZ. - Abstract: Multi-layer lithium iron phosphate (LFP) battery electrodes are exposed to nanosecond pulsed laser radiation of wavelength 1064 nm. Test parameters are chosen to achieve characteristic interaction types ranging from partial incision of the active coating layers only to complete penetration of the electrodes with high visual cut quality. Raman spectroscopy is performed on unexposed regions and at points approaching each incision, highlighting changes in chemical composition and microstructure in the heat affected zone (HAZ). Thermogravimetric analysis is performed on the unexposed electrode active materials to distinguish the development of compositional changes under conditions of slow heating below the melting and sublimation temperatures. A brief theoretical description of the physical phenomena taking place during laser exposure is provided in terms of direct ablation during each laser pulse and vaporization or thermal degradation due to conductive heat transfer on a much longer time-scale, with characteristics of the HAZ reported in terms of these changes. For all laser exposures carried out in the study, chemical and microstructural changes are limited to the visible HAZ. Some degree of oxidation and LFP olivine phase degradation is observed in the cathode, while the polycrystalline graphite structure becomes less ordered in the anode. Where complete penetration is achieved, melting of the cathode active layer and combustion of the anode active layer take place

  15. Recycling of waste lead storage battery by vacuum methods.

    Science.gov (United States)

    Lin, Deqiang; Qiu, Keqiang

    2011-07-01

    Waste lead storage battery is the most important recyclable lead material not only in various European and other OECD countries but also in China. Pollution control of lead has become the focus of people's attention in the world. A vacuum process for recycling waste lead storage battery was developed in this work. The experimental results showed that all the valuable materials in waste lead storage battery could be satisfactorily recycled by vacuum technologies. The vacuum melting of lead grids and the vacuum reduction of lead pastes produce the lead bullion with the direct recovery ratio of 96.29% and 98.98%, respectively. The vacuum pyrolysis of plastics can produce pyrolysis oil with yield of more than 93 wt.%. These vacuum recycling technologies offer improvements in metallurgical and environmental performance.

  16. Atlas of Life Elements and Chemical Elements Periodic Table Atlas of Life Elements and Chemical Elements Periodic Table Atlas of Life Elements and Chemical Elements Periodic Table Atlas of Life Elements and Chemical Elements Periodic Table%生命元素图谱与化学元素周期表

    Institute of Scientific and Technical Information of China (English)

    唐志华

    2001-01-01

    A review with 12 references is given on the relation between life elements and chemical elements periodic table including the regularities of actions between trace elements in human body,the fine dynamic equilibrium of substantial exchange between human and environment and the philosphic idea of equilibrum between human life and nature.It points out that the distribution of life elemend in cherical elements pericdic table which is similar to the body form of "the animals with head and buttocks raising"hints the existence of life,and argues that we should notice not only the organic nutrition equlilbrium,but also the inorganic nutrition equlilbrium.The essay is intended to interpret the problems associated with life in chemical language.%旨在用化学语言表达与生命有关的问题。讨论了微量元素与生物体作用的规律性,人体生命元素平衡谱的构成,人与环境间精细的动态的物质交换平衡以及“天人合一”的哲学思想,指出生命元素在元素周期表中昂首翘尾的“近似动物体型”分布潜示生命的存在,提出不仅要注重有机营养平衡,更要注重无机营养平衡的观点。

  17. Elemental composition method for computation and analysis of simultaneous chemical and phase equilibrium

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    An elemental composition method for computation and analysis of simultaneous chemical and phase equilibrium (CPE) of non-ideal mixtures is proposed. The concept of element is defined, the relationship between component composition and elemental composition is derived, and the concept of elemental potential and its physical meaning are further cleared from the view point of thermodynamics. The relationship between chemical potential and elemental potential is derived in the thermodynamic principles, and the computation equations for CPE problem are obtained based on elemental potential. A simple form of necessary and sufficient condition in terms of elemental composition for reactive azeotropes is derived, which takes the same functional form as the condition for azeotropes in non-reactive systems. The element in this note may be atoms, molecules or group radicals. The presented method is applicable to CPE problem of non-ideal mixtures, and the computation can be simplified by the dimension reducing method. The presented method was supplied to compute and analyze CPE problem of several examples and it is found that it is a robust and efficient method.

  18. Chemical Elements Abundance in the Universe and the Origin of Life

    CERN Document Server

    Valkovic, Vlado

    2016-01-01

    Element synthesis which started with p-p chain has resulted in several specific characteristics including lack of any stable isotope having atomic masses 5 or 8. The carbon to oxygen ratio is fixed early by the chain of coincidences. These, remarkably fine-tuned, conditions are responsible for our own existence and indeed the existence of any carbon based life in the Universe. Chemical evolution of galaxies reflects in the changes of chemical composition of stars, interstellar gas and dust. The evolution of chemical element abundances in a galaxy provides a clock for galactic aging. On the other hand, the living matter on the planet Earth needs only some elements for its existence. Compared with element requirements of living matter a hypothesis is put forward, by accepting the Anthropic Principle, which says: life as we know, (H-C-N-O) based, relying on the number of bulk and trace elements originated when two element abundance curves, living matter and galactic, coincided. This coincidence occurring at part...

  19. Features of adsorbed radioactive chemical elements and their isotopes distribution in iodine air filters AU-1500 at nuclear power plants

    CERN Document Server

    Neklyudov, I M; Dikiy, N P; Ledenyov, O P; Lyashko, Yu V

    2013-01-01

    The main aim of research is to investigate the physical features of spatial distribution of the adsorbed radioactive chemical elements and their isotopes in the granular filtering medium in the iodine air filters of the type of AU1500 in the forced exhaust ventilation systems at the nuclear power plant. The gamma activation analysis method is applied to accurately characterize the distribution of the adsorbed radioactive chemical elements and their isotopes in the granular filtering medium in the AU1500 iodine air filter after its long term operation at the nuclear power plant. The typical spectrum of the detected chemical elements and their isotopes in the AU1500 iodine air filter, which was exposed to the bremsstrahlung gamma quantum irradiation, produced by the accelerating electrons in the tantalum target, are obtained. The spatial distributions of the detected chemical element 127I and some other chemical elements and their isotopes in the layer of absorber, which was made of the cylindrical coal granule...

  20. Impact of Seminal Chemical Elements on the Oxidative Balance in Bovine Seminal Plasma and Spermatozoa

    OpenAIRE

    Eva Tvrdá; Norbert Lukáč; Monika Schneidgenová; Jana Lukáčová; Csaba Szabó; Zofia Goc; Agnieszka Greń; Peter Massányi

    2013-01-01

    Mutual relationships between selected chemical elements (Na, K, Fe, Cu, Mg, and Zn), basic motility characteristics (motility and progressive motility), and markers of the oxidative balance (superoxide dismutase, catalase, glutathione, albumin, and malondialdehyde) were investigated in bovine seminal plasma and spermatozoa. Computer assisted sperm analysis was used to assess the motility parameters; mineral concentrations were determined by the voltammetric method and flame absorption spectro...

  1. Charting the known chemical space for non-aqueous Lithium-air battery electrolyte solvents

    CERN Document Server

    Husch, Tamara

    2015-01-01

    The Li-Air battery is a very promising candidate for powering future mobility, but finding a suitable electrolyte solvent for this technology turned out to be a major problem. We present a systematic computational investigation of the known chemical space for possible Li-Air electrolyte solvents. It is shown that the problem of finding better Li-Air electrolyte solvents is not only - as previously suggested - about maximizing Li+ and O2- solubilities, but about finding the optimal balance of these solubilities with the viscosity of the solvent. As our results also show that trial-and-error experiments on known chemicals are unlikely to succeed, full chemical sub-spaces for the most promising compound classes are investigated, and suggestions are made for further experiments. The proposed screening approach is transferable and robust and can readily be applied to optimize electrolytes for other electrochemical devices. It goes beyond the current state-of-the-art both in width (considering the number of compoun...

  2. Charting the known chemical space for non-aqueous lithium-air battery electrolyte solvents.

    Science.gov (United States)

    Husch, Tamara; Korth, Martin

    2015-09-21

    Li-air batteries are very promising candidates for powering future mobility, but finding a suitable electrolyte solvent for this technology turned out to be a major problem. We present a systematic computational investigation of the known chemical space for possible Li-air electrolyte solvents. It is shown that the problem of finding better Li-air electrolyte solvents is not only - as previously suggested - about maximizing Li(+) and O2(-) solubilities, but also about finding the optimal balance of these solubilities with the viscosity of the solvent. As our results also show that trial-and-error experiments on known chemicals are unlikely to succeed, full chemical sub-spaces for the most promising compound classes are investigated, and suggestions are made for further experiments. The proposed screening approach is transferable and robust and can readily be applied to optimize electrolytes for other electrochemical devices. It goes beyond the current state-of-the-art both in width (considering the number of compounds screened and the way they are selected), as well as depth (considering the number and complexity of properties included).

  3. Soft chemical synthesis and electrochemical properties of tin oxide-based materials as anodes for lithium ion batteries

    Institute of Scientific and Technical Information of China (English)

    何则强; 李新海; 熊利芝; 吴显明; 刘恩辉; 侯朝辉; 邓凌峰

    2004-01-01

    A novel soft chemical approach was developed to synthesize tin oxide-based powders. The microstructure, morphology, and electrochemical performance of the materials were investigated by X-ray diffraction, scanning electron microscope and electrochemical methods. The results show that the particles of tin oxide-based materials form an interconnected network structure like mesoporous material. The average size of the particles is about 200 nm. The materials deliver a charge capacity of more than 570 mA*h*g-1. And the capacity loss per cycle is about 0.15% after being cycled for 30 times. The good electrochemical performance indicates that tin oxide-based materials are promising anodes for lithium ion batteries.

  4. ANALYSIS OF BIOLOGICAL GEOCHEMISTRY OF CHEMICAL ELEMENTS IN Betula ermanii FOREST IN CHANGBAI MOUNTAINS, CHINA

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on catalogue of biology and geochemistry of chemical elements, content characteristics and variation law of the large nutrient elements, the needful trace elements, the uncertain needful elements, the non-needful elements and the toxic elements in Betula ermanii trees are analyzed. The result shows that the content of the large nutrient elements in Betula ermanii trees is higher than that of other kinds of element; the contents of all kinds of elements in foliage with vigorous metabolism are higher than those in other parts; the content variations of the large nutrient elements and the needful trace elements with similar chemical property, geochemical property and biological function in different parts of Betula ermanii trees show the similar laws; but the other three kinds of elements variations are without laws. It is indicated that the variation of the needful elements in the plant follows a certain law, they are in relative equilibrium under undisturbed condition.

  5. Improving the Performance of Lithium–Sulfur Batteries by Conductive Polymer Coating

    KAUST Repository

    Yang, Yuan

    2011-11-22

    Rechargeable lithium-sulfur (Li-S) batteries hold great potential for next-generation high-performance energy storage systems because of their high theoretical specific energy, low materials cost, and environmental safety. One of the major obstacles for its commercialization is the rapid capacity fading due to polysulfide dissolution and uncontrolled redeposition. Various porous carbon structures have been used to improve the performance of Li-S batteries, as polysulfides could be trapped inside the carbon matrix. However, polysulfides still diffuse out for a prolonged time if there is no effective capping layer surrounding the carbon/sulfur particles. Here we explore the application of conducting polymer to minimize the diffusion of polysulfides out of the mesoporous carbon matrix by coating poly(3,4-ethylenedioxythiophene)- poly(styrene sulfonate) (PEDOT:PSS) onto mesoporous carbon/sulfur particles. After surface coating, coulomb efficiency of the sulfur electrode was improved from 93% to 97%, and capacity decay was reduced from 40%/100 cycles to 15%/100 cycles. Moreover, the discharge capacity with the polymer coating was ∼10% higher than the bare counterpart, with an initial discharge capacity of 1140 mAh/g and a stable discharge capacity of >600 mAh/g after 150 cycles at C/5 rate. We believe that this conductive polymer coating method represents an exciting direction for enhancing the device performance of Li-S batteries and can be applicable to other electrode materials in lithium ion batteries. © 2011 American Chemical Society.

  6. HISTORY OF THE ORIGIN OF THE CHEMICAL ELEMENTS AND THEIR DISCOVERIES.

    Energy Technology Data Exchange (ETDEWEB)

    HOLDEN,N.E.

    2001-06-29

    The origin of the chemical elements show a wide diversity with some of these elements having their origin in antiquity. Still other elements have been synthesized within the past fifty years via nuclear reactions on heavy elements, because these other elements are unstable and radioactive and do not exist in nature. The names of the elements come from many sources including mythological concepts or characters; places, areas or countries; properties of the element or its compounds, such as color, smell or its inability to combine; and the names of scientists. There are also some miscellaneous names as well as some obscure names for particular elements. The claim of discovery of an element has varied over the centuries. Many claims, e.g., the discovery of certain rare earth elements of the lanthanide series, involved the discovery of a mineral ore from which an element was later extracted. The honor of discovery has often been accorded not to the person who first isolated the element but to the person who discovered the original mineral itself, even when the ore was impure and contained many elements. The reason for this is that in the case of these rare earth elements, the ''earth'' now refers to oxides of a metal not to the metal itself. This fact was not realized at the time of their discovery, until the English chemist Humphry Davy showed that earths were compounds of oxygen and metals in 1808. In the early discoveries, the atomic weight of an element and spectral analysis of the element were not available. Later both of these elemental properties would be required before discovery of the element would be accepted. In general, the requirements for discovery claims have tightened through the years and claims that were previously accepted would no longer meet the minimum constraints now imposed. There are cases where the honor of discovery is not given to the first person to actually discover the element but to the first person to claim the

  7. Interaction of chemical species with biological regulation of the metabolism of essential trace elements

    Energy Technology Data Exchange (ETDEWEB)

    Windisch, W. [Center of Life and Food Sciences, Technische Univ. Muenchen, Freising (Germany)

    2002-02-01

    Variations in the chemical speciation of dietary trace elements can result in the provision of different amounts of these micronutrients to the organism and might thus induce interactions with trace-element metabolism. The chemical species of Zn, Fe, Cu, and Mn can interact with other components of the diet even before reaching the site of absorption, e.g. by formation of poorly soluble complexes with phytic acid. This might considerably modify the amount of metabolically available trace elements; differences between absorptive capacity per se toward dietary species seems to be less important. Homeostasis usually limits the quantities of Zn, Fe, Cu, and Mn transported from the gut into the organism, and differences between dietary species are largely eliminated at this step. There is no homeostatic control of absorption of Se and I, and organisms seem to be passively exposed to influx of these micronutrients irrespective of dietary speciation. Inside the organism the trace elements are usually converted into a metabolically recognizable form, channeled into their biological functions, or submitted to homeostatically controlled excretion. Some dietary species can, however, be absorbed as intact compounds. As long as the respective quantities of trace elements are not released from their carriers, they are not recognized properly by trace element metabolism and might induce tissue accumulation, irrespective of homeostatic control. (orig.)

  8. VizieR Online Data Catalog: ASPCAP weights for the 15 APOGEE chemical elements (Garcia+, 2016)

    Science.gov (United States)

    Garcia Perez, A. E.; Allende Prieto, C.; Holtzman, J. A.; Shetrone, M.; Meszaros, S.; Bizyaev, D.; Carrera, R.; Cunha, K.; Garcia-Hernandez, D. A.; Johnson, J. A.; Majewski, S. R.; Nidever, D. L.; Schiavon, R. P.; Shane, N.; Smith, V. V.; Sobeck, J.; Troup, N.; Zamora, O.; Weinberg, D. H.; Bovy, J.; Eisenstein, D. J.; Feuillet, D.; Frinchaboy, P. M.; Hayden, M. R.; Hearty, F. R.; Nguyen, D. C.; O'Connell, R. W.; Pinsonneault, M. H.; Wilson, J. C.; Zasowski, G.

    2016-07-01

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE) has built the largest moderately high-resolution (R~22500) spectroscopic map of the stars across the Milky Way, and including dust-obscured areas. The APOGEE Stellar Parameter and Chemical Abundances Pipeline (ASPCAP) is the software developed for the automated analysis of these spectra. The pipeline matches the observations to a set of synthetic spectrum templates using the {chi}2 minimization in a multidimensional parameter space. Stellar parameters are derived first from the entire APOGEE spectral range, followed by the determination of individual chemical abundances from spectral windows optimized for each element. Table3 gives the weights as a function of wavelength, for the 15 APOGEE chemical elements. (1 data file).

  9. Recovery of cadmium by high-temperature vaccum evaporation from Ni-Cd batteries

    Institute of Scientific and Technical Information of China (English)

    朱建新; 李金惠; 聂永丰; 于波

    2003-01-01

    High-temperature vaccum evaporation is a recycling technology that includes a selective material recovering process. The fundamental research on a process of disassembling and recovering selected materials from Ni-Cd batteries was conducted using self-designed experimental apparatus. An effective recycling technology based on the evaporation phenomenon of batteries and the elements of cadmium under the laboratory condition was studied. The results show that: (1)Ni/Cd can be effectively recovered by vacuum distillation at appropriate temperature, pressure and time, and high purity cadmium (>99%) can be obtained through the process; (2)the effective distillatory temperature should be at the range of 573-1173K; (3)the higher the evaporation temperature, the lower the purity of cadmium in condensate metal

  10. CHEMICAL BEHAVIOR OF CERIUM ELEMENT IN ROCK WEATHERING SYSTEM

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    A study on existing valence state and chemical behavior of cerium element in two categories of rock weathering system in China has been carried out. In the granitoid weathering crust of Southern China,cerium as tetravalent hydroxide absorbed on clay minerals occupies 62.58 % of total amount of cerium and the cerium partitioning in the phase is 69.58 %. The depositing cerium stops its mobility downward, resulting in rare earth partitioning variation, the light rare earth partitioning is high at upper layer of weathering crust, the heavy rare earth partitioning is high at bottom layer of weathering crust, and the extracted product exists cerium lose effect. For Mn2+ as reducing agent existing in black weathering earth of Maoniuping rare earth ore,cerium is trivalent and absorbed on Mn-Fe oxide as colloid phase sediment. Colloid sediment phase can be divided into Mn-Fe combined phase and hydroxide sediment phase with cerium contents of 19.77% and 48.30%, and their cerium partitionings are 80.72% and 37.38% respectively. The Mn-Fe combined phase can selectively absorb cerium.

  11. EDXRF applied to the chemical element determination of small invertebrate samples

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes, Marcelo L.R.; Santos, Mariana L.O.; Cantinha, Rebeca S.; Souza, Thomas Marques de; Franca, Elvis J. de, E-mail: marcelo_rlm@hotmail.com, E-mail: marianasantos_ufpe@hotmail.com, E-mail: rebecanuclear@gmail.com, E-mail: thomasmarques@live.com.pt, E-mail: ejfranca@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2015-07-01

    Energy Dispersion X-Ray Fluorescence - EDXRF is a fast analytical technique of easy operation, however demanding reliable analytical curves due to the intrinsic matrix dependence and interference during the analysis. By using biological materials of diverse matrices, multielemental analytical protocols can be implemented and a group of chemical elements could be determined in diverse biological matrices depending on the chemical element concentration. Particularly for invertebrates, EDXRF presents some advantages associated to the possibility of the analysis of small size samples, in which a collimator can be used that directing the incidence of X-rays to a small surface of the analyzed samples. In this work, EDXRF was applied to determine Cl, Fe, P, S and Zn in invertebrate samples using the collimator of 3 mm and 10 mm. For the assessment of the analytical protocol, the SRM 2976 Trace Elements in Mollusk produced and SRM 8415 Whole Egg Powder by the National Institute of Standards and Technology - NIST were also analyzed. After sampling by using pitfall traps, invertebrate were lyophilized, milled and transferred to polyethylene vials covered by XRF polyethylene. Analyses were performed at atmosphere lower than 30 Pa, varying voltage and electric current according to the chemical element to be analyzed. For comparison, Zn in the invertebrate material was also quantified by graphite furnace atomic absorption spectrometry after acid treatment (mixture of nitric acid and hydrogen peroxide) of samples have. Compared to the collimator of 10 mm, the SRM 2976 and SRM 8415 results obtained by the 3 mm collimator agreed well at the 95% confidence level since the E{sub n} Number were in the range of -1 and 1. Results from GFAAS were in accordance to the EDXRF values for composite samples. Therefore, determination of some chemical elements by EDXRF can be recommended for very small invertebrate samples (lower than 100 mg) with advantage of preserving the samples. (author)

  12. Microwave-assisted chemical insertion: a rapid technique for screening cathodes for Mg-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Kaveevivitchai, Watchareeya; Huq, Ashfia; Manthiram, Arumugam

    2016-12-19

    We report an ultrafast microwave-assisted solvothermal method for chemical insertion of Mg2+ ions into host materials using magnesium acetate [Mg(CH3COO)2] as a metal-ion source and diethylene glycol (DEG) as a reducing agent. For instance, up to 3 Mg ions per formula unit of a microporous host framework Mo2.5+yVO9+z could be inserted in as little as 30 min at 170–195 °C in air. This process is superior to the traditional method which involves the use of organometallic reagents, such as di-n-butylmagnesium [(C4H9)2Mg] and magnesium bis(2,6-di-tert-butylphenoxide) [Mg-(O-2,6-But2C6H3)2], and requires an inert atmosphere with extremely long reaction times. Considering the lack of robust electrolytes for Mg-ion batteries, this facile approach can be readily used as a rapid screening technique to identify potential Mg-ion electrode hosts without the necessity of fabricating electrodes and assembling electrochemical cells. Due to the mild reaction conditions, the overall structure and morphology of the Mg-ion inserted products are maintained and the compounds can be used successfully as a cathode in Mg-ion batteries. The combined synchrotron X-ray and neutron diffraction Rietveld analysis reveals the structure of the Mg-inserted compounds and gives an insight into the interactions between the Mg ions and the open-tunnel host framework.

  13. Chemical and physical characterizations of spinel ferrite nanoparticles containing Nd and B elements.

    Science.gov (United States)

    Iwamoto, Takashi; Komorida, Yuki; Mito, Masaki; Takahara, Atsushi

    2010-05-15

    We first succeeded in synthesizing ferrite nanoparticles containing Nd and B elements by a chemical route using a polyol process. The lattice constants of the ferrite nanoparticles were equivalent to 8.39Å of the lattice constant for Fe(3)O(4) with the spinel structure in a bulk state independently of the size in diameter and composition (Fe:Nd:B). The size in diameter was actually dominated by the amount of ligands (oleic acid and oleylamine) coating the nanoparticles and easily tuned by changing refluxing-time under reaction. The spinel-structured ferrite nanoparticles containing Nd and B elements showed large coercivity as compared to Fe(3)O(4) nanoparticles with the spinel structure, which were prepared by the same chemical method. By doping Nd and B elements into the spinel structure of ferrite, magnetic anisotropy increased in comparison with Fe(3)O(4) nanoparticles. According to the analysis of magnetization curve using the modified Langevin function, the ferrite nanoparticles displayed the coexistence of superparamagnetic and antiferromagnetic phases. The ferrite nanoparticles containing Nd and B elements exhibited magnetic core/shell structure on the basis of various magnetic properties. The interface effect between the superparamagnetic core and antiferromagnetic shell might enhance the effective magnetic anisotropy of the ferrite nanoparticles containing Nd and B elements.

  14. Matching Element Symbols with State Abbreviations: A Fun Activity for Browsing the Periodic Table of Chemical Elements

    Science.gov (United States)

    Woelk, Klaus

    2009-01-01

    A classroom activity is presented in which students are challenged to find matches between the United States two-letter postal abbreviations for states and chemical element symbols. The activity aims to lessen negative apprehensions students might have when the periodic table of the elements with its more than 100 combinations of letters is first…

  15. Nanocurrent oscillator indefinitely powered by a capacitor battery

    CERN Document Server

    Ragni, Luigi

    2012-01-01

    Some electrolytic capacitors show dielectric behaviour that can not be entirely explained by the well known long lasting relaxation. Extra charges able to generate a useful conduction current can be detected for an indefinite time. A squarewave oscillator based on MOSFET CMOS technology and requiring less than 2 nW was powered for 80 days at 25 {\\deg}C by a 58.2 mF capacitor battery, without voltage decrease during the last 53 days of observation. The battery consisted of three series of 16 parallel, 15 years aged, capacitors with DC capacitance of 10.9 mF. Capacitors so old, stored without voltage application, were affected by degradation and thinning of the alumina layer that could promote tunnelling of the charge. The main purpose of the present study is to stimulate further investigations aimed at confirming or disputing the observed phenomenon and, if necessary, at shedding light on its physical mechanisms.

  16. Electric batteries and the environment. Die Batterie und die Umwelt

    Energy Technology Data Exchange (ETDEWEB)

    Hiller, F.; Hartinger, L.; Kiehne, H.A.; Niklas, H.; Schiele, R.; Steil, H.U.

    1987-01-01

    The book deals with the production, use and waste management of batteries (accumulators and primary batteries), with regard to protection of the environment. Legal, technical and medical aspects are shown. There are numerous electro-chemical systems, but only few proved to be really good in practice. Most batteries contain lead, cadmium or mercury and must therefore be eliminated in a way doing no harm to the environment. Large quantities of the above named heavy metals are today already being recovered by means of appropriate procedures. The reduction of these heavy metals in batteries is also described to be a contribution to the protection of the environment. (orig.) With 67 figs.

  17. An element by element spectral element method for elastic wave modeling

    Institute of Scientific and Technical Information of China (English)

    LIN Weijun; WANG Xiuming; ZHANG Hailan

    2006-01-01

    The spectral element method which combines the advantages of spectral method with those of finite element method,provides an efficient tool in simulating elastic wave equation in complex medium. Based on weak form of elastodynamic equations, mathematical formulations for Legendre spectral element method are presented. The wave field on an element is discretized using high-order Lagrange interpolation, and integration over the element is accomplished based upon the Gauss-Lobatto-Legendre integration rule. This results in a diagonal mass matrix which leads to a greatly simplified algorithm. In addition, the element by element technique is introduced in our method to reduce the memory sizes and improve the computation efficiency. Finally, some numerical examples are presented to demonstrate the spectral accuracy and the efficiency. Because of combinations of the finite element scheme and spectral algorithms, this method can be used for complex models, including free surface boundaries and strong heterogeneity.

  18. Rapid Neutron Capture Process in Supernovae and Chemical Element Formation

    Indian Academy of Sciences (India)

    Rulee Baruah; Kalpana Duorah; H. L. Duorah

    2009-09-01

    The rapid neutron capture process (r-process) is one of the major nucleosynthesis processes responsible for the synthesis of heavy nuclei beyond iron. Isotopes beyond Fe are most exclusively formed in neutron capture processes and more heavier ones are produced by the r-process. Approximately half of the heavy elements with mass number ≻ 70 and all of the actinides in the solar system are believed to have been produced in the r-process. We have studied the r-process in supernovae for the production of heavy elements beyond = 40 with the newest mass values available. The supernova envelopes at a temperature ≻ 109 K and neutron density of 1024 cm-3 are considered to be one of the most potential sites for the r-process. The primary goal of the r-process calculations is to fit the global abundance curve for solar system r-process isotopes by varying time dependent parameters such as temperature and neutron density. This method aims at comparing the calculated abundances of the stable isotopes with observation.We have studied the r-process path corresponding to temperatures ranging from 1.0 × 109 K to 3.0 × 109 K and neutron density ranging from 1020 cm-3 to 1030 cm-3. With temperature and density conditions of 3.0 × 109 K and 1020 cm-3 a nucleus of mass 273 was theoretically found corresponding to atomic number 115. The elements obtained along the r-process path are compared with the observed data at all the above temperature and density range.

  19. Voltage hysteresis of lithium ion batteries caused by mechanical stress.

    Science.gov (United States)

    Lu, Bo; Song, Yicheng; Zhang, Qinglin; Pan, Jie; Cheng, Yang-Tse; Zhang, Junqian

    2016-02-14

    The crucial role of mechanical stress in voltage hysteresis of lithium ion batteries in charge-discharge cycles is investigated theoretically and experimentally. A modified Butler-Volmer equation of electrochemical kinetics is proposed to account for the influence of mechanical stresses on electrochemical reactions in lithium ion battery electrodes. It is found that the compressive stress in the surface layer of active materials impedes lithium intercalation, and therefore, an extra electrical overpotential is needed to overcome the reaction barrier induced by the stress. The theoretical formulation has produced a linear dependence of the height of voltage hysteresis on the hydrostatic stress difference between lithiation and delithiation, under both open-circuit conditions and galvanostatic operation. Predictions of the electrical overpotential from theoretical equations agree well with the experimental data for thin film silicon electrodes.

  20. Magnetically assisted chemical separation (MACS) process: Preparation and optimization of particles for removal of transuranic elements

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, L.; Kaminski, M.; Bradley, C.; Buchholz, B.A.; Aase, S.B.; Tuazon, H.E.; Vandegrift, G.F. [Argonne National Lab., IL (United States); Landsberger, S. [Univ. of Illinois, Urbana, IL (United States)

    1995-05-01

    The Magnetically Assisted Chemical Separation (MACS) process combines the selectivity afforded by solvent extractants with magnetic separation by using specially coated magnetic particles to provide a more efficient chemical separation of transuranic (TRU) elements, other radionuclides, and heavy metals from waste streams. Development of the MACS process uses chemical and physical techniques to elucidate the properties of particle coatings and the extent of radiolytic and chemical damage to the particles, and to optimize the stages of loading, extraction, and particle regeneration. This report describes the development of a separation process for TRU elements from various high-level waste streams. Polymer-coated ferromagnetic particles with an adsorbed layer of octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) diluted with tributyl phosphate (TBP) were evaluated for use in the separation and recovery of americium and plutonium from nuclear waste solutions. Due to their chemical nature, these extractants selectively complex americium and plutonium contaminants onto the particles, which can then be recovered from the solution by using a magnet. The partition coefficients were larger than those expected based on liquid[liquid extractions, and the extraction proceeded with rapid kinetics. Extractants were stripped from the particles with alcohols and 400-fold volume reductions were achieved. Particles were more sensitive to acid hydrolysis than to radiolysis. Overall, the optimization of a suitable NMCS particle for TRU separation was achieved under simulant conditions, and a MACS unit is currently being designed for an in-lab demonstration.

  1. Preparation, characterisation and optimisation of lithium battery anodes consisting of silicon synthesised using Laser assisted Chemical Vapour Pyrolysis

    Science.gov (United States)

    Veliscek, Ziga; Perse, Lidija Slemenik; Dominko, Robert; Kelder, Erik; Gaberscek, Miran

    2015-01-01

    Suitability of silicon prepared using Laser assisted Chemical Vapour Pyrolysis (LaCVP) as a potential anode material in lithium batteries is systematically investigated. Its compositional, morphological, physical-chemical and electrochemical properties are compared to a current benchmark commercial silicon. Important differences in particle size and particle composition are found which, as shown, affect critically the rheological properties of the corresponding electrode slurries. In order to overcome the rheological problems of prepared nanosilicon, we introduce and optimise a spraying method instead of using the usual casting technique for slurry application. Interestingly, the optimised electrodes show similar electrochemical performance, regardless of the particle size or composition of nanosilicon. This unexpected result is explained by the unusually high resistance of electrochemical wiring in silicon-based electrodes (about 60 Ohm per 1 mg cm-2 of active material loading). Despite that, the optimised material still shows a capacity up to 1200 mA h g-1 at a relatively high loading of 1.6 mg cm-2 and after 20 cycles. On the other hand, by decreasing the loading to below ca. 0.9 mg cm-2 the wiring problems are effectively overcome and capacities close to theoretical values can be obtained.

  2. Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application

    Science.gov (United States)

    Guo, Guifang; Long, Bo; Cheng, Bo; Zhou, Shiqiong; Xu, Peng; Cao, Binggang

    In order to better understand the thermal abuse behavior of high capacities and large power lithium-ion batteries for electric vehicle application, a three-dimensional thermal model has been developed for analyzing the temperature distribution under abuse conditions. The model takes into account the effects of heat generation, internal conduction and convection, and external heat dissipation to predict the temperature distribution in a battery. Three-dimensional model also considers the geometrical features to simulate oven test, which are significant in larger cells for electric vehicle application. The model predictions are compared to oven test results for VLP 50/62/100S-Fe (3.2 V/55 Ah) LiFePO 4/graphite cells and shown to be in great agreement.

  3. Preparation of porous, chemically cross-linked, PVdF-based gel polymer electrolytes for rechargeable lithium batteries

    Science.gov (United States)

    Cheng, C. L.; Wan, C. C.; Wang, Y. Y.

    This study reports the development of a new system of porous, chemically cross-linked, gel polymer electrolytes based on poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) copolymer as a polymer matrix, polyethylene glycol (PEG) as a plasticizer, and polyethylene glycol dimethacrylate (PEGDMA) as a chemical cross-linking oligomer. The electrolytes are prepared by a combination of controlled evaporation and thermal polymerization of PEGDMA. PVdF-HFP/PEG/PEGDMA gel polymer electrolytes with a composition of 5/3/2 exhibit both high ambient ionic conductivity, viz., >1 mS cm -1, and a high tensile modulus of 52 MPa, because of their porous and network structures. All the blends of electrolytes are electrochemically stable up to 5 V versus Li/Li + in the presence of 1 M LiPF 6/ethylene carbonate-diethyl carbonate (EC-DEC). With these polymer electrolytes, rechargeable lithium batteries composed of carbon anode and LiCoO 2 cathode have acceptable cycleability and a good rate capability.

  4. The Open Cluster Chemical Abundances and Mapping (OCCAM) Survey: Optical Extension for Neutron Capture Elements

    Science.gov (United States)

    Melendez, Matthew; O'Connell, Julia; Frinchaboy, Peter M.; Donor, John; Cunha, Katia M. L.; Shetrone, Matthew D.; Majewski, Steven R.; Zasowski, Gail; Pinsonneault, Marc H.; Roman-Lopes, Alexandre; Stassun, Keivan G.; APOGEE Team

    2017-01-01

    The Open Cluster Chemical Abundance & Mapping (OCCAM) survey is a systematic survey of Galactic open clusters using data primarily from the SDSS-III/APOGEE-1 survey. However, neutron capture elements are very limited in the IR region covered by APOGEE. In an effort to fully study detailed Galactic chemical evolution, we are conducting a high resolution (R~60,000) spectroscopic abundance analysis of neutron capture elements for OCCAM clusters in the optical regime to complement the APOGEE results. As part of this effort, we present Ba II, La II, Ce II and Eu II results for a few open clusters without previous abundance measurements using data obtained at McDonald Observatory with the 2.1m Otto Struve telescope and Sandiford Echelle Spectrograph.This work is supported by an NSF AAG grant AST-1311835.

  5. Unique battery with an active membrane separator having uniform physico-chemically functionalized ion channels and a method making the same

    Energy Technology Data Exchange (ETDEWEB)

    Gerald, II, Rex E. (Brookfield, IL); Ruscic, Katarina J [Chicago, IL; Sears, Devin N [Spruce Grove, CA; Smith, Luis J [Natick, MA; Klingler, Robert J [Glenview, IL; Rathke, Jerome W [Homer Glen, IL

    2012-02-21

    The invention relates to a unique battery having an active, porous membrane and method of making the same. More specifically the invention relates to a sealed battery system having a porous, metal oxide membrane with uniform, physicochemically functionalized ion channels capable of adjustable ionic interaction. The physicochemically-active porous membrane purports dual functions: an electronic insulator (separator) and a unidirectional ion-transporter (electrolyte). The electrochemical cell membrane is activated for the transport of ions by contiguous ion coordination sites on the interior two-dimensional surfaces of the trans-membrane unidirectional pores. The membrane material is designed to have physicochemical interaction with ions. Control of the extent of the interactions between the ions and the interior pore walls of the membrane and other materials, chemicals, or structures contained within the pores provides adjustability of the ionic conductivity of the membrane.

  6. Chemical Synthesis, Computational Modeling, and Surface Reactions of Silicon Nanotube Anodes and Silicate Cathodes for Lithium Ion Batteries

    Science.gov (United States)

    Hinkle, Christopher

    2014-03-01

    Nanostructured materials show significant promise in enhancing the performance and safety of Li-ion batteries at greatly reduced cost. We highlight certain classes of materials for next generation anodes, cathodes, and solid electrolytes in addition to interface reactions and show how advanced chemical spectroscopy and first principles modeling can be utilized to improve battery performance and stability. In this work, we utilize advanced materials characterization techniques (in-situ XPS and FTIR, Raman, AFM, XRD) to elucidate the chemical bonding, nanostructure, and electrochemical properties that lead to improved storage capabilities in these materials. We describe the recent progress in chemical synthesis methods of fabricating hydrogenated amorphous-Si nanotube anodes and tetrahedral transition metal silicate cathodes (Li2MSiO4) , which may be well-suited for future technologies. Additionally, insight into the redox potentials and ionic and electronic conductivities has been investigated using first-principles modeling. Our findings suggest that high-voltage, multi-component Li2MSiO4 cathodes (M = Fe, Mn, Ni) with high Mn content are strong candidates for future Li-ion batteries. Inorganic solid electrolytes are also discussed highlighting their potential for improved safety, increased ionic conductivities, and stability against adverse reactions with the electrodes. Finally, we illustrate the complexity of interfacial chemistry in these new materials and the need for advanced spectroscopic characterization to make progress on all aspects of electrode and electrolyte development.

  7. CRMs for quality control of determinations of chemical forms of elements in support to EU legislation.

    Science.gov (United States)

    Quevauviller, P

    1996-03-01

    The concern for the control of toxic chemical forms of elements in the environment is reflected by an increasing number of analyses performed by research and routine laboratories. The European Commission has recognised the need to include some of these species in the list of dangerous substances to be monitored, e.g. in the marine environment or in groundwater. However, in most cases, the specifications are far from being sufficient in respect to the chemical forms of the element to be determined. Furthermore, these determinations are in most cases based on multi-step analytical techniques which are often prone to errors (e.g. at the extraction, derivatization or separation steps). Certified reference materials (CRMs) certified for their content in chemical forms of elements are, therefore, necessary to ensure the accuracy of these measurements and hence the respect of the regulations. However, the lack of CRMs for speciation analysis hampers the quality control of determinations which in turn leads to an incomparability of data produced; so far the number of CRMs produced by international organisations, e.g. NIST (USA), NIES (Japan), NRCC (Canada) and BCR (Belgium), is very limited and concerns mainly compounds such as e.g. methyl-mercury and butyltin compounds in biological matrices or sediments. The Standards, Measurements and Testing Programme (formerly BCR) of the European Commission has started a series of projects for the improvement of speciation analysis in environmental matrices, the final aim of which being the production of a variety of environmental CRMs. The existing EU legislation involving chemical forms of elements is presented, the requirements for the preparation of CRMs for speciation analysis are discussed and an update of the most recent CRMs produced within the Standards, Measurements and Testing Programme (SM&T) is given.

  8. Limiting the public cost of stationary battery deployment by combining applications

    Science.gov (United States)

    Stephan, A.; Battke, B.; Beuse, M. D.; Clausdeinken, J. H.; Schmidt, T. S.

    2016-07-01

    Batteries could be central to low-carbon energy systems with high shares of intermittent renewable energy sources. However, the investment attractiveness of batteries is still perceived as low, eliciting calls for policy to support deployment. Here we show how the cost of battery deployment can potentially be minimized by introducing an aspect that has been largely overlooked in policy debates and underlying analyses: the fact that a single battery can serve multiple applications. Batteries thereby can not only tap into different value streams, but also combine different risk exposures. To address this gap, we develop a techno-economic model and apply it to the case of lithium-ion batteries serving multiple stationary applications in Germany. Our results show that batteries could be attractive for investors even now if non-market barriers impeding the combination of applications were removed. The current policy debate should therefore be refocused so as to encompass the removal of such barriers.

  9. Impact of Seminal Chemical Elements on the Oxidative Balance in Bovine Seminal Plasma and Spermatozoa.

    Science.gov (United States)

    Tvrdá, Eva; Lukáč, Norbert; Schneidgenová, Monika; Lukáčová, Jana; Szabó, Csaba; Goc, Zofia; Greń, Agnieszka; Massányi, Peter

    2013-01-01

    Mutual relationships between selected chemical elements (Na, K, Fe, Cu, Mg, and Zn), basic motility characteristics (motility and progressive motility), and markers of the oxidative balance (superoxide dismutase, catalase, glutathione, albumin, and malondialdehyde) were investigated in bovine seminal plasma and spermatozoa. Computer assisted sperm analysis was used to assess the motility parameters; mineral concentrations were determined by the voltammetric method and flame absorption spectrophotometry; antioxidants and malondialdehyde were evaluated by UV/VIS spectrophotometry. Concentrations of chemical elements in both seminal fractions were in the following descending order: Na > K > Zn > Mg > Fe > Cu. Higher amounts of all minerals and nonenzymatic antioxidants were detected in the seminal plasma (P Zn were positively correlated with the motility and antioxidant parameters (P < 0.05; P < 0.01; P < 0.001). Inversely, K exhibited the positive associations with malondialdehyde (P < 0.05). This study demonstrates that most chemical elements are integral components of bovine semen and are needed for the protection against oxidative stress development.

  10. Impact of Seminal Chemical Elements on the Oxidative Balance in Bovine Seminal Plasma and Spermatozoa

    Directory of Open Access Journals (Sweden)

    Eva Tvrdá

    2013-01-01

    Full Text Available Mutual relationships between selected chemical elements (Na, K, Fe, Cu, Mg, and Zn, basic motility characteristics (motility and progressive motility, and markers of the oxidative balance (superoxide dismutase, catalase, glutathione, albumin, and malondialdehyde were investigated in bovine seminal plasma and spermatozoa. Computer assisted sperm analysis was used to assess the motility parameters; mineral concentrations were determined by the voltammetric method and flame absorption spectrophotometry; antioxidants and malondialdehyde were evaluated by UV/VIS spectrophotometry. Concentrations of chemical elements in both seminal fractions were in the following descending order: Na > K > Zn > Mg > Fe > Cu. Higher amounts of all minerals and nonenzymatic antioxidants were detected in the seminal plasma (P<0.01; P<0.001, while higher MDA concentration and activity of enzymatic antioxidants were recorded in the cell lysates (P<0.01; P<0.001. Na, Fe, Cu, Mg, and Zn were positively correlated with the motility and antioxidant parameters (P<0.05; P<0.01; P<0.001. Inversely, K exhibited the positive associations with malondialdehyde (P<0.05. This study demonstrates that most chemical elements are integral components of bovine semen and are needed for the protection against oxidative stress development.

  11. Batteries: Overview of Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Doeff, Marca M

    2010-07-12

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as

  12. Batteries: Overview of Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Doeff, Marca M

    2010-07-12

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as

  13. Carcinogenesis and Chemotherapy Viewed from the Perspective of Stoichiometric Network Analysis (SNA: What Can the Biological System of the Elements Contribute to an Understanding of Tumour Induction by Elemental Chemical Noxae (e.g., Ni2+, Cd2+ and to an Understanding of Chemotherapy?

    Directory of Open Access Journals (Sweden)

    Stefan Franzle

    2003-01-01

    Full Text Available The biological application of stoichiometric network analysis (SNA permits an understanding of tumour induction, carcinogenesis, and chemotherapy. Starting from the Biological System of the Elements, which provides a comprehensive treatment of the functions and distributions of chemical (trace elements in biology, an attempt is made to interrelate the essential feature of biology and — regrettably — of tumour genesis by superimposing SNA reasoning on common features of all crucial biological processes. For this purpose, aspects, effects and drawbacks of autocatalysis (identical reproduction which can occur either under control or without control [in tumours] are linked with the known facts about element distributions in living beings and about interference of metals with tumours (in terms of both chemotherapy and carcinogenesis. The essential role of autocatalysis in biology and the drawbacks of either controlled or spontaneous cell division can be used to understand crucial aspects of carcinogenesis and chemotherapy because SNA describes and predicts effects of autocatalysis, including phase effects that may be due to some kind of intervention. The SNA-based classifications of autocatalytic networks in cell biology are outlined here to identify new approaches to chemotherapy.

  14. Influence of ironworks on distribution of chemical elements in Bosnia and Herzegovina and Slovenia

    Directory of Open Access Journals (Sweden)

    Jasminka Alijagić

    2006-06-01

    Full Text Available The objective of this work is the study of the distribution of chemical elements in attic dust and topsoil for the identification of anthropogenic and geogenic element sources in an old metallurgic area in Bosnia and Herzegovina and Slovenia (Slo – BiH bilateral project “Heavy metals in environment as consequences of mining and smelting in the past”. Samples of attic dust and topsoil were collected in localities in BiH (Zenica, Vareš and Ilijaš and Slovenia (Jesenice, Štore and Ravne.Analysis for 42 chemical elements was performed. Based on a comparison of statistical parameters, spatial distribution of particular elements and results of cluster analysis one natural and two anthropogenic geochemical associations were identified. The natural geochemical association (Al-K-La-Sc-Th-Ti is influenced mainly by lithology. The anthropogenic association (Co-Cr-Mo-Ni-V-W is the result of iron metallurgy in the past. The second anthropogenic association (Ag-As-Cd-Fe-Hg-Mn-Pb-Sb-Sn-Zn is the result of high level of sulphide phase in iron ore (Vareš and zinc and sulphuric acid production in the Celje area.

  15. Discrete formulation of mixed finite element methods for vapor deposition chemical reaction equations

    Institute of Scientific and Technical Information of China (English)

    LUO Zhen-dong; ZHOU Yan-jie; ZHU Jiang

    2007-01-01

    The vapor deposition chemical reaction processes, which are of extremely extensive applications, can be classified as a mathematical modes by the following governing nonlinear partial differential equations containing velocity vector,temperature field,pressure field,and gas mass field.The mixed finite element(MFE)method is employed to study the system of equations for the vapor deposition chemical reaction processes.The semidiscrete and fully discrete MFE formulations are derived.And the existence and convergence(error estimate)of the semidiscrete and fully discrete MFE solutions are deposition chemical reaction processes,the numerical solutions of the velocity vector,the temperature field,the pressure field,and the gas mass field can be found out simultaneonsly.Thus,these researches are not only of important theoretical means,but also of extremely extensive applied vistas.

  16. Chemical element transfer of weathering granite regolith in the Three Gorges Dam region of Yangtze River

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Clearing up sediment and regolith on the foundation of the dam in the Three Gorges of the Yangtze River in 1999, riverbed were exposed. On the basis of weathering granite regolith sampled from different portions of the valley landforms, by analysing total chemical contents with X rays fluorescent slice and calculating proper value of chemical element transferring ratio and intensity, the transferring law of chemical elements in different portions of the landforms were concluded: 1) In various landforms of the river valley, the process of desilication is not distinct; 2) in weathering granite regolith of riverbed, easy soluble CaO and MgO are relatively enriched whereas A1203 tends to decrease. The enriching rate of Fe203 is the greatest in various landforms of the river valley; 3) in weathering granite regolith of flood-plain, K20 and MgO contents are relatively enriched; 4) the weathering granite regolith of valley slope is a typical north subtropical weathering regolith, and its chemical weathering degree is in the transition phase from early to middle period; and 5) there is an opposite layer where K20 is relatively leaching and Na20 relatively enriching in 6.5 m depth of all weathering granite regolith.

  17. Effect of chemically modified silicas on the properties of hybrid gel electrolyte for Li-ion batteries

    Science.gov (United States)

    Walkowiak, Mariusz; Zalewska, Aldona; Jesionowski, Teofil; Waszak, Daniel; Czajka, Bogdan

    The aim of the presented work was to perform a preliminary study the physico-chemical properties of hybrid organic-inorganic gel electrolytes for Li-ion batteries based on the PVdF-HFP polymeric matrix and surface modified fumed silicas. Modifications were done by means of the so-called dry method using seven different silanes differing in the nature of the principal functional group: N-2-(aminoethyl)-3-amino propyltrimethoxysilane, 3-glycidoxypropyltrimetoxysilane, 3-mercaptopropyltrimetoxysilane, n-octyltriethoxysilane, 3-(chloropropyl)trimethoxysilane, 3-methacryloxypropyltrimetoxysilane, vinyltrimethoxysilane. The PVdF-HFP gels were prepared according to the so-called Bellcore process (two-step method). Impact of the silicas surface functionality on the degree of crystallinity of the polymeric membranes was studied using the differential scanning calorimetry technique. Applicability of the prepared gel electrolytes for the Li-ion technology was estimated on the basis of specific conductivity measurements. It was shown that modification of the silica surface by most of the silanes causes an increase in the gel specific conductivity by about two orders of magnitude as compared to gel with unmodified silica.

  18. Effect of chemically modified silicas on the properties of hybrid gel electrolyte for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Walkowiak, Mariusz; Waszak, Daniel; Czajka, Bogdan [Central Laboratory of Batteries and Cells, ul. Forteczna 12, 61-362 Poznan (Poland); Zalewska, Aldona [Warsaw University of Technology, Department of Chemistry, ul. Noakowskiego 3, 00-664 Warsaw (Poland); Jesionowski, Teofil [Poznan University of Technology, Institute of Chemical Technology and Engineering, Pl. Marii Sklodowskiej-Curie 2, 60-965 Poznan (Poland)

    2006-09-13

    The aim of the presented work was to perform a preliminary study the physico-chemical properties of hybrid organic-inorganic gel electrolytes for Li-ion batteries based on the PVdF-HFP polymeric matrix and surface modified fumed silicas. Modifications were done by means of the so-called dry method using seven different silanes differing in the nature of the principal functional group: N-2-(aminoethyl)-3-amino propyltrimethoxysilane, 3-glycidoxypropyltrimetoxysilane, 3-mercaptopropyltrimetoxysilane, n-octyltriethoxysilane, 3-(chloropropyl)trimethoxysilane, 3-methacryloxypropyltrimetoxysilane, vinyltrimethoxysilane. The PVdF-HFP gels were prepared according to the so-called Bellcore process (two-step method). Impact of the silicas surface functionality on the degree of crystallinity of the polymeric membranes was studied using the differential scanning calorimetry technique. Applicability of the prepared gel electrolytes for the Li-ion technology was estimated on the basis of specific conductivity measurements. It was shown that modification of the silica surface by most of the silanes causes an increase in the gel specific conductivity by about two orders of magnitude as compared to gel with unmodified silica. (author)

  19. Kriging-Based Finite Element Method: Element-By-Element Kriging Interpolation

    Directory of Open Access Journals (Sweden)

    W. Kanok-Nukulchai

    2009-01-01

    Full Text Available An enhancement of the finite element method with Kriging shape functions (K-FEM was recently proposed. In this method, the field variables of a boundary value problem are approximated using ‘element-by-element’ piecewise Kriging interpolation (el-KI. For each element, the interpolation function is constructed from a set of nodes within a prescribed domain of influence comprising the element and its several layers of neighbouring elements. This paper presents a numerical study on the accuracy and convergence of the el-KI in function fitting problems. Several examples of functions in two-dimensional space are employed in this study. The results show that very accurate function fittings and excellent convergence can be attained by the el-KI.

  20. Photovoltaic lithium-ion battery fabricated by molecular precursor method

    Science.gov (United States)

    Nagai, Hiroki; Suzuki, Tatsuya; Takahashi, Yoshihisa; Sato, Mitsunobu

    2016-06-01

    A novel thin-film lithium-ion battery (LIB) which can be charged by the light irradiation was fabricated by molecular precursor method. The unprecedented, translucent thin-film LIB, fabricated on a fluorine-doped tin oxide pre-coated glass substrate, was attained by using the active materials, titania for anode and LiCoO2 for cathode, respectively. The averaged potential at 2.04V was observed by applying a constant current of 0.2mA. Then, that at 1.82V was detected after 60s during the sequential self-discharge process. The charging voltage of the assembled battery was 1.38V with irradiation of 1-sun, the self-discharge voltage was 1.37V. Based on the calibration curve of the charging voltages over constant currents ranging from 0-1.0mA, the detected value can be theoretically reduced to the charging operation by applying a constant current of approximately 60μA. The charge and discharge of this device was stable voltage at least 30 cycles. The two-in-one device can simultaneously generate and store electricity from solar light, the renewable energy source, and may be applied in smart windows for distributed power system according to on-site demand.

  1. Life cycle assessment of primary control provision by battery storage systems and fossil power plants

    OpenAIRE

    Koj, Jan Christian; Stenzel, Peter; Schreiber, Andrea; Hennings, Wilfried; Zapp, Petra; Wrede, Gunnar; Hahndorf, Ina

    2015-01-01

    Increasing renewable energy generation influences the reliability of electric power grids. Thus, there is a demand for new technical units providing ancillary grid services. Intermittent renewable energy sources can be balanced by energy storage devices, especially battery storage systems. By battery systems grid efficiency and reliability as well as power quality can be increased. A further characteristic of battery systems is the ability to respond rapidly and precisely to frequency deviati...

  2. A chemically activated graphene-encapsulated LiFePO4 composite for high-performance lithium ion batteries.

    Science.gov (United States)

    Ha, Jeonghyun; Park, Seung-Keun; Yu, Seung-Ho; Jin, Aihua; Jang, Byungchul; Bong, Sungyool; Kim, In; Sung, Yung-Eun; Piao, Yuanzhe

    2013-09-21

    A composite of modified graphene and LiFePO4 has been developed to improve the speed of charging-discharging and the cycling stability of lithium ion batteries using LiFePO4 as a cathode material. Chemically activated graphene (CA-graphene) has been successfully synthesized via activation by KOH. The as-prepared CA-graphene was mixed with LiFePO4 to prepare the composite. Microscopic observation and nitrogen sorption analysis have revealed the surface morphologies of CA-graphene and the CA-graphene/LiFePO4 composite. Electrochemical properties have also been investigated after assembling coin cells with the CA-graphene/LiFePO4 composite as a cathode active material. Interestingly, the CA-graphene/LiFePO4 composite has exhibited better electrochemical properties than the conventional graphene/LiFePO4 composite as well as bare LiFePO4, including exceptional speed of charging-discharging and excellent cycle stability. That is because the CA-graphene in the composite provides abundant porous channels for the diffusion of lithium ions. Moreover, it acts as a conducting network for easy charge transfer and as a divider, preventing the aggregation of LiFePO4 particles. Owing to these properties of CA-graphene, LiFePO4 could demonstrate enhanced and stably long-lasting electrochemical performance.

  3. Chemical state speciation by resonant Raman scattering

    CERN Document Server

    Karydas, A G; Zarkadas, C; Paradelis, T; Kallithrakas-Kontos, N

    2002-01-01

    In the resonant Raman scattering (RRS) process the emitted photon exhibits a continuous energy distribution with a high energy cutoff limit. This cutoff energy depends on the chemical state of the element under examination. In the present work, the possibility of identifying the chemical state of V atoms by employing RRS spectroscopy with a semiconductor Si(Li) detector is investigated. A proton induced Cr K alpha x-ray beam was used as the incident radiation, having a fixed energy lower than the V K-absorption edge. The net RRS distributions extracted from the energy dispersive spectra of metallic V and its compound targets were simulated by an appropriate theoretical model. The results showed the possibility of employing RRS spectroscopy with a semiconductor detector for chemical speciation studies.

  4. Carbon stars and galactic chemical evolution: production of s-elements and wind heterogeneities

    Energy Technology Data Exchange (ETDEWEB)

    De Laverny, P [Observatoire de la Cote d' Azur, Dept. Cassiopee, UMR 6202, Nice (France)], E-mail: laverny@oca.eu

    2008-12-15

    Cool carbon stars found on the asymptotic giant branch are characterized by their production of specific chemical species and by strong but complex winds. This is illustrated below by (i) discussing their production of s-elements in the Milky Way and in neighbour satellite galaxies and (ii) describing the strong heterogeneities observed in the massive dusty circumstellar envelope of the nearby carbon star IRC+10216. Some similarities existing between the inner clumpy envelope of IRC+10216 with the dusty clumps recently detected around the more evolved variable stars of R Coronae Borealis type are also discussed.

  5. Closing in on chemical bonds by opening up relativity theory.

    Science.gov (United States)

    Whitney, Cynthia K

    2008-03-01

    This paper develops a connection between the phenomenology of chemical bonding and the theory of relativity. Empirical correlations between electron numbers in atoms and chemical bond stabilities in molecules are first reviewed and extended. Quantitative chemical bond strengths are then related to ionization potentials in elements. Striking patterns in ionization potentials are revealed when the data are viewed in an element-independent way, where element-specific details are removed via an appropriate scaling law. The scale factor involved is not explained by quantum mechanics; it is revealed only when one goes back further, to the development of Einstein's special relativity theory.

