WorldWideScience

Sample records for bath deposition methods

  1. ZnSe thin films by chemical bath deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Lokhande, C.D.; Patil, P.S.; Tributsch, H. [Hahn-Meitner-Institute, Bereich Physikalische Chemie, Abt. CS, Glienicker Strasse-100, D-14109 Berlin (Germany); Ennaoui, A. [Hahn-Meitner-Institute, Bereich Physikalische Chemie, Abt. CG, Glienicker Strasse-100, D-14109 Berlin (Germany)

    1998-09-04

    The ZnSe thin films have been deposited onto glass substrates by the simple chemical bath deposition method using selenourea as a selenide ion source from an aqueous alkaline medium. The effect of Zn ion concentration, bath temperature and deposition time period on the quality and thickness of ZnSe films has been studied. The ZnSe films have been characterized by XRD, TEM, EDAX, TRMC (time-resolved microwave conductivity), optical absorbance and RBS techniques for their structural, compositional, electronic and optical properties. The as-deposited ZnSe films are found to be amorphous, Zn rich with optical band gap, Eg, equal to 2.9 eV

  2. Preparation and Characterization of SnO2 thin films deposited by Chemical Bath Deposition method

    Science.gov (United States)

    Yusuf, Gbadebo T.; Raimi, Adepoju M.; Familusi, Timothy O.; Awodugba, Ayodeji O.; Efunwole, Hezekiah O.

    2013-04-01

    SnO2 thin films have been deposited onto the soda lime glass substrates by the chemical bath deposition method. The structural and optical properties of the SnO2 thin films were investigated. Tin chloride solution (SnCl2) and methanol were used as starting materials at substrate temperature 300^oC. The crystal structure and orientation of the SnO2 thin films were investigated by X-ray diffraction (XRD) patterns. The average grain size of the films was calculated using the Scherer formula and was found to be 29.6 nm which increased to 30.04nm after annealing in air at 400^oC. The optical absorbance and transmittance measurements were recorded by using spectrophotometer. The average transmittance of the film was around 80 % at wavelength 550 nm. The optical band gap of the thin films was determined and found to be 3.71eV. The gas sensing properties of tin oxide thin films obtained in this work could be performed for different gases like CO, CH4, H2S, H2 etc.

  3. Highly oriented CdS films deposited by an ammonia-free chemical bath method

    International Nuclear Information System (INIS)

    In this work we report an ammonia-free chemical bath method to deposit highly oriented CdS films on glass substrates. The method is based in the substitution of ammonia by sodium citrate as the complexing agent of cadmium ions in the reaction solution. We compared the physical properties of the CdS films obtained by this method to those of CdS films obtained by a traditional method which uses the thiourea-ammonia system. We found that [0 0 2] crystalline orientation is higher in the films obtained by the ammonia-free method than in the ones obtained by the traditional method

  4. Highly oriented CdS films deposited by an ammonia-free chemical bath method

    Energy Technology Data Exchange (ETDEWEB)

    Ortuno Lopez, M.B.; Valenzuela-Jauregui, J.J.; Sotelo-Lerma, M.; Mendoza-Galvan, A.; Ramirez-Bon, R

    2003-04-01

    In this work we report an ammonia-free chemical bath method to deposit highly oriented CdS films on glass substrates. The method is based in the substitution of ammonia by sodium citrate as the complexing agent of cadmium ions in the reaction solution. We compared the physical properties of the CdS films obtained by this method to those of CdS films obtained by a traditional method which uses the thiourea-ammonia system. We found that [0 0 2] crystalline orientation is higher in the films obtained by the ammonia-free method than in the ones obtained by the traditional method.

  5. Fabrication of ZnO nanorod using spray-pyrolysis and chemical bath deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Ramadhani, Muhammad F., E-mail: brian@tf.itb.ac.id; Pasaribu, Maruli A. H., E-mail: brian@tf.itb.ac.id; Yuliarto, Brian, E-mail: brian@tf.itb.ac.id; Nugraha, E-mail: brian@tf.itb.ac.id [Advanced Functional Materials Laboratory, Engineering Physics Department Faculty of Industrial Technology, Institut Teknologi Bandung (Indonesia)

    2014-02-24

    ZnO thin films with nanorod structure were deposited using Ultrasonic Spray Pyrolysis method for seed growth, and Chemical Bath Deposition (CBD) for nanorod growth. High purity Zn-hydrate and Urea are used to control Ph were dissolved in ethanol and aqua bidest in Ultrasonic Spray Pyrolysis process. Glass substrate was placed above the heater plate of reaction chamber, and subsequently sprayed with the range duration of 5, 10 and 20 minutes at the temperatures of 3500 C. As for the Chemical Bath Deposition, the glass substrate with ZnO seed on the surface was immerse to Zn-hydrate, HMTA (Hexa Methylene Tetra Amine) and deionized water solution for duration of 3, 5 and 7 hour and temperatures of 600 C, washed in distilled water, dried, and annealed at 3500 C for an hour. The characterization of samples was carried out to reveal the surface morphology using Scanning Electron Microscopy (SEM). From the data, the combination of 5 minutes of Ultrasonic Spray Pyrolysis process and 3 hour of CBD has showed the best structure of nanorod. Meanwhile the longer Spraying process and CBD yield the bigger nanorod structure that have been made, and it makes the films more dense which make the nanorod collide each other and as a result produce unsymetric nanorod structure.

  6. Fabrication of ZnO nanorod using spray-pyrolysis and chemical bath deposition method

    International Nuclear Information System (INIS)

    ZnO thin films with nanorod structure were deposited using Ultrasonic Spray Pyrolysis method for seed growth, and Chemical Bath Deposition (CBD) for nanorod growth. High purity Zn-hydrate and Urea are used to control Ph were dissolved in ethanol and aqua bidest in Ultrasonic Spray Pyrolysis process. Glass substrate was placed above the heater plate of reaction chamber, and subsequently sprayed with the range duration of 5, 10 and 20 minutes at the temperatures of 3500 C. As for the Chemical Bath Deposition, the glass substrate with ZnO seed on the surface was immerse to Zn-hydrate, HMTA (Hexa Methylene Tetra Amine) and deionized water solution for duration of 3, 5 and 7 hour and temperatures of 600 C, washed in distilled water, dried, and annealed at 3500 C for an hour. The characterization of samples was carried out to reveal the surface morphology using Scanning Electron Microscopy (SEM). From the data, the combination of 5 minutes of Ultrasonic Spray Pyrolysis process and 3 hour of CBD has showed the best structure of nanorod. Meanwhile the longer Spraying process and CBD yield the bigger nanorod structure that have been made, and it makes the films more dense which make the nanorod collide each other and as a result produce unsymetric nanorod structure

  7. Preparation and characterization of ZnS thin films by the chemical bath deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Iwashita, Taisuke [Department of Electrical Engineering, Faculty of Engineering, Tokyo University of Science 1-14-6 Kudankita, Chiyoda, Tokyo 102-0073 (Japan); Ando, Shizutoshi, E-mail: ando_shi@rs.kagu.tus.ac.jp [Department of Electrical Engineering, Faculty of Engineering, Tokyo University of Science 1-14-6 Kudankita, Chiyoda, Tokyo 102-0073 (Japan); Research Institute for Science and Technology, Advanced Device Laboratories (ADL), Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601 (Japan); Research Institute for Science and Technology, Photovoltaic Science and Technology Research Division, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601 (Japan)

    2012-10-01

    ZnS thin films prepared on quartz substrates by the chemical bath deposition (CBD) method with three type temperature profile processes have been investigated by X-ray diffraction, scanning electron microscope, energy dispersive X-ray analysis and light transmission. One is a 1-step growth process, and the other is 2-steps growth and self-catalyst growth processes. The surface morphology of CBD-ZnS thin films prepared by the CBD method with the self-catalyst growth process is flat and smooth compared with that prepared by the 1-step and 2-steps growth processes. The self-catalyst growth process in order to prepare the particles of ZnS as initial nucleus layer was useful for improvement in crystallinity of ZnS thin films prepared by CBD. ZnS thin films prepared by CBD method with self-catalyst growth process can be expected for improvement in the conversion efficiency of Cu(InGa)Se{sub 2}-based thin film solar cells by using it for the buffer layer. - Highlights: Black-Right-Pointing-Pointer ZnS thin films were prepared by chemical bath deposition (CBD) method. Black-Right-Pointing-Pointer The crystallization of CBD-ZnS films was further improved. Black-Right-Pointing-Pointer The crystallinity of CBD-ZnS thin films is dependent on the zinc source material. Black-Right-Pointing-Pointer Self-catalyst growth process is useful for the growth of thin films by CBD method. Black-Right-Pointing-Pointer It is expected to improve the conversion efficiency of CuIn{sub 1-x}Ga{sub x}Se{sub 2} solar cells.

  8. Femtosecond Transient Absorption Studies in Cadmium Selenide Nanocrystal Thin Films Prepared by Chemical Bath Deposition Method

    Directory of Open Access Journals (Sweden)

    M. C. Rath

    2007-01-01

    Full Text Available Dynamics of photo-excited carrier relaxation processes in cadmium selenide nanocrystal thin films prepared by chemical bath deposition method have been studied by nondegenerate femtosecond transient pump-probe spectroscopy. The carriers were generated by exciting at 400 nm laser light and monitored by several other wavelengths. The induced absorption followed by a fast bleach recovery observed near and above the bandgap indicates that the photo-excited carriers (electrons are first trapped by the available traps and then the trapped electrons absorb the probe light to show a delayed absorption process. The transient decay kinetics was found to be multiexponential in nature. The short time constant, <1 picosecond, was attributed to the trapping of electrons by the surface and/or deep traps and the long time constant, ≥20 picoseconds, was due to the recombination of the trapped carriers. A very little difference in the relaxation processes was observed in the samples prepared at bath temperatures from 25∘C to 60∘C.

  9. A simple method for chemical bath deposition of electrochromic tungsten oxide films

    International Nuclear Information System (INIS)

    A simple, economical, chemical bath method for depositing tungsten oxide films has been developed. The films have been prepared from aqueous solution containing Na2WO4.2H2O and diethyl sulfate in slightly acidic media at 90-95 deg. C on fluoride doped tin oxide substrates (FTO). The X-ray analysis clearly showed that the films do not correspond to any known tungsten oxide with its experimental d-values and in the text the composition is denoted as WO x. The thin films durability was tested in aqueous solution of LiClO4 (0.1 mol dm-3) for about 7000 cycles followed by cyclic voltammetry which confirmed that the coated material is highly stable. The optical transmittance spectra of colored and bleached states showed significant change in the transmittance, which make these films favorable for electrochromic devices

  10. A simple method for chemical bath deposition of electrochromic tungsten oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Najdoski, Metodija Z. [Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Sts. Cyril and Methodius University, P.O. Box 162, Arhimedova 5, 1000 Skopje (Macedonia, The Former Yugoslav Republic of)], E-mail: metonajd@iunona.pmf.ukim.edu.mk; Todorovski, Toni [Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Sts. Cyril and Methodius University, P.O. Box 162, Arhimedova 5, 1000 Skopje (Macedonia, The Former Yugoslav Republic of)

    2007-08-15

    A simple, economical, chemical bath method for depositing tungsten oxide films has been developed. The films have been prepared from aqueous solution containing Na{sub 2}WO{sub 4}.2H{sub 2}O and diethyl sulfate in slightly acidic media at 90-95 deg. C on fluoride doped tin oxide substrates (FTO). The X-ray analysis clearly showed that the films do not correspond to any known tungsten oxide with its experimental d-values and in the text the composition is denoted as WO {sub x}. The thin films durability was tested in aqueous solution of LiClO{sub 4} (0.1 mol dm{sup -3}) for about 7000 cycles followed by cyclic voltammetry which confirmed that the coated material is highly stable. The optical transmittance spectra of colored and bleached states showed significant change in the transmittance, which make these films favorable for electrochromic devices.

  11. Preparation and characterization of SnO2 thin film by chemical bath deposition method for solar cell application

    International Nuclear Information System (INIS)

    Full text: Tin oxide thin films were synthesized by chemical bath deposition method on glass substrate .The as-deposited thin films were characterized for compositional, structural, surface morphological, optical and electrical properties. The X-ray diffraction patterns of the sample indicate that all samples are polycrystalline structure. AFM images show that the films consist of small uniform grains and are free of pinholes. (author)

  12. Effect of plating time on growth of nanocrystalline Ni–P from sulphate/glycine bath by electroless deposition method

    Indian Academy of Sciences (India)

    N Latha; V Raj; M Selvam

    2013-08-01

    Nanocrystalline nickel phosphorus (NC-Ni–P) deposits from sulphate/glycine bath using a simple electroless deposition process is demonstrated. In the present investigation, nanoporous alumina films are formed on the aluminium surface by anodization process followed by deposition of nickel onto the pores by electroless plating method. Anodic aluminium oxide surface was first sensitized and activated by using palladium chloride solution before immersing into the electroless nickel bath. Electroless nickel plating was carried out from the optimized bath by changing the deposition time from 20 to 1800 s at a constant temperature of 80 °C and a pH of 4.0. Surface morphology, elemental composition, structure and reflectance of the deposits have been analysed by using scanning electron microscopy, atomic force microscopy, energy dispersive X-ray analysis, X-ray diffractometry and UV-visible spectroscopic studies, respectively. Electroless nickel deposits formed at an early stage produces dense uniform nanocrystals containing higher percentage of atomic phosphorus with cubic Ni (111) structure. As the deposition time increased, nanocrystalline sharp peak became amorphous and dimension of the crystal size varied from 54 to 72 nm.

  13. Synthesis of Liquefied Petroleum Gas (LPG Sensor based on Nanostructure Zinc Oxide using Chemical Bath Deposition (CBD Methods

    Directory of Open Access Journals (Sweden)

    Muhammad Iqbal

    2012-07-01

    Full Text Available Porous thin layer of zinc oxide have been made using chemical bath deposition method with the precursor of zinc nitrate tetrahydrate on a substrate of alumina (Al2O3. The morphology of the formed layer has the form of sheet structure and flowerlike structure. ZnO layers showed the lack of oxygen. Conductivity sensors varies with changes in operating temperature, the higher the operating temperature, the higher the conductivity. The best performance shown by the sensors with 100% solvent composition of water (sheet structure at a temperature of 200oC with a sensitivity of 44.83%, 80 seconds response time and 90 seconds recovery time. The sensor is able to detect the presence of LPG and also can measure the concentration of LPG.

  14. Electrochromic and electrochemical capacitive properties of tungsten oxide and its polyaniline nanocomposite films obtained by chemical bath deposition method

    International Nuclear Information System (INIS)

    Polyanine and its nanocomposite WO3/PANI films were deposited on fluorine doped tin oxide (FTO) glass slides by simple chemical bath deposition method. The morphology structure of the composite film was studied using atomic force microscopy (AFM) and scanning electron microscopy (SEM), while the electrochemical capacitive properties were determined using cyclic voltammetry (CV), chronopotentiometry (CP) and electrochemical impedance spectroscopy (EIS). The WO3/PANI nano-composite exhibited multiple colors (electrochromism) during the CV scans, from brownish green to transparent to light green then back to brownish green. Surprisingly, the integration of the PANI with the WO3 led to synergistic performance of nanohybrid wherein a true electrochemical double layer capacitor was obtained. Also, interestingly and unlike literature reports, the CBD method led to excellent capacitance retention (>98%) of the PANI even at 1000 continuous cycles. This work demonstrates that simple CBD can be used to get WO3/PANI films that give good electrochromism and pseudo-capacitance comparable to the ones obtained by other methods. Hence the obtained nanocomposite film of WO3/PANI can be a promising material for electrochromic and energy storage applications

  15. Characterization of nanostructured As{sub 2}S{sub 3} thin films synthesized at room temperature by chemical bath deposition method using various complexing agents

    Energy Technology Data Exchange (ETDEWEB)

    Ubale, Ashok U., E-mail: ashokuu@yahoo.com; Kantale, J.S.; Choudhari, D.M.; Mitkari, V.N.; Nikam, M.S.; Belkhedkar, M.R.

    2013-09-02

    Nanostructured binary As{sub 2}S{sub 3} thin films were deposited onto glass substrates by chemical bath deposition method from complexed and uncomplexed baths using complexing agents acetic acid, ethylenediaminetetraacetic acid, oxalic acid and tartaric acid. The effect of complexing agent on structural, electrical, morphological and optical properties of As{sub 2}S{sub 3} is reported. The synthesized films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), electrical resistivity and optical absorption measurements. The deposited films are nanocrystalline in nature with monoclinic lattice. The films deposited from uncomplexed bath and from ethylenediaminetetraacetic acid complexes are non-porous and become porous for other complexes. The electrical resistivity and optical band gap is also found complex dependent. - Highlights: • Nanocrystalline n-type As{sub 2}S{sub 3} films were grown by chemical bath deposition method. • Effect of complex on structural, electrical and optical properties was reported. • The film morphology highly depends on complex used in deposition process.

  16. Studies on Hall Effect and DC Conductivity Measurements of Semiconductor Thin films Prepared by Chemical Bath Deposition (CBD method

    Directory of Open Access Journals (Sweden)

    S. Thirumavalavana

    2015-12-01

    Full Text Available Semiconductors have various useful properties that can be exploited for the realization of a large number of high performance devices in fields such as electronics and optoelectronics. Many novel semiconductors, especially in the form of thin films, are continually being developed. Thin films have drawn the attention of many researchers because of their numerous applications. As the film becomes thinner, the properties acquire greater importance in the miniaturization of elements such as resistors, transistors, capacitors, and solar cells. In the present work, copper selenide (CuSe, cadmium selenide (CdSe, zinc selenide (ZnSe, lead sulphide (PbS, zinc sulphide (ZnS, and cadmium sulphide (CdS thin films were prepared by chemical bath deposition (CBD method. The prepared thin films were analyzed by using Hall measurements in Van Der Pauw configuration (ECOPIA HMS-3000 at room temperature. The Hall parameters such as Hall mobility of the material, resistivity, carrier concentration, Hall coefficient and conductivity were determined. The DC electrical conductivity measurements were also carried out for the thin films using the conventional two – probe technique. The activation energies were also calculated from DC conductivity studies.

  17. Synthesis of Nanocrystalline SnOx (x = 1–2 Thin Film Using a Chemical Bath Deposition Method with Improved Deposition Time, Temperature and pH

    Directory of Open Access Journals (Sweden)

    Zulkarnain Zainal

    2011-09-01

    Full Text Available Nanocrystalline SnOx (x = 1–2 thin films were prepared on glass substrates by a simple chemical bath deposition method. Triethanolamine was used as complexing agent to decrease time and temperature of deposition and shift the pH of the solution to the noncorrosive region. The films were characterized for composition, surface morphology, structure and optical properties. X-ray diffraction analysis confirms that SnOx thin films consist of a polycrystalline structure with an average grain size of 36 nm. Atomic force microscopy studies show a uniform grain distribution without pinholes. The elemental composition was evaluated by energy dispersive X-ray spectroscopy. The average O/Sn atomic percentage ratio is 1.72. Band gap energy and optical transition were determined from optical absorbance data. The film was found to exhibit direct and indirect transitions in the visible spectrum with band gap values of about 3.9 and 3.7 eV, respectively. The optical transmittance in the visible region is 82%. The SnOx nanocrystals exhibit an ultraviolet emission band centered at 392 nm in the vicinity of the band edge, which is attributed to the well-known exciton transition in SnOx. Photosensitivity was detected in the positive region under illumination with white light.

  18. Structural and optical properties of Ni-doped CdS thin films prepared by chemical bath deposition method

    International Nuclear Information System (INIS)

    The structural and optical behavior of undoped Cadmiun Sulphide (CdS) and Ni-doped CdS thinfilms prepared by Chemical Bath Deposition (CBD) technique is reported. The crystallite sizes of the thinfilms have been characterized by X-ray diffraction pattern (XRD). The particle sizes increase with the increase of Ni content in the CdS thinfilms. Scanning Electron Microscope (SEM) results indicated that CdS thinfilms is made up of aggregate of spherical-like particles. The composition was estimated by Energy Dispersive Analysis of X-ray (EDX) and reported. Spectroscopic studies revealed considerable improvement in transmission and the band gap of the films changes with addition of Ni dopant that is associated with variation in crystallite sizes in the nano regime

  19. Sensitization of CdS nanoparticles onto reduced graphene oxide (RGO) fabricated by chemical bath deposition method for effective removal of Cr(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Pawar, Rajendra C.; Lee, Caroline Sunyong, E-mail: sunyong523@gmail.com

    2013-09-16

    RGO (Reduced Graphene Oxide)–CdS composites were successfully synthesized by chemical bath deposition (CBD) method onto soda lime glass substrate at low temperature (70 °C). Their structural, optical and morphological properties were studied using X-ray diffraction, UV–Vis spectrophotometer, Raman spectroscopy, Brunauer–Emmett–Teller, Field emission scanning electron microscope and transmission electron microscope. It is clearly seen that spherically shaped CdS nanoparticles with an average diameter 30 nm are uniformly coated over the entire graphene sheet. Further, synthesized CdS nanoparticles and RGO–CdS nanocomposites were investigated for the reduction of Cr(VI) under visible light. The photocatalytic results show that photodegradation rate of RGO–CdS composites is two times higher than that of CdS nanoparticles toward reduction of Cr(VI). The improved photocatalytic performance by combining RGO with CdS nanoparticles, is attributed to its increased specific surface area (47.44 m{sup 2} g{sup −1}), efficient transportation of photoelectrons and improved absorbance of CdS nanoparticles. Therefore, it was found that RGO in RGO–CdS composites makes a significant impact on photocatalytic activity toward reduction of Cr(VI), making an excellent candidate for water refiner. - Graphical abstract: Display Omitted - Highlights: • Chemical bath deposition was used to deposit CdS nanoparticles over graphene sheets. • RGO/CdS shows effective photocatalytic reduction of Cr(VI) under visible light. • High photocurrent of RGO/CdS proved reduction in recombination due to graphene. • High specific surface area (47.44 m{sup 2} g{sup −1}) of RGO/CdS improves Cr(VI) adsorption.

  20. Investigations on the synthesis, optical and electrical properties of TiO{sub 2} thin films by Chemical Bath Deposition (CBD) method

    Energy Technology Data Exchange (ETDEWEB)

    Govindasamy, Geetha [Bharathiar University, Coimbatore (India); Murugasen, Priya [Department of Physics, Saveetha Engineering College (India); Sagadevan, Suresh [Department of Physics, AMET University, Chennai (India)

    2016-03-15

    Titanium dioxide (TiO{sub 2} ) thin films were prepared by Chemical Bath Deposition (CBD) method. The X-ray diffraction (XRD) analysis was used to examine the structure and to determine the crystallite size of TiO{sub 2} thin film. The surface morphology of the film was studied using Scanning Electron Microscopy (SEM).The optical properties were studied using the UV-Visible and photoluminescence (PL) spectrum. Optical constants such as band gap, refractive index, extinction coefficient and electric susceptibility were determined. The FTIR spectrum revealed the strong presence of TiO{sub 2} . The dielectric properties of TiO{sub 2} thin films were studied for different frequencies and different temperatures. The AC electrical conductivity test revealed that the conduction depended both on the frequency and the temperature. Photoconductivity study was carried out in order to ascertain the positive photoconductivity of the TiO{sub 2} thin films. (author)

  1. Investigations on the synthesis, optical and electrical properties of TiO2 thin films by Chemical Bath Deposition (CBD) method

    International Nuclear Information System (INIS)

    Titanium dioxide (TiO2 ) thin films were prepared by Chemical Bath Deposition (CBD) method. The X-ray diffraction (XRD) analysis was used to examine the structure and to determine the crystallite size of TiO2 thin film. The surface morphology of the film was studied using Scanning Electron Microscopy (SEM).The optical properties were studied using the UV-Visible and photoluminescence (PL) spectrum. Optical constants such as band gap, refractive index, extinction coefficient and electric susceptibility were determined. The FTIR spectrum revealed the strong presence of TiO2 . The dielectric properties of TiO2 thin films were studied for different frequencies and different temperatures. The AC electrical conductivity test revealed that the conduction depended both on the frequency and the temperature. Photoconductivity study was carried out in order to ascertain the positive photoconductivity of the TiO2 thin films. (author)

  2. Effects of copper precursor concentration on the growth of cupric oxide nanorods for photoelectrode using a modified chemical bath deposition method

    International Nuclear Information System (INIS)

    Highlights: • CuO nanorod photoelectrodes were prepared by modified CBD method. • The CuO nanorods were vertically grown with a high growth rate. • Effects of precursor concentration on the CuO nanorods were investigated. - Abstract: In this study, vertically aligned CuO nanorods were grown using a modified chemical bath deposition method with various copper precursor concentrations. The morphological, structural, optical and photoelectrochemical properties of the synthesized CuO samples were characterized using a field-emission scanning electron microscope, an X-ray diffractometer, a UV–visible spectrometer and a three-electrode potentiostat, respectively. The growth rates of the samples varied from 4.3 to 500 nm/min with the varying precursor concentrations. The vertically well-grown CuO nanorods exhibited one-dimensional growth along the (0 2 0) plane. We obtained a maximum photocurrent density of −1.05 mA/cm2 at −0.6 V (vs. SCE) from the CuO nanorod photoelectrode grown using the 10 mM copper precursor concentration

  3. Effects of copper precursor concentration on the growth of cupric oxide nanorods for photoelectrode using a modified chemical bath deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Hee-bong [Department of Nano Science and Engineering, High Safety Vehicle Core Technology Research Center, Inje University, Gimhae, Gyeongnam 621-749 (Korea, Republic of); Ryu, Hyukhyun, E-mail: hhryu@inje.ac.kr [Department of Nano Science and Engineering, High Safety Vehicle Core Technology Research Center, Inje University, Gimhae, Gyeongnam 621-749 (Korea, Republic of); Lee, Won-Jae [Department of Materials and Components Engineering, Dong-Eui University, Busan 614-714 (Korea, Republic of)

    2015-01-25

    Highlights: • CuO nanorod photoelectrodes were prepared by modified CBD method. • The CuO nanorods were vertically grown with a high growth rate. • Effects of precursor concentration on the CuO nanorods were investigated. - Abstract: In this study, vertically aligned CuO nanorods were grown using a modified chemical bath deposition method with various copper precursor concentrations. The morphological, structural, optical and photoelectrochemical properties of the synthesized CuO samples were characterized using a field-emission scanning electron microscope, an X-ray diffractometer, a UV–visible spectrometer and a three-electrode potentiostat, respectively. The growth rates of the samples varied from 4.3 to 500 nm/min with the varying precursor concentrations. The vertically well-grown CuO nanorods exhibited one-dimensional growth along the (0 2 0) plane. We obtained a maximum photocurrent density of −1.05 mA/cm{sup 2} at −0.6 V (vs. SCE) from the CuO nanorod photoelectrode grown using the 10 mM copper precursor concentration.

  4. Effect of reaction time on structural, morphology and optical properties of ZnO nanoflakes prepared by chemical bath deposition method

    International Nuclear Information System (INIS)

    ZnO nanoflakes have been successfully synthesized by the chemical bath deposition (CBD) method for different reaction times. X-ray diffraction (XRD) results confirm the initial formation of the cubic ZnO structure. However, increasing the reaction time resulted into the emergence of the well-known hexagonal wurtzite structure of ZnO. Scanning electron microscopy images showed the presence of agglomerated nanoflakes. The morphology was found not to depend on synthesis time. UV–vis spectra showed a partially increase in the percentage reflectance and the absorption edges red shifted to the higher wavelength with an increase in synthesis time. The highest band gap energy was obtained for ZnO synthesized for 1 min, with its estimated band gap energy of 3.91±0.08 eV. The estimated band gap decreased with an increase in the reaction time. The photoluminescent intensity of the emission peak at 473 nm decreased with an increase in reaction time.

  5. The effect of Cu2+ on structure, morphology and optical properties of flower-like ZnO synthesized using the chemical bath deposition method

    International Nuclear Information System (INIS)

    In this work undoped and Cu2+-doped ZnO nanostructures were prepared by the chemical bath deposition (CBD) method at 80 °C. The structural, optical and luminescence properties of the undoped and Cu2+-doped ZnO nanostructures were determined by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), UV–Visible Spectroscopy (UV) and Photoluminescence spectroscopy (PL) analyses. XRD analysis showed the sample prepared were hexagonal ZnO with grain sizes in the order of 46±1 nm. The estimated grain size was found not to dependent on the concentration of the Cu2+ ions used. The SEM analysis revealed that the shapes of the particles were flower-like and the addition of Cu2+ ions influenced the morphology of the samples. In the UV–Visible study the reflectance intensity decreased with an increase in the molar concentration of Cu2+ and there was no shift in the absorption edges. The PL analyses revealed that the highest luminescence intensity was obtained for the undoped ZnO. Thus Cu incorporated into the ZnO resulted in the change in its morphological, structural, and optical and luminescence properties.

  6. Thermoluminescence of Zn O thin films deposited by chemical bath

    International Nuclear Information System (INIS)

    Full text: Zn O films on Si were synthesized using a deposition method by chemical bath and thermally treated at 900 degrees C for 12 h in air. The morphological characterization by scanning electron microscopy reveals that uniform films were obtained. To investigate the thermoluminescent properties of the films were exposed to irradiation with beta particles with doses in the range from 0.5 to 128 Gy. The brightness curves obtained using a heating rate of 5 degrees C have two peaks, one at 124 and another at 270 degrees C, and a linear dependence of the integrated thermoluminescence as a function of dose. The second maximum reveals the existence of localized trapping states of potential utility in thermoluminescent dosimetry. (Author)

  7. Bath parameter dependence of chemically deposited Copper Selenide thin film

    International Nuclear Information System (INIS)

    In this article, a low cost chemical bath deposition (CBD) technique has been used for the preparation Of Cu2-xSe thin films on to glass substrate. Different thin fms (0.2-0.6/μm) were prepared by adjusting the bath parameter like concentration of ammonia, deposition time, temperature of the solution, and the ratios of the mixing composition between copper and selenium in the reaction bath. From these studies, it reveals that at low concentration of ammonia or TEA, the terminal thicknesses of the films are less, which gradually increases with the increase of concentrations and then drop down at still higher concentrations. It has been found that completing the Cu2+ ions with EA first, and then addition of ammonia yields better results than the reverse process. The film thickness increases with the decrease of value x of Cu2-xSe. (author)

  8. Water Condensation on Zinc Surfaces Treated by Chemical Bath Deposition

    OpenAIRE

    Narhe, R.D. (Ramchandra D.); González-Viñas, W.; Beysens, D.A. (Daniel A.)

    2010-01-01

    Water condensation, a complex and challenging process, is investigated on a metallic (Zn) surface, regularly used as anticorrosive surface. The Zn surface is coated with hydroxide zinc carbonate by chemical bath deposition, a very simple, low-cost and easily applicable process. As the deposition time increases, the surface roughness augments and the contact angle with water can be varied from 75º to 150º , corresponding to changing the surface properties from hydrophobic to ultrahydrophobic a...

  9. CdS films deposited by chemical bath under rotation

    Energy Technology Data Exchange (ETDEWEB)

    Oliva-Aviles, A.I., E-mail: aoliva@mda.cinvestav.mx [Centro de Investigacion y de Estudios Avanzados Unidad Merida, Departamento de Fisica Aplicada. A.P. 73-Cordemex, 97310 Merida, Yucatan (Mexico); Patino, R.; Oliva, A.I. [Centro de Investigacion y de Estudios Avanzados Unidad Merida, Departamento de Fisica Aplicada. A.P. 73-Cordemex, 97310 Merida, Yucatan (Mexico)

    2010-08-01

    Cadmium sulfide (CdS) films were deposited on rotating substrates by the chemical bath technique. The effects of the rotation speed on the morphological, optical, and structural properties of the films were discussed. A rotating substrate-holder was fabricated such that substrates can be taken out from the bath during the deposition. CdS films were deposited at different deposition times (10, 20, 30, 40 and 50 min) onto Corning glass substrates at different rotation velocities (150, 300, 450, and 600 rpm) during chemical deposition. The chemical bath was composed by CdCl{sub 2}, KOH, NH{sub 4}NO{sub 3} and CS(NH{sub 2}){sub 2} as chemical reagents and heated at 75 deg. C. The results show no critical effects on the band gap energy and the surface roughness of the CdS films when the rotation speed changes. However, a linear increase on the deposition rate with the rotation energy was observed, meanwhile the stoichiometry was strongly affected by the rotation speed, resulting a better 1:1 Cd/S ratio as speed increases. Rotation effects may be of interest in industrial production of CdTe/CdS solar cells.

  10. CdS films deposited by chemical bath under rotation

    International Nuclear Information System (INIS)

    Cadmium sulfide (CdS) films were deposited on rotating substrates by the chemical bath technique. The effects of the rotation speed on the morphological, optical, and structural properties of the films were discussed. A rotating substrate-holder was fabricated such that substrates can be taken out from the bath during the deposition. CdS films were deposited at different deposition times (10, 20, 30, 40 and 50 min) onto Corning glass substrates at different rotation velocities (150, 300, 450, and 600 rpm) during chemical deposition. The chemical bath was composed by CdCl2, KOH, NH4NO3 and CS(NH2)2 as chemical reagents and heated at 75 deg. C. The results show no critical effects on the band gap energy and the surface roughness of the CdS films when the rotation speed changes. However, a linear increase on the deposition rate with the rotation energy was observed, meanwhile the stoichiometry was strongly affected by the rotation speed, resulting a better 1:1 Cd/S ratio as speed increases. Rotation effects may be of interest in industrial production of CdTe/CdS solar cells.

  11. Bathing

    Science.gov (United States)

    ... prevent falls. You can buy shower chairs at drug stores and medical supply stores. Before Bathing Before starting a bath or shower: • Get the soap, washcloth, towels, and shampoo ready. • Make sure the bathroom is warm and well lighted. • Play soft music if it helps to relax the person. • Be ...

  12. Microstructure, optical and structural characterization of Cd0.98Fe0.02S thin films co-doped with Zn by chemical bath deposition method

    Science.gov (United States)

    Pitchaimani, K.; Amalraj, L.; Muthukumaran, S.

    2016-04-01

    Fe-doped CdS (Cd0.98Fe0.02S) and Fe, Zn co-doped CdS (Cd0.98-xZnxFe0.02S (x=0.02, 0.04, and 0.06)) thin films have been successfully deposited on glass substrate by chemical bath deposition technique using aqueous ammonia solution at pH = 9.5. Phase purity of the samples having cubic structure with (111) as the preferential orientation was confirmed by X-ray diffraction technique. Shift of X-ray diffraction peak position towards higher angle side and decrease of lattice parameters, volume and crystallite size confirmed the proper incorporation of Zn into Cd-Fe-S except Zn=6%. The compositional analysis (EDX) showed that Cd, Fe, Zn and S are present in the films. The enhanced band gap and higher transmittance observed in Cd0.94Zn0.04Fe0.02S films are the effective way to use solar energy and enhance its photocatalytic activity under visible light. The enhanced green band emission than blue band by Zn-doping evidenced the existence of higher defect states.

  13. XRD and UV-vis results of Tungstein oxide thin films prepared by chemical bath deposition

    International Nuclear Information System (INIS)

    In the experiment, using a simple, economical, chemical bath method for depositing tungstein oxide films, electrochromic tungstein oxide thin films were prepared from an aqueous solution of Na2WO4H2O and diethyl sulfate at boiling temperature on ITO coated glass substrate. The techniques such as X-ray and UV-VIS-spectroscopy diffraction were used for the characterization of the films. According to the results of X-ray and UV-VIS, WOx thin film is very promising material for electrochromic applications and this is simply and economically produced by chemical bath method

  14. Influence of Triethanolamine on the Chemical Bath Deposited NiS Thin Films

    OpenAIRE

    Anuar Kassim; Ho S. Min; Tan W. Tee; Ngai C. Fei

    2011-01-01

    Problem statement: Recently, many scientists looking for new chalcogenide materials for the solar cell applications. Nowadays, silicon-based solar cell became dominant products in the market. Because of expensive silicon-based solar cells, scientists hope replaces it with cheaper chalcogenide materials. Approach: The binary chalcogenide materials were deposited onto microscope glass slide using simple chemical bath deposition method. Here, we study the influence of complex...

  15. Electrodeposition of gold from formaldehyde-sulfite baths: bath stability and deposits characterization

    OpenAIRE

    Juliana L. Cardoso; Sebastião G. dos Santos Filho

    2011-01-01

    It was investigated Au(I)-sulfite baths containing formaldehyde. As a result, high stability was achieved for baths containing formaldehyde concentration close to 10 mL L-1 with a lifetime superior to 600 days. On the other hand, cyclic voltammograms indicated that the increase of formaldehyde concentration in the bath promotes decreasing of the maximum cathodic current, so that, if the formaldehyde concentration is high, the surface areal concentration of gold will be low. Also, the lowest s...

  16. Characterization of CdTe Films Deposited at Various Bath Temperatures and Concentrations Using Electrophoretic Deposition

    Directory of Open Access Journals (Sweden)

    Zulkarnain Zainal

    2012-05-01

    Full Text Available CdTe film was deposited using the electrophoretic deposition technique onto an ITO glass at various bath temperatures. Four batch film compositions were used by mixing 1 to 4 wt% concentration of CdTe powder with 10 mL of a solution of methanol and toluene. X-ray Diffraction analysis showed that the films exhibited polycrystalline nature of zinc-blende structure with the (111 orientation as the most prominent peak. From the Atomic Force Microscopy, the thickness and surface roughness of the CdTe film increased with the increase of CdTe concentration. The optical energy band gap of film decreased with the increase of CdTe concentration, and with the increase of isothermal bath temperature. The film thickness increased with respect to the increase of CdTe concentration and bath temperature, and following, the numerical expression for the film thickness with respect to these two variables has been established.

  17. Effect of protic solvents on CdS thin films prepared by chemical bath deposition

    International Nuclear Information System (INIS)

    In this study, cadmium sulfide (CdS) thin films are grown on glass substrates by chemical bath deposition (CBD) in an aqueous bath containing 10–20 vol.% alcohol. The roles of ethanol as a protic solvent that substantially improves the quality of films are explored extensively. The deposited films in an alcohol bath are found to be more compact and smoother with smaller CdS grains. The X-ray diffractograms of the samples confirm that all films were polycrystalline with mixed wurtzite (hexagonal) and zinkblende (cubic) phases. Raman spectra indicate that, for a film deposited in an alcohol bath, the position of 1LO is closer to the value for single crystal CdS, indicating that these films have a high degree of crystallinity. The as-deposited CdS thin films in a 10 vol.% alcohol bath were found to have the highest visible transmittance of 81.9%. XPS analysis reveals a stronger signal of C1s for samples deposited in the alcohol baths, indicating that there are more carbonaceous residues on the films with protic solvent than on the films with water. A higher XPS S/Cd atomic ratio for films deposited in an alcohol bath indicates that undesirable surface reactions (leading to sulfur containing compounds other than CdS) occur less frequently over the substrates. - Highlights: • Study of CBD-CdS films grown in an alcohol-containing aqueous bath is reported. • The deposited films in an alcohol bath are more compact with smaller CdS grains. • Raman spectra show that in an alcohol bath, the CdS film has a better crystallinity. • XPS reveals more carbon residues remain on the films deposited using alcohol bath. • In an alcohol bath, the undesirable surface reactions with Cd ions were hindered

  18. Chemical bath deposition of II-VI compound thin films

    Science.gov (United States)

    Oladeji, Isaiah Olatunde

    II-VI compounds are direct bandgap semiconductors with great potentials in optoelectronic applications. Solar cells, where these materials are in greater demand, require a low cost production technology that will make the final product more affordable. Chemical bath deposition (CBD) a low cost growth technique capable of producing good quality thin film semiconductors over large area and at low temperature then becomes a suitable technology of choice. Heterogeneous reaction in a basic aqueous solution that is responsible for the II-VI compound film growth in CBD requires a metal complex. We have identified the stability constant (k) of the metal complex compatible with CBD growth mechanism to be about 106.9. This value is low enough to ensure that the substrate adsorbed complex relax for subsequent reaction with the chalcogen precursor to take place. It is also high enough to minimize the metal ion concentration in the bath participating in the precipitation of the bulk compounds. Homogeneous reaction that leads to precipitation in the reaction bath takes place because the solubility products of bulk II-VI compounds are very low. This reaction quickly depletes the bath of reactants, limit the film thickness, and degrade the film quality. While ZnS thin films are still hard to grow by CBD because of lack of suitable complexing agent, the homogeneous reaction still limits quality and thickness of both US and ZnS thin films. In this study, the zinc tetraammine complex ([Zn(NH3) 4]2+) with k = 108.9 has been forced to acquire its unsaturated form [Zn(NH3)3]2+ with a moderate k = 106.6 using hydrazine and nitrilotriacetate ion as complementary complexing agents and we have successfully grown ZnS thin films. We have also, minimized or eliminated the homogeneous reaction by using ammonium salt as a buffer and chemical bath with low reactant concentrations. These have allowed us to increase the saturation thickness of ZnS thin film by about 400% and raise that of US film

  19. Characterization of CdTe Films Deposited at Various Bath Temperatures and Concentrations Using Electrophoretic Deposition

    OpenAIRE

    Zulkarnain Zainal; Mohd Norizam Md Daud; Azmi Zakaria; Mohd Sabri Mohd Ghazali; Atefeh Jafari; Wan Rafizah Wan Abdullah

    2012-01-01

    CdTe film was deposited using the electrophoretic deposition technique onto an ITO glass at various bath temperatures. Four batch film compositions were used by mixing 1 to 4 wt% concentration of CdTe powder with 10 mL of a solution of methanol and toluene. X-ray Diffraction analysis showed that the films exhibited polycrystalline nature of zinc-blende structure with the (111) orientation as the most prominent peak. From the Atomic Force Microscopy, the thickness and surface roughness of the ...

  20. Cu2ZnSn(S,Se)4 solar cells based on chemical bath deposited precursors

    International Nuclear Information System (INIS)

    A low-cost method has been developed to fabricate Cu2ZnSn(S,Se)4 solar cells. By this method, firstly SnS, CuS, and ZnS layers are successively deposited on a molybdenum/soda lime glass (Mo/SLG) substrate by chemical bath deposition. The Cu2ZnSn(S,Se)4 thin films are obtained by annealing the precursor in a selenium atmosphere utilizing a graphite box in the furnace. The obtained Cu2ZnSn(S,Se)4 thin films show large crystalline grains. By optimizing the preparation process, Cu2ZnSn(S,Se)4 solar cells with efficiencies up to 4.5% are obtained. The results imply that the Cu2ZnSn(S,Se)4/CdS interface and the back contact may be limiting factors for solar cell efficiency. - Highlights: • A chemical bath deposition method is developed to prepare Cu2ZnSn(S,Se)4 thin films. • The Cu2ZnSn(S,Se)4 thin films show good crystallization. • Solar cells with efficiencies up to 4.5% can be prepared based on the Cu2ZnSn(S,Se)4 layer. • The limiting factors for the solar cell efficiency are analyzed

  1. Fabrication and magnetic properties of electrodeposited Ni/Cu nanowires using the double bath method

    International Nuclear Information System (INIS)

    Ordered Ni/Cu multilayered nanowires (NW's) were fabricated using the two bath method in which the AAO template was switched back and forth between the two baths each containing solutions of dissolved Ni and Cu sulfates repeatedly. Different combinations of periods in which templates spent in each bath were used. The SEM and TEM images of the NW's showed that the NW's were smooth and uniform. The VSM results showed that in the presence of a field applied parallel to the NW, the coercivity and squareness increased when the deposition times of the Ni and Cu increased. To account for the behavior when both the thicknesses of the Ni and Cu layers were increasing, the effects of the increase in the Cu layer partially offset the effects of the increase in the Ni layer. The highest coercivity and squareness achieved was 822 Oe and 0.949, respectively, when the deposition times were 8 min for the Ni deposition and 2.5 min for the Cu deposition. - Highlights: • The double bath method produced nanowires having alternating layers of Ni and Cu. • The coercivities and squareness were higher for magnetic fields applied parallel to the wire's axis. • Coercivities of the nanowires increased from 365 Oe to 822 Oe as the Ni deposition time increased. • Squareness increased from 0.800 to 0.949 as the Ni deposition times increased

  2. Annealing effect on structural and optical properties of chemical bath deposited MnS thin film

    Science.gov (United States)

    Ulutas, Cemal; Gumus, Cebrail

    2016-03-01

    MnS thin film was prepared by the chemical bath deposition (CBD) method on commercial microscope glass substrate deposited at 30 °C. The as-deposited film was given thermal annealing treatment in air atmosphere at various temperatures (150, 300 and 450 °C) for 1 h. The MnS thin film was characterized by using X-ray diffraction (XRD), UV-vis spectrophotometer and Hall effect measurement system. The effect of annealing temperature on the structural, electrical and optical properties such as optical constants of refractive index (n) and energy band gap (Eg) of the film was determined. XRD measurements reveal that the film is crystallized in the wurtzite phase and changed to tetragonal Mn3O4 phase after being annealed at 300 °C. The energy band gap of film decreased from 3.69 eV to 3.21 eV based on the annealing temperature.

  3. Chemical Bath Deposition of Aluminum Oxide Buffer on Curved Surfaces for Growing Aligned Carbon Nanotube Arrays.

    Science.gov (United States)

    Wang, Haitao; Na, Chongzheng

    2015-07-01

    Direct growth of vertically aligned carbon nanotube (CNT) arrays on substrates requires the deposition of an aluminum oxide buffer (AOB) layer to prevent the diffusion and coalescence of catalyst nanoparticles. Although AOB layers can be readily created on flat substrates using a variety of physical and chemical methods, the preparation of AOB layers on substrates with highly curved surfaces remains challenging. Here, we report a new solution-based method for preparing uniform layers of AOB on highly curved surfaces by the chemical bath deposition of basic aluminum sulfate and annealing. We show that the thickness of AOB layer can be increased by extending the immersion time of a substrate in the chemical bath, following the classical Johnson-Mehl-Avrami-Kolmogorov crystallization kinetics. The increase of AOB thickness in turn leads to the increase of CNT length and the reduction of CNT curviness. Using this method, we have successfully synthesized dense aligned CNT arrays of micrometers in length on substrates with highly curved surfaces including glass fibers, stainless steel mesh, and porous ceramic foam. PMID:26053766

  4. PREPARATION AND ANALYSIS OF Ni-P-Zn ELECTROLESS DEPOSITION FROM ALKALT BATH

    Institute of Scientific and Technical Information of China (English)

    Y.S. Huang; F.Z. Cui

    2005-01-01

    Electroless Ni-P-Zn alloys deposited from alkali bath were investigated in this paper. The deposition bath contained nickel sulfate, zinc chloride and hypophosphate. The process parameters, such as temperature, pH and zinc salt concentration were presented and discussed.The microstructure of the coatings was studied by XRD and SEM. The cathode glowing discharge characters of Ni-P-Zn depositions were studied with luminous Neon lamps. Electrodes deposited by electroless Ni-P alloys were apt to sputter during luminous working hours. Electroless Ni-P-Zn depositions improved the discharge characters of the electrodes.With the concentration of zinc in the deposition rising to 4wt%, electrode sputter was largely restrained. The thickness of the deposition also influenced the discharge characters of the electrode. To avoid electrode sputter, the concentration of zinc has to rise with the thickness of the depositions.

  5. Modification of optical and electrical properties of chemical bath deposited CdS using plasma treatments

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, G. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); Krishnan, B. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); CIIDIT, Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico); Avellaneda, D.; Castillo, G. Alan; Das Roy, T.K. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); Shaji, S., E-mail: sshajis@yahoo.com [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); CIIDIT, Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico)

    2011-08-31

    Cadmium sulphide (CdS) is a well known n-type semiconductor that is widely used in solar cells. Here we report preparation and characterization of chemical bath deposited CdS thin films and modification of their optical and electrical properties using plasma treatments. CdS thin films were prepared from a chemical bath containing Cadmium chloride, Triethanolamine and Thiourea under various deposition conditions. Good quality thin films were obtained during deposition times of 5, 10 and 15 min. CdS thin films prepared for 10 min. were treated using a glow discharge plasma having nitrogen and argon carrier gases. The changes in morphology, optical and electrical properties of these plasma treated CdS thin films were analyzed in detail. The results obtained show that plasma treatment is an effective technique in modification of the optical and electrical properties of chemical bath deposited CdS thin films.

  6. Modification of optical and electrical properties of chemical bath deposited CdS using plasma treatments

    International Nuclear Information System (INIS)

    Cadmium sulphide (CdS) is a well known n-type semiconductor that is widely used in solar cells. Here we report preparation and characterization of chemical bath deposited CdS thin films and modification of their optical and electrical properties using plasma treatments. CdS thin films were prepared from a chemical bath containing Cadmium chloride, Triethanolamine and Thiourea under various deposition conditions. Good quality thin films were obtained during deposition times of 5, 10 and 15 min. CdS thin films prepared for 10 min. were treated using a glow discharge plasma having nitrogen and argon carrier gases. The changes in morphology, optical and electrical properties of these plasma treated CdS thin films were analyzed in detail. The results obtained show that plasma treatment is an effective technique in modification of the optical and electrical properties of chemical bath deposited CdS thin films.

  7. Dual Bath Electrodeposition of Alternate Multilayer Coatings of Zinc and Nickel Deposits

    Institute of Scientific and Technical Information of China (English)

    XINWen-li; FEIJing-yin; LIANGGuo-zheng

    2004-01-01

    The synthesis of zinc and nickel alternate multilayer coatings produced by successive deposition from dual baths containing a revised zinc sulphate electrolyte and a new developed nickel bath has been investigated. Smooth and uniform zinc-nickel compositionally modulated multilayered (CMM) coatings with different multilayer configurations were obtained. The surface and cross-sectional morphologies of samples were examined using scanning electron microscopy (SEM). Cross-sectional morphology showed the layered structure of the coatings clearly.

  8. Influence of Triethanolamine on the Chemical Bath Deposited NiS Thin Films

    Directory of Open Access Journals (Sweden)

    Anuar Kassim

    2011-01-01

    Full Text Available Problem statement: Recently, many scientists looking for new chalcogenide materials for the solar cell applications. Nowadays, silicon-based solar cell became dominant products in the market. Because of expensive silicon-based solar cells, scientists hope replaces it with cheaper chalcogenide materials. Approach: The binary chalcogenide materials were deposited onto microscope glass slide using simple chemical bath deposition method. Here, we study the influence of complexing agent in the preparation of thin films. The structural and morphological of the deposited films have been studied using X-ray diffraction and scanning electron microscopy, respectively. Results: The X-ray diffraction data showed that the films had polycrystalline in nature with hexagonal structure. The films deposited using 0.1 M of triethanolamine showed more NiS peaks and larger grain sizes as compared with 0.05M and 0.2 M triethanolamine based on the X-ray diffraction and scanning electron microscopy analysis, respectively. Conclusion: The complexing agent played important role during the deposition process.

  9. Electroless Plating of Palladium on Stainless Steel Substrates in Hydrazine Solutions: A Study of the Relationships Between Bath Parameters, Deposition Mechanisms, and Deposit Morphologies

    Science.gov (United States)

    Davis, Stacy

    Development of a reliable and inexpensive method for producing hydrogen permeable membranes is of intense interest to ongoing fuel cell research. This study investigated electroless plating of palladium onto stainless steel substrates in hydrazine solution as a possible means of membrane production. Following initial research to establish the optimum infiltrant particle size, sensitization time, and activation time, electroless plating experiments were performed to determine the effects of varying hydrazine concentration, agitation, and residence time on the palladium deposit quality and morphology. SEM examination of the experimental products elucidated relationships between specific plating bath parameters or combinations of parameters, the governing deposition mechanisms, and the deposit morphologies. The results indicate that it is possible to produce application-specific deposit layer morphologies by modifying the plating bath parameters at critical stages of the plating cycle.

  10. Structural, electrical and optical properties of copper selenide thin films deposited by chemical bath deposition technique

    International Nuclear Information System (INIS)

    A low cost chemical bath deposition (CBD) technique has been used for the preparation of Cu2-xSe thin films on glass substrates. Structural, electrical and optical properties of these films were investigated. X-ray diffraction (XRD) study of the Cu2-xSe films annealed at 523K suggests a cubic structure with a lattice constant of 5.697A. Chemical composition was investigated by X-ray photoelectron spectroscopy (XPS). It reveals that absorbed oxygen in the film decreases remarkably on annealing above 423K. The Cu/Se ratio was observed to be the same in as-deposited and annealed films. Both as- deposited and annealed films show very low resistivity in the range of (0.04- 0.15) x 10-5 Ω-m. Transmittance and Reflectance were found in the range of 5-50% and 2-20% respectively. Optical absorption of the films results from free carrier absorption in the near infrared region with absorption coefficient of ∼108 m-1. The band gap for direct transition, Eg.dir varies in the range of 2.0-2.3eV and that for indirect transition Eg.indir is in the range of 1.25-1.5eV.1. (author)

  11. Superhydrophobic poly(vinylidene fluoride) film fabricated by alkali treatment enhancing chemical bath deposition

    International Nuclear Information System (INIS)

    Based on the lotus effect principle, the superhydrophobic poly(vinylidene fluoride) (PVDF) film was successfully prepared by the method of alkali treatment enhancing chemical bath deposition. The surface of PVDF film prepared in this work was constructed by many smooth and regular microreliefs. Oxygen-containing functional groups were introduced in PVDF film by treatment with aqueous NaOH solution. The nano-scale peaks on the top of the microreliefs were implemented by the reaction between dimethyldichlorosilane/methyltrichlorosilane solution and the oxygen-containing functional groups of PVDF film. The micro- and nano-scale structures, similar to the lotus leaf, was clearly observed on PVDF film surface by scanning electronic microscopy (SEM) and atomic force microscope (AFM). The water contact angle and sliding angle on the fabricated lotus-leaf-like PVDF film surface were 157 deg. and 1 deg., respectively, exhibiting superhydrophobic property and self-cleaning property.

  12. Superhydrophobic poly(vinylidene fluoride) film fabricated by alkali treatment enhancing chemical bath deposition

    Science.gov (United States)

    Zheng, Zhenrong; Gu, Zhenya; Huo, Ruiting; Luo, Zhishan

    2010-01-01

    Based on the lotus effect principle, the superhydrophobic poly(vinylidene fluoride) (PVDF) film was successfully prepared by the method of alkali treatment enhancing chemical bath deposition. The surface of PVDF film prepared in this work was constructed by many smooth and regular microreliefs. Oxygen-containing functional groups were introduced in PVDF film by treatment with aqueous NaOH solution. The nano-scale peaks on the top of the microreliefs were implemented by the reaction between dimethyldichlorosilane/methyltrichlorosilane solution and the oxygen-containing functional groups of PVDF film. The micro- and nano-scale structures, similar to the lotus leaf, was clearly observed on PVDF film surface by scanning electronic microscopy (SEM) and atomic force microscope (AFM). The water contact angle and sliding angle on the fabricated lotus-leaf-like PVDF film surface were 157° and 1°, respectively, exhibiting superhydrophobic property and self-cleaning property.

  13. Photoluminescence study of aligned ZnO nanorods grown using chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Urgessa, Z.N. [Department of Physics, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Oluwafemi, O.S. [Department of Chemistry and Chemical Technology, Walter Sisulu University, Mthatha Campus, Private Bag XI, 5117 (South Africa); Dangbegnon, J.K. [Department of Physics, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Botha, J.R., E-mail: Reinhardt.Botha@nmmu.ac.za [Department of Physics, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa)

    2012-05-15

    The photoluminescence study of self-assembled ZnO nanorods grown on a pre-treated Si substrate by a simple chemical bath deposition method at a temperature of 80 Degree-Sign C is hereby reported. By annealing in O{sub 2} environment the UV emission is enhanced with diminishing deep level emission suggesting that most of the deep level emission is due to oxygen vacancies. The photoluminescence was investigated from 10 K to room temperature. The low temperature photoluminescence spectrum is dominated by donor-bound exciton. The activation energy and binding energy of shallow donors giving rise to bound exciton emission were calculated to be around 13.2 meV, 46 meV, respectively. Depending on these energy values and nature of growth environment, hydrogen is suggested to be the possible contaminating element acting as a donor.

  14. Photoluminescence study of aligned ZnO nanorods grown using chemical bath deposition

    International Nuclear Information System (INIS)

    The photoluminescence study of self-assembled ZnO nanorods grown on a pre-treated Si substrate by a simple chemical bath deposition method at a temperature of 80 °C is hereby reported. By annealing in O2 environment the UV emission is enhanced with diminishing deep level emission suggesting that most of the deep level emission is due to oxygen vacancies. The photoluminescence was investigated from 10 K to room temperature. The low temperature photoluminescence spectrum is dominated by donor-bound exciton. The activation energy and binding energy of shallow donors giving rise to bound exciton emission were calculated to be around 13.2 meV, 46 meV, respectively. Depending on these energy values and nature of growth environment, hydrogen is suggested to be the possible contaminating element acting as a donor.

  15. The structural properties of CdS deposited by chemical bath deposition and pulsed direct current magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Lisco, F., E-mail: F.Lisco@lboro.ac.uk [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire, LE11 3TU (United Kingdom); Kaminski, P.M.; Abbas, A.; Bass, K.; Bowers, J.W.; Claudio, G. [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire, LE11 3TU (United Kingdom); Losurdo, M. [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR, via Orabona 4, 70126 Bari (Italy); Walls, J.M. [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire, LE11 3TU (United Kingdom)

    2015-05-01

    Cadmium sulphide (CdS) thin films were deposited by two different processes, chemical bath deposition (CBD), and pulsed DC magnetron sputtering (PDCMS) on fluorine doped-tin oxide coated glass to assess the potential advantages of the pulsed DC magnetron sputtering process. The structural, optical and morphological properties of films obtained by CBD and PDCMS were investigated using X-ray photoelectron spectroscopy, X-ray diffraction, scanning and transmission electron microscopy, spectroscopic ellipsometry and UV-Vis spectrophotometry. The as-grown films were studied and comparisons were drawn between their morphology, uniformity, crystallinity, and the deposition rate of the process. The highest crystallinity is observed for sputtered CdS thin films. The absorption in the visible wavelength increased for PDCMS CdS thin films, due to the higher density of the films. The band gap measured for the as-grown CBD-CdS is 2.38 eV compared to 2.34 eV for PDCMS-CdS, confirming the higher density of the sputtered thin film. The higher deposition rate for PDCMS is a significant advantage of this technique which has potential use for high rate and low cost manufacturing. - Highlights: • Pulsed DC magnetron sputtering (PDCMS) of CdS films • Chemical bath deposition of CdS films • Comparison between CdS thin films deposited by chemical bath and PDCMS techniques • High deposition rate deposition for PDCMS deposition • Uniform, pinhole free CdS thin films.

  16. CdS thin films prepared by laser assisted chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, L.V.; Mendivil, M.I.; Garcia Guillen, G.; Aguilar Martinez, J.A. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); Krishnan, B. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); CIIDIT – Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico); Avellaneda, D.; Castillo, G.A.; Das Roy, T.K. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); Shaji, S., E-mail: sshajis@yahoo.com [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); CIIDIT – Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico)

    2015-05-01

    Highlights: • CdS thin films by conventional CBD and laser assisted CBD. • Characterized these films using XRD, XPS, AFM, optical and electrical measurements. • Accelerated growth was observed in the laser assisted CBD process. • Improved dark conductivity and good photocurrent response for the LACBD CdS. - Abstract: In this work, we report the preparation and characterization of CdS thin films by laser assisted chemical bath deposition (LACBD). CdS thin films were prepared from a chemical bath containing cadmium chloride, triethanolamine, ammonium hydroxide and thiourea under various deposition conditions. The thin films were deposited by in situ irradiation of the bath using a continuous laser of wavelength 532 nm, varying the power density. The thin films obtained during deposition of 10, 20 and 30 min were analyzed. The changes in morphology, structure, composition, optical and electrical properties of the CdS thin films due to in situ irradiation of the bath were analyzed by atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV–vis spectroscopy. The thin films obtained by LACBD were nanocrystalline, photoconductive and presented interesting morphologies. The results showed that LACBD is an effective synthesis technique to obtain nanocrystalline CdS thin films having good optoelectronic properties.

  17. CdS thin films prepared by laser assisted chemical bath deposition

    International Nuclear Information System (INIS)

    Highlights: • CdS thin films by conventional CBD and laser assisted CBD. • Characterized these films using XRD, XPS, AFM, optical and electrical measurements. • Accelerated growth was observed in the laser assisted CBD process. • Improved dark conductivity and good photocurrent response for the LACBD CdS. - Abstract: In this work, we report the preparation and characterization of CdS thin films by laser assisted chemical bath deposition (LACBD). CdS thin films were prepared from a chemical bath containing cadmium chloride, triethanolamine, ammonium hydroxide and thiourea under various deposition conditions. The thin films were deposited by in situ irradiation of the bath using a continuous laser of wavelength 532 nm, varying the power density. The thin films obtained during deposition of 10, 20 and 30 min were analyzed. The changes in morphology, structure, composition, optical and electrical properties of the CdS thin films due to in situ irradiation of the bath were analyzed by atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV–vis spectroscopy. The thin films obtained by LACBD were nanocrystalline, photoconductive and presented interesting morphologies. The results showed that LACBD is an effective synthesis technique to obtain nanocrystalline CdS thin films having good optoelectronic properties

  18. Direct electroless Ni-P deposition on AM50 magnesium alloy from sulfate bath

    Institute of Scientific and Technical Information of China (English)

    LI Guang-yu; NIU Li-yuan; JIANG Zhong-hao; GU Chang-dong; LIAN Jian-she

    2006-01-01

    A bright electroless Ni-P deposition on AM50 magnesium alloy in a sulfate plating bath was proposed by using direct plating process with non-chromate pretreatment. The electroless Ni-P plating on AM50 magnesium alloy has an admirable appearance and good adhesion. The results indicate that the electroless Ni-P deposition with non-chromate pretreatment has better adhesion than that of zinc immersion coating. Anodic polarization curves indicate that the electroless Ni-P deposition obtained from the sulfate bath has similar corrosion-resistance to that obtained from basic nickel carbonate bath. The deposition process generates less pollutant by a non-chromate plating bath and is suitable for the magnesium alloys manufacture because of its low cost. The hardness of the electroless Ni-P plated AM50 is about HV 720.6 and HV 969.7 after heat treatments at 180 ℃ for 2 h. The wear resistance of Ni-P plated magnesium alloy specimens is about 5 to 9 times as high as that of bare magnesium alloys.

  19. Chemical bath deposited CdS films using magnetic treated solutions

    International Nuclear Information System (INIS)

    CdS thin films were obtained by chemical bath deposition onto corning glass slides using precursor solutions previously treated in a steady magnetic field. The kinetic growth was affected in dependence of the magnetic field intensity used in the solution treatments. The growth rate is slower when magnetized solutions are used; however, the reaction exhaustion is more delayed. The magnetic treatments improve the conversion of starting materials in thin films. Thus, the bath is more efficient and thicker films can be obtained. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Dual Bath Electrodeposition of Alternate Multilayer Coatings of Zinc and Nickel Deposits

    Institute of Scientific and Technical Information of China (English)

    XIN Wen-li; FEI Jing-yin; LIANG Guo-zheng

    2004-01-01

    The synthesis of zinc and nickel alternate multilayer coatings produced by successive deposition from dual baths containing a revised zinc sulphate electrolyte and a new developed nickel bath has been investigated. Smooth and uniform zinc-nickel compositionally modulated multilayered (CMM) coatings with different multilayer configurations were obtained. The surface and cross-sectional morphologies of samples were examined using scanning electron microscopy (SEM). Cross-sectional morphology showed the layered structure of the coatings clearly.Key Words: multilayer coating, electrodeposited zinc and nickel, electrodeposition

  1. CdS thin films growth by ammonia free chemical bath deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Jaber, A.Y.; Alamri, S.N.; Aida, M.S., E-mail: aida_salah2@yahoo.fr

    2012-02-29

    Cadmium Sulfide CdS thin films were deposited by chemical bath deposition technique using ethanolamine as complexing agent instead of commonly used ammonia to avoid its toxicity and volatility during film preparation. In order to investigate the film growth mechanism samples were prepared with different deposition times. A set of substrates were dropped in the same bath and each 30 minutes a sample is withdrawn from the bath, by this way all the obtained films were grown in the same condition. The films structure was analyzed by X rays diffraction. In early stage of growth the obtained films are amorphous, with increasing the deposition time, the films exhibits a pure hexagonal structure with (101) preferential orientation. The film surface morphology was studied by atomic force microscopy. From these observations we concluded that the early growth stage starts in the 3D Volmer-Weber mode, followed by a transition to the Stransky-Krastanov mode with increasing deposition time. The critical thickness of this transition is 120 nm. CdS quantum dots were formed at end of the film growth. The optical transmittance characterization in the UV-Visible range shows that the prepared films have a high transparency ranging from 60 to 80% for photons having wavelength greater than 600 nm. - Highlights: Black-Right-Pointing-Pointer CdS thin films are deposited by ammonia-free chemical bath deposition. Black-Right-Pointing-Pointer Films have hexagonal structure with (101) preferential orientation. Black-Right-Pointing-Pointer Growth begins in the Volmer-Weber mode and changes to the Stransky-Krastanov mode. Black-Right-Pointing-Pointer CdS quantum dots are formed in the late stage of growth.

  2. Electrochromic properties of porous NiO thin films prepared by a chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xia, X.H.; Tu, J.P.; Zhang, J.; Wang, X.L. [Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Zhang, W.K.; Huang, H. [College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032 (China)

    2008-06-15

    Highly porous nickel oxide thin films were prepared on ITO glass by a simple chemical bath deposition (CBD) method in combination with a following heat-treatment process. XRD analysis revealed that the as-deposited precursor film contained {beta}-Ni(OH){sub 2} and {gamma}-NiOOH, and they changed to cubic polycrystalline NiO after annealing. The FTIR results showed presence of free hydroxyl ion and water in the NiO thin films. The electrochromic properties of NiO thin films were investigated in an aqueous alkaline electrolyte (1 M KOH) by means of transmittance, cyclic voltammetry (CV) and chronoamperometry (CA) measurements. The NiO thin film annealed at 300 C exhibited a noticeable electrochromism and good memory effect. The coloration efficiency was calculated to be 42 cm{sup 2} C{sup -1} at 550 nm, with a variation of transmittance up to 82%. The porous NiO thin films also showed good reaction kinetics with fast switching speed, and the coloration and bleaching time were 8 and 10 s, respectively. (author)

  3. Kinetics of electroless Ni-Cu-P deposits on silicon in a basic hypophosphite-type bath

    Institute of Scientific and Technical Information of China (English)

    Wei-Long Liu; Shu-Huei Hsieh; Wen-Jauh Chen

    2009-01-01

    Eleetroless Ni-Cu-P deposits were deposited on the Si substrate in a basic hypophosphite-type plating bath.The effects ofpH value and the metal source composition, Ni and Cu, in the plating bath on the kinetics of the Ni-Cu-P deposition were studied.The electroless Ni-Cu-P deposits were characterized by a scanning electron microscope, a transmission electron microscope, an en-ergy dispersive X-ray spectroscope, and an X-ray diffractometer.The results showed that the pH value of the plating bath had no ob- vious effect on the morphology and composition of electroless Ni-Cu-P deposits.However, the composition of the metal source, Ni and Cu, in the plating bath had great effect on the kinetics of electroless Ni-Cu-P deposition.

  4. Physiological functions of the effects of the different bathing method on recovery from local muscle fatigue

    Directory of Open Access Journals (Sweden)

    Lee Soomin

    2012-09-01

    Full Text Available Abstract Background Recently, mist saunas have been used in the home as a new bathing style in Japan. However, there are still few reports on the effects of bathing methods on recovery from muscle fatigue. Furthermore, the effect of mist sauna bathing on human physiological function has not yet been revealed. Therefore, we measured the physiological effects of bathing methods including the mist sauna on recovery from muscle fatigue. Methods The bathing methods studied included four conditions: full immersion bath, shower, mist sauna, and no bathing as a control. Ten men participated in this study. The participants completed four consecutive sessions: a 30-min rest period, a 10-min all out elbow flexion task period, a 10-min bathing period, and a 10-min recovery period. We evaluated the mean power frequency (MNF of the electromyogram (EMG, rectal temperature (Tre, skin temperature (Tsk, skin blood flow (SBF, concentration of oxygenated hemoglobin (O2Hb, and subjective evaluation. Results We found that the MNF under the full immersion bath condition was significantly higher than those under the other conditions. Furthermore, Tre, SBF, and O2Hb under the full immersion bath condition were significantly higher than under the other conditions. Conclusions Following the results for the full immersion bath condition, the SBF and O2Hb of the mist sauna condition were significantly higher than those for the shower and no bathing conditions. These results suggest that full immersion bath and mist sauna are effective in facilitating recovery from muscle fatigue.

  5. Chemical bath deposition and characterization of electrochromic thin films of sodium vanadium bronzes

    Energy Technology Data Exchange (ETDEWEB)

    Najdoski, Metodija, E-mail: metonajd@yahoo.com [Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Sts. Cyril and Methodius University, POB 162, Arhimedova 5, 1000 Skopje, Republic of Macedonia (Macedonia, The Former Yugoslav Republic of); Koleva, Violeta [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Demiri, Sani [Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Sts. Cyril and Methodius University, POB 162, Arhimedova 5, 1000 Skopje, Republic of Macedonia (Macedonia, The Former Yugoslav Republic of)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer We report a new chemical bath method for the deposition of vanadium bronze thin films. Black-Right-Pointing-Pointer The films are phase mixture of NaV{sub 6}O{sub 15} and Na{sub 1.1}V{sub 3}O{sub 7.9} with 10.58% lattice water. Black-Right-Pointing-Pointer The as-deposited vanadium bronze films exhibit two-step electrochromism. Black-Right-Pointing-Pointer They change their yellow-orange color to green and then from green to blue color. Black-Right-Pointing-Pointer The method allows the preparation of films on substrates with low melting point. -- Abstract: Thin yellow-orange films of sodium vanadium oxide bronzes have been prepared from a sodium-vanadium solution (1:1) at 75 Degree-Sign C and pH = 3. The composition, structure and morphology of the films have been studied by XRD, IR spectroscopy, TG and SEM-EDX analyses. It has been established that the prepared films are a phase mixture of hydrated NaV{sub 6}O{sub 15} (predominant component) and Na{sub 1.1}V{sub 3}O{sub 7.9} with total water content of 10.58%. The sodium vanadium bronze thin films exhibit two-step electrochromism followed by color change from yellow-orange to green, and then from green to blue. The cyclic voltammetry measurements on the as-deposited and annealed vanadium bronze films reveal the existence of different oxidation/reduction vanadium sites which make these films suitable for electrochromic devices. The annealing of the films at 400 Degree-Sign C changes the composition, optical and electrochemical properties.

