WorldWideScience

Sample records for batch tests microbial

  1. Batch-batch stable microbial community in the traditional fermentation process of huyumei broad bean pastes.

    Science.gov (United States)

    Zhu, Linjiang; Fan, Zihao; Kuai, Hui; Li, Qi

    2017-09-01

    During natural fermentation processes, a characteristic microbial community structure (MCS) is naturally formed, and it is interesting to know about its batch-batch stability. This issue was explored in a traditional semi-solid-state fermentation process of huyumei, a Chinese broad bean paste product. The results showed that this MCS mainly contained four aerobic Bacillus species (8 log CFU per g), including B. subtilis, B. amyloliquefaciens, B. methylotrophicus, and B. tequilensis, and the facultative anaerobe B. cereus with a low concentration (4 log CFU per g), besides a very small amount of the yeast Zygosaccharomyces rouxii (2 log CFU per g). The dynamic change of the MCS in the brine fermentation process showed that the abundance of dominant species varied within a small range, and in the beginning of process the growth of lactic acid bacteria was inhibited and Staphylococcus spp. lost its viability. Also, the MCS and its dynamic change were proved to be highly reproducible among seven batches of fermentation. Therefore, the MCS naturally and stably forms between different batches of the traditional semi-solid-state fermentation of huyumei. Revealing microbial community structure and its batch-batch stability is helpful for understanding the mechanisms of community formation and flavour production in a traditional fermentation. This issue in a traditional semi-solid-state fermentation of huyumei broad bean paste was firstly explored. This fermentation process was revealed to be dominated by a high concentration of four aerobic species of Bacillus, a low concentration of B. cereus and a small amount of Zygosaccharomyces rouxii. Lactic acid bacteria and Staphylococcus spp. lost its viability at the beginning of fermentation. Such the community structure was proved to be highly reproducible among seven batches. © 2017 The Society for Applied Microbiology.

  2. Fed-batch fermentation dealing with nitrogen limitation in microbial transglutaminase production by Streptoverticillium mobaraense

    NARCIS (Netherlands)

    Rinzema, A; Tramper, J; de Bruin, E; Bol, J

    In the later stages of a batch fermentation for microbial transglutaminase production by Streptoverticillium mobaraense the availability of a nitrogen source accessible to the microorganism becomes critical. Fed-batch fermentation is investigated with the aim of avoiding this substrate limitation.

  3. Microbial counts of mealworm larvae (Tenebrio molitor) and crickets (Acheta domesticus and Gryllodes sigillatus) from different rearing companies and different production batches.

    Science.gov (United States)

    Vandeweyer, D; Crauwels, S; Lievens, B; Van Campenhout, L

    2017-02-02

    The rising interest in insects for human consumption and the changing regulations in Europe require a profound insight into the food safety of insects reared and sold in Western society. The microbial quality of edible insects has only been studied occasionally. This study aimed at generating an overview of intrinsic parameters (pH, water activity and moisture content) and microbial quality of fresh mealworm larvae and crickets for several rearing companies and for several batches per rearer. In total, 21 batches obtained from 7 rearing companies were subjected to analysis of intrinsic parameters, a range of plate counts and presence-absence tests for Salmonella spp. and Listeria monocytogenes. The microbial counts of the fresh insects were generally high. Different rearing batches from a single rearing company showed differences in microbial counts which could not be explained by variations in intrinsic properties. The largest variations were found in numbers of bacterial endospores, psychrotrophs and fungi. Salmonella spp. and L. monocytogenes were not detected in any of the samples. Altogether, our study shows that large variations were found between batches from individual rearers. As a consequence, no overall differences between rearers could be observed. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Simultaneous biodegradation of three mononitrophenol isomers by a tailor-made microbial consortium immobilized in sequential batch reactors.

    Science.gov (United States)

    Fu, H; Zhang, J-J; Xu, Y; Chao, H-J; Zhou, N-Y

    2017-03-01

    The ortho-nitrophenol (ONP)-utilizing Alcaligenes sp. strain NyZ215, meta-nitrophenol (MNP)-utilizing Cupriavidus necator JMP134 and para-nitrophenol (PNP)-utilizing Pseudomonas sp. strain WBC-3 were assembled as a consortium to degrade three nitrophenol isomers in sequential batch reactors. Pilot test was conducted in flasks to demonstrate that a mixture of three mononitrophenols at 0·5 mol l -1 each could be mineralized by this microbial consortium within 84 h. Interestingly, neither ONP nor MNP was degraded until PNP was almost consumed by strain WBC-3. By immobilizing this consortium into polyurethane cubes, all three mononitrophenols were continuously degraded in lab-scale sequential reactors for six batch cycles over 18 days. Total concentrations of ONP, MMP and PNP that were degraded were 2·8, 1·5 and 2·3 mol l -1 during this time course respectively. Quantitative real-time PCR analysis showed that each member in the microbial consortium was relatively stable during the entire degradation process. This study provides a novel approach to treat polluted water, particularly with a mixture of co-existing isomers. Nitroaromatic compounds are readily spread in the environment and pose great potential toxicity concerns. Here, we report the simultaneous degradation of three isomers of mononitrophenol in a single system by employing a consortium of three bacteria, both in flasks and lab-scale sequential batch reactors. The results demonstrate that simultaneous biodegradation of three mononitrophenol isomers can be achieved by a tailor-made microbial consortium immobilized in sequential batch reactors, providing a pilot study for a novel approach for the bioremediation of mixed pollutants, especially isomers present in wastewater. © 2016 The Society for Applied Microbiology.

  5. Model-based intensification of a fed-batch microbial process for the maximization of polyhydroxybutyrate (PHB) production rate.

    Science.gov (United States)

    Penloglou, Giannis; Vasileiadou, Athina; Chatzidoukas, Christos; Kiparissides, Costas

    2017-08-01

    An integrated metabolic-polymerization-macroscopic model, describing the microbial production of polyhydroxybutyrate (PHB) in Azohydromonas lata bacteria, was developed and validated using a comprehensive series of experimental measurements. The model accounted for biomass growth, biopolymer accumulation, carbon and nitrogen sources utilization, oxygen mass transfer and uptake rates and average molecular weights of the accumulated PHB, produced under batch and fed-batch cultivation conditions. Model predictions were in excellent agreement with experimental measurements. The validated model was subsequently utilized to calculate optimal operating conditions and feeding policies for maximizing PHB productivity for desired PHB molecular properties. More specifically, two optimal fed-batch strategies were calculated and experimentally tested: (1) a nitrogen-limited fed-batch policy and (2) a nitrogen sufficient one. The calculated optimal operating policies resulted in a maximum PHB content (94% g/g) in the cultivated bacteria and a biopolymer productivity of 4.2 g/(l h), respectively. Moreover, it was demonstrated that different PHB grades with weight average molecular weights of up to 1513 kg/mol could be produced via the optimal selection of bioprocess operating conditions.

  6. A novel process-based model of microbial growth: self-inhibition in Saccharomyces cerevisiae aerobic fed-batch cultures.

    Science.gov (United States)

    Mazzoleni, Stefano; Landi, Carmine; Cartenì, Fabrizio; de Alteriis, Elisabetta; Giannino, Francesco; Paciello, Lucia; Parascandola, Palma

    2015-07-30

    Microbial population dynamics in bioreactors depend on both nutrients availability and changes in the growth environment. Research is still ongoing on the optimization of bioreactor yields focusing on the increase of the maximum achievable cell density. A new process-based model is proposed to describe the aerobic growth of Saccharomyces cerevisiae cultured on glucose as carbon and energy source. The model considers the main metabolic routes of glucose assimilation (fermentation to ethanol and respiration) and the occurrence of inhibition due to the accumulation of both ethanol and other self-produced toxic compounds in the medium. Model simulations reproduced data from classic and new experiments of yeast growth in batch and fed-batch cultures. Model and experimental results showed that the growth decline observed in prolonged fed-batch cultures had to be ascribed to self-produced inhibitory compounds other than ethanol. The presented results clarify the dynamics of microbial growth under different feeding conditions and highlight the relevance of the negative feedback by self-produced inhibitory compounds on the maximum cell densities achieved in a bioreactor.

  7. Effect of temperature and cycle length on microbial competition in PHB-producing sequencing batch reactor

    NARCIS (Netherlands)

    Jiang, Y.; Marang, L.; Kleerebezem, R.; Muyzer, G.; van Loosdrecht, M.C.M.

    2011-01-01

    The impact of temperature and cycle length on microbial competition between polyhydroxybutyrate (PHB)-producing populations enriched in feast-famine sequencing batch reactors (SBRs) was investigated at temperatures of 20 °C and 30 °C, and in a cycle length range of 1-18 h. In this study, the

  8. A novel derivation of a within-batch sampling plan based on a Poisson-gamma model characterising low microbial counts in foods.

    Science.gov (United States)

    Gonzales-Barron, Ursula; Zwietering, Marcel H; Butler, Francis

    2013-02-01

    This study proposes a novel step-wise methodology for the derivation of a sampling plan by variables for food production systems characterised by relatively low concentrations of the inspected microorganism. After representing the universe of contaminated batches by modelling the between-batch and within-batch variability in microbial counts, a tolerance criterion defining batch acceptability (i.e., up to a tolerance percentage of the food units having microbial concentrations lower or equal to a critical concentration) is established to delineate a limiting quality contour that separates satisfactory from unsatisfactory batches. The problem consists then of finding the optimum decision criterion - arithmetic mean of the analytical results (microbiological limit, m(L)) and the sample size (n) - that satisfies a pre-defined level of confidence measured on the samples' mean distributions from all possible true within-batch distributions. This is approached by obtaining decision landscape curves representing collectively the conditional and joint producer's and consumer's risks at different microbiological limits along with confidence intervals representing uncertainty due to the propagated between-batch variability. Whilst the method requires a number of risk management decisions to be made such as the objective of the sampling plan (GMP-based or risk-based), the modality of derivation, the tolerance criterion or level of safety, and the statistical level of confidence, the proposed method can be used when past monitoring data are available so as to produce statistically-sound dynamic sampling plans with optimised efficiency and discriminatory power. For the illustration of Enterobacteriaceae concentrations on Irish sheep carcasses, a sampling regime of n=10 and m(L)=17.5CFU/cm(2) is recommended to ensure that the producer has at least a 90% confidence of accepting a satisfactory batch whilst the consumer at least a 97.5% confidence that a batch will not be

  9. Electrochemical study of multi-electrode microbial fuel cells under fed-batch and continuous flow conditions

    KAUST Repository

    Ren, Lijiao

    2014-07-01

    Power production of four hydraulically connected microbial fuel cells (MFCs) was compared with the reactors operated using individual electrical circuits (individual), and when four anodes were wired together and connected to four cathodes all wired together (combined), in fed-batch or continuous flow conditions. Power production under these different conditions could not be made based on a single resistance, but instead required polarization tests to assess individual performance relative to the combined MFCs. Based on the power curves, power produced by the combined MFCs (2.12 ± 0.03 mW, 200 ω) was the same as the summed power (2.13 mW, 50 ω) produced by the four individual reactors in fed-batch mode. With continuous flow through the four MFCs, the maximum power (0.59 ± 0.01 mW) produced by the combined MFCs was slightly lower than the summed maximum power of the four individual reactors (0.68 ± 0.02 mW). There was a small parasitic current flow from adjacent anodes and cathodes, but overall performance was relatively unaffected. These findings demonstrate that optimal power production by reactors hydraulically and electrically connected can be predicted from performance by individual reactors. © 2013 Elsevier B.V. All rights reserved.

  10. Effects of carbon brush anode size and loading on microbial fuel cell performance in batch and continuous mode

    KAUST Repository

    Lanas, Vanessa; Ahn, Yongtae; Logan, Bruce E.

    2014-01-01

    Larger scale microbial fuel cells (MFCs) require compact architectures to efficiently treat wastewater. We examined how anode-brush diameter, number of anodes, and electrode spacing affected the performance of the MFCs operated in fed-batch and continuous flow mode. All anodes were initially tested with the brush core set at the same distance from the cathode. In fed-batch mode, the configuration with three larger brushes (25 mm diameter) produced 80% more power (1240 mW m-2) than reactors with eight smaller brushes (8 mm) (690 mW m-2). The higher power production by the larger brushes was due to more negative and stable anode potentials than the smaller brushes. The same general result was obtained in continuous flow operation, although power densities were reduced. However, by moving the center of the smaller brushes closer to the cathode (from 16.5 to 8 mm), power substantially increased from 690 to 1030 mW m-2 in fed batch mode. In continuous flow mode, power increased from 280 to 1020 mW m-2, resulting in more power production from the smaller brushes than the larger brushes (540 mW m-2). These results show that multi-electrode MFCs can be optimized by selecting smaller anodes, placed as close as possible to the cathode. © 2013 Elsevier B.V. All rights reserved.

  11. Effects of carbon brush anode size and loading on microbial fuel cell performance in batch and continuous mode

    KAUST Repository

    Lanas, Vanessa

    2014-02-01

    Larger scale microbial fuel cells (MFCs) require compact architectures to efficiently treat wastewater. We examined how anode-brush diameter, number of anodes, and electrode spacing affected the performance of the MFCs operated in fed-batch and continuous flow mode. All anodes were initially tested with the brush core set at the same distance from the cathode. In fed-batch mode, the configuration with three larger brushes (25 mm diameter) produced 80% more power (1240 mW m-2) than reactors with eight smaller brushes (8 mm) (690 mW m-2). The higher power production by the larger brushes was due to more negative and stable anode potentials than the smaller brushes. The same general result was obtained in continuous flow operation, although power densities were reduced. However, by moving the center of the smaller brushes closer to the cathode (from 16.5 to 8 mm), power substantially increased from 690 to 1030 mW m-2 in fed batch mode. In continuous flow mode, power increased from 280 to 1020 mW m-2, resulting in more power production from the smaller brushes than the larger brushes (540 mW m-2). These results show that multi-electrode MFCs can be optimized by selecting smaller anodes, placed as close as possible to the cathode. © 2013 Elsevier B.V. All rights reserved.

  12. Comparison of the release of constituents from granular materials under batch and column testing.

    Science.gov (United States)

    Lopez Meza, Sarynna; Garrabrants, Andrew C; van der Sloot, Hans; Kosson, David S

    2008-01-01

    Column leaching testing can be considered a better basis for assessing field impact data than any other available batch test method and thus provides a fundamental basis from which to estimate constituent release under a variety of field conditions. However, column testing is time-intensive compared to the more simplified batch testing, and may not always be a viable option when making decisions for material reuse. Batch tests are used most frequently as a simple tool for compliance or quality control reasons. Therefore, it is important to compare the release that occurs under batch and column testing, and establish conservative interpretation protocols for extrapolation from batch data when column data are not available. Five different materials (concrete, construction debris, aluminum recycling residue, coal fly ash and bottom ash) were evaluated via batch and column testing, including different column flow regimes (continuously saturated and intermittent unsaturated flow). Constituent release data from batch and column tests were compared. Results showed no significant difference between the column flow regimes when constituent release data from batch and column tests were compared. In most cases batch and column testing agreed when presented in the form of cumulative release. For arsenic in carbonated materials, however, batch testing underestimates the column constituent release for most LS ratios and also on a cumulative basis. For cases when As is a constituent of concern, column testing may be required.

  13. Effect of different salt adaptation strategies on the microbial diversity, activity, and settling of nitrifying sludge in sequencing batch reactors

    NARCIS (Netherlands)

    Bassin, J.P.; Kleerebezem, R.; Muyzer, G.; Rosado, A.S.; Van Loosdrecht, M.C.M.; Dezotti, M.

    2011-01-01

    The effect of salinity on the activity of nitrifying bacteria, floc characteristics, and microbial community structure accessed by fluorescent in situ hybridization and polymerase chain reaction–denaturing gradient gel electrophoresis techniques was investigated. Two sequencing batch reactors (SRB1

  14. Microbial lipid production by oleaginous yeast Cryptococcus sp. in the batch cultures using corncob hydrolysate as carbon source

    International Nuclear Information System (INIS)

    Chang, Yi-Huang; Chang, Ku-Shang; Lee, Ching-Fu; Hsu, Chuan-Liang; Huang, Cheng-Wei; Jang, Hung-Der

    2015-01-01

    To realize the feasibility of biodiesel production from high-lipid cell culture, microbial lipid production by the oleaginous yeasts was studied using glucose and sucrose as carbon source. Among the tested strains, Cryptococcus sp. SM5S05 accumulated the highest levels of intracellular lipids. The crude lipid contents of Cryptococcus sp. cultured in yeast malt agar reached 30% on a dry weight basis. The accumulation of lipids strongly depended on carbon/nitrogen ratio and nitrogen concentration. The highest content of lipids, measured at a carbon/nitrogen ratio of 60–90 and at a nitrogen concentration of 0.2%, was 60–57% lipids in the dry biomass. Batch cultures using corncob hydrolysate demonstrated that there was minimal inhibitory effect with a reducing sugar concentration of 60 g l −1 or higher. Batch cultures of Cryptococcus sp. SM5S05 in the corncob hydrolysate medium with 60 g l −1 glucose resulted in a dry biomass, lipid yields, and content of 12.6 g l −1 , 7.6 g l −1 , and 60.2%, respectively. The lipids contained mainly long-chain saturated and unsaturated fatty acids with 16 and 18 carbon atoms. The fatty acid profile of Cryptococcus oils was quite similar to that of conventional vegetable oil. The cost of lipid production could be further reduced with corncob hydrolysate being utilized as the raw material for the oleaginous yeast. The results showed that the microbial lipid from Cryptococcus sp. was a potential alternative resource for biodiesel production. - Highlights: • Microbial oil production from oleaginous yeast Cryptococcus sp. was studied. • Accumulation of lipid strongly depended on C/N ratio and nitrogen concentration. • Cultures in hydrolysate medium with 60 g/l glucose resulted in maximum lipid yields. • Maximal lipid content in the Cryptococcus sp. were 60.2% on dried weight basis

  15. Study of the diversity of microbial communities in a sequencing batch reactor oxic-settling-anaerobic process and its modified process.

    Science.gov (United States)

    Sun, Lianpeng; Chen, Jianfan; Wei, Xiange; Guo, Wuzhen; Lin, Meishan; Yu, Xiaoyu

    2016-05-01

    To further reveal the mechanism of sludge reduction in the oxic-settling-anaerobic (OSA) process, the polymerase chain reaction - denaturing gradient gel electrophoresis protocol was used to study the possible difference in the microbial communities between a sequencing batch reactor (SBR)-OSA process and its modified process, by analyzing the change in the diversity of the microbial communities in each reactor of both systems. The results indicated that the structure of the microbial communities in aerobic reactors of the 2 processes was very different, but the predominant microbial populations in anaerobic reactors were similar. The predominant microbial population in the aerobic reactor of the SBR-OSA belonged to Burkholderia cepacia, class Betaproteobacteria, while those of the modified process belonged to the classes Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. These 3 types of microbes had a cryptic growth characteristic, which was the main cause of a greater sludge reduction efficiency achieved by the modified process.

  16. Effects of the feeding ratio of food waste on fed-batch aerobic composting and its microbial community.

    Science.gov (United States)

    Wang, Xiaojun; Pan, Songqing; Zhang, Zhaoji; Lin, Xiangyu; Zhang, Yuzhen; Chen, Shaohua

    2017-01-01

    To determine the suitable feeding ratio for fed-batch aerobic composting, four fermenters were operated by adding 0%, 5%, 10% or 15% of food waste every day. The results showed that the 5% and 10% treatments were able to maintain continuous thermophilic conditions, while the 15% treatment performed badly in regard to composting temperature, which was probably due to the negative effects of excessive moisture on microbial activity. As composting proceeded, both the 5% and the 10% treatments reached maturity and achieved weight losses of approximately 65%. High-throughput sequencing results indicated that Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria were the dominant phyla of the community structure. The communities sampled at the thermophilic phases had high similarity and relatively low diversity, while species diversity increased in the maturity phase. This study was devoted to optimizing the fed-batch composting process and assessing bacterial communities, both of which were supplied as a reference for practical application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Laboratory shake flask batch tests can predict field biodegradation of aniline in the Rhine

    DEFF Research Database (Denmark)

    Toräng, Lars; Reuschenbach, P.; Müller, B.

    2001-01-01

    .7 degreesC, respectively. This field rate estimate was compared with results from 38 laboratory shake flask batch tests with Rhine water which averaged 1.5 day(-1) at 15 degreesC and 2.0 day(-1) at 20 degreesC. These results indicate that laboratory shake flask batch tests with low concentrations of test...

  18. Heuristics for batching and sequencing in batch processing machines

    Directory of Open Access Journals (Sweden)

    Chuda Basnet

    2016-12-01

    Full Text Available In this paper, we discuss the “batch processing” problem, where there are multiple jobs to be processed in flow shops. These jobs can however be formed into batches and the number of jobs in a batch is limited by the capacity of the processing machines to accommodate the jobs. The processing time required by a batch in a machine is determined by the greatest processing time of the jobs included in the batch. Thus, the batch processing problem is a mix of batching and sequencing – the jobs need to be grouped into distinct batches, the batches then need to be sequenced through the flow shop. We apply certain newly developed heuristics to the problem and present computational results. The contributions of this paper are deriving a lower bound, and the heuristics developed and tested in this paper.

  19. Results on testing pilot industrial batch of SC magnets for the UNK

    International Nuclear Information System (INIS)

    Ageev, A.I.; Andreev, N.I.; Balbekov, V.I.; Chirkov, P.N.; Dolzhenkov, V.I.; Gertsev, K.F.; Gridasov, V.I.; Myznikov, K.P.; Smirnov, N.L.; Sychev, V.A.

    1992-01-01

    IHEP has developed and studied the superconducting dipoles and quadrupoles of the regular part of the UNK main ring which satisfy the requirements imposed on them. The pilot-industrial batch of the UNK SC magnets has been produced now. The reproducibility of the magnet characteristics is studied and the mass production technology is optimized with this batch. The results of the cryogenic tests and the magnetic field measurements for the UNK SC dipoles of the pilot-industrial batch are presented. (author) 5 refs.; 6 figs.; 1 tab

  20. Microbial Aggregate and Functional Community Distribution in a Sequencing Batch Reactor with Anammox Granules

    KAUST Repository

    Sun, Shan

    2013-05-01

    Anammox (anaerobic ammonium oxidation) process is a one-step conversion of ammonia into nitrogen gas with nitrite as an electron acceptor. It has been developed as a sustainable technology for ammonia removal from wastewater in the last decade. For wastewater treatment, anammox biomass was widely developed as microbial aggregate where the conditions for enrichment of anammox community must be delicately controlled and growth of other bacteria especially NOB should be suppressed to enhance nitrogen removal efficiency. Little is known about the distribution of microbial aggregates in anammox process. Thus the objective of our study was to assess whether segregation of biomass occurs in granular anammox system. In this study, a laboratory-scale sequential batch reactor (SBR) was successfully operated for a period of 80 days with granular anammox biomass. Temporal and spatial distribution of microbial aggregates was studied by particle characterization system and the distribution of functional microbial communities was studied with qPCR and 16s rRNA amplicon pyrosequencing. Our study revealed the spatial and temporal distribution of biomass aggregates based on their sizes and density. Granules (>200 μm) preferentially accumulated in the bottom of the reactor while floccules (30-200 μm) were relatively rich at the top layer. The average density of aggregate was higher at the bottom than the density of those at the top layer. Degranulation caused by lack of hydrodynamic shear force in the top layer was considered responsible for this phenomenon. NOB was relatively rich in the top layer while percentage of anammox population was higher at the bottom, and anammox bacteria population gradually increased over a period of time. NOB growth was supposed to be associated with the increase of floccules based on the concurrent occurrence. Thus, segregation of biomass can be utilized to develop an effective strategy to enrich anammox and wash out NOB by shortening the settling

  1. A batch assay to measure microbial hydrogen sulfide production from sulfur-containing solid wastes

    International Nuclear Information System (INIS)

    Sun, Mei; Sun, Wenjie; Barlaz, Morton A.

    2016-01-01

    Large volumes of sulfur-containing wastes enter municipal solid waste landfills each year. Under the anaerobic conditions that prevail in landfills, oxidized forms of sulfur, primarily sulfate, are converted to sulfide. Hydrogen sulfide (H 2 S) is corrosive to landfill gas collection and treatment systems, and its presence in landfill gas often necessitates the installation of expensive removal systems. For landfill operators to understand the cost of managing sulfur-containing wastes, an estimate of the H 2 S production potential is needed. The objective of this study was to develop and demonstrate a biochemical sulfide potential (BSP) test to measure the amount of H 2 S produced by different types of sulfur-containing wastes in a relatively fast (30 days) and inexpensive (125 mL serum bottles) batch assay. This study confirmed the toxic effect of H 2 S on both sulfate reduction and methane production in batch systems, and demonstrated that removing accumulated H 2 S by base adsorption was effective for mitigating inhibition. H 2 S production potentials of coal combustion fly ash, flue gas desulfurization residual, municipal solid waste combustion ash, and construction and demolition waste were determined in BSP assays. After 30 days of incubation, most of the sulfate in the wastes was converted to gaseous or aqueous phase sulfide, with BSPs ranging from 0.8 to 58.8 mL H 2 S/g waste, depending on the chemical composition of the samples. Selected samples contained solid phase sulfide which contributed to the measured H 2 S yield. A 60 day incubation in selected samples resulted in 39–86% additional sulfide production. H 2 S production measured in BSP assays was compared with that measured in simulated landfill reactors and that calculated from chemical analyses. H 2 S production in BSP assays and in reactors was lower than the stoichiometric values calculated from chemical composition for all wastes tested, demonstrating the importance of assays to estimate the

  2. High cell density fed-batch fermentations for lipase production: feeding strategies and oxygen transfer.

    Science.gov (United States)

    Salehmin, M N I; Annuar, M S M; Chisti, Y

    2013-11-01

    This review is focused on the production of microbial lipases by high cell density fermentation. Lipases are among the most widely used of the enzyme catalysts. Although lipases are produced by animals and plants, industrial lipases are sourced almost exclusively from microorganisms. Many of the commercial lipases are produced using recombinant species. Microbial lipases are mostly produced by batch and fed-batch fermentation. Lipases are generally secreted by the cell into the extracellular environment. Thus, a crude preparation of lipases can be obtained by removing the microbial cells from the fermentation broth. This crude cell-free broth may be further concentrated and used as is, or lipases may be purified from it to various levels. For many large volume applications, lipases must be produced at extremely low cost. High cell density fermentation is a promising method for low-cost production: it allows a high concentration of the biomass and the enzyme to be attained rapidly and this eases the downstream recovery of the enzyme. High density fermentation enhances enzyme productivity compared with the traditional submerged culture batch fermentation. In production of enzymes, a high cell density is generally achieved through fed-batch operation, not through perfusion culture which is cumbersome. The feeding strategies used in fed-batch fermentations for producing lipases and the implications of these strategies are discussed. Most lipase-producing microbial fermentations require oxygen. Oxygen transfer in such fermentations is discussed.

  3. Effect of temperature and cycle length on microbial competition in PHB-producing sequencing batch reactor.

    Science.gov (United States)

    Jiang, Yang; Marang, Leonie; Kleerebezem, Robbert; Muyzer, Gerard; van Loosdrecht, Mark C M

    2011-05-01

    The impact of temperature and cycle length on microbial competition between polyhydroxybutyrate (PHB)-producing populations enriched in feast-famine sequencing batch reactors (SBRs) was investigated at temperatures of 20 °C and 30 °C, and in a cycle length range of 1-18 h. In this study, the microbial community structure of the PHB-producing enrichments was found to be strongly dependent on temperature, but not on cycle length. Zoogloea and Plasticicumulans acidivorans dominated the SBRs operated at 20 °C and 30 °C, respectively. Both enrichments accumulated PHB more than 75% of cell dry weight. Short-term temperature change experiments revealed that P. acidivorans was more temperature sensitive as compared with Zoogloea. This is particularly true for the PHB degradation, resulting in incomplete PHB degradation in P. acidivorans at 20 °C. Incomplete PHB degradation limited biomass growth and allowed Zoogloea to outcompete P. acidivorans. The PHB content at the end of the feast phase correlated well with the cycle length at a constant solid retention time (SRT). These results suggest that to establish enrichment with the capacity to store a high fraction of PHB, the number of cycles per SRT should be minimized independent of the temperature.

  4. Acceptance Test Data for Candidate AGR-5/6/7 TRISO Particle Batches BWXT Coater Batches 93165 93172 Defective IPyC Fraction and Pyrocarbon Anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Helmreich, Grant W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hunn, John D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Skitt, Darren J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dyer, John A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Schumacher, Austin T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-03-01

    Coated particle fuel batches J52O-16-93165, 93166, 93168, 93169, 93170, and 93172 were produced by Babcock and Wilcox Technologies (BWXT) for possible selection as fuel for the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program’s AGR-5/6/7 irradiation test in the Idaho National Laboratory (INL) Advanced Test Reactor (ATR). Some of these batches may alternately be used as demonstration coated particle fuel for other experiments. Each batch was coated in a 150-mm-diameter production-scale fluidized-bed chemical vapor deposition (CVD) furnace. Tristructural isotropic (TRISO) coatings were deposited on 425-μm-nominal-diameter spherical kernels from BWXT lot J52R-16-69317 containing a mixture of 15.5%-enriched uranium carbide and uranium oxide (UCO). The TRISO coatings consisted of four consecutive CVD layers: a ~50% dense carbon buffer layer with 100-μm-nominal thickness, a dense inner pyrolytic carbon (IPyC) layer with 40-μm-nominal thickness, a silicon carbide (SiC) layer with 35-μm-nominal thickness, and a dense outer pyrolytic carbon (OPyC) layer with 40-μmnominal thickness. The TRISO-coated particle batches were sieved to upgrade the particles by removing over-sized and under-sized material, and the upgraded batches were designated by appending the letter A to the end of the batch number (e.g., 93165A).

  5. Bayesian predictive risk modeling of microbial criteria for Campylobacter in broilers

    DEFF Research Database (Denmark)

    Nauta, Maarten; Ranta, J.; Mikkelä, A.

    Microbial Criteria define the acceptability of food products, based on the presence or detected number of microorganisms in samples. The criteria are applied at the level of defined food lots. Generally, these are interpreted as statistical batches representing the production [1]. The batches...... be assessed by computing posterior distribution of the parameters - a Bayesian evidence synthesis. The outcome of a defined Microbial Criterion (MC) for a batch provides additional evidence concerning the batch. Posterior predictive consumer risk (probability of illness) was computed for such batch...

  6. Groundwater arsenic remediation using zerovalent iron: Batch and column tests

    Science.gov (United States)

    Recently, increasing efforts have been made to explore the applicability and limitations of zerovalent iron (Fe0) for the treatment of arsenicbearing groundwater and wastewater. The experimental batch and column tests have demonstrated that arsenate and arsenite are removed effec...

  7. Electrochemical study of multi-electrode microbial fuel cells under fed-batch and continuous flow conditions

    KAUST Repository

    Ren, Lijiao; Ahn, Yongtae; Hou, Huijie; Zhang, Fang; Logan, Bruce E.

    2014-01-01

    together (combined), in fed-batch or continuous flow conditions. Power production under these different conditions could not be made based on a single resistance, but instead required polarization tests to assess individual performance relative

  8. Application of magnetic OMS-2 in sequencing batch reactor for treating dye wastewater as a modulator of microbial community.

    Science.gov (United States)

    Pan, Fei; Yu, Yang; Xu, Aihua; Xia, Dongsheng; Sun, Youmin; Cai, Zhengqing; Liu, Wen; Fu, Jie

    2017-10-15

    The potential and mechanism of synthesized magnetic octahedral molecular sieve (Fe 3 O 4 @OMS-2) nanoparticles in enhancing the aerobic microbial ability of sequencing batch reactor (SBR) for treating dye wastewater have been revealed in this study. The addition of Fe 3 O 4 @OMS-2 of 0.25g/L enhanced the decolorization of SBRs with an operation cycle of 24h by more than 20%. The 16S rRNA gene high-throughput sequencing indicated Fe 3 O 4 @OMS-2 increased the microbial richness and diversity of SBRs, and more importantly, promoted the potential dye-degrading bacteria. After a series of enriching and screening, four bacterial strains with the considerable decolorizing ability were isolated from SBRs, designating Alcaligenes faecalis FP-G1, Bacillus aryabhattai FP-F1, Escherichia fergusonii FP-D1 and Rhodococcus ruber FP-E1, respectively. The growth and decolorization of these pure strains were promoted in the presence of Fe 3 O 4 @OMS-2, which agrees with the result of high-throughput sequencing. Monitoring dissolved Fe/Mn ions and investigating the change of oxidation states of Fe/Mn species discovered OMS-2 composition played the critical role in modulating the microbial community. The significant enhancement of Mn-oxidizing/-reducing bacteria suggested microbial Mn redox may be the key action mechanism of Fe 3 O 4 @OMS-2, which can provide numerous benefits for the microbial community and decolorization of SBRs. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Engineered Option Treatment of Remediated Nitrate Salts: Surrogate Batch-Blending Testing

    Energy Technology Data Exchange (ETDEWEB)

    Anast, Kurt Roy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-11

    This report provides results from batch-blending test work for remediated nitrate salt (RNS) treatment. Batch blending was identified as a preferred option for blending RNS and unremediated nitrate salt (UNS) material with zeolite to effectively safe the salt/Swheat material identified as ignitable (U.S. Environmental Protection Agency code D001). Blending with zeolite was the preferred remediation option identified in the Options Assessment Report and was originally proposed as the best option for remediation by Clark and Funk in their report, Chemical Reactivity and Recommended Remediation Strategy for Los Alamos Remediated Nitrate Salt (RNS) Wastes, and also found to be a preferred option in the Engineering Options Assessment Report: Nitrate Salt Waste Stream Processing. This test work evaluated equipment and recipe alternatives to achieve effective blending of surrogate waste with zeolite.

  10. A batch assay to measure microbial hydrogen sulfide production from sulfur-containing solid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Mei, E-mail: msun8@uncc.edu [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Campus Box 7908, Raleigh, NC (United States); Sun, Wenjie, E-mail: wsun@smu.edu [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Campus Box 7908, Raleigh, NC (United States); Department of Civil and Environmental Engineering, Southern Methodist University, PO Box 750340, Dallas, TX (United States); Barlaz, Morton A., E-mail: barlaz@ncsu.edu [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Campus Box 7908, Raleigh, NC (United States)

    2016-05-01

    Large volumes of sulfur-containing wastes enter municipal solid waste landfills each year. Under the anaerobic conditions that prevail in landfills, oxidized forms of sulfur, primarily sulfate, are converted to sulfide. Hydrogen sulfide (H{sub 2}S) is corrosive to landfill gas collection and treatment systems, and its presence in landfill gas often necessitates the installation of expensive removal systems. For landfill operators to understand the cost of managing sulfur-containing wastes, an estimate of the H{sub 2}S production potential is needed. The objective of this study was to develop and demonstrate a biochemical sulfide potential (BSP) test to measure the amount of H{sub 2}S produced by different types of sulfur-containing wastes in a relatively fast (30 days) and inexpensive (125 mL serum bottles) batch assay. This study confirmed the toxic effect of H{sub 2}S on both sulfate reduction and methane production in batch systems, and demonstrated that removing accumulated H{sub 2}S by base adsorption was effective for mitigating inhibition. H{sub 2}S production potentials of coal combustion fly ash, flue gas desulfurization residual, municipal solid waste combustion ash, and construction and demolition waste were determined in BSP assays. After 30 days of incubation, most of the sulfate in the wastes was converted to gaseous or aqueous phase sulfide, with BSPs ranging from 0.8 to 58.8 mL H{sub 2}S/g waste, depending on the chemical composition of the samples. Selected samples contained solid phase sulfide which contributed to the measured H{sub 2}S yield. A 60 day incubation in selected samples resulted in 39–86% additional sulfide production. H{sub 2}S production measured in BSP assays was compared with that measured in simulated landfill reactors and that calculated from chemical analyses. H{sub 2}S production in BSP assays and in reactors was lower than the stoichiometric values calculated from chemical composition for all wastes tested, demonstrating

  11. STUDY ON MAXIMUM SPECIFIC SLUDGE ACIVITY OF DIFFERENT ANAEROBIC GRANULAR SLUDGE BY BATCH TESTS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The maximum specific sludge activity of granular sludge from large-scale UASB, IC and Biobed anaerobic reactors were investigated by batch tests. The limitation factors related to maximum specific sludge activity (diffusion, substrate sort, substrate concentration and granular size) were studied. The general principle and procedure for the precise measurement of maximum specific sludge activity were suggested. The potential capacity of loading rate of the IC and Biobed anaerobic reactors were analyzed and compared by use of the batch tests results.