  6. A class of chemical pinning centers including two elements foreign to HTS

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, Roy; Sawh, Ravi-Persad

    2003-01-01

    Very small deposits are formed when two foreign elements, A and B, are added to textured (RE)BCO. These deposits increase the J{sub c} of samples and hence the maximum trapped field. Deposit sizes are generally in the range 200-400 nm. Their chemical composition is (A{sub x},B{sub y})(RE)Ba{sub 2}O{sub 6}, where x+y=1 and x=y{+-}0.1. Their structure is double perovskite. The deposits produce two types of pinning, one by refinement (e.g., of the Y211 phase) and the other due to the double perovskite deposits themselves. In those cases tested, the refinement increases J{sub c} by factors exceeding 1.33, and the deposits increase J{sub c} by factors exceeding 2, for a total increase by a factor exceeding 2.66. Element A can be U, W or Mo. Element B can be Pt or Zr. We speculate on possible additional elements in classes A and B.

  7. Chemical fractionation of radionuclides and stable elements in aquatic plants of the Yenisei River.

    Science.gov (United States)

    Bolsunovsky, Alexander

    2011-09-01

    The Yenisei River is contaminated with artificial radionuclides released by one of the Russian nuclear plants. The aquatic plants growing in the radioactively contaminated parts of the river contain artificial radionuclides. The aim of the study was to investigate accumulation of artificial radionuclides and stable elements by submerged plants of the Yenisei River and estimate the strength of their binding to plant biomass by using a new sequential extraction scheme. The aquatic plants sampled were: Potamogeton lucens, Fontinalis antipyretica, and Batrachium kauffmanii. Gamma-spectrometric analysis of the samples of aquatic plants has revealed more than 20 radionuclides. We also investigated the chemical fractionation of radionuclides and stable elements in the biomass and rated radionuclides and stable elements based on their distribution in biomass. The greatest number of radionuclides strongly bound to biomass cell structures was found for Potamogeton lucens and the smallest for Batrachium kauffmanii. For Fontinalis antipyretica, the number of distribution patterns that were similar for both radioactive isotopes and their stable counterparts was greater than for the other studied species. The transuranic elements (239)Np and (241)Am were found in the intracellular fraction of the biomass, and this suggested their active accumulation by the plants.

  8. Heavy elements and chemical enrichment in globular clusters

    CERN Document Server

    James, G; Bonifacio, P; Carretta, E; Gratton, R G; Spite, F

    2004-01-01

    High resolution (R > 40 000) and high S/N spectra have been acquired with UVES on the VLT-Kueyen (Paranal Observatory, ESO Chile) for several main sequence turnoff stars (V ~ 17 mag) and subgiants at the base of the Red Giant Branch (V ~ 16 mag) in three globular clusters (NGC 6397, NGC 6752 and 47 Tuc/NGC 104) at different metallicities (respectively [Fe/H] = -2.0; -1.5; -0.7$). Spectra for a sample of 25 field halo subdwarves have also been taken with equal resolution, but higher S/N. These data have been used to determine the abundances of several neutron-capture elements in these three clusters: strontium, yttrium, barium and europium. This is the first abundance determination of these heavy elements for such unevolved stars in these three globular clusters. These values, together with the [Ba/Eu] and [Sr/Ba] abundance ratios, have been used to test the self-enrichment scenario. A comparison is done with field halo stars and other well known Galactic globular clusters in which heavy elements have already ...

  9. High rate lithium-sulfur battery enabled by sandwiched single ion conducting polymer electrolyte

    OpenAIRE

    Yubao Sun; Gai Li; Yuanchu Lai; Danli Zeng; Hansong Cheng

    2016-01-01

    Lithium-sulfur batteries are highly promising for electric energy storage with high energy density, abundant resources and low cost. However, the battery technologies have often suffered from a short cycle life and poor rate stability arising from the well-known “polysulfide shuttle” effect. Here, we report a novel cell design by sandwiching a sp 3 boron based single ion conducting polymer electrolyte film between two carbon films to fabricate a composite separator for lithium-sulfur batterie...

  10. Monitoring sealed automotive lead-acid batteries by sparse-impedance spectroscopy

    Indian Academy of Sciences (India)

    B Hariprakash; S K Martha; A K Shukla

    2003-10-01

    A reliable diagnostics of lead-acid batteries would become mandatory with the induction of an improved power net and the increase of electrically assisted features in future automobiles. Sparse-impedance spectroscopic technique described in this paper estimates the internal resistance of sealed automotive lead-acid batteries in the frequency range 10 Hz-10 kHz, usually produced by the alternators fitted in the automobiles. The state-of-health of the battery could be monitored from its internal resistance.

  11. A short review on surface chemical aspects of Li batteries: A key for a good performance

    Energy Technology Data Exchange (ETDEWEB)

    Martha, S.K.; Markevich, E.; Burgel, V.; Salitra, G.; Zinigrad, E.; Markovsky, B.; Sclar, H.; Pramovich, Z.; Heik, O.; Aurbach, D. [Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900 (Israel); Exnar, I.; Buqa, H.; Drezen, T. [HPL, SA PSE-B, EPFL 1015 Lausanne (Switzerland); Semrau, G.; Schmidt, M. [Merck KGaA, Frankfurter Str. 250, D 64293 Darmstadt (Germany); Kovacheva, D.; Saliyski, N. [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113 (Bulgaria)

    2009-04-01

    We review herein several important aspects of surface chemistry in Li-ion batteries, and discuss the use of ionic liquids (ILs) for rechargeable Li batteries. We explored the suitability of ILs for 5 V cathodes and Li-graphite anodes. Some advantages of the use of ILs to attenuate the thermal behavior of delithiated cathode materials are demonstrated. We also report briefly on a comparative study of the following cathode materials: LiNi{sub 0.5}Mn{sub 0.5}O{sub 2}; LiNi{sub 0.33}Mn{sub 0.33}Co{sub 0.33}O{sub 2}; LiNi{sub 0.4}Mn{sub 0.4}Co{sub 0.2}O{sub 2}; LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} and LiMnPO{sub 4}, in standard electrolyte solutions based on mixtures of alkyl carbonates and LiPF{sub 6}. We also discuss aging, rate capability, cycle life and surface chemistry of these cathode materials. The techniques applied included electrochemical measurements, e.g., XRD, HRTEM, Raman spectroscopy, XPS and FTIR spectroscopy. We found that ILs based on cyclic quaternary alkyl ammonium cations may provide much better electrolyte solutions for 5 V cathodes than standard electrolyte solutions, while being quite suitable for Li-graphite electrodes. All the lithiated transition metal oxides studied (as mentioned above) develop unique surface chemistry during aging and cycling due to the acid-base and nucleophilic reactions of their surface oxygen anions. LiMn{sub 0.33}Ni{sub 0.33}Co{sub 0.33}O{sub 2} has the highest rate capability compared to all the other above-mentioned cathode materials. Cathodes comprising nanometric size carbon-coated LiMnPO{sub 4} produced by HPL demonstrate a better rate capability than LiNi{sub 0.5}Mn{sub 0.5}O{sub 2} and LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} cathodes. The former material seems to be the least surface reactive with alkyl carbonates/LiPF{sub 6} solutions, among all the cathode materials explored herein. (author)

  12. Understanding electrochemical potentials of cathode materials in rechargeable batteries

    Directory of Open Access Journals (Sweden)

    Chaofeng Liu

    2016-03-01

    Full Text Available Presently, sustainable energy as well as efficient and economical energy conversion and storage technologies has become important work in light of the rising environmental issues and dependence on portable and uninterrupted power sources. Increasingly more researchers are focusing on harvesting and converting solar energy, mechanical vibration, waste heat, and wind to electricity. Electrical energy storage technologies play a significant role in the demand for green and sustainable energy. Rechargeable batteries or secondary batteries, such as Li-ion batteries, Na-ion batteries, and Mg-ion batteries, reversibly convert between electrical and chemical energy via redox reactions, thus storing the energy as chemical potential in their electrodes. The energy density of a rechargeable battery is determined collectively by the specific capacity of electrodes and the working voltage of the cell, which is the differential potential between the cathode and the anode. Over the past decades, a significant number of studies have focused on enhancing this specific capacity; however, studies to understand and manipulate the electrochemical potential of the electrode materials are limited. In this review, the material characteristics that determine and influence the electrochemical potentials of electrodes are discussed. In particular, the cathode materials that convert electricity and chemical potential through electrochemical intercalation reactions are investigated. In addition, we summarize the selection criteria for elements or compounds and the effect of the local atomic environment on the discharge potential, including the effects of site energy, defects, crystallinity, and microstructure, using LiMn2O4, V2O5, Mo6S8, LiFePO4, and LiCoO2 as model samples for discussion.

  13. Measurements of radon and chemical elements: Popocatepetl volcano; Mediciones de radon y elementos quimicos: Volcan Popocatepetl

    Energy Technology Data Exchange (ETDEWEB)

    Pena, P.; Segovia, N.; Lopez, B.; Reyes, A.V. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico); Armienta, M.A.; Valdes, C.; Mena, M. [IGFUNAM, Ciudad Universitaria, 04510 Mexico D.F. (Mexico); Seidel, J.L.; Monnin, M. [UMR 5569 CNRS Hydrosciences, Montpellier (France)

    2002-07-01

    The Popocatepetl volcano is a higher risk volcano located at 60 Km from Mexico City. Radon measurements on soil in two fixed seasons located in the north slope of volcano were carried out. Moreover the radon content, major chemical elements and tracks in water samples of three springs was studied. The radon of soil was determined with solid detectors of nuclear tracks (DSTN). The radon in subterranean water was evaluated through the liquid scintillation method and it was corroborated with an Alpha Guard equipment. The major chemical elements were determined with conventional chemical methods and the track elements were measured using an Icp-Ms equipment. The radon on soil levels were lower, indicating a moderate diffusion of the gas across the slope of the volcano. The radon in subterranean water shown few changes in relation with the active scene of the volcano. The major chemical elements and tracks showed a stable behavior during the sampling period. (Author)

  14. Initial chemical transport of reducing elements and chemical reactions in oxide cathode base metal

    Energy Technology Data Exchange (ETDEWEB)

    Roquais, J.M.; Poret, F.; Doze, R. le; Dufour, P.; Steinbrunn, A

    2002-11-30

    In the present work, the formation of compounds associated to the diffusion of reducing elements (Mg and Al) to the nickel surface of a one-piece oxide cathode has been studied. Those compounds have been evidenced after the annealing steps at high temperature performed on cathode base metal prior to the emitting ing deposition. Therefore, they form the ''initial'' interface between the nickel and the coating, in other words, the interface existing at the beginning of cathode life. Extensive analysis to characterize the nickel base prior to coating deposition has been performed by means of scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX), Auger electron spectroscopy (AES), transmission electron microscopy (TEM), and glow discharge optical emission spectroscopy (GDOES). TEM and AES analysis have allowed to identify for the first time a spinel compound of MgAl{sub 2}O{sub 4}. The preferential distribution of the different compounds on the nickel surface has been studied by EDX mapping. Experimental profiles of diffusion of the reducing elements in the nickel have been obtained over the entire thickness of the material by GDOES. The mechanism of formation of these compounds together with a related diffusion model are proposed.

  15. Seeing elements by visible-light digital camera.

    Science.gov (United States)

    Zhao, Wenyang; Sakurai, Kenji

    2017-03-31

    A visible-light digital camera is used for taking ordinary photos, but with new operational procedures it can measure the photon energy in the X-ray wavelength region and therefore see chemical elements. This report describes how one can observe X-rays by means of such an ordinary camera - The front cover of the camera is replaced by an opaque X-ray window to block visible light and to allow X-rays to pass; the camera takes many snap shots (called single-photon-counting mode) to record every photon event individually; an integrated-filtering method is newly proposed to correctly retrieve the energy of photons from raw camera images. Finally, the retrieved X-ray energy-dispersive spectra show fine energy resolution and great accuracy in energy calibration, and therefore the visible-light digital camera can be applied to routine X-ray fluorescence measurement to analyze the element composition in unknown samples. In addition, the visible-light digital camera is promising in that it could serve as a position sensitive X-ray energy detector. It may become able to measure the element map or chemical diffusion in a multi-element system if it is fabricated with external X-ray optic devices. Owing to the camera's low expense and fine pixel size, the present method will be widely applied to the analysis of chemical elements as well as imaging.

  16. Chemical species of metallic elements in the aquatic environment of an ex-mining catchment.

    Science.gov (United States)

    Ashraf, Muhammad Aqeel; Ahmad, Mushtaq; Akib, Shatirah; Balkhair, Khaled S; Abu Bakar, Nor Kartini

    2014-08-01

    This study was conducted to investigate the chemical speciation of dissolved and particulate elements (lead, zinc, copper, chromium, arsenic, and tin) in the mining wastewater of a former tin-mining catchment. The speciation patterns of dissolved elements were estimated by an adsorptive stripping voltammeter (ASV), while particulate elements were analyzed by using a newly developed sequential-extraction leaching procedure. The procedure has been operationally defined among five host fractions, namely exchangeable, carbonate, reducible, organic bound, and residual fractions. A total of six elements (lead, zinc, copper, chromium, arsenic, and tin) were analyzed in thirty samples at ten locations (P1-P10), with three samples taken from each of the ten locations, to get the average value from the former tin-mining catchment. The results showed that the heavy metal pollutions in locations P4 and P8 were more severe than in other sampling sites, especially tin and lead pollution. In the water samples from locations P4 and P8, both the total contents and the most dangerous non-residual fractions of tin and lead were extremely high. More than 90% of the total concentrations of arsenic and chromium existed in the residual fraction. Concentrations of copper and zinc mainly occurred in the residual fraction (more than 60%), while lead and tin presented mostly in the non-residual fractions in surface water. For all of the six dissolved elements, the less-labile species formed the predominant fraction in their speciation patterns. The speciation patterns of particulate elements showed that most of the concentrations of zinc, copper, chromium, and arsenic were found in the reducible fraction; whereas lead and tin were mainly associated with the organic fraction.

  17. k{sub 0}-INAA for determining chemical elements in bird feathers

    Energy Technology Data Exchange (ETDEWEB)

    Franca, Elvis J., E-mail: ejfranca@usp.b [CENA/USP, Centro de Energia Nuclear na Agricultura, Universidade of Sao Paulo, P.O. Box 97, 13400-970, Piracicaba, SP (Brazil); Fernandes, Elisabete A.N.; Fonseca, Felipe Y. [CENA/USP, Centro de Energia Nuclear na Agricultura, Universidade of Sao Paulo, P.O. Box 97, 13400-970, Piracicaba, SP (Brazil); Antunes, Alexsander Z. [IF, Instituto Florestal do Estado de Sao Paulo, Rua do Horto 931, Horto Florestal 02377-000, Sao Paulo, SP (Brazil); Bardini Junior, Claudiney; Bacchi, Marcio A.; Rodrigues, Vanessa S.; Cavalca, Isabel P.O. [CENA/USP, Centro de Energia Nuclear na Agricultura, Universidade of Sao Paulo, P.O. Box 97, 13400-970, Piracicaba, SP (Brazil)

    2010-10-11

    The k{sub 0}-method instrumental neutron activation analysis (k{sub 0}-INAA) was employed for determining chemical elements in bird feathers. A collection was obtained taking into account several bird species from wet ecosystems in diverse regions of Brazil. For comparison reason, feathers were actively sampled in a riparian forest from the Marins Stream, Piracicaba, Sao Paulo State, using mist nets specific for capturing birds. Biological certified reference materials were used for assessing the quality of analytical procedure. Quantification of chemical elements was performed using the k{sub 0}-INAA Quantu Software. Sixteen chemical elements, including macro and micronutrients, and trace elements, have been quantified in feathers, in which analytical uncertainties varied from 2% to 40% depending on the chemical element mass fraction. Results indicated high mass fractions of Br (max=7.9 mg kg{sup -1}), Co (max=0.47 mg kg{sup -1}), Cr (max=68 mg kg{sup -1}), Hg (max=2.79 mg kg{sup -1}), Sb (max=0.20 mg kg{sup -1}), Se (max=1.3 mg kg{sup -1}) and Zn (max=192 mg kg{sup -1}) in bird feathers, probably associated with the degree of pollution of the areas evaluated. In order to corroborate the use of k{sub 0}-INAA results in biomonitoring studies using avian community, different factor analysis methods were used to check chemical element source apportionment and locality clustering based on feather chemical composition.

  18. Model Experiments on Chemical Properties of Superheavy Elements in Aqueous Solutions

    CERN Document Server

    Szeglowski, Z

    2003-01-01

    This paper presents a brief review of model experiments on investigation of chemical properties of transactinide elements, ranging from 104 to 116. The possibilities of isolation of the nuclei of these elements from nuclear reaction products, using the ion-exchange method, are also considered.

  19. Study on the association between environmental chemical elements and fluorosis caused by coal-fire pollution%环境化学元素与燃煤型氟中毒的相关性研究

    Institute of Scientific and Technical Information of China (English)

    焦永卓; 牟李红; 王应雄; 晏维; 钟朝晖; 李立

    2012-01-01

    patients were significantly higher than in the control group [(1.46±0.16) mmol/L,(7.64± 1.00)mmol/L,(1.44±1.22)mg/L] (P<0.05).Conclusion Soil,rich in alkaline and fluorosis could increase the intake of fluorine while nickel,cadmium,iodine content in soil might relate to the occurrence of fluorosis.Residents living in endemic areas where anti-fluorine elements as Zn,Ca and Mg were in shortage,might be affected by these chemical elements that related with fluorosis.%目的 了解燃煤型氟中毒病区土壤化学元素分布情况,比较采取降氟措施后重庆市巫山、奉节两县病例与对照全血中化学元素及尿氟含量差异,查找与燃煤型氟中毒相关的化学元素及阐明其发病机制.方法 采用生态学比较研究对两县各乡镇患病率与土壤化学元素水平做相关分析,并测定氟斑牙、氟骨症患者与对照组全血中铜、锌、钙、镁、铁及尿氟含量,对比分析各检测指标的含量差异.结果 巫山县土壤中镍(r=0.553,P=0.050)、碘(r=0.571,P=0.041)、氟(r=0.303,P=0.005)、pH值(r=0.304,P=0.005)与患病率有较弱的正相关关系;奉节县土壤中汞(r=0.285,P=0.001)、镍(r=0.212,P=0.00)与患病率有较弱的正相关关系.巫山县儿童病例组尿氟含量[(0.64±0.34)mg/L]高于对照组[(0.44±0.59)mg/L] (P<0.05).奉节县儿童病例组铜[(29.63±3.32) μmol/L]、尿氟[(0.83±0.37) mg/L]含量高于对照组[(26.76±3.63)μ mol/L、(0.53±0.23)mg/L] (P<0.05).奉节县氟斑牙儿童锌[(76.13±11.24) μmol/L]、钙[(1.87±0.25) mmol/L]、镁[(1.41±0.18) mmol/L]及尿氟[(0.83±0.37) mg/L]高于巫山县[(71.95±7.53) μmol/L、(1.43±1.34) mmol/L、(1.34±0.15)mmol/L、(0.64±0.34)mg/L] (P<0.05).病例组成年氟骨症患者镁[(1.56±1.96)mmol/L]、铁[(8.15±1.00)mmol/L]、尿氟[(2.17±0.99)mg/L]含量均值高于对照组[分别为(1.46±0.16)mmol/L、(7.64±1.00) mmol/L、(1.44±1.22)mg/L] (P<0.05).结论 碱性高氟土壤可能增

  20. Purification process of natural graphite as anode for Li-ion batteries: chemical versus thermal

    Science.gov (United States)

    Zaghib, K.; Song, X.; Guerfi, A.; Rioux, R.; Kinoshita, K.

    The intercalation of Li ions in natural graphite that was purified by chemical and thermal processes was investigated. A new chemical process was developed that involved a mixed aqueous solution containing 30% H 2SO 4 and 30% NH xF y heated to 90 °C. The results of this process are compared to those obtained by heating the natural graphite from 1500 to 2400 °C in an inert environment (thermal process). The first-cycle coulombic efficiency of the purified natural graphite obtained by the chemical process is 91 and 84% after the thermal process at 2400 °C. Grinding the natural graphite before or after purification had no significant effect on electrochemical performance at low currents. However, grinding to a very small particle size before purification permitted optimization of the size distribution of the particles, which gives rise to a more homogenous electrode. The impurities in the graphite play a role as microabrasion agents during grinding which enhances its hardness and improves its mechanical properties. Grinding also modifies the particle morphology from a 2- to a 3-D structure (similar in shape to a potato). This potato-shaped natural graphite shows high reversible capacity at high current densities (about 90% at 1 C rate). Our analysis suggests that thermal processing is considerably more expensive than the chemical process to obtain purified natural graphite.

  1. Production of zinc and manganese oxide particles by pyrolysis of alkaline and Zn-C battery waste.

    Science.gov (United States)

    Ebin, Burçak; Petranikova, Martina; Steenari, Britt-Marie; Ekberg, Christian

    2016-05-01

    Production of zinc and manganese oxide particles from alkaline and zinc-carbon battery black mass was studied by a pyrolysis process at 850-950°C with various residence times under 1L/minN2(g) flow rate conditions without using any additive. The particular and chemical properties of the battery waste were characterized to investigate the possible reactions and effects on the properties of the reaction products. The thermodynamics of the pyrolysis process were studied using the HSC Chemistry 5.11 software. The carbothermic reduction reaction of battery black mass takes place and makes it possible to produce fine zinc particles by a rapid condensation, after the evaporation of zinc from a pyrolysis batch. The amount of zinc that can be separated from the black mass is increased by both pyrolysis temperature and residence time. Zinc recovery of 97% was achieved at 950°C and 1h residence time using the proposed alkaline battery recycling process. The pyrolysis residue is mainly MnO powder with a low amount of zinc, iron and potassium impurities and has an average particle size of 2.9μm. The obtained zinc particles have an average particle size of about 860nm and consist of hexagonal crystals around 110nm in size. The morphology of the zinc particles changes from a hexagonal shape to s spherical morphology by elevating the pyrolysis temperature.

  2. Chemical studies of elements with Z ≥ 104 in liquid phase

    Energy Technology Data Exchange (ETDEWEB)

    Nagame, Yuichiro, E-mail: nagame.yuichiro@jaea.go.jp [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan); Kratz, Jens Volker [Institut für Kernchemie, Johannes Gutenberg-Universität Mainz, Fritz-Straßmann-Weg 2, 55128 Mainz (Germany); Schädel, Matthias [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan)

    2015-12-15

    Recent studies of the chemical separation and characterization experiments of the first three transactinide elements, rutherfordium (Rf), dubnium (Db), and seaborgium (Sg), conducted atom-at-a-time in liquid phases, are reviewed. A short description on experimental techniques based on partition methods, specifically automated rapid chemical separation systems, is also given. A newly developed experimental approach to investigate single atoms of the heaviest elements with an electrochemical method is introduced. Perspectives for liquid-phase chemistry experiments on heavier elements are briefly discussed.

  3. Chemical element accumulation in tree bark grown in volcanic soils of Cape Verde-a first biomonitoring of Fogo Island.

    Science.gov (United States)

    Marques, Rosa; Prudêncio, Maria Isabel; Freitas, Maria do Carmo; Dias, Maria Isabel; Rocha, Fernando

    2015-10-03

    Barks from Prosopis juliflora (acacia) were collected in 12 sites of different geological contexts over the volcanic Fogo Island (Cape Verde). Elemental contents of Ba, Br, Co, Cr, Fe, K, Na, Zn and some rare earth elements (REE)-La, Ce, Sm, Eu, Tb, Yb, and Lu, were obtained for biological samples and topsoils by using k 0-standardized and comparative method of instrumental neutron activation analysis (INAA), aiming the evaluation of chemical elements uptake by acacia bark. This first biomonitoring study of Fogo Island showed that, in general, significant accumulations of trace elements present in high amounts in these soils occur. This can be partially explained by the semi-arid climate with a consequent bioavailability of chemical elements when rain drops fall in this non-polluted environment. REE enrichment factors (EFs) increase with the decrease of ionic radius. Heavy REE (HREE) are significantly enriched in bark, which agrees with their release after the primary minerals breakdown and the formation of more soluble compounds than the other REE, and uptake by plants. Among the potential harmful chemical elements, Cr appears to be partially retained in nanoparticles of iron oxides. The high EFs found in tree barks of Fogo Island are certainly of geogenic origin rather than anthropogenic input since industry and the use of fertilizers is scarce.

  4. Speeding chemical reactions by focusing

    CERN Document Server

    Lacasta, A M; Sancho, J M; Lindenberg, K

    2012-01-01

    We present numerical results for a chemical reaction of colloidal particles which are transported by a laminar fluid and are focused by periodic obstacles in such a way that the two components are well mixed and consequently the chemical reaction is speeded up. The roles of the various system parameters (diffusion coefficients, reaction rate, obstacles sizes) are studied. We show that focusing speeds up the reaction from the diffusion limited rate (t to the power -1/2) to very close to the perfect mixing rate, (t to the power -1).

  5. Selected elements and organic chemicals in bed sediment and fish tissue of the Tualatin River basin, Oregon, 1992-96

    Science.gov (United States)

    Bonn, Bernadine A.

    1999-01-01

    A variety of elements and organic compounds have entered the environment as a result of human activities. Such substances find their way to aquatic sediments from direct discharges to waterways, atmospheric emissions, and runoff. Some of these chemicals are known to harm fish or wildlife, either by direct toxicity, by reducing viability, or by limiting reproductive success. In aquatic systems, sediments become the eventual sink for most of these chemicals. Analyzing the sediments provides a first step in a chemical inventory that can lead to an assessment of potential biological impacts (Kennicutt and others, 1994).

  6. Fusion analysis of MH-Ni batteries characteristics by neural network data fusion method

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Presents the fusion analysis of the charging and dischargingcharacteristics of MH-Ni batteries in wide applications by neural network data fusion method to generate a specific vector and the use of this specific vector for selection of MH-Ni batteries, and the comparison of two results of selection.

  7. Automotive Battery Modelling and Management

    Directory of Open Access Journals (Sweden)

    N. M. Hammad

    2014-06-01

    Full Text Available The estimation of vehicle battery performance is typically addressed by testing the battery under specific operation conditions by using a model to represent the test results. Approaches for representing test results range from simple statistical models to neural networks to complex, physics-based models. Basing the model on test data could be problematical when testing becomes impractical with many years life time tests. So, real time estimation of battery performance, an important problem in automotive applications, falls into this area. In vehicles it is important to know the state of charge of the batteries in order to prevent vehicle stranding and to ensure that the full range of the vehicle operation is exploited. In this paper, several battery models have studied including analytical, electrical circuits, stochastic and electro- chemical models. Valve Regulated Lead Acid “VRLA” battery has been modelled using electric circuit technique. This model is considered in the proposed Battery Monitoring System “BMS”. The proposed BMS includes data acquisition, data analysis and prediction of battery performance under a hypothetical future loads. Based on these criteria, a microprocessor based BMS prototype had been built and tested in automotive Lab,. The tests show promising results that can be used in industrial applications

  8. A rechargeable Na–CO 2 /O 2 battery enabled by stable nanoparticle hybrid electrolytes

    KAUST Repository

    Xu, Shaomao

    2014-09-10

    © the Partner Organisations 2014. We report on rechargeable batteries that use metallic sodium as the anode, a mixture of CO2 and O2 as the active material in the cathode, and an organic-inorganic hybrid liquid as electrolyte. The batteries are attractive among energy storage technologies because they provide a mechanism for simultaneously capturing CO2 emissions while generating electrical energy. Through in and ex situ chemical analysis of the cathode we show that NaHCO3 is the principal discharge product, and that its relative instability permits cell recharging. By means of differential electrochemical mass spectrometry (DEMS) based on 12C and 13C we further show that addition of as little as 10% of 1-methyl-3-propylimidazolium bis(trifluoromethanesulfone)imide ionic liquid tethered to SiO2 nanoparticles extends the high-voltage stability of the electrolyte by at least 1 V, allowing recharge of the Na-CO2/O2 cells. This journal is

  9. 浅谈化学废旧电池的回收和利用%Talking about the Recovery and Utilization of Chemical Waste Batteries

    Institute of Scientific and Technical Information of China (English)

    陆成禹

    2016-01-01

    本文简要介绍了锌锰干电池、镍镉蓄电池等几种电池类型,同时分析了废旧电池对环境、人体的危害,并详细介绍了化学废旧电池的回收处理技术,以便人们能够对上述两种电池及其他类电池加以妥善处理,避免其对环境以及人体造成污染与危害。%This article briefly describes the zinc-manganese batteries, nickel-cadmium batteries, such as several battery types, and analyzes the waste batteries on the environment, health hazards, and details of chemical waste battery recycling technology, so that people be able to both batteries and other types of batteries are properly handled, avoid pollution and harm to the envi-ronment and the human body.

  10. Mass and chemical changes of immobile elements in Yamaghan Occurrence, Zanjan Province, Iran

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Using mass and chemical changes, behavior of some elements have been evaluated in the study area, Yamaghan Occurrence. The techniques using immobile elements can precisely identify altered volcanic rock precursors and measure material changes. The rocks of the study area were affected by hydrothermal alteration. Testing of some compatible-incompatible and compatible-compatible immobile pairs indicates that Al2O3 is the most immobile component in the study area. It means that during the three main stages of hydrothermal alteration (phyllic, intermediate argillic and propylitic) aluminum was the most immobile and titanium was slightly immobile. Increases in mass mostly result from mineralization, silicification or carbonatization as voids and other open space fillings and may have replaced the part of glassy matrix. Mass addition has diluted the immobile elements at constant rates. Mass loss is commonly due to leaching of Si, Ca and Na2O during chloritization and sericitization. The mass loss is recognized by increased proportions of inert minerals such as chlorite and sericite. Mineralographic studies in the study area shows the existence of a supergene zone. Calcocite and covellite are considered enriched minerals. Considering this evidence and mass change results, the enrichment of copper in the circulating fluid is suspected with occasional sulfide precipitation.

  11. Results of the Experiment on Chemical Identification of Db as a Decay Product of Element 115

    CERN Document Server

    Dmitriev, S N; Utyonkov, V K; Shishkin, S V; Eremin, A V; Lobanov, Yu V; Tsyganov, Yu S; Chepigin, V I; Sokol, E A; Vostokin, G K; Aksenov, N V; Hussonnois, M; Itkis, M G; Aggeler, H W; Schumann, D; Bruchertseifer, H; Eichler, R; Shaughnessy, D A; Wilk, P A; Kenneally, J M; Stoyer, M A; Wild, J F

    2004-01-01

    For the first time the chemical identification of Db as the terminal isotope of the decay element 115 produced via the $^{243}{\\text{Am}}(^{48}{\\text{Ca}},3n)^{288}115$ reaction was realized. The experiment was performed on the U400 cyclotron of FLNR, JINR. The $^{243}$Am target was bombarded with a beam dose of $3.4\\cdot 10^{18}$ $^{48}$Ca projectiles at an energy of 247 MeV in the center of the target. The reaction products were collected in the surface of a copper catcher block, which was removed with a lathe and then dissolved in concentrated HNO$_3$. The group 5 elements were separated by sorption onto Dowex 50$\\times$8 cation-exchange resin with subsequent desorption using 1M HF, which forms anionic fluoride complexes of group 5 elements. The eluant was evaporated onto 0.4 $\\mu$m thick polyethylene foils which were placed between a pair of semiconductor detectors surrounded by $^3$He neutron counters for measurement of $\\alpha$ particles, fission fragments and neutrons. Over the course of the experiment...

  12. Caracterização dos níveis de elementos químicos em solo, submetido a diferentes sistemas de uso e manejo, utilizando espectrometria de fluorescência de raios-x por energia dispersiva (EDXRF Characterization of chemical elements in soil submitted to different systems use and management by energy dispersive x-ray fluorescence spectrometry (EDXRF

    Directory of Open Access Journals (Sweden)

    Arci Dirceu Wastowski

    2010-01-01

    Full Text Available This study aimed to evaluate the chemical elements levels in soil, submitted to different management systems and use by the Energy Dispersive X-Ray Fluorescence Spectrometry - EDXRF. The systems were T1 - agro forestry (SAF, T2 - Native Field (CN, T3 - Native Forest (NM, T4 - Tillage Forest (PF; T5 - conventional tillage system (SPC and T6 - System tillage (NT. Samples were collected at 0-10 and 10-20 cm, dried and ground for analysis in EDX-720. The soil showed no difference in the average concentrations of chemical elements analyzed in the profiles, but the systems presented different concentrations of metal elements, and T3 had the highest K, Ca and Zn at 0-10 cm and higher contents of K, Ca, Cu, Zn and Mn in the layer of 10-20 cm.

  13. Characterization of chemical elements in soil submitted to different systems use and management by energy dispersive x-ray fluorescence spectrometry (EDXRF); Caracterizacao dos niveis de elementos quimicos em solo, submetido a diferentes sistemasde uso e manejo, utilizando espectrometria de fluorescencia de raios-X por energia dispersiva (EDXRF)

    Energy Technology Data Exchange (ETDEWEB)

    Wastowski, Arci Dirceu; Rosa, Genesio Mario da; Cherubin, Mauricio Roberto; Rigon, Joao Paulo Gonsiorkiewicz, E-mail: wastowski@smail.ufsm.b [Universidade Federal de Santa Maria (UFSM), Frederico Westphalen, RS (Brazil). Centro de Educacao Superior Norte do Rio Grande do Sul

    2010-07-01

    This study aimed to evaluate the chemical elements levels in soil, submitted to different management systems and use by the Energy Dispersive X-Ray Fluorescence Spectrometry - EDXRF. The systems were T1 - agroforestry (SAF), T2 - native field (CN), T3 - native forest (NM), T4 - tillage forest (PF); T5 - conventional tillage system (SPC) and T6 - system tillage (NT). Samples were collected at 0-10 and 10-20 cm, dried and ground for analysis in EDX-720. The soil showed no difference in the average concentrations of chemical elements analyzed in the profiles, but the systems presented different concentrations of metal elements, and T3 had the highest K, Ca and Zn at 0-10 cm and higher contents of K, Ca, Cu, Zn and Mn in the layer of 10-20 cm. (author)

  14. Improvement of flexible lithium battery shelf life by pre-discharging

    Science.gov (United States)

    Lim, Seung-Gyu; Jin, En Mei; Zhao, Xing Guan; Park, Kyung-Hee; Kim, Nam-In; Gu, Hal-Bon; Park, Bok-Kee

    Poly (methyl methacrylate) (PMMA)-based gel electrolyte has been used in flexible lithium batteries. These batteries are flexible and less than 0.5 mm thick, which make them suitable as power sources for smart cards and radio frequency identification (RFID) tags. We investigated the electrochemical properties of flexible lithium batteries using an impedance analyzer and potentiostat/galvanostat to evaluate the electrical capacities. To prevent the formation of gas by decomposition of electrolyte solvent, the batteries had to be pre-discharged about 5% of theoretical MnO 2 capacity. Of the three kinds of pre-discharging methods, especially, battery two-step pre-discharging method was performed showed the best electrical properties after storage at 60 °C for 60 days.

  15. The enhancement of polysulfide absorbsion in Lisbnd S batteries by hierarchically porous CoS2/carbon paper interlayer

    Science.gov (United States)

    Ma, Zhaoling; Li, Zhen; Hu, Kui; Liu, Dongdong; Huo, Jia; Wang, Shuangyin

    2016-09-01

    The high-energy Lisbnd S battery suffers from poor cycling performance due to the shuttle effect of the polysulfides. Strategies must be adopted to suppress the diffusion of polysulfides into the electrolyte in Lisbnd S battery. In this work, for the first time, we adopt hydrophilic carbon paper anchored by hierarchically porous cobalt disulfides as the interlayer for capturing polysulfides through physical absorption and chemical bonding. Hierarchical pores can physically adsorb polysulfides, and moreover cobalt disulfide can trap the polysulfides by forming strong chemical interaction. The sulfur-graphene composite with a sulfur content of 70.5% delivers a high initial capacity of 1239.5 mAh g-1 at 0.2 C and retains a reversible capacity of 818 mAh g-1 after 200 cycles. In spite of a little capacity contribution by the insertion of lithium ions into cobalt disulfide for the initial cycles, it disappears in the subsequent cycling. Therefore, the as-developed porous transition metal disulfides on carbon paper as the interlayer could significantly enhance the cycling performance of Lisbnd S batteries.

  16. Assessment of atmospheric pollution of chemical elements by epiphytic lichen analysis at the Campus of the Sao Paulo University; Avaliacao da poluicao atmosferica de elementos quimicos pela analise de liquen epifitico no Campus da Cidade Universitaria de Sao Paulo

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Rosiana Rocho

    2015-07-01

    Air pollution has been a frequent topic of research, due to the effects that it can cause on the health of living organisms, environment and climate. In order to identify pollution sources and their effects, biomonitoring has been studied due to its low cost and possibility of sampling in wide geographic areas. In this study for passive biomonitoring of air pollution levels at the Cidade Universitaria Armando Salles de Oliveira (CUASO), University of Sao Paulo campus, epiphytic lichens of Canoparmelia texana species were used. The lichens collected from tree barks at different sampling sites in the CUASO were cleaned, freeze-dried and ground for analyses. Lichen samples were analyzed by X - ray fluorescence spectrometry (XRFS) and neutron activation analysis (NAA). For XRFS, cylindrical pellets of samples were prepared to determine As, Br, Ca, Cl, Cr, Cu, Fe, K, Mn, Rb, S, Sr and Zn. For NAA, lichen sample aliquots along with synthetic elemental standards were irradiated both for short and long periods at the IEA-R1 nuclear research reactor. The induced activities were measured by a gamma ray spectrometer to determine As, Br, Ca Cd, Cl, Co, Cr, Cs, Cu, Fe, K, La, Mg, Mn, Rb, Sb, Sc, Se, U, V and Zn. The precision and accuracy of the results were evaluated by the analysis of certified reference materials (MRCs). Their results of relative errors and standard deviations were below 15% for most of the elements. The standardized difference or En score values were lower than |1| indicating satisfactory results. Replicate analyses of a lichen sample by XRFS and NAA, indicated good homogeneity of the sample for the elements determined. The lichen results showed that the mean concentrations of As, Br, Ca, Cd, Co, Cr, Cs, Rb, Sb, Se and U were higher in samples from CUASO than those from regions considered unpolluted. For Fe, K, La, S, V and Zn, they were of the same order of magnitude. The correlation study between the elements showed high correlation (r > 0.7) for elements

  17. The Detailed Chemical Properties of M31 Star Clusters. I. Fe, Alpha and Light Elements

    Science.gov (United States)

    Colucci, Janet E.; Bernstein, Rebecca A.; Cohen, Judith G.

    2014-12-01

    We present ages, [Fe/H] and abundances of the α elements Ca I, Si I, Ti I, Ti II, and light elements Mg I, Na I, and Al I for 31 globular clusters (GCs) in M31, which were obtained from high-resolution, high signal-to-noise ratio >60 echelle spectra of their integrated light (IL). All abundances and ages are obtained using our original technique for high-resolution IL abundance analysis of GCs. This sample provides a never before seen picture of the chemical history of M31. The GCs are dispersed throughout the inner and outer halo, from 2.5 kpc 117 kpc. We find a range of [Fe/H] within 20 kpc of the center of M31, and a constant [Fe/H] ~ - 1.6 for the outer halo clusters. We find evidence for at least one massive GC in M31 with an age between 1 and 5 Gyr. The α-element ratios are generally similar to the Milky Way GC and field star ratios. We also find chemical evidence for a late-time accretion origin for at least one cluster, which has a different abundance pattern than other clusters at similar metallicity. We find evidence for star-to-star abundance variations in Mg, Na, and Al in the GCs in our sample, and find correlations of Ca, Mg, Na, and possibly Al abundance ratios with cluster luminosity and velocity dispersion, which can potentially be used to constrain GC self-enrichment scenarios. Data presented here were obtained with the HIRES echelle spectrograph on the Keck I telescope. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  18. P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries.

    Science.gov (United States)

    Yabuuchi, Naoaki; Kajiyama, Masataka; Iwatate, Junichi; Nishikawa, Heisuke; Hitomi, Shuji; Okuyama, Ryoichi; Usui, Ryo; Yamada, Yasuhiro; Komaba, Shinichi

    2012-04-29

    Rechargeable lithium batteries have risen to prominence as key devices for green and sustainable energy development. Electric vehicles, which are not equipped with an internal combustion engine, have been launched in the market. Manganese- and iron-based positive-electrode materials, such as LiMn(2)O(4) and LiFePO(4), are used in large-scale batteries for electric vehicles. Manganese and iron are abundant elements in the Earth's crust, but lithium is not. In contrast to lithium, sodium is an attractive charge carrier on the basis of elemental abundance. Recently, some layered materials, where sodium can be electrochemically and reversibly extracted/inserted, have been reported. However, their reversible capacity is typically limited to 100 mAh g(-1). Herein, we report a new electrode material, P2-Na(2/3)[Fe(1/2)Mn(1/2)]O(2), that delivers 190 mAh g(-1) of reversible capacity in the sodium cells with the electrochemically active Fe(3+)/Fe(4+) redox. These results will contribute to the development of rechargeable batteries from the earth-abundant elements operable at room temperature.

  19. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries

    Science.gov (United States)

    Yabuuchi, Naoaki; Kajiyama, Masataka; Iwatate, Junichi; Nishikawa, Heisuke; Hitomi, Shuji; Okuyama, Ryoichi; Usui, Ryo; Yamada, Yasuhiro; Komaba, Shinichi

    2012-06-01

    Rechargeable lithium batteries have risen to prominence as key devices for green and sustainable energy development. Electric vehicles, which are not equipped with an internal combustion engine, have been launched in the market. Manganese- and iron-based positive-electrode materials, such as LiMn2O4 and LiFePO4, are used in large-scale batteries for electric vehicles. Manganese and iron are abundant elements in the Earth’s crust, but lithium is not. In contrast to lithium, sodium is an attractive charge carrier on the basis of elemental abundance. Recently, some layered materials, where sodium can be electrochemically and reversibly extracted/inserted, have been reported. However, their reversible capacity is typically limited to 100 mAh g-1. Herein, we report a new electrode material, P2-Na2/3[Fe1/2Mn1/2]O2, that delivers 190 mAh g-1 of reversible capacity in the sodium cells with the electrochemically active Fe3+/Fe4+ redox. These results will contribute to the development of rechargeable batteries from the earth-abundant elements operable at room temperature.

  20. Utility Battery Storage Systems Program plan: FY 1994--FY 1998

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    The Utility Battery Storage Systems Program, sponsored by the US Department of Energy (DOE), is addressing needed improvements so that the full benefits of these systems can be realized. A key element of the Program is the quantification of the benefits of batteries used in utility applications. The analyses of the applications and benefits are ongoing, but preliminary results indicate that the widespread introduction of battery storage by utilities could benefit the US economy by more than $26 billion by 2010 and create thousands of new jobs. Other critical elements of the DOE Program focus on improving the batteries, power electronics, and control subsystems and reducing their costs. These subsystems are then integrated and the systems undergo field evaluation. Finally, the most important element of the Program is the communication of the capabilities and benefits of battery systems to utility companies. Justifiably conservative, utilities must have proven, reliable equipment that is economical before they can adopt new technologies. While several utilities are leading the industry by demonstrating battery systems, a key task of the DOE program is to inform the entire industry of the value, characteristics, and availability of utility battery systems so that knowledgeable decisions can be made regarding future investments. This program plan for the DOE Utility Battery Storage Systems Program describes the technical and programmatic activities needed to bring about the widespread use of batteries by utilities. By following this plan, the DOE anticipates that many of the significant national benefits from battery storage will be achieved in the near future.

  1. Rapid neutron capture process in supernovae and chemical element formation

    NARCIS (Netherlands)

    Baruah, Rulee; Duorah, Kalpana; Duorah, H. L.

    2009-01-01

    The rapid neutron capture process (r-process) is one of the major nucleosynthesis processes responsible for the synthesis of heavy nuclei beyond iron. Isotopes beyond Fe are most exclusively formed in neutron capture processes and more heavier ones are produced by the r-process. Approximately half o

  2. Chemical isolation of dubnium (element 105) in fluoride media

    Energy Technology Data Exchange (ETDEWEB)

    Trubert, D.; Naour, C. le; Hussonnois, M.; Brillard, L.; Du, J.F. le [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire Radiochimie; Guzman, F.M. [ININ, Carretera Mexico-Toluca, Ocoyoacac, Estado de Mexico (Mexico); Constantinescu, O. [JINR, Dubna (Russian Federation). Flerov Lab. of Nuclear Reactions; Gasparro, J.; Barci, V.; Weiss, B.; Ardisson, G. [Nice Univ. (France). Lab. de Radiochimie

    2002-07-01

    The isotope {sup 262}Db was produced by irradiation of a {sup 248}Cm target with 106-MeV {sup 19}F ions at the 15 MV MP Tandem accelerator of Orsay (France). The reaction products were continuously and rapidly transported with a KCl aerosol helium jet system to the chemistry setup. They were dissolved in HF medium and the solution was passed through three successive ion exchange columns, allowing a continuous high level purification of Db from actinides on a first cation exchange column, the isolation of Db on an anion exchange one, and the retention of the long-lived decay products of {sup 262}Db (3.24 h-{sup 254}Fm) on a second cation exchange column. Just after the end of irradiation, the decay products were desorbed from this column, purified and {alpha}-sources were prepared on carbon foil by electrospray. In 13 effective irradiation hours, 22 events corresponding to the {alpha}-decay of {sup 254}Fm were recorded. Almost 70 atoms of {sup 262}Db, produced in the reaction {sup 248}Cm + {sup 19}F were isolated in dilute HF medium. Like its homologues/analogues Nb, Ta and Pa, dubnium forms, with fluoride ions, negatively charged complexes which are strongly retained on anion exchanger. (orig.)

  3. Stars, Galaxies, and the Origin of Chemical Elements

    Science.gov (United States)

    Peter, Ulmschneider

    "That I am mortal I know, and that my days are numbered, but when in my mind I follow the multiply entwined orbits of the stars, then my feet do no longer touch the Earth. At the table of Zeus himself do I eat Ambrosia, the food of the Gods". These words by Ptolemy from around 125 A.D. are handed down together with his famous book The Almagest, the bible of astronomy for some 1500 years. They capture mankind's deep fascination with the movements of the heavens, and the miracles of the biological world. After the Babylonians observed the motions of the Sun, Moon, and planets for millennia, the ancient Greeks were the first to speculate about the nature of these celestial bodies. Yet it is only as a consequence of developments in the last 150 years that a much clearer picture of the physical universe has begun to emerge. Among the most important discoveries have been the stellar parallax, confirming Copernicus's heliocentric system, the realization that galaxies are comprised of billions of stars, the awareness of the size of the universe, and the evolutionary nature of living organisms.

  4. Polyvinylpyrrolidone-based semi-interpenetrating polymer networks as highly selective and chemically stable membranes for all vanadium redox flow batteries

    Science.gov (United States)

    Zeng, L.; Zhao, T. S.; Wei, L.; Zeng, Y. K.; Zhang, Z. H.

    2016-09-01

    Vanadium redox flow batteries (VRFBs) with their high flexibility in configuration and operation, as well as long cycle life are competent for the requirement of future energy storage systems. Nevertheless, due to the application of perfluorinated membranes, VRFBs are plagued by not only the severe migration issue of vanadium ions, but also their high cost. Herein, we fabricate semi-interpenetrating polymer networks (SIPNs), consisting of cross-linked polyvinylpyrrolidone (PVP) and polysulfone (PSF), as alternative membranes for VRFBs. It is demonstrated that the PVP-based SIPNs exhibit extremely low vanadium permeabilities, which contribute to the well-established hydrophilic/hydrophobic microstructures and the Donnan exclusion effect. As a result, the coulombic efficiencies of VRFBs with PVP-based SIPNs reach almost 100% at 40 mA cm-2 to 100 mA cm-2; the energy efficiencies are more than 3% higher than those of VRFBs with Nafion 212. More importantly, the PVP-based SIPNs exhibit a superior chemical stability, as demonstrated both by an ex situ immersion test and continuously cycling test. Hence, all the characterizations and performance tests reported here suggest that PVP-based SIPNs are a promising alternative membrane for redox flow batteries to achieve superior cell performance and excellent cycling stability at the fraction of the cost of perfluorinated membranes.

  5. Multimodal and In-Situ Chemical Imaging of Critical Surfaces and Interfaces in Li Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chong-Min; Zhu, Zihua; Engelhard, Mark H.; Devaraj, Arun; Baer, Donald R.

    2016-03-01

    This article describes ways that a range of microscopy, spectroscopy, and spectrometry tools are being used to address important challenges associated with energy storage science and technology, in particular the development of advanced batteries for transportation, consumer use, and renewable storage. In this article in situ transmission electron microscopy, in situ secondary ion mass spectrometry, and XPS have been used to examine the formation and properties of the solid-electrolyte interphase (SEI) layer. Also TEM, atom probe tomography (APT), and nanoSIMS have been used to optimize the structure and processing of a lithium transition metal oxide cathode.

  6. Thigh burns from exploding e-cigarette lithium ion batteries: First case series.

    Science.gov (United States)

    Nicoll, K J; Rose, A M; Khan, M A A; Quaba, O; Lowrie, A G

    2016-06-01

    E-cigarette (EC) use has risen meteorically over the last decade. The majority of these devices are powered by re-chargeable lithium ion batteries, which can represent a fire hazard if damaged, over-heated, over-charged or stored inappropriately. There are currently no reports in the medical literature of lithium ion battery burns related to EC use and no guidance on the appropriate management of lithium ion battery associated injuries. We report two individual cases of burn resulting from explosion of EC re-chargeable lithium ion batteries. Both patients required in-patient surgical management. We provide evidence that lithium ion battery explosions can be associated with mixed thermal and alkali chemical burns, resulting from the significant discharge of thermal energy and the dispersal of corrosive lithium ion compounds. We would recommend, as with other elemental metal exposures, caution in exposing lithium ion battery burns to water irrigation. Early and thorough cleaning and debridement of such burns, to remove residual lithium contamination, may limit the risk of burn wound extension and potentially improve outcomes.

  7. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries

    Science.gov (United States)

    Sun, Zhenhua; Zhang, Jingqi; Yin, Lichang; Hu, Guangjian; Fang, Ruopian; Cheng, Hui-Ming; Li, Feng

    2017-01-01

    Although the rechargeable lithium–sulfur battery is an advanced energy storage system, its practical implementation has been impeded by many issues, in particular the shuttle effect causing rapid capacity fade and low Coulombic efficiency. Herein, we report a conductive porous vanadium nitride nanoribbon/graphene composite accommodating the catholyte as the cathode of a lithium–sulfur battery. The vanadium nitride/graphene composite provides strong anchoring for polysulfides and fast polysulfide conversion. The anchoring effect of vanadium nitride is confirmed by experimental and theoretical results. Owing to the high conductivity of vanadium nitride, the composite cathode exhibits lower polarization and faster redox reaction kinetics than a reduced graphene oxide cathode, showing good rate and cycling performances. The initial capacity reaches 1,471 mAh g−1 and the capacity after 100 cycles is 1,252 mAh g−1 at 0.2 C, a loss of only 15%, offering a potential for use in high energy lithium–sulfur batteries. PMID:28256504

  8. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries.

    Science.gov (United States)

    Sun, Zhenhua; Zhang, Jingqi; Yin, Lichang; Hu, Guangjian; Fang, Ruopian; Cheng, Hui-Ming; Li, Feng

    2017-03-03

    Although the rechargeable lithium-sulfur battery is an advanced energy storage system, its practical implementation has been impeded by many issues, in particular the shuttle effect causing rapid capacity fade and low Coulombic efficiency. Herein, we report a conductive porous vanadium nitride nanoribbon/graphene composite accommodating the catholyte as the cathode of a lithium-sulfur battery. The vanadium nitride/graphene composite provides strong anchoring for polysulfides and fast polysulfide conversion. The anchoring effect of vanadium nitride is confirmed by experimental and theoretical results. Owing to the high conductivity of vanadium nitride, the composite cathode exhibits lower polarization and faster redox reaction kinetics than a reduced graphene oxide cathode, showing good rate and cycling performances. The initial capacity reaches 1,471 mAh g(-1) and the capacity after 100 cycles is 1,252 mAh g(-1) at 0.2 C, a loss of only 15%, offering a potential for use in high energy lithium-sulfur batteries.

  9. Diffractive optical elements written by photodeposition

    Science.gov (United States)

    Baal-Zedaka, I.; Hava, S.; Mirchin, N.; Margolin, R.; Zagon, M.; Lapsker, I.; Azoulay, J.; Peled, A.

    2003-03-01

    In this work direct laser writing of diffractive optical elements (DOE) by photodeposition (PD) of amorphous selenium (a-Se) from colloid solutions has been investigated. We used a computer controlled laser scanner for patterning thin film micro-profiles creating thus planar optical elements by direct beam writing on surfaces immersed in a liquid phase PD cell. The laser employed was an argon ion laser at 488 nm wavelength, with powers up to 55 mW, for writing typically 25-250 μm wide lines of 200 nm thickness at rates of about 150 μm/s. Various elements made of photodeposited thin films on polymethyl-methacrylate (PMMA) substrates were produced for prototyping microlenses, linear grating arrays, cylindrical and circular profiled DOE patterns.

  10. Diffractive optical elements written by photodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Baal-Zedaka, I.; Hava, S.; Mirchin, N.; Margolin, R.; Zagon, M.; Lapsker, I.; Azoulay, J.; Peled, A

    2003-03-15

    In this work direct laser writing of diffractive optical elements (DOE) by photodeposition (PD) of amorphous selenium (a-Se) from colloid solutions has been investigated. We used a computer controlled laser scanner for patterning thin film micro-profiles creating thus planar optical elements by direct beam writing on surfaces immersed in a liquid phase PD cell. The laser employed was an argon ion laser at 488 nm wavelength, with powers up to 55 mW, for writing typically 25-250 {mu}m wide lines of 200 nm thickness at rates of about 150 {mu}m/s. Various elements made of photodeposited thin films on polymethyl-methacrylate (PMMA) substrates were produced for prototyping microlenses, linear grating arrays, cylindrical and circular profiled DOE patterns.

  11. Research in the chemical sciences: Summaries of FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    This summary book is published annually on research supported by DOE`s Division of Chemical Sciences in the Office of Energy Research. Research in photochemical and radiation sciences, chemical physics, atomic physics, chemical energy, separations and analysis, heavy element chemistry, chemical engineering sciences, and advanced batteries is arranged according to national laboratories, offsite institutions, and small businesses. Goal is to add to the knowledge base on which existing and future efficient and safe energy technologies can evolve. The special facilities used in DOE laboratories are described. Indexes are provided (topics, institution, investigator).

  12. A stable lithiated silicon-chalcogen battery via synergetic chemical coupling between silicon and selenium

    Science.gov (United States)

    Eom, Kwangsup; Lee, Jung Tae; Oschatz, Martin; Wu, Feixiang; Kaskel, Stefan; Yushin, Gleb; Fuller, Thomas F.

    2017-01-01

    Li-ion batteries dominate portable energy storage due to their exceptional power and energy characteristics. Yet, various consumer devices and electric vehicles demand higher specific energy and power with longer cycle life. Here we report a full-cell battery that contains a lithiated Si/graphene anode paired with a selenium disulfide (SeS2) cathode with high capacity and long-term stability. Selenium, which dissolves from the SeS2 cathode, was found to become a component of the anode solid electrolyte interphase (SEI), leading to a significant increase of the SEI conductivity and stability. Moreover, the replacement of lithium metal anode impedes unwanted side reactions between the dissolved intermediate products from the SeS2 cathode and lithium metal and eliminates lithium dendrite formation. As a result, the capacity retention of the lithiated silicon/graphene--SeS2 full cell is 81% after 1,500 cycles at 268 mA gSeS2-1. The achieved cathode capacity is 403 mAh gSeS2-1 (1,209 mAh cmSeS2-3).