  6. Chemical bath deposition and characterization of electrochromic thin films of sodium vanadium bronzes

    International Nuclear Information System (INIS)

    Highlights: ► We report a new chemical bath method for the deposition of vanadium bronze thin films. ► The films are phase mixture of NaV6O15 and Na1.1V3O7.9 with 10.58% lattice water. ► The as-deposited vanadium bronze films exhibit two-step electrochromism. ► They change their yellow-orange color to green and then from green to blue color. ► The method allows the preparation of films on substrates with low melting point. -- Abstract: Thin yellow-orange films of sodium vanadium oxide bronzes have been prepared from a sodium–vanadium solution (1:1) at 75 °C and pH = 3. The composition, structure and morphology of the films have been studied by XRD, IR spectroscopy, TG and SEM–EDX analyses. It has been established that the prepared films are a phase mixture of hydrated NaV6O15 (predominant component) and Na1.1V3O7.9 with total water content of 10.58%. The sodium vanadium bronze thin films exhibit two-step electrochromism followed by color change from yellow-orange to green, and then from green to blue. The cyclic voltammetry measurements on the as-deposited and annealed vanadium bronze films reveal the existence of different oxidation/reduction vanadium sites which make these films suitable for electrochromic devices. The annealing of the films at 400 °C changes the composition, optical and electrochemical properties

  7. Effect of Bath ph on Electroless Ni-P Coating Deposited on Open-Cell Aluminum Foams

    Science.gov (United States)

    Liu, Jiaan; Si, Fujian; Li, Dong; Liu, Yan; Cao, Zheng; Wang, Guoyong

    2015-09-01

    Different electroless Ni-P coatings were deposited on open-cell aluminum foams at various bath pH. The effect of bath pH on the morphology, structure, components, phases and corrosion resistance of the Ni-P coating was studied by scanning electron microscopy (SEM), confocal laser scanning microscope (CLSM), energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), immersion test and electrochemical polarization measurement, respectively. The experimental results show that the bath pH not only changed the reactivity of the bath, but also had a influence on the microstructure and anticorrosive property of electroless Ni-P coating. The high pH bath raises the thickness of Ni-P coating but decreases the content of phosphorus element in the Ni-P coating. The corrosion resistance of the coated aluminum foams increases when the bath pH rises.

  8. ZnS thin film deposited with chemical bath deposition process directed by different stirring speeds

    International Nuclear Information System (INIS)

    In this combined film thickness, scanning electron microscopy (SEM), X-ray diffraction and optical properties study, we explore the effects of different stirring speeds on the growth and optical properties of ZnS film deposited by CBD method. From the disclosed changes of thickness of ZnS film, we conclude that film thickness is independent of the stirring speeds in the heterogeneous process (deposition time less than 40 min), but increases with the stirring speeds and/or deposition time increasing in the homogeneous process. Grazing incident X-ray diffraction (GIXRD) and the study of optical properties disclosed that the ZnS films grown with different stirring speeds show partially crystallized film and exhibit good transmittance (70-88% in the visible region), but the stirring speeds cannot give much effects on the structure and optical properties in the homogeneous process.

  9. Characterization of CuInS2 thin films prepared by chemical bath deposition and their implementation in a solar cell

    International Nuclear Information System (INIS)

    CuInS2 thin films were formed by the sequential deposition of In2S3–CuS layers on glass substrates, by chemical bath deposition technique, and heating these multilayer 1 h at 350 °C and 400 mPa. The morphology and thickness of the CuInS2 thin films were analysed by scanning electron microscopy, showing particles with elongated shape and length about 40 nm, and thickness of 267 and 348 nm for samples from 15 and 24 h of deposition time in the chemical bath of In2S3, respectively. The energy band gap values of the films were around 1.4 eV, whereas the electrical conductivity showed values from 64.91 to 4.11 × 10−3 Ω−1 cm−1 for the samples of 15 and 24 h of In2S3 deposition bath, respectively. The obtained CuInS2 films showed appropriate values for their application as an absorbing layer in photovoltaic structures of the type: glass/SnO2:F/CdS/Sb2S3/CuInS2/PbS/C/Ag. The whole structure was obtained through chemical bath deposition technique. The solar cell corresponding to 15 h of In2S3 deposition duration bath showed energy-conversion efficiency (η) of 0.53% with open circuit voltage (Voc) of 530 mV, short circuit current density (Jsc) of 2.43 mA cm−2, and fill factor (FF) of 0.41. In the case of the structure with 24 h of deposition of In2S3 bath, η = 0.43% was measured with the following parameters: Voc = 330 mV, Jsc = 4.78 mA cm−2 and FF = 0.27. - Highlights: • CuInS2 films were formed by chemical bath deposition followed by a heat treatment. • Prepared CuInS2 thin films can work as an effective absorbing layer in a solar cell. • A complete solar cell structure was made by a chemical bath deposition method

  10. Characterization of CuInS{sub 2} thin films prepared by chemical bath deposition and their implementation in a solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Lugo, S.; López, I. [Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Laboratorio de Materiales I, Av. Universidad, Cd. Universitaria 66451, San Nicolás de los Garza, Nuevo León, México (Mexico); Peña, Y., E-mail: yolapm@gmail.com [Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Laboratorio de Materiales I, Av. Universidad, Cd. Universitaria 66451, San Nicolás de los Garza, Nuevo León, México (Mexico); Calixto, M. [Instituto de Energías Renovables, Universidad Nacional Autónoma de México, C.P. 62580, Temixco, Morelos, México (Mexico); Hernández, T. [Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Laboratorio de Materiales I, Av. Universidad, Cd. Universitaria 66451, San Nicolás de los Garza, Nuevo León, México (Mexico); Messina, S. [Universidad Autónoma de Nayarit, Ciudad de la Cultura “Amado Nervo”, S/N C.P. 63155, Tepic, Nayarit, México (Mexico); and others

    2014-10-31

    CuInS{sub 2} thin films were formed by the sequential deposition of In{sub 2}S{sub 3}–CuS layers on glass substrates, by chemical bath deposition technique, and heating these multilayer 1 h at 350 °C and 400 mPa. The morphology and thickness of the CuInS{sub 2} thin films were analysed by scanning electron microscopy, showing particles with elongated shape and length about 40 nm, and thickness of 267 and 348 nm for samples from 15 and 24 h of deposition time in the chemical bath of In{sub 2}S{sub 3}, respectively. The energy band gap values of the films were around 1.4 eV, whereas the electrical conductivity showed values from 64.91 to 4.11 × 10{sup −3} Ω{sup −1} cm{sup −1} for the samples of 15 and 24 h of In{sub 2}S{sub 3} deposition bath, respectively. The obtained CuInS{sub 2} films showed appropriate values for their application as an absorbing layer in photovoltaic structures of the type: glass/SnO{sub 2}:F/CdS/Sb{sub 2}S{sub 3}/CuInS{sub 2}/PbS/C/Ag. The whole structure was obtained through chemical bath deposition technique. The solar cell corresponding to 15 h of In{sub 2}S{sub 3} deposition duration bath showed energy-conversion efficiency (η) of 0.53% with open circuit voltage (V{sub oc}) of 530 mV, short circuit current density (J{sub sc}) of 2.43 mA cm{sup −2}, and fill factor (FF) of 0.41. In the case of the structure with 24 h of deposition of In{sub 2}S{sub 3} bath, η = 0.43% was measured with the following parameters: V{sub oc} = 330 mV, J{sub sc} = 4.78 mA cm{sup −2} and FF = 0.27. - Highlights: • CuInS{sub 2} films were formed by chemical bath deposition followed by a heat treatment. • Prepared CuInS{sub 2} thin films can work as an effective absorbing layer in a solar cell. • A complete solar cell structure was made by a chemical bath deposition method.

  11. High quality antireflective ZnS thin films prepared by chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tec-Yam, S.; Rojas, J.; Rejon, V. [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Merida, Departamento de Fisica Aplicada, Km. 6 Antigua Carretera a Progreso, AP 73-Cordemex, 97310 Merida Yucatan (Mexico); Oliva, A.I., E-mail: oliva@mda.cinvestav.mx [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Merida, Departamento de Fisica Aplicada, Km. 6 Antigua Carretera a Progreso, AP 73-Cordemex, 97310 Merida Yucatan (Mexico)

    2012-10-15

    Zinc sulfide (ZnS) thin films for antireflective applications were deposited on glass substrates by chemical bath deposition (CBD). Chemical analysis of the soluble species permits to predict the optimal pH conditions to obtain high quality ZnS films. For the CBD, the ZnCl{sub 2}, NH{sub 4}NO{sub 3}, and CS(NH{sub 2}){sub 2} were fixed components, whereas the KOH concentration was varied from 0.8 to 1.4 M. Groups of samples with deposition times from 60 to 120 min were prepared in a bath with magnetic agitation and heated at 90 Degree-Sign C. ZnS films obtained from optimal KOH concentrations of 0.9 M and 1.0 M exhibited high transparency, homogeneity, adherence, and crystalline. The ZnS films presented a band gap energy of 3.84 eV, an atomic Zn:S stoichiometry ratio of 49:51, a transmittance above 85% in the 300-800 nm wavelength range, and a reflectance below 25% in the UV-Vis range. X-ray diffraction analysis revealed a cubic structure in the (111) orientation for the films. The thickness of the films was tuned between 60 nm and 135 nm by controlling the deposition time and KOH concentration. The incorporation of the CBD-ZnS films into ITO/ZnS/CdS/CdTe and glass/Mo/ZnS heterostructures as antireflective layer confirms their high optical quality. -- Highlights: Black-Right-Pointing-Pointer High quality ZnS thin films were prepared by chemical bath deposition (CBD). Black-Right-Pointing-Pointer Better CBD-ZnS films were achieved by using 0.9 M-KOH concentration. Black-Right-Pointing-Pointer Reduction in the reflectance was obtained for ZnS films used as buffer layers.

  12. Dynamic scaling and optical properties of Zn(S, O,OH) thin film grown by chemical bath deposition

    Institute of Scientific and Technical Information of China (English)

    Zhang Yi; Li Bo-Yan; Dang Xiang-Yu; Wu Li; Jin Jing; Li Feng-Yan; Ao Jian-Ping; Sun Yun

    2011-01-01

    The scaling behavior and optical properties of Zn(S,O and OH) thin films deposited on soda-lime glass substrates by chemical bath deposition method were studied by combined roughness measurements,scanning electron microscopy and optical properties measurement.From the scaling behaviour,the value of growth scaling exponent β,0.38±0.06,was determined.This value indicated that the Zn(S,O,OH) film growth in the heterogeneous process was influenced by the surface diffusion and shadowing effect.Results of the optical properties measurements disclosed that the transmittance of the film was in the region of 70%-88% and the optical properties of the film grown for 40 min were better than those grown under other conditions.The energy band gap of the film deposited with 40 min was around 3.63 eV.

  13. Optical and Structural Properties of Nanocrystalline CdS Thin Films Grown by Chemical Bath Deposition

    International Nuclear Information System (INIS)

    Nanocrystalline cadmium sulfide thin films are prepared using chemical bath deposition (CBD) technique in aqueous alkaline bath at 60 degree Celsius and their subsequent condensation on glass substrates. Effects of annealing on structural, morphological and optical properties are presented and discussed. The best annealing temperature for CBD grown CdS films is found to be 350 degree Celsius from optical properties. The optical and structural properties of CdS films are found to be sensitive to annealing temperature and are described in terms of XRD, SEM, transmission spectra and optical studies. The structural parameters such as crystallite size have been evaluated through XRD while SEM micrographs exhibit ordering of grains after annealing. The transmission spectra shift towards higher wavelength upon annealing indicating increase in crystallinity. Annealing over 350 degree Celsius is found to degrade the external structure and optical properties of the film. (author)

  14. Studies of CdS/CdTe interface: Comparison of CdS films deposited by close space sublimation and chemical bath deposition techniques

    International Nuclear Information System (INIS)

    The CdS layers were deposited by two different methods, close space sublimation (CSS) and chemical bath deposition (CBD) technique. The CdS/CdTe interface properties were investigated by transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). The TEM images showed a large CSS-CdS grain size in the range of 70-80 nm. The interface between CSS-CdS and CdTe were clear and sharp, indicating an abrupt hetero-junction. On the other hand, CBD-CdS layer had much smaller grain size in the 5-10 nm range. The interface between CBD-CdS and CdTe was not as clear as CSS-CdS. With the stepwise coverage of CdTe layer, the XPS core levels of Cd 3d and S 2p in CSS-CdS had a sudden shift to lower binding energies, while those core levels shifted gradually in CBD-CdS. In addition, XPS depth profile analyses indicated a strong diffusion in the interface between CBD-CdS and CdTe. The solar cells prepared using CSS-CdS yielded better device performance than the CBD-CdS layer. The relationships between the solar cell performances and properties of CdS/CdTe interfaces were discussed. - Highlights: • Studies of CdS deposited by close space sublimation and chemical bath deposition • An observation of CdS/CdTe interface by transmission electron microscope • A careful investigation of CdS/CdTe interface by X ray photoelectron spectra • An easier diffusion at the chemical bath deposition CdS and CdTe interface

  15. Studies of CdS/CdTe interface: Comparison of CdS films deposited by close space sublimation and chemical bath deposition techniques

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jun-feng, E-mail: pkuhjf@bit.edu.cn [Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Institute of Materials Science, Darmstadt University of Technology, Petersenstr. 23, 64287 Darmstadt (Germany); School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Fu, Gan-hua; Krishnakumar, V.; Schimper, Hermann-Josef [Institute of Materials Science, Darmstadt University of Technology, Petersenstr. 23, 64287 Darmstadt (Germany); Liao, Cheng [Department of Physics, Peking University, Beijing 100871 (China); Jaegermann, Wolfram [Institute of Materials Science, Darmstadt University of Technology, Petersenstr. 23, 64287 Darmstadt (Germany); Besland, M.P. [Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France)

    2015-05-01

    The CdS layers were deposited by two different methods, close space sublimation (CSS) and chemical bath deposition (CBD) technique. The CdS/CdTe interface properties were investigated by transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). The TEM images showed a large CSS-CdS grain size in the range of 70-80 nm. The interface between CSS-CdS and CdTe were clear and sharp, indicating an abrupt hetero-junction. On the other hand, CBD-CdS layer had much smaller grain size in the 5-10 nm range. The interface between CBD-CdS and CdTe was not as clear as CSS-CdS. With the stepwise coverage of CdTe layer, the XPS core levels of Cd 3d and S 2p in CSS-CdS had a sudden shift to lower binding energies, while those core levels shifted gradually in CBD-CdS. In addition, XPS depth profile analyses indicated a strong diffusion in the interface between CBD-CdS and CdTe. The solar cells prepared using CSS-CdS yielded better device performance than the CBD-CdS layer. The relationships between the solar cell performances and properties of CdS/CdTe interfaces were discussed. - Highlights: • Studies of CdS deposited by close space sublimation and chemical bath deposition • An observation of CdS/CdTe interface by transmission electron microscope • A careful investigation of CdS/CdTe interface by X ray photoelectron spectra • An easier diffusion at the chemical bath deposition CdS and CdTe interface.

  16. Improvement of the characteristics of chemical bath deposition-cadmium sulfide films deposited on an O2 plasma-treated polyethylene terephthalate substrate

    International Nuclear Information System (INIS)

    We prepared cadmium sulfide (CdS) films on a polyethylene terephthalate (PET) substrate by a chemical bath deposition (CBD) technique. To improve the adhesion between the CdS film and the PET substrate, the substrate was pre-treated with an O2 plasma by an inductively coupled plasma. The surface characterizations of the pre-treated PET substrate were analyzed by a contact angle measurement and atomic force microscopy. The results showed that that O2 plasma-treated PET films had more hydrophilic surface. The hydrophilic property of the substrate is one of the important factors when a film is prepared by CBD. The structural and the optical properties of the CdS films, deposited on PET substrates, were analyzed by using a scanning electron microscope, X-ray diffraction and a UV–visible spectrophotometer. The CdS films were formed on a compact and granular structure. The optical transmittance was also improved. Therefore, the O2 plasma treatment of a PET surface is an effective method of preparing CdS films deposited on substrates by CBD. - Highlights: • Chemical bath deposition of CdS film for flexible solar cells • O2 plasma treatment improved adhesion between the CdS and polymer substrate • Identification of best fabrication condition of CdS window layers for flexible solar cells

  17. Low-temperature chemical bath deposition of crystalline ZnO

    Science.gov (United States)

    Jacobs, Klaus; Balitsky, Denis; Armand, Pascale; Papet, Philippe

    2010-03-01

    ZnO crystals can be grown from alkaline aqueous solution not only by the standard hydrothermal technique at temperatures between 350 °C and 400 °C, but also by chemical bath deposition (CBD) at temperatures below 100 °C. In the presence of ZnO and ScAlMgO 4 (SCAM) substrates almost all ZnO deposits on the substrate, with different habits, however. Under optimized conditions even homoepitaxial layers can be obtained, while rod-like structures are obtained on SCAM substrates. The chemistry and the driving forces behind the two processes are considered in detail and the temperature dependence of the solution composition has been calculated. The driving force for the ZnO crystal growth in the standard hydrothermal technique is the difference in the ZnO solubility in alkaline solutions at different temperatures. In contrast, the driving force for the chemical bath deposition of ZnO at low temperatures is the decay of zinc ion complex molecules with increasing temperature.

  18. Morphological and stoichiometric study of chemical bath deposited CdS films by varying ammonia concentration

    International Nuclear Information System (INIS)

    The influence of ammonia concentration on stoichiometric, surface morphological, and optical properties of chemical bath deposited cadmium sulphide thin films has been studied systemically. Chemical bath deposition (CBD) of CdS thin films was carried out via using cadmium acetate as the cadmium ion source, thiourea as the sulphur source and ammonia as the complexing agent. Ammonia concentration was changed from 0 to 2.5 M. At ammonia concentration greater than or equal to 0.1 M and lower than 0.6 M, nanowires or flake-like structures were obtained. At ammonia concentration ranging from 0.8 to 2.0 M, uniform, dense, and continuously coated films were obtained. The energy dispersive X-ray spectroscopy (EDXS) analysis revealed that as the ammonia concentration changed from 0.1 to 2.0 M, the Cd/S ratio in the obtained film increased from 0.24 to 2.61. Not only typical cadmium-poor but also unusual sulphur deficiency phenomena were observed for CBD CdS thin films. The films deposited with ammonia concentration of 1.0 M show the highest degree of crystallinity and closest stoichiometry Cd/S≅1, and have a preferred orientation. The direct band energy gaps of as-grown films were found to be 2.23-2.77 eV. The formation mechanism of the films with various morphologies and cadmium and sulphur deficiencies are discussed.

  19. Chemical Bath Deposition of PbS:Hg2+ Nanocrystalline Thin Films

    OpenAIRE

    R. Palomino-Merino; O. Portillo-Moreno; L. A. Chaltel-Lima; Gutiérrez Pérez, R.; de Icaza-Herrera, M.; V. M. Castaño

    2013-01-01

    Nanocrystalline PbS thin films were prepared by Chemical Bath Deposition (CBD) at 40 ± 2°C onto glass substrates and their structural and optical properties modified by in-situ doping with Hg. The morphological changes of the layers were analyzed using SEM and the X-rays spectra showing growth on the zinc blende (ZB) face. The grain size determined by using X-rays spectra for undoped samples was found to be ~36 nm, whereas with the doped sample was 32–20 nm. Optical absorption spectra were us...

  20. Growth and characterization of chemical bath deposited Cd{sub 1-x}Zn{sub x}S thin films

    Energy Technology Data Exchange (ETDEWEB)

    Mariappan, R. [Department of Physics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641020 (India); Ragavendar, M. [Department of Physics, RVS College of Engineering and Technology, Coimbatore 641 042 (India); Ponnuswamy, V., E-mail: marijpr@gmail.com [Department of Physics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641020 (India)

    2011-07-07

    Highlights: > In this study we examine the Cd{sub 1-x}Zn{sub x}S thin films prepared at Chemical bath deposition method. This method used because it is a simple and economic and viable technique, which produces films of good quality for device application. > In this study we conclude that chemical bath deposition technique is suitable for the preparation of smooth and uniform films suitable for sensors and solar cells > X-ray is a good way for crystal structure characterization > - Abstract: Cd{sub 1-x}Zn{sub x}S (0 {<=} x {<=} 1) thin films have been deposited by chemical bath deposition method on glass substrates from aqueous solution containing cadmium acetate, zinc acetate and thiourea at 80 {+-} 5 deg. C and after annealed at 350 deg. C. The structural, morphological, compositional and optical properties of the deposited Cd{sub 1-x}Zn{sub x}S thin films have been studied by X-ray diffractometer, scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), photoluminescence (PL) and UV-vis spectrophotometer, respectively. X-ray diffraction analysis shows that for x < 0.8, the crystal structure of Cd{sub 1-x}Zn{sub x}S thin films was hexagonal structure. For x > 0.6, however, the Cd{sub 1-x}Zn{sub x}S films were grown with cubic structure. Annealing the samples at 350 deg. C in air for 45 min resulted in increase in intensity as well as a shift towards lower scattering angles. The parameters such as crystallite size, strain, dislocation density and texture coefficient are calculated from X-ray diffraction studies. SEM studies reveal the formation of Cd{sub 1-x}Zn{sub x}S films with uniformly distributed grains over the entire surface of the substrate. The EDX analysis shows the content of atomic percentage. Optical method was used to determine the band gap of the films. The photoluminescence spectra of films have been studied and the results are discussed.

  1. Fabrication and characterization of indium sulfide thin films deposited on SAMs modified substrates surfaces by chemical bath deposition

    International Nuclear Information System (INIS)

    In an effort to explore the optoelectronic properties of nanostructured indium sulfide (In2S3) thin films for a wide range of applications, the In2S3 thin films were successfully deposited on the APTS layers (-NH2-terminated) modified ITO glass substrates using the chemical bath deposition technique. The surface morphology, structure and composition of the resultant In2S3 thin films were characterized by FESEM, XRD, and XPS, respectively. Also, the correlations between the optical properties, photocurrent response and the thickness of thin films were established. According to the different deposition mechanisms on the varying SAMs terminational groups, the positive and negative micropatterned In2S3 thin films were successfully fabricated on modified Si substrates surface combining with the ultraviolet lithography process. This offers an attractive opportunity to fabricate patterned In2S3 thin films for controlling the spatial positioning of functional materials in microsystems.

  2. Chemical bath deposition of CdS thin films doped with Zn and Cu

    Indian Academy of Sciences (India)

    A I Oliva; J E Corona; R Patiño; A I Oliva-Avilés

    2014-04-01

    Zn- and Cu-doped CdS thin films were deposited onto glass substrates by the chemical bath technique. ZnCl2 and CuCl2 were incorporated as dopant agents into the conventional CdS chemical bath in order to promote the CdS doping process. The effect of the deposition time and the doping concentration on the physical properties of CdS films were investigated. The morphology, thickness, bandgap energy, crystalline structure and elemental composition of Zn- and Cu-doped CdS films were investigated and compared to the undoped CdS films properties. Both Zn- and Cu-doped CdS films presented a cubic crystalline structure with (1 1 1) as the preferential orientation. Lower values of the bandgap energy were observed for the doped CdS films as compared to those of the undoped CdS films. Zn-doped CdS films presented higher thickness and roughness values than those of Cu-doped CdS films. From the photoluminescence results, it is suggested that the inclusion of Zn and Cu into CdS crystalline structure promotes the formation of acceptor levels above the CdS valence band, resulting in lower bandgap energy values for the doped CdS films.

  3. Chemical bath deposition of Cu3BiS3 thin films

    Science.gov (United States)

    Deshmukh S., G.; Panchal A., K.; Vipul, Kheraj

    2016-05-01

    First time, copper bismuth sulfide (Cu3BiS3) thin films were synthesized on the glass substrate using simple, low-cost chemical bath deposition (CBD) technique. The synthesized parameters such as temperature of bath, pH and concentration of precursors were optimized for the deposition of uniform, well adherent Cu3BiS3 thin films. The optical, surface morphology and structural properties of the Cu3BiS3 thin films were studied using UV-VIS-NIR spectra, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The as- synthesized Cu3BiS3 film exhibits a direct band gap 1.56 to 1.58 eV having absorption coefficient of the order of 105 cm-1. The XRD declares the amorphous nature of the films. SEM images shows films were composed of close-packed fine spherical nanoparticles of 70-80 nm in diameter. The chemical composition of the film was almost stoichiometric. The optical study indicates that the Cu3BiS3 films can be applied as an absorber layer for thin film solar cells.

  4. Synthesis and Characterization of SnO2 Thin Films by Chemical Bath Deposition

    Science.gov (United States)

    Rifai, Aditia; Iqbal, Muhammad; Nugraha; Nuruddin, Ahmad; Suyatman; Yuliarto, Brian

    2011-12-01

    SnO2 thin films were deposited on glass substrate by chemical bath deposition (CBD) with stannous chloride (SnCl2..2H2O) as a precursor and urea (CO(NH2)2) as a buffer. X-Ray Diffraction (XRD) are used to characterize the structure of the films; the surface morphology of the films were observed by Scanning Electron Microscope (SEM). Using this techniques, we specify the effect of stannous chloride concentration and weight ratio of urea/H2O on the crystallinity and morphology of these films. The rutile structure corresponding (110), (101) and (211) planes of SnO2 is obtained. The increasing of stannous chloride concentration and the decreasing weight ratio of urea/H2O is found to improve the crystallinity of the film. The average diameter of grain size is about 96 nm.

  5. Studying bath exhaustion as a method to apply microcapsules on fabrics

    OpenAIRE

    Bonet Aracil, María Angeles; Capablanca Francés, Lucía; MONLLOR PÉREZ Pablo; DÍAZ GARCÍA Pablo; Montava Seguí, Ignacio José

    2012-01-01

    [EN] Textile industry is one of the fields that have increased their consumption of microcapsules. They can be applied to textiles using different methods, such as, padding, bath exhaustion, spraying and foaming. Although the most extended industrial application is by padding, commercial brands also suggest bath exhaustion as a possible procedure. In the research reported herein, bath exhaustion treatments are compared to padding. X-ray photoelectronic spectroscopy (XPS) technique showe...

  6. Influence of deposition time on the properties of chemical bath deposited manganese sulfide thin films

    Directory of Open Access Journals (Sweden)

    Anuar Kassim

    2010-12-01

    Full Text Available Manganese sulfide thin films were chemically deposited from an aqueous solution containing manganese sulfate, sodium thiosulfate and sodium tartrate. The influence of deposition time (2, 3, 6 and 8 days on the properties of thin films was investigated. The structure and surface morphology of the thin films were studied by X-ray diffraction and atomic force microscopy, respectively. In addition, in order to investigate the optical properties of the thin films, the UV-visible spectrophotometry was used. The XRD results indicated that the deposited MnS2 thin films exhibited a polycrystalline cubic structure. The number of MnS2 peaks on the XRD patterns initially increased from three to six peaks and then decreased to five peaks, as the deposition time was increased from 2 to 8 days. From the AFM measurements, the film thickness and surface roughness were found to be dependent on the deposition time.

  7. Morphology of CdSe films prepared by chemical bath deposition: The role of substrate

    Energy Technology Data Exchange (ETDEWEB)

    Simurda, M. [Charles University in Prague, Faculty of Mathematics and Physics, Ke Karlovu 3, 121 16 Prague 2 (Czech Republic); Nemec, P. [Charles University in Prague, Faculty of Mathematics and Physics, Ke Karlovu 3, 121 16 Prague 2 (Czech Republic)]. E-mail: nemec@karlov.mff.cuni.cz; Formanek, P. [Institut fuer Strukturphysik, Technische Universitaet Dresden, Zellescher Weg 16, D-01062 Dresden (Germany); Nemec, I. [Charles University in Prague, Faculty of Science, Albertov 6, 128 43 Prague 2 (Czech Republic); Nemcova, Y. [Charles University in Prague, Faculty of Science, Albertov 6, 128 43 Prague 2 (Czech Republic); Maly, P. [Charles University in Prague, Faculty of Mathematics and Physics, Ke Karlovu 3, 121 16 Prague 2 (Czech Republic)

    2006-07-26

    We combine optical spectroscopy and transmission electron microscopy to study the growth and the structural morphology of CdSe films prepared by chemical bath deposition (CBD) on two considerably different substrates. The films grown on glass are compact and strongly adherent to the substrate. On the contrary, the films deposited on carbon-coated glass (with approx. 20 nm thick amorphous carbon layer) are only loosely adherent to the substrate. Using transmission electron microscopy we revealed that even though the films grown on both substrates are assembled from closely spaced nanocrystals with diameter of about 5 nm, the films morphology on the sub-micrometer scale is considerably different in the two cases. While the films deposited on glass are rather compact, the films prepared on carbon layer have high porosity and are formed by interconnected spheres which size is dependent on the duration of deposition (e.g. 155 nm for 6 h and 350 nm for 24 h). This shows that the choice of the substrate for CBD has a stronger influence on the sub-micrometer film morphology than on the properties of individual nanocrystals forming the film.

  8. Morphology of CdSe films prepared by chemical bath deposition: The role of substrate

    International Nuclear Information System (INIS)

    We combine optical spectroscopy and transmission electron microscopy to study the growth and the structural morphology of CdSe films prepared by chemical bath deposition (CBD) on two considerably different substrates. The films grown on glass are compact and strongly adherent to the substrate. On the contrary, the films deposited on carbon-coated glass (with approx. 20 nm thick amorphous carbon layer) are only loosely adherent to the substrate. Using transmission electron microscopy we revealed that even though the films grown on both substrates are assembled from closely spaced nanocrystals with diameter of about 5 nm, the films morphology on the sub-micrometer scale is considerably different in the two cases. While the films deposited on glass are rather compact, the films prepared on carbon layer have high porosity and are formed by interconnected spheres which size is dependent on the duration of deposition (e.g. 155 nm for 6 h and 350 nm for 24 h). This shows that the choice of the substrate for CBD has a stronger influence on the sub-micrometer film morphology than on the properties of individual nanocrystals forming the film

  9. Electroless Ni-P Deposition on Magnesium Alloy from a Sulfate Bath

    Institute of Scientific and Technical Information of China (English)

    LI Guangyu; NIU Liyuan; JIANG Qing; JIANG Zhonghao; LIAN Jianshe

    2008-01-01

    A technology for electroless Ni-P deposition on AZ91D from a low cost plating bath containing sulfate nickel was proposed.The seal pretreatment was employed before the electroless Ni-P deposition for the sake of occluding the micro holes of the cast magnesium alloy and interdicting the bubble formation in the Ni-P coating during plating process.And pickling pretreatment can provide a better adhesion between the Ni-P deposition and AZ91D substrate.The deposition speed of the Ni-P coating is 29 um/h.The technology is employed to AZ91D magnesium alloy automobile parts and can provide high hardness and high wear-resistant.The weight losses of Ni-P plated and heat-treated Ni-P plated magnesium alloy specimen are only about I/6 and 1/10 that of bare magnesium alloy specimen after l0 min abrasion wear,respectively.The hardness of the electroless Ni-P plated brake pedal support brackets is 674.1 VHN and 935.7 VHN after 2 hours heat treatments at 180 C.The adhesion of Ni-P coatings on magnesium alloy substrates meets the demands of ISO Standards 2819.The technology is environment friendly and cannot cause hazard to environment because of absence of chromate in the whole process.

  10. Combinatorial Chemical Bath Deposition of CdS Contacts for Chalcogenide Photovoltaics.

    Science.gov (United States)

    Mokurala, Krishnaiah; Baranowski, Lauryn L; de Souza Lucas, Francisco W; Siol, Sebastian; van Hest, Maikel F A M; Mallick, Sudhanshu; Bhargava, Parag; Zakutayev, Andriy

    2016-09-12

    Contact layers play an important role in thin film solar cells, but new material development and optimization of its thickness is usually a long and tedious process. A high-throughput experimental approach has been used to accelerate the rate of research in photovoltaic (PV) light absorbers and transparent conductive electrodes, however the combinatorial research on contact layers is less common. Here, we report on the chemical bath deposition (CBD) of CdS thin films by combinatorial dip coating technique and apply these contact layers to Cu(In,Ga)Se2 (CIGSe) and Cu2ZnSnSe4 (CZTSe) light absorbers in PV devices. Combinatorial thickness steps of CdS thin films were achieved by removal of the substrate from the chemical bath, at regular intervals of time, and in equal distance increments. The trends in the photoconversion efficiency and in the spectral response of the PV devices as a function of thickness of CdS contacts were explained with the help of optical and morphological characterization of the CdS thin films. The maximum PV efficiency achieved for the combinatorial dip-coating CBD was similar to that for the PV devices processed using conventional CBD. The results of this study lead to the conclusion that combinatorial dip-coating can be used to accelerate the optimization of PV device performance of CdS and other candidate contact layers for a wide range of emerging absorbers. PMID:27479495

  11. Chemical Bath Deposition of PbS:Hg2+ Nanocrystalline Thin Films

    Directory of Open Access Journals (Sweden)

    R. Palomino-Merino

    2013-01-01

    Full Text Available Nanocrystalline PbS thin films were prepared by Chemical Bath Deposition (CBD at 40 ± 2°C onto glass substrates and their structural and optical properties modified by in-situ doping with Hg. The morphological changes of the layers were analyzed using SEM and the X-rays spectra showing growth on the zinc blende (ZB face. The grain size determined by using X-rays spectra for undoped samples was found to be ~36 nm, whereas with the doped sample was 32–20 nm. Optical absorption spectra were used to calculate the Eg, showing a shift in the range 1.4–2.4 eV. Raman spectroscopy exhibited an absorption band ~135 cm−1 displaying only a PbS ZB structure.

  12. Metal-doped ZnS(O) thin films on glass substrates using chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Inamdar, Akbar I.; Lee, Seulgi; Kim, Duhwan [Department of Semiconductor Science, Dongguk University, Seoul 100-715 (Korea, Republic of); Gurav, K.V.; Kim, J.H. [Department of Materials Science and Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Im, Hyunsik, E-mail: hyunsik7@dongguk.edu [Department of Semiconductor Science, Dongguk University, Seoul 100-715 (Korea, Republic of); Jung, Woong [Department of Semiconductor Science, Dongguk University, Seoul 100-715 (Korea, Republic of); Kim, Hyungsang [Department of Physics, Dongguk University, Seoul 100-715 (Korea, Republic of)

    2013-06-30

    Zinc sulfide (ZnS(O)) thin films doped with Mn, Ni, and Co ions are synthesized by chemical bath deposition technique onto glass substrates. X-ray diffraction study reveals that the undoped and metal-doped ZnS(O) films possess a hexagonal wurtzite crystal structure. The morphological change, upon metal-ions doping, from nanorod structures to cluster (Mn doping), compact (Ni doping), and granular shapes (Co doping) is observed. X-ray photoelectron spectroscopy reveals the presence and incorporation of metal ions into ZnS(O) lattice sites and the formation of a metal–ZnS combined structure. The band gap energy of the undoped ZnS(O) film is found to be larger than 4.0 eV, while it is 3.8, 3.7, and 3.6 eV for the Mn–ZnS(O), Ni–ZnS(O), and Co–ZnS(O) films, respectively. All the undoped and metal-doped ZnS(O) samples exhibit blue luminescence, which originates from the surface defects and trap centers. Thus, the photoluminescence (PL) (blue light emission) is due to the radiative recombination from various trap levels (shallow donor levels) to the valence band. The decrease in the PL peak intensity for the doped samples indicates the reduction of surface defects suggesting the incorporation of metal ions into the host lattice of ZnS(O). Based on the PL results, the PL energy-level diagram for the undoped and metal-doped ZnS(O) samples is proposed. - Highlights: • We report on synthesis of metal-doped ZnS (O) using a chemical bath deposition. • Structural properties of metal-doped ZnS films are investigated. • Optical properties of metal-doped ZnS (O) films are studied. • Optical band-gap energies are extracted. • Photoluminescence model for different metal–dopants is presented.

  13. Formation of Hierarchical CuO Nanostructures on Copper Foil by Chemical Bath Deposition for Applications in Superhydrophobic Surfaces

    Directory of Open Access Journals (Sweden)

    Felizco Jenichi Clairvaux

    2016-01-01

    Full Text Available Hierarchical CuO nanostructures (urchin-like and grassy island structure were successfully synthesized by a simple chemical bath deposition method at low temperature of 70°C in a short reaction time of 1h. XRD analysis revealed the presence of pure crystalline monoclinic CuO. Morphological analysis revealed the formation of spherical structures composed of numerous hair-like structures. The pH of the solution was also investigated to have a great effect on the morphology of the CuO nanostructures. At lower pH, the structures tend to form urchin-like structures; while at higher pH, the structures tend to form grass-like islands. A growth mechanism was also proposed in this paper. Lastly, wettability test proved the stable superhydrophobic property of the CuO nanostructured thin film surface.

  14. Chemical bath deposition of semiconductor thin films & nanostructures in novel microreactors

    Science.gov (United States)

    McPeak, Kevin M.

    Chemical bath deposition (CBD) offers a simple and inexpensive route to deposit semiconductor nanostructures and thin films, but lack of fundamental understanding and control of the underlying chemistry has limited its versatility. CBD is traditionally performed in a batch reactor, requiring only a substrate to be immersed in a supersaturated solution of aqueous precursors such as metal salts, complexing agents, and pH buffers. Highlights of CBD include low cost, operation at low temperature and atmospheric pressure, and scalability to large area substrates. In this dissertation, I explore CBD of semiconductor thin films and nanowire arrays in batch and continuous flow microreactors. Microreactors offer many advantages over traditional reactor designs including a reduction in mass transport limitations, precise temperature control and ease of production scale-up by "numbering up". Continuous flow micoreactors offer the unique advantage of providing reaction conditions that are time-invariant but change smoothly as a function of distance down the reaction channel. Growth from a bath whose composition changes along the reactor length results in deposited materials whose properties vary as a function of position on the substrate, essentially creating a combinatorial library. These substrates can be rapidly characterized to identify relationships between growth conditions and material properties or growth mechanisms. I have used CBD in a continuous flow microreactor to deposit ZnO nanowire arrays and CdZnS films whose optoelectronic properties vary as a function of position. The spatially-dependent optoelectronic properties of these materials have been correlated to changes in the composition, structure or growth mechanisms of the materials and ultimately their growth conditions by rigorous spatial characterization. CBD in a continuous flow microreactor, coupled with spatial characterization, provides a new route to understanding the connection between CBD growth

  15. Fabrication and characterization of indium sulfide thin films deposited on SAMs modified substrates surfaces by chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Meng Xu [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050 (China); Lu Yongjuan; Zhang Xiaoliang [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); Graduate School of Chinese Academy of Sciences, Beijing, 10049 (China); Yang Baoping [College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050 (China); Yi Gewen [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); Jia Junhong, E-mail: jhjia@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China)

    2011-11-01

    In an effort to explore the optoelectronic properties of nanostructured indium sulfide (In{sub 2}S{sub 3}) thin films for a wide range of applications, the In{sub 2}S{sub 3} thin films were successfully deposited on the APTS layers (-NH{sub 2}-terminated) modified ITO glass substrates using the chemical bath deposition technique. The surface morphology, structure and composition of the resultant In{sub 2}S{sub 3} thin films were characterized by FESEM, XRD, and XPS, respectively. Also, the correlations between the optical properties, photocurrent response and the thickness of thin films were established. According to the different deposition mechanisms on the varying SAMs terminational groups, the positive and negative micropatterned In{sub 2}S{sub 3} thin films were successfully fabricated on modified Si substrates surface combining with the ultraviolet lithography process. This offers an attractive opportunity to fabricate patterned In{sub 2}S{sub 3} thin films for controlling the spatial positioning of functional materials in microsystems.

  16. Effect of complexing agent on the photoelectrochemical properties of bath deposited CdS thin films

    International Nuclear Information System (INIS)

    In the present paper photoelectrochemical (PEC) performance of bath deposited CdS thin films based on complexing agents i.e. ammonia and triethanolamine (TEA) has been discussed. Effect of annealing has also been analyzed. The as-deposited and annealed (at 523 K for 1 h in air) films were characterized by X-ray diffraction (XRD), ultraviolet-visible (UV-vis) absorption spectroscopy, SEM, electrochemical impedance spectroscopy (EIS), and PEC properties. XRD studies revealed that the films were nanocrystalline in nature with mixed hexagonal and cubic phases. TEA complex resulted in better crystallinity. Further improvement in the crystallinity of the films was observed after air annealing. The marigold flower-like structure, in addition to flakes morphology, was observed with TEA complex, whereas for ammonia complex only flakes morphology was observed. The UV-vis absorption studies revealed that the optical absorption edge for the films with ammonia and TEA complex was around 475 nm and 500 nm, respectively. Annealing of the films resulted in red shift in the UV-vis absorption. The PEC cell performance of CdS films was found to be strongly affected by crystallinity and morphology of the films resulted due to complexing agent and annealing. The air annealed film deposited using TEA complex showed maximum short circuit current density (Jsc) and open circuit voltage (Voc) i.e. 99 μA/cm2 and 376 mV respectively, under 10 mW/cm2 of illumination. The films deposited using TEA complex showed good stability under PEC cell conditions.

  17. Ammonia-free chemical bath deposition of nanocrystalline ZnS thin film buffer layer for solar cells

    International Nuclear Information System (INIS)

    In this work, we prepared zinc sulfide thin films on glass substrates by ammonia-free chemical bath deposition method using thioacetamide as the sulfide source and Ethylene Diamine Tetra Acetic Acid disodium salt as the complexing agent in a solution of pH = 6.0. Thin films of ZnS with different thicknesses of 18-450 nm were prepared. The effect of film thickness and annealing temperature in atmospheric air, on optical properties, band gap energy and grain size of nanocrystals were studied. The X-ray diffraction analysis showed a cubic zinc blend structure and a diameter of about 2-5 nm for ZnS nanocrystals. The Fourier Transform Infrared spectrum of films revealed no peaks due to impurities. The as-deposited ZnS films had more than 70% transmittance in the visible region. The direct band gap of as-deposited films ranged from 3.68 to 3.78 eV and those of annealed films varied from 3.60 to 3.70 eV

  18. Synthesis of CdS nanostructures using template-assisted ammonia-free chemical bath deposition

    Science.gov (United States)

    Preda, N.; Enculescu, M.; Gherendi, F.; Matei, E.; Toimil-Molares, M. E.; Enculescu, I.

    2012-09-01

    CdS micro- and nano-structures (micro/nanotubes and nanostructured films) were obtained by ammonia-free chemical bath deposition using polymer templates (ion track-etched polycarbonate membranes and poly(styrene-hydroxyethyl methacrylate) nanosphere arrays). The semiconductor structures were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), optical absorption, photoluminescence and electrical measurements. The diameters of CdS tubes are between 300 nm and few microns and the lengths are up to tens of micrometers. The SEM images prove that the CdS films are nanostructured due to the deposition on the polymer nanosphere arrays. For both CdS structures (tubes and films) the XRD patterns show a hexagonal phase. The optical studies reveal a band gap value of about 2.5-2.6 eV and a red luminescence at ˜1.77 eV. A higher increase of conductivity is observed for illuminating the CdS nanostructured film when compared to the simple semiconductor film. This is a consequence of the periodic patterning induced by the polymer nanosphere array.

  19. Tuning the morphology of metastable MnS films by simple chemical bath deposition technique

    Science.gov (United States)

    Dhandayuthapani, T.; Girish, M.; Sivakumar, R.; Sanjeeviraja, C.; Gopalakrishnan, R.

    2015-10-01

    In the present investigation, we have prepared the spherical particles, almond-like, and cauliflower-like morphological structures of metastable MnS films on glass substrate by chemical bath deposition technique at low temperature without using any complexing or chelating agent. The morphological change of MnS films with molar ratio may be due to the oriented aggregation of adjacent particles. The compositional purity of deposited film was confirmed by the EDAX study. X-ray diffraction and micro-Raman studies confirm the sulfur source concentration induced enhancement in the crystallization of films with metastable MnS phase (zinc-blende β-MnS, and wurtzite γ-MnS). The shift in PL emission peak with molar ratio may be due to the change in optical energy band gap of the MnS, which was further confirmed by the optical absorbance study. The paramagnetic behavior of the sample was confirmed by the M-H plot.

  20. Absolute measurement of neutron source emission rate with manganese bath method

    International Nuclear Information System (INIS)

    The manganese bath method is one of the most widespread and exact method to measure neutron source emission rate (neutron source intensity) absolutely at present. Pouring some 56Mn solution with known activity into the bath, the system efficiency can be obtained from γ counts of 56Mn, which is measured by two NaI(Tl) detectors. From saturated counts of a 241Am-Be(α, n) neutron source in the bath, the source emission rate can be obtained. An standard 241Am-Be(α, n) source which is the transfer source of the CCRI(Ⅲ)-K9. AmBe international key comparison organized by the Comite Consultatif des Rayonnements Ionisants, was measured absolutely with the neutron source emission rate standard equipment (manganese bath method). The result is coincident with the average value of the comparison within the uncertainties, therefore the reliability of the standard equipment is verified. (authors)

  1. Investigation of chemical bath deposition of CdO thin films using three different complexing agents

    Energy Technology Data Exchange (ETDEWEB)

    Khallaf, Hani [Department of Physics, University of Central Florida, Orlando, FL 32816 (United States); Chen, Chia-Ta; Chang, Liann-Be [Graduate Institute of Electro-Optical Engineering, Chang Gung University, Kweishan, Taoyuan 333, Taiwan (China); Green Technology Research Center, Chang Gung University, Kweishan, Taoyuan 333, Taiwan (China); Lupan, Oleg [Department of Physics, University of Central Florida, Orlando, FL 32816 (United States); Department of Microelectronics and Semiconductor Devices, Technical University of Moldova, 168 Stefan cel Mare Boulevard, MD-2004 Chisinau, Republic of Moldova (Moldova, Republic of); Dutta, Aniruddha; Heinrich, Helge [Department of Physics, University of Central Florida, Orlando, FL 32816 (United States); Advanced Materials Processing and Analysis Centre, Department of Mechanical, Materials, and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Shenouda, A. [Central Metallurgical R and D Institute (CMRDI), Tebbin, P.O. Box 87, Helwan (Egypt); Chow, Lee, E-mail: Lee.Chow@ucf.edu [Department of Physics, University of Central Florida, Orlando, FL 32816 (United States); Advanced Materials Processing and Analysis Centre, Department of Mechanical, Materials, and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States)

    2011-09-01

    Chemical bath deposition of CdO thin films using three different complexing agents, namely ammonia, ethanolamine, and methylamine is investigated. CdSO{sub 4} is used as Cd precursor, while H{sub 2}O{sub 2} is used as an oxidation agent. As-grown films are mainly cubic CdO{sub 2}, with some Cd(OH){sub 2} as well as CdO phases being detected. Annealing at 400 deg. C in air for 1 h transforms films into cubic CdO. The calculated optical band gap of as-grown films is in the range of 3.37-4.64 eV. Annealed films have a band gap of about 2.53 eV. Rutherford backscattering spectroscopy of as-grown films reveals cadmium to oxygen ratio of 1.00:1.74 {+-} 0.01 while much better stoichiometry is obtained after annealing, in accordance with the X-ray diffraction results. A carrier density as high as 1.89 x 10{sup 20} cm{sup -3} and a resistivity as low as 1.04 x 10{sup -2} {Omega}-cm are obtained.

  2. A chemical bath deposition route to facet-controlled Ag3PO4 thin films with improved visible light photocatalytic activity

    Science.gov (United States)

    Gunjakar, Jayavant L.; Jo, Yun Kyung; Kim, In Young; Lee, Jang Mee; Patil, Sharad B.; Pyun, Jae.-Chul.; Hwang, Seong-Ju

    2016-08-01

    A facile, economic, and reproducible chemical bath deposition (CBD) method is developed for the fabrication of facet-controlled Ag3PO4 thin films with enhanced visible light photocatalytic activity. The fine-control of bath temperature, precursor, complexing agent, substrate, and solution pH is fairly crucial in preparing the facet-selective thin film of Ag3PO4 nanocrystal. The change of precursor from silver nitrate to silver acetate makes possible the tailoring of the crystal shape of Ag3PO4 from cube to rhombic dodecahedron and also the bandgap tuning of the deposited films. The control of [Ag+]/[phosphate] ratio enables to maximize the loading amount of Ag3PO4 crystals per the unit area of the deposited film. All the fabricated Ag3PO4 thin films show high photocatalytic activity for visible light-induced degradation of organic molecules, which can be optimized by tailoring the crystal shape of the deposited crystals. This CBD method is also useful in preparing the facet-controlled hybrid film of Ag3PO4-ZnO photocatalyst. The present study clearly demonstrates the usefulness of the present CBD method for fabricating facet-controlled thin films of metal oxosalt and its nanohybrid.

  3. Thermal annealing effect on structural and electrical properties of chemical bath-deposited CdS films

    Energy Technology Data Exchange (ETDEWEB)

    Hiie, J. [Tallinn University of Technology, Department of Materials Science, Ehitajate tee 5, 19086 Tallinn (Estonia)], E-mail: jhiie@datanet.ee; Muska, K.; Valdna, V. [Tallinn University of Technology, Department of Materials Science, Ehitajate tee 5, 19086 Tallinn (Estonia); Mikli, V. [Tallinn University of Technology, Centre for Materials Research, Ehitajate tee 5, 19086 Tallinn (Estonia); Taklaja, A. [Tallinn University of Technology, Department of Radio and Communication Engineering, Ehitajate tee 5, 19086 Tallinn (Estonia); Gavrilov, A. [Tallinn University of Technology, Department of Physics, Ehitajate tee 5, 19086 Tallinn (Estonia)

    2008-08-30

    X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and electrical investigations of CdCl{sub 2}-thiourea-ammonia bath-deposited (CBD) CdS films on glass before and after post-deposition annealing have been carried out. The thiourea (TU) concentration, temperature and H{sub 2}, vacuum and isothermal ambient have been varied at low concentration of cadmium 1 mM. Coverage on glass, resistivity of CdS and mobility of charge carriers could be controlled by temperature, time and ambient of heat-treatment, and by thiourea concentration in bath. It is concluded that sintering of CdS, slow diffusion, incorporation in lattice and vaporization of cadmium chloride are the main factors of the heat-treatment process, responsible for changes in resistivity of CBD CdS.

  4. The effect of heteropolyacids and isopolyacids on the properties of chemically bath deposited CdS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lejmi, N.; Savadogo, O. [Laboratoire d' Electrochimie et de Materiaux Energetiques, Ecole Polytechnique de Montreal, C.P. 6079, succ. Centre-ville, P.O. Box 6079, Qc, H3C 3A7 Montreal (Canada)

    2001-12-01

    The deposition of CdS films on ITO/glass substrates from a chemical bath containing cadmium acetate, ammonia, ammonium acetate and thiourea has been carried out with and without small amounts of heteropolyacids (HPA) (phosphotungstic acid (PTA): H{sub 3}[PW{sub 12}O{sub 40}], silicotungstic acid (STA): H{sub 4}[SiW{sub 12}O{sub 40}], phosphomolybdic acid (PMA): H{sub 3}[PMo{sub 12}O{sub 40}]) and isopolyacids (IPA) (tungstic acid (TA): H{sub 2}WO{sub 4} and molybdic acid (MA): H{sub 2}MoO{sub 4}) for different deposition times. The chemical, morphological, structural and optical properties of the films have been determined. The composition in sulphur and in cadmium of the films' surface and volume was determined for various HPA and IPA used in the deposition bath. The HPA and IPA which give the thickest film with the biggest grain size were deduced. The optical transmission at 400nm of CdS films deposited with STA at short time (20min) (50%) is higher than those of CdS deposited at longer time (6h) (7%). The optical transmission of CdS deposited with STA at short time is higher (50%) than that of CdS deposited without STA (20%). The performances of heterojunctions CdS/CdTe solar cells fabricated from CdS films deposited with and without STA and CdTe films deposited without STA have been determined. It was shown that the CdS/CdTe heterojunction solar cells fabricated from CdS films deposited with STA exhibited better photon collection efficiency and solar cell efficiency ({eta}=6%) than CdS/CdTe heterojunction solar cells fabricated from CdS films deposited without STA ({eta}=3.3%)

  5. On the structure, morphology, and optical properties of chemical bath deposited Sb2S3 thin films

    International Nuclear Information System (INIS)

    In the present paper, we have reported the room temperature growth of antimony sulphide (Sb2S3) thin films by chemical bath deposition and detailed characterization of these films. The films were deposited from a chemical bath containing SbCl3 and Na2S2O3 at 27 deg. C. We have analysed the structure, morphology, composition and optical properties of as deposited Sb2S3 films as well as those subjected to annealing in nitrogen atmosphere or in air. As-deposited films are amorphous to X-ray diffraction (XRD). However, the diffused rings in the electron diffraction pattern revealed the existence of nanocrystalline grains in these films. XRD analysis showed that upon annealing in nitrogen atmosphere these films transformed into polycrystalline with orthorhombic structure. Also, we have observed that during heating in air, Sb2S3 first converts into orthorhombic form and then further heating results in the formation of Sb2O3 crystallites. Optical bandgap energy of as deposited and annealed films was evaluated from UV-vis absorption spectra. The values obtained were 2.57 and 1.73 eV for the as-deposited and the annealed films respectively

  6. Effect of Ph on the Physical Properties of ZnIn2Se4 Thin Films Grown by Chemical Bath Deposition

    Directory of Open Access Journals (Sweden)

    P. Babu

    2011-01-01

    Full Text Available ZnIn2Se4 (ZIS due to its potential applications in various fields, particularly as a buffer layer in the fabrication of heterojuction solar cells. In the present work, thin films of ZIS have been synthesized by a simple and economic method, chemical bath deposition at different pH values that vary from 9 to 11. The deposition was carried out for a fixed bath temperature (Tb of 90 °C and constant reaction time of 60 min. Ammonia and hydrazine hydrate were used as complexing agents. The chemical and physical properties of the deposited ZIS films were analyzed using appropriate techniques. The X-ray diffraction analysis revealed that the deposited films were polycrystalline and showed (112 peak as the preferred orientation. Scanning electron micrographs revealed that the samples had large number of granule like particles in different sizes. The optical transmittance of these samples was found to be > 75 % in the visible region and the evaluated energy band gap varied from 2.15 eV to 2.64 eV with the change of pH value in the range, 9 - 11. The detailed study of these results were presented and discussed.

  7. Electrolytic deposition and corrosion resistance of Zn–Ni coatings obtained from sulphate-chloride bath

    Indian Academy of Sciences (India)

    Katarzyna Wykpis; Magdalena Popczyk; Antoni Budniok

    2011-07-01

    Zn–Ni coatings were deposited under galvanostatic conditions on steel substrate (OH18N9). The influence of current density of deposition on the surface morphology, chemical and phase composition was investigated. The corrosion resistance of Zn–Ni coatings obtained at current density 10–25 mA cm-2 are measured, and are compared with that of metallic cadmium coating. Structural investigations were performed by the X-ray diffraction (XRD) method. The surface morphology and chemical composition of deposited coatings were studied using a scanning electron microscope (JEOL JSM-6480) with EDS attachment. Studies of electrochemical corrosion resistance were carried out in the 5% NaCl, using potentiodynamic and electrochemical impedance spectroscopy (EIS) methods. On the ground of these research, the possibility of deposition of Zn–Ni coatings contained 24–26% at. Ni was exhibited. It was stated, that surface morphology, chemical and phase composition of these coatings are practically independent on current density of deposition. On the basis of electrochemical investigations it was found that corrosion resistance of these Zn–Ni coatings is also independent of current density. These coatings are more corrosion resistant in 5% NaCl solution than metallic cadmium. It was suggested that the Zn–Ni coating may be used as a substitute for toxic cadmium.

  8. Structural, optical and photoelectrochemical characterization of CdS nanowire synthesized by chemical bath deposition and wet chemical etching

    International Nuclear Information System (INIS)

    Nanocrystalline thin films of CdS have been grown onto flexible plastic and titanium substrates by a simple and environmentally benign chemical bath deposition (CBD) method at room temperature. The films consist of clusters of CdS nanoparticles. The clusters of CdS nanoparticles in the films were successfully converted into nanowire (NW) networks using chemical etching process. The possible mechanism of the etching phenomenon is discussed. These films were examined for their structural, surface morphological and optical properties by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and UV-vis spectrophotometry techniques, respectively. Photoelectrochemical (PEC) investigations were carried out using cell configuration as n-CdS/(1 M NaOH + 1 M Na2S + 1 M S)/C. The film of nanowires was found to be hexagonal in structure with the preferential orientation along the (0 0 2) plane. The nanowires have widths in the range of 50-150 nm and have lengths of the order of a few micrometers. Optical studies reveal that the CdS nanowires have value of band gap 2.48 eV, whereas it is 2.58 eV for nanoparticles of CdS. Finally, we report on the ideality of junction improvement of PEC cells when CdS nanoparticles photoelectrode converted into nanowires photoelectrode.

  9. Study of the crystallographic phase change on copper (I) selenide thin films prepared through chemical bath deposition by varying the pH of the solution

    Science.gov (United States)

    Sandoval-Paz, M. G.; Rodríguez, C. A.; Porcile-Saavedra, P. F.; Trejo-Cruz, C.

    2016-07-01

    Copper (I) selenide thin films with orthorhombic and cubic structure were deposited on glass substrates by using the chemical bath deposition technique. The effects of the solution pH on the films growth and subsequently the structural, optical and electrical properties of the films were studied. Films with orthorhombic structure were obtained from baths wherein both metal complex and hydroxide coexist; while films with cubic structure were obtained from baths where the metal hydroxide there is no present. The structural modifications are accompanied by changes in bandgap energy, morphology and electrical resistivity of the films.

  10. Selective formation of monodisperse CdSe nanoparticles on functionalized self-assembled monolayers using chemical bath deposition

    International Nuclear Information System (INIS)

    Using CdSe chemical bath deposition (CBD) we demonstrate the selective growth and deposition of monodisperse nanoparticles on functionalized self-assembled monolayers (SAMs) using time-of-flight secondary ion mass spectrometry and scanning electron microscopy. We show that the deposition mechanism involves both ion-by-ion growth and cluster-by-cluster deposition. On -COOH terminated SAMs strongly adherent CdSe nanoparticles form via a mixed ion-by-ion and cluster-by-cluster mechanism. Initially, Cd2+ ions form complexes with the terminal carboxylate groups. The Cd2+-carboxylate complexes then act as the nucleation sites for the ion-by-ion growth of CdSe. After a sufficient concentration of Se2- has formed in solution via the hydrolysis of selenosulfate ions, the deposition mechanism switches to cluster-by-cluster deposition. On -OH and -CH3 terminated SAMs monodisperse CdSe nanoparticles are deposited via cluster-by-cluster deposition and they do not bind strongly to the surface. Finally, under the appropriate experimental conditions we demonstrate the selective deposition of CdSe nanoparticles on patterned -CH3/-COOH SAMs.

  11. Influence of humidity on the growth characteristics and properties of chemical bath-deposited ZnS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yi-Cheng; Chao, Yen-Tai [Department of Mechatronics Engineering, National Changhua University of Education, Changhua 50007, Taiwan (China); Yao, Pin-Chuan, E-mail: pcyao@mail.dyu.edu.tw [Department of Materials Science and Engineering, Da-Yeh University, Dacun, Changhua 51591, Taiwan (China)

    2014-07-01

    In this study, the effect of humidity on the growth characteristics and properties of chemical bath-deposited ZnS thin films was systematically investigated. All deposition was conducted by an open CBD system under various relative humidity levels (RH) or by a hermetic CBD system as a comparison. It shows, for films deposited by an open system, the ambient humidity plays an important role in the quality of the resultant films. Damp environments lead to powdery films. Generally, all films prepared in this study using NH{sub 3} and hydrazine hydrate as the complexing agents were amorphous or poorly crystalline. For an open system, the [H{sup +}] from the dissolved carbon dioxide in the air competes with the ammonium ions in the bath solution. According to Le Châtelier's principle, more ammonia was consumed, which favors the free [Zn{sup +2}] in the solution, facilitating the homogeneous precipitation of Zn(OH){sub 2} and giving rise to a powdery film. The x-ray photoelectron spectrum shows, for an open system, the content of Zn–O compounds in the form of Zn(OH){sub 2} and ZnO, etc., is increased by the relative humidity of the environment. The visible transmittance is reduced by RH. The higher optical band gap of the as-deposited films could be attributed to the quantum confinement effects due to the small grain size of the polycrystalline ZnS films over the substrates.

  12. Synthesis and characterization Bi2O2S thin film via chemical bath deposition at low pH.

    Science.gov (United States)

    Kariper, I Afşin

    2016-06-15

    Bismuth oxysulfide thin film was prepared using Bi(NO3)3 and Na2S as reactive. Since bismuth in the form of bismuth oxide is dissolved into water, bismuth and sulfide concentration of the chemical bath is very important. Bismuth oxysulfide (Bi2O2S) thin films were produced below pH2. Tested bismuth and sulfide concentrations are as follows: 2×10(-1)M, 2×10(-2)M, 2×10(-3)M, 2×10(-4)M bismuth and 1×10(-1)M, 1×10(-2)M, 1×10(-3)M, 1×10(-4)M sulfide. The structure of the films was examined via X-ray diffraction (XRD). Optical properties, such as transmission and absorbance were measured with Ultra violet-visible spectrum, and then refractive index and reflectivity were calculated. The pH of chemical bath was stabilized below pH of 2 using 13.85mL concentrated nitric acid. Deposition time and temperature of the baths were 4h and 30°C. It has been found that bismuth and sulfide concentrations affected the structure and thickness of the film. Also, optical band gap of the films varied with concentration, parallel to the change of the structure and film thickness. PMID:27043873

  13. Effect of different complexing agents on the properties of chemical-bath-deposited ZnS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jun; Wei, Aixiang, E-mail: weiax@gdut.edu.cn; Zhao, Yu

    2014-03-05

    Highlights: • To fabricate high quality ZnS films need to promote the ion-by-ion process and restrain cluster-by-cluster process. • The complexation ability of tri-sodium citrate is stronger than that of hydrazine hydrate. • The nucleation density of nuclei determine the performance of ZnS thin films. -- Abstract: Zinc sulfide (ZnS) thin films were deposited on glass substrates using the chemical bath deposition (CBD) technique. The effects of different complexing agents (tri-sodium citrate, hydrazine hydrate) and their concentrations on the structure, composition, morphology, optical properties and growth mechanism of ZnS thin films were investigated. The results indicated that the chemical-bath-deposited ZnS thin films exhibit poor crystallinity and a high Zn/S atomic ratio with an average transmittance of 75% in the range of visible light. The ZnS thin films prepared using hydrazine hydrate as the complexing agent present a more compact surface, a smaller average particle size, and a sharper absorption edge at 300–340 nm compared with those prepared using tri-sodium citrate. Based on our experimental observations and analysis, we conclude that the predominant growth mechanism of ZnS thin films is an ion-by-ion process. The nucleation density of Zn(OH){sub 2} nuclei on the substrate in the initial stage produces the different morphologies and properties of the ZnS thin films prepared using the two complexing agents.

  14. New method for quantum processes in fermionic heat baths

    International Nuclear Information System (INIS)

    The general path-integral formalism for real-time dynamics for a quantum system in a fermionic environment proposed previously is investigated by using a new method called local adiabatic transformation. This method is based on the observation that in the long-time limit (the time scale of the system is much larger than that of the environment, typically characterized by the inverse of the cutoff frequency of the environment), most degrees of freedom of the environment will follow the dynamics adiabatically. This feature is utilized by transforming the original problem of coordinate coupling into a problem of velocity coupling. This is achieved by making some simple unitary transformation on the fermion field (before path-integrating out of that field). By doing perturbations on the new problem, all the previous important results are recovered. Furthermore, generalizations to more realistic situations (for example, a particle traveling over a large distance and coupled to a Fermi gas through the phase factor exp(ik x R) (the coupling may involve many channels of angular momentum)) are considered and significant results obtained

  15. Comparing the Effects of Swaddled and Conventional Bathing Methods on Body Temperature and Crying Duration in Premature Infants: A Randomized Clinical Trial

    Directory of Open Access Journals (Sweden)

    Mitra Edraki

    2014-06-01

    Full Text Available Introduction: Maintaining body temperature and reducing stress are important challenges in bathing preterm infants. Swaddle bathing, which includes in itself the principles of developmental care, can be used as a low-stress and appropriate bathing method for premature infants. Given the limitations of the researches carried out on this bathing method, the present study was conducted with the aim of comparing the effects of swaddled and conventional bathing methods on body temperature and crying duration in premature infants. Methods: In this randomized clinical trial study, 50 premature infants hospitalized in Neonatal Intensive Care Unit (NICU who were eligible for the study were divided by random allocation into two experimental and control groups. The infants in the experimental group were bathed using the swaddle bathing method and the infants in the control group were bathed using the conventional bathing method. Body temperature was measured 10 minutes before and 10 minutes after the bath. To record the crying, the infants' faces were filmed during the bath. The data were analyzed using chi-squared test, independent t-test, paired t-test and Mann-Whitney U test. Results: The mean temperature loss was significantly less in the swaddle-bathed newborns compared to the conventionally-bathed newborns. Furthermore, crying time was significantly less in the experimental group than in the control group. Conclusion: Given the positive effect of swaddled bathing in maintaining body temperature and reducing stress, it can be used as an appropriate bathing method in NICU.

  16. Chemical bath deposition route for the synthesis of ultra-thin CuIn(S,Se){sub 2} based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lugo, S. [Universidad Autónoma de Nuevo León (UANL), Fac. de Ciencias Químicas, Av. Universidad S/N, Ciudad Universitaria, San Nicolás de Los Garza, Nuevo León C.P. 66451 (Mexico); Sánchez, Y.; Neuschitzer, M.; Xie, H.; Insignares-Cuello, C.; Izquierdo-Roca, V. [Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 08930 Sant Adrià del Besòs, Barcelona (Spain); Peña, Y. [Universidad Autónoma de Nuevo León (UANL), Fac. de Ciencias Químicas, Av. Universidad S/N, Ciudad Universitaria, San Nicolás de Los Garza, Nuevo León C.P. 66451 (Mexico); Saucedo, E., E-mail: esaucedo@irec.cat [Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 08930 Sant Adrià del Besòs, Barcelona (Spain)

    2015-05-01

    CuIn(S,Se){sub 2} (CISSe) photovoltaic grade thin films are usually grown by expensive vacuum based methods or chemical routes that require highly toxic precursors. In this work, we present the synthesis of CISSe absorbers by a simple chemical bath deposition (CBD) route. In the first step, In{sub 2}S{sub 3}/Cu{sub 2−x}S stack was deposited as a precursor by CBD on Mo-coated soda lime glass substrates, using respectively thioacetamide and N,N′-dimethylthiourea as S source. Then the CISSe thin films were synthesized by the precursor's selenization at 450 °C. The obtained films were characterized by X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy (SEM). The tetragonal chalcopyrite structure of CISSe was identified by XRD and Raman, confirming that the major part of S was replaced by Se. SEM images show a compact and homogeneous film and by cross-section the thickness was estimated to be around 700 nm. Solar cells prepared with these absorbers exhibit an open circuit voltage of 369 mV, a short circuit current density of 13.7 mA/cm{sup 2}, a fill factor of 45% and an efficiency of 2.3%. - Highlights: • Deposition of In{sub 2}S{sub 3}/Cu{sub 2−x}S multi-stacks by chemical bath deposition • Synthesis of CuIn(S,Se){sub 2} via a two stage process • Demonstration of the viability of this low cost method to produce photovoltaic grade CuIn(S,Se){sub 2}.

  17. Absolute measurements of anti ν (252Cf) using the manganese bath method

    International Nuclear Information System (INIS)

    By the manganese bath method and defined solid angle counting the fission rate anti ν (Cf-252) was measured. The corrections for neutrons losses due to leakage and absorption in the source itself and its surroundings were measured experimentally. The corrections for absorption fast neutrons on S and O was calculated by Monte-Carlo method. The obtained value of anti ν (Cf- 252) is 3.758+-0.015

  18. Optimization of synthesis conditions of PbS thin films grown by chemical bath deposition using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Yücel, Ersin, E-mail: dr.ersinyucel@gmail.com [Department of Physics, Faculty of Arts and Sciences, Mustafa Kemal University, 31034 Hatay (Turkey); Yücel, Yasin; Beleli, Buse [Department of Chemistry, Faculty of Arts and Sciences, Mustafa Kemal University, 31034 Hatay (Turkey)

    2015-09-05

    Highlights: • For the first time, RSM and CCD used for optimization of PbS thin film. • Tri-sodium citrate, deposition time and temperature were independent variables. • PbS thin film band gap value was 2.20 eV under the optimum conditions. • Quality of the film was improved after chemometrics optimization. - Abstract: In this study, PbS thin films were synthesized by chemical bath deposition (CBD) under different deposition parameters. Response surface methodology (RSM) was used to optimize synthesis parameters including amount of tri-sodium citrate (0.2–0.8 mL), deposition time (14–34 h) and deposition temperature (26.6–43.4 °C) for deposition of the films. 5-level-3-factor central composite design (CCD) was employed to evaluate effects of the deposition parameters on the response (optical band gap of the films). The significant level of both the main effects and the interaction are investigated by analysis of variance (ANOVA). The film structures were characterized by X-ray diffractometer (XRD). Morphological properties of the films were studied with a scanning electron microscopy (SEM). The optical properties of the films were investigated using a UV–visible spectrophotometer. The optimum amount of tri-sodium citrate, deposition time and deposition temperature were found to be 0.7 mL, 18.07 h and 30 °C respectively. Under these conditions, the experimental band gap of PbS was 2.20 eV, which is quite good correlation with value (1.98 eV) predicted by the model.

