WorldWideScience

Sample records for bathymetry

  1. Bathymetry of Lake Ontario

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Ontario has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and make it more...

  2. Bathymetry of Lake Michigan

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Michigan has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and make it more...

  3. Bathymetry of Lake Huron

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Huron has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and make it more...

  4. Bathymetry of Lake Superior

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Superior has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and make it more...

  5. Great Lakes Bathymetry

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lakes Michigan, Erie, Saint Clair, Ontario and Huron has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological...

  6. Bathymetry--Offshore Bolinas, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the bathymetry and shaded-relief maps of the Offshore of Bolinas, California (raster data file is included in...

  7. Bathymetry--Offshore Pacifica, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the bathymetry and shaded-relief maps of Offshore Pacifica, California. The raster data file is included in...

  8. Mosaic of gridded multibeam bathymetry, gridded LiDAR bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Tinian Island, Commonwealth of the Northern Marianas Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with gridded LiDAR bathymetry and bathymetry derived from multispectral IKONOS satellite data. Gridded (5 m cell size)...

  9. Mosaic of gridded multibeam bathymetry, LiDAR bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Saipan Island, Commonwealth of Northern Maraina Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with gridded LiDAR bathymetry and bathymetry derived from multispectral IKONOS satellite data. Gridded (5 m cell size)...

  10. Mosaic of gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Tutuila Island, American Samoa, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multispectral IKONOS satellite data. Gridded (5 m cell size) multibeam bathymetry collected...

  11. Mosaic of gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Rose Atoll, American Samoa, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multispectral IKONOS satellite data. Gridded (5 m cell size) multibeam bathymetry were...

  12. Bathymetry Hillshade--Offshore Pigeon Point, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the bathymetry and shaded-relief maps of Offshore Pigeon Point, California. The raster data file is included in...

  13. Bathymetry--Offshore Pigeon Point, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the bathymetry and shaded-relief maps of Offshore Pigeon Point, California. The raster data file is included in...

  14. Bathymetry of North America - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Bathymetry of North America map layer shows depth ranges using colors. The image was derived from the National Geophysical Data Center?s ETOPO2 elevation data,...

  15. Bathymetry--Offshore of Carpinteria, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of SIM 3261 presents data for the bathymetry and shaded-relief maps (see sheets 1, 2, SIM 3261) of the Offshore of Carpinteria map area, California. The...

  16. Bathymetry--Offshore Half Moon Bay, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the bathymetry and shaded-relief maps of the Offshore Half Moon Bay, California (raster data file is included in...

  17. Bathymetry--Offshore of San Francisco, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the bathymetry and shaded-relief maps of Offshore of San Francisco, California (raster data file is included in...

  18. Bathymetry Hillshade--Offshore Santa Cruz, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the bathymetry and shaded-relief maps of Offshore Santa Cruz, California. The raster data file is included in...

  19. Bathymetry--Offshore of Bodega Head, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the bathymetry and shaded-relief maps of the Offshore of Bodega Head map area, California. Raster data file is included in...

  20. Bathymetry--Offshore of Tomales Point, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the bathymetry and shaded-relief maps of the Offshore of Tomales Point map area, California. Raster data file is included in...

  1. Bathymetry Hillshade--Offshore of Ventura, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of SIM 3254 presents data for the bathymetry and shaded-relief maps (see sheets 1, 2, SIM 3254) of the Offshore of Ventura map area, California. The...

  2. Multibeam swath bathymetry signal processing techniques

    Digital Repository Service at National Institute of Oceanography (India)

    Ranade, G.; Sudhakar, T.

    Mathematical advances and the advances in the real time signal processing techniques in the recent times, have considerably improved the state of art in the bathymetry systems. These improvements have helped in developing high resolution swath...

  3. Estimated Bathymetry of the Puerto Rico shelf

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This classification of estimated depth represents the relative bathymetry of Puerto Rico's shallow waters based on Landsat imagery for NOAA's Coastal Centers for...

  4. Bathymetry Hillshade--Offshore of Carpinteria, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of SIM 3261 presents data for the bathymetry and shaded-relief maps (see sheets 1, 2, SIM 3261) of the Offshore of Carpinteria map area, California. The...

  5. Gridded bathymetry of Niihau Island, Hawaii, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry shelf, bank and slope environments of Ni'ihau Island. This 5 m grid contains data between 0 and 100 meters. The netCDF and Arc ASCII grids...

  6. Bathymetry--Offshore Santa Cruz, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the bathymetry and shaded-relief maps of Offshore Santa Cruz, California. The raster data file is included in...

  7. BathymetryA Hillshade [USGS]--Offshore Aptos, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the bathymetry and shaded-relief maps of Offshore of Aptos map area, California. Bathymetry data are provided as two separate...

  8. Bathymetry for Louisiana, Geographic NAD83, LOSCO (1994) [bathymetry_NOAA_1994

    Data.gov (United States)

    Louisiana Geographic Information Center — This is a line data depicting the offshore bathymetry_NOAA_1994 for Louisiana. The contour interval is 2 meters. These data were derived from point depths depicted...

  9. Bathymetry from 2013 Interferometric Swath Bathymetry Systems Survey of Columbia River Mouth, Oregon and Washington

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of the USGS Data Release presents bathymetry data for the Columbia River Mouth, Oregon and Washington. The GeoTIFF raster data file is included in...

  10. Bathymetry--Offshore of Santa Barbara, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of SIM 3281 presents data for the bathymetry and shaded-relief maps (see sheets 1, 2, SIM 3281) of the Offshore of Santa Barbara map area, California. The...

  11. Mosaic of 10 m gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Alamagan Island, Commonwealth of Northern Mariana Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multispectral IKONOS satellite data. Gridded (10 m cell size) multibeam bathymetry collected...

  12. Mosaic of 5 m gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Asuncion Island, Commonwealth of the Northern Marianas Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multpectral IKONOS satellite data. Gridded (5 m cell size) multibeam bathymetry collected...

  13. Mosaic of gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Tau Island, Territory of American Samoa, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multispectral IKONOS satellite data. Gridded (10 m cell size) multibeam bathymetry collected...

  14. Mosaic of gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Johnston Atoll, Pacific Remote Island Area, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multispectral IKONOS satellite data. Gridded (5 m cell size) multibeam bathymetry collected...

  15. Mosaic of gridded multibeam bathymetry and bathymetry derived from multispectral World View-2 satellite imagery of Rota Island, Territory of Mariana, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multpectral World View-2 satellite data. Gridded (5 m cell size) multibeam bathymetry...

  16. Mosaic of 5m gridded multibeam bathymetry and bathymetry derived from multispectral World View-2 satellite imagery of Swains Island, Territory of American Samoa, South Pacific, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multpectral World View-2 satellite data. Gridded (5 m cell size) multibeam bathymetry...

  17. Mosaic of gridded multibeam bathymetry and bathymetry derived from multispectral World View-2 satellite imagery of Ni'ihau Island, Territory of Main Hawaiian Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multpectral World View-2 satellite data. Gridded (5 m cell size) multibeam bathymetry...

  18. Mosaic of gridded multibeam bathymetry and bathymetry derived from multispectral World View-2 satellite imagery of Baker Island, Pacific Remote Island Areas, Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multpectral World View-2 satellite data. Gridded (10 m cell size) multibeam bathymetry...

  19. Mosaic of gridded multibeam bathymetry and bathymetry derived from multispectral World View-2 satellite imagery of Sarigan Island, Territory of Mariana, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multpectral World View-2 satellite data. Gridded (10 m cell size) multibeam bathymetry...

  20. Mosaic of 5 m gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Alamagan Island, Commonwealth of Northern Mariana Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multispectral IKONOS satellite data. Gridded (5 m cell size) multibeam bathymetry collected...

  1. Mosaic of 5 m gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Maug Island, Commonwealth of the Northern Marianas Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multpectral IKONOS satellite data. Gridded (5m and 10 m cell size) multibeam bathymetry...

  2. Mosaic of gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Ofu and Olosega Islands, Territory of American Samoa, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multipectral IKONOS satellite data. Gridded (5 m cell size) multibeam bathymetry collected...

  3. Mosaic of 10 m gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Maug Island, Commonwealth of the Northern Marianas Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multpectral IKONOS satellite data. Gridded (5m and 10 m cell size) multibeam bathymetry...

  4. Mosaic of gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Palmyra Atoll, Pacific Remote Island Area, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multispectral IKONOS satellite data. Gridded (5 m cell size) multibeam bathymetry collected...

  5. Mosaic of gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Kingman Reef, Pacific Remote Island Area, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multispectral IKONOS satellite data. Gridded (5 m cell size) multibeam bathymetry collected...

  6. Mosaic of 10 m gridded multibeam bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Asuncion Island, Commonwealth of the Northern Marianas Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with bathymetry derived from multpectral IKONOS satellite data. Gridded (10 m cell size) multibeam bathymetry collected...

  7. Deriving Bathymetry from Multispectral Remote Sensing Data

    OpenAIRE

    William J. Hernandez; Roy A. Armstrong

    2016-01-01

    The use of passive satellite sensor data in shallow waters is complicated by the combined atmospheric, water, and bottom signals. Accurate determination of water depth is important for monitoring underwater topography and detection of moved sediments and in support of navigation. A Worldview 2 (WV2) image was used to develop high-resolution bathymetric maps (four meters) that were validated using bathymetry from an active sensor Light Detection and Ranging (LiDAR). The influence of atmospheri...

  8. Advanced interferometric techniques for high resolution bathymetry

    OpenAIRE

    LLORT PUJOL, Gerard; SINTES, Christophe; Chonavel, Thierry; MORRISON, Archie T.; DANIEL, Sylvie

    2012-01-01

    Current high-resolution side scan and multibeam sonars produce very large data sets. However, conventional interferometry-based bathymetry algorithms underestimate the potential information of such soundings, generally because they use small baselines to avoid phase ambiguity. Moreover, these algorithms limit the triangulation capabilities of multibeam echosounders to the detection of one sample per beam, i.e., the zero-phase instant. In this paper we argue that the correlation between signal...

  9. The use of radar for bathymetry assessment

    OpenAIRE

    Aardoom, J.H.; Greidanus, H.S.F.

    1998-01-01

    The bottom topography in shallow seas can be observed by air- and spaceborne imaging radar. Bathymetric information derived from radar data is limited in accuracy, but radar has a good spatial coverage. The accuracy can be increased by assimilating the radar imagery into existing or insitu gathered bathymetric data. The paper reviews the concepts of bathymetry assessment by radar, the radar imaging mechanism, and the possibilities and limitations of the use of radar data in rapid assessment.

  10. CRED Acoustic Backscatter Guam 2003, Imagery Extracted from Gridded Bathymetry

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Backscatter extracted from gridded bathymetry of the banktops and shelf environments of Guam, of the Mariana Islands Archipelago.

  11. Mosaic of gridded multibeam and lidar bathymetry of the US Territory of Guam

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with gridded lidar bathymetry. Gridded (5 m cell size) multibeam bathymetry were collected aboard NOAA Ship Hiialaka'i...

  12. Deriving Bathymetry from Multispectral Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    William J. Hernandez

    2016-02-01

    Full Text Available The use of passive satellite sensor data in shallow waters is complicated by the combined atmospheric, water, and bottom signals. Accurate determination of water depth is important for monitoring underwater topography and detection of moved sediments and in support of navigation. A Worldview 2 (WV2 image was used to develop high-resolution bathymetric maps (four meters that were validated using bathymetry from an active sensor Light Detection and Ranging (LiDAR. The influence of atmospheric corrections in depth retrievals was evaluated using the Dark Substract, Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH and the Cloud Shadow Approach (CSA atmospheric corrections. The CSA combined with a simple band ratio (Band2/Band3 provided the best performance, where it explained 82% of model values. The WV2 depth model was validated at another site within the image, where it successfully retrieved depth values with a coefficient of determination (r2 of 0.90 for all the depth values sampled, and an r2 of 0.70, for a depth range to 20 m. The WV2 bands in the visible region were useful for testing different band combinations to derive bathymetry that, when combined with a robust atmospheric correction, provided depth retrievals even in areas with variable bottom composition and near the limits of detection.

  13. Bathymetry and absorbitivity of Titan's Ontario Lacus

    Science.gov (United States)

    Hayes, A.G.; Wolf, A.S.; Aharonson, O.; Zebker, H.; Lorenz, R.; Kirk, R.L.; Paillou, P.; Lunine, J.; Wye, L.; Callahan, P.; Wall, S.; Elachi, C.

    2010-01-01

    Ontario Lacus is the largest and best characterized lake in Titan's south polar region. In June and July 2009, the Cassini RADAR acquired its first Synthetic Aperture Radar (SAR) images of the area. Together with closest approach altimetry acquired in December 2008, these observations provide a unique opportunity to study the lake's nearshore bathymetry and complex refractive properties. Average radar backscatter is observed to decrease exponentially with distance from the local shoreline. This behavior is consistent with attenuation through a deepening layer of liquid and, if local topography is known, can be used to derive absorptive dielectric properties. Accordingly, we estimate nearshore topography from a radar altimetry profile that intersects the shoreline on the East and West sides of the lake. We then analyze SAR backscatter in these regions to determine the imaginary component of the liquid's complex index of refraction (Kappa). The derived value, Kappa = (6.1-1.3+1.7) x 10-4, corresponds to a loss tangent of tan Delta = (9.2-2.0+2.5) x 10-4 and is consistent with a composition dominated by liquid hydrocarbons. This value can be used to test compositional models once the microwave optical properties of candidate materials have been measured. In areas that do not intersect altimetry profiles, relative slopes can be calculated assuming the index of refraction is constant throughout the liquid. Accordingly, we construct a coarse bathymetry map for the nearshore region by measuring bathymetric slopes for eleven additional areas around the lake. These slopes vary by a factor of ~5 and correlate well with observed shoreline morphologies.

  14. A Review About SAR Technique for Shallow Water Bathymetry Surveys

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Synthetic Aperture Radar (SAR) has become one of the important tools for shallow water bathymetry surveys. This has significant economic efficiency compared with the traditional bathymetry surveys. Numerical models have been developed to simulate shallow water bathymetry SAR images. Inversion of these models makes it possible to assess the water depths from SAR images. In this paper, these numerical models of SAR technique are reviewed, and examples are illustrated including in the coastal areas of China. Some issues about SAR technique available and the research orientation in future are also discussed.

  15. Gridded bathymetry of Kohala, Hawaii, Main Hawaiian Islands, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — 5-m grid of bathymetric data of Kohala coast of Hawaii, Main Hawaiian Islands, USA. The ASCII grids include multibeam bathymetry from the Reson 8101 multibeam sonar...

  16. Bathymetry and Acoustic Backscatter: Northern Santa Barbara Channel, Southern California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This report presents bathymetry and acoustic backscatter data collected in July 2008 in the northern Santa Barbara Channel, California, using a bathymetric sidescan...

  17. Bathymetry--Offshore of Salt Point Map Area, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the bathymetry and shaded-relief maps of the Offshore of Salt Point map area, California. Raster data file is included in...

  18. Bathymetry Offshore of Point Reyes Map Map Area, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the bathymetry and shaded-relief maps of the Offshore of Point Reyes map area, California. Raster data file is included in...

  19. Bathymetry Hillshade Offshore of Point Reyes Map Map Area, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the bathymetry and shaded-relief maps of the Offshore of Point Reyes map area, California. Raster data file is included in...

  20. Bathymetry Hillshade--Offshore of Salt Point Map Area, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the bathymetry and shaded-relief maps of the Offshore of Salt Point map area, California. Raster data file is included in...

  1. Bathymetry Hillshade--Offshore of San Francisco, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the bathymetry and shaded-relief maps of Offshore of San Francisco, California (raster data file is included in...

  2. Gridded bathymetry of Tutuila Island, American Samoa, South Pacific

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded (5 m cell size) bathymetry of the shelf and slope environments of Tutuila Island, American Samoa, South Pacific. Almost complete bottom coverage was...

  3. Estimated Bathymetry of the U.S. Virgin Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This classification of estimated depth represents the relative bathymetry of the U.S. Virgin Islands shallow waters based on Landsat imagery for NOAA's Coastal...

  4. Bathymetry Hillshade-Oregon OCS Floating Wind Farm Site

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This Data Release contains data from the USGS survey of the Oregon OCS Floating Wind Farm Site in 2014. The shaded-relief raster was generated from bathymetry data...

  5. Bathymetry of Lake Erie and Lake Saint Clair

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Erie and Lake Saint Clair has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and...

  6. EMODNet Bathymetry - building and providing a high resolution digital bathymetry for European seas

    Science.gov (United States)

    Schaap, Dick M. A.

    2015-04-01

    Access to marine data is a key issue for the implementation of the EU Marine Strategy Framework Directive (MSFD). The EU communication 'Marine Knowledge 2020' underpins the importance of data availability and harmonising access to marine data from different sources. The European Marine Observation and Data Network (EMODnet) is a long term marine data initiative from the European Commission Directorate-General for Maritime Affairs and Fisheries (DG MARE) underpinning the Marine Knowledge 2020 strategy. EMODnet is a consortium of organisations assembling European marine data, data products and metadata from diverse sources in a uniform way. The main purpose of EMODnet is to unlock fragmented and hidden marine data resources and to make these available to individuals and organisations (public and private), and to facilitate investment in sustainable coastal and offshore activities through improved access to quality-assured, standardised and harmonised marine data which are interoperable and free of restrictions on use. The EMODnet data infrastructure is developed through a stepwise approach in three major phases. Currently EMODnet is in the 2nd phase of development with seven sub-portals in operation that provide access to marine data from the following themes: bathymetry, geology, physics, chemistry, biology, seabed habitats and human activities. EMODnet development is a dynamic process so new data, products and functionality are added regularly while portals are continuesly improved to make the service more fit for purpose and user friendly with the help of users and stakeholders. The EMODnet Bathymetry project develops and publishes Digital Terrain Models (DTM) for the European seas. These are produced from survey and aggregated data sets, that are indexed with metadata by adopting the SeaDataNet Common Data Index (CDI) data discovery and access service and the SeaDataNet Sextant data products catalogue service. The new EMODnet DTM will have a resolution of 1

  7. Passive optical remote sensing of Congo River bathymetry using Landsat

    Science.gov (United States)

    Ache Rocha Lopes, V.; Trigg, M. A.; O'Loughlin, F.; Laraque, A.

    2014-12-01

    While there have been notable advances in deriving river characteristics such as width, using satellite remote sensing datasets, deriving river bathymetry remains a significant challenge. Bathymetry is fundamental to hydrodynamic modelling of river systems and being able to estimate this parameter remotely would be of great benefit, especially when attempting to model hard to access areas where the collection of field data is difficult. One such region is the Congo Basin, where due to past political instability and large scale there are few studies that characterise river bathymetry. In this study we test whether it is possible to use passive optical remote sensing to estimate the depth of the Congo River using Landsat 8 imagery in the region around Malebo Pool, located just upstream of the Kinshasa gauging station. Methods of estimating bathymetry using remotely sensed datasets have been used extensively for coastal regions and now more recently have been demonstrated as feasible for optically shallow rivers. Previous river bathymetry studies have focused on shallow rivers and have generally used aerial imagery with a finer spatial resolution than Landsat. While the Congo River has relatively low suspended sediment concentration values the application of passive bathymetry estimation to a river of this scale has not been attempted before. Three different analysis methods are tested in this study: 1) a single band algorithm; 2) a log ratio method; and 3) a linear transform method. All three methods require depth data for calibration and in this study area bathymetry measurements are available for three cross-sections resulting in approximately 300 in-situ measurements of depth, which are used in the calibration and validation. The performance of each method is assessed, allowing the feasibility of passive depth measurement in the Congo River to be determined. Considering the scarcity of in-situ bathymetry measurements on the Congo River, even an approximate

  8. Bathymetry of southern Mauna Loa Volcano, Hawaii

    Science.gov (United States)

    Chadwick, William W.; Moore, James G.; Garcia, Michael O.; Fox, Christopher G.

    1993-01-01

    Manua Loa, the largest volcano on Earth, lies largely beneath the sea, and until recently only generalized bathymetry of this giant volcano was available. However, within the last two decades, the development of multibeam sonar and the improvement of satellite systems (Global Positioning System) have increased the availability of precise bathymetric mapping. This map combines topography of the subaerial southern part of the volcano with modern multibeam bathymetric data from the south submarine flank. The map includes the summit caldera of Mauna Loa Volcano and the entire length of the 100-km-long southwest rift zone that is marked by a much more pronounced ridge below sea level than above. The 60-km-long segment of the rift zone abruptly changes trend from southwest to south 30 km from the summit. It extends from this bend out to sea at the south cape of the island (Kalae) to 4 to 4.5 km depth where it impinges on the elongate west ridge of Apuupuu Seamount. The west submarine flank of the rift-zone ridge connects with the Kahuku fault on land and both are part of the ampitheater head of a major submarine landslide (Lipman and others, 1990; Moore and Clague, 1992). Two pre-Hawaiian volcanic seamounts in the map area, Apuupuu and Dana Seamounts, are apparently Cretaceous in age and are somewhat younger than the Cretaceous oceanic crust on which they are built.

  9. Quantification of Tsunami Bathymetry Effect on Finite Fault Slip Inversion

    Science.gov (United States)

    Bletery, Quentin; Sladen, Anthony; Delouis, Bertrand; Mattéo, Lionel

    2015-12-01

    The strong development of tsunami instrumentation in the past decade now provides observations of tsunami wave propagation in most ocean basins. This evolution has led to the wide use of tsunami data to image the complexity of earthquake sources. In particular, the 2011 Mw9.0 Tohoku-Oki earthquake is the first mega-event for which such a tsunami instrumentation network was available with an almost complete azimuthal coverage. Source inversion studies have taken advantage of these observations which add a lot of constrain on the solutions, especially in the shallow part of the fault models where other standard data sets tend to lack resolution: while on-land data are quite insensitive to slip on the often-distant shallow part of a subduction fault interface, tsunami observations are directly sensitive to the shallowest slip. And it is in this shallow portion that steep bathymetry combined with horizontal motion, the so-called bathymetry effect, can contribute to the tsunami excitation, in addition to the direct vertical sea-bottom deformation. In this study, we carefully investigate the different steps involved in the calculation of this bathymetry effect, from the initial sea-floor deformation to the prediction of the tsunami records, and evaluate its contribution across the main subduction zones of the world. We find that the bathymetry effect locally exceeds 10 % of the tsunami excitation in all subduction zones and 25 % in those known to produce the largest tsunami, either from mega- or tsunami- earthquakes. We then show how the bathymetry effect can modify the tsunami wave predictions, with time shifts of the wavefront and amplitudes sometimes varying by a factor of two. If the bathymetry effect can have a strong impact on the simulated tsunami, it will also affect the solution of the finite-fault slip inversion. We illustrate this later aspect in the case of the Tohoku-Oki earthquake. We find that not accounting for the bathymetry effect will not necessarily

  10. Local Bathymetry Estimation Using Variational Inverse Modeling: A Nested Approach

    Science.gov (United States)

    Almeida, T. G.; Walker, D. T.; Farquharson, G.

    2014-12-01

    Estimation of subreach river bathymetry from remotely-sensed surface velocity data is presented using variational inverse modeling applied to the 2D depth-averaged, shallow-water equations (SWEs). A nested approach is adopted to focus on obtaining an accurate estimate of bathymetry over a small region of interest within a larger complex hydrodynamic system. This approach reduces computational cost significantly. We begin by constructing a minimization problem with a cost function defined by the error between observed and estimated surface velocities, and then apply the SWEs as a constraint on the velocity field. An adjoint SWE model is developed through the use of Lagrange multipliers, converting the unconstrained minimization problem into a constrained one. The adjoint model solution is used to calculate the gradient of the cost function with respect to bathymetry. The gradient is used in a descent algorithm to determine the bathymetry that yields a surface velocity field that is a best-fit to the observational data. In this application of the algorithm, the 2D depth-averaged flow is computed within a nested framework using Delft3D-FLOW as the forward computational model. First, an outer simulation is generated using discharge rate and other measurements from USGS and NOAA, assuming a uniform bottom-friction coefficient. Then a nested, higher resolution inner model is constructed using open boundary condition data interpolated from the outer model (see figure). Riemann boundary conditions with specified tangential velocities are utilized to ensure a near seamless transition between outer and inner model results. The initial guess bathymetry matches the outer model bathymetry, and the iterative assimilation procedure is used to adjust the bathymetry only for the inner model. The observation data was collected during the ONR Rivet II field exercise for the mouth of the Columbia River near Hammond, OR. A dual beam squinted along-track-interferometric, synthetic

  11. Bathymetric Position Index (BPI) Zones 5m grid derived from gridded bathymetry of Saipan Island, Commonwealth of the Northern Marianas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The bathymetry grid (5 m cell size) is derived from bathymetry from two sources: Multibeam...

  12. Bathymetric Position Index (BPI) Zones 5 m grid derived from gridded bathymetry of the US Territory of Guam.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The bathymetry grid (5 m cell size) is derived from bathymetry from four sources:...

  13. Rugosity grid derived from gridded bathymetry of Rose Atoll, Territory of American Samoa, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard R/V AHI, and bathymetry derived from multispectral IKONOS satellite imagery....

  14. Rugosity grid (5 m) derived from gridded bathymetry of Saipan Island, Commonwealth of the Northern Marianas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (5 m cell size) bathymetry from two sources: Multibeam bathymetry collected by Coral Reef Ecosystem Division aboard NOAA R/V AHI,...

  15. Slope grid (5 m) derived from gridded bathymetry of Saipan Island, Commonwealth of the Northern Marianas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (5 m cell size) bathymetry from two sources: Multibeam bathymetry collected by Coral Reef Ecosystem Division aboard NOAA R/V AHI, and...

  16. Slope grid derived from gridded bathymetry of Ta'u Island, Territory of American Samoa, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard R/V AHI, and bathymetry derived from multispectral IKONOS satellite imagery....

  17. Slope grid derived from gridded bathymetry of Rose Atoll, Territory of American Samoa, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard R/V AHI, and bathymetry derived from multispectral IKONOS satellite imagery....

  18. Slope grid derived from gridded bathymetry of Ofu and Olosega Islands, Territory of American Samoa, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard R/V AHI, and bathymetry derived from multispectral IKONOS satellite imagery....

  19. Gridded bathymetry of French Frigate Shoals, Hawaii, USA - Arc ASCII format

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry (5m) of the shelf environment of French Frigate Shoals, Hawaii, USA. The ASCII includes multibeam bathymetry from the Simrad EM3002d, and Reson...

  20. Gridded multibeam bathymetry of Apra Harbor, Guam U.S. Territory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry from Apra Harbor, Guam U.S. Territory. The netCDF and Arc ASCII grids include multibeam bathymetry from the Reson SeaBat 8125 multibeam sonar...

  1. CRED 20m Gridded bathymetry of Necker Islands, Northwestern Hawaiian Islands, USA (NetCDF format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry of the shelf and slope environments of Necker Island, Northwestern Hawaiian Islands, Hawaii, USA. This netCDF includes multibeam bathymetry from...

  2. Slope grid (5 m) derived from gridded bathymetry of US Territory of Guam

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (5 m cell size) bathymetry from four sources: Multibeam bathymetry collected by Coral Reef Ecosystem Division aboard NOAA R/V AHI, and...

  3. Resolving bathymetry from airborne gravity along Greenland fjords

    Science.gov (United States)

    Boghosian, Alexandra; Tinto, Kirsty; Cochran, James R.; Porter, David; Elieff, Stefan; Burton, Bethany L.; Bell, Robin E.

    2015-12-01

    Recent glacier mass loss in Greenland has been attributed to encroaching warming waters, but knowledge of fjord bathymetry is required to investigate this mechanism. The bathymetry in many Greenland fjords is unmapped and difficult to measure. From 2010 to 2012, National Aeronautics and Space Administration's Operation IceBridge collected a unique set of airborne gravity, magnetic, radar, and lidar data along the major outlet glaciers and fjords in Greenland. We applied a consistent technique using the IceBridge gravity data to create 90 bathymetric profiles along 54 Greenland fjords. We also used this technique to recover subice topography where warm or crevassed ice prevents the radar system from imaging the bed. Here we discuss our methodology, basic assumptions and error analysis. We present the new bathymetry data and discuss observations in six major regions of Greenland covered by IceBridge. The gravity models provide a total of 1950 line kilometers of bathymetry, 875 line kilometers of subice topography, and 12 new grounding line depths.

  4. Bathymetry--Offshore of Refugio Beach Area, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of SIM 3319 presents data for the bathymetry and shaded-relief maps (see sheets 1, 2, SIM 3319) of the Offshore of Refugio Beach map area, California. The...

  5. Bathymetry [2m]--Offshore of Monterey Map Area, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for 2-m and 5-m bathymetry and shaded-relief maps of Offshore of Monterey map area, California. The raster data file is included...

  6. Bathymetry [5m]--Offshore of Monterey Map Area, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for 2-m and 5-m bathymetry and shaded-relief maps of Offshore of Monterey map area, California. The raster data file is included...

  7. Bathymetry Hillshade--Offshore of Santa Barbara, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of SIM 3281 presents data for the bathymetry and shaded-relief maps (see sheets 1, 2, SIM 3281) of the Offshore of Santa Barbara map area, California. The...

  8. Bathymetry--Offshore of Coal Oil Point, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of SIM 3302 presents data for the bathymetry and shaded-relief maps (see sheets 1, 2, SIM 3302) of the Offshore of Coal Oil Point map area, California....

  9. Bathymetry Hillshade--Offshore of Coal Oil Point, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of SIM 3302 presents data for the bathymetry and shaded-relief maps (see sheets 1, 2, SIM 3302) of the Offshore of Coal Oil Point map area, California....

  10. Remote Sensing-Derived Bathymetry of Lake Poopó

    Directory of Open Access Journals (Sweden)

    Adalbert Arsen

    2013-12-01

    Full Text Available Located within the Altiplano at 3,686 m above sea level, Lake Poopó is remarkably shallow and very sensitive to hydrologic recharge. Progressive drying has been observed in the entire Titicaca-Poopó-Desaguadero-Salar de Coipasa (TPDS system during the last decade, causing dramatic changes to Lake Poopó’s surface and its regional water supplies. Our research aims to improve understanding of Lake Poopó water storage capacity. Thus, we propose a new method based on freely available remote sensing data to reproduce Lake Poopó bathymetry. Laser ranging altimeter ICESat (Ice, Cloud, and land Elevation Satellite is used during the lake’s lowest stages to measure vertical heights with high precision over dry land. These heights are used to estimate elevations of water contours obtained with Landsat imagery. Contour points with assigned elevation are filtered and grouped in a points cloud. Mesh gridding and interpolation function are then applied to construct 3D bathymetry. Complementary analysis of Moderate Resolution Imaging Spectroradiometer (MODIS surfaces from 2000 to 2012 combined with bathymetry gives water levels and storage evolution every 8 days.

  11. Using delta-front bathymetry to understand river delta progradation

    Science.gov (United States)

    Shaw, J. B.; Mohrig, D. C.

    2010-12-01

    We investigate the delta-front bathymetry of the Wax Lake Delta in Louisiana, USA; a sand rich river delta prograding quickly (~100 m/yr) into a shallow (~2.5 m) basin. The delta-front is the zone separating the bottomset from the topset of the delta. Bottomset sedimentation covers the bed evenly whereas topset sediment transport is focused by flow through distributary channels. The delta front connects these two disparate transport regimes and has a profound effect on channel-network evolution and sedimentary structure of river deltas. Predictions of delta-front topography made by models of delta progradation have rarely been compared to the bathymetry of field-scale deltas. We have mapped 60 km2 of delta front bathymetry immediately seaward of two sub-aerial distributary channels. Subaqueous channels extend up to 2 km seaward of their subaerial portions. These channels lose definition at their distal ends through a combination of channel-bed shoaling and loss of bank relief. Little bathymetric relief is observed at the fronts of the subaqueous channels, calling into question the role of channel-mouth bars in generating the bifurcations observed in this delta-channel network. Near the subaerial to subaqueous transition, steep and eroding sidewalls transition to constructional banks with gentle grades. Grab samples of bed material have been collected throughout the study area in order to detect proximal to distal fining and to constrain the shear stresses connected with delta-front sedimentation. A better understanding of sediment transport in the delta front and its affiliated patterns of erosion and deposition is essential for progress in understanding how river deltas prograde and fill their basins.

  12. Bathymetric Position Index (BPI) Zones 5m grid derived from gridded bathymetry of Tinian Island, Aguijan Island and Tatsumi Bank, Commonwealth of the Northern Marianas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The bathymetry grid (5 m cell size) is derived from bathymetry from three sources:...

  13. Bathymetric Position Index (BPI) Structures 5m grid derived from gridded bathymetry of Tinian Island, Aguijan Island and Tatsumi Bank, Commonwealth of the Northern Marianas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from a focal mean analysis on bathymetry and slope. The bathymetry grid (5 m cell size) is derived from bathymetry from three sources:...

  14. Development of Topological Correction Algorithms for ADCP Multibeam Bathymetry Measurements

    Science.gov (United States)

    Yang, Sung-Kee; Kim, Dong-Su; Kim, Soo-Jeong; Jung, Woo-Yul

    2013-04-01

    Acoustic Doppler Current Profilers (ADCPs) are increasingly popular in the river research and management communities being primarily used for estimation of stream flows. ADCPs capabilities, however, entail additional features that are not fully explored, such as morphologic representation of river or reservoir bed based upon multi-beam depth measurements. In addition to flow velocity, ADCP measurements include river bathymetry information through the depth measurements acquired in individual 4 or 5 beams with a given oblique angle. Such sounding capability indicates that multi-beam ADCPs can be utilized as an efficient depth-sounder to be more capable than the conventional single-beam eco-sounders. The paper introduces the post-processing algorithms required to deal with raw ADCP bathymetry measurements including the following aspects: a) correcting the individual beam depths for tilt (pitch and roll); b) filtering outliers using SMART filters; d) transforming the corrected depths into geographical coordinates by UTM conversion; and, e) tag the beam detecting locations with the concurrent GPS information; f) spatial representation in a GIS package. The developed algorithms are applied for the ADCP bathymetric dataset acquired from Han-Cheon in Juju Island to validate their applicability.

  15. Bathymetric Position Index (BPI) Structures 60 m grid derived from gridded bathymetry of the U.S. Territory of Guam.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (60 m cell size) multibeam bathymetry,...

  16. Bathymetric Position Index (BPI) Zones 20 m grid derived from gridded bathymetry of Brooks Banks, Hawaii, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (20 m cell size) multibeam bathymetry, collected aboard NOAA...

  17. Bathymetric Position Index (BPI) Zones 60 m grid derived from gridded bathymetry of Wake Island, West Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (60 m cell size) multibeam bathymetry, collected aboard R/V...

  18. Bathymetric Position Index (BPI) Zones 10 m grid derived from gridded bathymetry of Wake Island, West Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (10 m cell size) multibeam bathymetry, collected aboard R/V...

  19. Bathymetric Position Index (BPI) Zones 5 m grid derived from gridded bathymetry of Tau Island, Territory of American Samoa, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry, collected aboard R/V...

  20. Bathymetric Position Index (BPI) Zones 5 m grid derived from gridded bathymetry of Ni'ihau Island, Hawaii, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA...