  13. Trace elements in termites by PIXE analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, T. E-mail: tsuyoshi@termite.kuwri.kyoto-u.ac.jp; Kagemori, N.; Kawai, S.; Sera, K.; Futatsugawa, S

    2002-04-01

    Trace elements in a Japanese subterranean xylophagous termite, Coptotermes formosanus Shiraki, were analyzed by the PIXE method. The total amount of the 14 predominant elements out of 27 detected in an intact termite was higher in a soldier termite (23 000 {mu}g/g) than in a worker termite (10 000 {mu}g/g). A block of wood (Pinus densiflora Sieb. et Zucc.) for termite feed had a much lower concentration (3600 {mu}g/g) compared with that in an intact termite. This probably relates the functional bio-condensation and/or bio-recycling of trace elements in C. formosanus. When a termite was separated into three anatomical parts, head, degutted body and gut, the worker gut contained the highest total amount of the 14 predominant measured elements (31 000 {mu}g/g). This might be correlated with the higher activity of food digestion and energy production in the worker gut. Moreover, the mandible of the soldier head, with an exoskeleton that is intensely hardened, showed a preferential distribution of Mn and Fe. These results suggest that the characteristic localization of elements will be closely related to the functional role of the individual anatomical part of C. formosanus.

  14. Trace elements in termites by PIXE analysis

    Science.gov (United States)

    Yoshimura, T.; Kagemori, N.; Kawai, S.; Sera, K.; Futatsugawa, S.

    2002-04-01

    Trace elements in a Japanese subterranean xylophagous termite, Coptotermes formosanus Shiraki, were analyzed by the PIXE method. The total amount of the 14 predominant elements out of 27 detected in an intact termite was higher in a soldier termite (23 000 μg/g) than in a worker termite (10 000 μg/g). A block of wood ( Pinus densiflora Sieb. et Zucc.) for termite feed had a much lower concentration (3600 μg/g) compared with that in an intact termite. This probably relates the functional bio-condensation and/or bio-recycling of trace elements in C. formosanus. When a termite was separated into three anatomical parts, head, degutted body and gut, the worker gut contained the highest total amount of the 14 predominant measured elements (31 000 μg/g). This might be correlated with the higher activity of food digestion and energy production in the worker gut. Moreover, the mandible of the soldier head, with an exoskeleton that is intensely hardened, showed a preferential distribution of Mn and Fe. These results suggest that the characteristic localization of elements will be closely related to the functional role of the individual anatomical part of C. formosanus.

  15. Principles of an Atomtronic Battery

    CERN Document Server

    Zozulya, Alex A

    2013-01-01

    An asymmetric atom trap is investigated as a means to implement a "battery" that supplies ultracold atoms to an atomtronic circuit. The battery model is derived from a scheme for continuous loading of a non-dissipative atom trap proposed by Roos et al.(Europhysics Letters V61, 187 (2003)). The trap is defined by longitudinal and transverse trap frequencies and corresponding trap energy heights. The battery's ability to supply power to a load is evaluated as a function of an input atom flux and power. For given trap parameters and input flux the battery is shown to have a resonantly optimum value of input power. The battery behavior can be cast in terms of an equivalent circuit model; specifically, for fixed input flux and power the battery is modeled in terms of a Th\\'{e}venin equivalent chemical potential and internal resistance. The internal resistance establishes the maximum power that can be supplied to a circuit, the heat that will be generated by the battery, and that noise will be imposed on the circui...

  16. Magnet Design and Analysis of a 40 Tesla Long Pulse System Energized by a Battery Bank

    Science.gov (United States)

    Lv, Y. L.; Peng, T.; Wang, G. B.; Ding, T. H.; Han, X. T.; Pan, Y.; Li, L.

    2013-03-01

    A 40 tesla long pulse magnet and a battery bank as the power supply have been designed. This is now under construction at the Wuhan National High Magnetic Field Center. The 22 mm bore magnet will generate smooth pulses with duration 1 s and rise time 0.5 s. The battery bank consists of 945 12V/200 Ah lead-acid battery cells. The magnet and battery bank were optimized by codes developed in-house and by ANSYS. The coil was made from soft copper with internal reinforcement by fiber-epoxy composite; it is divided into two sections connected in series. The inner section consists of helix coils with each layer reinforced by Zylon composite. The outer section will be wound from copper sheet and externally reinforced by carbon fiber composite.

  17. Microwave Plasma Chemical Vapor Deposition of Nano-Structured Sn/C Composite Thin-Film Anodes for Li-ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, Cynthia; Marcinek, M.; Hardwick, L.J.; Richardson, T.J.; Song, X.; Kostecki, R.

    2008-02-01

    In this paper we report results of a novel synthesis method of thin-film composite Sn/C anodes for lithium batteries. Thin layers of graphitic carbon decorated with uniformly distributed Sn nanoparticles were synthesized from a solid organic precursor Sn(IV) tert-butoxide by a one step microwave plasma chemical vapor deposition (MPCVD). The thin-film Sn/C electrodes were electrochemically tested in lithium half cells and produced a reversible capacity of 440 and 297 mAhg{sup -1} at C/25 and 5C discharge rates, respectively. A long term cycling of the Sn/C nanocomposite anodes showed 40% capacity loss after 500 cycles at 1C rate.

  18. Simultaneous topographic and elemental chemical and magnetic contrast in scanning tunneling microscopy

    Science.gov (United States)

    Rose, Volker; Preissner, Curt A; Hla, Saw-Wai; Wang, Kangkang; Rosenmann, Daniel

    2014-09-30

    A method and system for performing simultaneous topographic and elemental chemical and magnetic contrast analysis in a scanning, tunneling microscope. The method and system also includes nanofabricated coaxial multilayer tips with a nanoscale conducting apex and a programmable in-situ nanomanipulator to fabricate these tips and also to rotate tips controllably.

  19. Chemical elements diffusion in the stainless steel components brazed with Cu-Ag alloy

    Science.gov (United States)

    Voiculescu, I.; Geanta, V.; Vasile, I. M.; Binchiciu, E. F.; Winestoock, R.

    2016-06-01

    The paper presents the study of diffusion of chemical elements through a brazing joint, between two thin components (0.5mm) made of stainless steel 304. An experimental brazing filler material has been used for brazing stainless steel component and then the diffusion phenomenon has been studied, in terms of chemical element displacement from the brazed separation interface. The filler material is in the form of a metal rod coated with ceramic slurry mixture of minerals, containing precursors and metallic powders, which can contribute to the formation of deposit brazed. In determining the distance of diffusion of chemical elements, on both sides of the fusion line, were performed measurements of the chemical composition using electron microscopy SEM and EDX spectrometry. Metallographic analysis of cross sections was performed with the aim of highlight the microstructural characteristics of brazed joints, for estimate the wetting capacity, adherence of filler metal and highlight any imperfections. Analyzes performed showed the penetration of alloying elements from the solder (Ag, Cu, Zn and Sn) towards the base material (stainless steel), over distances up to 60 microns.

  20. Natural and anthropogenic sources of chemical elements in sediment profiles from the Admiralty Bay, Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, A.P.; Figueira, R.C.L.; Silva, C.R.A.; Franca, E.J.; Mahiques, M.M.; Bicego, M.C.; Montone, R.C. [Universidade de Sao Paulo (IO/USP), SP (Brazil). Inst. Oceanografico; Martins, C.C. [Universidade Federal do Parana (UFPR), Pontal do Sul, PR (Brazil). Centro de Estudos do Mar; Scapin, M.A.; Scapin, V.O.; Figueiredo, A.M.G.; Ticianelli, R.B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2010-07-01

    Full text: The Antarctic Continent and its surrounding Southern Ocean are the least known regions of the world, mainly due to the most unfavorable climatic conditions, in which sampling for environmental studies are quite difficult to be carried out. Admiralty Bay on the King George Island (Antarctica) hosts three research stations, Arctowski, Ferraz and Macchu Picchu, which are operate by Poland, Brazil and Peru, respectively. Therefore, human activities in this region require the use of fossil fuel as an energy source, which is also considered the main source of pollutants in the area. This work investigated the natural and anthropogenic inputs of chemical elements in sediment samples collected close to Ferraz Station, during the 25{sup th} Brazilian Antarctica Expedition in the 2006/2007 austral summer. Total concentrations of As, Zn and Sc were determined in sediment profiles by using the Instrumental Neutron Activation Analysis (INAA). The analytical technique employed to determine the major elements such as Fe, Al, Ca, Mn and Ti was X-ray fluorescence (XRF) spectroscopy. For estimating the sedimentation rate, High Resolution Gamma Ray Spectrometry was applied to determine {sup 137}Cs, after 30 days, to achieve secular equilibrium. According to the enrichment factor and the geochronology analysis, the most relevant enrichment was observed for As in the sediment samples, suggesting the increasing of its content due to the Brazilian activities in the Admiralty Bay. Despite some evidences of anthropogenic contribution, the study indicated low level of environmental risk for this region. (author)

  1. Crashworthiness Models for Automotive Batteries - Report on Project 2088-A031-15 for DOT/NHTSA

    Energy Technology Data Exchange (ETDEWEB)

    Kalnaus, Sergiy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kumar, Abhishek [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lebrun-Grandie, Damien T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Simunovic, Srdjan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Slattery, Stuart R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Turner, John A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Hsin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Allu, Srikanth [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gorti, Sarma B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Turcksin, Bruno R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-07-01

    Safety is a key element of any device designed to store energy, in particular electrochemical batteries, which convert energy of chemical reactions to electrical energy. Safety considerations are especially important when applied to large automotive batteries designed for propulsion of electric vehicles (EV). The high amount of energy stored in EV battery packs translates to higher probability of fire in case of severe deformation of battery compartment due to automotive crash or impact caused by road debris. While such demand for safety has resulted in heavier protection of battery enclosure, the mechanisms leading to internal short circuit due to deformation of the battery are not well understood even on the level of a single electrochemical cell. Moreover, not all internal shorts result in thermal runaway, and thus a criterion for catastrophic failure needs to be developed. This report summarizes the effort to pinpoint the critical deformation necessary to trigger a short via experimental study on large format automotive Li-ion cells in a rigid spherical indentation configuration. Cases of single cells and cell stacks undergoing indentation were investigated. Mechanical properties of cell components were determined via experimental testing and served as input for constitutive models of Finite Element (FE) analysis. The ability of the model to predict the behavior of cell(s) under spherical indentation and to predict failure leading to internal short circuit was validated against experiments. The necessity of resolving pairs of negative and positive electrodes in the FE formulation is clearly demonstrated by comparing layer-resolved simulations with simulations involving batteries with homogenized material properties. Finally, a coupled solution of electrochemical-electrical-thermal (EET) problem on a Nissan Leaf battery module was demonstrated towards the goal of extending the simulations to module level.

  2. The chemical signature of a livestock farming catchment: synthesis from a high-frequency multi-element long term monitoring

    Directory of Open Access Journals (Sweden)

    A. H. Aubert

    2012-08-01

    Full Text Available Assessing the impact of human pressures on water quality is difficult. First, there is a high temporal and spatial variability of climate and human activity. Second, chemical elements have their own characteristics mixing short and long term dynamics. High frequency, long-term and multi-element measurements are required. But, such data series are scarce. This paper aims at determining what the hydro-chemical particularities of a livestock farming catchment are in a temperate climatic context.

    It is based on an original and never published time series, from Kervidy-Naizin headwater catchment. Stream chemistry was monitored daily and shallow groundwater roughly every four month, for 10 yr and five elements (nitrate, sulphate, chloride, and dissolved organic and inorganic carbon.

    The five elements present strong but different seasonal patterns. Nitrate and chloride present a seasonal flush, all along or at the beginning of the wet season, respectively. Sulphate, organic and inorganic carbon present storm flushes, with constant or decreasing peaks throughout the wet season. These depicted nitrate and chloride patterns are typical of a livestock farming catchment. There, nitrate and chloride coming from organic fertilisation have been accumulating over years in the shallow groundwater. They are seasonally flushed when the groundwater connects to the stream. Sulphate, organic and inorganic carbon patterns do not seem specific to agricultural catchments. These elements are produced each year and flushed by storms. Finally, a generic classification of temporal patterns and elements is established for agricultural catchments. It is based on the distance of the source component to the stream and the dominant controlling process (accumulation versus production. This classification could be applied to any chemical element and help assessing the level of water disturbances.

  3. Study on Model of Correlation Between Chemical Element Contents in Tree Rings and Soils near Tree Roots

    Institute of Scientific and Technical Information of China (English)

    KESHAN-ZHE; QIANJUN-LONG; 等

    1994-01-01

    The chemical element contents in tree rings are correlated with those in the soils near the tree roots,The results in the present study showed that the correlation between them could be described using the following logarithmic linear correlation model:lgC'(Z)=a(Z)+b(Z)lgC(Z).Therefor,by determining the chrono-sequence C(Z,t),where Z is the atomic number and t the year,of elemental contents in the annual growth rings of trees,we could get the chrono-sequence C'(Z,t) of elemental contents in the soil,thus inferring the dynaminc variations of relevant elemental contents in the soil.

  4. Sustainable Redox Mediation for Lithium-Oxygen Batteries by a Composite Protective Layer on the Lithium-Metal Anode.

    Science.gov (United States)

    Lee, Dong Jin; Lee, Hongkyung; Kim, Yun-Jung; Park, Jung-Ki; Kim, Hee-Tak

    2016-02-03

    A synergic combination of a soluble -redox mediator and a protected Li metal -electrode to prevent the self-discharge of the redox mediator is realized by -exploiting a 2,2,6,6-tetramethylpiperidinyl 1-oxyl (TEMPO) redox mediator and an Al2 O3 /PVdF-HFP composite -protective layer (CPL). Stabilization of Li metal by simple CPL coating is effective at -suppressing the chemical reduction of the oxidized TEMPO and opens up the possibility of sustainable redox mediation for robust cycling of Li-O2 batteries.

  5. Electronic Structure and Chemical Bond of Ti3SiC2 and Adding Al Element

    Institute of Scientific and Technical Information of China (English)

    MIN Xinmin; LU Ning; MEI Bingchu

    2006-01-01

    The relation among electronic structure, chemical bond and property of Ti3SiC2 and Al-doped was studied by density function and discrete variation (DFT-DVM) method. When Al element is added into Ti3SiC2, there is a less difference of ionic bond, which does not play a leading role to influent the properties. After adding Al, the covalent bond of Al and the near Ti becomes somewhat weaker, but the covalent bond of Al and the Si in the same layer is obviously stronger than that of Si and Si before adding. Therefore, in preparation of Ti3SiC2, adding a proper quantity of Al can promote the formation of Ti3SiC2. The density of state shows that there is a mixed conductor character in both of Ti3SiC2 and adding Al element. Ti3SiC2 is with more tendencies to form a semiconductor. The total density of state near Fermi lever after adding Al is larger than that before adding, so the electric conductivity may increase after adding Al.

  6. Chemical Cartography in the Milky Way with SDSS/APOGEE: Multi-element abundances and abundance ratio variations

    Science.gov (United States)

    Holtzman, Jon A.; Hasselquist, Sten; Johnson, Jennifer; Bird, Jonathan C.; Majewski, Steven R.; SDSS/APOGEE Team

    2017-01-01

    The SDSS/APOGEE project is measuring abundances of multiple elements for several hundred thousand stars across the Milky Way. These allow the mapping of abundances and abundance ratio variations. Results will be presented for multiple abundance ratios across of the Galactic disk. The interpretation of mean abundance maps is complicated by variations in star formation history across the disk and by changing abundance ratios that result from an overall metallicity gradient. Variations in chemical abundance sequences, however, show the potential for using abundance ratios to track the movement of stars through the disk, and provide key information for constraining Galaxy formation and chemical evolution models.

  7. Bioaccumulation of trace elements by Avicennia marina

    Institute of Scientific and Technical Information of China (English)

    Kandasamy Kathiresan; Kandasamy Saravanakumar; Pandiyan Mullai

    2014-01-01

    Objective: To analyze the concentrations of 12 micro-nutrients (Al, B, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, and Zn) in different plant parts of Avicennia marina and its rhizosphere soil of the south east coast of India. Methods: The samples were acid digested, then analyzed by using inductively coupled plasma system (ICP-Optical Emission Spectrophotometer). Results: Levels of metals were found in the decreasing order: Cd>Co>Ni>Pb>B>Cr>Zn>Mg>Mn>Cu>Fe>Al. The soil held more levels of metals than plant parts, but within the permissible limits of concentration. Bark and root accumulated higher levels of trace elements in a magnitude of 10-80 folds than other plant parts. The overall bioaccumulation factor in the sampling sites of Vellar, Pichavaram and Cuddalore was 2.88, 1.42 0.47 respectively. Essential elements accumulate high in mature mangroves forest while non-essential elements accumulate high in the industrially polluted mangroves. Conclusions:The ratio between essential and non-essential elements was found higher in young mangrove forest than that in mature mangrove forest and polluted mangrove areas. Thus, the ratio of accumulation can be used as an index of the growth and pollution status of mangroves.

  8. Bioaccumulation of trace elements by Avicennia marina

    Directory of Open Access Journals (Sweden)

    Kandasamy Kathiresan

    2014-11-01

    Full Text Available Objective: To analyze the concentrations of 12 micro-nutrients (Al, B, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, and Zn in different plant parts of Avicennia marina and its rhizosphere soil of the south east coast of India. Methods: The samples were acid digested, then analyzed by using inductively coupled plasma system (ICP-Optical Emission Spectrophotometer. Results: Levels of metals were found in the decreasing order: Cd>Co>Ni>Pb>B >Cr>Zn>Mg>Mn>Cu>Fe>Al. The soil held more levels of metals than plant parts, but within the permissible limits of concentration. Bark and root accumulated higher levels of trace elements in a magnitude of 10-80 folds than other plant parts. The overall bioaccumulation factor in the sampling sites of Vellar, Pichavaram and Cuddalore was 2.88, 1.42 0.47 respectively. Essential elements accumulate high in mature mangroves forest while non-essential elements accumulate high in the industrially polluted mangroves. Conclusions: The ratio between essential and non-essential elements was found higher in young mangrove forest than that in mature mangrove forest and polluted mangrove areas. Thus, the ratio of accumulation can be used as an index of the growth and pollution status of mangroves.

  9. Preparation and characterization of core-shell battery materials for Li-ion batteries manufactured by substrate induced coagulation

    Science.gov (United States)

    Basch, Angelika; Albering, Jörg H.

    2011-03-01

    In this work Substrate Induced Coagulation (SIC) was used to coat the cathode material LiCoO2, commonly used in Li-ion batteries, with fine nano-sized particulate titania. Substrate Induced Coagulation is a self-assembled dip-coating process capable of coating different surfaces with fine particulate materials from liquid media. A SIC coating consists of thin and rinse-prove layers of solid particles. An advantage of this dip-coating method is that the method is easy and cheap and that the materials can be handled by standard lab equipment. Here, the SIC coating of titania on LiCoO2 is followed by a solid-state reaction forming new inorganic layers and a core-shell material, while keeping the content of active battery material high. This titania based coating was designed to confine the reaction of extensively delithiated (charged) LiCoO2 and the electrolyte. The core-shell materials were characterized by SEM, XPS, XRD and Rietveld analysis.

  10. Micro Chemical (Elemental Analysis of Leucas aspera (Willd Link Employing SEM-EDAX

    Directory of Open Access Journals (Sweden)

    Sunkara Yashvanth

    2013-01-01

    Full Text Available The plant, Leucas aspera (Willd Link is well known for its varied medicinal uses. Present study deals with its micro chemical (elemental characterization using Energy Dispersive X-ray Analysis (EDAX detector fitted to Scanning Electron Microscope. The plant has very interesting morphology. Crystals of varied shape and inclusions/exudates were noticed within and on the leaf & stem surfaces. Various plant parts analysed were, stem surface, stem sections, stem inclusions, blebs on stem hairs, crystals of varied shape, root sections, abaxial and adaxial surfaces, flower, seed and seed caruncle. Lot of variation in elemental composition was observed in various plant parts. Major elements detected were Carbon, Oxygen, Calcium, Silica, and Aluminum. Other elements found were Iron, Sodium, potassium, Phosphorus and Chlorine.

  11. High rate lithium-sulfur battery enabled by sandwiched single ion conducting polymer electrolyte

    Science.gov (United States)

    Sun, Yubao; Li, Gai; Lai, Yuanchu; Zeng, Danli; Cheng, Hansong

    2016-02-01

    Lithium-sulfur batteries are highly promising for electric energy storage with high energy density, abundant resources and low cost. However, the battery technologies have often suffered from a short cycle life and poor rate stability arising from the well-known “polysulfide shuttle” effect. Here, we report a novel cell design by sandwiching a sp3 boron based single ion conducting polymer electrolyte film between two carbon films to fabricate a composite separator for lithium-sulfur batteries. The dense negative charges uniformly distributed in the electrolyte membrane inherently prohibit transport of polysulfide anions formed in the cathode inside the polymer matrix and effectively blocks polysulfide shuttling. A battery assembled with the composite separator exhibits a remarkably long cycle life at high charge/discharge rates.

  12. Charged Polymer-Coated Separators by Atmospheric Plasma-Induced Grafting for Lithium-Ion Batteries.

    Science.gov (United States)

    Han, Mina; Kim, Dong-Won; Kim, Yeong-Cheol

    2016-10-05

    A simple and fast method of atmospheric plasma-induced grafting was applied over a polyethylene membrane to enhance its performance as a separator for lithium-ion batteries. The process of grafting has formed a thin, durable, and uniform layer on the surface of the porous membrane. The charges of grafted polymers affected the performance of batteries in many ways besides the change of hydrophilicity. Negative charges in polymers improve the capacity retention of batteries and the uniformity of the SEI layer. On the other hand, the electrostatic attraction between different charges contributed to small increases of thermal stability and mechanical strength of separators. Polyampholyte was grafted by using the mixtures of monomers, and the composition of the grafted layer was optimized. The formation of stable uniform SEI layers and the marked improvement in capacity retention were observed in the full cell tests of the lithium battery with the polyampholyte-grafted separators when the polyampholyte has a negative net charge.

  13. Battery-operated, argon-hydrogen microplasma on hybrid, postage stamp-sized plastic-quartz chips for elemental analysis of liquid microsamples using a portable optical emission spectrometer.

    Science.gov (United States)

    Weagant, Scott; Chen, Vivian; Karanassios, Vassili

    2011-11-01

    A battery-operated, atmospheric pressure, self-igniting, planar geometry Ar-H(2) microplasma for elemental analysis of liquid microsamples is described. The inexpensive microplasma device (MPD) fabricated for this work was a hybrid plastic-quartz structure that was formed on chips with an area (roughly) equal to that of a small-sized postage stamp (MPD footprint, 12.5-mm width by 38-mm length). Plastic substrates were chosen due to their low cost, for rapid prototyping purposes, and for a speedy microplasma device evaluation. To enhance portability, the microplasma was operated from an 18-V rechargeable battery. To facilitate portability even further, it was demonstrated that the battery can be recharged by a portable solar panel. The battery-supplied dc voltage was converted to a high-voltage ac. The ~750-μm (diameter) and 12-mm (long) Ar-H(2) (3% H(2)) microplasma was formed by applying the high-voltage ac between two needle electrodes. Spectral interference from the electrode materials or from the plastic substrate was not observed. Operating conditions were found to be key to igniting and sustaining a microplasma that was simply "warm" to the touch (thus alleviating the need for cooling or other thermal management) and that had a stable background emission. A small-sized (900 μL internal volume) electrothermal vaporization system (40-W max power) was used for microsample introduction. Microplasma background emission in the spectral region between 200 and 850 nm obtained using a portable fiber-optic spectrometer is reported and the effect of the operating conditions is described. Analyte emission from microliter volumes of dilute single-element standard solutions of Cd, Cu, K, Li, Mg, Mn, Na, Pb, and Zn is documented. The majority of spectral lines observed for the elements tested were from neutral atoms. The relative lack of emission from ion lines simplified the spectra, thus facilitating the use of a portable spectrometer. Despite the relative spectral

  14. Mapping the chemical states of an element inside a sample using tomographic x-ray absorption spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Schroer, C G; Kuhlmann, M; Gunzler, T F; Lengeler, B; Richwin, M; Griesebock, B; Lutzenkirchen-Hect, D; Frahm, R; Ziegler, E; Mashayekhi, A; Haeffner, D R; Grunwaldt, J -D; Baiker, A; XFD,

    2003-05-12

    Hard x-ray absorption spectroscopy is combined with scanning microtomography to reconstruct full near-edge spectra of an elemental species at each location on an arbitrary virtual section through a sample. These spectra reveal the local concentrations of different chemical compounds of the absorbing element inside the sample and give insight into the oxidation state, the local atomic structure, and the local projected free density of states. The method is implemented by combining a quick scanning monochromator and data acquisition system with a scanning microprobe setup based on refractive x-ray lenses.

  15. Comparison of some newly synthesized chemically modified Amberlite XAD-4 resins for the preconcentration and determination of trace elements by flow injection inductively coupled plasma-mass spectrometry (ICP-MS).

    Science.gov (United States)

    Kara, Derya; Fisher, Andrew; Hill, Steve J

    2006-11-01

    XAD copolymer resins may be functionalized with heavy metal ion-selective ligands either by covalent linkage to the polymer backbone or by impregnation. These resins may be tailored to be specific for certain heavy metals by adjusting the retention and elution parameters. For the synthesis of immobilized Amberlite XAD-4 copolymer resins that are expected to preconcentrate a number of transition and heavy metals, the Schiff base method was chosen. For this purpose the copolymer was nitrated, reduced to the corresponding amine and converted to the imine compounds via a Schiff base reaction using different organic aldehyde compounds. The interactions of 8 elements (Cd, Co, Cu, Mn, Ni, Pb, U and Zn) with the resins were qualitatively investigated. Optimal pH for retention was typically 6-8 for most resins although one could be used at pH 5 and elution was achieved using 0.1 M HNO3. The resins were characterized by FTIR, SEM and elemental analysis. It was demonstrated that the resins could be used to preconcentrate ultra-trace analytes from natural waters, and analysis of environmental certified reference materials using FI-ICP-MS showed good agreement with the certified values. Metal retention capacities were also calculated using a batch system and were found to compare favorably with other resins reported in the literature.

  16. Isotopic and impurity element probes of mesoscale chemical dynamics at mineral fluid interfaces

    Science.gov (United States)

    DePaolo, D. J.

    2012-12-01

    Mesoscale interactions control important Earth processes including the growth of minerals from aqueous solutions and silicate liquids, the diffusion of ions in solids and silicate liquids, and the solid-state deformation and recrystallization that constitutes metamorphism. Most of these processes are typically understood from the classical side in terms of macroscopic physical and thermodynamic properties and classical kinetics, and from the molecular side in terms of single molecule or nearest-neighbor interactions. However, in many cases the controlling processes occur at intermediate scales of both length and time, and involve complex interactions among multiple chemical species. A major limitation has been in characterizing and modeling the dynamic processes that lead to the macroscopic properties and behavior. Advanced microscopy techniques allow phase changes, for example, to be monitored at high resolution, and this capability continues to improve. However, other important information about the phase changes, such as the molecular exchange fluxes between phases and the detailed mechanisms of reaction, are not revealed by microscopy. High-resolution isotopic characterization now allows the molecular exchange fluxes to be quantified, and models suggest that the incorporation of impurity elements is directly tied to these fluxes. One of the main advances is that precise isotopic measurements have recently been extended to include major stoichiometric cations such as Ca, Mg, Fe, and K, as well as key impurity elements such as U, Cd, Mo, and Sr. Isotopic analysis at the nano- to microscale would further clarify the detailed dynamics of mineral chemistry controls but are not yet possible except in a few instances. Impurity element concentrations are more easily measured at these small scales, and they are a key bridge between isotopic measurements and microscopy.Other limitations to advancing our knowledge of the chemical and isotopic effects associated with

  17. New alternating direction procedures in finite element analysis based upon EBE approximate factorizations. [element-by-element

    Science.gov (United States)

    Hughes, T. J. R.; Winget, J.; Levit, I.; Tezduyar, T. E.

    1983-01-01

    Element-by-element approximate factorization procedures are proposed for solving the large finite element equation systems which arise in computational mechanics. A variety of techniques are compared on problems of structural mechanics, heat conduction and fluid mechanics. The results obtained suggest considerable potential for the methods described.

  18. Frontiers of the heaviest elements - towards an understanding of the physical and chemical behaviour of the elements

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, B. [University of Kassel (Germany)

    2000-03-01

    The description of the chemical behaviour of the heaviest elements has directly to do with a good relativistic description. In the limit of very low charges (at the beginning of the Periodic System) the non-relativistic description looks of course very much like the relativistic description and the problem is that we have learned to think in terms of the solution of the non-relativistic Schroedinger equation. In the first part I will therefore try to discuss the difference between the non-relativistic and the relativistic description. The talk has been structured as follows: first a brief discussion is given for the relativistic effects of 1-electron atoms which then will be extended to many-electron atoms. In the third section relativistic calculations of molecules will be discussed. (author)

  19. Chemically Crushed Wood Cellulose Fiber towards High-Performance Sodium-Ion Batteries.

    Science.gov (United States)

    Shen, Fei; Zhu, Hongli; Luo, Wei; Wan, Jiayu; Zhou, Lihui; Dai, Jiaqi; Zhao, Bin; Han, Xiaogang; Fu, Kun; Hu, Liangbing

    2015-10-21

    Carbon materials have attracted great interest as an anode for sodium-ion batteries (SIBs) due to their high performance and low cost. Here, we studied natural wood fiber derived hard carbon anodes for SIBs considering the abundance and low cost of wood. We discovered that a thermal carbonization of wood fiber led to a porous carbon with a high specific surface area of 586 m(2) g(-1), while a pretreatment with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) could effectively decrease it to 126 m(2) g(-1). When evaluating them as anodes for SIBs, we observed that the low surface area carbon resulted in a high initial Coulombic efficiency of 72% compared to 25% of the high surface area carbon. More importantly, the low surface area carbon exhibits an excellent cycling stability that a desodiation capacity of 196 mAh g(-1) can be delivered over 200 cycles at a current density of 100 mA g(-1), indicating a promising anode for low-cost SIBs.

  20. An inverse problem by boundary element method

    Energy Technology Data Exchange (ETDEWEB)

    Tran-Cong, T.; Nguyen-Thien, T. [University of Southern Queensland, Toowoomba, QLD (Australia); Graham, A.L. [Los Alamos National Lab., NM (United States)

    1996-02-01

    Boundary Element Methods (BEM) have been established as useful and powerful tools in a wide range of engineering applications, e.g. Brebbia et al. In this paper, we report a particular three dimensional implementation of a direct boundary integral equation (BIE) formulation and its application to numerical simulations of practical polymer processing operations. In particular, we will focus on the application of the present boundary element technology to simulate an inverse problem in plastics processing.by extrusion. The task is to design profile extrusion dies for plastics. The problem is highly non-linear due to material viscoelastic behaviours as well as unknown free surface conditions. As an example, the technique is shown to be effective in obtaining the die profiles corresponding to a square viscoelastic extrudate under different processing conditions. To further illustrate the capability of the method, examples of other non-trivial extrudate profiles and processing conditions are also given.

  1. Estimating the state of charge of MH-Ni batteries by measuring their stable internal pressure

    Science.gov (United States)

    Zhang, Jian; Shao, Guangjie; Guo, Weiwen; Lou, Yuwan; Xia, Baojia

    2017-03-01

    Nickel metal hydride (MH-Ni) batteries are widely used in hybrid electric vehicles (HEVs). Estimating a battery's state of charge (SOC) remains challenging in practical applications, and it is also the core technology. Because MH-Ni batteries exhibit high rates of self-discharge and have flat and broad charge-discharge voltage plateaus, the estimation of their SOC through their voltage, current, internal resistance, and temperature is not accurate and has a large cumulative error. In this study, a new method for estimating SOC based on battery's stable internal pressure is proposed using the one-to-one correspondence between the hydrogen equilibrium pressure and the reversible hydrogen-storage capacity described by the pressure-concentration-isotherm (P-C-T) curves of hydrogen storage alloys. The actual SOC and the stable internal pressure of the battery have a one-to-one correspondence after the battery was stored at different temperatures and SOCs, and this relationship is maintained after different cycling number and after four years of storage.

  2. Transfer of chemical elements from a contaminated estuarine sediment to river water. A leaching assay

    Science.gov (United States)

    Abreu, Manuela; Peres, Sara; Magalhães, M. Clara F.

    2014-05-01

    Wastes of a former Portuguese steel industry were deposited during 40 years on the left bank of the Coina River, which flows into the estuary of the Tagus River near Lisbon. The aim of this study was to evaluate the release of the chemical elements from the contaminated sediment to the river water. A leaching experiment (four replicates) was performed using 1.6 kg/replicate of sediment from a landfill located in the Coina River bank, forming a lagoon subject to tidal influence. River water coming from this lagoon was collected during low tide. This water (200 mL) was added to the moist sediment, contained in cylindrical reactors, and was collected after 24 h of percolation. The leaching experiments were conducted for 77 days being leachates collected at time zero, after 28, 49 and 77 days with the sediment always moist. The sediment was characterized for: pH, electric conductivity (EC), total organic carbon (TOC), extractable phosphorus and potassium, mineral nitrogen, iron from iron oxides (crystalline and non-crystalline) and manganese oxides. Multi-elemental analysis was also made by ICP-INAA. Leachates and river water were analysed for pH, EC, hydrogencarbonate and sulfatetot by titrations, chloride by potentiometry, and multi-elemental composition by ICP-MS. The sediment presented pH=7.2, EC=18.5 dS/m, TOC=147.8 g/kg, high concentrations of extractable phosphorous (62.8 mg/kg) and potassium (1236.8 mg/kg), mineral nitrogen=11.3 mg/kg. The non-crystalline fraction of iron oxides corresponds to 99% (167.5 g Fe/kg) of the total iron oxides, and manganese from manganese oxides was low (52.7 mg/kg). Sediment is considered contaminated. It contained high concentrations (g/kg) of Zn (2.9), Pb (0.9), Cr (0.59), Cu (0.16), As (0.07), Cd (0.005), and Hg (0.001), which are above Canadian values for marine sediments quality guidelines for protection of aquatic life. River water had: pH=8.2, EC=28.6 dS/m, csulfate=1.23 g/L, and [Cl-]=251.6 mg/L. The concentrations of Cd (0

  3. BUTTON BATTERY - AN UNWITNESSED CAUSE OF BATTERED NOSE

    Directory of Open Access Journals (Sweden)

    Shailesh R

    2013-11-01

    Full Text Available ABSTRACT: The presence of foreign body in the nose is not uncommon condition. Various unusual foreign bodies in the nose have been report ed in the literature in which button battery is one of them. It is capable of extensive tissue damage by chemical or thermal burns. We describe a case of an unwitnessed button battery in the nose of 3 years old female child resulted in septal perforation KEYWORDS: Nasal Foreign Body; Button Battery; Septal Perforation

  4. Sobre os nomes dos elementos químicos, inclusive dos transférmios About the names of the chemical elements, including the transfermium elements

    Directory of Open Access Journals (Sweden)

    Romeu C. Rocha-Filho

    1999-09-01

    Full Text Available The names of the chemical elements in Brazilian portuguese are presented, including a discussion of corresponding Brazilian nomenclature rules and translation of some parts of the pertinent IUPAC rules. The rules for naming groups of elements in the periodic table, as well as those for the symbolic indication of atomic number, mass number and electric charge of atoms, are also presented.

  5. Prospects and Limits of Energy Storage in Batteries.

    Science.gov (United States)

    Abraham, K M

    2015-03-05

    Energy densities of Li ion batteries, limited by the capacities of cathode materials, must increase by a factor of 2 or more to give all-electric automobiles a 300 mile driving range on a single charge. Battery chemical couples with very low equivalent weights have to be sought to produce such batteries. Advanced Li ion batteries may not be able to meet this challenge in the near term. The state-of-the-art of Li ion batteries is discussed, and the challenges of developing ultrahigh energy density rechargeable batteries are identified. Examples of ultrahigh energy density battery chemical couples include Li/O2, Li/S, Li/metal halide, and Li/metal oxide systems. Future efforts are also expected to involve all-solid-state batteries with performance similar to their liquid electrolyte counterparts, biodegradable batteries to address environmental challenges, and low-cost long cycle-life batteries for large-scale energy storage. Ultimately, energy densities of electrochemical energy storage systems are limited by chemistry constraints.

  6. Assessing the Amount of Chemical Elements in Biodegradable Agricultural Wastes and ASH

    Directory of Open Access Journals (Sweden)

    Rasa Kvasauskienė

    2011-02-01

    Full Text Available Biodegradable agricultural wastes such as manure, has long been used as an organic fertilizer that improves soil structure, enriches the soil with micro-organisms and micro-elements necessary for plants and promotes humus formation. Manure can also be successfully used as a renewable energy source directly combusting and extracting energy. The carried out investigation showed that the incineration of manure remaining in ashes could also be used as a fertilizer. Waste combustion reduces its volume to 80–90%. Also, the investigation revealed that the amount of chemical elements (Na, Mg, Si, P, K, Ca, Ti, Mn, Fe decreased after combustion. However, the concentration of these elements in ashes is higher than that in raw manure. Article in Lithuanian

  7. Effects of zinc on the content of chemical elements in the liver of rats during early stages of obesity.

    Science.gov (United States)

    Churin, B V; Trunova, V A; Sidorina, A V; Zvereva, V V; Astashov, V V

    2013-12-01

    In rats with slight alimentary obesity, the content of chemical elements in the liver did not differ from normal, but the correlations between these elements were changed, which attested to metabolic disorders. Additional zinc dose administered to rats receiving lipid-rich rations did not affect animal body weights and content of chemical elements (including zinc) in the liver, but corrected correlations between the elements. Active contribution of strontium, bromine, and rubidium to interactions between the elements in the liver necessitates studies of their role in biological processes, specifically, in initiation and development of obesity.

  8. Effect of zinc on the content of chemical elements in the lung tissue during obesity in the experiment.

    Science.gov (United States)

    Churin, B V; Trunova, V A; Sidorina, A V; Zvereva, V V; Astashov, V V

    2015-02-01

    We found no deviations from normalcy in the content of chemical elements (K, Ca, Mn, Fe, Cu, Zn, Se, Br, Rb, and Sr) in the lungs of rats with mild alimentary obesity, but revealed redistribution of correlations between the elements indicating impaired metabolism in this organ. Zinc supplementation had no effect on the body weight and content of chemical elements (including zinc) in the lung tissue in rats fed high fat diet, but led to significant changes in the correlations between the elements. Bromine, rubidium, and strontium are actively involved in interelement interactions in the lung tissue. These elements should be given more attention in considering biological processes including alimentary obesity.

  9. Abundances of chemical elements of the granitoids in different geotectonic units of China and their characteristics

    Institute of Scientific and Technical Information of China (English)

    SHI Changyi; YAN Mingcai; CHI Qinghua

    2007-01-01

    On the basis of actual analytical data of 767 composited samples collected mainly from about 750 large to middle representative granitoid bodies all over China, the average chemical compositions and element abundances of about 70 chemical elements of SiO2, Al2O3, Fe2O3, FeO, MgO,CaO, Na2O, K2O, H2O+, CO2, TFe2O3, Ag, As, Au, B, Ba, Be,Bi, Cd, Cl, Co, Cr, Cs, Cu, F, Ga, Ge, Hf, Hg, Li, Mn, Mo, Nb,Ni, P, Pb, Rb, S, Sb, Sc, Se, Sn, Sr, Ta, Th, Ti, Tl, U, V, W, Zn,Zr, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y in alkalifeldspar granite, syenogranite and adamellite in 7 geotectonic units in China such as Tianshan-Xing'an orogenic series, Sino-Korean metaplatform, Kunlun-Qilian-Qinling orogenic series, Yunnan-Tibet orogenic series,Yangtze metaplatform, South China-Youjiang orogenic zone and Himalayan orogenic belt, are calculated and presented in this paper. In addition, the characteristics of petrochemical parameters, trace element contents and rare earth element dis-tributions of different rock types of the granitoids in different geotectonic units are also sufficiently discussed.

  10. Chemical enrichment mechanisms in Omega Centauri: clues from neutron-capture elements

    CERN Document Server

    D'Orazi, Valentina; Pancino, Elena; Bragaglia, Angela; Carretta, Eugenio; Lucatello, Sara; Sneden, Chris

    2011-01-01

    In the complex picture of multiple stellar populations in globular clusters (GCs), a special role is played by NGC 5139 Omega Centauri. At variance with the majority of GCs, Omega Cen exhibits significant star-to-star variations in metallicity and in relative neutron-capture element abundance ratios with respect to Fe, along with split evolutionary sequences as revealed from colour-magnitude diagrams. Combining information from photometry and spectroscopy, several studies suggested that an age spread of several Gyr has to be invoked to explain (at least partially) some of the observed features. However, a comprehensive understanding of the formation, evolution and chemical enrichment processes is still not at hand. Relatively metal-rich Omega cen stars display neutron-capture abundance distributions dominated by contributions from the s-process, but it is not clear what roles have been played by the so-called main and weak s-process components in generating these abundances. To gain better insight into this q...

  11. Plant absorption of trace elements in sludge amended soils and correlation with soil chemical speciation

    Energy Technology Data Exchange (ETDEWEB)

    Torri, Silvana, E-mail: torri@agro.uba.ar [Catedra de Fertilidad y Fertilizantes, Facultad de Agronomia, UBA, Avda San Martin 4453, Buenos Aires (C1417 DSE) (Argentina); Lavado, Raul [Catedra de Fertilidad y Fertilizantes, Facultad de Agronomia, UBA, Avda San Martin 4453, Buenos Aires (C1417 DSE) (Argentina)

    2009-07-30

    The aim of the present study was to investigate the relationship between Lolium perenne L. uptake of Cd, Cu, Pb, and Zn in sludge amended soils and soil availability of these elements assessed by soil sequential extraction. A greenhouse experiment was set with three representative soils of the Pampas Region, Argentina, amended with sewage sludge and sewage sludge enriched with its own incinerated ash. After the stabilization period of 60 days, half of the pots were sampled for soil analysis; the rest of the pots were sown with L. perenne and harvested 8, 12, 16 and 20 weeks after sowing, by cutting just above the soil surface. Cadmium and Pb concentrations in aerial tissues of L. perenne were below detection limits, in good agreement with the soil fractionation study. Copper and Zn concentration in the first harvest were significantly higher in the coarse textured soil compared to the fine textured soil, in contrast with soil chemical speciation. In the third harvest, there was a positive correlation between Cu and Zn concentration in aerial biomass and soil fractions usually considered of low availability. We conclude that the most available fractions obtained by soil sequential extraction did not provide the best indicator of Cu and Zn availability to L. perenne.

  12. Sampling and analysis of chemical element concentration distribution in rock units and orebodies

    Directory of Open Access Journals (Sweden)

    F. P. Agterberg

    2012-01-01

    Full Text Available Existing sampling techniques applied within known orebodies, such as sampling along mining drifts, yield element concentration values for larger blocks of ore if they are extended into their surroundings. The resulting average concentration values have relatively small "extension variance". These techniques can be used for multifractal modeling as well as ore reserve estimation approaches. Geometric probability theory can aid in local spatial covariance modeling. It provides information about increase of variability of element concentration over short distances exceeding microscopic scale. In general, the local clustering of ore crystals results in small-scale variability known as the "nugget effect". Parameters to characterize spatial covariance estimated from ore samples subjected to chemical analysis for ore reserve estimation may not be valid at local scale because of the nugget effect. The novel method of local singularity mapping applied within orebodies provides new insights into the nature of the nugget effect. Within the Pulacayo orebody, Bolivia, local singularity for zinc is linearly related with logarithmically transformed concentration value. If there is a nugget effect, moving averages resulting from covariance models or estimated by other methods that have a smoothing effect, such as kriging, can be improved by incorporating local singularities indicating local element enrichment or depletion. Although there have been many successful applications of the multifractal binomial/p model, its application within the Pulacayo orebody results in inconsistencies, indicating some shortcomings of this relatively simple approach. Local singularity analysis and universal multifractal modeling are two promising new approaches to improve upon results obtained by commonly used geostatistical techniques and use of the binomial/p model. All methods in this paper are illustrated using a single example (118 Pulacayo zinc values, and

  13. Use of a Battery of Chemical and Ecotoxicological Methods for the Assessment of the Efficacy of Wastewater Treatment Processes to Remove Estrogenic Potency

    Science.gov (United States)

    Beresford, Nicola; Baynes, Alice; Kanda, Rakesh; Mills, Matthew R.; Arias-Salazar, Karla; Collins, Terrence J.; Jobling, Susan

    2016-01-01

    Endocrine Disrupting Compounds pose a substantial risk to the aquatic environment. Ethinylestradiol (EE2) and estrone (E1) have recently been included in a watch list of environmental pollutants under the European Water Framework Directive. Municipal wastewater treatment plants are major contributors to the estrogenic potency of surface waters. Much of the estrogenic potency of wastewater treatment plant (WWTP) effluents can be attributed to the discharge of steroid estrogens including estradiol (E2), EE2 and E1 due to incomplete removal of these substances at the treatment plant. An evaluation of the efficacy of wastewater treatment processes requires the quantitative determination of individual substances most often undertaken using chemical analysis methods. Most frequently used methods include Gas Chromatography-Mass Spectrometry (GCMS/MS) or Liquid Chromatography-Mass Spectrometry (LCMS/MS) using multiple reaction monitoring (MRM). Although very useful for regulatory purposes, targeted chemical analysis can only provide data on the compounds (and specific metabolites) monitored. Ecotoxicology methods additionally ensure that any by-products produced or unknown estrogenic compounds present are also assessed via measurement of their biological activity. A number of in vitro bioassays including the Yeast Estrogen Screen (YES) are available to measure the estrogenic activity of wastewater samples. Chemical analysis in conjunction with in vivo and in vitro bioassays provides a useful toolbox for assessment of the efficacy and suitability of wastewater treatment processes with respect to estrogenic endocrine disrupting compounds. This paper utilizes a battery of chemical and ecotoxicology tests to assess conventional, advanced and emerging wastewater treatment processes in laboratory and field studies. PMID:27684328

  14. Use of a Battery of Chemical and Ecotoxicological Methods for the Assessment of the Efficacy of Wastewater Treatment Processes to Remove Estrogenic Potency.

    Science.gov (United States)

    Beresford, Nicola; Baynes, Alice; Kanda, Rakesh; Mills, Matthew R; Arias-Salazar, Karla; Collins, Terrence J; Jobling, Susan

    2016-09-11

    Endocrine Disrupting Compounds pose a substantial risk to the aquatic environment. Ethinylestradiol (EE2) and estrone (E1) have recently been included in a watch list of environmental pollutants under the European Water Framework Directive. Municipal wastewater treatment plants are major contributors to the estrogenic potency of surface waters. Much of the estrogenic potency of wastewater treatment plant (WWTP) effluents can be attributed to the discharge of steroid estrogens including estradiol (E2), EE2 and E1 due to incomplete removal of these substances at the treatment plant. An evaluation of the efficacy of wastewater treatment processes requires the quantitative determination of individual substances most often undertaken using chemical analysis methods. Most frequently used methods include Gas Chromatography-Mass Spectrometry (GCMS/MS) or Liquid Chromatography-Mass Spectrometry (LCMS/MS) using multiple reaction monitoring (MRM). Although very useful for regulatory purposes, targeted chemical analysis can only provide data on the compounds (and specific metabolites) monitored. Ecotoxicology methods additionally ensure that any by-products produced or unknown estrogenic compounds present are also assessed via measurement of their biological activity. A number of in vitro bioassays including the Yeast Estrogen Screen (YES) are available to measure the estrogenic activity of wastewater samples. Chemical analysis in conjunction with in vivo and in vitro bioassays provides a useful toolbox for assessment of the efficacy and suitability of wastewater treatment processes with respect to estrogenic endocrine disrupting compounds. This paper utilizes a battery of chemical and ecotoxicology tests to assess conventional, advanced and emerging wastewater treatment processes in laboratory and field studies.

  15. Distribution of chemical elements in calc-alkaline igneous rocks, soils, sediments and tailings deposits in northern central Chile

    Science.gov (United States)

    Oyarzún, Jorge; Oyarzun, Roberto; Lillo, Javier; Higueras, Pablo; Maturana, Hugo; Oyarzún, Ricardo

    2016-08-01

    This study follows the paths of 32 chemical elements in the arid to semi-arid realm of the western Andes, between 27° and 33° S, a region hosting important ore deposits and mining operations. The study encompasses igneous rocks, soils, river and stream sediments, and tailings deposits. The chemical elements have been grouped according to the Goldschmidt classification, and their concentrations in each compartment are confronted with their expected contents for different rock types based on geochemical affinities and the geologic and metallogenic setting. Also, the element behavior during rock weathering and fluvial transport is here interpreted in terms of the ionic potentials and solubility products. The results highlight the similarity between the chemical composition of the andesites and that of the average Continental Crust, except for the higher V and Mn contents of the former, and their depletion in Mg, Ni, and Cr. The geochemical behavior of the elements in the different compartments (rocks, soils, sediments and tailings) is highly consistent with the mobility expected from their ionic potentials, their sulfates and carbonates solubility products, and their affinities for Fe and Mn hydroxides. From an environmental perspective, the low solubility of Cu, Zn, and Pb due to climatic, chemical, and mineralogical factors reduces the pollution risks related to their high to extremely high contents in source materials (e.g., rocks, altered zones, tailings). Besides, the complex oxyanions of arsenic get bound by colloidal particles of Fe-hydroxides and oxyhydroxides (e.g., goethite), thus becoming incorporated to the fine sediment fraction in the stream sediments.

  16. The Fifty Years of Chemical Power Sources in China(Ⅲ)--Nickel Series Batteries%中国化学电源50年(3)--镍系列电池

    Institute of Scientific and Technical Information of China (English)

    夏熙

    2000-01-01

    The development in chemical power sources of a series of nickel batteries including manufacture, technologies, performance, theories and battery materials, such as nickel hydroxide, cadmium hydroxide, various hydrogen storage alloys and the same for cadmium nickel batteries and metal hydride- nickel batteries during 1978~1998 in China were studied.%介绍了我国镍系列电池的研究进展,包括镉/镍与金属氢化物/镍电池的正负极材料、性能、制造以及理论。

  17. Determination of chemical elements in africanized Apis mellifera (Hymenoptera: Apidae honey samples from the State of Piauí, Brazil

    Directory of Open Access Journals (Sweden)

    Geni da Silva Sodré

    2007-08-01

    Full Text Available Honey is a food used since the most remote times, appreciated for its characteristic flavor, considerable nutritional value and medicinal properties; however, little information exists about the presence of chemical elements in it. The objectives of this work were to determine the chemical elements present in 38 honey samples, collected directly from beekeepers from the State of Piauí, Brazil and to verify whether they presented any contamination. The chemical elements were determined by means of Total Reflection X-ray Fluorescence. The means of three replicates were: K (109.671 ± 17.487, Ca (14.471 ± 3.8797, Ti (0.112 ± 0.07, Cr (0.196 ± 0.11, Mn (0.493 ± 0.103, Fe (1.722 ± 0.446, Co (0.038, Ni (0.728 ± 0.706, Cu (0.179 ± 0.0471, Zn (0.967 ± 0.653, Se (not detected, Br (not detected, Rb (0.371 ± 0.097, Sr (0.145 ± 0.45, Ba (11.681, Hg (not detected, and Pb (0.863 µg g-1.

  18. A thermodynamic force generated by chemical gradient and adsorption reaction

    CERN Document Server

    Sugawara, Takeshi

    2009-01-01

    Biological units such as macromolecules, organelles, and cells are directed to a proper location under gradients of relevant chemicals. By considering a macroscopic element that has binding sites for a chemical adsorption reaction to occur on its surface, we show the existence of a thermodynamic force that is generated by the gradient and exerted on the element. By assuming local equilibrium and adopting the grand potential from thermodynamics, we derive a formula for such a thermodynamic force, which depends on the chemical potential gradient and Langmuir isotherm. The conditions under which the formula can be applied are demonstrated to hold in intracellular reactions. The role of the force in the partitioning of bacterial chromosome/plasmid during cell division is discussed.

  19. Enabling room temperature sodium metal batteries

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Ruiguo; Mushra, Kuber; Li, Xiaolin; Qian, Jiangfeng; Engelhard, Mark H.; Bowden, Mark E.; Han, Kee Sung; Mueller, Karl T.; Henderson, Wesley A.; Zhang, Jiguang

    2016-12-01

    Rechargeable batteries based upon sodium (Na+) cations are at the core of many new battery chemistries beyond Li-ion batteries. Rather than using carbon or alloy-based anodes, the direct utilization of solid sodium metal as an anode would be highly advantageous, but its use has been highly problematic due to its high reactivity. In this work, however, it is demonstrated that, by tailoring the electrolyte formulation, solid Na metal can be electrochemically plated/stripped at ambient temperature with high efficiency (> 99%) on both copper and inexpensive aluminum current collectors thereby enabling a shift in focus to new battery chemical couples based upon Na metal operating at ambient temperature. These highly concentrated electrolytes has enabled stable cycling of Na metal batteries based on a Na metal anode and Na3V2(PO4)3 cathode at high rates with very high efficiency.

  20. Improving lithium-ion battery performances by adding fly ash from coal combustion on cathode film

    Energy Technology Data Exchange (ETDEWEB)

    Dyartanti, Endah Retno; Jumari, Arif, E-mail: arifjumari@yahoo.com; Nur, Adrian; Purwanto, Agus [Research Group of Battery & Advanced Material, Department of Chemical Engineering, Sebelas Maret University, Jl. Ir. Sutami 36 A Kentingan, Surakarta Indonesia 57126 (Indonesia)

    2016-02-08

    A lithium battery is composed of anode, cathode and a separator. The performance of lithium battery is also influenced by the conductive material of cathode film. In this research, the use of fly ash from coal combustion as conductive enhancer for increasing the performances of lithium battery was investigated. Lithium iron phosphate (LiFePO{sub 4}) was used as the active material of cathode. The dry fly ash passed through 200 mesh screen, LiFePO{sub 4} and acethylene black (AB), polyvinylidene fluoride (PVDF) as a binder and N-methyl-2-pyrrolidone (NMP) as a solvent were mixed to form slurry. The slurry was then coated, dried and hot pressed to obtain the cathode film. The ratio of fly ash and AB were varied at the values of 1%, 2%, 3%, 4% and 5% while the other components were at constant. The anode film was casted with certain thickness and composition. The performance of battery lithium was examined by Eight Channel Battery Analyzer, the composition of the cathode film was examined by XRD (X-Ray Diffraction), and the structure and morphology of the anode film was analyzed by SEM (Scanning Electron Microscope). The composition, structure and morphology of cathode film was only different when fly ash added was 4% of AB or more. The addition of 2% of AB on cathode film gave the best performance of 81.712 mAh/g on charging and 79.412 mAh/g on discharging.

  1. A method for connecting electrodes in a storage battery

    Energy Technology Data Exchange (ETDEWEB)

    Toda, K.; Karasava, S.

    1983-07-14

    The electrode units, placed into the body of a storage battery (AB), are electrically connected by welding connecting elements which pass through the partitions in the body. The processing is conducted with heating and pressure simultaneously.

  2. Elemental analysis of silver coins by PIXE technique

    Energy Technology Data Exchange (ETDEWEB)

    Tripathy, B.B. [Department of Physics, Silicon Institute of Technology, Patia, Bhubaneswar 751 024 (India); Rautray, Tapash R. [Department of Dental Biomaterials, School of Dentistry, Kyungpook National University, 2-188-1 Samduk -dong, Jung-gu, Daegu 700 412 (Korea, Republic of); ARASMIN, G. Udayagiri, Kandhamal, Orissa 762 100 (India)], E-mail: tapash.rautray@gmail.com; Rautray, A.C. [ARASMIN, G. Udayagiri, Kandhamal, Orissa 762 100 (India); Vijayan, V. [Praveen Institute of Radiation Technology, Flat No. 9A, Avvai Street, New Perungalathur, Chennai 600 063 (India)

    2010-03-15

    Elemental analysis of nine Indian silver coins during British rule was carried out by proton induced X-ray emission spectroscopy. Eight elements, namely Cr, Fe, Ni, Cu, Zn, As, Ag, and Pb were determined in the present study. Ag and Cu were found to be the major elements, Zn was the only minor element and all other elements are present at the trace level. The variation of the elemental concentration may be due to the use of different ores for making coins.