  19. Optimization of synthesis conditions of PbS thin films grown by chemical bath deposition using response surface methodology

    International Nuclear Information System (INIS)

    Highlights: • For the first time, RSM and CCD used for optimization of PbS thin film. • Tri-sodium citrate, deposition time and temperature were independent variables. • PbS thin film band gap value was 2.20 eV under the optimum conditions. • Quality of the film was improved after chemometrics optimization. - Abstract: In this study, PbS thin films were synthesized by chemical bath deposition (CBD) under different deposition parameters. Response surface methodology (RSM) was used to optimize synthesis parameters including amount of tri-sodium citrate (0.2–0.8 mL), deposition time (14–34 h) and deposition temperature (26.6–43.4 °C) for deposition of the films. 5-level-3-factor central composite design (CCD) was employed to evaluate effects of the deposition parameters on the response (optical band gap of the films). The significant level of both the main effects and the interaction are investigated by analysis of variance (ANOVA). The film structures were characterized by X-ray diffractometer (XRD). Morphological properties of the films were studied with a scanning electron microscopy (SEM). The optical properties of the films were investigated using a UV–visible spectrophotometer. The optimum amount of tri-sodium citrate, deposition time and deposition temperature were found to be 0.7 mL, 18.07 h and 30 °C respectively. Under these conditions, the experimental band gap of PbS was 2.20 eV, which is quite good correlation with value (1.98 eV) predicted by the model

  20. DEPOSITION OF NICKEL ON CARBON FIBRES BY GALVANIC METHOD

    Directory of Open Access Journals (Sweden)

    Pavol Štefánik

    2012-01-01

    Full Text Available The investigation of coating parameters in quasi-static coating of Ni layer on carbon fibre tow by galvanic method is presented. The tow of fibres was immersed in typical galvanic bath based on NiSO4, NiCl2, Na2SO4 and H3BO3 and current to carbon fibres was supplied by two leading metal rolls which are parts of continuous coating apparatus. The main parameters were current of 1 A, electrolyte temperature of 50 °C and the distance from power contacts to level of galvanic bath (8 or 13 cm. The amount and structure of deposited Ni layer at coating time 15 and 90 seconds of exposure in electrolyte and depth of immersion of tow into bath were discussed.

  1. Preparation and characteristics of chemical bath deposited ZnS thin films: Effects of different complexing agents

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Seung Wook [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of); Agawane, G.L.; Gang, Myeng Gil [Photonics Technology Research Institute, Department of Materials Science Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Moholkar, A.V. [Department of Physics, Shivaji University, Kolhapur 416-004 (India); Moon, Jong-Ha [Photonics Technology Research Institute, Department of Materials Science Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Kim, Jin Hyeok, E-mail: jinhyeok@chonnam.ac.kr [Photonics Technology Research Institute, Department of Materials Science Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Lee, Jeong Yong, E-mail: j.y.lee@kaist.ac.kr [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Thick ZnS thin films were successfully prepared by chemical bath deposition in a basic medium using less toxic complexing agents. Black-Right-Pointing-Pointer Effect of different complexing agents such as no complexing agent, Na{sub 3}-citrate and a mixture of Na{sub 3}-citrate and EDTA on the properties of ZnS thin films was investigated. Black-Right-Pointing-Pointer ZnS thin film deposited using two complexing agent showed the outstanding characteristics as compared to those using no and one complexing agent. - Abstract: Zinc sulfide (ZnS) thin films were prepared on glass substrates by a chemical bath deposition technique using aqueous zinc acetate and thiourea solutions in a basic medium (pH {approx} 10) at 80 Degree-Sign C. The effects of different complexing agents, such as a non-complexing agent, Na{sub 3}-citrate, and a mixture of Na{sub 3}-citrate and ethylenediamine tetra-acetate (EDTA), on the structural, chemical, morphological, optical, and electrical properties of ZnS thin films were investigated. X-ray diffraction pattern showed that the ZnS thin film deposited without any complexing agent was grown on an amorphous phase. However, the ZnS thin films deposited with one or two complexing agents showed a polycrystalline hexagonal structure. No secondary phase (ZnO) was observed. X-ray photoelectron spectroscopy showed that all ZnS thin films exhibited both Zn-S and Zn-OH bindings. Field emission scanning electron microscopy (FE-SEM) images showed that ZnS thin films deposited with complexing agents had thicker thicknesses than that deposited without a complexing agent. The electrical resistivity of ZnS thin films was over 10{sup 5} {Omega} cm regardless of complexing agents. The average transmittance of the ZnS thin films deposited without a complexing agent, those with Na{sub 3}-citrate, and those with a mixture of Na{sub 3}-citrate and EDTA was approximately 85%, 65%, and 70%, respectively, while the band gap

  2. Synthesis, Structural and Optoelectronic Properties of Nanocrystalline CdSe Thin Films Prepared By Chemical Bath Deposition Route

    Directory of Open Access Journals (Sweden)

    C. P. Nikam

    2015-12-01

    Full Text Available Cadmium Selenide (CdSe thin films were deposited onto glass substrates by simple and low cost chemical bath deposition (CBD technique. Aqueous ammonia was used as a complexing agent for the synthesis of these films. Deposition parameters were optimised and the crystal structure and morphology of the films were characterized by x-ray diffraction (XRD and field emission scanning electron microscopy (FE-SEM, respectively. XRD pattern revealed that the as-prepared CdSe thin films are polycrystalline with hexagonal structure. The average crystallite size of CdSe thin film was found to be in the range of 12-16 nm. FE-SEM image revealed that deposited thin films were consisting of nanocrystalline grains, which were coalesced to form bigger grains that are in cluster form distributed over the substrate surface. Transmission spectra showed high transmittance in the visible region and direct optical band gap energy was found to be a function of deposition time.

  3. Reduced dynamics in spin-boson models: A method for both slow and fast bath

    Science.gov (United States)

    Golosov, Andrei A.; Friesner, Richard A.; Pechukas, Philip

    2000-02-01

    We study a model for treating dissipative systems, a one dimensional quantum system coupled to a harmonic bath. The dynamics of such a system can be described by Feynman's path integral expression for the reduced density matrix. In this formulation the interaction of the system with the environment is stored in the influence functional. Recently we showed that fast environmental modes that give rise to correlations in the influence functional which are short range in time can be treated efficiently by a memory equation algorithm, which is a discretized version of a master equation. In this work we extend this approach to treat slow environmental modes as well, thereby efficiently linking adiabatic and nonadiabatic regimes. In this extended method the long range correlations in the influence functional arising from slow bath modes are taken into account through Stock's semiclassical self-consistent-field approach.

  4. Role of VI/II ratio on the growth of ZnO nanostructures using chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Urgessa, Z.N., E-mail: zelalem.urgessa@nmmu.ac.za [Department of Physics, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Oluwafemi, O.S. [Department of Chemistry and Chemical Technology, Walter Sisulu University, Mthatha Campus, Private Bag XI, 5117 (South Africa); Botha, J.R. [Department of Physics, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa)

    2012-05-15

    In this paper the growth process and morphological evolution of ZnO nanostructures were investigated in a series of experiments using chemical bath deposition. The experimental results indicate that the morphological evolution depends on the reaction conditions, particularly on OH{sup -} to Zn{sup 2+} ratio (which directly affects the pH). For low VI/II ratios, quasi-spherical nanoparticles of an average diameter 30 nm are obtained, whereas for larger VI/II ratios, nanorods with an average diameter less than 100 nm are produced, which indicates that by systematically controlling the VI/II ratio, it is possible to produce different shapes and sizes of ZnO nanostructures. A possible mechanism for the nanostructural change of the as-synthesized ZnO from particle to rod was elucidated based on the relative densities of H{sup +} and OH{sup -} in the solution.

  5. Role of VI/II ratio on the growth of ZnO nanostructures using chemical bath deposition

    International Nuclear Information System (INIS)

    In this paper the growth process and morphological evolution of ZnO nanostructures were investigated in a series of experiments using chemical bath deposition. The experimental results indicate that the morphological evolution depends on the reaction conditions, particularly on OH− to Zn2+ ratio (which directly affects the pH). For low VI/II ratios, quasi-spherical nanoparticles of an average diameter 30 nm are obtained, whereas for larger VI/II ratios, nanorods with an average diameter less than 100 nm are produced, which indicates that by systematically controlling the VI/II ratio, it is possible to produce different shapes and sizes of ZnO nanostructures. A possible mechanism for the nanostructural change of the as-synthesized ZnO from particle to rod was elucidated based on the relative densities of H+ and OH− in the solution.

  6. Measurement of boiling heat transfer coefficient in liquid nitrogen bath by inverse heat conduction method

    Institute of Scientific and Technical Information of China (English)

    Tao JIN; Jian-ping HONG; Hao ZHENG; Ke TANG; Zhi-hua GAN

    2009-01-01

    Inverse heat conduction method (IHCM)is one of the most effective approaches to obtaining the boiling heat transfer coefficient from measured results.This paper focuses on its application in cryogenic boiling heat transfer.Experiments were conducted on the heattransfer of a stainless steel block in a liquid nitrogen bath.with the assumption of a ID conduction condition to realize fast acquisition of the temperature of the test points inside the block.With the inverse-heat conduction theory and the explicit finite difference model,a solving program was developed to calculate the heat flux and the boiling heat transfer coefficient of a stainless steel block in liquid nitrogen bath based on the temperature acquisition data.Considering the oscillating data and some unsmooth transition points in the inverse-heat-conduction calculation result of the heat-transfer coefficient,a two-step data-fitting procedure was proposed to obtain the expression for the boiling heat transfer coefficients.The coefficient was then verified for accuracy by a comparison between the simulation results using this expression and the verifying experimental results of a stainless steel block.The maximum error with a revised segment fitting iS around 6%.which verifies the feasibility of using IHCM to measure the boiling heat transfer coefficient in liquid nitrogen bath.

  7. Influence of coagulation bath on morphology of cellulose membranes prepared by NMMO method

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    To control the morphology of cellulose membranes used for separation,they were prepared by the NMMO method using water,methanol,ethanol and their binary solution as coagulation baths.Morphologies of the surface and cross section of dry membranes were observed.The pore structure parameters of wet membranes were determined.By comparison,the process and mechanism of pore formation in dry membranes were suggested,and the relativity of cellulose crystal size to average pore diameter in wet membranes and their influences were discussed.The results show that the morphology of dry membranes is clearly varied with coagulation baths,while the porosity of wet membranes is almost constant.Porous structures can appear in the compact region of dry membranes due to swelling from water.These pores have a virtual effect on the average pore diameter of wet membranes.By changing the composition of coagulation baths,the microstructure of cellulose membranes in a dry or wet environment can be adjusted separately.

  8. Chemical bath deposition and electrochromic properties of NiO{sub x} films

    Energy Technology Data Exchange (ETDEWEB)

    Ristova, M.; Velevska, J. [Physics Department, Faculty of Science, P. O. Box 162, Skopje (Macedonia); Ristov, M. [Macedonian Academy of Sciences and Arts, Skopje (Macedonia)

    2002-02-01

    Nickel oxide (NiO{sub x}) thin films were prepared by the chemical deposition method (solution growth) on two kinds of substrates: (1) glass and (2) glass/SnO{sub 2}:F. Films were thermally treated at 200C for 10min in atmosphere. The texture, microstructure and composition were examined by optical microscopy, X-ray diffraction patterns (XRD) and X-ray photoelectron spectroscopy (XPS) analysis of the surface layer. The films exhibited anode electrochromism. The optical properties of the bleached and colored state were examined with transmittance spectroscopy in the visible region and reflectance FTIR spectroscopy. An electrochromic test device (ECTD), consisting of SnO{sub 2}/NiO{sub x}/NaOH-H{sub 2}O/SnO{sub 2}, was assembled and tested by cyclic voltammetry combined with a simultaneous recording of the change of transparency at {lambda}=670nm. The coloration efficiency was evaluated to be 24.3cm{sup 2}/C. The spontaneous ex-situ change of coloration with time of the colored and bleached NiO{sub x}/SnO{sub 2}/glass was also examined.

  9. Hall Coefficient Determination and Electrical Properties of Chemical Bath-Deposited n-WO3 Thin Films

    Science.gov (United States)

    Amaechi, Ifeanyichukwu C.; Nwanya, Assumpta C.; Asogwa, Paul U.; Osuji, Rose U.; Maaza, Malik; Ezema, Fabian I.

    2015-04-01

    Nanocrystalline and porous chemical bath-deposited n-WO3 thin films at low temperature (318 K) are reported. The high-quality and well-reproducible films have been fabricated by acidic hydrolysis of tungstate ion followed by thermal annealing at 573 K for 1 h. X-ray diffraction analyses of the deposited WO3 films revealed that they were amorphous. However, an amorphous-to-crystalline transition with monoclinic phase was observed. Atomic force microscopy (AFM) analyses revealed a homogenous but irregular cluster of faceted spherically-shaped grains with pores. Scanning electron microscopy corroborated the AFM results. The optical absorption analysis of WO3 film showed that direct optical transition exists in the photon energy range 3.00-4.00 eV with bandgap of 3.70 eV. The refractive index developed peak at 315 nm in the dispersion region while the high frequency dielectric constant ɛ ∞, and the carrier concentration to effective mass ratio, N/m*, were found to be 1.37 and 1.45 × 1039 cm-3, respectively. The temperature dependence of the electrical resistivity of the deposited films follows the semiconductor behavior with thermal activation energy of 2.0 meV, while the Hall coefficient R H was determined to be 0.17 cm3/A s.

  10. Effects of Thermal Annealing on the Optical Properties of Titanium Oxide Thin Films Prepared by Chemical Bath Deposition Technique

    Directory of Open Access Journals (Sweden)

    H.U. Igwe

    2010-08-01

    Full Text Available A titanium oxide thin film was prepared by chemical bath deposition technique, deposited on glass substrates using TiO2 and NaOH solution with triethanolamine (TEA as the complexing agent. The films w ere subjected to post deposition annealing under various temperatures, 100, 150, 200, 300 and 399ºC. The thermal treatment streamlined the properties of the oxide films. The films are transparent in the entire regions of the electromagnetic spectrum, firmly adhered to the substrate and resistant to chemicals. The transmittance is between 20 and 95% while the reflectance is between 0.95 and 1%. The band gaps obtained under various thermal treatments are between 2.50 and 3.0 ev. The refractive index is between 1.52 and 2.55. The thickness achieved is in the range of 0.12-0.14 :m.These properties of the oxide film make it suitable for application in solar cells: Liquid and solid dye-sensitized photoelectrochemical solar cells, photo induced water splitting, dye synthesized solar cells, environmental purifications, gas sensors, display devices, batteries, as well as, solar cells with an organic or inorganic extremely thin absorber. These thin films are also of interest for the photooxidation of water, photocatalysis, electro chromic devices and other uses.

  11. Surface modification of cadmium sulfide thin film honey comb nanostructures: Effect of in situ tin doping using chemical bath deposition

    Science.gov (United States)

    Wilson, K. C.; Basheer Ahamed, M.

    2016-01-01

    Even though nanostructures possess large surface to volume ratio compared to their thin film counterpart, the complicated procedure that demands for the deposition on a substrate kept them back foot in device fabrication techniques. In this work, a honey comb like cadmium sulfide (CdS) thin films nanostructure are deposited on glass substrates using simple chemical bath deposition technique at 65 °C. Energy band gaps, film thickness and shell size of the honey comb nanostructures are successfully controlled using tin (Sn) doping and number of shells per unit area is found to be maximum for 5% Sn doped (in the reaction mixture) sample. X-ray diffraction and optical absorption analysis showed that cadmium sulfide and cadmium hydroxide coexist in the samples. TEM measurements showed that CdS nanostructures are embedded in cadmium hydroxide just like "plum pudding". Persistent photoconductivity measurements of the samples are also carried out. The decay constants found to be increased with increases in Sn doping.

  12. Thermoluminescence of Zn O thin films deposited by chemical bath; Termoluminiscencia de peliculas delgadas de ZnO depositadas por bano quimico

    Energy Technology Data Exchange (ETDEWEB)

    Camacho A, M. C.; Cruz V, C. [Universidad de Sonora, Departamento de Investigacion en Polimeros y Materiales, Apdo. Postal 130, 83000 Hermosillo, Sonora (Mexico); Bernal H, R.; Berman M, D. [Universidad de Sonora, Departamento de Investigacion en Fisica, Apdo. Postal 5-088, 83190 Hermosillo, Sonora (Mexico); Castano M, V. M., E-mail: carmencamacho@gimmunison.com [UNAM, Instituto de Fisica, Centro de Fisica Aplicada y Tecnologia Avanzada, Apdo. Postal 1-1010, 76000 Queretaro, Qro. (Mexico)

    2015-10-15

    Full text: Zn O films on Si were synthesized using a deposition method by chemical bath and thermally treated at 900 degrees C for 12 h in air. The morphological characterization by scanning electron microscopy reveals that uniform films were obtained. To investigate the thermoluminescent properties of the films were exposed to irradiation with beta particles with doses in the range from 0.5 to 128 Gy. The brightness curves obtained using a heating rate of 5 degrees C have two peaks, one at 124 and another at 270 degrees C, and a linear dependence of the integrated thermoluminescence as a function of dose. The second maximum reveals the existence of localized trapping states of potential utility in thermoluminescent dosimetry. (Author)

  13. Effect of [Zn]/[S] ratios on the properties of chemical bath deposited zinc sulfide thin films

    International Nuclear Information System (INIS)

    ZnS thin films have been prepared by chemical bath deposition (CBD) technique onto glass substrates deposited at about 80 deg. C using aqueous solution of zinc sulfate hepta-hydrate, ammonium sulfate, thiourea, ammonia and hydrazine hydrate. Ammonia and hydrazine hydrate were used as complexing agents. The influence of the ratio of [Zn]/[S] on formation and properties of ZnS thin films has been investigated. The ratio of [Zn]/[S] was changed from 3:1 to 1:9 by varying volumes and/or concentrations of zinc sulfate hepta-hydrate and thiourea in the deposition solution. The structural and morphological characteristics of films have been investigated by X-ray diffraction (XRD), scanning electron microscope and UV-vis spectroscopic analysis. ZnS films were obtained with the [Zn]/[S] ratio ranged from1:1 to 1:6. In the cases of [Zn]/[S] ratio ≥ 3:1 or ≤1:9, no deposition was found. Transparent and polycrystalline ZnS film was obtained with pure-wurtzite structure at the [S]/[Zn] ratio of 1:6. The related formation mechanisms of CBD ZnS are discussed. The deposited ZnS films show good optical transmission (80-90%) in the visible region and the band gap is found to be in the range of 3.65-3.74 eV. The result is useful to further develop the CBD ZnS technology.

  14. The study of metal sulphide nanomaterials obtained by chemical bath deposition and hot-injection technique

    Science.gov (United States)

    Maraeva, E. V.; Alexandrova, O. A.; Forostyanaya, N. A.; Levitskiy, V. S.; Mazing, D. S.; Maskaeva, L. N.; Markov, V. Ph; Moshnikov, V. A.; Shupta, A. A.; Spivak, Yu M.; Tulenin, S. S.

    2015-11-01

    In this study lead sulphide - cadmium sulphide based layers were obtained through chemical deposition of water solutions and cadmium sulphide quantum dots were formed through hot-injection technique. The article discusses the results of surface investigations with the use of atomic force microscopy, Raman spectroscopy and photoluminescence measurements.

  15. Conformal coating of Ni(OH)2 nanoflakes on carbon fibers by chemical bath deposition for efficient supercapacitor electrodes

    KAUST Repository

    Alhebshi, Nuha

    2013-01-01

    A novel supercapacitor electrode structure has been developed in which a uniform and conformal coating of nanostructured Ni(OH)2 flakes on carbon microfibers is deposited in situ by a simple chemical bath deposition process at room temperature. The microfibers conformally coated with Ni(OH) 2 nanoflakes exhibit five times higher specific capacitance compared to planar (non-conformal) Ni(OH)2 nanoflake electrodes prepared by drop casting of Ni(OH)2 powder on the carbon microfibers (1416 F g-1vs. 275 F g-1). This improvement in supercapacitor performance can be ascribed to the preservation of the three-dimensional structure of the current collector, which is a fibrous carbon fabric, even after the conformal coating of Ni(OH)2 nanoflakes. The 3-D network morphology of the fibrous carbon fabric leads to more efficient electrolyte penetration into the conformal electrode, allowing the ions to have greater access to active reaction sites. Cyclic stability testing of the conformal and planar Ni(OH)2 nanoflake electrodes, respectively, reveals 34% and 62% drop in specific capacitance after 10 000 cycles. The present study demonstrates the crucial effect that electrolyte penetration plays in determining the pseudocapacitive properties of the supercapacitor electrodes. © 2013 The Royal Society of Chemistry.

  16. Modification of optical and electrical properties of chemical bath deposited SnS using O2 plasma treatments

    International Nuclear Information System (INIS)

    In this paper, we report modifications of structural and optical, electrical properties that occur in tin sulphide (SnS) treated in O2 plasma. The SnS thin films were deposited by chemical bath deposition technique. The samples were treated in an O2 plasma discharge at 3 Torr of pressure discharge, a discharge voltage of 2.5 kV and 20 mA of discharge current. The prepared and treated thin films were characterized by X-ray diffraction, scanning electron microscopy and energy dispersive X-ray analysis. The photoconductivity and electrical effects of SnS have been studied. The SnS thin films had an orthorhombic crystalline structure. With the plasma treatment the optical gap and electrical properties of the SnS films changed from 1.61 to 1.84 eV, for 3.9 × 105 to 10.42 Ω cm, respectively. These changes can be attributed to an increase in electron density, percolation effects due to porosity, surface degradation/etching that is an increase in surface roughness, where some structural changes related to crystallinity occurs like a high grain size as revealed by SEM images.

  17. ZnO thin films fabricated by chemical bath deposition, used as buffer layer in organic solar cells

    International Nuclear Information System (INIS)

    ZnO thin films synthetized by chemical bath deposition are used as buffer layer between the anode and the organic electron donor in organic solar cells. Films deposited from zinc nitrate solutions are annealed in room air at 300 deg. C for half an hour. The X-ray diffraction and microanalysis studies show that ZnO polycrystalline thin films are obtained. The solar cells used are based on the couple copper phthalocyanine as electron donor and (N,N-diheptyl-3,4,9,10-perylenetetracarboxylicdiimide-PTCDI-C7) as electron acceptor. It is shown that the presence of the ZnO buffer layer improves the energy conversion efficiency of the cells. Such improvement could be attributed to a better energy level alignment at the anode/electron donor interface. The anode roughness induced by the ZnO buffer layer can also transform the planar interface organic electron donor/electron acceptor into roughen topography. This increases the interface area, where carrier separation takes place, which improves solar cells performances.

  18. Application of chemometric methods for assessment and modelling of microbiological quality data concerning coastal bathing water in Greece

    Directory of Open Access Journals (Sweden)

    Agelos Papaioannou

    2014-12-01

    Full Text Available Background. Worldwide, the aim of managing water is to safeguard human health whilst maintaining sustainable aquatic and associated terrestrial, ecosystems. Because human enteric viruses are the most likely pathogens responsible for waterborne diseases from recreational water use, but detection methods are complex and costly for routine monitoring, it is of great interest to determine the quality of coastal bathing water with a minimum cost and maximum safety. Design and methods. This study handles the assessment and modelling of the microbiological quality data of 2149 seawater bathing areas in Greece over 10-year period (1997-2006 by chemometric methods. Results. Cluster analysis results indicated that the studied bathing beaches are classified in accordance with the seasonality in three groups. Factor analysis was applied to investigate possible determining factors in the groups resulted from the cluster analysis, and also two new parameters were created in each group; VF1 includes E. coli, faecal coliforms and total coliforms and VF2 includes faecal streptococci/enterococci. By applying the cluster analysis in each seasonal group, three new groups of coasts were generated, group A (ultraclean, group B (clean and group C (contaminated. Conclusions. The above analysis is confirmed by the application of discriminant analysis, and proves that chemometric methods are useful tools for assessment and modeling microbiological quality data of coastal bathing water on a large scale, and thus could attribute to effective and economical monitoring of the quality of coastal bathing water in a country with a big number of bathing coasts, like Greece.

  19. Optical and structural study of In2S3 thin films growth by co-evaporation and chemical bath deposition (CBD) on Cu3BiS3

    International Nuclear Information System (INIS)

    Highlights: • In2S3 thin films usually grow like an ultrathin. • Samples grown by CBD have a higher degree of coverage of the substrate unlike co-evaporation method. • Solar cells of Al/TCO/In2S3/Cu3BiS3/Mo structure. • In2S3 thin films were deposited on Cu3BiS3 (CBS), with of In2S3 β-phase with tetragonal structure. - Abstract: We present the growth of In2S3 onto Cu3BiS3 layers and soda-lime glass (SLG) substrates by using chemical bath deposition (CBD) and physical co-evaporation. The results reveal that the microstructure and the optical properties of the In2S3 films are highly dependent on the growth method. X-ray diffractrograms show that In2S3 films have a higher crystallinity when growing by co-evaporation than by CBD. In2S3 thin films grown by CBD with a thickness below 170 nm have an amorphous structure however when increasing the thickness the films exhibit two diffraction peaks associated to the (1 0 3) and (1 0 7) planes of the β-In2S3 tetragonal structure. It was also found that the In2S3 films present an energy bandgap (Eg) of about 2.75 eV, regardless of the thickness of the samples

  20. Growth of CdS thin films on indium coated glass substrates via chemical bath deposition and subsequent air annealing

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • CdS film grown on indium coated glass substrates via CBD and subsequent annealing. • Disappearance of the indium (1 1 2) peak confirms interdiffusion at 300 °C. • SIMS indicates the subsequent interdiffusion at progressively higher temperature. • Composite In–CdS layer showed lower photosensitivity compared to pure CdS. - Abstract: In the present work attempts were made to synthesize indium doped CdS films by fabricating In/CdS bilayers using CBD-CdS on vacuum evaporated In thin films and subsequent air annealing. 135 nm CdS films were grown onto 20 nm and 35 nm indium coated glass substrate employing chemical bath deposition technique. The In/CdS bilayers thus formed were subjected to heat treatment at the temperatures between 200 and 400 °C for 4 min in the muffle furnace to facilitate indium to diffuse into the CdS films. XRD pattern ascertained no noticeable shift in lattice constant implying grain boundary metal segregation, while secondary ion mass spectrometry indicated the diffusion profile of indium into CdS matrices. Mass spectrometry results showed that substantial diffusion of indium had been taken place within CdS at 400 °C. Dark and photocurrent with different illumination time were measured to ascertain the photosensitivity of pure and composite CdS films

  1. Growth of CdS thin films on indium coated glass substrates via chemical bath deposition and subsequent air annealing

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Biswajit; Kumar, Kamlesh; Singh, Balwant Kr; Banerjee, Pushan; Das, Subrata, E-mail: neillohit@yahoo.co.in

    2014-11-30

    Graphical abstract: - Highlights: • CdS film grown on indium coated glass substrates via CBD and subsequent annealing. • Disappearance of the indium (1 1 2) peak confirms interdiffusion at 300 °C. • SIMS indicates the subsequent interdiffusion at progressively higher temperature. • Composite In–CdS layer showed lower photosensitivity compared to pure CdS. - Abstract: In the present work attempts were made to synthesize indium doped CdS films by fabricating In/CdS bilayers using CBD-CdS on vacuum evaporated In thin films and subsequent air annealing. 135 nm CdS films were grown onto 20 nm and 35 nm indium coated glass substrate employing chemical bath deposition technique. The In/CdS bilayers thus formed were subjected to heat treatment at the temperatures between 200 and 400 °C for 4 min in the muffle furnace to facilitate indium to diffuse into the CdS films. XRD pattern ascertained no noticeable shift in lattice constant implying grain boundary metal segregation, while secondary ion mass spectrometry indicated the diffusion profile of indium into CdS matrices. Mass spectrometry results showed that substantial diffusion of indium had been taken place within CdS at 400 °C. Dark and photocurrent with different illumination time were measured to ascertain the photosensitivity of pure and composite CdS films.

  2. Generation of homogeneous granular packings: Contact dynamics method with coupling to an external pressure bath

    CERN Document Server

    Shaebani, M Reza; Kertesz, Janos

    2008-01-01

    The contact dynamics method (CD) is an efficient simulation technique of dense granular media where unilateral and frictional contact problems for a large number of rigid bodies have to be solved. In this paper we present a modified version of the contact dynamics to generate homogeneous random packings of rigid grains. CD is coupled to an external pressure bath, which allows the variation of the size of a periodically repeated cell. We follow the concept of the Andersen dynamics and show how it can be applied within the framework of the contact dynamics method. The main challenge here is to handle the interparticle interactions properly, which are based on constraint forces in CD. We implement the proposed algorithm, perform test simulations and investigate the properties of the final packings.

  3. Platinum-ruthenium bimetallic clusters on graphite: a comparison of vapor deposition and electroless deposition methods.

    Science.gov (United States)

    Galhenage, Randima P; Xie, Kangmin; Diao, Weijian; Tengco, John Meynard M; Seuser, Grant S; Monnier, John R; Chen, Donna A

    2015-11-14

    Bimetallic Pt-Ru clusters have been grown on highly ordered pyrolytic graphite (HOPG) surfaces by vapor deposition and by electroless deposition. These studies help to bridge the material gap between well-characterized vapor deposited clusters and electrolessly deposited clusters, which are better suited for industrial catalyst preparation. In the vapor deposition experiments, bimetallic clusters were formed by the sequential deposition of Pt on Ru or Ru on Pt. Seed clusters of the first metal were grown on HOPG surfaces that were sputtered with Ar(+) to introduce defects, which act as nucleation sites for Pt or Ru. On the unmodified HOPG surface, both Pt and Ru clusters preferentially nucleated at the step edges, whereas on the sputtered surface, clusters with relatively uniform sizes and spatial distributions were formed. Low energy ion scattering experiments showed that the surface compositions of the bimetallic clusters are Pt-rich, regardless of the order of deposition, indicating that the interdiffusion of metals within the clusters is facile at room temperature. Bimetallic clusters on sputtered HOPG were prepared by the electroless deposition of Pt on Ru seed clusters from a Pt(+2) solution using dimethylamine borane as the reducing agent at pH 11 and 40 °C. After exposure to the electroless deposition bath, Pt was selectively deposited on Ru, as demonstrated by the detection of Pt on the surface by XPS, and the increase in the average cluster height without an increase in the number of clusters, indicating that Pt atoms are incorporated into the Ru seed clusters. Electroless deposition of Ru on Pt seed clusters was also achieved, but it should be noted that this deposition method is extremely sensitive to the presence of other metal ions in solution that have a higher reduction potential than the metal ion targeted for deposition. PMID:26018140

  4. On the sub-band gap optical absorption in heat treated cadmium sulphide thin film deposited on glass by chemical bath deposition technique

    International Nuclear Information System (INIS)

    The sub-band gap optical absorption in chemical bath deposited cadmium sulphide thin films annealed at different temperatures has been critically analyzed with special reference to Urbach relation. It has been found that the absorption co-efficient of the material in the sub-band gap region is nearly constant up to a certain critical value of the photon energy. However, as the photon energy exceeds the critical value, the absorption coefficient increases exponentially indicating the dominance of Urbach rule. The absorption coefficients in the constant absorption region and the Urbach region have been found to be sensitive to annealing temperature. A critical examination of the temperature dependence of the absorption coefficient indicates two different kinds of optical transitions to be operative in the sub-band gap region. After a careful analyses of SEM images, energy dispersive x-ray spectra, and the dc current-voltage characteristics, we conclude that the absorption spectra in the sub-band gap domain is possibly associated with optical transition processes involving deep levels and the grain boundary states of the material

  5. New method for determination of trihalomethanes in exhaled breath: Applications to swimming pool and bath environments

    International Nuclear Information System (INIS)

    A method for the estimation of the human intake of trihalomethanes (THMs), namely chloroform, bromodichloromethane, dibromochloromethane and bromoform, during showering and bathing is reported. The method is based on the determination of these compounds in exhaled breath that is collected by solid adsorption on Tenax using a device specifically designed for this purpose. Instrumental measurements were performed by automatic thermal desorption coupled to gas chromatography with electron capture detection. THMs in exhaled breath samples were determined during showering and swimming pool attendance. The levels of these compounds in indoor air and water were also determined as reference for interpretation of the exhaled breath results. The THM concentrations in exhaled breath of the volunteers measured before the exposure experiments showed a close correspondence with the THMs levels in indoor air where the sampler was located. Limits of detection in exhaled breath were dependent on THM analytes and experimental sites. They ranged between 170 and 710 ng m-3 in the swimming pool studies and between 97 and 460 ng m-3 in the showering studies. Application of this method to THMs determination during showering and swimming pool activities revealed statistically significant increases in THMs concentrations when comparing exhaled breath before and after exposure.

  6. A highly porous NiO/polyaniline composite film prepared by combining chemical bath deposition and electro-polymerization and its electrochromic performance

    Science.gov (United States)

    Xia, X. H.; Tu, J. P.; Zhang, J.; Wang, X. L.; Zhang, W. K.; Huang, H.

    2008-11-01

    A highly porous NiO/polyaniline (PANI) composite film was prepared on ITO glass by combining the chemical bath deposition and electro-polymerization methods, successively. The porous NiO film acts as a template for the preferential growth of PANI along NiO flakes, and the NiO/PANI composite film has an intercrossing net-like morphology. The electrochromic performance of the NiO/PANI composite film was investigated in 1 M LiClO4+1 mM HClO4/propylene carbonate (PC) by means of transmittance, cyclic voltammetry (CV) and chronoamperometry (CA) measurements. The NiO/PANI thin film exhibits a noticeable electrochromism with reversible color changes from transparent yellow to purple and presents quite good transmittance modulation with a variation of transmittance up to 56% at 550 nm. The porous NiO/polyaniline (PANI) composite film also shows good reaction kinetics with fast switching speed, and the response time for oxidation and reduction is 90 and 110 ms, respectively.

  7. A highly porous NiO/polyaniline composite film prepared by combining chemical bath deposition and electro-polymerization and its electrochromic performance

    International Nuclear Information System (INIS)

    A highly porous NiO/polyaniline (PANI) composite film was prepared on ITO glass by combining the chemical bath deposition and electro-polymerization methods, successively. The porous NiO film acts as a template for the preferential growth of PANI along NiO flakes, and the NiO/PANI composite film has an intercrossing net-like morphology. The electrochromic performance of the NiO/PANI composite film was investigated in 1 M LiClO4+1 mM HClO4/propylene carbonate (PC) by means of transmittance, cyclic voltammetry (CV) and chronoamperometry (CA) measurements. The NiO/PANI thin film exhibits a noticeable electrochromism with reversible color changes from transparent yellow to purple and presents quite good transmittance modulation with a variation of transmittance up to 56% at 550 nm. The porous NiO/polyaniline (PANI) composite film also shows good reaction kinetics with fast switching speed, and the response time for oxidation and reduction is 90 and 110 ms, respectively.

  8. The structure of coatings obtained in the Zn-31Al-3Mg bath by the batch hot dip method

    International Nuclear Information System (INIS)

    Zn-Al dip coatings provide effective protection of steel surface against corrosion - better than traditional zinc coatings. Corrosion resistance can be further increased by adding Mg to the bath. Coatings obtained in Zn-Al-Mg baths are produced on metal plates by applying the continuous method. In this paper the author presents the results of tests on obtaining Zn-Al-Mg coatings on products with limited shape by use of the batch hot dip method. The growth kinetics of coatings obtained in the Zn-31Al-3Mg bath on steel with low silicon contents has been defined. The structure has been developed and the chemical composition of particular structural components of the coating has be established. It has been determined that the structure of coatings obtained in the Zn-31Al-3Mg bath is continuous. The course of reaction between the tested steel and liquid Zn-31Al-3Mg alloy is very abrupt, which leads to the formation of coatings with excess and non-uniform thickness.

  9. Sonication-assisted sequential chemical bath deposition of CdS nanoparticles into TiO2 nanotube arrays for application in solar cells

    International Nuclear Information System (INIS)

    Highlights: ► CdS sensitized TNTAs photoanode were prepared by sonication-assisted CBD approach. ► Sonication-assisted CBD (SSCBD) prevents CdS aggregating at the top of TNTAs. ► SSCBD promote the deposition quantity of nanoparticles into the TNTAs effectively. ► Compared with classical CBD, S-CdS/TNTAs cells exhibit an increase of η by 65.8%. - Abstract: CdS nanoparticles sensitized TiO2 nanotube arrays photoanode for semiconductors sensitized solar cells (SSSCs) were prepared by sonication-assisted sequential chemical bath deposition (SSCBD) approach and labeled as S-CdS/TNTAs. The S-CdS/TNTAs solar cell was assembled into a typical sandwich structure with backside illumination. Short-circuit current density (Jsc), open circuit potential (Voc), fill factor (FF) and power conversion efficiency (PCE) of the cells under AM 1.5 irradiation were about 4.16 mA cm−2, 446 mV, 43.9% and 0.814%, respectively. Compared with classical sequential chemical bath deposition (SCBD), SSCBD process could effectively prevent CdS nanoparticles aggregating at the top surface of TNTAs and resulted in an increase of PCE by 65.8%. Increased performance of S-CdS/TNTAs solar cell may be attributed to the more efficient charge-transfer process and the lower charge recombination, as evidenced from FESEM and electrochemical impedance spectroscopy (EIS).

  10. Electrical characterization of annealed chemical-bath-deposited CdS films and their application in superstrate configuration CdTe/CdS solar cells

    International Nuclear Information System (INIS)

    Application of chemical-bath-deposited CdS in the superstrate configuration of CdTe/CdS solar cells involving CdCl2:O2 heat treatment of CdTe/CdS structures at about 400 °C is problematic. Namely, the vertical capillary surfaces (grain boundaries) between the columnar CdS grains perform as fast diffusion channels leading to the emergence of short circuits between the absorber and front contact. It was assumed that the grain boundaries contain residual hydroxy-oxide type compounds and form electrical barriers between columnar grains in the lateral direction of the CdS layer and that the electrical methods should be indicative of the behavior of grain boundaries in the annealing process. All samples were characterized by temperature dependence of DC conductivity in a temperature range of 50-300 K, X-ray diffraction, and scanning electron microscope. It has been found that the deeper layers of H2 and N2 annealed CdS preserve residual hydroxide, which released the gas phase in the recrystallization process of the chloride processing and created porosity on the CdTe/CdS interface. - Highlights: • We examine interface of CdS/CdTe structures after chloride heat treatment. • The mechanism of the formation of porosity in the CdS/CdTe interface is suggested. • Chloride heat treatment causes also recrystallization of CdS. • The gap between CdS and CdTe is minimal due to CdO on the grain boundaries of CdS

  11. Effect of deposition temperature on the structural and optical properties of CdSe thin films synthesised by chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, Mudhafer Ali [Department of Applied Sciences, University of Technology / Baghdad (Iraq); Jamil, Shatha Shammon Batros [Ministry of Science and Technology / Baghdad (Iraq)

    2013-12-16

    Cadmium selenide thin films were synthesized on glass substrates using chemical bath technique (CBD) at temperatures 320K, 330K, 340K,and 350K. The polycrystalline nature of the material was confirmed by X-ray diffraction technique and various structural parameters such as lattice parameters, grain size, dislocation density, and micro strain. The root mean square (RMS) roughness was obtained by using atomic force microscopy(AFM), which indicated a decreasing average roughness with the decrease of the bath temperature. Optical properties were carried out by UV-Visible transmittance spectra, and the band gap energy was determined.

  12. Cd1−xZnxS thin films with low Zn content obtained by an ammonia-free chemical bath deposition process

    International Nuclear Information System (INIS)

    Cd1−xZnxS films with low Zn content were obtained on glass substrates by an ammonia-free chemical bath deposition process. Alkaline reaction solutions were prepared using cadmium chloride, zinc chloride, sodium citrate, thiourea and potassium hydroxide. As a result of varying the mixture ratio between Cd and Zn precursors, microstructural studies from X-ray diffraction reveal that the resulting films have hexagonal, wurzite type, crystalline structure with changes in the preferential growth orientation. Important changes on the surface morphology and thickness of the Cd1−xZnxS films were also observed as effects of adding Zn to the CdS lattice. Optical studies show that Cd1−xZnxS thin films with energy band gaps in the range from 2.48 to 2.65 eV were obtained. - Highlights: • Cd1−xZnxS layers were grown on glass by ammonia-free chemical bath deposition • Films with low Zn content were obtained using reaction solutions with pH11.5 • Zn addition produced changes on the orientation growth and morphology of the films • Cd1−xZnxS films have energy band gap values from 2.48 to 2.65 eV

  13. Cd{sub 1−x}Zn{sub x}S thin films with low Zn content obtained by an ammonia-free chemical bath deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Carreón-Moncada, I. [Centro de Investigación y de Estudios Avanzados del IPN, Unidad Saltillo, Av. Industria Metalúrgica 1062, CP. 25900, Ramos Arizpe, Coah., México (Mexico); González, L.A., E-mail: luis.gonzalez@cinvestav.edu.mx [Centro de Investigación y de Estudios Avanzados del IPN, Unidad Saltillo, Av. Industria Metalúrgica 1062, CP. 25900, Ramos Arizpe, Coah., México (Mexico); Pech-Canul, M.I. [Centro de Investigación y de Estudios Avanzados del IPN, Unidad Saltillo, Av. Industria Metalúrgica 1062, CP. 25900, Ramos Arizpe, Coah., México (Mexico); Ramírez-Bon, R. [Centro de Investigación y de Estudios Avanzados del IPN, Unidad Querétaro, Apartado Postal 1-798, CP. 76001 Querétaro, Qro., México (Mexico)

    2013-12-02

    Cd{sub 1−x}Zn{sub x}S films with low Zn content were obtained on glass substrates by an ammonia-free chemical bath deposition process. Alkaline reaction solutions were prepared using cadmium chloride, zinc chloride, sodium citrate, thiourea and potassium hydroxide. As a result of varying the mixture ratio between Cd and Zn precursors, microstructural studies from X-ray diffraction reveal that the resulting films have hexagonal, wurzite type, crystalline structure with changes in the preferential growth orientation. Important changes on the surface morphology and thickness of the Cd{sub 1−x}Zn{sub x}S films were also observed as effects of adding Zn to the CdS lattice. Optical studies show that Cd{sub 1−x}Zn{sub x}S thin films with energy band gaps in the range from 2.48 to 2.65 eV were obtained. - Highlights: • Cd{sub 1−x}Zn{sub x}S layers were grown on glass by ammonia-free chemical bath deposition • Films with low Zn content were obtained using reaction solutions with pH11.5 • Zn addition produced changes on the orientation growth and morphology of the films • Cd{sub 1−x}Zn{sub x}S films have energy band gap values from 2.48 to 2.65 eV.

  14. Preparation of highly photocatalytic active CdS/TiO2 nanocomposites by combining chemical bath deposition and microwave-assisted hydrothermal synthesis

    International Nuclear Information System (INIS)

    CdS/TiO2 nanocomposites were prepared from Cd and Ti (1:1 M ratio) using cetyltrimethylammonium bromide by a two-step chemical bath deposition (CBD) and microwave-assisted hydrothermal synthesis (MAHS) method. A series of nanocomposites with different morphologies and activities were prepared by varying the reaction time in the MAHS (2, 4, and 6 h). The crystal structure, morphology, and surface physicochemical properties of the nanocomposites were characterized by X-ray diffraction, UV–visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and N2 adsorption–desorption measurements. The results show that the CdS/TiO2 nanocomposites were composed of anatase TiO2 and hexagonal CdS phases with strong absorption in the visible region. The surface morphologies changed slightly with increasing microwave irradiation time, while the Brunauer–Emmett–Teller surface area increased remarkably. The photocatalytic degradation of methyl orange (MO) was investigated under UV light and simulated sunlight irradiation. The photocatalytic activity of the CdS/TiO2 (6 h) composites prepared by the MAHS method was higher than those of CdS, P25, and other CdS/TiO2 nanocomposites. The CdS/TiO2 (6 h) nanocomposites significantly affected the UV and microwave-assisted photocatalytic degradation of different dyes. To elucidate the photocatalytic reaction mechanism for the CdS/TiO2 nanocomposites, controlled experiments were performed by adding different radical scavengers. - Graphical abstract: CdS/TiO2 nanocomposites were prepared using CTAB by CBD combined with MAHS method. In addition, with increasing microwave irradiation time, the morphology of CdS/TiO2 changed from popcorn-like to wedge-like structure. - Highlights: • The CdS/TiO2 was prepared by CBD combined with MAHS two-step method under CTAB. • The morphologies of as-samples were different with the time of microwave increased. • Compared with TiO2, as-samples show

  15. Preparation of highly photocatalytic active CdS/TiO{sub 2} nanocomposites by combining chemical bath deposition and microwave-assisted hydrothermal synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Li, E-mail: qqhrll@163.com [College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Key Laboratory of Composite Modified Material of Colleges in Heilongjiang Province, Qiqihar 161006 (China); Wang, Lili [College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Hu, Tianyu [College of Environment and Resources, Jilin University, Changchun 130024 (China); Zhang, Wenzhi; Zhang, Xiuli; Chen, Xi [College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China)

    2014-10-15

    CdS/TiO{sub 2} nanocomposites were prepared from Cd and Ti (1:1 M ratio) using cetyltrimethylammonium bromide by a two-step chemical bath deposition (CBD) and microwave-assisted hydrothermal synthesis (MAHS) method. A series of nanocomposites with different morphologies and activities were prepared by varying the reaction time in the MAHS (2, 4, and 6 h). The crystal structure, morphology, and surface physicochemical properties of the nanocomposites were characterized by X-ray diffraction, UV–visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and N{sub 2} adsorption–desorption measurements. The results show that the CdS/TiO{sub 2} nanocomposites were composed of anatase TiO{sub 2} and hexagonal CdS phases with strong absorption in the visible region. The surface morphologies changed slightly with increasing microwave irradiation time, while the Brunauer–Emmett–Teller surface area increased remarkably. The photocatalytic degradation of methyl orange (MO) was investigated under UV light and simulated sunlight irradiation. The photocatalytic activity of the CdS/TiO{sub 2} (6 h) composites prepared by the MAHS method was higher than those of CdS, P25, and other CdS/TiO{sub 2} nanocomposites. The CdS/TiO{sub 2} (6 h) nanocomposites significantly affected the UV and microwave-assisted photocatalytic degradation of different dyes. To elucidate the photocatalytic reaction mechanism for the CdS/TiO{sub 2} nanocomposites, controlled experiments were performed by adding different radical scavengers. - Graphical abstract: CdS/TiO{sub 2} nanocomposites were prepared using CTAB by CBD combined with MAHS method. In addition, with increasing microwave irradiation time, the morphology of CdS/TiO{sub 2} changed from popcorn-like to wedge-like structure. - Highlights: • The CdS/TiO{sub 2} was prepared by CBD combined with MAHS two-step method under CTAB. • The morphologies of as-samples were different with the time of

  16. Enhancing the photovoltaic performance and stability of QDSSCs using surface reinforced Pt nanostructures with controllable morphology and superior electrocatalysis via cost-effective chemical bath deposition.

    Science.gov (United States)

    Srinivasa Rao, S; Durga, Ikkurthi Kanaka; Kang, Tae-Su; Kim, Soo-Kyoung; Punnoose, Dinah; Gopi, Chandu V V M; Eswar Reddy, Araveeti; Krishna, T N V; Kim, Hee-Je

    2016-02-16

    To make quantum-dot sensitized solar cells (QDSSCs) competitive, photovoltaic parameters such as the power conversion efficiency (PCE) and fill factor (FF) must become comparable to those of other emerging solar cell technologies. In the present study, a novel strategy has been successfully developed for a highly efficient surface-modified platinum (Pt) counter electrode (CE) with high catalytic activity and long-term stability in a polysulfide redox electrolyte. The reinforcement of the Pt surface was performed using a thin passivating layer of CuS, NiS, or CoS by simple chemical bath deposition techniques. This method was a more efficient method for reducing the electron recombination in QDSSCs. The optimized Pt/CuS CE shows a very low charge transfer resistance of 37.01 Ω, which is an order of magnitude lower than those of bare Pt (86.32 Ω), Pt/NiS (53.83 Ω), and Pt/CoS (73.51 Ω) CEs. Therefore, the Pt/CuS CEs show much greater catalytic activity in the polysulfide redox electrolyte than Pt, Pt/NiS and Pt/CoS CEs. As a result, under one-sun illumination (AM 1.5G, 100 mW cm(-2)), the Pt/CuS CE exhibits a PCE of 4.32%, which is higher than the values of 1.77%, 2.95%, and 3.25% obtained with bare Pt, Pt/CoS, and Pt/NiS CEs, respectively. The performance of the Pt/CuS CE was enhanced by the improved current density, Cu vacancies with increased S composition, and surface morphology, which enable rapid electron transport and lower the electron recombination rate for the polysulfide electrolyte redox couple. Electrochemical impedance spectroscopy and Tafel polarization revealed that the hybrid CEs reduce interfacial recombination and exhibit better electrochemical and photovoltaic performance compared with a bare Pt CE. The Pt/CuS CE also shows superior stability in the polysulfide electrolyte in a working state for over 10 h, resulting in a long-term electrode stability than Pt CE. PMID:26796086

  17. Application of design of experiment on electrophoretic deposition of glass-ceramic coating materials from an aqueous bath

    Indian Academy of Sciences (India)

    Someswar Datta

    2000-04-01

    A process for application of abrasion- or corrosion-resistant glass-ceramic coating materials on metal substrate by electrophoretic deposition technique in an aqueous medium has been described. The effects of various process parameters, e.g. coating material concentration, time of deposition, applied current, pH of the suspension and concentration of the polymeric dispersant on the deposition efficiency have been studied. The process has been studied using a 23-factorial design technique of three independent variables; i.e. coating material concentration, applied current, and the time taken to achieve the best combination. The regression equation obtained explains the experimental results satisfactorily.

  18. The effect of thermal annealing on the optical band gap of cadmium sulphide thin films, prepared by the chemical bath deposition technique

    International Nuclear Information System (INIS)

    Cadmium sulphide thin films have been prepared by the chemical bath deposition technique (ph 11, 70 degree centigrade). Two different sets of films were prepared under varied conditions and concentrations of their ions sources (Cd2+ from cadmium nitrate, S2- from thiourea) and Na2EDTA as a complexing agent. A UV mini-Schimazu UV-VIS Spectrophotometer was used to determine the optical absorbance of the films as a function of wavelength at room temperature over the wavelength range 200 - 600 nm. The samples were then thermally annealed for thirty minutes, at temperatures of 100 degree centigrade, and 200 degree centigrade, after which the absorbance of the films were again recorded. The band gap values obtained for the sample with 0.5 M CdS as deposited, annealed at 100 degree centigrade and 200 degree centigrade were 2.1 eV, 2.2 eV and 2.3 eV respectively. Whilst the values obtained for the sample 0.15 CdS as deposited, annealed at 100 degree centigrade and annealed at 200 degree centigrade were 2.0 eV, 2.01 eV and 2.02 eV respectively. The increase in band gap with annealing temperature might be attributed to the improvement in crystallinity in the films. (au)

  19. Chemical bath deposition of thin semiconductor films for use as buffer layers in CuInS sub 2 thin film solar cells

    CERN Document Server

    Kaufmann, C A

    2002-01-01

    different growth phases, layer morphology and solar cell performance were sought and an improved deposition process was developed. As a result, Cd-free CulnS sub 2 thin film solar cells with efficiencies of up to 10.6%) (total area) could be produced. Overall the substitution of CdS is shown to be possible by different alternative compounds, such as Zn(OH,O) sub x S sub y or In(OH,O) sub x S sub y. In the case of In(OH,O) sub x S sub y , an understanding of the CBD process and the effect of different growth phases on the resulting solar cell characteristics could be developed. A CulnS sub 2 thin film solar cell is a multilayered semiconductor device. The solar cells discussed have a layer sequence Mo/CulnS sub 2 /buffer/i-ZnO/ZnO:Ga, where a heterojunction establishes between the p-type absorber and the n-type front contact. Conventionally the buffer consists of CdS, deposited by chemical bath deposition (CBD). Apart from providing process oriented benefits the buffer layer functions as a tool for engineering...

  20. Low-Temperature Growth of Well-Aligned ZnO Nanorod Arrays by Chemical Bath Deposition for Schottky Diode Application

    Science.gov (United States)

    Yuan, Zhaolin

    2015-04-01

    A well-aligned ZnO nanorod array (ZNRA) was successfully grown on an indium tin oxide (ITO) substrate by chemical bath deposition at low temperature. The morphology, crystalline structure, transmittance spectrum and photoluminescence spectrum of as-grown ZNRA were investigated by field emission scanning electron microscopy, x-ray diffraction, ultraviolet-visible spectroscopy and spectrophotometer, respectively. The results of these measurements showed that the ZNRA contained densely packed, aligned nanorods with diameters from 30 nm to 40 nm and a wurtzite structure. The ZNRA exhibited good optical transparency within the visible spectral range, with >80% transmission. Gold (Au) was deposited on top of the ZNRA, and the current-voltage characteristics of the resulting ITO/ZNRA/Au device in the dark were evaluated in detail. The ITO/ZNRA/Au device acted as a Schottky barrier diode with rectifying behaviour, low turn-on voltage (0.6 V), small reverse-bias saturation current (3.73 × 10-6 A), a high ideality factor (3.75), and a reasonable barrier height (0.65 V) between the ZNRA and Au.

  1. Structural, Surface Morphology and Optical Properties of ZnS Films by Chemical Bath Deposition at Various Zn/S Molar Ratios

    Directory of Open Access Journals (Sweden)

    Fei-Peng Yu

    2014-01-01

    Full Text Available In this study, ZnS thin films were prepared on glass substrates by chemical bath deposition at various Zn/S molar ratios from 1/50 to 1/150. The effects of Zn/S molar ratio in precursor on the characteristics of ZnS films were demonstrated by X-ray diffraction, scanning electron microscopy, optical transmittance, X-ray photoelectron spectroscopy, and Fourier transform infrared spectrometry. It was found that more voids were formed in the ZnS film prepared using the precursor with Zn/S molar ratio of 1/50, and the other ZnS films showed the denser structure as the molar ratio was decreased from 1/75 to 1/150. From the analyses of chemical bonding states, the ZnS phase was indeed formed in these films. Moreover, the ZnO and Zn(OH2 also appeared due to the water absorption on film surface during deposition. This would be helpful to the junction in cell device. With changing the Zn/S molar ratio from 1/75 to 1/150, the ZnS films demonstrate high transmittance of 75–88% in the visible region, indicating the films are potentially useful in photovoltaic applications.

  2. Evaluation of equivalence between different methods for enumeration of fecal indicator bacteria before and after adoption of the new Bathing Water Directive and risk assessment of pollution.

    Science.gov (United States)

    Lušić, Darija Vukić; Lušić, Dražen; Pešut, Denis; Mićović, Vladimir; Glad, Marin; Bilajac, Lovorka; Peršić, Vesna

    2013-08-15

    The quality of bathing water is of considerable public importance due to the possibility of fecal contamination. In 2009, Croatia implemented the new European Bathing Water Directive (BWD, 2006/7/EC) establishing stricter microbiological standards for new parameters with new reference methods. This study aims to evaluate the equivalence of different methods according to the old and revised BWD and to provide the possibility of data comparison. Furthermore, the directive requires the establishment of the bathing water profile (BWP) for pollution risk assessment. The estimation of consistency of pollution risk assessment with obtained microbiological results was also performed. Six marine beaches of the Municipality of Rijeka (Croatia) were examined during the 2009 season. Statistical analysis showed equivalence between determination methods for fecal contamination indicators. Based on the current water classification results, the need for correction of estimated pollution risks and recommendations for inclusion of historical microbiological data during BWP enactment was noticed. PMID:23756111

  3. Chemical bath deposition of textured and compact zinc oxide thin films on vinyl-terminated polystyrene brushes

    Science.gov (United States)

    Blumenstein, Nina J; Hofmeister, Caroline G; Lindemann, Peter; Huang, Cheng; Baier, Johannes; Leineweber, Andreas; Wöll, Christof; Schimmel, Thomas

    2016-01-01

    Summary In this study we investigated the influence of an organic polystyrene brush on the deposition of ZnO thin films under moderate conditions. On a non-modified SiOx surface, island growth is observed, whereas the polymer brush induces homogeneous film growth. A chemical modification of the polystyrene brushes during the mineralization process occurs, which enables stronger interaction between the then polar template and polar ZnO crystallites in solution. This may lead to oriented attachment of the crystallites so that the observed (002) texture arises. Characterization of the templates and the resulting ZnO films were performed with ζ-potential and contact angle measurements as well as scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD). Infrared spectroscopy (IR) measurements were used to investigate the polystyrene brushes before and after modification. PMID:26925358

  4. Effect of copper doping on structural, optical and electrical properties of Cd0.8Zn0.2S films prepared by chemical bath deposition

    Indian Academy of Sciences (India)

    K Hadasa; G Yellaiah; M Nagabhushanam

    2014-02-01

    Cd0.8Zn0.2S:Cu films of 1.3–6.1 mole percentage of copper have been grown on mica substrate by using chemical bath deposition technique. The films have been characterized by using XRD, SEM and UV spectrophotometer. X-ray diffraction studies have shown that the films are polycrystalline. The average crystallite size as measured from XRD data is in the range of 125–130 nm. The activation energies of Cd0.8Zn0.2S:Cu films, as observed from d.c. conductivity studies in the temperature range (77–300 K) studied, decreased with the increase in Cu concentration. The optical absorption studies have revealed that the energy gap increases gradually with an increase in Cu concentration, whereas conductivity studies have shown an anomalous increase in conductivity in films of 3.8 mole percentage of Cu. SEM pictures have revealed the presence of defects with spherical structure having fibre network. The variation of electrical conductivity is explained based on the defects present and by adopting tunneling mechanism.

  5. The influence of molybdenum on the corrosion resistance of ternary Zn–Co–Mo alloy coatings deposited from citrate–sulphate bath

    International Nuclear Information System (INIS)

    Highlights: • Concentration of the alloying elements is almost constant between pH 5.5 and 5.9. • Molybdenum has a positive effect on the amount of cobalt-rich phase. • Corrosion resistance of Zn–Co–Mo coatings is higher from that of Zn–Co coatings. • Mo causes that the rate of corrosion is limited rather by activation than diffusion. • Mo has a beneficial effect on the composition of the passive layer on Zn–Co–Mo alloy. - Abstract: Ternary Zn–Co–Mo alloy coatings were deposited from a citrate–sulphate bath. In a pH range of 5.5–5.9 the coatings contained 2.3–3.6 wt.% molybdenum and 3.4–3.7 wt.% cobalt. DC and EIS measurements revealed that in the course of 24 h exposure to NaCl solution the corrosion resistance of Zn–Co–Mo alloy coatings was higher than that of Zn and Zn–Co coatings. On the basis of XRD, ALSV and XPS studies it can be stated that the beneficial effect on the corrosion resistance of Zn–Co–Mo coatings has a passive layer composed of: Zn(OH)2, ZnO, Mo(IV) oxide and hydroxide and a small amounts of Co3O4

  6. ZnO nanorod arrays prepared by chemical bath deposition combined with rapid thermal annealing: structural, photoluminescence and field emission characteristics

    International Nuclear Information System (INIS)

    ZnO nanorod arrays were prepared by low temperature chemical bath deposition (CBD) combined with rapid thermal annealing (RTA) under different ambient conditions. The structure and morphology of the synthesized ZnO have been characterized by field-emission scanning electron microscopy (FESEM) and x-ray diffraction (XRD). The obtained ZnO samples are highly crystalline with a hexagonal wurtzite phase and also display well-aligned array structure. A pronounced effect on increased nanorod length was found for the RTA-treated ZnO as compared to the as-grown ZnO. Analysis of XRD indicates that the (0 0 2) feature peak of the as-grown ZnO was shifted towards a lower angle as compared to the peaks of RTA-treated ZnO samples due to the reduction of tensile strain along the c-axis by RTA. Photoluminescence (PL) studies reveal that the ZnO nanorod arrays receiving RTA in an O2 environment have the sharpest UV emission band and greatest intensity ratio of near band-edge emission (NBE) to deep level emission (DLE). Additionally, the effects of RTA on the field emission properties were evaluated. The results demonstrate that RTA an O2 environment can lower the turn-on field and improve the field enhancement factor. The stability of the field emission current was also tested for 4 h. (paper)

  7. Chemical Bath Deposition of p-Type Transparent, Highly Conducting (CuS)x:(ZnS)1-x Nanocomposite Thin Films and Fabrication of Si Heterojunction Solar Cells.

    Science.gov (United States)

    Xu, Xiaojie; Bullock, James; Schelhas, Laura T; Stutz, Elias Z; Fonseca, Jose J; Hettick, Mark; Pool, Vanessa L; Tai, Kong Fai; Toney, Michael F; Fang, Xiaosheng; Javey, Ali; Wong, Lydia Helena; Ager, Joel W

    2016-03-01

    P-type transparent conducting films of nanocrystalline (CuS)x:(ZnS)1-x were synthesized by facile and low-cost chemical bath deposition. Wide angle X-ray scattering (WAXS) and high resolution transmission electron microscopy (HRTEM) were used to evaluate the nanocomposite structure, which consists of sub-5 nm crystallites of sphalerite ZnS and covellite CuS. Film transparency can be controlled by tuning the size of the nanocrystallites, which is achieved by adjusting the concentration of the complexing agent during growth; optimal films have optical transmission above 70% in the visible range of the spectrum. The hole conductivity increases with the fraction of the covellite phase and can be as high as 1000 S cm(-1), which is higher than most reported p-type transparent materials and approaches that of n-type transparent materials such as indium tin oxide (ITO) and aluminum doped zinc oxide (AZO) synthesized at a similar temperature. Heterojunction p-(CuS)x:(ZnS)1-x/n-Si solar cells were fabricated with the nanocomposite film serving as a hole-selective contact. Under 1 sun illumination, an open circuit voltage of 535 mV was observed. This value compares favorably to other emerging heterojunction Si solar cells which use a low temperature process to fabricate the contact, such as single-walled carbon nanotube/Si (370-530 mV) and graphene/Si (360-552 mV). PMID:26855162

  8. In6Se7 thin films by heating thermally evaporated indium and chemical bath deposited selenium multilayers

    International Nuclear Information System (INIS)

    Indium selenide (In6Se7) thin films were prepared via selenization of thermally evaporated indium thin films by dipping in sodium selenosulphate solution followed by annealing in nitrogen atmosphere. First, indium was thermally evaporated on glass substrate. Then, the indium coated glass substrates were dipped in a solution containing 80 ml 0.125 M sodium selenosulphate and 1.5 ml dilute acetic acid (25%) for 5 min. Glass/In-Se layers were annealed at 200-400 °C in nitrogen atmosphere (0.1 Torr) for 30 min. X-ray diffraction studies showed the formation of monoclinic In6Se7. Morphology of the thin films formed at different conditions was analyzed using Scanning electron microscopy. The elemental analysis was done using Energy dispersive X-ray detection. Electrical conductivity under dark and illumination conditions was evaluated. Optical band gap was computed using transmittance and reflectance spectra. The band gap value was in the range 1.8-2.6 eV corresponding to a direct allowed transition. We studied the effect of indium layer thickness and selenium deposition time on the structure, electrical and optical properties of In6Se7 thin films.

  9. Non-toxic complexing agent Tri-sodium citrate's effect on chemical bath deposited ZnS thin films and its growth mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Agawane, G.L. [Department of Materials Science and Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Shin, Seung Wook [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of); Moholkar, A.V. [Electrochemical Mat. Lab., Department of Physics, Shivaji University, Kolhapur 416 004 (India); Gurav, K.V. [Department of Materials Science and Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Yun, Jae Ho, E-mail: yunjh92@kier.re.kr [Photovoltaic Research Group, KIER, Jang-Dong, Yuseong-Gu, Daejeon 305-343 (Korea, Republic of); Lee, Jeong Yong [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of); Kim, Jin Hyeok, E-mail: jinhyeok@chonnam.ac.kr [Department of Materials Science and Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer ZnS thin films were prepared by CBD using non-toxic complexing agent. Black-Right-Pointing-Pointer The morphology of ZnS thin film was improved with Na{sub 3}-citrate. Black-Right-Pointing-Pointer The growth mechanism of ZnS thin films is depends upon the concentration of Na{sub 3}-citrate. - Abstract: This study demonstrates the growth and characterizations of chemical bath deposited zinc sulfide (ZnS) thin films prepared at pH 10. Aqueous zinc acetate and thiourea were used as precursors along with the non-toxic complexing agent, Na{sub 3}-citrate. The effects of different concentrations of Na{sub 3}-citrate from 0 to 0.2 M on the structural, morphological, compositional, chemical, and optical properties of ZnS thin films were studied. It was revealed through field emission scanning electron microscopy studies that an increase in the concentration of Na{sub 3}-citrate leads to an improvement of the uniformity of the ZnS thin films and decrease in the grain size. Atomic force microscopy showed that the RMS value decreases with an increase in Na{sub 3}-citrate concentration. X-ray diffraction study revealed that crystallinity of ZnS thin films improves upon increasing concentration of Na{sub 3}-citrate and that the films exhibit a hexagonal polycrystalline ZnS phase while deposited with 0.2 and 0.1 M Na{sub 3}-citrate. X-ray photoelectron spectroscopy revealed that the signal intensity decreases for Zn 2p{sub 3/2} and S 2p{sub 1/2} as the concentration of Na{sub 3}-citrate decreases from 0.2 to 0 M. It was shown by ultraviolet-visible spectroscopy that approximately 80% transmission in the visible region and absorption edge shifts towards blue when the concentration of Na{sub 3}-citrate increases from 0 to 0.2 M. The band gap energy of the ZnS film deposited without Na{sub 3}-citrate was found to be 3.53 eV, while it increases from 3.73 to 3.80 eV with a decrease in Na{sub 3}-citrate concentration from 0.2 to 0.025 M. The

  10. Influence of the growth parameters on TiO2 thin films deposited using the MOCVD method

    Directory of Open Access Journals (Sweden)

    Bernardi M. I. B.

    2002-01-01

    Full Text Available In this work we report the synthesis of TiO2 thin films by the Organometallic Chemical Vapor Deposition (MOCVD method. The influence of deposition parameters used during the growth in the obtained structural characteristics was studied. Different temperatures of the organometallic bath, deposition time, temperature and type of the substrate were combined. Using Scanning Electron Microscopy associated to Electron Dispersive X-Ray Spectroscopy, Atomic Force Microscopy and X-ray Diffraction, the strong influence of these parameters in the thin films final microstructure was verified.

  11. MANSION BATHS OF KAYSERİ

    Directory of Open Access Journals (Sweden)

    Celil ARSLAN

    2012-04-01

    Full Text Available The baths has an important place in all the settlements since ancient times. Bath architecture which constitutes an important place in the history of architecture, revealed different functions with a different typology in separate nations and regions.In Turkish culture, since bathing and cleaning always have a priority, baths are attributed a meaning in this way. Beside cleanliness, in many social events such as birth, marriage, and circumcision, Turkish baths which have an important wealth in the sense of being scene to these events appear us as the reflections of a deep-rooted culture. In some regions of Anatolia, the baths still maintain these functions in social life.In this study, four mansion baths one of which is in the central city of Kayseri, two of which are in the village of Tavlusun and one of which is in the village of Germir have been surveyed. Two of Kayseri mansion baths were built as adjacent to Güpgüpoğlu mansion bath and Osman Çetin bath, and the baths belonging to Tavlusun Bektaşoğlu and Germir Sadık Çelen mansions were built separately.The basic construction in baths is understood to be established upon the main places associated with bathing in the order of "dressing, warmness, hotness," with the installation part of "water tank and boiler room". The baths are examples of discrete plan types.In this study, the mansion baths of Kayseri will be presented in some ways such as the independent locations of these baths in the houses or in the land, their building and topography relation, architecture and structural elements, decorative elements, plumbing and heating system and with the light of information to be obtained in this context, the place of Kayseri mansion baths in the Turkish bath architecture will be attempted to be determined.

  12. Optical and structural study of In{sub 2}S{sub 3} thin films growth by co-evaporation and chemical bath deposition (CBD) on Cu{sub 3}BiS{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Mesa, F., E-mail: fgmesar@unal.edu.co [Unidad de Estudios Universitarios, Colegio Mayor de Nuestra Señora del Rosario, Cra. 24 N° 63C-69, Bogotá (Colombia); Chamorro, W. [Université de Lorraine, Institut Jean Lamour, Nancy (France); Hurtado, M. [Departamento de Quimica, Universidad Nacional de Colombia, Cra. 30 N° 45-03, Bogotá (Colombia); Departamento de Física, Universidad de los Andes, Calle 21 No. 1-20, Bogotá (Colombia)

    2015-09-30

    Highlights: • In{sub 2}S{sub 3} thin films usually grow like an ultrathin. • Samples grown by CBD have a higher degree of coverage of the substrate unlike co-evaporation method. • Solar cells of Al/TCO/In{sub 2}S{sub 3}/Cu{sub 3}BiS{sub 3}/Mo structure. • In{sub 2}S{sub 3} thin films were deposited on Cu{sub 3}BiS{sub 3} (CBS), with of In{sub 2}S{sub 3} β-phase with tetragonal structure. - Abstract: We present the growth of In{sub 2}S{sub 3} onto Cu{sub 3}BiS{sub 3} layers and soda-lime glass (SLG) substrates by using chemical bath deposition (CBD) and physical co-evaporation. The results reveal that the microstructure and the optical properties of the In{sub 2}S{sub 3} films are highly dependent on the growth method. X-ray diffractrograms show that In{sub 2}S{sub 3} films have a higher crystallinity when growing by co-evaporation than by CBD. In{sub 2}S{sub 3} thin films grown by CBD with a thickness below 170 nm have an amorphous structure however when increasing the thickness the films exhibit two diffraction peaks associated to the (1 0 3) and (1 0 7) planes of the β-In{sub 2}S{sub 3} tetragonal structure. It was also found that the In{sub 2}S{sub 3} films present an energy bandgap (E{sub g}) of about 2.75 eV, regardless of the thickness of the samples.