  1. Bathymetric Position Index (BPI) Zones 5 m grid derived from gridded bathymetry of Rose Atoll, Territory of American Samoa, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry, collected aboard R/V...

  2. Bathymetric Position Index (BPI) Zones 5 m grid derived from gridded bathymetry of Brooks Banks, Hawaii, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA...

  3. Bathymetric Position Index (BPI) Zones 5 m grid derived from gridded bathymetry of Kure Atoll, Hawaii, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry, collected aboard R/V...

  4. Bathymetric Position Index (BPI) Zones 5 m grid derived from gridded bathymetry of Pearl and Hermes Atoll, Hawaii, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry, collected aboard R/V...

  5. Bathymetric Position Index (BPI) Zones 5 m grid derived from gridded bathymetry of French Frigate Shoals, Hawaii, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA...

  6. Rugosity grid derived from gridded bathymetry Ofu and Olosega Islands of the Manu'a Island group, American Samoa

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard R/V AHI, and bathymetry derived from multispectral IKONOS satellite imagery...

  7. Rugosity grid derived from gridded bathymetry of Ta'u Island of the Manu'a Island group, American Samoa

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard R/V AHI, and bathymetry derived from multispectral IKONOS satellite imagery...

  8. Bathymetric Position Index (BPI) Structures 10 m grid derived from gridded bathymetry of Wake Island, West Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (10 m cell size) multibeam bathymetry,...

  9. Bathymetric Position Index (BPI) Structures 5 m grid derived from gridded bathymetry of French Frigate Shoals, Hawaii, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry,...

  10. Slope grid derived from gridded bathymetry of Tinian Island, Aguijan Island and Tatsumi Bank, Commonwealth of the Northern Marianas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (5 m cell size) bathymetry, from three sources: Multibeam bathymetry collected by Coral Reef Ecosystem Division aboard NOAA R/V AHI,...

  11. Bathymetric Position Index (BPI) Structures 5 m grid derived from gridded bathymetry of Rose Atoll, Territory of American Samoa, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry,...

  12. Bathymetric Position Index (BPI) Structures 5 m grid derived from gridded bathymetry of Pearl and Hermes Atoll, Hawaii, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry,...

  13. Bathymetric Position Index (BPI) Structures 60 m grid derived from gridded bathymetry of Wake Island, West Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (60 m cell size) multibeam bathymetry,...

  14. Bathymetric Position Index (BPI) Structures 5 m grid derived from gridded bathymetry of Ni'ihau Island, Hawaii, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry,...

  15. Bathymetric Position Index (BPI) Structures 20 m grid derived from gridded bathymetry of Brooks Banks, Hawaii, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (20 m cell size) multibeam bathymetry,...

  16. CRED Bathymetric Position Index (BPI) Zones grid derived from gridded bathymetry of Tutuila Island, American Samoa, South Pacific

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA...

  17. Merged/integrated Bathymetric Data Derived from Multibeam Sonar, LiDAR, and Satellite-derived Bathymetry

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with derived bathymetry from alternate sources to provide a GIS layer with expanded spatial coverage. Integrated products...

  18. Bathymetric Position Index (BPI) Structures 60 m grid derived from gridded bathymetry of Rota Island, Mariana Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (60 m cell size) multibeam bathymetry,...

  19. Bathymetric Position Index (BPI) Zones Grid Derived from Gridded Bathymetry for Selected U.S. Locations in the Pacific

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded multibeam bathymetry, collected from various sources, and it...

  20. Rugosity grid derived from gridded bathymetry of Tinian Island, Aguijan Island and Tatsumi Bank, Commonwealth of the Northern Marianas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (5 m cell size) bathymetry, from three sources: Multibeam bathymetry collected by Coral Reef Ecosystem Division aboard NOAA R/V...

  1. Bathymetry Determination via X-Band Radar Data: A New Strategy and Numerical Results

    Directory of Open Access Journals (Sweden)

    Francesco Soldovieri

    2010-07-01

    Full Text Available This work deals with the question of sea state monitoring using marine X-band radar images and focuses its attention on the problem of sea depth estimation. We present and discuss a technique to estimate bathymetry by exploiting the dispersion relation for surface gravity waves. This estimation technique is based on the correlation between the measured and the theoretical sea wave spectra and a simple analysis of the approach is performed through test cases with synthetic data. More in detail, the reliability of the estimate technique is verified through simulated data sets that are concerned with different values of bathymetry and surface currents for two types of sea spectrum: JONSWAP and Pierson-Moskowitz. The results show how the estimated bathymetry is fairly accurate for low depth values, while the estimate is less accurate as the bathymetry increases, due to a less significant role of the bathymetry on the sea surface waves as the water depth increases.

  2. Colored shaded-relief bathymetry, acoustic backscatter, and selected perspective views of the Inner Continental Borderland, southern California

    Science.gov (United States)

    Dartnell, Peter; Driscoll, Neal W.; Brothers, Daniel S.; Conrad, James E.; Kluesner, Jared; Kent, Graham; Andrews, Brian D.

    2015-01-01

    In late 2013, Scripps Institution of Oceanography collected multibeam bathymetry and acoustic-backscatter data of the Inner Continental Borderland Region, Southern California. The U.S. Geological Survey Pacific Coastal and Marine Science Center processed these data, and this report provides the data in a number of different formats in addition to a set of map sheets. The data catalog provides the new bathymetry and acoustic-backscatter data, collected mainly in the Gulf of Santa Catalina and San Diego Trough, as well as this new bathymetry data merged with other publically available bathymetry data from the region. Sheet 1 displays a colored shaded-relief bathymetry map of the Inner Continental Borderland generated from the merged bathymetry data. Sheet 2 displays the new acoustic-backscatter data along with other available backscatter data in the region. Sheet 3 displays selected perspective views of the bathymetry data highlighting submarine canyon and channel systems, knolls, and tectonic features.

  3. USGS Small-scale Dataset - Bathymetry of North America 200506 GeoTIFF

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Bathymetry of North America map layer shows depth ranges using colors. The image was derived from the National Geophysical Data Center's ETOPO2 elevation data,...

  4. Gridded multibeam bathymetry of Guam Island, Guam U.S. Territory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry shelf, bank and slope environments of Guam Island, Guam U.S. Territory. Bottom coverage was achieved in depths between 0 and 3500 meters. The...

  5. NOAA ESRI Geotiff - 9m Multibeam Bathymetry, Puerto Rico (Tourmaline Bank) - UTM 19N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Geotiff with 9 meter cell size representing the bathymetry of selected portions of seafloor around Tourmaline Bank in Puerto Rico,...

  6. Bathymetry Mapping of the West Florida Shelf (Central Region), Gulf of Mexico (NODC Accession 0001410)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — XYZ ASCII format data generated from the 2001 multibeam sonar survey of the West Florida Shelf, Gulf of Mexico. The data include high-resolution bathymetry and...

  7. Bathymetry Mapping of the West Florida Shelf (Southern Region), Gulf of Mexico (NODC Accession 0001410)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — XYZ ASCII format data generated from the 2001 multibeam sonar survey of the West Florida Shelf, Gulf of Mexico. The data include high-resolution bathymetry and...

  8. Slope grid derived from gridded bathymetry of Howland Island, Pacific Remote Island Areas, Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (40 m cell size) multibeam bathymetry, collected aboard R/V AHI, and NOAA ship Hi'ialakai. Cell values reflect the maximum rate of...

  9. Rugosity grid derived from gridded bathymetry of of Johnston Island, Pacific Remote Island Areas, Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (20 m cell size) multibeam bathymetry, collected aboard R/V AHI and NOAA ship Hi'ialakai. Cell values reflect the (surface area) /...

  10. Rugosity grid derived from gridded bathymetry of of Baker Island, Pacific Remote Island Areas, Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (20 m cell size) multibeam bathymetry, collected aboard R/V AHI and NOAA ship Hi'ialakai. Cell values reflect the (surface area) /...

  11. Slope grid derived from gridded bathymetry of Pearl and Hermes Atoll, Hawaii, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI, and IKONOS derived depth values. Cell values...

  12. OW Smith and Sandwell v8.2 - 1/30 Degree Bathymetry & Topography

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Global bathymetry and topography information at 1/30 degree resolution. Data collected by means of in-situ and satellite measurements.

  13. Massachusetts Bay - Internal Wave Packets Digitized from SAR Imagery and Intersected with Bathymetry

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This feature class contains internal wave packets digitized from SAR imagery and intersected with bathymetry for Massachusetts Bay. The internal wave packets were...

  14. CRED 10m Gridded multibeam bathymetry of Sarigan Island, Commonwealth of the Northern Mariana Islands (CNMI).

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry shelf, bank and slope environments of Sarigan Island, CNMI. Bottom coverage was achieved in depths between 7 and 2761 meters, but this 10 m grid...

  15. 10 m Rugosity grid derived from gridded bathymetry of Wake Island, West Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA ship Hi'ialakai and R/V AHI using the Benthic Terrain Modeler with...

  16. CRED Rugosity grid derived from gridded bathymetry of Tutuila Island, American Samoa, South Pacific

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI, using the Benthic Terrain Modeler with...

  17. Slope 5m grid derived from gridded bathymetry of Brooks Banks, Hawaii, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA ship Hi'ialakai and R/V AHI. Cell values reflect the maximum rate of...

  18. Slope grid derived from gridded bathymetry of Ni'ihau Island, Hawaii, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA ship Hi'ialakai and R/V AHI. Cell values reflect the maximum rate of...

  19. 40 m Gridded bathymetry of Swains Island, American Samoa (Arc ASCII format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry (40 m cell size) of the slope environment of Swains Island, American Samoa. Almost complete bottom coverage was achieved in depths between 7 and...

  20. Slope grid derived from gridded bathymetry of Apra Harbor, Guam U.S. Territory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (1 m cell size) multibeam bathymetry, collected aboard the Survey Vessel Swamp Fox. Cell values reflect the maximum rate of change (in...

  1. 10 m Slope grid derived from gridded bathymetry of Wake Island, West Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA ship Hi'ialakai and R/V AHI. Cell values reflect the maximum rate of...

  2. Rugosity grid derived from gridded bathymetry of Howland Island, Pacific Remote Island Areas, Central Pacific

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (40 m cell size) multibeam bathymetry, collected aboard R/V AHI and NOAA ship Hi'ialakai. Cell values reflect the (surface area) /...

  3. Slope grid derived from gridded bathymetry of French Frigate Shoals, Hawaii, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI. Cell values reflect the maximum rate of...

  4. Rugosity grid derived from gridded bathymetry of Kure Atoll, Hawaii, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI, and IKONOS derived depths using the...

  5. Rugosity grid derived from gridded bathymetry of Pearl and Hermes Atoll, Hawaii, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI, and IKONOS derived depths using the...

  6. Rugosity 5m grid derived from gridded bathymetry of Brooks Banks, Hawaii, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA ship Hi'ialakai and R/V AHI using the Benthic Terrain Modeler with...

  7. Slope grid derived from gridded bathymetry of Baker Island, Pacific Remote Island Areas, Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (20 m cell size) multibeam bathymetry, collected aboard R/V AHI, and NOAA ship Hi'ialakai. Cell values reflect the maximum rate of...

  8. Slope grid derived from gridded bathymetry of Johnston Island, Pacific Remote Island Areas, Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (20 m cell size) multibeam bathymetry, collected aboard R/V AHI, and NOAA ship Hi'ialakai. Cell values reflect the maximum rate of...

  9. Bathymetry 1m GRID of St. Thomas, US Virgin Islands, 2004, UTM 20 WGS84

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 1 meter cell size representing the bathymetry of the south shore of St. Thomas, US Virgin Islands. NOAA's NOS/NCCOS/CCMA...

  10. ef_bathy: Multibeam Bathymetry of the East Flower Garden Region

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Bathymetry and seafloor backscatter data for the Flower Gardens National Marine Sanctuary are provided in Raster Grid format. This data set contains data, metadata,...

  11. Bathymetry Mapping of the West Florida Shelf (Steamboat Lumps), Gulf of Mexico (NODC Accession 0001410)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — XYZ ASCII format data generated from the 2001 multibeam sonar survey of the West Florida Shelf, Gulf of Mexico. The data include high-resolution bathymetry and...

  12. Bathymetry Mapping of the West Florida Shelf (Northern Region), Gulf of Mexico (NODC Accession 0001410)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — XYZ ASCII format data generated from the 2001 multibeam sonar survey of the West Florida Shelf, Gulf of Mexico. The data include high-resolution bathymetry and...

  13. Bathymetry 2M Grid, US Virgin Islands, 2005, UTM 20 NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified ESRI Grid with 2 meter cell size representing the bathymetry of selected portions of seafloor around St. Croix, St. Thomas, and St....

  14. Shoreline and Bathymetry Approximation in Mesh Generation for Tidal Renewable Simulations

    CERN Document Server

    Avdis, Alexandros; Hill, Jon; Piggott, Matthew D; Gorman, Gerard J

    2015-01-01

    Due to the fractal nature of the domain geometry in geophysical flow simulations, a completely accurate description of the domain in terms of a computational mesh is frequently deemed infeasible. Shoreline and bathymetry simplification methods are used to remove small scale details in the geometry, particularly in areas away from the region of interest. To that end, a novel method for shoreline and bathymetry simplification is presented. Existing shoreline simplification methods typically remove points if the resultant geometry satisfies particular geometric criteria. Bathymetry is usually simplified using traditional filtering techniques, that remove unwanted Fourier modes. Principal Component Analysis (PCA) has been used in other fields to isolate small-scale structures from larger scale coherent features in a robust way, underpinned by a rigorous but simple mathematical framework. Here we present a method based on principal component analysis aimed towards simplification of shorelines and bathymetry. We pr...

  15. Slope 60 m grid derived from gridded bathymetry of Guam Island, Mariana Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (60 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI. Cell values reflect the maximum rate of...

  16. Slope 60 m grid derived from gridded bathymetry of Rota Island, Mariana Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (60 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI. Cell values reflect the maximum rate of...

  17. Worldwide Database of Analog Marine Seismics, Bathymetry, Magnetics, and Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Analog Marine Geophysical Underway data file consists primarily of seismic data and some bathymetry, magnetics, and gravity data. Most of the data are released...

  18. Rugosity 60 m grid derived from gridded bathymetry of Guam Island, Mariana Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (60 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI, using the Benthic Terrain Modeler with...

  19. Bathymetry of Lake Manatee, Manatee County, Florida, 2009

    Science.gov (United States)

    Bellino, Jason C.; Pfeiffer, William R.

    2010-01-01

    Lake Manatee, located in central Manatee County, Florida, is the principal drinking-water source for Manatee and Sarasota Counties. The drainage basin of Lake Manatee encompasses about 120 square miles, and the reservoir covers a surface area of about 1,450 acres at an elevation of 38.8 feet above NAVD 88 or 39.7 feet above NGVD 29. The full pool water-surface elevation is 39.1 feet above NAVD 88 (40.0 feet above NGVD 29), and the estimated minimum usable elevation is 25.1 feet above NAVD 88 (26.0 feet above NGVD 29). The minimum usable elevation is based on the elevation of water intake structures. Manatee County has used the stage/volume relation that was developed from the original survey in the 1960s to estimate the volume of water available for consumption. Concerns about potential changes in storage capacity of the Lake Manatee reservoir, coupled with a recent drought, led to this bathymetry mapping effort.

  20. Coastal bathymetry estimation using regression function by WorldView-2 imagery

    Science.gov (United States)

    Koedkurang, Kanjana; Cao, Xiaoguang

    2015-12-01

    Coastal bathymetry data are great important environmental resources and disaster management. Today, there are many technologies used to explore the bathymetry, depending on the purpose of surveying. But almost technologies can be time consuming, complicated, and quite expensive. Remote sensing by satellite imagery is one of technology used to estimate the coastal bathymetry in term of accuracy, quality and up to datedness, timely availability and cost effectiveness. Especially the Coastal Blue Band of WorldView-2 for bathymetric measurements will improve both in depth and accuracy. From investigated the relation between surface reflectance and coastal bathymetry of the eight bands of WorldView-2 that band 1,2,3 and 4 are good reflection and when the depth are increase, the digital number (DN) will decrease. The objective of this research is to developing the classification of the coastal bathymetry estimation from satellite imagery. By utilized WorldView-2 satellite images along with regressive function and improving the accuracy result by comparing with in-situ truth depth to assess a coastal bathymetry.

  1. a Matlab Geodetic Software for Processing Airborne LIDAR Bathymetry Data

    Science.gov (United States)

    Pepe, M.; Prezioso, G.

    2015-04-01

    The ability to build three-dimensional models through technologies based on satellite navigation systems GNSS and the continuous development of new sensors, as Airborne Laser Scanning Hydrography (ALH), data acquisition methods and 3D multi-resolution representations, have contributed significantly to the digital 3D documentation, mapping, preservation and representation of landscapes and heritage as well as to the growth of research in this fields. However, GNSS systems led to the use of the ellipsoidal height; to transform this height in orthometric is necessary to know a geoid undulation model. The latest and most accurate global geoid undulation model, available worldwide, is EGM2008 which has been publicly released by the U.S. National Geospatial-Intelligence Agency (NGA) EGM Development Team. Therefore, given the availability and accuracy of this geoid model, we can use it in geomatics applications that require the conversion of heights. Using this model, to correct the elevation of a point does not coincide with any node must interpolate elevation information of adjacent nodes. The purpose of this paper is produce a Matlab® geodetic software for processing airborne LIDAR bathymetry data. In particular we want to focus on the point clouds in ASPRS LAS format and convert the ellipsoidal height in orthometric. The algorithm, valid on the whole globe and operative for all UTM zones, allows the conversion of ellipsoidal heights using the EGM2008 model. Of this model we analyse the slopes which occur, in some critical areas, between the nodes of the undulations grid; we will focus our attention on the marine areas verifying the impact that the slopes have in the calculation of the orthometric height and, consequently, in the accuracy of the in the 3-D point clouds. This experiment will be carried out by analysing a LAS APRS file containing topographic and bathymetric data collected with LIDAR systems along the coasts of Oregon and Washington (USA).

  2. A MATLAB GEODETIC SOFTWARE FOR PROCESSING AIRBORNE LIDAR BATHYMETRY DATA

    Directory of Open Access Journals (Sweden)

    M. Pepe

    2015-04-01

    Full Text Available The ability to build three-dimensional models through technologies based on satellite navigation systems GNSS and the continuous development of new sensors, as Airborne Laser Scanning Hydrography (ALH, data acquisition methods and 3D multi-resolution representations, have contributed significantly to the digital 3D documentation, mapping, preservation and representation of landscapes and heritage as well as to the growth of research in this fields. However, GNSS systems led to the use of the ellipsoidal height; to transform this height in orthometric is necessary to know a geoid undulation model. The latest and most accurate global geoid undulation model, available worldwide, is EGM2008 which has been publicly released by the U.S. National Geospatial-Intelligence Agency (NGA EGM Development Team. Therefore, given the availability and accuracy of this geoid model, we can use it in geomatics applications that require the conversion of heights. Using this model, to correct the elevation of a point does not coincide with any node must interpolate elevation information of adjacent nodes. The purpose of this paper is produce a Matlab® geodetic software for processing airborne LIDAR bathymetry data. In particular we want to focus on the point clouds in ASPRS LAS format and convert the ellipsoidal height in orthometric. The algorithm, valid on the whole globe and operative for all UTM zones, allows the conversion of ellipsoidal heights using the EGM2008 model. Of this model we analyse the slopes which occur, in some critical areas, between the nodes of the undulations grid; we will focus our attention on the marine areas verifying the impact that the slopes have in the calculation of the orthometric height and, consequently, in the accuracy of the in the 3-D point clouds. This experiment will be carried out by analysing a LAS APRS file containing topographic and bathymetric data collected with LIDAR systems along the coasts of Oregon and Washington

  3. cBathy: A robust algorithm for estimating nearshore bathymetry

    Science.gov (United States)

    Plant, Nathaniel G.; Holman, Rob; Holland, K. Todd

    2013-01-01

    A three-part algorithm is described and tested to provide robust bathymetry maps based solely on long time series observations of surface wave motions. The first phase consists of frequency-dependent characterization of the wave field in which dominant frequencies are estimated by Fourier transform while corresponding wave numbers are derived from spatial gradients in cross-spectral phase over analysis tiles that can be small, allowing high-spatial resolution. Coherent spatial structures at each frequency are extracted by frequency-dependent empirical orthogonal function (EOF). In phase two, depths are found that best fit weighted sets of frequency-wave number pairs. These are subsequently smoothed in time in phase 3 using a Kalman filter that fills gaps in coverage and objectively averages new estimates of variable quality with prior estimates. Objective confidence intervals are returned. Tests at Duck, NC, using 16 surveys collected over 2 years showed a bias and root-mean-square (RMS) error of 0.19 and 0.51 m, respectively but were largest near the offshore limits of analysis (roughly 500 m from the camera) and near the steep shoreline where analysis tiles mix information from waves, swash and static dry sand. Performance was excellent for small waves but degraded somewhat with increasing wave height. Sand bars and their small-scale alongshore variability were well resolved. A single ground truth survey from a dissipative, low-sloping beach (Agate Beach, OR) showed similar errors over a region that extended several kilometers from the camera and reached depths of 14 m. Vector wave number estimates can also be incorporated into data assimilation models of nearshore dynamics.

  4. CRED Acoustic Backscatter Saipan, Commonwealth of the Northern Mariana Islands (CNMI) 2003, Imagery Extracted from Gridded Bathymetry

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Backscatter extracted from gridded bathymetry of the banktops and shelf environments of Saipan, of the Mariana Islands Archipelago.

  5. 3-D reconstruction of coastal bathymetry from AIRSAR/POLSAR data

    Institute of Scientific and Technical Information of China (English)

    Maged MARGHANY; Mazlan HASHIM; Arthur P. CRACKNELL

    2009-01-01

    This paper introduces a new method for reconstructing three-dimensional (3D) coastal bathymetry changes from Airborne AIRSAR/POLSAR synthetic aperture data. The new method is based on integration between fuzzy B-spline and Volterra algorithm. Volterra algorithm is used to simulate the ocean surface current from AIRSAR/POLSAR data. Then, the ocean surface current information used as input for continuity equation to estimate the water depths from AIRSAR/POLSAR data. This study shows that 3D ocean bathymetry can be reconstructed from AIRSAR/POLSAR data with root mean square error of ±0.03 m.

  6. Composition, seasonal change and bathymetry of Ligeia Mare, Titan, derived from its 2.2-cm thermal emission

    Science.gov (United States)

    Le Gall, A.; Lorenz, R. D.; Malaska, M. J.; Tokano, T.; Hayes, A. G.; Mastrogiuseppe, M.; Veyssière, G.

    2015-10-01

    Ligeia Mare is the second largest sea of Saturn's moon Titan. It is also the first extraterritorial sea for which a bathymetry profile was obtained. In this paper, we analyze all data acquired up to July 2013 in the passive mode of the RADAR (i.e., radiometry mode) on board the Cassini probe in order to constrain its composition, seasonal change and bathymetry.

  7. Bathymetric Position Index (BPI) Zones 10 m grid derived from gridded bathymetry of Alamagan Island, Commonwealth of the Northern Mariana Islands, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA...

  8. Bathymetric Position Index (BPI) Zones 10 m grid derived from gridded bathymetry of Asuncion Island, Commonwealth of the Northern Mariana Islands, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (10 m cell size) multibeam bathymetry collected aboard NOAA...

  9. Bathymetric Position Index (BPI) Zones 10 m grid derived from gridded bathymetry of Farallon de Pajaros (Uracas) Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA...

  10. Bathymetric Position Index (BPI) Zones 5 m grid derived from gridded bathymetry of of Galvez Bank, South Galvez Bank, and 11-Mile Reef, Territory of Guam, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA...

  11. Bathymetric Position Index (BPI) Zones 10 m grid derived from gridded bathymetry of Supply Reef, Commonwealth of the Northern Mariana Islands, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA...

  12. Bathymetric Position Index (BPI) Zones 10 m grid derived from gridded bathymetry of Sarigan Island, Commonwealth of the Northern Mariana Islands, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA...

  13. Bathymetric Position Index (BPI) Zones 10 m grid derived from gridded bathymetry of Maug Island, Commonwealth of the Northern Mariana Islands, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA...

  14. Bathymetric Position Index (BPI) Structures 10 m grid derived from gridded bathymetry of Maug Island, Commonwealth of the Northern Mariana Islands (CNMI), USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (10 m cell size) multibeam bathymetry,...

  15. Bathymetric Position Index (BPI) Zones 10 m grid derived from gridded bathymetry of Agrihan Island, Commonwealth of the Northern Mariana Islands, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA...

  16. Bathymetric Position Index (BPI) Zones 10 m grid derived from gridded bathymetry of Pagan Island, Commonwealth of the Northern Mariana Islands, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA...

  17. Bathymetric Position Index (BPI) Zones 5 m grid derived from gridded bathymetry of Ofu and Olosega Islands, Territory of American Samoa, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry, collected aboard R/V...

  18. Bathymetric Position Index (BPI) Zones 10 m grid derived from gridded bathymetry of Guguan Island, Commonwealth of the Northern Mariana Islands, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA...

  19. Bathymetric Position Index (BPI) Structures 10 m grid derived from gridded bathymetry of Sarigan Island, Commonwealth of the Northern Mariana Islands (CNMI), USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (10 m cell size) multibeam bathymetry,...

  20. Bathymetric Position Index (BPI) Structures 10 m grid derived from gridded bathymetry of Guguan Island, Commonwealth of the Northern Mariana Islands (CNMI), USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (10 m cell size) multibeam bathymetry,...

  1. Bathymetric Position Index (BPI) Structures 5 m grid derived from gridded bathymetry of Ofu and Olosega Islands, Territory of American Samoa, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry,...

  2. Bathymetric Position Index (BPI) Structures 40 m grid derived from gridded bathymetry of Howland Island, Pacific Remote Island Areas, Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (40 m cell size) multibeam bathymetry,...

  3. Bathymetric Position Index (BPI) Structures 20 m grid derived from gridded bathymetry of Baker Island, Pacific Remote Island Areas, Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (20 m cell size) multibeam bathymetry,...

  4. Bathymetric Position Index (BPI) Structures 20 m grid derived from gridded bathymetry of Johnston Island, Pacific Remote Island Areas, Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (20 m cell size) multibeam bathymetry,...

  5. Bathymetric Position Index (BPI) Structures 10 m grid derived from gridded bathymetry of Alamagan Island, Commonwealth of the Northern Mariana Islands (CNMI), USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (10 m cell size) multibeam bathymetry,...

  6. Bathymetric Position Index (BPI) Structures 10 m grid derived from gridded bathymetry of Agrihan Island, Commonwealth of the Northern Mariana Islands (CNMI), USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (10 m cell size) multibeam bathymetry,...

  7. BathymetryB Hillshade [5m]--Monterey Canyon and Vicinity, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for 2-m and 5-m bathymetry and shaded-relief maps of Monterey Canyon and Vicinity, California. The raster data file is included in...

  8. Gridded bathymetry of Galvez Bank, S. Galvez Bank, and 11-Mile Reef, Territory of Guam, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry (5m) of the bank environment of Galvez Bank, and 2 small nearby banks S. Galvez Bank (~ 3 nmi south of Galvez) and 11-mile Reef (~ 5 nmi north of...

  9. The influence of continental shelf bathymetry on Antarctic Ice Sheet response to climate forcing

    Science.gov (United States)

    Bart, Philip J.; Mullally, Dan; Golledge, Nicholas R.

    2016-07-01

    We investigated whether shelf-depth changes would have influenced Antarctic Ice Sheet (AIS) response to climate forcing using the Parallel Ice Sheet Model (PISM). The simulations confirm that this would have indeed been the case. For the last-glacial-cycle (LGC) type forcing we prescribed, a modern-like polar AIS surrounded by shallow and intermediate bathymetries experiences rapid grounding-line advance early during the transition from interglacial to glacial forcing. This is in contrast to our baseline simulation of AIS response on the currently overdeepened bathymetry, which showed the expected gradual advance of grounding lines to the same climatic forcing. In the simulation, the more-positive mass balance for the shallower bathymetry is primarily a result of significantly lower calving fluxes from smaller-area ice shelves. On the basis of these results, we suggest that shelf bathymetry is an important boundary condition that should be considered when reconstructing AIS behavior since at least the middle Miocene. We note that caution should be used when applying these concepts because the particular way in which AIS mass balance is altered by shelf depth depends on how the changes in accumulation and ablation at the marine terminations combine with accumulation and ablation on land.

  10. An X-Band Radar System for Bathymetry and Wave Field Analysis in a Harbour Area

    Directory of Open Access Journals (Sweden)

    Giovanni Ludeno

    2015-01-01

    Full Text Available Marine X-band radar based systems are well tested to provide information about sea state and bathymetry. It is also well known that complex geometries and non-uniform bathymetries provide a much bigger challenge than offshore scenarios. In order to tackle this issue a retrieval method is proposed, based on spatial partitioning of the data and the application of the Normalized Scalar Product (NSP, which is an innovative procedure for the joint estimation of bathymetry and surface currents. The strategy is then applied to radar data acquired around a harbour entrance, and results show that the reconstructed bathymetry compares well with ground truth data obtained by an echo-sounder campaign, thus proving the reliability of the whole procedure. The spectrum thus retrieved is then analysed to show the evidence of reflected waves from the harbour jetties, as confirmed by chain of hydrodynamic models of the sea wave field. The possibility of using a land based radar to reveal sea wave reflection is entirely new and may open up new operational applications of the system.

  11. Bathymetry, acoustic backscatter, and seafloor character of Farallon Escarpment and Rittenburg Bank, northern California

    Science.gov (United States)

    Dartnell, Peter; Cochrane, Guy R.; Finlayson, David P.

    2014-01-01

    In 2011, scientists from the U.S. Geological Survey’s Coastal and Marine Geology Program acquired bathymetry and acoustic-backscatter data along the upper slope of the Farallon Escarpment and Rittenburg Bank within the Gulf of the Farallones National Marine Sanctuary offshore of the San Francisco Bay area. The surveys were funded by the National Oceanic and Atmospheric Administration’s Deep Sea Coral Research and Technology Program to identify potential deep sea coral habitat prior to planned sampling efforts. Bathymetry and acoustic-backscatter data can be used to map seafloor geology (rock, sand, mud), and slope of the sea floor, both of which are useful for the prediction of deep sea coral habitat. The data also can be used for the prediction of sediment and contaminant budgets and transport, and for the assessment of earthquake and tsunami hazards. The surveys were conducted aboard National Oceanic and Atmospheric Administration’s National Marine Sanctuary Program’s 67-foot-long research vessel Fulmar outfitted with a U.S. Geological Survey 100-kHz Reson 7111 multibeam-echosounder system. This report provides the bathymetry and backscatter data acquired during these surveys, interpretive seafloor character maps in several formats, a summary of the mapping mission, maps of bathymetry and backscatter, and Federal Geographic Data Committee metadata.

  12. Bathymetry Hillshade [2m]--Offshore of Monterey Map Area, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for 2-m and 5-m bathymetry and shaded-relief maps of Offshore of Monterey map area, California. The raster data file is included...

  13. Bathymetry Hillshade [5m]--Offshore of Monterey Map Area, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for 2-m and 5-m bathymetry and shaded-relief maps of Offshore of Monterey map area, California. The raster data file is included...

  14. OESbathy version 1.0: a method for reconstructing ocean bathymetry with realistic continental shelf-slope-rise structures

    Directory of Open Access Journals (Sweden)

    A. Goswami

    2015-04-01

    Full Text Available We present a method for reconstructing global ocean bathymetry that uses a plate cooling model for the oceanic lithosphere, the age distribution of the oceanic crust, global oceanic sediment thicknesses, plus shelf-slope-rise structures calibrated at modern active and passive continental margins. Our motivation is to reconstruct realistic ocean bathymetry based on parameterized relationships of present-day variables that can be applied to global oceans in the geologic past, and to isolate locations where anomalous processes such as mantle convection may affect bathymetry. Parameters of the plate cooling model are combined with ocean crustal age to calculate depth-to-basement. To the depth-to-basement we add an isostatically adjusted, multicomponent sediment layer, constrained by sediment thickness in the modern oceans and marginal seas. A continental shelf-slope-rise structure completes the bathymetry reconstruction, extending from the ocean crust to the coastlines. Shelf-slope-rise structures at active and passive margins are parameterized using modern ocean bathymetry at locations where a complete history of seafloor spreading is preserved. This includes the coastal regions of the North, South, and Central Atlantic Ocean, the Southern Ocean between Australia and Antarctica, and the Pacific Ocean off the west coast of South America. The final products are global maps at 0.1° × 0.1° resolution of depth-to-basement, ocean bathymetry with an isostatically adjusted, multicomponent sediment layer, and ocean bathymetry with reconstructed continental shelf-slope-rise structures. Our reconstructed bathymetry agrees with the measured ETOPO1 bathymetry at most passive margins, including the east coast of North America, north coast of the Arabian Sea, and northeast and southeast coasts of South America. There is disagreement at margins with anomalous continental shelf-slope-rise structures, such as around the Arctic Ocean, the Falkland Islands, and

  15. NOAA TIFF Image - 3m Bathymetry Mosaic, Florida Deep Coral Areas - Lost Coast Explorer - (2010), UTM 17N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified GeoTiff with 3x3 meter cell size representing bathymetry of several deep coral priority areas off the Atlantic Coast of Florida,...

  16. CRED 60m Gridded multibeam bathymetry of Alamagan, Guguan, and Sarigan Islands, Commonwealth of the Northern Mariana Islands (CNMI).

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry shelf, bank and slope environments of Alamagan, Guguan, and Sarigan Island, CNMI. Bottom coverage was achieved in depths between -7 and -2761...

  17. CRED 60m Gridded bathymetry and IKONOS estimated depths of UTM Zone 3, Northwestern Hawaiian Islands, USA (Arc ASCII format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry and IKONOS estimated depths of the shelf and slope environments of the Northwestern Hawaiian Islands, USA within UTM Zone 3. Bottom coverage was...

  18. CRED 20m Gridded bathymetry and IKONOS estimated depths of Kure Atoll, Hawaii, USA (NetCDF Format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry and IKONOS estimated depths of the shelf and slope environments of Kure Atoll, Hawaii, USA. Bottom coverage was achieved in depths between 0 and...

  19. NOAA TIFF Image- 5m Bathymetry (Sun Illuminated- Azimuth 225) of St. Croix (Buck Island), US Virgin Islands, 2004

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This georeferenced image represents 5 meter resolution bathymetry (sun illuminated with azimuth 225 and incline 45) of the north shore of St. Croix, US Virgin...

  20. CRED 20 m Gridded bathymetry of Jarvis Island, Pacific Remote Island Areas, Central Pacific (NetCDF Format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded (20 m cell size) bathymetry of the shelf and slope environments of Jarvis Island, Pacific Remote Island Areas, Central Pacific. Almost complete bottom...

  1. NOAA TIFF Image - 50m Multibeam Bathymetry, Charleston Bump - Deep Coral Priority Areas - Whiting - (2001), UTM 17N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified GeoTiff with 50x50 meter cell size representing the bathymetry of the Charleston Bump off of the South Atlantic Bight, derived from...

  2. Rugosity 10 m grid derived from gridded bathymetry of Maug Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI, using the Benthic Terrain Modeler with...