  3. Button batteries

    Science.gov (United States)

    Swallowing batteries ... These devices use button batteries: Calculators Cameras Hearing aids Penlights Watches ... If a person puts the battery up their nose and breathes it further in, ... problems Cough Pneumonia (if the battery goes unnoticed) ...

  4. Recovery of metals from a mixture of various spent batteries by a hydrometallurgical process.

    Science.gov (United States)

    Tanong, Kulchaya; Coudert, Lucie; Mercier, Guy; Blais, Jean-Francois

    2016-10-01

    Spent batteries contain hazardous materials, including numerous metals (cadmium, lead, nickel, zinc, etc.) that are present at high concentrations. Therefore, proper treatment of these wastes is necessary to prevent their harmful effects on human health and the environment. Current recycling processes are mainly applied to treat each type of spent battery separately. In this laboratory study, a hydrometallurgical process has been developed to simultaneously and efficiently solubilize metals from spent batteries. Among the various chemical leaching agents tested, sulfuric acid was found to be the most efficient and cheapest reagent. A Box-Behnken design was used to identify the influence of several parameters (acid concentration, solid/liquid ratio, retention time and number of leaching steps) on the removal of metals from spent batteries. According to the results, the solid/liquid ratio and acid concentration seemed to be the main parameters influencing the solubilization of zinc, manganese, nickel, cadmium and cobalt from spent batteries. According to the results, the highest metal leaching removals were obtained under the optimal leaching conditions (pulp density = 180 g/L (w/v), [H2SO4] = 1 M, number of leaching step = 3 and leaching time = 30 min). Under such optimum conditions, the removal yields obtained were estimated to be 65% for Mn, 99.9% for Cd, 100% for Zn, 74% for Co and 68% for Ni. Further studies will be performed to improve the solubilization of Mn and to selectively recover the metals.

  5. Improving the Performance of Lithium-Ion Batteries by Using Spinel Nanoparticles

    Directory of Open Access Journals (Sweden)

    J. C. Arrebola

    2008-01-01

    Full Text Available In this work, we examined the use of nanospinels to construct batttery electrodes. We chose two spinels suitable as cathode materials (LiMn2O4 and LiNi0.5Mn1.5O4, which are representative of 4 and 5 V versus Li metal, resp. and one providing good results as anode (Li4Ti5O12. In order to ensure good cell performance, nanometric particles must meet another requirement; thus they should contain few surface or bulk defects (i.e., they should be highly crystalline. Because the synthesis of such spinels usually requires a thermal treatment, ensuring that they will meet both requirements entails accuratly controlling in the synthesis conditions. Thermal decomposition of nanooxalate in the spinel-conaining elements obtained by mechanochenical activation in the presence of polymers provides a simple, effective route for this purpose. We prepared two types of hybrid lithium-ion batteries using LiMn2O4 and LiNi0.5Mn1.5O4 as cathode materials, and Li4Ti5O12 as anode material. The electrochemical properties of these cells were compared with those of a similar configuration made from micrometric particles. The nano-nano configuration exhibited higher reversibility and better performance than the micro-micro configuartion in both types of cells, possibly as a result of lithium ions in the former being able to migrate more easily into the electrode material.

  6. Improving the performance of lithium-sulfur batteries by graphene coating

    Science.gov (United States)

    Zhou, Xiangyang; Xie, Jing; Yang, Juan; Zou, Youlan; Tang, Jingjing; Wang, Songcan; Ma, Lulu; Liao, Qunchao

    2013-12-01

    A graphene coating mesoporous carbon/sulfur (RGO@CMK-3/S) composite, which is characteristic of a hybrid structure by incorporating the merits of CMK-3 matrix and graphene (RGO) skin, is synthesized by a facile and scalable route. The CMK-3/S composite is synthesized via a simple melt-diffusion strategy, and then a thin RGO skin is absorbed on the CMK-3/S composite surface in aqueous solution. When evaluating the electrochemical properties of as-prepared RGO wrapped nanostructures as cathode materials in lithium-sulfur batteries, it exhibits much improved cyclical stability and high rate performance. The RGO@CMK-3/S composite with 53.14 wt.% sulfur presents a reversible discharge capacity of about 734 mA h g-1 after 100 cycles at 0.5 C. The improved performance is attributed to the unique structure of RGO@CMK-3/S composite. CMK-3 with extensively mesopores can offer buffering space for the volume change of sulfur and efficient diffusion channel for lithium ions during the charge/discharge process. Meanwhile, the conductive RGO coating skin physically and chemically prevents the dissolution of polysulfides from the cathode, both of which contribute to the reduced capacity fade and improved electrochemical properties.

  7. Recovery of heavy metals from spent Ni-Cd batteries by a potentiostatic electrodeposition technique

    Science.gov (United States)

    Yang, Chun-Chen

    Two heavy metals, Cd and Ni, have been separately recovered from spent AA-size Ni-Cd batteries by the potentiostatic electrodeposition and chemical precipitation methods, respectively. Various types and concentrations of HCl, H 2SO 4, and HNO 3 acids had been used as leach extractants. Experimental results indicate that the acid with the best leach capability is 4 M HCl. Three complexing reagents of NH 3, sodium acetate, sodium citrate have been chosen and tested. The most effective buffer is sodium citrate. The optimum mole ratio of metallic ion to citrate ion is 1:1. The recovery process for Cd metal is conducted by the potentiostatic electrodeposition in a leach electrolyte with a sodium citrate complex. The optimum applied potential for Cd recovery is in the range -1100 to -1120 mV (versus saturated calomel electrode (SCE)). The current efficiency for the recovery process is between 70 and 90% and depends strongly on the process parameters, e.g. liquor, concentration, applied potential, temperature, type of complex reagents, mole ratio, mass-transfer rate.

  8. Discarded cell phone lithium ion batteries state of health quick method analysis by galvanostatic intermittent titration technique (GITT concept

    Directory of Open Access Journals (Sweden)

    Paulo Rogério Catarini

    2009-03-01

    Full Text Available The state of health (SOH is a important evaluation parameter to rechargeable batteries, because determine its cycle life and help on electric devices supplied by batteries maintenance. In this work the lithium ion discards cell phones batteries state of health and apparent diffusion coefficient (Dap were measured and correlated which purpose is diminish the batteries analyze time. The apparent diffusion coefficient is a ionic diffusion coefficient modification from GITT technique. The SOH and Dap correlation is well behaved, disclosing a cubic dependency. The time analyze was reduced by more than 1 h.

  9. Production of nuclear sources and nuclear batteries by proton irradiation

    CERN Document Server

    Möller, S

    2016-01-01

    The decay of instable nuclei is being used in a broad range of applications from detector calibration to power sources. As the public acceptance of classical fission nuclear technology is decaying and its integral costs are enormous, alternative production routes are required. The mathematical formalism and fundamental considerations are presented for the use of ion accelerators for isotope production. A focus is put on the production of nuclear power sources to substitute Pu-238 based batteries. 20 MeV protons are found to produce {\\alpha} emitting polonium isotopes from bismuth with an energy efficiency of up to 0.031%. Some hours are required to produce a 1Wth power source of the 2.9 year half-life {\\alpha} emitter Po-208 with a suitable accelerator. The accelerator approach offers more flexibility for tailoring of nuclear products and less waste. The technical requirements are close to and compatible with the planned International Fusion Materials Irradiation Facility accelerator

  10. The Detailed Chemical Properties of M31 Star Clusters I. Fe, Alpha and Light Elements

    CERN Document Server

    Colucci, J E; Cohen, J

    2014-01-01

    We present ages, [Fe/H] and abundances of the alpha elements Ca I, Si I, Ti I, Ti II, and light elements Mg I, Na I, and Al I for 31 globular clusters in M31, which were obtained from high resolution, high signal-to-noise ratio (SNR$>60$) echelle spectra of their integrated light. All abundances and ages are obtained using our original technique for high resolution integrated light abundance analysis of globular clusters. This sample provides a never before seen picture of the chemical history of M31. The globular clusters are dispersed throughout the inner and outer halo, from 2.5 kpc $<$ R$_{\\rm M31}$ $<$ 117 kpc. We find a range of [Fe/H] within 20 kpc of the center of M31, and a constant [Fe/H]$\\sim-1.6$ for the outer halo clusters. We find evidence for at least one massive globular cluster in M31 with an age between 1 and 5 Gyr. The alpha-element ratios are generally similar to Milky Way globular cluster and field star ratios. We also find chemical evidence for a late-time accretion origin for at l...

  11. Recycling of valuable metals from spent zinc-manganese batteries by vacuum metallurgy

    Institute of Scientific and Technical Information of China (English)

    陈为亮; 柴立元; 闵小波; 彭兵; 张传福; 戴永年

    2003-01-01

    At the total chamber pressure of 1.01×101 Pa, Hg, Cd and Zn were distilled at 773-973 K from spent zinc-manganese batteries, Pb was volatilized at 1 173-1 273 K while Mn, Cu, Fe and C were remained in the residual. MnO2 and ZnO were reduced by carbon in spent dry-batteries at 773-1 273 K. Pure metals including Zn, Cd, Hg and Pb were recovered respectively from their mixed vapor by fractional condensation.

  12. Regional clarkes of chemical elements in soils of southern European Russia

    Science.gov (United States)

    D'yachenko, V. V.; Matasova, I. Yu.

    2016-10-01

    Distribution patterns of 19 elements in soils of the southern part of European Russian were estimated on the basis of the analysis of more than 9000 soil samples; regional clarkes of the elements were compared with their global clarkes, The obtained data attest to the fact that southern Russia is characterized by increased concentrations of most of the microelements with a tendency for their rise in the recent decades. The great role of the aerial migration and deposition of elements results in the enrichment of the soils with technophilic elements, so that the geochemical convergence of the soils is observed. It can be concluded that natural element abundances in soils are subjected to the technogenic transformation reflecting the high rate of contamination of the biosphere.

  13. COF-Net on CNT-Net as a Molecularly Designed, Hierarchical Porous Chemical Trap for Polysulfides in Lithium-Sulfur Batteries.

    Science.gov (United States)

    Yoo, JongTae; Cho, Sung-Ju; Jung, Gwan Yeong; Kim, Su Hwan; Choi, Keun-Ho; Kim, Jeong-Hoon; Lee, Chang Kee; Kwak, Sang Kyu; Lee, Sang-Young

    2016-05-11

    The hierarchical porous structure has garnered considerable attention as a multiscale engineering strategy to bring unforeseen synergistic effects in a vast variety of functional materials. Here, we demonstrate a "microporous covalent organic framework (COF) net on mesoporous carbon nanotube (CNT) net" hybrid architecture as a new class of molecularly designed, hierarchical porous chemical trap for lithium polysulfides (Li2Sx) in Li-S batteries. As a proof of concept for the hybrid architecture, self-standing COF-net on CNT-net interlayers (called "NN interlayers") are fabricated through CNT-templated in situ COF synthesis and then inserted between sulfur cathodes and separators. Two COFs with different micropore sizes (COF-1 (0.7 nm) and COF-5 (2.7 nm)) are chosen as model systems. The effects of the pore size and (boron-mediated) chemical affinity of microporous COF nets on Li2Sx adsorption phenomena are theoretically investigated through density functional theory calculations. Benefiting from the chemical/structural uniqueness, the NN interlayers effectively capture Li2Sx without impairing their ion/electron conduction. Notably, the COF-1 NN interlayer, driven by the well-designed microporous structure, allows for the selective deposition/dissolution (i.e., facile solid-liquid conversion) of electrically inert Li2S. As a consequence, the COF-1 NN interlayer provides a significant improvement in the electrochemical performance of Li-S cells (capacity retention after 300 cycles (at charge/discharge rate = 2.0 C/2.0 C) = 84% versus 15% for a control cell with no interlayer) that lies far beyond those accessible with conventional Li-S technologies.

  14. Controlled chemical modification of the internal surface of photonic crystal fibers for application as biosensitive elements

    Science.gov (United States)

    Pidenko, Sergey A.; Burmistrova, Natalia A.; Pidenko, Pavel S.; Shuvalov, Andrey A.; Chibrova, Anastasiya A.; Skibina, Yulia S.; Goryacheva, Irina Y.

    2016-10-01

    Photonic crystal fibers (PCF) are one of the most promising materials for creation of constructive elements for bio-, drug and contaminant sensing based on unique optical properties of the PCF as effective nanosized optical signal collectors. In order to provide efficient and controllable binding of biomolecules, the internal surface of glass hollow core photonic crystal fibers (HC-PCF) has been chemically modified with silanol groups and functionalized with (3-aminopropyl) triethoxysilane (APTES). The shift of local maxima in the HC-PCF transmission spectrum has been selected as a signal for estimating the amount of silanol groups on the HC-PCF inner surface. The relationship between amount of silanol groups on the HC-PCF inner surface and efficiency of following APTES functionalization has been evaluated. Covalent binding of horseradish peroxidase (chosen as a model protein) on functionalized PCF inner surface has been performed successively, thus verifying the possibility of creating a biosensitive element.

  15. Batteries at NASA - Today and Beyond

    Science.gov (United States)

    Reid, Concha M.

    2015-01-01

    NASA uses batteries for virtually all of its space missions. Batteries can be bulky and heavy, and some chemistries are more prone to safety issues than others. To meet NASA's needs for safe, lightweight, compact and reliable batteries, scientists and engineers at NASA develop advanced battery technologies that are suitable for space applications and that can satisfy these multiple objectives. Many times, these objectives compete with one another, as the demand for more and more energy in smaller packages dictates that we use higher energy chemistries that are also more energetic by nature. NASA partners with companies and universities, like Xavier University of Louisiana, to pool our collective knowledge and discover innovative technical solutions to these challenges. This talk will discuss a little about NASA's use of batteries and why NASA seeks more advanced chemistries. A short primer on battery chemistries and their chemical reactions is included. Finally, the talk will touch on how the work under the Solid High Energy Lithium Battery (SHELiB) grant to develop solid lithium-ion conducting electrolytes and solid-state batteries can contribute to NASA's mission.

  16. Hemolytic anemia caused by chemicals and toxins

    Science.gov (United States)

    ... This list is not all-inclusive. Alternative Names Anemia - hemolytic - caused by chemicals or toxins References Michel M. Autoimmune and intravascular hemolytic anemias. In: Goldman L, Schafer ...

  17. Influence of chemical microstructure of single-ion polymeric electrolyte membranes on performance of lithium-ion batteries.

    Science.gov (United States)

    Zhang, Yunfeng; Rohan, Rupesh; Cai, Weiwei; Xu, Guodong; Sun, Yubao; Lin, An; Cheng, Hansong

    2014-10-22

    A novel protocol to generate and control porosity in polymeric structures is presented for fabrication of single ion polymer electrolyte (SIPE) membranes for lithium ion batteries. A series of SIPEs with varying ratios of aliphatic and aromatic segments was successfully synthesized and subsequently blended with PVDF-HFP to fabricate membranes of various sizes of pores. The membranes were characterized using techniques including SEM, solvent uptake capacity measurement and ionic conductivity. We demonstrate that appropriate membrane porosity enhances ionic conductivity, reduces interfacial resistance between electrodes and electrolyte and ultimately boosts performance of Li-ion batteries. The implication of the structure-performance relationship for battery design is discussed.

  18. Batteries, from Cradle to Grave

    Science.gov (United States)

    Smith, Michael J.; Gray, Fiona M.

    2010-01-01

    As battery producers and vendors, legislators, and the consumer population become aware of the consequences of inappropriate disposal of batteries to landfill sites instead of responsible chemical neutralization and reuse, the topic of battery recycling has begun to appear on the environmental agenda. In the United Kingdom, estimates of annual…

  19. Solar battery energizer

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, M. E.

    1985-09-03

    A battery energizer for button batteries, such as zinc-silver oxide or zinc-mercuric oxide batteries, that are normally considered unchargeable, provides for energizing of the batteries in a safe and simple manner. A solar cell having a maximum current output (e.g., 20 milliamps) is operatively connected to terminals for releasably receiving a button battery. A light emitting diode, or like indicator, provides an indication of when the battery is fully energized, and additionally assists in preventing overenergization of the battery. The solar cell, terminals, LED, and the like can be mounted on a nonconductive material mounting plate which is mounted by a suction cup and hook to a window, adjacent a light bulb, or the like. A battery charger for conventional dry cell rechargeable batteries (such as nickel-cadmium batteries) utilizes the solar cells, and LED, and a zener diode connected in parallel with terminals. An adaptor may be provided with the terminal for adapting them for use with any conventional size dry cell battery, and a simple dummy battery may be utilized so that less than the full complement of batteries may be charged utilizing the charger.

  20. Studying a dental pathology by finite elements

    Directory of Open Access Journals (Sweden)

    Fernando Mejía Umaña

    2010-04-01

    Full Text Available Abfractives lesions or abfractions are non-cavity lesions of dental structures in which a biomechanical factor has been identified as being the most probable cause for it occurring. Even throught such lesion can be presented in any tooth, it occurs more frequently in people aged over 35. This article presents some results obtained by the Universidad Nacional de Colombia's multidisciplinary research group for studying "dental material's structure and propierties". The introduction describes such lesion's characteristics and possible causes. The results of various modelling exercises using finite elements (in two and three dimensions are presented regarding a first premolar tooth subjected to normal mastication load and also to abnormal loads produced by occlusion problems. The most important findings (accompanied by clinical observations were that: areas of high concentration of forces were identified where lesions were frequently presented, associated with loads whose line of action did not pass through the central part of the section of tooth at cervical level; a direct relationship between facets of wear being orientated with the direction of forces produced by a high concentration of force; and the presence of high compression forces in the cervical region.

  1. Design of a hybrid battery charger system fed by a wind-turbine and photovoltaic power generators

    Science.gov (United States)

    Chang Chien, Jia-Ren; Tseng, Kuo-Ching; Yan, Bo-Yi

    2011-03-01

    This paper is aimed to develop a digital signal processor (DSP) for controlling a solar cell and wind-turbine hybrid charging system. The DSP consists of solar cells, a wind turbine, a lead acid battery, and a buck-boost converter. The solar cells and wind turbine serve as the system's main power sources and the battery as an energy storage element. The output powers of solar cells and wind turbine have large fluctuations with the weather and climate conditions. These unstable powers can be adjusted by a buck-boost converter and thus the most suitable output powers can be obtained. This study designs a booster by using a dsPIC30F4011 digital signal controller as a core processor. The DSP is controlled by the perturbation and observation methods to obtain an effective energy circuit with a full 100 W charging system. Also, this DSP can, day and night, be easily controlled and charged by a simple program, which can change the state of the system to reach a flexible application based on the reading weather conditions.

  2. Design of a hybrid battery charger system fed by a wind-turbine and photovoltaic power generators.

    Science.gov (United States)

    Chang Chien, Jia-Ren; Tseng, Kuo-Ching; Yan, Bo-Yi

    2011-03-01

    This paper is aimed to develop a digital signal processor (DSP) for controlling a solar cell and wind-turbine hybrid charging system. The DSP consists of solar cells, a wind turbine, a lead acid battery, and a buck-boost converter. The solar cells and wind turbine serve as the system's main power sources and the battery as an energy storage element. The output powers of solar cells and wind turbine have large fluctuations with the weather and climate conditions. These unstable powers can be adjusted by a buck-boost converter and thus the most suitable output powers can be obtained. This study designs a booster by using a dsPIC30F4011 digital signal controller as a core processor. The DSP is controlled by the perturbation and observation methods to obtain an effective energy circuit with a full 100 W charging system. Also, this DSP can, day and night, be easily controlled and charged by a simple program, which can change the state of the system to reach a flexible application based on the reading weather conditions.

  3. A new method to prevent degradation of lithium-oxygen batteries: reduction of superoxide by viologen.

    Science.gov (United States)

    Yang, L; Frith, J T; Garcia-Araez, N; Owen, J R

    2015-01-31

    Lithium-oxygen battery development is hampered by degradation reactions initiated by superoxide, which is formed in the pathway of oxygen reduction to peroxide. This work demonstrates that the superoxide lifetime is drastically decreased upon addition of ethyl viologen, which catalyses the reduction of superoxide to peroxide.

  4. Detailed mass size distributions of elements and species, and aerosol chemical mass closure during fall 1999 at Gent, Belgium

    Science.gov (United States)

    Maenhaut, Willy; Cafmeyer, Jan; Dubtsov, Sergei; Chi, Xuguang

    2002-04-01

    A 10-stage microorifice uniform deposit impactor (MOUDI) and a 12-stage small deposit area low pressure impactor (SDI) were operated at Gent from 6 September to 30 October 1999. Thirty-four parallel samples (of typically 24 h) were collected. The MOUDI samples were analysed for the particulate mass (PM) by weighing, and for organic carbon (OC) and elemental carbon (EC) by a thermal-optical transmission technique. The SDI samples were analysed for 27 elements by PIXE. PM and OC exhibited typically a rather similar bimodal size distribution, with most of their mass in the submicrometer size range. EC was predominantly associated with fine particles, with maximum typically at around 0.2 μm equivalent aerodynamic diameter (EAD). Sulphur was also mainly in the fine size range, but with maximum at 0.5 μm EAD. Other elements with mainly a fine mode were V, Ni, As, Se and Pb. The crustal elements (Al, Si, Ti, Fe, Zr) exhibited mostly a unimodal coarse mode size distribution, with maximum at about 4 μm EAD. Other elements with mainly a coarse mode were Na, Mg, P, Ca, Cr, Mn, Cu, Ga and Sr. The elements K, Zn and Rb were generally bimodal. Aerosol chemical mass closure calculations indicated that organic aerosol and crustal matter were the major aerosol types in the supermicrometer size range, and that the dominant aerosol types in the submicrometer fraction were organic aerosol and sulphate. On average, 74% of the gravimetric PM was accounted for by the aerosol types considered.

  5. Elemental Analysis of Soils by Laser Induced Breakdown Spectroscopy

    Science.gov (United States)

    Gondal, Mohammed Ashraf; Dastageer, Mohamed A.

    The chemical and elemental composition of soil is very complex as it contains many constituents like minerals, organic matters, living organisms, fossils, air and water. Considering the diversity of soil contents, quality and usability, a systematic scientific study on the elemental and chemical composition of soil is very important. In order to study the chemical composition of soil, Laser induced breakdown spectroscopy (LIBS) has been applied recently. The important features of LIBS system and its applications for the measurement of nutrients in green house soil, on-line monitoring of remediation process of chromium polluted soil, determination of trace elements in volcanic erupted soil samples collected from ancient cenozoic lava eruption sites and detection of toxic metals in Gulf war oil spill contaminated soil using LIBS are described in this chapter.

  6. Preparation of thermal resistant-enhanced separators for lithium ion battery by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Joon Yong; Shin, Junhwa; Nho, Youngchang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-03-15

    Micro-porous membrane made of polyethylene (PE) or polypropylene (PP) is most widely used as physical separators between the cathode and anode in lithium secondary batteries. However, the polymer membranes so soften or melt when the temperature reaches 130 .deg. C or higher because of thermal shrinkage of the polyolefin separators, and thaw low thermal stability may cause internal short circuiting or lead to thermal runaway. In this study, to realize a highly safe battery, we prepared three type separators as crosslinked PE separator, polymer-coated PE separator, and ceramic-coated PE separators, for lithium secondary battery by electron beam irradiation. We prepared crosslinked PE separators with the improved thermal stability by irradiating a commercial PE separator with an electron beam. A polymer-coated PE separator was prepared by a dip-coating of PVDF-HFP/PEGDMA on both sides of a PE separator followed by an electron beam irradiation. Ceramic-coated PE separator was prepared by coating ceramic particles on a PE separator followed by an electron beam irradiation. The prepared separators were characterized with FT-IR, SEM, electrolyte uptake, ion conductivity, thermal shrinkage and battery performance test.

  7. Rechargeable batteries applications handbook

    CERN Document Server

    1998-01-01

    Represents the first widely available compendium of the information needed by those design professionals responsible for using rechargeable batteries. This handbook introduces the most common forms of rechargeable batteries, including their history, the basic chemistry that governs their operation, and common design approaches. The introduction also exposes reader to common battery design terms and concepts.Two sections of the handbook provide performance information on two principal types of rechargeable batteries commonly found in consumer and industrial products: sealed nickel-cad

  8. EVALUATION OF PHYSICO-CHEMICAL PARAMETERS OF AGRICULTURAL SOILS IRRIGATED BY THE WATERS OF THE HYDROLIC BASIN OF SEBOU RIVER AND THEIR INFLUENCES ON THE TRANSFER OF TRACE ELEMENTS INTO SUGAR CROPS (THE CASE OF SUGAR CANE

    Directory of Open Access Journals (Sweden)

    N. Benlkhoubi

    2016-05-01

    Full Text Available This research was conducted in Kenitra (northwestern Morocco to determine the physicochemical parameters and metallic concentrations at three levels: surface water of Sebou and Beht intended for irrigation, agricultural soils and sugarcane. The spectrometric analysis of source plasma emission (ICP has identified eight trace elements contained in the materials taken from zone 1 (As, Cd, Co, Zn, Ni, Pb, Cu and Cr.The obtained results showed that the interaction between the different physicochemical parameters of agricultural soils decides the transfer of the metal elements to the plants. Indeed, for the soil which is used in this agriculture (for sugar cane, its irrigation water, and the contents of Cr, Cd and As exceeds the accepted standards.The principal component analysis of the levels of trace metal supports in area 1, allowed to distinguish between the items with a high tolerance for bagasse (Zn, Cu, Ni, Cd and Pb, compared to Cr, Co, and As.

  9. In-situ, Real-Time Monitoring of Mechanical and Chemical Structure Changes in a V2O5 Battery Electrode Using a MEMS Optical Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Jung, H. [University of Maryland; Gerasopoulos, K. [University of Maryland; Gnerlich, Markus [University of Maryland; Talin, A. Alec [Sandia National Laboratories; Ghodssi, Reza [University of Maryland

    2014-06-01

    This work presents the first demonstration of a MEMS optical sensor for in-situ, real-time monitoring of both mechanical and chemical structure evolutions in a V2O5 lithium-ion battery (LIB) cathode during battery operation. A reflective membrane forms one side of a Fabry-Perot (FP) interferometer, while the other side is coated with V2O5 and exposed to electrolyte in a half-cell LIB. Using one microscope and two laser sources, both the induced membrane deflection and the corresponding Raman intensity changes are observed during lithium cycling. Results are in good agreement with the expected mechanical behavior and disorder change of the V2O5 layers, highlighting the significant potential of MEMS as enabling tools for advanced scientific investigations.

  10. Spent lithium-ion battery recycling - Reductive ammonia leaching of metals from cathode scrap by sodium sulphite.

    Science.gov (United States)

    Zheng, Xiaohong; Gao, Wenfang; Zhang, Xihua; He, Mingming; Lin, Xiao; Cao, Hongbin; Zhang, Yi; Sun, Zhi

    2017-02-01

    Recycling of spent lithium-ion batteries has attracted wide attention because of their high content of valuable and hazardous metals. One of the difficulties for effective metal recovery is the separation of different metals from the solution after leaching. In this research, a full hydrometallurgical process is developed to selectively recover valuable metals (Ni, Co and Li) from cathode scrap of spent lithium ion batteries. By introducing ammonia-ammonium sulphate as the leaching solution and sodium sulphite as the reductant, the total selectivity of Ni, Co and Li in the first-step leaching solution is more than 98.6% while it for Mn is only 1.36%. In detail understanding of the selective leaching process is carried out by investigating the effects of parameters such as leaching reagent composition, leaching time (0-480min), agitation speed (200-700rpm), pulp density (10-50g/L) and temperature (323-353K). It was found that Mn is primarily reduced from Mn(4+) into Mn(2+) into the solution as [Formula: see text] while it subsequently precipitates out into the residue in the form of (NH4)2Mn(SO3)2·H2O. Ni, Co and Li are leached and remain in the solution either as metallic ion or amine complexes. The optimised leaching conditions can be further obtained and the leaching kinetics is found to be chemical reaction control under current leaching conditions. As a result, this research is potentially beneficial for further optimisation of the spent lithium ion battery recycling process after incorporating with metal extraction from the leaching solution.

  11. Enhanced reversibility and durability of a solid oxide Fe-air redox battery by carbothermic reaction derived energy storage materials.

    Science.gov (United States)

    Zhao, Xuan; Li, Xue; Gong, Yunhui; Huang, Kevin

    2014-01-18

    The recently developed solid oxide metal-air redox battery is a new technology capable of high-rate chemistry. Here we report that the performance, reversibility and stability of a solid oxide iron-air redox battery can be significantly improved by nanostructuring energy storage materials from a carbothermic reaction.

  12. Preparation and electrochemical properties of polymer Li-ion battery reinforced by non-woven fabric

    Institute of Scientific and Technical Information of China (English)

    HU Yong-jun; CHEN Bai-zhen; YUAN Yan

    2007-01-01

    A polymer electrolyte based on poly(vinylidene)fluoride-hexafluoropropylene was prepared by evaporating the solvent of dimethyl for mamide, and non-woven fabric was used to reinforce the mechanical strength of polymer electrolyte and maintain a good interfacial property between the polymer electrolyte and electrodes. Polymer lithium batteries were assembled by using LiCoO2 as cathode material and lithium foil as anode material. Scanning electron microscopy, alternating current impedance, linear sweep voltammetry and charge-discharge tests were used to study the properties of polymer membrane and polymer Li-ion batteries. The results show that the technics of preparing polymer electrolyte by directly evaporating solvent is simple.The polymer membrane has rich micro.porous structure on both sides and exhibits 280% uptake of electrolyte solution.The electrochemical stability window of this polymer electrolyte is about 5.5 V, and its ionic conductivity at room temperature reaches 0.151 S/m.The polymer lithium battery displays an initial discharge capacity of 138 mA·h/g and discharge plateau of about 3.9 V at 0.2 current rate.After 30 cycles, its loss of discharge capacity is only 2%. When the battery discharges at 0.5 current rate, the voltage plateau is still 3.7 V The discharge capacities of 0.5 and 1.0 current rates are 96%and 93% of mat of 0.1 current rate.respectively.

  13. Safety characteristics of Li-ion batteries evaluated by in situ measurement techniques

    Institute of Scientific and Technical Information of China (English)

    YANG Li; WANG Baofeng; QIU Yali

    2005-01-01

    Li-ion batteries hold an important place in the field of high power batteries because of their high open circuit voltage and associated high energy density. However, the safety is less satisfactory; therefore, the study of the factors that affect the safety of Li-ion batteries has much meaning to the safety design. In this paper, a set of apparatus was developed for in situ measurements, and several commercial materials including electrolyte, separator and electrode materials for Li-ion batteries were investigated by the in situ method. The results showed: 1) The electrolyte vapor pressure is influenced significantly by the component with low boiling point and increases rapidly with the increasing of temperature; 2) the shutdown of separator occurs at around 135℃ and the impedance increases approximately by two orders of magnitude; 3) carbon anode materials affect the most the volume changes of the cell, and the change for a graphite anode is much greater than that of a glassy carbon anode.

  14. Characterization of microglass wet laid nonwovens used as battery separators

    Energy Technology Data Exchange (ETDEWEB)

    Zientek, M.J.; Bender, R.J. [Schuller International, Inc., Toledo, OH (United States)

    1996-11-01

    Significant advancements have been made during the past few years in the battery industry with the development of Valve Regulated Lead-Acid (VRLA) cells for a variety of applications. Today, most sealed or gas recombining, lead-acid batteries utilize absorptive microglass separators in their design. The 100% microglass battery separator mat used in rechargeable lead-acid batteries has been identified as being a critical component necessary for the operation of these cells. With the growing importance of the microglass separator in modern battery technology, an understanding of the various properties of the separator is essential to better understand the impact separators have on battery performance. A method for characterizing microglass separators is described by surface area, mechanical, chemical, and microscopy techniques.

  15. Calculation and Interpretation of the Standard Chemical Exergies of Elements Using the Chemical Reference Species%使用化学参考物质计算和阐明元素的标准化学放射本能

    Institute of Scientific and Technical Information of China (English)

    B(I)LGEN Sel(c)uk

    2009-01-01

    Exergy is the amount of work obtainable when some matter is brought to a state of thermodynamic equilibrium with the common components of the natural surroundings by means of reversible processes, involving interaction only with the above mentioned components of nature. This paper presents standard chemical exergy values for 85 elements. Reference species in the atmosphere (air), dissolved in the hydrosphere (oceans), and contained in the lithosphere (minerals) are used for these calculations. Standard chemical exergy values of elements were calculated from tabulated values obtained for standard conditions (an ambient temperature of 298.15 K and an atmospheric pressure of 0.1 MPa). Very low concentrations of elements in the atmosphere and oceans and the abundance of elements in the Earth's crust are no longer used in determining reference states for chemical elements. Liquid and gas mixtures generally are not useful as reference states. As a result of the work in this paper, a table of the chemical exergy values of many elements in the periodic table under standard conditions was tabulated.

  16. SnO2 anode surface passivation by atomic layer deposited HfO2 improves li-ion battery performance

    KAUST Repository

    Yesibolati, Nulati

    2014-03-14

    For the first time, it is demonstrated that nanoscale HfO2 surface passivation layers formed by atomic layer deposition (ALD) significantly improve the performance of Li ion batteries with SnO2-based anodes. Specifically, the measured battery capacity at a current density of 150 mAg -1 after 100 cycles is 548 and 853 mAhg-1 for the uncoated and HfO2-coated anodes, respectively. Material analysis reveals that the HfO2 layers are amorphous in nature and conformably coat the SnO2-based anodes. In addition, the analysis reveals that ALD HfO2 not only protects the SnO2-based anodes from irreversible reactions with the electrolyte and buffers its volume change, but also chemically interacts with the SnO2 anodes to increase battery capacity, despite the fact that HfO2 is itself electrochemically inactive. The amorphous nature of HfO2 is an important factor in explaining its behavior, as it still allows sufficient Li diffusion for an efficient anode lithiation/delithiation process to occur, leading to higher battery capacity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A Temperature-Dependent Battery Model for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Leonardo M. Rodrigues

    2017-02-01

    Full Text Available Energy consumption is a major issue in Wireless Sensor Networks (WSNs, as nodes are powered by chemical batteries with an upper bounded lifetime. Estimating the lifetime of batteries is a difficult task, as it depends on several factors, such as operating temperatures and discharge rates. Analytical battery models can be used for estimating both the battery lifetime and the voltage behavior over time. Still, available models usually do not consider the impact of operating temperatures on the battery behavior. The target of this work is to extend the widely-used Kinetic Battery Model (KiBaM to include the effect of temperature on the battery behavior. The proposed Temperature-Dependent KiBaM (T-KiBaM is able to handle operating temperatures, providing better estimates for the battery lifetime and voltage behavior. The performed experimental validation shows that T-KiBaM achieves an average accuracy error smaller than 0.33%, when estimating the lifetime of Ni-MH batteries for different temperature conditions. In addition, T-KiBaM significantly improves the original KiBaM voltage model. The proposed model can be easily adapted to handle other battery technologies, enabling the consideration of different WSN deployments.

  18. A Temperature-Dependent Battery Model for Wireless Sensor Networks.

    Science.gov (United States)

    Rodrigues, Leonardo M; Montez, Carlos; Moraes, Ricardo; Portugal, Paulo; Vasques, Francisco

    2017-02-22

    Energy consumption is a major issue in Wireless Sensor Networks (WSNs), as nodes are powered by chemical batteries with an upper bounded lifetime. Estimating the lifetime of batteries is a difficult task, as it depends on several factors, such as operating temperatures and discharge rates. Analytical battery models can be used for estimating both the battery lifetime and the voltage behavior over time. Still, available models usually do not consider the impact of operating temperatures on the battery behavior. The target of this work is to extend the widely-used Kinetic Battery Model (KiBaM) to include the effect of temperature on the battery behavior. The proposed Temperature-Dependent KiBaM (T-KiBaM) is able to handle operating temperatures, providing better estimates for the battery lifetime and voltage behavior. The performed experimental validation shows that T-KiBaM achieves an average accuracy error smaller than 0.33%, when estimating the lifetime of Ni-MH batteries for different temperature conditions. In addition, T-KiBaM significantly improves the original KiBaM voltage model. The proposed model can be easily adapted to handle other battery technologies, enabling the consideration of different WSN deployments.

  19. A Temperature-Dependent Battery Model for Wireless Sensor Networks

    Science.gov (United States)

    Rodrigues, Leonardo M.; Montez, Carlos; Moraes, Ricardo; Portugal, Paulo; Vasques, Francisco

    2017-01-01

    Energy consumption is a major issue in Wireless Sensor Networks (WSNs), as nodes are powered by chemical batteries with an upper bounded lifetime. Estimating the lifetime of batteries is a difficult task, as it depends on several factors, such as operating temperatures and discharge rates. Analytical battery models can be used for estimating both the battery lifetime and the voltage behavior over time. Still, available models usually do not consider the impact of operating temperatures on the battery behavior. The target of this work is to extend the widely-used Kinetic Battery Model (KiBaM) to include the effect of temperature on the battery behavior. The proposed Temperature-Dependent KiBaM (T-KiBaM) is able to handle operating temperatures, providing better estimates for the battery lifetime and voltage behavior. The performed experimental validation shows that T-KiBaM achieves an average accuracy error smaller than 0.33%, when estimating the lifetime of Ni-MH batteries for different temperature conditions. In addition, T-KiBaM significantly improves the original KiBaM voltage model. The proposed model can be easily adapted to handle other battery technologies, enabling the consideration of different WSN deployments. PMID:28241444

  20. Dual protection of sulfur by carbon nanospheres and graphene sheets for lithium-sulfur batteries.

    Science.gov (United States)

    Wang, Bei; Wen, Yanfen; Ye, Delai; Yu, Hua; Sun, Bing; Wang, Guoxiu; Hulicova-Jurcakova, Denisa; Wang, Lianzhou

    2014-04-25

    Well-confined elemental sulfur was implanted into a stacked block of carbon nanospheres and graphene sheets through a simple solution process to create a new type of composite cathode material for lithium-sulfur batteries. Transmission electron microscopy and elemental mapping analysis confirm that the as-prepared composite material consists of graphene-wrapped carbon nanospheres with sulfur uniformly distributed in between, where the carbon nanospheres act as the sulfur carriers. With this structural design, the graphene contributes to direct coverage of sulfur to inhibit the mobility of polysulfides, whereas the carbon nanospheres undertake the role of carrying the sulfur into the carbon network. This composite achieves a high loading of sulfur (64.2 wt %) and gives a stable electrochemical performance with a maximum discharge capacity of 1394 mAh g(-1) at a current rate of 0.1 C as well as excellent rate capability at 1 C and 2 C. The improved electrochemical properties of this composite material are attributed to the dual functions of the carbon components, which effectively restrain the sulfur inside the carbon nano-network for use in lithium-sulfur rechargeable batteries.

  1. DTN ROUTING BY AVOIDING BATTERY CRITICAL CONDITIONS AND DATA LOSS AT AN INTERMEDIATE NODE

    Directory of Open Access Journals (Sweden)

    Sreejith S Ambady

    2016-04-01

    Full Text Available Delay tolerant networks are used in the areas where the network connectivity is sparse as well as the delay is very high that is in communication challenged areas. The electronic devices used in such areas will be lacking continuous power supply and thereby mostly battery powered. So there may be circumstances where, the data transmitted to an intermediate node, and the node before forwarding the data may run out of battery life. Another circumstance that may arise is that the getting lost due to any physical damage to thee node. The paper addresses simple techniques to avoid data transfer to nodes with low battery and to share data with those nodes with sufficient battery power so as to prevent any data loss and to identify any bulk packet loss due to any above mentioned issues and to efficiently route the packets. The simulation is done in ONE simulator and results are being analysed in terms of throughput ratio for different buffer size, the results show a gradual increase in throughput by the method.

  2. An all-solid-state lithium ion battery electrolyte membrane fabricated by hot-pressing method

    Science.gov (United States)

    Han, Pengfei; Zhu, Yuewu; Liu, Jin

    2015-06-01

    A cross-linked polymer electrolyte membrane (SPE) was fabricated by a solvent-free hot-pressing method for all-solid-state lithium ion battery. The ionic conductivity of the electrolyte is 1.34 × 10-3 S cm-1 and the decomposition potential is 4.87 V at the ethylene oxide (EO):LiN(SO2CF3)2 (LiTFSI) molar ratio of 20:1 and 120 °C. TG-DSC results show that the SPE is thermally stable up to 230 °C in argon atmosphere. The assembled LiFePO4/SPE/Li all-solid-state battery can stably work in the temperature range of 80-140 °C. At 120 °C, the initial discharge capacity of the battery is 156.7 mAh g-1 at 1C which is close to the theoretical capacity of the cathode material, showing that the solvent-free filming method is low-cost and environment-friendly for solid polymer electrolyte and all-solid-state lithium ion battery.

  3. Reduction of CO 2 concentration in a zinc/air battery by absorption in a rotating packed bed

    Science.gov (United States)

    Cheng, Hsu-Hsiang; Tan, Chung-Sung

    The reduction of CO 2 concentration in a gas stream containing 500 ppm of CO 2 by a technique combining chemical absorption with Higee (high gravity) was investigated in this study. Using a 2.0 L aqueous amine-based solution to treat the feed gas with a flow rate which varied from 12.9 to 20.6 L min -1, piperazine (PZ) was found to be more effective than 2-(2-aminoethylamino) ethanol (AEEA) and monoethanolamine (MEA) for reducing the CO 2 concentration to a level below 20 ppm. The effects of temperature, rotating speed, amine solution flow rate, and gas flow rate on the removal efficiency of CO 2 were systematically examined. The results indicated that the proposed compact device could effectively reduce CO 2 to a level below 20 ppm, as required by a zinc/air battery, for a long period of time using PZ and its mixture with AEEA and MEA as the absorbents.

  4. Contents of chemical elements in stomach during prenatal development: different age-dependent dynamical changes and their significance

    Institute of Scientific and Technical Information of China (English)

    Shao-Fan Hou; Hai-Rong Li; Li-Zhen Wang; De-Zhu Li; Lin-Sheng Yang; Chong-Zheng Li

    2003-01-01

    AIM: To observe dynamic of different chemical elements in stomach tissue during fetal development.METHODS: To determine contents of the 21 chemical elements in each stomach samples from fetus aging four to ten months. The content values were compared to those from adult tissue samples, and the values for each month group were also analyzed for dynamic changes.RESULTS: Three representations were found regarding the relationship between contents of the elements and ages of the fetus, including the positive correlative (K), reversely correlative (Na, Ca, P, Al, Cu, Zn, Fe, Mn, Cr, Sr, Li, Cd, Ba,Se ) and irrelevant groups (Mg, Co, Ni, V, Pb, Ti).CONCLUSION: The chemical elements' contents in stomach tissues were found to change dynamically with the stomach weights. The age-dependent representations for different chemical elements during the prenatal development may be of some significance for assessing development of fetal stomach and some chemical elements. The data may be helpful for the nutritional balance of fetus and mothers during prenatal development and even the perinatal stages.

  5. Recycling cobalt from spent lithium ion battery

    Institute of Scientific and Technical Information of China (English)

    Zhi-dong XIA; Xiao-qian XIE; Yao-wu SHI; Yong-ping LEI; Fu GUO

    2008-01-01

    Spent lithium ion battery is a useful resource of cobalt. In this paper, cobalt was recovered by a chemical process based upon the analysis of the structure and com-position of the lithium ion battery. X-ray diffraction results show that cobalt oxalate and cobaltous sulfate have been obtained in two different processes. Compared with the cobaltous oxalate process, the cobaltous sulfate process was characterized by less chemical substance input and a cobalt recovery rate of as much as 88%. A combination of these two processes in the recycling industry may win in the aspects of compact process and high recovery rate.

  6. Automated Quantitative Rare Earth Elements Mineralogy by Scanning Electron Microscopy

    Science.gov (United States)

    Sindern, Sven; Meyer, F. Michael

    2016-09-01

    Increasing industrial demand of rare earth elements (REEs) stems from the central role they play for advanced technologies and the accelerating move away from carbon-based fuels. However, REE production is often hampered by the chemical, mineralogical as well as textural complexity of the ores with a need for better understanding of their salient properties. This is not only essential for in-depth genetic interpretations but also for a robust assessment of ore quality and economic viability. The design of energy and cost-efficient processing of REE ores depends heavily on information about REE element deportment that can be made available employing automated quantitative process mineralogy. Quantitative mineralogy assigns numeric values to compositional and textural properties of mineral matter. Scanning electron microscopy (SEM) combined with a suitable software package for acquisition of backscatter electron and X-ray signals, phase assignment and image analysis is one of the most efficient tools for quantitative mineralogy. The four different SEM-based automated quantitative mineralogy systems, i.e. FEI QEMSCAN and MLA, Tescan TIMA and Zeiss Mineralogic Mining, which are commercially available, are briefly characterized. Using examples of quantitative REE mineralogy, this chapter illustrates capabilities and limitations of automated SEM-based systems. Chemical variability of REE minerals and analytical uncertainty can reduce performance of phase assignment. This is shown for the REE phases parisite and synchysite. In another example from a monazite REE deposit, the quantitative mineralogical parameters surface roughness and mineral association derived from image analysis are applied for automated discrimination of apatite formed in a breakdown reaction of monazite and apatite formed by metamorphism prior to monazite breakdown. SEM-based automated mineralogy fulfils all requirements for characterization of complex unconventional REE ores that will become

  7. Chemical banding revealed by chemical etching in a cold-rolled metastable stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Celada, C., E-mail: c.celada@cenim.csic.es [MATERALIA Research Group, Department of Physical Metallurgy, Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), Av. Gregorio del Amo 8, 28040 Madrid (Spain); Toda-Caraballo, I., E-mail: it247@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Kim, B., E-mail: bnk20@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); San Martín, D., E-mail: dsm@cenim.csic.es [MATERALIA Research Group, Department of Physical Metallurgy, Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), Av. Gregorio del Amo 8, 28040 Madrid (Spain)

    2013-10-15

    The current work describes the metallographic characterization of the initial microstructure of a cold rolled precipitation hardening semi-austenitic stainless steel (12Cr–9Ni–4Mo–2Cu–1Ti, in wt.%). The use of the Lichtenegger and Blöch (L–B) color etching solution has been shown to reveal not only the phases present in the microstructure, but also the existence of chemical banding along the rolling direction. The L–B reagent has been found to color the microstructure in bands depending on what alloying elements have segregated to each band. Two-dimensional electron probe microanalysis (EPMA) maps have shown that Ni, Cu and Ti segregate together in the bands, while Cr has an opposite behavior. Mo has a mixed segregation behavior although much weaker than the other elements and more prompt to segregate like Ni does. A direct comparison of light optical micrographs with the EPMA maps of the same area of the microstructure has enable to establish a direct relationship between the alloying element band concentration and the resulting etching color contrast obtained with the L–B reagent. Thermodynamic calculations predict that solidification in this steel takes place with ferrite as the primary phase. Equilibrium partitioning coefficient calculations seem to support the observed segregation patterns. - Highlights: • A cold rolled metastable stainless steel has been characterized thoroughly. • EPMA shows that Ni, Cu and Ti segregate together; Cr in an opposite way. • L–B color etching is sensitive to the segregation of these chemical elements. • This chemical banding has been reduced by applying a homogenization heat treatment. • Partitioning coefficient calculations agree with the observed segregation patterns.

  8. Dissolution of Ce from Cd Solution Containing U/Ce Elements by Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Si Hyung; Kim, Gha-Young; Lee, Seung-jai; Kim, Taek-Jin; Paek, Seungwoo; Ahn, Do-Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The U-TRU metal alloy can be supplied by the Pyroprocessing, specifically UTRU recovery process using liquid cadmium cathode (LCC). In a certain case, a lot of rare earth (RE) element could be recovered on the LCC with the TRU element during the Pyroprocessing when the concentration of RE ions is higher than that of the TRU ions in the salt. In this case, most of the RE element needs to be removed from the Cd solution containing U/TRU/RE elements. RAR(Residual Actinides Recovery) technique used the mixed electrolytic-chemical process. In this study, only electrolysis technique was utilized to remove Ce element from Cd solution containing U/Ce elements. U-TRU alloy having less impurity is necessary for the fabrication of SFR fuel and these U-TRU elements can be prepared by Pyroprocessing. Electrolytic method was used to reduce the amount of Ce elements from the Cd solution containing U/Ce elements. It is judged from this study that electrolytic dissolution can be one of the methods to reduce RE elements from the Cd solution containing U-TRU-RE elements.

  9. Peculiarities of cognitive functions in urban children with mental retardation in relation to the chemical elements content in a hair

    Directory of Open Access Journals (Sweden)

    Yevstafyeva E.V.

    2012-06-01

    Full Text Available

    In 30 children in the age of 12,8±0,3 with mental retardation and 30 healthy children of the same age an element balance of organism and state of cognitive functions were related. The content of elements (Ca, Fe, Mn, Mo, Ni, Sr, Pb in the hair was determined by a method of X-ray fuorescent spectroscopy. The content of Ca, Ni and Mn in 55 % of children and the defciency of Fe in 21 % of children with mental retardation were established. The defciency of Ca, Fe and Mn of healthy children was displayed. The value of Sr and Pb in organism in children of booth group was normal. The content of Mo in hair in 40 % of children with mental retardation and in 30 % of children of a check-group were established. The relationship between the content of chemical elements in organisms and state of cognitive functions was analyzed by non-parametric analysis by Spearmen. The excess of Ni in organism of children with mental retardation and defciency of Fe in organism of children in booth groups negatively infuenced the characteristics of cognitive functions (0,34

  10. Identification of alkylated phosphates by gas chromatography-mass spectrometric investigations with different ionization principles of a thermally aged commercial lithium ion battery electrolyte.

    Science.gov (United States)

    Weber, Waldemar; Kraft, Vadim; Grützke, Martin; Wagner, Ralf; Winter, Martin; Nowak, Sascha

    2015-05-15

    The thermal aging process of a commercial LiPF6 based lithium ion battery electrolyte has been investigated in view of the formation of volatile phosphorus-containing degradation products. Aging products were analyzed by GC-MS. Structure determination of the products was performed by support of chemical ionization MS in positive and negative modes. A fraction of the discovered compounds belongs to the group of fluorophosphates (phosphorofluoridates) which are in suspect of potential toxicity. This is well known for relative derivatives, e.g. diisopropyl fluorophosphate. Another fraction of the identified compounds belongs to the group of trialkyl phosphates. These compounds may provide a positive impact on the thermal and electrochemical performance of Li-based batteries as repeatedly described in the literature.

  11. Darcys Law Expressed by Chemical Index

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The Darcys formula expressed by chemical indexes (ion activity a and saturation index f) is derived with the aid of the kinetics of multi-mineral dissolution. The implication of the formula and the relationship between the formula and the original Darcy′s law expressed by hydraulic index (hydraulic gradient, I ) are discussed here. An analytic expression is established in this paper for the determination of the residence time of groundwater by chemical indexes, whose equivalence to isotopic age is studled. The formulas are derived from the calculation of permeability coefficient (K), conductivity coefficient (T) and actual velocity of groundwater (U). Finally, this paper introduces hydrogeological chemical kinetics constant (kj) and its determination method, differential and integral equations for chemical kinetics of groundwater in three-dimensional space.

  12. Bipolar Membranes for Acid Base Flow Batteries

    Science.gov (United States)

    Anthamatten, Mitchell; Roddecha, Supacharee; Jorne, Jacob; Coughlan, Anna

    2011-03-01

    Rechargeable batteries can provide grid-scale electricity storage to match power generation with consumption and promote renewable energy sources. Flow batteries offer modular and flexible design, low cost per kWh and high efficiencies. A novel flow battery concept will be presented based on acid-base neutralization where protons (H+) and hydroxyl (OH-) ions react electrochemically to produce water. The large free energy of this highly reversible reaction can be stored chemically, and, upon discharge, can be harvested as usable electricity. The acid-base flow battery concept avoids the use of a sluggish oxygen electrode and utilizes the highly reversible hydrogen electrode, thus eliminating the need for expensive noble metal catalysts. The proposed flow battery is a hybrid of a battery and a fuel cell---hydrogen gas storing chemical energy is produced at one electrode and is immediately consumed at the other electrode. The two electrodes are exposed to low and high pH solutions, and these solutions are separated by a hybrid membrane containing a hybrid cation and anion exchange membrane (CEM/AEM). Membrane design will be discussed, along with ion-transport data for synthesized membranes.

  13. Physical and chemical analysis of lithium-ion battery cell-to-cell failure events inside custom fire chamber

    Science.gov (United States)

    Spinner, Neil S.; Field, Christopher R.; Hammond, Mark H.; Williams, Bradley A.; Myers, Kristina M.; Lubrano, Adam L.; Rose-Pehrsson, Susan L.; Tuttle, Steven G.

    2015-04-01

    A 5-cubic meter decompression chamber was re-purposed as a fire test chamber to conduct failure and abuse experiments on lithium-ion batteries. Various modifications were performed to enable remote control and monitoring of chamber functions, along with collection of data from instrumentation during tests including high speed and infrared cameras, a Fourier transform infrared spectrometer, real-time gas analyzers, and compact reconfigurable input and output devices. Single- and multi-cell packages of LiCoO2 chemistry 18650 lithium-ion batteries were constructed and data was obtained and analyzed for abuse and failure tests. Surrogate 18650 cells were designed and fabricated for multi-cell packages that mimicked the thermal behavior of real cells without using any active components, enabling internal temperature monitoring of cells adjacent to the active cell undergoing failure. Heat propagation and video recordings before, during, and after energetic failure events revealed a high degree of heterogeneity; some batteries exhibited short burst of sparks while others experienced a longer, sustained flame during failure. Carbon monoxide, carbon dioxide, methane, dimethyl carbonate, and ethylene carbonate were detected via gas analysis, and the presence of these species was consistent throughout all failure events. These results highlight the inherent danger in large format lithium-ion battery packs with regards to cell-to-cell failure, and illustrate the need for effective safety features.

  14. FINITE ELEMENT METHODS FOR THE NAVIER-STOKES EQUATIONS BY H(div) ELEMENTS

    Institute of Scientific and Technical Information of China (English)

    Junping Wang; Xiaoshen Wang; Xiu Ye

    2008-01-01

    We derived and analyzed a new numerical scheme for the Navier-Stokes equations by using H(div) conforming finite elements. A great deal of effort was given to an establishment of some Sobolev-type inequalities for piecewise smooth functions. In particular, the newly derived Sobolev inequalities were employed to provide a mathematical theory for the H(div) finite element scheme. For example, it was proved that the new finite element scheme has solutions which admit a certain boundedness in terms of the input data. A solution uniqueness was also possible when the input data satisfies a certain smallness condition. Optimal-order error estimates for the corresponding finite element solutions were established in various Sobolev norms. The finite element solutions from the new scheme feature a full satisfaction of the continuity equation which is highly demanded in scientific computing.

  15. Dynamic Prediction of Power Storage and Delivery by Data-Based Fractional Differential Models of a Lithium Iron Phosphate Battery

    Directory of Open Access Journals (Sweden)

    Yunfeng Jiang

    2016-07-01

    Full Text Available A fractional derivative system identification approach for modeling battery dynamics is presented in this paper, where fractional derivatives are applied to approximate non-linear dynamic behavior of a battery system. The least squares-based state-variable filter (LSSVF method commonly used in the identification of continuous-time models is extended to allow the estimation of fractional derivative coefficents and parameters of the battery models by monitoring a charge/discharge demand signal and a power storage/delivery signal. In particular, the model is combined by individual fractional differential models (FDMs, where the parameters can be estimated by a least-squares algorithm. Based on experimental data, it is illustrated how the fractional derivative model can be utilized to predict the dynamics of the energy storage and delivery of a lithium iron phosphate battery (LiFePO 4 in real-time. The results indicate that a FDM can accurately capture the dynamics of the energy storage and delivery of the battery over a large operating range of the battery. It is also shown that the fractional derivative model exhibits improvements on prediction performance compared to standard integer derivative model, which in beneficial for a battery management system.