  13. THE IMPORTANCE OF COAGULATION BATH IN ACRYLIC FIBER PRODUCTION

    OpenAIRE

    İsmail TİYEK; BOZDOĞAN, Faruk

    2005-01-01

    In the production of acrylic fibers using wet-spinning method, fiber formation takes places in the coagulation bath. Therefore, physical properties of the fibers, produced by the wet-spinning method, is affected by coagulation bath conditions. For this reason, coagulation bath parameters have to be checked very well. In this paper, both the physical events such as diffusion and phase transition, occured in the coagulation bath, and some coagulation bath parameters that affect these physical e...

  14. Electroplating of iron from alkaline gluconate baths

    Energy Technology Data Exchange (ETDEWEB)

    Abd El Meguid, E.A.; Abd El Rehim, S.S.; Moustafa, E.M

    2003-10-22

    Electroplating of iron onto copper substrates from non-polluting baths containing ferrous sulfate and sodium gluconate has been investigated under different bath composition, pH, temperature and current density conditions. A detailed study has been made on the influence of these parameters on potentiodynamic polarization curves, cathodic current efficiency and throwing power of the baths. The optimum plating bath has been found to be: 0.072 mol/l FeSO{sub 4}{center_dot}7H{sub 2}O, 0.23 mol/l sodium gluconate, pH 12, current density of 0.167 A dm{sup -2} and at 25 deg. C. This bath is characterized by an excellent throwing power. The surface morphology of the as-deposited iron was investigated by using scanning electron microscope (SEM) while the crystal structure was examined by using X-ray diffraction analysis.

  15. Iodine speciation in coastal and inland bathing waters and seaweeds extracts using a sequential injection standard addition flow-batch method.

    Science.gov (United States)

    Santos, Inês C; Mesquita, Raquel B R; Bordalo, Adriano A; Rangel, António O S S

    2015-02-01

    The present work describes the development of a sequential injection standard addition method for iodine speciation in bathing waters and seaweeds extracts without prior sample treatment. Iodine speciation was obtained by assessing the iodide and iodate content, the two inorganic forms of iodine in waters. For the determination of iodide, an iodide ion selective electrode (ISE) was used. The indirect determination of iodate was based on the spectrophotometric determination of nitrite (Griess reaction). For the iodate measurement, a mixing chamber was employed (flow batch approach) to explore the inherent efficient mixing, essential for the indirect determination of iodate. The application of the standard addition method enabled detection limits of 0.14 µM for iodide and 0.02 µM for iodate, together with the direct introduction of the target water samples, coastal and inland bathing waters. The results obtained were in agreement with those obtained by ICP-MS and a colorimetric reference procedure. Recovery tests also confirmed the accuracy of the developed method which was effectively applied to bathing waters and seaweed extracts. PMID:25435219

  16. Investigation of Legionella Contamination in Bath Water Samples by Culture, Amoebic Co-Culture, and Real-Time Quantitative PCR Methods

    Directory of Open Access Journals (Sweden)

    Akiko Edagawa

    2015-10-01

    Full Text Available We investigated Legionella contamination in bath water samples, collected from 68 bathing facilities in Japan, by culture, culture with amoebic co-culture, real-time quantitative PCR (qPCR, and real-time qPCR with amoebic co-culture. Using the conventional culture method, Legionella pneumophila was detected in 11 samples (11/68, 16.2%. Contrary to our expectation, the culture method with the amoebic co-culture technique did not increase the detection rate of Legionella (4/68, 5.9%. In contrast, a combination of the amoebic co-culture technique followed by qPCR successfully increased the detection rate (57/68, 83.8% compared with real-time qPCR alone (46/68, 67.6%. Using real-time qPCR after culture with amoebic co-culture, more than 10-fold higher bacterial numbers were observed in 30 samples (30/68, 44.1% compared with the same samples without co-culture. On the other hand, higher bacterial numbers were not observed after propagation by amoebae in 32 samples (32/68, 47.1%. Legionella was not detected in the remaining six samples (6/68, 8.8%, irrespective of the method. These results suggest that application of the amoebic co-culture technique prior to real-time qPCR may be useful for the sensitive detection of Legionella from bath water samples. Furthermore, a combination of amoebic co-culture and real-time qPCR might be useful to detect viable and virulent Legionella because their ability to invade and multiply within free-living amoebae is considered to correlate with their pathogenicity for humans. This is the first report evaluating the efficacy of the amoebic co-culture technique for detecting Legionella in bath water samples.

  17. Investigation of Legionella Contamination in Bath Water Samples by Culture, Amoebic Co-Culture, and Real-Time Quantitative PCR Methods

    Science.gov (United States)

    Edagawa, Akiko; Kimura, Akio; Kawabuchi-Kurata, Takako; Adachi, Shinichi; Furuhata, Katsunori; Miyamoto, Hiroshi

    2015-01-01

    We investigated Legionella contamination in bath water samples, collected from 68 bathing facilities in Japan, by culture, culture with amoebic co-culture, real-time quantitative PCR (qPCR), and real-time qPCR with amoebic co-culture. Using the conventional culture method, Legionella pneumophila was detected in 11 samples (11/68, 16.2%). Contrary to our expectation, the culture method with the amoebic co-culture technique did not increase the detection rate of Legionella (4/68, 5.9%). In contrast, a combination of the amoebic co-culture technique followed by qPCR successfully increased the detection rate (57/68, 83.8%) compared with real-time qPCR alone (46/68, 67.6%). Using real-time qPCR after culture with amoebic co-culture, more than 10-fold higher bacterial numbers were observed in 30 samples (30/68, 44.1%) compared with the same samples without co-culture. On the other hand, higher bacterial numbers were not observed after propagation by amoebae in 32 samples (32/68, 47.1%). Legionella was not detected in the remaining six samples (6/68, 8.8%), irrespective of the method. These results suggest that application of the amoebic co-culture technique prior to real-time qPCR may be useful for the sensitive detection of Legionella from bath water samples. Furthermore, a combination of amoebic co-culture and real-time qPCR might be useful to detect viable and virulent Legionella because their ability to invade and multiply within free-living amoebae is considered to correlate with their pathogenicity for humans. This is the first report evaluating the efficacy of the amoebic co-culture technique for detecting Legionella in bath water samples. PMID:26492259

  18. MANSION BATHS OF CYPRUS

    Directory of Open Access Journals (Sweden)

    Enes Kavalçalan

    2015-12-01

    Full Text Available From the very beginning of the human history, body cleanliness is one of the basic needs. At first, human beings have supplied the needs of cleaning from rivers and lakes. With the development of civilizations they have started to build baths. In Roman Period these baths have been combined with Gymnasiums and become a part of the social life while they were merely small places of bathing in Ancient Greek. In the course of time, bath architecture which gained new functions and typologies with the effects of different nations and geographic places has maintained its own existence in Turkish culture as a popular ingredient in it. In this paper, mansion baths that were built in Ottoman period in Cyprus are studied. Firstly all locations of baths were determinated, photographed and measured during the research. Then, the determinated baths have been tried to being described comprehensively in the light of the documents and knowledges that are achievable. Main plan in mansion baths was built on the basis of “dressing” and “hotness” sections. Also, there are installation parts like “water tank” and “boiler room”. The baths which have a peculiar schema in itself constitute the exceptional examples of bath typology. With this paper, introduction to science world of mansion baths which are generally ignored in most of the researches because of the small sizes, are aimed.

  19. 7 CFR 27.92 - Method of payment; advance deposit.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Method of payment; advance deposit. 27.92 Section 27... Micronaire § 27.92 Method of payment; advance deposit. Any payment or advance deposit under this subpart...,” and may not be made in cash except in cases where the total payment or deposit does not exceed...

  20. Finite size bath in qubit thermodynamics

    OpenAIRE

    Pekola, J. P.; Suomela, S.; Galperin, Y. M.

    2016-01-01

    We discuss a qubit weakly coupled to a finite-size heat bath (calorimeter) from the point of view of quantum thermodynamics. The energy deposited to this environment together with the state of the qubit provides a basis to analyze the heat and work statistics of this closed combined system. We present results on two representative models, where the bath is composed of two-level systems or harmonic oscillators, respectively. Finally, we derive results for an open quantum system composed of the...

  1. The effect of Ce{sup 3+} on structure, morphology and optical properties of flower-like ZnO synthesized using the chemical bath method

    Energy Technology Data Exchange (ETDEWEB)

    Koao, L.F. [Department of Physics, University of the Free State, Qwaqwa Campus, Private Bag X13, Phuthaditjhaba 9866 (South Africa); Dejene, F.B., E-mail: dejenebf@qwa.ufs.ac.za [Department of Physics, University of the Free State, Qwaqwa Campus, Private Bag X13, Phuthaditjhaba 9866 (South Africa); Swart, H.C., E-mail: swarthc@ufs.ac.za [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein 9300 (South Africa); Botha, J.R. [Physics Department, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa)

    2013-11-15

    Ce{sup 3+} doped ZnO flower-like structures were synthesized by the chemical bath deposition method (CBD). The influence of Ce{sup 3+} as a dopant on the crystallization, surface morphology, optical and luminescent properties of ZnO flowers-like structures were investigated. The X-ray diffraction (XRD) spectra of the ZnO:Ce{sup 3+}nanostructures correspond to the various planes of a single hexagonal ZnO phase for the lower Ce concentration samples. The estimated grain sizes calculated using the XRD spectra were found to be in order of 42±2 nm. The grain size was found to be not dependent on the concentration of the Ce{sup 3+} ions used up to 3 mol% of Ce. Scanning Auger electron microscopy and scanning electron micrographs indicate that the addition of Ce{sup 3+} influence the morphology of the samples. The flower-like structures obtained for the undoped and low concentration Ce doped ZnO changed into a mixed structure with the emergence of pyramid shapes for higher concentration Ce doped samples. The solid undoped and low concentration Ce doped powder showed good optical properties with a high reflectance in the visible regions. The properties, however, diminished at higher Ce concentration. The band gap energies decreased linearly with concentration from 3.0±0.1 to 2.4±0.3 eV for ZnO:0 mol% Ce{sup 3+} up to ZnO:10 mol% Ce{sup 3+}. Under 248 nm excitation, the undoped and low concentration Ce doped ZnO flower-like rods exhibited a green emission, peaking at about 559 nm. The higher Ce concentration (0.3 mol% and above) was emitted at 436 and 503 nm due to the Ce transitions. The intensity of these emission spectra of the ZnO:Ce{sup 3+} decreased with the addition of more Ce{sup 3+} ions. -- Highlights: • Ce{sup 3+} doped ZnO flower-like structures were synthesized by CBD. • Flower-like hexagonal ZnO:Ce{sup 3+}nanostructures were obtained for undoped and low mol% Ce. • ZnO changed into a mixed structure with emergence of pyramid shapes for higher mol% Ce

  2. Advance in research on aerosol deposition simulation methods

    International Nuclear Information System (INIS)

    A comprehensive analysis of the health effects of inhaled toxic aerosols requires exact data on airway deposition. A knowledge of the effect of inhaled drugs is essential to the optimization of aerosol drug delivery. Sophisticated analytical deposition models can be used for the computation of total, regional and generation specific deposition efficiencies. The continuously enhancing computer seem to allow us to study the particle transport and deposition in more and more realistic airway geometries with the help of computational fluid dynamics (CFD) simulation method. In this article, the trends in aerosol deposition models and lung models, and the methods for achievement of deposition simulations are also reviewed. (authors)

  3. Bath temperature impact on morphological evolution of Ni(OH)2 thin films and their supercapacitive behaviour

    Indian Academy of Sciences (India)

    U M Patil; K V Gurav; J H Kim; C D Lokhande; S C Jun

    2014-02-01

    Nanostructured Ni(OH)2 thin films were deposited over stainless steel (SS) and glass substrate via simple chemical bath deposition (CBD) method. NiCl2 :6H2O were used as source of nickel and aqueous ammonia as a complexing agent. The coating process of Ni(OH)2 material over substrate is based on the decomposition of ammonia complexed nickel ions at two different bath temperatures. The changes in structural, morphological and electro-chemical properties are examined as an impact of bath temperature. XRD studies reveal formation of mixed phase of and at lower bath temperature (313 K) while, pure phase of Ni(OH)2 thin films deposited was observed at higher bath temperature (353 K). The morphological evolution from honeycomb structure to vertically aligned flakes over the substrate is observed as the influence of bath temperature. The supercapacitive performance based on the morphology examined by using cyclic voltammetric measurements in 1 M KOH. The maximum specific capacitances of 610 and 460 F/g were observed for the vertical flake and honeycomb structured Ni(OH)2 thin films, respectively.

  4. DLC films deposited by DC PACVD method

    International Nuclear Information System (INIS)

    In this paper the deposition of DLC coating by direct current PACVD (DC PACVD) is presented. DLC films were deposited on silicon (111) and steel substrates. The steel substrate consists of 0.9 % - C, 4.14% - Cr, 6.1% - W, 5% - Mo, 2.02% - V. These samples were polished up to a mirror finish using series of standard metallurgical polishing steps. The apparatus for plasma assisted chemical vapor deposition consisted of vacuum chamber, diffusion pump, two parallel electrodes and generator of DC discharge plasma. We deposited DLC films on our substrates with the same parameters, but one, which was changed. The microhardness of the coated materials is higher than the base material about 13 GPa at the load 50 mN and bias voltage -900 V. (Authors)

  5. What Are Bath Salts?

    Science.gov (United States)

    ... Blog Team Concert festivals are all about good music, good friends, and big crowds. But for some ... school, North Carolina: Are bath salts becoming more popular? Marsha Lopez Hi, Lauren. Nope! Actually quite the ...

  6. Chemical bath deposition of photosensitive CdS and CdSe thin films and their conversion to n-type for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Nair, M.T.S.; Nair, P.K. [Univ. Nacional Autonoma de Mexico, Morelos (Mexico). Lab. de Energia Solar; Zingaro, R.A.; Meyers, E.A. [Texas A and M Univ., College Station, TX (United States). Dept. of Chemistry

    1995-12-31

    Methods for preparing good quality CdS and CdSe thin films of 0.1--0.7 {micro}m thickness from solutions at 24--50 C containing citratocadmium(II) ions and thiourea (for CdS) or N,N-dimethyl selenourea (for CdSe) are presented. The as prepared CdS thin films are photosensitive showing photo- to dark-conductivity ratio (S) of > 10{sup 6} under AM-2 illumination. Annealing of these films at 400--450 C for a few minutes converts them to n-type through partial conversion of the films to non stoichiometric CdO. In the case of CdSe, such annealing improves the photosensitivity of the films from S = 10 (as prepared) to > 10{sup 7} (after annealing) under AM-2 illumination. Either film can be converted to n-type with dark conductivities of > 1 {Omega}{sup {minus}1} cm{sup {minus}1} and S = 1 to 10 under AM-2 illumination using a post deposition treatment in dilute (0.01--0.05 M) HgCl{sub 2} solution followed by heating at 200 C.

  7. Electrical and optical characterization of the influence of chemical bath deposition time and temperature on CdS/Cu(In,Ga)Se2 junction properties in Cu(In,Ga)Se2 solar cells

    International Nuclear Information System (INIS)

    The effects of varying the conditions for the chemical bath deposition (CBD) of cadmium sulfide (CdS) layers on CdS/Cu(In,Ga)Se2 (CIGS) hetero-junctions were investigated using photoluminescence (PL), electroluminescence (EL), deep level transient spectroscopy (DLTS), and red-light-illuminated current-voltage (I–V) measurements. We demonstrated that varying CBD-CdS conditions such as the temperature and time influenced the recombination pathways around the CdS/CIGS junction via the formation of different electronic defects, which eventually changed the photovoltaic conversion efficiency. As the CBD-CdS time and temperature were increased, the cell efficiency decreased. PL measurements revealed that this degradation of the cell efficiency was accompanied by increases in the defect-related recombination, which were attributed to the existence of donor defects around CdS/CIGS having an energy level of 0.65 eV below conduction band, as revealed by DLTS. Increasing distortions in the red-light-illuminated I–V characteristics suggested that the related defects might also have played a critical role in metastable changes around the CdS/CIGS junction. Because the CBD-CdS time and temperature were considered to influence the diffusion of impurities into the CIGS surface, the evolution of the efficiency, PL spectra, defect populations, and red-light-illuminated I–V characteristics observed in this work could be attributed to the diffusion of impurities during the CBD-CdS process. - Highlights: • CdS layers were grown by chemical bath deposition (CBD). • The CBD-CdS influenced the efficiency of Cu(In,Ga)Se2 (CIGS) solar cell. • It could be related to slight alteration in carrier recombination around CdS/CIGS. • Photo- and electroluminescence spectra detected those alterations in recombination. • The variation of results could be related to the changes in deep-level defects

  8. Chemical deposition methods for Cd-free buffer layers in CI(G)S solar cells: Role of window layers

    International Nuclear Information System (INIS)

    It is currently possible to prepare Cd-free Cu(In,Ga)Se2-based solar cells with efficiencies similar or higher than their CdS references. In these cells, higher efficiencies are generally obtained from soft chemical-based techniques giving conformal depositions such as chemical bath deposition (CBD), ion layer gas reaction (ILGAR) or atomic layer deposition (ALD). However most of these devices are characterized by their pronounced transient behaviour. The aim of this paper is to compare these different chemical-based methods (CBD, ALD, ILGAR...) and to try to provide evidence for the dominant influence of the interface between the Cd-free buffer layer and the window layer on the performance and on the metastable electronic behaviour of these solar cells.

  9. Use of different Zn precursors for the deposition of Zn(S,O) buffer layers by chemical bath for chalcopyrite based Cd-free thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Saez-Araoz, R.; Lux-Steiner, M.C. [Hahn Meitner Institut, Berlin (Germany); Freie Universitaet Berlin, Berlin (Germany); Ennaoui, A.; Kropp, T.; Veryaeva, E. [Hahn Meitner Institut, Berlin (Germany); Niesen, T.P. [AVANCIS GmbH and Co. KG, Munich (Germany)

    2008-10-15

    Progress in fabricating Cu(In,Ga)(S,Se){sub 2} (CIGSSe) solar cells with Zn(S,O) buffer layers prepared by chemical bath deposition (CBD) is discussed. The effect of different Zn salt precursors on solar cell device performance is investigated using production scale CIGSSe absorbers provided by AVANCIS GmbH and Co. KG. The CBD process has been developed at the Hahn-Meitner-Institut (HMI) using zinc nitrate, zinc sulphate or zinc chloride as zinc precursor. An average efficiency of 14.2{+-}0.8% is obtained by using one-layer CBD Zn(S,O) The dominant recombination path for well performing solar cells is discussed based on the results obtained from temperature dependent J(V) analysis. The structure and morphology of buffer layers deposited using zinc nitrate and zinc sulphate has been studied by means of transmission electron micrographs of glass/Mo/CIGSSe/Zn(S,O) structures. Results show a conformal coverage of the absorber by a Zn(S,O) layer of 15-25 nm consisting of nanocrystals with radii of {proportional_to}5 nm. XAES analysis of the buffer layer reveals a similar surface composition for buffer layers deposited with zinc nitrate and zinc sulphate. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Assessment of the effectiveness of uranium deposit searching methods

    International Nuclear Information System (INIS)

    The following groups of uranium deposit searching methods are described: radiometric review of foreign work; aerial radiometric survey; automobile radiometric survey; emanation survey up to 1 m; emanation survey up to 2 m; ground radiometric survey; radiometric survey in pits; deep radiometric survey; combination of the above methods; and other methods (drilling survey). For vein-type deposits, the majority of Czech deposits were discovered in 1945-1965 by radiometric review of foreign work, automobile radiometric survey, and emanation survey up to 1 m. The first significant indications of sandstone type uranium deposits were observed in the mid-1960 by aerial radiometric survey and confirmed later by drilling. (P.A.)

  11. Pulling bubbles from a bath

    Science.gov (United States)

    Kao, Justin C. T.; Blakemore, Andrea L.; Hosoi, A. E.

    2010-06-01

    Deposition of bubbles on a wall withdrawn from a liquid bath is a phenomenon observed in many everyday situations—the foam lacing left behind in an emptied glass of beer, for instance. It is also of importance to the many industrial processes where uniformity of coating is desirable. We report work on an idealized version of this situation, the drag-out of a single bubble in Landau-Levich-Derjaguin flow. We find that a well-defined critical wall speed exists, separating the two regimes of bubble persistence at the meniscus and bubble deposition on the moving wall. Experiments show that this transition occurs at Ca∗˜Bo0.73. A similar result is obtained theoretically by balancing viscous stresses and gravity.

  12. Water Evaporation in Swimming Baths

    DEFF Research Database (Denmark)

    Hyldgård, Carl-Erik

    This paper is publishing measuring results from models and full-scale baths of the evaporation in swimming baths, both public baths and retraining baths. Moreover, the heat balance of the basin water is measured. In addition the full-scale measurements have given many experiences which are...... represented in instructions for carrying out and running swimming baths. If you follow the instructions you can achieve less investments, less heat consumption and a better comfort to the bathers....

  13. Method of depositing epitaxial layers on a substrate

    Science.gov (United States)

    Goyal, Amit

    2003-12-30

    An epitaxial article and method for forming the same includes a substrate having a textured surface, and an electrochemically deposited substantially single orientation epitaxial layer disposed on and in contact with the textured surface. The epitaxial article can include an electromagnetically active layer and an epitaxial buffer layer. The electromagnetically active layer and epitaxial buffer layer can also be deposited electrochemically.

  14. METHODS OF CALCULATINAG LUNG DELIVERY AND DEPOSITION OF AEROSOL PARTICLES

    Science.gov (United States)

    Lung deposition of aerosol is measured by a variety of methods. Total lung deposition can be measured by monitoring inhaled and exhaled aerosols in situ by laser photometry or by collecting the aerosols on filters. The measurements can be performed accurately for stable monod...

  15. A novel Ag catalyzation process using swelling impregnation method for electroless Ni deposition on Kevlar® fiber

    Science.gov (United States)

    Pang, Hongwei; Bai, Ruicheng; Shao, Qinsi; Gao, Yufang; Li, Aijun; Tang, Zhiyong

    2015-12-01

    A novel Ag catalyzation process using swelling impregnation pretreatment method was developed for electroless nickel (EN) deposition on Kevlar fiber. Firstly, the fiber was immersed into an aqueous dimethylsulfoxide (DMSO) solution of silver nitrate to impart silver nitrate into the inner part of the fiber near the surface. Subsequently silver nitrate was reduced to metal silver nanoparticles on the fiber surface by treatment with aqueous solution of sodium borohydride. After electroless plating, a dense and homogeneous nickel coating was obtained on the fiber surface. The silver nanoparticles formed at the fiber surface functioned as a catalyst for electroless deposition as well as an anchor for the plated layer. The study also revealed that the incorporation of surfactant sodium dodecyl sulfate (SDS) in electroless nickel plating bath can enhance the adhesion strength of EN layer with the fiber surface and minimize the surface roughness of the EN coating. The Ni plated Kevlar fiber possessed excellent corrosion resistance and high tensile strength.

  16. Deposition of metal oxide films and nanostructures by methods derived from photochemical metal organic deposition

    OpenAIRE

    Xin ZHANG

    2009-01-01

    In this research, methods for the deposition of patterned films and nanostructures were developed from photochemical metal organic deposition (PMOD). Positive lithographic PMOD was demonstrated with films of titanium (IV) di-n-butoxide bis(2-ethylhexanoate) (Ti(OBun)2(eh)2), titanium (IV) diisopropoxide bis(2,4-pentanedionate), and zirconium (IV) di-n-butoxide bis(2,4-pentanedionate). The photochemistry of these complexes in films was studied by FTIR, AES, and XRD. Photo-induced reactivity an...

  17. In{sub 6}Se{sub 7} thin films by heating thermally evaporated indium and chemical bath deposited selenium multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Ornelas, R.E.; Avellaneda, D. [Universidad Autonoma de Nuevo Leon, Facultad de Ingenieria Mecanica y Electrica, San Nicolas de los Garza, Nuevo Leon-66450 (Mexico); Shaji, S. [Universidad Autonoma de Nuevo Leon, Facultad de Ingenieria Mecanica y Electrica, San Nicolas de los Garza, Nuevo Leon-66450 (Mexico); Universidad Autonoma de Nuevo Leon-CIIDIT, Apodaca, N.L (Mexico); Castillo, G.A.; Roy, T.K. Das [Universidad Autonoma de Nuevo Leon, Facultad de Ingenieria Mecanica y Electrica, San Nicolas de los Garza, Nuevo Leon-66450 (Mexico); Krishnan, B., E-mail: kbindu_k@yahoo.com [Universidad Autonoma de Nuevo Leon, Facultad de Ingenieria Mecanica y Electrica, San Nicolas de los Garza, Nuevo Leon-66450 (Mexico); Universidad Autonoma de Nuevo Leon-CIIDIT, Apodaca, N.L (Mexico)

    2012-05-15

    Indium selenide (In{sub 6}Se{sub 7}) thin films were prepared via selenization of thermally evaporated indium thin films by dipping in sodium selenosulphate solution followed by annealing in nitrogen atmosphere. First, indium was thermally evaporated on glass substrate. Then, the indium coated glass substrates were dipped in a solution containing 80 ml 0.125 M sodium selenosulphate and 1.5 ml dilute acetic acid (25%) for 5 min. Glass/In-Se layers were annealed at 200-400 Degree-Sign C in nitrogen atmosphere (0.1 Torr) for 30 min. X-ray diffraction studies showed the formation of monoclinic In{sub 6}Se{sub 7}. Morphology of the thin films formed at different conditions was analyzed using Scanning electron microscopy. The elemental analysis was done using Energy dispersive X-ray detection. Electrical conductivity under dark and illumination conditions was evaluated. Optical band gap was computed using transmittance and reflectance spectra. The band gap value was in the range 1.8-2.6 eV corresponding to a direct allowed transition. We studied the effect of indium layer thickness and selenium deposition time on the structure, electrical and optical properties of In{sub 6}Se{sub 7} thin films.

  18. Deposition of Lead Sulfide Nanostructure Films on TiO2 Surface via Different Chemical Methods due to Improving Dye-Sensitized Solar Cells Efficiency

    International Nuclear Information System (INIS)

    Graphical abstract: Display Omitted -- Highlights: • TiO2 surface was fabricated by electrophoresis deposition method. • PbS nanostructure layers were deposited on the TiO2 surface via different chemical methods. • The effects of chemical deposition methods on the optical properties of fabricated surfaces were studied. • Dye-sensitized solar cells (DSSCs) were made with the fabricated TiO2/PbS surfaces. • The effects of different deposition methods on DSSC performance were investigated. -- Abstract: In this work TiO2 P25 was deposited successfully on the FTO glass by electrophoresis method. Different chemical methods were served for deposition of nanosized PbS such as chemical bath deposition (CBD) and successive ion layer adsorption and reaction (SILAR). Also in this paper, nanosized lead sulfide was successfully deposited on TiO2 surface by hydrothermal (HT) and microwave (MW) methods. Also TiO2/PbS nanocomposite was synthesized via a simple hydrothermal method and deposited on FTO glass by doctor blade (DB) technique. Dye sensitized solar cells were fabricated from prepared electrodes, Pt as counter electrode, dye solution and electrolyte. The effect of chemical deposition methods were investigated on surface quality, optical properties and solar cell efficiency. The observation showed that using different chemical methods for deposition of PbS on TiO2 surface is led to fabrication solar cells with different efficiencies and performances. The electrodes were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), cross-section SEM, UV–vis diffuse reflectance spectroscopy (DRS), energy dispersive X-ray analysis (EDX) spectroscopy, atomic force microscopy (AFM), cyclic voltammetry (CV) and UV–Vis spectroscopy. Dye-sensitized solar cells (DSSC) made by the fabricated electrodes as working electrode and then were investigated by current density-voltage (J-V) curve and electrochemical

  19. Method for electrostatic deposition of graphene on a substrate

    Science.gov (United States)

    Sumanasekera, Gamini (Inventor); Sidorov, Anton N. (Inventor); Ouseph, P. John (Inventor); Yazdanpanah, Mehdi M. (Inventor); Cohn, Robert W. (Inventor); Jalilian, Romaneh (Inventor)

    2010-01-01

    A method for electrostatic deposition of graphene on a substrate comprises the steps of securing a graphite sample to a first electrode; electrically connecting the first electrode to a positive terminal of a power source; electrically connecting a second electrode to a ground terminal of the power source; placing the substrate over the second electrode; and using the power source to apply a voltage, such that graphene is removed from the graphite sample and deposited on the substrate.

  20. Nanocrystalline CdS{sub 1−x}Se{sub x} alloys as thin films prepared by chemical bath deposition: Effect of x on the structural and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Ramirez, E.A. [Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, CP 07738, México D.F. (Mexico); Hernandez-Perez, M.A., E-mail: mhernandezp0606@ipn.mx [Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, CP 07738, México D.F. (Mexico); Aguilar-Hernandez, J. [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, CP 07738, México D.F. (Mexico); Rangel-Salinas, E. [Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, CP 07738, México D.F. (Mexico)

    2014-12-05

    Highlights: • CdS1−xSe{sub x} films with tunable structural and optical properties were grown by CBD. • Thin films are composed by a solid solution of the CdS{sub 1−x}Se{sub x} ternary alloy. • Crystal size, band gap and photoluminescence signal, decrease with the composition. • Ternary alloys show hexagonal phase with preferential orientation on (0 0 2) plane. • Films with x ⩾ 0.5 show semi-spherical grains composed by nanoworms structures. - Abstract: CdS{sub 1−x}Se{sub x} thin films were deposited on Corning glass substrates at 75 °C by chemical bath deposition (CBD) varying the composition “x” from 0 to 1 at a constant deposition time of 120 min. The composition of the films was adjusted by modifying the concentration as well as the ratio of the precursors. The morphological, compositional, structural and optical properties of the films were analyzed using several techniques such as Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), X-ray Diffraction (XRD), UV–Vis Spectroscopy (UV–Vis) and Photoluminescence (PL). The films grow as layers following the ion by ion mechanism, the density of the films decreases with x. Films are constituted by clusters (100–600 nm in diameter) of semispherical particles with sizes fluctuating from 10 to 20 nm. For x ⩾ 0.5 the particles are well-arranged in a “worm-like” structure. All the films are polycrystalline, to x = 0 (CdS) the cubic phase is present, the increase of composition promotes the formation of hexagonal phase or a mixture of both cubic and hexagonal phases. Preferential orientation in the (1 0 0) or (0 0 2) plane is observed. The crystal size decreases from 20 to 6 nm when x is increased. The optical properties can be easily tuned by adjusting the composition. Optical absorption analysis shows that the band gap (E{sub g}) value shifts to red in function of x (from 2.47 to 1.99 eV). Photoluminescence signal changes as “x” varies showing a regular behavior

  1. Control and optimization of baths for electrodeposition of Co-Mo-B amorphous alloys

    Directory of Open Access Journals (Sweden)

    S. Prasad

    2000-12-01

    Full Text Available Optimization and control of an electrodeposition process for depositing boron-containing amorphous metallic layer of cobalt-molybdenum alloy onto a cathode from an electrolytic bath having cobalt sulfate, sodium molybdate, boron phosphate, sodium citrate, 1-dodecylsulfate-Na, ammonium sulfate and ammonia or sulfuric acid for pH adjustments has been studied. Detailed studies on bath composition, pH, temperature, mechanical agitation and cathode current density have led to optimum conditions for obtaining satisfactory alloy deposits. These alloys were found to have interesting properties such as high hardness, corrosion resistance, wear resistance and also sufficient ductility. A voltammetric method for automatic monitoring and control of the process has been proposed.

  2. [Immersion in a bath despite a safety bath chair].

    Science.gov (United States)

    Christensen, H B; Lange, A

    1989-01-01

    A case of submersion is described. A mother left her child aged 8 1/2 months sitting in a "safety bath chair" in a full bath and found the child lying under the water shortly afterwards. The infant was hypotonic for a brief period but rapidly recovered without sequelae. Use of a "safety bath chair" gives a false sense of security and its use is warned against. PMID:2911907

  3. A new pulsed laser deposition technique: scanning multi-component pulsed laser deposition method.

    Science.gov (United States)

    Fischer, D; de la Fuente, G F; Jansen, M

    2012-04-01

    The scanning multi-component pulsed laser deposition (PLD) method realizes uniform depositions of desired coatings by a modified pulsed laser deposition process, preferably with a femto-second laser-system. Multi-component coatings (single or multilayered) are thus deposited onto substrates via laser induced ablation of segmented targets. This is achieved via horizontal line-scanning of a focused laser beam over a uniformly moving target's surface. This process allows to deposit the desired composition of the coating simultaneously, starting from the different segments of the target and adjusting the scan line as a function of target geometry. The sequence and thickness of multilayers can easily be adjusted by target architecture and motion, enabling inter/intra layer concentration gradients and thus functional gradient coatings. This new, simple PLD method enables the achievement of uniform, large-area coatings. Case studies were performed with segmented targets containing aluminum, titanium, and niobium. Under the laser irradiation conditions applied, all three metals were uniformly ablated. The elemental composition within the rough coatings obtained was fixed by the scanned area to Ti-Al-Nb = 1:1:1. Crystalline aluminum, titanium, and niobium were found to coexist side by side at room temperature within the substrate, without alloy formation up to 600 °C. PMID:22559543

  4. Thermal baths as quantum resources: more friends than foes?

    Science.gov (United States)

    Kurizki, Gershon; Shahmoon, Ephraim; Zwick, Analia

    2015-12-01

    In this article we argue that thermal reservoirs (baths) are potentially useful resources in processes involving atoms interacting with quantized electromagnetic fields and their applications to quantum technologies. One may try to suppress the bath effects by means of dynamical control, but such control does not always yield the desired results. We wish instead to take advantage of bath effects, that do not obliterate ‘quantumness’ in the system-bath compound. To this end, three possible approaches have been pursued by us. (i) Control of a quantum system faster than the correlation time of the bath to which it couples: such control allows us to reveal quasi-reversible/coherent dynamical phenomena of quantum open systems, manifest by the quantum Zeno or anti-Zeno effects (QZE or AZE, respectively). Dynamical control methods based on the QZE are aimed not only at protecting the quantumness of the system, but also diagnosing the bath spectra or transferring quantum information via noisy media. By contrast, AZE-based control is useful for fast cooling of thermalized quantum systems. (ii) Engineering the coupling of quantum systems to selected bath modes: this approach, based on field-atom coupling control in cavities, waveguides and photonic band structures, allows one to drastically enhance the strength and range of atom-atom coupling through the mediation of the selected bath modes. More dramatically, it allows us to achieve bath-induced entanglement that may appear paradoxical if one takes the conventional view that coupling to baths destroys quantumness. (iii) Engineering baths with appropriate non-flat spectra: this approach is a prerequisite for the construction of the simplest and most efficient quantum heat machines (engines and refrigerators). We may thus conclude that often thermal baths are ‘more friends than foes’ in quantum technologies.

  5. Salts separation and removing method from material deposited on molten salt electrolyzing cathode

    International Nuclear Information System (INIS)

    Deposition materials on a cathode obtained by processing highly radioactive drainage discharged from spent fuel reprocessing steps and electrolyzing them in molten salts are incorporated with salts such as LiCl-KCl used as an electrolysis bath. Cadmium is added to the cathode deposition materials comprising lanthanoid and/or actinoid, and melted to form a molten material. The molten material are solidified by cooling to separate a metal portion and salts from the cathode deposition materials. The metal portion is kept at a temperature at which cadmium metal is evaporated to remove cadmium. Subsequently, the metal portion is kept at a temperature at which an intermetallic compound and/or an alloy of cadmium and lanthanoid and/or actinoid is decomposed to remove cadmium. Since salts can be removed efficiently from cathode deposition materials, aimed actinoid metals can be recovered at a high purity. (I.N.)

  6. THE IMPROVEMENT OF THE EXCAVATION METHODS IN BAUXITE DEPOSITS

    Directory of Open Access Journals (Sweden)

    Borislav Perić

    1990-12-01

    Full Text Available The underground bauxite excavation in Yugoslavia is getting more important recently due to gradual exploitation of shallow deposits. The main excavation method is sublevel caving method. That technology of exploitation is characterized by high excavation loosses reaching even to 50% due to mixing of bauxite with waste. By beds with competent limestone roof which are not liable to direct caving are formed unplanned open spaces so the work safety is often dangercd by sudden caving. That was the reason for carrying out the observations in situ and investigations on mathematical models to define boundary of excavated space stability. This investigation were the basis for the new conception of further excavation of the »Jukići-Didare« mine with the application of even three exploitation methods maximally adapted to the characteristics of the remaining part of deposit.

  7. Volume of Fluids Methods Applied to Etching and Deposition

    Science.gov (United States)

    Helmsen, John J.

    1996-10-01

    The volume of fluids (VOF) method is applied to simulating etching and deposition processes employed in semiconductor wafer manufacturing. Some of these processes are: plasma etching, ion milling and chemical vapor deposition. The VOF method formulates surface motion as the movement of a front, where one fluid is moving into a regime occupied by another fluid. The fluids are represented as volume fractions in each cell and are expressed on a Euclidean grid. The interface that represents the boundary is then determined from the volume fractions contained in and surrounding each cell. Once the interface is determined, techniques from computational fluid dynamics can be used to simulate the advancement of the surface. Anisotropic etching is perfomed using the Hamaguchi method of determining surface characteristics. In this talk, the volume of fluids method is described and applied to advancement models that describe semiconductor manufacturing processes. Effects that are simulated include anisotropic etching and species flux dependent etching and deposition. Techniques for advancement and calculating the fluid interface are shown in two and three dimensions. Integration with surface chemistry solvers such as CHEMKIN is also demonstrated.

  8. Effect of deposition variables on properties of CBD ZnS thin films prepared in chemical bath of ZnSO{sub 4}/SC(NH{sub 2}){sub 2}/Na{sub 3}C{sub 3}H{sub 5}O{sub 7}/NH{sub 4}OH

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei-Long [Department of Materials Science and Engineering, National Formosa University, 64, Wunhua Road, Huwei, Yunlin, 632, Taiwan (China); Yang, Chang-Siao [Graduate School of Materials Science, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin, 64002, Taiwan (China); Hsieh, Shu-Huei [Department of Materials Science and Engineering, National Formosa University, 64, Wunhua Road, Huwei, Yunlin, 632, Taiwan (China); Chen, Wen-Jauh, E-mail: chenwjau@yuntech.edu.tw [Graduate School of Materials Science, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin, 64002, Taiwan (China); Fern, Chi-Lon [Graduate School of Materials Science, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin, 64002, Taiwan (China)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer The CBD ZnS thin films were prepared on soda lime glass in a bath of ZnSO{sub 4}/SC(NH{sub 2}){sub 2}/Na{sub 3}C{sub 3}H{sub 5}O{sub 7}/NH{sub 4}OH. Black-Right-Pointing-Pointer The transmittance for ultraviolet-visible rays (300-800 nm) through those films is in a range of 70.8-87.8%. Black-Right-Pointing-Pointer The ZnS thin films have an energy gap from 3.885 to 3.980 eV which increases with the decrease of ZnSO{sub 4} concentration. Black-Right-Pointing-Pointer The CBD ZnS thin film with a Zn/S of 1:1 could be prepared at 80 Degree-Sign C in chemical bath. - Abstract: The CBD ZnS thin films were prepared on substrates of soda lime glass in chemical bath. The effect of deposition variables including zinc sulfate, thiourea, tri-sodium citrate, ammoina water, bath temperature, and deposition time on the properties of CBD ZnS thin films were comprehensively studied. The CBD ZnS thin films were characterized by a field emission scanning electron microscope (FESEM) for the surface and cross section morphologies and thicknesses, an energy dispersive spectrometer equipped in FESEM for the atomic% of Zn and S, an ultraviolet-visible spectrometer (300-800 nm) for the transmittance and energy gap, and an atomic force microscope for the surface roughness. The results showed that the CBD ZnS thin films have a transmittance for ultraviolet-visible rays (300-800 nm) from 70.8 to 87.8%. The CBD ZnS thin films prepared in bath 5 have an energy gap from 3.881 to 3.980 eV. The CBD ZnS thin films prepared in bath 6 have a growth rate from 1.8 to 3.2 nm/min and activation energy of 59.8 kJ/mol for their growth.

  9. A novel electroless silver depositing method for magnesium alloys

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hui; CUI Jian-zhong

    2006-01-01

    Depositing silver on magnesium alloy by both electroless plating and organic coatings was studied. The organic coating was made by immersing samples in organosilicon heat-resisting varnish. In this method the organic coating acts as interlayer between the substrate and silver film. When the reaction starts, silver deposits directly on the interlayer. X-ray diffraction and SEM analysis were used to determine the composition and morphology of the interlayer and silver film. The potentiodynamic polarization curves for corrosion studies of coated magnesium alloys were performed in a corrosive environment of 3.5% NaCl(mass fraction) at neutral pH (6.9). The results indicate that compared with the substrate, the corrosion resistance of coated magnesium alloys increases greatly. Moreover, the method proposed in this work is environmentally friendly, non-toxic chemicals were used. In addition, it provides a new concept for the corrosion inhibition of magnesium alloys.

  10. New 'ex vivo' radioisotopic method of quantitation of platelet deposition

    International Nuclear Information System (INIS)

    We have developed a sensitive and quantitative method of 'ex vivo' evaluation of platelet deposition on collagen strips, from rabbit Achilles tendon, superfused by flowing blood and applied it to four animal species, cat, rabbit, dog and pig. Autologous platelets were labeled with indium-111-tropolone, injected to the animal 24 hr before the superfusion and the number of deposited platelets was quantitated from the tendon gamma-radiation and the blood platelet count. We detected some platelet consumption with superfusion time when blood was reinfused entering the contralateral jugular vein after collagen contact but not if blood was discarded after the contact. Therefore, in order to have a more physiological animal model we decided to discard blood after superfusion of the tendon. In all species except for the cat there was a linear relationship between increase of platelet on the tendon and time of exposure to blood superfusion. The highest number of platelets deposited on the collagen was found in cats, the lowest in dogs. Ultrastructural analysis showed the platelets were deposited as aggregates after only 5 min of superfusion. (orig.)

  11. Preparation and Characterization of Nanocrystalline Hard Chromium Coatings Using Eco-Friendly Trivalent Chromium Bath

    OpenAIRE

    V. S. Protsenko; V. O Gordiienko; Danilov, F. I.; Kwon, S.C.

    2011-01-01

    A new aqueous sulfate trivalent chromium bath is described. The chromium bath contains formic acid and carbamide as complexing agents. Chromium was deposited at a temperature of 30÷40 oC and a cathode current density of 10÷25 A dm-2. The bath allows obtaining thick (up to several hundred micrometers) hard chromium coatings with nanocrystalline structure. The electrodeposition rate reaches 0.8÷0.9 µm min-1.

  12. Chlorhexidine gluconate: to bathe or not to bathe?

    Science.gov (United States)

    Rubin, Caroline; Louthan, Rufina Bavin; Wessels, Erica; McGowan, Mary-Bridgid; Downer, Shantee; Maiden, Jeanne

    2013-01-01

    Despite infection-prevention initiatives, hospital-acquired infections (HAIs) are still a common occurrence. Chlorhexidine gluconate (CHG) is an important antibacterial agent. Research indicates that the intervention of bathing with CHG can reduce the number of HAIs. Chlorhexidine gluconate is known to reduce the bioload of several bacteria, including multiple strains of methicillin-resistant Staphylococcus aureus. Research regarding the intervention of bathing with CHG was assessed and found to reduce central line-related blood stream infections, ventilator-associated pneumonia, and vancomycin-resistant enterococci. The reduction in HAIs was found to be greater as compared to bathing with soap and water. The reduction of these HAIs will allow for a saving of resources, finances and staff time, which may ultimately be passed on to the patient. While further research is indicated, a strong conclusion is drawn that bathing with CHG reduces the number of HAIs. PMID:23470709

  13. Deposition Methods and Properties of Polycrystalline CdS Thin Films

    Institute of Scientific and Technical Information of China (English)

    LIANG Qian; ZENG Guanggen; LI Bing; WANG Wenwu; JIANG Haibo; ZHANG Jingquan; LI Wei; WU Lili; FENG Lianghuan

    2015-01-01

    CdS thin film was used as a suitable window layer for CdS/CdTe solar cell, and the properties of CdS thin films deposited by pulsed laser deposition (PLD), chemical bath deposition (CBD) and magnetron sputtering (MS) were reported. The experimental results show that the transmittances of PLD-CdS thin films are about 85%and the band gaps are about 2.38-2.42eV. SEM results show that the surface of PLD-CdS thin film is much more compact and uniform. PLD is more suitable to prepare the CdS thin films than CBD and MS. Based on the thorough study, by using totally PLD technique, the FTO/PLD-CdS(150 nm)/CSS-CdTe solar cell (0.0707 cm2) can be prepared with an efficiency of 10.475%.

  14. Bath of my home (50 yeras report No.1); Wagaya no ofuro (50 nenshi No.1)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-10

    Looking back at the history of bath after the war, the fuel, water heating method, hot water method, bathtub, shape of bathroom, bathing tools and bathing method have undergone surprising changes, from the period just after the war for which the number of households having their baths was small and public baths were at the height of their prosperity, to the present period for which households are generally equipped with a shower and bathtub. This paper describes the history of bath after the war in Japan, including the bathing methods and goods which came to stay in each period, placing the focus on the bathing acts and equipment. For 10 years since 1945, the housing shortage had been serious, and public baths had prospered. For this period, the bath heating fuel was mainly coal and firewood, and soap was still valuable. Since 1955, the housing situation had changed better, and the time had entered the age of bath-at-home. Since this period, aluminum bath furnaces had been mass-produced. Neutral shampoo appeared on the market and were sold like hot cakes.

  15. A case–control study of maternal bathing habits and risk for birth defects in offspring

    OpenAIRE

    Agopian, AJ; Waller, D. Kim; Philip J. Lupo; Canfield, Mark A.; Mitchell, Laura E

    2013-01-01

    Background Nearly all women shower or take baths during early pregnancy; however, bathing habits (i.e., shower and bath length and frequency) may be related to the risk of maternal hyperthermia and exposure to water disinfection byproducts, both of which are suspected to increase risk for multiple types of birth defects. Thus, we assessed the relationships between bathing habits during pregnancy and the risk for several nonsyndromic birth defects in offspring. Methods Data for cases with one ...

  16. Measurement of unattached radon progeny based in electrostatic deposition method

    International Nuclear Information System (INIS)

    A method for the measurement of unattached radon progeny based on its electrostatic deposition onto wire screens, using only one pump, has been implemented and calibrated. The importance of being able of making use of this method is related with the special radiological significance that has the unattached fraction of the short-lived radon progeny. Because of this, the assessment of exposure could be directly related to dose with far greater accuracy than before. The advantages of this method are its simplicity, even with the tools needed for the sample collection, as well as the measurement instruments used. Also, the suitability of this method is enhanced by the fact that it can effectively be used with a simple measuring procedure such as the Kusnetz method. (author)

  17. Methods of exploitation of different types of uranium deposits

    International Nuclear Information System (INIS)

    Deposits are mined using three broad types of mining methods: open pit, underground and in situ leaching. This publication addresses all aspects of mining and milling methods for several types of deposits and provides information to assist in the selection process of methods and also considers what actions must be taken into account for obtaining regulatory approvals for a project and for final decommissioning and reclamation of a project. The objective of this publication is to provide a process of selections of methods for mining engineers and managers involved in modernising ongoing operations or considering opening new operations. Several practical examples are given. These guidelines can be consulted and used in many countries involved in uranium mining and milling operations. The examples where costs are given can also be adjusted to specific economic conditions of various countries. The authors are from four uranium producing countries. They bring diversified experience for all types of mining and milling operations from tile opening of a mine to the decommissioning of the complete operation

  18. Ion assisted methods of deposition of SiC

    International Nuclear Information System (INIS)

    This study describes attempts to synthesize thin SiC films by using a variety of ion beam processing routes at non-elevated temperature. SiC is one of the most widely investigated materials because it has many attractive properties. A main objective of this investigation was to compare and contrast different methods of ion assistance for deposition of SiC films and to attempt to grow functionally gradient films. Three approaches were employed. (1) Silicone oil vapour deposition under concurrent argon ion irradiation in which silicone vapour was decomposed and adsorbed on the substrate. (2) Dual ion beam deposition in which two argon ion beams were employed, with one sputtering a silicon target to provide a Si flux, and the other bombarding the substrate on which films grow. Methane and ethene gas were introduced into the system with a partial pressure up to 1.8 x 10-2Pa. The energy of the sputtering beam was around 1 keV, whilst the bombarding beam energies were altered from 0 to 500 eV. (3) Dual target sputtering in which the target consisted of carbon and silicon. The different area ratios of carbon and silicon targets were investigated. (Author)

  19. Verification of impact of morning showering and mist sauna bathing on human physiological functions and work efficiency during the day

    Science.gov (United States)

    Lee, Soomin; Fujimura, Hiroko; Shimomura, Yoshihiro; Katsuura, Tetsuo

    2015-09-01

    Recently, a growing number in Japan are switching to taking baths in the morning (morning bathing). However, the effects of the morning bathing on human physiological functions and work efficiency have not yet been revealed. Then, we hypothesized that the effect of morning bathing on physiological functions would be different from those of night bathing. In this study, we measured the physiological functions and work efficiency during the day following the morning bathing (7:10-7:20) including showering, mist sauna bathing, and no bathing as a control. Ten male healthy young adults participated in this study as the subjects. We evaluated the rectal temperature (Tre), skin temperature (Tsk), heart rate (HR), heart rate variability (HRV), blood pressure (BP), the relative power density of the alpha wave (α-wave ratio) of electroencephalogram, alpha attenuation coefficient (AAC), and the error rate of the task performance. As a result, we found that the HR after the mist sauna bathing was significantly lower than those after no bathing rest 3 (11:00). Furthermore, we verified that the α-wave ratio of the Pz after the mist sauna bathing was significantly lower than those after no bathing during the task 6 (15:00). On the other hand, the α-wave ratio of the Pz after the mist sauna bathing was significantly higher than those after showering during the rest 3 (11:00). Tsk after the mist sauna bathing was higher than those after the showering at 9:00 and 15:00. In addition, the error rate of the task performance after the mist sauna bathing was lower than those after no bathing and showering at 14:00. This study concludes that a morning mist sauna is safe and maintains both skin temperature compared to other bathing methods. Moreover, it is presumed that the morning mist sauna bathing improves work efficiency comparing other bathing methods during the task period of the day following the morning bathing.

  20. Comparison of galvanic displacement and electroless methods for deposition of gold nanoparticles on synthetic calcite

    Indian Academy of Sciences (India)

    Chamarthi K Srikanth; P Jeevanandam

    2012-11-01

    Gold nanoparticles have been deposited on synthetic calcite substrate by galvanic displacement reaction and electroless deposition methods. A comparative study has shown that electroless deposition is superior compared to galvanic displacement reaction for uniform deposition of gold nanoparticles on calcite. Characterization of the samples, prepared by two different deposition methods, was carried out by X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy (FE–SEM) and diffuse reflectance spectroscopy (DRS) measurements. FE–SEM studies prove that smaller nanoparticles of gold are deposited uniformly on calcite if electroless deposition method was employed and DRS measurements show the characteristic surface plasmon resonance of gold nanoparticles.

  1. Dust-bathing behavior of laying hens in enriched colony housing systems and an aviary system.

    Science.gov (United States)

    Louton, H; Bergmann, S; Reese, S; Erhard, M H; Rauch, E

    2016-07-01

    The dust-bathing behavior of Lohmann Selected Leghorn hens was compared in 4 enriched colony housing systems and in an aviary system. The enriched colony housing systems differed especially in the alignment and division of the functional areas dust bath, nest, and perches. Forty-eight-hour video recordings were performed at 3 time-points during the laying period, and focal animal sampling and behavior sampling methods were used to analyze the dust-bathing behavior. Focal animal data included the relative fractions of dust-bathing hens overall, of hens bathing in the dust-bath area, and of those bathing on the wire floor throughout the day. Behavior data included the number of dust-bathing bouts within a predefined time range, the duration of 1 bout, the number of and reasons for interruptions, and the number of and reasons for the termination of dust-bathing bouts. Results showed that the average duration of dust bathing varied between the 4 enriched colony housing systems compared with the aviary system. The duration of dust-bathing bouts was shorter than reported under natural conditions. A positive correlation between dust-bathing activity and size of the dust-bath area was observed. Frequently, dust baths were interrupted and terminated by disturbing influences such as pecking by other hens. This was especially observed in the enriched colony housing systems. In none of the observed systems, neither in the enriched colony housing nor in the aviary system, were all of the observed dust baths terminated "normally." Dust bathing behavior on the wire mesh rather than in the provided dust-bath area generally was observed at different frequencies in all enriched colony housing systems during all observation periods, but never in the aviary system. The size and design of the dust-bath area influenced the prevalence of dust-bathing behavior in that small and subdivided dust-bath areas reduced the number of dust-bathing bouts but increased the incidence of sham dust

  2. Testing rock magnetic and AMS methods in tsunami and storm-induced deposits

    OpenAIRE

    Font, Eric; Duarte, Sílvia; C. Veiga-Pires; Simões, Nuno; Muñoz, Francisco Ruiz; Abad, Manuel; POZO, Manuel; Nave, Silvia; Costas, Susana; Rebelo, Luis

    2012-01-01

    Storm- and tsunami-deposits are generated by similar depositional mechanisms making their discrimination hard to establish using classic sedimentologic methods. A promising approach is to use rock magnetism techniques to search for new physical benchmarks of tsunami deposits and to integrate them into a multi-disciplinary study. To test our method, we investigate the 1755 Lisbon tsunami deposit from the Boca do Rio estuary and other Tsunami-induced deposits from Algarve (Portugal) ...

  3. Liquid precursor for deposition of copper selenide and method of preparing the same

    Science.gov (United States)

    Curtis, Calvin J.; Miedaner, Alexander; Franciscus Antonius Maria Van Hest, Marinus; Ginley, David S.; Hersh, Peter A.; Eldada, Louay; Stanbery, Billy J.

    2015-09-08

    Liquid precursors containing copper and selenium suitable for deposition on a substrate to form thin films suitable for semiconductor applications are disclosed. Methods of preparing such liquid precursors and methods of depositing a precursor on a substrate are also disclosed.

  4. Deposit and scale prevention methods in thermal sea water desalination

    International Nuclear Information System (INIS)

    Introductory remarks deal with the 'fouling factor' and its influence on the overall heat transfer coefficient of msf evaporators. The composition of the matter dissolved in sea water and the thermal and chemical properties lead to formation of alkaline scale or even hard, sulphate scale on the heat exchanger tube walls and can hamper plant operation and economics seriously. Among the scale prevention methods are 1) pH control by acid dosing (decarbonation), 2) 'threshold treatment' by dosing of inhibitors of different kind, 3) mechanical cleaning by sponge rubber balls guided through the heat exchanger tubes, in general combined with methods no. 1 or 2, and 4) application of a scale crystals germ slurry (seeding). Mention is made of several other scale prevention proposals. The problems encountered with marine life (suspension, deposit, growth) in desalination plants are touched. (orig.)

  5. Effects of electrolysis and bath conditions on the surface roughness, morphology and crystal orientation of zinc electrodeposit. Denki aen mekki himaku no hyomen arasa to kessho jotai ni oyobosu denkai joken, yokujoken no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Sagiyama, M.; Kawabe, M.; Watanabe, T. (NKK Corporation, Tokyo (Japan). Steel Research Center)

    1990-08-01

    Under controlled plating conditions zinc metal coatings were electrodeposited on steel substrates from a bath or a chloride bath. The surface roughness of a zinc electrodeposit was measured by means of tracer method and an aggregation of its crystals was analyzed by means of electronmicroscopy and X-ray diffraction. It is found that with increasing current density increases the surface roughness of the zinc metal coatings deposited from the sulfate bath and also the chloride bath except when current density is less than 0.4A/cm {sup 2}. A detailed description is given of the result that as the mass transfer of Zn {sup 2 {plus}} is promoted in the sulfate bath, a decrease in the surface roughness of zinc electrodeposit results from the growth of stacked platy crystals whose (0001) basal planes are oriented in the direction parallel or slightly oblique to the substrate surface, while as the mass transfer of Zn {sub 2 {plus}} is retarded in the same bath, the surface roughness of the deposit increases due to the growth of minute platy crystals whose <1120> direction is oriented in the direction pependicular to the substrate surface. In this connection, an account is given of the preferred orientation of crystals in zinc electrodeposits. 14 refs., 13 figs., 1 tab.

  6. Cigar Lake, an original method for an exceptional deposit

    International Nuclear Information System (INIS)

    In 1976, the discovery of the high grade Deposit at Cluff Lake in the north of the province of Saskatchewan (Canada) opened new prospects in uranium deposits, which in turn quickly led to the discovery of exceptional deposits both in terms of grade (up 10 % in metal uranium) and tonnage (150, 000 tons of metal per deposit and more). Among these deposits are Key Lake, Cigar Lake, Midwest, MacClean, and more recently, Mac Arthur. These discoveries as well as future ones make the north of Saskatchewan the world's greatest and most interesting uranium-producing province. (authors)

  7. A Deposit Contract Method to Deliver Abstinence Reinforcement for Cigarette Smoking

    OpenAIRE

    Dallery, Jesse; Meredith, Steven; Glenn, Irene M

    2008-01-01

    Eight smokers were randomly assigned to a deposit contract ($50.00) or to a no-deposit group. Using a reversal design, participants could recoup their deposit (deposit group) or earn vouchers (no-deposit group) for smoking reductions and abstinence (breath carbon monoxide [CO] ≤ 4 parts per million) during treatment phases. Treatment was delivered via a novel Internet-based method to monitor smoking status. Although equivalent decreases in breath CO and abstinence were observed during treatme...

  8. Effect of sonochemical synthesized TiO2 nanoparticles and coagulation bath temperature on morphology, thermal stability and pure water flux of asymmetric cellulose acetate membranes prepared via phase inversion method

    Directory of Open Access Journals (Sweden)

    Abedini Reza

    2012-01-01

    Full Text Available In this study, asymmetric pure CA and CA/ TiO2 composite membranes were prepared via phase inversion by dispersing TiO2 nanopaticles in the CA casting solutions induced by immersion precipitation in water coagulation bath. TiO2 nanoparticles, which were synthesized by the sonochemical method, were added into the casting solution with different concentrations. Effects of TiO2 nanoparticles concentration (0 wt. %, 5wt.%, 10wt.%, 15wt.%, 20wt.% and 25wt.% and coagulation bath temperature (CBT= 25°C, 50°C and 75°C on morphology, thermal stability and pure water flux (PWF of the prepared membranes were studied and discussed. Increasing TiO2 concentration in the casting solution film along with higher CBT resulted in increasing the membrane thickness, water content (WC, membrane porosity and pure water flux (PWF, also these changes facilitate macrovoids formation. Thermal gravimetric analysis (TGA shows that thermal stability of the composite membranes were improved by the addition of TiO2 nanopaticles. Also TGA results indicated that increasing CBT in each TiO2 concentration leads to the decreasing of decomposition temperature (Td of hybrid membranes.

  9. Methods of Boron-carbon Deposited Film Removal

    Science.gov (United States)

    Airapetov, A.; Terentiev, V.; Voituk, A.; Zakharov, A.

    Boron carbide was proposed as a material for in-situ renewable protecting coating for tungsten tiles of the ITER divertor. It is necessary to develop a method of gasification of boron-carbon film which deposits during B4C sputtering. In this paper the results of the first stage investigation of gasification methods of boron-carbon films are presented. Two gasification methods of films are investigated: interaction with the ozone-oxygen mixture and irradiation in plasma with the working gas composed of oxygen, ethanol, and, in some cases, helium. The gasification rate in the ozone-oxygen mixture at 250 °C for B/C films with different B/C ratio and carbon fiber composite (CFC), was measured. For B/C films the gasification rate decreased with increasing B/C ratio (from 45 nm/h at B/C=0.7 to 4 nm/h at B/C=2.1; for CFC - 15 μm/h). Films gasification rates were measured under ion irradiation from ethanol-oxygen-helium plasma at different temperatures, with different ion energies and different gas mixtures. The maximum obtained removal rate was near 230 nm/h in case of ethanol-oxygen plasma and at 150°C of the sample temperature.

  10. Uniform deposition of uranium hexafluoride (UF6): Standardized mass deposits and controlled isotopic ratios using a thermal fluorination method.

    Science.gov (United States)

    McNamara, Bruce K; O'Hara, Matthew J; Casella, Andrew M; Carter, Jennifer C; Addleman, R Shane; MacFarlan, Paul J

    2016-07-01

    We report a convenient method for the generation of volatile uranium hexafluoride (UF6) from solid uranium oxides and other U compounds, followed by uniform deposition of low levels of UF6 onto sampling coupons. Under laminar flow conditions, UF6 is shown to interact with surfaces within a fixed reactor geometry to a highly predictable degree. We demonstrate the preparation of U deposits that range between approximately 0.01 and 500ngcm(-2). The data suggest the method can be extended to creating depositions at the sub-picogramcm(-2) level. The isotopic composition of the deposits can be customized by selection of the U source materials and we demonstrate a layering technique whereby two U solids, each with a different isotopic composition, are employed to form successive layers of UF6 on a surface. The result is an ultra-thin deposit that bears an isotopic signature that is a composite of the two U sources. The reported deposition method has direct application to the development of unique analytical standards for nuclear safeguards and forensics. Further, the method allows access to very low atomic or molecular coverages of surfaces. PMID:27154668

  11. Plasma levels of 8-methoxypsoralen following PUVA-bath photochemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kobyletzki, G. von; Hoffmann, K.; Kerscher, M.; Altmeyer, P. [Ruhr-Univ., Dept. of Dermatology, Bochum (Germany)

    1998-08-01

    Administration of 8-methoxypsoralen (8-MOP) in a dilute bath water solution is an effective therapeutic alternative to oral PUVA therapy, avoiding systemic side effects, offering better bioavailability of the psoralen and requiring much smaller amounts of UVA for induction of therapeutic effects. To obtain exact data about the percutaneous absorption of 8-MOP during a psoralen bath, the plasma levels of the drug were determined in 26 patients with different skin diseases by a reverse high-performance liquid chromatographic method. Fifteen patients receiving oral PUVA therapy (0.8 mg 8-MOP/kg body weight) served as a positive control group. Bath solutions were prepared by diluting 15 ml of 0.5% stock solution of 8-MOP in 150 l of bath water (0.5 mg/l, 37 deg. C). Blood samples were drawn from patients 5, 30, 60, 120 and 180 min after the bath. In the oral PUVA group, blood samples were obtained 1 1/2 h after administration of the drug. In 23 og 26 patients, 8-MOP levels were undetectable in every blood sample. After 30 min, two patients showed detectable levels of 8-MOP (5 ng/ml, 7 ng/ml), while 60 min after the PUVA bath 8-MOP was detectable in only one volunteer (5 ng/ml). In patients receiving oral 8-MOP therapy, serum levels varied between 45 and 360 ng/ml 1 1/2 h after drug administration. Our data confirm extremely low 8-MOP levels resulting from 8-MOP bath water treatments and provide confirmation of the absence of systemic side effects in patients who are undergoing PUVA-bath therapy. (au) 15 refs.

  12. Plasma levels of 8-methoxypsoralen following PUVA-bath photochemotherapy

    International Nuclear Information System (INIS)

    Administration of 8-methoxypsoralen (8-MOP) in a dilute bath water solution is an effective therapeutic alternative to oral PUVA therapy, avoiding systemic side effects, offering better bioavailability of the psoralen and requiring much smaller amounts of UVA for induction of therapeutic effects. To obtain exact data about the percutaneous absorption of 8-MOP during a psoralen bath, the plasma levels of the drug were determined in 26 patients with different skin diseases by a reverse high-performance liquid chromatographic method. Fifteen patients receiving oral PUVA therapy (0.8 mg 8-MOP/kg body weight) served as a positive control group. Bath solutions were prepared by diluting 15 ml of 0.5% stock solution of 8-MOP in 150 l of bath water (0.5 mg/l, 37 deg. C). Blood samples were drawn from patients 5, 30, 60, 120 and 180 min after the bath. In the oral PUVA group, blood samples were obtained 1 1/2 h after administration of the drug. In 23 og 26 patients, 8-MOP levels were undetectable in every blood sample. After 30 min, two patients showed detectable levels of 8-MOP (5 ng/ml, 7 ng/ml), while 60 min after the PUVA bath 8-MOP was detectable in only one volunteer (5 ng/ml). In patients receiving oral 8-MOP therapy, serum levels varied between 45 and 360 ng/ml 1 1/2 h after drug administration. Our data confirm extremely low 8-MOP levels resulting from 8-MOP bath water treatments and provide confirmation of the absence of systemic side effects in patients who are undergoing PUVA-bath therapy. (au)

  13. Uniform deposition of uranium hexafluoride (UF6): Standardized mass deposits and controlled isotopic ratios using a thermal fluorination method

    Energy Technology Data Exchange (ETDEWEB)

    McNamara, Bruce K.; O' Hara, Matthew J.; Casella, Andrew M.; Carter, Jennifer C.; Addleman, Raymond S.; MacFarlan, Paul J.

    2016-03-16

    Abstract: We report a convenient method for the generation of volatile uranium hexafluoride (UF6) from solid uranium oxides and other uranium compounds, followed by uniform deposition of low levels of UF6 onto sampling coupons. Under laminar flow conditions, UF6 is shown to interact with surfaces within the chamber to a highly predictable degree. We demonstrate the preparation of uranium deposits that range between ~0.01 and 470±34 ng∙cm-2. The data suggest the method can be extended to creating depositions at the sub-picogram∙cm-2 level. Additionally, the isotopic composition of the deposits can be customized by selection of the uranium source materials. We demonstrate a layering technique whereby two uranium solids, each with a different isotopic composition, are employed to form successive layers of UF6 on a surface. The result is an ultra-thin deposit of UF6 that bears an isotopic signature that is a composite of the two uranium sources. The reported deposition method has direct application to the development of unique analytical standards for nuclear safeguards and forensics.

  14. 21 CFR 890.5110 - Paraffin bath.

    Science.gov (United States)

    2010-04-01

    ... PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5110 Paraffin bath. (a) Identification. A paraffin bath is a device intended for medical purposes that consists of a tub to be filled... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Paraffin bath. 890.5110 Section 890.5110 Food...

  15. Decoherence of a single spin coupled to an interacting spin bath

    Science.gov (United States)

    Wu, Ning; Fröhling, Nina; Xing, Xi; Hackmann, Johannes; Nanduri, Arun; Anders, Frithjof B.; Rabitz, Herschel

    2016-01-01

    Decoherence of a central spin coupled to an interacting spin bath via inhomogeneous Heisenberg coupling is studied by two different approaches, namely an exact equations of motion (EOMs) method and a Chebyshev expansion technique (CET). By assuming a wheel topology of the bath spins with uniform nearest-neighbor X X -type intrabath coupling, we examine the central spin dynamics with the bath prepared in two different types of bath initial conditions. For fully polarized baths in strong magnetic fields, the polarization dynamics of the central spin exhibits a collapse-revival behavior in the intermediate-time regime. Under an antiferromagnetic bath initial condition, the two methods give excellently consistent central spin decoherence dynamics for finite-size baths of N ≤14 bath spins. The decoherence factor is found to drop off abruptly on a short time scale and approach a finite plateau value which depends on the intrabath coupling strength nonmonotonically. In the ultrastrong intrabath coupling regime, the plateau values show an oscillatory behavior depending on whether N /2 is even or odd. The observed results are interpreted qualitatively within the framework of the EOM and perturbation analysis. The effects of anisotropic spin-bath coupling and inhomogeneous intrabath bath couplings are briefly discussed. Possible experimental realization of the model in a modified quantum corral setup is suggested.

  16. Structural analysis of CdS thin films obtained by multiple dips of oscillating chemical bath

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez Lazos, C.D. [Seccion de Electronica del Estado Solido, Centro de Investigacion y de Estudios Avanzados, Av. Instituto Politecnico Nacional 2508, Col. San Pedro Zacatenco, 07360 Mexico, D.F. (Mexico); Rosendo, E., E-mail: erosendo@siu.buap.m [Centro de Investigacion en Dispositivos Semiconductores, Universidad Autonoma de Puebla, 14 Sur y San Claudio, Col. San Manuel, C.P. 72570, Puebla (Mexico); Ortega, M. [Seccion de Electronica del Estado Solido, Centro de Investigacion y de Estudios Avanzados, Av. Instituto Politecnico Nacional 2508, Col. San Pedro Zacatenco, 07360 Mexico, D.F. (Mexico); Oliva, A.I. [Departamento de Fisica Aplicada, Centro de Investigacion y de Estudios Avanzados, Unidad Merida, A.P. 73 Cordemex, 97310 Merida, Yucatan (Mexico); Tapia, O.; Diaz, T.; Juarez, H.; Garcia, G. [Centro de Investigacion en Dispositivos Semiconductores, Universidad Autonoma de Puebla, 14 Sur y San Claudio, Col. San Manuel, C.P. 72570, Puebla (Mexico); Rubin, M. [Facultad de Ciencias de la Computacion, 14 Sur y San Claudio, Col. San Manuel, C.P. 72570, Puebla (Mexico)

    2009-11-25

    Highly oriented CdS thin films with thicknesses greater than 1 mum were deposited by multiple dips, using oscillating chemical bath deposition (OCBD) at the bath temperature of 75 deg. C, and deposition time ranging from 15 to 75 min for a single dip. Samples with different thickness were prepared by repeating the deposition process for two and three times. The films deposited by a single dip have the alpha-greenockite structure showing the (0 0 2) as preferred orientation, as indicated by the X-ray diffraction measurements. This notable characteristic is preserved in the samples obtained from two or three dips. The crystallite size for the samples deposited by a single dip depends on the deposition time, because it varied from 23 to 37 nm as the deposition time increased. Nevertheless for samples deposited by two and three dips, the grain size shows no noticeable change, being about 22 nm.