  3. CRED 40m Gridded bathymetry of the banktop and slope environments of Vailulu Seamount, American Samoa (NetCDF Format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded (40 m cell size) bathymetry of of Vailulu Seamount, an active volcano that lies between Ta'u Island and Rose Atoll, American Samoa, South Pacific. Almost...

  4. Bathymetric Position Index (BPI) Zones derived from gridded bathymetry of Swains Island,Territory of American Samoa, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from gridded (40 m cell size) multibeam bathymetry, collected aboard R/V AHI and NOAA ship Hi'ialakai. BPI Zones was created using the Benthic...

  5. Rugosity 10 m grid derived from gridded bathymetry of Sarigan Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hi'ialakai and R/V AHI, using the Benthic Terrain Modeler with...

  6. Shaded Relief of the Bathymetry near Shorty's Island and Myrtle Bend, 2010, Kootenai River near Bonners Ferry, ID

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The shaded relief raster data was created based on bathymetry obtained in the meander reach collected in about a one month period extending from 6/3/2010 -...

  7. CRED 5 m Gridded bathymetry of Kingman Reef, Pacific Remote Island Areas, Central Pacific (Arc ASCII Format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded (5 m cell size) bathymetry of the lagoon, shelf and slope environments of Kingman Reef, Pacific Remote Island Areas, Central Pacific. Almost complete bottom...

  8. CRED 5 m Gridded bathymetry of Johnston Atoll, Pacific Remote Island Areas, Central Pacific (NetCDF Format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry (5 m cell size) of the shelf and slope environments of Johnston Atoll, Pacific Remote Island Areas, Central Pacific. Almost complete bottom...

  9. 5 m Gridded bathymetry of the lagoon and slope environments of Rose Atoll, American Samoa (netCDF format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry (5 m cell size) of the inner lagoon and slope environments of Rose Atoll, American Samoa. This survey provides coverage between <10 and 300...

  10. CRED 20 m Gridded bathymetry of Johnston Atoll, Pacific Remote Island Areas, Central Pacific (Arc ASCII Format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry (20 m cell size) of the shelf and slope environments of Johnston Atoll, Pacific Remote Island Areas, Central Pacific. Almost complete bottom...

  11. CRED 5 m Gridded bathymetry of Baker Island, Pacific Remote Island Areas, Central Pacific (NetCDF Format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded (5 m cell size) bathymetry of the shelf and slope environments of Baker Island, Pacific Remote Island Areas, Central Pacific. Almost complete bottom...

  12. CRED 5 m Gridded bathymetry of Howland Island, Pacific Remote Island Areas, Central Pacific (NetCDF Format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded (5 m cell size) bathymetry of the shelf and slope environments of Howland Island, Pacific Remote Island Areas, Central Pacific. Almost complete bottom...

  13. CRED 40 m Gridded bathymetry of Palmyra Atoll, Pacific Remote Island Areas, Central Pacific (Arc ASCII Format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded (40 m cell size) bathymetry of the lagoon, shelf and slope environments of Palmyra Atoll, Pacific Remote Island Areas, Central Pacific. Almost complete...

  14. CRED 5 m Gridded bathymetry of Jarvis Island, Pacific Remote Island Areas, Central Pacific (Arc ASCII Format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded (5 m cell size) bathymetry of the shelf and slope environments of Jarvis Island, Pacific Remote Island Areas, Central Pacific. Almost complete bottom...

  15. CRED 5 m Gridded bathymetry of Palmyra Atoll, Pacific Remote Island Areas, Central Pacific (NetCDF Format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded (5 m cell size) bathymetry of the lagoon, shelf and slope environments of Palmyra Atoll, Pacific Remote Island Areas, Central Pacific. Almost complete...

  16. CRED 40 m Gridded bathymetry of Howland Island, Pacific Remote Island Areas, Central Pacific (Arc ASCII Format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded (40 m cell size) bathymetry of the shelf and slope environments of Howland Island, Pacific Remote Island Areas, Central Pacific. Almost complete bottom...

  17. CRED 5 m Gridded bathymetry of Howland Island, Pacific Remote Island Areas, Central Pacific (Arc ASCII Format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded (5 m cell size) bathymetry of the shelf and slope environments of Howland Island, Pacific Remote Island Areas, Central Pacific. Almost complete bottom...

  18. CRED 5 m Gridded bathymetry of Johnston Atoll, Pacific Remote Island Areas, Central Pacific (Arc ASCII Format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry (5 m cell size) of the shelf and slope environments of Johnston Atoll, Pacific Remote Island Areas, Central Pacific. Almost complete bottom...

  19. CRED 20 m Gridded bathymetry of Jarvis Island, Pacific Remote Island Areas, Central Pacific (Arc ASCII Format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded (20 m cell size) bathymetry of the shelf and slope environments of Jarvis Island, Pacific Remote Island Areas, Central Pacific. Almost complete bottom...

  20. CRED 40 m Gridded bathymetry of Howland Island, Pacific Remote Island Areas, Central Pacific (NetCDF Format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded (40 m cell size) bathymetry of the shelf and slope environments of Howland Island, Pacific Remote Island Areas, Central Pacific. Almost complete bottom...

  1. CRED 40 m Gridded bathymetry of Baker Island, Pacific Remote Island Areas, Central Pacific (Arc ASCII Format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded (40 m cell size) bathymetry of the shelf and slope environments of Baker Island, Pacific Remote Island Areas, Central Pacific. Almost complete bottom...

  2. CRED 40 m Gridded bathymetry of Palmyra Atoll, Pacific Remote Island Areas, Central Pacific (NetCDF Format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded (40 m cell size) bathymetry of the lagoon, shelf and slope environments of Palmyra Atoll, Pacific Remote Island Areas, Central Pacific. Almost complete...

  3. CRED 20 m Gridded bathymetry of Kingman Reef, Pacific Remote Island Areas, Central Pacific (NetCDF Format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded (20 m cell size) bathymetry of the lagoon, shelf and slope environments of Kingman Reef, Pacific Remote Island Areas, Central Pacific. Almost complete...

  4. 5 m Gridded bathymetry of the lagoon and slope environments of Rose Atoll, American Samoa (Arc ASCII format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry (5 m cell size) of the inner lagoon and slope environments of Rose Atoll, American Samoa. This survey provides coverage between <10 and 300...

  5. Slope grid derived from gridded bathymetry of Galvez Bank, South Galvez Bank, and 11-Mile Reef, Territory of Guam, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA Ship Oscar Elton Sette. Cell values reflect the maximum rate of change (in...

  6. CRED 20 m Gridded bathymetry of Johnston Atoll, Pacific Remote Island Areas, Central Pacific (NetCDF Format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry (20 m cell size) of the shelf and slope environments of Johnston Atoll, Pacific Remote Island Areas, Central Pacific. Almost complete bottom...

  7. CRED 5 m Gridded bathymetry of Baker Island, Pacific Remote Island Areas, Central Pacific (Arc ASCII Format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded (5 m cell size) bathymetry of the shelf and slope environments of Baker Island, Pacific Remote Isand Areas, Central Pacific. Almost complete bottom coverage...

  8. CRED 5 m Gridded bathymetry of Jarvis Island, Pacific Remote Island Areas, Central Pacific (NetCDF Format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded (5 m cell size) bathymetry of the shelf and slope environments of Jarvis Island, Pacific Remote Island Areas, Central Pacific. Almost complete bottom...

  9. Bathymetry 1M GRID of St. John (South Shore - Area 1), US Virgin Islands, 2004, UTM 20 WGS84

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 1 meter cell size representing the bathymetry of the south shore of St. John, US Virgin Islands. Due to the large file size...

  10. NOAA ESRI Geotiff- 1m Bathymetry of St. Thomas, US Virgin Islands, 2004, UTM 20 WGS84

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Geotiff with 1 meter cell size representing the bathymetry of the south shore of St. Thomas, US Virgin Islands.NOAA's NOS/NCCOS/CCMA...

  11. NOAA ESRI Geotiff- 1m Bathymetry of St. Croix (Buck Island), US Virgin Islands, 2004, UTM 20 WGS84

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Geotiff with 1 meter cell size representing the bathymetry of the north shore of Buck Island St. Croix, US Virgin Islands.NOAA's...

  12. Slope 10 m grid derived from gridded bathymetry of Supply Reef, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI. Cell values reflect the maximum rate of...

  13. Gridded multibeam bathymetry of Aguijan, Tinian, Farallon de Medinilla and Saipan Islands and Tatsumi and Marpi Banks, CNMI

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry shelf, bank and slope environments of Aguijan, Tinian, Farallon de Medinilla and Saipan Islands and Tatsumi and Marpi Banks, CNMI. Bottom...

  14. Bathymetry 1M GRID of St. Croix (Buck Island), US Virgin Islands, 2004, UTM 20 WGS84

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 1 meter cell size representing the bathymetry of the north shore of Buck Island St. Croix, US Virgin Islands. NOAA's...

  15. CRED 20m Gridded bathymetry and IKONOS estimated depths of Kure Atoll, Hawaii, USA (Arc ASCII format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry and IKONOS estimated depths of the shelf and slope environments of Kure Atoll, Hawaii, USA. Bottom coverage was achieved in depths between 0 and...

  16. CRED 5 m Gridded bathymetry and IKONOS estimated depths of Pearl and Hermes Atoll, Hawaii, USA (Arc ASCII format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry and IKONOS estimated depths of the shelf and slope environments of Pearl and Hermes Atoll, Hawaii, USA. Bottom coverage was achieved in depths...

  17. CRED Gridded 20m bathymetry and IKONOS estimated depths of Midway Atoll, Hawaii, USA (Arc ASCII format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry and IKONOS estimated depths of the shelf and slope environments of Midway Atoll, Hawaii, USA. Bottom coverage was achieved in depths between 0...

  18. Single-Beam XYZ Point Bathymetry Data of the Hurricane Sandy Breach at Fire Island, New York, June 2013

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset, 20130626_bathy_xyz.zip, consists of single-beam point data collected in June 2013 during a bathymetry survey of the Wilderness Breach and adjacent...

  19. Single-Beam Bathymetry Point Data Shapefile of the Hurricane Sandy Breach at Fire Island, New York, June 2013

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset, 20130626_bathy_points.zip, consists of single-beam point data collected in June 2013 during a bathymetry survey of the Wilderness Breach and adjacent...

  20. NOAA TIFF Image - 4m Sun Illuminated Bathymetry for Red Snapper Research Areas in the South Atlantic Bight, 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains unified Sun Illuminated Bathymetry GeoTiffs with 4x4 meter cell resolution describing the topography of 15 areas along the shelf edge off the...

  1. Bathymetry Surface Layer used to identify, delineate and classify moderate-depth benthic habitats around St. John, USVI

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents a 2x2 meter resolution bathymetry surface of the moderate-depth portion of the NPS's Virgin Islands Coral Reef National Monument, south of St....

  2. NOAA TIFF Image - 3m Bathymetry Slope, Florida Deep Coral Areas - Lost Coast Explorer - (2010), UTM 17N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified GeoTiff with 3x3 meter cell size representing bathymetry of several deep coral priority areas off the Atlantic Coast of Florida,...

  3. Slope 10 m grid derived from gridded bathymetry of Sarigan Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI. Cell values reflect the maximum rate of...

  4. Slope 10 m grid derived from gridded bathymetry of Maug Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI. Cell values reflect the maximum rate of...

  5. Slope 10 m grid derived from gridded bathymetry of Guguan Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI. Cell values reflect the maximum rate of...

  6. Slope 10 m grid derived from gridded bathymetry of Pagan Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI. Cell values reflect the maximum rate of...

  7. Slope grid derived from 10m gridded bathymetry of Alamagan Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI. Cell values reflect the maximum rate of...

  8. Slope 10 m grid derived from gridded bathymetry of Asuncion Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (10 m cell size) multibeam bathymetry collected aboard NOAA Ship Hiialaka'i and R/V AHI. Cell values reflect the maximum rate of...

  9. Slope 5 m grid derived from gridded bathymetry of Rota Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI. Cell values reflect the maximum rate of...

  10. Slope 10 m grid derived from gridded bathymetry of Agrihan Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI. Cell values reflect the maximum rate of...

  11. CRED 20 m Gridded bathymetry and IKONOS estimated depths of Lisianski Island, Northwestern Hawaiian Islands, USA (NetCDF format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry and IKONOS estimated depths of the shelf and slope environments of Lisianski Island, Northwestern Hawaiian Islands, Hawaii, USA. Bottom coverage...

  12. CRED 20 m Gridded bathymetry and IKONOS estimated depths of Pearl and Hermes Atoll, Hawaii, USA (NetCDF format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry and IKONOS estimated depths of the shelf and slope environments of Pearl and Hermes Atoll, Hawaii, USA. Bottom coverage was achieved in depths...

  13. CRED 20 m Gridded bathymetry and IKONOS estimated depths of Lisianski Island, Hawaii, USA (Arc ASCII format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry and IKONOS estimated depths of the shelf and slope environments of Lisianski Island, Northwestern Hawaiian Islands, Hawaii, USA. Bottom coverage...

  14. CRED 5 m Gridded bathymetry and IKONOS estimated depths of Pearl and Hermes Atoll, Hawaii, USA (NetCDF format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry and IKONOS estimated depths of the shelf and slope environments of Pearl and Hermes Atoll, Hawaii, USA. Bottom coverage was achieved in depths...

  15. CRED 60 m Gridded bathymetry and IKONOS estimated depths of UTM Zone 2, Northwestern Hawaiian Islands, USA (Arc ASCII format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry and IKONOS estimated depths of the shelf and slope environments of the Northwestern Hawaiian Islands, USA within UTM Zone 2. Bottom coverage was...

  16. CRED Gridded 5m bathymetry and IKONOS estimated depths of Midway Atoll, Hawaii, USA (NetCDF Format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry and IKONOS estimated depths of the shelf and slope environments of Midway Island, Hawaii, USA. Bottom coverage was achieved in depths between 0...

  17. CRED 60m Gridded multibeam bathymetry of Agrihan and Pagan Islands, Commonwealth of the Northern Mariana Islands (CNMI).

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry shelf, bank and slope environments of Agrihan and Pagan Islands, CNMI. Bottom coverage was achieved in depths between -4 and -3643 meters. The...

  18. Bathymetry and digital elevation models of Coyote Creek and Alviso Slough, South San Francisco Bay, California

    Science.gov (United States)

    Foxgrover, Amy C.; Finlayson, David P.; Jaffe, Bruce E.; Fregoso, Theresa A.

    2011-01-01

    In 2010 the U.S. Geological Survey (USGS), Coastal and Marine Geology Program completed three cruises to map the bathymetry of the main channel and shallow intertidal mudflats in the southernmost part of south San Francisco Bay. The three surveys were merged to generate comprehensive maps of Coyote Creek (from Calaveras Point east to the railroad bridge) and Alviso Slough (from the bay to the town of Alviso) to establish baseline bathymetry prior to the breaching of levees adjacent to Alviso and Guadalupe Sloughs as part of the South Bay Salt Pond Restoration Project http://www.southbayrestoration.org. Since 2010 we have conducted four additional surveys to monitor bathymetric change in this region as restoration progresses.

  19. Combined High-Resolution LIDAR Topography and Multibeam Bathymetry for Northern Resurrection Bay, Seward, Alaska

    Science.gov (United States)

    Labay, Keith A.; Haeussler, Peter J.

    2008-01-01

    A new Digital Elevation Model was created using the best available high-resolution topography and multibeam bathymetry surrounding the area of Seward, Alaska. Datasets of (1) LIDAR topography collected for the Kenai Watershed Forum, (2) Seward harbor soundings from the U.S. Army Corp of Engineers, and (3) multibeam bathymetry from the National Oceanic and Atmospheric Administration contributed to the final combined product. These datasets were placed into a common coordinate system, horizontal datum, vertical datum, and data format prior to being combined. The projected coordinate system of Universal Transverse Mercator Zone 6 North American Datum of 1927 was used for the horizontal coordinates. Z-values in meters were referenced to the tidal datum of Mean High Water. Gaps between the datasets were interpolated to create the final seamless 5-meter grid covering the area of interest around Seward, Alaska.

  20. Performance Assessment of High Resolution Airborne Full Waveform LiDAR for Shallow River Bathymetry

    OpenAIRE

    Zhigang Pan; Craig Glennie; Preston Hartzell; Juan Carlos Fernandez-Diaz; Carl Legleiter; Brandon Overstreet

    2015-01-01

    We evaluate the performance of full waveform LiDAR decomposition algorithms with a high-resolution single band airborne LiDAR bathymetry system in shallow rivers. A continuous wavelet transformation (CWT) is proposed and applied in two fluvial environments, and the results are compared to existing echo retrieval methods. LiDAR water depths are also compared to independent field measurements. In both clear and turbid water, the CWT algorithm outperforms the other methods if only green LiDAR ob...

  1. COSTAL BATHYMETRY ESTIMATION FROM MULTISPECTRAL IMAGE WITH BACK PROPAGATION NEURAL NETWORK

    OpenAIRE

    Huang, S.Y.; Liu, C.L.; Ren, H.

    2016-01-01

    Bathymetric data in coastal area are important for marine sciences, hydrological applications and even for transportation and military purposes. Compare to traditional sonar and recent airborne bathymetry LIDAR systems, optical satellite images can provide information to survey a large area with single or multiple satellite images efficiently and economically. And it is especially suitable for coastal area because the penetration of visible light in water merely reaches 30 meters. In this stu...

  2. Bathymetry from space: Rationale and requirements for a new, high-resolution altimetric mission

    OpenAIRE

    Sandwell, David T.; Smith, Walter H.f.; Gille, Sarah; Kappel, Ellen; Jayne, Steven; Soofi, Khalid; Coakley, Bernard; Geli, Louis

    2006-01-01

    Bathymetry is foundational data, providing basic infrastructure for scientific, economic, educational, managerial, and political work. Applications as diverse as tsunami hazard assessment, communications cable and pipeline route planning, resource exploration, habitat management, and territorial claims under the Law of the Sea all require reliable bathymetric maps to be available on demand. Fundamental Earth science questions, such as what controls seafloor shape and how seafloor shape influe...

  3. RTOPO-1: A consistent dataset for Antarctic ice shelf topography and global ocean bathymetry

    Science.gov (United States)

    Timmermann, Ralph

    2010-05-01

    Sub-ice shelf circulation and freezing/melting rates depend critically on an accurate and consistent representation of cavity geometry (i.e. ice-shelf draft and ocean bathymetry). Existing global or pan-Antarctic data sets have turned out to contain various inconsistencies and inaccuracies. The goal of this work is to compile independent regional fields into a global data set. We use the S-2004 global 1-minute bathymetry as the backbone and add an improved version of the BEDMAP topography for an area that roughly coincides with the Antarctic continental shelf. Locations of the merging line have been carefully adjusted in order to get the best out of each data set. High-resolution gridded data for the Amery, Fimbul, Filchner-Ronne, Larsen C and George VI Ice Shelves and for Pine Island Glacier have been carefully merged into the ambient ice and ocean topographies. Multibeam ship survey data for bathymetry in the former Larsen B cavity and the southeastern Bellingshausen Sea have been obtained from the data centers of Alfred Wegener Institute (AWI), British Antarctic Survey (BAS) and Lamont-Doherty Earth Observatory (LDEO), gridded, and again carefully merged into the existing bathymetry map. The resulting global 1-minute data set contains consistent masks for open ocean, grounded ice, floating ice, and bare land surface. The Ice Shelf Cavern Geometry Team: Anne Le Brocq, Tara Deen, Eugene Domack, Pierre Dutrieux, Ben Galton-Fenzi, Dorothea Graffe, Hartmut Hellmer, Angelika Humbert, Daniela Jansen, Adrian Jenkins, Astrid Lambrecht, Keith Makinson, Fred Niederjasper, Frank Nitsche, Ole Anders Nøst, Lars Henrik Smedsrud, and Walter Smith

  4. Bottom Roughness and Bathymetry Estimation of 1-D Shallow Water Equations Model Using Ensemble Kalman Filter

    Science.gov (United States)

    Hooshyar, M.; Hagen, S. C.; Wang, D.

    2014-12-01

    Hydrodynamic models are widely applied to coastal areas in order to predict water levels and flood inundation and typically involve solving a form of the Shallow Water Equations (SWE). The SWE are routinely discretized by applying numerical methods, such as the finite element method. Like other numerical models, hydrodynamic models include uncertainty. Uncertainties are generated due to errors in the discrete approximation of coastal geometry, bathymetry, bottom friction and forcing functions such as tides and wind fields. Methods to counteract these uncertainties should always begin with improvements to physical characterization of: the geometric description through increased resolution, parameters that describe land cover variations in the natural and urban environment, parameters that enhance transfer of surface forcings to the water surface, open boundary forcings, and the wetting/drying brought upon by flood and ebb cycles. When the best possible physical representation is achieved, we are left with calibration and data assimilation to reduce model uncertainty. Data assimilation has been applied to coastal hydrodynamic models to better estimate system states and/or system parameters by incorporating observed data into the model. Kalman Filter is one of the most studied data assimilation methods that minimizes the mean square errors between model state estimations and the observed data in linear systems (Kalman , 1960). For nonlinear systems, as with hydrodynamic models, a variation of Kalman filter called Ensemble Kalman Filter (EnKF), is applied to update the system state according to error statistics in the context of Monte Carlo simulations (Evensen , 2003) & (Hitoshi et. al, 2014). In this research, Kalman Filter is incorporated to simultaneously estimate an influential parameter used in the shallow water equations, bottom roughness, and to adjust the physical feature of bathymetry. Starting from an initial estimate of bottom roughness and bathymetry, and

  5. Direct inversion of shallow-water bathymetry from EO-1 hyperspectral remote sensing data

    Institute of Scientific and Technical Information of China (English)

    Zhishen Liu; Yan Zhou

    2011-01-01

    @@ Using the US National Aeronautics and space Administration (NASA) Earth Observing-1 Mission (EO-1)hyperion hyperspectral remote sensing data, we study the shallow-water bathymetry inversion in Smith Island Bay.The fast line-of-sight atmospheric analysis of spectral hypercubes module is applied for atmospheric correction, and principal component analysis method combined with scatter diagram and maximum likelihood classification is used for seabed classification.The diffuse attenuation coefficient Kd is derived using quasi-analytical algorithm (QAA), which performs well in optically deep water.Kd obtained from QAA requires correction, particularly those derived in some coastal areas with optically shallow water and calculated by direct inversion based on radiative transfer theory to obtain the bathymetry.The direct inversion method derives the water depth quickly, and matches the results from optimized algorithm.%Using the US National Aeronautics and space Administration (NASA) Earth Observing-1 Mission (EO-1) hyperion hyperspectral remote sensing data, we study the shallow-water bathymetry inversion in Smith Island Bay.The fast line-of-sight atmospheric analysis of spectral hypercubes module is applied for atmospheric correction, and principal component analysis method combined with scatter diagram and maximum likelihood classification is used for seabed classification.The diffuse attenuation coefficient Kd is derived using quasi-analytical algorithm (QAA), which performs well in optically deep water Kd obtained from QAA requires correction, particularly those derived in some coastal areas with optically shallow water and calculated by direct inversion based on radiative transfer theory to obtain the bathymetry.The direct inversion method derives the water depth quickly, and matches the results from optimized algorithm.

  6. OESbathy version 1.0: a method for reconstructing ocean bathymetry with generalized continental shelf-slope-rise structures

    Science.gov (United States)

    Goswami, A.; Olson, P. L.; Hinnov, L. A.; Gnanadesikan, A.

    2015-09-01

    We present a method for reconstructing global ocean bathymetry that combines a standard plate cooling model for the oceanic lithosphere based on the age of the oceanic crust, global oceanic sediment thicknesses, plus generalized shelf-slope-rise structures calibrated at modern active and passive continental margins. Our motivation is to develop a methodology for reconstructing ocean bathymetry in the geologic past that includes heterogeneous continental margins in addition to abyssal ocean floor. First, the plate cooling model is applied to maps of ocean crustal age to calculate depth to basement. To the depth to basement we add an isostatically adjusted, multicomponent sediment layer constrained by sediment thickness in the modern oceans and marginal seas. A three-parameter continental shelf-slope-rise structure completes the bathymetry reconstruction, extending from the ocean crust to the coastlines. Parameters of the shelf-slope-rise structures at active and passive margins are determined from modern ocean bathymetry at locations where a complete history of seafloor spreading is preserved. This includes the coastal regions of the North, South, and central Atlantic, the Southern Ocean between Australia and Antarctica, and the Pacific Ocean off the west coast of South America. The final products are global maps at 0.1° × 0.1° resolution of depth to basement, ocean bathymetry with an isostatically adjusted multicomponent sediment layer, and ocean bathymetry with reconstructed continental shelf-slope-rise structures. Our reconstructed bathymetry agrees with the measured ETOPO1 bathymetry at most passive margins, including the east coast of North America, north coast of the Arabian Sea, and northeast and southeast coasts of South America. There is disagreement at margins with anomalous continental shelf-slope-rise structures, such as around the Arctic Ocean, the Falkland Islands, and Indonesia.

  7. Analysis of the Effect Ofwave Patterns on Refraction in Airborne LIDAR Bathymetry

    Science.gov (United States)

    Westfeld, P.; Richter, K.; Maas, H.-G.; Weiß, Robert

    2016-06-01

    This contribution investigates the effects of wave patterns on 3D point coordinate accuracy in LiDAR bathymetry. The finite diameter refracted laser pulse path passing the air/water interface is modelled differentially and in a strict manner. Typical wave patterns are simulated and their impact on the 3D coordinates at the bottom of the water body are analysed. It can be shown that the effects of waves within small LiDAR bathymetry footprints on the depth and planimetry coordinates is significant. Planimetric effects may reach several decimetres or even metres, and depth coordinate errors also reach several decimetres, even in case of horizontal water body bottom. The simplified assumption of averaging wave effects often made in many ALB applications is not only fulfilled in cases of a very large beam divergence under certain wave pattern conditions. Modern smaller beam divergence systems will mostly experience significant wave pattern dependent coordinate errors. The results presented here thus form a basis for a more strict coordinate correction if the wave pattern can be modelled from the LiDAR bathymetry water surface reflections or other observations. Moreover, it will be shown that the induced coordinate errors contain systematic parts in addition to the local wave surface dependent quasi-random part, which allows for the formulation of wave pattern type dependent correction terms.

  8. SeaDataNet II - EMODNet Bathymetry - building a pan-European infrastructure for marine and ocean data management and a digital high resolution bathymetry for European seas

    Science.gov (United States)

    Schaap, Dick M. A.; Fichaut, Michele

    2015-04-01

    The second phase of the project SeaDataNet is well underway since October 2011. The main objective is to improve operations and to progress towards an efficient data management infrastructure able to handle the diversity and large volume of data collected via research cruises and monitoring activities in European marine waters and global oceans. The SeaDataNet infrastructure comprises a network of interconnected data centres and a central SeaDataNet portal. The portal provides users a unified and transparent overview of the metadata and controlled access to the large collections of data sets, managed by the interconnected data centres, and the various SeaDataNet standards and tools,. SeaDataNet is also setting and governing marine data standards, and exploring and establishing interoperability solutions to connect to other e-infrastructures on the basis of standards of ISO (19115, 19139), OGC (WMS, WFS, CS-W and SWE), and OpenSearch. The population of directories has increased considerably in cooperation and involvement in associated EU projects and initiatives. SeaDataNet now gives overview and access to more than 1.6 million data sets for physical oceanography, chemistry, geology, geophysics, bathymetry and biology from more than 100 connected data centres from 34 countries riparian to European seas. Access to marine data is also a key issue for the implementation of the EU Marine Strategy Framework Directive (MSFD). The EU communication 'Marine Knowledge 2020' underpins the importance of data availability and harmonising access to marine data from different sources. SeaDataNet qualified itself for an active role in the data management component of the EMODnet (European Marine Observation and Data network) that is promoted in the EU Communication. Starting 2009 EMODnet pilot portals have been initiated for marine data themes: digital bathymetry, chemistry, physical oceanography, geology, biology, and seabed habitat mapping. These portals are being expanded to all

  9. A consistent data set of Antarctic ice sheet topography, cavity geometry, and global bathymetry

    Directory of Open Access Journals (Sweden)

    R. Timmermann

    2010-12-01

    Full Text Available Sub-ice shelf circulation and freezing/melting rates in ocean general circulation models depend critically on an accurate and consistent representation of cavity geometry. Existing global or pan-Antarctic topography data sets have turned out to contain various inconsistencies and inaccuracies. The goal of this work is to compile independent regional surveys and maps into a global data set. We use the S-2004 global 1-min bathymetry as the backbone and add an improved version of the BEDMAP topography (ALBMAP bedrock topography for an area that roughly coincides with the Antarctic continental shelf. The position of the merging line is individually chosen in different sectors in order to capture the best of both data sets. High-resolution gridded data for ice shelf topography and cavity geometry of the Amery, Fimbul, Filchner-Ronne, Larsen C and George VI Ice Shelves, and for Pine Island Glacier are carefully merged into the ambient ice and ocean topographies. Multibeam survey data for bathymetry in the former Larsen B cavity and the southeastern Bellingshausen Sea have been obtained from the data centers of Alfred Wegener Institute (AWI, British Antarctic Survey (BAS and Lamont-Doherty Earth Observatory (LDEO, gridded, and blended into the existing bathymetry map. The resulting global 1-min Refined Topography data set (RTopo-1 contains self-consistent maps for upper and lower ice surface heights, bedrock topography, and surface type (open ocean, grounded ice, floating ice, bare land surface. The data set is available in NetCDF format from the PANGAEA database at doi:10.1594/pangaea.741917.

  10. Preliminary Studies Leading Toward the Development of a LIDAR Bathymetry Mapping Instrument

    Science.gov (United States)

    Hill, John M.; Krenek, Brendan D.; Kunz, Terry D.; Krabill, William; Stetina, Fran

    1993-01-01

    The National Aeronautics and Space Administration (NASA) at Goddard Space Flight Center (GSFC) has developed a laser ranging device (LIDAR) which provides accurate and timely data of earth features. NASA/GSFC recently modified the sensor to include a scanning capability to produce LIDAR swaths. They have also integrated a Global Positioning System (GPS) and an Inertial Navigation System (INS) to accurately determine the absolute aircraft location and aircraft attitude (pitch, yaw, and roll), respectively. The sensor has been flown in research mode by NASA for many years. The LIDAR has been used in different configurations or modes to acquire such data as altimetry (topography), bathymetry (water depth), laser-induced fluorosensing (tracer dye movements, oil spills and oil thickness, chlorophyll and plant stress identification), forestry, and wetland discrimination studies. NASA and HARC are developing a commercial version of the instrument for topographic mapping applications. The next phase of the commercialization project will be to investigate other applications such as wetlands mapping and coastal bathymetry. In this paper we report on preliminary laboratory measurements to determine the feasibility of making accurate depth measurements in relatively shallow water (approximately 2 to 6 feet deep) using a LIDAR system. The LIDAR bathymetry measurements are relatively simple in theory. The water depth is determined by measuring the time interval between the water surface reflection and the bottom surface reflection signals. Depth is then calculated by dividing by the index of refraction of water. However, the measurements are somewhat complicated due to the convolution of the water surface return signal with the bottom surface return signal. Therefore in addition to the laboratory experiments, computer simulations of the data were made to show these convolution effects in the return pulse waveform due to: (1) water depth, and (2) changes in bottom surface

  11. Volcanic evolution of the South Sandwich volcanic arc, South Atlantic, from multibeam bathymetry

    OpenAIRE

    Leat, Philip T; Day, Simon J; Tate, Alex J.; Martin, Tara J; Owen, Matthew J; Tappin, David R.

    2013-01-01

    New multibeam bathymetry data are presented for the South Sandwich intra-oceanic arc which occupies the small Sandwich plate in the South Atlantic, and is widely considered to be a simple end-member in the range of intra-oceanic arc types. The images show for the first time the distribution of submarine volcanic, tectonic and erosional-depositional features along the whole length of the 540 km long volcanic arc, allowing systematic investigation of along-arc variations. The data confirm that ...

  12. Evidence for age and evolution of Corner seamounts and Great Meteor seamount chain from multibeam bathymetry

    Science.gov (United States)

    Tucholke, Brian E.; Smoot, N. Christian

    1990-01-01

    The morphology of the Corner and Cruiser seamounts is discussed and the apparent age of seamount geomorphic features that are thought to have formed at sea level is derived. High-resolution, multibeam bathymetry of the seamounts shows geomorphic features such as guyots and terraces. The pattern of volcanism is consistent with the sequential formation of the New England, Corner, and Great Meteor chain seamounts above the New England hotspot. However, Late Cretaceous and Cenozoic absolute motion of the African plate over the hotspot differs significantly from predictions of the existing models. The derived age pattern of volcanism indicates formation of the Corner seamounts at ca. 80 Ma to 76 Ma.

  13. Performance Assessment of High Resolution Airborne Full Waveform LiDAR for Shallow River Bathymetry

    Directory of Open Access Journals (Sweden)

    Zhigang Pan

    2015-04-01

    Full Text Available We evaluate the performance of full waveform LiDAR decomposition algorithms with a high-resolution single band airborne LiDAR bathymetry system in shallow rivers. A continuous wavelet transformation (CWT is proposed and applied in two fluvial environments, and the results are compared to existing echo retrieval methods. LiDAR water depths are also compared to independent field measurements. In both clear and turbid water, the CWT algorithm outperforms the other methods if only green LiDAR observations are available. However, both the definition of the water surface, and the turbidity of the water significantly influence the performance of the LiDAR bathymetry observations. The results suggest that there is no single best full waveform processing algorithm for all bathymetric situations. Overall, the optimal processing strategies resulted in a determination of water depths with a 6 cm mean at 14 cm standard deviation for clear water, and a 16 cm mean and 27 cm standard deviation in more turbid water.

  14. Neural networks for the generation of sea bed models using airborne lidar bathymetry data

    Directory of Open Access Journals (Sweden)

    Kogut Tomasz

    2016-06-01

    Full Text Available Various sectors of the economy such as transport and renewable energy have shown great interest in sea bed models. The required measurements are usually carried out by ship-based echo sounding, but this method is quite expensive. A relatively new alternative is data obtained by airborne lidar bathymetry. This study investigates the accuracy of these data, which was obtained in the context of the project ‘Investigation on the use of airborne laser bathymetry in hydrographic surveying’. A comparison to multi-beam echo sounding data shows only small differences in the depths values of the data sets. The IHO requirements of the total horizontal and vertical uncertainty for laser data are met. The second goal of this paper is to compare three spatial interpolation methods, namely Inverse Distance Weighting (IDW, Delaunay Triangulation (TIN, and supervised Artificial Neural Networks (ANN, for the generation of sea bed models. The focus of our investigation is on the amount of required sampling points. This is analyzed by manually reducing the data sets. We found that the three techniques have a similar performance almost independently of the amount of sampling data in our test area. However, ANN are more stable when using a very small subset of points.

  15. Composition, seasonal change, and bathymetry of Ligeia Mare, Titan, derived from its microwave thermal emission

    Science.gov (United States)

    Le Gall, A.; Malaska, M. J.; Lorenz, R. D.; Janssen, M. A.; Tokano, T.; Hayes, A. G.; Mastrogiuseppe, M.; Lunine, J. I.; Veyssière, G.; Encrenaz, P.; Karatekin, O.