  16. Element Abundances in a Gas-rich Galaxy at z = 5: Clues to the Early Chemical Enrichment of Galaxies

    Science.gov (United States)

    Morrison, Sean; Kulkarni, Varsha P.; Som, Debopam; DeMarcy, Bryan; Quiret, Samuel; Péroux, Celine

    2016-10-01

    Element abundances in high-redshift quasar absorbers offer excellent probes of the chemical enrichment of distant galaxies, and can constrain models for population III and early population II stars. Recent observations indicate that the sub-damped Lyα (sub-DLA) absorbers are more metal-rich than DLA absorbers at redshifts 0 4.7. However, only three DLAs at z > 4.5 and no sub-DLAs at z > 3.5 have “dust-free” metallicity measurements of undepleted elements. We report the first quasar sub-DLA metallicity measurement at z > 3.5, from detections of undepleted elements in high-resolution data for a sub-DLA at z = 5.0. We obtain fairly robust abundances of C, O, Si, and Fe, using lines outside the Lyα forest. This absorber is metal-poor, with [O/H] = ‑2.00 ± 0.12, which is ≳4σ below the level expected from extrapolation of the trend for z Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  17. Development of a reconstruction software of elemental maps by micro X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Andre Pereira de; Braz, Delson; Mota, Carla Lemos, E-mail: apalmeid@gmail.co, E-mail: delson@lin.ufrj.b, E-mail: clemos@con.ufrj.b [Universidade Federal do Rio de Janeiro (PEN/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Energia Nuclear; Oliveira, Luis Fernando de; Barroso, Regina Cely; Pinto, Nivia Graciele Villela, E-mail: cely@uerj.b, E-mail: lfolive@uerj.b, E-mail: nitatag@gmail.co [Universidade do Estado do Rio de Janeiro (IF/UERJ), RJ (Brazil). Inst. de Fisica; Cardoso, Simone Coutinho [Universidade Federal do Rio de Janeiro (IF/UFRJ), RJ (Brazil). Inst. de Fisica; Moreira, Silvana [Universidade Estadual de Campinas (FEC/UNICAMP), SP (Brazil) Faculdade de Engenharia Civil, Arquitetura e Urbanismo

    2009-07-01

    The technique of X-ray fluorescence (XRF) using SR microbeams is a powerful analysis tool for studying elemental composition in several samples. One application of this technique is the analysis done through the mapping of chemical elements forming a matrix of data. The aim of this work is the presentation of the program MapXRF, an in-house software designed to optimize the processing and mapping of fluorescence intensities data. This program uses spectra generated by QXAS as input data and separates the intensities of each chemical element found in the fluorescence spectra in files themselves. From these files, the program generates the intensity maps that can be visualized in any program of treatment of images. The proposed software was tested using fluorescence data obtained in the XRF beamline at National Synchrotron Light Laboratory (LNLS), Brazil. Automatic 2D scans were performed and element distribution maps were obtained in form of a matrix of data. (author)

  18. Chemical Elements in Mulch and Litterfall of Beech Ecosystems and Their Total Turnover

    Directory of Open Access Journals (Sweden)

    Mariyana I. Lyubenovа

    2011-07-01

    Full Text Available The beech communities on the territory of Bulgaria had been objects of regional, local as well as large scale national investigations aiming their classification, determination of their ecological characteristics, conservation status, habitats etc. They are included as objects of the intensive monitoring of forest ecosystems in Bulgaria also. The investigations of chemical content of the litter – fall in these forests were conducted until now. The novelty of the present research is investigation of these elements in the mulch and the ratio between the established quantities calculation. The main goal is the biological turnover special features characterization of the investigated elements which give us a chance to define the investigated ecosystems state and functioning. The indexes as litter – mulch and acropetal coefficients were used for this aim. The content of macroelements as N, Ca and K and microelements as Pb, Zn, Mn and Fe in soils, mulch and in different litter fall fractions have been calculated. The investigation was carried out on three sample plots. During the investigation was established that the soils are characterized with acid reaction, high content of Fe, N and Mn and low content of Ca and K. The concentration of Zn and Pb are high also. The calculated average store of investigated elements in litter – fall is 81.312 kg.ha1 and in the mulch 314 kg.ha1. According to the acropetal coefficient N is accumulated mainly in the acorns, K – in the annual phytomass fractions and Ca – in the perennial fractions. The leaves and the acorns fraction accumulate Mn, and cupolas Fe. The litter – mulch coefficient vary from 1,6 (Mn to 4,2 (Pb. The tendencies of Zn and Ca turnovers acceleration are discovered, while the turnover of more investigated elements is inhibited. The litter – mulch coefficient for Zn and Ca is 0,8 and 1,4 accordingly, i.е. corresponding to the intensive type of turnovers which is not typical for the

  19. Fabrication of solid-state thin-film batteries using LiMnPO{sub 4} thin films deposited by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Daichi [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577 (Japan); Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Kuwata, Naoaki, E-mail: kuwata@tagen.tohoku.ac.jp [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577 (Japan); Matsuda, Yasutaka; Kawamura, Junichi [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577 (Japan); Kang, Feiyu [Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2015-03-31

    Solid-state thin-film batteries using LiMnPO{sub 4} thin films as positive electrodes were fabricated and the electrochemical properties were characterized. The LiMnPO{sub 4} thin films were deposited on Pt coated glass substrates by pulsed laser deposition. In-plane X-ray diffraction revealed that the LiMnPO{sub 4} thin films were well crystallized and may have a texture with a (020) orientation. The deposition conditions were optimized; the substrate temperature was 600 °C and the argon pressure was 100 Pa. The electrochemical measurements indicate that the LiMnPO{sub 4} films show charge and discharge peaks at 4.3 V and 4.1 V, respectively. The electrical conductivity of the LiMnPO{sub 4} film was measured by impedance spectroscopy to be 2 × 10{sup −11} S cm{sup −1} at room temperature. The solid-state thin-film batteries that show excellent cycle stability were fabricated using the LiMnPO{sub 4} thin film. Moreover, the chemical diffusion of the LiMnPO{sub 4} thin film was studied by cyclic voltammetry. The chemical diffusion coefficient of the LiMnPO{sub 4} thin film is estimated to be 3.0 × 10{sup −17} cm{sup 2} s{sup −1}, which is approximately four orders magnitude smaller than the LiFePO{sub 4} thin films, and the capacity of the thin-film battery was gradually increased for 500 cycles. - Highlights: • Olivine-type LiMnPO{sub 4} thin-films were fabricated by pulsed laser deposition. • The electrochemical properties were characterized by using solid-state thin-film batteries. • Chemical diffusion coefficient of LiMnPO{sub 4} thin film was estimated by cyclic voltammetry. • Thin-film batteries, Li/Li{sub 3}PO{sub 4}/LiMnPO{sub 4}, show excellent cycle stability up to 500 cycles.

  20. Inverse Vulcanization of Sulfur using Natural Dienes as Sustainable Materials for Lithium-Sulfur Batteries.

    Science.gov (United States)

    Gomez, Iñaki; Leonet, Olatz; Blazquez, J Alberto; Mecerreyes, David

    2016-12-20

    Lithium-sulfur batteries are among the most promising next-generation battery systems due to the high capacity of sulfur as cathodic material. Beyond its interesting intrinsic properties, sulfur possesses a very low conductivity and complex electrochemistry, which involves the high solubility of the lithium sulfides in the electrolyte. These two characteristics are at the core of a series of limitations of its performance as active cathode material, which leads to batteries with low cyclability. Recently, inverse vulcanized sulfur was shown to retain capacity far better than elemental sulfur, leading to batteries with excellent cyclability. Nevertheless, the diene co-monomers used so far in the inverse vulcanization process are man-made molecules. Herein, a tentative work on exploring inverse vulcanization using two naturally available monomers, diallyl sulfide and myrcene, is presented. The inverse vulcanization of sulfur was successfully completed, and the resulting polymers were characterized by FTIR, NMR spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. Afterwards these polymers were tested as cathodic materials in lithium-sulfur cells. The sulfur-natural dienes materials exhibited high capacity at different C rates and high lifetime over 200 cycles with very high capacity retention at a moderate C rate of C/5. Altogether, these materials made from inexpensive and abundant chemicals are an excellent option as sustainable materials for electrochemical energy storage.

  1. Vibration Analysis of Plates by MLS-Element Method

    Science.gov (United States)

    Zhou, L.; Xiang, Y.

    2010-05-01

    This paper presents a novel numerical method, the moving least square element (MLS-element) method for the free vibration analysis of plates based on the Mindlin shear deformable plate theory. In the MLS-element method, a plate can be first divided into multiple elements which are connected through selected nodal points on the interfaces of the elements. An element can be of any shape and the size of the element varies dependent on the problem at hand. The shape functions of the element for the transverse displacement and the rotations are derived based on the MLS interpolation technique. The convergence and accuracy of the method can be controlled by either increasing the number of elements or by increasing the number of MLS interpolation points within elements. Two selected examples for vibration of a simply supported square Mindlin plate and a clamped L-shaped Mindlin plate are studied to illustrate the versatility and accuracy of the proposed method. It shows that the proposed method is highly accurate and flexible for the vibration analysis of plate problems. The method can be further developed to bridge the existing meshless method and the powerful finite element method in dealing with various engineering computational problems, such as large deformation and crack propagation in solid mechanics.

  2. Electrode materials for lithium-ion batteries characterized by electrochemical impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Schweikert, N.; Indris, S. [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany); Krueger, S.; Roling, B. [Marburg Univ. (Germany)

    2010-07-01

    In order to characterize the electrochemical properties of Li{sub 4}Ti{sub 5}O{sub 12} electrochemical impedance spectroscopy (EIS) was used. Long-term measurements were performed in order to identify interfacial reactions, loss mechanisms and degradation processes. By performing impedance measurements at different Li contents, the dependency on the state-of-charge (SOC) of the Li/Li{sub 4+x}Ti{sub 5}O{sub 12} battery was investigated. (orig.)

  3. Influence of relativistic effect on chemical properties of element 104; Wplyw efektu relatywistycznego na wlasnosci chemiczne pierwiastka 104

    Energy Technology Data Exchange (ETDEWEB)

    Bilewicz, A.

    1997-12-31

    The influence of relativistic effect upon chemical properties of element 104 is discussed. An original method of measurements of adsorption on the surface of thin film of cobalt ferrocyanate was developed and applied for the studies of 104{sup 4+} hydrolysis. Results of this experiments indicate that in the Group 4 tendency to hydrolysis decreases in the order 104{sup 4+}>Zr{sup 4+}>Hf{sup 4+}. The results were explained on the basis of relativistic effect. Unexpected chemical properties of element 104 in aqueous solutions indicate, that due to relativistic effect element 104 differs distinctly from its congeners - Zr and Hf. In contrary it becomes similar to the lightest element in the Group, Ti, through atomic mass of latter is 213 unit less. (author). 119 refs, 22 figs, 7 tabs.

  4. Predicting Anatomical Therapeutic Chemical (ATC classification of drugs by integrating chemical-chemical interactions and similarities.

    Directory of Open Access Journals (Sweden)

    Lei Chen

    Full Text Available The Anatomical Therapeutic Chemical (ATC classification system, recommended by the World Health Organization, categories drugs into different classes according to their therapeutic and chemical characteristics. For a set of query compounds, how can we identify which ATC-class (or classes they belong to? It is an important and challenging problem because the information thus obtained would be quite useful for drug development and utilization. By hybridizing the informations of chemical-chemical interactions and chemical-chemical similarities, a novel method was developed for such purpose. It was observed by the jackknife test on a benchmark dataset of 3,883 drug compounds that the overall success rate achieved by the prediction method was about 73% in identifying the drugs among the following 14 main ATC-classes: (1 alimentary tract and metabolism; (2 blood and blood forming organs; (3 cardiovascular system; (4 dermatologicals; (5 genitourinary system and sex hormones; (6 systemic hormonal preparations, excluding sex hormones and insulins; (7 anti-infectives for systemic use; (8 antineoplastic and immunomodulating agents; (9 musculoskeletal system; (10 nervous system; (11 antiparasitic products, insecticides and repellents; (12 respiratory system; (13 sensory organs; (14 various. Such a success rate is substantially higher than 7% by the random guess. It has not escaped our notice that the current method can be straightforwardly extended to identify the drugs for their 2(nd-level, 3(rd-level, 4(th-level, and 5(th-level ATC-classifications once the statistically significant benchmark data are available for these lower levels.

  5. [Analysis of 14 elements for Jinhua bergamot by X-ray fluorescence spectrometry and elemental analyser].

    Science.gov (United States)

    Wang, Zhi-gang; Yu, Hong-mei

    2012-01-01

    The content of the elements C, H, O and N in Jinhua bergamot was analysed by using Vario III elemental analyser, the bergamot sample was scanned by using X-ray fluorescence spectrometer with PW2400 wavelength dispersion, and the content of the elements Mg, Al, P, S, Cl, K, Ca, Mn, Fe and Sr was analysed by using IQ+ analytical method. It turned out that the result is more ideal if the content of the elements C, H, O and N is processed as fix phase, and the analytical result is more ideal if, to prevent the sample skin from coming off, the sample is wrapped with mylar film with the film coefficient adjusted.

  6. All-vanadium redox flow batteries with graphite felt electrodes treated by atmospheric pressure plasma jets

    Science.gov (United States)

    Chen, Jian-Zhang; Liao, Wei-Yang; Hsieh, Wen-Yen; Hsu, Cheng-Che; Chen, Yong-Song

    2015-01-01

    Graphite felts modified with atmospheric pressure plasma jets (APPJs) are applied as electrodes in an all-vanadium redox flow battery (VRFB). APPJ flow penetrates deeply into the graphite felt, improving significantly the wettability of the graphite felt inside out and, thereby, enhancing graphite fiber-electrolyte contact during battery operation. The energy efficiency of a VRFB was improved from 62% (untreated) to 76% (APPJ-treated with the scan mode) at a current density of 80 mA cm-2, an improvement of 22%. The efficiency improvement is attributed to the oxygen-containing groups and nitrogen doping introduced by N2 APPJs on the fiber surfaces of graphite felt, both of which enhance electrochemical reactivity.

  7. Effects of iron phthalocyanine on performance of MH/Ni battery

    Institute of Scientific and Technical Information of China (English)

    王芳; 吴锋

    2004-01-01

    Oxygen evolution causes a high inner pressure during charge and overcharge for MH/Ni battery, and an inappropriate eliminating way of the oxygen in the battery results in accumulation of heat. This is the main obstacle to develop and apply high capability and high power battery. How to reduce the ratio of the chemical catalysis rate to the electric catalysis rate in MH/Ni battery is considered as an urgent question. Iron phthalocyanine(FePc) was chosen as an electrochemical catalyst. The batteries were prepared by adding iron phthalocyanine with different dosages. The inner pressure, the capacity attenuation, the discharge voltage and capacity at high current of these three batteries were compared. The battery with 1 mg FePc in the negative electrode exhibits a good performance.

  8. Estimation of the physico-chemical parameters of materials based on rare earth elements with the application of computational model

    Science.gov (United States)

    Mamaev, K.; Obkhodsky, A.; Popov, A.

    2016-01-01

    Computational model, technique and the basic principles of operation program complex for quantum-chemical calculations of material's physico-chemical parameters with rare earth elements are discussed. The calculating system is scalable and includes CPU and GPU computational resources. Control and operation of computational jobs and also Globus Toolkit 5 software provides the possibility to join computer users in a unified system of data processing with peer-to-peer architecture. CUDA software is used to integrate graphic processors into calculation system.

  9. Battery thermal models for hybrid vehicle simulations

    Science.gov (United States)

    Pesaran, Ahmad A.

    This paper summarizes battery thermal modeling capabilities for: (1) an advanced vehicle simulator (ADVISOR); and (2) battery module and pack thermal design. The National Renewable Energy Laboratory's (NREL's) ADVISOR is developed in the Matlab/Simulink environment. There are several battery models in ADVISOR for various chemistry types. Each one of these models requires a thermal model to predict the temperature change that could affect battery performance parameters, such as resistance, capacity and state of charges. A lumped capacitance battery thermal model in the Matlab/Simulink environment was developed that included the ADVISOR battery performance models. For thermal evaluation and design of battery modules and packs, NREL has been using various computer aided engineering tools including commercial finite element analysis software. This paper will discuss the thermal ADVISOR battery model and its results, along with the results of finite element modeling that were presented at the workshop on "Development of Advanced Battery Engineering Models" in August 2001.

  10. Behavior of radon, chemical compounds and stable elements in underground water; Comportamiento de radon, compuestos quimicos y elementos estables en agua subterranea

    Energy Technology Data Exchange (ETDEWEB)

    Lopez R, N.; Segovia, N.; Lopez, M.B.E.; Pena, P. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico); Armienta, M.A.; Godinez, L. [IGFUNAM, Ciudad Universitaria, 04510 Mexico D.F. (Mexico); Seidel, J.L. [ISTEEM, M.S.E. Montpellier (France)

    2001-07-01

    The radon behavior, chemical compounds, major and trace elements in water samples of four springs and three wells of urban and agricultural zones around the Jocotitlan volcano and El Oro region was determined, both of them located in the medium part of the Mexican neo-volcanic axis. The {sup 222} Rn was measured by the liquid scintillation method, the analysis of major components was realized with conventional chemical techniques, while the trace elements were quantified using an Icp-Ms. The average values of the radon concentrations obtained during one year were constant relatively, in an interval from 0.97 to 4.99 Bq/lt indicating a fast transport from the reload area toward the sampling points. the compounds, major and trace elements showed differences which indicate distinct origins of water from the site studies. (Author)

  11. A method for connecting electrodes in a storage battery

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, T.; Nakadzima, T.; Toda, K.

    1983-07-14

    Groups of electrodes are placed in the body of a storage battery (AB) divided by partitions. The storage cells are connected using connecting elements passed through openings in the partitions. The elements to be connected are heated with pressure which melts them.

  12. Concentrations of Chemical Elements in Willow Biomass Depend on Clone, Site and Management in the Field

    DEFF Research Database (Denmark)

    Liu, Na; Jørgensen, Uffe; Lærke, Poul Erik

    2016-01-01

    Eight willow (Salix) clones (Inger, Klara, Linnea, Resolution, Stina, Terra Nova, Tora, Tordis) were planted on two soil types in Denmark. The biomass quality was evaluated after 3 years of growth by measuring differences in concentrations of 14 elements associated with ash behavior during...... to 22, 27, 35, and 23 % higher concentrations of K, S, Ca, and total ash than the other clones. In addition to clone and site, appropriate management could further improve the fuel quality of willow biomass. When shoots of Inger were harvested annually (1-year shoots) high concentrations of K and Cl...... plant densities (8000 and 12,000 trees ha−1) of the clones Inger and Tora after the first 3-year rotation when grown at the site with a coarse sandy soil. The study indicates considerable diversity in concentration of elements within commercially available willow cultivars and suggests breeders...

  13. Chemical analysis of the elements in UZrNb alloy at CDTN: preliminary investigation

    Energy Technology Data Exchange (ETDEWEB)

    Ferraz, Wilmar Barbosa; Palmieri, Helena Eugenia L.; Reis, Sergio Carneiro dos; Santos, Ana Maria Matildes dos; Souza, Adalberto Leles de, E-mail: ferrazw@cdtn.br, E-mail: help@cdtn.br, E-mail: reissc@cdtn.br, E-mail: amms@cdtn.br, E-mail: adalbertoleles@yahoo.com.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2012-07-01

    The complete determination of major, minor, and impurity element contents in nuclear fuel is essential for quality assurance in the production of nuclear fuels. The control over all the stages of the development of nuclear fuel involves a combination of different analytical methods such as spectrometric methods. The goal of our investigation is to develop and evaluate procedures for the determination of main elements and carbon impurity present in some uranium alloys. In this paper the element contents in U2.5Zr7.5Nb, U3Zr9Nb alloys and U6Nb, in weight percent, were investigated by means of scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDS), inductively coupled plasma mass spectrometry (ICP-MS), wavelength dispersive fluorescence spectrometry (XRF/WDS) and energy-dispersive X-ray spectroscopy (EDX). The total carbon was determined using a carbon analyzer in which the sample is oxidized to carbon dioxide (IR absorption). It was observed a satisfactory correlation between the results obtained by employed methods. (author)

  14. The yields of r-process elements and chemical evolution of the Galaxy

    CERN Document Server

    Chen, Z; Chen, Y P; Cui, W Y; Zhang, B; Chen, Zhe; Zhang, Jiang; Chen, YanPing; Cui, WenYuan; Zhang, Bo

    2006-01-01

    The supernova yields of r-process elements are obtained as a function of the mass of their progenitor stars from the abundance patterns of extremely metal-poor stars on the left-side [Ba/Mg]-[Mg/H] boundary with a procedure proposed by Tsujimoto and Shigeyama. The ejected masses of r-process elements associated with stars of progenitor mass $M_{ms}\\leq18M_{\\odot}$ are infertile sources and the SNe II with 20$M_{\\odot}\\leq M_{ms}\\leq 40M_{\\odot}$are the dominant source of r-process nucleosynthesis in the Galaxy. The ratio of these stars 20$M_{\\odot}\\leq M_{ms}\\leq40M_{\\odot}$ with compared to the all massive stars is about $\\sim$18%. In this paper, we present a simple model that describes a star's [r/Fe] in terms of the nucleosynthesis yields of r-process elements and the number of SN II explosions. Combined the r-process yields obtained by our procedure with the scatter model of the Galactic halo, the observed abundance patterns of the metal-poor stars can be well reproduced

  15. Physical and chemical analysis of elemental sulfur formation during galena surface oxidation.

    Science.gov (United States)

    Hampton, Marc A; Plackowski, Chris; Nguyen, Anh V

    2011-04-05

    The surface oxidation of sulfide minerals, such as galena (PbS), in aqueous solutions is of critical importance in a number of applications. A comprehensive understanding of the formation of oxidation species at the galena surface is still lacking. Much controversy over the nature of these oxidation products exists. A number of oxidation pathways have been proposed, and experimental evidence for the formation of elemental sulfur, metal polysulfides, and metal-deficient lead sulfides in acidic conditions has been shown and argued. This paper provides further insight into the electrochemical behavior of galena at pH 4.5. Utilizing a novel experimental system that combines in situ electrochemical control and AC mode atomic force microscopy (AFM) surface imaging, the formation and growth of nanoscopic domains on the galena surface are detected and examined at anodic potentials. AFM phase images indicate that these domains have different material properties to the underlying galena. Continued oxidation results in nanoscopic pitting and the formation of microscopic surface domains, which are confirmed to be elemental sulfur by Raman spectroscopy. Further clarification of the presence of elemental sulfur is provided by Cryo-XPS. Polysulfide and metal-deficient sulfide could not be detected within this system.

  16. Electric-vehicle batteries

    Science.gov (United States)

    Oman, Henry; Gross, Sid

    1995-02-01

    Electric vehicles that can't reach trolley wires need batteries. In the early 1900's electric cars disappeared when owners found that replacing the car's worn-out lead-acid battery costs more than a new gasoline-powered car. Most of today's electric cars are still propelled by lead-acid batteries. General Motors in their prototype Impact, for example, used starting-lighting-ignition batteries, which deliver lots of power for demonstrations, but have a life of less than 100 deep discharges. Now promising alternative technology has challenged the world-wide lead miners, refiners, and battery makers into forming a consortium that sponsors research into making better lead-acid batteries. Horizon's new bipolar battery delivered 50 watt-hours per kg (Wh/kg), compared with 20 for ordinary transport-vehicle batteries. The alternatives are delivering from 80 Wh/kg (nickel-metal hydride) up to 200 Wh/kg (zinc-bromine). A Fiat Panda traveled 260 km on a single charge of its zinc-bromine battery. A German 3.5-ton postal truck traveled 300 km with a single charge in its 650-kg (146 Wh/kg) zinc-air battery. Its top speed was 110 km per hour.

  17. Element and chemical compounds transfer in bio-crude from hydrothermal liquefaction of microalgae.

    Science.gov (United States)

    Tang, Xiaohan; Zhang, Chao; Li, Zeyu; Yang, Xiaoyi

    2016-02-01

    In this study, hydrothermal liquefaction (HTL) experiments of Nannochloropsis and Spirulina were carried out at different temperatures (220-300 °C) to explore the effects of temperature on bio-crude yield and properties. The optimal temperature for bio-crude yield was around 260-280 °C. Transfers of element and chemical compounds in bio-crude were discussed in detail to deduce the reaction mechanism. The hydrogen and carbon recoveries were consistent with the results of bio-crude yields at every temperature point. The relative percentage of fatty acid in bio-crude decreased and the amine and amide increased for both microalgae with temperature rising. The N-heterocyclic compounds in bio-crude increased with temperature rising for Nannochloropsis, while decreased when temperature increased from 220 °C to 280 °C for Spirulina. Bio-crude gained at higher temperature or from microalgae with high protein content may contain high heteroatom compounds.

  18. Synthesis of CaCrO{sub 4} powders for the cathode material of the thermal battery by GNP and electrochemical characteristics of Ca/LiCl-KCl/CaCrO{sub 4} thermal battery system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Whung Whoe

    2000-04-01

    Thermal batteries are one of the devices employing solid electrolyte that are not nonconductive at ambient temperature, and activated by electrochemical reaction when the sufficient heat is supplied to electrolyte to melt. The demand of thermal batteries would be increased because it is cost effective and highly reliable in that no maintenance is necessary, electric power can be generated as necessary and no self discharge unlike the other primary batteries. These thermal batteries are used to the military purposes and satellite communication systems and as an emergency power sources, applied to the important places where power supply should not be interrupted, such as hospital, powder plants, ships and portable communication devices. Therefore, the purpose of this study was focused to obtain the manufacturing technologies of thermal battery on our own, after manufacturing the CaCrO{sub 4} produced by GNP and investigating the electrochemical characteristics of Ca/LiCl-KCl+CaCrO{sub 4}/Ni.

  19. Distribution and Chemical Speciation of Some Elements in the Ground Waters of Oban Area (South-Eastern Nigeria

    Directory of Open Access Journals (Sweden)

    A.S. Ekwere

    2012-03-01

    Full Text Available The computer modeling programs, PHREEQC and VISUAL MINTEQ were used to ascertain the distribution, chemical speciation and mineral saturation indices of groundwater in the Oban massif (South- Eastern Nigeria. The prime objective was to determine the potential risk of groundwater by potentially toxic Elements. Results reveals Fe, Mn, Ni, Pb, Cd and Cr are distributed as free ions. Oxides and hydroxides of iron and manganese are predominant, reflective of mineralogy/geology of the crystalline basement. The groundwater is super-saturated (SI>10, with respect to goethite, hematite, ferrihydrite, jarosite-k, hausmanite, manganite, pyrochroite and pyrolusite. These species are relatively mobile under the prevailing pH-Eh regime, but total concentrations are low and within permissible limits for safe water.

  20. Consideration on thermodynamic data for predicting solubility and chemical species of elements in groundwater. Part 1: Tc, U, Am

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Tetsuji; Takeda, Seiji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-01-01

    The solubility determines the release of radionuclides from waste form and is used as a source term in radionuclide migration analysis in performance assessment of radioactive waste repository. Complexations of radionuclides by ligands in groundwater affect the interaction between radionuclides and geologic media, thus affect their migration behavior. Thermodynamic data for Tc, Am and U were reviewed and compiled to be used for predicting the solubility and chemical species in groundwater. Thermodynamic data were reviewed with emphasis on the hydrolysis and carbonate complexation that can dominate the speciation in typical groundwater. Thermodynamic data for other species were selected based on existing database. Thermodynamic data for other important elements are under investigation, thus shown in an appendix for temporary use. (author)

  1. Recovery of manganese oxides from spent alkaline and zinc–carbon batteries. An application as catalysts for VOCs elimination

    Energy Technology Data Exchange (ETDEWEB)

    Gallegos, María V., E-mail: plapimu@yahoo.com.ar [Pla.Pi.Mu-Planta Piloto Multipropósito, (CICPBA-UNLP) Cno. Centenario y 505, M.B. Gonnet, Buenos Aires (Argentina); Falco, Lorena R., E-mail: mlfalco@quimica.unlp.edu.ar [Pla.Pi.Mu-Planta Piloto Multipropósito, (CICPBA-UNLP) Cno. Centenario y 505, M.B. Gonnet, Buenos Aires (Argentina); Peluso, Miguel A., E-mail: apelu@quimica.unlp.edu.ar [Centro de Investigación y Desarrollo en Ciencias Aplicadas, “Dr. J. Ronco” CINDECA (CONICET CCT La Plata), 47 N°257, La Plata, Buenos Aires (Argentina); Sambeth, Jorge E., E-mail: sambeth@quimica.unlp.edu.ar [Centro de Investigación y Desarrollo en Ciencias Aplicadas, “Dr. J. Ronco” CINDECA (CONICET CCT La Plata), 47 N°257, La Plata, Buenos Aires (Argentina); Thomas, Horacio J. [Pla.Pi.Mu-Planta Piloto Multipropósito, (CICPBA-UNLP) Cno. Centenario y 505, M.B. Gonnet, Buenos Aires (Argentina)

    2013-06-15

    Highlights: • Manganese oxides were synthesized using spent batteries as raw materials. • Spent alkaline and zinc–carbon size AA batteries were used. • A biohydrometallurgical process was employed to bio-lixiviate batteries. • Manganese oxides were active in the oxidation of VOCs (ethanol and heptane). - Abstract: Manganese, in the form of oxide, was recovered from spent alkaline and zinc–carbon batteries employing a biohydrometallurgy process, using a pilot plant consisting in: an air-lift bioreactor (containing an acid-reducing medium produced by an Acidithiobacillus thiooxidans bacteria immobilized on elemental sulfur); a leaching reactor (were battery powder is mixed with the acid-reducing medium) and a recovery reactor. Two different manganese oxides were recovered from the leachate liquor: one of them by electrolysis (EMO) and the other by a chemical precipitation with KMnO{sub 4} solution (CMO). The non-leached solid residue was also studied (RMO). The solids were compared with a MnO{sub x} synthesized in our laboratory. The characterization by XRD, FTIR and XPS reveal the presence of Mn{sub 2}O{sub 3} in the EMO and the CMO samples, together with some Mn{sup 4+} cations. In the solid not extracted by acidic leaching (RMO) the main phase detected was Mn{sub 3}O{sub 4}. The catalytic performance of the oxides was studied in the complete oxidation of ethanol and heptane. Complete conversion of ethanol occurs at 200 °C, while heptane requires more than 400 °C. The CMO has the highest oxide selectivity to CO{sub 2}. The results show that manganese oxides obtained using spent alkaline and zinc–carbon batteries as raw materials, have an interesting performance as catalysts for elimination of VOCs.

  2. Highly Stable Sodium Batteries Enabled by Functional Ionic Polymer Membranes.

    Science.gov (United States)

    Wei, Shuya; Choudhury, Snehashis; Xu, Jun; Nath, Pooja; Tu, Zhengyuan; Archer, Lynden A

    2017-01-23

    A sodium metal anode protected by an ion-rich polymeric membrane exhibits enhanced stability and high-Columbic efficiency cycling. Formed in situ via electropolymerization of functional imidazolium-type ionic liquid monomers, the polymer membrane protects the metal against parasitic reactions with electrolyte and, for fundamental reasons, inhibits dendrite formation and growth. The effectiveness of the membrane is demonstrated using direct visualization of sodium electrodeposition.

  3. Autonomous Chemical Vapour Detection by Micro UAV

    Directory of Open Access Journals (Sweden)

    Kent Rosser

    2015-12-01

    Full Text Available The ability to remotely detect and map chemical vapour clouds in open air environments is a topic of significant interest to both defence and civilian communities. In this study, we integrate a prototype miniature colorimetric chemical sensor developed for methyl salicylate (MeS, as a model chemical vapour, into a micro unmanned aerial vehicle (UAV, and perform flights through a raised MeS vapour cloud. Our results show that that the system is capable of detecting MeS vapours at low ppm concentration in real-time flight and rapidly sending this information to users by on-board telemetry. Further, the results also indicate that the sensor is capable of distinguishing “clean” air from “dirty”, multiple times per flight, allowing us to look towards autonomous cloud mapping and source localization applications. Further development will focus on a broader range of integrated sensors, increased autonomy of detection and improved engineering of the system.

  4. Determination of electroless deposition by chemical nickeling

    Directory of Open Access Journals (Sweden)

    M. Badida

    2013-07-01

    Full Text Available Increasing of technical level and reliability of machine products in compliance with the economical and ecological terms belongs to the main trends of the industrial development. During the utilisation of these products there arise their each other contacts and the interaction with the environment. That is the reason for their surface degradation by wear effect, corrosion and other influences. The chemical nickel-plating allows autocatalytic deposition of nickel from water solutions in the form of coherent, technically very profitable coating without usage of external source of electric current. The research was aimed at evaluating the surface changes after chemical nickel-plating at various changes of technological parameters.

  5. A desalination battery.

    Science.gov (United States)

    Pasta, Mauro; Wessells, Colin D; Cui, Yi; La Mantia, Fabio

    2012-02-08

    Water desalination is an important approach to provide fresh water around the world, although its high energy consumption, and thus high cost, call for new, efficient technology. Here, we demonstrate the novel concept of a "desalination battery", which operates by performing cycles in reverse on our previously reported mixing entropy battery. Rather than generating electricity from salinity differences, as in mixing entropy batteries, desalination batteries use an electrical energy input to extract sodium and chloride ions from seawater and to generate fresh water. The desalination battery is comprised by a Na(2-x)Mn(5)O(10) nanorod positive electrode and Ag/AgCl negative electrode. Here, we demonstrate an energy consumption of 0.29 Wh l(-1) for the removal of 25% salt using this novel desalination battery, which is promising when compared to reverse osmosis (~ 0.2 Wh l(-1)), the most efficient technique presently available.

  6. Profiling Environmental Chemicals for Activity in the Antioxidant Response Element Signaling Pathway Using a High-Throughput Screening Approach

    Science.gov (United States)

    1 ABSTRACT 2 3 BACKGROUND: Oxidative stress has been implicated in the pathogenesis of a variety 4 of diseases ranging from cancer to neurodegeneration, highlighti.ng the need to identify 5 chemicals that can induce this effect. The antioxidant response element (ARE)...

  7. Single Switched Capacitor Battery Balancing System Enhancements

    Directory of Open Access Journals (Sweden)

    Joeri van Mierlo

    2013-04-01

    Full Text Available Battery management systems (BMS are a key element in electric vehicle energy storage systems. The BMS performs several functions concerning to the battery system, its key task being balancing the battery cells. Battery cell unbalancing hampers electric vehicles’ performance, with differing individual cell voltages decreasing the battery pack capacity and cell lifetime, leading to the eventual failure of the total battery system. Quite a lot of cell balancing topologies have been proposed, such as shunt resistor, shuttling capacitor, inductor/transformer based and DC energy converters. The shuttling capacitor balancing systems in particular have not been subject to much research efforts however, due to their perceived low balancing speed and high cost. This paper tries to fill this gap by briefly discussing the shuttling capacitor cell balancing topologies, focusing on the single switched capacitor (SSC cell balancing and proposing a novel procedure to improve the SSC balancing system performance. This leads to a new control strategy for the SSC system that can decrease the balancing system size, cost, balancing time and that can improve the SSC balancing system efficiency.

  8. High-resolution chemical analysis on cycled LiFePO4 battery electrodes using energy-filtered transmission electron microscopy

    Science.gov (United States)

    Sugar, Joshua D.; El Gabaly, Farid; Chueh, William C.; Fenton, Kyle R.; Tyliszczak, Tolek; Kotula, Paul G.; Bartelt, Norman C.

    2014-01-01

    We demonstrate an ex situ method for analyzing the chemistry of battery electrode particles after electrochemical cycling using the transmission electron microscope (TEM). The arrangement of particles during our analysis is the same as when the particles are being cycled. We start by sectioning LiFePO4 battery electrodes using an ultramicrotome. We then show that mapping of the Fe2+ and Fe3+ oxidation state using energy-filtered TEM (EFTEM) and multivariate statistical analysis techniques can be used to determine the spatial distribution of Li in the particles. This approach is validated by comparison with scanning transmission X-ray microscopy (STXM) analysis of the same samples [Chueh et al. Nanoletters, 13 (3) (2013) 866-72]. EFTEM uses a parallel electron beam and reduces the electron-beam dose (and potential beam-induced damage) to the sample when compared to alternate techniques that use a focused probe (e.g. STEM-EELS). Our analysis confirms that under the charging conditions of the analyzed battery, mixed phase particles are rare and thus Li intercalation is limited by the nucleation of new phases.

  9. Thermal Battery As A Power Sources In Guided Missiles

    Directory of Open Access Journals (Sweden)

    S. S. Singh

    1973-10-01

    Full Text Available The battery based on low melting eutectic salt mixture electrolyte is thermally activated by raising the temperature of the electrolyte to its melting point. The battery is capable of discharging at very high rates for short duration. The battery employs a combination of elements with low electronegativity and capable of giving higher electrode potentials such as Ca or Mg as anode, a wide variety of eutectic salt electrolytes and various oxides, sulphates, silicates, phosphates, chromates as cathode depolarizers. Only those thermally activated systems which find application as potential power sources in guided missiles are reviewed.

  10. Fabrication of Graphene by Cleaving Graphite Chemically

    Institute of Scientific and Technical Information of China (English)

    ZHAO Shu-hua; ZHAO Xiao-ting; FAN Hou-gang; YANG Li-li; ZHANG Yong-jun; YANG Jing-hai

    2011-01-01

    Graphite was chemically cleaved to graphene by Billups Reaction,and the morphologies and microstructures of graphene were characterized by SEM,Raman and AFM.The results show that the graphite was first functionalized by l-iodododecane,which led to the cleavage of the graphene layer in the graphite.The second decoration cleaved the graphite further and graphene was obtained.The heights of the graphene layer were larger than 1 nm due to the organic decoration.

  11. Investigation of Chemical and Physical Changes to Bioapatite During Fossilization Using Trace Element Geochemistry, Infrared Spectroscopy and Stable Isotopes

    Science.gov (United States)

    Suarez, C. A.; Kohn, M. J.

    2013-12-01

    Bioapatite in the form of vertebrate bone can be used for a wide variety of paleo-proxies, from determination of ancient diet to the isotopic composition of meteoric water. Bioapatite alteration during diagenesis is a constant barrier to the use of fossil bone as a paleo-proxy. To elucidate the physical and chemical alteration of bone apatite during fossilization, we analyzed an assortment of fossil bones of different ages for trace elements, using LA-ICP-MS, stable isotopes, and reflected IR spectroscopy. One set of fossil bones from the Pleistocene of Idaho show a diffusion recrystallization profile, however, rare earth element (REE) profiles indicate diffusion adsorption. This suggests that REE diffusion is controlled by changing (namely decreasing) boundary conditions (i.e. decreasing concentration of REE in surrounding pore fluids). Reflected IR analysis along this concentration profile reveal that areas high in U have lost type A carbonate from the crystal structure in addition to water and organics. Stable isotopic analysis of carbon and oxygen will determine what, if any, change in the isotopic composition of the carbonate component of apatite has occurred do to the diffusion and recrystallization process. Analysis of much older bone from the Cretaceous of China reveal shallow REE and U concentration profiles and very uniform reflected IR spectra with a significant loss of type A carbonate throughout the entire bone cortex. Analysis of stable isotopes through the bone cortex will be compared to the stable isotopes collected from the Pleistocene of Idaho.

  12. Nanoscale chemical imaging by photoinduced force microscopy

    Science.gov (United States)

    Nowak, Derek; Morrison, William; Wickramasinghe, H. Kumar; Jahng, Junghoon; Potma, Eric; Wan, Lei; Ruiz, Ricardo; Albrecht, Thomas R.; Schmidt, Kristin; Frommer, Jane; Sanders, Daniel P.; Park, Sung

    2016-01-01

    Correlating spatial chemical information with the morphology of closely packed nanostructures remains a challenge for the scientific community. For example, supramolecular self-assembly, which provides a powerful and low-cost way to create nanoscale patterns and engineered nanostructures, is not easily interrogated in real space via existing nondestructive techniques based on optics or electrons. A novel scanning probe technique called infrared photoinduced force microscopy (IR PiFM) directly measures the photoinduced polarizability of the sample in the near field by detecting the time-integrated force between the tip and the sample. By imaging at multiple IR wavelengths corresponding to absorption peaks of different chemical species, PiFM has demonstrated the ability to spatially map nm-scale patterns of the individual chemical components of two different types of self-assembled block copolymer films. With chemical-specific nanometer-scale imaging, PiFM provides a powerful new analytical method for deepening our understanding of nanomaterials. PMID:27051870

  13. Scattering by coupled resonating elements in air

    CERN Document Server

    Krynkin, Anton; Chong, Alvin Y B; Taherzadeh, Shahram; Attenborough, Keith

    2011-01-01

    Scattering by (a) a single composite scatterer consisting of a concentric arrangement of an outer N-slit rigid cylinder and an inner cylinder which is either rigid or in the form of a thin elastic shell and (b) by a finite periodic array of these scatterers in air has been investigated analytically and through laboratory experiments. The composite scatterer forms a system of coupled resonators and gives rise to multiple low frequency resonances. The corresponding analytical model employs polar angle dependent boundary conditions on the surface of the N-slit cylinder. The solution inside the slits assumes plane waves. It is shown also that in the low-frequency range the N-slit rigid cylinder can be replaced by an equivalent fluid layer. Further approximations suggest a simple square root dependence of the resonant frequencies on the number of slits and this is confirmed by data. The observed resonant phenomena are associated with Helmholtz-like behaviour of the resonator for which the radius and width of the o...

  14. QUANTITY DETERMINATION OF MOLYBDENUM FROM PISUM SATIVUM PLANTS AND THE INFLUENCE OF HEAVY METAL TO CHEMICAL ELEMENTS ACCUMULATION

    Directory of Open Access Journals (Sweden)

    MONICA BUTNARIU

    2013-12-01

    Full Text Available The aim of this study was to test the pea plant as sentinel specie for the heavy metal molybdenum. Evaluation of soil quality after the molybdenum uptake by pea revealed the following results: Pea plant is a bioindicator that concentrates molybdenum with fast reaction to increasing concentrations in soil. Molybdenum had a positive effect concerning the plant growth (throughout all experimental process, pea plants treated with highest concentrated metal solution reached the largest dimensions. Accumulated molybdenum was directly proportional to increasing concentration of the applied solution to roots, stem, leaves and flowers of the experimental plants; however it resided in flowerpot soil too .In the leguminous roots where the nitroreductase and nitrogenese activity is increased, molybdenum content was much higher compared to the aerial parts of the plant. All the way through molybdenum accumulation in the experimental plants up to high concentrations, other chemical elements revealed lower concentration although within the normal limits, with the exception of phosphorus. These plants were found to assimilate high molybdenum quantities without any detrimental consequences for them since molybdenum accumulation occurred in vacuoles in innocuous chemical forms.

  15. Sensitive chemical compass assisted by quantum criticality

    Science.gov (United States)

    Cai, C. Y.; Ai, Qing; Quan, H. T.; Sun, C. P.

    2012-02-01

    A radical-pair-based chemical reaction might be used by birds for navigation via the geomagnetic direction. The inherent physical mechanism is that the quantum coherent transition from a singlet state to triplet states of the radical pair could respond to a weak magnetic field and be sensitive to the direction of such a field; this then results in different photopigments to be sensed by the avian eyes. Here, we propose a quantum bionic setup, inspired by the avian compass, as an ultrasensitive probe of a weak magnetic field based on the quantum phase transition of the environments of the two electrons in the radical pair. We prove that the yield of the chemical products via recombination from the singlet state is determined by the Loschmidt echo of the environments with interacting nuclear spins. Thus quantum criticality of environments could enhance the sensitivity of detection of weak magnetic fields.

  16. Electronically configured battery pack

    Energy Technology Data Exchange (ETDEWEB)

    Kemper, D.

    1997-03-01

    Battery packs for portable equipment must sometimes accommodate conflicting requirements to meet application needs. An electronically configurable battery pack was developed to support two highly different operating modes, one requiring very low power consumption at a low voltage and the other requiring high power consumption at a higher voltage. The configurable battery pack optimizes the lifetime and performance of the system by making the best use of all available energy thus enabling the system to meet its goals of operation, volume, and lifetime. This paper describes the cell chemistry chosen, the battery pack electronics, and tradeoffs made during the evolution of its design.

  17. Simulation about Self-absorption of Ni-63 Nuclear Battery Using Monte Carlo Code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Ho; Kim, Ji Hyun [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-05-15

    The radioisotope batteries have an energy density of 100-10000 times greater than chemical batteries. Also, Li ion battery has the fundamental problems such as short life time and requires recharge system. In addition to these things, the existing batteries are hard to operate at internal human body, national defense arms or space environment. Since the development of semiconductor process and materials technology, the micro device is much more integrated. It is expected that, based on new semiconductor technology, the conversion device efficiency of betavoltaic battery will be highly increased. Furthermore, the radioactivity from the beta particle cannot penetrate a skin of human body, so it is safer than Li battery which has the probability to explosion. In the other words, the interest for radioisotope battery is increased because it can be applicable to an artificial internal organ power source without recharge and replacement, micro sensor applied to arctic and special environment, small size military equipment and space industry. However, there is not enough data for beta particle fluence from radioisotope source using nuclear battery. Beta particle fluence directly influences on battery efficiency and it is seriously affected by radioisotope source thickness because of self-absorption effect. Therefore, in this article, we present a basic design of Ni-63 nuclear battery and simulation data of beta particle fluence with various thickness of radioisotope source and design of battery.

  18. Simulation of Ni-63 based nuclear micro battery using Monte Carlo modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Ho; Kim, Ji Hyun [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2013-10-15

    The radioisotope batteries have an energy density of 100-10000 times greater than chemical batteries. Also, Li ion battery has the fundamental problems such as short life time and requires recharge system. In addition to these things, the existing batteries are hard to operate at internal human body, national defense arms or space environment. Since the development of semiconductor process and materials technology, the micro device is much more integrated. It is expected that, based on new semiconductor technology, the conversion device efficiency of betavoltaic battery will be highly increased. Furthermore, the radioactivity from the beta particle cannot penetrate a skin of human body, so it is safer than Li battery which has the probability to explosion. In the other words, the interest for radioisotope battery is increased because it can be applicable to an artificial internal organ power source without recharge and replacement, micro sensor applied to arctic and special environment, small size military equipment and space industry. However, there is not enough data for beta particle fluence from radioisotope source using nuclear battery. Beta particle fluence directly influences on battery efficiency and it is seriously affected by radioisotope source thickness because of self-absorption effect. Therefore, in this article, we present a basic design of Ni-63 nuclear battery and simulation data of beta particle fluence with various thickness of radioisotope source and design of battery.

  19. Fabrication of Sn–Ni/MWCNT composite coating for Li-ion batteries by pulse electrodeposition: Effects of duty cycle

    Energy Technology Data Exchange (ETDEWEB)

    Uysal, Mehmet, E-mail: mehmetu@sakarya.edu.tr; Cetinkaya, Tugrul; Alp, Ahmet; Akbulut, Hatem

    2015-04-15

    Highlights: • Sn–Ni/MWCNT composite electrodes prepared by pulse electrodeposition at different duty cycle. • The effect of duty cycle studied on electrochemical properties of composite electrodes. • A high reversible capacity, and good cyclability were achieved for Sn–Ni/MWNT (75% duty cycle). - Abstract: Nanocrystalline Sn–Ni/MWCNT composite was prepared by ultrasonic-pulse electrodeposition on a copper substrate in a pyrophosphate bath at different duty cycles. Surface morphology of produced Sn–Ni/MWCNT composites were characterized by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) was conducted to understand the elemental surface composition of composites. X-ray diffraction analysis (XRD) was carried out to investigate structure of Sn–Ni/MWCNT composites. The electrochemical performance of Sn–Ni/MWCNT composite electrodes were investigated by charge/discharge tests and cyclic voltammetric experiments. The cells discharge capacities were determined by cyclic testing by a battery tester at a constant current in voltage range between 0.02 V and 1.5 V. The duty cycle was shown to be a crucial factor to improve Sn–Ni/MWCNT composite anodes for cyclability and reversible capacity.

  20. Determination of rare earth elements in plant protoplasts by MAA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A preliminary study on the speciation of rare earth elements in plant cells has been carried out by molecular activation analysis (MAA). Mesophyll protoplasts of Brassica napus were isolated by enzymatic digestion. After being washed with isosmotic solution containing EDTA for several times, the protoplasts were purified by gradient centrifugation. Then the concentration of rare earth elements (REEs) in the protoplasts was determined by neutron activation analysis. The result shows that REEs can enter the cells of the plant.

  1. Advanced Battery Diagnosis for Electric Vehicles

    OpenAIRE

    Lamichhane, Chudamani

    2008-01-01

    Summary Literatures on battery technologies and diagnosis of its parameters were studied. The innovative battery technologies from basic knowledge to world standard testing procedures were analysed and discussed in the report. The established battery test station and flowchart was followed during the battery test preparation and testing. In order to understand and verify the battery performance, the well established test procedures developed by USABC (United States Advanced Battery Consorti...

  2. Heat transfer enhancement by pin elements

    Energy Technology Data Exchange (ETDEWEB)

    Sahiti, N.; Durst, F.; Dewan, A. [LSTM-Erlangen, Institute of Fluid Mechanics, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Cauerstrasse 4, D-91058 Erlangen (Germany)

    2005-11-01

    Heat transfer enhancement is an active and important field of engineering research since increases in the effectiveness of heat exchangers through suitable heat transfer augmentation techniques can result in considerable technical advantages and savings of costs. Considerable enhancements were demonstrated in the present work by using small cylindrical pins on surfaces of heat exchangers. A partly quantitative theoretical treatment of the proposed method is presented. It uses simple relationships for the conductive and convective heat transfer to derive an equation that shows which parameters permit the achievement of heat transfer enhancements. Experiments are reported that demonstrate the effectiveness of the results of the proposed approach. It is shown that the suggested method of heat transfer enhancements is much more effective than existing methods, since it results in an increase in heat transfer area (like fins) and also an increase in the heat transfer coefficient. (author)

  3. Variations in battery life of a heart-lung machine using different pump speeds, pressure loads, boot material, centrifugal pump head, multiple pump usage, and battery age.

    LENUS (Irish Health Repository)

    Marshall, Cornelius

    2012-02-03

    Electrical failure during cardiopulmonary bypass (CPB) has previously been reported to occur in 1 of every 1500 cases. Most heart-lung machine pump consoles are equipped with built-in battery back-up units. Battery run times of these devices are variable and have not been reported. Different conditions of use can extend battery life in the event of electrical failure. This study was designed to examine the run time of a fully charged battery under various conditions of pump speed, pressure loads, pump boot material, multiple pump usage, and battery life. Battery life using a centrifugal pump also was examined. The results of this study show that battery life is affected by pump speed, circuit pressure, boot stiffness, and the number of pumps in service. Centrifugal pumps also show a reduced drain on battery when compared with roller pumps. These elements affect the longevity and performance of the battery. This information could be of value to the individual during power failure as these are variables that can affect the battery life during such a challenging scenario.

  4. Predictive Models of Li-ion Battery Lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kandler; Wood, Eric; Santhanagopalan, Shriram; Kim, Gi-heon; Shi, Ying; Pesaran, Ahmad

    2015-06-15

    It remains an open question how best to predict real-world battery lifetime based on accelerated calendar and cycle aging data from the laboratory. Multiple degradation mechanisms due to (electro)chemical, thermal, and mechanical coupled phenomena influence Li-ion battery lifetime, each with different dependence on time, cycling and thermal environment. The standardization of life predictive models would benefit the industry by reducing test time and streamlining development of system controls.

  5. Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese

    DEFF Research Database (Denmark)

    Thamdrup, Bo; Finster, Kai; Hansen, Jens Würgler;

    1993-01-01

    and pyrite was observed. The transformations were accompanied by growth of slightly curved, rod-shaped bacteria. The quantification of the products revealed that S was microbially disproportionated to sulfate and sulfide, as follows: 4S + 4H(2)O --> SO(4) + 3H(2)S + 2H. Subsequent chemical reactions between...... reduction of MnO(2) to Mn. Growth of small rod-shaped bacteria was observed. When incubated without MnO(2), the culture did not grow but produced small amounts of SO(4) and H(2)S at a ratio of 1:3, indicating again a disproportionation of S. The observed microbial disproportionation of S only proceeds...

  6. The use of decision trees and naïve Bayes algorithms and trace element patterns for controlling the authenticity of free-range-pastured hens' eggs.

    Science.gov (United States)

    Barbosa, Rommel Melgaço; Nacano, Letícia Ramos; Freitas, Rodolfo; Batista, Bruno Lemos; Barbosa, Fernando

    2014-09-01

    This article aims to evaluate 2 machine learning algorithms, decision trees and naïve Bayes (NB), for egg classification (free-range eggs compared with battery eggs). The database used for the study consisted of 15 chemical elements (As, Ba, Cd, Co, Cs, Cu, Fe, Mg, Mn, Mo, Pb, Se, Sr, V, and Zn) determined in 52 eggs samples (20 free-range and 32 battery eggs) by inductively coupled plasma mass spectrometry. Our results demonstrated that decision trees and NB associated with the mineral contents of eggs provide a high level of accuracy (above 80% and 90%, respectively) for classification between free-range and battery eggs and can be used as an alternative method for adulteration evaluation.

  7. A new battery-charging method suggested by molecular dynamics simulations

    CERN Document Server

    Hamad, Ibrahim Abou; Wipf, D; Rikvold, P A; 10.1039/b920970k

    2010-01-01

    Based on large-scale molecular dynamics simulations, we propose a new charging method that should be capable of charging a Lithium-ion battery in a fraction of the time needed when using traditional methods. This charging method uses an additional applied oscillatory electric field. Our simulation results show that this charging method offers a great reduction in the average intercalation time for Li+ ions, which dominates the charging time. The oscillating field not only increases the diffusion rate of Li+ ions in the electrolyte but, more importantly, also enhances intercalation by lowering the corresponding overall energy barrier.

  8. A Martian Air Battery Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will investigate an entirely new battery chemistry by developing A Martian Air Battery. Specifically the project will explore the concept of a Martian...

  9. Remote power supply by wind/diesel/battery systems - operational experience and economy

    Energy Technology Data Exchange (ETDEWEB)

    Kniehl, R. [CES - Consulting and Engineering Services, Heidelberg (Germany); Cramer, G.; Toenges, K.H. [SMA Regelsysteme GmbH, Niestetal (Germany)

    1995-12-31

    To continuously supply remote villages and settlements not connected to the public grid with electric power is an ambitious technical task considering ecological and economical points of view. The German company SMA has developed a modular supply system as a solution for this task in the range of 30 kW to 5 MW. Meanwhile more than 20 applications of these `Intelligent Power Systems (IPS)` have proved their technical reliability and economical competitiveness worldwide under different, and also extreme environmental conditions. Actually it is the first commercially available advanced Wind/Diesel/Battery System for remote area electrification. The modular autonomous electric supply systems realized by SMA basically consist of two or more diesel power sets, battery storage with converter, a rotating phaseshifter, and an optional number of wind turbines. All modules are coupled on the 3-phase AC system grid and run in various parallel configurations depending on the wind speed and the consumer power demand. The control system operates fully automatical and offers a very user-friendly graphical interface. This advanced system control also contains a remote control and operating data output via modem and telephone line. SMA and CES have considerable experience with Wind/Diesel/Battery Systems for more than eight years. In many cases wind energy converters in the power range of 30 to 40 kW were used, but it is also possible to use larger wind turbines (e.g. 250 kW). In the following the system technology is described in detail, experience of different system sizes in several countries of application is presented, and economical analyses for power supply by IPS are given in comparison to a conventional fully diesel power supply. (author)

  10. Seasonal and spatial variation of trace elements in multi-size airborne particulate matters of Beijing, China: Mass concentration, enrichment characteristics, source apportionment, chemical speciation and bioavailability

    Science.gov (United States)

    Gao, Jiajia; Tian, Hezhong; Cheng, Ke; Lu, Long; Wang, Yuxuan; Wu, Ye; Zhu, Chuanyong; Liu, Kaiyun; Zhou, Junrui; Liu, Xingang; Chen, Jing; Hao, Jiming

    2014-12-01

    The seasonal and spatial variation characteristics of 19 elements (Al, As, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, S, Sb, Se, Zn) in TSP/PM10/PM2.5 samples were investigated, which were collected from April 2011 to January 2012 simultaneously at an urban downtown site, a traffic roadside site, a suburban site, and a rural site in Beijing. The elevated concentrations of several toxic trace elements (As, Cd, Mn, Ni, Pb, etc.) in particles revealed that the contamination of toxic elements in Beijing could not be neglected. Positive matrix factorization method (PMF) was applied for source apportionment of trace elements in PM, and three factors (crust related sources, combustion sources, and traffic and steel industrial related sources) were identified. Furthermore, the chemical speciation and bioavailability of various elements were identified by applying European Community Bureau of Reference (BCR) procedure. Our results showed that eight toxic elements (As, Cd, Cr, Cu, Ni, Pb, Sb and Zn) exhibited higher mobility in PM2.5 than in PM10. Notably, elements of As, Cd, Pb and Zn were presented with higher mobility than the other elements, and these elements were lightly to release into the environment and easily available to human body. Additionally, As, Cd, Pb and Zn also accounted for higher percentages in the bound to mobile fractions at the central urban areas of Beijing. Therefore, special concerns should be paid to these toxic trace elements which had relatively high mobility in fine particles, when planning and implementing the comprehensive air pollution mitigation policies in Beijing.