  17. Characteristics and anticorrosion performance of Fe-doped TiO2 films by liquid phase deposition method

    International Nuclear Information System (INIS)

    Highlights: • Fe-doped TiO2 films were prepared by liquid phase deposition method. • Higher photoelectrochemical response was observed for the Fe-doped TiO2 film. • The sustained anticorrosion behavior for SUS304 stainless steel was observed. - Abstract: Fe-doped TiO2 thin films were fabricated by liquid phase deposition (LPD) method, using Fe(III) nitrate as both Fe element source and fluoride scavenger instead of commonly-used boric acid (H3BO3). Scanning electron microscopy (SEM), X-ray diffraction (XRD), and UV–vis spectrum were employed to examine the effects of Fe element on morphology, structure and optical characteristics of TiO2 films. The as-prepared films were served as photoanode applied to photogenerated cathodic protection of SUS304 stainless steel (304SS). It was observed that the photoelectrochemical properties of the as-prepared films were enhanced with the addition of Fe element compared to the undoped TiO2 film. The highest photoactivity was achieved for Ti13Fe (Fe/Ti = 3 molar ratio) film prepared in precursor bath containing 0.02 M TiF4 + 0.06 M Fe(NO3)3 under white-light illumination. The effective anticorrosion behaviors can be attributed to the Fe element incorporation which decreases the probability of photogenerated charge-carrier recombination and extends the light response range of Fe-doped TiO2 films appeared to visible-light region

  18. Development of suppression method for deposition of radioactive nuclides after chemical decontamination by platinum deposition treatment

    International Nuclear Information System (INIS)

    Noble metal chemical addition (NMCA) technology has been widely adopted for BWR plants in the US as a means to mitigate stress corrosion cracking (SCC). Dose rate of the reactor water recirculation system piping of some BWR plants that apply a combination of NMCA and zinc injection technology have gradually decreased. Chemical decontamination removes 60Co, but also the noble metal from the piping surfaces. Thus, effect of dose rate reduction by NMCA is decreased in the plant operating period after chemical decontamination. We considered that platinum deposition treatment just after chemical decontamination before plant operation would be effective to prevent redeposition of the 60Co. In this platinum deposition treatment process, Sodium hexahydroxyplatinate (IV), hydrazine and ammonia are used as the treatment chemicals. A 60Co deposition reduction effect of 1/2 compared to non-treatment is confirmed for up to 1,000 hours by laboratory experiments. (author)

  19. Bed bathing patients in hospital

    OpenAIRE

    L Downey; Lloyd, Hilary

    2008-01-01

    There are a number of circumstances that may affect an individual's ability to maintain personal hygiene. Hospitalised patients, and in particular those who are bedridden, may become dependent on nursing staff to carry out their hygiene needs. Assisting patients to maintain personal hygiene is a fundamental aspect of nursing care. However, it is a task often delegated to junior or newly qualified staff. This article focuses on the principles of bed bathing patients in hospital, correct proced...

  20. A case for ''other'' geophysical methods in exploration for uranium deposits

    International Nuclear Information System (INIS)

    This report demonstrates that non-radiometric geophysical methods have important applications to uranium exploration problems. Gravity, magnetic, electromagnetic, and induced-polarization surveys, conducted on regional and local scales over a wide variety of uranium deposits, are described. The geophysical data indicate that no one geophysical method will always succeed in identifying favourable areas for uranium deposits. The successful application of any geophysical method depends upon an understanding of the probable geochemical and geological environment of a uranium deposit. (author)

  1. CdTe-based solar cells prepared by physical vapor deposition and close-spaced sublimation methods

    International Nuclear Information System (INIS)

    Full text : In the photovoltaic material family, cadmium telluride is regarded as one of the most promising material for fabrication of high efficiency polycrystalline CdTe/CdS thin film solar cells because of its near-optimum band gap of about 1.46 eV and high optical absorption coefficient in visible range. The maximum efficiency of about 16.5 percent of the laboratory samples of polycrystalline CdTe based thin film solar cells was achieved by using nanostructured CdS:O window layer and the modified device structure. In spite of the large lattice mismatch between cubic CdTe and hexagonal CdS (nearly 9.7 percent) the CdTe/CdS solar cells are characterized by essentially high efficiencies caused by interdiffusion at the junction interface removing the lattice mismatch. To identify the structural mechanisms leading to the solar cell efficiency increase we have studied the effect of CdCl2 treatment on the output parameters of CdS/CdTe-based solar cells and crystal structure of the base layers deposited on glass substrates by different ways. In the first way both of CdS and CdTe layers were deposited by physical vapor deposition (PVD) method meanwhile in the second way the chemical bath deposition (CBD) and close-spaced sublimation (CSS) methods were used for CdS and CdTe films deposition, respectively. For the PVD structures. The average grain size of the film increases from 1 μm to 4 μm due to the lattice strain caused by macrodeformations and stacking faults. The maximum efficiency (ηA=10.3 percent) of solar cells on the basis of cadmium telluride layers deposited by PVD method corresponds to 0,35 μm CdRl2 thickness at CdCl2 treatment. CBD/CSS samples were exposed to CdCl2 vapor at 400 degrees Celsium for 5-7 min in vacuum chamber in the presence of 100 torr oxygen and 400 torr helium. As-grown CdTe films were characterized by clearly faceted surface morphology and an average grain size of about 3-4 μm. Unlike the thermally evaporated CdTe films, no

  2. Fast deposition of diamond-like carbon films by radio frequency hollow cathode method

    International Nuclear Information System (INIS)

    Diamond-like carbon (DLC) thin films were deposited on p-type Si (100) substrates by RF hollow cathode method under different RF power and pressure, using ethane as the precursor gas. The deposition rate of 45 nm/min was achieved, almost 4 times higher than by conventional radio frequency plasma enhanced chemical vapor deposition. The mechanism of fast DLC films deposition is attributed to high plasma density in RF hollow cathode method, discussed in this paper. Scanning electron microscopy and Raman spectroscopy were used to investigate the microstructure of DLC films. The film hardness and Young's modulus were measured by nanoindentation. - Highlights: • Diamond-like carbon thin films were deposited by RF hollow cathode method. • The deposition rate of 45 nm/min was achieved. • A higher plasma density results in a higher deposition rate

  3. Preparation and Optimization of Pyrophosphate Bath for Copper Electroplating of Microwave Components

    Directory of Open Access Journals (Sweden)

    L. G. Bhatgadde

    1988-04-01

    Full Text Available The principles of copper deposition from pyrophosphate electrolytes have been explained. Based on these principles, a method  of preparation of plating bath from basic constituents has been described. It was found that copper pyrophosphate is precipitated from solutions of copper sulphatc and potassium pyrophosphate at a pH of 5.0. For maximum efficiency, copper pyrophosphate has to be disolved in potassium pyrophosphate in a weight ratio of 1 : 4 or a total P2o7,: Cu ratio of 7.5 : 1. By using optimum values of anode : cathode area,2.5, pH, 5.0, temperature, 55°C and a cathode curfent density of 0.8 A/dm2, bright, adherent copper electroplates were deposited on electroless copper plated Al2o3, substrates employed in microwave components.

  4. Method and means for detecting magnetic deposits in tubular plant

    International Nuclear Information System (INIS)

    Deposits of magnetite on tubes in a heat exchanger, e.g. a steam generator, are detected by measuring the magnetic reluctance within the tubes. A probe for measuring the reluctance includes a permanent magnet (or a magnetic core and an excitation coil wound on the core) and a magnetic flux detector such as a Hall generator mounted for example on one of the non-magnetic rings. Changes in flux density as the probe is pushed through the tubes are detected by the Hall generator, thus indicating the presence of magnetite deposits. The probe includes a non-magnetic tube for pushing it through the heat exchanger tubes. (author)

  5. Dissipative quantum dynamics with the Surrogate Hamiltonian approach. A comparison between spin and harmonic baths

    CERN Document Server

    Gelman, D; Kosloff, R

    2004-01-01

    The dissipative quantum dynamics of an anharmonic oscillator coupled to a bath is studied with the purpose of elucidating the differences between the relaxation to a spin bath and to a harmonic bath. Converged results are obtained for the spin bath by the Surrogate Hamiltonian approach. This method is based on constructing a system-bath Hamiltonian, with a finite but large number of spin bath modes, that mimics exactly a bath with an infinite number of modes for a finite time interval. Convergence with respect to the number of simultaneous excitations of bath modes can be checked. The results are compared to calculations that include a finite number of harmonic modes carried out by using the multi-configuration time-dependent Hartree method of Nest and Meyer, [J. Chem. Phys. 119, 24 (2003)]. In the weak coupling regime, at zero temperature and for small excitations of the primary system, both methods converge to the Markovian limit. When initially the primary system is significantly excited, the spin bath can...

  6. Numerical Models of Sewage Dispersion and Statistica Bathing Water Standards

    DEFF Research Database (Denmark)

    Petersen, Ole; Larsen, Torben

    1991-01-01

    As bathing water standards usually are founded in statistical methods, the numerical models used in outfall design should reflect this. A statistical approach, where stochastic variations in source strength and bacterial disappearance is incorporated into a numerical dilution model is presented. It...... is demonstrated for a specific outfall how the method can be used to estimate the bathing water quality. The ambition with the paper has been to demonstrate how stochastic variations in a simple manner can be included in the analysis of water quality....

  7. Optimization of operational parameters and bath control for electrodeposion of Ni-Mo-B amorphous alloys

    OpenAIRE

    Marinho Fabiano A.; Santana François S. M.; Vasconcelos André L. S.; Santana Renato A. C.; Prasad Shiva

    2002-01-01

    Optimization of operational parameters of an electrodeposition process for deposition of boron-containing amorphous metallic layer of nickel-molybdenum alloy onto a cathode from an electrolytic bath having nickel sulfate, sodium molybdate, boron phosphate, sodium citrate, sodium-1-dodecylsulfate and ammonia for pH adjustments to 9.5 has been studied. Detailed studies of the efects on bath temperature, mechanical agitation, cathode current density and anode format have led to optimum operation...

  8. [Ofuji papuloerythroderma: PUVA bath treatment].

    Science.gov (United States)

    Michel, S; Hohenleutner, U; Landthaler, M

    1999-05-01

    Papuloerythroderma of Ofuji is a rare skin disorder described primarily in Japanese patients. It occurs primarily in elderly men. The initial lesions are diffuse red papules, sparing the face, palms and soles. Later the papules coalesce into an erythroderma, with typical sparing of the skin folds and creases (the deck chair sign). Pruritus is usually intense. Lymphadenopathy, peripheral blood eosinophilia and elevated IgE levels all are common. Both systemic corticosteroids and systemic PUVA therapy have been recommended. We describe a German male who fulfilled the diagnostic criteria for papuloerythroderma of Ofuji and responded well to PUVA bath therapy with both improvement in skin findings and reduction in pruritus. PMID:10412634

  9. Liquid precursor for deposition of indium selenide and method of preparing the same

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Calvin J.; Miedaner, Alexander; van Hest, Marinus Franciscus Antonius Maria; Ginley, David S.; Hersh, Peter A.; Eldada, Louay; Stanbery, Billy J.

    2015-09-22

    Liquid precursors containing indium and selenium suitable for deposition on a substrate to form thin films suitable for semiconductor applications are disclosed. Methods of preparing such liquid precursors and method of depositing a liquid precursor on a substrate are also disclosed.

  10. Argon thermochronology of mineral deposits; a review of analytical methods, formulations, and selected applications

    Science.gov (United States)

    Snee, Lawrence W.

    2002-01-01

    40Ar/39Ar geochronology is an experimentally robust and versatile method for constraining time and temperature in geologic processes. The argon method is the most broadly applied in mineral-deposit studies. Standard analytical methods and formulations exist, making the fundamentals of the method well defined. A variety of graphical representations exist for evaluating argon data. A broad range of minerals found in mineral deposits, alteration zones, and host rocks commonly is analyzed to provide age, temporal duration, and thermal conditions for mineralization events and processes. All are discussed in this report. The usefulness of and evolution of the applicability of the method are demonstrated in studies of the Panasqueira, Portugal, tin-tungsten deposit; the Cornubian batholith and associated mineral deposits, southwest England; the Red Mountain intrusive system and associated Urad-Henderson molybdenum deposits; and the Eastern Goldfields Province, Western Australia.

  11. Contribution to the methods for estimating uranium deposits (1963)

    International Nuclear Information System (INIS)

    Having defined a deposit of economic value according to the marginal theory, the author discriminates several categories of ore reserves according to the degree of knowledge of the deposit and according to the mining stage where the ore is considered. He dismisses the conventional French classification of 'on sight', 'probable' and 'possible' ore categories and suggests more suitable ones. The 'sensu stricto', ore reserves are those for which the random error can be calculated. The notion of the natural contrast of grades in an ore deposit (absolute dispersion coefficient α) is introduced in relation to this topic. The author considers three types of mining exploration. The first is the random exploration so often met; the second is the logical exploration based on a systematic location of underground works, bore-holes, etc. The third, and hardest to achieve, is the one which minimizes exploration costs for a given level of accuracy. Part of the publication deals with sampling errors such as those resulting from the quartering of a heap of ore (theory of Pierre GY) or those resulting from the use of radiometric measurement of grade. Another part deals with the extension error (entailed by the assimilation of samples to the deposit they are issued from) and gives the essential formulae in order to appraise the random error (Geo-statistics of Matheron). As to the estimator itself the work shows how the disharmony between the ore sample and the associated influence zone can be solved by the way of 'kriging'. The thesis gives numerous examples of the various numerical parameters, characteristics of an uranium deposit (absolute dispersion coefficient) or of an uranium ore (liberation parameter) as well as a few examples of linear correlations between gamma radioactivity and uranium grade. Three complete examples of reserve evaluation are given. The end of the thesis deals with the notion of ruin risk which has to be taken in some cases. A detailed alphabetical index is

  12. Taking a Bath In Tibetan Medicinal Water

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Lighting incense in a room and planting oneself into the environment scented by the smoke is one of the ways Tibetans keep fit. And they say they are taking a bath when doing so.According to the Tibetan medical code, the Tibetans had long produced many ways for "taking baths" to cleanse themselves, build up their physique and prolong life. Most popular ones include taking baths in

  13. Electrochemical evaluation of under-deposit corrosion and its inhibition using the wire beam electrode method

    Energy Technology Data Exchange (ETDEWEB)

    Tan Yongjun, E-mail: yj.tan@curtin.edu.a [Western Australian Corrosion Research Group, Department of Chemistry, Curtin University, GPO Box U1987, Perth (Australia); Fwu, Young; Bhardwaj, Kriti [Western Australian Corrosion Research Group, Department of Chemistry, Curtin University, GPO Box U1987, Perth (Australia)

    2011-04-15

    Research highlights: A new experiment method for evaluating under-deposit corrosion and its inhibitors. Under-deposit corrosion did not occur in a CO{sub 2} saturated pure brine solution. Inhibitor imidazoline addition and O{sub 2} contamination initiated under-deposit corrosion. Inhibitor imidazoline reduced general corrosion but enhanced localised corrosion. - Abstract: A new experimental method has been applied to evaluate under-deposit corrosion and its inhibition by means of an electrochemically integrated multi-electrode array, namely the wire beam electrode (WBE). Maps showing galvanic current and corrosion potential distributions were measured from a WBE surface that was partially covered by sand. Under-deposit corrosion did not occur during the exposure of the WBE to carbon dioxide saturated brine under ambient temperature. The introduction of corrosion inhibitor imidazoline and oxygen into the brine was found to significantly affect the patterns and rates of corrosion, leading to the initiation of under-deposit corrosion over the WBE.

  14. Evaluation of methods for characterizations of deposits; Utvaerdering av metoder foer avlagringsmaetningar

    Energy Technology Data Exchange (ETDEWEB)

    Hoegberg, J.; Bjoerkman, P. [Vattenfall Utveckling AB, Aelvkarleby (Sweden)

    2001-11-01

    In boilers there are problems with deposits on parts exposed to the flue gas, in particular on heat exchanging parts and to an increasing extent with the changeover to the use of biofuels and wood waste fuels. In order to solve the problems deposits are examined by using a deposit probe and taking deposit samples from the interior of the boiler. In this report an evaluation of methods of analysis is performed based on experiences in both literature and laboratory work. The evaluation forms the basis of an instruction for deposit measurements in 'Vaermeforsks Maethandbok'. The procedure for use of deposit probes is treated as well as the importance of careful and well planned sample preparation before analysis. In the literature a large number of methods used for analysis of deposits from flue ashes and similar applications are found. The methods include chemical analyses of solids and liquids, analysis of crystal structures, thermal properties and the solid mechanics of the materials. Several methods, for example SEM-EDX, XRF, ICP, IC and methods for determining the mechanical and thermal properties are suited for a survey examination of a deposit, while more specialised methods with higher resolution can add information but require a clear framing of a question and in practice are suited for only separate samples. Examples from the latter category are AES, ESCA and TOF-SIMS.

  15. Continuous Measuring Method of Sulfuric Acid and Phosphoric Acid in Steel Electropolishing Bath%钢铁电抛光溶液中硫酸和磷酸的连续测定方法

    Institute of Scientific and Technical Information of China (English)

    郭崇武

    2013-01-01

    研究了在测定钢铁电抛光溶液中硫酸和磷酸时所用的掩蔽剂,以甲基橙作指示剂,用氢氧化钠标准滴定溶液滴定硫酸和磷酸的总量,然后向试液中加亚铁氰化钾掩蔽亚铁离子,以酚酞作指示剂,继续用氢氧化钠标准滴定溶液滴定磷酸二氢根.该方法能有效消除亚铁离子对测定结果的影响,明显优于其它分析方法.%Masking agents of ferrous ions were studied for analysis of sulfuric acid and phosphoric acid in steel electropolishing bath. Total quantity of sulfuric acid and phosphoric acid were titrated by using methyl orange indicator and NaOH as titrant. Ferrous ions were masked with potassium ferrocyanide, and then the sodium biphosphate was titrated by utilizing phenolphthalein indicator and NaOH as titrant. Results showed that the influence of ferrous ions on the determination could be effectively eliminated by this method, and obviously, it was superior to other analytical methods.

  16. Measuring the thickness of austenitic weld deposits on carbon steel walls using a magnetic method

    International Nuclear Information System (INIS)

    The theoretical background is described of a magnetic method characterized by a marked compensation of the undesirable effect of δ-ferrite content in the deposit, on the accuracy of measuring deposit thickness. A description is also given of the basic types of sensors and the results are summarized of comparing measurements performed on weld deposits of WWER-type reactor pressure vessels. (author). 7 figs., 5 refs

  17. Sealing of micromachined cavities using chemical vapor deposition methods: characterization and optimization

    OpenAIRE

    Liu, Chang; Tai, Yu-Chong

    1999-01-01

    This paper presents results of a systematic investigation to characterize the sealing of micromachined cavities using chemical vapor deposition (CVD) methods. We have designed and fabricated a large number and variety of surface-micromachined test structures with different etch-channel dimensions. Each cavity is then subjected to a number of sequential CVD deposition steps with incremental thickness until the cavity is successfully sealed. At etch deposition interval, the sealing status of ev...

  18. Effect of current density and bath composition on crystalline structure and magnetic properties of electrodeposited FeCoW alloy

    Science.gov (United States)

    Ghaferi, Z.; Sharafi, S.; Bahrololoom, M. E.

    2015-11-01

    In this research, FeCoW alloy coatings were prepared by galvanostatic method. The influence of current density and bath composition on microstructure and magnetic properties of electrodeposited FeCoW alloys were also studied. All coatings showed (2 2 0) preferred orientation with a two phase structure at higher current densities. Grain size of the coatings deposited from 0.01 and 0.03 M tungsten content electrolytes was in the range of 29-126 and 10-42 nm, respectively. Microhardness of the coatings deposited from the former electrolyte changed by chemical composition of the alloys, while this parameter changed by grain-size reduction for the coatings deposited from the latter one. The coercivity was controlled by grain-size reduction and surface morphology. It could be stated that the high-tungsten content electrolyte produced coatings with superior magnetic behaviour and microhardness compared with the electrolyte with low -tungsten content.

  19. Effects of catalyst introduction methods using PAMAM dendrimers on selective electroless nickel deposition on polyelectrolyte multilayers.

    Science.gov (United States)

    Hendricks, Troy R; Dams, Erin E; Wensing, Steven T; Lee, Ilsoon

    2007-06-19

    We studied the effects of catalyst introduction methods using poly(amidoamine) (PAMAM) dendrimers on the nickel patterning of polyelectrolyte multilayer (PEM)-coated substrates. Three different approaches to palladium catalyst introduction using microcontact printing as the patterning technique were utilized and compared. The catalyst introduction methods are (1) direct catalyst stamping, (2) directed assembly using PAMAM dendrimer stamping, and (3) catalyst encapsulation and reduction to nanoparticles within PAMAM dendrimers before stamping. After patterning, the sample surfaces were placed in an electroless bath where nickel was selectively plated onto the patterns. The patterned surfaces were characterized using optical microscopy, atomic force microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The metal plating rates on different homogeneous surfaces that simulate the patterned surfaces were measured using a quartz crystal microbalance. In addition, the effect of PEM film thickness (i.e., number of bilayers) on the selectivity of nickel patterning was investigated. PMID:17523692

  20. Deposition and Tribological Properties of Sulfur-Doped DLC Films Deposited by PBII Method

    Directory of Open Access Journals (Sweden)

    Nutthanun Moolsradoo

    2010-01-01

    Full Text Available Sulfur-doped diamond-like carbon films (S-DLC fabricated from C2H2 and SF6 mixtures were used to study the effects of sulfur content and negative pulse bias voltage on the deposition and tribological properties of films prepared by plasma-based ion implantation (PBII. The structure and relative concentration of the films were analyzed by Raman spectroscopy and Auger electron spectroscopy. Hardness and elastic modulus of films were measured by nanoindentation hardness testing. Tribological characteristics of films were performed using a ball-on-disk friction tester. The results indicate that with the increasing sulfur content, the hardness and elastic modulus decrease. Additionally, by changing the negative pulse bias voltage from 0 kV to −5 kV, the hardness and elastic modulus increase, while the friction coefficient and specific wear rate tends to decrease. Moreover, at a negative pulse bias voltage of −5 kV and flow-rate ratio of 1 : 2, there is considerable improvement in friction coefficient of 0.05 under ambient air is due to the formation of a transfer films on the interface. The decrease in the friction coefficient of films doped with 4.9 at.% sulfur is greater under high vacuum (0.03 than under ambient air (>0.1.

  1. Methods to reduce contamination in targets prepared by vacuum deposition

    International Nuclear Information System (INIS)

    Target makers have been concerned about the source of impurities which were found from experimental data obtained using targets prepared by vacuum vapor deposition. These impurities may arise from the process of producing the target, the separated isotope used in the evaporation, or contaminants introduced during the experiment. This study is an attempt to determine the source of impurities found in the targets. Impurities in the targets can make it difficult for experimenters to analyze their data. For targets such as magnesium, aluminum, calcium and other readily oxidized materials, the following points are important: a clean system is needed, the best possible vacuum attainable, and as short an evaporation time as the desired uniformity of a target will permit. Developmental work with the cryopump system has shown the potential for reducing many contaminants, particularly carbon. There are several problems associated with these systems, but they are not insurmountable

  2. Characterization of nanostructures of ZnO and ZnMnO films deposited by successive ionic layer adsorption and reaction method

    International Nuclear Information System (INIS)

    ZnO and ZnMnO thin films were obtained by the successive ionic layer adsorption and reaction (SILAR) method. All thin films were deposited on glass microscope slide. A precursor solution of 0.1 M of ZnCl2 complexed with ammonium hydroxide and water close to boiling point (92 deg. C) as a second solution was used for the ZnO films. An uncomplexed bath comprised of 0.1 M ZnCl2, 0.1 M MnCl2, and a second solution of 0.1 ml of NH4OH with water close to boiling point was used for the ZnMnO films. The film samples were deposited by the SILAR method and annealed at 200 deg. C for 15 min. These samples were characterized using X-Ray Diffraction (XRD), Scanning Electron Microscopy with Energy Dispersive Spectroscopy (EDS), and Atomic Force Microscope. Atomic absorption was used to determine quantitatively the amount of Mn incorporated into the films. According to the XRD patterns these films were polycrystalline with wurtzite hexagonal structure. The morphology of the ZnO films constituted by rice-like and flower-like structures changed significantly to nanosheet structures with the Mn incorporation. The Mn inclusion in a ZnO structure was less than 4% according to the results from EDS, XRD, and atomic absorption.

  3. Characterization of nanostructures of ZnO and ZnMnO films deposited by successive ionic layer adsorption and reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Garcia, F.N. [Departamento de Fisica y Matematicas, Universidad Autonoma de Manizales, Antigua Estacion del Ferrocarril, Manizales, Caldas (Colombia); Departamento de Fisica y Quimica, Universidad Nacional de Colombia, Sede Manizales, Campus la Nubia, Manizales, Caldas (Colombia); Espinosa-Arbelaez, D.G. [Departamento de Nanotecnologia, Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, Blv. Juriquilla 3001, Juriquilla, Queretaro, C.P. 76230 (Mexico); Posgrado en Ciencia e Ingenieria Materiales, Instituto de Investigacion en Materiales, Universidad Nacional Autonoma de Mexico, Mexico DF (Mexico); Vargas-Hernandez, C. [Departamento de Fisica y Quimica, Universidad Nacional de Colombia, Sede Manizales, Campus la Nubia, Manizales, Caldas (Colombia); Real, A. del [Departamento de Nanotecnologia, Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, Blv. Juriquilla 3001, Juriquilla, Queretaro, C.P. 76230 (Mexico); Rodriguez-Garcia, M.E., E-mail: marioga@fata.unam.mx [Departamento de Nanotecnologia, Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, Blv. Juriquilla 3001, Juriquilla, Queretaro, C.P. 76230 (Mexico)

    2011-09-01

    ZnO and ZnMnO thin films were obtained by the successive ionic layer adsorption and reaction (SILAR) method. All thin films were deposited on glass microscope slide. A precursor solution of 0.1 M of ZnCl{sub 2} complexed with ammonium hydroxide and water close to boiling point (92 deg. C) as a second solution was used for the ZnO films. An uncomplexed bath comprised of 0.1 M ZnCl{sub 2}, 0.1 M MnCl{sub 2,} and a second solution of 0.1 ml of NH{sub 4}OH with water close to boiling point was used for the ZnMnO films. The film samples were deposited by the SILAR method and annealed at 200 deg. C for 15 min. These samples were characterized using X-Ray Diffraction (XRD), Scanning Electron Microscopy with Energy Dispersive Spectroscopy (EDS), and Atomic Force Microscope. Atomic absorption was used to determine quantitatively the amount of Mn incorporated into the films. According to the XRD patterns these films were polycrystalline with wurtzite hexagonal structure. The morphology of the ZnO films constituted by rice-like and flower-like structures changed significantly to nanosheet structures with the Mn incorporation. The Mn inclusion in a ZnO structure was less than 4% according to the results from EDS, XRD, and atomic absorption.

  4. Calibration of a Manganese Bath Relative to 252Cf Nu-Bar

    Science.gov (United States)

    Gilliam, David M.; Yue, Andrew T.; Scott Dewey, M.

    2009-08-01

    -I in the large manganese sulfate bath. This discrepancy is about equal to the current uncertainty in either calibration. Improvement in the Cf-252 nu-bar method is expected by use of a recently acquired measuring microscope for source-aperture geometry characterization and by comparisons of the neutron emission of bare deposit and the sealed sources in a new reduced-volume manganese bath.

  5. 36 CFR 21.5 - Therapeutic bathing requirements.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Therapeutic bathing... INTERIOR HOT SPRINGS NATIONAL PARK; BATHHOUSE REGULATIONS § 21.5 Therapeutic bathing requirements. Baths... physicians only if the bath is administered in accordance with the bath directions prescribed by...

  6. Large capacity water and air bath calorimeters

    International Nuclear Information System (INIS)

    EG and G Mound Applied Technologies has developed an 11 in. x 17 in. sample size water bath and an 11 in. x 17 in. sample size air bath calorimeter which both function under servo control mode of operation. The water bath calorimeter has four air bath preconditioners to increase sample throughput and the air bath calorimeter has two air bath preconditioners. The large capacity calorimeters and preconditioners were unique to Mound design which brought about unique design challenges. Both large capacity systems calculate the optimum set temperature for each preconditioner which is available to the operator. Each system is controlled by a personal computer under DOS which allows the operator to download data to commercial software packages when the calorimeter is idle. Qualification testing yielded a one standard deviation of 0.6% for 0.2W to 3.0W Pu-238 heat standard range in the water bath calorimeter and a one standard deviation of 0.3% for the 6.0W to 20.0W Pu-238 heat standard range in the air bath calorimeter

  7. Influence of additives on electrodeposition of bright Zn–Ni alloy on mild steel from acid sulphate bath

    Indian Academy of Sciences (India)

    S Shivakumara; U Manohar; Y Arthoba Naik; T V Venkatesha

    2007-10-01

    The influence of a condensation product (CP) of veratraldehyde (VRTD) and -amino benzoic acid (PABA) on Zn–Ni alloy electrodeposited onto mild steel was studied in acidic sulphate solutions. Ethylenediaminetetraaceticacid (EDTA) and cetyltrimethylammoniumbromide (CTAB) were used as complexing and wetting agents, respectively. The effect of bath constituents, pH, current density and temperature on nature of deposit were studied through Hull cell experiments. The bath constituents and operating parameters were optimized. Deposit properties and corrosion resistance were discussed. Throwing power, current efficiency and polarization studies were carried out. SEM photomicrographs of the deposit obtained from optimum bath revealed fine-grained deposit of the alloy in the presence of condensation product and hence modified the morphology of zinc–nickel alloy deposit. IR spectrum of the scrapped deposit showed inclusion of addition agent.

  8. Handbook of methods for acid-deposition studies. Laboratory analyses for soil chemistry

    International Nuclear Information System (INIS)

    The handbook describes methods used to process and analyze soil samples. It is intended as a guidance document for groups involved in acid deposition monitoring activities similar to those implemented by the Aquatic Effects Research Program of the National Acid Precipitation Assessment Program. These methods were developed for use in the Direct/Delayed Response Project, a component project of the Aquatic Effects Research Program within the Office of Ecological Processes and Effects Research. The program addresses the following issues relating to the effects of acid deposition on aquatic ecosystems: The extent and magnitude of past change; The change to be expected in the future under various deposition scenarios; The maximum rates of deposition below which further change is not expected; and The rate of change or recovery of aquatic ecosystems if deposition rates are decreased. Chemical and physical parameters were measured during the Direct/Delayed Response Project and are described in the document

  9. Atmospheric Deposition: Sampling Procedures, Analytical Methods, and Main Recent Findings from the Scientific Literature

    Directory of Open Access Journals (Sweden)

    M. Amodio

    2014-01-01

    Full Text Available The atmosphere is a carrier on which some natural and anthropogenic organic and inorganic chemicals are transported, and the wet and dry deposition events are the most important processes that remove those chemicals, depositing it on soil and water. A wide variety of different collectors were tested to evaluate site-specificity, seasonality and daily variability of settleable particle concentrations. Deposition fluxes of POPs showed spatial and seasonal variations, diagnostic ratios of PAHs on deposited particles, allowed the discrimination between pyrolytic or petrogenic sources. Congener pattern analysis and bulk deposition fluxes in rural sites confirmed long-range atmospheric transport of PCDDs/Fs. More and more sophisticated and newly designed deposition samplers have being used for characterization of deposited mercury, demonstrating the importance of rain scavenging and the relatively higher magnitude of Hg deposition from Chinese anthropogenic sources. Recently biological monitors demonstrated that PAH concentrations in lichens were comparable with concentrations measured in a conventional active sampler in an outdoor environment. In this review the authors explore the methodological approaches used for the assessment of atmospheric deposition, from the analysis of the sampling methods, the analytical procedures for chemical characterization of pollutants and the main results from the scientific literature.

  10. Steam generator secondary side deposit NDE method for support plate clogging

    International Nuclear Information System (INIS)

    Steam generator tube eddy current bobbin inspections are periodically performed for utilities to detect tube degradation associated with deposits on the secondary side. Using the low frequency absolute data, analysis can measure the thickness of the deposition on the outer diameter tube surface. Furthermore, the bulk amount of deposit material may be estimated with the help of AREVA's Deposit Mapping Software to supplement the chemical cleaning process. After chemical cleaning, the ET standard method can be used to verify the cleaning effectiveness. In some cases, the cleaning may be ineffective at the Tube Support Plate leaving significant deposit material in the bottom areas of the TSP foils at a significant stand off distance from the tube. These deposits were not detected and/or are difficult to characterize by the standard bobbin coil or rotating probe eddy current method. A flux leakage approach has been developed by AREVA's Non destructive Examination Technical Center, NETEC, to detect and measure this remaining deposit in the support plates. The Flux Leakage Inspection Probe (FLIP) can be coupled with a conventional bobbin probe so the special measurements may be made during the same tube insertion as is required for a standard code inspection. This paper presents the results obtained by AREVA's Non destructive Examination Technical Center, NETEC to detect and measure these deposits and particularly the clogging at the bottom edge of Tube Support Plates (TSP)

  11. Method for detecting clusters of possible uranium deposits

    International Nuclear Information System (INIS)

    When a two-dimensional map contains points that appear to be scattered somewhat at random, a question that often arises is whether groups of points that appear to cluster are merely exhibiting ordinary behavior, which one can expect with any random distribution of points, or whether the clusters are too pronounced to be attributable to chance alone. A method for detecting clusters along a straight line is applied to the two-dimensional map of 214Bi anomalies observed as part of the National Uranium Resource Evaluation Program in the Lubbock, Texas, region. Some exact probabilities associated with this method are computed and compared with two approximate methods. The two methods for approximating probabilities work well in the cases examined and can be used when it is not feasible to obtain the exact probabilities

  12. Potentiodynamic studies of Ni-P-TiO2 nano-composited coating on the mild steel deposited by electroless plating method

    Science.gov (United States)

    Uttam, Vibha; Duchaniya, R. K.

    2016-05-01

    Now a days, corrosion studies are important for reducing the wastage of metals. The importance of corrosion studies is two folds i.e. first is economic, including the reduction of material losses resulting from the wasting away or sudden failure of materials and second is conservation Electroless process is an autocatalytic reduction method in which metallic ions are reduced in the solution. Nanocomposite coatings of Ni-P-TiO2 on mild steel are deposited by varying volume of TiO2 nano-powder by electroless method from Ni-P plating bath containing Nickel Sulphate as a source of nickel ions, sodium hypophosphite as the reducing agent, lactic acid as a complexing agents and TiO2 nano powder. Electroless Ni-P-TiO2 coating have been widely used in the chemical process industries, mechanical industries, electronic industries and chloroalkali industries due to their excellent corrosion with mechanical properties. In the present work, deposition of Ni-P alloy coating and Ni-P-TiO2 nanocomposited coatings were done on the mild steel and corrosion properties were studied with Potentio-dynamic polarization measurements method in 3.5 wt% sodium chloride solution. It showed in the experiments that Ni-P-TiO2 nanocomposited coating has better corrosion resistance as comparedthan Ni-P alloy coating. Morphological studies were done by field emission scanning electron microscopy (FESEM), energy-dispersive analysis of X-ray (EDAX) and X-ray diffraction (XRD). These studies confirmed the deposition of Ni-P alloy coating and Ni-P-TiO2 nanocomposited coating.

  13. Quantitative percutaneous CO2 measurement following CO2 mineral water baths by means of the isotope ratio

    International Nuclear Information System (INIS)

    A method for the quantitative determination of the carbon dioxide penetration through the human skin during a medical carbon dioxide mineral water bath is described. The natural isotope variation of carbon in the carbon dioxide of bath water, blood, and exspiratory gas are used for the calculation of the penetrated carbon dioxide amount. The method permits to optimize the effectiveness of medical carbon dioxide baths. (author)

  14. Alternative irradiation system for efficiency manganese bath determination

    International Nuclear Information System (INIS)

    The Manganese Sulphate Bath (MSB) is the main method used in most metrological laboratories to measure the neutron sources emission rate Q(t) . The MSB technique consists, basically, in dipping a neutron source in the center of a large tank (∼500 L) containing a concentrated aqueous solution of manganese sulphate. The neutron source emission rate is determined through the activity solution measurement produced by captured neutrons in manganese nuclei. In order to obtain the value of Q(t) it must be taken into account the detection system efficiency and still determine some corrections. The MSB system efficiency is usually determined by irradiating a solution sample from MSB system in a reactor or accelerator. This paper proposes an alternative irradiation system (Irradiation Bath), which works with a radionuclide neutron source and manganese sulphate solution volume for efficiency determination of MSB system. This irradiation system was designed by simulation with MCNP code, considering a californium neutron source in several manganese sulphate volumes and different neutron reflectors. The goal of this simulation was to determine the materials and dimensions of Irradiation Bath which will derive the maximum manganese neutron capture. Although the specific activated irradiated samples are less than those in reactors, the simulation results for optimized Irradiation Bath have showed a manganese neutron capture increase up to 100 times with dimensions less than 15 cm in diameter when it compared to manganese neutron capture in a MSB System whose diameter is about 100 cm . (author)

  15. Environmentally friendly hybrid coating prepared by electro-deposition method at various seawater conditions

    Institute of Scientific and Technical Information of China (English)

    Myeong-Hoon LEE; Kyung-Man MOON; Jong-Do KIM; Kang JUN; Kwang-Ho KIM

    2009-01-01

    The formation mechanism of calcareous deposit films in seawater involves an increase in pH at the metal/solution interface due to cathodic reactions, a raised carbonate ion concentration at the interface and precipitation of inorganic deposits such as CaCO3, Mg(OH)2. Environmentally friendly hybrid calcareous deposit films were formed by an electrochemical technique on steel substrates in various solution environments. And the influence of dissolved gas on formation of calcareous deposit films was investigated by scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray diffractometry(XRD). Consequently, these results showed that formation of good overall calcareous deposited films by dissolved gas in seawater environments can be achieved by controlling the material composition and structure through effective use of electrochemical method.

  16. Improvements of Nickel Deposit Characteristics by Pulse Plating

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Leisner, Peter; Møller, Per

    1993-01-01

    Investigation of the properties of electroplated nickel, using both pulse plating and conventional di-rect current (DC), has lead to several interesting improvements of deposit characteristics. Investigated properties include; internal stress, tensile strength, yield stress, elongation, hardness......, throwing power, current efficiency and corrosion resistance (porosity). Experiments have been made with Watts nickel baths, sulphamate baths and a modified Watts bath called W3....

  17. Electrodeposition of Sr-Ti alloy films from DMSO bath

    International Nuclear Information System (INIS)

    Electrodeposition of Sr-Ti alloy films from non aqueous dimethyl sulphoxide (DMSO) bath has been carried out onto stainless steel and fluorine doped tin oxide (FTO) coated glass substrate. The preparative parameters were studied and optimised. Alloy films with thickness 2 to 3 microns were obtained for 30 minutes of deposition. The films were uniform, dense and adhesive to the substrate. The electrodeposited Sr-Ti alloy films were oxidised at higher temperature in order to obtain SrTiO3 films. Electrical and microstructural properties were carried out. (author). 6 refs., 6 figs

  18. A review-application of physical vapor deposition (PVD) and related methods in the textile industry

    Science.gov (United States)

    Shahidi, Sheila; Moazzenchi, Bahareh; Ghoranneviss, Mahmood

    2015-09-01

    Physical vapor deposition (PVD) is a coating process in which thin films are deposited by the condensation of a vaporized form of the desired film material onto the substrate. The PVD process is carried out in a vacuum. PVD processes include different types, such as: cathode arc deposition, electron beam physical vapor deposition, evaporative deposition, sputtering, ion plating and enhanced sputtering. In the PVD method, the solid coating material is evaporated by heat or by bombardment with ions (sputtering). At the same time, a reactive gas is also introduced; it forms a compound with the metal vapor and is deposited on the substrate as a thin film with highly adherent coating. Such coatings are used in a wide range of applications such as aerospace, automotive, surgical, medical, dyes and molds for all manner of material processing, cutting tools, firearms, optics, thin films and textiles. The objective of this work is to give a comprehensive description and review of the science and technology related to physical vapor deposition with particular emphasis on their potential use in the textile industry. Physical vapor deposition has opened up new possibilities in the modification of textile materials and is an exciting prospect for usage in textile design and technical textiles. The basic principle of PVD is explained and the major applications, particularly sputter coatings in the modification and functionalization of textiles, are introduced in this research.

  19. Russian bath%俄罗斯浴

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ The history of Russian bath originates in old times. From descriptions of Greece Herodotus1,it is possible to find out that the Scythians that lived in Ukraine in ancient times used bath.They established three poles inclined by the top ends to each other,and covered them with felt.Then threw into the tub put in the middle of this hut the red-hot stones. They brought hempen2 seeds into this felt bath and threw them on the heated stones.

  20. Polynitroaniline as brightener for zinc–nickel alloy plating from non-cyanide sulphate bath

    Indian Academy of Sciences (India)

    H P Sachin; Ganesha Achary; Y Arthoba Naik; T V Venkatesha

    2007-02-01

    Electro-polymerization of orthonitroaniline was carried out on graphite electrode in hydrochloric acid medium. Zinc–nickel alloy deposition was carried out in the presence of polynitroaniline in acid sulphate bath. The bath constituent and bath variables were optimized through Hull cell experiments. The current efficiency and throwing power were measured. High shift of potential towards more cathodic direction was observed in presence of addition agent. Corrosion resistance test revealed good protection of base metal by zinc–nickel coating obtained from the developed electrolyte. SEM photomicrograph shows fine-grained deposit in the presence of addition agent. The consumption of brightener in the lab-scale was 0.01 gL-1 for 1000 amp-h.

  1. Novel composite cBN-TiN coating deposition method: structure and performance in metal cutting

    International Nuclear Information System (INIS)

    Cubic boron nitride coatings are under development for a variety of applications but stabilization of the pure cBN form and adhesion of films deposited by PVD and ion-based methods has been difficult. An alternative method for depositing a composite cBN-TiN film has been developed for wear related applications. The coating is deposited in a two-stage process utilizing ESC (electrostatic spray coating) and CVI (chemical vapor infiltration). Fully dense films of cBN particles evenly dispersed in a continuous TiN matrix have been developed. Testing in metal cutting has shown an increase in tool life (turning - 4340 steel) of three to seven times, depending of machining parameters, in comparison with CVD deposited TiN films. (author)

  2. Comparison of methods for evaluation of aerosol deposition in the model of human lungs

    Directory of Open Access Journals (Sweden)

    Belka Miloslav

    2014-03-01

    Full Text Available It seems to be very convenient to receive a medicine by inhalation instead of injection. Unfortunately transport of particles and targeted delivery of a drug in human respiratory airways is very complicated task. Therefore we carried out experiments and tested different methods for evaluation of particle deposition in a model of human lungs. The model included respiratory airways from oral cavity to 7th generation of branching. Particles were dispersed by TSI Small-scale Powder Disperser 3433 and delivered to the model. The model was disassembled into segments after the deposition of the particles and local deposition was measured. Two methods were used to analyse the samples, fluorescence spectroscopy and optical microscopy. The first method was based on measuring the intensity of luminescence, which represented the particle deposition. The second method used the optical microscope with phase-contrast objective. A dispersion of isopropanol and particles was filtrated using a vacuum filtration unit, a filter was placed on glass slide and made transparent. The particles on the filter were counted manually and the deposition was calculated afterwards. The results of the methods were compared and both methods proved to be useful.

  3. Suppression of decoherence by bath ordering

    Institute of Scientific and Technical Information of China (English)

    Jing Jun; Ma Hong-Ru

    2007-01-01

    The dynamics of two coupled spins-1/2 coupled to a spin-bath is studied as an extended model of the TessieriWilkie Hamiltonian. The pair of spins served as an open subsystem is prepared in one of the Bell states and the bath consisting of some spins-1/2 is in a thermal equilibrium state from the very beginning. It is found that with increasing coupling strength of the bath spins, the bath forms a resonant antiferromagnetic order. The polarization correlation between the two spins of the subsystem and the concurrence of it are recovered to some extent in the isolated subsystem. This suppression of the subsystem decoherence may be used to control the quantum devices in practical applications.

  4. Reactive Chemical Vapor Deposition Method as New Approach for Obtaining Electroluminescent Thin Film Materials

    Directory of Open Access Journals (Sweden)

    Valentina V. Utochnikova

    2012-01-01

    Full Text Available The new reactive chemical vapor deposition (RCVD method has been proposed for thin film deposition of luminescent nonvolatile lanthanide aromatic carboxylates. This method is based on metathesis reaction between the vapors of volatile lanthanide dipivaloylmethanate (Ln(dpm3 and carboxylic acid (HCarb orH2Carb′ and was successfully used in case of HCarb. Advantages of the method were demonstrated on example of terbium benzoate (Tb(bz3 and o-phenoxybenzoate thin films, and Tb(bz3 thin films were successfully examined in the OLED with the following structure glass/ITO/PEDOT:PSS/TPD/Tb(bz3/Ca/Al. Electroluminescence spectra of Tb(bz3 showed only typical luminescent bands, originated from transitions of the terbium ion. Method peculiarities for deposition of compounds of dibasic acids H2Carb′ are established on example of terbium and europium terephtalates and europium 2,6-naphtalenedicarboxylate.

  5. Formation of accurate 1-nm gaps using the electromigration method during metal deposition

    Science.gov (United States)

    Naitoh, Yasuhisa; Wei, Qingshuo; Mukaida, Masakazu; Ishida, Takao

    2016-03-01

    We investigate the origin of fabricated nanogap width variations using the electromigration method during metal deposition. This method also facilitates improved control over the nanogap width. A large suppression in the variation is achieved by sample annealing at 373 K during the application of bias voltages for electromigration, which indicates that the variation is caused by structural changes. This electromigration method during metal deposition for the fabrication of an accurate 1-nm gap electrode is useful for single-molecule-sized electronics. Furthermore, it opens the door for future research on integrated sub-1-nm-sized nanogap devices.

  6. Palladium nanoparticle deposition via precipitation: a new method to functionalize macroporous silicon

    International Nuclear Information System (INIS)

    We present an original two-step method for the deposition via precipitation of Pd nanoparticles into macroporous silicon. The method consists in immersing a macroporous silicon sample in a PdCl2/DMSO solution and then in annealing the sample at a high temperature. The impact of composition and concentration of the solution and annealing time on the nanoparticle characteristics is investigated. This method is compared to electroless plating, which is a standard method for the deposition of Pd nanoparticles. Scanning electron microscopy and computerized image processing are used to evaluate size, shape, surface density and deposition homogeneity of the Pd nanoparticles on the pore walls. Energy-dispersive x-ray spectroscopy (EDX) and x-ray photoelectron spectroscopy (XPS) analyses are used to evaluate the composition of the deposited nanoparticles. In contrast to electroless plating, the proposed method leads to homogeneously distributed Pd nanoparticles along the macropores depth with a surface density that increases proportionally with the PdCl2 concentration. Moreover EDX and XPS analysis showed that the nanoparticles are composed of Pd in its metallic state, while nanoparticles deposited by electroless plating are composed of both metallic Pd and PdOx. (paper)

  7. Palladium nanoparticle deposition via precipitation: a new method to functionalize macroporous silicon

    Science.gov (United States)

    Scheen, Gilles; Bassu, Margherita; Douchamps, Antoine; Zhang, Chao; Debliquy, Marc; Francis, Laurent A.

    2014-12-01

    We present an original two-step method for the deposition via precipitation of Pd nanoparticles into macroporous silicon. The method consists in immersing a macroporous silicon sample in a PdCl2/DMSO solution and then in annealing the sample at a high temperature. The impact of composition and concentration of the solution and annealing time on the nanoparticle characteristics is investigated. This method is compared to electroless plating, which is a standard method for the deposition of Pd nanoparticles. Scanning electron microscopy and computerized image processing are used to evaluate size, shape, surface density and deposition homogeneity of the Pd nanoparticles on the pore walls. Energy-dispersive x-ray spectroscopy (EDX) and x-ray photoelectron spectroscopy (XPS) analyses are used to evaluate the composition of the deposited nanoparticles. In contrast to electroless plating, the proposed method leads to homogeneously distributed Pd nanoparticles along the macropores depth with a surface density that increases proportionally with the PdCl2 concentration. Moreover EDX and XPS analysis showed that the nanoparticles are composed of Pd in its metallic state, while nanoparticles deposited by electroless plating are composed of both metallic Pd and PdOx.

  8. Co-deposition methods for the fabrication of organic optoelectronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Mark E.; Liu, Zhiwei; Wu, Chao

    2016-09-06

    A method for fabricating an OLED by preparing phosphorescent metal complexes in situ is provided. In particular, the method simultaneously synthesizes and deposits copper (I) complexes in an organic light emitting device. Devices comprising such complexes may provide improved photoluminescent and electroluminescent properties.

  9. Soft-landing ion deposition of isolated radioactive probe atoms on surfaces : A novel method

    NARCIS (Netherlands)

    Laurens, CR; Rosu, MF; Pleiter, F; Niesen, L

    1997-01-01

    We present a method to deposit a wide range of radioactive probe atoms on surfaces, without introducing lattice damage or contaminating the surface with other elements or isotopes. In this method, the probe atoms are mass separated using an isotope separator, decelerated to 5 eV, and directly deposi

  10. Electrodes from carbon nanotubes/NiO nanocomposites synthesized in modified Watts bath for supercapacitors

    Science.gov (United States)

    Hakamada, Masataka; Abe, Tatsuhiko; Mabuchi, Mamoru

    2016-09-01

    A modified Watts bath coupled with pulsed current electroplating is used to uniformly deposit ultrafine nickel oxide particles (diameter carbon nanotubes. The capacitance of the multiwalled carbon nanotubes/nickel oxide electrodes was as high as 2480 F g-1 (per mass of nickel oxide), which is close to the theoretical capacitance of NiO.

  11. Molecular dynamics with coupling to an external bath

    Science.gov (United States)

    Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R.

    1984-10-01

    In molecular dynamics (MD) simulations the need often arises to maintain such parameters as temperature or pressure rather than energy and volume, or to impose gradients for studying transport properties in nonequilibrium MD. A method is described to realize coupling to an external bath with constant temperature or pressure with adjustable time constants for the coupling. The method is easily extendable to other variables and to gradients, and can be applied also to polyatomic molecules involving internal constraints. The influence of coupling time constants on dynamical variables is evaluated. A leap-frog algorithm is presented for the general case involving constraints with coupling to both a constant temperature and a constant pressure bath.

  12. In vitro characterization of hydroxyapatite layers deposited by APS and HVOF thermal spraying methods

    Directory of Open Access Journals (Sweden)

    Radu Alexandru Roşu

    2012-03-01

    Full Text Available Titanium alloys are successfully used in medicine as implants due to their high mechanical properties and good biocompatibility. To improve implant osseointegration of titanium alloys, they are covered with hydroxyapatite because of its bioactive properties. Coating the implants with hydroxyapatite by thermal spraying, due to the temperatures developed during the deposition process, the structure can be degraded, leading to formation of secondary phases, such as TCP, TT CP, CaO. The paper presents the experimental results of hydroxyapatite layers deposition by two thermal spraying methods: Atmospheric Plasma Spraying (APS and High Velocity Oxy-Fuel (HVOF. The microstructure of the deposited layers is characterized by X-ray diffraction analysis and electronic microscopy. The bioactivity of the hydroxyapatite layers was investigated in Simulated Body Fluid (SBF by immersing the covered samples deposited by the two thermal spraying methods. In both cases the coatings did not present defects as cracks or microcracks. X-ray diffraction performed on hydroxyapatite deposited layers shows that the structure was strongly influenced by plasma jet temperature, the structure consisting mainly of TCP (Ca3PO42. The samples deposited by HVO F after immersing in SBF lead to formation of biological hydroxyapatite, certifying the good bioactivity of the coatings.

  13. Influence of deposition temperature on CdS thin films by polyol method

    International Nuclear Information System (INIS)

    CdS thin films were successfully deposited onto glass substrates for the first time by the polyol method using cadmium acetate, thiourea and diethylene glycol as the raw materials. The effects of the deposition temperature from 120 to 200 °C in steps of 20 °C on the structure, morphology and optical properties of the resultant films were investigated. It was found that the crystallinity was improved and the value of the surface average roughness was decreased with increasing the deposition temperature. The average grain sizes of the CdS thin films were 77.16 and 76.61 nm at 140 and 180 °C, respectively. All samples showed excellent transmittance and the band gaps were found to reduce from 2.55 to 2.45 eV with the increase of the deposition temperature, which was attributed to the improvement of crystallinity. (semiconductor materials)

  14. Determination of particle deposition in enclosed spaces by Detached Eddy Simulation with the Lagrangian method

    Science.gov (United States)

    Wang, Miao; Lin, Chao-Hsin; Chen, Qingyan

    2011-09-01

    Accurate prediction of particle deposition in airliner cabins is important for estimating the exposure risk of passengers to infectious diseases. This study developed a Detached Eddy Simulation (DES) model with a modified Lagrangian method. The computer model was validated with experimental data for particle deposition in a cavity with natural convection and with air velocity, air temperature, and particle concentration data from a four-row, twin-aisle cabin mockup. The validation showed that the model performed well for the two cases. Then the model was further used to study particle deposition in the cabin mockup with seven sizes of particles. The particles were assumed to be released from an index passenger due to breathing or talking at zero velocity and due to coughing at a suitable jet velocity. This study can provide quantitative particle deposition distributions for different surfaces and particles removed by cabin ventilation.

  15. Graphene-based structure, method of suspending graphene membrane, and method of depositing material onto graphene membrane

    Science.gov (United States)

    Zettl, Alexander K.; Meyer, Jannik Christian

    2013-04-02

    An embodiment of a method of suspending a graphene membrane across a gap in a support structure includes attaching graphene to a substrate. A pre-fabricated support structure having the gap is attached to the graphene. The graphene and the pre-fabricated support structure are then separated from the substrate which leaves the graphene membrane suspended across the gap in the pre-fabricated support structure. An embodiment of a method of depositing material includes placing a support structure having a graphene membrane suspended across a gap under vacuum. A precursor is adsorbed to a surface of the graphene membrane. A portion of the graphene membrane is exposed to a focused electron beam which deposits a material from the precursor onto the graphene membrane. An embodiment of a graphene-based structure includes a support structure having a gap, a graphene membrane suspended across the gap, and a material deposited in a pattern on the graphene membrane.

  16. Analysis Of The Retailoring Methods And The Workability Of Deposited Surfaces

    Science.gov (United States)

    Konovodov, V. V.; Valentov, A. V.; Grigoryeva, E. G.; Abdrasulov, K. A.

    2016-04-01

    This work is devoted to the conduction of the analysis of methods and means of retailoring of parts in the conditions of technical repair facilities as well as of the workability of deposited surfaces. The results of the research show that the most important processing methods of reconditioning of component parts severely worn in the course of exploitation are various ways of deposit welding with subsequent mechanical handling. Furthermore, low efficiency of mechanical handling of retailored parts’ surfaces is conditioned on their low workability that results from the specific status of weld pad.

  17. Analysis method of deposit on steam generator tubes using eddy current

    International Nuclear Information System (INIS)

    The steam generator tubes in operating nuclear power plants have an important problem during their operation time, an accumulation of corrosion products. Such corrosion products form from the secondary side of the plant system, such as carbon steel pipelines, heat exchange shell, and turbine. The accumulation position of corrosion product is mainly on the top of the tubesheet, the tube support structures of the steam generator. It is extinguished as sludge, and as a deposit of the corrosion product. The volume increase and hardening of the sludge eventually cause the tube deformation, and a blockage of the coolant flow of the tube supports. A deposit outside the tube results in reducing the heat transfer through the tube wall, and distorts the eddy current signals during an in service inspection. For the management of steam generator tubes from the problems mentioned previously, several methods were performed. The corrosion products could be reduced by chemical cleaning and sludge lancing. The monitoring of the quantity of sludge and deposit is very important data in the management of steam generator tubes. An eddy current testing (ECT) method is very useful to detect flaws and defects in the steam generator (SG) tubes of nuclear power plants (NPPs) during an in service inspection. Recently, it was reported that deposit loading can be measured using eddy current test data, especially of a bobbin probe. For a precision measurement using a non destructive method, a calibration technique is required using the simulated deposit and signal characteristics from the deposit standard. In this study, a personal computer based device was developed for an analysis of ECT signals. The soft wave program can convert the commercial eddy current data and measure the deposit amount from the calibration data

  18. Study of finding out uranium deposit with geophysical methods at Zhongdong district Onyuan county Guangdong province

    International Nuclear Information System (INIS)

    The soil natural thermoluminescence measurement and radon survey were chosen, whose penetrability is stronger, and their applied effects were studied in prospecting uranium deposit at Xiazhuang granite area. The 236 stations were measured respectively with these two methods at Zhongdong district Ongyuan county Guangdong province. The research results show that: 1. There are good effects which fractured zones were found out with radon survey. 2. The soil natural thermoluminescence measurement is one of the cumulative measurement methods. It can obviously respond the projected position of uranium deposit of intersected point type. 3. The sensitivity, stability and reappearance of the soil natural thermoluminescence is good, and it was less affected by human activity on the surface. The measured anomalies can reflect the variety of the radioactive field, so amplitude and width of anomalies can basically respond the distribution of uranium ore body. The problems to be solved in the future are: If the rocks above the 'intersection point type' uranium deposits are relatively intact, how much depth can it be found out with soil natural thermoluminescence method? A set of nuclear geophysical prospecting pattern on the different types of uranium deposits in Xiazhuang uranium ore field should be summarized so that they can be used to find out uranium deposits in granite area in the future. (authors)

  19. Avian Assemblages at Bird Baths: A Comparison of Urban and Rural Bird Baths in Australia.

    Directory of Open Access Journals (Sweden)

    Gráinne P Cleary

    Full Text Available Private gardens provide habitat and resources for many birds living in human-dominated landscapes. While wild bird feeding is recognised as one of the most popular forms of human-wildlife interaction, almost nothing is known about the use of bird baths. This citizen science initiative explores avian assemblages at bird baths in private gardens in south-eastern Australia and how this differs with respect to levels of urbanisation and bioregion. Overall, 992 citizen scientists collected data over two, four-week survey periods during winter 2014 and summer 2015 (43% participated in both years. Avian assemblages at urban and rural bird baths differed between bioregions with aggressive nectar-eating species influenced the avian assemblages visiting urban bird baths in South Eastern Queensland, NSW North Coast and Sydney Basin while introduced birds contributed to differences in South Western Slopes, Southern Volcanic Plains and Victorian Midlands. Small honeyeaters and other small native birds occurred less often at urban bird baths compared to rural bird baths. Our results suggest that differences between urban versus rural areas, as well as bioregion, significantly influence the composition of avian assemblages visiting bird baths in private gardens. We also demonstrate that citizen science monitoring of fixed survey sites such as bird baths is a useful tool in understanding large-scale patterns in avian assemblages which requires a vast amount of data to be collected across broad areas.

  20. Avian Assemblages at Bird Baths: A Comparison of Urban and Rural Bird Baths in Australia.

    Science.gov (United States)

    Cleary, Gráinne P; Parsons, Holly; Davis, Adrian; Coleman, Bill R; Jones, Darryl N; Miller, Kelly K; Weston, Michael A

    2016-01-01

    Private gardens provide habitat and resources for many birds living in human-dominated landscapes. While wild bird feeding is recognised as one of the most popular forms of human-wildlife interaction, almost nothing is known about the use of bird baths. This citizen science initiative explores avian assemblages at bird baths in private gardens in south-eastern Australia and how this differs with respect to levels of urbanisation and bioregion. Overall, 992 citizen scientists collected data over two, four-week survey periods during winter 2014 and summer 2015 (43% participated in both years). Avian assemblages at urban and rural bird baths differed between bioregions with aggressive nectar-eating species influenced the avian assemblages visiting urban bird baths in South Eastern Queensland, NSW North Coast and Sydney Basin while introduced birds contributed to differences in South Western Slopes, Southern Volcanic Plains and Victorian Midlands. Small honeyeaters and other small native birds occurred less often at urban bird baths compared to rural bird baths. Our results suggest that differences between urban versus rural areas, as well as bioregion, significantly influence the composition of avian assemblages visiting bird baths in private gardens. We also demonstrate that citizen science monitoring of fixed survey sites such as bird baths is a useful tool in understanding large-scale patterns in avian assemblages which requires a vast amount of data to be collected across broad areas. PMID:26962857

  1. Remote sensing technology prospecting methods of interlayer oxidation zone type sandstone uranium deposit in Yili basin

    International Nuclear Information System (INIS)

    Taking Yili Basin as an example, remote sensing technology and method of interlayer oxidation zone type sandstone uranium deposit have systematically been summarized. Firstly, principle, methods and procedures of the second development of scientific experimental satellite photograph have been elaborated in detail. Three dimensional stereo simulation, display, and multi-parameters extraction have been recommended. Secondarily, the research is focused on prospective section image features in different type images and their geological implications and on establishing recognition keys of promising areas. Finally, based on above research results, three graded predictions, i.e. regional prospect, promising sections and favourable location in the deposit have been made step by step and reconnaissance and prospecting range are gradually reduced. The practice has indicated that breakthrough progress has been made in application to prospect prognosis of interlayer oxidation zone type sandstone uranium deposit and good verified results have been obtained

  2. Morphology Investigation of Electrolessly Deposited Ag Film on Ag-Activated p-Type Silicon(111) Wafer

    Institute of Scientific and Technical Information of China (English)

    TONG, Hao; WANG, Chun-Ming

    2006-01-01

    A method of electroless silver deposition on silver activated p-type silicon(111) wafer was proposed. The silver seed layer was deposited firstly on the wafer in the solution of 0.005 mol/L AgNO3 + 0.06 mol/L HF. Then the silver film was electrolessly deposited on the seed layer in the electroless bath of AgNO3+NH3+acetic acid+NH2NH2(pH 10.2). The morphology of the seed layer and the silver films prepared under the condition of the different bath composition was compared by atomic force microscopy. The reflectance of the silver films with different thickness was characterized by Fourier transform infrared spectrometry. The experimental results indicate that the seed layer possesses excellent catalytic activity toward electroless silver deposition and rotating of the silicon wafer during the electroless silver deposition could lead to formation of the smoother silver film.

  3. Dry deposition model for a microscale aerosol dispersion solver based on the moment method

    CERN Document Server

    Šíp, Viktor

    2016-01-01

    A dry deposition model suitable for use in the moment method has been developed. Contributions from five main processes driving the deposition - Brownian diffusion, interception, impaction, turbulent impaction, and sedimentation - are included in the model. The deposition model was employed in the moment method solver implemented in the OpenFOAM framework. Applicability of the developed expression and the moment method solver was tested on two example problems of particle dispersion in the presence of a vegetation on small scales: a flow through a tree patch in 2D and a flow through a hedgerow in 3D. Comparison with the sectional method showed that the moment method using the developed deposition model is able to reproduce the shape of the particle size distribution well. The relative difference in terms of the third moment of the distribution was below 10\\% in both tested cases, and decreased away from the vegetation. Main source of this difference is a known overprediction of the impaction efficiency. When ...

  4. Latest progress of seismic survey method in hydrothermal uranium deposits exploration in China

    International Nuclear Information System (INIS)

    Since 1950s, many non-seismic geophysical survey techniques, such as radioactive geophysical survey method, induced polarization (IP), high resolution magnetic survey method, AMT and CSAMT have been applied and have played a very important role in exploration for hydrothermal uranium deposits in China. However, up to the early stage of 21st century, seismic survey method has been hardly utilized in hydrothermal uranium deposits exploration. It is mainly due to the more complicated geological settings where hydrothermal uranium deposits occur than oil field, gas field or coal field does. These complicated geological settings involve many cases, for example, uranium ore form is complicated and its dimension is small, lithology composition is various, wave impedance difference between the medium on each side of the interface is small, ground surface conditions are rough and there are lots of high-energy interference waves. Since 2007, based on studies of hydrothermal uranium ore formation mechanism and ground surface characteristics in uranium ore field, seismic work group of BRIUG has carried out a lot of systemic tentative work on excitation type of seismic source, layout of geophones, data analysis and processing techniques, and has obtained obvious success in detection of ore-control factors, such as basement or faults with big angle of inclination. We are sure that seismic survey method developed by BRIUG will become one of the most important techniques for hydrothermal uranium deposits exploration within several years. (author)

  5. Latest progress of seismic survey method in hydrothermal uranium deposits exploration in China

    International Nuclear Information System (INIS)

    Since 1950s, many non-seismic geophysical survey techniques, such as radioactive geophysical survey method, induced polarization (IP), high resolution magnetic survey method, AMT and CSAMT have been applied and have played a very important role in exploration for hydrothermal uranium deposits in China. However, up to the early part of 21st century, seismic survey method has been hardly utilized in hydrothermal uranium deposits exploration. It is mainly due to the more complicated geological settings where hydrothermal uranium deposits occur compared to oil, gas or coal fields. These complicated geological settings include, for example, complicated ore shapes, small dimensions and as various lithologies are involved, wave impedance difference between the medium on each side of the interface is small. If the ground surface conditions are rough, there will be a lot of high-energy interference waves. Since 2007, based on studies of hydrothermal uranium ore formation mechanism and ground surface characteristics in uranium ore field, seismic work group of BRIUG has carried out a lot of systemic tentative work on excitation type of seismic source, layout of geophones, data analysis and processing techniques, and has obtained obvious success in detection of ore-control factors, such as basement or faults with high angle of inclination. We are sure that seismic survey method developed by BRIUG will become one of the most important technique for hydrothermal uranium deposits exploration in future. (author)

  6. An indirect method to measure the electric charge deposited on insulators during PIXE analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dinator, M.I.; Cancino, S.A.; Miranda, P.A. [Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Nunoa, Santiago (Chile); Morales, J.R. [Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Nunoa, Santiago (Chile)], E-mail: rmorales@uchile.cl; Seelenfreund, A. [Universidad Academia de Humanismo Cristiano, Condell 343, Providencia, Santiago (Chile)

    2007-10-15

    Total charge deposited by a proton beam in an insulator during PIXE analysis has been indirectly determined using a Mylar film coated with cobalt. Elemental concentrations in the samples, pieces of volcanic glass, were obtained and compared to concentrations determined by ICP OES on the same samples. The strong agreement between these results shows the accuracy of the charge determined by this method.

  7. Efficacy of chlorhexidine bathing for reducing healthcare associated bloodstream infections: a meta-analysis

    OpenAIRE

    Choi, Eun Young; Park, Dong-Ah; Kim, Hyun Jung; Park, Jinkyeong

    2015-01-01

    Background We performed a meta-analysis of randomized controlled trials (RCTs) to determine if daily bathing with chlorhexidine decreased hospital-acquired BSIs in critically ill patients. Methods We searched the MEDLINE, EMBASE, and Cochrane Central Register of Controlled Trials databases to identify randomized controlled trials that compared daily bathing with chlorhexidine and a control in critically ill patients. Results This meta-analysis included five RCTs. The overall incidence of meas...

  8. Using different chemical methods for deposition of copper selenide thin films and comparison of their characterization.

    Science.gov (United States)

    Güzeldir, Betül; Sağlam, Mustafa

    2015-11-01

    Different chemical methods such as Successive Ionic Layer Adsorption and Reaction (SILAR), spin coating and spray pyrolysis methods were used to deposite of copper selenide thin films on the glass substrates. The films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-ray analysis (EDX) spectroscopy and UV-vis spectrophotometry. The XRD and SEM studies showed that all the films exhibit polycrystalline nature and crystallinity of copper selenide thin films prepared with spray pyrolysis greater than spin coating and SILAR methods. From SEM and AFM images, it was observed copper selenide films were uniform on the glass substrates without any visible cracks or pores. The EDX spectra showed that the expected elements exist in the thin films. Optical absorption studies showed that the band gaps of copper selenide thin films were in the range 2.84-2.93 eV depending on different chemical methods. The refractive index (n), optical static and high frequency dielectric constants (ε0, ε∞) values were calculated by using the energy bandgap values for each deposition method. The obtained results from different chemical methods revealed that the spray pyrolysis technique is the best chemical deposition method to fabricate copper selenide thin films. This absolute advantage was lead to play key roles on performance and efficiency electrochromic and photovoltaic devices. PMID:26037495

  9. Transparent Conductive Coating Based on Carbon Nanotubes Using Electric Field Deposition Method

    International Nuclear Information System (INIS)

    The transparent conductive coating based on carbon nanotubes (CNTs) had been fabricated using the electric field deposition method. The scanning electron microscope (SEM) results show a quite uniform CNTs on Corning glass substrates. Moreover the X-ray Diffraction (XRD) results shows the peak at around 25 deg. which proves the existence of CNT materials. The CNT thin films obtained with different deposition times have different transmittance coefficients at wavelength of 550 nm. I-V measurement results shows higher sheet resistance value which relates with bigger transmittance coefficients and vice versa.

  10. Scanning Tunnelling Microscopy Observation on 10,12-Tricosadiynoic Acid Monolayers Deposited by Schaefer's Method

    Institute of Scientific and Technical Information of China (English)

    张耿民

    2001-01-01

    The Langmuir-Blodgett monolayers of 10, 12-tricosadiynoic acid molecules were deposited onto the basal plane of highly oriented pyrolytic graphite (HOPG) by Schaefer's method and then observed with the scanning tunnelling microscope (STM). With a view to achieving a parallel molecular arrangement on the graphite surface, the deposition was deliberately conducted at a relatively low surface pressure. As exhibited by the STM images, by this approach the 10,12-tricosadiynoic acid molecules could constitute an ordered structure with their molecular chains lying parallel to the substrate. The model of molecular dimer is put forward for the interpretation of the observed phenomena.