    2016-02-01

    For the last decade, the passive radiometer incorporated in the Cassini RADAR has recorded the 2.2 cm wavelength thermal emission from Titan's seas. In this paper, we analyze the radiometry observations collected from February 2007 to January 2015 over one of these seas, Ligeia Mare, with the goal of providing constraints on its composition, bathymetry, and dynamics. In light of the depth profile obtained by Mastrogiuseppe et al. (2014) and of a two-layer model, we find that the dielectric constant of the sea liquid is Mare is primarily fed by methane-rich precipitation and/or ethane has been removed from it (e.g., by crustal interaction). Our result on the dielectric constant of the seafloor is less constraining (Mare is covered by a sludge of compacted and possibly nitrile-rich organic material formed by the deposition of photochemical haze or by rain washing of the nearby shores. We use these results to produce a low-resolution bathymetry map of the sea. We also estimate the temperature variation of the bulk sea between February 2007 and July 2013 to be explored in ocean circulation models. Lastly, we suggest a lag in the summer warming of the northern polar terrains.

  16. Costal Bathymetry Estimation from Multispectral Image with Back Propagation Neural Network

    Science.gov (United States)

    Huang, S. Y.; Liu, C. L.; Ren, H.

    2016-06-01

    Bathymetric data in coastal area are important for marine sciences, hydrological applications and even for transportation and military purposes. Compare to traditional sonar and recent airborne bathymetry LIDAR systems, optical satellite images can provide information to survey a large area with single or multiple satellite images efficiently and economically. And it is especially suitable for coastal area because the penetration of visible light in water merely reaches 30 meters. In this study, a three-layer back propagation neural network is proposed to estimate bathymetry. In the learning stage, some training samples with known depth are adopted to train the weights of the neural network until the stopping criterion is satisfied. The spectral information is sent to the input layer and fits the true water depth with the output. The depths of training samples are manually measured from stereo images of the submerged reefs after water refraction correction. In the testing stage, all non-land pixels are processed. The experiments show the mean square errors are less than 3 meters.

  17. Neural networks for the generation of sea bed models using airborne lidar bathymetry data

    Science.gov (United States)

    Kogut, Tomasz; Niemeyer, Joachim; Bujakiewicz, Aleksandra

    2016-06-01

    Various sectors of the economy such as transport and renewable energy have shown great interest in sea bed models. The required measurements are usually carried out by ship-based echo sounding, but this method is quite expensive. A relatively new alternative is data obtained by airborne lidar bathymetry. This study investigates the accuracy of these data, which was obtained in the context of the project `Investigation on the use of airborne laser bathymetry in hydrographic surveying'. A comparison to multi-beam echo sounding data shows only small differences in the depths values of the data sets. The IHO requirements of the total horizontal and vertical uncertainty for laser data are met. The second goal of this paper is to compare three spatial interpolation methods, namely Inverse Distance Weighting (IDW), Delaunay Triangulation (TIN), and supervised Artificial Neural Networks (ANN), for the generation of sea bed models. The focus of our investigation is on the amount of required sampling points. This is analyzed by manually reducing the data sets. We found that the three techniques have a similar performance almost independently of the amount of sampling data in our test area. However, ANN are more stable when using a very small subset of points.

  18. Development of two-dimensional models to estimate nearshore bathymetry and sediment transport

    Science.gov (United States)

    Splinter, Kristen D. M.

    We examine the interactions and feedbacks between bathymetry, waves, currents, and sediment transport. Utilizing remotely-sensed wave refraction patterns of nearshore waves, we estimate bathymetry gradients in the nearshore through the 2D irrotationality of the wave number equation. The model, discussed in Chapter 2, uses an augmented form of the refraction equation that relates gradients in bathymetry to gradients in wavenumber and wave angle through the chain rule. The equations are cast in a form that is independent of wave period, so can be solved using wavenumber and direction data from a single snapshot rather than the normally-required time series of images. Secondly, remotely sensed images of wave breaking over complex bathymetry are used to study the nonlinear feedbacks between two-dimensional (horizontal), 2DH, morphology and cross-shore migration rates of the alongshore averaged bar. We first test a linear model on a subset of 4 years of data at Palm Beach, Australia. The results are discussed in Chapter 3. The model requires eight free parameters, solved for using linear regression of the data to model the relationship between alongshore averaged bar position, x, alongshore sinuosity of the bar, a, and wave forcing, F = H2o. The linear model suggests that 2DH bathymetry is linked to cross-shore bar migration rates. Nevertheless, the primary limitation is that variations in bar position and variability are required to be temporally uncorrelated with forcing in order to achieve meaningful results. In Chapter 4 a nonlinear model is subsequently developed and tested on the same data set. Initial equations for cross-shore sediment transport are formulated from commonly accepted theory using energetics-type equations. Cross-shore transport is based on the deviations around an equilibrium amount of roller contribution with the nonlinearity of the model forcing sediment transport to zero in the absence of wave breaking. The extension to 2DH is based on

  19. High-resolution bathymetry reveals contrasting landslide activity shaping the walls of the Mid-Atlantic Ridge axial valley

    OpenAIRE

    CANNAT, Mathilde; Mangeney, Anne; Ondreas, Helene; Fouquet, Yves; Normand, Alain

    2013-01-01

    Axial valleys are found along most slow-spreading mid-ocean ridges and are one of the most prominent topographic features on Earth. In this paper, we present the first deep-tow swath bathymetry for the axial valley walls of the Mid-Atlantic Ridge. These data allow us to analyze axial valley wall morphology with a very high resolution (0.5 to 1 m compared to 50 m for shipboard multibeam bathymetry), revealing the role played by landslides. Slow-spreading ridge axial valleys also commonly expos...

  20. Auv Multibeam Bathymetry and Sidescan Survey of the SS Montebello wreck Offshore Cambria CA

    Science.gov (United States)

    Caress, D. W.; Thomas, H.; Conlin, D.; Thompson, D.; Paull, C. K.

    2010-12-01

    An MBARI Mapping AUV survey of the SS Montebello wreck offshore Cambria, CA collected high-resolution multibeam bathymetry and sidescan imagery of the vessel and the surrounding seafloor. The Montebello was an oil tanker that was torpedoed and sunk about 11 km offshore in 275 m water depth by a Japanese submarine on December 23, 1941. The Montebello was loaded with 3,000,000 gallons of crude oil, and there is no evidence that significant leakage of that cargo occurred at the time of the sinking or in the 69 years since. The California Department of Fish and Game’s Office of Spill Prevention and Response (OSPR) commissioned the AUV survey as part of a multi-agency Montebello Task Force effort to assess the potential pollution threat. The survey data will be used to determine the extent and general character of the wreckage for a pending Task Force report and to guide any future ROV dive or assessment activity . The AUV surveyed the wreck site from altitudes of 75 and 25 m; the low-altitude high-resolution survey consists of a grid with a 50 m line spacing both parallel and orthogonal to the ship. The 200 kHz multibeam bathymetry images the wreck from both above and from the sides with an 0.5 m lateral resolution. The combination of soundings from all of the survey lines results in a three-dimensional distribution of soundings that delineates the external morphology and some of the internal structure of the wreck. 410 kHz chirp sidescan sonar data also image the site from both directions. The bathymetry data indicate that the Montebello was pitched forward down when it impacted the bottom, crushing and breaking off the bow section. Both forward and aft deckhouses are largely intact, and in fact the multibeam images the individual decks within those structures. About half of the forward mast remains, both amidships masts and the smokestack are missing. A good deal of the deck piping and equipment appears intact, and aside from the bow, the ship’s sides appear

  1. Bathymetry mapping using a GPS-sonar equipped remote control boat: Application in waste stabilisation ponds

    Science.gov (United States)

    Coggins, Liah; Ghadouani, Anas; Ghisalberti, Marco

    2014-05-01

    Traditionally, bathymetry mapping of ponds, lakes and rivers have used techniques which are low in spatial resolution, sometimes subjective in terms of precision and accuracy, labour intensive, and that require a high level of safety precautions. In waste stabilisation ponds (WSP) in particular, sludge heights, and thus sludge volume, are commonly measured using a sludge judge (a clear plastic pipe with length markings). A remote control boat fitted with a GPS-equipped sonar unit can improve the resolution of depth measurements, and reduce safety and labour requirements. Sonar devices equipped with GPS technology, also known as fish finders, are readily available and widely used by people in boating. Through the use of GPS technology in conjunction with sonar, the location and depth can be recorded electronically onto a memory card. However, despite its high applicability to the field, this technology has so far been underutilised. In the case of WSP, the sonar can measure the water depth to the top of the sludge layer, which can then be used to develop contour maps of sludge distribution and to determine sludge volume. The coupling of sonar technology with a remotely operative vehicle has several advantages of traditional measurement techniques, particularly in removing human subjectivity of readings, and the sonar being able to collect more data points in a shorter period of time, and continuously, with a much higher spatial resolution. The GPS-sonar equipped remote control boat has been tested on in excess of 50 WSP within Western Australia, and has shown a very strong correlation (R2 = 0.98) between spot readings taken with the sonar compared to a sludge judge. This has shown that the remote control boat with GPS-sonar device is capable of providing sludge bathymetry with greatly increased spatial resolution, while greatly reducing profiling time. Remotely operated vehicles, such as the one built in this study, are useful for not only determining sludge

  2. Archive of U.S. Geological Survey selected single-beam bathymetry datasets, 1969-2000

    Science.gov (United States)

    Schreppel, Heather A.; Degnan, Carolyn H.; Dadisman, Shawn V.; Metzger, Dan R.

    2013-01-01

    New national programs, as well as natural and man-made disasters, have raised awareness about the need to find new and improved ways to share information about the coastal and marine environment with a wide-ranging public audience. The U.S. Geological Survey (USGS) Coastal and Marine Geology Program (CMGP) has begun a large-scale effort to incorporate the program's published, digital geophysical data into a single point of access known as the Coastal and Marine Geoscience Data System (CMGDS) (http://cmgds.marine.usgs.gov/). To aid in data discovery, work is also being done to import CMGP data into highly visible data and information resources, such as the National Oceanic and Atmospheric Administration's (NOAA) National Geophysical Data Center (NGDC) and two widely used Earth-science tools, GeoMapApp (GMA) (http://www.geomapapp.org) and Virtual Ocean (VO) (http://www.virtualocean.org/). This task of the CMGP Integrated Data Management System project will help support information exchange with partners, regional planning groups, and the public, as well as facilitate integrated spatial-data analysis. Sharing USGS-CMGP geophysical data via CMGDS, NGDC, GMA, and VO will aid data discovery and enable the data to support new purposes beyond those for which the data were originally intended. In order to make data available to NGDC, and from there into GMA and VO, the data must be reformatted into a standard exchange format and published. In 1977, a group of geophysical data managers from the public and private sectors developed the MGD77 format as the standard exchange format for geophysical data. In 2010, a tab-delimited version of the format was added as MGD77T (Hittelman and others, 1977). The MGD77T geophysical data format can include bathymetry, magnetics, gravity, and seismic navigation data. It is used for the transmission of data between marine institutions, data centers, and can be used by various software programs as an exchange format. A header (documentation

  3. 3D movies for teaching seafloor bathymetry, plate tectonics, and ocean circulation in large undergraduate classes

    Science.gov (United States)

    Peterson, C. D.; Lisiecki, L. E.; Gebbie, G.; Hamann, B.; Kellogg, L. H.; Kreylos, O.; Kronenberger, M.; Spero, H. J.; Streletz, G. J.; Weber, C.

    2015-12-01

    Geologic problems and datasets are often 3D or 4D in nature, yet projected onto a 2D surface such as a piece of paper or a projection screen. Reducing the dimensionality of data forces the reader to "fill in" that collapsed dimension in their minds, creating a cognitive challenge for the reader, especially new learners. Scientists and students can visualize and manipulate 3D datasets using the virtual reality software developed for the immersive, real-time interactive 3D environment at the KeckCAVES at UC Davis. The 3DVisualizer software (Billen et al., 2008) can also operate on a desktop machine to produce interactive 3D maps of earthquake epicenter locations and 3D bathymetric maps of the seafloor. With 3D projections of seafloor bathymetry and ocean circulation proxy datasets in a virtual reality environment, we can create visualizations of carbon isotope (δ13C) records for academic research and to aid in demonstrating thermohaline circulation in the classroom. Additionally, 3D visualization of seafloor bathymetry allows students to see features of seafloor most people cannot observe first-hand. To enhance lessons on mid-ocean ridges and ocean basin genesis, we have created movies of seafloor bathymetry for a large-enrollment undergraduate-level class, Introduction to Oceanography. In the past four quarters, students have enjoyed watching 3D movies, and in the fall quarter (2015), we will assess how well 3D movies enhance learning. The class will be split into two groups, one who learns about the Mid-Atlantic Ridge from diagrams and lecture, and the other who learns with a supplemental 3D visualization. Both groups will be asked "what does the seafloor look like?" before and after the Mid-Atlantic Ridge lesson. Then the whole class will watch the 3D movie and respond to an additional question, "did the 3D visualization enhance your understanding of the Mid-Atlantic Ridge?" with the opportunity to further elaborate on the effectiveness of the visualization.

  4. Systematic Analysis of Resolution and Uncertainties in Gravity Interpretation of Bathymetry Beneath Floating Ice

    Science.gov (United States)

    Cochran, J. R.; Tinto, K. J.; Elieff, S. H.; Bell, R. E.

    2011-12-01

    Airborne geophysical surveys in West Antarctica and Greenland carried out during Operation IceBridge (OIB) utilized the Sander Geophysics AIRGrav gravimeter, which collects high quality data during low-altitude, draped flights. This data has been used to determine bathymetry beneath ice shelves and floating ice tongues (e.g., Tinto et al, 2010, Cochran et al, 2010). This paper systematically investigates uncertainties arising from survey, instrumental and geologic constraints in this type of study and the resulting resolution of the bathymetry model. Gravity line data is low-pass filtered with time-based filters to remove high frequency noise. The spatial filter length is dependent on aircraft speed. For parameters used in OIB (70-140 s filters and 270-290 knots), spatial filter half-wavelengths are ~5-10 km. The half-wavelength does not define a lower limit to the width of feature that can be detected, but shorter wavelength features may appear wider with a lower amplitude. Resolution can be improved either by using a shorter filter or by flying slower. Both involve tradeoffs; a shorter filter allows more noise and slower speeds result in less coverage. These filters are applied along tracks, rather than in a region surrounding a measurement. In areas of large gravity relief, tracks in different directions can sample a very different range of gravity values within the length of the filter. We show that this can lead to crossover mismatches of >5 mGal, complicating interpretation. For dense surveys, gridding the data and then sampling the grid at the measurement points can minimize this effect. Resolution is also affected by the elevation of survey flights. For a distributed mass, the gravity amplitude decreases with distance and short-wavelength components attenuate faster. This is not a serious issue for OIB, which flew draped flights Oldenburg inversion) and for forward modeling of individual lines. Uncertainty in the mean depth used in an inversion results in

  5. Mapping the bathymetry of shallow coastal water using single-frame fine-resolution optical remote sensing imagery

    Institute of Scientific and Technical Information of China (English)

    LI Jiran; ZHANG Huaguo; HOU Pengfei; FU Bin; ZHENG Gang

    2016-01-01

    This paper presents a bathymetry inversion method using single-frame fine-resolution optical remote sensing imagery based on ocean-wave refraction and shallow-water wave theory. First, the relationship among water depth, wavelength and wave radian frequency in shallow water was deduced based on shallow-water wave theory. Considering the complex wave distribution in the optical remote sensing imagery, Fast Fourier Transform (FFT) and spatial profile measurements were applied for measuring the wavelengths. Then, the wave radian frequency was calculated by analyzing the long-distance fluctuation in the wavelength, which solved a key problem in obtaining the wave radian frequency in a single-frame image. A case study was conducted for Sanya Bay of Hainan Island, China. Single-frame fine-resolution optical remote sensing imagery from QuickBird satellite was used to invert the bathymetry without external input parameters. The result of the digital elevation model (DEM) was evaluated against a sea chart with a scale of 1:25 000. The root-mean-square error of the inverted bathymetry was 1.07 m, and the relative error was 16.2%. Therefore, the proposed method has the advantages including no requirement for true depths and environmental parameters, and is feasible for mapping the bathymetry of shallow coastal water.

  6. Observations of Bathymetry-Induced Ocean Roughness Modulation in In-situ Surface Slope Measurements and Coincident Airborne SAR Images

    NARCIS (Netherlands)

    Gommenginger, C.P.; Robinson, I.S.; Willoughby, J.; Greidanus, H.S.F.; Taylor, V.

    1999-01-01

    Empirical results from a field experiment in the southern North Sea have demonstrated the possibility to detect bathymetry-induced sea surface roughness modulation in the coastal zone using high frequency in-situ slope measurements provided by the Towed Laser Slopemeter. A strong correlation between

  7. CRED Gridded Bathymetry of the 1955 Eruption Site and Seamount (100-022) in the Northwestern Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — File 100-022b is a 60-m ASCII grid of depth data collected near 1955 Eruption Site multibeam bathymetry data from a SeaBeam 210 sonar aboard the R/V...

  8. Elevation Contours of the Bathymetry near Shorty's Island and Myrtle Bend, Koootenai River near Bonners Ferry, ID, 2010

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The elevation contour data was created based on bathymetry obtained in the meander reach collected in about a one month period extending from 6/3/2010 - 6/19/2010....

  9. Bank Topography, Bathymetry, and Current Velocity of the Lower Elwha River, Clallam County, Washington, May 2006

    Science.gov (United States)

    Curran, Christopher A.; Konrad, Christopher P.; Dinehart, Randal L.; Moran, Edward H.

    2008-01-01

    The removal of two dams from the mainstem of the Elwha River is expected to cause a broad range of changes to the river and nearby coastal ecosystem. The U.S. Geological Survey has documented aspects of the condition of the river to allow analysis of ecological responses to dam removal. This report documents the bank topography, river bathymetry, and current velocity data collected along the lower 0.5 kilometer of the Elwha River, May 15-17, 2006. This information supplements nearshore and beach surveys done in 2006 as part of the U.S. Geological Survey Coastal Habitats in Puget Sound program near the Elwha River delta in the Strait of Juan de Fuca, Washington.

  10. Effects of Mackenzie River Discharge and Bathymetry on Sea Ice in the Beaufort Sea

    Science.gov (United States)

    Nghiem, S. V.; Hall, D. K.; Rigor, I. G; Li, P.; Neumann, G.

    2014-01-01

    Mackenzie River discharge and bathymetry effects on sea ice in the Beaufort Sea are examined in 2012 when Arctic sea ice extent hit a record low. Satellite-derived sea surface temperature revealed warmer waters closer to river mouths. By 5 July 2012, Mackenzie warm waters occupied most of an open water area about 316,000 sq km. Surface temperature in a common open water area increased by 6.5 C between 14 June and 5 July 2012, before and after the river waters broke through a recurrent landfast ice barrier formed over the shallow seafloor offshore the Mackenzie Delta. In 2012, melting by warm river waters was especially effective when the strong Beaufort Gyre fragmented sea ice into unconsolidated floes. The Mackenzie and other large rivers can transport an enormous amount of heat across immense continental watersheds into the Arctic Ocean, constituting a stark contrast to the Antarctic that has no such rivers to affect sea ice.

  11. Evaluating integration of inland bathymetry in the U.S. Geological Survey 3D Elevation Program, 2014

    Science.gov (United States)

    Miller-Corbett, Cynthia

    2016-01-01

    Inland bathymetry survey collections, survey data types, features, sources, availability, and the effort required to integrate inland bathymetric data into the U.S. Geological Survey 3D Elevation Program are assessed to help determine the feasibility of integrating three-dimensional water feature elevation data into The National Map. Available data from wading, acoustic, light detection and ranging, and combined technique surveys are provided by the U.S. Geological Survey, National Oceanic and Atmospheric Administration, U.S. Army Corps of Engineers, and other sources. Inland bathymetric data accessed through Web-hosted resources or contacts provide useful baseline parameters for evaluating survey types and techniques used for collection and processing, and serve as a basis for comparing survey methods and the quality of results. Historically, boat-mounted acoustic surveys have provided most inland bathymetry data. Light detection and ranging techniques that are beneficial in areas hard to reach by boat, that can collect dense data in shallow water to provide comprehensive coverage, and that can be cost effective for surveying large areas with good water clarity are becoming more common; however, optimal conditions and techniques for collecting and processing light detection and ranging inland bathymetry surveys are not yet well defined.Assessment of site condition parameters important for understanding inland bathymetry survey issues and results, and an evaluation of existing inland bathymetry survey coverage are proposed as steps to develop criteria for implementing a useful and successful inland bathymetry survey plan in the 3D Elevation Program. These survey parameters would also serve as input for an inland bathymetry survey data baseline. Integration and interpolation techniques are important factors to consider in developing a robust plan; however, available survey data are usually in a triangulated irregular network format or other format compatible with

  12. Volcanic evolution of the South Sandwich volcanic arc, South Atlantic, from multibeam bathymetry

    Science.gov (United States)

    Leat, Philip T.; Day, Simon J.; Tate, Alex J.; Martin, Tara J.; Owen, Matthew J.; Tappin, David R.

    2013-09-01

    New multibeam bathymetry data are presented for the South Sandwich intra-oceanic arc which occupies the small Sandwich plate in the South Atlantic, and is widely considered to be a simple end-member in the range of intra-oceanic arc types. The images show for the first time the distribution of submarine volcanic, tectonic and erosional-depositional features along the whole length of the 540 km long volcanic arc, allowing systematic investigation of along-arc variations. The data confirm that the volcanic arc has a simple structure composed of large volcanoes which form a well-defined volcanic front, but with three parallel cross-cutting seamount chains extending 38-60 km from near the volcanic front into the rear-arc. There is no evidence for intra-arc rifting or extinct volcanic lines. Topographic evidence for faulting is generally absent, except near the northern and southern plate boundaries. Most of the volcanic arc appears to be built on ocean crust formed at the associated back-arc spreading centre, as previously proposed from magnetic data, but the southern part of the arc appears to be underlain by older arc or continental crust whose west-facing rifted margin facing the back-arc basin is defined by the new bathymetry. The new survey shows nine main volcanic edifices along the volcanic front and ca. 20 main seamounts. The main volcanoes form largely glaciated islands with summits 3.0-3.5 km above base levels which are 2500-3000 m deep in the north and shallower at 2000-2500 m deep in the south. Some of the component seamounts are interpreted to have been active since the last glacial maximum, and so are approximately contemporaneous with the volcanic front volcanism. Seven calderas, all either submarine or ice-filled, have been identified: Adventure volcano, a newly discovered submarine volcanic front caldera volcano is described for the first time. All but one of the calderas are situated on summits of large volcanoes in the southern part of the arc, and

  13. NOAA ESRI Grid - 6m Multibeam Bathymetry, Puerto Rico (Isla de Mona) - Project NF-08-04, , UTM 19N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 6 meter cell size representing the bathymetry of selected portions of seafloor around Isla de Mona in Puerto Rico, derived...

  14. NOAA ESRI Geotiff - 10m Bathymetry around Abrir La Sierra Bank, Puerto Rico, Project NF-07-06, 2007, UTM 19 NAD 83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Geotiff with 10 meter cell size representing the bathymetry of selected portions of seafloor around Abrir La Sierra Bank in Puerto...

  15. NOAA TIFF Image - 2m Multibeam Bathymetry, US Virgin Islands - Vieques Island - Project NF-09-01 - (2009), UTM 20N NAD83 (NCEI Accession 0131857)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified ESRI Grid with 2x2 meter cell size representing the bathymetry of two selected portions of seafloor - one area southwest of Vieques...

  16. NOAA TIFF Image - 10m Multibeam Bathymetry, South Atlantic Bight - Deep Coral Priority Areas - NOAA Ship Nancy Foster - (2009), UTM 17N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified GeoTiff with 10x10 meter cell size representing the bathymetry of several deep coral priority areas off the South Atlantic Bight,...

  17. NOAA ESRI Geotiff - 2m Multibeam Bathymetry of St. Croix (Buck Island), US Virgin Islands, Project NF-06-03, 2006, UTM 20 NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Geotiff with 2 meter cell size representing the bathymetry of the north shore of St. Croix, U.S. Virgin Islands. NOAA's NOS/NCCOS/CCMA...

  18. NOAA TIFF Image - 1m Multibeam Bathymetry, US Virgin Islands - St. John Shelf - Project NF-10-03 - (2010), UTM 20N NAD83 (NCEI Accession 0131854)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a GeoTIFF with 1x1 meter cell size representing the bathymetry of St. John Shelf, a selected portion of seafloor south of St. John, USVI,...

  19. NOAA GeoTIFF - 9m Multibeam Bathymetry Sun Illuminated - Azimuth 125 degrees), Puerto Rico (Tourmaline Bank) - Project NF-08-04, UTM 19N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This georeferenced RGB image represents 9 meter resolution bathymetry of a selected portion of seafloor around Tourmaline Bank, Puerto Rico. This image is also...

  20. NOAA ESRI Geotiff- 1m Multibeam Bathymetry of St. Croix (Buck Island), US Virgin Islands, Project NF-05-05, 2005, UTM 20 NAD83 (NCEI Accession 0131860)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Geotiff with 1 meter cell size representing the bathymetry of the north shore of St. Croix (Buck Island), US Virgin Islands.NOAA's...

  1. Bathymetry 1M Grid Slope of NPS's Virgin Islands Coral Reef National Monument (Inshore), St. John, US Virgin Islands 2005, UTM 20 NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid representing the slope (in degrees) of the bathymetry of an inshore portion of the NPS's Virgin Islands Coral Reef National...

  2. NOAA GeoTIFF - 9m Multibeam Bathymetry (Sun Illuminated - Azimuth 215 degrees), Puerto Rico (Tourmaline Bank) - Project NF-08-04, UTM 19N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This georeferenced RGB image represents 9 meter resolution bathymetry of a selected portion of seafloor around Tourmaline Bank, Puerto Rico. This image is also...

  3. NOAA ESRI Geotiff - 3m Bathymetry around Abrir La Sierra Bank, Puerto Rico, Project NF-07-06, 2007, UTM 19 NAD 83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Geotiff with 3 meter cell size representing the bathymetry of selected portions of seafloor around Abrir La Sierra Bank in Puerto...

  4. Bathymetry 2M Grid of NPS's Salt River Bay National Historical Park and Ecological Reserve, St. Croix, US Virgin Islands, 2005, UTM 20 NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 2 meter cell size representing the bathymetry of the a portion of the NPS's Salt River Bay National Historical Park and...

  5. Bathymetric Contours - LAKE_BATHYMETRY_IDNR_IN: Bathymetric Contours for Selected Lakes in Indiana (Indiana Department of Natural Resources, Polygon Shapefile)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — LAKE_BATHYMETRY_IDNR_IN.SHP provides bathymetric contours for the following 85 lakes in Indiana, with depths calculated from the average shoreline of each lake:...

  6. Single-Beam Bathymetry of the Hurricane Sandy Breach at Fire Island, New York, June 2013 (1-Meter Digital Elevation Model)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset, 20130626_bathy_DEM.zip, contains a 1-meter (m) grid of June 2013 bathymetry of the breach channel, ebb shoal, and adjacent coast of the Fire Island...

  7. CRED 60 m Gridded bathymetry and IKONOS estimated depths of UTM Zone 3, Northwestern Hawaiian Islands, USA (netCDF format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry and IKONOS estimated depths of the shelf and slope environments of the Northwestern Hawaiian Islands, USA within UTM Zone 3. Bottom coverage was...

  8. NOAA ESRI Geotiff - 3m Multibeam Bathymetry, Puerto Rico (Tourmaline Bank) - Project NF-08-04, , UTM 19N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Geotiff with 3 meter cell size representing the bathymetry of selected portions of seafloor around Tourmaline Bank in Puerto Rico,...

  9. NOAA ESRI Geotiff - 9m Multibeam Bathymetry, Puerto Rico (Tourmaline Bank) - Project NF-08-04, , UTM 19N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Geotiff with 9 meter cell size representing the bathymetry of selected portions of seafloor around Tourmaline Bank in Puerto Rico,...

  10. NOAA ESRI Grid - 3m Multibeam Bathymetry, Puerto Rico (Tourmaline Bank) - Project NF-08-04, , UTM 19N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 3 meter cell size representing the bathymetry of selected portions of seafloor around Tourmaline Bank in Puerto Rico,...

  11. NOAA ESRI Grid - 3m Bathymetry around Abrir La Sierra Bank, Puerto Rico, Project NF-07-06, 2007, UTM 19 NAD 83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 3 meter cell size representing the bathymetry of selected portions of seafloor around Abrir La Sierra Bank in Puerto Rico,...

  12. NOAA ESRI Grid - 10m Bathymetry around Abrir La Sierra Bank, Puerto Rico, Project NF-07-06, 2007, UTM 19 NAD 83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 10 meter cell size representing the bathymetry of selected portions of seafloor around Abrir La Sierra Bank in Puerto Rico,...

  13. NOAA ESRI Geotiff - 2m Multibeam Bathymetry of Puerto Rico (La Parguera), Project NF-06-03, 2006, UTM 19 NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Geotiff with 2 meter cell size representing the bathymetry of the southwest shore of La Parguera, Puerto Rico. NOAA's NOS/NCCOS/CCMA...

  14. NOAA TIFF Image - 30m Multibeam Bathymetry, Charleston Bump - Deep Coral Priority Areas - Thomas Jefferson - (2007), UTM 17N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified GeoTiff with 30x30 meter cell size representing the bathymetry of the Charleston Bump off of the South Atlantic Bight, derived from...

  15. NOAA TIFF Image - 10m Multibeam Bathymetry, South Atlantic Bight - Deep Coral Priority Areas - NOAA Ship Nancy Foster - (2007), UTM 17N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified GeoTiff with 10x10 meter cell size representing the bathymetry of several deep coral priority areas off the South Atlantic Bight,...

  16. ArcInfo GRID format of the 2004 Multibeam Bathymetry Data in the Northeastern Channel Islands Region, Southern California [bathy.zip

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — ArcInfo GRID format data generated from the 2004 multibeam sonar survey of the Northeastern Channel Islands, CA Region. The data include high- resolution bathymetry.

  17. NOAA ESRI Grid - 9m Multibeam Bathymetry, Puerto Rico (Tourmaline Bank) - Project NF-08-04, , UTM 19N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 9 meter cell size representing the bathymetry of selected portions of seafloor around Tourmaline Bank in Puerto Rico,...

  18. NOAA TIFF Image - 3m Multibeam Bathymetry, Miami, South Atlantic Bight - Deep Coral Priority Areas - Lost Coast Explorer - (2010), UTM 17N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified GeoTiff with 3x3 meter cell size representing the bathymetry of the continental shelf off of Jacksonville, FL in the South Atlantic...

  19. NOAA ESRI Grid - 3m Multibeam Bathymetry, Puerto Rico (Isla de Mona) - Project NF-08-04, , UTM 19N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 3 meter cell size representing the bathymetry of selected portions of seafloor around Isla de Mona in Puerto Rico, derived...

  20. NOAA ESRI Grid - 6m Multibeam Bathymetry, Puerto Rico (Tourmaline Bank) - Project NF-08-04, , UTM 19N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 6 meter cell size representing the bathymetry of selected portions of seafloor around Tourmaline Bank in Puerto Rico,...

  1. Bathymetric Bathymetric Position Index (BPI) Zones 20 m grid derived from gridded bathymetry of Baker Island, Pacific Remote Island Areas, Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from gridded (20 m cell size) multibeam bathymetry, collected aboard R/V AHI and NOAA ship Hi'ialakai. BPI Zones was created using the Benthic...

  2. Bathymetric Bathymetric Position Index (BPI) Zones 40 m grid derived from gridded bathymetry of Howland Island, Pacific Remote Island Areas, Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from gridded (40 m cell size) multibeam bathymetry, collected aboard R/V AHI and NOAA ship Hi'ialakai. BPI Zones was created using the Benthic...

  3. Bathymetric Bathymetric Position Index (BPI) Zones 20 m grid derived from gridded bathymetry of Johnston Island, Pacific Remote Island Areas, Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from gridded (20 m cell size) multibeam bathymetry, collected aboard R/V AHI and NOAA ship Hi'ialakai. BPI Zones was created using the Benthic...

  4. CRED 5m Gridded bathymetry of the banktop and slope environments of Northeast Bank (sometimes called "Muli" Seamount), American Samoa (NetCDF Format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded (5 m cell size) bathymetry of the banktop and slope environments of Northeast Bank (sometimes called "Muli" Seamount), American Samoa, South Pacific. Almost...

  5. CRED 5m Gridded bathymetry of the banktop and slope environments of Northeast Bank (sometimes called "Muli" Seamount), American Samoa (Arc ASCII Format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded (5 m cell size) bathymetry of the banktop and slope environments of Northeast Bank (sometimes called "Muli" seamount), American Samoa, South Pacific. Almost...

  6. Slope grid derived from gridded bathymetry of Thirty-Five Fathom Bank and Thirty-Seven Fathom Bank, Commonwealth of the Northern Marianas.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA Ship Oscar Elton Sette. Cell values reflect the maximum rate of change (in...

  7. Rugosity grid derived from gridded bathymetry of of Galvez Bank, South Galvez Bank, and 11-Mile Reef, Territory of Guam, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (5 m cell size) multibeam bathymetry, aboard NOAA Ship Oscar Elton Sette. Cell values reflect the (surface area) / (planimetric...

  8. CRED 20m Gridded bathymetry of the banktop and slope environments of Northeast Bank (sometimes called "Muli" Seamount), American Samoa (Arc ASCII Format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded (20 m cell size) bathymetry of the banktop and slope environments of Northeast Bank (sometimes called "Muli" Seamount), American Samoa, South Pacific....

  9. CRED 40m Gridded bathymetry of the banktop and slope environments of Vailulu'u Seamount, American Samoa (Arc ASCII Format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded (40 m cell size) bathymetry of of Vailul'u Seamount, an active volcano that lies between Ta'u Island and Rose Atoll, American Samoa, South Pacific. Almost...

  10. Preliminary hard and soft bottom seafloor substrate map derived from an unsupervised classification of gridded backscatter and bathymetry derivatives at Swains Island, Territory of American Samoa, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Preliminary hard and soft seafloor substrate map derived from an unsupervised classification of multibeam backscatter and bathymetry derivatives at Swains Island,...

  11. NOAA ESRI Geotiff- 1m Bathymetry of St. John (South Shore - Area 1), US Virgin Islands, 2004, UTM 20 WGS84

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Geotiff with 1 meter cell size representing the bathymetry of the south shore of St. John, US Virgin Islands. Due to the large file...

  12. Bathymetry of NPS's Virgin Islands Coral Reef National Monument (Inshore), St. John, US Virgin Islands 2005, 1M Grid, UTM 20 NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 1 meter cell size representing the bathymetry of an inshore portion of the NPS's Virgin Islands Coral Reef National...

  13. Grid of the sea-floor bathymetry southwest of Montauk Point, New York, in 1998 (3-m resolution Esri binary grid, Mercator, WGS 84)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000...

  14. GeoTIFF image of shaded-relief bathymetry of the sea floor offshore of Fire Island Inlet, New York, in 1998 (3-m resolution, Mercator, WGS 84)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000...