  11. The Assessment of Comprehensive Vulnerability of Chemical Industrial Park Based on Entropy Method and Matter-element Extension Model

    Directory of Open Access Journals (Sweden)

    Yan Jingyi

    2016-01-01

    Full Text Available The paper focuses on studying connotative meaning, evaluation methods and models for chemical industry park based on in-depth analysis of relevant research results in China and abroad, it summarizes and states the feature of menacing vulnerability and structural vulnerability and submits detailed influence factors such as personnel vulnerability, infrastructural vulnerability, environmental vulnerability and the vulnerability of safety managerial defeat. Using vulnerability scoping diagram establishes 21 evaluation indexes and an index system for the vulnerability evaluation of chemical industrial park. The comprehensive weights are calculated with entropy method, combining matter-element extension model to make the quantitative evaluation, then apply to evaluate some chemical industrial park successfully. This method provides a new ideas and ways for enhancing overall safety of the chemical industrial park.

  12. Sensitive Chemical Compass Assisted by Quantum Criticality

    CERN Document Server

    Cai, C Y; Quan, H T; Sun, C P

    2011-01-01

    The radical-pair-based chemical reaction could be used by birds for the navigation via the geomagnetic direction. An inherent physical mechanism is that the quantum coherent transition from a singlet state to triplet states of the radical pair could response to the weak magnetic field and be sensitive to the direction of such a field and then results in different photopigments in the avian eyes to be sensed. Here, we propose a quantum bionic setup for the ultra-sensitive probe of a weak magnetic field based on the quantum phase transition of the environments of the two electrons in the radical pair. We prove that the yield of the chemical products via the recombination from the singlet state is determined by the Loschmidt echo of the environments with interacting nuclear spins. Thus quantum criticality of environments could enhance the sensitivity of the detection of the weak magnetic field.

  13. Vibration Analysis of Beams by Spline Finite Element

    Institute of Scientific and Technical Information of China (English)

    YANG Hao; SUN Li

    2011-01-01

    In this paper,the spline finite element method is developed to investigate free vibration problems of beams.The cubic B-spline functions are used to construct the displacement field.The assembly of elements and the introduction of boundary conditions follow the standard finite element procedure.The results under various boundary conditions are compared with those obtained by the exact method and the finite difference method.It shows that the results are in excellent agreement with the analytical results and much more accurate than the results obtained by the finite difference method,especially for higher order modes.

  14. Nanostructured Lead Compounds in Electrode Materials of a Lead-Acid Battery

    Directory of Open Access Journals (Sweden)

    A.P. Kuzmenko

    2016-11-01

    Full Text Available The nanostructure and phase composition of the electrode material of lead-acid batteries, formed by chemical transformations with involvement of sulfuric acid solutions of various concentrations, water and carbon dioxide have been studied.

  15. Reconstruction of centennial-scale fluxes of chemical elements in the Australian coastal environment using seagrass archives

    KAUST Repository

    Serrano, Oscar

    2015-10-02

    The study of a Posidonia australis sedimentary archive has provided a record of changes in element concentrations (Al, Fe, Mn, Pb, Zn, Cr, Cd, Co, As, Cu, Ni and S) over the last 3000 years in the Australian marine environment. Human-derived contamination in Oyster Harbor (SW Australia) started ~. 100 years ago (AD ~. 1900) and exponentially increased until present. This appears to be related to European colonization of Australia and the subsequent impact of human activities, namely mining, coal and metal production, and extensive agriculture. Two contamination periods of different magnitude have been identified: Expansion period (EXP, AD ~. 1900-1970) and Establishment period (EST, AD ~. 1970 to present). Enrichments of chemical elements with respect to baseline concentrations (in samples older than ~. 115 cal. years BP) were found for all elements studied in both periods, except for Ni, As and S. The highest enrichment factors were obtained for the EST period (ranging from 1.3-fold increase in Cu to 7.2-fold in Zn concentrations) compared to the EXP period (1.1-fold increase for Cu and Cr to 2.4-fold increase for Pb). Zinc, Pb, Mn and Co concentrations during both periods were 2- to 7-fold higher than baseline levels. This study demonstrates the value of Posidonia mats as long-term archives of element concentrations and trends in coastal ecosystems. We also provide preliminary evidence on the potential for Posidonia meadows to act as significant long-term biogeochemical sinks of chemical elements.

  16. Modelling of rechargeable NiMH batteries

    NARCIS (Netherlands)

    Ledovskikh, A.; Verbitskiy, E.; Ayeb, A.; Notten, P.H.L.

    2003-01-01

    A new mathematical model has been developed for rechargeable NiMH batteries, which is based on the occurring physical–chemical processes inside. This model enables one to simultaneously simulate the battery voltage, internal gas pressures (both PO2 and PH2) and temperature during battery operation.

  17. Elemental imaging of rat epididymis by micro-PIXE analysis

    Science.gov (United States)

    Homma-Takeda, S.; Nishimura, Y.; Watanabe, Y.; Imaseki, H.; Yukawa, M.

    2003-09-01

    The epididymis, a male reproductive organ, which is a highly convoluted duct, plays an important role in transportation of spermatozoa, their maturation, and their storage. Although major elements, such as P, S and K, as well as trace elements, such as Mn, Cu, Zn, Se, are known to be essential for spermatogenesis, detailed distributions of the elements in the epididymis are only poorly understood. In the present study, Mn, Cu, Zn and Se levels in the epididymis were examined in male Wistar rats by inductively coupled argon plasma-mass spectrometry (ICP-MS) analysis and in situ multi-elemental distributions of epididymal sections were determined by micro-PIXE (particle induced X-ray emission) analysis. The Zn, Cu and Se concentrations in the epididymis of the young adult rats were around 30 μg/g wet weight, 2 μg/g wet weight and 1 μg/g wet weight, respectively, and their Mn were less than 0.5 μg/g wet weight. PIXE imaging of P and K exhibited that P and K were higher in the epididymal epithelium. In contrast, more S was detected in the lumen, which is composed of spermatozoa and a fluid. Elemental imagings of the trace elements were unclear compared with the major elements, but information about zinc localization in the epididymis was obtained.

  18. Elemental imaging of rat epididymis by micro-PIXE analysis

    Energy Technology Data Exchange (ETDEWEB)

    Homma-Takeda, S.; Nishimura, Y. E-mail: y_nishim@nirs.go.jp; Watanabe, Y.; Imaseki, H.; Yukawa, M

    2003-09-01

    The epididymis, a male reproductive organ, which is a highly convoluted duct, plays an important role in transportation of spermatozoa, their maturation, and their storage. Although major elements, such as P, S and K, as well as trace elements, such as Mn, Cu, Zn, Se, are known to be essential for spermatogenesis, detailed distributions of the elements in the epididymis are only poorly understood. In the present study, Mn, Cu, Zn and Se levels in the epididymis were examined in male Wistar rats by inductively coupled argon plasma-mass spectrometry (ICP-MS) analysis and in situ multi-elemental distributions of epididymal sections were determined by micro-PIXE (particle induced X-ray emission) analysis. The Zn, Cu and Se concentrations in the epididymis of the young adult rats were around 30 {mu}g/g wet weight, 2 {mu}g/g wet weight and 1 {mu}g/g wet weight, respectively, and their Mn were less than 0.5 {mu}g/g wet weight. PIXE imaging of P and K exhibited that P and K were higher in the epididymal epithelium. In contrast, more S was detected in the lumen, which is composed of spermatozoa and a fluid. Elemental imagings of the trace elements were unclear compared with the major elements, but information about zinc localization in the epididymis was obtained.

  19. AMG by element agglomeration and constrained energy minimization interpolation

    Energy Technology Data Exchange (ETDEWEB)

    Kolev, T V; Vassilevski, P S

    2006-02-17

    This paper studies AMG (algebraic multigrid) methods that utilize energy minimization construction of the interpolation matrices locally, in the setting of element agglomeration AMG. The coarsening in element agglomeration AMG is done by agglomerating fine-grid elements, with coarse element matrices defined by a local Galerkin procedure applied to the matrix assembled from the individual fine-grid element matrices. This local Galerkin procedure involves only the coarse basis restricted to the agglomerated element. To construct the coarse basis, one exploits previously proposed constraint energy minimization procedures now applied to the local matrix. The constraints are that a given set of vectors should be interpolated exactly, not only globally, but also locally on every agglomerated element. The paper provides algorithmic details, as well as a convergence result based on a ''local-to-global'' energy bound of the resulting multiple-vector fitting AMG interpolation mappings. A particular implementation of the method is illustrated with a set of numerical experiments.

  20. Real-Time Dynamic Simulation of Korean Power Grid for Frequency Regulation Control by MW Battery Energy Storage System

    Directory of Open Access Journals (Sweden)

    Tae-Hwan Jin

    2016-12-01

    Full Text Available The aim of this study was to develop a real-time dynamic simulator of a power grid with power plant and battery model. The simulator was used to investigate the frequency control characteristics of a megawatt-scale high-capacity energy storage system connected to the electric power grid. In this study, a lithium-ion secondary battery was chosen as one of the batteries for a grid-connected model. The dynamics of the model was analysed in both steady and transient states. The frequency control system of the battery model plays a role in regulating the grid frequency by controlling the power of energy storage systems according to process variables and grid frequencies. The power grid model based on the current power network of South Korea, included power plants, substations and power demands. The power supply is classified by the type of turbine generator as thermal, nuclear, hydro power, pumped power storage, combined power plants, and batteries, including high-capacity energy storage systems rated for a maximum of 500 MW. This study deals with an installed capacity of 87.17 GW and peak load of 77.30 GW in the Korean power grid. For 24 hours of operation, the maximum and minimum power outputs were simulated as 61.59 GW and 46.32 GW, respectively. The commercialized real-time dynamic simulation software ProTRAX was used. The simulation was conducted to observe the operation characteristics of the frequency control system during a breakdown of power plants, as well as under governor-free operation, auto generation control operation, and with the battery energy storage system connected. The results show that the model is valid for each power plant breakdown simulation. They also confirm that the output power and frequency controls of the battery operated well during simulations.

  1. Mitigating mechanical failure of crystalline silicon electrodes for lithium batteries by morphological design.

    Science.gov (United States)

    An, Yonghao; Wood, Brandon C; Ye, Jianchao; Chiang, Yet-Ming; Wang, Y Morris; Tang, Ming; Jiang, Hanqing

    2015-07-21

    Although crystalline silicon (c-Si) anodes promise very high energy densities in Li-ion batteries, their practical use is complicated by amorphization, large volume expansion and severe plastic deformation upon lithium insertion. Recent experiments have revealed the existence of a sharp interface between crystalline Si (c-Si) and the amorphous LixSi alloy during lithiation, which propagates with a velocity that is orientation dependent; the resulting anisotropic swelling generates substantial strain concentrations that initiate cracks even in nanostructured Si. Here we describe a novel strategy to mitigate lithiation-induced fracture by using pristine c-Si structures with engineered anisometric morphologies that are deliberately designed to counteract the anisotropy in the crystalline/amorphous interface velocity. This produces a much more uniform volume expansion, significantly reducing strain concentration. Based on a new, validated methodology that improves previous models of anisotropic swelling of c-Si, we propose optimal morphological designs for c-Si pillars and particles. The advantages of the new morphologies are clearly demonstrated by mesoscale simulations and verified by experiments on engineered c-Si micropillars. The results of this study illustrate that morphological design is effective in improving the fracture resistance of micron-sized Si electrodes, which will facilitate their practical application in next-generation Li-ion batteries. The model and design approach present in this paper also have general implications for the study and mitigation of mechanical failure of electrode materials that undergo large anisotropic volume change upon ion insertion and extraction.

  2. Lead remotion of automotive batteries recycling industry wastewater by the aquatic macrofit eichhornia crassipes

    Directory of Open Access Journals (Sweden)

    Franciele Aní Caovilla Follador

    2009-08-01

    Full Text Available The objective of this work was to evaluate the efficiency of the lead absorption by the aquatic macrofit Eichhornia crassipes in the wastewater treatment of an automotive batteries recycling industry located at county of Paula de Freitas, state of Paraná, Brazil. For that, the relation of humid green mass of water hyacinth by solution volume was optimized and, in follow the method was employed in the industrial wastewater treatment. The results permitted to conclude that the lead and other metals (Fe, Cu, Zn e Cr absorption efficiency depends straightly of the water hyacinth mass (g by solution volume (L, being 40 and 50 g L-1 the more efficient relations showing equivalents results in wastewaters containing until 30 mg L-1 of contaminant. Factors as pH and temperature in the analyzed values no had an expressive influence. For the treatment of wastewater contaminated by lead of the small and mean industries which recycle automotive batteries, the utilization of water hyacinth is practicable in the optimized conditions. It´s necessary a refined study for the definition of the best alternative of treatment/final disposal of the water hyacinth biomass after the wastewater treatment.Key-words: green house, composting, stabilization lagoon, heavy metal.

  3. Suppression of Ostwald Ripening by Chemical Reactions

    Science.gov (United States)

    Zwicker, David; Hyman, Anthony A.; Jülicher, Frank

    2015-03-01

    Emulsions consisting of droplets immersed in a fluid are typically unstable and coarsen over time. One important coarsening process is Ostwald ripening, which is driven by the surface tension of the droplets. Ostwald ripening must thus be suppressed to stabilize emulsions, e.g. to control the properties of pharmaceuticals, food, or cosmetics. Suppression of Ostwald ripening is also important in biological cells, which contain stable liquid-like compartments, e.g. germ granules, Cajal-bodies, and centrosomes. Such systems are often driven away from equilibrium by chemical reactions and can thus be called active emulsions. Here, we show that non-equilibrium chemical reactions can suppress Ostwald Ripening, leading to stable, monodisperse emulsions. We derive analytical approximations of the typical droplet size, droplet count, and time scale of the dynamics from a coarse-grained description of the droplet dynamics. We also compare these results to numerical simulations of the continuous concentration fields. Generally, we thus show how chemical reactions can be used to stabilize emulsions and to control their properties in technology and nature.

  4. Separation of rare earth elements by tertiary pyridine type resin

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Tatsuya [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)]. E-mail: tasuzuki@nr.titech.ac.jp; Itoh, Keisuke [Graduate School of Material Science and Engineering, Shibaura Institute of Technology, Shibaura, Minato-ku, Tokyo 108-8584 (Japan); Ikeda, Atsushi [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Aida, Masao [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Ozawa, Masaki [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Oarai Engineering Center, Japan Nuclear Cycle Development Institute, Narita-machi, Oarai-machi, Higashiibaraki-gun, Ibaraki 311-1393 (Japan); Fujii, Yasuhiko [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2006-02-09

    The novel separation method of rare earth elements by using the tertiary pyridine type resin with methanol and nitric acid mixed solution was developed. The separating operation in this method is very simple and easy, and the waste generation in this method is expected to be low. The adsorption and separation behaviors of rare earth elements were investigated with changing the nitric acid concentration, the methanol concentration, and the alcoholic species. It was confirmed that the rare earth elements can be well separated mutually.

  5. Evaluation of GPE performances in lithium metal battery technology by means of simple polarization tests

    Science.gov (United States)

    Sannier, L.; Bouchet, R.; Rosso, M.; Tarascon, J.-M.

    Gel polymer electrolyte (GPE) membranes based on two polymers, a copolymer of poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP), and the poly(ethylene oxide) (PEO), together with a plasticizer, the dibutylphtalate (DBP), were elaborated in two ways. Firstly, the polymers and the plasticizer were mixed together to obtain a single membrane. Secondly, a bi-layer separator membrane was made by adjunction, through lamination, of a DBP plasticized PVdF-HFP film and a homemade DBP-PEO thin film. We report here a protocol based on a simple galvanostatic polarization of Li/GPE/Li symmetric cells as a way to rapidly screen new viable membranes. Such a procedure enables to quickly discriminate separators by leading experiments that do no not exceed 1 week compared to hundreds of days needed with classical batteries. The validity of such an approach was confirmed by investigating the performances of the membranes in Li/GPE/Li 4Ti 5O 12 flat battery configuration. Besides, through this study we also highlighted the role of the macroscopic PEO-PVdF interface toward dendrite of bi-layered separator, while a single blended membrane does not seem to be suitable for a practical use. Post-mortem pictures and SEM investigation have confirmed this result.

  6. Evaluation of GPE performances in lithium metal battery technology by means of simple polarization tests

    Energy Technology Data Exchange (ETDEWEB)

    Sannier, L.; Tarascon, J-M. [Laboratoire de Reactivite et Chimie des Solides, UPJV 33, Rue Saint Leu 80039 AMIENS Cedex (France); Bouchet, R. [Laboratoire MADIREL, Universite de Provence, Centre Saint Jerome, 13397 Marseille Cedex 20 (France); Rosso, M. [Laboratoire de la Physique de la Matiere Condensee, Ecole Polytechnique, 91128 Palaiseau Cedex (France)

    2006-07-14

    Gel polymer electrolyte (GPE) membranes based on two polymers, a copolymer of poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP), and the poly(ethylene oxide) (PEO), together with a plasticizer, the dibutylphtalate (DBP), were elaborated in two ways. Firstly, the polymers and the plasticizer were mixed together to obtain a single membrane. Secondly, a bi-layer separator membrane was made by adjunction, through lamination, of a DBP plasticized PVdF-HFP film and a homemade DBP-PEO thin film. We report here a protocol based on a simple galvanostatic polarization of Li/GPE/Li symmetric cells as a way to rapidly screen new viable membranes. Such a procedure enables to quickly discriminate separators by leading experiments that do no not exceed 1 week compared to hundreds of days needed with classical batteries. The validity of such an approach was confirmed by investigating the performances of the membranes in Li/GPE/Li{sub 4}Ti{sub 5}O{sub 12} flat battery configuration. Besides, through this study we also highlighted the role of the macroscopic PEO-PVdF interface toward dendrite of bi-layered separator, while a single blended membrane does not seem to be suitable for a practical use. Post-mortem pictures and SEM investigation have confirmed this result. (author)

  7. Alloys for hydrogen storage in nickel/hydrogen and nickel/metal hydride batteries

    Science.gov (United States)

    Anani, Anaba; Visintin, Arnaldo; Petrov, Konstantin; Srinivasan, Supramaniam; Reilly, James J.; Johnson, John R.; Schwarz, Ricardo B.; Desch, Paul B.

    1993-01-01

    Since 1990, there has been an ongoing collaboration among the authors in the three laboratories to (1) prepare alloys of the AB(sub 5) and AB(sub 2) types, using arc-melting/annealing and mechanical alloying/annealing techniques; (2) examine their physico-chemical characteristics (morphology, composition); (3) determine the hydrogen absorption/desorption behavior (pressure-composition isotherms as a function of temperature); and (4) evaluate their performance characteristics as hydride electrodes (charge/discharge, capacity retention, cycle life, high rate capability). The work carried out on representative AB(sub 5) and AB(sub 2) type modified alloys (by partial substitution or with small additives of other elements) is presented. The purpose of the modification was to optimize the thermodynamics and kinetics of the hydriding/dehydriding reactions and enhance the stabilities of the alloys for the desired battery applications. The results of our collaboration, to date, demonstrate that (1) alloys prepared by arc melting/annealing and mechanical alloying/annealing techniques exhibit similar morphology, composition and hydriding/dehydriding characteristics; (2) alloys with the appropriate small amounts of substituent or additive elements: (1) retain the single phase structure, (2) improve the hydriding/dehydriding reactions for the battery applications, and (3) enhance the stability in the battery environment; and (3) the AB(sub 2) type alloys exhibit higher energy densities than the AB(sub 5) type alloys but the state-of-the-art, commercialized batteries are predominantly manufactured using Ab(sub 5) type alloys.

  8. Quantifying chemical reactions by using mixing analysis.

    Science.gov (United States)

    Jurado, Anna; Vázquez-Suñé, Enric; Carrera, Jesús; Tubau, Isabel; Pujades, Estanislao

    2015-01-01

    This work is motivated by a sound understanding of the chemical processes that affect the organic pollutants in an urban aquifer. We propose an approach to quantify such processes using mixing calculations. The methodology consists of the following steps: (1) identification of the recharge sources (end-members) and selection of the species (conservative and non-conservative) to be used, (2) identification of the chemical processes and (3) evaluation of mixing ratios including the chemical processes. This methodology has been applied in the Besòs River Delta (NE Barcelona, Spain), where the River Besòs is the main aquifer recharge source. A total number of 51 groundwater samples were collected from July 2007 to May 2010 during four field campaigns. Three river end-members were necessary to explain the temporal variability of the River Besòs: one river end-member is from the wet periods (W1) and two are from dry periods (D1 and D2). This methodology has proved to be useful not only to compute the mixing ratios but also to quantify processes such as calcite and magnesite dissolution, aerobic respiration and denitrification undergone at each observation point.

  9. Distribution of small dispersive coal dust particles and absorbed radioactive chemical elements in conditions of forced acoustic resonance in iodine air filter at nuclear power plant

    CERN Document Server

    Ledenyov, Oleg P

    2013-01-01

    The physical features of distribution of the small dispersive coal dust particles and the adsorbed radioactive chemical elements and their isotopes in the absorber with the granular filtering medium with the cylindrical coal granules were researched in the case of the intensive air dust aerosol stream flow through the iodine air filter (IAF). It was shown that, at the certain aerodynamic conditions in the IAF, the generation of the acoustic oscillations is possible. It was found that the acoustic oscillations generation results in an appearance of the standing acoustic waves of the air pressure (density) in the IAF. In the case of the intensive blow of the air dust aerosol, it was demonstrated that the standing acoustic waves have some strong influences on both: 1) the dynamics of small dispersive coal dust particles movement and their accumulation in the IAF; 2) the oversaturation of the cylindrical coal granules by the adsorbed radioactive chemical elements and their isotopes in the regions, where the antin...

  10. Computing Battery Lifetime Distributions

    NARCIS (Netherlands)

    Cloth, Lucia; Jongerden, Marijn R.; Haverkort, Boudewijn R.

    2007-01-01

    The usage of mobile devices like cell phones, navigation systems, or laptop computers, is limited by the lifetime of the included batteries. This lifetime depends naturally on the rate at which energy is consumed, however, it also depends on the usage pattern of the battery. Continuous drawing of a

  11. Sampling procedure in a willow plantation for chemical elements important for biomass combustion quality

    DEFF Research Database (Denmark)

    Liu, Na; Nielsen, Henrik Kofoed; Jørgensen, Uffe

    2015-01-01

    Willow (Salix spp.) is expected to contribute significantly to the woody bioenergy system in the future, so more information on how to sample the quality of the willow biomass is needed. The objectives of this study were to investigate the spatial variation of elements within shoots of a willow...... clone ‘Tordis’, and to reveal the relationship between sampling position, shoot diameters, and distribution of elements. Five Tordis willow shoots were cut into 10–50 cm sections from base to top. The ash content and concentration of twelve elements (Al, Ca, Cd, Cu, Fe, K, Mg, Mn, Na, P, Si, and Zn......) in each section were determined. The results showed large spatial variation in the distribution of most elements along the length of the willow shoots. Concentrations of elements in 2-year old shoots of the willow clone Tordis were fairly stable within the range of 100–285 cm above ground and resembled...

  12. An environmental benign process for cobalt and lithium recovery from spent lithium-ion batteries by mechanochemical approach.

    Science.gov (United States)

    Wang, Meng-Meng; Zhang, Cong-Cong; Zhang, Fu-Shen

    2016-05-01

    In the current study, an environmental benign process namely mechanochemical approach was developed for cobalt and lithium recovery from spent lithium-ion batteries (LIBs). The main merit of the process was that neither corrosive acid nor strong oxidant was applied. In the proposed process, lithium cobalt oxide (obtained from spent LIBs) was firstly co-grinded with various additives in a hermetic ball milling system, then Co and Li could be easily recovered by a water leaching procedure. It was found that EDTA was the most suitable co-grinding reagent, and 98% of Co and 99% of Li were respectively recovered under optimum conditions: LiCoO2 to EDTA mass ratio 1:4, milling time 4h, rotary speed 600r/min and ball-to-powder mass ratio 80:1, respectively. Mechanisms study implied that lone pair electrons provided by two nitrogen atoms and four hydroxyl oxygen atoms of EDTA could enter the empty orbit of Co and Li by solid-solid reaction, thus forming stable and water-soluble metal chelates Li-EDTA and Co-EDTA. Moreover, the separation of Co and Li could be achieved through a chemical precipitation approach. This study provides a high efficiency and environmentally friendly process for Co and Li recovery from spent LIBs.

  13. Elemental and thermo-chemical analysis of oil palm fronds for biomass energy conversion

    Science.gov (United States)

    Guangul, Fiseha Mekonnen; Sulaiman, Shaharin Anwar; Raghavan, Vijay R.

    2012-06-01

    Oil palm frond is the most abundant yet untapped biomass waste in Malaysia. This paper investigates the characteristics of raw oil palm fronds and its ash to evaluate its potential utilization as a biomass fuel for gasification process using single throat downdraft gasifier. The morphological nature, elemental content, proximate and ultimate analysis and calorific value were studied. Field emission scanning electron microscopy and x-ray fluorescence were used to investigate the surface morphology, elemental and mineralogical nature of oil palm frond and its ash. The results were compared with other agricultural and forestry biomass wastes. From proximate analysis volatile matter, fixed carbon and ash were found to be 83.5%, 15.2% and 1.3%, respectively on dry basis. From ultimate analysis result values of 44.58%, 4.53%, 0.71% and 0.07% for carbon, hydrogen, nitrogen and sulfur were found respectively on dry basis. Oxygen was determined by difference and found to be 48.81%. The proximate and ultimate analysis results indicate that oil palm frond is better than agricultural wastes and less than most forestry wastes to use as a feedstock in the gasification process in order to get a better quality of syngas. The amount of ash content in OPF was found to be much less than in agricultural wastes and higher than most forestry wastes. From x-ray fluorescence analysis CaO and K2O were found as the major oxides in oil palm fronds and rice husk ash with the amount of 28.46% and 15.71% respectively. The overall results of oil palm fronds were found to be satisfactory to use as a feedstock for the process of gasification.

  14. Mitigating voltage fade in cathode materials by improving the atomic level uniformity of elemental distribution.

    Science.gov (United States)

    Zheng, Jianming; Gu, Meng; Genc, Arda; Xiao, Jie; Xu, Pinghong; Chen, Xilin; Zhu, Zihua; Zhao, Wenbo; Pullan, Lee; Wang, Chongmin; Zhang, Ji-Guang

    2014-05-14

    Lithium- and manganese-rich (LMR) layered-structure materials are very promising cathodes for high energy density lithium-ion batteries. However, their voltage fading mechanism and its relationships with fundamental structural changes are far from being well understood. Here we report for the first time the mitigation of voltage and energy fade of LMR cathodes by improving the atomic level spatial uniformity of the chemical species. The results reveal that LMR cathodes (Li[Li0.2Ni0.2M0.6]O2) prepared by coprecipitation and sol-gel methods, which are dominated by a LiMO2 type R3̅m structure, show significant nonuniform Ni distribution at particle surfaces. In contrast, the LMR cathode prepared by a hydrothermal assisted method is dominated by a Li2MO3 type C2/m structure with minimal Ni-rich surfaces. The samples with uniform atomic level spatial distribution demonstrate much better capacity retention and much smaller voltage fade as compared to those with significant nonuniform Ni distribution. The fundamental findings on the direct correlation between the atomic level spatial distribution of the chemical species and the functional stability of the materials may also guide the design of other energy storage materials with enhanced stabilities.

  15. Comparative assessment of button cells using a normalized index for potential pollution by heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Merino, Luis, E-mail: l.moreno@igme.es [Geological Survey of Spain, Environmental Geology Research Group, C/ Ríos Rosas 23, 28003 Madrid (Spain); Jiménez-Hernández, Maria Emilia; Losa, Almudena de la [Geological Survey of Spain, Environmental Geology Research Group, C/ Ríos Rosas 23, 28003 Madrid (Spain); Huerta-Muñoz, Virginia [Universidad Complutense de Madrid, Departamento de Geodinámica Externa, C/ José Antonio Novais, 12, Ciudad Universitaria, 28040 Madrid (Spain)

    2015-09-01

    Many household batteries worldwide still end up in landfills or are incinerated due to inefficient collection and recycling schemes. Toxic heavy metals from improperly discarded button cells pose a serious risk to human health and the environment, as they can pollute air, soil and water. This paper analyses a series of button cells selected from batteries available on the retail market, and compares their polluting potential. A total of 64 batteries were subjected to chemical analyses of 19 elements — including metals and metalloids — , and energy density measurements. The samples were from four different brands of each of the four most common button cell technologies (alkaline, zinc-air, silver oxide and lithium). An energy-normalized index — the Weighted Potential Pollution Index (WPPI) — was proposed to compare the polluting potential of the different batteries. The higher the battery WPPI score, the greater the content in toxic elements and the lower the energy output. The results of the chemical composition and energy density varied depending on the construction technology of the button cells. However, significant differences in both variables were also found when comparing different brands within the same technology. The differences in WPPI values confirmed the existence of a significant margin to reduce the environmental impact of discarded button cells simply by avoiding the most polluting options. The choice of the battery with the most favourable WPPI produced a reduction in potential pollution of 3–53% for silver oxide batteries, 4–39% for alkaline, 20–28% for zinc-air and 12–26% for lithium. Comparative potential pollution could be assessed when selecting batteries using an energy-normalized index such as WPPI to reduce the environmental impact of improperly disposed button cells. - Highlights: • We compare the polluting potential of button cells using an energy-normalized index. • This battery index considers both chemical

  16. Rapid estimation of nutritional elements on citrus leaves by near infrared reflectance spectroscopy

    OpenAIRE

    Luis eGálvez Sola; Francisco eGarcía Sánchez; Juan Gabriel ePérez Pérez; Vicente eGimeno; Josefa eNavarro; Raul eMoral; Juan José eMartínez Nicolás; Manuel eNieves

    2015-01-01

    Sufficient nutrient application is one of the most important factors in producing quality citrus fruits. One of the main guides in planning citrus fertilizer programs is by directly monitoring the plant nutrient content. However, this requires analysis of a large number of leaf samples using expensive and time-consuming chemical techniques. Over the last 5 years, it has been demonstrated that it is possible to quantitatively estimate certain nutritional elements in citrus leaves by using the ...

  17. [X-ray fluorescence spectrum analysis of chemical element for spider and silkworm silk and its applications].

    Science.gov (United States)

    Yuan, Bo; Xu, Ze-ren; Xie, Zhuo-jun; Shi, Qiang; Zhang, Xing-kang; Xu, Si-chuan

    2010-07-01

    Elemental compositions in spider and silkworm silks were determined by X-ray fluorescence (XRF) spectrum to probe the silk-forming mechanisms and an elemental basis for spider silk with excellent characteristics. XRF analysis demonstrates that in the silkworm silk, the elemental content is 47.10% for C, 29.92% for O and 16. 52% for N, including metal elemental contents: 0.166 2% for Ca, 0.104 0% for Mg and 0.039 5% for K, while Na, Zn, Ni, Fe and Cr show less micro quantity. Due to relative high quantity for Ca and Mg, they both play an important role in the silk-forming mechanism by silkworm. In the spider silk, the determined main nonmetal elemental contents are 44.09% for C, 26.64% for O and 22.34% for N. The high content of nitrogen may be an elemental basis for spider silk with excellent characteristic. The main metal elemental contents are 0.268 0% for Na, 0.081 4% for K and 0.011 6% for Mg, while Ca, Zn, Ni, Cu and Cr possess less micro quantity in the spider silk. Because of relative high quantity for Na and K, they both play an important role in the silk-forming mechanism by spider. The elemental compositions investigated by using mathematic statistic method are quite in agreement with those demonstrated by using XRF spectrum, which validates the experimentally determined elemental compositions in the spider and silkworm silks.

  18. Highly Stable Operation of Lithium Metal Batteries Enabled by the Formation of a Transient High Concentration Electrolyte Layer

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jianming; Yan, Pengfei; Mei, Donghai; Engelhard, Mark H.; Cartmell, Samuel S.; Polzin, Bryant; Wang, Chong M.; Zhang, Jiguang; Xu, Wu

    2016-02-08

    Lithium (Li) metal has been extensively investigated as an anode for rechargeable battery applications due to its ultrahigh specific capacity and the lowest redox potential. However, significant challenges including dendrite growth and low Coulombic efficiency are still hindering the practical applications of rechargeable Li metal batteries. Here, we demonstrate that long-term cycling of Li metal batteries can be realized by the formation of a transient high concentration electrolyte layer near the surface of Li metal anode during high rate discharge process. The highly concentrated Li+ ions in this transient layer will immediately solvate with the available solvent molecules and facilitate the formation of a stable and flexible SEI layer composed of a poly(ethylene carbonate) framework integrated with other organic/inorganic lithium salts. This SEI layer largely suppresses the corrosion of Li metal anode by free organic solvents and enables the long-term operation of Li metal batteries. The fundamental findings in this work provide a new direction for the development and operation of Li metal batteries that could be operated at high current densities for a wide range of applications.

  19. Advancement Of Tritium Powered Betavoltaic Battery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Staack, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Gaillard, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hitchcock, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Peters, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Colon-Mercado, H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Teprovich, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coughlin, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Neikirk, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fisher, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-14

    Due to their decades-long service life and reliable power output under extreme conditions, betavoltaic batteries offer distinct advantages over traditional chemical batteries, especially in applications where frequent battery replacement is hazardous, or cost prohibitive. Although many beta emitting isotopes exist, tritium is considered ideal in betavoltaic applications for several reasons: 1) it is a “pure” beta emitter, 2) the beta is not energetic enough to damage the semiconductor, 3) it has a moderately long half-life, and 4) it is readily available. Unfortunately, the widespread application of tritium powered betavoltaics is limited, in part, by their low power output. This research targets improving the power output of betavoltaics by increasing the flux of beta particles to the energy conversion device (the p-n junction) through the use of low Z nanostructured tritium trapping materials.

  20. Rechargeable galvanic cell. Wiederaufladbare galvanische Batterie

    Energy Technology Data Exchange (ETDEWEB)

    Knoedler, R.; Mennicke, S.

    1982-11-11

    Rechargeable galvanic batteries using liquid sodium as negative electro-chemical material and liquid sulphur absorbed in graphite as the positive one as well as sodium-ion-conducting solid electrolytes which, in the battery housing, are designed as containers open to one side and filled with either sulphur or sodium and which have one collector each, are developed further by using the advantages of 'normal cells' and 'inverted cells' while reducing their disadvantages at the same time. This is obtained by designing the battery to consist in at least two parallelly arranged single cells connected in series via the housing and showing an inverted arrangement of sodium and sulphur relative to each other.

  1. Efficiently photo-charging lithium-ion battery by perovskite solar cell.

    Science.gov (United States)

    Xu, Jiantie; Chen, Yonghua; Dai, Liming

    2015-08-27

    Electric vehicles using lithium-ion battery pack(s) for propulsion have recently attracted a great deal of interest. The large-scale practical application of battery electric vehicles may not be realized unless lithium-ion batteries with self-charging suppliers will be developed. Solar cells offer an attractive option for directly photo-charging lithium-ion batteries. Here we demonstrate the use of perovskite solar cell packs with four single CH3NH3PbI3 based solar cells connected in series for directly photo-charging lithium-ion batteries assembled with a LiFePO4 cathode and a Li4Ti5O12 anode. Our device shows a high overall photo-electric conversion and storage efficiency of 7.80% and excellent cycling stability, which outperforms other reported lithium-ion batteries, lithium-air batteries, flow batteries and super-capacitors integrated with a photo-charging component. The newly developed self-chargeable units based on integrated perovskite solar cells and lithium-ion batteries hold promise for various potential applications.

  2. Noninvasive Detection of the Gases Inside the Sealed Batteries by the On-line Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    Xiao Rong ZHOU; Pei Fang LIU; Lin ZHUANG; Jun Tao LU

    2004-01-01

    Mass spectrometer is connected through an adaptor to a sealed small battery to probe the gas phase changes inside the battery. The factors influencing the response time are analyzed with a simplified model. The feasibility of the new technique is demonstrated with a Ni-Cd battery, showing different profiles of MS intensities for O2 and H2. Compared with gas chromatography, this technique has the advantage of being noninvasive and should be useful for the study and diagnostic examination of small sealed batteries.

  3. Efficiently photo-charging lithium-ion battery by perovskite solar cell

    Science.gov (United States)

    Xu, Jiantie; Chen, Yonghua; Dai, Liming

    2015-01-01

    Electric vehicles using lithium-ion battery pack(s) for propulsion have recently attracted a great deal of interest. The large-scale practical application of battery electric vehicles may not be realized unless lithium-ion batteries with self-charging suppliers will be developed. Solar cells offer an attractive option for directly photo-charging lithium-ion batteries. Here we demonstrate the use of perovskite solar cell packs with four single CH3NH3PbI3 based solar cells connected in series for directly photo-charging lithium-ion batteries assembled with a LiFePO4 cathode and a Li4Ti5O12 anode. Our device shows a high overall photo-electric conversion and storage efficiency of 7.80% and excellent cycling stability, which outperforms other reported lithium-ion batteries, lithium–air batteries, flow batteries and super-capacitors integrated with a photo-charging component. The newly developed self-chargeable units based on integrated perovskite solar cells and lithium-ion batteries hold promise for various potential applications. PMID:26311589

  4. Efficiently photo-charging lithium-ion battery by perovskite solar cell

    OpenAIRE

    Xu, Jiantie; Chen, Yonghua; Dai, Liming

    2015-01-01

    Electric vehicles using lithium-ion battery pack(s) for propulsion have recently attracted a great deal of interest. The large-scale practical application of battery electric vehicles may not be realized unless lithium-ion batteries with self-charging suppliers will be developed. Solar cells offer an attractive option for directly photo-charging lithium-ion batteries. Here we demonstrate the use of perovskite solar cell packs with four single CH3NH3PbI3 based solar cells connected in series f...

  5. Li K-edge X-ray absorption near edge structure spectra for a library of lithium compounds applied in lithium batteries

    Science.gov (United States)

    Wang, Dongniu; Zuin, Lucia

    2017-01-01

    Lithium ion batteries (LIB) have achieved great success as energy supply systems in portable devices and in electrical vehicles. Identifying the local chemical structures of elemental lithium in lithium compounds is beneficial for improving understanding of battery components and performance. Herein, a library of Li K-edge X-ray absorption near edge structure (XANES) of lithium compounds relevant to Li-ion batteries is reported. Materials described include lithium metals (anode), Li-containing cathodes, electrolytes and solid electrolyte interphase (SEI). The results illustrate the characteristic spectral features stemming from the various electronic structures and chemical environment of lithium atoms for each and every possible battery component. XANES spectra of Sn based anode after discharging reveal the appearance of Li2CO3 on electrode surface. X-ray damage on sensitive lithium species is also assessed; the results reveal that more attention should be paid to irradiation effects to conduct XANES measurements for battery materials properly.

  6. Performance enhancement of iron-chromium redox flow batteries by employing interdigitated flow fields

    Science.gov (United States)

    Zeng, Y. K.; Zhou, X. L.; Zeng, L.; Yan, X. H.; Zhao, T. S.

    2016-09-01

    The catalyst for the negative electrode of iron-chromium redox flow batteries (ICRFBs) is commonly prepared by adding a small amount of Bi3+ ions in the electrolyte and synchronously electrodepositing metallic particles onto the electrode surface at the beginning of charge process. Achieving a uniform catalyst distribution in the porous electrode, which is closely related to the flow field design, is critically important to improve the ICRFB performance. In this work, the effects of flow field designs on catalyst electrodeposition and battery performance are investigated. It is found that compared to the serpentine flow field (SFF) design, the interdigitated flow field (IFF) forces the electrolyte through the porous electrode between the neighboring channels and enhances species transport during the processes of both the catalyst electrodeposition and iron/chromium redox reactions, thus enabling a more uniform catalyst distribution and higher mass transport limitation. It is further demonstrated that the energy efficiency of the ICRFB with the IFF reaches 80.7% at a high current density (320 mA cm-2), which is 8.2% higher than that of the ICRFB with the SFF. With such a high performance and intrinsically low-cost active materials, the ICRFB with the IFF offers a great promise for large-scale energy storage.

  7. Leaching of spent lead acid battery paste components by sodium citrate and acetic acid.

    Science.gov (United States)

    Zhu, Xinfeng; He, Xiong; Yang, Jiakuan; Gao, Linxia; Liu, Jianwen; Yang, Danni; Sun, Xiaojuan; Zhang, Wei; Wang, Qin; Kumar, R Vasant

    2013-04-15

    A sustainable method, with minimal pollution and low energy cost in comparison with the conventional smelting methods, is proposed for treating components of spent lead-acid battery pastes in aqueous organic acid(s). In this study, PbO, PbO2, and PbSO4, the three major components in a spent lead paste, were individually reacted with a mixture of aqueous sodium citrate and acetic acid solution. Pure lead citrate precursor of Pb3(C6H5O7)2 · 3H2O is the only product crystallized in each leaching experiment. Conditions were optimized for individual lead compounds which were then used as the basis for leaching real industrial spent paste. In this work, efficient leaching process is achieved and raw material cost is reduced by using aqueous sodium citrate and acetic acid, instead of aqueous sodium citrate and citric acid as reported in a pioneering hydrometallurgical method earlier. Acetic acid is not only cheaper than citric acid but is also more effective in aiding dissolution of the lead compounds thus speeding up the leaching process in comparison with citric acid. Lead citrate is readily crystallized from the aqueous solution due to its low solubility and can be combusted to directly produce leady oxide as a precursor for making new battery pastes.

  8. The generation of magnetic fields by the Biermann battery and the interplay with the Weibel instability

    CERN Document Server

    Schoeffler, K M; Fonseca, R A; Silva, L O

    2015-01-01

    An investigation of magnetic fields generated in an expanding bubble of plasma with misaligned temperature and density gradients (driving the Biermann battery mechanism) is performed. With gradient scales $L$, large-scale magnetic fields are generated by the Biermann battery mechanism with plasma $\\beta \\sim 1$, as long as $L$ is comparable to the ion inertial length $d_i$. For larger system sizes, $L/d_e > 100$ (where $d_e$ is the electron inertial length), the Weibel instability generates magnetic fields of similar magnitude but with wavenumber $k d_e \\sim 0.2$. In both cases, the growth and saturation of these fields have a weak dependence on mass ratio $m_i/m_e$, indicating electron mediated physics. A scan in system size is performed at $m_i/m_e = 2000$, showing agreement with previous results with $m_i/m_e = 25$. In addition, the instability found at large system sizes is quantitatively demonstrated to be the Weibel instability. Furthermore, magnetic and electric energy spectra at scales below the elect...

  9. The generation of magnetic fields by the Biermann battery and the interplay with the Weibel instability

    Science.gov (United States)

    Schoeffler, K. M.; Loureiro, N. F.; Fonseca, R. A.; Silva, L. O.

    2016-05-01

    An investigation of magnetic fields generated in an expanding bubble of plasma with misaligned temperature and density gradients (driving the Biermann battery mechanism) is performed. With gradient scales L, large-scale magnetic fields are generated by the Biermann battery mechanism with plasma β ˜ 1, as long as L is comparable to the ion inertial length di. For larger system sizes, L/de > 100 (where de is the electron inertial length), the Weibel instability generates magnetic fields of similar magnitude but with wavenumber kde ≈ 0.2. In both cases, the growth and saturation of these fields have a weak dependence on mass ratio mi/me, indicating electron mediated physics. A scan in system size is performed at mi/me = 2000, showing agreement with previous results with mi/me = 25. In addition, the instability found at large system sizes is quantitatively demonstrated to be the Weibel instability. Furthermore, magnetic and electric energy spectra at scales below the electron Larmor radius are found to exhibit power law behavior with spectral indices -16/3 and -4/3, respectively.

  10. Electricity consumption by battery-powered consumer electronics: A household-level survey

    Energy Technology Data Exchange (ETDEWEB)

    McAllister, J. Andrew; Farrell, Alexander E. [Energy and Resources Group, University of California, 310 Barrows Hall, Berkeley, CA 94720-3050 (United States)

    2007-07-15

    The rapid proliferation of battery-powered consumer electronics and their reliance on inefficient linear transformers has been suggested to be an important part of the rapid growth in 'miscellaneous' electricity consumption in recent years, but detailed data are scarce. We conducted a survey of 34 randomly selected households (HHs) in Northern California about the number, type, and usage of consumer electronics. We also measured the energy consumption of 85 typical consumer electronic devices through various parts of the charge cycle. These primary data were supplemented by national sales information for consumer electronics. Results indicate that typical HHs own 8.4 rechargeable devices, which have a total average demand of 12-17 W per HH. Statewide, this amounts to 160-220 MW of demand, with the peak occurring in the late evening, and about 1600 GWh per year. Only about 15% of this energy is used for battery charging, the rest is lost as waste heat during no-load and charge maintenance periods. Technical options to increase the efficiency of these devices, and the research and policy steps needed to realize these savings are discussed. (author)

  11. Modulation of tissue repair by regeneration enhancer elements.

    Science.gov (United States)

    Kang, Junsu; Hu, Jianxin; Karra, Ravi; Dickson, Amy L; Tornini, Valerie A; Nachtrab, Gregory; Gemberling, Matthew; Goldman, Joseph A; Black, Brian L; Poss, Kenneth D

    2016-04-14

    How tissue regeneration programs are triggered by injury has received limited research attention. Here we investigate the existence of enhancer regulatory elements that are activated in regenerating tissue. Transcriptomic analyses reveal that leptin b (lepb) is highly induced in regenerating hearts and fins of zebrafish. Epigenetic profiling identified a short DNA sequence element upstream and distal to lepb that acquires open chromatin marks during regeneration and enables injury-dependent expression from minimal promoters. This element could activate expression in injured neonatal mouse tissues and was divisible into tissue-specific modules sufficient for expression in regenerating zebrafish fins or hearts. Simple enhancer-effector transgenes employing lepb-linked sequences upstream of pro- or anti-regenerative factors controlled the efficacy of regeneration in zebrafish. Our findings provide evidence for 'tissue regeneration enhancer elements' (TREEs) that trigger gene expression in injury sites and can be engineered to modulate the regenerative potential of vertebrate organs.

  12. Lithium Ion Batteries Used for Nuclear Forensics

    Science.gov (United States)

    Johnson, Erik B.; Stapels, Christopher J.; Chen, X. Jie; Whitney, Chad; Holbert, Keith E.; Christian, James F.

    2013-10-01

    Nuclear forensics includes the study of materials used for the attribution a nuclear event. Analysis of the nuclear reaction products resulting both from the weapon and the material in the vicinity of the event provides data needed to identify the source of the nuclear material and the weapon design. The spectral information of the neutrons produced by the event provides information on the weapon configuration. The lithium battery provides a unique platform for nuclear forensics, as the Li-6 content is highly sensitive to neutrons, while the battery construction consists of various layers of materials. Each of these materials represents an element for a threshold detector scheme, where isotopes are produced in the battery components through various nuclear reactions that require a neutron energy above a fundamental threshold energy. This study looks into means for extracting neutron spectral information by understanding the isotopic concentration prior to and after exposure. The radioisotopes decay through gamma and beta emission, and radiation spectrometers have been used to measure the radiation spectra from the neutron exposed batteries. The batteries were exposed to various known neutron fields, and analysis was conducted to reconstruct the incident neutron spectra. This project is supported by the Defense Threat Reduction Agency, grant number HDTRA1-11-1-0028.

  13. Chemical Reactivity as Described by Quantum Chemical Methods

    Directory of Open Access Journals (Sweden)

    F. De Proft

    2002-04-01

    Full Text Available Abstract: Density Functional Theory is situated within the evolution of Quantum Chemistry as a facilitator of computations and a provider of new, chemical insights. The importance of the latter branch of DFT, conceptual DFT is highlighted following Parr's dictum "to calculate a molecule is not to understand it". An overview is given of the most important reactivity descriptors and the principles they are couched in. Examples are given on the evolution of the structure-property-wave function triangle which can be considered as the central paradigm of molecular quantum chemistry to (for many purposes a structure-property-density triangle. Both kinetic as well as thermodynamic aspects can be included when further linking reactivity to the property vertex. In the field of organic chemistry, the ab initio calculation of functional group properties and their use in studies on acidity and basicity is discussed together with the use of DFT descriptors to study the kinetics of SN2 reactions and the regioselectivity in Diels Alder reactions. Similarity in reactivity is illustrated via a study on peptide isosteres. In the field of inorganic chemistry non empirical studies of adsorption of small molecules in zeolite cages are discussed providing Henry constants and separation constants, the latter in remarkable good agreement with experiments. Possible refinements in a conceptual DFT context are presented. Finally an example from biochemistry is discussed : the influence of point mutations on the catalytic activity of subtilisin.

  14. Utilization of actinide as cell active materials. Effective utilization of uranium as battery active material. JAERI's nuclear research promotion program, H10-034-2. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Yamana, Hajimu; Moriyama, Hirotake; Asano, Hideki [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Institute; Shiokawa, Yoshinobu; Yamamura, Asao; Hasegawa, Kazuki; Kimura, Akihiro; Umekita, Satoshi [Tohoku Univ., Sendai (Japan). Inst. for Materials Research

    2002-03-01

    As a part of the research to explore the advantageous utilization of actinide elements as battery active materials, the concept of the uranium battery using molten salts was studied. As a result of the comparative evaluation on the redox-flow-battery and other secondary battery, U(Bi)-Cl{sub 2} battery using molten chloride was selected. As the substitute of UCl{sub 3}, LaCl{sub 3} was tested for analyzing its properties of electrochemical reduction. By Electro-motive-force measurement, the activity coefficient of some lanthanide metals in liquid bismuth was determined. By cyclic voltammetry, electrochemical properties, such as electro-deposition characteristics, reductive dissolution of La metal into liquid Bi, co-deposition of La and Bi by forming binary intermetallic compounds, were investigated. For the purpose of developing a technique to analyze the chemical status of U in molten salt, high temperature UV-Visible Spectrophotometry device was developed, and it was tested with NdCl{sub 3}. (author)

  15. Potential toxicity of chemical elements in beach sediments near Santa Rosalía copper mine, Baja California Peninsula, Mexico

    Science.gov (United States)

    Jonathan, M. P.; Shumilin, E.; Rodríguez-Figueroa, G. M.; Rodriguez-Espinosa, P. F.; Sujitha, S. B.

    2016-10-01

    A total of 17 beach sediment samples were analyzed for the determination of thirty-one chemical elements to generate a geochemical data set from the Santa Rosalía mining area in the State of Baja California Sur (south), Mexico. Results indicate that the beach sediments were enriched in Cu, Zn, Co, Pb, Cd (3856, 2599, 635, 236, 240 mg kg-1, respectively) and in Mn (2.01%) due to a century of mining and smelting activities. Comparison of these concentration with ecotoxicological sediment quality criteria (ERL, ERM, LEL, SEL) indicated the values of As, Cd, Co, Cr, Cu, Ni, Pb, Sr, Zn and Mn were higher than the permissible limits. Average values of the calculated geoaccumulation index (Igeo) suggest that the key elements such as Mn, Ba, Cd, Co, Mo, Pb, Sr, Zn are categorized in class 4 to 6 encompassing the strongly polluted to extremely polluted groups. The association and enrichment of the above elements are also well supported statistically (factor analysis) which points to the role of Fe-Mn oxides as the main scavengers for retaining these chemical elements.

  16. Testicular membrane lipid damage by complex mixture of leachate from municipal battery recycling site as indication of idiopathic male infertility in rat

    OpenAIRE

    Akintunde, Jacob K.; Oboh, Ganiyu; Akindahunsi, Akintunde A.

    2013-01-01

    Leachate from a municipal battery recycling site is a potent source of mixed-metal released into the environment. The present study investigated the degree at which mixed-metal exposure to the municipal auto-battery leachate (MABL) and to the Elewi Odo municipal auto-battery recycling site leachate (EOMABRL) affected the lipid membrane of the testes in in vitro experiment. The results showed elevated level of mixed-metals over the permissible levels in drinking water, as recommended by regula...

  17. Crash analysis of a conceptual electric vehicle with a multifunctional battery system

    Science.gov (United States)

    Kukreja, Jaspreet S.

    For current electric vehicles, batteries are employed only as an energy source. Due to safety concerns, the space for battery storage is co-allocated with passenger space, which would constrain the design for the vehicle. An architectured multifunctional battery-structure material, namely Granular Battery Assembly (GBA), has been proposed by Tsutsui et al., 2014. Such a material system utilizes the deformation of sacrificing tubes to dissipate impact energy and protect the battery cells, thereby allowing the batteries to be placed in the front crumple zone of an electric vehicle, while also ensuring occupant safety. The primary focus of this study was vehicle level design analysis of GBA for application in an electric vehicle. A parametric study was performed to determine suitable characteristics of the GBA system for installation in a vehicle. To reduce computational cost, a homogenized material was used to represent GBA in the finite element model of the vehicle. Frontal crash simulation of a vehicle with GBA placed in crumple zone was performed on LS-DYNA platform.The crash response was used to demonstrate the utility of GBA mechanism to keep the batteries and passengers safe. The incorporation of GBA into an electric vehicle would allow for battery space to be decoupled from passenger space, thereby increasing the vehicle design freedom. Use of the crumple zone for battery storage would also result in increasing the available battery space.

  18. Recovery of zinc and manganese from spent alkaline batteries by liquid-liquid extraction with Cyanex 272

    Science.gov (United States)

    Salgado, Aline L.; Veloso, Aline M. O.; Pereira, Daniel D.; Gontijo, Glayson S.; Salum, Adriane; Mansur, Marcelo B.

    A hydrometallurgical route based on the liquid-liquid extraction technique using Cyanex 272 as extractant is investigated for the selective separation of metal values, in particular, zinc and manganese from spent alkaline batteries. The recycling route consists of following steps: (1) cryogenic dismantling of the spent batteries, (2) pre-treatment of the internal material consisting of drying, grinding and screening steps in order to produce a dry homogeneous powder, (3) leaching of the powder with sulphuric acid and (4) metal separation by liquid-liquid extraction. Bench scale experiments have shown that zinc and manganese are easily separated (ΔpH 1/2≈2.0) using 20% (v/v) Cyanex 272 dissolved in Escaid 110 at 50 °C. Therefore, the proposed route can treat residues from both zinc-carbon and alkaline batteries because metal composition of these batteries is quite similar. The metal content of other batteries such as Ni-Cd and nickel-metal hydride (NiMH) has been also determined in order to include them in future investigations.