  11. Method of forming ultra thin film devices by vacuum arc vapor deposition

    Science.gov (United States)

    Schramm, Harry F. (Inventor)

    2005-01-01

    A method for providing an ultra thin electrical circuit integral with a portion of a surface of an object, including using a focal Vacuum Arc Vapor Deposition device having a chamber, a nozzle and a nozzle seal, depressing the nozzle seal against the portion of the object surface to create an airtight compartment in the chamber and depositing one or more ultra thin film layer(s) only on the portion of the surface of the object, the layers being of distinct patterns such that they form the circuit.

  12. [Pseudomonas folliculitis after spa bath exposure].

    Science.gov (United States)

    Uldall Pallesen, Kristine Appel; Andersen, Klaus Ejner; Mørtz, Charlotte Gotthard

    2012-06-25

    Pseudomonas aeruginosa is a rare cause of folliculitis. Pseudomonas folliculitis can develop after contact with contaminated water from swimming pools, hot tubs and spa baths. Systemic therapy may be indicated in patients with widespread lesions, systemic symptoms or in immunosuppressed patients. We describe a 23-year-old healthy woman who developed a pustular rash and general malaise after using a spa bath contaminated with Pseudomonas aeruginosa. Bacterial culture from a pustule confirmed Pseudomonas folliculitis and the patient was treated with ciprofloxacin with rapid good effect. PMID:22735119

  13. Upper Pleistocene deposits of the Comprida Island (São Paulo State dated by thermoluminescence method

    Directory of Open Access Journals (Sweden)

    SUGUIO KENITIRO

    2003-01-01

    Full Text Available The Cananéia (Upper Pleistocene and the Comprida Island (Holocene formations, outcropping in the Comprida island (SP have been mapped using geomorphological and lithological criteria. Only one sample of the Cananéia Formation, collected in the homonymous island in front of the Comprida Island, was beyond the limit of the standard radiocarbon method. But since the publication of the geological map of the area in 1978, there has been some doubt on the real occurrence of Pleistocene deposits in southern extremity of Comprida Island. This paper deals with the results of thermoluminescence (TL ages of eight samples from Comprida Island, which corroborate the Pleistocene age assumed during mapping surveys of these deposits. On the other hand, possible interpretations of the obtained ages, in relation to their depositional environments and related northern hemisphere Quaternary glaciations, are presented.

  14. Uranium Deposition on the Liquid Cadmium Electrode Depending on the Stirring Methods

    International Nuclear Information System (INIS)

    Liquid cadmium cathode (LCC) in a pyrochemical process has been used as an electrode to co-deposit transuranium (TRU) and uranium (U). By the way, U elements have a tendency to form dendrites during the electro-deposition. These dendrites have a large surface area and do not sink into the liquid cadmium (Cd). In that case, the U dendrites floated on the surface of Cd have a function of solid cathode and the co-deposition of TRU and U could be hindered. In order to oppress the formation of these U dendrites, a pounder stirrer and a paddle stirrer have been developed in United States and Japan, respectively. The paddle stirrer could be operated only by a rotary motor but the pounder requires two operation modes such as a rotation and a vertical movement. In the present work, the function of a paddle stirrer was evaluated depending on the stirring methods

  15. Selective deposition on electrodes of chip component by electroless plating method

    Science.gov (United States)

    Yamamoto, Akihiro; Watanabe, Nobuaki; Arakawa, Tomiyuki; Gotou, Miku; Nakada, Tatsunosuke; Fukui, Kenta; Hashimoto, Akira; Koiwa, Ichiro

    2014-05-01

    The selective electroless deposition on metallic electrodes of a micro-passive-chip component was investigated. We performed three pretreatments: (a) alkaline degreasing, (b) acid activation, and (c) catalytic activation by the double alternate-dipping method consisting of two steps, i.e., sensitization (SnCl2) and activation (PdCl2). Catalytic conditions such as the concentration of PdCl2, activation time, and number of activation times were optimized to achieve the selectivity of electroless deposition. The mechanism of the selectivity of electroless deposition was investigated by X-ray photoelectron spectroscopy measurements. Tetravalent Sn and metallic Pd are observed on the inner electrode of the sample. On the other hand, metallic Sn and tetravalent Pd are mainly observed in certain areas except the inner electrode areas. These results indicate that the sensitization is performed well in the inner electrode region because Pd must be in a metallic state to validate its catalytic activity.

  16. Zirconium influence on microstructure of aluminide coatings deposited on nickel substrate by CVD method

    Indian Academy of Sciences (India)

    Jolanta Romanowska; Maryana Zagula-Yavorska; Jan Sieniawski

    2013-11-01

    Influence of Zr on the microstructure and phase characteristics of aluminide diffusion coatings deposited on the nickel substrate has been investigated in this study. The coatings with and without zirconium were deposited by CVD method. The cross-section chemical composition investigations revealed that during the coatings formation, there is an inward aluminum diffusion and outward nickel diffusion in both types of coatings (with and without zirconium), whereas zirconium is located far below the coating surface, at a depth of ∼17 m, between -NiAl phase and '-Ni3Al phase. XRD examinations showed that -NiAl, -NiAl and '-Ni3Al were the main components of the deposited coatings. -NiAl phase is on the surface of the coatings, whereas -NiAl and '-Ni3Al form deeper parts of the coatings. Zirconium is dissolved in NiAl on the border between -NiAl and '-Ni3Al.

  17. Discrete formulation of mixed finite element methods for vapor deposition chemical reaction equations

    Institute of Scientific and Technical Information of China (English)

    LUO Zhen-dong; ZHOU Yan-jie; ZHU Jiang

    2007-01-01

    The vapor deposition chemical reaction processes, which are of extremely extensive applications, can be classified as a mathematical modes by the following governing nonlinear partial differential equations containing velocity vector,temperature field,pressure field,and gas mass field.The mixed finite element(MFE)method is employed to study the system of equations for the vapor deposition chemical reaction processes.The semidiscrete and fully discrete MFE formulations are derived.And the existence and convergence(error estimate)of the semidiscrete and fully discrete MFE solutions are deposition chemical reaction processes,the numerical solutions of the velocity vector,the temperature field,the pressure field,and the gas mass field can be found out simultaneonsly.Thus,these researches are not only of important theoretical means,but also of extremely extensive applied vistas.

  18. Calorimetric observation of single He2* excimers in a 100 mK He bath

    CERN Document Server

    Carter, F W; Rooks, M J; McClintock, P V E; McKinsey, D N; Prober, D E

    2016-01-01

    We report the first calorimetric detection of individual He2* excimers within a bath of superfluid 4He. The detector used in this work is a single superconducting titanium transition edge sensor (TES) with an energy resolution of ~1 eV, immersed directly in the helium bath. He2* excimers are produced in the surrounding bath using an external gamma-ray source. These excimers exist either as short-lived singlet or long-lived triplet states. We demonstrate detection of both states: in the singlet case the calorimeter records the absorption of a prompt 15 eV photon, and in the triplet case the calorimeter records a direct interaction of the molecule with the TES surface, which deposits a distinct fraction of the 15 eV, released upon decay, into the surface. We also briefly discuss the detector fabrication and characterization.

  19. Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method

    Indian Academy of Sciences (India)

    H M Pathan; C D Lokhande

    2004-04-01

    During last three decades, successive ionic layer adsorption and reaction (SILAR) method, has emerged as one of the solution methods to deposit a variety of compound materials in thin film form. The SILAR method is inexpensive, simple and convenient for large area deposition. A variety of substrates such as insulators, semiconductors, metals and temperature sensitive substrates (like polyester) can be used since the deposition is carried out at or near to room temperature. As a low temperature process, it also avoids oxidation and corrosion of the substrate. The prime requisite for obtaining good quality thin film is the optimization of preparative provisos viz. concentration of the precursors, nature of complexing agent, pH of the precursor solutions and adsorption, reaction and rinsing time durations etc. In the present review article, we have described in detail, successive ionic layer adsorption and reaction (SILAR) method of metal chalcogenide thin films. An extensive survey of thin film materials prepared during past years is made to demonstrate the versatility of SILAR method. Their preparative parameters and structural, optical, electrical properties etc are described. Theoretical background necessary for the SILAR method is also discussed.

  20. A new condensation product for zinc plating from non-cyanide alkaline bath

    Indian Academy of Sciences (India)

    Y Arthoba Naik; T V Venkatesha

    2005-08-01

    Zinc electroplating from non-cyanide alkaline solution is carried out in the presence of condensation product formed between DL-alanine (DLA) and glutaraldehyde. The bath constituents and bath variables are optimized through standard Hull cell experiments. The current efficiency and the throwing power are measured. High shift of potential towards more cathodic direction was observed in presence of addition agents. Corrosion resistance test reveals good protection of base metal by zinc coating obtained from the developed electrolyte. SEM photomicrographs show fine-grained deposit in the presence of condensation product. IR spectrum of the scraped deposit shows the inclusion of the condensation product in the deposit during plating. The consumption of brightener in the lab-scale is 6 mLL-1 for 1000 amp-hour.

  1. [Is Turkish bath water potable?: The baths of Sidi-Bel-Abbes].

    Science.gov (United States)

    Benouis, K; Benabderrahmane, M; Harrache-Chettouh, Djamila; Benabdeli, K

    2008-01-01

    In Algeria, large numbers of people regularly go to Turkish baths or "Hammams". The cold tap water of the baths in the town of Sidi-Bel-Abbes (Algeria) comes either from wells or from a mixture of potable waterworks water and well water. Its principal use is for personal hygiene (washing). However, the steam heat generates thirst that can cause users to drink cold water during the steam bath. In addition, the wells feeding the baths are often poorly protected and especially badly treated. To ascertain whether their water quality, particularly bacteriological, meets the requirements for drinking water, we studied the characteristics of water from ten Turkish baths in Sidi-Bel-Abbes. Bacteriological analyses of cold water showed signs of contamination of fecal origin in 50% of the samples analysed. Moreover two water points from two of the baths appeared to have permanent fecal contamination. The physicochemical analysis showed that the water was very high in calcium (up to 550 mg/L) and magnesium (up to 299 mg/L). The maximum nitrate level observed was 68 mg/L. This study thus showed the existence of a health risk due to deterioration in the quality of the bath water and demonstrated the need for protection of the wells, frequent purification, and regular microbiological testing. PMID:19188127

  2. A modified micrometeorological gradient method for estimating O3 dry deposition over a forest canopy

    Directory of Open Access Journals (Sweden)

    Z. Y. Wu

    2015-01-01

    Full Text Available Small pollutant concentration gradients between levels above a plant canopy result in large uncertainties in estimated air–surface exchange fluxes when using existing micrometeorological gradient methods, including the aerodynamic gradient method (AGM and the modified Bowen-Ratio method (MBR. A modified micrometeorological gradient method (MGM is proposed in this study for estimating O3 dry deposition fluxes over a forest canopy using concentration gradients between a level above and a level below the canopy top, taking advantage of relatively large gradients between these levels due to significant pollutant uptake at top layers of the canopy. The new method is compared with the AGM and MBR methods and is also evaluated using eddy-covariance (EC flux measurements collected at the Harvard Forest Environmental Measurement Site, Massachusetts during 1993–2000. All the three gradient methods (AGM, MBR and MGM produced similar diurnal cycles of O3 dry deposition velocity (Vd(O3 to the EC measurements, with the MGM method being the closest in magnitude to the EC measurements. The multi-year average Vd(O3 differed significantly between these methods, with the AGM, MBR and MGM method being 2.28, 1.45 and 1.18 times of that of the EC. Sensitivity experiments identified several input parameters for the MGM method as first-order parameters that affect the estimated Vd(O3. A 10% uncertainty in the wind speed attenuation coefficient or canopy displacement height can cause about 10% uncertainty in the estimated Vd(O3. An unrealistic leaf area density vertical profile can cause an uncertainty of a factor of 2.0 in the estimated Vd(O3. Other input parameters or formulas for stability functions only caused an uncertainly of a few percent. The new method provides an alternative approach in monitoring/estimating long-term deposition fluxes of similar pollutants over tall canopies.

  3. A modified micrometeorological gradient method for estimating O3 dry depositions over a forest canopy

    Science.gov (United States)

    Wu, Z. Y.; Zhang, L.; Wang, X. M.; Munger, J. W.

    2015-07-01

    Small pollutant concentration gradients between levels above a plant canopy result in large uncertainties in estimated air-surface exchange fluxes when using existing micrometeorological gradient methods, including the aerodynamic gradient method (AGM) and the modified Bowen ratio method (MBR). A modified micrometeorological gradient method (MGM) is proposed in this study for estimating O3 dry deposition fluxes over a forest canopy using concentration gradients between a level above and a level below the canopy top, taking advantage of relatively large gradients between these levels due to significant pollutant uptake in the top layers of the canopy. The new method is compared with the AGM and MBR methods and is also evaluated using eddy-covariance (EC) flux measurements collected at the Harvard Forest Environmental Measurement Site, Massachusetts, during 1993-2000. All three gradient methods (AGM, MBR, and MGM) produced similar diurnal cycles of O3 dry deposition velocity (Vd(O3)) to the EC measurements, with the MGM method being the closest in magnitude to the EC measurements. The multi-year average Vd(O3) differed significantly between these methods, with the AGM, MBR, and MGM method being 2.28, 1.45, and 1.18 times that of the EC, respectively. Sensitivity experiments identified several input parameters for the MGM method as first-order parameters that affect the estimated Vd(O3). A 10% uncertainty in the wind speed attenuation coefficient or canopy displacement height can cause about 10% uncertainty in the estimated Vd(O3). An unrealistic leaf area density vertical profile can cause an uncertainty of a factor of 2.0 in the estimated Vd(O3). Other input parameters or formulas for stability functions only caused an uncertainly of a few percent. The new method provides an alternative approach to monitoring/estimating long-term deposition fluxes of similar pollutants over tall canopies.

  4. Post-deposition cooling in oxygen is critical for YBa sub 2 Cu sub 3 O sub 7 sub - sub d films deposited by eclipse pulsed laser deposition method

    CERN Document Server

    Ohmukai, M; Ohno, T

    2001-01-01

    YBa sub 2 Cu sub 3 O sub 7 sub - sub d thin films were deposited on MgO single crystals by means of an eclipse pulsed laser deposition method. Deposited films are cooled down in situ under an oxygen atmosphere at a given oxygen pressure. The relationship between critical temperature and oxygen deficiency was investigated by means of electrical resistance R(T) and X-ray diffraction measurements. Post- deposition cooling is critical and the high pressure of oxygen during cooling is favorable.

  5. A new approach to calculating the memory kernel of the generalized quantum master equation for an arbitrary system-bath coupling

    Science.gov (United States)

    Shi, Qiang; Geva, Eitan

    2003-12-01

    The Nakajima-Zwanzig generalized quantum master equation provides a general, and formally exact, prescription for simulating the reduced dynamics of a quantum system coupled to a quantum bath. In this equation, the memory kernel accounts for the influence of the bath on the system's dynamics. The standard approach is based on using a perturbative treatment of the system-bath coupling for calculating this kernel, and is therefore restricted to systems weakly coupled to the bath. In this paper, we propose a new approach for calculating the memory kernel for an arbitrary system-bath coupling. The memory kernel is obtained by solving a set of two coupled integral equations that relate it to a new type of two-time system-dependent bath correlation functions. The feasibility of the method is demonstrated in the case of an asymetrical two-level system linearly coupled to a harmonic bath.

  6. Stress of electroless copper deposits on insulating and metal substrates

    Energy Technology Data Exchange (ETDEWEB)

    Brüning, Ralf, E-mail: rbruening@mta.ca [Physics Department, Mount Allison University, Sackville, New Brunswick E4L 1E6 (Canada); Sibley, Allison; Sharma, Tanu; Brown, Delilah A.; Demay, Thibault [Physics Department, Mount Allison University, Sackville, New Brunswick E4L 1E6 (Canada); Brüning, Frank; Bernhard, Tobias [Atotech Deutschland GmbH, Erasmusstrasse 20, 10553 Berlin (Germany)

    2014-08-28

    In the fabrication of printed circuit boards, electroless copper is plated on insulating substrates. However, data for film stress by substrate bending are frequently obtained with metal substrates. We compare the stress evolution on an insulating substrate (acrylonitrile butadiene styrene) with results from commercial Ni–Fe and Cu–Fe alloy test strips, as well as X-ray diffraction based strain data. Tests were done with two plating bath formulations, one with and one without added nickel. Substrate type and condition determine the stress near the beginning of plating. Stress of the Ni-free films depends more strongly on the substrate material. Further, when the samples are cooled from the bath operating temperature to room temperature, the thermal contraction of the insulating substrate compresses the plated thin copper film. The measured stress change agrees with the change predicted by calculation. Data correction methods are discussed, and other substrate materials can be tested readily with the method employed here. - Highlights: • We report stress of electroless Cu deposits on insulating and metal substrates. • The final deposit stress is substrate-independent. • The final deposit stress and the X-ray diffraction based strain agree. • The stress change due to the thermal contraction of the substrate is observed. • Plating bath type, substrate and surface preparation alter the stress.

  7. A rapid and repeatable method to deposit bioaerosols on material surfaces.

    Science.gov (United States)

    Calfee, M Worth; Lee, Sang Don; Ryan, Shawn P

    2013-03-01

    A simple method for repeatably inoculating surfaces with a precise quantity of aerosolized spores was developed. Laboratory studies were conducted to evaluate the variability of the method within and between experiments, the spatial distribution of spore deposition, the applicability of the method to complex surface types, and the relationship between material surface roughness and spore recoveries. Surface concentrations, as estimated by recoveries from wetted-wipe sampling, were between 5×10(3) and 1.5×10(4)CFUcm(-2) across the entire area (930cm(2)) inoculated. Between-test variability (Cv) in spore recoveries was 40%, 81%, 66%, and 20% for stainless steel, concrete, wood, and drywall, respectively. Within-test variability was lower, and did not exceed 33%, 47%, 52%, and 20% for these materials. The data demonstrate that this method is repeatable, is effective at depositing spores across a target surface area, and can be used to dose complex materials such as concrete, wood, and drywall. In addition, the data demonstrate that surface sampling recoveries vary by material type, and this variability can partially be explained by the material surface roughness index. This deposition method was developed for use in biological agent detection, sampling, and decontamination studies, however, is potentially beneficial to any scientific discipline that investigates surfaces containing aerosol-borne particles. PMID:23384827

  8. Bubble bath burns: an unusual case.

    Science.gov (United States)

    Nizamoglu, Metin; Tan, Alethea; El-Muttardi, Naguib

    2016-01-01

    We present an unusual case of flash burn injury in an adolescent following accidental combination of foaming bath bubbles and tea light candle flame. There has not been any reported similar case described before. This serves as a learning point for public prevention and clinicians managing burn injuries. PMID:27583271

  9. Fabrication and characterization of kesterite Cu2ZnSnS4 thin films deposited by electrostatic spray assisted vapour deposition method

    OpenAIRE

    J.P. Liu; Choy, Kwang-Leong; Placidi, M.; J. López-García; Saucedo, Edgardo; Colombara, Diego; Robert, Erika

    2014-01-01

    Most of the high efficiency kesterite solar cells are fabricated by vacuum or hydrazine-based solution methods which have drawbacks, such as high cost, high toxicity or explosivity. In our contribution, an alternative non-vacuum and environmental friendly deposition technology called electrostatic spray assisted vapour deposition (ESAVD) has been used for the cost-effective growth of Cu2ZnSnS4 (CZTS) thin films with well controlled structure and composition. CZTS films have been characterized...

  10. A comparative analysis of deep level emission in ZnO layers deposited by various methods

    International Nuclear Information System (INIS)

    This study examined the origin of visible luminescence from ZnO layers deposited on p-Si substrates by various growth methods using temperature dependent photoluminescence measurements. The deep level emissions of ZnO layers are found to be strongly dependent on the growth conditions and growth methods used. For the samples grown by sputtering, the visible emission consisted of violet, green, and orange-red regions, which corresponded to zinc interstitial (Zni), oxygen vacancy (VO), and oxygen interstitial (Oi) defect levels, respectively. In contrast, the deep level emissions of metal organic chemical vapor deposition grown samples consisted of blue and green emissions and blue and orange-red emissions at low and high oxygen flow rates, respectively. The ZnO nanorods synthesized by thermal evaporation showed a dominant deep level emission at the green region, which is associated with oxygen vacancies (VO)

  11. Dating sediment deposits on Montalvanian carvings using EPR and TL methods

    Science.gov (United States)

    Sastry, M. D.; Sullasi, Henry S. L.; Camargo, Fabiola; Watanabe, Shigueo; Prous, André P. P.; Silva, Martha M. C.

    2004-01-01

    About 30 years ago a rock shelter with engravings by early settlers was found at Montalvânia, northern end of state of Minas Gerais, Brazil. Lower part of engravings was covered with thin deposit of calcite mixed with quartz grains, due to occasional flood. This mixture of two minerals was dated by thermoluminescence and electron paramagnetic resonance using in both cases, additive method. The accumulated dose DAC, that is, natural radioactivity and cosmic rays radiation dose that induces TL and EPR signal intensity has been found to be around 50 Gy both by TL and EPR methods. The annual radiation dose rate was estimated to be about 1.027 mGy/a from knowledge of uranium, thorium and potassium content determined by inductively coupled plasma-mass spectrometer system. The age of this calcite plus quartz deposits was estimated to be about 50 ka.

  12. Growth of well-oriented VACNTs using thermal chemical vapor deposition method

    Science.gov (United States)

    Yousefi, Amin Termeh; Mahmood, Mohamad Rusop; Ikeda, Shoichiro

    2016-07-01

    The remarkable properties of carbon nanotubes (CNTs) make them attractive for biosensor applications, especially for medical detecting devices. In this paper, we describe a process to grow high oriented ratio CNT arrays to improve the electrical properties of the devices based on CNTs. Chemical vapor deposition (CVD) was used to grow highly oriented CNT using camphor as the carbon source, and argon and hydrogen as carrier gases to grow perpendicular CNTs on the surface of the silicon substrate in presence of ferrocene as a metallic catalyst. Images were revealed by FESEM indicates that the formation mechanism of oriented CNTs with high morphological purity nanotubes, which is depends significantly on deposition time and applied temperature to the furnaces. This method might be an effective method to produce oriented MWCNT in different length.

  13. High-quality SiO2 Colloidal Crystal Fabricated by Controllable Vertical Deposition Method

    Institute of Scientific and Technical Information of China (English)

    CAI Xiao-mei; CHEN Fu-yi; JIE Wan-qi

    2006-01-01

    Monodispersed silica microspheres with diameter of 353nm were assembled into photonic crystal in ethanol colloidal suspensions of varied silica volume fraction at different temperature and humidity by means of controllable vertical deposition method. The surface morphology and optical properties were studied by SEM and UV-Vis-NIR. It was found that the high-quality silica colloidal photonic crystals were obtained from ethanol solutions with environment temperature between 45℃ and 55℃, humidity between 66% and 76%, the volume fraction of microspheres is between 0.8% and 1.5%. The ordered close-packed photonic crystal fabricated by controllable vertical deposition method had the two photonic bandgaps in the visible light band and near infrared band.

  14. Methods of electrophoretic deposition for functionally graded porous nanostructures and systems thereof

    Energy Technology Data Exchange (ETDEWEB)

    Worsley, Marcus A; Baumann, Theodore F; Satcher, Joe H; Olson, Tammy Y; Kuntz, Joshua D; Rose, Klint A

    2015-03-03

    In one embodiment, an aerogel includes a layer of shaped particles having a particle packing density gradient in a thickness direction of the layer, wherein the shaped particles are characterized by being formed in an electrophoretic deposition (EPD) process using an impurity. In another embodiment, a method for forming a functionally graded porous nanostructure includes adding particles of an impurity and a solution to an EPD chamber, applying a voltage difference across the two electrodes of the EPD chamber to create an electric field in the EPD chamber, and depositing the material onto surfaces of the particles of the impurity to form shaped particles of the material. Other functionally graded materials and methods are described according to more embodiments.

  15. Systems and Methods for the Electrodeposition of a Nickel-cobalt Alloy

    Science.gov (United States)

    Ogozalek, Nance Jo (Inventor); Wistrand, Richard E. (Inventor)

    2013-01-01

    Systems and methods for electrodepositing a nickel-cobalt alloy using a rotating cylinder electrode assembly with a plating surface and an electrical contact. The assembly is placed within a plating bath and rotated while running a plating cycle. Nickel-cobalt alloy deposition is selectively controlled by controlling current density distribution and/or cobalt content in the plating bath while running the plating cycle to deposit an alloy of a desired yield strength onto the plating surface in a single plating cycle. In various embodiments, the rotating cylinder may be used as an insitu monitoring method to assist in obtaining the properties desired.

  16. Avian Assemblages at Bird Baths: A Comparison of Urban and Rural Bird Baths in Australia

    OpenAIRE

    Cleary, Gráinne P.; Parsons, Holly; Davis, Adrian; Coleman, Bill R.; Jones, Darryl N.; Kelly K Miller; Michael A. Weston

    2016-01-01

    Private gardens provide habitat and resources for many birds living in human-dominated landscapes. While wild bird feeding is recognised as one of the most popular forms of human-wildlife interaction, almost nothing is known about the use of bird baths. This citizen science initiative explores avian assemblages at bird baths in private gardens in south-eastern Australia and how this differs with respect to levels of urbanisation and bioregion. Overall, 992 citizen scientists collected data ov...

  17. A versatile new method for synthesis and deposition of doped, visible light-activated TiO2 thin films

    DEFF Research Database (Denmark)

    In, Su-il; Kean, A.H.; Orlov, A.; Tikhov, M.S.; Lambert, R.M.

    2009-01-01

    A flexible and widely applicable method allows the deposition of carbon-doped visible light-activated photocatalytic TiO2 thin films on a variety of substrates.......A flexible and widely applicable method allows the deposition of carbon-doped visible light-activated photocatalytic TiO2 thin films on a variety of substrates....

  18. Fabrication of efficient planar perovskite solar cells using a one-step chemical vapor deposition method

    OpenAIRE

    Mohammad Mahdi Tavakoli; Leilei Gu; Yuan Gao; Claas Reckmeier; Jin He; Rogach, Andrey L; Yan Yao; Zhiyong Fan

    2015-01-01

    Organometallic trihalide perovskites are promising materials for photovoltaic applications, which have demonstrated a rapid rise in photovoltaic performance in a short period of time. We report a facile one-step method to fabricate planar heterojunction perovskite solar cells by chemical vapor deposition (CVD), with a solar power conversion efficiency of up to 11.1%. We performed a systematic optimization of CVD parameters such as temperature and growth time to obtain high quality films of CH...

  19. Research of photon beam dose deposition kernel based on Monte Carlo method

    International Nuclear Information System (INIS)

    Using Monte Carlo program BEAMnrc to simulate Siemens accelerator 6 MV photon beam, using BEAMdp program to analyse the energy spectrum distribution and mean energy from phase space data of different field sizes, then building beam source, energy spectrum and mono-energy source, to use DOSXYZnrc program to calculate the dose deposition kernels at dmax in standard water phantom with different beam sources and make comparison with different dose deposition kernels. The results show that the dose difference using energy spectrum source is small, the maximum percentage dose discrepancy is 1.47%, but it is large using mono-energy source, which is 6.28%. The maximum dose difference for the kernels derived from energy spectrum source and mono-energy source of the same field is larger than 9%, up to 13.2%. Thus, dose deposition has dependence on photon energy, it can lead to larger errors only using mono-energy source because of the beam spectrum distribution of accelerator. A good method to calculate dose more accurately is to use deposition kernel of energy spectrum source. (authors)

  20. Light Attenuation Method for 3D data acquisition (LAM3D) of bottom particle deposits

    Science.gov (United States)

    Er, Jenn Wei; Law, Adrian W. K.; Adams, E. Eric; Yang, Yang

    2015-11-01

    We have developed a novel experimental technique, Light Attenuation Method for 3D data acquisition (LAM3D), to acquire three-dimensional spatial characteristics and temporal development of bottom particle deposits. The new technique performs data acquisition with higher spatial and temporal resolution than existing approaches with laser and ultrasonic 3D profilers, and is therefore ideal for laboratory investigations with fast varying changes in the sediment bed, such as the developing deposition profile from sediment clouds commonly formed during dredging or land reclamation projects and the dynamic evolution in movable bed processes in rivers. The principle of the technique is based on the analysis of the light attenuation due to multiple light scattering through the particle deposits layer compared to the clear water column. With appropriate calibration, the particles size and distribution thickness can be quantified by the transmitted light spectrum. In the presentation, we will first show our measurement setup with a light panel for calibrated illumination and a system of DSLR cameras for the light capturing. Subsequently, we shall present the experimental results of fast evolving deposition profile of a barge-disposed sediment cloud upon its bottom impact on the sea bed.

  1. Method to control deposition rate instabilities—High power impulse magnetron sputtering deposition of TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kossoy, Anna, E-mail: annaeden@hi.is, E-mail: anna.kossoy@gmail.com; Magnusson, Rögnvaldur L.; Tryggvason, Tryggvi K.; Leosson, Kristjan; Olafsson, Sveinn [Physics Division, Science Institute—University of Iceland, Reykjavik 107 (Iceland)

    2015-03-15

    The authors describe how changes in shutter state (open/closed) affect sputter plasma conditions and stability of the deposition rate of Ti and TiO{sub 2} films. The films were grown by high power impulse magnetron sputtering in pure Ar and in Ar/O{sub 2} mixture from a metallic Ti target. The shutter state was found to have an effect on the pulse waveform for both pure Ar and reactive sputtering of Ti also affecting stability of TiO{sub 2} deposition rate. When the shutter opened, the shape of pulse current changed from rectangular to peak-plateau and pulse energy decreased. The authors attribute it to the change in plasma impedance and gas rarefaction originating in geometry change in front of the magnetron. TiO{sub 2} deposition rate was initially found to be high, 1.45 Å/s, and then dropped by ∼40% during the first 5 min, while for Ti the change was less obvious. Instability of deposition rate poses significant challenge for growing multilayer heterostructures. In this work, the authors suggest a way to overcome this by monitoring the integrated average energy involved in the deposition process. It is possible to calibrate and control the film thickness by monitoring the integrated pulse energy and end growth when desired integrated pulse energy level has been reached.

  2. Reserve estimation of central part of Choghart north anomaly iron ore deposit through ordinary kriging method

    Institute of Scientific and Technical Information of China (English)

    Ali Akbar Daya

    2012-01-01

    This paper is devoted to application of ordinary kriging method in Choghart north anomaly iron ore deposit in Yazd province,Iran.In order to estimate the deposit,2329 input data gained from 26 boreholes were used.Fe grade was selected as the major regional variable on which the present research has focused.All of the available data were changed to 12.5 m composites so that statistical regularization could be reached.Studies indicated that iron grade input data had single-population characteristics.To carry out ordinary kriging,a spherical model was fitted over empirical variogram.Then the model was verified through cross validation method and proved to be valid with a coherence coefficient of 0.773between the estimated and real data.Plotting the empirical variogram in different directions showed no geometric anisotropy for the deposit.To estimate the Iron grade,ordinary kriging method was used according to which,all of the exploitable blocks with dimensions 20 m × 20 m × 12.5 m were block estimated within the estimation space.Finally tonnage-grade curve has been drawn and reserve classified into measured,indicated and inferred.

  3. Investigation of Cu growth phenomena on Ru substrate during electroless deposition using hydrazine as a reducing agent

    International Nuclear Information System (INIS)

    Cu growth phenomena during electroless deposition (ELD) on Ru substrate were investigated in this study. Different to the formaldehyde based Cu ELD bath, the use of hydrazine based Cu ELD bath facilitated the observation of Cu growth phenomena during ELD. The whole surface-catalyzed ELD occurred on Ru, and electrochemical quartz crystal microbalance as well as linear sweep voltammetry studies revealed that Cu covered Ru surface within a few seconds of ELD. Measurement of sheet resistance change confirmed that Cu nucleation on Ru was continuous with forming a film. During the period, Cu film growth was monitored by an atomic force microscope imaging, indicating that Cu was deposited on Ru preferentially, rather than on the deposited Cu at the initial stage of the deposition. The whole surface-catalyzed ELD achieved 55 nm gap-filling, and this showed the possibility of the practical adoption of ELD as a method for metallization in ultralarge-scale integration

  4. Synthesis of size-controlled Bi particles by electrochemical deposition

    Indian Academy of Sciences (India)

    C N Tharamani; H C Thejaswini; S Sampath

    2008-06-01

    Small sized bismuth particles are prepared by an electrochemical method using a triple voltage pulse technique. The bath composition and electrochemical parameters are optimized to yield monodisperse particles. The particles have been characterized by scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray analysis, X-ray photoelectron spectroscopy, UV-visible spectroscopy and X-ray diffraction technique. The particles, as deposited, are highly crystalline in nature and the particle size and shape get tuned depending on the conditions of deposition.

  5. The new aspects of the anticorrosive ZnO@SiO2 core-shell NPs in stabilizing of the electrolytic Ni bath and the Ni coating structure; electrochemical behavior of the resulting nano-composite coatings.

    Science.gov (United States)

    Sharifalhoseini, Zahra; Entezari, Mohammad H

    2015-10-01

    The pure phase of the ZnO nanoparticles (NPs) as anticorrosive pigments was synthesized by the sonication method. The surfaces of the sono-synthesized nanoparticles were covered with the protective silica layer. The durability of the coated and uncoated ZnO NPs in the used electrolytic Ni bath was determined by flame atomic absorption spectrometry. In the present research the multicomponent Ni bath as the complex medium was replaced by the simple one. The used nickel-plating bath was just composed of the Ni salts (as the sources of the Ni(2+) ions) to better clarify the influence of the presence of the ZnO@SiO2 core-shell NPs on the stability of the medium. The effect of ZnO@SiO2 NPs incorporation on the morphology of the solid electroformed Ni deposit was studied by scanning electron microscopy (SEM). Furthermore, the influence of the co-deposited particles in the Ni matrix on the corrosion resistance of the Ni coating was evaluated by the electrochemical methods including linear polarization resistance (LPR) and Tafel extrapolation. PMID:26057943

  6. 21 CFR 890.5125 - Nonpowered sitz bath.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nonpowered sitz bath. 890.5125 Section 890.5125...) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5125 Nonpowered sitz bath. (a) Identification. A nonpowered sitz bath is a device intended for medical purposes...

  7. Metal oxide targets produced by the polymer-assisted deposition method

    International Nuclear Information System (INIS)

    The polymer-assisted deposition (PAD) method was used to create crack-free homogenous metal oxide films for use as targets in nuclear science applications. Metal oxide films of europium, thulium, and hafnium were prepared as models for actinide oxides. Films produced by a single application of PAD were homogenous and uniform and ranged in thickness from 30 to 320 nm. Reapplication of the PAD method (six times) with a 10% by weight hafnium(IV) solution resulted in an equally homogeneous and uniform film with a total thickness of 600 nm.

  8. Metal oxide targets produced by the polymer-assisted deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Mitch A., E-mail: mitch@berkeley.ed [Department of Chemistry, Room 446 Latimer Hall, University of California Berkeley, Berkeley, CA 94720-1460 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Ali, Mazhar N.; Chang, Noel N.; Parsons-Moss, T. [Department of Chemistry, Room 446 Latimer Hall, University of California Berkeley, Berkeley, CA 94720-1460 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Ashby, Paul D. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Gates, Jacklyn M. [Department of Chemistry, Room 446 Latimer Hall, University of California Berkeley, Berkeley, CA 94720-1460 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Stavsetra, Liv [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Gregorich, Kenneth E.; Nitsche, Heino [Department of Chemistry, Room 446 Latimer Hall, University of California Berkeley, Berkeley, CA 94720-1460 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2010-02-11

    The polymer-assisted deposition (PAD) method was used to create crack-free homogenous metal oxide films for use as targets in nuclear science applications. Metal oxide films of europium, thulium, and hafnium were prepared as models for actinide oxides. Films produced by a single application of PAD were homogenous and uniform and ranged in thickness from 30 to 320 nm. Reapplication of the PAD method (six times) with a 10% by weight hafnium(IV) solution resulted in an equally homogeneous and uniform film with a total thickness of 600 nm.

  9. Structural and optical characterization of nanostructured CdS thin films deposited by spray pyrolysis method

    International Nuclear Information System (INIS)

    Influence of solution pH on the structural and optical properties of CdS films deposited by conventional spray pyrolysis technique was studied. X-ray diffraction, atomic force microscopy, photoluminescence spectroscopy and spectroscopic ellipsometry methods were used for the characterization of films. The difference in the properties of the films was analyzed in terms of variation of grain sizes of the films. In this work there was an attempt of preparation of nanostructured CdS thin films by spray pyrolysis method was made. The preliminary results of structural and optical characterization of the films are given

  10. Liquid phase deposition methods monitoring techniques influence for solid substrates and thin metal oxide films properties

    Directory of Open Access Journals (Sweden)

    A.V. Valiulis

    2007-09-01

    Full Text Available Purpose: Liquid phase deposition (LPD method is a useful method to create thin oxide films from aqueous solutions under ambient conditions. Deposition of ceramic layers on polymers is a technological challenge because of polymer sensitivity to chemicals and high temperature processing.Design/methodology/approach: The work attempts to elucidate the role of the substrate during LPD of TiO2 films by using Kapton with different types of surface treatments.Findings: Was found that small differences in pH, temperature, and solution composition can lead to dramatic differences in the film’s crystallinity, adherence, and growth rate. Thin films are very smooth, uniform with small amount of cracks.Research limitations/implications: Independent of technique and substrate, film thicker than a few hundred nm exhibited cracks, attributed to stresses that result during drying of the film.Originality/value: Techniques for monitoring the surface chemistry of the solid substrate and the deposited ceramic film have been developed.

  11. Method to grow pure nanocrystalline diamond films at low temperatures and high deposition rates

    Science.gov (United States)

    Carlisle, John A.; Gruen, Dieter M.; Auciello, Orlando; Xiao, Xingcheng

    2009-07-07

    A method of depositing nanocrystalline diamond film on a substrate at a rate of not less than about 0.2 microns/hour at a substrate temperature less than about 500.degree. C. The method includes seeding the substrate surface with nanocrystalline diamond powder to an areal density of not less than about 10.sup.10sites/cm.sup.2, and contacting the seeded substrate surface with a gas of about 99% by volume of an inert gas other than helium and about 1% by volume of methane or hydrogen and one or more of acetylene, fullerene and anthracene in the presence of a microwave induced plasma while maintaining the substrate temperature less than about 500.degree. C. to deposit nanocrystalline diamond on the seeded substrate surface at a rate not less than about 0.2 microns/hour. Coatings of nanocrystalline diamond with average particle diameters of less than about 20 nanometers can be deposited with thermal budgets of 500.degree. C.-4 hours or less onto a variety of substrates such as MEMS devices.

  12. Zirconia coatings deposited by novel plasma-enhanced aerosol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Miszczak, Sebastian; Pietrzyk, Bozena; Kucharski, Daniel [Institute of Materials Science and Engineering, Lodz University of Technology (Poland)

    2016-05-15

    The sol-gel technique is well known and widely used for manufacturing coatings. An aerosol-gel method is a modification of the classic sol-gel process. Preparation of coatings by this technique involves the formation of an aerosol and its deposition on the coated surfaces, where the aerosol droplets merge into a continuous layer. In this work, an aerosol-gel routine, enhanced with a low-temperature plasma discharge, was used to produce zirconia coatings on different substrates. Low-temperature plasma was used for preactivation of substrate surfaces prior to the sol deposition, and for treatment of deposited layers. The obtained coatings were characterized using optical, electron (SEM), and atomic force (AFM) microscopes, a contact-angle device, a scratch tester, a grazing-incidence X-ray diffractometer (GIXRD), and an infrared spectrometer (FTIR). The results showed a significant influence of substrate plasma pretreatment on the formation and morphology of zirconia thin films. A noticeable effect of low-temperature plasma treatment on the structure and properties of the obtained coatings was also presented. These results allow possible applications of this method for the preparation of zirconia coatings on temperature-sensitive substrates to be predicted. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Low-temperature SiON films deposited by plasma-enhanced atomic layer deposition method using activated silicon precursor

    International Nuclear Information System (INIS)

    It has not been an easy task to deposit SiN at low temperature by conventional plasma-enhanced atomic layer deposition (PE-ALD) since Si organic precursors generally have high activation energy for adsorption of the Si atoms on the Si-N networks. In this work, in order to achieve successful deposition of SiN film at low temperature, the plasma processing steps in the PE-ALD have been modified for easier activation of Si precursors. In this modification, the efficiency of chemisorption of Si precursor has been improved by additional plasma steps after purging of the Si precursor. As the result, the SiN films prepared by the modified PE-ALD processes demonstrated higher purity of Si and N atoms with unwanted impurities such as C and O having below 10 at. % and Si-rich films could be formed consequently. Also, a very high step coverage ratio of 97% was obtained. Furthermore, the process-optimized SiN film showed a permissible charge-trapping capability with a wide memory window of 3.1 V when a capacitor structure was fabricated and measured with an insertion of the SiN film as the charge-trap layer. The modified PE-ALD process using the activated Si precursor would be one of the most practical and promising solutions for SiN deposition with lower thermal budget and higher cost-effectiveness

  14. Low-temperature SiON films deposited by plasma-enhanced atomic layer deposition method using activated silicon precursor

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Sungin; Kim, Jun-Rae; Kim, Seongkyung; Hwang, Cheol Seong; Kim, Hyeong Joon, E-mail: thinfilm@snu.ac.kr [Department of Materials Science and Engineering with Inter-University Semiconductor Research Center (ISRC), Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Ryu, Seung Wook, E-mail: tazryu78@gmail.com [Department of Electrical Engineering, Stanford University, Stanford, California 94305-2311 (United States); Cho, Seongjae [Department of Electronic Engineering and New Technology Component & Material Research Center (NCMRC), Gachon University, Seongnam-si, Gyeonggi-do 13120 (Korea, Republic of)

    2016-01-15

    It has not been an easy task to deposit SiN at low temperature by conventional plasma-enhanced atomic layer deposition (PE-ALD) since Si organic precursors generally have high activation energy for adsorption of the Si atoms on the Si-N networks. In this work, in order to achieve successful deposition of SiN film at low temperature, the plasma processing steps in the PE-ALD have been modified for easier activation of Si precursors. In this modification, the efficiency of chemisorption of Si precursor has been improved by additional plasma steps after purging of the Si precursor. As the result, the SiN films prepared by the modified PE-ALD processes demonstrated higher purity of Si and N atoms with unwanted impurities such as C and O having below 10 at. % and Si-rich films could be formed consequently. Also, a very high step coverage ratio of 97% was obtained. Furthermore, the process-optimized SiN film showed a permissible charge-trapping capability with a wide memory window of 3.1 V when a capacitor structure was fabricated and measured with an insertion of the SiN film as the charge-trap layer. The modified PE-ALD process using the activated Si precursor would be one of the most practical and promising solutions for SiN deposition with lower thermal budget and higher cost-effectiveness.

  15. Optimization of the deposition parameters of DLC coatings with the MCVA method

    Directory of Open Access Journals (Sweden)

    M. Pancielejko

    2012-04-01

    Full Text Available Purpose: The purpose of the present study was to determine the optimal values of selected deposition parameters of diamond-like-carbon coatings (DLC with the modified cathodic vacuum arc (MCVA method which ensure obtaining of their most advantageous properties from the perspective of their application for the coating on high-speed steel tool substrates for woodworking.Design/methodology/approach: An analysis was conducted of the investigations into the influence of the selected deposition parameters of DLC coatings on the accepted optimization criteria with the use of the Taguchi module. Adhesion, hardness and friction wear resistance were accepted as the optimization criteria of DLC coatings for high-speed steel substrates.Findings: It was established on the basis of the statistical analysis of the research results that in order to ensure a high adhesion of DLC coatings to high-speed steel substrates, a thick Cr sublayer (0.3 µm and a DLC coating (1.8 µm is to be used, which is deposited at a high argon pressure (0.25 Pa; no substrate bias (the floating potential is to be used. In order to obtain high hardness and friction wear resistance, higher values of substrate bias voltages (-80 V and a low pressure of argon (0.01 Pa are to be used.Research limitations/implications: To evaluate with more detail the possibility of applying these coatings on tools. I will be kept industrial tests of wearing out tools covered with these DLC coatings.Practical implications: The properties of DLC coatings that are deposited with optimized parameters may indicate the possibility of their application for woodworking or tools for wood-like materials in order to increase their durability.Originality/value: From results of the optimization of selected deposition parameters of DLC on the Taguchi method is possible to appoint coating properties. Depending of the deposition parameters applied, it is possible to obtain DLC coatings in a wide range of hardness (20

  16. Preparation of Fe/Ni-Zn-Cu ferrite stacked films by aerosol deposition method

    International Nuclear Information System (INIS)

    Composite or stacked films composed of Fe and Ni-Zn-Cu ferrite were prepared by aerosol deposition (AD) method, and the relationship between magnetic properties and microstructure was investigated. Aiming to control the microstructure, two aerosol chambers and double nozzles, from which each powder ejected independently, were used in the AD system. With increase in the vibration frequency of Fe aerosol chamber (V Fe) or the deposition time of Fe powder (t Fe), the Fe content in the films increased, which was resulted in the increase of saturation magnetization and permeability. The composite or stacked films also showed relatively high-noise suppression effect (ΔP loss/P in=∼0.58). Microstructural analyses revealed that the stacked film consisted of Fe and ferrite layers with thickness of 1 and 15 μm, respectively

  17. Investigation on single walled carbon nanotube thin films deposited by Langmuir Blodgett method

    International Nuclear Information System (INIS)

    Langmuir Blodgett is a technique to deposit a homogeneous film with a fine control over thickness and molecular organization. Thin films of functionalized SWCNTs have been prepared by Langmuir Blodgett method. The good surface spreading properties of SWCNTs at air/water interface are indicated by surface pressure-area isotherm and the monolayer formed on water surface is transferred onto the quartz substrate by vertical dipping. A multilayer film is thus obtained in a layer by layer manner. The film is characterized by Atomic Force Microscope (AFM), UV-Vis-NIR spectroscopy and FTIR.AFM shows the surface morphology of the deposited film. UV-Vis-NIR spectroscopy shows the characteristic peaks of semiconducting SWCNTs. The uniformity of LB film can be used further in understanding the optical and electrical behavior of these materials

  18. Investigation on single walled carbon nanotube thin films deposited by Langmuir Blodgett method

    Energy Technology Data Exchange (ETDEWEB)

    Vishalli,, E-mail: vishalli-2008@yahoo.com; Dharamvir, Keya [Department of Physics, Panjab University, Chandigarh (India); Kaur, Ramneek; Raina, K. K. [Materials Research Laboratory, School of Physics and Materials Science, Thapar University, Patiala (India)

    2015-05-15

    Langmuir Blodgett is a technique to deposit a homogeneous film with a fine control over thickness and molecular organization. Thin films of functionalized SWCNTs have been prepared by Langmuir Blodgett method. The good surface spreading properties of SWCNTs at air/water interface are indicated by surface pressure-area isotherm and the monolayer formed on water surface is transferred onto the quartz substrate by vertical dipping. A multilayer film is thus obtained in a layer by layer manner. The film is characterized by Atomic Force Microscope (AFM), UV-Vis-NIR spectroscopy and FTIR.AFM shows the surface morphology of the deposited film. UV-Vis-NIR spectroscopy shows the characteristic peaks of semiconducting SWCNTs. The uniformity of LB film can be used further in understanding the optical and electrical behavior of these materials.

  19. ANOMALOUS ELECTRODEPOSITION OF Fe-Ni ALLOY COATING FROM SIMPLE AND COMPLEX BATHS AND ITS MAGNETIC PROPERTY

    Directory of Open Access Journals (Sweden)

    M A Islam

    2010-03-01

    Full Text Available Electrodeposition of Fe-Ni thin films has been carried on copper substrate under various electrodeposition conditions from two simple and six complex baths. Sulfate baths composing of NiSO4. 7H2O, FeSO4.7H2O, H3BO3 and Na2SO4KEYWORDS: Anomalous Electrodeposition, Fe-Ni Coating, Complexing agent, Current Density, Magnetic Property. 1. INTRODUCTION Alloy electrodeposition technologies can extend tremendously the potential of electrochemical deposition processes to provide coatings that require unique mechanical, chemical and physical properties [1]. There has been a great research interest in the development and characterization of iron-nickel (Fe-Ni thin films due to their operational capacity, economic interest, magnetic and other properties [2]. Due to their unique low coefficient of thermal expansion (CTE and soft magnetic properties, Fe-Ni alloys have been used in industrial applications for over 100 years [3]. Typical examples of applications that are based on the low CTE of Fe-Ni alloys include: thermostatic bimetals, glass sealing, integrated circuit packaging, cathode ray tube, shadow masks, membranes for liquid natural gas tankers; applications based on the soft magnetic properties include: read-write heads for magnetic storage, magnetic actuators, magnetic shielding, high performance transformer cores. comprise the simple baths whereas complex baths were prepared by adding ascorbic acid, saccharin and citric acid in simple baths. The effect of bath composition, pH and applied current density on coating appearance, composition, morphology and magnetic property were studied. Wet chemical analysis technique was used to analyze the coating composition whereas SEM and VSM were used to study the deposit morphology and magnetic property respectively. Addition of complexing agents in plating baths suppressed the anomalous nature of Fe-Ni alloy electrodeposition. Coatings obtained from simple baths were characterized by coarse grained non

  20. Bath vaccination of rainbow trout against yersiniosis

    DEFF Research Database (Denmark)

    Raida, Martin Kristian; Buchmann, Kurt

    2007-01-01

    Studies have been conducted on the temperature-dependent effect of bath vaccination of rainbow trout against Yersinia ruckeri O1. Protection of rainbow trout fry against challenge, following bath vaccination with a bacterin of Yersinia ruckeri O1, the bacterial pathogen causing enteric red mouth...... disease (ERM), was investigated at 5, 15 and 25° C. Rainbow trout fry were kept at controlled temperatures for two month before they were immersed in a commercial Yersinia ruckeri O1 bacterin for 10 minutes. Control groups were sham vaccinated using pure water. Fish were challenged with Yersinia ruckeri O......1 one and two month post vaccination at the three temperatures. Protection of vaccinated fish was seen one and two month post vaccination in rainbow trout reared at 15° C. There was no effect of vaccination in rainbow trout reared at 5 and 25° C. Spleen tissue was sampled from 5 vaccinated and 5...

  1. Oscillons in a hot heat bath

    CERN Document Server

    Gleiser, Marcello; Gleiser, Marcelo; Haas, Richard

    1996-01-01

    In models of real scalar fields with degenerate double-well potentials, spherically symmetric, large amplitude fluctuations away from the vacuum are unstable. Neglecting interactions with an external environment, the evolution of such configurations may entail the development of an oscillon; a localized, non-singular, time-dependent configuration which is {\\it extremely} long-lived. In the present study we investigate numerically how the coupling to a heat bath influences the evolution of collapsing bubbles. We show that the existence and lifetime of the oscillon stage is extremely sensitive to how strongly the field is coupled to the heat bath. By modeling the coupling through a Markovian Langevin equation with viscosity coefficient \\gamma, we find that for \\gamma \\gtrsim 5 \\times 10^{-4}m, where m is the typical mass scale in the model, oscillons are not observed.

  2. Effect of a new condensation product on electrodeposition of zinc from a non-cyanide bath

    Indian Academy of Sciences (India)

    Ganesha Achary; H P Sachin; Y Arthoba Naik; T V Venkatesha

    2007-06-01

    Zinc electrodeposition from sulphate chloride bath was carried out in presence of condensation product formed between chitosan and veratraldehyde. The bath constituents and operating parameters such as pH, temperature and current density were optimized through Hull cell experiments. Current efficiency and throwing power were measured. Polarization study revealed high shift of potential towards negative direction in the presence of addition agents. Corrosion resistance test revealed good protection of base metal by zinc coating obtained from developed electrolyte. SEM photomicrographs showed fine-grained deposit in the presence of condensation product. The IR spectrum of the deposit showed inclusion of the condensation product during electroplating. The consumption of brightener in the lab scale was 5 mLL-1 for 1000 amp-h.

  3. Quantum impurities in channel mixing baths

    Science.gov (United States)

    Liu, Jin-Guo; Wang, Da; Wang, Qiang-Hua

    2016-01-01

    We propose a versatile strategy for numerical renormalization group (NRG) solution of general channel-mixing Kondo and Anderson impurity models beyond previous reach. We illustrate the strategy by investigating the quantum phase transitions in models of Anderson impurities coupled to s - and d -wave superconducting baths. We discuss the effects of nontrivial channel-mixing in such models. Our strategy opens the door toward broad applications of NRG as impurity solver in cluster dynamical mean field theory for strongly correlated electron systems.

  4. Leidenfrost drops on liquid baths: theory

    Science.gov (United States)

    Sobac, Benjamin; Rednikov, Alexei; Maquet, Laurent; Darbois-Texier, Baptiste; Duchesne, Alexis; Brandenbourger, Martin; Dorbolo, Stéphane; Colinet, Pierre

    2015-11-01

    It is well known that a liquid drop released over a very hot surface generally does not contact the surface nor boils but rather levitates over a thin vapor film generated by its own evaporation (Leidenfrost effect). In particular, the case of a hot (and flat) solid substrate has been extensively studied in recent years. In contrast, we here focus on Leidenfrost drops over a superheated liquid bath, addressing the problem theoretically and comparing our predictions with experimental results, detailed in a separate talk. We predict the geometry of the drop and of the liquid bath, based on the hydrostatic Young-Laplace and lubrication equations. A good agreement is observed with the available experimental data concerning the deformation of the liquid bath. The modeling also yields a rather complete insight into the shape of the drop. As in the case of a solid substrate, the vapor layer generally appears to be composed of a vapor pocket surrounded by a circular neck. The influences of the superheat and of the drop size are parametrically investigated. A number of scaling laws are established. Unlike the case of a solid substrate, no chimney instability was found in the range of drop size studied.

  5. Methods of trend analysis for atmospheric deposition into the sea; Trendabschaetzung atmosphaerischer Stoffeintraege in die Meere

    Energy Technology Data Exchange (ETDEWEB)

    Kuhbier, P.; Uhlig, S.; Fraenzel, A.; Schick, N.

    2001-02-01

    In order to prevent a considerable deterioration in the detectability of time trends in depositions as a result of fluctuations in the climatic conditions, an adjustment whereby the entry data are recomputed into an 'average' weather conditions appears inevitable. Accordingly, the aim of the project was the development of a concept for the adjustment and trend analysis of depositions including the examination of a number of statistical methods, with the form of the adjustment being the focus of the work. As per this concept, adjustment takes place on the basis of monthly data. The adjusted depositions are then summarized before trend analysis follows on the basis of these adjusted annual depositions. Finally the trend sensitivity of the method is examined as part of a power analysis. A data bank-based software was developed as part of the project in order to carry out the extensive calculations. With this software, the most diverse trend analysis and adjustment methods were realised and tested. It may first of all be noted that the evaluations conducted confirm the practicality of the adjustment concept developed, with various methods being deployable for fixing the adjustment parameter according to the measurement site and parameter concerned. The average reduction in the scatter of the annual depositions vis-'a-vis the non-adjusted depositions is over 40%. This amounts to a substantial improvement in trend sensitivity and makes for a clear reduction in the length of the requisite time series. However, there is no method among the adjustment methods investigated which, considering all the prerequisites, may be regarded as being superior to the other methods. The question as to which form of adjustment yields the most favourable results depends on the pollutants and the site-related conditions in each case. (orig.) [German] Um zu verhindern, dass durch klimatische Schwankungen die Nachweisbarkeit zeitlicher Trends in Depositionen wesentlich

  6. Protecting coherence by reservoir engineering: intense bath disturbance

    Science.gov (United States)

    Zhou, Zixian; Lü, Zhiguo; Zheng, Hang

    2016-08-01

    We put forward a scheme based on reservoir engineering to protect quantum coherence from leaking to bath, in which we intensely disturb the Lorentzian bath by N harmonic oscillators. We show that the intense disturbance changes the spectrum of the bath and reduces the qubit-bath interaction. Furthermore, we give the exact time evolution with the Lorentzian spectrum by a master equation and calculate the concurrence and survival probability of the qubits to demonstrate the effect of the intense bath disturbance on the protection of coherence. Meanwhile, we reveal the dynamic effects of counter-rotating interaction on the qubits as compared to the results of the rotating-wave approximation.

  7. Characterization of ZnS thin films synthesized through a non-toxic precursors chemical bath

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, C.A. [Department of Materials Engineering, Faculty of Engineering, University of Concepción, Edmundo Larenas 270, Concepción 4070409 (Chile); Sandoval-Paz, M.G. [Department of Physics, Faculty of Physics and Mathematics, University of Concepción, Concepción (Chile); Cabello, G. [Department of Basic Sciences, Faculty of Sciences, University of Bío-Bío, Campus Fernando May, Chillán (Chile); Flores, M.; Fernández, H. [Department of Physics, Faculty of Physics and Mathematics, University of Chile, Beauchef 850, Santiago (Chile); Carrasco, C., E-mail: ccarrascoc@udec.cl [Department of Materials Engineering, Faculty of Engineering, University of Concepción, Edmundo Larenas 270, Concepción 4070409 (Chile)

    2014-12-15

    Highlights: • High quality ZnS thin films have been deposited by chemical bath deposition technique from a non-toxic precursor’s solution. • Nanocrystalline ZnS thin films with large band gap energy were synthesized without using ammonia. • Evidence that the growing of the thin films is carried out by means of hydroxide mechanism was found. • The properties of these ZnS thin films are similar and in some cases better than the corresponding ones produced using toxic precursors such as ammonia. - Abstract: In solar cells, ZnS window layer deposited by chemical bath technique can reach the highest conversion efficiency; however, precursors used in the process normally are materials highly volatile, toxic and harmful to the environment and health (typically ammonia and hydrazine). In this work the characterization of ZnS thin films deposited by chemical bath in a non-toxic alkaline solution is reported. The effect of deposition technique (growth in several times) on the properties of the ZnS thin film was studied. The films exhibited a high percentage of optical transmission (greater than 80%); as the deposition time increased a decreasing in the band gap values from 3.83 eV to 3.71 eV was observed. From chemical analysis, the presence of ZnS and Zn(OH){sub 2} was identified and X-ray diffraction patterns exhibited a clear peak corresponding to ZnS hexagonal phase (1 0 3) plane, which was confirmed by electron diffraction patterns. From morphological studies, compact samples with well-defined particles, low roughness, homogeneous and pinhole-free in the surface were observed. From obtained results, it is evident that deposits of ZnS–CBD using a non-toxic solution are suitable as window layer for TFSC.

  8. Characterization of ZnS thin films synthesized through a non-toxic precursors chemical bath

    International Nuclear Information System (INIS)

    Highlights: • High quality ZnS thin films have been deposited by chemical bath deposition technique from a non-toxic precursor’s solution. • Nanocrystalline ZnS thin films with large band gap energy were synthesized without using ammonia. • Evidence that the growing of the thin films is carried out by means of hydroxide mechanism was found. • The properties of these ZnS thin films are similar and in some cases better than the corresponding ones produced using toxic precursors such as ammonia. - Abstract: In solar cells, ZnS window layer deposited by chemical bath technique can reach the highest conversion efficiency; however, precursors used in the process normally are materials highly volatile, toxic and harmful to the environment and health (typically ammonia and hydrazine). In this work the characterization of ZnS thin films deposited by chemical bath in a non-toxic alkaline solution is reported. The effect of deposition technique (growth in several times) on the properties of the ZnS thin film was studied. The films exhibited a high percentage of optical transmission (greater than 80%); as the deposition time increased a decreasing in the band gap values from 3.83 eV to 3.71 eV was observed. From chemical analysis, the presence of ZnS and Zn(OH)2 was identified and X-ray diffraction patterns exhibited a clear peak corresponding to ZnS hexagonal phase (1 0 3) plane, which was confirmed by electron diffraction patterns. From morphological studies, compact samples with well-defined particles, low roughness, homogeneous and pinhole-free in the surface were observed. From obtained results, it is evident that deposits of ZnS–CBD using a non-toxic solution are suitable as window layer for TFSC

  9. Si-modified aluminide coating deposited on TiAlNb alloy by slurry method

    Directory of Open Access Journals (Sweden)

    T. Tetsui

    2007-03-01

    Full Text Available Purpose: Increasing oxidation resistance of TiAl intermetallic alloy by depositing aluminide coating by slurry method and investigation of the influence of Si addition on structure of obtained coatings.Design/methodology/approach: The structure of coatings was investigated by light scanning microscopy. The chemical composition of coatings was investigated by EDS method and XRD phase analysis was used as well.Findings: The investigation has showed that the thickness of the coatings was 40 μm. The structure of the silicon-modified aluminide coatings is as follows:• the outer zone consisting of TiAl3 phase and titanium silicides,• the middle zone consisting of columnar titanium silicides in phase TiAl3 matrix,• the inner zone consisting of TiAl2 phase.The analysis of the average chemical composition of the outer zone exhibited the gradual increase of the silicon content along with the increase of this element in the slurry.Practical implications: The slurry method can be applied in aerospace and automotive industry as low-cost technology of producing of aluminide coatings on intermetallics.Originality/value: New method of depositing of Si modified aluminide coatings on TiAl alloys.

  10. Preparation of various shape superconducting ceramics with various substrates by electrophoretic deposition method

    International Nuclear Information System (INIS)

    According to the electrophoretic deposition method, oxide particles can be strongly coated on various shape and size substrates which have a conductive surface. The YBCO superconducting ceramics wires and plates were prepared by using this method. After the fine powder of superconductive oxides was deposited on a Ag wire substrate, the wire was heat-treated at 940 C for 1h. Then the coated material was removed and pulverized, and analyzed by the X-ray diffraction method. The spectra coincided completely with that of YBa2Cu3O7-δ. The diamagnetic shift started at 93K. Moreover, the resistivity of the superconducting oxides coated Ag wire changed from 0.8X10-6 to 10-8 ω·cm (Current:10mA) at about 90K. In the case of nonconductive substrate, e.g., an Al2O3 ceramics plate, it was coated with metal, e.g., silver, by the electroless plating method. Then it was treated as stated above. This also showed completely the YBCO superconductive characteristics

  11. National implementation of the UNECE convention on long-range transboundary air pollution (effects). Pt. 1. Deposition loads: methods, modelling and mapping results, trends

    Energy Technology Data Exchange (ETDEWEB)

    Gauger, Thomas [Federal Agricultural Research Centre, Braunschweig (DE). Inst. of Agroecology (FAL-AOE); Stuttgart Univ. (Germany). Inst. of Navigation; Haenel, Hans-Dieter; Roesemann, Claus [Federal Agricultural Research Centre, Braunschweig (DE). Inst. of Agroecology (FAL-AOE)] (and others)

    2008-09-15

    The report on the implementation of the UNECE convention on long-range transboundary air pollution Pt.1, deposition loads (methods, modeling and mapping results, trends) includes the following chapters: Introduction, deposition on air pollutants used for the input for critical loads in exceeding calculations, methods applied for mapping total deposition loads, mapping wet deposition, wet deposition mapping results, mapping dry deposition, dry deposition mapping results, cloud and fog mapping results, total deposition mapping results, modeling the air concentration of acidifying components and heavy metals, agricultural emissions of acidifying and eutrophying species.

  12. Pressure distribution evaluation of different filling methods for deposition of powders in dies: Measurement and modeling

    Science.gov (United States)

    Sayyar Roudsari, Saed

    The aim of this research was to measure, analyze, and model the pressure distribution characteristics of powder deposition into rectangular and circular shallow dies using four filling methods. The feed shoe, the rotational rainy, the point feed, and the pneumatic filling methods were used to investigate the deposition characteristics into shallow dies. In order to evaluate the pressure distribution during filling of shallow dies, factors influencing powder deposition were studied. The factors included particle size and shape, particle size distribution, feed shoe speed, and tube cross-section (in case of feed shoe filling) and deposition rates (in case of rotational rainy, point feed, and pneumatic filling). A battery powder mixture (BPM) and microcrystalline cellulose (Avicel PH102) with median size of 84 and 600mum, respectively, were used to fill a shallow rectangular die 32x30 mm and 6.5 mm deep and a shallow circular die 35 mm in diameter and 6.5 mm deep. The second generation of pressure deposition tester (PDT-II) with circular and square feed shoe tube cross-sections was used to measure the two powders' pressure distribution characteristics. An innovative rotational rainy filling device was designed and fabricated. This versatile device can be used to measure filling characteristics at different rotational speeds (1-10 rpm) for various powders. The point feed (funnel fill) method with a funnel of 30 mm inlet diameter and 4.2 mm outlet diameter opening was used to fill the rectangular and circular shallow dies. The pneumatic filling method was designed and fabricated to fill the die using air as the conveying medium in a rectangular cross-section tube. The pneumatic filling device was limited to using only the BPM powder, since the Avicel powder generated substantial quantity of airborne dust during the test. Symmetry analysis, variance metrics, and uniformity analysis were used to quantify the deposition characteristics. The results showed that: (1) filled

  13. Influence of deposition rate on the properties of ZrO2 thin films prepared in electron beam evaporation method

    Institute of Scientific and Technical Information of China (English)

    Dongping Zhang(张东平); Meiqiong Zhan(占美琼); Ming Fang(方明); Hongbo He(贺洪波); Jianda Shao(邵建达); Zhengxiu Fan(范正修)

    2004-01-01

    ZrO2 thin films were prepared in electron beam thermal evaporation method. And the deposition rate changed from 1.3 to 6.3 nm/s in our study. X-ray diffractometer and spectrophotometer were employed to characterize the films. X-ray diffraction (XRD) spectra pattern shows that films structure changed from amorphous to polycrystalline with deposition rate increasing. The results indicate that internal stresses of the films are compressive in most case. Thin films deposited in our study are inhomogeneous, and the inhomogeneity is enhanced with the deposition rate increasing.

  14. Improvements in packages comprising eye baths and eye lotions

    International Nuclear Information System (INIS)

    A new packaged assembly comprising an eye bath and eye lotion is described. The eye bath is shaped for application to the eye; it has a rim portion formed so as to provide a smooth skin-contacting surface and is sealed to a lid at a position removed from the skin-contacting area. The eye bath is formed in a sterile condition and aseptically filled to an appropriate level with eye lotion by a blow moulding process. The eye bath and its contents are sterilised after sealing by radioactive sterilsation. This packaged assembly is an improvement over previous eye bath assemblies in that it allows the eye bath to be used in a sterile form. It is also more comfortable and convenient to use than other sterile forms of eye treatment such as eye drops or jets of eye wash. Furthermore, bathing the eye provides a more prolonged treatment. (U.K.)

  15. Resummed memory kernels in generalized system-bath master equations

    International Nuclear Information System (INIS)

    Generalized master equations provide a concise formalism for studying reduced population dynamics. Usually, these master equations require a perturbative expansion of the memory kernels governing the dynamics; in order to prevent divergences, these expansions must be resummed. Resummation techniques of perturbation series are ubiquitous in physics, but they have not been readily studied for the time-dependent memory kernels used in generalized master equations. In this paper, we present a comparison of different resummation techniques for such memory kernels up to fourth order. We study specifically the spin-boson Hamiltonian as a model system bath Hamiltonian, treating the diabatic coupling between the two states as a perturbation. A novel derivation of the fourth-order memory kernel for the spin-boson problem is presented; then, the second- and fourth-order kernels are evaluated numerically for a variety of spin-boson parameter regimes. We find that resumming the kernels through fourth order using a Padé approximant results in divergent populations in the strong electronic coupling regime due to a singularity introduced by the nature of the resummation, and thus recommend a non-divergent exponential resummation (the “Landau-Zener resummation” of previous work). The inclusion of fourth-order effects in a Landau-Zener-resummed kernel is shown to improve both the dephasing rate and the obedience of detailed balance over simpler prescriptions like the non-interacting blip approximation, showing a relatively quick convergence on the exact answer. The results suggest that including higher-order contributions to the memory kernel of a generalized master equation and performing an appropriate resummation can provide a numerically-exact solution to system-bath dynamics for a general spectral density, opening the way to a new class of methods for treating system-bath dynamics

  16. Dependence of ZnO-based dye-sensitized solar cell characteristics on the layer deposition method

    Indian Academy of Sciences (India)

    Anca Dumbrava; Gabriel Prodan; Adrian Georgescu; Florin Moscalu

    2015-02-01

    The selection of a proper method for the semiconductor layer deposition is an important requirement towards a high efficiency for dye-sensitized solar cells (DSSCs). We compared three techniques for deposition of the semiconductor thin layer in ZnO-based DSSCs, in order to determine the dependence between the deposition method, the ZnO film properties and finally the DSSCs characteristics. For this purpose, we varied the method used for deposition of the semiconductor film and we replaced ZnO with Al-doped ZnO. The nanostructured films morphology was analysed by transmission electron microscopy, high-resolution transmission electron microscopy and selected area electron diffraction. The optical properties were examined by UV–visible spectroscopy and the bandgap energies were calculated using the Tauc equation. The higher fill factor value was registered for DSSCs based on the ZnO film obtained by electrochemical method, but the higher efficiency was registered for doctorblading method.

  17. Controllable synthesis of highly ordered Ag nanorod arrays by chemical deposition method

    International Nuclear Information System (INIS)

    Highly ordered Ag nanorod arrays were successfully fabricated using a simple chemical deposition method with the assistance of porous alumina membrane (PAM) template. The products were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). Ag+ ions in the PAM nanochannels were reduced by acetaldehyde reagent and resulting in the formation of rod array structures. It is found that the diameter of the Ag nanorods is determined by the PAM template, and the length of the Ag nanorods is depended on the reaction temperature. The growth mechanism of the Ag nanorod arrays is investigated in the study.