  15. Bathymetry 2M Grid, of NPS's Virgin Islands Coral Reef National Monument (Offshore), St. John, US Virgin Islands, 2005, UTM 20 NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 2 meter cell size representing the bathymetry of an offshore portion of the NPS's Virgin Islands Coral Reef National...

  16. NOAA TIFF Image - 2m Multibeam Bathymetry, US Virgin Islands - Vieques Island (South Bank) - Project NF-09-01 - (2009), UTM 20N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified ESRI Grid with 2x2 meter cell size representing the bathymetry of a selected portion of seafloor southwest of Vieques Island,...

  17. NOAA ESRI Grid - 10m Bathymetry around Bajo de Cico, Puerto Rico, Project NF-07-06, 2007, UTM 19 NAD 83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 10 meter cell size representing the bathymetry of selected portions of seafloor around Bajo De Cico in Puerto Rico, derived...

  18. NOAA TIFF Image - 2m Multibeam Bathymetry, US Virgin Islands - Vieques Island - Project NF-09-01 - (2009), UTM 20N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified ESRI Geotiff with 2x2 meter cell size representing the bathymetry of a selected portion of seafloor southwest of Vieques Island,...

  19. NOAA ESRI Grid - 5m Bathymetry around Bajo de Cico, Puerto Rico, Project NF-07-06, 2007, UTM 19 NAD 83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Grid with 5 meter cell size representing the bathymetry of selected portions of seafloor around Bajo De Cico in Puerto Rico, derived...

  20. NOAA TIFF Image - 1m Multibeam Bathymetry, US Virgin Islands - Vieques Island (El Seco) - Project NF-09-01 - (2009), UTM 20N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified ESRI Geotiff with 1x1 meter cell size representing the bathymetry of El Seco, a selected portion of seafloor east of Vieques Island,...

  1. NOAA TIFF Image - 1m Multibeam Bathymetry, US Virgin Islands - Virgin Passage - Project NF-10-03 - (2010), UTM 20N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a GeoTIFF with 1x1 meter cell size representing the bathymetry of a portion of the Virgin Passage, a selected area of seafloor southwest of...

  2. NOAA TIFF Image - 50m Multibeam Bathymetry, Charleston Bump - Deep Coral Priority Areas - Little Hales - (2003), UTM 17N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified GeoTiff with 30x30 meter cell size representing the bathymetry of the Charleston Bump off of the South Atlantic Bight, derived from...

  3. NOAA ESRI Geotiff- 2m Multibeam Bathymetry of Grammanik Bank, US Virgin Islands, Project NF-05-05, 2005, UTM 20 NAD83 (NCEI Accession 0131860)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Geotiff with 2 meter cell size representing the bathymetry of Grammanik Bank south of St. Thomas, US Virgin Islands.NOAA's...

  4. NOAA ESRI Geotiff - 5m Bathymetry around Isla de Mona, Puerto Rico, Project NF-07-06, 2007, UTM 19 NAD 83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Geotiff with 5 meter cell size representing the bathymetry of selected portions of seafloor around Isla De Mona in Puerto Rico,...

  5. Grid of the sea-floor bathymetry offshore of Shinnecock Inlet, New York, in 1998 (3-m resolution Esri binary grid, Mercator, WGS 84)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000...

  6. Grid of the sea-floor bathymetry offshore of Fire Island Inlet, New York, in 1998 (3-m resolution Esri binary grid, Mercator, WGS 84)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000...

  7. NOAA TIFF Image - 1m Multibeam Bathymetry, US Virgin Islands - Vieques Island (El Seco) - Project NF-09-01 - (2009), UTM 20N NAD83 (NCEI Accession 0131857)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified ESRI Grid with 1x1 meter cell size representing the bathymetry of El Seco, a selected portion of seafloor east of Vieques Island,...

  8. Slope 10 m grid derived from gridded bathymetry of Farallon de Pajaros (Uracas) Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI. Cell values reflect the maximum rate of...

  9. NOAA TIFF Image - 1m Multibeam Bathymetry, US Virgin Islands - Virgin Passage - Project NF-10-03 - (2010), UTM 20N NAD83 (NCEI Accession 0131854)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a GeoTIFF with 1x1 meter cell size representing the bathymetry of a portion of the Virgin Passage, a selected area of seafloor southwest of...

  10. Gridded bathymetry of the banktop and slope environments of Ta'u Island of the Manu'a Island group, American Samoa (netCDF format)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry of the banktop and slope environments of Ta'u Island of the Manu'a Island group, American Samoa. This survey provides almost complete coverage...

  11. Detecting Trend and Seasonal Changes in Bathymetry Derived from HICO Imagery: A Case Study of Shark Bay, Western Australia

    Science.gov (United States)

    Garcia, Rodrigo A.; Fearns, Peter R. C. S.; Mckinna, Lachlan I. W.

    2014-01-01

    The Hyperspectral Imager for the Coastal Ocean (HICO) aboard the International Space Station has offered for the first time a dedicated space-borne hyperspectral sensor specifically designed for remote sensing of the coastal environment. However, several processing steps are required to convert calibrated top-of-atmosphere radiances to the desired geophysical parameter(s). These steps add various amounts of uncertainty that can cumulatively render the geophysical parameter imprecise and potentially unusable if the objective is to analyze trends and/or seasonal variability. This research presented here has focused on: (1) atmospheric correction of HICO imagery; (2) retrieval of bathymetry using an improved implementation of a shallow water inversion algorithm; (3) propagation of uncertainty due to environmental noise through the bathymetry retrieval process; (4) issues relating to consistent geo-location of HICO imagery necessary for time series analysis, and; (5) tide height corrections of the retrieved bathymetric dataset. The underlying question of whether a temporal change in depth is detectable above uncertainty is also addressed. To this end, nine HICO images spanning November 2011 to August 2012, over the Shark Bay World Heritage Area, Western Australia, were examined. The results presented indicate that precision of the bathymetric retrievals is dependent on the shallow water inversion algorithm used. Within this study, an average of 70% of pixels for the entire HICO-derived bathymetry dataset achieved a relative uncertainty of less than +/-20%. A per-pixel t-test analysis between derived bathymetry images at successive timestamps revealed observable changes in depth to as low as 0.4 m. However, the present geolocation accuracy of HICO is relatively poor and needs further improvements before extensive time series analysis can be performed.

  12. Characterizing Sediment Flux Using Reconstructed Topography and Bathymetry from Historical Aerial Imagery on the Willamette River, OR.

    Science.gov (United States)

    Langston, T.; Fonstad, M. A.

    2014-12-01

    The Willamette is a gravel-bed river that drains ~28,800 km^2 between the Coast Range and Cascade Range in northwestern Oregon before entering the Columbia River near Portland. In the last 150 years, natural and anthropogenic drivers have altered the sediment transport regime, drastically reducing the geomorphic complexity of the river. Previously dynamic multi-threaded reaches have transformed into stable single channels to the detriment of ecosystem diversity and productivity. Flow regulation by flood-control dams, bank revetments, and conversion of riparian forests to agriculture have been key drivers of channel change. To date, little has been done to quantitatively describe temporal and spatial trends of sediment transport in the Willamette. This knowledge is critical for understanding how modern processes shape landforms and habitats. The goal of this study is to describe large-scale temporal and spatial trends in the sediment budget by reconstructing historical topography and bathymetry from aerial imagery. The area of interest for this project is a reach of the Willamette stretching from the confluence of the McKenzie River to the town of Peoria. While this reach remains one of the most dynamic sections of the river, it has exhibited a great loss in geomorphic complexity. Aerial imagery for this section of the river is available from USDA and USACE projects dating back to the 1930's. Above water surface elevations are extracted using the Imagine Photogrammetry package in ERDAS. Bathymetry is estimated using a method known as Hydraulic Assisted Bathymetry in which hydraulic parameters are used to develop a regression between water depth and pixel values. From this, pixel values are converted to depth below the water surface. Merged together, topography and bathymetry produce a spatially continuous digital elevation model of the geomorphic floodplain. Volumetric changes in sediment stored along the study reach are then estimated for different historic periods

  13. Comparison of three airborne laser bathymetry data sets for monitoring the German Baltic Sea Coast

    Science.gov (United States)

    Song, Yujin; Niemeyer, Joachim; Ellmer, Wilfried; Soergel, Uwe; Heipke, Christian

    2015-10-01

    Airborne laser bathymetry (ALB) can be used for hydrographic surveying with relative high resolution in shallow water. In this paper, we examine the applicability of this technique based on three flight campaigns. These were conducted between 2012 and 2014 close to the island of Poel in the German Baltic Sea. The first data set was acquired by a Riegl VQ-820-G sensor in November 2012. The second and third data sets were acquired by a Chiroptera sensor of Airborne Hydrography AB in September 2013 and May 2014, respectively. We examine the 3D points classified as seabed under different conditions during data acquisition, e.g. the turbidity level of the water and the flight altitude. The analysis comprises the point distribution, point density, and the area coverage in several depth levels. In addition, we determine the vertical accuracy of the 3D seabed points by computing differences to echo sounding data. Finally, the results of the three flight campaigns are compared to each other and analyzed with respect to the different conditions during data acquisition. For each campaign only small differences in elevation between the laser and the echo sounding data set are observed. The ALB results satisfy the requirements of IHO Standards for Hydrographic Surveys (S-44) Order 1b for several depth intervals.

  14. Integrating Acoustic Imaging of Flow Regimes With Bathymetry: A Case Study, Main Endeavor Field

    Science.gov (United States)

    Bemis, K. G.; Rona, P. A.; Jackson, D. R.; Jones, C. D.

    2003-12-01

    A unified view of the seafloor and the hydrothermal flow regimes (plumes and diffuse flow) is constructed for three major vent clusters in the Main Endeavour Field (e.g., Grotto, S&M, and Salut) of the Endeavour Segment, Juan de Fuca Ridge. The Main Endeavour Field is one of RIDGE 2000's Integrated Study Sites. A variety of visualization techniques are used to reconstruct the plumes (3D) and the diffuse flow field (2D) based on our acoustic imaging data set (July 2000 cruise). Plumes are identified as volumes of high backscatter intensity (indicating high particulate content or sharp density contrasts due to temperature variations) that remained high intensity when successive acoustic pings were subtracted (indicating that the acoustic targets producing the backscatter were in motion). Areas of diffuse flow are detected using our acoustic scintillation technique (AST). For the Grotto vent region (where a new Doppler technique was used to estimate vertical velocities in the plume), we estimate the areal partitioning between black smoker and diffuse flow in terms of volume fluxes. The volumetric and areal regions, where plume and diffuse flow were imaged, are registered over the bathymetry and compared to geologic maps of each region. The resulting images provide a unified view of the seafloor by integrating hydrothermal flow with geology.

  15. Reach Scale Application of UAV+SFM Method in Shallow Rivers Hyperspatial Bathymetry

    Science.gov (United States)

    Bagheri, O.; Ghodsian, M.; Saadatseresht, M.

    2015-12-01

    Nowadays, rivers are impacted by different human activities and highly regulated. To rehabilitate these systems, spatial and process-based analyses of rivers are essential. Hydrodynamic models are sophisticated tools in this regard and instream topography is one of the most important input of these models. To represent hyperspatial topography and bathymetry in shallow rivers, UAV imagery and structure from motion may be an optimum method considering the extent of application, vegetation condition and flow quality. However, at the present there is no available workflow for applications of UAV+SfM method in riverine environments at extent of reach or higher scales. Therefore, in this study a new workflow has been presented and evaluated in Alarm River. The evaluation showed that the workflow provides 2 m/s speed for UAV while mapping flight lines with low illumination changes. Specific pattern of image acquisition in the proposed workflow leads to substantial decrease of process time. In addition, precise control of flight height and overlap of images may lead to consistent accurate results. The result of validation against rtkGNSS data points showed that the suggested workflow is capable of providing 0.01 m-resolution topographic data with an error less than 0.075 m and 95% level of confidence in clear shallow rivers.

  16. REACH SCALE APPLICATION OF UAV+SFM METHOD IN SHALLOW RIVERS HYPERSPATIAL BATHYMETRY

    Directory of Open Access Journals (Sweden)

    O. Bagheri

    2015-12-01

    Full Text Available Nowadays, rivers are impacted by different human activities and highly regulated. To rehabilitate these systems, spatial and process-based analyses of rivers are essential. Hydrodynamic models are sophisticated tools in this regard and instream topography is one of the most important input of these models. To represent hyperspatial topography and bathymetry in shallow rivers, UAV imagery and structure from motion may be an optimum method considering the extent of application, vegetation condition and flow quality. However, at the present there is no available workflow for applications of UAV+SfM method in riverine environments at extent of reach or higher scales. Therefore, in this study a new workflow has been presented and evaluated in Alarm River. The evaluation showed that the workflow provides 2 m/s speed for UAV while mapping flight lines with low illumination changes. Specific pattern of image acquisition in the proposed workflow leads to substantial decrease of process time. In addition, precise control of flight height and overlap of images may lead to consistent accurate results. The result of validation against rtkGNSS data points showed that the suggested workflow is capable of providing 0.01 m-resolution topographic data with an error less than 0.075 m and 95% level of confidence in clear shallow rivers.

  17. A new bathymetry of the Northeast Greenland continental shelf: Constraints on glacial and other processes

    Science.gov (United States)

    Arndt, Jan Erik; Jokat, Wilfried; Dorschel, Boris; Myklebust, Reidun; Dowdeswell, Julian A.; Evans, Jeffrey

    2015-10-01

    A new digital bathymetric model (DBM) for the Northeast Greenland (NEG) continental shelf (74°N-81°N) is presented. The DBM has a grid cell size of 250 m × 250 m and incorporates bathymetric data from 30 multibeam cruises, more than 20 single-beam cruises and first reflector depths from industrial seismic lines. The new DBM substantially improves the bathymetry compared to older models. The DBM not only allows a better delineation of previously known seafloor morphology but, in addition, reveals the presence of previously unmapped morphological features including glacially derived troughs, fjords, grounding-zone wedges, and lateral moraines. These submarine landforms are used to infer the past extent and ice-flow dynamics of the Greenland Ice Sheet during the last full-glacial period of the Quaternary and subsequent ice retreat across the continental shelf. The DBM reveals cross-shelf bathymetric troughs that may enable the inflow of warm Atlantic water masses across the shelf, driving enhanced basal melting of the marine-terminating outlet glaciers draining the ice sheet to the coast in Northeast Greenland. Knolls, sinks, and hummocky seafloor on the middle shelf are also suggested to be related to salt diapirism. North-south-orientated elongate depressions are identified that probably relate to ice-marginal processes in combination with erosion caused by the East Greenland Current. A single guyot-like peak has been discovered and is interpreted to have been produced during a volcanic event approximately 55 Ma ago.

  18. Mapping Coral Reef Benthos, Substrates, and Bathymetry, Using Compact Airborne Spectrographic Imager (CASI Data

    Directory of Open Access Journals (Sweden)

    Ian A. Leiper

    2014-07-01

    Full Text Available This study used a reef-up approach to map coral reef benthos, substrates and bathymetry, with high spatial resolution hyperspectral image data. It investigated a physics-based inversion method for mapping coral reef benthos and substrates using readily available software: Hydrolight and ENVI. Compact Airborne Spectrographic Imager (CASI data were acquired over Heron Reef in July 2002. The spectral reflectance of coral reef benthos and substrate types were measured in-situ, and using the HydroLight 4.2 radiative transfer model a spectral reflectance library of subsurface reflectance was simulated using water column depths from 0.5–10.0 m at 0.5 m intervals. Using the Spectral Angle Mapper algorithm, sediment, benthic micro-algae, algal turf, crustose coralline algae, macro-algae, and live coral were mapped with an overall accuracy of 65% to a depth of around 8.0 m; in waters deeper than 8.0 m the match between the classified image and field validation data was poor. Qualitative validation of the maps showed accurate mapping of areas dominated by sediment, benthic micro-algae, algal turf, live coral, and macro-algae. A bathymetric map was produced for water column depths 0.5–10.0 m, at 0.5 m intervals, and showed high correspondence with in-situ sonar data (R2 value of 0.93.

  19. Assessing the Utility of Green LiDAR for Characterizing Forest Canopy Structure and Stream Bathymetry in Riparian Zones.

    Science.gov (United States)

    Moskal, L. M.; Richardson, J.

    2014-12-01

    Forested riparian zones serve many ecosystem functions from species habitat through stream shading and large woody debris recruitment, to improvements in water quality. Moreover, stream depth and bathymetry in forested environments is difficult and costly to measure in the field, but critically important for stream-dwelling organisms. Green (bathymetric) LiDAR (G-L) can be used to characterize stream bathymetry, but little is known of its ability to accurately characterize stream bathymetry in narrow (width less than 5 m), heavily forested streams. Canopy characterization with green LiDAR is also poorly understood. We compared canopy and digital elevation models (DEMs) derived from green and near-infrared LiDAR (NIR-L) to field measurements in a narrow, forested stream in Oregon, USA, as well as comparing the two canopy models and DEMs to each other along the length of the stream and to estimates of leaf area index. We observed that the canopy models from the G-L are lower in accuracy compared to NIR-L canopy models. Canopy height models from the G-L were up to 26% less accurate in dense stands, compared to the NIR-L accuracy of 94%. We attribute these errors in part to the lower quality of DEMs generated from the G-L as compared to the NIR-L DEMs. As for bathymetry, the G-L DEM was 0.05 cm higher in elevation than the field measured stream elevation, while the NIR-L ground model was 0.17mm higher. The elevation difference tended to increase with stream depth for both types of LiDAR-derived DEMs, but stream depth only explained a small portion of the variability (coefficient of determination equals 0.09 for NIR-L DEM and 0.05 for G-L DEM). Our results suggest that G-L may be limited in accurately characterizing the bathymetry of narrow streams in heavily forested environments due to difficulty penetrating canopy and interactions with complex topography.

  20. EMODNet Hydrography - Seabed Mapping - Developing a higher resolution digital bathymetry for the European seas

    Science.gov (United States)

    Schaap, Dick M. A.; Moussat, Eric

    2013-04-01

    In December 2007 the European Parliament and Council adopted the Marine Strategy Framework Directive (MSFD) which aims to achieve environmentally healthy marine waters by 2020. This Directive includes an initiative for an overarching European Marine Observation and Data Network (EMODNet). The EMODNet Hydrography - Seabed Mapping projects made good progress in developing the EMODNet Hydrography portal to provide overview and access to available bathymetric survey datasets and to generate an harmonised digital bathymetry for Europe's sea basins. Up till end 2012 more than 8400 bathymetric survey datasets, managed by 14 data centres from 9 countries and originated from 118 institutes, have been gathered and populated in the EMODNet Hydrography Data Discovery and Access service, adopting SeaDataNet standards. These datasets have been used as input for analysing and generating the EMODNet digital terrain model (DTM), so far for the following sea basins: • the Greater North Sea, including the Kattegat • the English Channel and Celtic Seas • Western and Central Mediterranean Sea and Ionian Sea • Bay of Biscay, Iberian coast and North-East Atlantic • Adriatic Sea • Aegean - Levantine Sea (Eastern Mediterranean). • Azores - Madeira EEZ The Hydrography Viewing service gives users wide functionality for viewing and downloading the EMODNet digital bathymetry: • water depth in gridded form on a DTM grid of a quarter a minute of longitude and latitude • option to view QC parameters of individual DTM cells and references to source data • option to download DTM tiles in different formats: ESRI ASCII, XYZ, CSV, NetCDF (CF), GeoTiff and SD for Fledermaus 3 D viewer software • option for users to create their Personal Layer and to upload multibeam survey ASCII datasets for automatic processing into personal DTMs following the EMODNet standards The NetCDF (CF) DTM files are fit for use in a special 3D Viewer software package which is based on the existing open

  1. Complementing airborne laser bathymetry with UAV-based lidar for capturing alluvial landscapes

    Science.gov (United States)

    Mandlburger, Gottfried; Pfennigbauer, Martin; Riegl, Ursula; Haring, Alexander; Wieser, Martin; Glira, Philipp; Winiwarter, Lukas

    2015-10-01

    In this paper we report on a flight experiment employing airborne laser bathymetry (ALB) and unmanned aerial vehicle (UAV) based laser scanning (ULS) for capturing very high resolution topography of shallow water areas and the surrounding littoral zone at the pre-alpine Pielach River in Austria. The aim of the research is to assess how information gained from non-bathymetric, ultra-high resolution ULS can support the ALB data. We focus first on the characterization of the water surface of a lowland river and provide validation results using the data of a topographic airborne laser scanning (ALS) sensor and a low flying ULS system. By repeat ULS survey of a the meandering river reach we are able to quantify short-term water level changes due to surface waves in high resolution. Based on a hydrodynamic-numerical (HN) model we assess the accuracy of the water surface derived from a water penetrating ALB sensor. In the second part of the paper we investigate the ability of ALB, ALS, and ULS to describe the complex topography and vegetation structure of the alluvial area. This is carried out by comparing the Digital Terrain Models (DTM) derived from different sensor configurations. Finally we demonstrate the potential of ULS for estimating single tree positions and stem diameters for detailed floodplain roughness characterization in HN simulations. The key findings are: (i) NIR scan data from ALS or ULS provide more precise water level height estimates (no bias, 1σ: 2 cm) compared to ALB (bias: 3 cm, 1σ: 4 cm), (ii) within the studied reach short-term water level dynamics irrelevant for ALB data acquisition considering a 60 cm footprint diameter, and (iii) stem diameters can be estimated based on ULS point clouds but not from ALS and ALB.

  2. Marine geology of the Hess Rise: 1. Bathymetry, surface sediment distribution, and environment of deposition

    Science.gov (United States)

    Nemoto, Kenji; Kroenke, Loren W.

    1981-11-01

    New charts of bathymetry, acoustic character, and sediment distribution describe the Hess Rise, a large oceanic plateau in the central north Pacific. Discrete physiographic provinces on the Hess Rise are the High Plateau, shallower than 3900 m, trending N30°W; the Northeastern Flank, a smooth, gentle slope gradually increasing in depth to the northeast; the Woollard Abyssal Plain, extending farther to the northeast; the Volcanic Province with its high peaks and ridges along the southern margin of the Hess Rise; the Mendocino Fracture Zone to the south, expressed by broad, planar seafloor regions bordered by ridges and scarps; the Western Steps, formed by structural benches on the western side of the Rise; and the Emperor Deep, between the rise and the Emperor Seamounts. Five types of acoustic units have been mapped and interpreted: a transparent layer, predominantly of biosiliceous pelagic clay; a stratified layer, predominantly of nannofossil ooze; a diffuse layer of debris flows that seem to have originated mostly in the Volcanic Province; an opaque horizon commonly formed of volcaniclastic sediments that are usually found on the seafloor of the Mendocino Fracture Zone; and a hyperbolic horizon, indicating outcrops of igneous rock. The pronounced effect of bottom currents on the present-day environment of deposition in the Hess Rise is evidenced by the presence of the opaque horizon, which is interpreted as an erosion surface, and by current moating, abrupt thinning of surface layers and truncation of subbottom reflectors. The widespread erosion on the seafloor of the Mendocino Fracture Zone is attributed to the flow of Antarctic bottom water.

  3. High spatial resolution mapping of water quality and bathymetry with an autonomous underwater vehicle

    Science.gov (United States)

    Pampalone, Vincenzo; Milici, Barbara

    2015-12-01

    The drone Ecomapper AUV (Autonomous Underwater Vehicle) is a rare example of highly technological instrument in the environmental coastal monitoring field. The YSI EcoMapper is a one-man deployable, Autonomous Underwater Vehicle (AUV) designed to collect bathymetry and water quality data. The submarine-like vehicle follows a programmed course and employs sensors mounted in the nose to record pertinent information. Once the vehicle has started its mission, it operates independently of the user and utilizes GPS waypoints navigation to complete its programmed course. Throughout the course, the vehicle constantly steers toward the line drawn in the mission planning software (VectorMap), essentially following a more accurate road of coordinates instead of transversing waypoint-to-waypoint. It has been equipped with a Doppler Velocity Log (DVL) to increase its underwater navigation accuracy. Potential EcoMapper applications include baseline environmental mapping in freshwater, estuarine or near-coastal environments, bathymetric mapping, dissolved oxygen studies, event monitoring (algal blooms, storm impacts, low dissolved oxygen), non-point source studies, point-source dispersion mapping, security, search & rescue, inspection, shallow water mapping, thermal dissipation mapping of cooling outfalls, trace-dye studies. The AUV is used in the coastal area of the Augusta Bay (Italy), located in the eastern part of Sicily. Due to the heavy contamination generated by the several chemical and petrochemical industries active in the zone, the harbour was declared a Contaminated Site of National Interest. The ecomapper allows for a simultaneous data collection of water quality and bathymetric data providing a complete environmental mapping system of the Harbour.

  4. Seafloor bathymetry in deep and shallow water marine CSEM responses of Nigerian Niger Delta oil field: Effects and corrections

    Science.gov (United States)

    Folorunso, Adetayo Femi; Li, Yuguo

    2015-12-01

    Topography distortions in bathymetrically acquired marine Controlled-Source Electromagnetic (mCSEM) responses are capable of misleading interpretation to the presence or absence of the target if not corrected for. For this reason, the effects and correction of bathymetry distortions on the deep and shallow seafloor mCSEM responses of the Niger Delta Oil province were examined in this paper. Marine CSEM response of the Niger Delta geological structure was modelled by using a 2.5D adaptive finite element forward modelling code. In both the deep water and shallow water cases, the bathymetry distortions in the electric field amplitude and phase were found to get smaller with increasing Tx-Rx offsets and contain short-wavelength components in the amplitude curves which persist at all Tx-Rx offsets. In the deep water, topographic effects on the reservoir signatures are not significant, but as water depth reduces, bathymetric distortions become more significant as a result of the airwave effects, masking the target signatures. The correction technique produces a good agreement between the flat-seafloor reservoir model and its equivalent bathymetric model in deep water at 0.25 Hz, while in shallow water, the corrected response only shows good agreement at shorter offsets but becomes complicated at longer offsets due to airwave effects. Transmission frequency was extended above and below 0.25 Hz in the frequency spectrum and the correction method applied. The bathymetry correction at higher frequency (1.75 Hz) is not effective in removing the topographic effects in either deep or shallow water. At 0.05 Hz for both seafloor scenarios, we obtained the best corrected amplitude profiles, removing completely the distortions from both topographic undulation and airwave effects in the shallow water model. Overall, the work shows that the correction technique is effective in reducing bathymetric effects in deep water at medium frequency and in both deep and shallow waters at a low

  5. River discharge estimation by using remote sensing data in absence of bathymetry: the Po River case study

    Science.gov (United States)

    Tarpanelli, Angelica; Barbetta, Silvia; Brocca, Luca; Lacava, Teodosio; Faruolo, Mariapia; Moramarco, Tommaso

    2014-05-01

    River discharge is an important quantity of the hydrologic cycle and it is essential for both scientific and operational applications related to water resources management and flood risk prevention. The absence of flow measurements along the natural channels and, sometimes, their poor accessibility, contribute to make difficult the discharge estimation. In recent years, also thanks to the increased availability of remote sensing data, the great potential of satellite sensors for discharge estimation has been already demonstrated. In particular, recent advances in radar altimetry technology have improved the accuracy in the water levels monitoring of both large rivers and lakes located in ungauged or poorly gauged inland regions. However, the remote sensing based technologies cannot observe river channel bathymetry below the water surface, limiting their value for estimating river depth and/or discharge. This study focuses on the estimation of discharge by coupling information coming from Moderate Resolution Imaging Spectroradiometer (MODIS) and radar altimetry and by using the entropy theory for simulating the river channel bathymetry. Specifically, the MODIS-derived velocity is obtained by exploiting the different behavior of water and land in the Near Infrared (NIR) portion of the electromagnetic spectrum (MODIS channel 2). The ratio of reflectance values between two pixels located within and outside the river increases with the presence of the water and, hence, with flow velocity. The flow area is then assessed considering the dataset of water surface elevation derived by radar altimetry and the maximum flow velocity derived by MODIS images. Based on the dataset, an optimization method for estimating the lowest river bottom level is applied and the cross-section flow area is assessed considering the bathymetry simulated by maximization of entropy. The procedure is tested by comparing in-situ and satellite-derived discharge data for a gauged river site along the

  6. Interactions of Marine Hydrokinetic Devices in Complex Bathymetries: Numerical Simulations in the Chacao Channel in Southern Chile.

    Science.gov (United States)

    Soto, K. A.; Escauriaza, C. R.; Richter, D. H.

    2015-12-01

    Many coastal areas in the South Pacific Ocean can provide significant marine energy resources in the near future. The installation of marine hydrokinetic (MHK) devices in these regions will require new approaches to understand physical and environmental processes that are relevant for the installation of turbine arrays, which are also specific of each site. The coastal morphology of the Chacao channel in southern Chile, which separates the Chiloé island from the main continent (41º47'S, 73º31'W) stands out as an important energy resource that can potentially contribute a significant power capacity. This coastal area not only sustains delicate ecosystems with limited anthropic intervention, but it is characterized by a complex bathymetry that can have important effects on the performance of MHK devices and their local impacts. To understand the interactions of the local bathymetry and ambient turbulence with turbine arrays, we carry out a series of numerical simulations with a coherent-structure resolving turbulence model using the actuator disk parameterization. The main objective of this study is to further our understanding on the physical processes associated with the installation of the turbine arrays. We perform simulations with different geometries and inlet boundary conditions, from simple cases in a rectangular channel, to more complex cases that include the high-resolution bathymetry of an extensive area of the Chacao channel. The results show how the interactions between the MHK devices, the local flow, and the bed can affect the energy flux and potential generation in specific sites. The results also provide new insights of local impacts of MHK devices and they can also help to optimize turbine arrays in natural environments. This work has been supported by Fondecyt project 1130940, and the Marine Energy Research & Innovation Center (MERIC) financed by Corfo and based in Santiago, Chile.

  7. ASSESSMENT OF THE IMPACT OF THE TSUNAMI OF DECEMBER 26, 2004 ON THE NEAR-SHORE BATHYMETRY OF THE KALPAKKAM COAST, EAST COAST OF INDIA

    Directory of Open Access Journals (Sweden)

    P. Sasidhar

    2008-01-01

    Full Text Available The devastating impact of the December 26, 2004 tsunami on the coast of South India has been well documented. However, only a few studies assessed the tsunami’s impact in the near-shore region. The present study evaluates changes in bathymetry along the near-shore of Kalpakkam before and after the tsunami. Using GIS software, data was extracted from charts to create three-dimensional bathymetric representations of the offshore region before and after the tsunami. Initially, a TIN (Triangulated Irregular Network surface was created by using Arc GIS software. Subsequently, by employing a 3D analyst tool, a three-dimensional surface of the near shore bathymetry was generated and comparisons were made with the pre-tsunami bathymetry. Based on comparisons of selected profiles, conclusions were drawn as to changes that resulted from the tsunami’s impact. The analysis indicated that the tsunami deposited loose inner shelf sediments that altered significantly the near shore region bathymetry of the Kalpakkam coastal region. Sediment accretion changed the local bathymetry by 10 to 50 cm.

  8. Inversion of gravity and bathymetry in oceanic regions for long-wavelength variations in upper mantle temperature and composition

    Science.gov (United States)

    Solomon, Sean C.; Jordan, Thomas H.

    1993-01-01

    Long-wavelength variations in geoid height, bathymetry, and SS-S travel times are all relatable to lateral variations in the characteristic temperature and bulk composition of the upper mantle. The temperature and composition are in turn relatable to mantle convection and the degree of melt extraction from the upper mantle residuum. Thus the combined inversion of the geoid or gravity field, residual bathymetry, and seismic velocity information offers the promise of resolving fundamental aspects of the pattern of mantle dynamics. The use of differential body wave travel times as a measure of seismic velocity information, in particular, permits resolution of lateral variations at scales not resolvable by conventional global or regional-scale seismic tomography with long-period surface waves. These intermediate scale lengths, well resolved in global gravity field models, are crucial for understanding the details of any chemical or physical layering in the mantle and of the characteristics of so-called 'small-scale' convection beneath oceanic lithosphere. In 1991 a three-year project to the NASA Geophysics Program was proposed to carry out a systematic inversion of long-wavelength geoid anomalies, residual bathymetric anomalies, and differential SS-S travel time delays for the lateral variation in characteristic temperature and bulk composition of the oceanic upper mantle. The project was funded as a three-year award, beginning on 1 Jan. 1992.

  9. High-resolution bathymetry reveals contrasting landslide activity shaping the walls of the Mid-Atlantic Ridge axial valley

    Science.gov (United States)

    Cannat, Mathilde; Mangeney, Anne; OndréAs, HéLèNe; Fouquet, Yves; Normand, Alain

    2013-04-01

    Axial valleys are found along most slow-spreading mid-ocean ridges and are one of the most prominent topographic features on Earth. In this paper, we present the first deep-tow swath bathymetry for the axial valley walls of the Mid-Atlantic Ridge. These data allow us to analyze axial valley wall morphology with a very high resolution (0.5 to 1 m compared to ≥ 50 m for shipboard multibeam bathymetry), revealing the role played by landslides. Slow-spreading ridge axial valleys also commonly expose mantle-derived serpentinized peridotites in the footwalls of large offset normal faults (detachments). In our map of the Ashadze area (lat. 13°N), ultramafic outcrops have an average slope of 18° and behave as sliding deformable rock masses, with little fragmentation. By contrast, the basaltic seafloor in the Krasnov area (lat. 16°38'N) has an average slope of 32° and the erosion of the steep basaltic rock faces leads to extensive fragmentation, forming debris with morphologies consistent with noncohesive granular flow. Comparison with laboratory experiments suggests that the repose angle for this basaltic debris is > 25°. We discuss the interplay between the normal faults that bound the axial valley and the observed mass wasting processes. We propose that, along axial valley walls where serpentinized peridotites are exposed by detachment faults, mass wasting results in average slopes ≤ 20°, even in places where the emergence angle of the detachment is larger.

  10. A Dual EnKF for Estimating Water Level, Bottom Roughness, and Bathymetry in a 1-D Hydrodynamic Model

    CERN Document Server

    Hooshyar, Milad; Wang, Dingbao; Hagen, Scott C

    2016-01-01

    Data assimilation has been applied to coastal hydrodynamic models to better estimate system states or parameters by incorporating observed data into the model. Kalman Filter (KF) is one of the most studied data assimilation methods whose application is limited to linear systems. For nonlinear systems such as hydrodynamic models a variation of the KF called Ensemble Kalman Filter (EnKF) is applied to update the system state in the context of Monte Carlo simulation. In this research, a dual EnKF approach is used to simultaneously estimate state (water surface elevation) and parameters (bottom roughness and bathymetry) of the shallow water models. The sensitivity of the filter to 1) the quantity and precision of the observations, and 2) the initial estimation of parameters is investigated in a 1-D shallow water problem located in the Gulf of Mexico. Results show that starting from an initial estimate of bottom roughness and bathymetry within a logical range and utilizing observations available at a limited numbe...