  12. Testing SLURM open source batch system for a Tierl/Tier2 HEP computing facility

    International Nuclear Information System (INIS)

    Donvito, Giacinto; Italiano, Alessandro; Salomoni, Davide

    2014-01-01

    In this work the testing activities that were carried on to verify if the SLURM batch system could be used as the production batch system of a typical Tier1/Tier2 HEP computing center are shown. SLURM (Simple Linux Utility for Resource Management) is an Open Source batch system developed mainly by the Lawrence Livermore National Laboratory, SchedMD, Linux NetworX, Hewlett-Packard, and Groupe Bull. Testing was focused both on verifying the functionalities of the batch system and the performance that SLURM is able to offer. We first describe our initial set of requirements. Functionally, we started configuring SLURM so that it replicates all the scheduling policies already used in production in the computing centers involved in the test, i.e. INFN-Bari and the INFN-Tier1 at CNAF, Bologna. Currently, the INFN-Tier1 is using IBM LSF (Load Sharing Facility), while INFN-Bari, an LHC Tier2 for both CMS and Alice, is using Torque as resource manager and MAUI as scheduler. We show how we configured SLURM in order to enable several scheduling functionalities such as Hierarchical FairShare, Quality of Service, user-based and group-based priority, limits on the number of jobs per user/group/queue, job age scheduling, job size scheduling, and scheduling of consumable resources. We then show how different job typologies, like serial, MPI, multi-thread, whole-node and interactive jobs can be managed. Tests on the use of ACLs on queues or in general other resources are then described. A peculiar SLURM feature we also verified is triggers on event, useful to configure specific actions on each possible event in the batch system. We also tested highly available configurations for the master node. This feature is of paramount importance since a mandatory requirement in our scenarios is to have a working farm cluster even in case of hardware failure of the server(s) hosting the batch system. Among our requirements there is also the possibility to deal with pre-execution and post

  13. Testing SLURM open source batch system for a Tierl/Tier2 HEP computing facility

    Science.gov (United States)

    Donvito, Giacinto; Salomoni, Davide; Italiano, Alessandro

    2014-06-01

    In this work the testing activities that were carried on to verify if the SLURM batch system could be used as the production batch system of a typical Tier1/Tier2 HEP computing center are shown. SLURM (Simple Linux Utility for Resource Management) is an Open Source batch system developed mainly by the Lawrence Livermore National Laboratory, SchedMD, Linux NetworX, Hewlett-Packard, and Groupe Bull. Testing was focused both on verifying the functionalities of the batch system and the performance that SLURM is able to offer. We first describe our initial set of requirements. Functionally, we started configuring SLURM so that it replicates all the scheduling policies already used in production in the computing centers involved in the test, i.e. INFN-Bari and the INFN-Tier1 at CNAF, Bologna. Currently, the INFN-Tier1 is using IBM LSF (Load Sharing Facility), while INFN-Bari, an LHC Tier2 for both CMS and Alice, is using Torque as resource manager and MAUI as scheduler. We show how we configured SLURM in order to enable several scheduling functionalities such as Hierarchical FairShare, Quality of Service, user-based and group-based priority, limits on the number of jobs per user/group/queue, job age scheduling, job size scheduling, and scheduling of consumable resources. We then show how different job typologies, like serial, MPI, multi-thread, whole-node and interactive jobs can be managed. Tests on the use of ACLs on queues or in general other resources are then described. A peculiar SLURM feature we also verified is triggers on event, useful to configure specific actions on each possible event in the batch system. We also tested highly available configurations for the master node. This feature is of paramount importance since a mandatory requirement in our scenarios is to have a working farm cluster even in case of hardware failure of the server(s) hosting the batch system. Among our requirements there is also the possibility to deal with pre-execution and post

  14. The Effect of Initial Inoculum Source on the Microbial Community Structure and Dynamics in Laboratory-Scale Sequencing Batch Reactors

    KAUST Repository

    Hernandez, Susana

    2011-07-01

    Understanding the factors that shapes the microbial community assembly in activated sludge wastewater treatment processes provide a conceptual foundation for improving process performance. The aim of this study was to compare two major theories (deterministic theory and neutral theory) regarding the assembly of microorganisms in activated sludge: Six lab-scale activated sludge sequencing batch reactors were inoculated with activated sludge collected from three different sources (domestic, industrial, and sugar industry WWTP). Additionally, two reactors were seeded with equal proportion of sludge from the three WWTPs. Duplicate reactors were used for each sludge source (i.e. domestic, industrial, sugar and mix). Reactors were operated in parallel for 11 weeks under identical conditions. Bacterial diversity and community structure in the eight SBRs were assessed by 16S rRNA gene pyrosequencing. The 16S rRNA gene sequences were analyzed using taxonomic and clustering analysis and by measuring diversity indices (Shannon-weaver and Chao1 indices). Cluster analysis revealed that the microbial community structure was dynamic and that replicate reactors evolved differently. Also the microbial community structure in the SBRs seeded with a different sludge did not converge after 11 weeks of operation under identical conditions. These results suggest that history and distribution of taxa in the source inoculum were stronger regulating factors in shaping bacterial community structure than environmental factors. This supports the neutral theory which states that the assembly of the local microbial community from the metacommunity is random and is regulated by the size and diversity of the metacommunity. Furthermore, sludge performance, measured by COD and ammonia removal, confirmed that broad-scale functions (e.g. COD removal) are not influenced by dynamics in the microbial composition, while specific functions (e.g. nitrification) are more susceptible to these changes.

  15. Anaerobic digestion of slaughterhouse waste: main process limitations and microbial community interactions.

    Science.gov (United States)

    Palatsi, J; Viñas, M; Guivernau, M; Fernandez, B; Flotats, X

    2011-02-01

    Fresh pig/cattle slaughterhouse waste mixtures, with different lipid-protein ratios, were characterized and their anaerobic biodegradability assessed in batch tests. The resultant methane potentials were high (270-300 L(CH4) kg(-1)(COD)) making them interesting substrates for the anaerobic digestion process. However, when increasing substrate concentrations in consecutive batch tests, up to 15 g(COD) kg(-1), a clear inhibitory process was monitored. Despite the reported severe inhibition, related to lipid content, the system was able to recover activity and successfully degrade the substrate. Furthermore, 16SrRNA gene-based DGGE results showed an enrichment of specialized microbial populations, such as β-oxidizing/proteolitic bacteria (Syntrophomonas sp., Coprothermobacter sp. and Anaerobaculum sp.), and syntrophic methanogens (Methanosarcina sp.). Consequently, the lipid concentration of substrate and the structure of the microbial community are the main limiting factors for a successful anaerobic treatment of fresh slaughterhouse waste. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Use of carbamylated charge standards for testing batches of ampholytes used in two-dimensional elecrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Tollaksen, S L; Edwards, J J; Anderson, N G

    1981-01-01

    A method of testing batches of ampholytes is presented. By using carbamylated charge standards to co-electrophorese with the protein sample in the first-dimension isoelectric focusing gel, one can monitor, after running and staining the second-dimension sodium dodecyl sulfate (SDS) slab gel, the continuity of the pH gradient. Charge standards can also be used to check the reproducibility of the pH gradient among batches of ampholytes and to modify the new batch with a small amount of a narrow range ampholyte to assure reproducibility of experiments. Ampholytes for comparison were obtained from three major manufacturers. 5 figures.

  17. Study of performances, stability and microbial characterization of a Sequencing Batch Biofilter Granular Reactor working at low recirculation flow.

    Science.gov (United States)

    De Sanctis, Marco; Beccari, Mario; Di Iaconi, Claudio; Majone, Mauro; Rossetti, Simona; Tandoi, Valter

    2013-02-01

    The Sequencing Batch Biofilter Granular Reactor (SBBGR) is a promising wastewater treatment technology characterized by high biomass concentration in the system, good depuration performance and low sludge production. Its main drawback is the high energy consumption required for wastewater recirculation through the reactor bed to ensure both shear stress and oxygen supply. Therefore, the effect of low recirculation flow on the long-term (38 months) performance of a laboratory scale SBBGR was studied. Both the microbial components of the granules, and their main metabolic activities were evaluated (heterotrophic oxidation, nitrification, denitrification, fermentation, sulphate reduction and methanogenesis). The results indicate that despite reduced recirculation, the SBBGR system maintained many of its advantageous characteristics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. An investigation into the preservation of microbial cell banks for α-amylase production during 5 l fed-batch Bacillus licheniformis fermentations.

    Science.gov (United States)

    Hancocks, Nichola H; Thomas, Colin R; Stocks, Stuart M; Hewitt, Christopher J

    2010-10-01

    Fluorescent staining techniques were used for a systematic examination of methods used to cryopreserve microbial cell banks. The aim of cryopreservation here is to ensure subsequent reproducible fermentation performance rather than just post thaw viability. Bacillus licheniformis cell physiology post-thaw is dependent on the cryopreservant (either Tween 80, glycerol or dimethyl sulphoxide) and whilst this had a profound effect on the length of the lag phase, during subsequent 5 l fed-batch fermentations, it had little effect on maximum specific growth rate, final biomass concentration or α-amylase activity. Tween 80 not only protected the cells during freezing but also helped them recover post-thaw resulting in shorter process times.

  19. Microorganisms with a Taste for Vanilla: Microbial Ecology of Traditional Indonesian Vanilla Curing

    Science.gov (United States)

    Röling, Wilfred F. M.; Kerler, Josef; Braster, Martin; Apriyantono, Anton; Stam, Hein; van Verseveld, Henk W.

    2001-01-01

    The microbial ecology of traditional postharvesting processing of vanilla beans (curing) was examined using a polyphasic approach consisting of conventional cultivation, substrate utilization-based and molecular identification of isolates, and cultivation-independent community profiling by 16S ribosomal DNA based PCR-denaturing gradient gel electrophoresis. At two different locations, a batch of curing beans was monitored. In both batches a major shift in microbial communities occurred after short-term scalding of the beans in hot water. Fungi and yeast disappeared, although regrowth of fungi occurred in one batch during a period in which process conditions were temporarily not optimal. Conventional plating showed that microbial communities consisting of thermophilic and thermotolerant bacilli (mainly closely related to Bacillus subtilis, B. licheniformis,, and B. smithii) developed under the high temperatures (up to 65°C) that were maintained for over a week after scalding. Only small changes in the communities of culturable bacteria occurred after this period. Molecular analysis revealed that a proportion of the microbial communities could not be cultured on conventional agar medium, especially during the high-temperature period. Large differences between both batches were observed in the numbers of microorganisms, in species composition, and in the enzymatic abilities of isolated bacteria. These large differences indicate that the effects of microbial activities on the development of vanilla flavor could be different for each batch of cured vanilla beans. PMID:11319073

  20. Arsenic ِAdsorption on Bauxite Mineral Using Batch Equilibrium Test

    OpenAIRE

    Fares Y. Alshaebi; Wan Z.W. Yaacob; Abdul R. Samsudin; Esmail Alsabahi

    2009-01-01

    Problem statement: Study suggested a solution to remove arsenic contamination from contaminated water. Approach: Bauxite, which is a mineral, was proposed as natural remediation material used in this study. Bauxite was collected from Johor mining company in Teluk Ramunia, Johor Bharu, Malaysia. Batch equilibrium test was performed in accordance to different initial concentrations, shaking time and different initial pH values. Results: Results showed that mineral bauxite has high Cation Exchan...

  1. Acceptance Test Data for BWXT Coated Particle Batches 93172B and 93173B—Defective IPyC and Pyrocarbon Anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Hunn, John D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Helmreich, Grant W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dyer, John A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Schumacher, Austin T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Skitt, Darren J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    Coated particle batches J52O-16-93172B and J52O-16-93173B were produced by Babcock and Wilcox Technologies (BWXT) as part of the production campaign for the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program’s AGR-5/6/7 irradiation test in the Idaho National Laboratory (INL) Advanced Test Reactor (ATR), but were not used in the final fuel composite. However, these batches may be used as demonstration production-scale coated particle fuel for other experiments. Each batch was coated in a 150-mm-diameter production-scale fluidized-bed chemical vapor deposition (CVD) furnace. Tristructural isotropic (TRISO) coatings were deposited on 425-μm-nominal-diameter spherical kernels from BWXT lot J52R-16-69317 containing a mixture of 15.5%-enriched uranium carbide and uranium oxide (UCO). The TRISO coatings consisted of four consecutive CVD layers: a ~50% dense carbon buffer layer with 100-μm-nominal thickness, a dense inner pyrolytic carbon (IPyC) layer with 40-μm-nominal thickness, a silicon carbide (SiC) layer with 35-μm-nominal thickness, and a dense outer pyrolytic carbon (OPyC) layer with 40-μm-nominal thickness. The TRISO-coated particle batches were sieved to upgrade the particles by removing over-sized and under-sized material, and the upgraded batches were designated by appending the letter A to the end of the batch number (e.g., 93172A). Secondary upgrading by sieving was performed on the A-designated batches to remove particles with missing or very-thin buffer layers that were identified during previous analysis of the individual batches for defective IPyC, as reported in the acceptance test data report for the AGR-5/6/7 production batches [Hunn et al. 2017b]. The additionally-upgraded batches were designated by appending the letter B to the end of the batch number (e.g., 93172B).

  2. Response of aerobic granular sludge to the long-term presence to nanosilver in sequencing batch reactors: Reactor performance, sludge property, microbial activity and community

    Energy Technology Data Exchange (ETDEWEB)

    Quan, Xiangchun, E-mail: xchquan@bnu.edu.cn; Cen, Yan; Lu, Fang; Gu, Lingyun; Ma, Jingyun

    2015-02-15

    The increasing use of silver nanoparticles (Ag NPs) raises concerns about their potential toxic effects on the environment. Granular shape sludge is a special type of microbial aggregate. The response of aerobic granular sludge (AGS) to the long-term presence of Ag NPs has not been well studied. In this study, AGS was exposed to 5 and 50 mg/L Ag NPs in sequence batch reactors (SBRs) for 69 days, and its response was evaluated based on the sludge properties, microbial activity and community, and reactor performance. The results showed that Ag NPs caused inhibition to microbial activities of AGS from Day 35. At the end of 69 days of Ag NPs exposure, the microbial activity of AGS was significantly inhibited in terms of inhibitions of the ammonia oxidizing rate (33.0%), respiration rate (17.7% and 45.6%) and denitrification rate (6.8%), as well as decreases in the ammonia mono-oxygenase and nitrate reductase activities. During the long-term exposure, the AGS maintained its granular shape and large granule size (approximately 900 μm); the microbial community of AGS slightly changed, but the dominant microbial population remained. Overall, the AGS tolerated the toxicity of Ag NPs well, but a long-term exposure may produce chronic toxicity to the AGS, which is concerning. - Highlights: • AGS demonstrated a good tolerance to the long-term presence of Ag NPs. • Ag NPs did not produce acute toxicity but cause chronic toxicity to AGS. • AGS maintained granular shape, granule size and good settling ability. • The microbial community of AGS slightly changed after long-term Ag NPs exposure.

  3. Response of aerobic granular sludge to the long-term presence to nanosilver in sequencing batch reactors: Reactor performance, sludge property, microbial activity and community

    International Nuclear Information System (INIS)

    Quan, Xiangchun; Cen, Yan; Lu, Fang; Gu, Lingyun; Ma, Jingyun

    2015-01-01

    The increasing use of silver nanoparticles (Ag NPs) raises concerns about their potential toxic effects on the environment. Granular shape sludge is a special type of microbial aggregate. The response of aerobic granular sludge (AGS) to the long-term presence of Ag NPs has not been well studied. In this study, AGS was exposed to 5 and 50 mg/L Ag NPs in sequence batch reactors (SBRs) for 69 days, and its response was evaluated based on the sludge properties, microbial activity and community, and reactor performance. The results showed that Ag NPs caused inhibition to microbial activities of AGS from Day 35. At the end of 69 days of Ag NPs exposure, the microbial activity of AGS was significantly inhibited in terms of inhibitions of the ammonia oxidizing rate (33.0%), respiration rate (17.7% and 45.6%) and denitrification rate (6.8%), as well as decreases in the ammonia mono-oxygenase and nitrate reductase activities. During the long-term exposure, the AGS maintained its granular shape and large granule size (approximately 900 μm); the microbial community of AGS slightly changed, but the dominant microbial population remained. Overall, the AGS tolerated the toxicity of Ag NPs well, but a long-term exposure may produce chronic toxicity to the AGS, which is concerning. - Highlights: • AGS demonstrated a good tolerance to the long-term presence of Ag NPs. • Ag NPs did not produce acute toxicity but cause chronic toxicity to AGS. • AGS maintained granular shape, granule size and good settling ability. • The microbial community of AGS slightly changed after long-term Ag NPs exposure

  4. Preservatives and neutralizing substances in milk: analytical sensitivity of official specific and nonspecific tests, microbial inhibition effect, and residue persistence in milk

    Directory of Open Access Journals (Sweden)

    Livia Cavaletti Corrêa da Silva

    2015-09-01

    Full Text Available Milk fraud has been a recurring problem in Brazil; thus, it is important to know the effect of most frequently used preservatives and neutralizing substances as well as the detection capability of official tests. The objective of this study was to evaluate the analytical sensitivity of legislation-described tests and nonspecific microbial inhibition tests, and to investigate the effect of such substances on microbial growth inhibition and the persistence of detectable residues after 24/48h of refrigeration. Batches of raw milk, free from any contaminant, were divided into aliquots and mixed with different concentrations of formaldehyde, hydrogen peroxide, sodium hypochlorite, chlorine, chlorinated alkaline detergent, or sodium hydroxide. The analytical sensitivity of the official tests was 0.005%, 0.003%, and 0.013% for formaldehyde, hydrogen peroxide, and hypochlorite, respectively. Chlorine and chlorinated alkaline detergent were not detected by regulatory tests. In the tests for neutralizing substances, sodium hydroxide could not be detected when acidity was accurately neutralized. The yogurt culture test gave results similar to those obtained by official tests for the detection of specific substances. Concentrations of 0.05% of formaldehyde, 0.003% of hydrogen peroxide and 0.013% of sodium hypochlorite significantly reduced (P

  5. Biodegradation of phenol in batch and continuous flow microbial fuel cells with rod and granular graphite electrodes.

    Science.gov (United States)

    Moreno, Lyman; Nemati, Mehdi; Predicala, Bernardo

    2018-01-01

    Phenol biodegradation was evaluated in batch and continuous flow microbial fuel cells (MFCs). In batch-operated MFCs, biodegradation of 100-1000 mg L -1 phenol was four to six times faster when graphite granules were used instead of rods (3.5-4.8 mg L -1  h -1 vs 0.5-0.9 mg L -1  h -1 ). Similarly maximum phenol biodegradation rates in continuous MFCs with granular and single-rod electrodes were 11.5 and 0.8 mg L -1  h -1 , respectively. This superior performance was also evident in terms of electrochemical outputs, whereby continuous flow MFCs with granular graphite electrodes achieved maximum current and power densities (3444.4 mA m -3 and 777.8 mW m -3 ) that were markedly higher than those with single-rod electrodes (37.3 mA m -3 and 0.8 mW m -3 ). Addition of neutral red enhanced the electrochemical outputs to 5714.3 mA m -3 and 1428.6 mW m -3 . Using the data generated in the continuous flow MFC, biokinetic parameters including μ m , K S , Y and K e were determined as 0.03 h -1 , 24.2 mg L -1 , 0.25 mg cell (mg phenol) -1 and 3.7 × 10 -4  h -1 , respectively. Access to detailed kinetic information generated in MFC environmental conditions is critical in the design, operation and control of large-scale treatment systems utilizing MFC technology.

  6. Stochastic growth logistic model with aftereffect for batch fermentation process

    Energy Technology Data Exchange (ETDEWEB)

    Rosli, Norhayati; Ayoubi, Tawfiqullah [Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang (Malaysia); Bahar, Arifah; Rahman, Haliza Abdul [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Salleh, Madihah Md [Department of Biotechnology Industry, Faculty of Biosciences and Bioengineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)

    2014-06-19

    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.

  7. Stochastic growth logistic model with aftereffect for batch fermentation process

    Science.gov (United States)

    Rosli, Norhayati; Ayoubi, Tawfiqullah; Bahar, Arifah; Rahman, Haliza Abdul; Salleh, Madihah Md

    2014-06-01

    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.

  8. Stochastic growth logistic model with aftereffect for batch fermentation process

    International Nuclear Information System (INIS)

    Rosli, Norhayati; Ayoubi, Tawfiqullah; Bahar, Arifah; Rahman, Haliza Abdul; Salleh, Madihah Md

    2014-01-01

    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits

  9. Pseudo-affinity chromatography of rumen microbial cellulase on ...

    African Journals Online (AJOL)

    Pseudo-affinity chromatography of rumen microbial cellulase on Sepharose- Cibacron Blue F3GA. ... African Journal of Biotechnology ... Pseudo affinity adsorption of bioproducts on Sepharose-cibacron blue F3-GA was subjected to rumen microbial enzyme evaluation through batch binding and column chromatography of ...

  10. Sludge batch 9 follow-on actual-waste testing for the nitric-glycolic flowsheet

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-03-23

    An actual-waste Sludge Batch 9 qualification run with the nitric-glycolic flowsheet (SC-18) was performed in FY16. In order to supplement the knowledge base for the nitric-glycolic flowsheet, additional testing was performed on the product slurries, condensates, and intermediate samples from run SC-18.

  11. Ethanol prefermentation of food waste in sequencing batch methane fermentation for improved buffering capacity and microbial community analysis.

    Science.gov (United States)

    Yu, Miao; Wu, Chuanfu; Wang, Qunhui; Sun, Xiaohong; Ren, Yuanyuan; Li, Yu-You

    2018-01-01

    This study investigates the effects of ethanol prefermentation (EP) on methane fermentation. Yeast was added to the substrate for EP in the sequencing batch methane fermentation of food waste. An Illumina MiSeq high-throughput sequencing system was used to analyze changes in the microbial community. Methane production in the EP group (254mL/g VS) was higher than in the control group (35mL/g VS) because EP not only increased the buffering capacity of the system, but also increased hydrolytic acidification. More carbon source was converted to ethanol in the EP group than in the control group, and neutral ethanol could be converted continuously to acetic acid, which promoted the growth of Methanobacterium and Methanosarcina. As a result, the relative abundance of methane-producing bacteria was significantly higher than that of the control group. Kinetic modeling indicated that the EP group had a higher hydrolysis efficiency and shorter lag phase. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Cadmium removal using Cladophora in batch, semi-batch and flow reactors.

    Science.gov (United States)

    Sternberg, Steven P K; Dorn, Ryan W

    2002-02-01

    This study presents the results of using viable algae to remove cadmium from a synthetic wastewater. In batch and semi-batch tests, a local strain of Cladophora algae removed 80-94% of the cadmium introduced. The flow experiments that followed were conducted using non-local Cladophora parriaudii. Results showed that the alga removed only 12.7(+/-6.4)% of the cadmium introduced into the reactor. Limited removal was the result of insufficient algal quantities and poor contact between the algae and cadmium solution.

  13. Microbial community dynamics in diesel waste biodegradation using ...

    African Journals Online (AJOL)

    Microbial community dynamics in diesel waste biodegradation using sequencing batch bioreactor operation mode (SBR) ... African Journal of Biotechnology ... Oxygen uptake rate (OUR) indicated increases in microbial activity from cycle one to cycle two (124.9 to 252.9 mgO2/L/h) and decreases in cycles three and four ...

  14. Syringe test screening of microbial gas production activity: Cases denitrification and biogas formation.

    Science.gov (United States)

    Østgaard, Kjetill; Kowarz, Viktoria; Shuai, Wang; Henry, Ingrid A; Sposob, Michal; Haugen, Hildegunn Hegna; Bakke, Rune

    2017-01-01

    Mass produced plastic syringes may be applied as vessels for cheap, simple and large scale batch culture testing. As illustrated for the cases of denitrification and of biogas formation, metabolic activity was monitored by direct reading of the piston movement due to the gas volume formed. Pressure buildup due to friction was shown to be moderate. A piston pull and slide back routine can be applied before recording gas volume to minimize experimental errors due to friction. Inoculum handling and activity may be conveniently standardized as illustrated by applying biofilm carriers. A robust set of positive as well as negative controls ("blanks") should be included to ensure quality of the actual testing. The denitrification test showed saturation response at increasing amounts of inoculum in the form of adapted moving bed biofilm reactor (MBBR) carriers, with well correlated nitrate consumption vs. gas volume formed. As shown, the denitrification test efficiently screened different inocula at standardized substrates. Also, different substrates were successfully screened and compared at standardized inocula. The biogas potential test showed efficient screening of different substrates with effects of relative amounts of carbohydrate, protein, fat. A second case with CO 2 capture reclaimer waste as substrate demonstrated successful use of co-feeding to support waste treatment and how temperature effects on kinetics and stoichiometry can be observed. In total, syringe test screening of microbial gas production seems highly efficient at a low cost when properly applied. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Simultaneous Transformation of Commingled Trichloroethylene, Tetrachloroethylene, and 1,4-Dioxane by a Microbially Driven Fenton Reaction in Batch Liquid Cultures

    Science.gov (United States)

    Sekar, Ramanan; Taillefert, Martial

    2016-01-01

    ABSTRACT Improper disposal of 1,4-dioxane and the chlorinated organic solvents trichloroethylene (TCE) and tetrachloroethylene (also known as perchloroethylene [PCE]) has resulted in widespread contamination of soil and groundwater. In the present study, a previously designed microbially driven Fenton reaction system was reconfigured to generate hydroxyl (HO˙) radicals for simultaneous transformation of source zone levels of single, binary, and ternary mixtures of TCE, PCE, and 1,4-dioxane. The reconfigured Fenton reaction system was driven by fed batch cultures of the Fe(III)-reducing facultative anaerobe Shewanella oneidensis amended with lactate, Fe(III), and contaminants and exposed to alternating anaerobic and aerobic conditions. To avoid contaminant loss due to volatility, the Fe(II)-generating, hydrogen peroxide-generating, and contaminant transformation phases of the microbially driven Fenton reaction system were separated. The reconfigured Fenton reaction system transformed TCE, PCE, and 1,4-dioxane either as single contaminants or as binary and ternary mixtures. In the presence of equimolar concentrations of PCE and TCE, the ratio of the experimentally derived rates of PCE and TCE transformation was nearly identical to the ratio of the corresponding HO˙ radical reaction rate constants. The reconfigured Fenton reaction system may be applied as an ex situ platform for simultaneous degradation of commingled TCE, PCE, and 1,4-dioxane and provides valuable information for future development of in situ remediation technologies. IMPORTANCE A microbially driven Fenton reaction system [driven by the Fe(III)-reducing facultative anaerobe S. oneidensis] was reconfigured to transform source zone levels of TCE, PCE, and 1,4-dioxane as single contaminants or as binary and ternary mixtures. The microbially driven Fenton reaction may thus be applied as an ex situ platform for simultaneous degradation of at least three (and potentially more) commingled contaminants

  16. Lipid production in batch and fed-batch cultures of Rhodosporidium toruloides from 5 and 6 carbon carbohydrates

    Directory of Open Access Journals (Sweden)

    Wiebe Marilyn G

    2012-05-01

    Full Text Available Abstract Background Microbial lipids are a potential source of bio- or renewable diesel and the red yeast Rhodosporidium toruloides is interesting not only because it can accumulate over 50% of its dry biomass as lipid, but also because it utilises both five and six carbon carbohydrates, which are present in plant biomass hydrolysates. Methods R. toruloides was grown in batch and fed-batch cultures in 0.5 L bioreactors at pH 4 in chemically defined, nitrogen restricted (C/N 40 to 100 media containing glucose, xylose, arabinose, or all three carbohydrates as carbon source. Lipid was extracted from the biomass using chloroform-methanol, measured gravimetrically and analysed by GC. Results Lipid production was most efficient with glucose (up to 25 g lipid L−1, 48 to 75% lipid in the biomass, at up to 0.21 g lipid L−1 h−1 as the sole carbon source, but high lipid concentrations were also produced from xylose (36 to 45% lipid in biomass. Lipid production was low (15–19% lipid in biomass with arabinose as sole carbon source and was lower than expected (30% lipid in biomass when glucose, xylose and arabinose were provided simultaneously. The presence of arabinose and/or xylose in the medium increased the proportion of palmitic and linoleic acid and reduced the proportion of oleic acid in the fatty acids, compared to glucose-grown cells. High cell densities were obtained in both batch (37 g L−1, with 49% lipid in the biomass and fed-batch (35 to 47 g L−1, with 50 to 75% lipid in the biomass cultures. The highest proportion of lipid in the biomass was observed in cultures given nitrogen during the batch phase but none with the feed. However, carbohydrate consumption was incomplete when the feed did not contain nitrogen and the highest total lipid and best substrate consumption were observed in cultures which received a constant low nitrogen supply. Conclusions Lipid production in R. toruloides was lower from arabinose and mixed

  17. NIGHTHAWK - A Program for Modeling Saturated Batch and Column Experiments Incorporating Equilibrium and Kinetic Biogeochemistry

    Science.gov (United States)

    NIGHTHAWK simulates the fate and transport of biogeochemically reactive contaminants in the saturated subsurface. Version 1.2 supports batch and one- dimensional advective-dispersive-reactive transport involving a number of biogeochemical processes, including: microbially-mediate...

  18. Fate of bulk organic matter, nitrogen, and pharmaceutically active compounds in batch experiments simulating soil aquifer treatment (SAT) using primary effluent

    KAUST Repository

    Abel, Chol D T

    2013-06-30

    Reduction of bulk organic matter, nitrogen, and pharmaceutically active compounds from primary effluent during managed aquifer recharge was investigated using laboratory-scale batch reactors. Biologically stable batch reactors were spiked with different concentrations of sodium azide to inhibit biological activity and probe the effect of microbial activity on attenuation of various pollutants of concern. The experimental results obtained revealed that removal of dissolved organic carbon correlated with active microbial biomass. Furthermore, addition of 2 mM of sodium azide affected nitrite-oxidizing bacteria leading to accumulation of nitrite-nitrogen in the reactors while an ammonium-nitrogen reduction of 95.5 % was achieved. Removal efficiencies of the hydrophilic neutral compounds phenacetin, paracetamol, and caffeine were independent of the extent of the active microbial biomass and were >90 % in all reactors, whereas removal of pentoxifylline was dependent on the biological stability of the reactor. However, hydrophobic ionic compounds exhibited removal efficiency >80 % in batch reactors with the highest biological activity as evidenced by high concentration of adenosine triphosphate. © 2013 Springer Science+Business Media Dordrecht.

  19. Fate of bulk organic matter, nitrogen, and pharmaceutically active compounds in batch experiments simulating soil aquifer treatment (SAT) using primary effluent

    KAUST Repository

    Abel, Chol D T; Sharma, Saroj K.; Maeng, Sungkyu; Magic-Knezev, Aleksandra; Kennedy, Maria Dolores; Amy, Gary L.

    2013-01-01

    Reduction of bulk organic matter, nitrogen, and pharmaceutically active compounds from primary effluent during managed aquifer recharge was investigated using laboratory-scale batch reactors. Biologically stable batch reactors were spiked with different concentrations of sodium azide to inhibit biological activity and probe the effect of microbial activity on attenuation of various pollutants of concern. The experimental results obtained revealed that removal of dissolved organic carbon correlated with active microbial biomass. Furthermore, addition of 2 mM of sodium azide affected nitrite-oxidizing bacteria leading to accumulation of nitrite-nitrogen in the reactors while an ammonium-nitrogen reduction of 95.5 % was achieved. Removal efficiencies of the hydrophilic neutral compounds phenacetin, paracetamol, and caffeine were independent of the extent of the active microbial biomass and were >90 % in all reactors, whereas removal of pentoxifylline was dependent on the biological stability of the reactor. However, hydrophobic ionic compounds exhibited removal efficiency >80 % in batch reactors with the highest biological activity as evidenced by high concentration of adenosine triphosphate. © 2013 Springer Science+Business Media Dordrecht.

  20. Quality control and batch testing of MRPC modules for BESIII ETOF upgrade

    Science.gov (United States)

    Liu, Z.; Li, X.; Sun, Y. J.; Li, C.; Heng, Y. K.; Chen, T. X.; Dai, H. L.; Shao, M.; Sun, S. S.; Tang, Z. B.; Yang, R. X.; Wu, Z.; Wang, X. Z.

    2017-12-01

    The end-cap time-of-flight (ETOF) system for the Beijing Spectrometer III (BESIII) has been upgraded using the Multi-gap Resistive Plate Chamber (MRPC) technology (Williams et al., 1999; Li et al., 2001; Blanco et al., 2003; Fonte et al., 2013, [1-4]). A set of quality-assurance procedures has been developed to guarantee the performances of the 72 mass-produced MRPC modules installed. The cosmic ray batch testing show that the average detection efficiency of the MRPC modules is about 95%. Two different calibration methods indicate that MRPCs' time resolution can reach 60 ps in the cosmic ray test.

  1. Acceptance Test Data for BWXT Coated Particle Batch 93164A Defective IPyC Fraction and Pyrocarbon Anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Helmreich, Grant W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hunn, John D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Skitt, Darren J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dyer, John A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-02-01

    Coated particle fuel batch J52O-16-93164 was produced by Babcock and Wilcox Technologies (BWXT) for possible selection as fuel for the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program’s AGR-5/6/7 irradiation test in the Idaho National Laboratory (INL) Advanced Test Reactor (ATR), or may be used as demonstration production-scale coated particle fuel for other experiments. The tristructural-isotropic (TRISO) coatings were deposited in a 150-mm-diameter production-scale fluidizedbed chemical vapor deposition (CVD) furnace onto 425-μm-nominal-diameter spherical kernels from BWXT lot J52L-16-69316. Each kernel contained a mixture of 15.5%-enriched uranium carbide and uranium oxide (UCO) and was coated with four consecutive CVD layers: a ~50% dense carbon buffer layer with 100-μm-nominal thickness, a dense inner pyrolytic carbon (IPyC) layer with 40-μm-nominal thickness, a silicon carbide (SiC) layer with 35-μm-nominal thickness, and a dense outer pyrolytic carbon (OPyC) layer with 40-μm-nominal thickness. The TRISO-coated particle batch was sieved to upgrade the particles by removing over-sized and under-sized material, and the upgraded batch was designated by appending the letter A to the end of the batch number (i.e., 93164A).

  2. Experimental Investigation Of Microbially Induced Corrosion Of Test Samples And Effect Of Self-assembled Hydrophobic Monolayers. Exposure Of Test Samples To Continuous Microbial Cultures, Chemical Analysis, And Biochemical Studies

    CERN Document Server

    Laurinavichius, K S

    1998-01-01

    Experimental Investigation Of Microbially Induced Corrosion Of Test Samples And Effect Of Self-assembled Hydrophobic Monolayers. Exposure Of Test Samples To Continuous Microbial Cultures, Chemical Analysis, And Biochemical Studies

  3. NGBAuth - Next Generation Batch Authentication for long running batch jobs.

    CERN Document Server

    Juto, Zakarias

    2015-01-01

    This document describes the prototyping of a new solution for the CERN batch authentication of long running jobs. While the job submission requires valid user credentials, these have to be renewed due to long queuing and execution times. Described within is a new system which will guarantee a similar level of security as the old LSFAuth while simplifying the implementation and the overall architecture. The new system is being built on solid, streamlined and tested components (notably OpenSSL) and a priority has been to make it more generic in order to facilitate the evolution of the current system such as for the expected migration from LSF to Condor as backend batch system.

  4. Bioelectricity generation from coconut husk retting wastewater in fed batch operating microbial fuel cell by phenol degrading microorganism

    International Nuclear Information System (INIS)

    Jayashree, C.; Arulazhagan, P.; Adish Kumar, S.; Kaliappan, S.; Yeom, Ick Tae; Rajesh Banu, J.