  18. Optical Properties of a-SiC:H Films Deposited by Glowdischarge Methods

    Directory of Open Access Journals (Sweden)

    Lusitra Munisa

    2003-12-01

    Full Text Available he optical properties of amorphous silicon carbon films deposited by glowdischarge method have been studied using ultra violet-visible (uv-vis spectroscopy. The refractive index was calculated by Swanepoel’s formula using transmission data then followed by numerical simulation. The films density tends to decrease with increasing carbon content. The widening of the optical gap by increasing carbon content indicates the enhancement of film’s transparence. Both real and imaginary parts of the dielectric constant show variation in magnitude as the carbon content increase.

  19. Deposition and characterization of diamond thin films by HF-CVD method

    International Nuclear Information System (INIS)

    Effect of reactor pressure and methane gas concentration on the growth of diamond films on Si (100) substrate by hot filament chemical vapor deposition (HFCVD) method has been studied in this work. Raman spectroscopy measurements of the obtained film confirmed the formation of a mixture of micro and nanocrystalline diamond by showing peaks at 1140 and 1334 cm−1 wave shifts. Scanning electron microscopy results showed formation of well defined faceted diamond grains of 100–500 nm size. Average roughness of the films measured by a surface profilometer was in the range of 40–60 nm

  20. Self-organized synthesis of silver dendritic nanostructures via an electroless metal deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, T. [Nanjing University, Department of Physics, Nanjing (China); City University of Hong Kong, Department of Physics and Materials Science, Kowloon, Hong Kong (China); Wu, X.L. [Nanjing University, Department of Physics, Nanjing (China); Mei, Y.F.; Chu, P.K.; Siu, G.G. [City University of Hong Kong, Department of Physics and Materials Science, Kowloon, Hong Kong (China)

    2005-09-01

    Unique silver dendritic nanostructures, with stems, branches, and leaves, were synthesized with self-organization via a simple electroless metal deposition method in a conventional autoclave containing aqueous HF and AgNO{sub 3} solution. Their growth mechanisms are discussed in detail on the basis of a self-assembled localized microscopic electrochemical cell model. A process of diffusion-limited aggregation is suggested for the formation of the silver dendritic nanostructures. This nanostructured material is of great potential to be building blocks for assembling mini-functional devices of the next generation. (orig.)

  1. Direct liquid deposition calibration method for trace cyclotrimethylenetrinitramine using thermal desorption instrumentation.

    Science.gov (United States)

    Field, Christopher R; Lubrano, Adam L; Rogers, Duane A; Giordano, Braden C; Collins, Greg E

    2013-03-22

    A simple method for establishing calibration curves with sorbent-filled thermal desorption tubes has been demonstrated for nitroaromatic and nitramine vapor samples using a thermal desorption system with a cooled inlet system (TDS-CIS), which was coupled to a gas chromatograph (GC) with an electron capture detector (ECD). The method relies upon the direct liquid deposition of standard solutions onto the glass frit at the head of sorbent-filled thermal desorption tubes. Linear calibration results and ideal system conditions for the TDS-CIS-GC-ECD were established for mixtures containing both cyclotrimethylenetrinitramine, a.k.a. RDX, and 2,4,6-trinitrotoluene (TNT). Because of the chemical characteristics of RDX, a higher TDS-CIS flow rate relative to the optimized approach for TNT was required for efficient RDX desorption. Simultaneous quantitation of TNT and RDX using the direct liquid deposition method with optimized instrumentation parameters for RDX were compared to results from a standard split/splitless GC inlet and a CIS. PMID:23415141

  2. Cost estimation for recovery process of uranium from seawater by deposited slurry method

    International Nuclear Information System (INIS)

    The recovery cost of uranium from seawater by the deposited slurry method has been estimated on the basis of laboratory scale experiments, theoretical computations and available data. The extent of adsorption and the sea depth were decided by the rate of adsorption of uranium on the adsorbents in the sea in consideration of the combined effect of the liquid side resistance and intraparticle diffusion. The optimization concerning the loss of adsorbents in the sea and the installations for collecting the uranium rich deposited slurry on the sea bottom was discussed with the direct search method for nonlinear problems. The cost for the recovery of sodium bicarbonate used for the elution of uranium from adsorbents was obtained by small scale experiments using an electrodialyzer. An intermittent reversal of the electric current enables the recovery of eluant from the slurry. The costs of the centrifugation and thickening of the desalination of the slurry were discussed. The cost of the ion exchange membrane method for the secondary condensation of uranium was estimated by experiments concerning the adsorption and elution of uranium. The total recovery costs of uranium were calculated with various economical restrictions. (author)

  3. A colloidal crystal double-heterostructure fabricated with the angle controlled inclined deposition method

    Institute of Scientific and Technical Information of China (English)

    Chen Ze-Feng; Xiong Yu-Ying; Han Peng; Chen Yi-Hang; Xiao Hua

    2012-01-01

    A self-assembly method,named the angle controlled inclined deposition method,is developed for fabricating wellordered silica and polystyrene colloidal crystals.A high-quality colloidal crystal with a flat and uniform surface over a large area can be produced rapidly using a minute quantity of suspension and without any additional equipment.By controlling the inclined angle,we can fabricate colloidal crystals with diverse numbers of layers.A colloidal crystal double-heterostructure (composed of three different colloidal photonic crystals) can be rapidly fabricated with this method.Both experimental and simulation results show that the photonic band gap of the double-heterostructure is not a simple superposition of that of the compositional colloidal crystals along the stacking direction.

  4. Controlling of morphology and electrocatalytic properties of cobalt oxide nanostructures prepared by potentiodynamic deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Hallaj, Rahman [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Akhtari, Keivan [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Research Center for Nanotechnology, University of Kurdistan, P.O.Box 416, Sanandaj (Iran, Islamic Republic of); Salimi, Abdollah, E-mail: absalimi@uok.ac.ir [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Research Center for Nanotechnology, University of Kurdistan, P.O.Box 416, Sanandaj (Iran, Islamic Republic of); Soltanian, Saied [Department of Physics, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of)

    2013-07-01

    Electrodeposited cobalt oxide nanostructures were prepared by Repetitive Triangular Potential Scans (RTPS) as a simple, remarkably fast and scalable potentiodynamic method. Electrochemical deposition of cobalt oxide nanostructures onto GC electrode was performed from aqueous Co(NO{sub 3}){sub 2}, (pH 6) solution using cyclic voltammetry method. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to characterize the morphology of fabricated nanostructures. The evaluation of electrochemical properties of deposited films was performed using cyclic voltametry (CV) and impedance spectroscopy (IS) techniques. The analysis of the experimental data clearly showed that the variations of potential scanning ranges during deposition process have drastic effects on the geometry, chemical structure and particle size of cobalt oxide nanoparticles. In addition, the electrochemical and electrocatalytic properties of prepared nanostructures can be controlled through applying different potential windows in electrodeposition process. The imaging and voltammetric studies suggested to the existence of at least three different shapes of cobalt-oxide nanostructures in various potential windows applied for electrodeposition. With enlarging the applied potential window, the spherical-like cobalt oxide nanoparticles with particles sizes about 30–50 nm changed to the grain-like structures (30 nm × 80 nm) and then to the worm-like cobalt oxide nanostructures with 30 nm diameter and 200–400 nm in length. Furthermore, the roughness of the prepared nanostructures increased with increasing positive potential window. The GC electrodes modified with cobalt oxide nanostructures shows excellent electrocatalytic activity toward H{sub 2}O{sub 2} and As (III) oxidation. The electrocatalytic activity of cobalt oxide nanostructures prepared at more positive potential window toward hydrogen peroxide oxidation was increased, while for As(III) oxidation the electrocatalytic

  5. Preparation Of Deposited Sediment Sample By Casting Method For Environmental Study

    International Nuclear Information System (INIS)

    The preparation of deposited sediment sample by castingmethod for environmental study has been carried out. This method comprises separation of size fraction and casting process. The deposited sediment samples were wet sieved to separate the size fraction of >500 mum, (250-500) mum, (125-250) mum and (63-125) mum and settling procedures were followed for the separation of (40-63) mum, (20-40) mum, (10-20) mum and oC, ashed at 450oC, respectively. In the casting process of sample, it was used polyester rapid cure resin and methyl ethyl ketone peroxide (MEKP) hardener. The moulded sediment sample was poured onto caster, allow for 60 hours long. The aim of this method is to get the casted sample which can be used effectively, efficiently and to be avoided from contamination of each other samples. Before casting, samples were grinded up to be fine. The result shows that casting product is ready to be used for natural radionuclide analysis

  6. System and method for the mitigation of paraffin wax deposition from crude oil by using ultrasonic waves

    Science.gov (United States)

    Towler, Brian F.

    2007-09-04

    A method for mitigating the deposition of wax on production tubing walls. The method comprises positioning at least one ultrasonic frequency generating device adjacent the production tubing walls and producing at least one ultrasonic frequency thereby disintegrating the wax and inhibiting the wax from attaching to the production tubing walls. A system for mitigating the deposition of wax on production tubing walls is also provided.

  7. Preparation and characterisation of nearly stoichiometric CdTe films from a non-aqueous electrodeposition bath

    Science.gov (United States)

    Gore, R. B.; Pandey, Rajendra Kumar; Kumar, S. R.

    1991-06-01

    The cathodic polarisation characteristics and the growth behaviour of CdTe films in an ethylene-glycol-based bath have been studied. Conditions favouring stoichiometric deposition have been examined. The influence of the processing variables on the film properties has also been discussed with the help of the XRD, SEM and XPS studies. It has been shown that the films deposited potentiostatically at -0.8 V are stoichiometric and single phase.

  8. Radiotracer method for quantifying the amount of platinum and rhodium deposited in automotive catalytic converters

    International Nuclear Information System (INIS)

    Radiotracer methods have been developed to quantify the amount of platinum and rhodium deposited on automotive catalytic converters as a function of production conditions. In particular, this study determined the effects of selective adsorption and evaporation processes on the aqueous impregnation of converters with platinum group metal salts. The radiotracers used in this study, 191Pt and 105Rh, were produced by thermal neutron activation of Pt and Ru. Chemical processing was performed to remove undesired radioactive products and to ensure that each tracer was in its appropriate chemical state. This radiotracer method has been shown to be capable of measuring the platinum and rhodium loading on an entire substrate with a precision better than ±0.5%. At this precision level, the influence of selective adsorption and evaporation were determined

  9. Methods for shifting the pattern of energy deposition with a MAPA

    International Nuclear Information System (INIS)

    In earlier work the authors observed local heating in bone when an amputated human leg was treated with a MAPA. For this reason we have experimentally compared several methods for controlling the pattern of energy deposition. These methods include radial displacement of the phantom relative to the MAPA, adjusting phase and magnitude of the currents in the dipole elements, and the use of dielectric spacers between the bolus and parts of the phantom. Cylindrical homogeneous muscle-phantoms have been used in these tests. Both theory and experiments show that greater displacement of the pattern can be obtained using phase-shifting than is possible with radial displacement of the phantom. Dielectric spacers act as a shield by decoupling the phantom from the MAPA. The dielectric spacers are simple to use and give results that are stable and easy to predict

  10. Development of polishing methods for Chemical Vapor Deposited Silicon Carbide mirrors for synchrotron radiation

    International Nuclear Information System (INIS)

    Material properties of Chemical Vapor Deposited Silicon Carbide (CVD SiC) make it ideal for use in mirrors for synchrotron radiation experiments. We developed methods to grind and polish flat samples of CVD SiC down to measured surface roughness values as low as 1.1 Angstroms rms. We describe the processing details, including observations we made during trial runs with alternative processing recipes. We conclude that pitch polishing using progressively finer diamond abrasive, augmented with specific water based lubricants and additives, produces superior results. Using methods based on these results, a cylindrical and a toroidal mirror, each about 100 x 300mm, were respectively finished by Continental Optical and Frank Cooke, Incorporated. WYCO Interferometry shows these mirrors have surface roughness less than 5.7 Angstroms rms. These mirrors have been installed on the LLNL/UC X-ray Calibration and Standards Facility at the Stanford Synthrotron Radiation Laboratory

  11. Interference method for monitoring the refractive index and the thickness of transparent films during deposition

    Science.gov (United States)

    Alius, H.; Schmidt, R.

    1990-04-01

    An interferometric method is described for simultaneous measurement of the refractive index and the thickness of transparent isotropic films during the deposition process. Two laser beams are focused impinging at two different angles onto the film. The intensity of the beams reflected from the growing film shows minima and maxima, which are counted and evaluated to determine the refractive index n and the thickness d of the film in the range of some 100 nm up to several micrometers using 633-nm laser light. n and d can be determined within an accuracy better than 1%, if the thickness is larger than three times the vacuum wavelength of the laser. The measurements are well in accordance with calculations of the intensity modulation. The method can easily be extended to multilayer systems.

  12. The assessment of spatial correlation between location of deposits and faults using geostatistical methods: case study, Yazd province

    Directory of Open Access Journals (Sweden)

    Mostafa Dehghani Ahmadabad

    2013-10-01

    Full Text Available Determining the promising area for ore deposits is one of the most important steps of prospecting in regional scales. There are many different methods for identifying these areas including geochemical and geophysical methods, remote sensing and sophisticated statistical methods. Based on the theory of spatial relations between the dispersion pattern of ore deposits and metallogenic provinces, mineralization belts, faults and structural factors, some new interpretative methods can be proposed in the preliminary exploration phase of the potential areas. In this study, the geostatistical methods were used, where the spatial location of faults and known metallic deposits were considered as the primary source of data to obtain their correlation (case study of metallic deposits in Yazd province. The research was performed on 807 major and minor faults and 76 metallic deposits, mainly from hydrothermal origins. The data was arranged in ArcViewGIS software environment. The geostatistical analysis was performed by defining the regionalized variable (distance between faults and deposits in a Mathematica subroutine. Variography operations, in order to find the spatial structure, were performed on regionalized variable using Surpac software. It was also shown that the theory of spatial correlation was valid for the defined variable. In this work, the variography operation was used to find the direction and the range of the effect of faults and deposits. Variograms indicated that the possibility of ore deposits existence in an area could depend on the direction of the faults. By drawing the directional variogram and variogram map, the best stretches for more exploratory studies is shown to be parallel along the Azimuth 130◦ and 64 km distance. By revealing the spatial structure in different directions, the area of mineralization related to the faults and the number of ore deposits associated with major faults have been marked.

  13. Maintaining window transparency in photo-CVD: A simultaneous etch/deposition method

    International Nuclear Information System (INIS)

    A novel solution to the loss of window transparency due to film deposition in photochemical vapor deposition of a-Si:H(F) is described. A reactive purge gas, such as XeF/sub 2/, flowing near the ultraviolet transparent window continuously etches any window deposition. The gas flow rates are adjusted so that no etching occurs near the substrate where film deposition is desired. After many depositions, the window has retained its transparency at 185 nm without requiring cleaning. The deposition system is UHV compatible with a load-lock to minimize atmospheric impurities

  14. Calcium phosphate/porous silicon biocomposites prepared by cyclic deposition methods: Spin coating vs electrochemical activation

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Montelongo, J., E-mail: jacobo.hernandez@uam.es [Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Gallach, D.; Naveas, N.; Torres-Costa, V. [Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Climent-Font, A. [Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Centro de Microanálisis de Materiales (CMAM), Universidad Autónoma de Madrid, Madrid 28049 (Spain); García-Ruiz, J.P. [Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049 (Spain); Manso-Silvan, M. [Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain)

    2014-01-01

    Porous silicon (PSi) provides an excellent platform for bioengineering applications due to its biocompatibility, biodegradability, and bioresorbability. However, to promote its application as bone engineering scaffold, deposition of calcium phosphate (CaP) ceramics in its hydroxyapatite (HAP) phase is in progress. In that sense, this work focuses on the synthesis of CaP/PSi composites by means of two different techniques for CaP deposition on PSi: Cyclic Spin Coating (CSC) and Cyclic Electrochemical Activation (CEA). Both techniques CSC and CEA consisted on alternate Ca and P deposition steps on PSi. Each technique produced specific morphologies and CaP phases using the same independent Ca and P stem-solutions at neutral pH and at room temperature. The brushite (BRU) phase was favored with the CSC technique and the hydroxyapatite (HAP) phase was better synthesized using the CEA technique. Analyses by elastic backscattering spectroscopy (EBS) on CaP/PSi structures synthesized by CEA supported that, by controlling the CEA parameters, an HAP coating with the required Ca/P atomic ratio of 1.67 can be promoted. Biocompatibility was evaluated by bone-derived progenitor cells, which grew onto CaP/PSi prepared by CSC technique with a long-shaped actin cytoskeleton. The density of adhered cells was higher on CaP/PSi prepared by CEA, where cells presented a normal morphological appearance and active mitosis. These results can be used for the design and optimization of CaP/PSi composites with enhanced biocompatibility for bone-tissue engineering. - Highlights: • Proposed cyclic methods produce specific morphologies and CaP phases in biocomposites. • The brushite phase is favored in the biocomposite produced by Cyclic Spin Coating. • The hydroxyapatite phase is favored in the biocomposite produced by Cyclic Electrochemical Activation. • The Ca/P atomic ratio of hydroxyapatite was validated by elastic backscattering spectroscopy. • Cells grown showed morphological and

  15. Calcium phosphate/porous silicon biocomposites prepared by cyclic deposition methods: Spin coating vs electrochemical activation

    International Nuclear Information System (INIS)

    Porous silicon (PSi) provides an excellent platform for bioengineering applications due to its biocompatibility, biodegradability, and bioresorbability. However, to promote its application as bone engineering scaffold, deposition of calcium phosphate (CaP) ceramics in its hydroxyapatite (HAP) phase is in progress. In that sense, this work focuses on the synthesis of CaP/PSi composites by means of two different techniques for CaP deposition on PSi: Cyclic Spin Coating (CSC) and Cyclic Electrochemical Activation (CEA). Both techniques CSC and CEA consisted on alternate Ca and P deposition steps on PSi. Each technique produced specific morphologies and CaP phases using the same independent Ca and P stem-solutions at neutral pH and at room temperature. The brushite (BRU) phase was favored with the CSC technique and the hydroxyapatite (HAP) phase was better synthesized using the CEA technique. Analyses by elastic backscattering spectroscopy (EBS) on CaP/PSi structures synthesized by CEA supported that, by controlling the CEA parameters, an HAP coating with the required Ca/P atomic ratio of 1.67 can be promoted. Biocompatibility was evaluated by bone-derived progenitor cells, which grew onto CaP/PSi prepared by CSC technique with a long-shaped actin cytoskeleton. The density of adhered cells was higher on CaP/PSi prepared by CEA, where cells presented a normal morphological appearance and active mitosis. These results can be used for the design and optimization of CaP/PSi composites with enhanced biocompatibility for bone-tissue engineering. - Highlights: • Proposed cyclic methods produce specific morphologies and CaP phases in biocomposites. • The brushite phase is favored in the biocomposite produced by Cyclic Spin Coating. • The hydroxyapatite phase is favored in the biocomposite produced by Cyclic Electrochemical Activation. • The Ca/P atomic ratio of hydroxyapatite was validated by elastic backscattering spectroscopy. • Cells grown showed morphological and

  16. Cavity-assisted quantum bath engineering

    Science.gov (United States)

    Murch, Kater

    2013-03-01

    In practice, quantum systems are never completely isolated, but instead interact with degrees of freedom in the surrounding environment, eventually leading to decoherence. Precision measurement techniques such as nuclear magnetic resonance and interferometry, as well as envisioned quantum schemes for computation, simulation, and data encryption, rely on the ability to prepare and preserve delicate quantum superpositions and entanglement. The conventional route to long-lived quantum coherence involves minimizing coupling to a dissipative bath. Paradoxically, it is possible to instead engineer specific couplings to a quantum environment that allow dissipation to actually preserve coherence. I will discuss our recent demonstration of quantum bath engineering for a superconducting qubit coupled to a microwave cavity. By tailoring the spectrum of microwave photon shot noise in the cavity, we create a dissipative environment that autonomously relaxes the qubit to an arbitrarily specified coherent superposition of the ground and excited states. In the presence of background thermal excitations, this mechanism increases the state purity and effectively cools the dressed atom state to a low temperature. We envision that future multi-qubit implementations could enable the preparation of entangled many-body states suitable for quantum simulation and computation. This work was supported by the IARPA CSQ program.

  17. ANOMALOUS ELECTRODEPOSITION OF Fe-Ni ALLOY COATING FROM SIMPLE AND COMPLEX BATHS AND ITS MAGNETIC PROPERTY

    OpenAIRE

    M A Islam

    2010-01-01

    Electrodeposition of Fe-Ni thin films has been carried on copper substrate under various electrodeposition conditions from two simple and six complex baths. Sulfate baths composing of NiSO4. 7H2O, FeSO4.7H2O, H3BO3 and Na2SO4KEYWORDS: Anomalous Electrodeposition, Fe-Ni Coating, Complexing agent, Current Density, Magnetic Property. 1. INTRODUCTION Alloy electrodeposition technologies can extend tremendously the potential of electrochemical deposition processes to provide coatings that require ...

  18. 锰浴法测量中子源发射率中各修正因子的蒙特卡罗计算%Monte Carlo Calculation of Correction Factors for Radionuclide Neutron Source Emission Rate Measurement by Manganese Bath Method

    Institute of Scientific and Technical Information of China (English)

    李春娟; 刘毅娜; 张伟华; 王志强

    2014-01-01

    The manganese bath method for measuring the neutron emission rate of radio-nuclide sources requires corrections to be made for emitted neutrons w hich are not cap-tured by manganese nuclei .The Monte Carlo particle transport code MCNP was used to simulate the manganese bath system of the standards for the measurement of neutron source intensity .The correction factors were calculated and the reliability of the model was demonstrated through the key comparison for the radionuclide neutron source emis-sion rate measurements organized by BIPM .The uncertainties in the calculated values were evaluated by considering the sensitivities to the solution density ,the density of the radioactive material ,the positioning of the source ,the radius of the bath ,and the inter-action cross-sections .A new method for the evaluation of the uncertainties in Monte Carlo calculation was given .%在采用锰浴法对放射性同位素中子源的发射率进行测量时,M nSO4溶液中55 M n仅俘获部分源中子,故需考虑对未被55 Mn俘获部分的修正。用蒙特卡罗粒子输运程序MCNP对中子源强标准装置的锰浴系统进行模拟计算,对实验测量结果进行修正,并通过由国际计量局(BIPM )组织的中子源强度国际比对,验证了计算所建立模型的可靠性。利用MCNP程序的微扰计算功能,通过考虑MnSO4溶液的密度、源及其承托物材料的密度、源的位置、锰浴半径以及反应截面的改变对计算结果的影响,对模拟计算结果的不确定度进行了详细评定,提供了一种蒙特卡罗模拟计算结果不确定度的评定方法。

  19. Pr–Fe–B+α-Fe nanocomposite film magnets prepared by pulsed laser deposition method

    Science.gov (United States)

    Yamashita, Akihiro; Nakano, Masaki; Oshima, Shuichi; Yanai, Takeshi; Fukunaga, Hirotoshi

    2016-07-01

    An increase in the remanence of an isotropic film magnet is indispensable to improve the properties of miniaturized devices. We, therefore, tried to prepare Pr–Fe–B/α-Fe multilayered nanocomposite thick-film magnets by a pulsed laser deposition (PLD) method. Namely, a rotated target composed of a Pr x Fe14B (x = 2.2 or 2.4) target together with an α-Fe segment was ablated. We also took account of a small spot size of the laser beam in order to suppress the emission of droplets (large particles) from each target. An optimization on the area of the α-Fe segment in each Pr x Fe14B target was carried out, and the remanence of an annealed film reached approximately 1.1 T. Moreover, a transmission electron microscopy (TEM) observation of the above-mentioned sample revealed that the microstructure varied from a multilayered structure (as-deposited) to a dispersed one through the annealing process. Resultantly, the annealed film had a dispersed nanocomposite structure with good exchange coupling.

  20. Measurement of the odor impact of a waste deposit using the SF6-tracer method

    International Nuclear Information System (INIS)

    Landfill gas emitted from a waste deposit often causes odor nuisance in the vicinity. For a new sanitary landfill to be established in an area where also other sources of odor existed, very low limits for additional odor nuisance were given by local authorities. To verify that the odor concentrations were below these limit values, the odor contributions of different sources had to be distinguished. Olfactometric methods, using human observers to estimate the intensity of odors, were not applicable to this problem. For direct measurements by analytical methods concentrations of odorous substances were too small. Therefore a tracer method was applied to measure the odor impact of the sanitary landfill to its environment. The emitted landfill gas was labelled with the tracer gas SF6. The tracer gas was parted to even amounts and released through ten special nozzles equally distributed over the surface of the landfill. In the area around the landfill the concentration of the tracer gas was measured by collecting air samples and analysing them with a gas chromatograph with an electron capture detector. Fifteen air sampling units were used to collect eight consecutive air samples at each selected point. These measurements gave the relation between the emission of landfill gas and the resulting concentrations in ambient air. With these transmission coefficients the concentrations of odorous gases at the sampling points were evaluated, using the emission concentrations measured by analytical techniques at the landfiIl site. The resulting odor concentrations were compared with values of odor thresholds to establish the odor impact of the waste deposit on the environment. (author)

  1. A Multicenter Pragmatic Interrupted Time Series Analysis of Chlorhexidine Gluconate Bathing in Community Hospital Intensive Care Units.

    Science.gov (United States)

    Dicks, Kristen V; Lofgren, Eric; Lewis, Sarah S; Moehring, Rebekah W; Sexton, Daniel J; Anderson, Deverick J

    2016-07-01

    OBJECTIVE To determine whether daily chlorhexidine gluconate (CHG) bathing of intensive care unit (ICU) patients leads to a decrease in hospital-acquired infections (HAIs), particularly infections caused by methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE). DESIGN Interrupted time series analysis. SETTING The study included 33 community hospitals participating in the Duke Infection Control Outreach Network from January 2008 through December 2013. PARTICIPANTS All ICU patients at study hospitals during the study period. METHODS Of the 33 hospitals, 17 hospitals implemented CHG bathing during the study period, and 16 hospitals that did not perform CHG bathing served as controls. Primary pre-specified outcomes included ICU central-line-associated bloodstream infections (CLABSIs), primary bloodstream infections (BSI), ventilator-associated pneumonia (VAP), and catheter-associated urinary tract infections (CAUTIs). MRSA and VRE HAIs were also evaluated. RESULTS Chlorhexidine gluconate (CHG) bathing was associated with a significant downward trend in incidence rates of ICU CLABSI (incidence rate ratio [IRR], 0.96; 95% confidence interval [CI], 0.93-0.99), ICU primary BSI (IRR, 0.96; 95% CI, 0.94-0.99), VRE CLABSIs (IRR, 0.97; 95% CI, 0.97-0.98), and all combined VRE infections (IRR, 0.96; 95% CI, 0.93-1.00). No significant trend in MRSA infection incidence rates was identified prior to or following the implementation of CHG bathing. CONCLUSIONS In this multicenter, real-world analysis of the impact of CHG bathing, hospitals that implemented CHG bathing attained a decrease in ICU CLABSIs, ICU primary BSIs, and VRE CLABSIs. CHG bathing did not affect rates of specific or overall infections due to MRSA. Our findings support daily CHG bathing of ICU patients. Infect Control Hosp Epidemiol 2016;37:791-797. PMID:26861417

  2. Effects of choline chloride on electrodeposited Ni coating from a Watts-type bath

    Science.gov (United States)

    Wang, Yurong; Yang, Caihong; He, Jiawei; Wang, Wenchang; Mitsuzak, Naotoshi; Chen, Zhidong

    2016-05-01

    Electrodeposition of bright nickel (Ni) was carried out in a Watts-type bath. Choline chloride (ChCl) was applied as a multifunctional additive and substitute for nickel chloride (NiCl2) in a Watts-type bath. The function of ChCl was investigated through conductivity tests, anodic polarization, and cathodic polarization experiments. The studies revealed that ChCl performed well as a conducting salt, anodic activator, and cathodic inhibitor. The effects of ChCl on deposition rate, preferred orientation, grain size, surface morphology, and microhardness of Ni coatings were also studied. The deposition rate reached a maximum value of greater than 27 μm h-1 when 20 g L-1 ChCl was introduced to the bath. Using X-ray diffraction, it was confirmed that progressive addition of ChCl promoted the preferred crystal orientation modification from (2 0 0) and (2 2 0) to (1 1 1), refined grain size, and enhanced microhardness. The presence of ChCl lowered the roughness of the coating.

  3. Tunable optoelectronic properties of CBD-CdS thin films via bath temperature alterations

    Science.gov (United States)

    Kumarage, W. G. C.; Wijesundera, R. P.; Seneviratne, V. A.; Jayalath, C. P.; Dassanayake, B. S.

    2016-03-01

    The tunability of the band-gap value and electron affinity of the n-CdS by adjusting the growth parameters is very important as it paves the way to improve the efficiency of CdS-based solar cells by adjusting the band lineup with other p-type semiconductors. In this respect, polycrystalline n-CdS thin films were grown on FTO glass substrates at different bath temperatures (40-80 °C) by the chemical bath deposition technique. The structural, morphological and optoelectronic properties of CdS thin films were studied using x-ray diffraction, scanning electron microscopy, UV-Vis spectrometry, profilometry, atomic force microscopy, photoelectrochemical and Mott-Schottky measurements. Absorption measurements reveal that an energy-gap value of n-CdS can be adjusted from 2.27 to 2.57 eV and Mott-Schottky measurements indicate that the flat-band potential is increased from  -699 to  -835 V with respect to a Ag/AgCl electrode by decreasing the deposition bath temperature from 60 to 40 °C. This tunability of optoelectronic properties of n-CdS is very useful for applications in thin film solar cells and other devices.

  4. Skin hydration in nursing home residents using disposable bed baths.

    Science.gov (United States)

    Gillis, Katrin; Tency, Inge; Roelant, Ella; Laureys, Sarina; Devriendt, Hendrik; Lips, Dirk

    2016-01-01

    The objective of this study was to evaluate a new way for applying bed baths and reducing the risk for dry skin by comparing the effect of two washing methods on skin hydration. A cluster randomized trial was conducted. Skin hydration was measured before and after implementation of disposable wash gloves, using a MoistureMeter SC at three skin sites. Total skin hydration did not differ between residents at the start of the study in both groups. After implementation, the post minus pre hydration scores were higher for the intervention group than the control group at all skin sites. However, the difference was only significant at cheek site. The use of disposable wash gloves does not increase the risk for dry skin in comparison with traditional washing methods. These results may encourage the introduction of disposable wash gloves as an innovation in daily skin care practice. PMID:26724816

  5. Novel ways of depositing ZnTe films by a solution growth technique

    Energy Technology Data Exchange (ETDEWEB)

    Birkmire, R.W. (Delaware Univ., Newark, DE (USA). Inst. of Energy Conversion)

    1991-06-01

    Cu-doped ZnTe films, <1000{Angstrom}, were reproducibly deposited for the first time by an electrochemical method. A CdTe/CdS/ITO/glass substrate is externally short circuited to a zinc counter electrode in an aqueous bath consisting of ZnCl{sub 2} and TeO{sub 2} to complete an electrochemical cell. Control of both pH and TeO{sub 2} concentration was necessary to deposit single phase ZnTe films. A copper complex was added to the bath to control the ZnTe conductivity and dope the films p-type. CdTe/CdS solar cells using the ZnTe:Cu as the primary contact to the CdTe have achieved efficiencies of {approximately}9%. 15 refs., 7 figs., 2 tabs.

  6. Chemical solution deposition method of fabricating highly aligned MgO templates

    Energy Technology Data Exchange (ETDEWEB)

    Paranthaman, Mariappan Parans (Knoxville, TN); Sathyamurthy, Srivatsan (Knoxville, TN); Aytug, Tolga (Knoxville, TN); Arendt, Paul N (Los Alamos, NM); Stan, Liliana (Los Alamos, NM); Foltyn, Stephen R (Los Alamos, NM)

    2012-01-03

    A superconducting article includes a substrate having an untextured metal surface; an untextured barrier layer of La.sub.2Zr.sub.2O.sub.7 or Gd.sub.2Zr.sub.2O.sub.7 supported by and in contact with the surface of the substrate; a biaxially textured buffer layer supported by the untextured barrier layer; and a biaxially textured superconducting layer supported by the biaxially textured buffer layer. Moreover, a method of forming a buffer layer on a metal substrate includes the steps of: providing a substrate having an untextured metal surface; coating the surface of the substrate with a barrier layer precursor; converting the precursor to an untextured barrier layer; and depositing a biaxially textured buffer layer above and supported by the untextured barrier layer.

  7. Chemical solution deposition method of fabricating highly aligned MgO templates

    Energy Technology Data Exchange (ETDEWEB)

    Paranthaman, Mariappan Parans [Knoxville, TN; Sathyamurthy, Srivatsan [Knoxville, TN; Aytug, Tolga [Knoxville, TN; Arendt, Paul N [Los Alamos, NM; Stan, Liliana [Los Alamos, NM; Foltyn, Stephen R [Los Alamos, NM

    2009-06-30

    A superconducting article includes a substrate having an untextured metal surface; an untextured barrier layer of La.sub.2Zr.sub.2O.sub.7 or Gd.sub.2Zr.sub.2O.sub.7 supported by and in contact with the surface of the substrate; a biaxially textured buffer layer supported by the untextured barrier layer; and a biaxially textured superconducting layer supported by the biaxially textured buffer layer. Moreover, a method of forming a buffer layer on a metal substrate includes the steps of: providing a substrate having an untextured metal surface; coating the surface of the substrate with a barrier layer precursor; converting the precursor to an untextured barrier layer; and depositing a biaxially textured buffer layer above and supported by the untextured barrier layer.

  8. Preparation and characterization of nanometer-scale powders ceria by electrochemical deposition method

    International Nuclear Information System (INIS)

    Ceria (CeO2) nanoparticles of 10-30 nm in average particle size have been synthesized via electrochemical deposition method in cerium(III) chloride solution with an undivided cell as electrochemical cell and ethanol-acetylacetone as additives. X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transformation infrared spectroscopy (FT-IR) and thermal analysis (TG-DTA) are introduced to characterize the samples. The results indicate that the as-prepared powders after being treated at 650 deg. C are nanocrystalline with the cubic fluorite structure and the sphericity in shape. It is revealed that the size of ceria nanoparticles can be decreased effectively by adding the ethanol-acetylacetone solution. In addition, the possible formed mechanism of CeO2 nanometer-scale powder. The role of additive is also investigated in this paper

  9. Field comparison of methods for the measurement of gaseous and particulate contributors to acidic dry deposition

    Science.gov (United States)

    Sickles, J. E.; Hodson, L. L.; McClenny, W. A.; Paur, R. J.; Ellestad, T. G.; Mulik, J. D.; Anlauf, K. G.; Wiebe, H. A.; Mackay, G. I.; Schiff, H. I.; Bubacz, D. K.

    A field study was conducted to compare methods for sampling and analysis of atmospheric constituents that are important contributors to acidic dry deposition. Comparisons are made of different measurements of ambient concentrations of gaseous HNO 3, NO 2, NH 3 and SO 2 and particulate NO 3-, NH 4+ and SO 42-. Three multicomponent samplers were used: the Canadian filter pack (FP), the annular denuder system (ADS), and the transition flow reactor (TFR). A tunable diode laser absorption spectrometer (TDLAS) provided continuous reference measurements of NO 2 and HNO 3. Nitrogen dioxide was also monitored with continuous luminol-based chemiluminescence monitors and with passive sampling devices (PSDs). The study was designed to provide a database for statistical comparison of the various methods with emphasis on the multicomponent samplers under consideration for use in a national dry deposition trends monitoring network. The study was conducted at the EPA dry deposition station in Research Triangle Park, NC between 29 September and 12 October 1986. Daily averaging and/or sampling times were employed for the 13-day study; weekly samples were also collected, but results from these samples are not compared in this paper. ADS, TFR and FP results are in good agreement for measurements of the sum of particulate and gaseous NO 3- concentrations and of total particulate SO 42-. ADS, FP, and TDLAS measurements of HNO 3 are in good agreement, but TDLAS results differ with and are substantially less than those from the TFR. TDLAS measurements of NO 2 are highly correlated with those of the TFR, but show mixed comparisons with results from the two luminol-based monitors and with results from the two sets of PSDs. TFR and FP measurements of particulate NH 4+ are in good agreement, but FP results exceed those of the ADS when volatilization losses of NH 4+ in the ADS are ignored. At the low ambient NH 3 concentrations, results of ADS, TFR, and FP show considerable variability but no

  10. Chemical bath composition effect on the properties of electrodeposited CuInSe2 thin films

    International Nuclear Information System (INIS)

    Highlights: • CIS thin films were grown by electrodeposition technique. • For [Se]/[Cu + In] molar ratio less than 1.3 CIS films have single phase chalcopyrite structure. • For [Se]/[Cu + In] = 1.3 CuSe secondary phase is present. • The optical absorption is due to an allowed direct transition with band gap range between 1.04 and 1.2 eV. -- Abstract: Polycrystalline chalcopyrite CuInSe2 (CIS) thin films were deposited by electrodeposition technique onto ITO coated glass substrates. The used bath solution is formed by dissolution of CuCl2, InCl3, and SeO2 salts in de-ionized water, where the [Se]/[Cu + In] molar ratio is ranged from 0.4 to 1.3. The deposited films have been annealed at 300 °C for 30 min in argon atmosphere. The films structure and surface morphology characterizations were carried out respectively by means of X-ray diffraction method (XRD) and scanning electron microscope (SEM). XRD results indicate that CIS films having single phase chalcopyrite are obtained when the [Se]/[Cu + In] molar ratio is less than 1.3. While, for [Se]/[Cu + In] = 1.3, CuSe secondary phase is present together with CIS chalcopyrite phase. The crystallites were found to have a preferred orientation along (1 1 2) direction. The UV–visible optical transmittance measurements show that films absorption is due to allowed direct transition with a band gap ranged from 1.04 to 1.2 eV

  11. Relief of Chronic Posterior Neck Pain Depending on the Type of Forest Therapy: Comparison of the Therapeutic Effect of Forest Bathing Alone Versus Forest Bathing With Exercise

    Science.gov (United States)

    Kang, Boram; Kim, Taikon; Kim, Mi Jung; Lee, Kyu Hoon; Choi, Seungyoung; Lee, Dong Hun; Kim, Hyo Ryoung; Jun, Byol; Park, Seen Young; Lee, Sung Jae

    2015-01-01

    Objective To compare the pain-reducing effect of forest bathing alone versus forest bathing in combination with stretching and strengthening exercises in patients with chronic posterior neck pain. Methods Sixty-four subjects with posterior neck pain that had lasted more than 3 months were enrolled. They were randomly divided into a forest bathing alone (FBA) group and a forest bathing with exercise (FBE) group; each group included 32 subjects. All subjects from both groups walked every morning in the forest for about 2 hours for 5 days. In the afternoon, the FBE group did a stretching and strengthening exercise for about 4 hours; the FBA group had free time in the woods. Visual analog scale (VAS) on one day, VAS over the previous week, neck disability index (NDI), EuroQol 5D-3L VAS (EQ VAS) and index (EQ index), McGill pain questionnaire (MPQ), the number of trigger points in the posterior neck region (TRPs), and the range of motion of the cervical spine were evaluated on the first and last day of the program and compared between the two groups. Results The number of TRPs were significantly reduced in the FBE group compared with the FBA group (p=0.013). However, the other scales showed no significant difference between the two groups. Conclusion When patients with chronic posterior neck pain underwent a short-term forest bathing (less than 7 days) program, FBE was more effective in the reduction of the number of TRPs than FBA. However, all other pain measurement scales we evaluated showed no statistically significant difference between the two protocols. PMID:26798610

  12. Project JADE. Method and machinery description of equipment for deposition of a canister in a vertical deposition hole

    International Nuclear Information System (INIS)

    A systematic evaluation of different disposal methods has been carried out. The study is named Comparison of Disposal Methods. The evaluation has included a comparison of the technical aspects, safety aspects and costs of alternatives proposed within the so-called KBS-3 method. Three alternatives have been studied and compared: vertical emplacement (KBS-3V), horizontal emplacement (KBS-3H) and emplacement in medium long horizontal holes (MLH). KBS-3V is the reference method adopted in SKB's development and planning work. This report describes eight alternative disposal methods, with variations, and forms a technical basis for the assessment of methods involving vertical disposal (KBS-3V). The alternative of emplacement behind a radiation-shielding screen has been rejected by SKB, as it has been decided that disposal will be carried out with complete radiation shielding around the canister. However, the alternative is considered in the report for the sake of comparison. Based on the applicable technical specifications, the results of fault-effect analyses, radiation protection assessments and flexibility and complexity analyses for the entire disposal process, two methods for vertical emplacement have been identified as the best from a technical point of view: Transport of a horizontally-lying canister which is raised to a vertical position during emplacement. The canister is shielded during transport and the raising movement. Radiation protection can be complete or partial. Transport with a standing canister. Under transport and disposal, the canister is surrounded by a complete radiation shield, which has a telescopic lower part. This principle involves only a few, simple mechanical movements

  13. Application of geoelectric methods for man-caused gas deposit mapping and monitoring

    Science.gov (United States)

    Yakymchuk, M. A.; Levashov, S. P.; Korchagin, I. N.; Syniuk, B. B.

    2009-04-01

    The rather new application of original geoelectric methods of forming of short-pulsed electromagnetic field (FSPEF) and vertical electric-resonance sounding (VERS) (FSPEF-VERS technology) (Levashov et al., 2003; 2004) is discussed. In 2008 the FSPEF-VERS methods were used for ascertaining the reasons of serious man-caused accident on gas field. The emission of water with gas has occurred near an operational well on one gas field. The assumption was discussed, that some part of gas from producing horizons has got into the upper horizons, in aquiferous stratum layers. It promoted creation of superfluous pressure in aquiferous stratums which has led to accident on the field. Operative geophysical investigations within an accident site were carried out by FSPEF and VERS geoelectric methods on 07.10.08 and 13.10.08 on the first stage. The primary goal of executed works was detection and mapping of gas penetration zones in aquiferous stratums of cross-section upper part, and also the determination of bedding depths and a total area of distribution of gas in upper aquiferous stratums. The anomalous zone were revealed and mapped by FSPEF survey. It is caused by raised migration of water in upper horizons of a cross-section. The depths of anomalous polarized layers (APL) of "gas" and „aquiferous stratum" type were defined by VERS method. The VERS data are presented by sounding diagram's and columns, by vertical cross-sections lengthways and transversely of gas penetration zones, by map of thicknesses of man-caused gas "deposit". The perforation on depths of 450 and 310 m was spent in a producing borehole on the first day investigation data. Gas discharges were received from 450 and 310 m depths. Three degassing boreholes have been drilled on 08.11.08 working day. Depths of wells are about 340 m. Gas inflows were received from 330 m depth. Drilling of fourth well was conducted. The anomalous zone area has decreased twice in comparison with two previous surveys. So, the

  14. Effect of condensation product of glycyl–glycine and furfural on electrodeposition of zinc from sulphate bath

    Indian Academy of Sciences (India)

    H B Muralidhara; Y Arthoba Naik; T V Venkatesha

    2006-10-01

    Zinc electrodeposition from sulphate bath was carried out in presence of condensation product formed between glycyl–glycine (GGL) and furfural (FFL). The bath constituents were optimized through Hull cell experiments. Operating parameters such as pH, temperature and current density were also optimized. Current efficiency and throwing power were measured. Polarization study revealed shift of potential towards negative direction in the presence of addition agents. Corrosion resistance test revealed good protection of base metal by zinc coating obtained from developed electrolyte. SEM photomicrographs showed fine-grained deposit in the presence of condensation product. IR spectrum of the deposit showed inclusion of condensation product in the deposit during plating. The consumption of brightener in the lab scale was 7 mLL-1 for 1000 amp-h.

  15. Boring of full scale deposition holes using a novel dry blind boring method

    International Nuclear Information System (INIS)

    Three holes the size of deposition holes (depth 7.5 m and diameter 1.5 m) were bored in the Research Tunnel at Olkiluoto, Finland. A novel full-face boring technique was used based on rotary crushing of rock and removal of crushed rock by vacuum flushing through the drill string. The purpose of the work was to demonstrate the feasibility of the technique. During the boring test procedures were carried out in order to determine the effect of changes in operating parameters on the performance of the boring machine and the quality of the hole. The boring method was found to be technically feasible and efficient. Evaluation of the quality of the hole included studies of the geometry of the hole, measurements of the surface roughness using a laser profilometer and study of excavation disturbances in the zone adjacent to the surface of the holes using two novel methods, He-gas diffusion and the 14C-polymethylmethacrylate methods. 43 refs

  16. Survey and analysis of deep water mineral deposits using nuclear methods

    International Nuclear Information System (INIS)

    Present knowledge of the location, quality, quantity and recoverability of sea floor minerals is severely limited, particularly in the abyssal depths and deep water within the 200 mile Exclusion Economic Zone (EEZ) surrounding the U.S. Pacific Islands. To improve this understanding and permit exploitation of these mineral reserves much additional data is needed. This paper will discuss a sponsored program for extending existing proven nuclear survey methods currently used on the shallow continental margins of the Atlantic and Gulf of Mexico into the deeper waters of the Pacific. This nuclear technology can be readily integrated and extended to depths of 2000 m using the existing RCV-150 remotely operated vehicle (ROV) and the PISCESE V manned deep submersible vehicle (DSV) operated by The University of Hawaii's, Hawaii Underseas Research Laboratory (HURL). Previous papers by the authors have also proposed incorporating these nuclear analytical methods for survey of the deep ocean through the use of Autonomous Underwater Vehicle (AUX). Such a vehicle could extend the use of passive nuclear instrument operation, in addition to conventional analytical methods, into the abyssal depths and do so with speed and economy not otherwise possible. The natural radioactivity associated with manganese nodules and crustal deposits is sufficiently above normal background levels to allow discrimination and quantification in near real time

  17. Nonequilibrium processes from generalized Langevin equations: Realistic nanoscale systems connected to two thermal baths

    Science.gov (United States)

    Ness, H.; Genina, A.; Stella, L.; Lorenz, C. D.; Kantorovich, L.

    2016-05-01

    We extend the generalized Langevin equation (GLE) method [L. Stella, C. D. Lorenz, and L. Kantorovich, Phys. Rev. B 89, 134303 (2014), 10.1103/PhysRevB.89.134303] to model a central classical region connected to two realistic thermal baths at two different temperatures. In such nonequilibrium conditions a heat flow is established, via the central system, in between the two baths. The GLE-2B (GLE two baths) scheme permits us to have a realistic description of both the dissipative central system and its surrounding baths. Following the original GLE approach, the extended Langevin dynamics scheme is modified to take into account two sets of auxiliary degrees of freedom corresponding to the mapping of the vibrational properties of each bath. These auxiliary variables are then used to solve the non-Markovian dissipative dynamics of the central region. The resulting algorithm is used to study a model of a short Al nanowire connected to two baths. The results of the simulations using the GLE-2B approach are compared to the results of other simulations that were carried out using standard thermostatting approaches (based on Markovian Langevin and Nosé-Hoover thermostats). We concentrate on the steady-state regime and study the establishment of a local temperature profile within the system. The conditions for obtaining a flat profile or a temperature gradient are examined in detail, in agreement with earlier studies. The results show that the GLE-2B approach is able to treat, within a single scheme, two widely different thermal transport regimes, i.e., ballistic systems, with no temperature gradient, and diffusive systems with a temperature gradient.

  18. The oil-dispersion bath in anthroposophic medicine – an integrative review

    Directory of Open Access Journals (Sweden)

    Bornhöft Gudrun

    2008-12-01

    Full Text Available Abstract Background Anthroposophic medicine offers a variety of treatments, among others the oil-dispersion bath, developed in the 1930s by Werner Junge. Based on the phenomenon that oil and water do not mix and on recommendations of Rudolf Steiner, Junge developed a vortex mechanism which churns water and essential oils into a fine mist. The oil-covered droplets empty into a tub, where the patient immerses for 15–30 minutes. We review the current literature on oil-dispersion baths. Methods The following databases were searched: Medline, Pubmed, Embase, AMED and CAMbase. The search terms were 'oil-dispersion bath' and 'oil bath', and their translations in German and French. An Internet search was also performed using Google Scholar, adding the search terms 'study' and 'case report' to the search terms above. Finally, we asked several experts for gray literature not listed in the above-mentioned databases. We included only articles which met the criterion of a clinical study or case report, and excluded theoretical contributions. Results Among several articles found in books, journals and other publications, we identified 1 prospective clinical study, 3 experimental studies (enrolling healthy individuals, 5 case reports, and 3 field-reports. In almost all cases, the studies described beneficial effects – although the methodological quality of most studies was weak. Main indications were internal/metabolic diseases and psychiatric/neurological disorders. Conclusion Beyond the obvious beneficial effects of warm bathes on the subjective well-being, it remains to be clarified what the unique contribution of the distinct essential oils dispersed in the water can be. There is a lack of clinical studies exploring the efficacy of oil-dispersion baths. Such studies are recommended for the future.

  19. Development of a New Generation of Stable, Tunable, and Catalytically Active Nanoparticles Produced by the Helium Nanodroplet Deposition Method.

    Science.gov (United States)

    Wu, Qiyuan; Ridge, Claron J; Zhao, Shen; Zakharov, Dmitri; Cen, Jiajie; Tong, Xiao; Connors, Eoghan; Su, Dong; Stach, Eric A; Lindsay, C Michael; Orlov, Alexander

    2016-08-01

    Nanoparticles (NPs) are revolutionizing many areas of science and technology, often delivering unprecedented improvements to properties of the conventional materials. However, despite important advances in NPs synthesis and applications, numerous challenges still remain. Development of alternative synthetic method capable of producing very uniform, extremely clean and very stable NPs is urgently needed. If successful, such method can potentially transform several areas of nanoscience, including environmental and energy related catalysis. Here we present the first experimental demonstration of catalytically active NPs synthesis achieved by the helium nanodroplet isolation method. This alternative method of NPs fabrication and deposition produces narrowly distributed, clean, and remarkably stable NPs. The fabrication is achieved inside ultralow temperature, superfluid helium nanodroplets, which can be subsequently deposited onto any substrate. This technique is universal enough to be applied to nearly any element, while achieving high deposition rates for single element as well as composite core-shell NPs. PMID:27409518

  20. Experimental study on the formation and growth of electroless nickel-boron coatings from borohydride-reduced bath on mild steel

    Energy Technology Data Exchange (ETDEWEB)

    Vitry, Veronique, E-mail: veronique.vitry@umons.ac.be [Service de Metallurgie, Universite de Mons, Rue de l' Epargne 56, 7000 Mons (Belgium); Sens, Adeline [Service de Metallurgie, Universite de Mons, Rue de l' Epargne 56, 7000 Mons (Belgium); Kanta, Abdoul-Fatah [Service de Sciences des Materiaux, Universite de Mons, Rue de l' Epargne 56, 7000 Mons (Belgium); Delaunois, Fabienne [Service de Metallurgie, Universite de Mons, Rue de l' Epargne 56, 7000 Mons (Belgium)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Initiation mechanism of electroless Ni-B on St-37 steel has been identified. Black-Right-Pointing-Pointer Different phases of the plating process were observed and identified. Black-Right-Pointing-Pointer Influence of chemical heterogeneity on coating morphology was revealed. Black-Right-Pointing-Pointer Batch replenishment of the plating bath induces new germination phase. - Abstract: Quality and homogeneity of electroless nickel-boron coatings are very important for applications in corrosion and electronics and are completely dependent on the formation of the deposit. The growth and formation process of electroless nickel-boron was investigated by immersing mild steel (St-37) samples in an un-replenished bath for various periods of time (from 5 s to 1 h). The coatings obtained at the different stages of the process were then characterized: thickness was measured by SEM, morphology was observed, weight gain was recorded and top composition of the coatings was obtained from XPS. Three main phases were identified during the coating formation and links between plating time, instantaneous deposition rate, chemistry of last formed deposit and morphology were established. The mechanism for initial deposition on steel substrate for borohydride-reduced electroless nickel bath was also observed. Those results were confronted with chemistry evolution in the unreplenished plating bath during the process. This allowed getting insight about phenomena occurring in the plating bath and their influence on coating formation.

  1. One scute ring per year in Testudo graeca? A novel method to identify ring deposition patterns in tortoises

    Directory of Open Access Journals (Sweden)

    Roberto Rodríguez-Caro

    2015-12-01

    Full Text Available A reliable estimation of individuals’ age is helpful to conduct demographic studies on wildlife populations. In tortoises, many studies have estimated individuals’ age by counting growth rings on their scutes, assuming one ring per year (1:1 ratio. However, the accuracy of this method is controversial. The ring deposition pattern can vary depending on species, or even populations, and should be studied comprehensively. We studied the ring deposition pattern of Testudo graeca in southeastern Iberian Peninsula, using recaptures of 156 individuals between 2004 and 2010. We used a novel approach to explore the ring deposition pattern and to test possible differences between localities and individuals. Our results revealed that most analysed individuals (57.4% showed a 1:1 ratio, in which rings were deposited during months of activity (spring to autumn. However, we found a trend to count less rings than years, which underestimated 1 year every 3 or 4 years. No differences in the deposition patterns were found among sites, sizes or sexes because the halt in growth during hibernation equally affects all tortoises in all sites. Our results support that the assumed 1:1 ratio in the assignment of individuals’ age is too simplistic. Since ring deposition patterns are complex, the use of statistical approaches capable of handling deviations from the assumed deposition ratios can help to better depict population age structures.

  2. Studies of radioactive deposition on farm buildings and testing of some methods for decontamination

    International Nuclear Information System (INIS)

    Studies were made of radioactive fallout on roofs of farm buildings and of some methods of decontamination. The aim was to find ways of reducing the external radiation dose to farmers working and farm animals housed in stables in a fallout situation. The roof material studied was steel plate (A) and tile (B,C, D), each with four sample areas of ca. 1 m2. The roof samples were collected at three places and from totally four building in regions which in 1986 (after the Chernobyl fallout) has a 137Cs ground depositions of 3040 kBq/m2 (A, B, C) and > 100 kBq/m2 (D). Four different decontamination methods were tested: 1. High pressure washing with water. 2. Repeated high pressure washing with water. 3. Application of foam of a sanitizing chemical for livestock buildings followed by high pressure washing with water. 4. Application of a solution of KCl followed by high pressure washing with water. In C, the effect of decontamination expressed as the percentage decrease of the 137Cs activity was on average for all methods, 55%. This material was coated before the decontamination by a marked growth of algae or moss, which was effectively washed off during the sanitizing procedure. In B, the average activity decontamination effect was 25%, while in D (with the highest original activity, but without growth of organic material) the effect was very small, 3%. In A, the activity level before decontamination was so low that measurements after decontamination were considered unnecessary. Method number 4 was the most effective in B and C, 32% and 64%, respectively, while method number 3 was the most effective in D, 5.7%. The results indicate that good effects can be achieved in radioactivity decontamination of roof material with equipment and chemicals which are normally available on farms

  3. Copper Sulfate Foot Baths on Dairies and Crop Toxicities

    Science.gov (United States)

    A rising concern with the application of dairy wastes to agricultural fields is the accumulation of copper (Cu) in the soil. Copper sulfate (CuSO4) from cattle foot baths are washed out of dairy barns and into wastewater lagoons. The addition of CuSO4 baths has been reported to increase Cu concent...

  4. 30 CFR 75.1712 - Bath houses and toilet facilities.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Bath houses and toilet facilities. 75.1712 Section 75.1712 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1712 Bath...

  5. Analysis of the influence of substrate temperature on hydroxyapatite deposited by laser ablation method using ArF laser

    Science.gov (United States)

    Mróz, Waldemar; Jedyński, Marcin; Szymański, Zygmunt; Prokopiuk, Artur; Burdyńska, Sylwia

    2007-02-01

    Hydroxyapatite layers (Ca 10(PO 4)6(OH) II) were deposited by means of laser ablation method using an ArF excimer laser (193 nm). The influence of substrate temperature on the structure of deposited layers was studied. The layers were deposited on Ti6Al4V titanium alloy which temperature varied from 250 °C to 700 °C. The characteristics of the hydroxyapatite coatings were determined by means of Fourier Transform Infrared spectroscopy (FTIR). The obtained spectra reveal that the presence and abundance of the PO 4 absorption bands depend on the substrate temperature. The topography of the deposited layers were analyzed with the use of an Atomic Force Microscope.

  6. Simulation of Powder Layer Deposition in Additive Manufacturing Processes Using the Discrete Element Method

    Energy Technology Data Exchange (ETDEWEB)

    Herbold, E. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Walton, O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Homel, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-26

    This document serves as a final report to a small effort where several improvements were added to a LLNL code GEODYN-­L to develop Discrete Element Method (DEM) algorithms coupled to Lagrangian Finite Element (FE) solvers to investigate powder-­bed formation problems for additive manufacturing. The results from these simulations will be assessed for inclusion as the initial conditions for Direct Metal Laser Sintering (DMLS) simulations performed with ALE3D. The algorithms were written and performed on parallel computing platforms at LLNL. The total funding level was 3-­4 weeks of an FTE split amongst two staff scientists and one post-­doc. The DEM simulations emulated, as much as was feasible, the physical process of depositing a new layer of powder over a bed of existing powder. The DEM simulations utilized truncated size distributions spanning realistic size ranges with a size distribution profile consistent with realistic sample set. A minimum simulation sample size on the order of 40-­particles square by 10-­particles deep was utilized in these scoping studies in order to evaluate the potential effects of size segregation variation with distance displaced in front of a screed blade. A reasonable method for evaluating the problem was developed and validated. Several simulations were performed to show the viability of the approach. Future investigations will focus on running various simulations investigating powder particle sizing and screen geometries.

  7. The mechanism of the nano-CeO{sub 2} films deposition by electrochemistry method as coated conductor buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yuming; Cai, Shuang [Department of Physics, Shanghai University, Shanghai 200444 (China); Shanghai Key Laboratory of High Temperature Superconductors, Shanghai 200444 (China); Liang, Ying, E-mail: yliang@ecust.edu.cn [Institute of Nuclear Technology and Application, School of Science, East China University of Science and Technology, Shanghai 200237 (China); Bai, Chuanyi; Liu, Zhiyong; Guo, Yanqun; Cai, Chuanbing [Department of Physics, Shanghai University, Shanghai 200444 (China); Shanghai Key Laboratory of High Temperature Superconductors, Shanghai 200444 (China)

    2015-05-15

    Highlights: • Crack-free CeO{sub 2} film thicker than 200 nm was prepared on NiW substrate by ED method. • Different electrochemical processes as hydroxide/metal mechanisms were identified. • The CeO{sub 2} precursor films deposited by ED method were in nano-scales. - Abstract: Comparing with conventional physical vapor deposition methods, electrochemistry deposition technique shows a crack suppression effect by which the thickness of CeO{sub 2} films on Ni–5 at.%W substrate can reach a high value up to 200 nm without any cracks, make it a potential single buffer layer for coated conductor. In the present work, the processes of CeO{sub 2} film deposited by electrochemistry method are detailed investigated. A hydroxide reactive mechanism and an oxide reactive mechanism are distinguished for dimethyl sulfoxide and aqueous solution, respectively. Before heat treatment to achieve the required bi-axial texture performance of buffer layers, the precursor CeO{sub 2} films are identified in nanometer scales. The crack suppression for electrochemistry deposited CeO{sub 2} films is believed to be attributed to the nano-effects of the precursors.

  8. The mechanism of the nano-CeO2 films deposition by electrochemistry method as coated conductor buffer layers

    International Nuclear Information System (INIS)

    Highlights: • Crack-free CeO2 film thicker than 200 nm was prepared on NiW substrate by ED method. • Different electrochemical processes as hydroxide/metal mechanisms were identified. • The CeO2 precursor films deposited by ED method were in nano-scales. - Abstract: Comparing with conventional physical vapor deposition methods, electrochemistry deposition technique shows a crack suppression effect by which the thickness of CeO2 films on Ni–5 at.%W substrate can reach a high value up to 200 nm without any cracks, make it a potential single buffer layer for coated conductor. In the present work, the processes of CeO2 film deposited by electrochemistry method are detailed investigated. A hydroxide reactive mechanism and an oxide reactive mechanism are distinguished for dimethyl sulfoxide and aqueous solution, respectively. Before heat treatment to achieve the required bi-axial texture performance of buffer layers, the precursor CeO2 films are identified in nanometer scales. The crack suppression for electrochemistry deposited CeO2 films is believed to be attributed to the nano-effects of the precursors

  9. The development of a virtual heat bath for calorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Pickrell, M.M.; Bracken, D.S.; Rudy, C.R.

    1998-12-31

    All existing calorimeter systems for sensitive nuclear assay employ a heat bath surrounding the sample chamber. The purpose of the heat bath is to maintain a constant temperature so that a fixed temperature difference is maintained across the thermal resistance of the calorimeter. Present calorimeter systems all employ an active, feedback-controlled system to maintain a fixed temperature. An alternative would be to allow the heat-bath temperature to change, to measure it, and to compensate the assay for this change. Two significant observations make this approach possible: (1) the effect on the measurement of a temperature change in the heat bath is differential in form and (2) temperature measurement systems are very accurate when measuring differences in temperature (either in time or between two locations). From these observations, the authors have developed a virtual heat-bath compensation system. The control theory and results will be presented.

  10. New exploration methods for platinum and rhodium deposits poor in base-metal sulphides

    DEFF Research Database (Denmark)

    Ohnenstetter, M.; Johan, Z.; Cocherie, A.;

    1999-01-01

    of the deposits occur in Albania, in the Tropoja and Bulqiza massifs, and are part of an ophiolitic belt created in an oceanic environment during the Upper Jurassic. The other two deposits occur in Madagascar, in the Andohankiranomena and Lavotrafo ultramafic massifs, and are within a Pan-African...

  11. Deep repository - engineered barrier systems. Assessment of backfill materials and methods for deposition tunnels

    International Nuclear Information System (INIS)

    The main objectives of this report are to: (1) present density criteria considering deposition tunnels for the investigated backfill materials, (2) evaluate what densities can be achieved with the suggested backfill methods, (3) compare the density criteria to achievable densities, (4) based on this comparison evaluate the safety margin for the combinations of backfill materials and methods and, (5) make recommendations for further investigations and development work. The backfilling methods considered in this report are compaction of backfill material in situ in the tunnel and placement of pre-compacted blocks and pellets. The materials investigated in the second phase of the SKB-Posiva backfilling programme can be divided into three main categories: (1) Bentonite clays: two high-grade Na-bentonites from Wyoming (MX-80 and SPV200), one low-grade bentonite from Kutch (India Asha 2 0), and one high- and one low-grade Ca-bentonite from Milos (Deponite CA-N and Milos backfill). The highgrade bentonites are used in different bentonite-ballast mixtures. (2) Smectite-rich mixed-layer clays: one from Dnesice-Plzensko Jih (DPJ) located in the Czech Republic and one from Northern Germany (Friedland clay). (3) Mixtures of bentonite and ballast: Mixtures consisting of high-grade bentonite (30, 40 and 50 w-%) and crushed rock with different type of grain size distribution or sand. The general conclusion from the comparison between estimated achievable densities and the density criteria is that placing pre-compacted blocks of swelling clay or 50/50 mixture and pellets in the tunnel results in the highest safety margin. (orig.)

  12. A comparative study of CdS thin films deposited by different techniques

    International Nuclear Information System (INIS)

    Cadmium sulfide thin-films were deposited on glass slides and SnO2:F coated glass substrates by chemical bath deposition, sputtering and close-spaced sublimation techniques. The films were studied for the structural and opto-electronic properties after annealing in an ambient identical to that employed in the fabrication of CdTe/CdS devices. Quantum efficiency of the CdTe/CdS solar cells fabricated with CdS buffer films prepared by the three methods were investigated to understand the role of CdS film preparation method on the blue response of the devices. The higher blue response observed for the devices fabricated with chemical bath deposited CdS film is discussed. - Highlights: ► CdS films were prepared by different techniques. ► Role of CdS on the blue response of device was studied. ► Structural and optical properties of CdS were analyzed. ► Chemically deposited CdS has high blue transmittance. ► CdS deposition method influences diffusion of S and Te

  13. A comparative study of CdS thin films deposited by different techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-Hernández, G., E-mail: german.perez@ujat.mx [Universidad Juárez Autónoma de Tabasco, Avenida Universidad s/n, Col. Magisterial, Villahermosa, Tabasco 86040 (Mexico); Pantoja-Enríquez, J. [Centro de Investigación y Desarrollo Tecnológico en Energías Renovables, UNICACH, Libramiento Norte No 1150, Tuxtla Gutiérrez, Chiapas 29039 (Mexico); Escobar-Morales, B. [Instituto Tecnológico de Cancún, Avenida Kábah Km 3, Cancún, Quintana Roo 77500 (Mexico); Martinez-Hernández, D.; Díaz-Flores, L.L.; Ricardez-Jiménez, C. [Universidad Juárez Autónoma de Tabasco, Avenida Universidad s/n, Col. Magisterial, Villahermosa, Tabasco 86040 (Mexico); Mathews, N.R.; Mathew, X. [Centro de Investigación en Energía, Universidad Nacional Autónoma de México, Temixco, Morelos 62580 (Mexico)

    2013-05-01

    Cadmium sulfide thin-films were deposited on glass slides and SnO{sub 2}:F coated glass substrates by chemical bath deposition, sputtering and close-spaced sublimation techniques. The films were studied for the structural and opto-electronic properties after annealing in an ambient identical to that employed in the fabrication of CdTe/CdS devices. Quantum efficiency of the CdTe/CdS solar cells fabricated with CdS buffer films prepared by the three methods were investigated to understand the role of CdS film preparation method on the blue response of the devices. The higher blue response observed for the devices fabricated with chemical bath deposited CdS film is discussed. - Highlights: ► CdS films were prepared by different techniques. ► Role of CdS on the blue response of device was studied. ► Structural and optical properties of CdS were analyzed. ► Chemically deposited CdS has high blue transmittance. ► CdS deposition method influences diffusion of S and Te.

  14. Effect of argon on the properties of plasma polymerized thin films deposited from benzene using (PECVD) method

    International Nuclear Information System (INIS)

    Plasma polymerized organic thin films were deposited at room temperature by Plasma Enhanced Chemical Vapor Deposition (PECVD) method using benzene (C6H6) as a precursor material. Radio frequency (r.f.) with 13.56 MHz was applied at a constant r.f. power of 100 Watt. Films were deposited under different benzene/argon ratios of 100:0, 20:80, 15:85, and 10:90. Chemical structures of the deposited film were analyzed using Infrared Reflectance Absorbance Spectroscopy (IRRAS), Fourier Transformation Infra Red (FTIR) system. Contact angle (θ) measurements were carried out to study the changes in the surface free energy of the materials due to plasma treatments. Surface roughness of deposited films was investigated using scanning electron microscopy (SEM). The corrosion protective abilities of films on aluminum magnesium alloy type 6061 as substrate were examined by potentiodynamic curves measurements in 3.5 wt. % NaCl solutions. The effect of benzene/argon ratios on the properties of deposited film were mainly studied in this work. (author)

  15. Effects of bath temperature on electroplated SnSe thin films

    Science.gov (United States)

    Mahalingam, T.; Dhanasekaran, V.; Thanikaikarasan, S.; Kathalingam, A.; Rhee, Jin-Koo

    2012-06-01

    Tin selenide (SnSe) thin films were deposited onto indium doped tin oxide coated (ITO) glass substrates by electro deposition technique. The deposition bath contains a solution mixture consisting SnCl2 and Na2SeO3. X-ray diffraction studies revealed orthorhombic structure of SnSe films and various micro structural parameters such as crystallite size, dislocation density and strain were calculated. Optical properties were determined by UV-vis-NIR double beam spectrophotometer and direct transition energy band gap was estimated as 1.1 eV. Morphological studies reveal nano rod shaped grains covering the surface of the film and the results are discussed.

  16. Transport Properties of MgB2 Films Grown by Hybrid Physical Chemical Vapor Deposition Method

    International Nuclear Information System (INIS)

    We prepared four different MgB2 films on Al2O3 by hybrid physical chemical vapor deposition method with thicknesses ranging from 0.65 μm to 1.2 μm X-ray diffraction patterns confirm that all the MgB2 films are c-axis oriented perpendicular to Al2O3 substrates. The superconducting onset temperature of MgB2 films were between 39.39K and 40.72K. The residual resistivity ratio of the MgB2 films was in the range between 3.13 and 37.3. We measured the angle dependence of critical current density (Jc) and resistivity, and determined the upper critical field (Hc2 ) from the temperature dependence of the resistivity curves. The anisotropy ratios defined as the ratio of the (Hc2 ) parallel to the ab-plane to that perpendicular to the ab-plane were in the range of 2.13 to 4.5 and were increased as the temperature was decreased. Some samples showed increase of Jc and decrease of resistivity when a magnetic field in applied parallel to the c-axis. We interpret this angle dependence in terms of enhanced flux pinning due to columnar growth of MgB2 along the c-axis.