  11. A geomorphologist's dream come true: synoptic high resolution river bathymetry with the latest generation of airborne dual wavelength lidar

    Science.gov (United States)

    Lague, Dimitri; Launeau, Patrick; Michon, Cyril; Gouraud, Emmanuel; Juge, Cyril; Gentile, William; Hubert-Moy, Laurence; Crave, Alain

    2016-04-01

    Airborne, terrestrial lidar and Structure From Motion have dramatically changed our approach of geomorphology, from low density/precision data, to a wealth of data with a precision adequate to actually measure topographic change across multiple scales, and its relation to vegetation. Yet, an important limitation in the context of fluvial geomorphology has been the inability of these techniques to penetrate water due to the use of NIR laser wavelengths or to the complexity of accounting for water refraction in SFM. Coastal bathymetric systems using a green lidar can penetrate clear water up to 50 m but have a resolution too coarse and deployment costs that are prohibitive for fluvial research and management. After early prototypes of narrow aperture green lidar (e.g., EEARL NASA), major lidar manufacturer are now releasing dual wavelength laser system that offer water penetration consistent with shallow fluvial bathymetry at very high resolution (> 10 pts/m²) and deployment costs that makes the technology, finally accessible. This offers unique opportunities to obtain synoptic high resolution, high precision data for academic research as well as for fluvial environment management (flood risk mapping, navigability,…). In this presentation, we report on the deployment of the latest generation Teledyne-Optech Titan dual-wavelength lidar (1064 nm + 532 nm) owned by the University of Nantes and Rennes. The instrument has been deployed over several fluvial and lacustrine environments in France. We present results and recommendation on how to optimize the bathymetric cover as a function of aerial and aquatic vegetation cover and the hydrology regime of the river. In the surveyed rivers, the penetration depth varies from 0.5 to 4 m with discrete echoes (i.e., onboard detection), heavily impacted by water clarity and bottom reflectance. Simple post-processing of the full waveform record allows to recover an additional 20 % depth. As for other lidar techniques, the main

  12. A method to calibrate channel friction and bathymetry parameters of a Sub-Grid hydraulic model using SAR flood images

    Science.gov (United States)

    Wood, M.; Neal, J. C.; Hostache, R.; Corato, G.; Chini, M.; Giustarini, L.; Matgen, P.; Wagener, T.; Bates, P. D.

    2015-12-01

    Synthetic Aperture Radar (SAR) satellites are capable of all-weather day and night observations that can discriminate between land and smooth open water surfaces over large scales. Because of this there has been much interest in the use of SAR satellite data to improve our understanding of water processes, in particular for fluvial flood inundation mechanisms. Past studies prove that integrating SAR derived data with hydraulic models can improve simulations of flooding. However while much of this work focusses on improving model channel roughness values or inflows in ungauged catchments, improvement of model bathymetry is often overlooked. The provision of good bathymetric data is critical to the performance of hydraulic models but there are only a small number of ways to obtain bathymetry information where no direct measurements exist. Spatially distributed river depths are also rarely available. We present a methodology for calibration of model average channel depth and roughness parameters concurrently using SAR images of flood extent and a Sub-Grid model utilising hydraulic geometry concepts. The methodology uses real data from the European Space Agency's archive of ENVISAT[1] Wide Swath Mode images of the River Severn between Worcester and Tewkesbury during flood peaks between 2007 and 2010. Historic ENVISAT WSM images are currently free and easy to access from archive but the methodology can be applied with any available SAR data. The approach makes use of the SAR image processing algorithm of Giustarini[2] et al. (2013) to generate binary flood maps. A unique feature of the calibration methodology is to also use parameter 'identifiability' to locate the parameters with higher accuracy from a pre-assigned range (adopting the DYNIA method proposed by Wagener[3] et al., 2003). [1] https://gpod.eo.esa.int/services/ [2] Giustarini. 2013. 'A Change Detection Approach to Flood Mapping in Urban Areas Using TerraSAR-X'. IEEE Transactions on Geoscience and Remote

  13. Estimation of high resolution shallow water bathymetry via two-media-photogrammetry - a case study at the Pielach River

    Science.gov (United States)

    Wimmer, Michael; Mandlburger, Gottfried; Ressl, Camillo; Pfeifer, Norbert

    2016-04-01

    In our contribution, a photogrammetric approach for water depth estimation of a shallow water body is developed and applied to a gravel-bed river in order to evaluate the possibilities of passive optical remote sensing for high resolution bathymetry. While 2-media (air and water) photogrammetry has been described before, it was concentrated on reconstruction of individual points. Here, we take a different approach and aim at a dense surface description of the river bed as seen from the aerial image through the water column. In a first step, the influence of light refraction at the boundary between two media for photogrammetric point retrieval is assessed. The effect is theoretically investigated under varying conditions, i.e. the 3D point displacement caused by refraction is related to parameters such as water depth, image geometry et cetera. Especially the assumption of a plain, horizontal water surface does not hold in practice. Therefore, also the limitations of the theoretical model are determined by investigating, how water surface waves and the corresponding deviation of the surface normal vectors from vertical direction distort the results. In the second, practical part of the work, a refraction correction procedure is derived from the prior investigations and is embedded into the photogrammetric workflow. A full photogrammetric processing chain is applied to a set of aerial images of the pre-Alpine Pielach River in Lower Austria. The RGB images were taken simultaneously to an Airborne Laser Bathymetry (ALB) campaign providing high resolution reference data. Based on these images, a Digital Terrain Model is derived for the open as well as the submerged areas. Running through the procedure gives important insights about the possibilities of influencing the processing pipeline of commercial photogrammetric software packages in order to apply the developed refraction correction. Especially, the deviation from the epipolar constraint caused by refraction and the

  14. Composition, seasonal change and bathymetry of Ligeia Mare, Titan, derived from its 2.2-cm thermal emission

    Science.gov (United States)

    Le Gall, A. A.; Malaska, M.; Lorenz, R. D.; Janssen, M. A.; Tokano, T.; Hayes, A.; Lunine, J. I.; Veyssière, G.; Mastrogiuseppe, M.; Karatekin, O.; Encrenaz, P.

    2015-12-01

    For the last 10 years, the Cassini RADAR has been exploring Saturn's moon Titan, the only planetary body besides Earth whose surface presently exhibits significant accumulations of liquids in the forms of lakes and seas. In particular, the passive Radiometer that is incorporated in this instrument has been recording the 2.2 cm-wavelength thermal emission from Titan's three seas. Radiometry observations provide new information beyond the active radar reflection data. In this paper, we analyze the radiometry observations collected from Feb. 2007 to July 2013 over one of these seas, Ligeia Mare, with the goal of providing constrains on its liquid composition, seafloor nature, bathymetry, and dynamics. In light of the two-layer model we have developed for this analysis, we find that the dielectric constant of the sea liquid is most likely smaller than 1.8, suggesting that the composition of Ligeia Mare is dominated by liquid methane rather than liquid ethane (although a ternary methane-ethane-nitrogen mixture cannot be ruled out). This result is further supported by the value we infer for the liquid loss tangent of 3-5×10-5. This value is in agreement with the one first published by Mastrogiuseppe et al. (2014) based on active radar observation. A high methane concentration suggests that Ligeia Mare is either a sea from which ethane has been removed by crustal interaction, or a sea primarely fed by methane-rich precipitation, or both. For the seafloor, a dielectric constant of 2.6-2.9±0.9 is determined. Though this result is not very constraining, we favor a scenario where the floor of Ligeia Mare is covered by a sludge of compacted and possibly nitrile-rich organic material formed by the deposition of photochemical haze or by rain-washing of the nearby shores. These results are then used to convert the radiometry mosaic of Ligeia Mare into a qualitative low-resolution bathymetry map. Lastly, we establish limits on the physical temperature variation of the sea

  15. NOAA ESRI Geotiff- 2m Multibeam Bathymetry of NPS's Salt River Bay National Historical Park and Ecological Reserve, St. Croix, US Virgin Islands, Project NF-05-05, 2005, UTM 20 NAD83 (NCEI Accession 0131860)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Geotiff with 2 meter cell size representing the bathymetry of the a portion of the NPS's Salt River Bay National Historical Park and...

  16. Preliminary hard and soft bottom seafloor substrate map (40m grid) derived from an unsupervised classification of gridded backscatter and bathymetry derivatives at Rose Atoll, Territory of American Samoa, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Preliminary hard and soft seafloor substrate map derived from an unsupervised classification of multibeam backscatter and bathymetry derivatives at Rose Atoll,...

  17. NOAA ESRI Geotiff- 2m Multibeam Bathymetry of NPS's Virgin Islands Coral Reef National Monument (Offshore), St. John, US Virgin Islands, Project NF-05-05, 2005, UTM 20 NAD83 (NCEI Accession 0131860)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains an ESRI Geotiff with 2 meter cell size representing the bathymetry of an offshore portion of the NPS's Virgin Islands Coral Reef National...

  18. NOAA TIFF Image - 8m Multibeam Bathymetry , W00216 USVI 2011 , Seafloor Characterization of the US Caribbean - Nancy Foster - NF-11-1 (2011), UTM 20N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a GeoTIFF with 8x8 meter cell size representing the bathymetry of a sharply sloping swath of the St. John Shelf, a selected portion of...

  19. Integrated hard and soft bottom seafloor substrate map derived from an unsupervised classification of gridded backscatter, World-View 2 imagery and bathymetry derivatives of Ni'ihau Island, Hawaii, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Preliminary hard and soft seafloor substrate map derived from an unsupervised classification of multibeam backscatter, bathymety derivatives, and bathymetry derived...

  20. Preliminary hard and soft bottom seafloor substrate map (5m grid) derived from an unsupervised classification of gridded backscatter and bathymetry derivatives at Rose Atoll Lagoon, Territory of American Samoa, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Preliminary hard and soft seafloor substrate map derived from an unsupervised classification of multibeam backscatter and bathymetry derivatives at Rose Atoll...

  1. NOAA TIFF Image - 2m Multibeam Bathymetry, W00217 USVI 2011, Seafloor Characterization of the US Caribbean - Nancy Foster - NF-11-1 (2011), UTM 20N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a GeoTIFF with 2x2 meter cell size representing the bathymetry of a broad portion of seafloor south of St. Thomas, USVI, derived from data...

  2. NOAA TIFF Image - 8m Multibeam Bathymetry , W00216 USVI 2011 , Seafloor Characterization of the US Caribbean - Nancy Foster - NF-11-1 (2011), UTM 20N NAD83 (NCEI Accession 0131858)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a GeoTIFF with 8x8 meter cell size representing the bathymetry of a sharply sloping swath of the St. John Shelf, a selected portion of...

  3. NOAA TIFF Image - 2m Multibeam Bathymetry, W00217 USVI 2011, Seafloor Characterization of the US Caribbean - Nancy Foster - NF-11-1 (2011), UTM 20N NAD83 (NCEI Accession 0131858)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a GeoTIFF with 2x2 meter cell size representing the bathymetry of a broad portion of seafloor south of St. Thomas, USVI, derived from data...

  4. CAPENORTH_GEO4M_XYZ.TXT: ASCII formatted file of the 4-m bathymetry from the northern half of USGS survey 98015 of the Sea Floor off Eastern Cape Cod (Geographic)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set includes bathymetry of the sea floor offshore of eastern Cape Cod, Massachusetts. The data were collected with a multibeam sea floor mapping system...

  5. ASCII formatted file of the 4-m bathymetry from the northern half of USGS survey 98015 of the Sea Floor off Eastern Cape Cod (CAPENORTH_GEO4M_XYZ.TXT, Geographic, NAD83)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set includes bathymetry of the sea floor offshore of eastern Cape Cod, Massachusetts. The data were collected with a multibeam sea floor mapping system...

  6. ASCII formatted file of the 4-m bathymetry from the southern half of USGS Survey 98015 of the Sea Floor off Eastern Cape Cod (CAPESOUTH_GEO4M_XYZ.TXT, Geographic, NAD83)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set includes bathymetry of the sea floor offshore of eastern Cape Cod, Massachusetts. The data were collected with a multibeam sea floor mapping system...

  7. NOAA TIFF Image - 2m Multibeam Bathymetry, W00216 USVI 2011, Seafloor Characterization of the US Caribbean - Nancy Foster - NF-11-1 (2011), UTM 20N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a GeoTIFF with 2x2 meter cell size representing the bathymetry of a sharply sloping swath of the St. John Shelf, a selected portion of...

  8. CRATER LAKE BATHY (bathyg) - 2-meter ArcRaster Grid of the Multibeam Bathymetry of Crater Lake, Oregon acquired by the U.S. Geological Survey during 2000 field activity S-1-00-OR

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — ArcInfo GRID format data generated from the 2000 multibeam sonar survey of Crater Lake, Oregon. The data include high-resolution bathymetry and calibrated acoustic...

  9. Determining change of bathymetry with GPR method in Ordu-Giresun, a sea-filled airport in the Black Sea, Turkey

    Science.gov (United States)

    Kadioglu, Selma; Kagan Kadioglu, Yusuf

    2016-04-01

    Ordu-Giresun (OGU) is a newly-constructed airport, the first sea-filled airport in Turkey and in Europe, and the second airport in the world after Osaca-Japan. The airport is between Gulyalı district in Ordu city and Piraziz district in Giresun city in Black Sea -Turkey. A protection breakwater has been constructed by filling a rock approximately 7.435-m long and with an average height of 5.5 m. Then, the Black Sea has been filled until 1 m over the sea level, approximately the area is 1.770.000 m2 wide and includes a runway, aprons and taxiway covered by breakwater. The runway has a 1-m thickness, 3-km length and 45-m width, PCN84 strength, and stone mastic asphalt surface. The aprons has a 240 x 110 m length and PCN110 strength, the taxiway is 250 x 24 m wide. The airport was started to be constructed in July 2011 and it began to serve on 22th May 2015. The aim of this study was to determine the depth of the rock-filled layer and the amount of sinking of the bathymetry which has been determined before filling processing. In addition, before bathymetry determination, unconsolidated sediments had been removed from the bottom of the sea. There were four drilling points to control the sinking of the bathymetry. Therefore, six suitable Ground Penetrating Radar (GPR) profiles were measured, crossing these points with runway and aprons, using 250-MHz and 100-MHz shielded antennas. Starting points of the profiles were in the middle of the runway to merge between depth and thickness changing of the filled layer and bathymetry along the profiles. Surface topography changing was measured spaced 1 m apart with 1 cm sensitivity on each profile. At the same time, similarly the topography changing, bathymetry coordinates was re-arranged along the each profile. Topography corrections were applied to the processed radargrams and then the bottom boundary lines of the rock-filled layer were determined. The maximum height was 3.5 m according to the sea level, which was on the

  10. From oblique subduction to intra-continental transpression : structures of the southern Kermadec-Hikurangi margin from multibeam bathymetry, side-scan sonar and seismic reflection

    OpenAIRE

    Collot, Jean-Yves; Delteil, J; Lewis, K B; Davy, B.; Lamarche, Geoffroy; Audru, J.C.; Barnes, P; Charnier, F.; Chaumillon, E. (collab.); Lallemand, S; Mercier de Lepinay, B.; Orpin, A.; Pelletier, Bernard; Sosson, M; Toussaint, Bertrand

    1996-01-01

    The southern Kermadec-Hikurangi convergent margin, east of New Zealand, accommodates the oblique subduction of the oceanic Hikurangi Plateau at rates of 4-5 cm/yr. Swath bathymetry and sidescan data, together with seismic reflection and geopotential data obtained during the GEODYNZ-SUD cruise, showed major changes in tectonic style along the margin. The changes reflect the size and abundance of seamounts on the subducting plateau, the presence and thickness of trench-fill turbidites, and the ...

  11. Bathymetry, Chirp and Deep Crustal Structure of the Santos Basin SÃO Paulo Ridge Complex (sbspr)

    Science.gov (United States)

    Aslanian, D.; Klingelhoefer, F.; Moulin, M.; Schnurle, P.; Rabineau, M.; Afilhado, A.; Roest, W. R.; Feld, A.; Evain, M.; Rochat, A.; Rousic, D.; Rigoti, C. A.; Capechi, E.; Bochenek, G.; Viana, A. R.; Magnavita, L. P.; Szatmari, P.; Neto, M.; Soares, J. P.; Fuck, R. A.; Paula Ribas, M.; De Lima, M.; Corela, C.; Duarte, J.; Matias, L. M.; OBS Team of Sanba Cruise

    2011-12-01

    The SanBa (Santos Basin- Seismic Research experiment) research experiment is a joint project of the Department of Marine Geosciences (IFREMER: Institut Français de Recherche pour l'Exploitation de la MER, France), the Laboratory of "Oceanic Domain" (Institut Universitaire et Européen de la Mer, France), the Faculdade de Ciências da Universidade de Lisboa (Lattex and CGUL, Portugal), the Universidade de Brasilia (Brazil) and PETROBRAS. Its aim is to test hypotheses that have been proposed such as the existence of failed rift and a micro-block (Moulin et al., GSL submitted) or the presence of exhumed mantle on its south-eastern part (Zalan et al., AAPG 2009). Six wide-angle seismic data were acquired together with coincident deep frequency reflection seismic data during the SanBa cruise in Dec 2010 - Jan. 2011 (total > 850 Nm). Chirp and Bathymetry were also acquired during the cruise. The preliminary results suggest a very thin crust (< 5km) in the center and in the south-eastern part of the SBSPR. Both refraction and reflection data present a clear signal of the Moho in the distalmost part of the study area, which seems to preclude the exhumed mantle hypothesis."

  12. Multiple episodes of volcanism in the Southern Austral Islands: Flexural constraints from bathymetry, seismic reflection, and gravity data

    Science.gov (United States)

    Jordahl, Kelsey A.; McNutt, Marcia K.; Caress, David W.

    2004-06-01

    At the southeastern end of the Cook-Austral Island chain, in the vicinity of the currently active Macdonald Seamount, multiple episodes of volcanism have left a diverse population of seamounts. Multichannel seismic reflection and shipboard gravity data provide observational constraints on the magnitude and wavelength of flexure, and multibeam bathymetry obtained by R/V Ewing and F/S Sonne within the study area provides full spatial coverage of all volcanic loads. Three-dimensional flexural modeling of closely spaced loads emplaced at discrete times, performed both with analytical models of idealized loads and with fourier domain solutions of the observed volcanic loads partitioned into the younger and older seamounts, is compared with seismic and gravity data. This modeling provides a more complete view of the volcanic history than radiometric dating and geochemical analysis of sparse dredge samples alone. Wide-angle seismic refraction data from ocean bottom hydrophones (OBHs) and expendable sonobuoys are also consistent with the flexural modeling results. Volume estimates of the different volcanic episodes show that one-half to two-thirds of the material added to the abyssal seafloor by midplate volcanic processes is due to older volcanism that erupted on young lithosphere, while the younger, higher seamounts contributed the remainder.

  13. Bathymetry of Grounding Zones and Sub-Ice Shelf Cavities of the Amundsen Sea, from Operation IceBridge Gravity Inversions

    Science.gov (United States)

    Tinto, K. J.; Cochran, J. R.; Bell, R. E.

    2012-12-01

    In order to understand the observed changes in thinning and grounding line position of outlet glaciers it is essential to have accurate maps of the bathymetry of the sea floor within and around the grounding zone. This bathymetry controls the stability of the grounding line as well as access and circulation of seawater under their stabilizing ice shelves. Since 2009 Operation IceBridge has flown gridded surveys over four of the ice shelves of the Amundsen Sea embayment. We present a 3D inversion of the gravity from the region, supplemented by 2D profile models across the ice shelves to provide a self-consistent bathymetric model of the grounding zone and sub ice cavity of Pine Island, Thwaites, Dotson and Crosson ice shelves. Much attention has been paid to the largest outlet glaciers of the Amundsen Sea, and to the bathymetry beneath the floating ice in front of their grounding zones. Considerable changes have also been observed from the smaller Amundsen ice shelves, Crosson and Dotson, which flow to the east and north respectively, between Thwaites Glacier and Getz ice shelf, but little is known about their sub-ice bathymetry. The Amundsen Sea region is vulnerable to the influence of relatively warm circumpolar deep water encroaching on to the continental shelf. The influence of these waters at the grounding zone of the glaciers in the region is dictated by the depth and orientation of bathymetric features of the sea floor. The dominant geological fabric of the region is a NE-SW trending series of ridges and troughs, formed in association with the rifting of the Amundsen Sea region. The bathymetry models from OIB gravity inversions reveal the continuation of the deep (~1500 m) trough of the Kohler Glacier under Crosson Ice Shelf. At the eastern end of the trough, at the front of Crosson ice shelf, the sea floor rises to an average of ~500 m depth over a broad, 50 km wide region. Further east from here the NE-SW fabric is continued in a previously reported ridge

  14. Multibeam Bathymetry to Measure Volumetric Change and Particle Size Distributions in the Snake River through Hells Canyon

    Science.gov (United States)

    Anderson, K.; Morehead, M. D.; Anderson, K.; Wilson, T.; Butler, M.; Conner, J. T.; Hocker, B.

    2011-12-01

    Multi-beam bathymetry (MBB) surveys can be used to measure the change in storage and particle size distributions on riverbeds even in the inaccessible and rugged Hells Canyon reach of the Snake River. Our work to date has shown that differencing repeated MBB surveys can be an effective method of measuring volumetric changes in riverbed storage of sediment and that the data can also be used to categorize particle size distributions across the entire riverbed. The volumetric and particle size information allows us to investigate the patterns of sand and salmon spawning gravels and the underlying transport and supply processes. These methods will continue to be refined as part of Idaho Power's long-term compliance monitoring program and will provide a unique, long-term record of sediment transport in a steep, canyon-bound river. The Hells Canyon Reach of the Snake River flows north 95 kilometers from Hells Canyon Dam to the confluence with the Salmon River and forms the border between Idaho and Oregon. The reach contains 15 named rapids (Class II to IV) and has an average slope of approximately 0.002%, an average bankfull width of 75-100 m, and an extreme confinement ratio (bankfull width: floodplain width) of 1. The bankfull flow (recurrence interval of about 2 years) of 1,400 cms has not been changed by the construction of the Hells Canyon Complex (HCC) immediately upstream, because the HCC reservoirs can only store 11% of the mean annual flow and 87% of the upstream drainage area had already been impounded by dams. Most methods of bathymetric surveying and particle size characterization were developed in small, wadeable streams and cannot be used in large, unwadeable channels like Hells Canyon. Many of the previous methods also require too much time or effort to feasibly cover the 950 hectares of riverbed in Hells Canyon. Instead, we have adapted multibeam sonar technology typically used in coastal areas or large, low-gradient rivers to the steep, canyon

  15. Where to Forage in the Absence of Sea Ice? Bathymetry As a Key Factor for an Arctic Seabird.

    Directory of Open Access Journals (Sweden)

    Françoise Amélineau

    Full Text Available The earth is warming at an alarming rate, especially in the Arctic, where a marked decline in sea ice cover may have far-ranging consequences for endemic species. Little auks, endemic Arctic seabirds, are key bioindicators as they forage in the marginal ice zone and feed preferentially on lipid-rich Arctic copepods and ice-associated amphipods sensitive to the consequences of global warming. We tested how little auks cope with an ice-free foraging environment during the breeding season. To this end, we took advantage of natural variation in sea ice concentration along the east coast of Greenland. We compared foraging and diving behaviour, chick diet and growth and adult body condition between two years, in the presence versus nearby absence of sea ice in the vicinity of their breeding site. Moreover, we sampled zooplankton at sea when sea ice was absent to evaluate prey location and little auk dietary preferences. Little auks foraged in the same areas both years, irrespective of sea ice presence/concentration, and targeted the shelf break and the continental shelf. We confirmed that breeding little auks showed a clear preference for larger copepod species to feed their chick, but caught smaller copepods and nearly no ice-associated amphipod when sea ice was absent. Nevertheless, these dietary changes had no impact on chick growth and adult body condition. Our findings demonstrate the importance of bathymetry for profitable little auk foraging, whatever the sea-ice conditions. Our investigations, along with recent studies, also confirm more flexibility than previously predicted for this key species in a warming Arctic.

  16. Plate tectonics and the origin of the Juan Fernández Ridge: analysis of bathymetry and magnetic patterns

    Directory of Open Access Journals (Sweden)

    Cristián Rodrigo

    2014-10-01

    Full Text Available Juan Fernández Ridge (JFR is a cα. 800 km long alignment of seamounts and islands which is thought to be fed by a deep mantle plume. JFR includes the Friday and Domingo seamounts in the western active edge close to the active hotspot, and the O'Higgins Seamount and Guyot at the eastern limit just in front of the Chile-Perú trench. Recent bathymetric (Global Topography and magnetic (EMAG-2 datasets were interpreted both qualitatively and quantitatively by means of 3D inverse modeling and 2D direct modeling for geometry and susceptibility, together with an interpretation of the synthetic anomalies related to the classical hypothesis of deep seafloor spreading. Topographic and magnetic patterns are used to understand the tectonic evolution and origin of the JFR, especially in the western segment. Results show a continuous corridor with a base at ~3900 m depth formed by four groups of seamounts/islands with a number of summits. The deep ocean floor is ~22 to ~37 Myr old and is younger to the south of the Challenger Fracture Zone that runs in a SW-NE direction. The magnetic pattern of the western JFR segment, which is different than the eastern one, has no correlation with bathymetry and does not present a common polarity nor fit with magnetic models for isolated bodies. This superposition of magnetic patterns indicates a role of the faults/fractures of the Nazca Plate. Geological evidence supports the hypothesis of a fixed mantle plume for the origin of JFR but our data suggest that tectonic processes play a role, thus fueling the global controversy about these competing processes.

  17. Where to Forage in the Absence of Sea Ice? Bathymetry As a Key Factor for an Arctic Seabird

    Science.gov (United States)

    Amélineau, Françoise; Grémillet, David; Bonnet, Delphine; Le Bot, Tangi; Fort, Jérôme

    2016-01-01

    The earth is warming at an alarming rate, especially in the Arctic, where a marked decline in sea ice cover may have far-ranging consequences for endemic species. Little auks, endemic Arctic seabirds, are key bioindicators as they forage in the marginal ice zone and feed preferentially on lipid-rich Arctic copepods and ice-associated amphipods sensitive to the consequences of global warming. We tested how little auks cope with an ice-free foraging environment during the breeding season. To this end, we took advantage of natural variation in sea ice concentration along the east coast of Greenland. We compared foraging and diving behaviour, chick diet and growth and adult body condition between two years, in the presence versus nearby absence of sea ice in the vicinity of their breeding site. Moreover, we sampled zooplankton at sea when sea ice was absent to evaluate prey location and little auk dietary preferences. Little auks foraged in the same areas both years, irrespective of sea ice presence/concentration, and targeted the shelf break and the continental shelf. We confirmed that breeding little auks showed a clear preference for larger copepod species to feed their chick, but caught smaller copepods and nearly no ice-associated amphipod when sea ice was absent. Nevertheless, these dietary changes had no impact on chick growth and adult body condition. Our findings demonstrate the importance of bathymetry for profitable little auk foraging, whatever the sea-ice conditions. Our investigations, along with recent studies, also confirm more flexibility than previously predicted for this key species in a warming Arctic. PMID:27438790

  18. Different key roles of mesoscale oceanographic structures and ocean bathymetry in shaping larval fish distribution pattern: A case study in Sicilian waters in summer 2009

    Science.gov (United States)

    Cuttitta, Angela; Quinci, Enza Maria; Patti, Bernardo; Bonomo, Sergio; Bonanno, Angelo; Musco, Marianna; Torri, Marco; Placenti, Francesco; Basilone, Gualtiero; Genovese, Simona; Armeri, Grazia Maria; Spanò, Antonina; Arculeo, Marco; Mazzola, Antonio; Mazzola, Salvatore

    2016-09-01

    Fish larvae data collected in year 2009 were used to examine the effects of particular environmental conditions on the structure of larval assemblages in two oligotrophic Mediterranean areas (the Southern Tyrrhenian Sea and the Strait of Sicily). For this purpose, relationships with environmental variables (temperature, salinity and fluorescence), zooplankton biomass, water circulation and bathymetry are discussed. Hydrodynamic conditions resulted very differently between two study areas. The Southern Tyrrhenian Sea was characterized by moderate shallow circulation compared to the Strait of Sicily. In this framework, distribution pattern of larval density in the Tyrrhenian Sea was mainly driven by bathymetry, due to spawning behavior of adult fish. There, results defined four assemblages: two coastal assemblages dominated by pelagic and demersal families and two oceanic assemblages dominated by mesopelagic species more abundant in western offshore and less abundant in eastern offshore. The assemblage variations in the western side was related to the presence of an anti-cyclonic gyre in the northern side of the Gulf of Palermo, while in the eastern side the effect of circulation was not very strong and the environmental conditions rather than the dispersal of species determined the larval fish communities structure. Otherwise in the Strait of Sicily the currents were the main factor governing the concentration and the assemblage structure. In fact, the distribution of larvae was largely consistent with the branch of the Atlantic Ionian Stream (AIS). Moreover, very complex oceanographic structures (two cyclonic circulations in the western part of the study area and one anti-cyclonic circulation in the eastern part) caused the formation of uncommon spatial distribution of larval fish assemblages, only partially linked to bathymetry of the study area. Typically coastal larvae (pelagic families: Engraulidae and Clupeidae) were mostly concentrated in the offshore areas

  19. Constructing river stage-discharge rating curves using remotely sensed river cross-sectional inundation areas and river bathymetry

    Science.gov (United States)

    Pan, Feifei; Wang, Cheng; Xi, Xiaohuan

    2016-09-01

    Remote sensing from satellites and airborne platforms provides valuable data for monitoring and gauging river discharge. One effective approach first estimates river stage from satellite-measured inundation area based on the inundation area-river stage relationship (IARSR), and then the estimated river stage is used to compute river discharge based on the stage-discharge rating (SDR) curve. However, this approach is difficult to implement because of a lack of data for constructing the SDR curves. This study proposes a new method to construct the SDR curves using remotely sensed river cross-sectional inundation areas and river bathymetry. The proposed method was tested over a river reach between two USGS gauging stations, i.e., Kingston Mines (KM) and Copperas Creek (CC) along the Illinois River. First a polygon over each of two cross sections was defined. A complete IARSR curve was constructed inside each polygon using digital elevation model (DEM) and river bathymetric data. The constructed IARSR curves were then used to estimate 47 river water surface elevations at each cross section based on 47 river inundation areas estimated from Landsat TM images collected during 1994-2002. The estimated water surface elevations were substituted into an objective function formed by the Bernoulli equation of gradually varied open channel flow. A nonlinear global optimization scheme was applied to solve the Manning's coefficient through minimizing the objective function value. Finally the SDR curve was constructed at the KM site using the solved Manning's coefficient, channel cross sectional geometry and the Manning's equation, and employed to estimate river discharges. The root mean square error (RMSE) in the estimated river discharges against the USGS measured river discharges is 112.4 m3/s. To consider the variation of the Manning's coefficient in the vertical direction, this study also suggested a power-law function to describe the vertical decline of the Manning

  20. Constraining calving front processes on W Greenland outlet glaciers using inertial-corrected laser scanning & swath-bathymetry

    Science.gov (United States)

    Bates, R.; Hubbard, A.; Neale, M.; Woodward, J.; Box, J. E.; Nick, F.

    2010-12-01

    ) was conducted, indicating that the technique is successful up to ~500m from the ice front and to a similar water depth. These data sets show that it is possible to integrate and build 3d DTMs at the metre-scale both above and below the water surface. The successful acquisition from our semi-autonomous vessel supervised up to 2km away greatly eases repeat surveys and reduces the exposure of equipment and personnel to the risks posed by large, active calving glaciers. Lille Glacier and s/v Gambo surveyed & photographed from the semi-autonomous vessel. Mock-up of Lille Glacier calving front and fore-bay submarine topography imaged by interferometric swath-bathymetry.

  1. Chukchi Sea Bathymetry

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Bathymetric contours were generated from soundings collected during geophysical surveys conducted by the USGS from 1969 to 1982, and supplemented by data from other...

  2. Arctic Bathymetry (batharcst)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The digitally compiled map includes geology, oil and gas field centerpoints, and geologic provinces of the Arctic (North Pole area encircled by 640 N Latitude). The...

  3. Bathymetry in Jobos Bay

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents a 4x4 meter resolution bathymetric surface for Jobos Bay, Puerto Rico (in NAD83 UTM 19 North). The depth values are in meters referenced to...

  4. Arctic_Bathymetry

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be...

  5. Multibeam Bathymetry Database (MBBDB)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Originally designed for military use, the multibeam echosounder has proved very useful for nautical charting, oceanographic research and modeling, habitat...

  6. Derivation of High-Resolution Bathymetry from Multispectral Satellite Imagery: A Comparison of Empirical and Optimisation Methods through Geographical Error Analysis

    Directory of Open Access Journals (Sweden)

    Sarah M. Hamylton

    2015-12-01

    Full Text Available The high importance of bathymetric character for many processes on reefs means that high-resolution bathymetric models are commonly needed by marine scientists and coastal managers. Empirical and optimisation methods provide two approaches for deriving bathymetry from multispectral satellite imagery, which have been refined and widely applied to coral reefs over the last decade. This paper compares these two approaches by means of a geographical error analysis for two sites on the Great Barrier Reef: Lizard Island (a continental island fringing reef and Sykes Reef (a planar platform reef. The geographical distributions of model residuals (i.e., the difference between modelled and measured water depths are mapped, and their spatial autocorrelation is calculated as a basis for comparing the performance of the bathymetric models. Comparisons reveal consistent geographical properties of errors arising from both models, including the tendency for positive residuals (i.e., an under-prediction of depth in shallower areas and negative residuals in deeper areas (i.e., an over-prediction of depth and the presence of spatial autocorrelation in model errors. A spatial error model is used to generate more reliable estimates of bathymetry by quantifying the spatial structure (autocorrelation of model error and incorporating this into an improved regression model. Spatial error models improve bathymetric estimates derived from both methods.

  7. Wave–current interaction in the presence of a three-dimensional bathymetry: Deep water wave focusing in opposing current conditions

    Energy Technology Data Exchange (ETDEWEB)

    Rey, V., E-mail: rey@univ-tln.fr; Charland, J., E-mail: jenna.charland@univ-tln.fr; Touboul, J., E-mail: julien.touboul@univ-tln.fr [Université de Toulon, CNRS/INSU, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, F-83957 La Garde (France); Aix Marseille Université, CNRS/INSU, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, 13288 Marseille, Cedex (France)

    2014-09-15

    Large scale experiments were carried out in the Ocean Engineering Basin FIRST, France. A tri-dimensional bathymetry consisting of two symmetrical submerged mounds was displayed on the flat bed on both sides of the basin. Regular waves of frequency corresponding to deep water conditions above the bathymetry were generated in opposing current conditions. A strong tri-dimensional behaviour is observed for the wave amplitude, leading to a strong focusing (up to twice the incident amplitude) of the wave energy towards the central deeper zone. This amplification cannot be ascribed to the increase of the current intensity in the main wave direction, nor to a current gradient normally to the wave direction. A wave phase gradient, normal to its main direction, is observed up-wave (or downstream) the mounds. This phase lag depends on the wave amplitude, it is the higher for the moderate amplitude case. The experimental data are compared with calculations of a refraction-diffraction model assuming a depth-averaged current. If the model qualitatively predicts the wave amplification in the centerline of the basin, discrepancies are observed in the vicinity of the depth changes. The observed mean current vertical profile shape is then supposed to play a significant role in the wave focusing, especially near the steep slopes down-stream the mounds. In addition, the waves are found to modify substantially both horizontal and vertical current fields.