    2014-01-01

    Dual chamber microbial fuel cell (MFC) operated at fed batch mode for the treatment of retting wastewater has potently achieved both current generation and phenol removal. Hydraulic retention time (HRT) of the reactor was varied from 40 days to 10 days. COD (chemical oxygen demand) removal was 91% at 40 days HRT, with an initial COD concentration of 530 ± 50 g m −3 . Retting wastewater with an initial phenol concentration of 320 ± 60 g m −3 procured a highest phenol removal of 93% at 40 days HRT of the microbial fuel cell. Maximum power density of 362 mW m −2 was achieved using retting wastewater at HRT of 20 days with an internal resistance of 150 Ω in a dual chambered MFC. The bacterial strains in anode region, reported to be responsible for potential phenol removal, were identified as Ochrobactrum sp. RA1 (KJ408266), Ochrobactrum sp. RA2 (KJ408267) and Pesudomonas aeruginosa RA3 (KJ408268) using phylogenetic analysis. The study reveals that, dual chambered MFC effectively removed the phenol from retting wastewater along with power generation. - Highlights: • Maximum power density of 362 mW m −2 (150 Ω) was achieved at HRT of 20 days. • 91% COD removal and 93% phenol removal was observed at HRT of 40 days. • 25% coulombic efficiency was achieved in treatment of retting wastewater with MFC. • Phylogenetic analysis detect phenol degrading Ochrobactrum sp.RA1 in anode biofilm. • In addition, Ochrobactrum sp.RA2 and Pseudomonas aeruginosa RA3 were also isolated

  5. Influence of feedstock-to-inoculum ratio on performance and microbial community succession during solid-state thermophilic anaerobic co-digestion of pig urine and rice straw.

    Science.gov (United States)

    Meng, Lingyu; Xie, Li; Kinh, Co Thi; Suenaga, Toshikazu; Hori, Tomoyuki; Riya, Shohei; Terada, Akihiko; Hosomi, Masaaki

    2018-03-01

    This study investigated the effect of the feedstock-to-inoculum (F/I) ratio on performance of the solid-state anaerobic co-digestion of pig urine and rice straw inoculated with a solid digestate, and clarified the microbial community succession. A 44-day biochemical methane potential test at F/I ratios of 0.5, 1, 2 and 3 at 55 °C and a 35-day large-scale batch test at F/I ratios of 0.5 and 3 at 55 °C were conducted to investigate the effects of F/I ratio on anaerobic digestibility and analyze microbial community succession, respectively. The highest cumulative methane yield was 353.7 m 3 /t VS in the large-scale batch test. Volatile fatty acids did not accumulate at any F/I ratios. The volatile solids reduction rate was highest at a F/I ratio of 0.5. Microbial community structures were similar between F/I ratios of 3 and 0.5, despite differences in digestion performance, suggesting that stable operation can be achieved at these ratios. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. [Batch release of immunoglobulin and monoclonal antibody products].

    Science.gov (United States)

    Gross, S

    2014-10-01

    The Paul-Ehrlich Institute (PEI) is an independent institution of the Federal Republic of Germany responsible for performing official experimental batch testing of sera. The institute decides about the release of each batch and performs experimental research in the field. The experimental quality control ensures the potency of the product and also the absence of harmful impurities. For release of an immunoglobulin batch the marketing authorization holder has to submit the documentation of the manufacture and the results of quality control measures together with samples of the batch to the PEI. Experimental testing is performed according to the approved specifications regarding the efficacy and safety. Since implementation of the 15th German drug law amendment, the source of antibody is not defined anymore. According to § 32 German drug law, all batches of sera need to be released by an official control laboratory. Sera are medicinal products, which contain antibodies, antibody fragments or fusion proteins with a functional antibody portion. Therefore, all batches of monoclonal antibodies and derivatives must also be released by the PEI and the marketing authorization holder has to submit a batch release application. Under certain circumstances a waiver for certain products can be issued with regard to batch release. The conditions for such a waiver apply to the majority of monoclonal antibodies.

  7. Biodiesel production from microbial granules in sequencing batch reactor.

    Science.gov (United States)

    Liu, Lin; Hong, Yuling; Ye, Xin; Wei, Lili; Liao, Jie; Huang, Xu; Liu, Chaoxiang

    2018-02-01

    Effect of reaction variables of in situ transesterification on the biodiesel production, and the characteristic differences of biodiesel obtained from aerobic granular sludge (AG) and algae-bacteria granular consortia (AAG) were investigated. The results indicated that the effect of variables on the biodiesel yield decreased in the order of methanol quantity > catalyst concentration > reaction time, yet the parameters change will not significantly affect biodiesel properties. The maximum biodiesel yield of AAG was 66.21 ± 1.08 mg/g SS, what is significant higher than that of AG (35.44 ± 0.92 mg/g SS). Although methyl palmitate was the dominated composition of biodiesel obtained from both granules, poly-unsaturated fatty acid in the AAG showed a higher percentage (21.86%) than AG (1.2%) due to Scenedesmus addition. Further, microbial analysis confirmed that the composition of biodiesel obtained from microbial granules was also determined by bacterial community, and Xanthomonadaceae and Rhodobacteraceae were the dominant bacteria of AG and AAG, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Harmonisation of microbial sampling and testing methods for distillate fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hill, G.C.; Hill, E.C. [ECHA Microbiology Ltd., Cardiff (United Kingdom)

    1995-05-01

    Increased incidence of microbial infection in distillate fuels has led to a demand for organisations such as the Institute of Petroleum to propose standards for microbiological quality, based on numbers of viable microbial colony forming units. Variations in quality requirements, and in the spoilage significance of contaminating microbes plus a tendency for temporal and spatial changes in the distribution of microbes, makes such standards difficult to implement. The problem is compounded by a diversity in the procedures employed for sampling and testing for microbial contamination and in the interpretation of the data obtained. The following paper reviews these problems and describes the efforts of The Institute of Petroleum Microbiology Fuels Group to address these issues and in particular to bring about harmonisation of sampling and testing methods. The benefits and drawbacks of available test methods, both laboratory based and on-site, are discussed.

  9. A Model-based B2B (Batch to Batch) Control for An Industrial Batch Polymerization Process

    Science.gov (United States)

    Ogawa, Morimasa

    This paper describes overview of a model-based B2B (batch to batch) control for an industrial batch polymerization process. In order to control the reaction temperature precisely, several methods based on the rigorous process dynamics model are employed at all design stage of the B2B control, such as modeling and parameter estimation of the reaction kinetics which is one of the important part of the process dynamics model. The designed B2B control consists of the gain scheduled I-PD/II2-PD control (I-PD with double integral control), the feed-forward compensation at the batch start time, and the model adaptation utilizing the results of the last batch operation. Throughout the actual batch operations, the B2B control provides superior control performance compared with that of conventional control methods.

  10. Pro Spring Batch

    CERN Document Server

    Minella, Michael T

    2011-01-01

    Since its release, Spring Framework has transformed virtually every aspect of Java development including web applications, security, aspect-oriented programming, persistence, and messaging. Spring Batch, one of its newer additions, now brings the same familiar Spring idioms to batch processing. Spring Batch addresses the needs of any batch process, from the complex calculations performed in the biggest financial institutions to simple data migrations that occur with many software development projects. Pro Spring Batch is intended to answer three questions: *What? What is batch processing? What

  11. Strategies for Solving Potential Problems Associated with Laboratory Diffusion and Batch Experiments - Part 1: An Overview of Conventional Test Methods

    International Nuclear Information System (INIS)

    Zhang, M.; Takeda, M.; Nakajima, H.

    2006-01-01

    Laboratory diffusion testing as well as batch experiments are well established and widely adopted techniques for characterizing the diffusive and adsorptive properties of geological, geotechnical, and synthetic materials in both scientific and applied fields, including geological disposal of radioactive waste. Although several types of diffusion test, such as the through- diffusion test, in-diffusion test, out-diffusion test, and column test, are currently available, different methods may have different advantages and disadvantages. In addition, traditional methods may have limitations, such as the need for relatively long test times, cumbersome test procedures, and the possibility of errors due to differences between analytical assumptions and actual test conditions. Furthermore, traditional batch experiments using mineral powders are known to overestimate the sorption coefficient. In part 1 of this report, we present a brief overview of laboratory diffusion and batch experiments. The advantages, disadvantages, limitations, and/or potential problems associated with individual tests were compared and summarized. This comprehensive report will provide practical references for reviewing the results obtained from relevant experiments, especially from the viewpoint of regulation. To solve and/or eliminate the potential problems associated with conventional methods, and to obtain the diffusion coefficient and rock capacity factor from a laboratory test both rapidly and accurately, part 2 of this study discusses possible strategies involving the development of rigorous solutions to some relevant test methods, and sensitivity analyses for the related tests that may be helpful to judge the accuracy of the two parameters to be determined from individual tests. (authors)

  12. Medication waste reduction in pediatric pharmacy batch processes.

    Science.gov (United States)

    Toerper, Matthew F; Veltri, Michael A; Hamrock, Eric; Mollenkopf, Nicole L; Holt, Kristen; Levin, Scott

    2014-04-01

    To inform pediatric cart-fill batch scheduling for reductions in pharmaceutical waste using a case study and simulation analysis. A pre and post intervention and simulation analysis was conducted during 3 months at a 205-bed children's center. An algorithm was developed to detect wasted medication based on time-stamped computerized provider order entry information. The algorithm was used to quantify pharmaceutical waste and associated costs for both preintervention (1 batch per day) and postintervention (3 batches per day) schedules. Further, simulation was used to systematically test 108 batch schedules outlining general characteristics that have an impact on the likelihood for waste. Switching from a 1-batch-per-day to a 3-batch-per-day schedule resulted in a 31.3% decrease in pharmaceutical waste (28.7% to 19.7%) and annual cost savings of $183,380. Simulation results demonstrate how increasing batch frequency facilitates a more just-in-time process that reduces waste. The most substantial gains are realized by shifting from a schedule of 1 batch per day to at least 2 batches per day. The simulation exhibits how waste reduction is also achievable by avoiding batch preparation during daily time periods where medication administration or medication discontinuations are frequent. Last, the simulation was used to show how reducing batch preparation time per batch provides some, albeit minimal, opportunity to decrease waste. The case study and simulation analysis demonstrate characteristics of batch scheduling that may support pediatric pharmacy managers in redesign toward minimizing pharmaceutical waste.

  13. Operation optimization of a photo-sequencing batch reactor for wastewater treatment: Study on influencing factors and impact on symbiotic microbial ecology.

    Science.gov (United States)

    Ye, Jianfeng; Liang, Junyu; Wang, Liang; Markou, Giorgos; Jia, Qilong

    2018-03-01

    Wastewater treatment technology with better energy efficiency and recyclability is in urgent demand. Photo-Sequencing batch reactor (SBR), which introduces microalgae into conventional SBR, is considered to have more potential for resource recycling. In this study, a photo-SBR was evaluated through the manipulation of several key operational parameters, i.e., aeration strength, light supply intensity and time per cycle, and solid retention time (SRT). The algal-bacterial symbiotic system had the potential of removing COD, NH 4 + -N and TN with limited aeration, representing the advantage of energy-saving by low aeration requirement. Maintaining appropriate proportion of microalgae in the symbiotic system is critical for good system performance. Introducing microalgae into conventional SBR has obvious impact on the original microbial ecology. When the concentration of microalgae is too high (>4.60 mg Chl/L), the inhibition on certain phyla of bacteria, e.g., Bacteroidetes and Actinobacteria, would become prominent and not conducive to the stable operation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Microbial sensor for drug susceptibility testing of Mycobacterium tuberculosis.

    Science.gov (United States)

    Zhang, Z-T; Wang, D-B; Li, C-Y; Deng, J-Y; Zhang, J-B; Bi, L-J; Zhang, X-E

    2018-01-01

    Drug susceptibility testing (DST) of clinical isolates of Mycobacterium tuberculosis is critical in treating tuberculosis. We demonstrate the possibility of using a microbial sensor to perform DST of M. tuberculosis and shorten the time required for DST. The sensor is made of an oxygen electrode with M. tuberculosis cells attached to its surface. This sensor monitors the residual oxygen consumption of M. tuberculosis cells after treatment with anti-TB drugs with glycerine as a carbon source. In principle, after drug pretreatment for 4-5 days, the response differences between the sensors made of drug-sensitive isolates are distinguishable from the sensors made of drug-resistant isolates. The susceptibility of the M. tuberculosis H37Ra strain, its mutants and 35 clinical isolates to six common anti-TB drugs: rifampicin, isoniazid, streptomycin, ethambutol, levofloxacin and para-aminosalicylic acid were tested using the proposed method. The results agreed well with the gold standard method (LJ) and were determined in significantly less time. The whole procedure takes approximately 11 days and therefore has the potential to inform clinical decisions. To our knowledge, this is the first study that demonstrates the possible application of a dissolved oxygen electrode-based microbial sensor in M. tuberculosis drug resistance testing. This study used the microbial sensor to perform DST of M. tuberculosis and shorten the time required for DST. The overall detection result of the microbial sensor agreed well with that of the conventional LJ proportion method and takes less time than the existing phenotypic methods. In future studies, we will build an O 2 electrode array microbial sensor reactor to enable a high-throughput drug resistance analysis. © 2017 The Authors. Journal of Applied Microbiology published by John Wiley & Sons Ltd on behalf of The Society for Applied Microbiology.

  15. Fate of 17β-estradiol and 17α-ethinylestradiol in batch and column studies simulating managed aquifer recharge

    KAUST Repository

    Maeng, Sungkyu; Sharma, Saroj K.; Lee, Jaewoo; Amy, Gary L.

    2013-01-01

    Laboratory-scale batch and soil columns experiments were conducted to investigate the attenuation of estrogens (17β-estradiol and 17α-ethinylestradiol) during managed aquifer recharge. The role of microbial activity in the removal of selected

  16. Simulation of Feedforward-Feedback Control of Dissolved Oxygen of Microbial Repeated Fed-batch Culture

    Directory of Open Access Journals (Sweden)

    Ling Gao

    2016-09-01

    Full Text Available Fed-batch culture is often used in industry, and dissolved oxygen (DO concentration control is important in fermentation process control. DO control is often applied by using feedback (FB control strategy. But, feedforward-feedback (FF-FB control has the advantage in dealing with the time-varying characteristics resulted from the cell growth during the fermentation process. Mathematical modeling and computer simulation is a useful tool in analysis of the control system.  In this research, the FF-FB DO control and FB substrate control of repeated fed-batch culture process is modeled and simulated. The results showed the feasibility of the control strategy. These results are useful for control system development and process analyses and optimization.

  17. Environmental Hazard Assessment of Jarosite Waste Using Batch Leaching Tests

    Directory of Open Access Journals (Sweden)

    M. Kerolli – Mustafa

    2018-01-01

    Full Text Available Jarosite waste samples from Trepça Zinc Industry in Kosovo were subjected to two batch leaching tests as an attempt to characterize the leaching behavior and mobility of minor and major elements of jarosite waste. To achieve this, deionized water and synthetic acidic rain leaching tests were employed. A two-step acidic treatment in microwave digestion system were used to dissolve jarosite waste samples, followed by determination of Al, Ag, As, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, P, Pb, S, Si, Sr, and Zn by inductively coupled plasma optical emission spectrometry (ICP-OES. The validation of the procedure was performed by the analysis of two geochemical reference materials, S JR-3 and S Jsy-1. Two toxicity leaching tests revealed a high metal releasing of Cd, Cu, Ni, Mn, Pb, Zn, and As, and the metal release risk for these elements is still very high due the low pH and acid rain. The statistical analysis showed useful data information on the relationship between elements in jarosite samples in two different extraction conditions (deionized water and synthetic acid rain.

  18. Long-chain fatty acids inhibition and adaptation process in anaerobic thermophilic digestion: Batch tests, microbial community structure and mathematical modelling

    DEFF Research Database (Denmark)

    Paltsi, Jordi; Illa, J.; Prenafeta-Boldu, F.X.

    2010-01-01

    Biomass samples taken during the continuous operation of thermophilic anaerobic digestors fed with manure and exposed to successive inhibitory pulses of long-chain fatty acids (LCFA) were characterized in terms of specific metabolic activities and 16S rDNA DGGE profiling of the microbial community....... Population profiles of eubacterial and archaeal 16S rDNA genes revealed that no significant shift on microbial community composition took place upon biomass exposure to LCFA. DNA sequencing of predominant DGGE bands showed close phylogenetic affinity to ribotypes characteristic from specific beta...... kinetics considering the relation between LCFA inhibitory substrate concentration and specific biomass content, as an approximation to the adsorption process, improved the model fitting and provided a better insight on the physical nature of the LCFA inhibition process. (C) 2009 Elsevier Ltd. All rights...

  19. Acid azo dye remediation in anoxic-aerobic-anoxic microenvironment under periodic discontinuous batch operation: bio-electro kinetics and microbial inventory.

    Science.gov (United States)

    Venkata Mohan, S; Suresh Babu, P; Naresh, K; Velvizhi, G; Madamwar, Datta

    2012-09-01

    Functional behavior of anoxic-aerobic-anoxic microenvironment on azo dye (C.I. Acid black 10B) degradation was evaluated in a periodic discontinuous batch mode operation for 26 cycles. Dye removal efficiency and azo-reductase activity (30.50 ± 1 U) increased with each feeding event until 13th cycle and further stabilized. Dehydrogenase activity also increased gradually and stabilized (2.0 ± 0.2 μg/ml) indicating the stable proton shuttling between metabolic intermediates providing higher number of reducing equivalents towards dye degradation. Voltammetric profiles showed drop in redox catalytic currents during stabilized phase also supports the consumption of reducing equivalents towards dye removal. Change in Tafel slopes, polarization resistance and other bioprocess parameters correlated well with the observed dye removal and biocatalyst behavior. Microbial community analysis documented the involvement of specific organism pertaining to aerobic and facultative functions with heterotrophic and autotrophic metabolism. Integrating anoxic microenvironment with aerobic operation might have facilitated effective dye mineralization due to the possibility of combining redox functions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Detection of protozoan hosts for Legionella pneumophila in engineered water systems by using a biofilm batch test

    NARCIS (Netherlands)

    Valster, R.M.; Wullings, B.A.; Kooij, van der D.

    2010-01-01

    Legionella pneumophila proliferates in aquatic habitats within free-living protozoa, 17 species of which have been identified as hosts by using in vitro experiments. The present study aimed at identifying protozoan hosts for L. pneumophila by using a biofilm batch test (BBT). Samples (600 ml)

  1. Sorption of fluoride by quartz sand: batch tests

    Directory of Open Access Journals (Sweden)

    Eduardo Usunoff

    2009-06-01

    Full Text Available Despite the many efforts of scientists, in particular those from the field of soil science, the fate and distribution of fluorine (F species in soils and aquifers remain relatively unraveled. As for groundwater systems, such a shortcoming makes difficult the finding and development of safe water supplies. Likewise, the use of transport models does not render acceptable results because of the many uncertainties related to the behavior of F in aqueous media. This paper presents the results of four batch test in which solutions of different pH and [F-] (concentration of fluoride were in contact during 48 hours with clean quartz sand grains. The resulting data were fitted by linear versions of the Freundlich, the Langmuir, and the Langmuir-Freundlich models. The [F-] was varied between 0,5 and 10 mg L-1, except in one batch where a large initial concentration of F was used (45 mg L-1, and the range of pH used was 2,95 to 5,02. From a sieve analysis, the quartz grains had a medium size (d50 of 0,25 mm, and a uniformity coefficient (d40/d90 of 1,65. According to the fits and some dedicated goodness of fit indices, the Langmuir-Freundlich approach gave the best results for the batch test at the lowest pH, whereas the three remaining tests data were fitted by the Freundlich equation. It has to be mentioned that the pH of the equilibrium solutions were higher than the pH of the initial solutions, which was interpreted as an exchange process of OH- by F- on the quartz sand surface. However, such an exchange does not stand out as the exclusive mechanism promoting the F- disappearance from solution. It is deemed that the obtained results can be used as initial estimates of parameters in models used for calibrating the transport of F- in aquifers.A pesar de los muchos esfuerzos de los científicos, en particular de aquellos dedicados a las ciencias del suelo, el destino y la distribución de las especies de F (flúor en suelos y acuíferos continúan siendo

  2. Tc-99 Adsorption on Selected Activated Carbons - Batch Testing Results

    Energy Technology Data Exchange (ETDEWEB)

    Mattigod, Shas V.; Wellman, Dawn M.; Golovich, Elizabeth C.; Cordova, Elsa A.; Smith, Ronald M.

    2010-12-01

    CH2M HILL Plateau Remediation Company (CHPRC) is currently developing a 200-West Area groundwater pump-and-treat system as the remedial action selected under the Comprehensive Environmental Response, Compensation, and Liability Act Record of Decision for Operable Unit (OU) 200-ZP-1. This report documents the results of treatability tests Pacific Northwest National Laboratory researchers conducted to quantify the ability of selected activated carbon products (or carbons) to adsorb technetium-99 (Tc-99) from 200-West Area groundwater. The Tc-99 adsorption performance of seven activated carbons (J177601 Calgon Fitrasorb 400, J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, J177612 Norit GAC830, J177613 Norit GAC830, and J177617 Nucon LW1230) were evaluated using water from well 299-W19-36. Four of the best performing carbons (J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, and J177613 Norit GAC830) were selected for batch isotherm testing. The batch isotherm tests on four of the selected carbons indicated that under lower nitrate concentration conditions (382 mg/L), Kd values ranged from 6,000 to 20,000 mL/g. In comparison. Under higher nitrate (750 mg/L) conditions, there was a measureable decrease in Tc-99 adsorption with Kd values ranging from 3,000 to 7,000 mL/g. The adsorption data fit both the Langmuir and the Freundlich equations. Supplemental tests were conducted using the two carbons that demonstrated the highest adsorption capacity to resolve the issue of the best fit isotherm. These tests indicated that Langmuir isotherms provided the best fit for Tc-99 adsorption under low nitrate concentration conditions. At the design basis concentration of Tc 0.865 µg/L(14,700 pCi/L), the predicted Kd values from using Langmuir isotherm constants were 5,980 mL/g and 6,870 mL/g for for the two carbons. These Kd values did not meet the target Kd value of 9,000 mL/g. Tests

  3. Solving a chemical batch scheduling problem by local search

    NARCIS (Netherlands)

    Brucker, P.; Hurink, Johann L.

    1999-01-01

    A chemical batch scheduling problem is modelled in two different ways as a discrete optimization problem. Both models are used to solve the batch scheduling problem in a two-phase tabu search procedure. The method is tested on real-world data.

  4. Biogas production from protein-rich biomass: fed-batch anaerobic fermentation of casein and of pig blood and associated changes in microbial community composition.

    Directory of Open Access Journals (Sweden)

    Etelka Kovács

    Full Text Available It is generally accepted as a fact in the biogas technology that protein-rich biomass substrates should be avoided due to inevitable process inhibition. Substrate compositions with a low C/N ratio are considered difficult to handle and may lead to process failure, though protein-rich industrial waste products have outstanding biogas generation potential. This common belief has been challenged by using protein-rich substrates, i.e. casein and precipitated pig blood protein in laboratory scale continuously stirred mesophilic fed-batch biogas fermenters. Both substrates proved suitable for sustained biogas production (0.447 L CH4/g protein oDM, i.e. organic total solids in high yield without any additives, following a period of adaptation of the microbial community. The apparent key limiting factors in the anaerobic degradation of these proteinaceous materials were the accumulation of ammonia and hydrogen sulfide. Changes in time in the composition of the microbiological community were determined by next-generation sequencing-based metagenomic analyses. Characteristic rearrangements of the biogas-producing community upon protein feeding and specific differences due to the individual protein substrates were recognized. The results clearly demonstrate that sustained biogas production is readily achievable, provided the system is well-characterized, understood and controlled. Biogas yields (0.45 L CH4/g oDM significantly exceeding those of the commonly used agricultural substrates (0.25-0.28 L CH4/g oDM were routinely obtained. The results amply reveal that these high-energy-content waste products can be converted to biogas, a renewable energy carrier with flexible uses that can replace fossil natural gas in its applications. Process control, with appropriate acclimation of the microbial community to the unusual substrate, is necessary. Metagenomic analysis of the microbial community by next-generation sequencing allows a precise determination of the

  5. Biogas Production from Protein-Rich Biomass: Fed-Batch Anaerobic Fermentation of Casein and of Pig Blood and Associated Changes in Microbial Community Composition

    Science.gov (United States)

    Kovács, Etelka; Wirth, Roland; Maróti, Gergely; Bagi, Zoltán; Rákhely, Gábor; Kovács, Kornél L.

    2013-01-01

    It is generally accepted as a fact in the biogas technology that protein-rich biomass substrates should be avoided due to inevitable process inhibition. Substrate compositions with a low C/N ratio are considered difficult to handle and may lead to process failure, though protein-rich industrial waste products have outstanding biogas generation potential. This common belief has been challenged by using protein-rich substrates, i.e. casein and precipitated pig blood protein in laboratory scale continuously stirred mesophilic fed-batch biogas fermenters. Both substrates proved suitable for sustained biogas production (0.447 L CH4/g protein oDM, i.e. organic total solids) in high yield without any additives, following a period of adaptation of the microbial community. The apparent key limiting factors in the anaerobic degradation of these proteinaceous materials were the accumulation of ammonia and hydrogen sulfide. Changes in time in the composition of the microbiological community were determined by next-generation sequencing-based metagenomic analyses. Characteristic rearrangements of the biogas-producing community upon protein feeding and specific differences due to the individual protein substrates were recognized. The results clearly demonstrate that sustained biogas production is readily achievable, provided the system is well-characterized, understood and controlled. Biogas yields (0.45 L CH4/g oDM) significantly exceeding those of the commonly used agricultural substrates (0.25-0.28 L CH4/g oDM) were routinely obtained. The results amply reveal that these high-energy-content waste products can be converted to biogas, a renewable energy carrier with flexible uses that can replace fossil natural gas in its applications. Process control, with appropriate acclimation of the microbial community to the unusual substrate, is necessary. Metagenomic analysis of the microbial community by next-generation sequencing allows a precise determination of the alterations in

  6. Energy efficiency of batch and semi-batch (CCRO) reverse osmosis desalination.

    Science.gov (United States)

    Warsinger, David M; Tow, Emily W; Nayar, Kishor G; Maswadeh, Laith A; Lienhard V, John H

    2016-12-01

    As reverse osmosis (RO) desalination capacity increases worldwide, the need to reduce its specific energy consumption becomes more urgent. In addition to the incremental changes attainable with improved components such as membranes and pumps, more significant reduction of energy consumption can be achieved through time-varying RO processes including semi-batch processes such as closed-circuit reverse osmosis (CCRO) and fully-batch processes that have not yet been commercialized or modelled in detail. In this study, numerical models of the energy consumption of batch RO (BRO), CCRO, and the standard continuous RO process are detailed. Two new energy-efficient configurations of batch RO are analyzed. Batch systems use significantly less energy than continuous RO over a wide range of recovery ratios and source water salinities. Relative to continuous RO, models predict that CCRO and batch RO demonstrate up to 37% and 64% energy savings, respectively, for brackish water desalination at high water recovery. For batch RO and CCRO, the primary reductions in energy use stem from atmospheric pressure brine discharge and reduced streamwise variation in driving pressure. Fully-batch systems further reduce energy consumption by not mixing streams of different concentrations, which CCRO does. These results demonstrate that time-varying processes can significantly raise RO energy efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Single-well reactive tracer test and stable isotope analysis for determination of microbial activity in a fast hydrocarbon-contaminated aquifer

    International Nuclear Information System (INIS)

    Burbery, L.; Cassiani, G.; Andreotti, G.; Ricchiuto, T.; Semple, K.T.

    2004-01-01

    Single-well reactive tracer tests, such as the push-pull test are useful tools for characterising in-situ bioattenuation processes in contaminated aquifers. However, the analytical models that are used to interpret push-pull data may be over-simplified, and potentially overlook important processes responsible for the frequent discrepancy between predicted and observed results obtained from push-pull tests. In this study, the limitations underlying the push-pull test methodology were investigated and were supported with results from a push-pull test conducted in a sulphate-reducing aquifer contaminated by crude oil. Poor ( 20% mass recoveries were achieved. Push-pull test data collected from sulphate-reducing aquifers indicate that the assumption of a well-mixed batch reactor system is incorrect and that reaction rates obtained from push-pull tests in such systems may be affected by the extraction regime implemented. Evidence of microbial respiration of the reactive tracer was provided by stable sulphur isotope analysis, from which an isotope fractionation factor of +9.9±8.1%o was estimated. The stable isotope data support the argument that reaction rates calculated using push-pull tests are not uniformly distributed in space and time and are likely to be influenced by heterogeneities in the flow field. - Reaction rates calculated by push-pull tests are not uniformly distributed in time and space

  8. Study of the Effect of SRT on Microbial Diversity in Laboratory-scale Sequencing Batch Reactors Using Acclimated and Non-Acclimated Seed

    KAUST Repository

    Tellez, Berenice

    2011-07-07

    Solids Retention Time (SRT) is an important design parameter in activated sludge wastewater treatment systems. In this study, the effect of SRT on the bacterial community structure and diversity was examined in replicate lab-scale activated sludge sequencing batch reactors were operated for a period of 8 weeks and seeded with acclimated or non-acclimated sludge. Four SBRs (acclimated) were set up as duplicates and operated at an SRT of 2 days, and another set of four SBRs (non-acclimated) were operated at an SRT of 10 days. To characterize the microbial community in the SBRs, 16S rRNA gene pyrosequencing was used to measure biodiversity and to assess the reproducibility and stability of the bacterial community structure in replicate reactors. Diversity results showed that SBRs operated at an SRT of 10 days are more diverse than SBRs operated at an SRT of 2 days. This suggests that engineering decision could enhance diversity in activated sludge systems. Cluster analysis based on phylogenetic information revealed that the bacterial community structure was not stable and replicated SBRs evolved differently.

  9. Testing of the Defense Waste Processing Facility Cold Chemical Dissolution Method in Sludge Batch 9 Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coleman, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Young, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Brown, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-05-10

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) tests the applicability of the digestion methods used by the DWPF Laboratory for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) Receipt samples and SRAT Product process control samples. DWPF SRAT samples are typically dissolved using a method referred to as the DWPF Cold Chemical or Cold Chem Method (CC), (see DWPF Procedure SW4- 15.201). Testing indicates that the CC method produced mixed results. The CC method did not result in complete dissolution of either the SRAT Receipt or SRAT Product with some fine, dark solids remaining. However, elemental analyses did not reveal extreme biases for the major elements in the sludge when compared with analyses obtained following dissolution by hot aqua regia (AR) or sodium peroxide fusion (PF) methods. The CC elemental analyses agreed with the AR and PF methods well enough that it should be adequate for routine process control analyses in the DWPF after much more extensive side-by-side tests of the CC method and the PF method are performed on the first 10 SRAT cycles of the Sludge Batch 9 (SB9) campaign. The DWPF Laboratory should continue with their plans for further tests of the CC method during these 10 SRAT cycles.

  10. Aquifer recharge with reclaimed water in the Llobregat Delta. Laboratory batch experiments and field test site.

    Science.gov (United States)

    Tobella, J.

    2010-05-01

    Summary Spain, as most other Mediterranean countries, faces near future water shortages, generalized pollution and loss of water dependent ecosystems. Aquifer recharge represents a promising option to become a source for indirect potable reuse purposes but presence of pathogens as well as organic and inorganic pollutants should be avoided. To this end, understanding the processes of biogeochemical degradation occurring within the aquifer during infiltration is capital. A set of laboratory batch experiments has been assembled in order to assess the behaviour of selected pesticides, drugs, estrogens, surfactant degradation products, biocides and phthalates under different redox conditions. Data collected during laboratory experiments and monitoring activities at the Sant Vicenç dels Horts test site will be used to build and calibrate a numerical model (i) of the physical-chemical-biochemical processes occurring in the batches and (ii) of multicomponent reactive transport in the unsaturated/saturated zone at the test site. Keywords Aquifer recharge, batch experiments, emerging micropollutants, infiltration, numerical model, reclaimed water, redox conditions, Soil Aquifer Treatment (SAT). 1. Introduction In Spain, the Llobregat River and aquifers, which supply water to Barcelona, have been overexploited for years and therefore, suffer from serious damages: the river dries up on summer, riparian vegetation has disappeared and seawater has intruded the aquifer. In a global context, solutions to water stress problems are urgently needed yet must be sustainable, economical and safe. Recent developments of analytical techniques detect the presence of the so-called "emerging" organic micropollutants in water and soils. Such compounds may affect living organisms when occurring in the environment at very low concentrations (microg/l or ng/l). In wastewater and drinking water treatment plants, a remarkable removal of these chemicals from water can be obtained only using

  11. Uneven batch data alignment with application to the control of batch end-product quality.

    Science.gov (United States)

    Wan, Jian; Marjanovic, Ognjen; Lennox, Barry

    2014-03-01

    Batch processes are commonly characterized by uneven trajectories due to the existence of batch-to-batch variations. The batch end-product quality is usually measured at the end of these uneven trajectories. It is necessary to align the time differences for both the measured trajectories and the batch end-product quality in order to implement statistical process monitoring and control schemes. Apart from synchronizing trajectories with variable lengths using an indicator variable or dynamic time warping, this paper proposes a novel approach to align uneven batch data by identifying short-window PCA&PLS models at first and then applying these identified models to extend shorter trajectories and predict future batch end-product quality. Furthermore, uneven batch data can also be aligned to be a specified batch length using moving window estimation. The proposed approach and its application to the control of batch end-product quality are demonstrated with a simulated example of fed-batch fermentation for penicillin production. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  12. The effect of toxic carbon source on the reaction of activated sludge in the batch reactor.

    Science.gov (United States)

    Wu, Changyong; Zhou, Yuexi; Zhang, Siyu; Xu, Min; Song, Jiamei

    2018-03-01

    The toxic carbon source can cause higher residual effluent dissolved organic carbon than easily biodegraded carbon source in activated sludge process. In this study, an integrated activated sludge model is developed as the tool to understand the mechanism of toxic carbon source (phenol) on the reaction, regarding the carbon flows during the aeration period in the batch reactor. To estimate the toxic function of phenol, the microbial cells death rate (k death ) is introduced into the model. The integrated model was calibrated and validated by the experimental data and it was found the model simulations matched the all experimental measurements. In the steady state, the toxicity of phenol can result in higher microbial cells death rate (0.1637 h -1 vs 0.0028 h -1 ) and decay rate coefficient of biomass (0.0115 h -1 vs 0.0107 h -1 ) than acetate. In addition, the utilization-associated products (UAP) and extracellular polymeric substances (EPS) formation coefficients of phenol are higher than that of acetate, indicating that more carbon flows into the extracellular components, such as soluble microbial products (SMP), when degrading toxic organics. In the non-steady state of feeding phenol, the yield coefficient for growth and maximum specific growth rate are very low in the first few days (1-10 d), while the decay rate coefficient of biomass and microbial cells death rate are relatively high. The model provides insights into the difference of the dynamic reaction with different carbon sources in the batch reactor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Sludge Batch 5 Slurry Fed Melt Rate Furnace Test with Frits 418 and 550

    International Nuclear Information System (INIS)

    Miller, Donald; Pickenheim, Bradley

    2009-01-01

    Based on Melt Rate Furnace (MRF) testing for the Sludge Batch 5 (SB5) projected composition and assessments of the potential frits with reasonable operating windows, the Savannah River National Laboratory (SRNL) recommended Slurry Fed Melt Rate Furnace (SMRF) testing with Frits 418 and 550. DWPF is currently using Frit 418 with SB5 based on SRNL's recommendation due to its ability to accommodate significant sodium variation in the sludge composition. However, experience with high boron containing frits in DWPF indicated a potential advantage for Frit 550 might exist. Therefore, SRNL performed SMRF testing to assess Frit 550's potential advantages. The results of SMRF testing with SB5 simulant indicate that there is no appreciable difference in melt rate between Frit 418 and Frit 550 at a targeted 34 weight % waste loading. Both batches exhibited comparable behavior when delivered through the feed tube by the peristaltic pump. Limited observation of the cold cap during both runs showed no indication of major cold cap mounding. MRF testing, performed after the SMRF runs due to time constraints, with the same two Slurry Mix Evaporator (SME) dried products led to the same conclusion. Although visual observations of the cross-sectioned MRF beakers indicated differences in the appearance of the two systems, the measured melt rates were both ∼0.6 in/hr. Therefore, SRNL does not recommend a change from Frit 418 for the initial SB5 processing in DWPF. Once the actual SB5 composition is known and revised projections of SB5 after the neptunium stream addition and any decants is provided, SRNL will perform an additional compositional window assessment with Frit 418. If requested, SRNL can also include other potential frits in this assessment should processing of SB5 with Frit 418 result in less than desirable melter throughput in DWPF. The frits would then be subjected to melt rate testing at SRNL to determine any potential advantages

  14. Metagenomic Investigation of Plasma in Individuals with ME/CFS Highlights the Importance of Technical Controls to Elucidate Contamination and Batch Effects.