  17. Development of suppression method for deposition of radioactive nuclides after decontamination

    International Nuclear Information System (INIS)

    Chemical decontamination is applied to many Japanese nuclear power plants. However, after the chemical decontamination a rapid dose rate increase can be seen in some plants during just a few operation cycles. Oxide film, which easily incorporates radioactivity, might be formed after the chemical decontamination. So, our objective is finding a way to reduce the recontamination after the chemical decontamination. We concentrate on long-term continued decontamination effects without any chemical injections and chemical controls in reactor water during operation. Oxide films formed during the plant operation are removed by the HOP (Hydrazine, Oxalic acid and Potassium permanganate) decontamination process and a fine ferrite film is formed by the Hi-F Coat (Hitachi Ferrite Coat) process. In this method, Fe(HCOO)2, H2O2, and H2H4 are used as the treatment chemicals. A cobalt-60 deposition reduction effect of 1/5 compared to non-treatment is confirmed for up to 3,100 hours by laboratory experiments. (author)

  18. Material properties of the Pt electrode deposited on nafion membrane by the impregnation-reduction method.

    Science.gov (United States)

    Rashid, Muhammad; Jun, Tae-Sun; Kim, Yong Shin

    2013-05-01

    Platinum nanoparticles (Pt NPs) were chemically deposited on a Nafion polymer electrolyte membrane by the impregnation-reduction (I-R) procedure to prepare an active electrode for solid electrochemical sensors. Various analysis methods such as SEM, EDX, XRD and cyclic voltammogram (CV) measurements were employed in order to characterize microstructures and electrochemical properties of the Pt layer. At the conditions ([Pt(NH3)4Cl2] = 10 mM, [NaBH4] = 60 mM, 50 degrees C), the porous Pt thin-film, consisting of sphere-like particles formed by the agglomeration of primary polycrystalline Pt NPs with an average crystal size of 13-18 nm, was obtained and confirmed to have a large surface area (roughness factor = 267) and strong adhesion due to the formation of interfacial Pt-Nafion composites. The secondary globular particles were found to have an average diameter of 215 nm and irregular protuberances on the surface. Furthermore, this electrode exhibited well-resolved CV peaks for the hydrogen redox reactions in an acid solution, suggesting the existence of different adsorption sites and good electrochemical behaviors. Pt/Nafion electrodes were prepared under different conditions in [Pt(NH3)4Cl2], [NaBH4] and reaction temperature, and their material properties were discussed from the viewpoint of a Pt growth mechanism. PMID:23858916

  19. Evaluation of the 210Po method at the Midwest uranium deposit, northern Saskatchewan, Canada

    International Nuclear Information System (INIS)

    Vertical profiles of 210Po in soils near the Midwest uranium deposit and an associated surficial radioactive sandstone boulder train in northern Saskatchewan show a high 210Po background in air-dried forest litter (24 pCi/g) and Ah horizon soil (11 pCi/g) relative to lower soil horizons (210Po signal from the radioactive boulders in the near-surface soil horizons. Only in the Bf and C horizons can the existence of the radioactive boulders be inferred from 210Po determinations. For comparative purposes profiles for 226Ra, U, Ni, and other trace elements are also presented. Escape of most of the Rn from near surface soils into the atmosphere, homogenization and decay of Rn, and precipitation of decay products back onto surface soils satisfactorily explain the field observations discussed here. Compared to the highly anomalous 222Rn signal in soil gases over this boulder train the 210Po contrast is very weak and is of little use for prospecting for this type of boulder train. The relatively high 210Po background in surficial materials relative to lower soil horizons dictates that great care be taken with the 210Po method; the deepest possible horizons should be sampled. (orig.)

  20. Controllable deposition of cadmium oxide and hydroxide nanostructures on silicon using a hydrothermal method

    International Nuclear Information System (INIS)

    Highlights: • Hydrothermal route for deposition of CdO and Cd(OH)2 nanostructures on Si is investigated. • The shape and phase of the nanostructures affected by the growth parameters. • Photoluminescence spectra showed multiple peaks by various phases. - Abstract: We report on the growth of CdO and Cd(OH)2 nanostructures with different morphologies on Si substrates by using a hydrothermal method. Structural and optical investigations showed that the shape and phase could be modified through the growth time and the concentration in the solution. The formation of CdO was dominated during the early stage of growth and at a low source concentration, while that of Cd(OH)2 was dominated at the later stage of growth with a higher source molar concentration. And the mechanism was explained by the thermodynamically favorable reaction. Our results indicate that the morphology and crystalline phases of CdO and Cd(OH)2 nanostructures can be controlled on the Si substrates for various applications

  1. Improving electrochemical performance of tin-based anodes formed via oblique angle deposition method

    Indian Academy of Sciences (India)

    B Deniz Polat; Ozgul Keles

    2014-12-01

    An oblique angle electron beam co-deposition technique was used to fabricate nanostructured Sn-based thin films: Sn, Cu–Sn and Cu–Sn–C. The morphological and structural properties of the films were observed via scanning electron microscopy (SEM) and thin film X-ray diffraction (XRD) methods. The electrochemical (CV and EIS) and the galvanostatic test results demonstrated that the addition of Cu with or without C affected the electrochemical performance of the thin film positively since Cu and C improved both the mechanical and the electrical properties of the nanostructured Sn thin film electrode. The high cycleability and capacity retention were achieved when the nanostructured Cu–Sn–C thin film was used as an anode material since C increased the mechanical tolerance of the thin film to the volume expansion due to its grain refiner effect. Cu not only improved the electrical conductivity and the adhesion of the film to substrate but also the mechanical tolerance of the film with its ductile property.

  2. Hydrogen-free spray pyrolysis chemical vapor deposition method for the carbon nanotube growth: Parametric studies

    International Nuclear Information System (INIS)

    Spray pyrolysis chemical vapor deposition (CVD) in the absence of hydrogen at low carrier gas flow rates has been used for the growth of carbon nanotubes (CNTs). A parametric study of the carbon nanotube growth has been conducted by optimizing various parameters such as temperature, injection speed, precursor volume, and catalyst concentration. Experimental observations and characterizations reveal that the growth rate, size and quality of the carbon nanotubes are significantly dependent on the reaction parameters. Scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy techniques were employed to characterize the morphology, structure and crystallinity of the carbon nanotubes. The synthesis process can be applied to both semiconducting silicon wafer and conducting substrates such as carbon microfibers and stainless steel plates. This approach promises great potential in building various nanodevices with different electron conducting requirements. In addition, the absence of hydrogen as a carrier gas and the relatively low synthesis temperature (typically 750 deg. C) qualify the spray pyrolysis CVD method as a safe and easy way to scale up the CNT growth, which is applicable in industrial production.

  3. Development of the flow behavior model for 3D scaffold fabrication in the polymer deposition process by a heating method

    Science.gov (United States)

    Kim, Jong Young; Park, Jung Kyu; Hahn, Sei Kwang; Kwon, Tai Hun; Cho, Dong-Woo

    2009-10-01

    The flow behavior model for 3D scaffold fabrication in the polymer deposition process by the heating method was developed for enhanced efficiency of the deposition process. The analysis of the polymer flow property is very important in the fabrication process of precise micro-structures such as scaffolds. In this study, a deposition model considering fluid mechanics and heat transfer phenomena was built up and introduced for the estimation of the fluid behavior of molten polymer. The effectiveness of the simulation model was verified through comparison with the experimental result in the case of PCL biomaterial. In addition, the effects of various parameters, such as pressure, temperature and nozzle size, were predicted through simulation before experimental approaches. Through the fabrication of 3D scaffold, it is concluded that this model is useful in predicting the flow behavior characteristics in the micro-structure fabrication process, which is based on the heating method.

  4. Characterisation of calcareous deposits by electrochemical methods: role of sulphates, calcium concentration and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Barchiche, Chems; Deslouis, Claude; Gil, Otavio; Refait, Philippe; Tribollet, Bernard

    2004-07-30

    Mineral deposits consisting of CaCO{sub 3} and Mg(OH){sub 2} develop on steel surfaces immersed in seawater, whenever a cathodic protection is applied. The kinetics of their formation depends on various factors, such as temperature, applied potential, electrolyte composition and stirring. In this study, the cross effects between the deposition of CaCO{sub 3} and that of Mg-containing compounds was investigated by varying the [Ca{sup 2+}] concentration of the electrolyte. Chronoamperometry and electrochemical impedance spectroscopy (EIS) were used to monitor the formation of the deposits whereas scanning electron microscopy was performed to characterise the deposits. At a potential of -1.0 V/SCE, an increase of temperature accelerated the deposition of CaCO{sub 3}, whereas at -1.2 V/SCE it modified the composition, favouring Mg(OH){sub 2}. The presence of SO{sub 4}{sup 2-} anions proved to hinder the deposition of CaCO{sub 3}. For instance, at a concentration of 50% [Ca{sup 2+}]{sub ref} (standard seawater reference), a compact deposit covered totally a steel surface immersed in a sulphate free solution, whereas less than half of the surface was covered when SO{sub 4}{sup 2-} ions were present.

  5. Characterisation of calcareous deposits by electrochemical methods: role of sulphates, calcium concentration and temperature

    International Nuclear Information System (INIS)

    Mineral deposits consisting of CaCO3 and Mg(OH)2 develop on steel surfaces immersed in seawater, whenever a cathodic protection is applied. The kinetics of their formation depends on various factors, such as temperature, applied potential, electrolyte composition and stirring. In this study, the cross effects between the deposition of CaCO3 and that of Mg-containing compounds was investigated by varying the [Ca2+] concentration of the electrolyte. Chronoamperometry and electrochemical impedance spectroscopy (EIS) were used to monitor the formation of the deposits whereas scanning electron microscopy was performed to characterise the deposits. At a potential of -1.0 V/SCE, an increase of temperature accelerated the deposition of CaCO3, whereas at -1.2 V/SCE it modified the composition, favouring Mg(OH)2. The presence of SO42- anions proved to hinder the deposition of CaCO3. For instance, at a concentration of 50% [Ca2+]ref (standard seawater reference), a compact deposit covered totally a steel surface immersed in a sulphate free solution, whereas less than half of the surface was covered when SO42- ions were present

  6. Chromium recovery from exhausted baths generated in plating processes and its reuse in the tanning industry.

    Science.gov (United States)

    Torras, Josep; Buj, Irene; Rovira, Miquel; de Pablo, Joan

    2012-03-30

    Chromium plating used for functional purposes provides an extremely hard, wear and corrosion resistant layer by means of electrolytic deposition. Typical layer thicknesses range between 2.5 and 500 μm. Chromium electroplating baths contain high concentrations of Cr(VI) with chromium trioxide (CrO(3)) as the chromium source. When because of technical or economic reasons a bath gets exhausted, a waste containing mainly chromium as dichromate as well as other heavy metals is generated. Chromium may then be purified for use in other industrial processes with different requirements. In this work, a sustainable system for using galvanic wastes as reagents in the leather tanning industry, thus reducing quantity of wastes to be treated, is presented. Metal cations present in the chromium exhausted bath were precipitated with NaOH. Then, the solution containing mainly soluble Cr(VI) was separated. By means of sodium sulphite in acidic conditions, Cr(VI) was reduced to Cr(III) as chromium (III) sulphate. From chromium (III) sulphate a basic Cr(III) sulphate may be obtained, which is one of most used compounds in the tanning industry. Cr(III) concentration in the final solution allows its reuse without concentration, but with a slight dilution. PMID:22326242

  7. The Effect of Adding Corrosion Inhibitors into an Electroless Nickel Plating Bath for Magnesium Alloys

    Science.gov (United States)

    Hu, Rong; Su, Yongyao; Liu, Hongdong; Cheng, Jiang; Yang, Xin; Shao, Zhongcai

    2016-08-01

    In this work, corrosion inhibitors were added into an electroless nickel plating bath to realize nickel-phosphorus (Ni-P) coating deposition on magnesium alloy directly. The performance of five corrosion inhibitors was evaluated by inhibition efficiency. The results showed that only ammonium hydrogen fluoride (NH4HF2) and ammonium molybdate ((NH4)2MoO4) could be used as corrosion inhibitors for magnesium alloy in the bath. Moreover, compounding NH4HF2 and (NH4)2MoO4, the optimal concentrations were both at 1.5 ~ 2%. The deposition process of Ni-P coating was observed by using a scanning electron microscope (SEM). It showed corrosion inhibitors inhibited undesired dissolution of magnesium substrate during the electroless plating process. In addition, SEM observation indicated that the corrosion inhibition reaction and the Ni2+ replacement reaction were competitive at the initial deposition time. Both electrochemical analysis and thermal shock test revealed that the Ni-P coating exhibited excellent corrosion resistance and adhesion properties in protecting the magnesium alloy.

  8. Preparation of silicon-substituted hydroxyapatite coatings on Ti–30Nb–xTa alloys using cyclic electrochemical deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Sil [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University (Korea, Republic of); Jeong, Yong-Hoon [Biomechanics and Tissue Engineering Laboratory, Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University (Korea, Republic of); Brantley, William A. [Division of Restorative Science and Prosthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States)

    2014-12-01

    Silicon-substituted hydroxyapatite coatings on Ti–30Nb–xTa alloys, prepared using a cyclic electrochemical deposition method, have been investigated using a variety of surface analytical experimental methods. The silicon-substituted hydroxyapatite (Si-HA) coatings were prepared by electrolytic deposition in electrolytes containing Ca{sup 2+}, PO{sub 4}{sup 3−} and SiO{sub 3}{sup 2−} ions. The deposited layers were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and a wettability test. Phase transformation from (α″ + β) to largely β occurred with increasing Ta content in the Ti –30Nb–xTa alloys, yielding larger grain size. The morphology of the Si-HA coatings was changed by increasing the number of deposition cycles, with the initial plate-like structures changing to mixed rod-like and plate-like shapes, and finally to a rod-like structure. From the ATR-FTIR spectra, Si existed in the form of SiO{sub 4}{sup 4−} groups in Si-HA coating layer. The lowest aqueous contact angles and best wettability were found for the Si-HA coatings prepared with 30 deposition cycles. - Highlights: • Electrochemically deposited Si-HA coatings on Ti –30Nb–xTa alloys were investigated. • The Si-HA coatings were initially precipitated along the martensitic structure. • The morphology of the Si-HA coating changed with the deposition cycles. • Si existed in the form of SiO{sub 4}{sup 4−} groups in the Si-HA coating.

  9. Preparation of Sm2S3 thin films by liquid phase deposition method with self-assembled monolayers

    International Nuclear Information System (INIS)

    Highlights: ► Sm2S3 thin films with orientation growth along (1 0 3) direction. ► The influence of the precursor solution pH value. ► Liquid phase deposition method on self-assembled monolayers. ► Red photoluminescence properties. - Abstract: Sm2S3 thin films were prepared on Si(1 0 0) substrates using SmCl3 and Na2S2O3 as source material by liquid phase deposition method on self-assembled monolayers. The influence of the precursor solution pH value on the phase composition, surface morphology and optical properties of the as-deposited films were investigated. The as-deposited Sm2S3 thin films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), ultraviolet–visible (UV–Vis) and photoluminescence spectrum (PL). Results show that it is important to control the solution pH value during the deposition process and monophase Sm2S3 thin films with orientation growth along (1 0 3) direction can be achieved when pH 3.0, using citrate as a template agent. The as-deposited thin films exhibit a dense and crystalline surface morphology. Good transmittance in the visible spectrum and excellent absorbency of ultraviolet light of the thin films are observed, and the band gap of the thin films first decrease and then increase with the increase of the pH value. The as-deposited thin films also exhibit red photoluminescence properties under visible light excitation. With the increase of the solution pH value, the PL properties of Sm2S3 thin films are obviously improved.

  10. Dynamics of a two-level system coupled to a bath of spins

    Science.gov (United States)

    Wang, Haobin; Shao, Jiushu

    2012-12-01

    The dynamics of a two-level system coupled to a spin bath is investigated via the numerically exact multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) theory. Consistent with the previous work on linear response approximation [N. Makri, J. Phys. Chem. B 103, 2823 (1999)], 10.1021/jp9847540, it is demonstrated numerically that this spin-spin-bath model can be mapped onto the well-known spin-boson model if the system-bath coupling strength obeys an appropriate scaling behavior. This linear response mapping, however, may require many bath spin degrees of freedom to represent the practical continuum limit. To clarify the discrepancies resulted from different approximate treatments of this model, the population dynamics of the central two-level system has been investigated near the transition boundary between the coherent and incoherent motions via the ML-MCTDH method. It is found that increasing temperature favors quantum coherence in the nonadiabatic limit of this model, which corroborates the prediction in the previous work [J. Shao and P. Hanggi, Phys. Rev. Lett. 81, 5710 (1998)], 10.1103/PhysRevLett.81.5710 based on the non-interacting blip approximation (NIBA). However, the coherent-incoherent boundary obtained by the exact ML-MCTDH simulation is slightly different from the approximate NIBA results. Quantum dynamics in other physical regimes are also discussed.

  11. Quantum Thermal Bath for Path Integral Molecular Dynamics Simulation.

    Science.gov (United States)

    Brieuc, Fabien; Dammak, Hichem; Hayoun, Marc

    2016-03-01

    The quantum thermal bath (QTB) method has been recently developed to account for the quantum nature of the nuclei by using standard molecular dynamics (MD) simulation. QTB-MD is an efficient but approximate method when dealing with strongly anharmonic systems, while path integral molecular dynamics (PIMD) gives exact results but in a huge amount of computation time. The QTB and PIMD methods have been combined in order to improve the PIMD convergence or correct the failures of the QTB-MD technique. Therefore, a new power spectral density of the random force within the QTB has been developed. A modified centroid-virial estimator of the kinetic energy, especially adapted to QTB-PIMD, has also been proposed. The method is applied to selected systems: a one-dimensional double-well system, a ferroelectric phase transition, and the position distribution of an hydrogen atom in a fuel cell material. The advantage of the QTB-PIMD method is its ability to give exact results with a more reasonable computation time for strongly anharmonic systems. PMID:26799437

  12. Mephedrone ("bath salt") pharmacology: insights from invertebrates.

    Science.gov (United States)

    Ramoz, L; Lodi, S; Bhatt, P; Reitz, A B; Tallarida, C; Tallarida, R J; Raffa, R B; Rawls, S M

    2012-04-19

    Psychoactive bath salts (also called meph, drone, meow meow, m-CAT, bounce, bubbles, mad cow, etc.) contain a substance called mephedrone (4-methylcathinone) that may share psychostimulant properties with amphetamine and cocaine. However, there are only limited studies of the neuropharmacological profile of mephedrone. The present study used an established invertebrate (planarian) assay to test the hypothesis that acute and repeated mephedrone exposure produces psychostimulant-like behavioral effects. Acute mephedrone administration (50-1000 μM) produced stereotyped movements that were attenuated by a dopamine receptor antagonist (SCH 23390) (0.3 μM). Spontaneous discontinuation of mephedrone exposure (1, 10 μM) (60 min) resulted in an abstinence-induced withdrawal response (i.e. reduced motility). In place conditioning experiments, planarians in which mephedrone (100, 500 μM) was paired with the non-preferred environment during conditioning displayed a shift in preference upon subsequent testing. These results suggest that mephedrone produces three behavioral effects associated with psychostimulant drugs, namely dopamine-sensitive stereotyped movements, abstinence-induced withdrawal, and environmental place conditioning. PMID:22300981

  13. The rapid methods of the prospecting and exploration well drilling at the deposits in unlithified formation

    International Nuclear Information System (INIS)

    The Volkovgeologiya joint-stock venture experience and achievements in the well drilling at uranium deposits in unlithified Upper Cretaceous formation of the Shu-Sarysu Depression are presented. (author)

  14. Estimating the erosion and deposition rates in a small watershed by the 137Cs tracing method

    International Nuclear Information System (INIS)

    Understanding the erosion and deposition rates in a small watershed is important for designing soil and water conservation measures. The objective of this study is to estimate the net soil loss and gain at points with various land use types and landform positions in a small watershed in the Sichuan Hilly Basin of China by the 137Cs tracing technique. Among various land use types, the order of erosion rate was bare rock > sloping cultivated land > forest land. The paddy field and Caotu (a kind of cultivated land located at the foot of hills) were depositional areas. The erosion rate under different landform was in this order: hillside > saddle > hilltop. The footslope and the valley were depositional areas. The 137Cs technique was shown to provide an effective means of documenting the spatial distribution of soil erosion and deposition within the small watershed

  15. Investigation of viscous fluid flow in an eccentrically deposited annulus using CFD methods

    OpenAIRE

    Kozubkova M.; Kozdera M.; Bojko M.

    2013-01-01

    The theory of fluid flow in an eccentrically deposited annulus has of great importance especially in the design of sliding bearings (axial, radial). If the geometry is more complex or shaft is deposited eccentrically, then a suitable alternative for design hydrostatic bearing is using ANSYS Fluent, which solves the general three-dimensional viscous fluid flow also in complex geometry. The problem of flow solves in the narrow gap between the cylinders in this paper, when the inner cylinder is ...

  16. Characterization of an innovative method for RuO2 deposition using Electron Microscopy

    DEFF Research Database (Denmark)

    Cavalca, Filippo

    annular dark field (HAADF) imaging, energy-dispersive X-ray (EDX) spectroscopy, and electron energy loss spectroscopy (EELS) in the scanning transmission electron microscope (STEM) to study the deposition of RuO2 on TiO2. The deposition process occurs in two steps, for each of which we are able to...... characterize the RuO2 distribution, morphology and crystallinity....

  17. Insertion of nanocrystalline diamond film and the addition of hydrogen gas during deposition for adhesion improvement of cubic boron nitride thin film deposited by unbalanced magnetron sputtering method

    International Nuclear Information System (INIS)

    Cubic boron nitride (c-BN) thick film growth was attempted by the addition of hydrogen for residual stress reduction and by using a nanocrystalline diamond (NCD) buffer layer for stabilizing the turbostratic boron nitride interfacial layer. The c-BN films were deposited by the unbalanced magnetron sputtering method. Thin (100 μm) Si strips (3 × 40 mm2) were used as substrates. A boron nitride target was used, which was connected to a radio frequency power supply at 400 W. High frequency power connected to a substrate holder was used for self-biasing of − 40 V. The deposition pressure was 0.27 Pa with a flow of Ar (18 sccm)–N2 (2 sccm) mixed gas. Hydrogen gas of 2 sccm was added to the Ar–N2 mixed gas. The effect of the addition time of the hydrogen to the Ar–N2 gas during deposition was investigated and found to be critical to the occurrence of the delamination of the c-BN film on the NCD buffer layer. As the addition of the hydrogen was delayed, the delamination started later. C-BN film of 3 μm thickness adherent to the substrate was obtained. - Highlights: • A nanocrystalline diamond (NCD) buffer layer was applied to enhance the adhesion. • Hydrogen in the reaction gas caused delamination of the film at c-BN/NCD interface. • A delayed hydrogen addition was effective in inhibiting such delamination. • About 3 μm thick c-BN film could be grown

  18. EXPOSURE TO CARBONIC GAS ENRICHED ATMOSPHERE OR ELECTRICAL WATER BATH TO STUN OR KILL CHICKENS

    OpenAIRE

    JP Nicolau; MF Pinto; EHG Ponsano; SHV Perri; M Garcia Neto

    2015-01-01

    ABSTRACTThe objective of this study was to compare the effects of two methods (electrical water bath or carbonic gas atmosphere) for stunning or killing broiler chickens prior to bleeding on weight loss due to bleeding and meat traits. A completely randomized design with 2 x 2 factorial arrangement (electrical or gas system x stunning or killing) was applied. The time required for stunning and killing and the birds' behavior were evaluated for the gas exposure method. The birds killed by the ...

  19. Investigation of The Traditional Seljuks and Principalities Period Baths Within The Conservation and Restoration: The Example of Isparta Baths

    Directory of Open Access Journals (Sweden)

    Ayşe Betül GÖKARSLAN

    2016-04-01

    Full Text Available The city Isparta is located around the Lakes Region in the Mediterranean Region of Turkey. Date of settlement in Isparta goes back to the upper Paleolithic era. Isparta went under the administration of Luvi and Arzava Phrygians, Lydia, Persia, Kingdom of Pergamon, Roman Empire, Byzantine Empire, Seljuks, Hamitoğulları Principality, Ottoman Empire and Republic of Turkey. Isparta is still a small Anatolian city along with its 12 district. Isparta represents the classical Turkish city concept with its mosques, covered bazaar, baths and churches. One of the most important historical structures of Isparta is bath. Baths came to be used less frequently with the construction of bathrooms in every apartment. The elderly people generally use the baths in Isparta. Due to a major decrease in their number, baths are not sufficiently functional and face with important protection issues. Traditional Isparta baths have been reviewed in detail in terms of their architecture and preservation within the scope of this study. Particularly the baths belonging to the era of Seljuk and Hamitoğulları Principality have major and urgent protection issues. Archive and literature review have been performed; architectural features of the structures have been examined; damages have been evaluated and reasons for deterioration have been analyzed. In the conclusion part, recommendations for protection and new functions have been stated so that these structures will be transferred to next generations by preserving their structural characteristics and individualities.

  20. Evaluating a microbial water quality prediction model for beach management under the revised EU Bathing Water Directive.

    Science.gov (United States)

    Bedri, Zeinab; Corkery, Aisling; O'Sullivan, John J; Deering, Louise A; Demeter, Katalin; Meijer, Wim G; O'Hare, Gregory; Masterson, Bartholomew

    2016-02-01

    The revised Bathing Water Directive (2006/7/EC) requires EU member states to minimise the risk to public health from faecal pollution at bathing waters through improved monitoring and management approaches. While increasingly sophisticated measurement methods (such as microbial source tracking) assist in the management of bathing water resources, the use of deterministic predictive models for this purpose, while having the potential to provide decision making support, remains less common. This study explores an integrated, deterministic catchment-coastal hydro-environmental model as a decision-making tool for beach management which, based on advance predictions of bathing water quality, can inform beach managers on appropriate management actions (to prohibit bathing or advise the public not to bathe) in the event of a poor water quality forecast. The model provides a 'moving window' five-day forecast of Escherichia coli levels at a bathing water compliance point off the Irish coast and the accuracy of bathing water management decisions were investigated for model predictions under two scenarios over the period from the 11th August to the 5th September, 2012. Decisions for Scenario 1 were based on model predictions where rainfall forecasts from a meteorological source (www.yr.no) were used to drive the rainfall-runoff processes in the catchment component of the model, and for Scenario 2, were based on predictions that were improved by incorporating real-time rainfall data from a sensor network within the catchment into the forecasted meteorological input data. The accuracy of the model in the decision-making process was assessed using the contingency table and its metrics. The predictive model gave reasonable outputs to support appropriate decision making for public health protection. Scenario 1 provided real-time predictions that, on 77% of instances during the study period where both predicted and E. coli concentrations were available, would correctly inform a

  1. Effect of Time and Deposition Method on Quality of Phosphonic Acid Modifier Self-Assembled Monolayers on Indium Zinc Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Sang, Lingzi; Knesting, Kristina M.; Bulusu, Anuradha; Sigdel, Ajaya K.; Giordano, Anthony J.; Marder, Seth R.; Berry, Joseph J.; Graham, Samuel; Ginger, David S.; Pemberton, Jeanne E.

    2016-12-15

    Phosphonic acid (PA) self-assembled monolayers (SAMs) are utilized at critical interfaces between transparent conductive oxides (TCO) and organic active layers in organic photovoltaic devices (OPVs). The effects of PA deposition method and time on the formation of close-packed, high-quality monolayers is investigated here for SAMs fabricated by solution deposition, micro-contact printing, and spray coating. The solution deposition isotherm for pentafluorinated benzylphosphonic acid (F5BnPA) on indium-doped zinc oxide (IZO) is studied using polarization modulation-infrared reflection-absorption spectroscopy (PM-IRRAS) at room temperature as a model PA/IZO system. Fast surface adsorption occurs within the first min; however, well-oriented high-quality SAMs are reached only after -48 h, presumably through a continual process of molecular adsorption/desorption and monolayer filling accompanied by molecular reorientation. Two other rapid, soak-free deposition techniques, micro-contact printing and spray coating, are also explored. SAM quality is compared for deposition of phenyl phosphonic acid (PPA), F13-octylphosphonic acid (F13OPA), and pentafluorinated benzyl phosphonic acid (F5BnPA) by solution deposition, micro-contact printing and spray coating using PM-IRRAS. In contrast to micro-contact printing and spray coating techniques, 48-168 h solution deposition at both room temperature and 70 degrees C result in contamination- and surface etch-free close-packed monolayers with good reproducibility. SAMs fabricated by micro-contact printing and spray coating are much less well ordered.

  2. Characteristics of sintered HA coating deposited by chemical method on AISI 316L substrate

    International Nuclear Information System (INIS)

    Graphical abstract: Potentiodynamic polarization curves of various conditions tested in Ringer’s solution at 37 ± 1 °C. - Highlights: • Sintering resulted in a well-dispersed HA-coating. • Sintering of HA resulted in a slightly higher surface roughness. • Sintering improved the coating/substrate adhesion. • Sintering of HA-coated samples possessed higher corrosion resistance. - Abstract: Hydroxyapatite (HA) coating is widely applied for biomaterials because of its chemical similarity to the mineral component of bones. The bioactive nature of HA coating enhances the formation of strong chemical bonds with surrounding bones. The present work is aimed at investigating the effects of sintering at 500, 600 and 700 °C on the crystallization and adhesive properties of HA coating, deposited by chemical method on AISI 316L stainless steel substrate. The properties of HA coating were studied by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM) and standard tensile adhesion test. In addition, the corrosion behavior after heat treatments was evaluated in Ringer’s solution at 37 °C as a simulated body fluid. The results refer to a good enhancement of the crystallization of the HA coating sintered at 700 °C. The adhesive strength of as-coated (AC) material increased from 8.3 MPa to 12.2, 16.8 and 19.8 MPa after sintering at 500, 600 and 700 °C, respectively. The corrosion rate of the as-coated material reduced sharply from 0.405 to 0.094 μA cm−2 after sintering at 700 °C

  3. Control on wetting properties of spin-deposited silica films by surface silylation method

    Science.gov (United States)

    Rao, A. Venkateswara; Latthe, Sanjay S.; Dhere, Sunetra L.; Pawar, Swapnali S.; Imai, Hiroaki; Ganesan, V.; Gupta, Satish C.; Wagh, Pratap B.

    2010-01-01

    Control on the wettability of solid materials by liquid is a classical and key issue in surface engineering. Optically transparent water-repellent silica films have been spin-deposited on glass substrates at room temperature (˜27 °C). The wetting behavior of silica films was controlled by surface silylation method using dimethylchlorosilane (DMCS) as a silylating reagent. A coating sol was prepared by keeping the molar ratio of methyltrimethoxysilane (MTMS) precursor, methanol (MeOH) solvent, water (H 2O) constant at 1:8.8:2.64 respectively, with 4 M NH 4OH as a catalyst throughout the experiments and the amount of DMCS in hexane was varied from 0 to 12 vol.%. It was found that with an increase in vol.% of DMCS, the water contact angle values of the films increased from 78° to 136°. At 12 vol.% of DMCS, the film shows static water contact angle as high as 136° and water sliding angle as low as 18°. The hydrophobic silica films retained their water repellency up to a temperature 295 °C and above this temperature the films show superhydrophilic behavior. These results are compared with our earlier research work done on silylation of silica surface using hexamethyldisilazane (HMDZ) and trimethylchlorosilane (TMCS). The hydrophobic silica films were characterized by taking into consideration the Fourier transform infrared (FT-IR) spectroscopy, thermo gravimetric-differential thermal (TG-DT) analyses, scanning electron microscopy (SEM), atomic force microscopy (AFM), % of optical transmission, thermal and chemical aging tests, humidity tests, static and dynamic water contact angle measurements.

  4. Control on wetting properties of spin-deposited silica films by surface silylation method

    Energy Technology Data Exchange (ETDEWEB)

    Rao, A. Venkateswara, E-mail: avrao2012@gmail.com [Air Glass Laboratory, Department of Physics, Shivaji University, Kolhapur 416 004, Maharashtra (India); Latthe, Sanjay S.; Dhere, Sunetra L.; Pawar, Swapnali S. [Air Glass Laboratory, Department of Physics, Shivaji University, Kolhapur 416 004, Maharashtra (India); Imai, Hiroaki [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Ganesan, V. [CSR, Indore Centre, University Campus, Khandwa Road, Indore 452 017, Madhyapradesh (India); Gupta, Satish C.; Wagh, Pratap B. [Applied Physics Division, Bhabha Atomic Research Centre (BARC), Trombay, Mumbai 400 085 (India)

    2010-01-15

    Control on the wettability of solid materials by liquid is a classical and key issue in surface engineering. Optically transparent water-repellent silica films have been spin-deposited on glass substrates at room temperature ({approx}27 deg. C). The wetting behavior of silica films was controlled by surface silylation method using dimethylchlorosilane (DMCS) as a silylating reagent. A coating sol was prepared by keeping the molar ratio of methyltrimethoxysilane (MTMS) precursor, methanol (MeOH) solvent, water (H{sub 2}O) constant at 1:8.8:2.64 respectively, with 4 M NH{sub 4}OH as a catalyst throughout the experiments and the amount of DMCS in hexane was varied from 0 to 12 vol.%. It was found that with an increase in vol.% of DMCS, the water contact angle values of the films increased from 78 deg. to 136 deg. At 12 vol.% of DMCS, the film shows static water contact angle as high as 136 deg. and water sliding angle as low as 18 deg. The hydrophobic silica films retained their water repellency up to a temperature 295 deg. C and above this temperature the films show superhydrophilic behavior. These results are compared with our earlier research work done on silylation of silica surface using hexamethyldisilazane (HMDZ) and trimethylchlorosilane (TMCS). The hydrophobic silica films were characterized by taking into consideration the Fourier transform infrared (FT-IR) spectroscopy, thermo gravimetric-differential thermal (TG-DT) analyses, scanning electron microscopy (SEM), atomic force microscopy (AFM), % of optical transmission, thermal and chemical aging tests, humidity tests, static and dynamic water contact angle measurements.

  5. Deposition of thin titanium-copper films with antimicrobial effect by advanced magnetron sputtering methods

    International Nuclear Information System (INIS)

    The antibacterial effect of thin titanium-copper (Ti-Cu) films combined with sufficient growth of human osteoblastic cells is reported in the paper. Thin Ti-Cu films were prepared by three different plasma-assisted magnetron sputtering methods: direct current magnetron sputtering (dc-MS), dual magnetron sputtering (dual-MS) as well as dual high power impulse magnetron sputtering (dual-HiPIMS). The antimicrobial effect is caused by copper released from the metallic Ti-Cu films, which was measured by atomic absorption spectroscopy (AAS). The copper release is influenced by the chemical and physical properties of the deposited films and was investigated by X-ray diffractometry and X-ray reflectometry (GIXD and XR) techniques. It was found that, within the first 24 h the amount of Cu released from dual-HiPIMS films (about 250 μg) was much higher than from dc-MS and dual-MS films. In vitro planktonic growth tests on Ti-Cu surfaces for Staphylococcus epidermidis and S. aureus demonstrated the killing of both bacteria using the Ti-Cu films prepared using the dual-HiPIMS technique. The killing effects on biofilm bacteria were less obvious. After the total release of copper from the Ti-Cu film the vitality of exposed human osteoblast MG-63 cells increased significantly. An initial cytotoxic effect followed by the growth of osteoblastic cells was demonstrated. The cytotoxic effect combined with growth of osteoblastic cells could be used in joint replacement surgery to reduce the possibility of infection and to increase adoption of the implants. Highlights: → Ti-Cu films with significant cytotoxic effect were prepared by dual-HiPIMS technique. → The cytotoxic effect is caused by total release of copper species from thin films. → The copper release is influenced by crystallography and chemical properties of thin films. → Sufficient growth of osteoblastic cells follows after copper release.

  6. Control on wetting properties of spin-deposited silica films by surface silylation method

    International Nuclear Information System (INIS)

    Control on the wettability of solid materials by liquid is a classical and key issue in surface engineering. Optically transparent water-repellent silica films have been spin-deposited on glass substrates at room temperature (∼27 deg. C). The wetting behavior of silica films was controlled by surface silylation method using dimethylchlorosilane (DMCS) as a silylating reagent. A coating sol was prepared by keeping the molar ratio of methyltrimethoxysilane (MTMS) precursor, methanol (MeOH) solvent, water (H2O) constant at 1:8.8:2.64 respectively, with 4 M NH4OH as a catalyst throughout the experiments and the amount of DMCS in hexane was varied from 0 to 12 vol.%. It was found that with an increase in vol.% of DMCS, the water contact angle values of the films increased from 78 deg. to 136 deg. At 12 vol.% of DMCS, the film shows static water contact angle as high as 136 deg. and water sliding angle as low as 18 deg. The hydrophobic silica films retained their water repellency up to a temperature 295 deg. C and above this temperature the films show superhydrophilic behavior. These results are compared with our earlier research work done on silylation of silica surface using hexamethyldisilazane (HMDZ) and trimethylchlorosilane (TMCS). The hydrophobic silica films were characterized by taking into consideration the Fourier transform infrared (FT-IR) spectroscopy, thermo gravimetric-differential thermal (TG-DT) analyses, scanning electron microscopy (SEM), atomic force microscopy (AFM), % of optical transmission, thermal and chemical aging tests, humidity tests, static and dynamic water contact angle measurements.

  7. Deep repository - engineered barrier systems. Assessment of backfill materials and methods for deposition tunnels

    International Nuclear Information System (INIS)

    The main objectives of this report are to: 1) present density criteria considering deposition tunnels for the investigated backfill materials, 2) evaluate what densities can be achieved with the suggested backfill methods, 3) compare the density criteria to achievable densities, 4) based on this comparison evaluate the safety margin for the combinations of backfill materials and methods and, 5) make recommendations for further investigations and development work. The backfilling methods considered in this report are compaction of backfill material in situ in the tunnel and placement of pre-compacted blocks and pellets. The materials investigated in the second phase of the SKB-Posiva backfilling project can be divided into three main categories: 1. Bentonite clays: two high-grade Na-bentonites from Wyoming (MX-80 and SPV200), one low-grade bentonite from Kutch (India Asha 230), and one high and one low-grade Ca-bentonite from Milos (Deponite CA-N and Milos backfill). The high-grade bentonites are used in different bentonite-ballast mixtures. 2. Smectite-rich mixed-layer clays: one from Dnesice-Plzensko Jih (DPJ) located in the Czech Republic and one from Northern Germany (Friedland clay). Mixtures of bentonite and ballast: Mixtures consisting of high-grade bentonite (0, 40 and 50 w-%) and crushed rock with different type of grain size distribution or sand. The relationships between dry densities and hydraulic conductivity, swelling pressure and compressibility in saturated state for these materials were investigated. Most of the tests were performed with a groundwater salinity of 3.5%. This salinity is comparable to sea water and can be expected to be at the high end of salinities occurring during the assessment period. The purpose of the investigations was to determine the dry densities required to meet the function indicator criteria. These densities are referred to as the density criteria. However throughout the assessment period a loss of material and thus

  8. Deep repository - engineered barrier systems. Assessment of backfill materials and methods for deposition tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Gunnarsson, David; Moren, Lena; Sellin, Patrik [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Keto, Paula [Saanio and Riekkola Oy, Helsinki (Finland)

    2006-09-15

    The main objectives of this report are to: 1) present density criteria considering deposition tunnels for the investigated backfill materials, 2) evaluate what densities can be achieved with the suggested backfill methods, 3) compare the density criteria to achievable densities, 4) based on this comparison evaluate the safety margin for the combinations of backfill materials and methods and, 5) make recommendations for further investigations and development work. The backfilling methods considered in this report are compaction of backfill material in situ in the tunnel and placement of pre-compacted blocks and pellets. The materials investigated in the second phase of the SKB-Posiva backfilling project can be divided into three main categories: 1. Bentonite clays: two high-grade Na-bentonites from Wyoming (MX-80 and SPV200), one low-grade bentonite from Kutch (India Asha 230), and one high and one low-grade Ca-bentonite from Milos (Deponite CA-N and Milos backfill). The high-grade bentonites are used in different bentonite-ballast mixtures. 2. Smectite-rich mixed-layer clays: one from Dnesice-Plzensko Jih (DPJ) located in the Czech Republic and one from Northern Germany (Friedland clay). Mixtures of bentonite and ballast: Mixtures consisting of high-grade bentonite (0, 40 and 50 w-%) and crushed rock with different type of grain size distribution or sand. The relationships between dry densities and hydraulic conductivity, swelling pressure and compressibility in saturated state for these materials were investigated. Most of the tests were performed with a groundwater salinity of 3.5%. This salinity is comparable to sea water and can be expected to be at the high end of salinities occurring during the assessment period. The purpose of the investigations was to determine the dry densities required to meet the function indicator criteria. These densities are referred to as the density criteria. However throughout the assessment period a loss of material and thus

  9. Statistic evaluation of cysteine and allyl alcohol as additives for Cu-Zn coatings from citrate baths

    OpenAIRE

    Julyana Ribeiro Garcia; Dalva Cristina Baptista do Lago; Fernando Lucas Gonçalves Silva; Eliane D'Elia; Aderval Severino Luna; Lilian Ferreira de Senna

    2013-01-01

    In the present work, cysteine and allyl alcohol were added to citrate baths as additives to Cu-Zn coatings on steel substrates. In order to verify the effects of the deposition parameters (current density, mechanical stirring speed, and additives) on the coating composition, electrochemical behavior, morphology, and microstructure properties of Cu-Zn coatings, the electrodeposition of the alloy was carried out using an experimental composite design 2³, in which these parameters were considere...

  10. Determination of fluoride in electroplating baths; Determinacion potenciometrica de fluoruro en banos electroliticos de cromado

    Energy Technology Data Exchange (ETDEWEB)

    Perez Olmos, R.; Etxebarria, M.B. [Dpto. Quimica Analitica E.U.I.T.I. Bilbao (Spain); Echevarria, J. [Dpto. Ingenieria Quimica y Medio Ambiente, E.U.I.T.I. Bilbao (Spain); Lima, J.L.F.C.; Montenegro, M.C.B.S.M. [CEQUP, Dpto. Quimica-Fisica, Facultad de Farmacia de Oporto, Oporto (P)

    1997-12-31

    In this work, a simple, rapid and unexpensive analytical method, based on the use of a fluoride selective electrode, for the determination of fluoride in electroplating baths has been developed. Several studies about the composition of the TISAB solutions, the dilution ratios of the samples with those solutions and the use of different potentiometric techniques of measurement, have been carried out. The precision and accuracy of the developed potentiometric method obtained when applied on eight samples of electroplating baths prepared in the laboratory and two actual samples, were better than those suministred by application of the EDTA titration method adopted as reference technique. These results expressed in terms of average variation coefficient and average percentage of spike recovery were 1,10% and 99,6% respectively. (Author) 8 refs.

  11. Preparation of high (100) oriented PST thin films deposited on PT/Tb inducing layer by rf-sputtering method

    International Nuclear Information System (INIS)

    Tb doped PbTiO3 (PT) thin films with (001)/(100) preferred orientation are prepared by sol-gel method. High (100) oriented Pb0.4Sr0.6(Ti0.97Mg0.03)O2.97(PST) thin films are then deposited on the Tb doped PbTiO3 inducing layer by rf-sputtering technique. The crystalline phase structure and orientation of the thin film are determined by X-ray diffraction. The dielectric properties of the thin films are measured by an Impedance Analyzer. Results show that the Tb doped PT films exhibit preferred orientation. The PST thin films deposited on substrate with and without PT inducing layer show (100) orientation and random orientation respectively. Higher (100) orientation appears in the PST thin films deposited on thinner inducing PT layer (one layer compare to more layers). A dielectric tunability of 39% is obtained in the PST thin film deposited on thinner PT inducing layer. It is a little higher than that deposited on thicker inducing layer

  12. Chitosan Derivatives/Calcium Carbonate Composite Capsules Prepared by the Layer-by-Layer Deposition Method

    Directory of Open Access Journals (Sweden)

    Kensuke Sakurai

    2008-03-01

    Full Text Available Core/shell capsules composed of calcium carbonate whisker core (rod-like shape and chitosan/chitosansulfate shell were prepared by the layer-by-layer deposition technique. Two chitosan samples of different molecular weights (Mw=9.7×104 and 1.09×106g·mol-1 were used as original materials. Hollow capsules were also obtained by dissolution of the core in hydrochloric acid. Electron microscopy revealed that the surface of the shell is rather ragged associated with some agglomerates. The shell thickness l obeys a linear relation with respect to the number of deposited layers m as l=md+a(a>0. The values of d (thickness per layer were 4.0 and 1.0 nm for the higher and lower Mw chitosan materials, respectively, both of which are greater than the thickness of the monolayer. The results suggest that the feature of the deposition does not obey an ideal homogeneous monolayer-by-monolayer deposition mechanism. Shell crosslinked capsules were also prepared via photodimerization reaction of cinnamoyl groups after a deposition of cinnamoyl chitosan to the calcium carbonate whisker core. The degree of crosslink was not enough to stabilize the shell structure, and hollow capsule was not obtained.

  13. Universe unveiled the cosmos in my bubble bath

    CERN Document Server

    Vishveshwara, C V

    2015-01-01

    The bubbles were swirling all around me, massaging my body. As I luxuriated in this fantastic bath, I gasped realizing that those bubbles carried with them miniature galaxies bringing the entire Cosmos into my bathtub... Alfie is back. And so are George and other characters from the author’s previous book Einstein’s Enigma or Black Holes in My Bubble Bath. While the present book, Universe Unveiled - The Cosmos in My Bubble Bath, is completely independent, its storyline can be considered a sequel to the previous one. The scientific content spanning ancient world models to the most recent mysteries of cosmology is presented in an entirely nontechnical and descriptive style through the discussions between Alfie, the enlightened learner, and George, professor of astrophysics. Fantasies, based on these discussions that cover the scientific facts, are created by the magical bubble baths taken by Alfie. Universe Unveiled blends accurate science with philosophy, drama, humour, and fantasy to create an exciting co...

  14. A stochastic reorganizational bath model for electronic energy transfer

    CERN Document Server

    Fujita, Takatoshi; Aspuru-Guzik, Alan

    2014-01-01

    The fluctuations of optical gap induced by the environment play crucial roles in electronic energy transfer dynamics. One of the simplest approaches to incorporate such fluctuations in energy transfer dynamics is the well known Haken-Strobl-Reineker model, in which the energy-gap fluctuation is approximated as a white noise. Recently, several groups have employed molecular dynamics simulations and excited-state calculations in conjunction to take the thermal fluctuation of excitation energies into account. Here, we discuss a rigorous connection between the stochastic and the atomistic bath models. If the phonon bath is treated classically, time evolution of the exciton-phonon system can be described by Ehrenfest dynamics. To establish the relationship between the stochastic and atomistic bath models, we employ a projection operator technique to derive the generalized Langevin equations for the energy-gap fluctuations. The stochastic bath model can be obtained as an approximation of the atomistic Ehrenfest equ...

  15. Microwave Induced Ethanol Bath Bonding for PMMA Microfluidic Device

    Institute of Scientific and Technical Information of China (English)

    Cuicui Zhuang

    2016-01-01

    High bonding strength, low deformation and convenient procedure are all very important aspects in the microfluidic device fabrication process. In this paper, an improved microwave induced bonding technology is proposed to fabricate microfluidic device based on methyl methacrylate (PMMA). This method employs pure ethanol as the bonding assisted solvent. The ethanol not only acts as the microwave absorbing material, but also works as the organic solvent in bath. The presented research work has shown that the bonding process can be completed in less than 45 s. Furthermore, the convenient bonding only applies microwave oven, beakers and binder clips. Then, we discuss effects of microwave power, bonding time on bonding strength and deformation of microstructures on PMMA microfluidic device. Finally, a 4 layers micro⁃mixer has been fabricated using the proposed bonding technique which includes 15 trapezoid micro⁃channels, 9 T⁃type mix units and an X⁃type mix unit. Experimental results show that the proposed bonding method have some advantages compared with several traditional bonding technologies, such as hot pressing bonding, ultrasonic bonding and solvent assisted bonding methods in respect of bonding strength, deformation and bonding process. The presented work would be helpful for low coat mass production of multilayer polymer microfluidic devices in lab.

  16. Heat-bath Configuration Interaction: An efficient selected CI algorithm inspired by heat-bath sampling

    CERN Document Server

    Holmes, Adam; Umrigar, Cyrus

    2016-01-01

    We introduce a new selected configuration interaction plus perturbation theory algorithm that is based on a deterministic analog of our recent efficient heat-bath sampling algorithm. This Heat-bath Configuration Interaction (HCI) algorithm makes use of two parameters that control the tradeoff between speed and accuracy, one which controls the selection of determinants to add to a variational wavefunction, and one which controls the the selection of determinants used to compute the perturbative correction to the variational energy. We show that HCI provides an accurate treatment of both static and dynamic correlation by computing the potential energy curve of the multireference carbon dimer in the cc-pVDZ basis. We then demonstrate the speed and accuracy of HCI by recovering the full configuration interaction energy of both the carbon dimer in the cc-pVTZ basis and the strongly-correlated chromium dimer in the Ahlrichs VDZ basis, correlating all electrons, to an accuracy of better than 1 mHa, in just a few min...

  17. Photoluminescence properties of Bi/Al-codoped silica optical fiber based on atomic layer deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Jianxiang, E-mail: wenjx@shu.edu.cn [Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, Shanghai 200072 (China); Wang, Jie; Dong, Yanhua; Chen, Na [Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, Shanghai 200072 (China); Luo, Yanhua; Peng, Gang-ding [Photonics & Optical Communications, School of Electrical Engineering & Telecommunications, University of New South Wales, Sydney 2052, NSW (Australia); Pang, Fufei; Chen, Zhenyi [Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, Shanghai 200072 (China); Wang, Tingyun, E-mail: tywang@mail.shu.edu.cn [Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, Shanghai 200072 (China)

    2015-09-15

    Highlights: • We report on a new fabrication method of producing Bi/Al-codoped silica optical fibers. • There are obvious Bi-type ions absorption peaks at 520, 700 and 800 nm. • The fluorescence peaks are 1130 and 1145 nm with 489 and 705 nm excitations, respectively. • Their fluorescence lifetimes are 701 and 721 μs, respectively. • And then there are obvious fluorescence bands in 600–850 and 900–1650 nm with 532 nm pump exciting. • There is a maximum fluorescence intensity peak at 1120 nm, and its full wave at half maximum (FWHM) is approximately 180 nm. • These may mainly result from the interaction between Bi and Al ions. • The Bi/Al-codoped silica optical fibers would be used in high power or broadly tunable laser sources, and optical fiber amplifier in the optical communication fields. - Abstract: The Bi/Al-codoped silica optical fibers are fabricated by atomic layer deposition (ALD) doping technique combing with conventional modified chemical vapor deposition (MCVD) process. Bi{sub 2}O{sub 3} and Al{sub 2}O{sub 3} are induced into silica optical fiber core layer by ALD technique, with Bis (2,2,6,6-tetra-methyl-3,5-heptanedionato) Bismuth(III) (Bi(thd){sub 3}) and H{sub 2}O as Bi and O precursors, and with Al(CH{sub 3}){sub 3} (TMA) as Al precursor, respectively. The structure features and optical properties of Bi/Al-codoped silica optical fibers are investigated. Bi{sub 2}O{sub 3} stoichiometry is confirmed by X-ray photoelectron spectroscopy (XPS). The valence state of Bi element is +3. Concentration distribution of Si, Ge and O elements is approximately 24–33, 9 and 66 mol%, respectively, in fiber preform core and cladding layer region. Bi and Al ions have been also slightly doped approximately 150–180 and 350–750 ppm in fiber preform core, respectively. Refractive index difference of the Bi/Al-codoped fiber is approximately 0.58% using optical fiber refractive index profiler analyzer. There are obvious Bi-type ions absorption

  18. Photoluminescence properties of Bi/Al-codoped silica optical fiber based on atomic layer deposition method

    International Nuclear Information System (INIS)

    Highlights: • We report on a new fabrication method of producing Bi/Al-codoped silica optical fibers. • There are obvious Bi-type ions absorption peaks at 520, 700 and 800 nm. • The fluorescence peaks are 1130 and 1145 nm with 489 and 705 nm excitations, respectively. • Their fluorescence lifetimes are 701 and 721 μs, respectively. • And then there are obvious fluorescence bands in 600–850 and 900–1650 nm with 532 nm pump exciting. • There is a maximum fluorescence intensity peak at 1120 nm, and its full wave at half maximum (FWHM) is approximately 180 nm. • These may mainly result from the interaction between Bi and Al ions. • The Bi/Al-codoped silica optical fibers would be used in high power or broadly tunable laser sources, and optical fiber amplifier in the optical communication fields. - Abstract: The Bi/Al-codoped silica optical fibers are fabricated by atomic layer deposition (ALD) doping technique combing with conventional modified chemical vapor deposition (MCVD) process. Bi2O3 and Al2O3 are induced into silica optical fiber core layer by ALD technique, with Bis (2,2,6,6-tetra-methyl-3,5-heptanedionato) Bismuth(III) (Bi(thd)3) and H2O as Bi and O precursors, and with Al(CH3)3 (TMA) as Al precursor, respectively. The structure features and optical properties of Bi/Al-codoped silica optical fibers are investigated. Bi2O3 stoichiometry is confirmed by X-ray photoelectron spectroscopy (XPS). The valence state of Bi element is +3. Concentration distribution of Si, Ge and O elements is approximately 24–33, 9 and 66 mol%, respectively, in fiber preform core and cladding layer region. Bi and Al ions have been also slightly doped approximately 150–180 and 350–750 ppm in fiber preform core, respectively. Refractive index difference of the Bi/Al-codoped fiber is approximately 0.58% using optical fiber refractive index profiler analyzer. There are obvious Bi-type ions absorption peaks at 520, 700 and 800 nm. The fluorescence peaks are at

  19. Study and Practice of Forest-bathing Field in Japan

    Institute of Scientific and Technical Information of China (English)

    Qunming; ZHENG; Xiaoya; YANG

    2013-01-01

    Japan has made remarkable achievements in the study and development of forest tourism for health care reason. Through the comprehensive investigation into the development of forest-bathing field in Japan, this paper studied the forest tourism for health care factor in Japan and concluded the evaluation standard and construction of forest-bathing field, as well as personnel training. In the end, some suggestions were proposed for the study and development of forest tourism for health care factor in Asia.

  20. Troia Roman baths (Portugal) – Assessment of history of interventions

    OpenAIRE

    Monteiro, Ana Margarida; Faria, Paulina

    2006-01-01

    This paper presents a study of one of the roman architectonic complexes from Troia archaeological site: the Roman Baths. The first archaeological excavations campaigns and the different Roman monuments that constitute the whole site are presented, as well as the historical past conservation and restoration interventions and the most important decay factors. The Roman Baths are one example of a complex that has been intervened in, at least, two different periods of time. An asse...

  1. The Wife of Bath:Chaucer’s Satire on Feminism

    Institute of Scientific and Technical Information of China (English)

    王林枫

    2012-01-01

    The Canterbury Tales is a famous work written by Geoffrey Chaucer.And all pilgrims are described vividly,especially the Wife of Bath.This paper argues that the Wife of Bath is not a typical representative of feminism.She does not present a rebellious image.All her remarks and actions are just a means by which Chaucer uses to satirize women.

  2. The Synthesized of Carbon Nano tubes from Palm Oil by Topas Atomizer Chemical Vapor Deposition Method

    International Nuclear Information System (INIS)

    This paper focused on preparation of Carbon Nano tubes (CNTs) based on palm oil as a natural resource precursor. The Topas Atomizer was utilized to vapor up the carbon gas into the reaction chamber of Chemical Vapor Deposition (CVD) to yield the CNTs in powder form at the inner wall of the Quartz tube. The purpose of this work was to investigate the effects of deposition temperature from 650 - 850 degree Celsius. The samples characteristics were analyzed by Raman spectroscopy. The results revealed that the increasing of the deposition temperature, the ID/IG ratio decreased from 650 - 850 degree Celsius. The results of Field Emission Scanning Electron Microscopy (FESEM) are also presented. (author)

  3. Perspective of exploitation of new sandstone type deposits by ISL method and environmental impact from uranium deposits mined out by in situ leaching in Ukraine

    International Nuclear Information System (INIS)

    In Ukraine, two uranium deposits, Devladivske and Bratske, were mined using acid in-situ leach method during the seventies-eighties. No restoration of the affected aquifer was made after mining. More than ten years after the end of mining, no displacement of the contaminated aquifer has been observed. In contrast, a process of self-restoration has been observed, with a significant decrease of U, Th, Ra, sulphates content. pH increased from 3.9 to 6.2. Self-restoration of the aquifer may be attributed to significant content in coal and clay minerals in the leached formation, that promote self-neutralization of the affected aquifer. (author)

  4. Methodical studies of groundwater pollution caused by fly ash deposits from coal-fired power plants

    International Nuclear Information System (INIS)

    The risk potential of fly ash deposits from fossil-fuel power plants was investigated through laboratory elution experiments (single elution, multiple elution, column leaching). The groundwater risk potential in the case of indiscriminate, unsealed dumping is high because of an increased water hardness and due to sulfate, molybdenum, selenium, boron, chromium, barium, strontium and arsenic contamination. Higher barium and strontium concentrations are typical of fly ash deposits. Barium and strontium thus serve as target elements for identification of sites of long-standing pollution. The risks of arsenic leaching are discussed in detail. (orig./LU)

  5. Electrophoretic deposition of silica-hyaluronic acid and titania-hyaluronic acid nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Ma, R. [Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7 (Canada); Zhitomirsky, I., E-mail: zhitom@mcmaster.ca [Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7 (Canada)

    2011-06-15

    Research highlights: > The kinetics of electrodeposition of hyaluronic acid has been studied using quartz crystal microbalance. > Composite films containing silica and titania were prepared by electrophoretic deposition. > The deposition yield and deposit composition can be varied by variation of deposition time, voltage and bath composition. > We concluded that the method offers the advantages of room temperature processing for the fabrication of composite materials for biomedical applications. - Abstract: Thin films of hyaluronic acid were prepared by anodic electrophoretic deposition (EPD) and the deposition kinetics was studied using quartz crystal microbalance. EPD method has been developed for the fabrication of new ceramic-biopolymer nanocomposites containing silica and titania nanoparticles in the matrix of hyaluronic acid. The deposit thickness was varied in the range of 0-10 {mu}m. The composition of the deposits can be varied by the variation of silica and titania concentration in the suspensions. The deposits were studied by thermogravimetric analysis, differential thermal analysis, Fourier transform infrared spectroscopy, X-ray diffraction analysis, and scanning electron microscopy. The method offers the advantages of room temperature processing of nanocomposite materials for biomedical applications.

  6. Electrophoretic deposition of silica-hyaluronic acid and titania-hyaluronic acid nanocomposites

    International Nuclear Information System (INIS)

    Research highlights: → The kinetics of electrodeposition of hyaluronic acid has been studied using quartz crystal microbalance. → Composite films containing silica and titania were prepared by electrophoretic deposition. → The deposition yield and deposit composition can be varied by variation of deposition time, voltage and bath composition. → We concluded that the method offers the advantages of room temperature processing for the fabrication of composite materials for biomedical applications. - Abstract: Thin films of hyaluronic acid were prepared by anodic electrophoretic deposition (EPD) and the deposition kinetics was studied using quartz crystal microbalance. EPD method has been developed for the fabrication of new ceramic-biopolymer nanocomposites containing silica and titania nanoparticles in the matrix of hyaluronic acid. The deposit thickness was varied in the range of 0-10 μm. The composition of the deposits can be varied by the variation of silica and titania concentration in the suspensions. The deposits were studied by thermogravimetric analysis, differential thermal analysis, Fourier transform infrared spectroscopy, X-ray diffraction analysis, and scanning electron microscopy. The method offers the advantages of room temperature processing of nanocomposite materials for biomedical applications.

  7. Comparison of estimation and simulation methods for modeling block 1 of anomaly no.3 in Narigan Uranium mineral deposit

    International Nuclear Information System (INIS)

    Geostatistical methods are applied for modeling the mineral deposits at the final stage of the detailed exploration. By applying the results of these models, the technical and economic feasibility studies are conducted for the deposits. The geostatistical modeling methods are usually consist of estimation and simulation methods. The estimation techniques, such as Kriging, construct spatial relation (geological continuation model) between data, by providing the best unique guesses for unknown features. However, when applying this technique for a grid of drill-holes over a deposit, an obvious discrepancy exists between the real geological features and the Kriging estimation map. Because of the limited number of sampled data applied for Kriging, it could not appear as the same as the real features. Also the spatial continuity estimated by the Kriging maps, are smoother than the real unknown features. On the other hand, the objective of simulation is to provide some functions or sets of variable values, to be compatible with the existing information. This means that the simulated values have an average and the variance similar to the raw data and may even be the same as the measurements. we studied the Anomaly No.3 of Narigan uranium mineral deposit, located in the central Iran region and applied the Kriging estimation and the sequential Gaussian simulation methods, and finally by comparing the results we concluded that the Kriging estimation method is more reliable for long term planning of a mine. Because of the reconstructing random structures, the results of the simulation methods indicate that they could also be applied for short term planning in mine exploitation.

  8. New exploration methods for platinum and rhodium deposits poor in base-metal sulphides

    DEFF Research Database (Denmark)

    Ohnenstetter, M.; Johan, Z.; Cocherie, A.;

    1999-01-01

    Platinum-group elements (PGE) are typically associated with mafic and ultramafic intrusive rocks and the main exploration targets are layers and zones rich in PGE-bearing sulphides. Some PGE occurences, however, are in sulphide-poor situations and this raises the possibility that PGE deposits may...

  9. Development of a method to lower recontamination after chemical decontamination by depositing Pt nano particles

    International Nuclear Information System (INIS)

    The Pt coating (Pt-C) process has been developed to lower recontamination by radioactive elements after chemical decontamination of piping surfaces. In this process, a layer of fine Pt nano particles is formed in aqueous solution on the base metal of the piping following the chemical decontamination. In this study, we confirmed the suppression effect by the Pt-C toward 60Co deposition on type 316 stainless steel using a 60Co deposition test under hydrogen water chemistry. The deposition amounts of 60Co which were incorporated in oxides after 1000 h with and without the Pt-C process were about 90 and 10.2 Bq/cm2, respectively. The amount of 60Co deposition with Pt-C is about 10% that of non-coated specimens. The 60Co incorporation for the Pt-C specimen was suppressed by decreasing the formation of oxides. We considered this phenomenon from experimental results and concluded that oxides were chemically reduced by the effect of Pt and hydrogen radicals which were produced in the reaction between H2 and Pt, and then oxides were dissolved into the water. (author)

  10. Comparison Between Electrolysis and Reduction for Treatment of Spent Electroless Nickel Plating Bath

    Institute of Scientific and Technical Information of China (English)

    YAN Lei; LI Shuqin; YU Xiujuan

    2009-01-01

    There are lots of residual nickel and organic compounds in the spent electroless nickel plating bath. It not only wastes resource but also causes environmental pollution if the wastewater is discharged without treatment. In this paper, electrolytic method and reduction method for treating spent electroless nickel plating bath were compared. The factors studied included reaction time, pH, temperature, effectiveness and cost. It was found that the recovery rate of nickel by reduction was 99.9% under the condition ofpH 6, 50℃ for 10 min. The purity of reclaimed nickel was 66.1%. This treatment needed about 16 g NaBH4 for a liter spent solution, which cost RMB 64 Yuan. For electrolysis method, with pH 7.6, 80℃, 0.45 A (current intensity) for 2 h, the recovery rate reached 97.3%. The purity was 88.5% for the reclaimed nickel. Moreover, it was found that through electrolysis, the value of TOC (Total Organic Carbon) decreased from 114 to 3.08 g·L-1 with removal rate of 97.3%. The main cost of electrolysis came from electric energy. It cost about 0.09 kWh (less than RMB 0.1 Yuan) per liter wastewater. Compared with reduction, electrolysis had more advantages, so the priority of selection should be given to the electrolysis method for the treatment of spent electroless nickel plating bath.

  11. Remission of Walking Parameters in Peripheral Arterial Disease through Association of Galvanic Baths and Kinesytherapy

    OpenAIRE

    PĂTRU, SIMONA; BIGHEA, A.C.; POPESCU, ROXANA

    2013-01-01

    Chronic peripheral obstructive arteriopathies (CPOA), together with their determinations, play an important role in the elderly pathology and represent one of the most frequent causes of disability, thus having a negative impact on the patient’s quality of life. Therefore, in this clinical randomized trial we proposed to study the efficiency of several treatment methods based on physical exercise together with other therapeutical approaches specific to physical medicine such as galvanic baths...

  12. Application of comprehensive geophysical and geochemical survey method in the exploration of uranium-molybdenum deposit 460

    International Nuclear Information System (INIS)

    This paper summarized the application effect of geophysical and geochemical survey method in uranium-molybdenum deposit 460. It stress on illustrating the effects of induced current middle gradient, high precision magnetic survey and gravity survey method to identify the distribution features of fracture, volcano structure and sub-rhyolite porphyry. Through verifying the mineralization caused anomaly which measured by activated charcoal, gamma, uranium content and secondary halo in soil with borehole, good prospecting result was achieved. Based on the above application effect, the paper presented some helpful prospection method combination. (authors)

  13. Characterization of perovskite film prepared by pulsed laser deposition on ferritic stainless steel using microscopic and optical methods

    Science.gov (United States)

    Durda, E.; Jaglarz, J.; Kąc, S.; Przybylski, K.; El Kouari, Y.

    2016-06-01

    The perovskite La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF48) film was deposited on Crofer 22 APU ferritic stainless steel by pulsed laser deposition (PLD). Morphological studies of the sample were performed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Information about film thickness and surface topography of the film and the steel substrate were obtained using following optical methods: spectroscopic ellipsometry (SE), bidirectional reflection distribution function (BRDF) and total integrated reflectometry (TIS). In particular, the BRDF study, being complementary to atomic force microscopy, yielded information about surface topography. Using the previously mentioned methods, the following statistic surface parameters were determined: root-mean square (rms) roughness and autocorrelation length by determining the power spectral density (PSD) function of surface irregularities.

  14. High-speed deposition of protective films of aluminium oxide by the method of reactive magnetron sputtering

    International Nuclear Information System (INIS)

    The high optical characteristics of aluminium films made them attractive for different functional and decorative applications. It is well-known that the corrosion resistance of alloying is determined by the presence of the oxide film on its surface, but on the aluminium films, deposited by vacuum methods, the resistance is extremely low resulting in the relatively rapid failure of the coating. At present, there is a large number of methods of depositing the films of aluminium oxide. In most cases, it is recommended to use reactive magnetron sputtering of an aluminium target in a magnetron spraying system (MSS) using direct current, on dispersion of the target of aluminium oxide in a high-frequency MSS

  15. Microscratch testing method for systematic evaluation of the adhesion of atomic layer deposited thin films on silicon

    OpenAIRE

    Kilpi, Lauri; Ylivaara, Oili M. E.; Vaajoki, Antti; Malm, Jari; Sintonen, Sakari; Tuominen, Marko; Puurunen, Riikka L.; Ronkainen, Helena

    2016-01-01

    The scratch test method is widely used for adhesion evaluation of thin films and coatings. Usual critical load criteria designed for scratch testing of coatings were not applicable to thin atomic layer deposition (ALD) films on silicon wafers. Thus, the bases for critical load evaluation were established and the critical loads suitable for ALD coating adhesion evaluation on silicon wafers were determined in this paper as LCSi1, LCSi2, LCALD1, and LCALD2, representing the failure p...

  16. Method for controlling energy density for reliable pulsed laser deposition of thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dowden, P. C., E-mail: dowden@lanl.gov, E-mail: qxjia@lanl.gov; Bi, Z.; Jia, Q. X., E-mail: dowden@lanl.gov, E-mail: qxjia@lanl.gov [Center for Integrated Nanotechnologies, Division of Materials Physics and Applications, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-02-15

    We have established a methodology to stabilize the laser energy density on a target surface in pulsed laser deposition of thin films. To control the focused laser spot on a target, we have imaged a defined aperture in the beamline (so called image-focus) instead of focusing the beam on a target based on a simple “lens-focus.” To control the laser energy density on a target, we have introduced a continuously variable attenuator between the output of the laser and the imaged aperture to manipulate the energy to a desired level by running the laser in a “constant voltage” mode to eliminate changes in the lasers’ beam dimensions. This methodology leads to much better controllability/reproducibility for reliable pulsed laser deposition of high performance electronic thin films.

  17. A new doping method using metalorganics in chemical vapor deposition of 6H-SiC

    Science.gov (United States)

    Yoshida, S.; Sakuma, E.; Misawa, S.; Gonda, S.

    1984-01-01

    Aluminum doping was performed using triethylaluminum as the dopant in chemical vapor deposition of 6H-silicon carbide (SiC). Measurements on the electrical and cathodoluminescent properties of the epilayers indicate that the doping concentration of aluminum can be easily controlled by the flow rate of metalorganics. Electroluminescence was also observed for the pn junctions prepared by the successive growth of a nondoped n layer and a p layer doped with aluminum using metalorganics.

  18. Purification of Single-walled Carbon Nanotubes Grown by a Chemical Vapour Deposition (CVD) Method

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A procedure for purification of single-walled carbon nanotubes(SWNTs) grown by the chemical vapour deposition (CVD) of carbon monooxide has been developed. Based on the result from TGA/DTA of as-prepared sample, the oxidation temperature was determined. The process included sonication, oxidation and acid washing steps. The purity and yield after purification were determined and estimated by TEM. Moreover, for the first time, a loop structure for CVD SWNTs has been observed.

  19. In vitro characterization of hydroxyapatite layers deposited by APS and HVOF thermal spraying methods

    OpenAIRE

    Radu Alexandru Roşu; Ibolyka Bran; Mihaela Popescu; Carmen Opriş

    2012-01-01

    Titanium alloys are successfully used in medicine as implants due to their high mechanical properties and good biocompatibility. To improve implant osseointegration of titanium alloys, they are covered with hydroxyapatite because of its bioactive properties. Coating the implants with hydroxyapatite by thermal spraying, due to the temperatures developed during the deposition process, the structure can be degraded, leading to formation of secondary phases, such as TCP, TT CP, CaO. The paper pre...

  20. Transfer and removing method and device for deposition on pipe surface

    International Nuclear Information System (INIS)

    The transferring/removing device of the present invention comprises linear magnets in a combination of a plurality of electromagnets for generating mobile magnetic fields in the axial direction of a tube and high frequency AC magnetic field-generation magnets disposed at the top end of the linear magnets. Theses magnets are inserted into the tube to generate mobile magnetic fields using the linear magnets. Ferromagnetic materials such as iron oxides in the deposits in the periphery of the surface of the tube are magnetized to provide a granulating effect of causing the materials to attract each other and peel them off from the surface of the tube. Then, they are transferred toward the exit of the tube by the magnetic fields. High frequency AC magnetic fields are generated by the high frequency AC magnetic field generation magnets to remove residual magnetism in the ferromagnetic materials. The deposits are disintegrated and scattered, mixed into reactor coolants and removed along with the circulation of the coolants. With such procedures, the deposits such as radioactive corrosion products can be efficiently removed from narrowed portions. (I.N.)