  8. Review on available information on wind, water level, current, geology and bathymetry in the DanWEC area, (DanWEC Vaekstforum 2011)

    Energy Technology Data Exchange (ETDEWEB)

    Margheritini, L.

    2012-02-15

    The Danish Wave Energy Centre (DanWEC) has been established in 2009 because of participated desire to market the trial wave energy projects which are already in Hanstholm and others to come. The DanWEC is a part of Hanstholm harbour in the North-West of Denmark. The Center will contribute at creating a local base for knowledge, education and possibly a workplace which will be leased out to trial projects. It is therefore likely that different developers will deploy their wave energy devices during the next years in this location and therefore detailed knowledge on a number of environmental and physical parameter is necessary. The report should function as a review and assessment of the existing documents and present knowledge on wind, current, water level, geology and bathymetry information at the DanWEC location. The present report has been prepared under the project No. 834101 ''DanWEC Vaekstforum 2011'', task 3: ''Collection and presentation of basic data about wind, current, water head, bathymetry and geology for the DanWEC site at the Port of Hanstholm''. (LN)

  9. Characterization of submarine canyon bathymetries in northern Ionian Sea, Italy, using sediment geochemical variation induced by transportation distance and basin depth

    Science.gov (United States)

    Francesco, Perri; Tohru, Ohta; Salvatore, Critelli

    2015-07-01

    Geochemical data of marine mud sediments collected from the Esaro, Neto and Corigliano canyons in the northern Ionian Sea (southern Italy) were investigated in order to characterize canyon bathymetry types. Mud sample compositions analyzed by the principal component analysis (PCA) provided useful information for the morphology of the depositional area of the northern Ionian Sea. The use of sediment geochemical data as well as transportation distance and depth as input variables for PCA enabled the extraction of following latent variables: basin depth (PC1), sedimentation rate (PC2) and transportation distance (PC3). Based on these results, we further developed geochemical indices that can estimate basin depth (F1), sedimentation rate (F2) and transportation distance (F3); these functions can be solely calculated from the elemental concentration data of the mud samples. Since these F1, F2 and F3 functions are mathematically independent variables, they facilitate more precise characterization of individual canyon types. That is, the Esaro Canyon is regarded as a sediment-starved deep canyon characterized by a single source area; the Neto Canyon can be seen as a deeply sloped submarine apron system and sediments are mainly supplied by the sediment gravity flows; the Corigliano Canyon is characterized by multiple sources and moderately sloped system, whose sediments disperse mainly by traction currents. These interpretations are concordant with the basin bathymetry of the studied area. Therefore, F1, F2 and F3 functions might be applicable to any oceanic basins.

  10. Morphology and shallow geological structure of the continental slope located between Manzanillo, Colima and Chamela, Jalisco, Mexico, using multibeam bathymetry and high resolution seismic reflection data

    Science.gov (United States)

    Castillo, M.; Bandy, W. L.; Mortera-Gutierrez, C. A.

    2013-05-01

    The west coast of Mexico presents a complex array of tectonic processes related with the subduction of the Rivera plate beneath the Jalisco Block/North American plate including seamount subduction and forearc slivering. To better understand these processes and related deformation, an analysis and integration of marine geophysical data was undertaken to map the morphology and shallow geologic structure of the continental slope located between Manzanillo, Colima and Chamela, Jalisco, Mexico (Longitude: 104 ° 20 'to 106 ° 0 Latitude: 18 ° 24 'to 19 ° 48'). These data include multibeam bathymetry and seafloor backscatter data (Kongsberg EM300 system) and high-resolution seismic reflection data (Kongsberg TOPAS system) collected during the MORTIC07 campaign aboard the oceanographic vessel "El Puma". 3D models of the bathymetry and acoustic backscatter strength were constructed along with maps of the major geological and structural features, such as landslides and active faults and folds. The analysis indicates that the continental slope in this area has undergone significant vertical and horizontal movements producing several large slump blocks, a prominent sedimentary filled basin, and a series of transpressional ridges suggestive of a recent collision and subduction of a seamount, or similar bathymetric features.

  11. Simulation of magnetotelluric fields at Stromboli volcano using unstructured grid finite element techniques together with digital topography and bathymetry data

    Science.gov (United States)

    Kütter, Sissy; Franke-Börner, Antje; Börner, Ralph-Uwe; Spitzer, Klaus

    2010-05-01

    Marine volcanoes are particularly demanding when it comes to applying electric or electromagnetic methods to investigate their interiors. First, the surrounding highly conductive sea water represents a significant difference in conductivity with respect to the volcanic edifice, second, the volcano's topography has great impact on the electromagnetic response, and, third, the surrounding sea bed topography heavily distorts electromagnetic fields in frequency bands that interfere with a certain spatial wavelength and amplitude of the bathymetry. By neglecting these issues severe misinterpretations are the inevitable consequence. We present different approaches to 3D vector finite element simulation on unstructured grids which are able to compute plain-wave magnetotelluric fields for models including arbitrary surface and sea bed topography. As an example, we consider Stromboli volcano. One major issue is the incorporation of the Stromboli topography using a digital terrain model so that nearly all geometric features affecting the electromagnetic response are considered and an electromagnetic view on Stromboli's interior becomes possible. By carrying out a number of different synthetic experiments it has become obvious that not only the topography of Stromboli island itself is influencing the behavior of the fields but, even stronger, the topography of the surrounding sea bed within a radius of several tens of kilometers. The experiment therefore comprises three steps which gradually approach the complex setting of the target and map the entire volcanic environment with increasing accuracy. The first step outlines the volcano as a resistive geometric frustum surrounded by conductive sea water and underlain by a resistive substratum. This model already gives fundamental answers concerning the principal frequency-dependent current flow pattern within the edifice and the surrounding sea. For this purpose, the MT response was calculated at the earth/sea and the earth

  12. Subglacial bathymetry and sediment distribution beneath Pine Island Glacier ice shelf modeled using aerogravity and in situ geophysical data: New results

    Science.gov (United States)

    Muto, Atsuhiro; Peters, Leo E.; Gohl, Karsten; Sasgen, Ingo; Alley, Richard B.; Anandakrishnan, Sridhar; Riverman, Kiya L.

    2016-01-01

    Pine Island Glacier (PIG) in the Amundsen Sea sector of the West Antarctic Ice Sheet (WAIS) is losing mass and contributing to global sea-level rise at an accelerating rate. Although recent observations and modeling have identified the incursion of relatively warm Circumpolar Deep Water (CDW) beneath the PIG ice shelf (PIGIS) as the main driver of this ice-mass loss, the lack of precise bathymetry limits furthering our understanding of the ice-ocean interactions and improving the accuracy of modeling. Here we present updated bathymetry and sediment distribution beneath the PIGIS, modeled by the inversion of aerogravity data with constraints from active-source seismic data, observations from an autonomous underwater vehicle, and the regional gravity-anomaly field derived from satellite gravity observations. Modeled bathymetry shows a submarine ridge beneath the middle of PIGIS that rises ∼350 to 400 m above the surrounding sea floor, with a minimum water-column thickness of ∼200 m above it. This submarine ridge continues across the whole width of the 45-km wide ice shelf, with no deep troughs crossing it, confirming the general features of the previously predicted sub-ice-shelf ocean circulation. However, the relatively low resolution of the aerogravity data and limitations in our inversion method leave a possibility that there is an undetected, few-kilometers-wide or narrower trough that may alter the predicted sub-ice-shelf ocean circulation. Modeled sediment distribution indicates a sedimentary basin of up to ∼800 m thick near the current grounding zone of the main PIG trunk and extending farther inland, and a region seaward of the submarine ridge where sediments are thin or absent with exposed crystalline basement that extends seaward into Pine Island Bay. Therefore, the submarine ridge marks the transition from a thick sedimentary basin providing a smooth interface over which ice could flow easily by sliding or sediment deformation, to a region with no to

  13. New 3D bathymetry and sediment distribution in Lake Vostok: Implication for pre-glacial origin and numerical modeling of the internal processes within the lake

    Science.gov (United States)

    Filina, Irina Y.; Blankenship, Donald D.; Thoma, Malte; Lukin, Valery V.; Masolov, Valery N.; Sen, Mrinal K.

    2008-11-01

    A new distribution of water and unconsolidated sediments in subglacial Lake Vostok, East Antarctica was developed via inversion of airborne gravity data constrained by 60 seismic soundings. A model was developed for host rock with a density of 2550 kg/m 3 that was inferred from prior 2D modeling. Our 3D bathymetry model of Lake Vostok corresponds better with seismic data (RMS of 125 m) than two previous models based on the same gravity dataset. The good match in both water and sediment thicknesses between the gravity model and seismic measurements confirms two major facts about Lake Vostok: (1) the lake is hosted by sedimentary rocks, and (2) the bottom of the lake is covered with a layer of unconsolidated sediments that does not exceed 300 m in the southern basin and thickens almost to 400 m in the northern basin. Our new bathymetry model suggests much shallower water thicknesses (up to twice the previous estimates) in the middle and northern parts of the lake, while the water layer is thicker in the southern basin. Numerical modeling of the internal processes in the lake reveals the relevance of our new bathymetry model to the basal mass balance. A significant decrease in transport is observed in the shallower northern basin, as well as a decrease of 33% in the turbulent kinetic energy. However, only minor differences were observed in the distribution of the calculated freezing and melting zones compared to previous models. Estimates for the sedimentation rates for six possible mechanisms were made. Possible sedimentation mechanisms are: (1) fluvial and periglacial, i.e. those that are active prior to the establishment of a large subglacial lake; (2) deposition due to overlying ice sheet, including melting out of the ice, as well as bulldozering by the overriding ice; and (3) suspended sediments from subglacial water flow including those deposited by periodical subglacial outbursts. The estimates for these mechanisms show that unconsolidated sediments of the

  14. Assessing the variability of glacier lake bathymetries and potential peak discharge based on large-scale measurements in the Cordillera Blanca, Peru

    Science.gov (United States)

    Cochachin, Alejo; Huggel, Christian; Salazar, Cesar; Haeberli, Wilfried; Frey, Holger

    2015-04-01

    Over timescales of hundreds to thousands of years ice masses in mountains produced erosion in bedrock and subglacial sediment, including the formation of overdeepenings and large moraine dams that now serve as basins for glacial lakes. Satellite based studies found a total of 8355 glacial lakes in Peru, whereof 830 lakes were observed in the Cordillera Blanca. Some of them have caused major disasters due to glacial lake outburst floods in the past decades. On the other hand, in view of shrinking glaciers, changing water resources, and formation of new lakes, glacial lakes could have a function as water reservoirs in the future. Here we present unprecedented bathymetric studies of 124 glacial lakes in the Cordillera Blanca, Huallanca, Huayhuash and Raura in the regions of Ancash, Huanuco and Lima. Measurements were carried out using a boat equipped with GPS, a total station and an echo sounder to measure the depth of the lakes. Autocad Civil 3D Land and ArcGIS were used to process the data and generate digital topographies of the lake bathymetries, and analyze parameters such as lake area, length and width, and depth and volume. Based on that, we calculated empirical equations for mean depth as related to (1) area, (2) maximum length, and (3) maximum width. We then applied these three equations to all 830 glacial lakes of the Cordillera Blanca to estimate their volumes. Eventually we used three relations from the literature to assess the peak discharge of potential lake outburst floods, based on lake volumes, resulting in 3 x 3 peak discharge estimates. In terms of lake topography and geomorphology results indicate that the maximum depth is located in the center part for bedrock lakes, and in the back part for lakes in moraine material. Best correlations are found for mean depth and maximum width, however, all three empirical relations show a large spread, reflecting the wide range of natural lake bathymetries. Volumes of the 124 lakes with bathymetries amount to 0

  15. Raw data files for single-beam bathymetry data of field activity 90027 (F-8-90-NC) in Gulf of Farallones, Northern California from 08/05/1990 to 08/17/1990

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Single-beam bathymetry data along with DGPS navigation data was collected as part of the U.S. Geological Survey cruise 1990-027-FA. The cruise was conducted in Gulf...

  16. The use of multibeam backscatter and bathymetry as a means of identifying faunal assemblages in a deep-sea cold seep

    Science.gov (United States)

    Sen, Arunima; Ondréas, Hélène; Gaillot, Arnaud; Marcon, Yann; Augustin, Jean-Marie; Olu, Karine

    2016-04-01

    Deep-sea ecosystems have attracted considerable commercial interest in recent years because of their potential to sustain a diverse range of mankind's industrial needs. If these systems are to be preserved or exploited in a sustainable manner, mapping habitats and species distributions is critical. As biodiversity at cold-seeps or other deep-sea ecosystems is driven by habitat heterogeneity, imagery is the obvious choice for characterizing these systems and has indeed proven extremely valuable towards mapping biogenic habitats formed by dense aggregations of large sized species, such as coral reefs, tubeworm bushes or bivalve beds. However, the acquisition of detailed images with resolution sufficient for reliable identification is extremely time consuming, labor intensive and highly susceptible to logistical issues. We developed a novel method for quickly mapping cold seep fauna and habitats over large areas, at the scale of squares of kilometers. Our method uses multibeam echosounder bathymetry and acoustic backscatter data, both segmented and reclassified based on topographical features and then combined to obtain a raster containing unique values incorporating both backscatter and bathymetry data. Two datasets, obtained from 30 m and 8 m above the seafloor were used and the results from the two datasets were compared. The method was applied to a cold seep community located in a pockmark in the deep Congo channel and we were able to ground truth the accuracy of our method against images of the area. The two datasets, obtained from different altitudes gave varying results: the 8 m altitude dataset reliably predicted tubeworms and carbonate rock, while the 30 m altitude dataset predicted tubeworms and vesicomyid clams. The 30 m dataset was more accurate than the 8 m altitude dataset in predicting distributions of tubeworms. Overall, all the predictions were quite accurate, with at least 90% of predictions being within 5 m of real distributions.

  17. Bathymetry and Near-River Topography of the Naches and Yakima Rivers at Union Gap and Selah Gap, Yakima County, Washington, August 2008

    Science.gov (United States)

    Mastin, M.C.; Fosness, R.L.

    2009-01-01

    Yakima County is collaborating with the Bureau of Reclamation on a study of the hydraulics and sediment-transport in the lower Naches River and in the Yakima River between Union Gap and Selah Gap in Washington. River bathymetry and topographic data of the river channels are needed for the study to construct hydraulic models. River survey data were available for most of the study area, but river bathymetry and near-river topography were not available for Selah Gap, near the confluence of the Naches and Yakima Rivers, and for Union Gap. In August 2008, the U.S. Geological Survey surveyed the areas where data were not available. If possible, the surveys were made with a boat-mounted, single-beam echo sounder attached to a survey-grade Real-Time Kinematic (RTK) global positioning system (GPS). An RTK GPS rover was used on a walking survey of the river banks, shallow river areas, and river bed areas that were impenetrable to the echo sounder because of high densities of macrophytes. After the data were edited, 95,654 bathymetric points from the boat survey with the echo sounder and 1,069 points from the walking survey with the GPS rover were used in the study. The points covered 4.6 kilometers on the Yakima River and 0.6 kilometers on the Naches River. GPS-surveyed points checked within 0.014 to 0.047 meters in the horizontal direction and -0.036 to 0.078 meters in the vertical direction compared to previously established survey control points

  18. Mapping the bathymetry of supraglacial lakes and streams on the Greenland Ice Sheet using field measurements and high resolution satellite images

    Directory of Open Access Journals (Sweden)

    C. J. Legleiter

    2013-09-01

    Full Text Available Recent melt events on the Greenland Ice Sheet (GrIS accentuate the need to constrain estimates of sea level rise through improved characterization of meltwater pathways. This effort will require more precise estimates of the volume of water stored on the surface of the GrIS. We assessed the potential to obtain such information by mapping the bathymetry of supraglacial lakes and streams from WorldView2 (WV2 satellite images. Simultaneous {in situ} observations of depth and reflectance from two streams and a lake with measured depths up to 10.45 m were used to test a spectrally-based depth retrieval algorithm. We performed Optimal Band Ratio Analysis (OBRA of continuous field spectra and spectra convolved to the bands of the WV2, Landsat, MODIS, and ASTER sensors. The field spectra yielded a strong relationship with depth (R2 = 0.94, and OBRA R2 values were nearly as high (0.87–0.92 for convolved spectra, suggesting that these sensors' broader bands would be sufficient for depth retrieval. Our field measurements thus indicated that remote sensing of supraglacial bathymetry is not only feasible but potentially highly accurate. OBRA of spectra from 2 m-pixel WV2 images acquired within 3–72 h of our field observations produced an optimal R2 value of 0.92 and unbiased, precise depth estimates, with mean and root-mean square errors < 1% and 10–25% of the mean depth. Bathymetric maps produced by applying OBRA relations revealed subtle features of lake and channel morphology. In addition to providing refined storage volume estimates for lakes of various sizes, this approach can help provide estimates of the transient flux of meltwater through streams.

  19. Objective classification of oceanic ridge-crest terrains using two-dimensional spectral models of bathymetry: Application to the Juan de Fuca Ridge

    Science.gov (United States)

    Fox, Christopher G.

    1996-12-01

    An important application of detailed bathymetric mapping is the interpretation of geological processes based on the nature of the fine-scale morphology of the seafloor. This interpretation is usually accomplished through qualitative analysis of contour maps. In this paper, an objective classification technique, based on a two-dimensional spectral model of bathymetry developed by Fox and Hayes (1985) is applied to detailed Sea Beam data from the Juan de Fuca Ridge. Parameters of the model can be directly related to seafloor properties corresponding to 1) isotropic (non-directionally dependent) roughness; 2) anisotropic (directionally dependent) roughness; 3) orientation of the anisotropic component; and 4) spectral rool-off ( ˜ fractal dimension), by fitting the model surface to two-dimensional amplitude spectra of bathymetry determined on a regular grid over the study area. A test area was selected which encompasses the southern volcanic rift zone of Axial Volcano and the northern terminus of the Vance Segment. Parameters of the model clearly define the contrast between the constructional volcanic terrain (rough, isotropic, with high fractal dimension) and the tectonic extensional terrain (smoother, anisotropic, with low fractal dimension). An agglomerative, hierarchical cluster analysis is applied to the data, independent of spatial information, to delineate groups of spectra with similar characteristics. Distinct, mappable regions, corresponding to volcanic and tectonic provinces, are objectively determined. Also, coherent sub-regions of consistent spectral properties occur within the larger volcanic/tectonic divisions. The classification is extended to the Juan de Fuca Ridge system from 44°30' N to 47°20' N through combining these results with an a priori technique (K-means clustering). Broad-scale physiographic regions of the Juan de Fuca Ridge are delineated by the technique, which may aid geologists in the interpretation of crustal accretion processes at

  20. NOS ESRI Grid Unified 10m Multibeam Bathymetry La Parguera, Puerto Rico, St Croix, St. John and St. Thomas, 2004-2006: Projects NF-04-06, NF-05-05 and NF-06-03, UTM 20N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a unified ESRI Grid with 10 meter cell size representing the bathymetry of selected portions of seafloor around La Parguera, P.R. and St....

  1. High resolution seismic data coupled to Multibeam bathymetry of Stromboli island collected in the frame of the Stromboli geophysical experiment: implications with the marine geophysics and volcanology of the Aeolian Arc volcanic complex (Sicily, Southern Tyrrhenian sea, Italy).

    Science.gov (United States)

    Aiello, Gemma; Di Fiore, Vincenzo; Marsella, Ennio; Passaro, Salvatore

    2014-01-01

    New high resolution seismic data (Subbottom Chirp) coupled to high resolution Multibeam bathymetry collected in the frame of the Stromboli geophysical experiment aimed at recording active seismic data and tomography of the Stromboli Island are here presented. The Stromboli geophysical experiment has been already carried out based on onshore and offshore data acquisition in order to investigate the deep structure and the location of the magma chambers of the Stromboli volcano. A new detailed swath bathymetry of Stromboli Island is here shown and discussed to reconstruct an up-to-date morpho-bathymetry and marine geology of the area compared to the volcanologic setting of the Aeolian Arc volcanic complex. Due to its high resolution the new Digital Terrain Model of the Stromboli Island gives interesting information about the submerged structure of the volcano, particularly about the volcano-tectonic and gravitational processes involving the submarine flanks of the edifice. Several seismic units have been identified based on the geologic interpretation of Subbottom Chirp profiles recorded around the volcanic edifice and interpreted as volcanic acoustic basement pertaining to the volcano and overlying slide chaotic bodies emplaced during its complex volcano-tectonic evolution. They are related to the eruptive activity of Stromboli, mainly poliphasic and to regional geological processes involving the intriguing geology of the Aeolian Arc, a volcanic area still in activity and needing improved research interest. PMID:24860717

  2. Bathymetry, morphology, and lakebed geologic characteristics of potential Kokanee salmon spawning habitat in Lake Pend Oreille, Bayview and Lakeview quadrangles, Idaho

    Science.gov (United States)

    Barton, Gary J.; Dux, Andrew M.

    2013-01-01

    Kokanee salmon (Oncorhynchus nerka) are a keystone species in Lake Pend Oreille in northern Idaho, historically supporting a high-yield recreational fishery and serving as the primary prey for the threatened native bull trout (Salvelinus confluentus) and the Gerrard-strain rainbow trout (Oncorhynchus mykiss). After 1965, the kokanee population rapidly declined and has remained at a low level of abundance. Lake Pend Oreille is one of the deepest lakes in the United States, the largest lake in Idaho, and home to the U.S. Navy Acoustic Research Detachment Base. The U.S. Geological Survey and Idaho Department of Fish and Game are mapping the bathymetry, morphology, and the lakebed geologic units and embeddedness of potential kokanee salmon spawning habitat in Lake Pend Oreille. Relations between lake morphology, lakebed geologic units, and substrate embeddedness are characterized for the shore zone, rise zone, and open water in bays and the main stem of the lake. This detailed knowledge of physical habitat along the shoreline of Lake Pend Oreille is necessary to better evaluate and develop kokanee recovery actions.

  3. Bank Erosion, Mass Wasting, Water Clarity, Bathymetry and a Sediment Budget Along the Dam-Regulated Lower Roanoke River, North Carolina

    Science.gov (United States)

    Schenk, Edward R.; Hupp, Cliff R.; Richter, Jean M.; Kroes, Daniel E.

    2010-01-01

    Dam construction and its impact on downstream fluvial processes may substantially alter ambient bank stability, floodplain inundation patterns, and channel morphology. Most of the world's largest rivers have been dammed, which has prompted management efforts to mitigate dam effects. Three high dams (completed between 1953 and 1963) occur along the Piedmont portion of the Roanoke River, North Carolina; just downstream, the lower part of the river flows across largely unconsolidated Coastal Plain deposits. To document bank erosion rates along the lower Roanoke River, more than 700 bank erosion pins were installed along 124 bank transects. Additionally, discrete measurements of channel bathymetry, water clarity, and presence or absence of mass wasting were documented along the entire 153-kilometer-long study reach. Amounts of bank erosion in combination with prior estimates of floodplain deposition were used to develop a bank erosion and floodplain deposition sediment budget for the lower river. Present bank erosion rates are relatively high [mean 42 milimeters per year (mm/yr)] and are greatest along the middle reaches (mean 60 mm/yr) and on lower parts of the bank on all reaches. Erosion rates were likely higher along upstream reaches than present erosion rates such that erosion rate maxima have migrated downstream. Mass wasting and water clarity also peak along the middle reaches.

  4. Mapping lava morphology of the Galapagos Spreading Center at 92°W: fuzzy logic provides a classification of high-resolution bathymetry and backscatter

    Science.gov (United States)

    McClinton, J. T.; White, S. M.; Sinton, J. M.; Rubin, K. H.; Bowles, J. A.

    2010-12-01

    Differences in axial lava morphology along the Galapagos Spreading Center (GSC) can indicate variations in magma supply and emplacement dynamics due to the influence of the adjacent Galapagos hot spot. Unfortunately, the ability to discriminate fine-scale lava morphology has historically been limited to observations of the small coverage areas of towed camera surveys and submersible operations. This research presents a neuro-fuzzy approach to automated seafloor classification using spatially coincident, high-resolution bathymetry and backscatter data. The classification method implements a Sugeno-type fuzzy inference system trained by a multi-layered adaptive neural network and is capable of rapidly classifying seafloor morphology based on attributes of surface geometry and texture. The system has been applied to the 92°W segment of the western GSC in order to quantify coverage areas and distributions of pillow, lobate, and sheet lava morphology. An accuracy assessment has been performed on the classification results. The resulting classified maps provide a high-resolution view of GSC axial morphology and indicate the study area terrain is approximately 40% pillow flows, 40% lobate and sheet flows, and 10% fissured or faulted area, with about 10% of the study area unclassifiable. Fine-scale features such as eruptive fissures, tumuli, and individual pillowed lava flow fronts are also visible. Although this system has been applied to lava morphology, its design and implementation are applicable to other undersea mapping applications.

  5. Assessment of Spatial Interpolation Methods to Map the Bathymetry of an Amazonian Hydroelectric Reservoir to Aid in Decision Making for Water Management

    Directory of Open Access Journals (Sweden)

    Marcelo Curtarelli

    2015-02-01

    Full Text Available The generation of reliable information for improving the understanding of hydroelectric reservoir dynamics is fundamental for guiding decision-makers to implement best management practices. In this way, we assessed the performance of different interpolation algorithms to map the bathymetry of the Tucuruí hydroelectric reservoir, located in the Brazilian Amazon, as an aid to manage and operate Amazonian reservoirs. We evaluated three different deterministic and one geostatistical algorithms. The performance of the algorithms was assessed through cross-validation and Monte Carlo Simulation. Finally, operational information was derived from the bathymetric grid with the best performance. The results showed that all interpolation methods were able to map important bathymetric features. The best performance was obtained with the geostatistical method (RMSE = 0.92 m. The information derived from the bathymetric map (e.g., the level-area and level-volume diagram and the three-dimensional grid will allow for optimization of operational monitoring of the Tucuruí hydroelectric reservoir as well as the development of three-dimensional modeling studies.

  6. A Cartesian method for fitting the bathymetry and tracking the dynamic position of the shoreline in a three-dimensional, hydrodynamic model

    International Nuclear Information System (INIS)

    This paper presents a Cartesian method for the simultaneous fitting of the bathymetry and shorelines in a three-dimensional, hydrodynamic model for free-surface flows. The model, named LESS3D (Lake and Estuarine Simulation System in Three Dimensions), solves flux-based finite difference equations in the Cartesian-coordinate system (x,y,z). It uses a bilinear bottom to fit the bottom topography and keeps track the dynamic position of the shoreline. The resulting computational cells are hybrid: interior cells are regular Cartesian grid cells with six rectangular faces, and boundary/bottom cells (at least one face is the water-solid interface) are unstructured cells whose faces are generally not rectangular. With the bilinear interpolation, the shape of a boundary/bottom cell can be determined at each time step. This allows the Cartesian coordinate model to accurately track the dynamic position of the shorelines. The method was tested with a laboratory experiment of a Tsunami runup case on a circular island. It was also tested for an estuary in Florida, USA. Both model applications demonstrated that the Cartesian method is quite robust. Because the present method does not require any coordinate transformation, it can be an attractive alternative to curvilinear grid model

  7. Impact of recent Global Digital Bathymetry and Topography Models on geoid modelling: Results from two case studies in Balearic and Aegean Seas

    Science.gov (United States)

    Delikaraoglou, D.; Mintourakis, I.; Kallianou, F.

    2009-04-01

    With the realization of the Shuttle Radar Topographic Mission (SRTM) and the free distribution of its global elevation dataset with 3 arcsec (90 m) resolution and less than 16 m vertical accuracy, together with the availability of the higher resolution (30 m) and accuracy (10 m) Digital Terrain Models (DTM) from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), these two valuable sources of uniform DEM data represent a revolution in the world of terrain modelling. DEMs are an important source of data for the generation of high resolution geoids since they provide the high-frequency content of the gravity field spectrum and are suitable for the computation of terrain effects to gravity and indirect effects to the geoid, thus allowing the combination of global geopotential models, local gravity anomalies and information about the earth's topography (represented by a given DEM). However, although such models are available for land, there are no readily accessible Digital Bathymetry Models (DBMs) of equivalent quality for the coastal and oceanic regions. Most of the global DBM's (e.g. ETOPO1, SRTM30, and GEBCO global bathymetric grid) are compilations of heterogeneous data with medium resolution and accuracy. This prevents to exploit the potential of the recent high resolution (1 arcmin) marine free-air gravity anomalies datasets derived from satellite altimetry (such as the DNSC08, and the Sandwell & Smith v18.1 (S&Sv18.1) global solutions) in conjunction with such global DBM's. Fortunately, for some regions, recently have become available DBM's of much better accuracy and resolution, such as the DBM of 1 km resolution for many regions of the Mediterranean Sea which is distributed by IFREMER, the French Research Institute for Exploitation of the Sea. The scope of this study is to use this latest regional DBM in combination with the newly available DNSC08 and SSV18.1 global marine free-air gravity anomalies datasets for marine and near shore

  8. Evidences of intraplate deformation in the West Madeira Abyssal Plain (eastern North Atlantic) from seismic reflection and multibeam swath bathymetry data

    Science.gov (United States)

    Roque, C.; Simões, M.; Lourenço, N.; Pinto de Abreu, M.

    2009-04-01

    The West Madeira Abyssal Plain is located in the eastern North Atlantic off Madeira Islands, forming part of the Canary Basin and reaching a mean water depth of 5300 m. This region is also located within Africa plate at about 500 km southwards from the Açores-Gibraltar plate boundary, and for that reason lacks seismic activity. Although this region being located in an intraplate setting, the presence of faulted sediments was reported in several works published during the eighties of last century following a study conducted in late 1970s to evaluate the feasibility of disposal of high-level radioactive wastes in the ocean. According these works, the Madeira Abyssal Plain sediments are cut by many normal growth faults and this deformation is a result of compaction and dewatering of the sediments. Evidences of tectonic deformation of oceanic sediments in intraplate settings are uncommon, but folded sediments and reverse faults extending into the basement, were recognized in the equatorial Indian Ocean and in the West African continental margin. Recently, during 2006 multi-channel seismic reflection and multibeam swath bathymetry surveys were carried out in the West Madeira Abyssal Plain by EMEPC in order to prepare the Portuguese proposal for the extension of the continental shelf. The seismic lines were acquired onboard R/V Akademik Shatskiy using a source of 5720 cu in bolt gun array, cable length of 7950 m and shot interval of 50.00 m. The multibeam swath bathymetry was acquired onboard NRP Gago Coutinho, and allowed a high resolution mapping of the main geomorphological features. The multichannel seismic lines, oriented WNW-ESE, image the Madeira island lower slope located at about 4000 m water depth and the almost flat abyssal plain at about 5300 m water depth. These seismic lines show a thick sedimentary succession that reaches a maximum thickness of about 1.5 sec twt in the deepest parts of the West Madeira Abyssal Plain, overlying an irregular diffractive

  9. From oblique subduction to intra-continental transpression: Structures of the southern Kermadec-Hikurangi margin from multibeam bathymetry, side-scan sonar and seismic reflection

    Science.gov (United States)

    Collot, Jean-Yves; Delteil, Jean; Lewis, Keith B.; Davy, Bryan; Lamarche, Geoffroy; Audru, Jean-Christophe; Barnes, Phil; Chanier, Franck; Chaumillon, Eric; Lallemand, Serge; de Lepinay, Bernard Mercier; Orpin, Alan; Pelletier, Bernard; Sosson, Marc; Toussaint, Bertrand; Uruski, Chris

    1996-06-01

    The southern Kermadec-Hikurangi convergent margin, east of New Zealand, accommodates the oblique subduction of the oceanic Hikurangi Plateau at rates of 4 5 cm/yr. Swath bathymetry and sidescan data, together with seismic reflection and geopotential data obtained during the GEODYNZ-SUD cruise, showed major changes in tectonic style along the margin. The changes reflect the size and abundance of seamounts on the subducting plateau, the presence and thickness of trench-fill turbidites, and the change to increasing obliquity and intracontinental transpression towards the south. In this paper, we provide evidence that faulting with a significant strike-slip component is widespread along the entire 1000 km margin. Subduction of the northeastern scrap of the Hikurangi Plateau is marked by an offset in the Kermadec Trench and adjacent margin, and by a major NW-trending tear fault in the scarp. To the south, the southern Kermadec Trench is devoid of turbidite fill and the adjacent margin is characterized by an up to 1200 m high scarp that locally separates apparent clockwise rotated blocks on the upper slope from strike-slip faults and mass wasting on the lower slope. The northern Hikurangi Trough has at least 1 km of trench-fill but its adjacent margin is characterized by tectonic erosion. The toe of the margin is indented by 10 25 km for more than 200 km, and this is inferred to be the result of repeated impacts of the large seamounts that are abundant on the northern Hikurangi Plateau. The two most recent impacts have left major indentations in the margin. The central Hikurangi margin is characterized by development of a wide accretionary wedge on the lower slope, and by transpression of presubduction passive margin sediments on the upper slope. Shortening across the wedge together with a component of strike-slip motion on the upper slope supports an interpretation of some strain partitioning. The southern Hikurangi margin is a narrow, mainly compressive belt along a

  10. Multiscale Terrain Analysis of Multibeam Bathymetry Data for Lake Trout Spawning Habitat Mapping in the Drummond Island Refuge, northern Lake Huron

    Science.gov (United States)

    Wattrus, N. J.; Binder, T.

    2012-12-01

    Until the 1950s, lake trout supported a valuable commercial fishery in the Great Lakes. The introduction of sea lamprey into the Great Lakes and overfishing resulted in the loss of most populations. Despite consistent stocking efforts since the 1960s, restoration of these populations has been slow. The reasons are numerous, but may be related to differences in the spawning behavior between hatchery and wild trout. A four-year study initiated in 2010, utilizes acoustic telemetry to characterize and compare the spawning behaviors of hatchery and wild lake trout in the Drummond Island Refuge in northern Lake Huron. In this project, the movement of tagged fish are monitored by an array of over 125 lake floor hydrophones during the fall spawning period. Fish behavior is overlaid over detailed bathymetric and substrate data and compared with environmental variables (e.g. water temperature, wind speed and direction, and wave height and direction) to develop a conceptual behavioral model. Sites suspected of being spawning sites based upon telemetry data are verified through the use of divers and trapping eggs and fry. Prior to this study, the factors that influenced how the spawning fish utilize the lake floor shoals have been poorly understood. Among the factors thought to impact spawning success were: bathymetry and substrate composition. Diver and telemetry data suggest that the fish(both hatchery raised and wild) are particularly attracted to rocky substrates and that fragment size is important. High resolution multibeam bathymetric surveys conducted in 2010 and 2011 have been used to characterize the shape and composition of the lake floor in the study area. Classification of the substrate is a labor intensive process requiring divers, drop cameras and sediment sampling. To improve this, the traditional approach has been to use supervised and unsupervised classification techniques that are based upon measured acoustic backscatter from an echosounder or sidescan sonar

  11. Hawaii ESI: BATHY (Bathymetry Lines)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains the vector arcs representing 10- and 100-fathom bathymetric contours used in the creation of the Environmental Sensitivity Index (ESI) for...