  19. A coupled thermal and electrochemical study of lithium-ion battery cooled by paraffin/porous-graphite-matrix composite

    Science.gov (United States)

    Greco, Angelo; Jiang, Xi

    2016-05-01

    Lithium-ion (Li-ion) battery cooling using a phase change material (PCM)/compressed expanded natural graphite (CENG) composite is investigated, for a cylindrical battery cell and for a battery module scale. An electrochemistry model (average model) is coupled to the thermal model, with the addition of a one-dimensional model for the solution and solid diffusion using the nodal network method. The analysis of the temperature distribution of the battery module scale has shown that a two-dimensional model is sufficient to describe the transient temperature rise. In consequence, a two-dimensional cell-centred finite volume code for unstructured meshes is developed with additions of the electrochemistry and phase change. This two-dimensional thermal model is used to investigate a new and usual battery module configurations cooled by PCM/CENG at different discharge rates. The comparison of both configurations with a constant source term and heat generation based on the electrochemistry model showed the superiority of the new design. In this study, comparisons between the predictions from different analytical and computational tools as well as open-source packages were carried out, and close agreements have been observed.

  20. On-board capacity estimation of lithium iron phosphate batteries by means of half-cell curves

    Science.gov (United States)

    Marongiu, Andrea; Nlandi, Nsombo; Rong, Yao; Sauer, Dirk Uwe

    2016-08-01

    This paper presents a novel methodology for the on-board estimation of the actual battery capacity of lithium iron phosphate batteries. The approach is based on the detection of the actual degradation mechanisms by collecting plateau information. The tracked degradation modes are employed to change the characteristics of the fresh electrode voltage curves (mutual position and dimension), to reconstruct the full voltage curve and therefore to obtain the total capacity. The work presents a model which describes the relation between the single degradation modes and the electrode voltage curves characteristics. The model is then implemented in a novel battery management system structure for aging tracking and on-board capacity estimation. The working principle of the new algorithm is validated with data obtained from lithium iron phosphate cells aged in different operating conditions. The results show that both during charge and discharge the algorithm is able to correctly track the actual battery capacity with an error of approx. 1%. The use of the obtained results for the recalibration of a hysteresis model present in the battery management system is eventually presented, demonstrating the benefit of the tracked aging information for additional scopes.

  1. Probing the degradation mechanisms in electrolyte solutions for Li-ion batteries by in situ transmission electron microscopy.

    Science.gov (United States)

    Abellan, Patricia; Mehdi, B Layla; Parent, Lucas R; Gu, Meng; Park, Chiwoo; Xu, Wu; Zhang, Yaohui; Arslan, Ilke; Zhang, Ji-Guang; Wang, Chong-Min; Evans, James E; Browning, Nigel D

    2014-03-12

    Development of novel electrolytes with increased electrochemical stability is critical for the next generation battery technologies. In situ electrochemical fluid cells provide the ability to rapidly and directly characterize electrode/electrolyte interfacial reactions under conditions directly relevant to the operation of practical batteries. In this paper, we have studied the breakdown of a range of inorganic/salt complexes relevant to state-of-the-art Li-ion battery systems by in situ (scanning) transmission electron microscopy ((S)TEM). In these experiments, the electron beam itself caused the localized electrochemical reaction that allowed us to observe electrolyte breakdown in real-time. The results of the in situ (S)TEM experiments matches with previous stability tests performed during battery operation and the breakdown products and mechanisms are also consistent with known mechanisms. This analysis indicates that in situ liquid stage (S)TEM observations could be used to directly test new electrolyte designs and identify a smaller library of candidate solutions deserving of more detailed characterization. A systematic study of electrolyte degradation is also a necessary first step for any future controlled in operando liquid (S)TEM experiments intent on visualizing working batteries at the nanoscale.

  2. Thermal performance characteristics of lithium-ion power battery based on finite element analysis%基于有限元分析的动力锂离子电池生热特性研究

    Institute of Scientific and Technical Information of China (English)

    李争; 邢殿辉

    2016-01-01

    To research the thermal security of lithium-ion power battery used in electric vehicles, a kind of Lithium-ion power battery with 11 Ah rated capacity was taken as an example, and use the FEM software to conduct the finite element modeling and analysis. The effects of different discharge rates, different ambient temperature and different cooling conditions on the thermal characteristics of lithium -ion power battery were investigated. The simulation results illustrated that the higher discharge rate leads to the more and uneven temperature distribution; better cooling modes help to suppress the temperature rise and improve the thermal stability of the battery. The quantitative calculation and simulation results match well the actual conditions. The research results provide the reference for the modeling and simulation of this kind of batteries, which showed the guiding significance for design, optimization and battery thermal management system of lithium-on power battery monomers.%针对电动汽车用动力锂离子电池的热安全性问题,以某11 Ah动力锂离子电池为例,进行有限元建模分析,分别对锂离子电池单体在不同充放电倍率、不同环境温度以及不同散热条件下的发热情况进行了分析.结果表明,锂电池放电倍率越高温升越高且温度分布越不均匀,良好的散热模式有助于电池温升的抑制和提高电池的热稳定性.定量化的计算仿真结果符合实际,研究结果为该类电池的建模与仿真提供了借鉴和参考,对锂电池单体的设计优化及锂电池热管理系统的研发具有指导意义.

  3. Physico-chemical properties of 3-methoxy-2-nitrobenzoates of some rare earth elements(Ⅲ)

    Institute of Scientific and Technical Information of China (English)

    Wieslawa Ferenc; Beata Cristóv(a)o; Jan Sarzy(n)ski; Halina Gluchowska

    2012-01-01

    The complexes of 3-methoxy-2-nitrobenzoates of Pr(Ⅲ),Nd(Ⅲ),Sm(Ⅲ),Eu(Ⅲ),Gd(Ⅲ),Tb(Ⅲ),Er(Ⅲ) and Tm(Ⅲ) with the formula:Ln(CsH6NO5)3·2H2O,where Ln=lanthanides(Ⅲ),were synthesized and characterized by elemental analysis,Forier transform irtrared (FTIR) spectroscopy,magnetic and thermogravimetric studies and also by X-ray diffraction (XRD) measurements.The complexes had colours typical for Ln(Ⅲ) ions.The carboxylate groups bound as bidentate chelating.On heating to 1173 K in air they decomposed in the same way,at first,dehydrated in one step to anhydrous salts,and then decomposed to the oxides of respective metals with intermediate formation of the oxycarbonates.The enthalpy values of the dehydration process changed from 133.72 to 44.50 kJ/mol.Their solubility in water at 293 K was of the order of 10-4 mol/dm3.The magnetic moments of analysed complexes were determined by Gouy's method in the range of 76-303 K.

  4. CHEMICAL ABUNDANCES OF THE MILKY WAY THICK DISK AND STELLAR HALO. II. SODIUM, IRON-PEAK, AND NEUTRON-CAPTURE ELEMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Ishigaki, M. N. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Aoki, W. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Chiba, M., E-mail: miho.ishigaki@ipmu.jp, E-mail: aoki.wako@nao.ac.jp, E-mail: chiba@astr.tohoku.ac.jp [Astronomical Institute, Tohoku University, Aoba-ku, Sendai 980-8578 (Japan)

    2013-07-01

    We present chemical abundance analyses of sodium, iron-peak, and neutron-capture elements for 97 kinematically selected thick disk, inner halo, and outer halo stars with metallicities -3.3 < [Fe/H] <-0.5. The main aim of this study is to examine chemical similarities and differences among metal-poor stars belonging to these old Galactic components as a clue to determine their early chemodynamical evolution. In our previous paper, we obtained abundances of {alpha} elements by performing a one-dimensional LTE abundance analysis based on the high-resolution (R {approx} 50, 000) spectra obtained with the Subaru/HDS. In this paper, a similar analysis is performed to determine abundances of an additional 17 elements. We show that, in metallicities below [Fe/H] {approx}-2, the abundance ratios of many elements in the thick disk, inner halo, and outer halo subsamples are largely similar. In contrast, in higher metallicities ([Fe/H] {approx}> -1.5), differences in some of the abundance ratios among the three subsamples are identified. Specifically, the [Na/Fe], [Ni/Fe], [Cu/Fe], and [Zn/Fe] ratios in the inner and outer halo subsamples are found to be lower than those in the thick disk subsample. A modest abundance difference between the two halo subsamples in this metallicity range is also seen for the [Na/Fe] and [Zn/Fe] ratios. In contrast to that observed for [Mg/Fe] in our previous paper, [Eu/Fe] ratios are more enhanced in the two halo subsamples rather than in the thick disk subsample. The observed distinct chemical abundances of some elements between the thick disk and inner/outer halo subsamples with [Fe/H] >-1.5 support the hypothesis that these components formed through different mechanisms. In particular, our results favor the scenario that the inner and outer halo components formed through an assembly of multiple progenitor systems that experienced various degrees of chemical enrichments, while the thick disk formed through rapid star formation with an

  5. Vanadium Flow Battery Electrolyte Synthesis via Chemical Reduction of V2O5 in Aqueous HCl and H2SO4.

    Energy Technology Data Exchange (ETDEWEB)

    Small, Leo J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pratt, Harry [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Staiger, Chad [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Martin, Rachel Irene [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Anderson, Travis Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Chalamala, Babu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Soundappan, Thiagarajan [Univ. of Washington, Seattle, WA (United States); Tiwari, Monika [Univ. of Washington, Seattle, WA (United States); Subarmanian, Venkat R. [Univ. of Washington, Seattle, WA (United States)

    2017-01-01

    We report a simple method to synthesize V 4+ (VO 2+ ) electrolytes as feedstock for all- vanadium redox flow batteries (RFB). By dissolving V 2 O 5 in aqueous HCl and H 2 SO 4 , subsequently adding glycerol as a reducing agent, we have demonstrated an inexpensive route for electrolyte synthesis to concentrations >2.5 M V 4+ (VO 2+ ). Electrochemical analysis and testing of laboratory scale RFB demonstrate improved thermal stability across a wider temperature range (-10-65 degC) for V 4+ (VO 2+ ) electrolytes in HCl compared to in H 2 SO 4 electrolytes.

  6. Graphene Sandwiched by Sulfur-Confined Mesoporous Carbon Nanosheets: A Kinetically Stable Cathode for Li-S Batteries.

    Science.gov (United States)

    Xin, Sen; You, Ya; Li, Hui-Qin; Zhou, Weidong; Li, Yutao; Xue, Leigang; Cong, Huai-Ping

    2016-12-14

    The practical use of lithium-sulfur batteries for the next-generation energy storage, especially the automobiles, was hindered by low electronic conductivity of sulfur and the resulting poor rate capabilities. Here, we report a sulfur-carbon composite by confining S into a graphene sandwiched in mesoporous carbon nanosheets with a two-dimensional ultrathin morphology, suitable mesopore size and large pore volume, and excellent electronic conductivity. Serving as cathode material for a Li-S battery, the elaborately designed S/C composite leads to "kinetically stable" transmissions of Li ions and electrons, triggering a stable electrochemistry and a record-breaking rate performance. In this way, the S/C composite has been proved a promising cathode material for high-rate Li-S batteries targeted at automobile storage.

  7. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  8. Chemical leukoderma induced by dimethyl sulfate*

    Science.gov (United States)

    Gozali, Maya Valeska; Zhang, Jia-an; Yi, Fei; Zhou, Bing-rong; Luo, Dan

    2016-01-01

    Chemical leukoderma occurs due to the toxic effect of a variety of chemical agents. Mechanisms include either destruction or inhibition of melanocytes. We report two male patients (36 and 51 years old) who presented with multiple hypopigmented macules and patches on the neck, wrist, and legs after exposure to dimethyl sulfate in a chemical industry. Physical examination revealed irregular depigmentation macules with sharp edges and clear hyperpigmentation around the lesions. History of repeated exposure to a chemical agent can help the clinical diagnosis of chemical leukoderma. This diagnosis is very important for prognosis and therapeutic management of the disease.

  9. Battery cell module

    Energy Technology Data Exchange (ETDEWEB)

    Shambaugh, J.S.

    1981-11-23

    A modular lithium battery having a plurality of cells, having electrical connecting means connecting the cells to output terminals, and venting means for releasing discharge byproducts to a chemical scrubber is disclosed. Stainless steel cell casings are potted in an aluminum modular case with syntactic foam and epoxy. The wall thickness resulting is about 0.5 inches.

  10. Chemical recycling of mixed waste plastics by selective pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Tatsumoto, K.; Meglen, R.; Evans, R. [National Renewable Energy Laboratory, Golden, CO (United States)

    1995-05-01

    The goal of this work is to use selective pyrolysis to produce high-value chemicals from waste plastics mixtures. Selectivity is achieved by exploiting differences in reaction rates, catalysis, and coreactants. Target wastes are molecular mixtures such as; blends or composites, or mixtures from manufactured products such as; carpets and post-consumer mixed-plastic wastes. The experimental approach has been to use small-scale experiments using molecular beam mass spectrometry (MBMS), which provides rapid analysis of reaction products and permits rapid screening of process parameters. Rapid screening experiments permit exploration of many potential waste stream applications for the selective pyrolysis process. After initial screening, small-scale, fixed-bed and fluidized-bed reactors are used to provide products for conventional chemical analysis, to determine material balances, and to test the concept under conditions that will be used at a larger scale. Computer assisted data interpretation and intelligent chemical processing are used to extract process-relevant information from these experiments. An important element of this project employs technoeconomic assessments and market analyses of durables, the availability of other wastes, and end-product uses to identify target applications that have the potential for economic success.

  11. Caractérisation de l'état chimique d'un élément par fluorescence X : l'aluminium dans les zéolithes Characterizing the Chemical State of an Element by X-Ray Fluorescence: Aluminium in Zeolites

    Directory of Open Access Journals (Sweden)

    Freund E.

    2006-11-01

    Full Text Available La fluorescence X est essentiellement connue dans le domaine de l'analyse quantitative, mais c'est aussi une méthode qui permet d'obtenir des informations détaillées sur la structure électronique des éléments. Dans cet article, nous montrons qu'il est possible de mettre au point une technique simple de caractérisation de l'état chimique d'un élément en utilisant de façon conjointe un spectromètre commercial et un programme adapté de traitement des données. Nous avons appliqué cette technique au cas de l'aluminium dans une zéolithe particulière : la mordénite dite à petits pores modifiée par différents traitements. Nous avons ainsi pu classer les solides suivant leur rapport (AI hexa-coordinné/AI tétracoordinné et montrer que le débouchage de la mordénite dite à petits pores est lié à l'extraction d'atomes d'aluminium de la charpente cristalline. X-ray fluorescence is mainly known in the field of qua-titative analysis, but it is also a useful method for obtaining detailed informations about the electronic structure of elements. This article shows that it is possible to develop a simple technique for characterizing the chemical state of an element by combining a commercial spectrometer with a program suited for data processing. This technique has been applied to the case of aluminum in a specific zeolite, ( small portmodernite, modified by various treatments. We were thus able to classify the solids according to the ratio of hexacoordinated AI/tetracoordinated AI and to show that the deblocking of the small portmordenite is linked to the extraction of aluminum atomrs from the crystalline structure.

  12. Research on thin grid materials of lead-acid batteries

    Institute of Scientific and Technical Information of China (English)

    WANG Erdong; SHI Pengfei; GAO Jun

    2006-01-01

    A detailed investigation on Pb-Ca-Sn alloys was made in order to choose suitable grid alloys materials for thin plate lead-acid batteries. The electrochemical performances of alloys were investigated by electrochemical corrosion experiment, scanning electron microscope (SEM), and cyclic voltammetry (CV) test. The results indicate that Pb-Ca-Sn-Bi-Cu alloys can be used to make the grids used for thin grid lead-acid batteries, the content of bismuth has primaryeffects on the corrosion resistance of grid alloys, the composition of alloys plays an important role on batteries performance, and appropriate scale of elements can be choosed to obtain optimal electrochemical performance. The lead-acid batteries using this kind of grid show good performance by cycle life test.

  13. Thermal runaway caused fire and explosion of lithium ion battery

    Science.gov (United States)

    Wang, Qingsong; Ping, Ping; Zhao, Xuejuan; Chu, Guanquan; Sun, Jinhua; Chen, Chunhua

    2012-06-01

    Lithium ion battery and its safety are taken more consideration with fossil energy consuming and the reduction requirement of CO2 emission. The safety problem of lithium ion battery is mainly contributed by thermal runaway caused fire and explosion. This paper reviews the lithium ion battery hazards, thermal runaway theory, basic reactions, thermal models, simulations and experimental works firstly. The general theory is proposed and detailed reactions are summarized, which include solid electrolyte interface decomposition, negative active material and electrolyte reaction, positive active material and electrolyte reaction, electrolyte decomposition, negative active material and binder reaction, and so on. The thermal models or electrochemical-thermal models include one, two and three dimensional models, which can be simulated by finite element method and finite volume method. And then the related prevention techniques are simply summarized and discussed on the inherent safety methods and safety device methods. Some perspectives and outlooks on safety enhancement for lithium ion battery are proposed for the future development.

  14. Valve-regulated lead-acid batteries

    Science.gov (United States)

    Berndt, D.

    Valve-regulated lead-acid (VRLA) batteries with gelled electrolyte appeared as a niche market during the 1950s. During the 1970s, when glass-fiber felts became available as a further method to immobilize the electrolyte, the market for VRLA batteries expanded rapidly. The immobilized electrolyte offers a number of obvious advantages including the internal oxygen cycle which accommodates the overcharging current without chemical change within the cell. It also suppresses acid stratification and thus opens new fields of application. VRLA batteries, however, cannot be made completely sealed, but require a valve for gas escape, since hydrogen evolution and grid corrosion are unavoidable secondary reactions. These reactions result in water loss, and also must be balanced in order to ensure proper charging of both electrodes. Both secondary reactions have significant activation energies, and can reduce the service life of VRLA batteries, operated at elevated temperature. This effect can be aggravated by the comparatively high heat generation caused by the internal oxygen cycle during overcharging. Temperature control of VRLA batteries, therefore, is important in many applications.

  15. CO2 utilization: an enabling element to move to a resource- and energy-efficient chemical and fuel production.

    Science.gov (United States)

    Ampelli, Claudio; Perathoner, Siglinda; Centi, Gabriele

    2015-03-13

    CO(2) conversion will be at the core of the future of low-carbon chemical and energy industry. This review gives a glimpse into the possibilities in this field by discussing (i) CO(2) circular economy and its impact on the chemical and energy value chain, (ii) the role of CO(2) in a future scenario of chemical industry, (iii) new routes for CO(2) utilization, including emerging biotechnology routes, (iv) the technology roadmap for CO(2) chemical utilization, (v) the introduction of renewable energy in the chemical production chain through CO(2) utilization, and (vi) CO(2) as a suitable C-source to move to a low-carbon chemical industry, discussing in particular syngas and light olefin production from CO(2). There are thus many stimulating possibilities offered by using CO(2) and this review shows this new perspective on CO(2) at the industrial, societal and scientific levels.

  16. Computing lifetimes for battery-powered devices

    NARCIS (Netherlands)

    Jongerden, Marijn; Haverkort, Boudewijn

    2010-01-01

    The battery lifetime of mobile devices depends on the usage pattern of the battery, next to the discharge rate and the battery capacity. Therefore, it is important to include the usage pattern in battery lifetime computations. We do this by combining a stochastic workload, modeled as a continuous-ti

  17. BLET:Battery Lifetime Enhancement Technology

    Institute of Scientific and Technical Information of China (English)

    Yong-Ju; Jang; Seongsoo; Lee

    2010-01-01

    <正>In recent years,mobile devices and high-hearth because of the multifunctional,battery capacity has been increased.In this paper,without the overhead by using the battery discharge characteristics,and application of technology to extend the battery life is explained. Experiment H.264 video transmission to take some losses and extended battery life was achieved.

  18. Preparation of calcium stannate by modified wet chemical method

    Institute of Scientific and Technical Information of China (English)

    何则强; 李新海; 刘恩辉; 侯朝辉; 邓凌峰; 胡传跃

    2003-01-01

    A modified wet chemical route for low-temperature synthesis of the calcium stannate CaSnO3, a potentialmaterial for dielectric applications is reported. Firstly, a precursor CaSn(OH)6 was prepared using tin tetrachloride,calcium chloride and sodium hydroxide at room temperature. Then the precursor was annealed at relatively low tem-perature of 600 ℃ to obtain CaSnO3. The phase identification, thermal behavior and surface morphology of the sam-ples were characterized by element analysis, X-ray diffraction (XRD), thermo-gravimetric (TG) analysis and deriva-tive thermo-gravimetric (DTG) analysis, Fourier transform infrared spectroscopy (FTIR) and scanning electron mi-croscopy (SEM) in detail. The results show that CaSnO3 obtained by this method possesses a cubic perovskitestructure with average grain size of 5 μm.

  19. ELEMENTAL MERCURY ADSORPTION BY ACTIVATED CARBON TREATED WITH SULFURIC ACID

    Science.gov (United States)

    The paper gives results of a study of the adsorption of elemental mercury at 125 C by a sulfuric-acid (H2S04, 50% w/w/ solution)-treated carbon for the removal of mercury from flue gas. The pore structure of the sample was characterized by nitrogen (N2) at -196 C and the t-plot m...

  20. Numerical estimation of heat distribution from the implantable battery system of an undulation pump LVAD.

    Science.gov (United States)

    Okamoto, Eiji; Makino, Tsutomu; Nakamura, Masatoshi; Tanaka, Shuji; Chinzei, Tsuneo; Abe, Yusuke; Isoyama, Takashi; Saito, Itsuro; Mochizuki, Shu-ichi; Imachi, Kou; Inoue, Yusuke; Mitamura, Yoshinori

    2006-01-01

    We have been developing an implantable battery system using three series-connected lithium ion batteries having an energy capacity of 1,800 mAh to drive an undulation pump left ventricular assist device. However, the lithium ion battery undergoes an exothermic reaction during the discharge phase, and the temperature rise of the lithium ion battery is a critical issue for implantation usage. Heat generation in the lithium ion battery depends on the intensity of the discharge current, and we obtained a relationship between the heat flow from the lithium ion battery q(c)(I) and the intensity of the discharge current I as q(c)(I) = 0.63 x I (W) in in vitro experiments. The temperature distribution of the implantable battery system was estimated by means of three-dimentional finite-element method (FEM) heat transfer analysis using the heat flow function q(c)(I), and we also measured the temperature rise of the implantable battery system in in vitro experiments to conduct verification of the estimation. The maximum temperatures of the lithium ion battery and the implantable battery case were measured as 52.2 degrees C and 41.1 degrees C, respectively. The estimated result of temperature distribution of the implantable battery system agreed well with the measured results using thermography. In conclusion, FEM heat transfer analysis is promising as a tool to estimate the temperature of the implantable lithium ion battery system under any pump current without the need for animal experiments, and it is a convenient tool for optimization of heat transfer characteristics of the implantable battery system.

  1. A three-dimensional meso-macroscopic model for Li-Ion intercalation batteries

    Science.gov (United States)

    Allu, S.; Kalnaus, S.; Simunovic, S.; Nanda, J.; Turner, J. A.; Pannala, S.

    2016-09-01

    In this paper we present a three-dimensional computational formulation for electrode-electrolyte-electrode system of Li-Ion batteries. The physical consistency between electrical, thermal and chemical equations is enforced at each time increment by driving the residual of the resulting coupled system of nonlinear equations to zero. The formulation utilizes a rigorous volume averaging approach typical of multiphase formulations used in other fields and recently extended to modeling of supercapacitors [1]. Unlike existing battery modeling methods which use segregated solution of conservation equations and idealized geometries, our unified approach can model arbitrary battery and electrode configurations. The consistency of multi-physics solution also allows for consideration of a wide array of initial conditions and load cases. The formulation accounts for spatio-temporal variations of material and state properties such as electrode/void volume fractions and anisotropic conductivities. The governing differential equations are discretized using the finite element method and solved using a nonlinearly consistent approach that provides robust stability and convergence. The new formulation was validated for standard Li-ion cells and compared against experiments. Its scope and ability to capture spatio-temporal variations of potential and lithium distribution is demonstrated on a prototypical three-dimensional electrode problem.

  2. Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries

    Science.gov (United States)

    Shi, Feifei; Song, Zhichao; Ross, Philip N.; Somorjai, Gabor A.; Ritchie, Robert O.; Komvopoulos, Kyriakos

    2016-06-01

    Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural path for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives.

  3. Lead removal and recovery from battery wastewaters by natural zeolite clinoptilolite

    Energy Technology Data Exchange (ETDEWEB)

    Petruzzelli, D.; Pagano, M.; Tiravanti, G. [National Research Council, Bari (Italy). Ist. di Ricerca sulle Acque; Passino, R. [National Research Council, Rome (Italy). Ist. di Ricerca sulle Acque

    1999-05-01

    Technical feasibility of an ion exchange process for removal and recovery of lead present in battery manufacturing wastewaters is demonstrated. In absence of aluminium and ferric species, lead is quantitatively removed and recovered ({approx}90%) from the neutralized wastewaters after elution on the natural zeolite clinoptilolite. Control of pH to 5.5--6 is necessary to minimize degradation of the exchanger material. Throughput volumes exceeding 2,700 bed volumes (BV) (flowrate: F{sub exh} = 10 BV/h) is obtained, when the initial Pb concentration is 4 mg/L, with the metal leakage steadily below the maximum allowable concentration (MAC < 0.2 mgPb/L) set by the EU for discharge in rivers, lakes, coastal seawater. Regeneration of the zeolite is carried out by controlled elution of limited amounts of 1M NaCl, pH 4.5 (40BV, F{sub reg} = 5 BV/h) to minimize in situ precipitation of metals and preserve the zeolite from degradation. From spent regeneration eluate /lead is recovered to the battery manufacturing operations. This latter operation is carried-out by precipitation in the form of hydroxycerussite (basic lead carbonate) or electrolysis as pure metal. In this way the environmental impact is minimized after waste disposal (no hazardous waste formation) and, at the same time, raw materials are recovered to the productive lines of origin (environmental protection and resource conservation). The exhausted mother liquors from lead precipitation operation are recycled to the subsequent zeolite regeneration step, after back-up of the initial regenerant concentration and solution pH.

  4. PRECONDITIONING HIGHER ORDER FINITE ELEMENT SYSTEMS BY ALGEBRAIC MULTIGRID METHOD OF LINEAR ELEMENTS

    Institute of Scientific and Technical Information of China (English)

    Yun-qing Huang; Shi Shu; Xi-jun Yu

    2006-01-01

    We present and analyze a robust preconditioned conjugate gradient method for the higher order Lagrangian finite element systems of a class of elliptic problems. An auxiliary linear element stiffness matrix is chosen to be the preconditioner for higher order finite elements. Then an algebraic multigrid method of linear finite element is applied for solving the preconditioner. The optimal condition number which is independent of the mesh size is obtained. Numerical experiments confirm the efficiency of the algorithm.

  5. Comparative assessment of button cells using a normalized index for potential pollution by heavy metals.

    Science.gov (United States)

    Moreno-Merino, Luis; Jiménez-Hernández, Maria Emilia; de la Losa, Almudena; Huerta-Muñoz, Virginia

    2015-09-01

    Many household batteries worldwide still end up in landfills or are incinerated due to inefficient collection and recycling schemes. Toxic heavy metals from improperly discarded button cells pose a serious risk to human health and the environment, as they can pollute air, soil and water. This paper analyses a series of button cells selected from batteries available on the retail market, and compares their polluting potential. A total of 64 batteries were subjected to chemical analyses of 19 elements - including metals and metalloids - , and energy density measurements. The samples were from four different brands of each of the four most common button cell technologies (alkaline, zinc-air, silver oxide and lithium). An energy-normalized index - the Weighted Potential Pollution Index (WPPI) - was proposed to compare the polluting potential of the different batteries. The higher the battery WPPI score, the greater the content in toxic elements and the lower the energy output. The results of the chemical composition and energy density varied depending on the construction technology of the button cells. However, significant differences in both variables were also found when comparing different brands within the same technology. The differences in WPPI values confirmed the existence of a significant margin to reduce the environmental impact of discarded button cells simply by avoiding the most polluting options. The choice of the battery with the most favourable WPPI produced a reduction in potential pollution of 3-53% for silver oxide batteries, 4-39% for alkaline, 20-28% for zinc-air and 12-26% for lithium. Comparative potential pollution could be assessed when selecting batteries using an energy-normalized index such as WPPI to reduce the environmental impact of improperly disposed button cells.

  6. Observation and Quantification of Nanoscale Processes in Lithium Batteries by Operando Electrochemical (S)TEM

    Energy Technology Data Exchange (ETDEWEB)

    Mehdi, Beata L.; Qian, Jiangfeng; Nasybulin, Eduard; Park, Chiwoo; Welch, David A.; Faller, Roland; Mehta, Hardeep S.; Henderson, Wesley A.; Xu, Wu; Wang, Chong M.; Evans, James E.; Liu, Jun; Zhang, Jiguang; Mueller, Karl T.; Browning, Nigel D.

    2015-03-11

    An operando electrochemical stage for the transmission electron microscope has been configured to form a “Li battery” that is used to quantify the electrochemical processes that occur at the anode during charge/discharge cycling. Of particular importance for these observations is the identification of an image contrast reversal that originates from solid Li being less dense than the surrounding liquid electrolyte and electrode surface. This contrast allows Li to be identified from Li containing compounds that make up the solid-electrolyte interphase (SEI) layer. By correlating images showing the sequence of Li electrodeposition and the evolution of the SEI layer with simultaneously acquired and calibrated cyclic voltammograms (CV), electrodeposition and electrolyte breakdown processes can be quantified directly on the nanoscale. This approach opens up intriguing new possibilities to rapidly visualize and test the electrochemical performance of a wide range of electrode/electrolyte combinations for next generation battery systems.

  7. Reversible and irreversible dilation of lithium-ion battery electrodes investigated by in-situ dilatometry

    Science.gov (United States)

    Sauerteig, Daniel; Ivanov, Svetlozar; Reinshagen, Holger; Bund, Andreas

    2017-02-01

    The technique of electrochemical in-situ dilatometry is applied to study the intercalation induced macroscopic expansion of electrodes for lithium-ion batteries. A full cell setup is used to investigate the expansion under real conditions. This method enables in-situ measurement of expansion under defined pressure, using conventional electrodes, separators and electrolytes. To understand the influence of the microstructure, the swelling behavior of different LiNi1/3 Mn1/3 Co1/3 O2 (NMC) positive electrodes and graphite negative electrodes is measured and systematically analyzed. A theoretical approach for assessment of reversible electrode displacement in a full cell is developed, by using a low number of material specific input parameters. Electrochemical in-situ dilatometry is able to show differences in irreversible dilation depending on electrode design and therefore it is a powerful technique for stability and lifetime assessment.

  8. Lithium plating in lithium-ion batteries investigated by voltage relaxation and in situ neutron diffraction

    Science.gov (United States)

    von Lüders, Christian; Zinth, Veronika; Erhard, Simon V.; Osswald, Patrick J.; Hofmann, Michael; Gilles, Ralph; Jossen, Andreas

    2017-02-01

    In this work, lithium plating is investigated by means of voltage relaxation and in situ neutron diffraction in commercial lithium-ion batteries. We can directly correlate the voltage curve after the lithium plating with the ongoing phase transformation from LiC12 to LiC6 according to the neutron diffraction data during the relaxation. Above a threshold current of C/2 at a temperature of -2 °C, lithium plating increases dramatically. The results indicate that the intercalation rate of deposited lithium seems to be constant, independent of the deposited amount. It can be observed that the amount of plating correlates with the charging rate, whereas a charging current of C/2 leads to a deposited amount of lithium of 5.5% of the charge capacity and a current of 1C to 9.0%.

  9. Periodic Table Target: A Game that Introduces the Biological Significance of Chemical Element Periodicity

    Science.gov (United States)

    Sevcik, Richard S.; McGinty, Ragan L.; Schultz, Linda D.; Alexander, Susan V.

    2008-01-01

    Periodic Table Target, a game for middle school or high school students, familiarizes students with the form of the periodic table and the biological significance of different elements. The Periodic Table Target game board is constructed as a class project, and the game is played to reinforce the content. Students are assigned several elements…

  10. Thermal characteristics of Lithium-ion batteries

    Science.gov (United States)

    Hauser, Dan

    2004-01-01

    Lithium-ion batteries have a very promising future for space applications. Currently they are being used on a few GEO satellites, and were used on the two recent Mars rovers Spirit and Opportunity. There are still problem that exist that need to be addressed before these batteries can fully take flight. One of the problems is that the cycle life of these batteries needs to be increased. battery. Research is being focused on the chemistry of the materials inside the battery. This includes the anode, cathode, and the cell electrolyte solution. These components can undergo unwanted chemical reactions inside the cell that deteriorate the materials of the battery. During discharge/ charge cycles there is heat dissipated in the cell, and the battery heats up and its temperature increases. An increase in temperature can speed up any unwanted reactions in the cell. Exothermic reactions cause the temperature to increase; therefore increasing the reaction rate will cause the increase of the temperature inside the cell to occur at a faster rate. If the temperature gets too high thermal runaway will occur, and the cell can explode. The material that separates the electrode from the electrolyte is a non-conducting polymer. At high temperatures the separator will melt and the battery will be destroyed. The separator also contains small pores that allow lithium ions to diffuse through during charge and discharge. High temperatures can cause these pores to close up, permanently damaging the cell. My job at NASA Glenn research center this summer will be to perform thermal characterization tests on an 18650 type lithium-ion battery. High temperatures cause the chemicals inside lithium ion batteries to spontaneously react with each other. My task is to conduct experiments to determine the temperature that the reaction takes place at, what components in the cell are reacting and the mechanism of the reaction. The experiments will be conducted using an accelerating rate calorimeter

  11. Partitioning of Trace Elements Between Hydrous Minerals and Aqueous Fluids : a Contribution to the Chemical Budget of Subduction Zones

    Science.gov (United States)

    Daniel, I.; Koga, K. T.; Reynard, B.; Petitgirard, S.; Chollet, M.; Simionovici, A.

    2006-12-01

    Subduction zones are powerful chemical engines where the downgoing lithosphere reacts with asthenospheric mantle and produces magmas. Understanding this deep recycling system is a scientific challenge requiring multiple approaches. Among those, it appears that we lack basic information on the composition of the fluid that begins the process of material transfer in subduction zones. Indeed, no pristine fluid sample has yet been collected from this particular environment. Albeit challenging, the alternative would be experimental study of fluids under the appropriate conditions. Consequently, we developed an experimental protocol to measure the concentration of aqueous fluids equilibrated with minerals up to pressures (P) of 5 GPa, at least and temperatures (T) of 550 C. This includes syntheses at high-P and -T conditions, and determination of the fluid composition. Syntheses were performed in a large volume belt-type press at the conditions, 2-5 GPa and ca. 550 C. Oxides or minerals were loaded with water in a gold capsule sealed afterwards. Presence of free fluid during experiments could be confirmed by direct observation of fluid release from the sealed capsule upon puncturing. The composition in trace elements of the fluids that were equilibrated at high-P and -T with minerals was reconstructed from that of the precipitates deposited at the surface of minerals after evaporation of the capsule. The precipitates were dissolved and analyzed by a leaching technique detailed in Koga et al. (2005). Two hydrous minerals of prime interest for subductions were sofar investigated: the high-pressure variety of serpentine, antigorite, and talc. The partitioning coefficients of a series of trace-elements will be presented, as well as their evolution as a function of pressure. Consequences for the composition of the fluids released during the dehydration of hydrous metamorphic minerals will be drawn. Those measurements are unlikely to be feasible at pressures in excess of 5 GPa

  12. Depth locating of elements by the PIXE technique

    Science.gov (United States)

    Lagarde, Gérard; Midy, Pierre; Brissaud, Ivan

    1997-11-01

    We propose here a method to estimate whether two kinds of elements of different atomic numbers are at the same depth in a sample. A PIXE experiment provides the number of X-rays emitted from these elements when hit by a proton beam at two close lying energies. The variation of these numbers versus energy allows one to deduce the desired information on these depths after correcting the effects of atomic numbers. A few examples of applications are presented in order to demonstrate the sensitivity of this procedure.

  13. Lithium-ion batteries

    CERN Document Server

    Yoshio, Masaki; Kozawa, Akiya

    2010-01-01

    This book is a compilation of up-to-date information relative to Li-Ion technology. It provides the reader with a single source covering all important aspects of Li-Ion battery operations. It fills the gap between the old original Li-Ion technology and present state of the technology that has developed into a high state of practice. The book is designed to provide a single source for an up-to-date description of the technology associated with the Li-Ion battery industry. It will be useful to researchers interested in energy conversion for the direct conversion of chemical energy into electrica

  14. Distribution of chemical elements in attic dust as reflection of their geogenic and anthropogenic sources in the vicinity of the copper mine and flotation plant.

    Science.gov (United States)

    Balabanova, Biljana; Stafilov, Trajče; Sajn, Robert; Bačeva, Katerina

    2011-08-01

    The main aim of this article was to assess the atmospheric pollution with heavy metals due to copper mining Bučim near Radoviš, the Republic of Macedonia. The open pit and mine waste and flotation tailings are continually exposed to open air, which leads to winds carrying the fine particles into the atmosphere. Samples of attic dust were examined as historical archives of mine emissions, with the aim of elucidating the pathways of pollution. Dust was collected from the attics of 29 houses, built between 1920 and 1970. Nineteen elements (Ag, Al, As, Ba, Ca, Cd, Co, Cr, Cu, Li, Fe, K, Mg, Mn, Na, Ni, Pb, Sr, and Zn) were analyzed by atomic emission spectrometry with inductively coupled plasma. The obtained values of the investigated elements in attic dust samples were statistically processed using nonparametric and parametric analysis. Factor analysis revealed three factors governing the source of individual chemical elements. Two of them grouping Ca, Li, Mg, Mn, and Sr (Factor 1) and Co, Cr, and Ni (Factor 2) can be characterized as geogenic. The third factor grouping As, Cu, and Pb is anthropogenic and mirrors dust fallout from mining operation and from flotation tailings. Maps of areal deposition were prepared for this group of elements, from which correlation of these anthropogenic born elements was confirmed.

  15. Interface Limited Lithium Transport in Solid-State Batteries.

    Science.gov (United States)

    Santhanagopalan, Dhamodaran; Qian, Danna; McGilvray, Thomas; Wang, Ziying; Wang, Feng; Camino, Fernando; Graetz, Jason; Dudney, Nancy; Meng, Ying Shirley

    2014-01-16

    Understanding the role of interfaces is important for improving the performance of all-solid-state lithium ion batteries. To study these interfaces, we present a novel approach for fabrication of electrochemically active nanobatteries using focused ion beams and their characterization by analytical electron microscopy. Morphological changes by scanning transmission electron microscopy imaging and correlated elemental concentration changes by electron energy loss spectroscopy mapping are presented. We provide first evidence of lithium accumulation at the anode/current collector (Si/Cu) and cathode/electrolyte (LixCoO2/LiPON) interfaces, which can be accounted for the irreversible capacity losses. Interdiffusion of elements at the Si/LiPON interface was also witnessed with a distinct contrast layer. These results highlight that the interfaces may limit the lithium transport significantly in solid-state batteries. Fabrication of electrochemically active nanobatteries also enables in situ electron microscopy observation of electrochemical phenomena in a variety of solid-state battery chemistries.

  16. Capacity fade modelling of lithium-ion battery under cyclic loading conditions

    Science.gov (United States)

    Ashwin, T. R.; Chung, Yongmann M.; Wang, Jihong

    2016-10-01

    A pseudo two-dimensional (P2D) electro-chemical lithium-ion battery model is presented in this paper to study the capacity fade under cyclic charge-discharge conditions. The Newman model [1,2] has been modified to include a continuous solvent reduction reaction responsible for the capacity fade and power fade. The temperature variation inside the cell is accurately predicted using a distributed thermal model coupled with the internal chemical heat generation. The model is further improved by linking the porosity variation with the electrolyte partial molar concentration, thereby proving a stronger coupling between the battery performance and the chemical properties of electrolyte. The solid electrolyte interface (SEI) layer growth is estimated for different cut-off voltages and charging current rates. The results show that the convective heat transfer coefficient as well as the porosity variation influences the SEI layer growth and the battery life significantly. The choice of an electrolyte decides the conductivity and partial molar concentration, which is found to have a strong influence on the capacity fade of the battery. The present battery model integrates all essential electro-chemical processes inside a lithium-ion battery under a strong implicit algorithm, proving a useful tool for computationally fast battery monitoring system.

  17. Determination of the entropy change profile of a cylindrical lithium-ion battery by heat flux measurements

    Science.gov (United States)

    Murashko, K. A.; Mityakov, A. V.; Mityakov, V. Y.; Sapozhnikov, S. Z.; Jokiniemi, J.; Pyrhönen, J.

    2016-10-01

    The popularity of lithium-ion (Li-ion) batteries has increased over the recent years. Because of the strong dependence of the Li-ion battery operation characteristics on temperature, heat generation in the battery has to be taken into account. The entropy change of a Li-ion battery has a significant influence on heat generation, especially at a low C-rate current. Therefore, it is necessary to consider the entropy change profile in the estimation of heat generation. In the paper, a method to determine the entropy change (ΔS) profile by heat flux measurements of a cylindrical Li-ion cell is proposed. The method allows simultaneous measurements of the thermal diffusivity and ΔS of the cylindrical cell. The thermal diffusivity and ΔS measurements are carried out by a gradient heat flux sensor (GHFS). The comparison between the ΔS profile determined by the GHFS method with that obtained using a standard potentiometric method clearly shows that the entropy change measurements could be made by using a GHFS. Even though the uncertainty of the reported method is higher than that of the potentiometric method, a significant decrease in the experiment time compared with the potentiometric method is a major advantage of this method.

  18. Impact of melt migration on the evolution of major and trace element composition in a crystalline mush: Implications for chemical differentiation in the continental crust

    Science.gov (United States)

    Jackson, M.; Solano, J.; Sparks, R. S.; Blundy, J.

    2013-12-01

    Migration of melt through a crystalline mush is common within the continental crust, occurring in magma chambers and lava flows. Mush formation and associated migration of the buoyant melt along grain boundaries is inevitable during melting of initially solid rock, or cooling and crystallisation of magma. Because there is efficient exchange of heat and mass between melt and solid phases, they remain in local thermal and chemical equilibrium. The composition of the melt therefore evolves as it migrates through the mush and, to properly capture this, models are required that include chemical reaction. However, although reactive transport models have been developed for the mantle, none have yet been presented that are applicable to the continental crust. Models developed for the mantle are not directly applicable to the crust, because the initial and boundary conditions are different. We present the first quantitative model of heat, mass and both major and trace element transport in a mush undergoing compaction which accounts for component transport and chemical reaction during melt migration and which is applicable to crustal systems. The model describes the phase behaviour of binary systems (both eutectic and solid solution), with melt and solid composition determined from phase diagrams using the local temperature and bulk composition. Trace element concentration is also determined. The results demonstrate that component transport and chemical reaction generates compositional variation in both major and trace elements that is not captured by existing geochemical models. Even for the simplest case of a homogenous, insulated column that is instantaneously melted then allowed to compact, we find that component transport and reaction leads to spatial variations in major element composition, and produces melt that is more enriched in incompatible elements than predicted by batch melting. In deep crustal hot zones (DCHZ), created by the repeated intrusion of hot, mantle

  19. Theory for flow resistance caused by submerged roughness elements

    NARCIS (Netherlands)

    Huthoff, F.

    2012-01-01

    Herein, a phenomenological theory that unifies the flow resistance caused by a variety of submerged bluff bodies, including cylindrical vegetation, two-dimensional dunes and the roughness elements studied in Schlichting's 1936 experiments, is presented. For the different flow obstructions, scaling

  20. On the Approaching Domain Obtained by Finite Element Method

    Institute of Scientific and Technical Information of China (English)

    邹青松; 李永海

    2002-01-01

    The use of finite element method leads to replacing the initial domain by an approaching domain,Under some appropriate assumptions,we prove that there exists a W1,+∞-diffeomorphism from the original domain to the approaching domain.

  1. ELEMENTAL MERCURY CAPTURE BY ACTIVATED CARBON IN A FLOW REACTOR

    Science.gov (United States)

    The paper gives results of bench-scale experiments in a flow reactor to simulate the entrained-flow capture of elemental mercury (Hgo) using solid sorbents. Adsorption of Hgo by a lignite-based activated carbon (Calgon FGD) was examined at different carbon/mercury (C/Hg) rat...

  2. Quantum confinement of lead titanate nanocrystals by wet chemical method

    Energy Technology Data Exchange (ETDEWEB)

    Kaviyarasu, K., E-mail: kaviyarasuloyolacollege@gmail.com [UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, P O Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), Materials Research Department (MSD), iThemba LABS-National Research Foundation - NRF, 1 Old Faure Road, 7129, P O Box 722, Somerset West, Western Cape Province (South Africa); Manikandan, E., E-mail: maniphysics@gmail.com [Nanosciences African Network (NANOAFNET), Materials Research Department (MSD), iThemba LABS-National Research Foundation - NRF, 1 Old Faure Road, 7129, P O Box 722, Somerset West, Western Cape Province (South Africa); Central Research Laboratory, Sree Balaji Medical College & Hospital, Bharath University, Chrompet, Chennai, Tamil Nadu (India); Nuru, Z.Y. [UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, P O Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), Materials Research Department (MSD), iThemba LABS-National Research Foundation - NRF, 1 Old Faure Road, 7129, P O Box 722, Somerset West, Western Cape Province (South Africa); Maaza, M., E-mail: likmaaz@gmail.com [UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, P O Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), Materials Research Department (MSD), iThemba LABS-National Research Foundation - NRF, 1 Old Faure Road, 7129, P O Box 722, Somerset West, Western Cape Province (South Africa)

    2015-11-15

    Lead Titanate (PbTiO{sub 3)} is a category of the practical semiconductor metal oxides, which is widely applied in various scientific and industrial fields because of its catalytic, optical, and electrical properties. PbTiO{sub 3} nanocrystalline materials have attracted a wide attention due to their unique properties. PbTiO{sub 3} nanocrystals were investigated by X-ray diffraction (XRD) to identify the PbTiO{sub 3} nanocrystals were composed a tetragonal structure. The diameter of a single sphere was around 20 nm and the diameter reached up to 3 μm. The chemical composition of the samples and the valence states of elements were determined by X-ray photoelectron spectroscopy (XPS) in detail. - Highlights: • Single crystalline NSs of PbTiO{sub 3} fabricated by wet chemical method. • PbTiO{sub 3} NSs were uniform and continuous along the long axis. • Tetragonal perovskite structure with the diameter 20 nm and length 3 μm. • XPS spectrum was fitted with Lorentzian function respectively. • The size of the images is also 10 μm × 10 μm.

  3. Progress of all vanadium redox flow batteries

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Aresearch team headed by Prof.ZHANG Huamin from the CAS Dalian Institute of Chemical Physics has made important progress in the research and development of a LED screen demo system powered by vanadium redox flow batteries (VRB).The system has operated continuously for over one year without any malfunction.So far,the total running time is up to 11,000 hours.

  4. Nanostructured PLD-grown gadolinia doped ceria: Chemical and structural characterization by transmission electron microscopy techniques

    DEFF Research Database (Denmark)

    Rodrigo, Katarzyna Agnieszka; Wang, Hsiang-Jen; Heiroth, Sebastian;

    2011-01-01

    The morphology as well as the spatially resolved elemental and chemical characterization of 10 mol% gadolinia doped ceria (CGO10) structures prepared by pulsed laser deposition (PLD) technique are investigated by scanning transmission electron microscopy accompanied with electron energy loss spec...

  5. Soil chemicals properties and wheat genotype impact on micronutrient and toxic elements content in wheat integral flour

    Directory of Open Access Journals (Sweden)

    Krunoslav Karalić

    2012-02-01

    Full Text Available Aim To determine impact of soil chemical properties and different wheat genotypes in Croatia on micronutrient and toxic elements content in wheat integral flour. Methods Research was conducted and soil samples were collected from two different production areas in the Republic of Croatia: Ovčara and Dalj. Besides soil samples, grain samples of four different Croatian wheat genotypes were also collected and analyzed. In total, 40 samples of soil and 40 samples of wheat grain were analysed for total (aqua regia and plant available (EDTA extraction heavy metal content of Fe, Mn, Zn, Cu, Pb, Cd. Results Determined soil pHKCl ranged from 5.63 to 6.25 at Ovčara and from 6.95 to 7.37 at Dalj sampling sites. The highest total concentration of heavy metals in soil were determined for Fe, followed by Mn, Zn, Cu, Pb and the lowest total concentration wasrecorded for Cd. The highest EDTA concentrations in soil were determined for Mn, than followed by Fe, Cu, Pb, and the lowest EDTA concentration was recorded for Cd. The highest concentration in integral wheat flour was found for Fe, than lower for Mn, Zn, Cu, Pb and the lowest concentration was found for Cd. If consumers in Croatia used daily 203 g of bread made of integral flour, they would take 2.31 to 8.44 µg Cd daily, depending on soil and wheat genotype.Conclusion The analysed soil and winter wheat genotypes have significant impact on potential daily intake of toxic and essentialheavy metals by integral flour or bread.

  6. Computing lifetimes for battery-powered devices

    OpenAIRE

    Jongerden, Marijn; Haverkort, Boudewijn

    2010-01-01

    The battery lifetime of mobile devices depends on the usage pattern of the battery, next to the discharge rate and the battery capacity. Therefore, it is important to include the usage pattern in battery lifetime computations. We do this by combining a stochastic workload, modeled as a continuous-time Markov model, with a well-known battery model. For this combined model, we provide new algorithms to efficiently compute the expected lifetime and the distribution and expected value of the deli...

  7. Inorganic chemical composition and chemical reactivity of settled dust generated by the World Trade Center building collapse

    Science.gov (United States)

    Plumlee, Geoffrey S.; Hageman, Philip L.; Lamothe, Paul J.; Ziegler, Thomas L.; Meeker, Gregory P.; Theodorakos, Peter M.; Brownfield, Isabelle; Adams, Monique G.; Swayze, Gregg A.; Hoefen, Todd M.; Taggart, Joseph E.; Clark, Roger N.; Wilson, S.; Sutley, Stephen J.

    2009-01-01

    Samples of dust deposited around lower Manhattan by the September 11, 2001, World Trade Center (WTC) collapse have inorganic chemical compositions that result in part from the variable chemical contributions of concrete, gypsum wallboard, glass fibers, window glass, and other materials contained in the buildings. The dust deposits were also modified chemically by variable interactions with rain water or water used in street washing and fire fighting. Chemical leach tests using deionized water as the extraction fluid show the dust samples can be quite alkaline, due primarily to reactions with calcium hydroxide in concrete particles. Calcium and sulfate are the most soluble components in the dust, but many other elements are also readily leached, including metals such as Al, Sb, Mo Cr, Cu, and Zn. Indoor dust samples produce leachates with higher pH, alkalinity, and dissolved solids than outdoor dust samples, suggesting most outdoor dust had reacted with water and atmospheric carbon dioxide prior to sample collection. Leach tests using simulated lung fluids as the extracting fluid suggest that the dust might also be quite reactive in fluids lining the respiratory tract, resulting in dissolution of some particles and possible precipitation of new phases such as phosphates, carbonates, and silicates. Results of these chemical characterization studies can be used by health scientists as they continue to track and interpret health effects resulting from the short-term exposure to the initial dust cloud and the longer-term exposure to dusts resuspended during cleanup.

  8. On the Necessity of Using Element No.155 in the Chemical Physical Calculations: Again on the Upper Limit in the Periodic Table of Elements

    Directory of Open Access Journals (Sweden)

    Khazan A.

    2010-10-01

    Full Text Available It is shown how the properties of different elements of the Periodic System of Elements can be obtained using the properties of the theoretically predicted heaviest element No.155 (it draws the upper principal limit of the Table, behind which stable elements cannot exist. It is suggested how the properties of element No.155 can be used in the synthesis of superheavy elements. An analysis of nuclear reactions is also produced on the same basis.

  9. In Situ Monitoring of Temperature inside Lithium-Ion Batteries by Flexible Micro Temperature Sensors

    Directory of Open Access Journals (Sweden)

    Pei-Chi Chen

    2011-10-01

    Full Text Available Lithium-ion secondary batteries are commonly used in electric vehicles, smart phones, personal digital assistants (PDA, notebooks and electric cars. These lithium-ion secondary batteries must charge and discharge rapidly, causing the interior temperature to rise quickly, raising a safety issue. Over-charging results in an unstable voltage and current, causing potential safety problems, such as thermal runaways and explosions. Thus, a micro flexible temperature sensor for the in in-situ monitoring of temperature inside a lithium-ion secondary battery must be developed. In this work, flexible micro temperature sensors were integrated into a lithium-ion secondary battery using the micro-electro-mechanical systems (MEMS process for monitoring temperature in situ.

  10. In situ monitoring of temperature inside lithium-ion batteries by flexible micro temperature sensors.

    Science.gov (United States)

    Lee, Chi-Yuan; Lee, Shuo-Jen; Tang, Ming-Shao; Chen, Pei-Chi

    2011-01-01

    Lithium-ion secondary batteries are commonly used in electric vehicles, smart phones, personal digital assistants (PDA), notebooks and electric cars. These lithium-ion secondary batteries must charge and discharge rapidly, causing the interior temperature to rise quickly, raising a safety issue. Over-charging results in an unstable voltage and current, causing potential safety problems, such as thermal runaways and explosions. Thus, a micro flexible temperature sensor for the in in-situ monitoring of temperature inside a lithium-ion secondary battery must be developed. In this work, flexible micro temperature sensors were integrated into a lithium-ion secondary battery using the micro-electro-mechanical systems (MEMS) process for monitoring temperature in situ.

  11. Preparation of nanocomposite γ-Al2O3/polyethylene separator crosslinked by electron beam irradiation for lithium secondary battery

    Science.gov (United States)

    Nho, Young-Chang; Sohn, Joon-Yong; Shin, Junhwa; Park, Jong-Seok; Lim, Yoon-Mook; Kang, Phil-Hyun

    2017-03-01

    Although micro-porous membranes made of polyethylene (PE) offer excellent mechanical strength and chemical stability, they exhibit large thermal shrinkage at high temperature, which causes a short circuit between positive and negative electrodes in cases of unusual heat generation. We tried to develop a new technology to reduce the thermal shrinkage of PE separators by introducing γ-Al2O3 particles treated with coupling agent on PE separators. Nanocomposite γ-Al2O3/PE separators were prepared by the dip coating of polyethylene(PE) separators in γ-Al2O3/poly(vinylidenefluoride-hexafluoropropylene) (PVDF-HFP)/crosslinker (1,3,5-trially-1,3,5-triazine-2,4,6(1 H,3 H,5 H)-trione (TTT) solution with humidity control followed by electron beam irradiation. γ-Al2O3/PVDF-HFP/TTT (95/5/2)-coated PE separator showed the highest electrolyte uptake (157%) and ionic conductivity (1.3 mS/cm). On the basis of the thermal shrinkage test, the nanocomposite γ-Al2O3/PE separators containing TTT irradiated by electron beam exhibited a higher thermal resistance. Moreover, a linear sweep voltammetry test showed that the irradiated nanocomposite γ-Al2O3/PE separators have electrochemical stabilities of up to 5.0 V. In a battery performance test, the coin cell assembled with γ-Al2O3/PVDF-HFP/TTT-coated PE separator showed excellent discharge cycle performance.

  12. Toxic Release Inventory Chemicals by Groupings

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Toxics Release Inventory (TRI) makes available information for more than 600 toxic chemicals that are being used, manufactured, treated, transported, or released...

  13. Clean diffusion coatings by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Warnes, B.M.; Punola, D.C. [Howmet Thermatech Coatings, Whitehall, MI (United States)

    1997-10-01

    An experimental program was undertaken to identify diffusion coating impurities introduced by standard aluminizing processes and to evaluate the impact of those impurities on oxidation resistance of the resultant Pt aluminide coating. IN-738 tabs and foils were platinum-electroplated, and then aluminized using three different processes: high-activity pack cementation, high-activity CVD and low-activity CVD. The results suggest that aluminizing processes which involve aluminum bearing alloys in the coating retort with H{sub 2} or H{sub 2}/HCl gas at high temperature can contaminate the diffusion coating during deposition. CVD low-activity aluminizing (coating gas generated at low temperature outside the coating chamber from 99.999% Al) did not introduce any coating impurities. In addition, the data indicates that harmful impurities from the IN-738 substrate (sulfur, boron and tungsten) and the electroplating process (phosphorus) were removed from the coating during deposition. The CVD low-activity Pt aluminide coating was the `cleanest` in the study, and it exhibited the best high-temperature oxidation resistance of the coatings considered. It can be concluded that trace elements in diffusion coatings from the superalloy substrate and/or the aluminizing process can adversely effect the oxidation resistance of those coatings, and that CVD low-activity aluminizing yields cleaner coatings than other commercially available aluminizing techniques. (orig.) 10 refs.