    Directory of Open Access Journals (Sweden)

    Ruth R Miller

    Full Text Available Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS is a debilitating disease causing indefinite fatigue. ME/CFS has long been hypothesised to have an infectious cause; however, no specific infectious agent has been identified. We used metagenomics to analyse the RNA from plasma samples from 25 individuals with ME/CFS and compare their microbial content to technical controls as well as three control groups: individuals with alternatively diagnosed chronic Lyme syndrome (N = 13, systemic lupus erythematosus (N = 11, and healthy controls (N = 25. We found that the majority of sequencing reads were removed during host subtraction, thus there was very low microbial RNA content in the plasma. The effects of sample batching and contamination during sample processing proved to outweigh the effects of study group on microbial RNA content, as the few differences in bacterial or viral RNA abundance we did observe between study groups were most likely caused by contamination and batch effects. Our results highlight the importance of including negative controls in all metagenomic analyses, since there was considerable overlap between bacterial content identified in study samples and control samples. For example, Proteobacteria, Firmicutes, Actinobacteria, and Bacteriodes were found in both study samples and plasma-free negative controls. Many of the taxonomic groups we saw in our plasma-free negative control samples have previously been associated with diseases, including ME/CFS, demonstrating how incorrect conclusions may arise if controls are not used and batch effects not accounted for.

  15. Development and test of small-scale batch-fired straw boilers in Denmark

    International Nuclear Information System (INIS)

    Kristensen, E.F.; Kristensen, J.K.

    2004-01-01

    In Denmark, government subsidies for the testing and installation of biomass-fired boilers were available for the period from 1995 until 2002. Each boiler type had to pass an official approval test to achieve subsidy. The combustion abilities of the boiler were optimized prior to the test. The main aim of this subsidy was to encourage the development of energy-efficient and environmentally friendly boilers. The scheme was therefore organized in such a way that the greatest subsidies were awarded for boilers with high efficiency and low emissions. This goal has in effect been achieved for batch-fired straw boilers, where the typical efficiency has been increased from about 75% in 1995 to about 87% in 2002. Similarly, the carbon monoxide emissions have been reduced from 5000 ppm (reference value 10% O 2 ) in 1995 to less than 1000 ppm in 2002. These improvements are mainly due to better insulation inside the combustion chamber, more efficient techniques for supplying air to the combustion process, improved cooling of the flue gas, and optimization of the electronic control unit for the air supply

  16. Spatial and interannual variability in Baltic sprat batch fecundity

    DEFF Research Database (Denmark)

    Haslob, H.; Tomkiewicz, Jonna; Hinrichsen, H.H.

    2011-01-01

    in the central Baltic Sea, namely the Bornholm Basin, Gdansk Deep and Southern Gotland Basin. Environmental parameters such as hydrography, fish condition and stock density were tested in order to investigate the observed variability in sprat fecundity. Absolute batch fecundity was found to be positively related...... to fish length and weight. Significant differences in absolute and relative batch fecundity of Baltic sprat among areas and years were detected, and could partly be explained by hydrographic features of the investigated areas. A non-linear multiple regression model taking into account fish length...... and ambient temperature explained 70% of variability in absolute batch fecundity. Oxygen content and fish condition were not related to sprat batch fecundity. Additionally, a negative effect of stock size on sprat batch fecundity in the Bornholm Basin was revealed. The obtained data and results are important...

  17. Production of nattokinase by batch and fed-batch culture of Bacillus subtilis.

    Science.gov (United States)

    Cho, Young-Han; Song, Jae Yong; Kim, Kyung Mi; Kim, Mi Kyoung; Lee, In Young; Kim, Sang Bum; Kim, Hyeon Shup; Han, Nam Soo; Lee, Bong Hee; Kim, Beom Soo

    2010-09-30

    Nattokinase was produced by batch and fed-batch culture of Bacillus subtilis in flask and fermentor. Effect of supplementing complex media (peptone, yeast extract, or tryptone) was investigated on the production of nattokinase. In flask culture, the highest cell growth and nattokinase activity were obtained with 50 g/L of peptone supplementation. In this condition, nattokinase activity was 630 unit/ml at 12 h. In batch culture of B. subtilis in fermentor, the highest nattokinase activity of 3400 unit/ml was obtained at 10h with 50 g/L of peptone supplementation. From the batch kinetics data, it was shown that nattokinase production was growth-associated and culture should be harvested before stationary phase for maximum nattokinase production. In fed-batch culture of B. subtilis using pH-stat feeding strategy, cell growth (optical density monitored at 600 nm) increased to ca. 100 at 22 h, which was 2.5 times higher than that in batch culture. The highest nattokinase activity was 7100 unit/ml at 19 h, which was also 2.1 times higher than that in batch culture. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Effects of COD/N ratio on soluble microbial products in effluent from sequencing batch reactors and subsequent membrane fouling.

    Science.gov (United States)

    Ly, Quang Viet; Nghiem, Long D; Sibag, Mark; Maqbool, Tahir; Hur, Jin

    2018-05-01

    The relative ratios of chemical oxygen demand (COD) to nitrogen (N) in wastewater are known to have profound effects on the characteristics of soluble microbial products (SMP) from activated sludge. In this study, the changes in the SMP characteristics upon different COD/N ratios and the subsequent effects on ultrafiltration (UF) membrane fouling potentials were examined in sequencing batch reactors (SBR) using excitation emission matrix-parallel factor analysis (EEM-PARAFAC) and size exclusion chromatography (SEC). Three unique fluorescent components were identified from the SMP samples in the bioreactors operated at the COD/N ratios of 100/10 (N rich), 100/5 (N medium), and 100/2 (N deficient). The tryptophan-like component (C1) was the most depleted at the N medium condition. Fulvic-like (C2) and humic-like (C3) components were more abundant with N rich wastewater. Greater abundances of large size biopolymer (BP) and low molecular weight neutrals (LMWN) were found under the N deficient and N rich conditions, respectively. SMPs from various COD/N exhibited a greater degree on membrane fouling following the order of 100/2 > 100/10 > 100/5. C1 and C2 had close associations with reversible and irreversible fouling, respectively, while the reversible fouling potential of C3 depended on the COD/N ratios. No significant impact of COD/N ratio was observed on the relative contributions of SMP size fractions to either reversible or irreversible fouling potential. However, the COD/N ratios likely altered the BP foulants' composition with greater contribution of proteinaceous substances to reversible fouling under the N deficient condition than at other N richer conditions. The opposite trend was observed for irreversible fouling. Our results provided further insight into changes in different SMP constitutes and their membrane fouling in response to microbial activities under different COD/N ratios. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Indigenous microbial capability in solid manure residues to start-up solid-phase anaerobic digesters.

    Science.gov (United States)

    Yap, S D; Astals, S; Jensen, P D; Batstone, D J; Tait, S

    2017-06-01

    Batch solid-phase anaerobic digestion is a technology for sustainable on-farm treatment of solid residues, but is an emerging technology that is yet to be optimised with respect to start-up and inoculation. In the present study, spent bedding from two piggeries (site A and B) were batch digested at total solids (TS) concentration of 5, 10 and 20% at mesophilic (37°C) and thermophilic (55°C) temperatures, without adding an external inoculum. The results showed that the indigenous microbial community present in spent bedding was able to recover the full methane potential of the bedding (140±5 and 227±6L CH 4 kgVS fed -1 for site A and B, respectively), but longer treatment times were required than for digestion with an added external inoculum. Nonetheless, at high solid loadings (i.e. TS level>10%), the digestion performance was affected by chemical inhibition due to ammonia and/or humic acid. Thermophilic temperatures did not influence digestion performance but did increase start-up failure risk. Further, inoculation of residues from the batch digestion to subsequent batch enhanced start-up and achieved full methane potential recovery of the bedding. Inoculation with liquid residue (leachate) was preferred over a solid residue, to preserve treatment capacity for fresh substrate. Overall, the study highlighted that indigenous microbial community in the solid manure residue was capable of recovering full methane potential and that solid-phase digestion was ultimately limited by chemical inhibition rather than lack of suitable microbial community. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Kinetics of steel slag leaching: Batch tests and modeling

    International Nuclear Information System (INIS)

    De Windt, Laurent; Chaurand, Perrine; Rose, Jerome

    2011-01-01

    Reusing steel slag as an aggregate for road construction requires to characterize the leaching kinetics and metal releases. In this study, basic oxygen furnace (BOF) steel slag were subjected to batch leaching tests at liquid to solid ratios (L/S) of 10 and 100 over 30 days; the leachate chemistry being regularly sampled in time. A geochemical model of the steel slag is developed and validated from experimental data, particularly the evolution with leaching of mineralogical composition of the slag and trace element speciation. Kinetics is necessary for modeling the primary phase leaching, whereas a simple thermodynamic equilibrium approach can be used for secondary phase precipitation. The proposed model simulates the kinetically-controlled dissolution (hydrolysis) of primary phases, the precipitation of secondary phases (C-S-H, hydroxide and spinel), the pH and redox conditions, and the progressive release of major elements as well as the metals Cr and V. Modeling indicates that the dilution effect of the L/S ratio is often coupled to solubility-controlled processes, which are sensitive to both the pH and the redox potential. A sensitivity analysis of kinetic uncertainties on the modeling of element releases is performed.

  1. Fate of 17β-estradiol and 17α-ethinylestradiol in batch and column studies simulating managed aquifer recharge

    KAUST Repository

    Maeng, Sungkyu

    2013-11-01

    Laboratory-scale batch and soil columns experiments were conducted to investigate the attenuation of estrogens (17β-estradiol and 17α-ethinylestradiol) during managed aquifer recharge. The role of microbial activity in the removal of selected estrogens was evaluated by comparing the results from biotic and abiotic batch experiments. Moreover, batch experiments were carried out using the sand media prepared over different acclimation periods to investigate the impact of acclimation periods on the removal of selected estrogens. Batch studies showed that adsorption was the dominant removal mechanism in the removal of 17β-estradiol and 17α-ethinylestradiol. 17β-estradiol and 17α-ethinylestradiol were attenuated by 99% and 96%, respectively, in batch experiments under oxic conditions. Redox conditions did not show any significant effect on the attenuation of 17β-estradiol. However, the net estrogenicity of 17β-estradiol remaining was lower under oxic conditions (130 ng estradiol-equivalents/L) than anoxic conditions (970 ng estradiol-equivalents/L) . Column studies operated at 17 h of empty bed contact time also demonstrated that removal mechanism of 17α-ethinylestradiol was more dependent on adsorption than biodegradation. © IWA Publishing 2013.

  2. A fast approach to determine a fed batch feeding profile for recombinant Pichia pastoris strains

    Directory of Open Access Journals (Sweden)

    Herwig Christoph

    2011-10-01

    Full Text Available Abstract Background The microorganism Pichia pastoris is a commonly used microbial host for the expression of recombinant proteins in biotechnology and biopharmaceutical industry. To speed up process development, a fast methodology to determine strain characteristic parameters, which are needed to subsequently set up fed batch feeding profiles, is required. Results Here, we show the general applicability of a novel approach to quantify a certain minimal set of bioprocess-relevant parameters, i.e. the adaptation time of the culture to methanol, the specific substrate uptake rate during the adaptation phase and the maximum specific substrate uptake rate, based on fast and easy-to-do batch cultivations with repeated methanol pulses in a batch culture. A detailed analysis of the adaptation of different P. pastoris strains to methanol was conducted and revealed that each strain showed very different characteristics during adaptation, illustrating the need of individual screenings for an optimal parameter definition during this phase. Based on the results obtained in batch cultivations, dynamic feeding profiles based on the specific substrate uptake rate were employed for different P. pastoris strains. In these experiments the maximum specific substrate uptake rate, which had been defined in batch experiments, also represented the upper limit of methanol uptake, underlining the validity of the determined process-relevant parameters and the overall experimental strategy. Conclusion In this study, we show that a fast approach to determine a minimal set of strain characteristic parameters based on easy-to-do batch cultivations with methanol pulses is generally applicable for different P. pastoris strains and that dynamic fed batch strategies can be designed on the specific substrate uptake rate without running the risk of methanol accumulation.

  3. Seasonal variations of microbial community in a full scale oil field produced water treatment plant

    Directory of Open Access Journals (Sweden)

    Q. Xie

    2016-01-01

    Full Text Available This study investigated the microbial community in a full scale anaerobic baffled reactor and sequencing batch reactor system for oil-produced water treatment in summer and winter. The community structures of fungi and bacteria were analyzed through polymerase chain reaction–denaturing gradient gel electrophoresis and Illumina high-throughput sequencing, respectively. Chemical oxygen demand effluent concentration achieved lower than 50 mg/L level after the system in both summer and winter, however, chemical oxygen demand removal rates after anaerobic baffled reactor treatment system were significant higher in summer than that in winter, which conformed to the microbial community diversity. Saccharomycotina, Fusarium, and Aspergillus were detected in both anaerobic baffled reactor and sequencing batch reactor during summer and winter. The fungal communities in anaerobic baffled reactor and sequencing batch reactor were shaped by seasons and treatment units, while there was no correlation between abundance of fungi and chemical oxygen demand removal rates. Compared to summer, the total amount of the dominant hydrocarbon degrading bacteria decreased by 10.2% in anaerobic baffled reactor, resulting in only around 23% of chemical oxygen demand was removed in winter. Although microbial community significantly varied in the three parallel sulfide reducing bacteria, the performance of these bioreactors had no significant difference between summer and winter.

  4. Seasonal variations of microbial community in a full scale oil field produced water treatment plant

    International Nuclear Information System (INIS)

    Xie, Q.; Bai, S.; Li, Y.; Liu, L.; Wang, S.; Xi, J.

    2016-01-01

    This study investigated the microbial community in a full scale anaerobic baffled reactor and sequencing batch reactor system for oil-produced water treatment in summer and winter. The community structures of fungi and bacteria were analyzed through polymerase chain reaction–denaturing gradient gel electrophoresis and Illumina high throughput sequencing, respectively. Chemical oxygen demand effluent concentration achieved lower than 50 mg/L level after the system in both summer and winter, however, chemical oxygen demand removal rates after anaerobic baffled reactor treatment system were significant higher in summer than that in winter, which conformed to the microbial community diversity. Saccharomycotina, Fusarium, and Aspergillus were detected in both anaerobic baffled reactor and sequencing batch reactor during summer and winter. The fungal communities in anaerobic baffled reactor and sequencing batch reactor were shaped by seasons and treatment units, while there was no correlation between abundance of fungi and chemical oxygen demand removal rates. Compared to summer, the total amount of the dominant hydrocarbon degrading bacteria decreased by 10.2% in anaerobic baffled reactor, resulting in only around 23% of chemical oxygen demand was removed in winter. Although microbial community significantly varied in the three parallel sulfide reducing bacteria, the performance of these bioreactors had no significant difference between summer and winter.

  5. Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures.

    Science.gov (United States)

    Hanly, Timothy J; Henson, Michael A

    2011-02-01

    Sequential uptake of pentose and hexose sugars that compose lignocellulosic biomass limits the ability of pure microbial cultures to efficiently produce value-added bioproducts. In this work, we used dynamic flux balance modeling to examine the capability of mixed cultures of substrate-selective microbes to improve the utilization of glucose/xylose mixtures and to convert these mixed substrates into products. Co-culture simulations of Escherichia coli strains ALS1008 and ZSC113, engineered for glucose and xylose only uptake respectively, indicated that improvements in batch substrate consumption observed in previous experimental studies resulted primarily from an increase in ZSC113 xylose uptake relative to wild-type E. coli. The E. coli strain ZSC113 engineered for the elimination of glucose uptake was computationally co-cultured with wild-type Saccharomyces cerevisiae, which can only metabolize glucose, to determine if the co-culture was capable of enhanced ethanol production compared to pure cultures of wild-type E. coli and the S. cerevisiae strain RWB218 engineered for combined glucose and xylose uptake. Under the simplifying assumption that both microbes grow optimally under common environmental conditions, optimization of the strain inoculum and the aerobic to anaerobic switching time produced an almost twofold increase in ethanol productivity over the pure cultures. To examine the effect of reduced strain growth rates at non-optimal pH and temperature values, a break even analysis was performed to determine possible reductions in individual strain substrate uptake rates that resulted in the same predicted ethanol productivity as the best pure culture. © 2010 Wiley Periodicals, Inc.

  6. Dynamic Extensions of Batch Systems with Cloud Resources

    International Nuclear Information System (INIS)

    Hauth, T; Quast, G; Büge, V; Scheurer, A; Kunze, M; Baun, C

    2011-01-01

    Compute clusters use Portable Batch Systems (PBS) to distribute workload among individual cluster machines. To extend standard batch systems to Cloud infrastructures, a new service monitors the number of queued jobs and keeps track of the price of available resources. This meta-scheduler dynamically adapts the number of Cloud worker nodes according to the requirement profile. Two different worker node topologies are presented and tested on the Amazon EC2 Cloud service.

  7. SPS batch spacing optimisation

    CERN Document Server

    Velotti, F M; Carlier, E; Goddard, B; Kain, V; Kotzian, G

    2017-01-01

    Until 2015, the LHC filling schemes used the batch spac-ing as specified in the LHC design report. The maximumnumber of bunches injectable in the LHC directly dependson the batch spacing at injection in the SPS and hence onthe MKP rise time.As part of the LHC Injectors Upgrade project for LHCheavy ions, a reduction of the batch spacing is needed. In thisdirection, studies to approach the MKP design rise time of150ns(2-98%) have been carried out. These measurementsgave clear indications that such optimisation, and beyond,could be done also for higher injection momentum beams,where the additional slower MKP (MKP-L) is needed.After the successful results from 2015 SPS batch spacingoptimisation for the Pb-Pb run [1], the same concept wasthought to be used also for proton beams. In fact, thanksto the SPS transverse feed back, it was already observedthat lower batch spacing than the design one (225ns) couldbe achieved. For the 2016 p-Pb run, a batch spacing of200nsfor the proton beam with100nsbunch spacing wasreque...

  8. Standard test method for distribution coefficients of inorganic species by the batch method

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers the determination of distribution coefficients of chemical species to quantify uptake onto solid materials by a batch sorption technique. It is a laboratory method primarily intended to assess sorption of dissolved ionic species subject to migration through pores and interstices of site specific geomedia. It may also be applied to other materials such as manufactured adsorption media and construction materials. Application of the results to long-term field behavior is not addressed in this method. Distribution coefficients for radionuclides in selected geomedia are commonly determined for the purpose of assessing potential migratory behavior of contaminants in the subsurface of contaminated sites and waste disposal facilities. This test method is also applicable to studies for parametric studies of the variables and mechanisms which contribute to the measured distribution coefficient. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement a...

  9. Enhancement of electricity production by graphene oxide in soil microbial fuel cells and plant microbial fuel cells

    Directory of Open Access Journals (Sweden)

    Yuko eGoto

    2015-04-01

    Full Text Available The effects of graphene oxide (GO on electricity generation in soil microbial fuel cells (SMFCs and plant microbial fuel cell (PMFCs were investigated. GO at concentrations ranging from 0 to 1.9 g•kg-1 was added to soil and reduced for 10 days under anaerobic incubation. All SMFCs (GO-SMFCs utilizing the soils incubated with GO produced electricity at a greater rate and in higher quantities than the SMFCs which did not contain GO. In fed-batch operations, the overall average electricity generation in GO-SMFCs containing 1.0 g•kg-1 of GO was 40 ± 19 mW•m-2, which was significantly higher than the value of 6.6 ± 8.9 mW•m-2 generated from GO-free SMFCs (p -2 of electricity after 27 days of operation. Collectively, this study demonstrates that GO added to soil can be microbially reduced in soil, and facilitates electron transfer to the anode in both SMFCs and PMFCs.

  10. Removal of geosmin and 2-methylisoborneol during managed aquifer recharge: Batch and column studies

    KAUST Repository

    Maeng, Sungkyu

    2012-06-01

    Managed aquifer recharge is a robust barrier in the multi-barrier approach to supply safe drinking water. The removal performance of gesomin and 2-methylisoborneol through managed aquifer recharge was investigated using batch and column experiments. Batch experiments were carried out to investigate the removal of geosmin and 2-methylisoborneol (MIB) in the presence of different types of biodegradable organic matter using different types of water. Five different types of water spiked with 70-293 ng/L of geosmin and MIB were used in batch reactors, and complete removal of geosmin and MIB (down to the detection limit) was achieved in all cases. Soil column studies showed that biodegradation contributed to the removal of geosmin and MIB by 23 and 31%, respectively (empty bed contact time: 17 hours). The removal of geosmin and MIB appeared to be influenced more by microbial activity than the initial concentrations of geosmin and MIB. Adsorption was found to be the dominant mechanism (major role) followed by biodegradation (minor role) for geosmin and MIB removals during soil passage. Managed aquifer charge can therefore be used as a robust barrier to remove taste and odor (T&O) causing compounds.© IWA Publishing 2012.

  11. Relevance of microbial finished product testing in food safety management

    DEFF Research Database (Denmark)

    Zwietering, Marcel H.; Jacxsens, Liesbeth; Membré, Jeanne Marie

    2016-01-01

    Management of microbiological food safety is largely based on good design of processes, products and procedures. Finished product testing may be considered as a control measure at the end of the production process. However, testing gives only very limited information on the safety status of a food......-active way by implementing an effective food safety management system. For verification activities in a food safety management system, finished product testing may however be useful. For three cases studies; canned food, chocolate and cooked ham, the relevance of testing both of finished products....... If a hazardous organism is found it means something, but absence in a limited number of samples is no guarantee of safety of a whole production batch. Finished product testing is often too little and too late. Therefore most attention should be focussed on management and control of the hazards in a more pro...

  12. Energy-positive wastewater treatment and desalination in an integrated microbial desalination cell (MDC)-microbial electrolysis cell (MEC)

    Science.gov (United States)

    Li, Yan; Styczynski, Jordyn; Huang, Yuankai; Xu, Zhiheng; McCutcheon, Jeffrey; Li, Baikun

    2017-07-01

    Simultaneous removal of nitrogen in municipal wastewater, metal in industrial wastewater and saline in seawater was achieved in an integrated microbial desalination cell-microbial electrolysis cell (MDC-MEC) system. Batch tests showed that more than 95.1% of nitrogen was oxidized by nitrification in the cathode of MDC and reduced by heterotrophic denitrification in the anode of MDC within 48 h, leading to the total nitrogen removal rate of 4.07 mg L-1 h-1. Combining of nitrogen removal and desalination in MDC effectively solved the problem of pH fluctuation in anode and cathode, and led to 63.7% of desalination. Power generation of MDC (293.7 mW m-2) was 2.9 times higher than the one without salt solution. The electric power of MDC was harvested by a capacitor circuit to supply metal reduction in a MEC, and 99.5% of lead (II) was removed within 48 h. A kinetic MDC model was developed to elucidate the correlation of voltage output and desalination efficiency. Ratio of wastewater and sea water was calculated for MDC optimal operation. Energy balance of nutrient removal, metal removal and desalination in the MDC-MEC system was positive (0.0267 kW h m-3), demonstrating the promise of utilizing low power output of MDCs.

  13. Effects of antibiotic resistance genes on the performance and stability of different microbial aggregates in a granular sequencing batch reactor

    International Nuclear Information System (INIS)

    Zou, Wenci; Xue, Bin; Zhi, Weijia; Zhao, Tianyu; Yang, Dong; Qiu, Zhigang; Shen, Zhiqiang; Li, Junwen; Zhang, Bin; Wang, Jingfeng

    2016-01-01

    Highlights: • The inoculation of donor strain undermined treatment efficiencies of bioreactor. • The presence of RP4 plasmid affected the activity of ammonia-oxidizing bacteria. • Granular sludge shortened the residence time of RP4 in sludge. • Granular sludge system could reduce the ecological risk from ARGs. - Abstract: Antibiotic resistance genes (ARGs) have emerged as key factors in wastewater environmental contaminants and continue to pose a challenge for wastewater treatment processes. With the aim of investigating the performance of granular sludge system when treating wastewater containing a considerable amount of ARGs, a lab-scale granular sequencing batch reactor (GSBR) where flocculent and granular sludge coexisted was designed. The results showed that after inoculation of donor strain NH 4 + -N purification efficiency diminished from 94.7% to 32.8% and recovered to 95.2% after 10 days. Meanwhile, RP4 plasmid had varying effects on different forms of microbial aggregates. As the size of aggregates increased, the abundance of RP4 in sludge decreased. The residence time of RP4 in granules with particle size exceeding 0.9 mm (14 days) was far shorter than that in flocculent sludge (26 days). Therefore, our studies conclude that with increasing number of ARGs being detected in wastewater, the use of granular sludge system in wastewater treatment processes will allow the reduction of ARGs transmissions and lessen potential ecological threats.

  14. Effects of antibiotic resistance genes on the performance and stability of different microbial aggregates in a granular sequencing batch reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Wenci; Xue, Bin; Zhi, Weijia; Zhao, Tianyu; Yang, Dong; Qiu, Zhigang; Shen, Zhiqiang; Li, Junwen; Zhang, Bin, E-mail: tjzhangbin@sohu.com; Wang, Jingfeng, E-mail: jingfengwang@hotmail.com

    2016-03-05

    Highlights: • The inoculation of donor strain undermined treatment efficiencies of bioreactor. • The presence of RP4 plasmid affected the activity of ammonia-oxidizing bacteria. • Granular sludge shortened the residence time of RP4 in sludge. • Granular sludge system could reduce the ecological risk from ARGs. - Abstract: Antibiotic resistance genes (ARGs) have emerged as key factors in wastewater environmental contaminants and continue to pose a challenge for wastewater treatment processes. With the aim of investigating the performance of granular sludge system when treating wastewater containing a considerable amount of ARGs, a lab-scale granular sequencing batch reactor (GSBR) where flocculent and granular sludge coexisted was designed. The results showed that after inoculation of donor strain NH{sub 4}{sup +}-N purification efficiency diminished from 94.7% to 32.8% and recovered to 95.2% after 10 days. Meanwhile, RP4 plasmid had varying effects on different forms of microbial aggregates. As the size of aggregates increased, the abundance of RP4 in sludge decreased. The residence time of RP4 in granules with particle size exceeding 0.9 mm (14 days) was far shorter than that in flocculent sludge (26 days). Therefore, our studies conclude that with increasing number of ARGs being detected in wastewater, the use of granular sludge system in wastewater treatment processes will allow the reduction of ARGs transmissions and lessen potential ecological threats.

  15. Anaerobic treatment of palm oil mill effluent in batch reactor with digested biodiesel waste as starter and natural zeolite for microbial immobilization

    Science.gov (United States)

    Setyowati, Paulina Adina Hari; Halim, Lenny; Mellyanawaty, Melly; Sudibyo, Hanifrahmawan; Budhijanto, Wiratni

    2017-05-01

    Palm oil mill effluent (POME) is the wastewater discharged from sludge separation, sterilization, and clarification process of palm oil industries. Each ton of palm oil produces about half ton of high organic load wastewater. Up to now, POME treatment is done in lagoon, leaving major problems in land requirement and greenhouse gasses release. The increasing of palm oil production provokes the urgency of appropriate technology application in treating POME to prevent the greenhouse gasses emission while exploit POME as renewable energy source. The purposes of this study were firstly to test the effectiveness of using the digested biodiesel waste as the inoculum and secondly to evaluate the effectiveness of natural zeolite addition in minimizing the inhibitory effect in digesting POME. It was expected that the oil-degrading bacteria in the inoculum would shorten the adaptation period in digesting POME. Furthermore, the consortium formation of anaerobic bacteria accelerated by natural zeolite powder addition would increase the microbial resistance to the inhibitors contained in the POME. The batch digesters, containing 0 (control); 17; 38; and 63 g natural zeolite/g sCOD substrate were observed for 43 days. The result showed that zeolite addition did not give significant effect on sCOD reduction (97.3-98.6% of initial sCOD). Moreover, addition of immobilization media up to 17 g natural zeolite/g stimulated the acidification and biogas production up to 10% higher than control. The purity of methane produced with various amount of immobilization media did not differ for each variation, i.e. 50-54% v/v methane. The increasing amount of natural zeolite up to 63 g/g sCOD did not significantly enhance biogas product rate nor methane content.

  16. Microbial changes and growth of Listeria monocytogenes during chilled storage of brined shrimp ( Pandalus borealis )

    DEFF Research Database (Denmark)

    Mejlholm, Ole; Kjeldgaard, J.; Modberg, A.

    2008-01-01

    Thirteen storage trials and ten challenge tests were carried out to examine microbial changes, spoilage and the potential growth of Listeria monocytogenes in brined shrimp (Pandalus borealis). Shrimp in brine as well as brined and drained shrimp in modified atmosphere packaging (MAP) were produced...... and lactic acids were studied. Furthermore, the effect of adding diacetate to brined shrimp was evaluated. A single batch of cooked and peeled shrimp was used to study both industrially and manually processed brined shrimp with respect to the effect of process hygiene on microbial changes and the shelf life...... of products. Concentrations of microorganisms on newly produced brined shrimp from an industrial scale processing line were 1.0-2.3 log (CFU g(-1)) higher than comparable concentrations in manually processed samples. This resulted in a substantially shorter shelf life and a more diverse spoilage microflora...

  17. Analytical solution of Luedeking-Piret equation for a batch fermentation obeying Monod growth kinetics.

    Science.gov (United States)

    Garnier, Alain; Gaillet, Bruno

    2015-12-01

    Not so many fermentation mathematical models allow analytical solutions of batch process dynamics. The most widely used is the combination of the logistic microbial growth kinetics with Luedeking-Piret bioproduct synthesis relation. However, the logistic equation is principally based on formalistic similarities and only fits a limited range of fermentation types. In this article, we have developed an analytical solution for the combination of Monod growth kinetics with Luedeking-Piret relation, which can be identified by linear regression and used to simulate batch fermentation evolution. Two classical examples are used to show the quality of fit and the simplicity of the method proposed. A solution for the combination of Haldane substrate-limited growth model combined with Luedeking-Piret relation is also provided. These models could prove useful for the analysis of fermentation data in industry as well as academia. © 2015 Wiley Periodicals, Inc.

  18. Modelling of Batch Process Operations

    DEFF Research Database (Denmark)

    Abdul Samad, Noor Asma Fazli; Cameron, Ian; Gani, Rafiqul

    2011-01-01

    Here a batch cooling crystalliser is modelled and simulated as is a batch distillation system. In the batch crystalliser four operational modes of the crystalliser are considered, namely: initial cooling, nucleation, crystal growth and product removal. A model generation procedure is shown that s...

  19. Spring batch essentials

    CERN Document Server

    Rao, P Raja Malleswara

    2015-01-01

    If you are a Java developer with basic knowledge of Spring and some experience in the development of enterprise applications, and want to learn about batch application development in detail, then this book is ideal for you. This book will be perfect as your next step towards building simple yet powerful batch applications on a Java-based platform.

  20. Monte Carlo simulation on kinetics of batch and semi-batch free radical polymerization

    KAUST Repository

    Shao, Jing; Tang, Wei; Xia, Ru; Feng, Xiaoshuang; Chen, Peng; Qian, Jiasheng; Song, Changjiang

    2015-01-01

    experimental and simulation studies, we showed the capability of our Monte Carlo scheme on representing polymerization kinetics in batch and semi-batch processes. Various kinetics information, such as instant monomer conversion, molecular weight

  1. Effect of residual H2O2 from advanced oxidation processes on subsequent biological water treatment: A laboratory batch study.

    Science.gov (United States)

    Wang, Feifei; van Halem, Doris; Liu, Gang; Lekkerkerker-Teunissen, Karin; van der Hoek, Jan Peter

    2017-10-01

    H 2 O 2 residuals from advanced oxidation processes (AOPs) may have critical impacts on the microbial ecology and performance of subsequent biological treatment processes, but little is known. The objective of this study was to evaluate how H 2 O 2 residuals influence sand systems with an emphasis on dissolved organic carbon (DOC) removal, microbial activity change and bacterial community evolution. The results from laboratory batch studies showed that 0.25 mg/L H 2 O 2 lowered DOC removal by 10% while higher H 2 O 2 concentrations at 3 and 5 mg/L promoted DOC removal by 8% and 28%. A H 2 O 2 dosage of 0.25 mg/L did not impact microbial activity (as measured by ATP) while high H 2 O 2 dosages, 1, 3 and 5 mg/L, resulted in reduced microbial activity of 23%, 37% and 37% respectively. Therefore, DOC removal was promoted by the increase of H 2 O 2 dosage while microbial activity was reduced. The pyrosequencing results illustrated that bacterial communities were dominated by Proteobacteria. The presence of H 2 O 2 showed clear influence on the diversity and composition of bacterial communities, which became more diverse under 0.25 mg/L H 2 O 2 but conversely less diverse when the dosage increased to 5 mg/L H 2 O 2 . Anaerobic bacteria were found to be most sensitive to H 2 O 2 as their growth in batch reactors was limited by both 0.25 and 5 mg/L H 2 O 2 (17-88% reduction). In conclusion, special attention should be given to effects of AOPs residuals on microbial ecology before introducing AOPs as a pre-treatment to biological (sand) processes. Additionally, the guideline on the maximum allowable H 2 O 2 concentration should be properly evaluated. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  2. Monte Carlo simulation on kinetics of batch and semi-batch free radical polymerization

    KAUST Repository

    Shao, Jing

    2015-10-27

    Based on Monte Carlo simulation technology, we proposed a hybrid routine which combines reaction mechanism together with coarse-grained molecular simulation to study the kinetics of free radical polymerization. By comparing with previous experimental and simulation studies, we showed the capability of our Monte Carlo scheme on representing polymerization kinetics in batch and semi-batch processes. Various kinetics information, such as instant monomer conversion, molecular weight, and polydispersity etc. are readily calculated from Monte Carlo simulation. The kinetic constants such as polymerization rate k p is determined in the simulation without of “steady-state” hypothesis. We explored the mechanism for the variation of polymerization kinetics those observed in previous studies, as well as polymerization-induced phase separation. Our Monte Carlo simulation scheme is versatile on studying polymerization kinetics in batch and semi-batch processes.

  3. Role of bacterial adhesion in the microbial ecology of biofilms in cooling tower systems.

    Science.gov (United States)

    Liu, Yang; Zhang, Wei; Sileika, Tadas; Warta, Richard; Cianciotto, Nicholas P; Packman, Aaron

    2009-01-01

    The fate of the three heterotrophic biofilm forming bacteria, Pseudomonas aeruginosa, Klebsiella pneumoniae and Flavobacterium sp. in pilot scale cooling towers was evaluated both by observing the persistence of each species in the recirculating water and the formation of biofilms on steel coupons placed in each cooling tower water reservoir. Two different cooling tower experiments were performed: a short-term study (6 days) to observe the initial bacterial colonization of the cooling tower, and a long-term study (3 months) to observe the ecological dynamics with repeated introduction of the test strains. An additional set of batch experiments (6 days) was carried out to evaluate the adhesion of each strain to steel surfaces under similar conditions to those found in the cooling tower experiments. Substantial differences were observed in the microbial communities that developed in the batch systems and cooling towers. P. aeruginosa showed a low degree of adherence to steel surfaces both in batch and in the cooling towers, but grew much faster than K. pneumoniae and Flavobacterium in mixed-species biofilms and ultimately became the dominant organism in the closed batch systems. However, the low degree of adherence caused P. aeruginosa to be rapidly washed out of the open cooling tower systems, and Flavobacterium became the dominant microorganism in the cooling towers in both the short-term and long-term experiments. These results indicate that adhesion, retention and growth on solid surfaces play important roles in the bacterial community that develops in cooling tower systems.

  4. Commercial application of freezing-irradiation combination process for pasteurization of two specific batches of cooked, peeled shrimps

    International Nuclear Information System (INIS)

    Wills, P.A.