  12. k294hw.m77t and k294hw.h77t: MGD77T data and header files for single-beam bathymetry data for field activity K-2-94-HW in Mamala Bay, Offshore Honolulu, Oahu, Hawaii from 05/16/1994 to 05/23/1994

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Single-beam bathymetry data along with DGPS navigation data was collected as part of the U.S. Geological Survey cruise K-2-94-HW. The cruise was conducted in Mamala...

  13. a100sc.m77t and a100sc.h77t: MGD77T data and header files for single-beam bathymetry data for field activity A-1-00-SC in Southern California from Port Hueneme to Mexican Border from 06/05/2000 to 06/29/2000

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Single-beam bathymetry data along with DGPS navigation data was collected as part of the U.S. Geological Survey cruise A-1-00-SC. The cruise was conducted from Port...

  14. p194ar.m77t and p194ar.h77t: MGD77T data and header files for single-beam bathymetry data for field activity P-1-94-AR in Arctic Ocean from 07/25/1994 to 08/30/1994

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Single-beam bathymetry data along with SINS navigation data was collected as part of the U.S. Geological Survey cruise P-1-94-AR. The cruise was conducted in...

  15. j295mb.m77t and j295mb.h77t: MGD77T data and header files for single-beam bathymetry data for field activity J-2-95-MB in Monterey Bay from 03/06/1995 to 04/15/1995

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Single-beam bathymetry data along with DGPS navigation data was collected as part of the U.S. Geological Survey cruise J-2-95-MB. The cruise was conducted from in...

  16. k194hw.m77t and k194hw.h77t: MGD77T data and header files for single-beam bathymetry data for field activity K-1-94-HW in Mamala Bay, Offshore Honolulu, Oahu, Hawaii from 05/10/1994 to 05/16/1994

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Single-beam bathymetry data along with DGPS navigation data was collected as part of the U.S. Geological Survey cruise K-1-94-HW. The cruise was conducted in Oahu,...

  17. j399sf.m77t and j399sf.h77t: MGD77T data and header files for single-beam bathymetry data for field activity J-3-99-SF in Grizzly Bay, San Francisco Bay from 11/08/1999 to 11/18/1999

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Single-beam bathymetry data along with DGPS navigation data was collected as part of the U.S. Geological Survey cruise J-3-99-SF. The cruise was conducted in...

  18. p192sc.m77t and p192sc.h77t: MGD77T data and header files for single-beam bathymetry data for field activity P-1-92-SC in Santa Monica Basin, Southern California from 01/30/1992 to 02/04/1992

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Single-beam bathymetry data along with Loran-C and GPS navigation data was collected as part of the U.S. Geological Survey cruise P-1-92-SC. The cruise was...

  19. a194yb.m77t and a194yb.h77t: MGD77T data and header files for single-beam bathymetry for field activity A-1-94-YB in Yakutat Bay and Yakutat Sea Valley, Alaska from 08/05/1994 to 08/08/1994

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Single-beam bathymetry data along with GPS navigation data was collected as part of the U.S. Geological Survey cruise A-1-94-YB. The cruise was conducted in Yakutat...

  20. k185ar.m77t and k185ar.h77t: MGD77T data and header files for single-beam bathymetry data for field activity K-1-85-AR in the Arctic from 09/04/1985 to 09/04/1985

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Single-beam bathymetry data along with SINS navigation data was collected as part of the U.S. Geological Survey cruise K-1-85-AR. The cruise was conducted in the...

  1. o399mb.m77t and o399mb.h77t: MGD77T data and header files for single-beam bathymetry data for field activity O-3-99-MB in Point Sur, Monterey Canyon, California from 06/25/1999 to 06/29/1999

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Single-beam bathymetry data along with GPS navigation data was collected as part of the U.S. Geological Survey cruise O-3-99-MB. The cruise was conducted in Point...

  2. k293hw.m77t and k293hw.h77t: MGD77T data and header files for single-beam bathymetry data for field activity K-2-93-HW in Kauai, Hawaii from 02/27/1993 to 03/02/1993

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Single-beam bathymetry data along with GPS navigation data was collected as part of the U.S. Geological Survey cruise K-2-93-HW. The cruise was conducted in Kauai,...

  3. j695mb.m77t and j695mb.h77t: MGD77T data and header files for single-beam bathymetry data for field activity J-6-95-MB in Monterey Bay from 10/16/1995 to 11/30/1995

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Single-beam bathymetry data along with DGPS navigation data was collected as part of the U.S. Geological Survey cruise J-6-95-MB. The cruise was conducted from in...

  4. j281nc.m77t and j281nc.h77t: MGD77T data and header files for single-beam bathymetry data for field activity J-2-81-NC in Carmel Bay, Monterey Bay, Northern California from 06/23/1981 to 06/30/1981

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Single-beam bathymetry data along with miniranger navigation data was collected as part of the U.S. Geological Survey cruise J-2-81-NC. The cruise was conducted in...

  5. k193hw.m77t and k193hw.h77t: MGD77T data and header files for single-beam bathymetry data for field activity K-1-93-HW in Oahu, Hawaii from 02/20/1993 to 02/26/1993

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Single-beam bathymetry data along with DGPS navigation data was collected as part of the U.S. Geological Survey cruise K-1-93-HW. The cruise was conducted in Oahu,...

  6. c179nc.m77t and c179nc.h77t: MGD77T data and header file for single-beam bathymetry data for field activity C-1-79-NC in Northern California from 05/01/1979 to 05/02/1979

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Single-beam bathymetry data along with miniranger navigation data was collected as part of the U.S. Geological Survey cruise C-1-79-NC. The cruise was conducted in...

  7. j100sf.m77t and j100sf.h77t: MGD77T data and header files for single-beam bathymetry data for field activity J-1-00-SF in Grizzly Bay and Suisun Bay from 03/13/2000 to 03/14/2000

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Single-beam bathymetry data along with GPS navigation data was collected as part of the U.S. Geological Survey cruise J-1-00-SF. The cruise was conducted in Grizzly...

  8. f392sc.m77t and f392sc.h77t: MGD77T data and header files for single-beam bathymetry data for field activity F-3-92-SC in in Southern California from 04/22/1992 to 05/15/1992

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Single-beam bathymetry data along with GPS navigation data was collected as part of the U.S. Geological Survey cruise F-3-92-SC. The cruise was conducted in...

  9. l486nc.m77t and l486nc.h77t: MGD77T data and header files for single-beam bathymetry data for field activity L-4-86-NC in Northern California from 08/21/1986 to 09/05/1986

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Single-beam bathymetry data along with Loran-C RHO-RHO and GPS navigation data was collected as part of the U.S. Geological Survey cruise L-4-86-NC. The cruise was...

  10. s378sc.m77t and s378sc.h77t: MGD77T data and header files for single-beam bathymetry data for field activity S-3-78-SC in Southern California from 05/24/1978 to 06/01/1978

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Single-beam bathymetry data along with radar and Loran-C navigation data was collected as part of the U.S. Geological Survey cruise G-1-77-EG. The cruise was...

  11. k190gb.m77t and k190gb.h77t: MGD77T data and header files for single-beam bathymetry data for field activity K-1-90-GB in Glacier Bay, Alaska from 06/14/1990 to 06/24/1990

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Single-beam bathymetry data along with SINS navigation data was collected as part of the U.S. Geological Survey cruise K-1-90-GB. The cruise was conducted in...

  12. f389sc.m77t and f389sc.h77t: MGD77T data and header files for single-beam bathymetry data for field activity F-3-89-SC in Monterey Bay, California from 02/02/1989 to 02/15/1989

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Single-beam bathymetry data along with Loran-C RHO-RHO and GPS navigation data was collected as part of the U.S. Geological Survey cruise F-3-89-SC. The cruise was...

  13. g177eg.m77t and g177eg.h77t: MGD77T data and header files for single-beam bathymetry data for field activity G-1-77-EG in Yakutat Bay, Eastern Gulf of Alaska from 04/27/1977 to 05/22/1977

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Single-beam bathymetry data along with dead reckoning navigation data was collected as part of the U.S. Geological Survey cruise G-1-77-EG. The cruise was conducted...

  14. d179eg.m77t and d179eg.h77t: MGD77T data and header files for single-beam bathymetry data for field activity D-1-79-EG in the Eastern Gulf of Alaska from 05/24/1979 to 06/01/1979

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Single-beam bathymetry data along with SINS navigation data was collected as part of the U.S. Geological Survey cruise D-1-79-EG. The cruise was conducted in the...

  15. a193yb.m77t and a193yb.h77t: MGD77T data and header files for single-beam bathymetry data for field activity A-1-93-YB in Yakukat Bay, Alaska from 08/21/1993 to 08/27/1993

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Single-beam bathymetry data along with GPS navigation data was collected as part of the U.S. Geological Survey cruise A-1-93-YB. The cruise was conducted in Yakukat...

  16. f690sc.m77t and f690sc.h77t: MGD77T data and header files for single-beam bathymetry data for field activity F-6-90-SC in Southern California, Monterey Canyon from 06/19/1990 to 07/12/1990

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Single-beam bathymetry data along with Loran-C RHO-RHO and GPS navigation data was collected as part of the U.S. Geological Survey cruise F-6-90-SC. The cruise was...

  17. s196wo.m77t and s196wo.h77t: MGD77T data and header file for single-beam bathymetry for field activity S-1-96-WO in Cascadia, Washington from 04/14/1996 to 06/06/1996

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Single-beam bathymetry data along with GPS navigation data was collected as part of the U.S. Geological Survey cruise S-1-96-WO. The cruise was conducted in...

  18. a194gb.m77t and a194gb.h77t: MGD77T data and header files for single-beam bathymetry data for field activity A-1-94-GB in Prince William Sound, Yakutat Bay, Glacier Bay and Icy Strait, Alaska from 08/08/1994 to 08/17/1994

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Single-beam bathymetry data along with GPS navigation data was collected as part of the U.S. Geological Survey cruise A-1-94-GB. The cruise was conducted in Prince...

  19. o199sc.m77t and o199sc.h77t: MGD77T data and header file for single-beam bathymetry for field activity O-1-99-SC in Southern California from 06/05/1999 to 06/17/1999

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Single-beam bathymetry data along with DGPS navigation data was collected as part of the U.S. Geological Survey cruise O-1-99-SC. The cruise was conducted in...

  20. f991cp.m77t and f991cp.h77t: MGD77T data and header files for single-beam bathymetry data for field activity F-9-91-CP in Central Pacific from 09/24/1991 to 09/25/1991

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Single-beam bathymetry data along with GPS navigation data was collected as part of the U.S. Geological Survey cruise F-9-91-CP. The cruise was conducted in the...

  1. m197wo.m77t and m197wo.h77t: MGD77T data and header files for single-beam bathymetry data for field activity M-1-97-WO in Southwest Washington Inner Shelf from 07/07/1997 to 07/15/1997

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Single-beam bathymetry data along with DGPS and GPS navigation data were collected as part of the U.S. Geological Survey cruise M-1-97-WO. The cruise was conducted...

  2. k191yb.m77t and k191yb.h77t: MGD77T data and header files for single-beam bathymetry data for field activity K-1-91-YB in Yakutat Bay, Alaska from 06/22/1991 to 06/28/1991

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Single-beam bathymetry data along with radar and GPS navigation data was collected as part of the U.S. Geological Survey cruise K-1-91-YB. The cruise was conducted...

  3. f790nc.m77t and f790nc.h77t: MGD77T data and header files for single-beam bathymetry data for field activity F-7-90-NC in the Gulf of Farallones, Northern California from 07/19/1990 to 08/03/1990

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Single-beam bathymetry data along with Loran-C RHO-RHO and GPS navigation data was collected as part of the U.S. Geological Survey cruise F-7-90-NC. The cruise was...

  4. k195hw.m77t and k195hw.h77t: MGD77T data and header files for single-beam bathymetry data for field activity K-1-95-HW in in Hawaii from 06/14/1995 to 06/18/1995

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Single-beam bathymetry data along with DGPS navigation data was collected as part of the U.S. Geological Survey cruise K-1-95-HW. The cruise was conducted in Oahu,...

  5. o100sc.m77t and o100sc.h77t: MGD77T data and header file for single-beam bathymetry for field activity O-1-00-SC in San Pedro Bay, Santa Monica, California from 04/09/2000 to 04/14/2000

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Single-beam bathymetry data along with GPS navigation data was collected as part of the U.S. Geological Survey cruise O-1-00-SC. The cruise was conducted in San...

  6. g295sf.m77t and g295sf.h77t: MGD77T data and header files for single-beam bathymetry data for field activity G-2-95-SF in San Francisco Bay, Golden Gate from 05/30/1995 to 06/10/1995

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Single-beam bathymetry data along with GPS navigation data was collected as part of the U.S. Geological Survey cruise G-2-95-SF. The cruise was conducted in San...

  7. f786hw.m77t and f786hw.h77t: MGD77T data and header files for single-beam bathymetry data for field activity F-7-86-HW in in Hawaii from 11/28/1986 to 12/20/1986

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Single-beam bathymetry data along with GPS navigation data was collected as part of the U.S. Geological Survey cruise F-7-86-HW. The cruise was conducted in Hawaii...

  8. f890nc.m77t and f890nc.h77t: MGD77T data and header files for single-beam bathymetry data for field activity F-8-90-NC in Gulf of Farallones, Northern California from 08/05/1990 to 08/17/1990

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Single-beam bathymetry data along with Loran-C RHO-RHO and GPS navigation data was collected as part of the U.S. Geological Survey cruise F-8-90-NC. The cruise was...

  9. j483hb.m77t and j483hb.h77t: MGD77T data and header files for single-beam bathymetry data for field activity J-4-83-HB in Humboldt Bay, California from 08/16/1983 to 08/19/1983

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Single-beam bathymetry data along with miniranger navigation data was collected as part of the U.S. Geological Survey cruise J-4-83-HB. The cruise was conducted in...

  10. j299sf.m77t and j299sf.h77t: MGD77T data and header files for single-beam bathymetry data for field activity J-2-99-SF in Grizzly Bay, San Francisco Bay from 02/24/1999 to 03/08/1999

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Single-beam bathymetry data along with DGPS navigation data was collected as part of the U.S. Geological Survey cruise J-2-99-SF. The cruise was conducted in...

  11. p192mb.m77t and p192mb.h77t: MGD77T data and header files for single-beam bathymetry data for field activity P-1-92-MB in Monterey Bay from 03/20/1992 to 03/22/1992

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Single-beam bathymetry data along with SINS navigation data was collected as part of the U.S. Geological Survey cruise P-1-92-MB. The cruise was conducted in...

  12. k291bg.m77t and k291bg.h77t: MGD77T data and header files for single-beam bathymetry data for field activity K-2-91-BG in Bering Glacier, Alaska from 07/02/1991 to 07/06/1991

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Single-beam bathymetry data along with radar and GPS navigation data was collected as part of the U.S. Geological Survey cruise K-2-91-BG. The cruise was conducted...

  13. a298sc.m77t and a298sc.h77t: MGD77T data and header file for single-beam bathymetry for field activity A-2-98-SC in Santa Monica Bay from 08/23/1998 to 08/31/1998

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Single-beam bathymetry data along with GPS navigation data was collected as part of the U.S. Geological Survey cruise A-2-98-SC. The cruise was conducted in Santa...

  14. t198gb.m77t and t198gb.h77t: MGD77T data and header files for single-beam bathymetry data for field activity T-1-98-GB in Glacier Bay, Alaska from 08/21/1998 to 09/01/1998

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Single-beam bathymetry data along with DGPS navigation data was collected as part of the U.S. Geological Survey cruise T-1-98-GB. The cruise was conducted in...

  15. Archive of single-beam bathymetry data collected during USGS cruise 07CCT01 nearshore of Fort Massachusetts and within Camille Cut, West and East Ship Islands, Gulf Islands National Seashore, Mississippi, July 2007

    Science.gov (United States)

    DeWitt, Nancy T.; Flocks, James G.; Reynolds, B.J.; Hansen, Mark

    2012-01-01

    The Gulf Islands National Seashore (GUIS) is composed of a series of barrier islands along the Mississippi - Alabama coastline. Historically these islands have undergone long-term shoreline change. The devastation of Hurricane Katrina in 2005 prompted questions about the stability of the barrier islands and their potential response to future storm impacts. Additionally, there was concern from the National Park Service (NPS) about the preservation of the historical Fort Massachusetts, located on West Ship Island. During the early 1900s, Ship Island was an individual island. In 1969 Hurricane Camille breached Ship Island, widening the cut and splitting it into what is now known as West Ship Island and East Ship Island. In July of 2007, the U.S. Geological Survey (USGS) was able to provide the NPS with a small bathymetric survey of Camille Cut using high-resolution single-beam bathymetry. This provided GUIS with a post-Katrina assessment of the bathymetry in Camille Cut and along the northern shoreline directly in front of Fort Massachusetts. Ultimately, this survey became an initial bathymetry dataset toward a larger USGS effort included in the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazard Susceptibility Project (http://ngom.usgs.gov/gomsc/mscip/). This report serves as an archive of the processed single-beam bathymetry. Data products herein include gridded and interpolated digital depth surfaces and x,y,z data products. Additional files include trackline maps, navigation files, geographic information system (GIS) files, Field Activity Collection System (FACS) logs, and formal Federal Geographic Data Committee (FGDC) metadata. Scanned images of the handwritten FACS logs and digital FACS logs are also provided as PDF files. Refer to the Acronyms page for description of acronyms and abbreviations used in this report or hold the cursor over an acronym for a pop-up explanation. The USGS St. Petersburg Coastal and Marine Science Center assigns a unique

  16. Mapping the Under Water Habitat Related to their Bathymetry using Worldview-2 (wv-2 Coastal, Yellow, Rededge, Nir-2 Satellite Imagery in Gulf of Mannar to Conserve the Marine Resource

    Directory of Open Access Journals (Sweden)

    R. Uma Maheswari

    2013-02-01

    Full Text Available Gulf of Mannar Marine Biosphere Reserve is the first of its kind in India and also in South East Asia. It extends from Rameswaram to Tuticorin in the South. The Gulf of Mannar encompasses 21 small islands located from 0.5 to 4.0 km2 in area and except a few others are uninhabited. The area is endowed with a combination of ecosystem including mangroves, seagrass, seaweeds and coral reef. The Gulf of Mannar with 3600 species of plants and animals is one of the biologically rich coastal regions in India. Proper planning and effective management of ecosystem can be achieved by collecting data on these ecosystems by the application of Remote Sensing techniques. The combined use of Remote Sensing and Geographical Information System provides a powerful multidisciplinary tool for evaluation of natural resources, both renewable and non-renewable with speed, accuracy and economy. During the present study an attempt is made to explore the advantage of newly added bands [coastal, yellow, red edge and NIR-2] in WV-2 satellite data in mapping the various ocean related parameters such as coral reef, seagrass related to their Bathymetry.

  17. Detection of high-silica lava flows and lava morphology at the Alarcon Rise, Gulf of California, Mexico using automated classification of the morphological-compositional relationship in AUV multibeam bathymetry and sonar backscatter

    Science.gov (United States)

    Maschmeyer, C.; White, S. M.; Dreyer, B. M.; Clague, D. A.

    2015-12-01

    An automated compositional classification by adaptive neuro-fuzzy inference system (ANFIS) was developed to study volcanic processes that create high-silica lava at oceanic ridges. The objective of this research is to determine the existence of a relationship between lava morphology and composition. Researchers from the Monterey Bay Aquarium Research Institute (MBARI) recorded morphologic observations and collected samples for geochemical analysis during ROV dives at the Alarcon Rise in 2012 and 2015. The Alarcon Rise is a unique spreading ridge environment where composition ranges from basaltic to rhyolitic, making it an ideal location to examine the compositional-morphologic relationship of lava flows. Preliminary interpretation of field data indicates that high-silica lavas are typically associated with 3-5 m, blocky pillows at the heavily faulted north end of the Alarcon. Visual analysis of multibeam bathymetry and side-scan sonar backscatter from MBARI AUV D. Allen B. and gridded at 1 m suggests that lava flow morphology (pillow, lobate, sheet) can be distinguished by seafloor roughness. Bathymetric products used by ANFIS to quantify the morphologic-compositional relationship were slope, aspect, and bathymetric position index (BPI, a measure of local height relative to the adjacent terrain). Sonar backscatter intensity is influenced by surface roughness and previously used to distinguish lava morphology. Gray-level co-occurrence matrices (GLCM) were applied to backscatter to create edge-detection filters that recognized faults and fissures. Input data are slope, aspect, bathymetric value, BPI at 100 m scale, BPI at 500 m scale, backscatter intensity, and the first principle component of backscatter GLCM. After lava morphology was classified on the Alarcon Rise map, another classification was completed to detect locations of high-silica lava. Application of an expert classifier like ANFIS to distinguish lava composition may become an important tool in oceanic

  18. Bathymetry (2011) for Coral Bay, St. John

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents a LiDAR (Light Detection & Ranging) 0.3x0.3 meter resolution depth surface for Coral Bay, St. John in the U.S. Virgin Islands (USVI). The...

  19. Bathymetry (2011) for Fish Bay, St. John

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents a LiDAR (Light Detection & Ranging) 0.3x0.3 meter resolution depth surface for Fish Bay, St. John in the U.S. Virgin Islands (USVI). The...

  20. Pulley Ridge Swath Bathymetry Grid - filtered

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Pulley Ridge is a series of drowned barrier islands that extends almost 200 km in 60-100 m water depths. This drowned ridge is located on the Florida Platform in...

  1. North American Atlas - Bathymetry - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A joint venture involving the National Atlas programs in Canada (Natural Resources Canada), Mexico (Instituto Nacional de Estadística Geografía e Informática), and...

  2. Archive of single beam and swath bathymetry data collected nearshore of the Gulf Islands National Seashore, Mississippi, from West Ship Island, Mississippi, to Dauphin Island, Alabama: Methods and data report for USGS Cruises 08CCT01 and 08CCT02, July 2008, and 09CCT03 and 09CCT04, June 2009

    Science.gov (United States)

    DeWitt, Nancy T.; Flocks, James G.; Pendleton, Elizabeth A.; Hansen, Mark E.; Reynolds, B.J.; Kelso, Kyle W.; Wiese, Dana S.; Worley, Charles R.

    2012-01-01

    During the summers of 2008 and 2009 the USGS conducted bathymetric surveys from West Ship Island, Miss., to Dauphin Island, Ala., as part of the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazard Susceptibility project. The survey area extended from the shoreline out to approximately 2 kilometers and included the adjacent passes (fig. 1). The bathymetry was primarily used to create a topo-bathymetric map and provide a base-level assessment of the seafloor following the 2005 hurricane season. Additionally, these data will be used in conjunction with other geophysical data (chirp and side scan sonar) to construct a comprehensive geological framework of the Mississippi Barrier Island Complex. The culmination of the geophysical surveys will provide baseline bathymetry necessary for scientists to define and interpret seafloor habitat for this area and for scientists to predict future geomorpholocial changes of the islands with respect to climate change, storm impact, and sea-level rise. Furthermore, these data provide information for feasibility of barrier island restoration, particularly in Camille Cut, and for the preservation of historical Fort Massachusetts. For more information refer to http://ngom.usgs.gov/gomsc/mscip/index.html.

  3. GLOBE (Global Oceanographic Bathymetry Explorer) : an innovative and generic software combining all necessary functionalities for cruise preparation, for collection, linking, processing and display of scientific data acquired during sea cruises, and for exporting data and information to the main marine data centers and networks.

    Science.gov (United States)

    Sinquin, J. M.; Sorribas, J.

    2014-12-01

    Within the EUROFLEETS project, and linked to the EMODNet and Geo-Seas European projects, GLOBE (Global Oceanographic Bathymetry Explorer) is an innovative and generic software. I. INTRODUCTION The first version can be used onboard during the survey to get a quick overview of acquired data, or later, to re-process data with accurate environmental data. II. MAIN FUNCTIONALITIES The version shown at AGU-2014 will present several key items : - 3D visualization: DTM multi-layers from EMODNet, - Water Column echogram, Seismic lines, ... - Bathymetry Plug-In: manual and automatic data cleaning, integration of EMODNet methodology to introduce CDI concept, filtering, spline, data gridding, ... - Backscatter with compensation, - Tectonic toolset, - Photo/Video Plug-In - Navigation 3D including tide correction, MRU corrections, GPS offsets correction, - WMS/WFS interfaces. III. FOCUS ON EMODNET One of the main objectives of the EMODNet European project is to elaborate a common processing flow for gridding the bathymetry data and for generating harmonized digital terrain model (DTM) : this flow includes the definition of the DTM characteristics (geodetic parameters, grid spacing, interpolation and smoothing parameters…) and also the specifications of a set of layers which enrich the basic depth layer : statistical layers (sounding density, standard deviation,…) and an innovative data source layer which indicates the source of the soundings and and which is linked and collects to the associated metadata. GLOBE Software provides the required tools for applying this methodology and is offered to the project partners. V. FOCUS ON THE TECTONIC TOOLSET The tectonic toolset allows the user to associate any DTM to 3D rotation movements. These rotations represent the movement of tectonic plates along discrete time lines (from 200 million years ago to now). One rotation is described by its axes, its value angle and its date. GLOBE can display the movement of tectonic plates

  4. 基于Landsat-8遥感影像和LiDAR测深数据的水深主被动遥感反演研究%Study on the Bathymetry Inversion by Active and Passive Remote Sensing with Landsat-8 Images and LiDAR Data

    Institute of Scientific and Technical Information of China (English)

    田震; 马毅; 张靖宇; 梁建

    2015-01-01

    Traditional bathymetry methods have the drawbacks of small coverage, long duration and high energy consumption, while the bathymetry inversion around islands by integrated active and passive remote sensing can not only overcome the weakness of traditional methods, but also provide fundamental data for shipping safety, marine disaster reduction and marine eco-environmental protection. Taking the Oahu Island of Hawaii as an example, this paper studies the impacts of different point-density LiDAR data and different gridding approaches on the inversion accuracy, as well as analyzes the ability of large-scale water depth inversion using a few LiDAR controlled blocks based on the multi-spectral images of Landsat-8 and LiDAR bathymetry data. The following results have been obtained. (1) The inversion accuracy is not severely affected by the change of point-density of LiDAR data, with the difference of mean relative error lower than 0.3% and mean absolute error less than 0.03 m. (2) The bathymetry inversion accuracy with the equalization method is slightly higher than that with the median method, which is proved by the fact that the mean absolute error of the equalized value decreases by 0.04-0.05 m as against that of the median value, with the mean relative error lowering by 1%-10%. Besides, the residual distribution of inversion results shows that the equalization approach has a more concentrated residual and its mean value is close to 0 m in the depth ranges of 0-2 m and 20-25 m, while both approaches show a basically same distribution trend in other depth ranges. (3) Bathymetry inversion based on a few LiDAR controlled blocks achieves relatively ideal results. The R 2, mean absolute error and mean relative error of 2 check blocks are 0.877, 1.66 m, 23.5% and 0.941, 1.62 m, 28.4%, respectively. Analysis indicates that the inversion precisions in different depth ranges are satisfactory in general. Except the 20-25 m range, almost all the mean absolute errors are below 2

  5. Cruise Report; RV Moana Wave cruise M1-01-GM; the bathymetry and acoustic backscatter of the mid shelf to upper slope off Panama City, Florida, northeastern Gulf of Mexico; September 3, through October 12, 2001, Panama City, FL to Panama City, FL

    Science.gov (United States)

    Gardner, James V.; Mayer, Larry A.; Hughes-Clarke, John E.; Dartnell, Peter; Sulak, Kenneth J.

    2001-01-01

    A zone of deep-water reefs is thought to extend from the mid and outer shelf south of Mississippi and Alabama to at least the northwestern Florida shelf off Panama City, Florida (Figure 1, 67kb). The reefs off Mississippi and Alabama are found in water depths of 60 to 120 m (Ludwick and Walton, 1957; Gardner et al., in press) and were the focus of a multibeam echosounder (MBES) mapping survey by the U.S. Geological Survey (USGS) in 2000 (Gardner et al., 2000; in press). If this deep-water-reef trend does exist along the northwestern Florida shelf, then it is critical to determine the accurate geomorphology and type of the reefs that occur because of their importance as benthic habitats for fisheries. Precisely georeferenced high-resolution mapping of bathymetry is a fundamental first step in the study of areas suspected to be critical habitats. Morphology is thought to be critical to defining the distribution of dominant demersal plankton/planktivores communities. Fish faunas of shallow hermatypic reefs have been well studied, but those of deep ahermatypic reefs have been relatively ignored. The ecology of deep-water ahermatypic reefs is fundamentally different from hermatypic reefs because autochthonous intracellular symbiotic zooxanthellae (the carbon source for hermatypic corals) do not form the base of the trophic web in ahermatypic reefs. Instead, exogenous plankton, transported to the reef by currents, serves as the primary carbon source. Thus, one of the principle uses of the morphology data will be to identify whether any reefs found are hermatypic or ahermatypic in origin. Community structure and trophodynamics of demersal fishes of the outer continental of the northeastern Gulf of Mexico presently are the focus of a major USGS reseach project. A goal of the project is to answer questions concerning the relative roles played by morphology and surficial geology in controling biological differentiation. Deep-water reefs are important because they are fish

  6. Advances and perspectives in bathymetry by airborne lidar

    Science.gov (United States)

    Zhou, Guoqing; Wang, Chenxi; Li, Mingyan; Wang, Yuefeng; Ye, Siqi; Han, Caiyun

    2015-12-01

    In this paper, the history of the airborne lidar and the development stages of the technology are reviewed. The basic principle of airborne lidar and the method of processing point-cloud data were discussed. At present, single point laser scanning method is widely used in bathymetric survey. Although the method has high ranging accuracy, the data processing and hardware system is too much complicated and expensive. For this reason, this paper present a kind of improved dual-frequency method for bathymetric and sea surface survey, in this method 176 units of 1064nm wavelength laser has been used by push-broom scanning and due to the airborne power limits still use 532nm wavelength single point for bathymetric survey by zigzag scanning. We establish a spatial coordinates for obtaining the WGS-84 of point cloud by using airborne POS system.

  7. A MATLAB GEODETIC SOFTWARE FOR PROCESSING AIRBORNE LIDAR BATHYMETRY DATA

    OpenAIRE

    Pepe, M.; Prezioso, G.

    2015-01-01

    The ability to build three-dimensional models through technologies based on satellite navigation systems GNSS and the continuous development of new sensors, as Airborne Laser Scanning Hydrography (ALH), data acquisition methods and 3D multi-resolution representations, have contributed significantly to the digital 3D documentation, mapping, preservation and representation of landscapes and heritage as well as to the growth of research in this fields. However, GNSS systems led to the use...

  8. AFSC/RACE/GAP/Zimmermann: Cook Inlet Bathymetry Features

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We assembled 1.4 million National Ocean Service (NOS) bathymetric soundings from 98 lead-line and single-beam echosounder hydrographic surveys conducted from 1910...

  9. Sea floor geomorphology: Bathymetry investigations in the S22 cruise

    Digital Repository Service at National Institute of Oceanography (India)

    Evsykov, Y.D; Subrahmanyam, C.; Murthy, K.S; Rai, S

    stream_size 9 stream_content_type text/plain stream_name Mem_Geol_Soc_India_1998_39_29.pdf.txt stream_source_info Mem_Geol_Soc_India_1998_39_29.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  10. Derived bathymetry of nearshore benthic habitats near Kaanapali, Maui, Hawaii

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Methods used were adapted from a "cookbook" of instructions developed by Kyle Hogref for using IKONOS imagery data to derive seafloor elevations in optically clear...

  11. Bathymetry (2011) of the St. Thomas East End Reserve

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents a LiDAR (Light Detection & Ranging) 0.3x0.3 meter resolution depth surface for the St. Thomas East End Reserve (STEER), St. Thomas in the...

  12. Bathymetry of the southwest flank of Mauna Loa Volcano, Hawaii

    Science.gov (United States)

    Chadwick, William W.; Moore, James G.; Fox, Christopher G.

    1994-01-01

    Much of the seafloor topography in the map area is on the southwest submarine flank of the currently active Mauna Loa Volcano. The benches and blocky hills shown on the map were shaped by giant landslides that resulted from instability of the rapidly growing volcano. These landslides were imagined during a 1986 to 1991 swath sonar program of the United States Hawaiian Exclusive Economic Zone, a cooperative venture by the U.S. Geological Survey and the British Institute of Oceanographic Sciences (Lipman and others, 1988; Moore and others, 1989). Dana Seamount (and probably also the neighboring Day Seamount) are apparently Cretaceous in age, based on paleomagnetic studies, and predate the growth of the Hawaiian Ridge volcanoes (Sager and Pringle, 1990).

  13. Coastal Bathymetry of the Bering, Chuckhi, and Beaufort Seas

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Bathymetric contours were generated from soundings collected by National Ocean Service vessels from ~1900 to ~1971. The 1:250,000 maps are available for U.S....

  14. Remote Sensing-Derived Bathymetry of Lake Poopó

    OpenAIRE

    Adalbert Arsen; Jean-François Crétaux; Muriel Berge-Nguyen; Rodrigo Abarca del Rio

    2013-01-01

    Located within the Altiplano at 3,686 m above sea level, Lake Poopó is remarkably shallow and very sensitive to hydrologic recharge. Progressive drying has been observed in the entire Titicaca-Poopó-Desaguadero-Salar de Coipasa (TPDS) system during the last decade, causing dramatic changes to Lake Poopó’s surface and its regional water supplies. Our research aims to improve understanding of Lake Poopó water storage capacity. Thus, we propose a new method based on freely available remote sensi...

  15. Bathymetry of the Bering Strait: Chukotka to Diomede Island

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The bathymetric map of the northern Bering Sea region, plate 1 of USGS Professional Paper 759-B, 1976, was generated using published National Ocean Service maps and...

  16. 2010 Cape Canaveral, Florida Single-beam Bathymetry Data

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Single-beam bathymetric surveys were conducted on July 27-29, 2010 along 37 cross-shore transects offshore from Cape Canaveral, Fla. The transects were spaced 500...

  17. CatIsland 2010 single-beam bathymetry tracklines

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — In September and October of 2010, the U.S. Geological Survey (USGS), in cooperation with the Army Corps of Engineers (USACE), conducted geophysical surveys around...

  18. AFSC/RACE/GAP/Prescott: Norton Sound Bathymetry

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We assembled approximately 230,000 National Ocean Service (NOS) bathymetric soundings from 39 lead-line and single-beam echosounder hydrographic surveys conducted...

  19. Development of Method in Precise Multibeam Acoustic Bathymetry

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jianhu; LIU Jiugnan

    2003-01-01

    The sound ray tracing method can achieve higher accuracy in determining depths and plan positions with multibeam echo sounding system. In data processing, actual sound speed profile must be used in the method. However, the method is too complicated. In order to overcome the shortcoming, this paper presents a new method, the position correction method. Two situations are considered in the new method, namely, change of sound velocity keeps constant gradient in whole water column (including N layers) or in different water layer.

  20. Study of multibeam techniques for bathymetry and seabottom backscatter applications

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, R.R.; Chakraborty, B.

    Indian ocean is presented using Hydrosweep-multibeam installed onboard ORV Sagarkanya. A seabottom classification model is proposed which can be applied for multibeam backscatter data. Certain aspects of the multibeam backscatter signal data processing...