  14. Models for Battery Reliability and Lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G. H.; Neubauer, J.; Pesaran, A.

    2014-03-01

    Models describing battery degradation physics are needed to more accurately understand how battery usage and next-generation battery designs can be optimized for performance and lifetime. Such lifetime models may also reduce the cost of battery aging experiments and shorten the time required to validate battery lifetime. Models for chemical degradation and mechanical stress are reviewed. Experimental analysis of aging data from a commercial iron-phosphate lithium-ion (Li-ion) cell elucidates the relative importance of several mechanical stress-induced degradation mechanisms.

  15. All-graphene oxide device with tunable supercapacitor and battery behaviour by the working voltage.

    Science.gov (United States)

    Ogata, Chikako; Kurogi, Ruriko; Hatakeyama, Kazuto; Taniguchi, Takaaki; Koinuma, Michio; Matsumoto, Yasumichi

    2016-03-11

    We propose a new type of all-graphene oxide device. Reduced graphene oxide (rGO)/graphene oxide (GO)/rGO functions as both a supercapacitor and a battery, depending on the working voltage. The rGO/GO/rGO operates as a supercapacitor until 1.2 V. At greater than 1.5 V, it behaves as a battery using redox reaction.

  16. Enhanced capture of elemental mercury by bamboo-based sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Zengqiang [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Xiang, Jun, E-mail: xiangjun@mail.hust.edu.cn [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Su, Sheng, E-mail: susheng_sklcc@hotmail.com [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Zeng, Hancai; Zhou, Changsong; Sun, Lushi; Hu, Song; Qiu, Jianrong [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The KI-modified BC has excellent capacity for elemental mercury removal. Black-Right-Pointing-Pointer The chemisorption plays a dominant role for the modified BC materials. Black-Right-Pointing-Pointer The BC-I has strong anti-poisoning ability with the presence of NO or SO{sub 2}. - Abstract: To develop cost-effective sorbent for gas-phase elemental mercury removal, the bamboo charcoal (BC) produced from renewable bamboo and KI modified BC (BC-I) were used for elemental mercury removal. The effect of NO, SO{sub 2} on gas-phase Hg{sup 0} adsorption by KI modified BC was evaluated on a fixed bed reactor using an online mercury analyzer. BET surface area analysis, temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS) were used to determine the pore structure and surface chemistry of the sorbents. The results show that KI impregnation reduced the sorbents' BET surface area and total pore volume compared with that of the original BC. But the BC-I has excellent adsorption capacity for elemental mercury at a relatively higher temperature of 140 Degree-Sign C and 180 Degree-Sign C. The presence of NO or SO{sub 2} could inhibit Hg{sup 0} capture, but BC-I has strong anti-poisoning ability. The specific reaction mechanism has been further analyzed.

  17. A review on separators for lithiumsbnd sulfur battery: Progress and prospects

    Science.gov (United States)

    Deng, Nanping; Kang, Weimin; Liu, Yanbo; Ju, Jingge; Wu, Dayong; Li, Lei; Hassan, Bukhari Samman; Cheng, Bowen

    2016-11-01

    Lithium-sulfur battery is considered as one of high performance batteries of the new generation owing to its extremely high theoretical capacity, energy density, good environmental protection and low cost. These features make it of great significance to serve as the next-generation battery especially in electric vehicles and portable devices. However, the practical application of lithium-sulfur battery is still hindered due to some obstacles including the low electrical and ionic conductivity of elemental sulfur, the discharge product Li2S and the "shuttle effect" caused by the dissolved polysulfide species. In this review, the current trends, fundamental studies and developments for lithium-sulfur battery separators including some modified functional and novel battery separators with the customized structure designs are presented and reviewed. The effects of different selections and the resulting properties of the separators affecting the overall lithium-sulfur battery performances are discussed as well. The current research directions and challenges associated with the use of battery separator and the future perspectives for this class of the battery separator are concluded as well.

  18. Chemical elements in pearl oysters (Paxyodon ponderosus), phytoplankton and estuarine sediments from eastern Amazon (Northern Brazil): Bioaccumulation factors and trophic transfer factors

    Science.gov (United States)

    Vilhena, Maria P. S. P.; Costa, Marcondes L.; Berrêdo, José F.; Paiva, Rosildo S.; Souza, Crisvaldo C. S.

    2016-04-01

    The current study was conducted near Barcarena County, which is a mid-sized urban center where aluminum ore processing industries (bauxite) and Vila do Conde cargo terminal are located. It aims to discuss the bioaccumulation factors as well as factors related to the trophic transfer of chemical elements in water, oyster, phytoplankton and bottom sediments from an estuary in the Brazilian Northern coast. The bioaccumulation factor (BAF), trophic transfer factor (TTF) and biota-sediment-water were used to correlate the contents of chemical elements found in organisms. The sediment, surface water, phytoplankton and pearl oysters chemical composition was analyzed by ICP-OES and ICP-MS. Pearl oysters showed K, Ca, Mg, P, Mn, Fe, Zn, Al, Ba and Pb accumulation, which concentration increase is associated with their diet (phytoplankton). Al concentrations are 14 times higher in pearl oysters (Paxyodon ponderosus), assuming that they are associated with wastewater emissions and with industrialization processes in the area. BAF and BSAF values are 1000 times higher than the metal concentrations in water and bioavailable fraction concentrations. The oyster-phytoplankton trophic transfer factor indicates that P, Ba, Ca, Na, Cd and Zn showed the largest transfers (from 5 to 19). These trophic transfers may be sufficient to cause significant ecotoxicological effects on the region biota.

  19. A method for making a battery

    Energy Technology Data Exchange (ETDEWEB)

    Yamadzaki, K.; Kumano, Y.; Nakanisi, M.; Yamane, T.

    1982-08-09

    A layer of electrolyte which is melted with heating is made by pressing at a pressure of 0.1 to 0.8 tons of force per square centimeter a powder form compound. The inorganic adsorbent is first impregnated with an electrolyte, hardened by cooling and ground. The obtained disk with an interior opening is pressed at high pressure of 0.5 to 3 tons of force per square centimeter with a layer of an agglomerate mass. Elements made from the two layered disk, the anode and the body, have high mechanical strength. The internal resistance in the element is reduced. The battery has high discharge characteristics.

  20. Parent Stars of Extrasolar Planets. VIII. Chemical Abundances for 18 Elements in 31 Stars

    CERN Document Server

    Gonzalez, Guillermo

    2007-01-01

    We present the results of detailed spectroscopic abundance analyses for 18 elements in 31 nearby stars with planets. The resulting abundances are combined with other similar studies of nearby stars with planets and compared to a sample of nearby stars without detected planets. We find some evidence for abundance differences between these two samples for Al, Si and Ti. Some of our results are in conflict with a recent study of stars with planets in the SPOCS database. We encourage continued study of the abundance patterns of stars with planets to resolve these discrepancies.

  1. Recovery of manganese oxides from spent alkaline and zinc-carbon batteries. An application as catalysts for VOCs elimination.

    Science.gov (United States)

    Gallegos, María V; Falco, Lorena R; Peluso, Miguel A; Sambeth, Jorge E; Thomas, Horacio J

    2013-06-01

    Manganese, in the form of oxide, was recovered from spent alkaline and zinc-carbon batteries employing a biohydrometallurgy process, using a pilot plant consisting in: an air-lift bioreactor (containing an acid-reducing medium produced by an Acidithiobacillus thiooxidans bacteria immobilized on elemental sulfur); a leaching reactor (were battery powder is mixed with the acid-reducing medium) and a recovery reactor. Two different manganese oxides were recovered from the leachate liquor: one of them by electrolysis (EMO) and the other by a chemical precipitation with KMnO4 solution (CMO). The non-leached solid residue was also studied (RMO). The solids were compared with a MnOx synthesized in our laboratory. The characterization by XRD, FTIR and XPS reveal the presence of Mn2O3 in the EMO and the CMO samples, together with some Mn(4+) cations. In the solid not extracted by acidic leaching (RMO) the main phase detected was Mn3O4. The catalytic performance of the oxides was studied in the complete oxidation of ethanol and heptane. Complete conversion of ethanol occurs at 200°C, while heptane requires more than 400°C. The CMO has the highest oxide selectivity to CO2. The results show that manganese oxides obtained using spent alkaline and zinc-carbon batteries as raw materials, have an interesting performance as catalysts for elimination of VOCs.

  2. Reduced graphene oxide by chemical graphitization.

    Science.gov (United States)

    Moon, In Kyu; Lee, Junghyun; Ruoff, Rodney S; Lee, Hyoyoung

    2010-09-21

    Reduced graphene oxides (RG-Os) have attracted considerable interest, given their potential applications in electronic and optoelectronic devices and circuits. However, very little is known regarding the chemically induced reduction method of graphene oxide (G-O) in both solution and gas phases, with the exception of the hydrazine-reducing agent, even though it is essential to use the vapour phase for the patterning of hydrophilic G-Os on prepatterned substrates and in situ reduction to hydrophobic RG-Os. In this paper, we report a novel reducing agent system (hydriodic acid with acetic acid (HI-AcOH)) that allows for an efficient, one-pot reduction of a solution-phased RG-O powder and vapour-phased RG-O (VRG-O) paper and thin film. The reducing agent system provided highly qualified RG-Os by mass production, resulting in highly conducting RG-O(HI-AcOH). Moreover, VRG-O(HI-AcOH) paper and thin films were prepared at low temperatures (40 °C) and were found to be applicable to flexible devices. This one-pot method is expected to advance research on highly conducting graphene platelets.

  3. Cell-mediated mutagenesis by chemical carcinogens

    Energy Technology Data Exchange (ETDEWEB)

    Huberman, E.; Langenbach, R.

    1978-01-01

    The cell-mediated mutation system, with the proper choice of metabolizing cells, can be used to detect the mutagenic activities of different classes of chemical carcinogens. When fibroblastic cells were used as the metabolizing cells, a correlation between the in vivo carcinogenic activity and the in vitro mutagenic activity of 11 aromatic polycyclic hydrocarbons was observed. When primary liver cells were used as the metabolizing cells, three known liver carcinogens were demonstrated to be mutagenic by the cell-mediated assay, while two non-carcinogenic analogues were not mutagenic. These results from the cell-mediated system suggest that the reactive intermediates of the carcinogens are stable enough to be transferred from the metabolizing cells to the V79 cells. The cell-mediated mutagenesis system is a simple in vitro assay which may simulate the in vivo situation. It was concluded that this approach could be extended to the co-cultivation of cells from other organs or tissues with mutable mammalian cells.

  4. Levels and spatial distribution of airborne chemical elements in a heavy industrial area located in the north of Spain.

    Science.gov (United States)

    Lage, J; Almeida, S M; Reis, M A; Chaves, P C; Ribeiro, T; Garcia, S; Faria, J P; Fernández, B G; Wolterbeek, H T

    2014-01-01

    The adverse health effects of airborne particles have been subjected to intense investigation in recent years; however, more studies on the chemical characterization of particles from pollution emissions are needed to (1) identify emission sources, (2) better understand the relative toxicity of particles, and (3) pinpoint more targeted emission control strategies and regulations. The main objective of this study was to assess the levels and spatial distribution of airborne chemical elements in a heavy industrial area located in the north of Spain. Instrumental and biomonitoring techniques were integrated and analytical methods for k0 instrumental neutron activation analysis and particle-induced x-ray emission were used to determine element content in aerosol filters and lichens. Results indicated that in general local industry contributed to the emissions of As, Sb, Cu, V, and Ni, which are associated with combustion processes. In addition, the steelwork emitted significant quantities of Fe and Mn and the cement factory was associated with Ca emissions. The spatial distribution of Zn and Al also indicated an important contribution of two industries located outside the studied area.

  5. Polyvinyl Chloride/Silica Nanoporous Composite Separator for All-Vanadium Redox Flow Battery Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xiaoliang; Nie, Zimin; Luo, Qingtao; Li, Bin; Sprenkle, Vincent L.; Wang, Wei

    2013-04-22

    Redox flow batteries (RFBs) are capable of reversible conversion between electricity and chemical energy. Potential RFB applications resolve around mitigating the discrepancy between electricity production and consumption to improve the stability and utilization of the power infrastructure and tackling the intermittency of renewables such as photovoltaics or wind turbines to enable their reliable integration [1, 2]. Because the energy is stored in externally contained liquid electrolytes and the energy conversion reactions take place at the electrodes, RFBs hold a unique capability to separate energy and power and thus possess considerable design flexibility to meet either energy management driven or power rating oriented grid applications, which is considered to be a unparalleled advantage over conventional solid-state secondary batteries [3]. Other advantages of RFBs include fast response to load changes, high round-trip efficiency, long calender and cycle lives, safe operations, tolerance to deep discharge, etc. [4]. Among various flow battery chemistries, all-vanadium redox flow battery (VRB) was invented by Maria Skyllas-Kazacos at the University of New South Wales in the 1980s [5, 6] and have attracted substantial attention in both research and industrial communities today [7, 8]. A well-recognized advantage that makes VRB stands out among other redox chemistries is the reduced crossover contamination ascribed to employing four different oxidation states of the same vanadium element as the two redox couples. Recently, great progress has led to remarkably improved energy density of VRB by using sulfuric-chloric mixed acid supporting electrolytes that were stable at 2.5M vanadium and had wider operational temperature window of -5~50oC [9], compared with the traditional sulfuric acid VRB system [10].

  6. Finite Element Based Physical Chemical Modeling of Corrosion in Magnesium Alloys

    Directory of Open Access Journals (Sweden)

    Venkatesh Vijayaraghavan

    2017-03-01

    Full Text Available Magnesium alloys have found widespread applications in diverse fields such as aerospace, automotive, bio-medical and electronics industries due to its relatively high strength-to-weight ratio. However, stress corrosion cracking of these alloys severely restricts their applications in several novel technologies. Hence, it will be useful to identify the corrosion mechanics of magnesium alloys under external stresses as it can provide further insights on design of these alloys for critical applications. In the present study, the corrosion mechanics of a commonly used magnesium alloy, AZ31, is studied using finite element simulation with a modified constitutive material damage model. The data obtained from the finite element modeling were further used to formulate a mathematical model using computational intelligence algorithm. Sensitivity and parametric analysis of the derived model further corroborated the mechanical response of the alloy in line with the corrosion physics. The proposed approach is anticipated to be useful for materials engineers for optimizing the design criteria for magnesium alloys catered for high temperature applications.

  7. Micro-PIXE for the quantitative imaging of chemical elements in single cells

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, R. [Univ. Bordeaux, CENBG, Gradignan (France); CNRS, IN2P3, CENBG, Gradignan (France)

    2013-07-01

    Full text: The knowledge of the intracellular distribution of biological relevant metals is important to understand their mechanisms of action in cells, either for physiological, toxicological or pathological processes. However, the direct detection of trace metals in single cells is a challenging task that requires sophisticated analytical developments. The aim of this seminar will be to present the recent achievements in this field using micro-PIXE analysis. The combination of micro-PIXE with RBS (Rutherford Backscattering Spectrometry) and STIM (Scanning Transmission lon Microscopy) allows the quantitative determination of trace metal content within sub-cellular compartments. The application of STlM analysis will be more specifically highlighted as it provides high spatial resolution imaging (<200 nm) and excellent mass sensitivity (<0.1 ng). Application of the STIM-PIXE-RBS methodology is absolutely needed when organic mass loss appears during PIXE-RBS irradiation. This combination of STIM-PIXE-RBS provides fully quantitative determination of trace element content, expressed in μg/g, which is a quite unique capability for micro-PIXE compared to other micro-analytical methods such as the electron and synchrotron X-ray fluorescence or the techniques based on mass spectrometry. Examples of micro-PIXE studies for subcellular imaging of trace elements in the various fields of interest will be presented such as metal-based toxicology, pharmacology, and neuro degeneration [1] R. Ortega, G. Devés, A. Carmona. J. R. Soc. Interface, 6, (2009) S649-S658. (author)

  8. Finite element analysis of three dimensional crack growth by the use of a boundary element sub model

    DEFF Research Database (Denmark)

    Lucht, Tore

    2009-01-01

    A new automated method to model non-planar three dimensional crack growth is proposed which combines the advantages of both the boundary element method and the finite element method. The proposed method links the two methods by a submodelling strategy in which the solution of a global finite...... element model containing an approximation of the crack is interpolated to a much smaller boundary element model containing a fine discretization of the real crack. The method is validated through several numerical comparisons and by comparison to crack growth measured in a test specimen for an engineering...

  9. On-line elemental analysis of fossil fuel process streams by inductively coupled plasma spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Chisholm, W.P.

    1995-06-01

    METC is continuing development of a real-time, multi-element plasma based spectrometer system for application to high temperature and high pressure fossil fuel process streams. Two versions are under consideration for development. One is an Inductively Coupled Plasma system that has been described previously, and the other is a high power microwave system. The ICP torch operates on a mixture of argon and helium with a conventional annular swirl flow plasma gas, no auxiliary gas, and a conventional sample stream injection through the base of the plasma plume. A new, demountable torch design comprising three ceramic sections allows bolts passing the length of the torch to compress a double O-ring seal. This improves the reliability of the torch. The microwave system will use the same data acquisition and reduction components as the ICP system; only the plasma source itself is different. It will operate with a 750-Watt, 2.45 gigahertz microwave generator. The plasma discharge will be contained within a narrow quartz tube one quarter wavelength from a shorted waveguide termination. The plasma source will be observed via fiber optics and a battery of computer controlled monochromators. To extract more information from the raw spectral data, a neural net computer program is being developed. This program will calculate analyte concentrations from data that includes analyte and interferant spectral emission intensity. Matrix effects and spectral overlaps can be treated more effectively by this method than by conventional spectral analysis.

  10. Physical-Chemical Characterization of Nanodispersed Powders Produced by a Plasma-Chemical Technique

    Institute of Scientific and Technical Information of China (English)

    M. GEORGIEVA; G. VISSOKOV; Iv. GRANCHAROV

    2007-01-01

    This article presents a review on the physical-chemical properties and characteristics of plasma-chemically produced nanodispersed powders (NDP), such as metals, oxides, nitrides, carbides, and catalysts. The plasma-chemical preparation of the powders was carried out in thermal plasma (TP) created by means of high-current electric arcs, plasma jets, high-frequency (HF) discharges, etc. We also discuss certain properties and characteristics of the NDPs, which are determined largely by the conditions of preparation.

  11. Synthesis of Co-Al-Cl LDH by cathodic material reprocessing from cellular phone batteries

    Energy Technology Data Exchange (ETDEWEB)

    Amaral, Fabio Augusto do; Machado, Erica Oliveira; Freitas, Leonardo Luis de; Santana, Laiane Kalita; Canobre, Sheila Cristina, E-mail: fabioamaral@yahoo.com.br, E-mail: fabioamaral@iqufu.ufu.br [Universidade Federal de Uberlandia (UFU/LAETE), (Brazil). Inst. de Quimica. Lab. de Armazenamento de Energia e Tratamento de Efluente

    2014-08-15

    The aim of this paper was the recovering of the cathodic material from discarded lithium ion batteries for obtainment of the lamellar double hydroxides (LDHs) by the co-precipitation method at variable pH in HCl and H{sub 2}O{sub 2} 1:1 (v/v) acid solution containing Co and Al (extracted from cathodic material composed of LiCoO{sub 2} and aluminum foil). These metals were precipitated in LiOH at pH 9 or 11, or NH{sub 4}OH at pH 9 and submitted to the hydrothermal treatment (HT) to improve the structural organization of the LDHs lamellae. After precipitation, the resulting solids were structurally characterized by XRD for phase identification and calculation of the unit cell parameter, thermally by TGA for the identification of the mass loss and morphologically by SEM. The sample obtained by precipitation with LiOH at pH 11 / hydrothermal treatment showed diffraction peaks similar to hydrotalcite, morphological and thermal characteristics similar to the pattern Co-Al-Cl LDH obtained by co-precipitation at constant pH 8. (author)

  12. Nanostructured Thin Film Synthesis by Aerosol Chemical Vapor Deposition for Energy Storage Applications

    Science.gov (United States)

    Chadha, Tandeep S.

    Renewable energy sources offer a viable solution to the growing energy demand while mitigating concerns for greenhouse gas emissions and climate change. This has led to a tremendous momentum towards solar and wind-based energy harvesting technologies driving efficiencies higher and costs lower. However, the intermittent nature of these energy sources necessitates energy storage technologies, which remain the Achilles heel in meeting the renewable energy goals. This dissertation focusses on two approaches for addressing the needs of energy storage: first, targeting direct solar to fuel conversion via photoelectrochemical water-splitting and second, improving the performance of current rechargeable batteries by developing new electrode architectures and synthesis processes. The aerosol chemical vapor deposition (ACVD) process has emerged as a promising single-step approach for nanostructured thin film synthesis directly on substrates. The relationship between the morphology and the operating parameters in the process is complex. In this work, a simulation based approach has been developed to understand the relationship and acquire the ability of predicting the morphology. These controlled nanostructured morphologies of TiO2 , compounded with gold nanoparticles of various shapes, are used for solar water-splitting applications. Tuning of light absorption in the visible-light range along with reduced electron-hole recombination in the composite structures has been demonstrated. The ACVD process is further extended to a novel single-step synthesis of nanostructured TiO2 electrodes directly on the current collector for applications as anodes in lithium-ion batteries, mainly for electric vehicles and hybrid electric vehicles. The effect of morphology of the nanostructures has been investigated via experimental studies and electrochemical transport modelling. Results demonstrate the exceptional performance of the single crystal one-dimensional nanostructures over granular

  13. Elements of a new climate agreement by 2015

    Energy Technology Data Exchange (ETDEWEB)

    Holm Olsen, K.; Fenhann, J.; Luetken, S.

    2013-06-15

    This year's Perspectives from UNEP and UNEP Risoe Centre in collaboration with the Global Green Growth Institute (GGGI) focuses on the elements of a new climate agreement by 2015 that will contribute to achieve the 2 deg. C limit for global warming. The first paper in this publication frames the global mitigation challenge based on the UNEP Emissions Gap Report 2012. The five other articles address key elements of a new climate agreement; emissions from international aviation, a vision for carbon markets up to 2020 and beyond, how green growth strategies can address the emissions gap, redesign of a REDD+ mechanism in response to the crisis of global deforestation and how NAMAs in Southern Africa can reconcile the gap between local and global objectives for development and climate change mitigation. The Perspectives series seeks to inspire policy- and decision makers by communicating the diverse insights and visions of leading actors in the arena of low carbon development in developing countries. (Author)

  14. Monash Chemical Yields Project (Monχey) Element production in low- and intermediate-mass stars

    Science.gov (United States)

    Doherty, Carolyn; Lattanzio, John; Angelou, George; Campbell, Simon W.; Church, Ross; Constantino, Thomas; Cristallo, Sergio; Gil-Pons, Pilar; Karakas, Amanda; Lugaro, Maria; Stancliffe, Richard

    The Monχey project will provide a large and homogeneous set of stellar yields for the low- and intermediate- mass stars and has applications particularly to galactic chemical evolution modelling. We describe our detailed grid of stellar evolutionary models and corresponding nucleosynthetic yields for stars of initial mass 0.8 M⊙ up to the limit for core collapse supernova (CC-SN) ~ 10 M⊙. Our study covers a broad range of metallicities, ranging from the first, primordial stars (Z = 0) to those of super-solar metallicity (Z = 0.04). The models are evolved from the zero-age main-sequence until the end of the asymptotic giant branch (AGB) and the nucleosynthesis calculations include all elements from H to Bi. A major innovation of our work is the first complete grid of heavy element nucleosynthetic predictions for primordial AGB stars as well as the inclusion of extra-mixing processes (in this case thermohaline) during the red giant branch. We provide a broad overview of our results with implications for galactic chemical evolution as well as highlight interesting results such as heavy element production in dredge-out events of super-AGB stars. We briefly introduce our forthcoming web-based database which provides the evolutionary tracks, structural properties, internal/surface nucleosynthetic compositions and stellar yields. Our web interface includes user- driven plotting capabilities with output available in a range of formats. Our nucleosynthetic results will be available for further use in post processing calculations for dust production yields.

  15. Element Abundances in a Gas-rich Galaxy at z = 5: Clues to the Early Chemical Enrichment of Galaxies

    CERN Document Server

    Morrison, Sean; Som, Debopam; DeMarcy, Bryan; Quiret, Samuel; Peroux, Celine

    2016-01-01

    Element abundances in high-redshift quasar absorbers offer excellent probes of the chemical enrichment of distant galaxies, and can constrain models for population III and early population II stars. Recent observations indicate that the sub-damped Lyman-alpha (sub-DLA) absorbers are more metal-rich than the damped Lyman-alpha (DLA) absorbers at redshifts 0$$4.7. However, only 3 DLAs at $z$$>$4.5 and no sub-DLAs at $z$$>$3.5 have "dust-free" metallicity measurements of undepleted elements. We report the first measurement of element abundances in a sub-DLA at $z$=5.0, using Keck HIRES and ESI data. We obtain fairly robust abundances of C, O, Si, and Fe, using lines outside the Lyman-alpha forest. We find this absorber to be metal-poor, with [O/H]=$-2.02$$\\pm$0.12, which is $>$5$\\sigma$ below the level expected from an extrapolation of the trend for $z$$<$3.5 sub-DLAs. The C/O ratio is $1.7^{+0.4}_{-0.3}$ times lower than in the Sun. More strikingly, Si/O is $3.0^{+0.6}_{-0.5}$ times lower than in the Sun, wh...

  16. Economical and eco-friendly recycling of used dry batteries for synthesis of graphene oxide by sheer exfoliation in presence of SDS

    Science.gov (United States)

    Kochrekar, Sachin; Agharkar, Mahesh; Salgaonkar, Manjunath; Gharge, Mrunal; Hidouri, Slah; Azeez, Musibau A.

    2015-06-01

    Graphene is a two-dimensional form of graphite that has attracted great curiosity for its novel physical properties. A key challenge that has emerged is how to create large amounts of graphene at low cost. The purpose of this Paper is to explore a new method to exfoliate graphite extracted from used dry battery in a small scale blender; in presence of SDS surfactant to synthesize graphene oxide, which can be then reduced to graphene. Quantity of SDS required is extremely less (1/10th) of graphite, and it replaces several steps and chemicals such as KMnO4, H2O2, H2SO4 and NaNO3. In this paper, we present the new process and preliminary characterization of synthesized graphene oxide by Raman and UV-Vis absorbance spectroscopy and ATR-IR spectroscopy.

  17. Rare earth elements as a by-catch of sedimentary deposits. Exploration program of rare earth elements; Selten Erd Elemente als Beifang sedimentaerer Lagerstaetten. Erkundungsprogramm Selten Erd Elemente

    Energy Technology Data Exchange (ETDEWEB)

    Linhardt, E.; Gebhardt, A. (comps.)

    2014-02-15

    The increasing demand for rare earth elements (REE) in the field of ''green technologies'' on the one hand and the shortage of raw materials on the world markets on the other hand confronted also Bavaria as an industrial location with growing supply problems in these ''high tech raw materials''. The aim of exploration was the clarification of the feedstock REE potential of heavy mineral concentrates which are obtained in the industrial extraction and processing of sand and kaolin in existing extraction operations in northern Bavaria as by catch and are potentially winnable or marketable. The in-depth investigation enabled the potential of found rare earth elements and other high-tech metal oxides that can be classified as very likely find it in terms of an economic recovery. [German] Der zunehmende Bedarf an Selten Erd Elementen (SEE) im Bereich der ''Gruenen Technologien'' zum Einen sowie die Rohstoffverknappung auf den Weltmaerkten zum Anderen konfrontiert auch Bayern als Industriestandort mit wachsenden Versorgungsproblemen bei diesen ''high tech-Grundstoffen''. Ziel der Erkundung war die Klaerung des rohstofflichen SEE-Potenzials von Schwermineralkonzentraten, die bei der grosstechnischen Gewinnung und Aufbereitung von Sand und Kaolin in vorhandenen Gewinnungsbetrieben Nordbayerns als Beifang anfallen und potenziell gewinn- bzw. vermarktbar sind. Im Zuge der Untersuchung konnten nutzbare Potenziale von Selten Erd Elementen und anderen high-tech - Metalloxiden gefunden werden, die sehr wahrscheinlich als fuendig im Hinblick auf eine wirtschaftliche Gewinnung eingestuft werden koennen.

  18. COARSE-MESH-ACCURACY IMPROVEMENT OF BILINEAR Q4-PLANE ELEMENT BY THE COMBINED HYBRID FINITE ELEMENT METHOD

    Institute of Scientific and Technical Information of China (English)

    谢小平; 周天孝

    2003-01-01

    The combined hybrid finite element method is of an intrinsic mechanism of enhancing coarse-mesh-accuracy of lower order displacement schemes. It was confirmed that the combined hybrid scheme without energy error leads to enhancement of accuracy at coarse meshes, and that the combination parameter plays an important role in the enhancement. As an improvement of conforming bilinear Q4-plane element, the combined hybrid method adopted the most convenient quadrilateral displacements-stress mode, i. e.,the mode of compatible isoparametric bilinear displacements and pure constant stresses. By adjusting the combined parameter, the optimized version of the combined hybrid element was obtained and numerical tests indicated that this parameter-adjusted version behaves much better than Q4-element and is of high accuracy at coarse meshes. Due to elimination of stress parameters at the elemental level, this combined hybrid version is of the same computational cost as that of Q4 -element.

  19. Chemical composition of the ore and occurrence state of the elements in Jingbaoshan platinum- palladium deposit

    Institute of Scientific and Technical Information of China (English)

    SONG Huanbin; HE Mingqin; ZHANG Shangzhong; YI Fenghuang

    2008-01-01

    The Jingbaoshan platinum-palladium deposit is China's largest independent PGM (platinum-group metals) deposit so far discovered. There are eleven kinds of useful components in the ore: Pt, Pd, Os, Ir, Ru, Rh, Au, Ag, Cu, Ni, and Co. The platinum-group elements, gold and silver occur in the form of minerals in ores. twenty-five kinds of precious metal minerals have been found, of which twenty one belong to the platinum-group minerals. The minerals are very small in grain size. Copper occurs mainly as copper sulfide with a small amount of free copper oxide, and the beneficiated copper accounts for 95.21%. Nickel occurs mainly as nickel sulfide, and some nickel silicate and nickel oxide occur in the ore. The beneficiated nickel accounts for 72.03%. Cobalt occurs mainly as cobalt sulfide, and there are some cobalt oxide and other kinds of cobalt. The beneficiated cobalt accounts for 77.58%.

  20. Synthesis, characterization and modification of LiFePO4 by doping with platinum and palladium for lithium-ion batteries

    Science.gov (United States)

    Talebi-Esfandarani, Majid

    presence of Pt in the electrode. The platinum element can act as a stabilizing point of the crystal structure during the charge/discharge process. It contributes to the improvement of the redox reaction rate with the increase of the specific surface area of the composite electrode. LiFe0.96Pt0.04PO4/C electrode exhibited homogeneous small particles which might facilitate the Li+ ions diffusion rate. The results show that the chemical and structural properties and electrochemical performances of Pd and Pt doped LiFePO4/C based electrodes to obtain LiFe1-xPdxPO4/C and LiFe1-xPt xPO4/C as Li-ion cathodes are significantly informed by the method of preparation of the materials and the doping element.

  1. Polyvinylidene fluoride membrane by novel electrospinning system for separator of Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Cuiru [Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China); Jia, Zhidong; Guan, Zhicheng; Wang, Liming [Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China); Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China)

    2009-04-01

    The remarkable characteristics of nanofibers mats electrospun are large surface area to volume ratio and high porosity, which are crucial to increase the ionic conductivity of membrane full of liquid electrolyte, in this aspect, electrospinning is prior to the other methods, such as dry method, wet method, etc. Therefore, fabricating the separator of Li-ion batteries by electrospinning is potential and promising. The PVDF membranes were fabricated by electrospinning. The experiment demonstrated that the main deficiency in the fabricating separators process by electrospinning was low mechanical property, which induced partial short circuits inside the cells. Several methods were presented to enhance the mechanical strength. The experiments demonstrated that the higher the solution concentration was, the stronger the mechanical strength was, and the higher the voltage was, the stronger the mechanical strength was. Additionally, the spherical hat collection target instead of conditional plane target was applied in the electrospinning system, as a result, the thickness of the membrane was more uniform and the fiber diameter was also more uniform. Therefore, the charge and discharge capacity of the coin type cell composed of the separator collected by spherical hat target exceeded the plane target, and the electrospinning separators exceeded the commercial polypropylene separator. (author)

  2. Polyvinylidene fluoride membrane by novel electrospinning system for separator of Li-ion batteries

    Science.gov (United States)

    Yang, Cuiru; Jia, Zhidong; Guan, Zhicheng; Wang, Liming

    The remarkable characteristics of nanofibers mats electrospun are large surface area to volume ratio and high porosity, which are crucial to increase the ionic conductivity of membrane full of liquid electrolyte, in this aspect, electrospinning is prior to the other methods, such as dry method, wet method, etc. Therefore, fabricating the separator of Li-ion batteries by electrospinning is potential and promising. The PVDF membranes were fabricated by electrospinning. The experiment demonstrated that the main deficiency in the fabricating separators process by electrospinning was low mechanical property, which induced partial short circuits inside the cells. Several methods were presented to enhance the mechanical strength. The experiments demonstrated that the higher the solution concentration was, the stronger the mechanical strength was, and the higher the voltage was, the stronger the mechanical strength was. Additionally, the spherical hat collection target instead of conditional plane target was applied in the electrospinning system, as a result, the thickness of the membrane was more uniform and the fiber diameter was also more uniform. Therefore, the charge and discharge capacity of the coin type cell composed of the separator collected by spherical hat target exceeded the plane target, and the electrospinning separators exceeded the commercial polypropylene separator.

  3. Battery energy storage technologies

    Science.gov (United States)

    Anderson, Max D.; Carr, Dodd S.

    1993-03-01

    Battery energy storage systems, comprising lead-acid batteries, power conversion systems, and control systems, are used by three main groups: power generating utilities, power distributing utilities, and major power consumers (such as electric furnace foundries). The principal advantages of battery energy storage systems to generating utilities include load leveling, frequency control, spinning reserve, modular construction, convenient siting, no emissions, and investment deferral for new generation and transmission equipment. Power distributing utilities and major power consumers can avoid costly demand changes by discharging their batteries at peak periods and then recharging with lower cost off-peak power (say, at night). Battery energy storage systems are most cost effective when designed for discharge periods of less than 5 h; other systems (for example, pumped water storage) are better suited for longer discharges. It is estimated that by the year 2000 there will be a potential need for 4000 MW of battery energy storage. New construction of five plants totaling 100 MW is presently scheduled for completion by the Puerto Rico Electric Power Authority between 1992 and 1995.

  4. Thermal battery degradation mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Missert, Nancy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brunke, Lyle Brent [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Diffuse reflectance IR spectroscopy (DRIFTS) was used to investigate the effect of accelerated aging on LiSi based anodes in simulated MC3816 batteries. DRIFTS spectra showed that the oxygen, carbonate, hydroxide and sulfur content of the anodes changes with aging times and temperatures, but not in a monotonic fashion that could be correlated to phase evolution. Bands associated with sulfur species were only observed in anodes taken from batteries aged in wet environments, providing further evidence for a reaction pathway facilitated by H2S transport from the cathode, through the separator, to the anode. Loss of battery capacity with accelerated aging in wet environments was correlated to loss of FeS2 in the catholyte pellets, suggesting that the major contribution to battery performance degradation results from loss of active cathode material.

  5. Diagenetic uptake of rare earth elements by conodont apatite

    Science.gov (United States)

    Zhang, L.; Algeo, T. J.; Cao, L.; Zhao, L.; Chen, Z. Q.; Li, Z.

    2015-12-01

    The rare earth element (REE) composition of bioapatite has long been used as a proxy for ancient seawater chemistry and paleomarine environmental reconstruction, based on the assumption of preservation of a hydrogenous (seawater-derived) REE signal. Recent work, however, has begun to question the provenance of REEs in conodonts, emphasizing the importance of REEs released by the lithogenous fraction of the sediment and subsequently adsorbed onto conodont apatite in the burial environment. Here, we investigate patterns of REE and trace-element abundance in conodonts and their host sediments from the Early to Late Ordovician Huanghuachang and Chenjiahe sections of Hubei Province, South China. Several lines of evidence indicate that REEs in the conodont samples were acquired mainly from clay minerals in the host sediment during burial diagenesis: (1) REEs in conodonts show a strong positive correlation to Th and other lithogenic elements; (2) conodonts and whole-rock samples show general patterns of REE and trace-element enrichment that are highly similar to each other and bear no resemblance to seawater elemental concentrations; (3) similar patterns are observed in Triassic conodonts and whole-rock samples; and (4) Y/Ho ratios in conodonts are mostly 90% of REEs from lithogenous sources. Conodonts show pronounced middle rare earth element (MREE) enrichment, a pattern that is unambiguously of diagenetic origin owing to its association with lower Y/Ho ratios. With increasing MREE enrichment of conodont samples, U concentrations and LaN/YbN ratios shift from high to low, and Mn concentrations from low to high. These patterns suggest that conodont diagenesis was initiated at shallow burial depths under suboxic conditions (i.e., in the zone of Mn(IV) and Fe(III) reduction) but continued at greater burial depths, with most acquisition of secondary REEs at later diagenetic stages. Our findings indicate that (1) conodont apatite frequently does not preserve a recognizable

  6. High sensitivity detection and characterization of the chemical state of trace element contamination on silicon wafers

    CERN Document Server

    Pianetta, Piero A; Baur, K; Brennan, S; Homma, T; Kubo, N

    2003-01-01

    Increasing the speed and complexity of semiconductor integrated circuits requires advanced processes that put extreme constraints on the level of metal contamination allowed on the surfaces of silicon wafers. Such contamination degrades the performance of the ultrathin SiO sub 2 gate dielectrics that form the heart of the individual transistors. Ultimately, reliability and yield are reduced to levels that must be improved before new processes can be put into production. It should be noted that much of this metal contamination occurs during the wet chemical etching and rinsing steps required for the manufacture of integrated circuits and industry is actively developing new processes that have already brought the metal contamination to levels beyond the measurement capabilities of conventional analytical techniques. The measurement of these extremely low contamination levels has required the use of synchrotron radiation total reflection X-ray fluorescence (SR-TXRF) where sensitivities 100 times better than conv...

  7. Composite polymer electrolyte membranes supported by non-woven fabrics for lithium-ion polymer batteries

    Institute of Scientific and Technical Information of China (English)

    TANG Dingguo; LIU Jianhong; QI Lu; CHEN Hui; CI Yunxiang

    2005-01-01

    Poly(vinylidene fluoride-co-hexafluoropropyle- ne) (PVDF-HFP) is one of the most popular polymers for polymer electrolyte membranes because of its excellent operating characteristics and superior electrochemical properties. The electrochemical performances of polymer electrolyte membrane can be enhanced by evenly dispersing nano-meter SiO2 particles in the polymer. In this paper, non-woven fabrics were immersed in the mixed solution of PVDF-HFP/ SiO2/butanone/butanol/plasticizer, and then dried in a vacuum oven to remove the solvents and the plasticizer and to make porous composite polymer electrolyte membranes. The prepared composite membranes supported by non-woven fabrics boast good mechanical strength and excellent electrochemical properties: the electrochemical stability window is 4.8 V vs. Li+/Li, and the ionic conductivity is 3.35×10-4 S/cm (around 60% of that of a common PE membrane) at room temperature. The lithium-ion polymer battery assembled by the composite membrane exhibits high rate capability and excellent cycling performance.

  8. Operando PXD of Vanadium-Based Nanomaterials as Cathodes for Mg-ion Batteries

    DEFF Research Database (Denmark)

    Christensen, Christian Kolle; Sørensen, Daniel Risskov; Mathiesen, Jette;

    Exchanging the active specie, Li+ in Li-ion batteries by multivalent, abundant and cheap cations, such as Mg2+, are projected to boost the energy density and lower the cost per kilo-watt-hour significantly, making the Mg-ion battery technology a promising candidate for one of the battery...... with the host lattice of the electrodes and hampers facile ion transport. Therefore, development of novel electrode materials for effective Mg-ion storage is a vital step for the realization of this battery technology.3 In this study, we have synthesized series of vanadium oxides with varying chemical...... composition and varying nanotopologies, e.g. multiwalledVOx-nanotubes. The mechanism for Mg-intercalation and deintercalation is studied by operando synchrotron powder X-ray diffraction measured during battery operation. These results Mg-intercalation in the multiwalled VOx -nanotubes occurs within the space...

  9. Analysis of the elemental composition of marine litter by field-portable-XRF.

    Science.gov (United States)

    Turner, Andrew; Solman, Kevin R

    2016-10-01

    Marine litter represents a pervasive environmental problem that poses direct threats to wildlife and habitats. Indirectly, litter can also act as a vehicle for the exposure and bioaccumulation of chemicals that are associated with manufactured or processed solids. In this study, we describe the use of a Niton field-portable-x-ray fluorescence (FP-XRF) spectrometer to determine the content of 17 elements in beached plastics, foams, ropes and painted items. The instrument was used in a 'plastics' mode configured for complex, low density materials, and employed a thickness correction algorithm to account for varying sample depth. Accuracy was evaluated by analysing two reference polyethylene discs and was better than 15% for all elements that had been artificially impregnated into the polymer. Regarding the litter samples, limits of detection for a 120s counting time varied between the different material categories and among the elements but were generally lowest for plastics and painted items with median concentrations of less than 10μgg(-1) for As, Bi, Br, Cr, Hg, Ni, Pb, Se and Zn. Concentrations returned by the XRF were highly sensitive to the thickness correction applied for certain elements (Ba, Cl, Cr, Cu, Fe, Sb, Ti, Zn) in all matrices tested, indicating that accurate measurement and application of the correct thickness is critical for acquiring reliable results. An independent measure of the elemental content of selected samples by ICP spectrometry following acid digestion returned concentrations that were significantly correlated with those returned by the XRF, and with an overall slope of [XRF]/[ICP]=0.85. Within the FP-XRF operating conditions, Cl, Cr, Fe, Ti and Zn were detected in more than 50% and Hg and Se in less than 1% of the 376 litter samples analysed. Significant from an environmental perspective were concentrations of the hazardous elements, Cd, Br and Pb, that exceeded several thousand μgg(-1) in many cases.

  10. Ulceration Caused by a Small Alkaline Battery: Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Fatih Tekin

    2017-03-01

    Full Text Available Small alkaline or lithium-ion batteries, which are commonly referred to as watch batteries or button cells, may cause potentially dangerous organ injuries and tissue damage if swallowed. This condition, which is commonly seen in children, may cause damage, particularly in the respiratory and gastrointestinal tracts, as well as in the nose, external ear canal, and middle and inner ears. Ulceration due toxin contact is a very rare condition. In this study, we present the case of an 18-month-old male who swallowed a cell which caused damage in the medial femoral area after harmlessly passing through the entire gastrointestinal tract. The battery caused skin necrosis with the contribution of the electrolytic effect of stool in a diaper is an infrequent case and avoidable with only the parents' attention. Usually, swallowing watch batteries does not cause any symptoms or findings, and it easily excreted in stool. However, serious injuries and even deaths in cases involving the nasal cavities, outer and inner ear, esophagus, stomach, intestines, and neighboring organs have been reported in the literature. It is important to acknowledge the negative consequences and signs and symptoms of such conditions, and note that the battery may stick to body parts such as genital, medial femoral, anal, and intergluteal regions that remain in the diaper-covered area and may cause skin ulcerations due to the electrolytic characteristics of the stool.

  11. Study of element uptake in plants from the soil to assess environmental contamination by toxic elements

    CERN Document Server

    En, Z; Tsipin, V V; Tillaev, T; Jumaniyazova, G I

    2003-01-01

    Uptake of various elements by plants through the root system from the soil was studied. Vegetation experiments with cotton and white beet were carried out in the control and test fields. The test fields were enriched with phyto-bacterial strains capable of dissolving insoluble phosphate compounds. Analytical work involved analysis of blank, control and test soil samples and analysis of plants sampled in different growing periods: periods of first sprouts, florescence and ripening of the plants. Multielement analyses of soil and plant samples were carried out by instrumental neutron activation techniques using our WWR-SM research reactor. Results of the measurements have shown that macro- and microelement composition of the analyzed soil samples were consistent to clark contents except for copper. Our experiments have resulted that the concentration levels of copper in the soils were within 300-450 mg/kg, and its average concentration in cotton leaves was about similar to 35 mg/kg while in beet leaves it reach...

  12. Fostering Innovation through an Active Learning Activity Inspired by the Baghdad Battery

    Science.gov (United States)

    Lu, Xu; Anariba, Franklin

    2014-01-01

    A hands-on activity based on general electrochemistry concepts with the aim at introducing design science elements is presented. The main goals of the activity are to reinforce electrochemical principles while fostering innovation in the students through the assembly and optimization of a voltaic device and subsequent evaluation by powering…

  13. 6种黏菌原生质团化学元素的特征1)%Chemical Element Characteristics of Six Plasmodia in Myxomycetes

    Institute of Scientific and Technical Information of China (English)

    宋晓霞; 王琦; 李玉

    2014-01-01

    The experiment was conducted to study the type and relative content of chemical element among freeze-dried powder of six plasmodia in Myxomycetes , involving Physarum melleum, Fuligo septica, Physarella oblonga, Didymium megalospo-rum, Didymium squamulosum and Didymium melanospermum, by Energy Dispersive X-ray analysis ( EDX) based on their morphological characteristics .The characteristics of chemical element are closely relative to their morphological character-istics.Eight elements, including carbon, oxygen, sodium, magnesium, phosphorus, sulphur, potassium and calcium, are in all six plasmodia, and three elements, including aluminium, silicon and chlorine, are only in part of plasmodia.The relative content of chemical element is different in each plasmodium.The relative contents of carbon, sodium, phosphorus and calcium in eachplasmodium are close to its belonged families, and those of oxygen, sulphur, potassium and magnesi-um are close to its preferred morphological characteristics under same cultured condition .%在对黏菌绒泡菌目淡黄绒泡菌、煤绒菌、针箍菌、大孢钙皮菌、鳞钙皮菌和暗孢钙皮菌6种原生质团形态特征进行观察的基础上,利用能量色散X射线分析( EDX )技术对其冻干粉末进行化学元素组成及质量分数分析。结果表明:6种黏菌原生质团的化学元素组成及质量分数与其形态特征有密切的联系。它们共同含有C、O、Na、Mg、P、S、K、Ca 8种元素,部分含有Al、Si和Cl元素;不同物种中各元素的质量分数不同,C、Na、P和Ca元素质量分数的变化规律与6种黏菌隶属的科分类阶元有关,O、S、K、Mg质量分数与6种原生质团在统一培养条件下爬行时偏好的形态特征有关。

  14. Quantitative elemental analysis of major, minor and trace elements in coal and host rocks by logging

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Fraser; Craig Smith [CSIRO Exploration & Mining (Australia)

    2008-12-15

    Knowledge of the distribution of major, minor and trace elements in coals and interburden materials is increasingly important. Technological developments now suggest that such elemental distributions may be determined using a downhole logging tool. This study was undertaken to achieve two goals. The first was to survey the industry to determine those elements of interest to the coal industry and their associated detection limits. The second was to use this information as one of the inputs to select the best technique for determining elemental abundances using a downhole logging tool in both production and exploration environments. A questionnaire was circulated widely and received a total of 15 responses. From these responses elements of interest were tabulated for reference to the Australian Coal Industry. Three technologies were evaluated as having potential to be incorporated into a downhole environment: X-Ray Fluorescence (XRF), Laser Induced Breakdown Spectroscopy (LIBS), and Prompt Gamma Neutron Activation Analysis (PGNAA) using a neutron generator. Various criteria were used to evaluate these techniques including operator and environmental safety, ease of implementation and operation, and performance with respect to the detection of the elements of interest to the coal industry. After due consideration, we recommend that the most practical way forward is the neutron activation (PGNAA and DGNAA) method using a neutron generator as the neutron source.

  15. Batteries: from alkaline to zinc-air.

    Science.gov (United States)

    Dondelinger, Robert M

    2004-01-01

    There is no perfect disposable battery--one that will sit on the shelf for 20 years, then continually provide unlimited current, at a completely constant voltage until exhausted, without producing heat. There is no perfect rechargeable battery--one with all of the above characteristics and will also withstand an infinite overcharge while providing an equally infinite cycle life. There are only compromises. Every battery selection is a compromise between the ideally required characteristics, the advantages, and the limitations of each battery type. General selection of a battery type to power a medical device is largely outside the purview of the biomed. Initially, these are engineering decisions made at the time of medical equipment design and are intended to be followed in perpetuity. However, since newer cell types evolve and the manufacturer's literature is fixed at the time of printing, some intelligent substitutions may be made as long as the biomed understands the characteristics of both the recommended cell and the replacement cell. For example, when the manufacturer recommends alkaline, it is usually because of the almost constant voltage it produces under the devices' design load. Over time, other battery types may be developed that will meet the intent of the manufacturer, at a lower cost, providing longer operational life, at a lower environmental cost, or with a combination of these advantages. In the Obstetrical Doppler cited at the beginning of this article, the user had put in carbon-zinc cells, and the biomed had unknowingly replaced them with carbonzinc cells. If the alkaline cells recommended by the manufacturer had been used, there would have been the proper output voltage at the battery terminals when the [table: see text] cells were at their half-life. Instead, the device refused to operate since the battery voltage was below presumed design voltage. While battery-type substitutions may be easily and relatively successfully made in disposable

  16. Characterization of the physico-chemical properties of polymeric materials for aerospace flight. [differential thermal and atomic absorption spectroscopic analysis of nickel cadmium batteries

    Science.gov (United States)

    Rock, M.

    1981-01-01

    Electrodes and electrolytes of nickel cadmium sealed batteries were analyzed. Different thermal analysis of negative and positive battery electrodes was conducted and the temperature ranges of occurrence of endotherms indicating decomposition of cadmium hydroxide and nickel hydroxide are identified. Atomic absorption spectroscopy was used to analyze electrodes and electrolytes for traces of nickel, cadmium, cobalt, and potassium. Calibration curves and data are given for each sample analyzed. Instrumentation and analytical procedures used for each method are described.

  17. Chemical industrial wastewater treated by combined biological and chemical oxidation process.

    Science.gov (United States)

    Guomin, Cao; Guoping, Yang; Mei, Sheng; Yongjian, Wang

    2009-01-01

    Wastewaters from phenol and rubber synthesis were treated by the activated sludge process in a large-scale chemical factory in Shanghai, but the final effluent quality cannot conform with the local discharge limit without using river water for dilution. Therefore, this chemical factory had to upgrade its wastewater treatment plant. To fully use the present buildings and equipment during upgrading of the chemical factory's wastewater treatment plant and to save operation costs, a sequential biological pre-treatement, chemical oxidation, and biological post-treatment (or BCB for short) process had been proposed and investigated in a pilot trial. The pilot trial results showed that about 80% COD in the chemical wastewater could be removed through anoxic and aerobic degradation in the biological pre-treatement section, and the residual COD in the effluent of the biological pre-treatment section belongs to refractory chemicals which cannot be removed by the normal biological process. The refractory chemicals were partial oxidized using Fenton's reagent in the chemical oxidation section to improve their biodegradability; subsequently the wastewater was treated by the SBR process in the biological post-treatment section. The final effluent COD reached the first grade discharge limit (process, the operation cost of the BCB process increased by about 0.5 yuan (RMB) per cubic metre wastewater, but about 1,240,000 m(3) a(-1) dilution water could be saved and the COD emission could be cut down by 112 tonne each year.

  18. Investigation of trace elements in Guangxi ancient pottery by INAA

    Institute of Scientific and Technical Information of China (English)

    PengZi-Cheng; Yun-Lan; 等

    1997-01-01

    Guangxi Zhuang Nationality Autonomous Region is an original place for manufacture of ancient pottery in China since Zenpiyan site.dated 9240-10370 years ago,was excavated.Contents of trace elements La,Ce,Nd,Sm,Eu,Tb,Yb,Lu,U,Th,Sc,Ta,Ba,Cs,Rb,Sr and Zr in 44 porttery shards from Guangxi sites,dated from 1450B.C. to 200A.D.,were dtermined by INAA and XRF.The proveniences of the 44 samples are postulated by the analyses of geochemical parameters.

  19. Effects of chemical functional groups on elemental mercury adsorption on carbonaceous surfaces.

    Science.gov (United States)

    Liu, Jing; Cheney, Marcos A; Wu, Fan; Li, Meng

    2011-02-15

    A systematic theoretical study using density functional theory is performed to provide molecular-level understanding of the effects of chemical functional groups on mercury adsorption on carbonaceous surfaces. The zigzag and armchair edges were used in modeling the carbonaceous surfaces to simulate different adsorption sites. The edge atoms on the upper side of the models are unsaturated to simulate active sites. All calculations (optimizations, energies, and frequencies) were made at B3PW91 density functional theory level, using RCEP60VDZ basis set for mercury and 6-31G(d) pople basis set for other atoms. The results indicate that the embedding of halogen atom can increase the activity of its neighboring site which in turn increases the adsorption capacity of the carbonaceous surface for Hg(0). The adsorption belongs to chemisorptions, which is in good agreement with the experimental results. For the effects of oxygen functional groups, lactone, carbonyl and semiquinone favor Hg(0) adsorption because they increase the neighboring site's activity for mercury adsorption. On the contrary, phenol and carboxyl functional groups show a physisorption of Hg(0), and reduce Hg capture. This result can explain the seemingly conflicting experimental results reported in the literature concerning the influence of oxygen functional groups on mercury adsorption on carbonaceous surface.

  20. Yellow and red ochre pigments from southern Portugal: Elemental composition and characterization by WDXRF and XRD

    Energy Technology Data Exchange (ETDEWEB)

    Gil, M. [Conservation and Restoration Department, Science and Technology Faculty, Univ. Nova of Lisbon, Monte da Caparica, 2829-516 Caparica (Portugal); Atomic Physics Center, Lisbon University, Av. Prof. Gama Pinto 2, 1649-003 Lisbon (Portugal)], E-mail: milenegil@gmail.com; Carvalho, M.L. [Atomic Physics Center, Lisbon University, Av. Prof. Gama Pinto 2, 1649-003 Lisbon (Portugal); Seruya, A. [Conservation and Restoration Department, Science and Technology Faculty, Univ. Nova of Lisbon, Monte da Caparica, 2829-516 Caparica (Portugal); Portuguese Institute of Conservation Restoration (IPCR), Rua das janelas Verdes 37, 1300-001 Lisbon (Portugal); Candeias, A.E. [Chemistry Department and Evora Chemistry Center, University of Evora, Rua Romao Ramalho, 59 Evora (Portugal); Mirao, J. [Giosciences Department and Evora Geophysics Center, University of Evora, Rua Romao Ramalho, 59 Evora (Portugal); Queralt, I. [Laboratory of X-ray Analytical Applications, Institute of Earth Sciences ' Jaume Almera' CSIC, Sole' Sabari' s s/n 08028 Barcelona (Spain)

    2007-09-21

    Three different yellow and red ochre pigments geological sources from Alentejo-Terras rossas, schist units and weathered iron ore deposits-were studied by elemental and phase analysis complemented with Munsell and CIELAB colour parameters. Central aims were to underline the mineralogical and chemical distinctiveness of natural pigment sources and establish a connection between local geology and use of specific colour pigments in traditional lime wash mural paintings. According to the chemical composition the Fe abundance is 6 times higher than average crust values. The Terras Rossas are characterized by higher Ca contents. In yellow and red schists, phyllosilicates are major minerals, so pigments from these units are enriched in K and Rb. Besides Fe, the pigments from weathered ores are enriched in metals like Pb, As, Cu, and Zn, which can be used as fingerprints.