    1981-01-01

    In 1978 microbiological standards for pre-cooked, peeled frozen shrimps imported into Australia were abruptly amended and made more stringent. Large consignments of shrimps failed to meet the new specifications and were placed in quarantine on arrival. Two importers affected by the change in policy obtained permission to investigate the feasibility of using ionizing radiation to reduce to an acceptable level the microbial load on two batches of frozen shrimps. Trial irradiations established that doses of 6 or 8 kGy (600 or 800 krad) reduced microbial levels at least 100-fold, thus enabling these batches to meet the new microbiological standard. Applications to State regulatory authorities resulted in approvals being granted to the importers to irradiate: (1) in New South Wales 47 tonnes of imported frozen shrimps at 6 kGy, using the Research Establishment's facilities; and (2) in Victoria 14.3 tonnes at 8 kGy using ICI Australia Operations Pty Ltd's commercial radiation plant at Dandenong. Approvals applied solely to these two batches and marketing of the irradiated shrimps were confined to the State in which they were irradiated. The microbiological basis for the choice of dose, dosimetry, technology, legal aspects, economics and public acceptance of this first limited commercial use in Australia of radiation for food preservation are described. It is suggested that in standards for irradiation of specific foods, dose limits should be flexible enough to take into account the relationships between the physical state of food, temperature during irradiation, the extent of chemical change likely to occur at that temperature, and the dose required to produce the desired microbiological effect. (author)

  5. [Improvement of municipal sewage sludge dewaterability by bioleaching: a pilot-scale study with sequence batch reaction model].

    Science.gov (United States)

    Liu, Fen-Wu; Zhou, Li-Xiang; Zhou, Jun; Jiang, Feng; Wang, Dian-Zhan

    2011-07-01

    To observe the bioleaching effect on sewage sludge dewaterability, three consecutive batch bioleaching experiments were conducted through a bioleaching bio-reactor with 700 L of working volume. Subsequently, the bioleached sludge was dewatered by using chamber filter press. The results show that the 1st batch bioleaching process can be finished within 90 hours if the aeration amount was 1.2 m3/h with the 1: 15 mixing ratio of bioleached sludge to raw sludge. The pH of sludge declines from initial 6.11 to 2.33 while ORP increased from initial -134 mV to finial 507 mV. The specific resistance to filtration (SRF) of the tested sludge was decreased from original 1.00 x 10(13) m/kg to final 0.09 x 10(13) m/kg after bioleaching. For the subsequent two batch trials, the bioleaching process can be finished in 40 hours and 46 hours, respectively. Likewise, sludge SRF is also significantly decreased to 0.19 x 10(13) m/kg and 0.36 x 10(13) m/kg if the mixing ratio of bioleached sludge to fresh sludge is 1:1 although the microbial nutrient substance dosage is reduced by 25% and 50% for 2nd, and 3rd batch experiments, respectively. The harvested bioleached sludge from three batch trails is dewatered by chamber filter press with 0.3-0.4 MPa working pressure for 2 hours. It is found that the moisture of dewatered sludge cake can be reduced to 58%, and that the dewatered sludge cake is of khaki appearance and didn't emit any offensive odor. In addition, it is also observes that sludge organic matter only changed a bit from 52.9% to 48.0%, but 58% of sludge-borne Cu and 88% of sludge-borne Zn can be removed from sludge by bioleaching process. Therefore, dual goals for sludge-borne heavy metal removal and sludge dewatering of high efficiency can be achieved simultaneously through the approach mentioned above. Therefore, bioleaching technique is of great engineering application for the treatment of sewage sludge.

  6. Data-driven batch schuduling

    Energy Technology Data Exchange (ETDEWEB)

    Bent, John [Los Alamos National Laboratory; Denehy, Tim [GOOGLE; Arpaci - Dusseau, Remzi [UNIV OF WISCONSIN; Livny, Miron [UNIV OF WISCONSIN; Arpaci - Dusseau, Andrea C [NON LANL

    2009-01-01

    In this paper, we develop data-driven strategies for batch computing schedulers. Current CPU-centric batch schedulers ignore the data needs within workloads and execute them by linking them transparently and directly to their needed data. When scheduled on remote computational resources, this elegant solution of direct data access can incur an order of magnitude performance penalty for data-intensive workloads. Adding data-awareness to batch schedulers allows a careful coordination of data and CPU allocation thereby reducing the cost of remote execution. We offer here new techniques by which batch schedulers can become data-driven. Such systems can use our analytical predictive models to select one of the four data-driven scheduling policies that we have created. Through simulation, we demonstrate the accuracy of our predictive models and show how they can reduce time to completion for some workloads by as much as 80%.

  7. Studies on the effect of coal particle size on biodepyritization of high sulfur coal in batch bioreactor

    Directory of Open Access Journals (Sweden)

    Singh Sradhanjali

    2015-03-01

    Full Text Available The moderate thermophilic mix culture bacteria were used to depyritize the Illinois coal of varying particle sizes (-100 μm, 100-200 μm, +200 μm. Mineral libration analysis showed the presence of pyrite along with other minerals in coal. Microbial depyritization of coal was carried out in stirred tank batch reactors in presence of an iron-free 9K medium. The results indicate that microbial depyritization of coal using moderate thermophiles is an efficient process. Moreover, particle size of coal is an important parameter which affects the efficiency of microbial depyritization process. At the end of the experiment, a maximum of 75% pyrite and 66% of pyritic sulphur were removed from the median particle size. The XRD analysis showed the absence of pyrite mineral in the treated coal sample. A good mass balance was also obtained with net loss of mass ranging from 5-9% showing the feasibility of the process for large scale applications.

  8. Recommendation of ruthenium source for sludge batch flowsheet studies

    Energy Technology Data Exchange (ETDEWEB)

    Woodham, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-13

    Included herein is a preliminary analysis of previously-generated data from sludge batches 7a, 7b, 8, and 9 sludge simulant and real-waste testing, performed to recommend a form of ruthenium for future sludge batch simulant testing under the nitric-formic flowsheet. Focus is given to reactions present in the Sludge Receipt and Adjustment Tank cycle, given that this cycle historically produces the most changes in chemical composition during Chemical Process Cell processing. Data is presented and analyzed for several runs performed under the nitric-formic flowsheet, with consideration given to effects on the production of hydrogen gas, nitrous oxide gas, consumption of formate, conversion of nitrite to nitrate, and the removal and recovery of mercury during processing. Additionally, a brief discussion is given to the effect of ruthenium source selection under the nitric-glycolic flowsheet. An analysis of data generated from scaled demonstration testing, sludge batch 9 qualification testing, and antifoam degradation testing under the nitric-glycolic flowsheet is presented. Experimental parameters of interest under the nitric-glycolic flowsheet include N2O production, glycolate destruction, conversion of glycolate to formate and oxalate, and the conversion of nitrite to nitrate. To date, the number of real-waste experiments that have been performed under the nitric-glycolic flowsheet is insufficient to provide a complete understanding of the effects of ruthenium source selection in simulant experiments with regard to fidelity to real-waste testing. Therefore, a determination of comparability between the two ruthenium sources as employed under the nitric-glycolic flowsheet is made based on available data in order to inform ruthenium source selection for future testing under the nitric-glycolic flowsheet.

  9. Testing the effect of a microbial-based soil amendment on aggregate stability and erodibility

    DEFF Research Database (Denmark)

    Malozo, Mponda; Iversen, Bo Vangsø; Heckrath, Goswin Johann

    to the rainfall-runoff experiment where the microbial-based product had a clear effect on soil erodibility. In relation to measurement of aggregate stability as well as clay dispersion, the picture was less clear. Especially for the sandy Tanzania soil with a low content of organic matter, a clear effect was seen...... aggregate stability and erodibility. Two commercial products, gypsum and a microbial-based solution were used for the experiment and were tested on two Danish sandy loamy soils as well on a sandy soil from Tanzania. The carrier of the microbial-based product, a glycerol solution, was tested as well....... In the laboratory, soils were treated with the soil amendments in a two-step procedure at controlled water contents following aerobic incubation in closed containers. Water-aggregate stability and clay dispersion were measured on soil aggregates less than 8 mm in diameter. Aggregate stability was measured...

  10. Dynamics of bacterial populations during bench-scale bioremediation of oily seawater and desert soil bioaugmented with coastal microbial mats.

    Science.gov (United States)

    Ali, Nidaa; Dashti, Narjes; Salamah, Samar; Sorkhoh, Naser; Al-Awadhi, Husain; Radwan, Samir

    2016-03-01

    This study describes a bench-scale attempt to bioremediate Kuwaiti, oily water and soil samples through bioaugmentation with coastal microbial mats rich in hydrocarbonoclastic bacterioflora. Seawater and desert soil samples were artificially polluted with 1% weathered oil, and bioaugmented with microbial mat suspensions. Oil removal and microbial community dynamics were monitored. In batch cultures, oil removal was more effective in soil than in seawater. Hydrocarbonoclastic bacteria associated with mat samples colonized soil more readily than seawater. The predominant oil degrading bacterium in seawater batches was the autochthonous seawater species Marinobacter hydrocarbonoclasticus. The main oil degraders in the inoculated soil samples, on the other hand, were a mixture of the autochthonous mat and desert soil bacteria; Xanthobacter tagetidis, Pseudomonas geniculata, Olivibacter ginsengisoli and others. More bacterial diversity prevailed in seawater during continuous than batch bioremediation. Out of seven hydrocarbonoclastic bacterial species isolated from those cultures, only one, Mycobacterium chlorophenolicum, was of mat origin. This result too confirms that most of the autochthonous mat bacteria failed to colonize seawater. Also culture-independent analysis of seawater from continuous cultures revealed high-bacterial diversity. Many of the bacteria belonged to the Alphaproteobacteria, Flavobacteria and Gammaproteobacteria, and were hydrocarbonoclastic. Optimal biostimulation practices for continuous culture bioremediation of seawater via mat bioaugmentation were adding the highest possible oil concentration as one lot in the beginning of bioremediation, addition of vitamins, and slowing down the seawater flow rate. © 2016 The Author. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  11. Microbial Aggregate and Functional Community Distribution in a Sequencing Batch Reactor with Anammox Granules

    KAUST Repository

    Sun, Shan

    2013-01-01

    . For wastewater treatment, anammox biomass was widely developed as microbial aggregate where the conditions for enrichment of anammox community must be delicately controlled and growth of other bacteria especially NOB should be suppressed to enhance nitrogen

  12. Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover

    International Nuclear Information System (INIS)

    Xu Fuqing; Shi Jian; Lv Wen; Yu Zhongtang; Li Yebo

    2013-01-01

    Highlights: ► Compared methane production of solid AD inoculated with different effluents. ► Food waste effluent (FWE) had the largest population of acetoclastic methanogens. ► Solid AD inoculated with FWE produced the highest methane yield at F/E ratio of 4. ► Dairy waste effluent (DWE) was rich of cellulolytic and xylanolytic bacteria. ► Solid AD inoculated with DWE produced the highest methane yield at F/E ratio of 2. - Abstract: Effluents from three liquid anaerobic digesters, fed with municipal sewage sludge, food waste, or dairy waste, were evaluated as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover in mesophilic reactors. Three feedstock-to-effluent (F/E) ratios (i.e., 2, 4, and 6) were tested for each effluent. At an F/E ratio of 2, the reactor inoculated by dairy waste effluent achieved the highest methane yield of 238.5 L/kgVS feed , while at an F/E ratio of 4, the reactor inoculated by food waste effluent achieved the highest methane yield of 199.6 L/kgVS feed . The microbial population and chemical composition of the three effluents were substantially different. Food waste effluent had the largest population of acetoclastic methanogens, while dairy waste effluent had the largest populations of cellulolytic and xylanolytic bacteria. Dairy waste also had the highest C/N ratio of 8.5 and the highest alkalinity of 19.3 g CaCO 3 /kg. The performance of solid-state batch anaerobic digestion reactors was closely related to the microbial status in the liquid anaerobic digestion effluents.

  13. Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover

    Energy Technology Data Exchange (ETDEWEB)

    Xu Fuqing; Shi Jian [Department of Food, Agricultural and Biological Engineering, Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691 (United States); Lv Wen; Yu Zhongtang [Department of Animal Sciences, Ohio State University, Columbus, OH 43210 (United States); Li Yebo, E-mail: li.851@osu.edu [Department of Food, Agricultural and Biological Engineering, Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691 (United States)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Compared methane production of solid AD inoculated with different effluents. Black-Right-Pointing-Pointer Food waste effluent (FWE) had the largest population of acetoclastic methanogens. Black-Right-Pointing-Pointer Solid AD inoculated with FWE produced the highest methane yield at F/E ratio of 4. Black-Right-Pointing-Pointer Dairy waste effluent (DWE) was rich of cellulolytic and xylanolytic bacteria. Black-Right-Pointing-Pointer Solid AD inoculated with DWE produced the highest methane yield at F/E ratio of 2. - Abstract: Effluents from three liquid anaerobic digesters, fed with municipal sewage sludge, food waste, or dairy waste, were evaluated as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover in mesophilic reactors. Three feedstock-to-effluent (F/E) ratios (i.e., 2, 4, and 6) were tested for each effluent. At an F/E ratio of 2, the reactor inoculated by dairy waste effluent achieved the highest methane yield of 238.5 L/kgVS{sub feed}, while at an F/E ratio of 4, the reactor inoculated by food waste effluent achieved the highest methane yield of 199.6 L/kgVS{sub feed}. The microbial population and chemical composition of the three effluents were substantially different. Food waste effluent had the largest population of acetoclastic methanogens, while dairy waste effluent had the largest populations of cellulolytic and xylanolytic bacteria. Dairy waste also had the highest C/N ratio of 8.5 and the highest alkalinity of 19.3 g CaCO{sub 3}/kg. The performance of solid-state batch anaerobic digestion reactors was closely related to the microbial status in the liquid anaerobic digestion effluents.

  14. Detoxification of PAX-21 ammunitions wastewater by zero-valent iron for microbial reduction of perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Se Chang; Cha, Daniel K. [Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716 (United States); Kim, Byung J. [U.S. Army Engineer Research and Development Center, Champaign, IL 61826-9005 (United States); Oh, Seok-Young, E-mail: quartzoh@ulsan.ac.kr [Department of Civil and Environmental Engineering, University of Ulsan, Ulsan 680-749 (Korea, Republic of)

    2011-08-30

    Highlights: {yields} Ammonium perchlorate, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4-dinitroanisole (DNAN) are the major constituents of PAX-21. {yields} DNAN is identified as the primary toxicant responsible for inhibiting the activity of perchlorate reducing bacteria. {yields} Iron treatment not only removes energetic compounds but also eliminates the toxic constituents that inhibit the subsequent microbial process. - Abstract: US Army and the Department of Defense (DoD) facilities generate perchlorate (ClO{sub 4}{sup -}) from munitions manufacturing and demilitarization processes. Ammonium perchlorate is one of the main constituents in Army's new main charge melt-pour energetic, PAX-21. In addition to ammonium perchlorate, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4-dinitroanisole (DNAN) are the major constituents of PAX-21. In order to evaluate microbial perchlorate reduction as a practical option for the treatment of perchlorate in PAX-21 wastewater, we conducted biodegradation experiments using glucose as the primary sources of electrons and carbon. Batch experiments showed that negligible perchlorate was removed in microbial reactors containing PAX-21 wastewater while control bottles containing seed bacteria and glucose rapidly and completely removed perchlorate. These results suggested that the constituents in PAX-21 wastewater may be toxic to perchlorate reducing bacteria. A series of batch toxicity test was conducted to identify the toxic constituents in PAX-21 and DNAN was identified as the primary toxicant responsible for inhibiting the activity of perchlorate reducing bacteria. It was hypothesized that pretreatment of PAX-21 by zero-valent iron granules will transform toxic constituents in PAX-21 wastewater to non-toxic products. We observed complete reduction of DNAN to 2,4-diaminoanisole (DAAN) and RDX to formaldehyde in abiotic iron reduction study. After a 3-day acclimation period, perchlorate in iron-treated PAX-21

  15. Removal of fluoxetine and its effects in the performance of an aerobic granular sludge sequential batch reactor

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Irina S.; Amorim, Catarina L. [CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Dr. António Bernardino Almeida, 4200-072 Porto (Portugal); Ribeiro, Ana R. [CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Dr. António Bernardino Almeida, 4200-072 Porto (Portugal); Centro de Química Medicinal da Universidade do Porto (CEQUIMED-UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto (Portugal); CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra PRD (Portugal); Mesquita, Raquel B.R. [CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Dr. António Bernardino Almeida, 4200-072 Porto (Portugal); Laboratory of Hydrobiology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Institute of Marine Research (CIIMAR), Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto (Portugal); and others

    2015-04-28

    Highlights: • Enantioselective removal of fluoxetine by aerobic granular sludge was evaluated. • Sorption of fluoxetine to aerobic granules occurred. • Bacterial community gradually changed during operation of sequential batch reactor. • Main biological processes occurring within the granules were preserved. • Overall performance of the reactor was recovered after initial fluoxetine shock loads. - Abstract: Fluoxetine (FLX) is a chiral fluorinated pharmaceutical mainly indicated for treatment of depression and is one of the most distributed drugs. There is a clear evidence of environmental contamination with this drug. Aerobic granular sludge sequencing batch reactors constitute a promising technology for wastewater treatment; however the removal of carbon and nutrients can be affected by micropollutants. In this study, the fate and effect of FLX on reactor performance and on microbial population were investigated. FLX adsorption/desorption to the aerobic granules was observed. FLX shock loads (≤4 μM) did not show a significant effect on the COD removal. Ammonium removal efficiency decreased in the beginning of first shock load, but after 20 days, ammonia oxidizing bacteria became adapted. The nitrite concentration in the effluent was practically null indicating that nitrite oxidizing bacteria was not inhibited, whereas, nitrate was accumulated in the effluent, indicating that denitrification was affected. Phosphate removal was affected at the beginning showing a gradual adaptation, and the effluent concentration was <0.04 mM after 70 days. A shift in microbial community occurred probably due to FLX exposure, which induced adaptation/restructuration of the microbial population. This contributed to the robustness of the reactor, which was able to adapt to the FLX load.

  16. Removal of fluoxetine and its effects in the performance of an aerobic granular sludge sequential batch reactor

    International Nuclear Information System (INIS)

    Moreira, Irina S.; Amorim, Catarina L.; Ribeiro, Ana R.; Mesquita, Raquel B.R.

    2015-01-01

    Highlights: • Enantioselective removal of fluoxetine by aerobic granular sludge was evaluated. • Sorption of fluoxetine to aerobic granules occurred. • Bacterial community gradually changed during operation of sequential batch reactor. • Main biological processes occurring within the granules were preserved. • Overall performance of the reactor was recovered after initial fluoxetine shock loads. - Abstract: Fluoxetine (FLX) is a chiral fluorinated pharmaceutical mainly indicated for treatment of depression and is one of the most distributed drugs. There is a clear evidence of environmental contamination with this drug. Aerobic granular sludge sequencing batch reactors constitute a promising technology for wastewater treatment; however the removal of carbon and nutrients can be affected by micropollutants. In this study, the fate and effect of FLX on reactor performance and on microbial population were investigated. FLX adsorption/desorption to the aerobic granules was observed. FLX shock loads (≤4 μM) did not show a significant effect on the COD removal. Ammonium removal efficiency decreased in the beginning of first shock load, but after 20 days, ammonia oxidizing bacteria became adapted. The nitrite concentration in the effluent was practically null indicating that nitrite oxidizing bacteria was not inhibited, whereas, nitrate was accumulated in the effluent, indicating that denitrification was affected. Phosphate removal was affected at the beginning showing a gradual adaptation, and the effluent concentration was <0.04 mM after 70 days. A shift in microbial community occurred probably due to FLX exposure, which induced adaptation/restructuration of the microbial population. This contributed to the robustness of the reactor, which was able to adapt to the FLX load

  17. Influence of Calcium on Microbial Reduction of Solid Phase Uranium (VI)

    International Nuclear Information System (INIS)

    Liu, Chongxuan; Jeon, Byong-Hun; Zachara, John M.; Wang, Zheming

    2007-01-01

    The effect of calcium on microbial reduction of a solid phase U(VI), sodium boltwoodite (NaUO2SiO3OH · 1.5H2O), was evaluated in a culture of a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1. Batch experiments were performed in a non-growth bicarbonate medium with lactate as electron donor at pH 7 buffered with PIPES. Calcium increased both the rate and extent of Na-boltwoodite dissolution by increasing its solubility through the formation of a ternary aqueous calcium-uranyl-carbonate species. The ternary species, however, decreased the rates of microbial reduction of aqueous U(VI). Laser-induced fluorescence spectroscopy (LIFS) and transmission electron microscopy (TEM) revealed that microbial reduction of solid phase U(VI) is a sequentially coupled process of Na-boltwoodite dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) to U(IV) that accumulated on bacterial surfaces/periplasm. The overall rates of microbial reduction of solid phase U(VI) can be described by the coupled rates of dissolution and microbial reduction that were both influenced by calcium. The results demonstrated that dissolved U(VI) concentration during microbial reduction was a complex function of solid phase U(VI) dissolution kinetics, aqueous U(VI) speciation, and microbial activity

  18. Determination of volumetric gas-liquid mass transfer coefficient of carbon monoxide in a batch cultivation system using kinetic simulations.

    Science.gov (United States)

    Jang, Nulee; Yasin, Muhammad; Park, Shinyoung; Lovitt, Robert W; Chang, In Seop

    2017-09-01

    A mathematical model of microbial kinetics was introduced to predict the overall volumetric gas-liquid mass transfer coefficient (k L a) of carbon monoxide (CO) in a batch cultivation system. The cell concentration (X), acetate concentration (C ace ), headspace gas (N co and [Formula: see text] ), dissolved CO concentration in the fermentation medium (C co ), and mass transfer rate (R) were simulated using a variety of k L a values. The simulated results showed excellent agreement with the experimental data for a k L a of 13/hr. The C co values decreased with increase in cultivation times, whereas the maximum mass transfer rate was achieved at the mid-log phase due to vigorous microbial CO consumption rate higher than R. The model suggested in this study may be applied to a variety of microbial systems involving gaseous substrates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Kinetic study of batch and fed-batch enzymatic saccharification of pretreated substrate and subsequent fermentation to ethanol

    Directory of Open Access Journals (Sweden)

    Gupta Rishi

    2012-03-01

    Full Text Available Abstract Background Enzymatic hydrolysis, the rate limiting step in the process development for biofuel, is always hampered by its low sugar concentration. High solid enzymatic saccharification could solve this problem but has several other drawbacks such as low rate of reaction. In the present study we have attempted to enhance the concentration of sugars in enzymatic hydrolysate of delignified Prosopis juliflora, using a fed-batch enzymatic hydrolysis approach. Results The enzymatic hydrolysis was carried out at elevated solid loading up to 20% (w/v and a comparison kinetics of batch and fed-batch enzymatic hydrolysis was carried out using kinetic regimes. Under batch mode, the actual sugar concentration values at 20% initial substrate consistency were found deviated from the predicted values and the maximum sugar concentration obtained was 80.78 g/L. Fed-batch strategy was implemented to enhance the final sugar concentration to 127 g/L. The batch and fed-batch enzymatic hydrolysates were fermented with Saccharomyces cerevisiae and ethanol production of 34.78 g/L and 52.83 g/L, respectively, were achieved. Furthermore, model simulations showed that higher insoluble solids in the feed resulted in both smaller reactor volume and shorter residence time. Conclusion Fed-batch enzymatic hydrolysis is an efficient procedure for enhancing the sugar concentration in the hydrolysate. Restricting the process to suitable kinetic regimes could result in higher conversion rates.

  20. Kinetic study of batch and fed-batch enzymatic saccharification of pretreated substrate and subsequent fermentation to ethanol

    Science.gov (United States)

    2012-01-01

    Background Enzymatic hydrolysis, the rate limiting step in the process development for biofuel, is always hampered by its low sugar concentration. High solid enzymatic saccharification could solve this problem but has several other drawbacks such as low rate of reaction. In the present study we have attempted to enhance the concentration of sugars in enzymatic hydrolysate of delignified Prosopis juliflora, using a fed-batch enzymatic hydrolysis approach. Results The enzymatic hydrolysis was carried out at elevated solid loading up to 20% (w/v) and a comparison kinetics of batch and fed-batch enzymatic hydrolysis was carried out using kinetic regimes. Under batch mode, the actual sugar concentration values at 20% initial substrate consistency were found deviated from the predicted values and the maximum sugar concentration obtained was 80.78 g/L. Fed-batch strategy was implemented to enhance the final sugar concentration to 127 g/L. The batch and fed-batch enzymatic hydrolysates were fermented with Saccharomyces cerevisiae and ethanol production of 34.78 g/L and 52.83 g/L, respectively, were achieved. Furthermore, model simulations showed that higher insoluble solids in the feed resulted in both smaller reactor volume and shorter residence time. Conclusion Fed-batch enzymatic hydrolysis is an efficient procedure for enhancing the sugar concentration in the hydrolysate. Restricting the process to suitable kinetic regimes could result in higher conversion rates. PMID:22433563

  1. Fructose Production by Inulinase Covalently Immobilized on Sepabeads in Batch and Fluidized Bed Bioreactor

    Directory of Open Access Journals (Sweden)

    Gabriele Iorio

    2010-03-01

    Full Text Available The present work is an experimental study of the performance of a recently designed immobilized enzyme: inulinase from Aspergillus sp. covalently immobilized on Sepabeads. The aim of the work is to test the new biocatalyst in conditions of industrial interest and to assess the feasibility of the process in a fluidized bed bioreactor (FBBR. The catalyst was first tested in a batch reactor at standard conditions and in various sets of conditions of interest for the process. Once the response of the catalyst to different operating conditions was tested and the operational stability assessed, one of the sets of conditions tested in batch was chosen for tests in FBBR. Prior to reaction tests, preliminary fluidization tests were realized in order to define an operating range of admissible flow rates. As a result, the FBR was run at different feed flow rates in a closed cycle configuration and its performance was compared to that of the batch system. The FBBR proved to be performing and suitable for scale up to large fructose production.

  2. Ethanol production from Sorghum bicolor using both separate and simultaneous saccharification and fermentation in batch and fed batch systems

    DEFF Research Database (Denmark)

    Mehmood, Sajid; Gulfraz, M.; Rana, N. F.

    2009-01-01

    The objective of this work was to find the best combination of different experimental conditions during pre-treatment, enzymatic saccharification, detoxification of inhibitors and fermentation of Sorghum bicolor straw for ethanol production. The optimization of pre-treatment using different...... were used in order to increase the monomeric sugar during enzymatic hydrolysis and it has been observed that the addition of these surfactants contributed significantly in cellulosic conversion but no effect was shown on hemicellulosic hydrolysis. Fermentability of hydrolyzate was tested using...... Saccharomyces cerevisiae Ethanol Red (TM) and it was observed that simultaneous saccharification and fermentation ( SSF) with both batch and fed batch resulted in better ethanol yield as compared to separate hydrolysis and fermentation ( SHF). Detoxification of furan during SHF facilitated reduction...

  3. Community proteomics provides functional insight into polyhydroxyalkanoate production by a mixed microbial culture cultivated on fermented dairy manure.

    Science.gov (United States)

    Hanson, Andrea J; Guho, Nicholas M; Paszczynski, Andrzej J; Coats, Erik R

    2016-09-01

    Polyhydroxyalkanoates (PHAs) are bio-based, biodegradable polyesters that can be produced from organic-rich waste streams using mixed microbial cultures (MMCs). To maximize PHA production, MMCs are enriched for bacteria with a high polymer storage capacity through the application of aerobic dynamic feeding (ADF) in a sequencing batch reactor (SBR), which consequently induces a feast-famine metabolic response. Though the feast-famine response is generally understood empirically at a macro-level, the molecular level is less refined. The objective of this study was to investigate the microbial community composition and proteome profile of an enriched MMC cultivated on fermented dairy manure. The enriched MMC exhibited a feast-famine response and was capable of producing up to 40 % (wt. basis) PHA in a fed-batch reactor. High-throughput 16S rRNA gene sequencing revealed a microbial community dominated by Meganema, a known PHA-producing genus not often observed in high abundance in enrichment SBRs. The application of the proteomic methods two-dimensional electrophoresis and LC-MS/MS revealed PHA synthesis, energy generation, and protein synthesis prominently occurring during the feast phase, corroborating bulk solution variable observations and theoretical expectations. During the famine phase, nutrient transport, acyl-CoA metabolism, additional energy generation, and housekeeping functions were more pronounced, informing previously under-determined MMC functionality under famine conditions. During fed-batch PHA production, acetyl-CoA acetyltransferase and PHA granule-bound phasin proteins were in increased abundance relative to the SBR, supporting the higher PHA content observed. Collectively, the results provide unique microbial community structural and functional insight into feast-famine PHA production from waste feedstocks using MMCs.

  4. BATCH-GE: Batch analysis of Next-Generation Sequencing data for genome editing assessment

    Science.gov (United States)

    Boel, Annekatrien; Steyaert, Woutert; De Rocker, Nina; Menten, Björn; Callewaert, Bert; De Paepe, Anne; Coucke, Paul; Willaert, Andy

    2016-01-01

    Targeted mutagenesis by the CRISPR/Cas9 system is currently revolutionizing genetics. The ease of this technique has enabled genome engineering in-vitro and in a range of model organisms and has pushed experimental dimensions to unprecedented proportions. Due to its tremendous progress in terms of speed, read length, throughput and cost, Next-Generation Sequencing (NGS) has been increasingly used for the analysis of CRISPR/Cas9 genome editing experiments. However, the current tools for genome editing assessment lack flexibility and fall short in the analysis of large amounts of NGS data. Therefore, we designed BATCH-GE, an easy-to-use bioinformatics tool for batch analysis of NGS-generated genome editing data, available from https://github.com/WouterSteyaert/BATCH-GE.git. BATCH-GE detects and reports indel mutations and other precise genome editing events and calculates the corresponding mutagenesis efficiencies for a large number of samples in parallel. Furthermore, this new tool provides flexibility by allowing the user to adapt a number of input variables. The performance of BATCH-GE was evaluated in two genome editing experiments, aiming to generate knock-out and knock-in zebrafish mutants. This tool will not only contribute to the evaluation of CRISPR/Cas9-based experiments, but will be of use in any genome editing experiment and has the ability to analyze data from every organism with a sequenced genome. PMID:27461955

  5. The microbial diversity of traditional spontaneously fermented lambic beer.

    Science.gov (United States)

    Spitaels, Freek; Wieme, Anneleen D; Janssens, Maarten; Aerts, Maarten; Daniel, Heide-Marie; Van Landschoot, Anita; De Vuyst, Luc; Vandamme, Peter

    2014-01-01

    Lambic sour beers are the products of a spontaneous fermentation that lasts for one to three years before bottling. The present study determined the microbiota involved in the fermentation of lambic beers by sampling two fermentation batches during two years in the most traditional lambic brewery of Belgium, using culture-dependent and culture-independent methods. From 14 samples per fermentation, over 2000 bacterial and yeast isolates were obtained and identified. Although minor variations in the microbiota between casks and batches and a considerable species diversity were found, a characteristic microbial succession was identified. This succession started with a dominance of Enterobacteriaceae in the first month, which were replaced at 2 months by Pediococcus damnosus and Saccharomyces spp., the latter being replaced by Dekkera bruxellensis at 6 months fermentation duration.

  6. The microbial diversity of traditional spontaneously fermented lambic beer.

    Directory of Open Access Journals (Sweden)

    Freek Spitaels

    Full Text Available Lambic sour beers are the products of a spontaneous fermentation that lasts for one to three years before bottling. The present study determined the microbiota involved in the fermentation of lambic beers by sampling two fermentation batches during two years in the most traditional lambic brewery of Belgium, using culture-dependent and culture-independent methods. From 14 samples per fermentation, over 2000 bacterial and yeast isolates were obtained and identified. Although minor variations in the microbiota between casks and batches and a considerable species diversity were found, a characteristic microbial succession was identified. This succession started with a dominance of Enterobacteriaceae in the first month, which were replaced at 2 months by Pediococcus damnosus and Saccharomyces spp., the latter being replaced by Dekkera bruxellensis at 6 months fermentation duration.

  7. Denitrifying capability and community dynamics of glycogen accumulating organisms during sludge granulation in an anaerobic-aerobic sequencing batch reactor

    Science.gov (United States)

    Bin, Zhang; Bin, Xue; Zhigang, Qiu; Zhiqiang, Chen; Junwen, Li; Taishi, Gong; Wenci, Zou; Jingfeng, Wang

    2015-08-01

    Denitrifying capability of glycogen accumulating organisms (GAOs) has received great attention in environmental science and microbial ecology. Combining this ability with granule processes would be an interesting attempt. Here, a laboratory-scale sequencing batch reactor (SBR) was operated to enrich GAOs and enable sludge granulation. The results showed that the GAO granules were cultivated successfully and the granules had denitrifying capability. The batch experiments demonstrated that all NO3--N could be removed or reduced, some amount of NO2--N were accumulated in the reactor, and N2 was the main gaseous product. SEM analysis suggested that the granules were tightly packed with a large amount of tetrad-forming organisms (TFOs); filamentous bacteria served as the supporting structures for the granules. The microbial community structure of GAO granules was differed substantially from the inoculant conventional activated sludge. Most of the bacteria in the seed sludge grouped with members of Proteobacterium. FISH analysis confirmed that GAOs were the predominant members in the granules and were distributed evenly throughout the granular space. In contrast, PAOs were severely inhibited. Overall, cultivation of the GAO granules and utilizing their denitrifying capability can provide us with a new approach of nitrogen removal and saving more energy.

  8. Evaluation of a Microbial Sensor as a Tool for Antimicrobial Activity Test of Cosmetic Preservatives.

    Science.gov (United States)

    Gomyo, Hideyuki; Ookawa, Masaki; Oshibuchi, Kota; Sugamura, Yuriko; Hosokawa, Masahito; Shionoiri, Nozomi; Maeda, Yoshiaki; Matsunaga, Tadashi; Tanaka, Tsuyoshi

    2015-01-01

    For high-throughput screening of novel cosmetic preservatives, a rapid and simple assay to evaluate the antimicrobial activities should be developed because the conventional agar dilution method is time-consuming and labor-intensive. To address this issue, we evaluated a microbial sensor as a tool for rapid antimicrobial activity testing. The sensor consists of an oxygen electrode and a filter membrane that holds the test microorganisms, Staphylococcus aureus and Candida albicans. The antimicrobial activity of the tested cosmetic preservative was evaluated by measuring the current increases corresponding to the decreases in oxygen consumption in the microbial respiration. The current increases detected by the sensor showed positive correlation to the concentrations of two commercially used preservatives, chlorphenesin and 2-phenoxyethanol. The same tendency was also observed when a model cosmetic product was used as a preservative solvent, indicating the feasibility in practical use. Furthermore, the microbial sensor and microfluidic flow-cell was assembled to achieve sequential measurements. The sensor system presented in this study could be useful in large-scale screening experiments.

  9. Batch-to-batch quality consistency evaluation of botanical drug products using multivariate statistical analysis of the chromatographic fingerprint.

    Science.gov (United States)

    Xiong, Haoshu; Yu, Lawrence X; Qu, Haibin

    2013-06-01

    Botanical drug products have batch-to-batch quality variability due to botanical raw materials and the current manufacturing process. The rational evaluation and control of product quality consistency are essential to ensure the efficacy and safety. Chromatographic fingerprinting is an important and widely used tool to characterize the chemical composition of botanical drug products. Multivariate statistical analysis has showed its efficacy and applicability in the quality evaluation of many kinds of industrial products. In this paper, the combined use of multivariate statistical analysis and chromatographic fingerprinting is presented here to evaluate batch-to-batch quality consistency of botanical drug products. A typical botanical drug product in China, Shenmai injection, was selected as the example to demonstrate the feasibility of this approach. The high-performance liquid chromatographic fingerprint data of historical batches were collected from a traditional Chinese medicine manufacturing factory. Characteristic peaks were weighted by their variability among production batches. A principal component analysis model was established after outliers were modified or removed. Multivariate (Hotelling T(2) and DModX) control charts were finally successfully applied to evaluate the quality consistency. The results suggest useful applications for a combination of multivariate statistical analysis with chromatographic fingerprinting in batch-to-batch quality consistency evaluation for the manufacture of botanical drug products.

  10. Kubernetes as a batch scheduler

    OpenAIRE

    Souza, Clenimar; Brito Da Rocha, Ricardo

    2017-01-01

    This project aims at executing a CERN batch use case using Kubernetes, in order to figure out what are the advantages and disadvantages, as well as the functionality that can be replicated or is missing. The reference for the batch system is the CERN Batch System, which uses HTCondor. Another goal of this project is to evaluate the current status of federated resources in Kubernetes, in comparison to the single-cluster API resources. Finally, the last goal of this project is to implement buil...

  11. Development and evaluation of a 16S ribosomal DNA array-based approach for describing complex microbial communities in ready-to-eat vegetable salads packed in a modified atmosphere.

    Science.gov (United States)

    Rudi, Knut; Flateland, Signe L; Hanssen, Jon Fredrik; Bengtsson, Gunnar; Nissen, Hilde

    2002-03-01

    There is a clear need for new approaches in the field of microbial community analyses, since the methods used can be severely biased. We have developed a DNA array-based method that targets 16S ribosomal DNA (rDNA), enabling the direct detection and quantification of microorganisms from complex communities without cultivation. The approach is based on the construction of specific probes from the 16S rDNA sequence data retrieved directly from the communities. The specificity of the assay is obtained through a combination of DNA array hybridization and enzymatic labeling of the constructed probes. Cultivation-dependent assays (enrichment and plating) and cultivation-independent assays (direct fluorescence microscopy and scanning electron microscopy) were used as reference methods in the development and evaluation of the method. The description of microbial communities in ready-to-eat vegetable salads in a modified atmosphere was used as the experimental model. Comparisons were made with respect to the effect of storage at different temperatures for up to 12 days and with respect to the geographic origin of the crisphead lettuce (Spanish or Norwegian), the main salad component. The conclusion drawn from the method comparison was that the DNA array-based method gave an accurate description of the microbial communities. Pseudomonas spp. dominated both of the salad batches, containing either Norwegian or Spanish lettuce, before storage and after storage at 4 degrees C. The Pseudomonas population also dominated the batch containing Norwegian lettuce after storage at 10 degrees C. On the contrary, Enterobacteriaceae and lactic acid bacteria dominated the microbial community of the batch containing Spanish lettuce after storage at 10 degrees C. In that batch, the Enterobacteriaceae also were abundant after storage at 4 degrees C as well as before storage. The practical implications of these results are that microbial communities in ready-to-eat vegetable salads can be

  12. BatchJS: Implementing Batches in JavaScript

    NARCIS (Netherlands)

    D. Kasemier

    2014-01-01

    htmlabstractNone of our popular programming languages know how to handle distribution well. Yet our programs interact more and more with each other and our data resorts in databases and web services. Batches are a new addition to languages that can finally bring native support for distribution to

  13. Batch-to-batch uniformity of bacterial community succession and flavor formation in the fermentation of Zhenjiang aromatic vinegar.

    Science.gov (United States)

    Wang, Zong-Min; Lu, Zhen-Ming; Yu, Yong-Jian; Li, Guo-Quan; Shi, Jin-Song; Xu, Zheng-Hong

    2015-09-01

    Solid-state fermentation of traditional Chinese vinegar is a mixed-culture refreshment process that proceeds for many centuries without spoilage. Here, we investigated bacterial community succession and flavor formation in three batches of Zhenjiang aromatic vinegar using pyrosequencing and metabolomics approaches. Temporal patterns of bacterial succession in the Pei (solid-state vinegar culture) showed no significant difference (P > 0.05) among three batches of fermentation. In all the batches investigated, the average number of community operational taxonomic units (OTUs) decreased dramatically from 119 ± 11 on day 1 to 48 ± 16 on day 3, and then maintained in the range of 61 ± 9 from day 5 to the end of fermentation. We confirmed that, within a batch of fermentation process, the patterns of bacterial diversity between the starter (took from the last batch of vinegar culture on day 7) and the Pei on day 7 were similar (90%). The relative abundance dynamics of two dominant members, Lactobacillus and Acetobacter, showed high correlation (coefficient as 0.90 and 0.98 respectively) among different batches. Furthermore, statistical analysis revealed dynamics of 16 main flavor metabolites were stable among different batches. The findings validate the batch-to-batch uniformity of bacterial community succession and flavor formation accounts for the quality of Zhenjiang aromatic vinegar. Based on our understanding, this is the first study helps to explain the rationality of age-old artistry from a scientific perspective. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Production of ethanol in batch and fed-batch fermentation of soluble sugar

    International Nuclear Information System (INIS)

    Chaudhary, M.Y.; Shah, M.A.; Shah, F.H.

    1991-01-01

    Keeping in view of the demand and need for alternate energy source, especially liquid fuels and the availability of raw materials in Pakistan, we have carried out biochemical and technological studies for ethanol through fermentation of renewable substrates. Molasses and sugar cane have been used as substrate for yeast fermentation. Selected yeast were used in both batch and semi continuous fermentation of molasses. Clarified dilute molasses were fermented with different strains of Saccharomyces cerevisiae. Ethanol concentration after 64 hours batch fermentation reached 9.4% with 90% yield based on sugar content. During feed batch system similar results were obtained after a fermentation cycle of 48 hours resulting in higher productivity. Similarly carbohydrates in fruit juices and hydro lysates of biomass can be economically fermented to ethanol to be used as feed stock for other chemicals. (author)

  15. Mathematical models for a batch scheduling problem to minimize earliness and tardiness

    Directory of Open Access Journals (Sweden)

    Basar Ogun

    2018-05-01

    Full Text Available Purpose: Today’s manufacturing facilities are challenged by highly customized products and just in time manufacturing and delivery of these products. In this study, a batch scheduling problem is addressed to provide on-time completion of customer orders in the environment of lean manufacturing. The problem is to optimize partitioning of product components into batches and scheduling of the resulting batches where each customer order is received as a set of products made of various components. Design/methodology/approach: Three different mathematical models for minimization of total earliness and tardiness of customer orders are developed to provide on-time completion of customer orders and also, to avoid from inventory of final products. The first model is a non-linear integer programming model while the second is a linearized version of the first. Finally, to solve larger sized instances of the problem, an alternative linear integer model is presented. Findings: Computational study using a suit set of test instances showed that the alternative linear integer model is able to solve all test instances in varying sizes within quite shorter computer times comparing to the other two models. It was also showed that the alternative model can solve moderate sized real-world problems. Originality/value: The problem under study differentiates from existing batch scheduling problems in the literature since it includes new circumstances which may arise in real-world applications. This research, also, contributes the literature of batch scheduling problem by presenting new optimization models.

  16. Multi-objective optimization of glycopeptide antibiotic production in batch and fed batch processes

    DEFF Research Database (Denmark)

    Maiti, Soumen K.; Eliasson Lantz, Anna; Bhushan, Mani

    2011-01-01

    batch operations using process model for Amycolatopsis balhimycina, a glycopeptide antibiotic producer. This resulted in a set of several pareto optimal solutions with the two objectives ranging from (0.75gl−1, 3.97g$-1) to (0.44gl−1, 5.19g$-1) for batch and from (1.5gl−1, 5.46g$-1) to (1.1gl−1, 6.34g...

  17. Data Report on the Newest Batch of PCEA Graphite for the VHTR Baseline Graphite Characterization Program

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, Mark Christopher [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cottle, David Lynn [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rohrbaugh, David Thomas [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    This report details a comparison of mechanical and physical properties from the first billet of extruded PCEA nuclear-grade graphite from the newest batch of PCEA procured from GrafTech. Testing has largely been completed on three of the billets from the original batch of PCEA, with data distributions for those billets exhibiting a much wider range of values when compared to the distributions of properties from other grades. A higher propensity for extremely low values or specimens that broke while machining or handling was also characteristic of the billets from the first batch, owing to unusually large fissures or disparate flaws in the billets in an as-manufactured state. Coordination with GrafTech prior to placing the order for a second batch of PCEA included discussions on these large disparate flaws and how to prevent them during the manufacturing process. This report provides a comparison of the observed data distributions from properties measured in the first billet from the new batch of PCEA with those observed in the original batch, in order that an evaluation of tighter control of the manufacturing process and the outcome of these controls on final properties can be ascertained. Additionally, this billet of PCEA is the first billet to formally include measurements from two alternate test techniques that will become part of the Baseline Graphite Characterization database – the three-point bend test on sub-sized cylinders and the Brazilian disc splitting tensile strength test. As the program moves forward, property distributions from these two tests will be based on specimen geometries that match specimen geometries being used in the irradiated Advanced Graphite Creep (AGC) program. This will allow a more thorough evaluation of both the utility of the test and expected variability in properties when using those approaches on the constrained geometries of specimens irradiated in the Advanced Test Reactor as part of the AGC experiment.

  18. Pollution prevention applications in batch manufacturing operations

    Science.gov (United States)

    Sykes, Derek W.; O'Shaughnessy, James

    2004-02-01

    Older, "low-tech" batch manufacturing operations are often fertile grounds for gains resulting from pollution prevention techniques. This paper presents a pollution prevention technique utilized for wastewater discharge permit compliance purposes at a batch manufacturer of detergents, deodorants, and floor-care products. This manufacturer generated industrial wastewater as a result of equipment rinses required after each product batch changeover. After investing a significant amount of capital on end of pip-line wastewater treatment technology designed to address existing discharge limits, this manufacturer chose to investigate alternate, low-cost approaches to address anticipated new permit limits. Mass balances using spreadsheets and readily available formulation and production data were conducted on over 300 products to determine how each individual product contributed to the total wastewater pollutant load. These mass balances indicated that 22 products accounted for over 55% of the wastewater pollutant. Laboratory tests were conducted to determine whether these same products could accept their individual changeover rinse water as make-up water in formulations without sacrificing product quality. This changeover reuse technique was then implement at the plant scale for selected products. Significant reductions in wastewater volume (25%) and wastewater pollutant loading (85+%) were realized as a direct result of this approach.

  19. Biohydrogen production from enzymatic hydrolysis of food waste in batch and continuous systems

    Science.gov (United States)

    Han, Wei; Yan, Yingting; Shi, Yiwen; Gu, Jingjing; Tang, Junhong; Zhao, Hongting

    2016-01-01

    In this study, the feasibility of biohydrogen production from enzymatic hydrolysis of food waste was investigated. Food waste (solid-to-liquid ratio of 10%, w/v) was first hydrolyzed by commercial glucoamylase to release glucose (24.35 g/L) in the food waste hydrolysate. Then, the obtained food waste hydrolysate was used as substrate for biohydrogen production in the batch and continuous (continuous stirred tank reactor, CSTR) systems. It was observed that the maximum cumulative hydrogen production of 5850 mL was achieved with a yield of 245.7 mL hydrogen/g glucose (1.97 mol hydrogen/mol glucose) in the batch system. In the continuous system, the effect of hydraulic retention time (HRT) on biohydrogen production from food waste hydrolysate was investigated. The optimal HRT obtained from this study was 6 h with the highest hydrogen production rate of 8.02 mmol/(h·L). Ethanol and acetate were the major soluble microbial products with low propionate production at all HRTs. Enzymatic hydrolysis of food waste could effectively accelerate hydrolysis speed, improve substrate utilization rate and increase hydrogen yield. PMID:27910937

  20. Design of two-column batch-to-batch recirculation to enhance performance in ion-exchange chromatography.

    Science.gov (United States)

    Persson, Oliver; Andersson, Niklas; Nilsson, Bernt

    2018-01-05

    Preparative liquid chromatography is a separation technique widely used in the manufacturing of fine chemicals and pharmaceuticals. A major drawback of traditional single-column batch chromatography step is the trade-off between product purity and process performance. Recirculation of impure product can be utilized to make the trade-off more favorable. The aim of the present study was to investigate the usage of a two-column batch-to-batch recirculation process step to increase the performance compared to single-column batch chromatography at a high purity requirement. The separation of a ternary protein mixture on ion-exchange chromatography columns was used to evaluate the proposed process. The investigation used modelling and simulation of the process step, experimental validation and optimization of the simulated process. In the presented case the yield increases from 45.4% to 93.6% and the productivity increases 3.4 times compared to the performance of a batch run for a nominal case. A rapid concentration build-up product can be seen during the first cycles, before the process reaches a cyclic steady-state with reoccurring concentration profiles. The optimization of the simulation model predicts that the recirculated salt can be used as a flying start of the elution, which would enhance the process performance. The proposed process is more complex than a batch process, but may improve the separation performance, especially while operating at cyclic steady-state. The recirculation of impure fractions reduces the product losses and ensures separation of product to a high degree of purity. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. 7 CFR 58.728 - Cooking the batch.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Cooking the batch. 58.728 Section 58.728 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Procedures § 58.728 Cooking the batch. Each batch of cheese within the cooker, including the optional...

  2. Acid Water Neutralization Using Microbial Fuel Cells: An Alternative for Acid Mine Drainage Treatment

    Directory of Open Access Journals (Sweden)

    Eduardo Leiva

    2016-11-01

    Full Text Available Acid mine drainage (AMD is a complex environmental problem, which has adverse effects on surface and ground waters due to low pH, high toxic metals, and dissolved salts. New bioremediation approach based on microbial fuel cells (MFC can be a novel and sustainable alternative for AMD treatment. We studied the potential of MFC for acidic synthetic water treatment through pH neutralization in batch-mode and continuous-flow operation. We observed a marked pH increase, from ~3.7 to ~7.9 under batch conditions and to ~5.8 under continuous-flow operation. Likewise, batch reactors (non-MFC inoculated with different MFC-enriched biofilms showed a very similar pH increase, suggesting that the neutralization observed for batch operation was due to a synergistic influence of these communities. These preliminary results support the idea of using MFC technologies for AMD remediation, which could help to reduce costs associated with conventional technologies. Advances in this configuration could even be extrapolated to the recovery of heavy metals by precipitation or adsorption processes due to the acid neutralization.

  3. Actual waste demonstration of the nitric-glycolic flowsheet for sludge batch 9 qualification

    Energy Technology Data Exchange (ETDEWEB)

    Newell, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martino, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Reboul, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coleman, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Johnson, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-03-09

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs qualification testing to demonstrate that the sludge batch is processable. Based on the results of this actual-waste qualification and previous simulant studies, SRNL recommends implementation of the nitric-glycolic acid flowsheet in DWPF. Other recommendations resulting from this demonstration are reported in section 5.0.

  4. Culture-dependent and -independent approaches establish the complexity of a PAH-degrading microbial consortium

    Energy Technology Data Exchange (ETDEWEB)

    Vinas, M.; Sabate, J.; Solanas, A.M. [Barcelona Univ., Barcelona (Spain). Dept. of Microbiology; Guasp, C.; Lalucat, J. [Illes Balears Univ., Palma de Mallorca (Spain). Dept. of Biology

    2005-11-15

    Microbial consortia are used in the decontamination of polluted environmental sites. A microbial consortium obtained by batch enrichment culture is a closed system with controlled conditions in which micro-organisms with a potentially high growth rate are selected and become dominant. The aim of this study was to identify the members of consortium AM, in which earlier batch enrichment work had shown high biodegradation rates of the aromatic fraction of polycyclic aromatic hydrocarbon (PAH). The AM consortium was obtained by sequential enrichment in liquid culture with a PAH mixture of 3- and 4- ringed PAHs as the sole source of carbon and energy. The consortium was examined using a triple approach method based on various cultivation strategies, denaturing gradient electrophoresis (DGGE) and the screening of 16S and 18S rRNA gene clone libraries. Eleven different sequences by culture-dependent techniques and 7 by both DGGE and clone libraries were obtained, yielding 19 different microbial components. Proteobacteria were the dominant group, representing 83 per cent of the total, while the Cytophaga-Flexibactor-Bacteroides group (CFB) was 11 per cent, and Ascomycota fungi were 6 per cent. It was determined that {beta}-Proteobacteria were predominant in the DGGE and clone library methods, whereas they were a minority in culturable strains. The highest diversity and number of noncoincident sequences was achieved by the cultivation method that showed members of the {alpha},{beta}, and {gamma}-Proteobacteria, CFB bacterial group, and Ascomycota fungi. Only 6 of the 11 strains isolated showed PAH-degrading capability. The bacterial strain (AMS7) and the fungal strain (AMF1) achieved the greatest PAH depletion. Results indicated that polyphasic assessment is necessary for a proper understanding of the composition of a microbial consortium. It was concluded that microbial consortia are more complex than previously realized. 54 refs., 3 tabs., 3 figs.

  5. ELIMINATION OF THE CHARACTERIZATION OF DWPF POUR STREAM SAMPLE AND THE GLASS FABRICATION AND TESTING OF THE DWPF SLUDGE BATCH QUALIFICATION SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J.; Peeler, D.; Edwards, T.

    2012-05-11

    A recommendation to eliminate all characterization of pour stream glass samples and the glass fabrication and Product Consistency Test (PCT) of the sludge batch qualification sample was made by a Six-Sigma team chartered to eliminate non-value-added activities for the Defense Waste Processing Facility (DWPF) sludge batch qualification program and is documented in the report SS-PIP-2006-00030. That recommendation was supported through a technical data review by the Savannah River National Laboratory (SRNL) and is documented in the memorandums SRNL-PSE-2007-00079 and SRNL-PSE-2007-00080. At the time of writing those memorandums, the DWPF was processing sludge-only waste but, has since transitioned to a coupled operation (sludge and salt). The SRNL was recently tasked to perform a similar data review relevant to coupled operations and re-evaluate the previous recommendations. This report evaluates the validity of eliminating the characterization of pour stream glass samples and the glass fabrication and Product Consistency Test (PCT) of the sludge batch qualification samples based on sludge-only and coupled operations. The pour stream sample has confirmed the DWPF's ability to produce an acceptable waste form from Slurry Mix Evaporator (SME) blending and product composition/durability predictions for the previous sixteen years but, ultimately the pour stream analysis has added minimal value to the DWPF's waste qualification strategy. Similarly, the information gained from the glass fabrication and PCT of the sludge batch qualification sample was determined to add minimal value to the waste qualification strategy since that sample is routinely not representative of the waste composition ultimately processed at the DWPF due to blending and salt processing considerations. Moreover, the qualification process has repeatedly confirmed minimal differences in glass behavior from actual radioactive waste to glasses fabricated from simulants or batch chemicals. In

  6. Elimination Of The Characterization Of DWPF Pour Stream Sample And The Glass Fabrication And Testing Of The DWPF Sludge Batch Qualification Sample

    International Nuclear Information System (INIS)

    Amoroso, J.; Peeler, D.; Edwards, T.

    2012-01-01

    A recommendation to eliminate all characterization of pour stream glass samples and the glass fabrication and Product Consistency Test (PCT) of the sludge batch qualification sample was made by a Six-Sigma team chartered to eliminate non-value-added activities for the Defense Waste Processing Facility (DWPF) sludge batch qualification program and is documented in the report SS-PIP-2006-00030. That recommendation was supported through a technical data review by the Savannah River National Laboratory (SRNL) and is documented in the memorandums SRNL-PSE-2007-00079 and SRNL-PSE-2007-00080. At the time of writing those memorandums, the DWPF was processing sludge-only waste but, has since transitioned to a coupled operation (sludge and salt). The SRNL was recently tasked to perform a similar data review relevant to coupled operations and re-evaluate the previous recommendations. This report evaluates the validity of eliminating the characterization of pour stream glass samples and the glass fabrication and Product Consistency Test (PCT) of the sludge batch qualification samples based on sludge-only and coupled operations. The pour stream sample has confirmed the DWPF's ability to produce an acceptable waste form from Slurry Mix Evaporator (SME) blending and product composition/durability predictions for the previous sixteen years but, ultimately the pour stream analysis has added minimal value to the DWPF's waste qualification strategy. Similarly, the information gained from the glass fabrication and PCT of the sludge batch qualification sample was determined to add minimal value to the waste qualification strategy since that sample is routinely not representative of the waste composition ultimately processed at the DWPF due to blending and salt processing considerations. Moreover, the qualification process has repeatedly confirmed minimal differences in glass behavior from actual radioactive waste to glasses fabricated from simulants or batch chemicals. In contrast, the

  7. Targeting population heterogeneity in Saccharomyces cerevisiae batch fermentation for optimal cell factories

    DEFF Research Database (Denmark)

    Heins, Anna-Lena; Lencastre Fernandes, Rita; Lundin, L.

    )). Significant gradients of e.g. dissolved oxygen, substrates, and pH are typically observed in many industrial scale fermentation processes. Consequently, the microbial cells experience rapid changes in environmental conditions as they circulate throughout the reactor, which might pose stress on the cells...... and affect their metabolism and consequently affect the heterogeneity level of the population. To further investigate these phenomena and gain a deeper understanding of population heterogeneity, Saccharomyces cerevisiae growth reporter strains based on the expression of green fluorescent protein (GFP) were...... environmental factors on heterogeneity level and amount of living cells. A highly dynamic behavior with regard to subpopulation distribution during the different growth stages was seen for the batch cultivations. Moreover, it could be demonstrated that the glucose concentration had a clear influence...

  8. A new statistic for identifying batch effects in high-throughput genomic data that uses guided principal component analysis.

    Science.gov (United States)

    Reese, Sarah E; Archer, Kellie J; Therneau, Terry M; Atkinson, Elizabeth J; Vachon, Celine M; de Andrade, Mariza; Kocher, Jean-Pierre A; Eckel-Passow, Jeanette E

    2013-11-15

    Batch effects are due to probe-specific systematic variation between groups of samples (batches) resulting from experimental features that are not of biological interest. Principal component analysis (PCA) is commonly used as a visual tool to determine whether batch effects exist after applying a global normalization method. However, PCA yields linear combinations of the variables that contribute maximum variance and thus will not necessarily detect batch effects if they are not the largest source of variability in the data. We present an extension of PCA to quantify the existence of batch effects, called guided PCA (gPCA). We describe a test statistic that uses gPCA to test whether a batch effect exists. We apply our proposed test statistic derived using gPCA to simulated data and to two copy number variation case studies: the first study consisted of 614 samples from a breast cancer family study using Illumina Human 660 bead-chip arrays, whereas the second case study consisted of 703 samples from a family blood pressure study that used Affymetrix SNP Array 6.0. We demonstrate that our statistic has good statistical properties and is able to identify significant batch effects in two copy number variation case studies. We developed a new statistic that uses gPCA to identify whether batch effects exist in high-throughput genomic data. Although our examples pertain to copy number data, gPCA is general and can be used on other data types as well. The gPCA R package (Available via CRAN) provides functionality and data to perform the methods in this article. reesese@vcu.edu

  9. Formation and functions of aerobic microbial granula; Entstehung und Funktionen aerober mikrobieller Granula

    Energy Technology Data Exchange (ETDEWEB)

    Etterer, T.; Wilderer, P.A. [Technische Univ. Muenchen, Garching (Germany). Lehrstuhl und Pruefamt fuer Wasserguete- und Abfallwirtschaft

    1999-07-01

    The present project investigates the phenomenon of the formation of aerobic microbial granula and their properties. To generate granula, sequencing batch reactors fed in batches were used. As shown by microbiological assays, fungi played an above-average role in granula formation and build-up. In first degradation experiments, furthermore, chemical oxygen demand (COD) could be reduced by over 90 %. The determination yielded comparable values to activated sludge, standing on average at 1.044g/ml. (orig.) [German] Im Rahmen des hier vorgestellten Projekts wurde das Phaenomen der Bildung aerober mikrobieller Granula sowie deren Eigenschaften untersucht. Zur Erzeugung von Granula wurden schubweise beschickte Reaktoren, sogenannte Sequencing-Batch-Reaktoren (SBR) verwendet. Wie mikrobiologische Untersuchungen zeigten spielen Pilze bei der Entstehung und beim Aufbau eine ueberdurchschnittliche Rolle. Des weiteren konnte in ersten Abbauversuchen der chemische Sauerstoff-Bedarf (CSB) um ueber 90% gesenkt werden. Die Dichtebestimmung ergab vergleichbare Werte zu Belebtschlamm und zwar im Durchschnitt 1,044 g/ml. (orig.)

  10. NDA BATCH 2002-02

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence Livermore National Laboratory

    2009-12-09

    QC sample results (daily background checks, 20-gram and 100-gram SGS drum checks) were within acceptable criteria established by WIPP's Quality Assurance Objectives for TRU Waste Characterization. Replicate runs were performed on 5 drums with IDs LL85101099TRU, LL85801147TRU, LL85801109TRU, LL85300999TRU and LL85500979TRU. All replicate measurement results are identical at the 95% confidence level as established by WIPP criteria. Note that the batch covered 5 weeks of SGS measurements from 23-Jan-2002 through 22-Feb-2002. Data packet for SGS Batch 2002-02 generated using gamma spectroscopy with the Pu Facility SGS unit is technically reasonable. All QC samples are in compliance with established control limits. The batch data packet has been reviewed for correctness, completeness, consistency and compliance with WIPP's Quality Assurance Objectives and determined to be acceptable. An Expert Review was performed on the data packet between 28-Feb-02 and 09-Jul-02 to check for potential U-235, Np-237 and Am-241 interferences and address drum cases where specific scan segments showed Se gamma ray transmissions for the 136-keV gamma to be below 0.1 %. Two drums in the batch showed Pu-238 at a relative mass ratio more than 2% of all the Pu isotopes.

  11. Short-sludge age EBPR process – Microbial and biochemical process characterisation during reactor start-up and operation

    DEFF Research Database (Denmark)

    Valverde Pérez, Borja; Wágner, Dorottya Sarolta; Lóránt, Bálint

    2016-01-01

    . In this paper, we report the start-up and operation of a short-SRT enhanced biological phosphorus removal (EBPR) system operated as a sequencing batch reactor (SBR) fed with preclarified municipal wastewater, which is supplemented with propionate. The microbial community was analysed via 16S rRNA amplicon...

  12. Microbial degradation of pharmaceuticals in estuarine and coastal seawater

    Energy Technology Data Exchange (ETDEWEB)

    Benotti, Mark J. [Marine Sciences Research Center, Stony Brook University, Stony Brook, NY 11794-5000 (United States); Brownawell, Bruce J. [Marine Sciences Research Center, Stony Brook University, Stony Brook, NY 11794-5000 (United States)], E-mail: bruce.brownawell@sunysb.edu

    2009-03-15

    Microbial degradation rates were measured for 19 pharmaceuticals in estuarine and coastal surface water samples. Antipyrine, carbamazepine, cotinine, sulfamethoxazole, and trimethoprim were the most refractory (half-lives, t{sub 1/2} = 35 to >100 days), making them excellent candidates for wastewater tracers. Nicotine, acetaminophen, and fluoxetine were labile across all treatments (t{sub 1/2} = 0.68-11 days). Caffeine, diltiazem, and nifedipine were also and relatively labile in all but one of the treatments (t{sub 1/2} = 3.5-13 days). Microbial degradation of caffeine was further confirmed by production {sup 14}CO{sub 2}. The fastest decay of non-refractory compounds was always observed in more sewage-affected Jamaica Bay waters. Degradation rates for the majority of these pharmaceuticals are much slower than reported rates for small biomolecules, such as glucose and amino acids. Batch sorption experiments indicate that removal of these soluble pharmaceuticals from the water column to sediments is a relatively insignificant removal process in these receiving waters. - Microbial degradation rates were measured for 19 structurally variable pharmaceuticals in wastewater-impacted estuarine and coastal seawater.

  13. Microbial degradation of pharmaceuticals in estuarine and coastal seawater

    International Nuclear Information System (INIS)

    Benotti, Mark J.; Brownawell, Bruce J.

    2009-01-01

    Microbial degradation rates were measured for 19 pharmaceuticals in estuarine and coastal surface water samples. Antipyrine, carbamazepine, cotinine, sulfamethoxazole, and trimethoprim were the most refractory (half-lives, t 1/2 = 35 to >100 days), making them excellent candidates for wastewater tracers. Nicotine, acetaminophen, and fluoxetine were labile across all treatments (t 1/2 = 0.68-11 days). Caffeine, diltiazem, and nifedipine were also and relatively labile in all but one of the treatments (t 1/2 = 3.5-13 days). Microbial degradation of caffeine was further confirmed by production 14 CO 2 . The fastest decay of non-refractory compounds was always observed in more sewage-affected Jamaica Bay waters. Degradation rates for the majority of these pharmaceuticals are much slower than reported rates for small biomolecules, such as glucose and amino acids. Batch sorption experiments indicate that removal of these soluble pharmaceuticals from the water column to sediments is a relatively insignificant removal process in these receiving waters. - Microbial degradation rates were measured for 19 structurally variable pharmaceuticals in wastewater-impacted estuarine and coastal seawater

  14. Development and validation of a novel monitoring system for batch flocculant solids settling process

    DEFF Research Database (Denmark)

    Valverde Pérez, Borja; Zhang, Xueqian; Penkarski-Rodon, Elena

    2017-01-01

    system able to monitor batch settling tests by tracking the sludge blanket height and solid concentration along the column in the range of 1 to 8 g L-1. The system could be efficiently applied to monitor the batch settling tests of several full scale treatment plants run under different operational......Secondary sedimentation is the main hydraulic bottleneck of effective pollution control WWTP under wetweather flow conditions. Therefore, online monitoring tools are required for control and optimization of the settling process under dynamic conditions. In this work we propose a novel monitoring...

  15. Batch statistical process control of a fluid bed granulation process using in-line spatial filter velocimetry and product temperature measurements.

    Science.gov (United States)

    Burggraeve, A; Van den Kerkhof, T; Hellings, M; Remon, J P; Vervaet, C; De Beer, T

    2011-04-18

    Fluid bed granulation is a batch process, which is characterized by the processing of raw materials for a predefined period of time, consisting of a fixed spraying phase and a subsequent drying period. The present study shows the multivariate statistical modeling and control of a fluid bed granulation process based on in-line particle size distribution (PSD) measurements (using spatial filter velocimetry) combined with continuous product temperature registration using a partial least squares (PLS) approach. Via the continuous in-line monitoring of the PSD and product temperature during granulation of various reference batches, a statistical batch model was developed allowing the real-time evaluation and acceptance or rejection of future batches. Continuously monitored PSD and product temperature process data of 10 reference batches (X-data) were used to develop a reference batch PLS model, regressing the X-data versus the batch process time (Y-data). Two PLS components captured 98.8% of the variation in the X-data block. Score control charts in which the average batch trajectory and upper and lower control limits are displayed were developed. Next, these control charts were used to monitor 4 new test batches in real-time and to immediately detect any deviations from the expected batch trajectory. By real-time evaluation of new batches using the developed control charts and by computation of contribution plots of deviating process behavior at a certain time point, batch losses or reprocessing can be prevented. Immediately after batch completion, all PSD and product temperature information (i.e., a batch progress fingerprint) was used to estimate some granule properties (density and flowability) at an early stage, which can improve batch release time. Individual PLS models relating the computed scores (X) of the reference PLS model (based on the 10 reference batches) and the density, respectively, flowabililty as Y-matrix, were developed. The scores of the 4 test

  16. Microbial activity in aquatic environments measured by dimethyl sulfoxide reduction and intercomparison with commonly used methods.

    Science.gov (United States)

    Griebler, C; Slezak, D

    2001-01-01

    A new method to determine microbial (bacterial and fungal) activity in various freshwater habitats is described. Based on microbial reduction of dimethyl sulfoxide (DMSO) to dimethyl sulfide (DMS), our DMSO reduction method allows measurement of the respiratory activity in interstitial water, as well as in the water column. DMSO is added to water samples at a concentration (0.75% [vol/vol] or 106 mM) high enough to compete with other naturally occurring electron acceptors, as determined with oxygen and nitrate, without stimulating or inhibiting microbial activity. Addition of NaN(3), KCN, and formaldehyde, as well as autoclaving, inhibited the production of DMS, which proves that the reduction of DMSO is a biotic process. DMSO reduction is readily detectable via the formation of DMS even at low microbial activities. All water samples showed significant DMSO reduction over several hours. Microbially reduced DMSO is recovered in the form of DMS from water samples by a purge and trap system and is quantified by gas chromatography and detection with a flame photometric detector. The DMSO reduction method was compared with other methods commonly used for assessment of microbial activity. DMSO reduction activity correlated well with bacterial production in predator-free batch cultures. Cell-production-specific DMSO reduction rates did not differ significantly in batch cultures with different nutrient regimes but were different in different growth phases. Overall, a cell-production-specific DMSO reduction rate of 1.26 x 10(-17) +/- 0. 12 x 10(-17) mol of DMS per produced cell (mean +/- standard error; R(2) = 0.78) was calculated. We suggest that the relationship of DMSO reduction rates to thymidine and leucine incorporation is linear (the R(2) values ranged from 0.783 to 0.944), whereas there is an exponential relationship between DMSO reduction rates and glucose uptake, as well as incorporation (the R(2) values ranged from 0.821 to 0.931). Based on our results, we

  17. Bioprocess iterative batch-to-batch optimization based on hybrid parametric/nonparametric models.

    Science.gov (United States)

    Teixeira, Ana P; Clemente, João J; Cunha, António E; Carrondo, Manuel J T; Oliveira, Rui

    2006-01-01

    This paper presents a novel method for iterative batch-to-batch dynamic optimization of bioprocesses. The relationship between process performance and control inputs is established by means of hybrid grey-box models combining parametric and nonparametric structures. The bioreactor dynamics are defined by material balance equations, whereas the cell population subsystem is represented by an adjustable mixture of nonparametric and parametric models. Thus optimizations are possible without detailed mechanistic knowledge concerning the biological system. A clustering technique is used to supervise the reliability of the nonparametric subsystem during the optimization. Whenever the nonparametric outputs are unreliable, the objective function is penalized. The technique was evaluated with three simulation case studies. The overall results suggest that the convergence to the optimal process performance may be achieved after a small number of batches. The model unreliability risk constraint along with sampling scheduling are crucial to minimize the experimental effort required to attain a given process performance. In general terms, it may be concluded that the proposed method broadens the application of the hybrid parametric/nonparametric modeling technique to "newer" processes with higher potential for optimization.

  18. Soil-derived microbial consortia enriched with different plant biomass reveal distinct players acting in lignocellulose degradation

    NARCIS (Netherlands)

    de Lima Brossi, Maria Julia; Jiménez Avella, Diego; Cortes Tolalpa, Larisa; van Elsas, Jan

    Here, we investigated how different plant biomass, and-for one substrate-pH, drive the composition of degrader microbial consortia. We bred such consortia from forest soil, incubated along nine aerobic sequential - batch enrichments with wheat straw (WS1, pH 7.2; WS2, pH 9.0), switchgrass (SG, pH

  19. Influence of attapulgite addition on the biological performance and microbial communities of submerged dynamic membrane bioreactor

    Directory of Open Access Journals (Sweden)

    Wensong Duan

    2017-12-01

    Full Text Available A submerged dynamic membrane bioreactor (sDMBR was developed to test the influence of attapulgite (AT addition on the treatment performances and the microbial community structure and function. The batch experimental results displayed the highest UV254 and dissolved organic carbon (DOC removal efficiencies with 5% AT/mixed liquid suspended solids addition dosage. The continuous sDMBR results showed that the removal efficiencies of chemical oxygen demand, NH4+-N, total nitrogen and total phosphorus significantly increased in the AT added sDMBR. Excitation emission matrix analysis demonstrated that the protein-like peaks and fulvic acid-like peaks were significantly decreased in both in the mixed liquid and the effluent of the AT added reactor. The obligate anaerobes were observed in the sDMBR with AT addition, such as Bacteroidetes and Gamma proteobacterium in the dynamic membrane, which played an important role in the process of sludge granulation. Bacterial community richness significantly increased after AT addition with predominated phyla of Proteobacteria and Bacteroidetes. Similarly, species abundance significantly increased in the AT added sDMBR. Further investigations with cluster proved that AT was a favorite biological carrier for the microbial ecology, which enriched microbial abundance and community diversity of the sDMBR.

  20. Glucoamylase production in batch, chemostat and fed-batch cultivations by an industrial strain of Aspergillus niger

    DEFF Research Database (Denmark)

    Pedersen, Henrik; Beyer, Michael; Nielsen, Jens

    2000-01-01

    The Aspergillus niger strain BO-1 was grown in batch, continuous (chemostat) and fed-batch cultivations in order to study the production of the extracellular enzyme glucoamylase under different growth conditions. In the pH range 2.5-6.0, the specific glucoamylase productivity and the specific...

  1. SLUDGE BATCH 4 BASELINE MELT RATE FURNACE AND SLURRY-FED MELT RATE FURNACE TESTS WITH FRITS 418 AND 510 (U)

    International Nuclear Information System (INIS)

    Smith, M; Timothy Jones, T; Donald02 Miller, D

    2007-01-01

    Several Slurry-Fed Melt Rate Furnace (SMRF) tests with earlier projections of the Sludge Batch 4 (SB4) composition have been performed.1,2 The first SB4 SMRF test used Frits 418 and 320, however it was found after the test that the REDuction/OXidation (REDOX) correlation at that time did not have the proper oxidation state for manganese. Because the manganese level in the SB4 sludge was higher than previous sludge batches tested, the impact of the higher manganese oxidation state was greater. The glasses were highly oxidized and very foamy, and therefore the results were inconclusive. After resolving this REDOX issue, Frits 418, 425, and 503 were tested in the SMRF with the updated baseline SB4 projection. Based on dry-fed Melt Rate Furnace (MRF) tests and the above mentioned SMRF tests, two previous frit recommendations were made by the Savannah River National Laboratory (SRNL) for processing of SB4 in the Defense Waste Processing Facility (DWPF). The first was Frit 503 based on the June 2006 composition projections.3 The recommendation was changed to Frit 418 as a result of the October 2006 composition projections (after the Tank 40 decant was implemented as part of the preparation plan). However, the start of SB4 processing was delayed due to the control room consolidation outage and the repair of the valve box in the Tank 51 to Tank 40 transfer line. These delays resulted in changes to the projected SB4 composition. Due to the slight change in composition and based on preliminary dry-fed MRF testing, SRNL believed that Frit 510 would increase throughput in processing SB4 in DWPF. Frit 418, which was used in processing Sludge Batch 3 (SB3), was a viable candidate and available in DWPF. Therefore, it was used during the initial SB4 processing. Due to the potential for higher melt rates with Frit 510, SMRF tests with the latest SB4 composition (1298 canisters) and Frits 510 and 418 were performed at a targeted waste loading (WL) of 35%. The '1298 canisters

  2. Coexistence of nitrifying, anammox and denitrifying bacteria in a sequencing batch reactor

    Directory of Open Access Journals (Sweden)

    Michela eLangone

    2014-02-01

    Full Text Available Elevated nitrogen removal efficiencies from ammonium-rich wastewaters have been demonstrated by several applications, that combine nitritation and anammox processes. Denitrification will occur simultaneously when organic carbon is also present. In this study, the activity of aerobic ammonia oxidizing, anammox and denitrifying bacteria in a full scale Sequencing Batch Reactor, treating digester supernatants, was studied by means of batch-assays. AOB and anammox activities were maximum at pH of 8.0 and 7.8-8.0, rispectively. Short term effect of nitrite on anammox activity was studied, showing nitrite up to 42 mg/L did not result in inhibition. Both denitrification via nitrate and nitrite were measured. To reduce nitrite-oxidizing activity, high of NH3 – N (1.9-10 mg N-NH3/L and low nitrite (3-8 mg TNN/L are required conditions during the whole SBR cycle.Molecular analysis showed the nitritation-anammox sludge harbored a high microbial diversity, where each microorganism has a specific role. Using ammonia monooxygenase α –subunit (amoA gene as a marker, our analyses suggested different macro- and micro-environments in the reactor strongly affect the AOB community, allowing the development of different AOB species, such as N. europaea/eutropha and N. oligotropha groups, which improve the stability of nitritation process. A specific PCR primer set, used to target the 16S rRNA gene of anammox bacteria, confirmed the presence of the Ca. Brocadia fulgida type, able to grow in precence of organic matter and to tolerate high nitrite concentrations. The diversity of denitrifiers was assessed by using dissimilatory nitrite reductase (nirS gene-based analyses, who showed denitifiers were related to different betaproteobacterial genera, such as Thauera, Pseudomonas, Dechloromonas and Aromatoleum, able to assist in forming microbial aggregates. Concerning possible secondary processes, no n-damo bacteria were found while NOB from the genus of Nitrobacter

  3. CONVERSION OF PINEAPPLE JUICE WASTE INTO LACTIC ACID IN BATCH AND FED – BATCH FERMENTATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Abdullah Mochamad Busairi

    2012-01-01

    Full Text Available Pineapple juice waste contains valuable components, which are mainly sucrose, glucose, and fructose. Recently, lactic acid has been considered to be an important raw material for the production of biodegradable lactide polymer. The fermentation experiments were carried out in a 3 litres fermentor (Biostat B Model under anaerobic condition with stirring speed of 50 rpm, temperature at 40oC, and pH of 6.00. Effect of feed concentration on lactic acid production, bacterial growth, substrate utilisation and productivity was studied. The results obtained from fed- batch culture fermentation showed that the maximum lactic acid productivity was 0.44 g/L.h for feed concentration of 90 g/L at 48 hours. Whereas the lactic acid productivity obtained from fed-batch culture was twice and half fold higher than that of batch culture productivity.  Buangan jus nanas mengandung komponen yang berharga terutama sukrosa, glukosa, dan fruktosa. Asam laktat adalah bahan baku yang terbaru dan penting untuk dibuat sebagai polimer laktat yang dapat terdegradasi oleh lingkungan. Percobaan dilakukan pada fermentor 3 liter (Model Biostat B di bawah kondisi anaerob dengan kecepatan pengadukan 50 rpm, temperatur 40oC, dan pH 6,00. Pengaruh konsentrasi umpan terhadap produksi asam laktat, pertumbuhan mikroba, pengggunaan substrat dan produktivitas telah dipelajari. Hasil yang didapatkan pada fermentasi dengan menggunakan sistem fed-batch menunjukkan bahwa produktivitas asam laktat maksimum adalah 0.44 g/L,jam dengan konsentrasi umpan, 90 g/L pada waktu 48 jam. Bahkan produktivitas asam laktat yang didapat pada kultur fed-batch lebih tinggi 2,5 kali dari pada proses menggunakan sistem batch

  4. Passing in Command Line Arguments and Parallel Cluster/Multicore Batching in R with batch.

    Science.gov (United States)

    Hoffmann, Thomas J

    2011-03-01

    It is often useful to rerun a command line R script with some slight change in the parameters used to run it - a new set of parameters for a simulation, a different dataset to process, etc. The R package batch provides a means to pass in multiple command line options, including vectors of values in the usual R format, easily into R. The same script can be setup to run things in parallel via different command line arguments. The R package batch also provides a means to simplify this parallel batching by allowing one to use R and an R-like syntax for arguments to spread a script across a cluster or local multicore/multiprocessor computer, with automated syntax for several popular cluster types. Finally it provides a means to aggregate the results together of multiple processes run on a cluster.

  5. On-line Scheduling Of Multi-Server Batch Operations

    NARCIS (Netherlands)

    van der Zee, D.J.; van Harten, A.; Schuur, P.C.

    1999-01-01

    Batching jobs in a manufacturing system is a very common policy in most industries. Main reasons for batching are avoidance of setups and/or facilitation of material handling. Good examples of batch-wise production systems are ovens found in aircraft industry and in semiconductor manufacturing.

  6. LSF usage for batch at CERN

    CERN Multimedia

    Schwickerath, Ulrich

    2007-01-01

    Contributed poster to the CHEP07. Original abstract: LSF 7, the latest version of Platform's batch workload management system, addresses many issues which limited the ability of LSF 6.1 to support large scale batch farms, such as the lxbatch service at CERN. In this paper we will present the status of the evaluation and deployment of LSF 7 at CERN, including issues concerning the integration of LSF 7 with the gLite grid middleware suite and, in particular, the steps taken to endure an efficient reporting of the local batch system status and usage to the Grid Information System

  7. Microbial reduction of uranium using cellulosic substrates

    International Nuclear Information System (INIS)

    Thombre, M.S.; Thomson, B.M.; Barton, L.L.

    1996-01-01

    Previous work at the University of New Mexico and elsewhere has shown that sulfate-reducing bacteria are capable of reducing uranium from the soluble +6 oxidation state to the insoluble +4 oxidation state. This chemistry forms the basis of a proposed ground water remediation strategy in which microbial reduction would be used to immobilize soluble uranium. One such system would consist of a subsurface permeable barrier which would stimulate microbial growth resulting in the reduction of sulfate and nitrate and immobilization of metals while permitting the unhindered flow of ground water through it. This research investigated some of the engineering considerations associated with a microbial reducing barrier such as identifying an appropriate biological substrate, estimating the rate of substrate utilization, and identifying the final fate of the contaminants concentrated in the barrier matrix. The performance of batch reactors and column systems that treated simulated plume water was evaluated using cellulose, wheat straw, alfalfa hay, sawdust, and soluble starch as substrates. The concentrations of sulfate, nitrate, and U(VI) were monitored over time. Precipitates from each system were collected, and the precipitated U(IV) was determined to be crystalline UO 2(s) by x-ray diffraction. The results of this study support the proposed use of cellulosic substrates as candidate barrier materials

  8. Family based dispatching with batch availability

    NARCIS (Netherlands)

    van der Zee, D.J.

    2013-01-01

    Family based dispatching rules seek to lower set-up frequencies by grouping (batching) similar types of jobs for joint processing. Hence shop flow times may be improved, as less time is spent on set-ups. Motivated by an industrial project we study the control of machines with batch availability,

  9. On-line scheduling of multi-server batch operations

    NARCIS (Netherlands)

    Zee, Durk Jouke van der; Harten, Aart van; Schuur, Peter

    The batching of jobs in a manufacturing system is a very common policy in many industries. The main reasons for batching are the avoidance of setups and/or facilitation of material handling. Good examples of batch-wise production systems are the ovens that are found in the aircraft industry and in

  10. Batching System for Superior Service

    Science.gov (United States)

    2001-01-01

    Veridian's Portable Batch System (PBS) was the recipient of the 1997 NASA Space Act Award for outstanding software. A batch system is a set of processes for managing queues and jobs. Without a batch system, it is difficult to manage the workload of a computer system. By bundling the enterprise's computing resources, the PBS technology offers users a single coherent interface, resulting in efficient management of the batch services. Users choose which information to package into "containers" for system-wide use. PBS also provides detailed system usage data, a procedure not easily executed without this software. PBS operates on networked, multi-platform UNIX environments. Veridian's new version, PBS Pro,TM has additional features and enhancements, including support for additional operating systems. Veridian distributes the original version of PBS as Open Source software via the PBS website. Customers can register and download the software at no cost. PBS Pro is also available via the web and offers additional features such as increased stability, reliability, and fault tolerance.A company using PBS can expect a significant increase in the effective management of its computing resources. Tangible benefits include increased utilization of costly resources and enhanced understanding of computational requirements and user needs.

  11. Degradation of oxytetracycline and its impacts on biogas-producing microbial community structure.

    Science.gov (United States)

    Coban, Halil; Ertekin, Emine; Ince, Orhan; Turker, Gokhan; Akyol, Çağrı; Ince, Bahar

    2016-07-01

    The effect of veterinary antibiotics in anaerobic digesters is a concern where methane production efficiency is highly dependent on microbial community structure. In this study, both anaerobic degradation of a common veterinary antibiotic, oxytetracycline (OTC), and its effects on an anaerobic digester microbial community were investigated. Qualitative and quantitative molecular tools were used to monitor changes in microbial community structure during a 60-day batch incubation period of cow manure with the addition of different concentrations of the antibiotic. Molecular data were interpreted by a further redundancy analysis as a multivariate statistics approach. At the end of the experiment, approximately 48, 33, and 17 % of the initially added 50, 100, and 200 mg l(-1) of OTC was still present in the serum bottles which reduced the biogas production via accumulation of some of the volatile fatty acids (VFAs). Biogas production was highly correlated with Methanobacteriales and Methanosarcinales gene copy numbers, and those parameters were negatively affected with oxytetracycline and VFA concentrations.

  12. Batch crystallization of rhodopsin for structural dynamics using an X-ray free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wenting; Nogly, Przemyslaw; Rheinberger, Jan; Kick, Leonhard M.; Gati, Cornelius; Nelson, Garrett; Deupi, Xavier; Standfuss, Jörg; Schertler, Gebhard; Panneels, Valérie, E-mail: valerie.panneels@psi.ch [Paul Scherrer Institute, OFLC/103, 5232 Villigen-PSI (Switzerland)

    2015-06-27

    A new batch preparation method is presented for high-density micrometre-sized crystals of the G protein-coupled receptor rhodopsin for use in time-resolved serial femtosecond crystallography at an X-ray free-electron laser using a liquid jet. Rhodopsin is a membrane protein from the G protein-coupled receptor family. Together with its ligand retinal, it forms the visual pigment responsible for night vision. In order to perform ultrafast dynamics studies, a time-resolved serial femtosecond crystallography method is required owing to the nonreversible activation of rhodopsin. In such an approach, microcrystals in suspension are delivered into the X-ray pulses of an X-ray free-electron laser (XFEL) after a precise photoactivation delay. Here, a millilitre batch production of high-density microcrystals was developed by four methodical conversion steps starting from known vapour-diffusion crystallization protocols: (i) screening the low-salt crystallization conditions preferred for serial crystallography by vapour diffusion, (ii) optimization of batch crystallization, (iii) testing the crystal size and quality using second-harmonic generation (SHG) imaging and X-ray powder diffraction and (iv) production of millilitres of rhodopsin crystal suspension in batches for serial crystallography tests; these crystals diffracted at an XFEL at the Linac Coherent Light Source using a liquid-jet setup.

  13. The effects of furfural on ethanol production by Saccharomyces cerevisiae in batch culture

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, L.J.; Vega, J.L.; Klasson, K.T.; Clausen, E.C.; Gaddy, J.L. (Arkansas Univ., Fayetteville, AR (US). Dept. of Chemical Engineering)

    1992-01-01

    Browning reaction products such as furfural and 5-hydroxy-methyl-furfural (HMF) have been shown to inhibit microbial growth and metabolism in ethanol fermentations using Saccharomyces cerevisiae. This paper quantifies the extent of furfural inhibition and yeast growth, glucose utilization, and ethanol production as a function of inoculum size (0.1-9 gl{sup -1}). Batch culture experiments were conducted using furfural concentrations in the range of 0 to 2.0 gl{sup -1} and mathematical correlations were proposed and tested. The results indicate that the specific growth rate decreased with increasing furfural concentration and inoculum size, while the maintenance coefficients were unaffected. The apparent and true cell yield coefficients on glucose were depressed with the addition of furfural. Specific production rates were unaffected at the furfural levels used but ethanol inhibition was apparent. The specific production rate was less inhibited by ethanol at higher inoculum sizes. Global specific productivities were not affected by the presence of furfural. At a 0.1 gl{sup -1} inoculum size, furfural depletion was complete within 15-20 h, depending upon the furfural concentration employed. At higher incoculum levels (2-9 gl{sup -1}), all furfural was depleted in less than 5 h. (author).

  14. Leaching behavior of mineral processing waste: Comparison of batch and column investigations

    Energy Technology Data Exchange (ETDEWEB)

    Al-Abed, Souhail R. [National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268 (United States)], E-mail: al-abed.souhail@epa.gov; Jegadeesan, G. [Pegasus Technical Services Inc., 46 East Hollister Street, Cincinnati, OH 45219 (United States); Purandare, J. [Englandgeosystem Inc., 15375 Barranca Pkwy, Suite F-106, Irvine, CA 92618 (United States); Allen, D. [National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268 (United States)

    2008-05-30

    In this study, a comparison of laboratory batch and column experiments on metal release profile from a mineral processing waste (MPW) is presented. Batch (equilibrium) and column (dynamic) leaching tests were conducted on ground MPW at different liquid-solid ratios (LS) to determine the mechanisms controlling metal release. Additionally, the effect of pH on metal release is also discussed. It was observed that acidic pH conditions induced dissolution of As, Zn and Cu. Negligible leaching at alkaline pH was observed. However, Se depicted amphoteric behavior with high release at low and high pH. The batch and column data showed that As and Se release increased with LS ratio, while that of Cu and Zn increased initially and tapered towards equilibrium values at high LS ratios. The results on metal release from the MPW suggested that dissolution of the metal was the controlling mechanism. Leaching profiles from the batch and column data corresponded well for most LS ratios. This is most likely due to the acidic character of the waste, minimal changes in pH during the column operation and granular structure of the waste. From a waste management perspective, low cost batch equilibrium studies in lieu of high cost column experiments can be used for decision making on its disposal only when the waste exhibits characteristics similar to the mineral processing waste.

  15. Leaching behavior of mineral processing waste: Comparison of batch and column investigations

    International Nuclear Information System (INIS)

    Al-Abed, Souhail R.; Jegadeesan, G.; Purandare, J.; Allen, D.

    2008-01-01

    In this study, a comparison of laboratory batch and column experiments on metal release profile from a mineral processing waste (MPW) is presented. Batch (equilibrium) and column (dynamic) leaching tests were conducted on ground MPW at different liquid-solid ratios (LS) to determine the mechanisms controlling metal release. Additionally, the effect of pH on metal release is also discussed. It was observed that acidic pH conditions induced dissolution of As, Zn and Cu. Negligible leaching at alkaline pH was observed. However, Se depicted amphoteric behavior with high release at low and high pH. The batch and column data showed that As and Se release increased with LS ratio, while that of Cu and Zn increased initially and tapered towards equilibrium values at high LS ratios. The results on metal release from the MPW suggested that dissolution of the metal was the controlling mechanism. Leaching profiles from the batch and column data corresponded well for most LS ratios. This is most likely due to the acidic character of the waste, minimal changes in pH during the column operation and granular structure of the waste. From a waste management perspective, low cost batch equilibrium studies in lieu of high cost column experiments can be used for decision making on its disposal only when the waste exhibits characteristics similar to the mineral processing waste

  16. Batch-To-Batch Rational Feedforward Control : From Iterative Learning to Identification Approaches, with Application to a Wafer Stage

    NARCIS (Netherlands)

    Blanken, L.; Boeren, F.A.J.; Bruijnen, D.J.H.; Oomen, T.A.E.

    2017-01-01

    Feedforward control enables high performance for industrial motion systems that perform nonrepeating motion tasks. Recently, learning techniques have been proposed that improve both performance and flexibility to nonrepeating tasks in a batch-To-batch fashion by using a rational parameterization in

  17. Evaluation of vitrification factors from DWPF's macro-batch 1

    International Nuclear Information System (INIS)

    Edwards, T.B.

    2000-01-01

    The Defense Waste Processing Facility (DWPF) is evaluating new sampling and analytical methods that may be used to support future Slurry Mix Evaporator (SME) batch acceptability decisions. This report uses data acquired during DWPF's processing of macro-batch 1 to determine a set of vitrification factors covering several SME and Melter Feed Tank (MFT) batches. Such values are needed for converting the cation measurements derived from the new methods to a ''glass'' basis. The available data from macro-batch 1 were used to examine the stability of these vitrification factors, to estimate their uncertainty over the course of a macro-batch, and to provide a recommendation on the use of a single factor for an entire macro-batch. The report is in response to Technical Task Request HLW/DWPF/TTR-980015

  18. Sojourn time distributions in a Markovian G-queue with batch arrival and batch removal

    Directory of Open Access Journals (Sweden)

    Yang Woo Shin

    1999-01-01

    Full Text Available We consider a single server Markovian queue with two types of customers; positive and negative, where positive customers arrive in batches and arrivals of negative customers remove positive customers in batches. Only positive customers form a queue and negative customers just reduce the system congestion by removing positive ones upon their arrivals. We derive the LSTs of sojourn time distributions for a single server Markovian queue with positive customers and negative customers by using the first passage time arguments for Markov chains.

  19. Comparison of Different Strategies for Selection/Adaptation of Mixed Microbial Cultures Able to Ferment Crude Glycerol Derived from Second-Generation Biodiesel

    Directory of Open Access Journals (Sweden)

    C. Varrone

    2015-01-01

    Full Text Available Objective of this study was the selection and adaptation of mixed microbial cultures (MMCs, able to ferment crude glycerol generated from animal fat-based biodiesel and produce building-blocks and green chemicals. Various adaptation strategies have been investigated for the enrichment of suitable and stable MMC, trying to overcome inhibition problems and enhance substrate degradation efficiency, as well as generation of soluble fermentation products. Repeated transfers in small batches and fed-batch conditions have been applied, comparing the use of different inoculum, growth media, and Kinetic Control. The adaptation of activated sludge inoculum was performed successfully and continued unhindered for several months. The best results showed a substrate degradation efficiency of almost 100% (about 10 g/L glycerol in 21 h and different dominant metabolic products were obtained, depending on the selection strategy (mainly 1,3-propanediol, ethanol, or butyrate. On the other hand, anaerobic sludge exhibited inactivation after a few transfers. To circumvent this problem, fed-batch mode was used as an alternative adaptation strategy, which led to effective substrate degradation and high 1,3-propanediol and butyrate production. Changes in microbial composition were monitored by means of Next Generation Sequencing, revealing a dominance of glycerol consuming species, such as Clostridium, Klebsiella, and Escherichia.

  20. Comparison of Different Strategies for Selection/Adaptation of Mixed Microbial Cultures Able to Ferment Crude Glycerol Derived from Second-Generation Biodiesel.

    Science.gov (United States)

    Varrone, C; Heggeset, T M B; Le, S B; Haugen, T; Markussen, S; Skiadas, I V; Gavala, H N

    2015-01-01

    Objective of this study was the selection and adaptation of mixed microbial cultures (MMCs), able to ferment crude glycerol generated from animal fat-based biodiesel and produce building-blocks and green chemicals. Various adaptation strategies have been investigated for the enrichment of suitable and stable MMC, trying to overcome inhibition problems and enhance substrate degradation efficiency, as well as generation of soluble fermentation products. Repeated transfers in small batches and fed-batch conditions have been applied, comparing the use of different inoculum, growth media, and Kinetic Control. The adaptation of activated sludge inoculum was performed successfully and continued unhindered for several months. The best results showed a substrate degradation efficiency of almost 100% (about 10 g/L glycerol in 21 h) and different dominant metabolic products were obtained, depending on the selection strategy (mainly 1,3-propanediol, ethanol, or butyrate). On the other hand, anaerobic sludge exhibited inactivation after a few transfers. To circumvent this problem, fed-batch mode was used as an alternative adaptation strategy, which led to effective substrate degradation and high 1,3-propanediol and butyrate production. Changes in microbial composition were monitored by means of Next Generation Sequencing, revealing a dominance of glycerol consuming species, such as Clostridium, Klebsiella, and Escherichia.

  1. Queue Length and Server Content Distribution in an Infinite-Buffer Batch-Service Queue with Batch-Size-Dependent Service

    Directory of Open Access Journals (Sweden)

    U. C. Gupta

    2015-01-01

    Full Text Available We analyze an infinite-buffer batch-size-dependent batch-service queue with Poisson arrival and arbitrarily distributed service time. Using supplementary variable technique, we derive a bivariate probability generating function from which the joint distribution of queue and server content at departure epoch of a batch is extracted and presented in terms of roots of the characteristic equation. We also obtain the joint distribution of queue and server content at arbitrary epoch. Finally, the utility of analytical results is demonstrated by the inclusion of some numerical examples which also includes the investigation of multiple zeros.

  2. Volatile fatty acid formation and utilization in anaerobic sulphidogenic batch reactors

    CSIR Research Space (South Africa)

    Greben, HA

    2006-05-01

    Full Text Available four stirred batch-test reactors (2 l) were operated, fed with artificial SO4 rich (1700 mg/l) feed water and tap water (controls). The reactors received sulphate reducing bacteria, compost bacteria and grass cuttings. The experimental period was 25...

  3. Polynomial Batch Codes for Efficient IT-PIR

    Directory of Open Access Journals (Sweden)

    Henry Ryan

    2016-10-01

    Full Text Available Private information retrieval (PIR is a way for clients to query a remote database without the database holder learning the clients’ query terms or the responses they generate. Compelling applications for PIR are abound in the cryptographic and privacy research literature, yet existing PIR techniques are notoriously inefficient. Consequently, no such PIRbased application to date has seen real-world at-scale deployment. This paper proposes new “batch coding” techniques to help address PIR’s efficiency problem. The new techniques exploit the connection between ramp secret sharing schemes and efficient information-theoretically secure PIR (IT-PIR protocols. This connection was previously observed by Henry, Huang, and Goldberg (NDSS 2013, who used ramp schemes to construct efficient “batch queries” with which clients can fetch several database records for the same cost as fetching a single record using a standard, non-batch query. The new techniques in this paper generalize and extend those of Henry et al. to construct “batch codes” with which clients can fetch several records for only a fraction the cost of fetching a single record using a standard non-batch query over an unencoded database. The batch codes are highly tuneable, providing a means to trade off (i lower server-side computation cost, (ii lower server-side storage cost, and/or (iii lower uni- or bi-directional communication cost, in exchange for a comparatively modest decrease in resilience to Byzantine database servers.

  4. Citric acid production from hydrolysate of pretreated straw cellulose by Yarrowia lipolytica SWJ-1b using batch and fed-batch cultivation.

    Science.gov (United States)

    Liu, Xiaoyan; Lv, Jinshun; Zhang, Tong; Deng, Yuanfang

    2015-01-01

    In this study, crude cellulase produced by Trichoderma reesei Rut-30 was used to hydrolyze pretreated straw. After the compositions of the hydrolysate of pretreated straw were optimized, the study showed that natural components of pretreated straw without addition of any other components such as (NH4)2SO4, KH2PO4, or Mg(2+) were suitable for citric acid production by Yarrowia lipolytica SWJ-1b, and the optimal ventilatory capacity was 10.0 L/min/L medium. Batch and fed-batch production of citric acid from the hydrolysate of pretreated straw by Yarrowia lipolytica SWJ-1b has been investigated. In the batch cultivation, 25.4 g/L and 26.7 g/L citric acid were yields from glucose and hydrolysate of straw cellulose, respectively, while the cultivation time was 120 hr. In the three-cycle fed-batch cultivation, citric acid (CA) production was increased to 42.4 g/L and the cultivation time was extended to 240 hr. However, iso-citric acid (ICA) yield in fed-batch cultivation (4.0 g/L) was similar to that during the batch cultivation (3.9 g/L), and only 1.6 g/L of reducing sugar was left in the medium at the end of fed-batch cultivation, suggesting that most of the added carbon was used in the cultivation.

  5. Batch and multi-step fed-batch enzymatic saccharification of Formiline-pretreated sugarcane bagasse at high solid loadings for high sugar and ethanol titers.

    Science.gov (United States)

    Zhao, Xuebing; Dong, Lei; Chen, Liang; Liu, Dehua

    2013-05-01

    Formiline pretreatment pertains to a biomass fractionation process. In the present work, Formiline-pretreated sugarcane bagasse was hydrolyzed with cellulases by batch and multi-step fed-batch processes at 20% solid loading. For wet pulp, after 144 h incubation with cellulase loading of 10 FPU/g dry solid, fed-batch process obtained ~150 g/L glucose and ~80% glucan conversion, while batch process obtained ~130 g/L glucose with corresponding ~70% glucan conversion. Solid loading could be further increased to 30% for the acetone-dried pulp. By fed-batch hydrolysis of the dried pulp in pH 4.8 buffer solution, glucose concentration could be 247.3±1.6 g/L with corresponding 86.1±0.6% glucan conversion. The enzymatic hydrolyzates could be well converted to ethanol by a subsequent fermentation using Saccharomices cerevisiae with ethanol titer of 60-70 g/L. Batch and fed-batch SSF indicated that Formiline-pretreated substrate showed excellent fermentability. The final ethanol concentration was 80 g/L with corresponding 82.7% of theoretical yield. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Variation of the distribution coefficient (Kd) of selenium in soils under various microbial states

    International Nuclear Information System (INIS)

    Fevrier, L.; Martin-Garin, A.; Leclerc, E.

    2007-01-01

    This study aimed to (i) evaluate whether the K d value of selenium is dependent upon the soil microbial activity and (ii) define the limitation of the use of the K d concept to describe selenium behaviour in soils when assessing the long-term radiological waste disposal risk. K d coefficients, as well as information on selenite speciation in the soil-solution, were derived from short- and long-term batch experiments with a calcareous silty clay soil in various microbial states. Soil microbial activity induced (i) an increase of the K d value from 16 l kg -1 in sterile conditions to 130 l kg -1 when the soil was amended with glucose and nitrate, and (ii) changes in selenium speciation both in the solution (presence of seleno-species other than free Se(IV)) and in the solid phase (Se linked to microorganisms). Although the K d coefficient adequately reflects the initial fractionation between soil-solid and soil-solution, it does not allow for speciation and microbial processes, which could affect reversibility, mobility and the long-term accumulation and uptake into crops

  7. Abiotic and microbial interactions during anaerobic transformations of Fe(II and NOx-

    Directory of Open Access Journals (Sweden)

    Flynn ePicardal

    2012-03-01

    Full Text Available Microbial Fe(II oxidation using NO3- as the terminal electron acceptor (nitrate-dependent Fe(II oxidation; NDFO has been studied for over 15 years. Although there are reports of autotrophic isolates and stable enrichments, many of the bacteria capable of NDFO are known organotrophic NO3- -reducers that require the presence of an organic, primary substrate, e.g., acetate, for significant amounts of Fe(II oxidation. Although the thermodynamics of Fe(II oxidation are favorable when coupled to either NO3- or NO2- reduction, the kinetics of abiotic Fe(II oxidation by NO3- are relatively slow except under special conditions. NDFO is typically studied in batch cultures containing millimolar concentrations of Fe(II, NO3-, and the primary substrate. In such systems, NO2- is often observed to accumulate in culture media during Fe(II oxidation. Compared to NO3-, abiotic reactions of biogenic NO2- and Fe(II are relatively rapid. The kinetics and reaction pathways of Fe(II oxidation by NO2- are strongly affected by medium composition and pH, reactant concentration, and the presence of Fe(II-sorptive surfaces, e.g., Fe(III oxyhydroxides and cellular surfaces. In batch cultures, the combination of abiotic and microbial Fe(II oxidation can alter product distribution and, more importantly, results in the formation of intracellular precipitates and extracellular Fe(III oxyhydroxide encrustations that apparently limit further cell growth and Fe(II oxidation. Unless steps are taken to minimize or account for potential abiotic reactions, results of microbial NDFO studies can be obfuscated by artifacts of the chosen experimental conditions, the use of inappropriate analytical methods, and the resulting uncertainties about the relative importance of abiotic and microbial reactions.In this manuscript, abiotic reactions of NO3- and NO2- with aqueous Fe2+, chelated Fe(II, and solid-phase Fe(II are reviewed along with factors that can influence overall NDFO reac

  8. Batch Computed Tomography Analysis of Projectiles

    Science.gov (United States)

    2016-05-01

    ARL-TR-7681 ● MAY 2016 US Army Research Laboratory Batch Computed Tomography Analysis of Projectiles by Michael C Golt, Chris M...Laboratory Batch Computed Tomography Analysis of Projectiles by Michael C Golt and Matthew S Bratcher Weapons and Materials Research...values to account for projectile variability in the ballistic evaluation of armor. 15. SUBJECT TERMS computed tomography , CT, BS41, projectiles

  9. Affirm VPIII microbial identification test can be used to detect gardnerella vaginalis, Candida albicans and trichomonas vaginalis microbial infections in Korean women.

    Science.gov (United States)

    Byun, Seung Won; Park, Yeon Joon; Hur, Soo Young

    2016-04-01

    The aim of this study was to compare Affirm VPIII Microbial Identification Test results for Korean women to those obtained for Gardnerella vaginalis through Nugent score, Candida albicans based on vaginal culture and Trichomonas vaginalis based on wet smear diagnostic standards. Study participants included 195 women with symptomatic or asymptomatic vulvovaginitis under hospital obstetric or gynecologic care. A definite diagnosis was made based on Nugent score for Gardnerella, vaginal culture for Candida and wet prep for Trichomonas vaginalis. Affirm VPIII Microbial Identification Test results were then compared to diagnostic standard results. Of the 195 participants, 152 were symptomatic, while 43 were asymptomatic. Final diagnosis revealed 68 (37.87%) cases of Gardnerella, 29 (14.87%) cases of Candida, one (0.51%) case of Trichomonas, and 10 (5.10%) cases of mixed infections. The detection rates achieved by each detection method (Affirm assay vs diagnostic standard) for Gardnerella and Candida were not significantly different (33.33% vs 34.8% for Gardnerella, 13.33% vs 14.87% for Candida, respectively). The sensitivity and specificity of the Affirm test for Gardnerella compared to the diagnostic standard were 75.0% and 88.98%, respectively. For Candida, the sensitivity and specificity of the Affirm test compared to the diagnostic standard were 82.76% and 98.80%, respectively. The number of Trichomonas cases was too small (1 case) to be statistically analyzed. The Affirm test is a quick tool that can help physicians diagnose and treat patients with infectious vaginitis at the point of care. © 2016 Japan Society of Obstetrics and Gynecology.

  10. Stratified randomization controls better for batch effects in 450K methylation analysis: A cautionary tale

    Directory of Open Access Journals (Sweden)

    Olive D. Buhule

    2014-10-01

    Full Text Available Background: Batch effects in DNA methylation microarray experiments can lead to spurious results if not properly handled during the plating of samples. Methods: Two pilot studies examining the association of DNA methylation patterns across the genome with obesity in Samoan men were investigated for chip- and row-specific batch effects. For each study, the DNA of 46 obese men and 46 lean men were assayed using Illumina's Infinium HumanMethylation450 BeadChip. In the first study (Sample One, samples from obese and lean subjects were examined on separate chips. In the second study (Sample Two, the samples were balanced on the chips by lean/obese status, age group, and census region. We used methylumi, watermelon, and limma R packages, as well as ComBat, to analyze the data. Principal component analysis and linear regression were respectively employed to identify the top principal components and to test for their association with the batches and lean/obese status. To identify differentially methylated positions (DMPs between obese and lean males at each locus, we used a moderated t-test.Results: Chip effects were effectively removed from Sample Two but not Sample One. In addition, dramatic differences were observed between the two sets of DMP results. After removing'' batch effects with ComBat, Sample One had 94,191 probes differentially methylated at a q-value threshold of 0.05 while Sample Two had zero differentially methylated probes. The disparate results from Sample One and Sample Two likely arise due to the confounding of lean/obese status with chip and row batch effects.Conclusion: Even the best possible statistical adjustments for batch effects may not completely remove them. Proper study design is vital for guarding against spurious findings due to such effects.

  11. Fermentative hydrogen production by microbial consortium

    Energy Technology Data Exchange (ETDEWEB)

    Maintinguer, Sandra I.; Fernandes, Bruna S.; Duarte, Iolanda C.S.; Saavedra, Nora Katia; Adorno, M. Angela T.; Varesche, M. Bernadete [Department of Hydraulics and Sanitation, School of Engineering of Sao Carlos, University of Sao Paulo, Av. Trabalhador Sao-carlense, 400, 13566-590 Sao Carlos-SP (Brazil)

    2008-08-15

    Heat pre-treatment of the inoculum associated to the pH control was applied to select hydrogen-producing bacteria and endospores-forming bacteria. The source of inoculum to the heat pre-treatment was from a UASB reactor used in the slaughterhouse waste treatment. The molecular biology analyses indicated that the microbial consortium presented microorganisms affiliated with Enterobacter cloacae (97% and 98%), Clostridium sp. (98%) and Clostridium acetobutyricum (96%), recognized as H{sub 2} and volatile acids' producers. The following assays were carried out in batch reactors in order to verify the efficiencies of sucrose conversion to H{sub 2} by the microbial consortium: (1) 630.0 mg sucrose/L, (2) 1184.0 mg sucrose/L, (3) 1816.0 mg sucrose/L and (4) 4128.0 mg sucrose/L. The subsequent yields were obtained as follows: 15% (1.2 mol H{sub 2}/mol sucrose), 20% (1.6 mol H{sub 2}/mol sucrose), 15% (1.2 mol H{sub 2}/mol sucrose) and 4% (0.3 mol H{sub 2}/mol sucrose), respectively. The intermediary products were acetic acid, butyric acid, methanol and ethanol in all of the anaerobic reactors. (author)

  12. A canned food scheduling problem with batch due date

    Science.gov (United States)

    Chung, Tsui-Ping; Liao, Ching-Jong; Smith, Milton

    2014-09-01

    This article considers a canned food scheduling problem where jobs are grouped into several batches. Jobs can be sent to the next operation only when all the jobs in the same batch have finished their processing, i.e. jobs in a batch, have a common due date. This batch due date problem is quite common in canned food factories, but there is no efficient heuristic to solve the problem. The problem can be formulated as an identical parallel machine problem with batch due date to minimize the total tardiness. Since the problem is NP hard, two heuristics are proposed to find the near-optimal solution. Computational results comparing the effectiveness and efficiency of the two proposed heuristics with an existing heuristic are reported and discussed.

  13. Prunus dulcis, Batch

    African Journals Online (AJOL)

    STORAGESEVER

    2010-06-07

    Jun 7, 2010 ... almond (Prunus dulcis, Batch) genotypes as revealed by PCR analysis. Yavar Sharafi1*, Jafar Hajilou1, Seyed AbolGhasem Mohammadi2, Mohammad Reza Dadpour1 and Sadollah Eskandari3. 1Department of Horticulture, Faculty of Agriculture, University of Tabriz, Tabriz, 5166614766, Iran.

  14. Batch Test Screening of Industrial Product/Byproduct Filter Materials for Agricultural Drainage Water Treatment

    Directory of Open Access Journals (Sweden)

    Barry J. Allred

    2017-10-01

    Full Text Available Filter treatment may be a viable means for removing the nitrate (NO3−, phosphate (PO43−, and pesticides discharged with agricultural drainage waters that cause adverse environmental impacts within the U.S. on local, regional, and national scales. Laboratory batch test screening for agricultural drainage water treatment potential was conducted on 58 industrial product/byproduct filter materials grouped into six categories: (1 high carbon content media; (2 high iron content media; (3 high aluminum content media; (4 surfactant modified clay/zeolite; (5 coal combustion residuals; and (6 spent foundry sands. Based on a percent contaminant removal criteria of 75% or greater, seven industrial products/byproducts were found to meet this standard for NO3− alone, 44 met this standard for PO43−, and 25 met this standard for the chlorinated triazine herbicide, atrazine. Using a 50% or greater contaminant removal criteria, five of the industrial product/byproduct filter materials exhibited potential for removing NO3−, PO43−, and atrazine together; eight showed capability for combined NO3− and PO43− removal; 21 showed capability for combined PO43− and atrazine removal; and nine showed capability for combined NO3− and atrazine removal. The results of this study delineated some potential industrial product/byproduct filter materials for drainage water treatment; however, a complete feasibility evaluation for drainage water treatment of any of these filter materials will require much more extensive testing.

  15. Supervision of Fed-Batch Fermentations

    DEFF Research Database (Denmark)

    Gregersen, Lars; Jørgensen, Sten Bay

    1999-01-01

    Process faults may be detected on-line using existing measurements based upon modelling that is entirely data driven. A multivariate statistical model is developed and used for fault diagnosis of an industrial fed-batch fermentation process. Data from several (25) batches are used to develop...... a model for cultivation behaviour. This model is validated against 13 data sets and demonstrated to explain a significant amount of variation in the data. The multivariate model may directly be used for process monitoring. With this method faults are detected in real time and the responsible measurements...

  16. 40 CFR 63.1408 - Aggregate batch vent stream provisions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Aggregate batch vent stream provisions... § 63.1408 Aggregate batch vent stream provisions. (a) Emission standards. Owners or operators of aggregate batch vent streams at a new or existing affected source shall comply with either paragraph (a)(1...

  17. Alternative approach to estimate the hydrolysis rate constant of particulate material from batch data

    International Nuclear Information System (INIS)

    Koch, Konrad; Drewes, Jörg E.

    2014-01-01

    Highlights: • An alternative to the commonly used first-order approach is presented. • A relationship between k h and the 1% criterion of the VDI 4630 is deduced. • Equation is proposed to directly calculate k h without the need for data fitting. • Hydrolysis constant k h can then easily be read-off from a table. - Abstract: As anaerobic batch tests are easy to conduct, they are commonly used to assess the effects of different operational factors on the anaerobic digestion process. Hydrolysis of particulate material is often assumed to be the rate limiting step in anaerobic digestion. Its velocity is often estimated by data fitting from batch tests. In this study, a Monod-type alternative to the commonly used first-order approach is presented. The approach was adapted from balancing a continuously stirred-tank reactor and better accommodates the fact that even after a long incubation time, some of the methane potential of the substrate remains untapped in the digestate. In addition, an equation is proposed to directly calculate the hydrolysis constant from the time when the daily gas production is less than 1% of the total gas production. The hydrolysis constant can then easily be read-off from a table when the batch test duration is known

  18. Hydrothermal liquefaction of biomass: Developments from batch to continuous process

    OpenAIRE

    Elliott, DC; Biller, P; Ross, AB; Schmidt, AJ; Jones, SB

    2015-01-01

    This review describes the recent results in hydrothermal liquefaction (HTL) of biomass in continuous-flow processing systems. Although much has been published about batch reactor tests of biomass HTL, there is only limited information yet available on continuous-flow tests, which can provide a more reasonable basis for process design and scale-up for commercialization. High-moisture biomass feedstocks are the most likely to be used in HTL. These materials are described and results of their pr...

  19. Microbial physiology-based model of ethanol metabolism in subsurface sediments

    Science.gov (United States)

    Jin, Qusheng; Roden, Eric E.

    2011-07-01

    A biogeochemical reaction model was developed based on microbial physiology to simulate ethanol metabolism and its influence on the chemistry of anoxic subsurface environments. The model accounts for potential microbial metabolisms that degrade ethanol, including those that oxidize ethanol directly or syntrophically by reducing different electron acceptors. Out of the potential metabolisms, those that are active in the environment can be inferred by fitting the model to experimental observations. This approach was applied to a batch sediment slurry experiment that examined ethanol metabolism in uranium-contaminated aquifer sediments from Area 2 at the U.S. Department of Energy Field Research Center in Oak Ridge, TN. According to the simulation results, complete ethanol oxidation by denitrification, incomplete ethanol oxidation by ferric iron reduction, ethanol fermentation to acetate and H 2, hydrogenotrophic sulfate reduction, and acetoclastic methanogenesis: all contributed significantly to the degradation of ethanol in the aquifer sediments. The assemblage of the active metabolisms provides a frame work to explore how ethanol amendment impacts the chemistry of the environment, including the occurrence and levels of uranium. The results can also be applied to explore how diverse microbial metabolisms impact the progress and efficacy of bioremediation strategies.

  20. Effects of gene-augmentation on the formation, characteristics and microbial community of 2,4-dichlorophenoxyacetic acid degrading aerobic microbial granules

    International Nuclear Information System (INIS)

    Quan, Xiang-chun; Ma, Jing-yun; Xiong, Wei-cong; Yang, Zhi-feng

    2011-01-01

    Highlights: ► The first study to cultivate aerobic granules capable of utilizing 2,4-D as the sole carbon source. ► Granules cultivated through gene-augmentation were first compared systematically with the control on granule formation, degradation kinetics, morphology, and microbial community. ► The first report on the fate of transconjugats in the granules during long term operation after bioaugmentation. ► The first study to isolate in dominant bacteria in 2,4-D degrading microbial granules. - Abstract: Development of 2,4-dichlorophenoxyacetic acid (2,4-D) degrading aerobic granular sludge was conducted in two sequencing batch reactors (SBR) with one bioaugmented with a plasmid pJP4 donor strain Pseudomonas putida SM1443 and the other as a control. Half-matured aerobic granules pre-grown on glucose were used as the starting seeds and a two-stage operation strategy was applied. Granules capable of utilizing 2,4-D (about 500 mg/L) as the sole carbon source was successfully cultivated in both reactors. Gene-augmentation resulted in the enhancement of 2,4-D degradation rates by the percentage of 65–135% for the granules on Day 18, and 6–24% for the granules on Day 105. Transconjugants receiving plasmid pJP4 were established in the granule microbial community after bioaugmentation and persisted till the end of operation. Compared with the control granules, the granules in the bioaugmented reactor demonstrated a better settling ability, larger size, more abundant microbial diversity and stronger tolerance to 2,4-D. The finally obtained granules in the bioaugmented and control reactor had a granule size of around 600 μm and 500 μm, a Shannon–Weaver diversity index (H) of 0.96 and 0.55, respectively. A shift in microbial community was found during the granulation process.

  1. Effect of glass-batch makeup on the melting process

    International Nuclear Information System (INIS)

    Hrma, Pavel R.; Schweiger, Michael J.; Humrickhouse, Carissa J.; Moody, J. Adam; Tate, Rachel M.; Rainsdon, Timothy T.; Tegrotenhuis, Nathan E.; Arrigoni, Benjamin M.; Marcial, Jose; Rodriguez, Carmen P.; Tincher, Benjamin

    2010-01-01

    The response of a glass batch to heating is determined by the batch makeup and in turn determines the rate of melting. Batches formulated for a high-alumina nuclear waste to be vitrified in an all-electric melter were heated at a constant temperature-increase rate to determine changes in melting behavior in response to the selection of batch chemicals and silica grain-size as well as the addition of heat-generating reactants. The type of batch materials and the size of silica grains determine how much, if any, primary foam occurs during melting. Small quartz grains, 5 (micro)m in size, caused extensive foaming because their major portion dissolved at temperatures 800 C when batch gases no longer evolved. The exothermal reaction of nitrates with sucrose was ignited at a temperature as low as 160 C and caused a temporary jump in temperature of several hundred degrees. Secondary foam, the source of which is oxygen from redox reactions, occurred in all batches of a limited composition variation involving five oxides, B 2 O 3 , CaO, Li 2 O, MgO, and Na 2 O. The foam volume at the maximum volume-increase rate was a weak function of temperature and melt basicity. Neither the batch makeup nor the change in glass composition had a significant impact on the dissolution of silica grains. The impacts of primary foam generation on glass homogeneity and the rate of melting in large-scale continuous furnaces have yet to be established via mathematical modeling and melter experiments.

  2. Effect Of Glass-Batch Makeup On The Melting Process

    International Nuclear Information System (INIS)

    Kruger, A.A.; Hrma, P.

    2010-01-01

    The response of a glass batch to heating is determined by the batch makeup and in turn determines the rate of melting. Batches formulated for a high-alumina nuclear waste to be vitrified in an all-electric melter were heated at a constant temperature-increase rate to determine changes in melting behavior in response to the selection of batch chemicals and silica grain-size as well as the addition of heat-generating reactants. The type of batch materials and the size of silica grains determine how much, if any, primary foam occurs during melting. Small quartz grains, 5 (micro)m in size, caused extensive foaming because their major portion dissolved at temperatures 800 C when batch gases no longer evolved. The exothermal reaction of nitrates with sucrose was ignited at a temperature as low as 160 C and caused a temporary jump in temperature of several hundred degrees. Secondary foam, the source of which is oxygen from redox reactions, occurred in all batches of a limited composition variation involving five oxides, B 2 O 3 , CaO, Li 2 O, MgO, and Na 2 O. The foam volume at the maximum volume-increase rate was a weak function of temperature and melt basicity. Neither the batch makeup nor the change in glass composition had a significant impact on the dissolution of silica grains. The impacts of primary foam generation on glass homogeneity and the rate of melting in large-scale continuous furnaces have yet to be established via mathematical modeling and melter experiments.

  3. Characterization of Microbial Communities in Subsurface Nuclear Blast Cavities of the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Moser, Duane P.; Bruckner, Jim; Fisher, Jen; Czerwinski, Ken; Russell, Charles E.; Zavarin, Mavrik

    2010-09-01

    This U.S. Department of Energy (DOE) Environmental Remediation Sciences Project (ERSP) was designed to test fundamental hypotheses concerning the existence and nature of indigenous microbial populations of Nevada Test Site subsurface nuclear test/detonation cavities. Now called Subsurface Biogeochemical Research (SBR), this program’s Exploratory Research (ER) element, which funded this research, is designed to support high risk, high potential reward projects. Here, five cavities (GASCON, CHANCELLOR, NASH, ALEMAN, and ALMENDRO) and one tunnel (U12N) were sampled using bailers or pumps. Molecular and cultivation-based techniques revealed bacterial signatures at five sites (CHANCELLOR may be lifeless). SSU rRNA gene libraries contained diverse and divergent microbial sequences affiliated with known metal- and sulfur-cycling microorganisms, organic compound degraders, microorganisms from deep mines, and bacteria involved in selenate reduction and arsenite oxidation. Close relatives of Desulforudis audaxviator, a microorganism thought to subsist in the terrestrial deep subsurface on H2 and SO42- produced by radiochemical reactions, was detected in the tunnel waters. NTS-specific media formulations were used to culture and quantify nitrate-, sulfate-, iron-reducing, fermentative, and methanogenic microorganisms. Given that redox manipulations mediated by microorganisms can impact the mobility of DOE contaminants, our results should have implications for management strategies at this and other DOE sites.

  4. Characterization of microbial communities in subsurface nuclear blast cavities of the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Moser, Duane P; Czerwinski, Ken; Russell, Charles E; Zavarin, Mavrik

    2010-07-13

    This US Department of Energy (DOE) Environmental Remediation Sciences Project (ERSP) was designed to test fundamental hypotheses concerning the existence and nature of indigenous microbial populations of Nevada Test Site subsurface nuclear test/detonation cavities. Now called Subsurface Biogeochemical Research (SBR), this program's Exploratory Research (ER) element, which funded this research, is designed to support high risk, high potential reward projects. Here, five cavities (GASCON, CHANCELLOR, NASH, ALEMAN, and ALMENDRO) and one tunnel (U12N) were sampled using bailers or pumps. Molecular and cultivation-based techniques revealed bacterial signatures at five sites (CHANCELLOR may be lifeless). SSU rRNA gene libraries contained diverse and divergent microbial sequences affiliated with known metal- and sulfur-cycling microorganisms, organic compound degraders, microorganisms from deep mines, and bacteria involved in selenate reduction and arsenite oxidation. Close relatives of Desulforudis audaxviator, a microorganism thought to subsist in the terrestrial deep subsurface on H2 and SO42- produced by radiochemical reactions, was detected in the tunnel waters. NTS-specific media formulations were used to culture and quantify nitrate-, sulfate-, iron-reducing, fermentative, and methanogenic microorganisms. Given that redox manipulations mediated by microorganisms can impact the mobility of DOE contaminants, our results should have implications for management strategies at this and other DOE sites.

  5. Characterization of Microbial Communities in Subsurface Nuclear Blast Cavities of the Nevada Test Site

    International Nuclear Information System (INIS)

    Moser, Duane P.; Bruckner, Jim; Fisher, Jen; Czerwinski, Ken; Russell, Charles E.; Zavarin, Mavrik

    2010-01-01

    This U.S. Department of Energy (DOE) Environmental Remediation Sciences Project (ERSP) was designed to test fundamental hypotheses concerning the existence and nature of indigenous microbial populations of Nevada Test Site subsurface nuclear test/detonation cavities. Now called Subsurface Biogeochemical Research (SBR), this program's Exploratory Research (ER) element, which funded this research, is designed to support high risk, high potential reward projects. Here, five cavities (GASCON, CHANCELLOR, NASH, ALEMAN, and ALMENDRO) and one tunnel (U12N) were sampled using bailers or pumps. Molecular and cultivation-based techniques revealed bacterial signatures at five sites (CHANCELLOR may be lifeless). SSU rRNA gene libraries contained diverse and divergent microbial sequences affiliated with known metal- and sulfur-cycling microorganisms, organic compound degraders, microorganisms from deep mines, and bacteria involved in selenate reduction and arsenite oxidation. Close relatives of Desulforudis audaxviator, a microorganism thought to subsist in the terrestrial deep subsurface on H 2 and SO 4 2- produced by radiochemical reactions, was detected in the tunnel waters. NTS-specific media formulations were used to culture and quantify nitrate-, sulfate-, iron-reducing, fermentative, and methanogenic microorganisms. Given that redox manipulations mediated by microorganisms can impact the mobility of DOE contaminants, our results should have implications for management strategies at this and other DOE sites.

  6. Analysis of polarization methods for elimination of power overshoot in microbial fuel cells

    KAUST Repository

    Watson, Valerie J.; Logan, Bruce E.

    2011-01-01

    Polarization curves from microbial fuel cells (MFCs) often show an unexpectedly large drop in voltage with increased current densities, leading to a phenomenon in the power density curve referred to as "power overshoot". Linear sweep voltammetry (LSV, 1 mV s- 1) and variable external resistances (at fixed intervals of 20 min) over a single fed-batch cycle in an MFC both resulted in power overshoot in power density curves due to anode potentials. Increasing the anode enrichment time from 30 days to 100 days did not eliminate overshoot, suggesting that insufficient enrichment of the anode biofilm was not the primary cause. Running the reactor at a fixed resistance for a full fed-batch cycle (~ 1 to 2 days), however, completely eliminated the overshoot in the power density curve. These results show that long times at a fixed resistance are needed to stabilize current generation by bacteria in MFCs, and that even relatively slow LSV scan rates and long times between switching circuit loads during a fed-batch cycle may produce inaccurate polarization and power density results for these biological systems. © 2010 Elsevier B.V. All rights reserved.

  7. Fuzzy batch controller for granular materials

    OpenAIRE

    Zamyatin Nikolaj; Smirnov Gennadij; Fedorchuk Yuri; Rusina Olga

    2018-01-01

    The paper focuses on batch control of granular materials in production of building materials from fluorine anhydrite. Batching equipment is intended for smooth operation and timely feeding of supply hoppers at a required level. Level sensors and a controller of an asynchronous screw drive motor are used to control filling of the hopper with industrial anhydrite binders. The controller generates a required frequency and ensures required productivity of a feed conveyor. Mamdani-type fuzzy infer...

  8. Research on AO/FO batch management technology in aircraft production

    Directory of Open Access Journals (Sweden)

    Yin Haijun

    2018-01-01

    Full Text Available Based on the analysis of the characteristics and significance of AO/FO in the process of aircraft production, this paper analyzes the format rules of AO/FO batch management from the perspective of technology realization, and details the AO/FO The change of the query and the change status tracking, introduces the AO/FO single-stand status display in the batch management, increases the structure definition of the attribute table in the batch management, and designs the relevant algorithm to store and calculate the batch information. Finally, based on the above theory support AO/FO batch management system successfully used in the production of a machine.

  9. Laboratory tests on sorption and transformation of the insecticide flubendiamide in Japanese tea field soil

    Energy Technology Data Exchange (ETDEWEB)

    Hartung, Susen [Technische Universität Braunschweig, Institute of Environmental and Sustainable Chemistry, Hagenring 30, 38106 Braunschweig (Germany); Iwasaki, Masahide; Ogawa, Naoto [Shizuoka University, Faculty of Agriculture, Department of Biological and Environmental Science, 836 Ohya, Suruga-ku, Shizuoka 422-8529 (Japan); Kreuzig, Robert, E-mail: r.kreuzig@tu-bs.de [Technische Universität Braunschweig, Institute of Environmental and Sustainable Chemistry, Hagenring 30, 38106 Braunschweig (Germany)

    2013-01-15

    Flubendiamide belongs to the modern insecticides applied in Japanese tea cultivation to control smaller tea tortrix and tea leaf roller. Since fate and behavior in soil have been only monitored sparsely and fragmentarily until today, laboratory tests were performed on sorption, leaching, biotransformation and photo-induced biotransformation of flubendiamide in two different soils. In batch equilibrium tests, K{sub d} and K{sub OC} values were 15 and 298 L kg{sup −1} for the Japanese tea field soil as well as 16 and 1610 L kg{sup −1} for the German arable field soil classifying flubendiamide to be moderately mobile and slightly mobile, respectively. The affinity to the tea field soil was additionally confirmed by soil column tests where flubendiamide was predominantly retarded in the topsoil layers resulting in a percolate contamination of only 0.002 mg L{sup −1}. In the aerobic biotransformation tests, flubendiamide did not substantially disappear within the 122-d incubation period. Due to DT{sub 50} > 122 d, flubendiamide was assessed very persistent. Supplementary, photo-induced impacts on biotransformation were studied in a special laboratory irradiation system. Despite a 14-d irradiation period, photo-induced biotransformation in the tea field soil was not identifiable, neither by HPLC/DAD nor by LC/MS/MS. 3-d irradiation tests in photosensibilizing acetone, however, showed that the primary photo-transformation product desiodo-flubendiamide was formed. How far this photochemical reaction may also occur in soil of perennial tea plant stands, however, has to be checked in field studies. - Highlights: ► Laboratory tests on sorption, leaching, microbial and photo-induced microbial transformation were performed. ► Strong sorption was revealed by batch equilibrium and column tests. ► High persistence was found in aerobic biotransformation tests. ► An enhanced biotransformation by photo-induced impacts could not be confirmed. ► Field studies are

  10. Laboratory tests on sorption and transformation of the insecticide flubendiamide in Japanese tea field soil

    International Nuclear Information System (INIS)

    Hartung, Susen; Iwasaki, Masahide; Ogawa, Naoto; Kreuzig, Robert

    2013-01-01

    Flubendiamide belongs to the modern insecticides applied in Japanese tea cultivation to control smaller tea tortrix and tea leaf roller. Since fate and behavior in soil have been only monitored sparsely and fragmentarily until today, laboratory tests were performed on sorption, leaching, biotransformation and photo-induced biotransformation of flubendiamide in two different soils. In batch equilibrium tests, K d and K OC values were 15 and 298 L kg −1 for the Japanese tea field soil as well as 16 and 1610 L kg −1 for the German arable field soil classifying flubendiamide to be moderately mobile and slightly mobile, respectively. The affinity to the tea field soil was additionally confirmed by soil column tests where flubendiamide was predominantly retarded in the topsoil layers resulting in a percolate contamination of only 0.002 mg L −1 . In the aerobic biotransformation tests, flubendiamide did not substantially disappear within the 122-d incubation period. Due to DT 50 > 122 d, flubendiamide was assessed very persistent. Supplementary, photo-induced impacts on biotransformation were studied in a special laboratory irradiation system. Despite a 14-d irradiation period, photo-induced biotransformation in the tea field soil was not identifiable, neither by HPLC/DAD nor by LC/MS/MS. 3-d irradiation tests in photosensibilizing acetone, however, showed that the primary photo-transformation product desiodo-flubendiamide was formed. How far this photochemical reaction may also occur in soil of perennial tea plant stands, however, has to be checked in field studies. - Highlights: ► Laboratory tests on sorption, leaching, microbial and photo-induced microbial transformation were performed. ► Strong sorption was revealed by batch equilibrium and column tests. ► High persistence was found in aerobic biotransformation tests. ► An enhanced biotransformation by photo-induced impacts could not be confirmed. ► Field studies are necessary to elucidate fate and

  11. Contribution of the microbial and meat endogenous enzymes to the free amino acid and amine contents of dry fermented sausages.

    Science.gov (United States)

    Hierro, E; de La Hoz, L; Ordóñez, J A

    1999-03-01

    The role of the starter culture and meat endogenous enzymes on the free amino acid and amine contents of dry fermented sausages was studied. Five batches of sausages were prepared. The control batch was manufactured with aseptic ingredients without microbial inoculation. The other four experimental batches were manufactured with aseptic ingredients inoculated with Lactobacillus plantarum 4045 or Micrococcus-12 or L. plantarum 4045 and Micrococcus-12 or L. plantarum 4045 and Staphylococcus sp. Their effects on pH, a(w), myofibrillar proteins, and free amino acid and amine contents were studied. Sausages inoculated only with L. plantarum 4045 or with this starter combined with a Micrococcaceae had the lowest pH as a result of carbohydrate fermentation. In all batches similar patterns were observed for myofibrillar proteins and free amino acids which could indicate that meat endogenous proteases play an important role in proteolytic phenomena. No changes were observed in the amine fraction, indicating that the strains used as starter cultures did not show amino acid decarboxylase activity.

  12. Biodegradation of bilge water: Batch test under anaerobic and aerobic conditions and performance of three pilot aerobic Moving Bed Biofilm Reactors (MBBRs) at different filling fractions.

    Science.gov (United States)

    Vyrides, Ioannis; Drakou, Efi-Maria; Ioannou, Stavros; Michael, Fotoula; Gatidou, Georgia; Stasinakis, Athanasios S

    2018-07-01

    The bilge water that is stored at the bottom of the ships is saline and greasy wastewater with a high Chemical Oxygen Demand (COD) fluctuations (2-12 g COD L -1 ). The aim of this study was to examine at a laboratory scale the biodegradation of bilge water using first anaerobic granular sludge followed by aerobic microbial consortium (consisted of 5 strains) and vice versa and then based on this to implement a pilot scale study. Batch results showed that granular sludge and aerobic consortium can remove up to 28% of COD in 13 days and 65% of COD removal in 4 days, respectively. The post treatment of anaerobic and aerobic effluent with aerobic consortium and granular sludge resulted in further 35% and 5% COD removal, respectively. The addition of glycine betaine or nitrates to the aerobic consortium did not enhance significantly its ability to remove COD from bilge water. The aerobic microbial consortium was inoculated in 3 pilot (200 L) Moving Bed Biofilm Reactors (MBBRs) under filling fractions of 10%, 20% and 40% and treated real bilge water for 165 days under 36 h HRT. The MBBR with a filling fraction of 40% resulted in the highest COD decrease (60%) compared to the operation of the MBBRs with a filling fraction of 10% and 20%. GC-MS analysis on 165 day pointed out the main organic compounds presence in the influent and in the MBBR (10% filling fraction) effluent. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Mechanistic Understanding of Microbial Plugging for Improved Sweep Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Steven Bryant; Larry Britton

    2008-09-30

    Microbial plugging has been proposed as an effective low cost method of permeability reduction. Yet there is a dearth of information on the fundamental processes of microbial growth in porous media, and there are no suitable data to model the process of microbial plugging as it relates to sweep efficiency. To optimize the field implementation, better mechanistic and volumetric understanding of biofilm growth within a porous medium is needed. In particular, the engineering design hinges upon a quantitative relationship between amount of nutrient consumption, amount of growth, and degree of permeability reduction. In this project experiments were conducted to obtain new data to elucidate this relationship. Experiments in heterogeneous (layered) beadpacks showed that microbes could grow preferentially in the high permeability layer. Ultimately this caused flow to be equally divided between high and low permeability layers, precisely the behavior needed for MEOR. Remarkably, classical models of microbial nutrient uptake in batch experiments do not explain the nutrient consumption by the same microbes in flow experiments. We propose a simple extension of classical kinetics to account for the self-limiting consumption of nutrient observed in our experiments, and we outline a modeling approach based on architecture and behavior of biofilms. Such a model would account for the changing trend of nutrient consumption by bacteria with the increasing biomass and the onset of biofilm formation. However no existing model can explain the microbial preference for growth in high permeability regions, nor is there any obvious extension of the model for this observation. An attractive conjecture is that quorum sensing is involved in the heterogeneous bead packs.

  14. STATISTICAL EVALUATION OF SMALL SCALE MIXING DEMONSTRATION SAMPLING AND BATCH TRANSFER PERFORMANCE - 12093

    Energy Technology Data Exchange (ETDEWEB)

    GREER DA; THIEN MG

    2012-01-12

    The ability to effectively mix, sample, certify, and deliver consistent batches of High Level Waste (HLW) feed from the Hanford Double Shell Tanks (DST) to the Waste Treatment and Immobilization Plant (WTP) presents a significant mission risk with potential to impact mission length and the quantity of HLW glass produced. DOE's Tank Operations Contractor, Washington River Protection Solutions (WRPS) has previously presented the results of mixing performance in two different sizes of small scale DSTs to support scale up estimates of full scale DST mixing performance. Currently, sufficient sampling of DSTs is one of the largest programmatic risks that could prevent timely delivery of high level waste to the WTP. WRPS has performed small scale mixing and sampling demonstrations to study the ability to sufficiently sample the tanks. The statistical evaluation of the demonstration results which lead to the conclusion that the two scales of small DST are behaving similarly and that full scale performance is predictable will be presented. This work is essential to reduce the risk of requiring a new dedicated feed sampling facility and will guide future optimization work to ensure the waste feed delivery mission will be accomplished successfully. This paper will focus on the analytical data collected from mixing, sampling, and batch transfer testing from the small scale mixing demonstration tanks and how those data are being interpreted to begin to understand the relationship between samples taken prior to transfer and samples from the subsequent batches transferred. An overview of the types of data collected and examples of typical raw data will be provided. The paper will then discuss the processing and manipulation of the data which is necessary to begin evaluating sampling and batch transfer performance. This discussion will also include the evaluation of the analytical measurement capability with regard to the simulant material used in the demonstration tests. The

  15. Variance bias analysis for the Gelbard's batch method

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jae Uk; Shim, Hyung Jin [Seoul National Univ., Seoul (Korea, Republic of)

    2014-05-15

    In this paper, variances and the bias will be derived analytically when the Gelbard's batch method is applied. And then, the real variance estimated from this bias will be compared with the real variance calculated from replicas. Variance and the bias were derived analytically when the batch method was applied. If the batch method was applied to calculate the sample variance, covariance terms between tallies which exist in the batch were eliminated from the bias. With the 2 by 2 fission matrix problem, we could calculate real variance regardless of whether or not the batch method was applied. However as batch size got larger, standard deviation of real variance was increased. When we perform a Monte Carlo estimation, we could get a sample variance as the statistical uncertainty of it. However, this value is smaller than the real variance of it because a sample variance is biased. To reduce this bias, Gelbard devised the method which is called the Gelbard's batch method. It has been certificated that a sample variance get closer to the real variance when the batch method is applied. In other words, the bias get reduced. This fact is well known to everyone in the MC field. However, so far, no one has given the analytical interpretation on it.

  16. Microbial ureolysis in the seawater-catalysed urine phosphorus recovery system: Kinetic study and reactor verification.

    Science.gov (United States)

    Tang, Wen-Tao; Dai, Ji; Liu, Rulong; Chen, Guang-Hao

    2015-12-15

    Our previous study has confirmed the feasibility of using seawater as an economical precipitant for urine phosphorus (P) precipitation. However, we still understand very little about the ureolysis in the Seawater-based Urine Phosphorus Recovery (SUPR) system despite its being a crucial step for urine P recovery. In this study, batch experiments were conducted to investigate the kinetics of microbial ureolysis in the seawater-urine system. Indigenous bacteria from urine and seawater exhibited relatively low ureolytic activity, but they adapted quickly to the urine-seawater mixture during batch cultivation. During cultivation, both the abundance and specific ureolysis rate of the indigenous bacteria were greatly enhanced as confirmed by a biomass-dependent Michaelis-Menten model. The period for fully ureolysis was decreased from 180 h to 2.5 h after four cycles of cultivation. Based on the successful cultivation, a lab-scale SUPR reactor was set up to verify the fast ureolysis and efficient P recovery in the SUPR system. Nearly complete urine P removal was achieved in the reactor in 6 h without adding any chemicals. Terminal Restriction Fragment Length Polymorphism (TRFLP) analysis revealed that the predominant groups of bacteria in the SUPR reactor likely originated from seawater rather than urine. Moreover, batch tests confirmed the high ureolysis rates and high phosphorus removal efficiency induced by cultivated bacteria in the SUPR reactor under seawater-to-urine mixing ratios ranging from 1:1 to 9:1. This study has proved that the enrichment of indigenous bacteria in the SUPR system can lead to sufficient ureolytic activity for phosphate precipitation, thus providing an efficient and economical method for urine P recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Coproduction of acetic acid and electricity by application of microbial fuel cell technology to vinegar fermentation.

    Science.gov (United States)

    Tanino, Takanori; Nara, Youhei; Tsujiguchi, Takuya; Ohshima, Takayuki

    2013-08-01

    The coproduction of a useful material and electricity via a novel application of microbial fuel cell (MFC) technology to oxidative fermentation was investigated. We focused on vinegar production, i.e., acetic acid fermentation, as an initial and model useful material that can be produced by oxidative fermentation in combination with MFC technology. The coproduction of acetic acid and electricity by applying MFC technology was successfully demonstrated by the simultaneous progress of acetic acid fermentation and electricity generation through a series of repeated batch fermentations. Although the production rate of acetic acid was very small, it increased with the number of repeated batch fermentations that were conducted. We obtained nearly identical (73.1%) or larger (89.9%) acetic acid yields than that typically achieved by aerated fermentation (75.8%). The open-cycle voltages measured before and after fermentation increased with the total fermentation time and reached a maximum value of 0.521 V prior to the third batch fermentation. The maximum current and power densities measured in this study (19.1 μA/cm² and 2.47 μW/cm², respectively) were obtained after the second batch fermentation. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. 40 CFR 63.1322 - Batch process vents-reference control technology.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Batch process vents-reference control technology. 63.1322 Section 63.1322 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Batch process vents—reference control technology. (a) Batch process vents. The owner or operator of a...

  19. [Electricity generation from corn steepwater using microbial fuel cell technology].

    Science.gov (United States)

    Lu, Na; Zhou, Shun-Gui; Zhang, Jin-Tao; Ni, Jin-Ren

    2009-02-15

    Corn steepwater containing 49,732.2 mg/L of chemical oxygen demand (COD) was used as fuel for a membrane electrode assembly microbial fuel cell (MEA-MFC), which could generate electricity and treat the wastewater at the same time. During a batch experiment of 94 days with a fixed 1,000 Omega external resistance, the maximum voltage output of 525.0 mV and power density of 169.6 mW/m2 were obtained after 17 days, corresponding to the current density, internal resistance and open voltage of 440.2 mA/m2, 350 Omega and 619.5 mV, respectively. However, data showed that the coulombic efficiency was only 1.6%, suggesting very limited COD was utilized for electricity generation. At the conclusion of the test, the removals of COD and ammonia-nitrogen were achieved 51.6% and 25.8%, respectively. This study demonstrates that corn steepwater can be used for power generation in MFC with simultaneous accomplishments of wastewater treatment, providing a novel approach for the safe disposal and recycle of corn steepwater.

  20. Protocol for the microbial degradation of coumaphos from cattle dip

    International Nuclear Information System (INIS)

    Mulbry, W.; Karns, J.

    1997-01-01

    Insecticide wastes generated from livestock dipping operations are well suited for biodegradation processes since these wastes are concentrated, contained, and have no other significant toxic components. About 400,000 L of cattle dip wastes containing approximately 1500 mg/L of the organophosphate coumaphos are generated yearly along the Mexican border from a USDA program designed to control disease carrying cattle ticks. Use of unlined evaporation pits for the disposal of these wastes has resulted in highly contaminated soils underlying these sites. Previous work has shown that microbial consortia present in selected dip wastes can be induced to mineralize coumaphos. Our laboratory results show that these consortia are able to colonize plastic fibers in trickling biofilters and can be used in these filters to quickly metabolize coumaphos from dip wastes. A field scale biofilter capable of treating 15,000 litre batches of dip waste was used to reduce the coumaphos concentration in two successive 11,000 litre batch trials from 2000 mg/L to 10 mg/L in approximately 14 d. (author)

  1. Quantum dots as chemiluminescence enhancers tested by sequential injection technique: Comparison of flow and flow-batch conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sklenářová, Hana, E-mail: sklenarova@faf.cuni.cz [Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Department of Analytical Chemistry, Hradec Králové (Czech Republic); Voráčová, Ivona [Institute of Analytical Chemistry of the CAS, v. v. i., Brno (Czech Republic); Chocholouš, Petr; Polášek, Miroslav [Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Department of Analytical Chemistry, Hradec Králové (Czech Republic)

    2017-04-15

    The effect of 0.01–100 µmol L{sup −1} Quantum Dots (QDs) with different emission wavelengths (520–640 nm) and different surface modifications (mercaptopropionic, mercaptoundecanoic, thioglycolic acids and mercaptoethylamine) on permanganate-induced and luminol–hydrogen peroxide chemiluminescence (CL) was studied in detail by a sequential injection technique using a spiral detection flow cell and a flow-batch detection cell operated in flow and stop-flow modes. In permanganate CL system no significant enhancement of the CL signal was observed while for the luminol–hydrogen peroxide CL substantial increase (>100% and >90% with the spiral detection cell in flow and stop-flow modes, respectively) was attained for CdTe QDs. Enhancement exceeding 120% was observed for QDs with emissions at 520, 575 and 603 nm (sizes of 2.8 nm, 3.3 nm and 3.6 nm) using the flow-batch detection cell in the stop-flow mode. Pronounced effect was noted for surface modifications while mercaptoethylamine was the most efficient in CL enhancement compared to mercaptopropionic acid the most commonly applied coating. Significant difference between results obtained in flow and flow-batch conditions based on the entire kinetics of the extremely fast CL reaction was discussed. The increase of the CL signal was always accompanied by reduced lifetime of the CL emission thus application of QDs in flow techniques should be always coupled with the study of the CL lifetime.

  2. Microbial Electrodialysis Cell for Simultaneous Water Desalination and Hydrogen Gas Production

    KAUST Repository

    Mehanna, Maha

    2010-12-15

    A new approach to water desalination is to use exoelectrogenic bacteria to generate electrical power from the biodegradation of organic matter, moving charged ions from a middle chamber between two membranes in a type of microbial fuel cell called a microbial desalination cell. Desalination efficiency using this approach is limited by the voltage produced by the bacteria. Here we examine an alternative strategy based on boosting the voltage produced by the bacteria to achieve hydrogen gas evolution from the cathode using a three-chambered system we refer to as a microbial electrodialysis cell (MEDC). We examined the use of the MEDC process using two different initial NaCl concentrations of 5 g/L and 20 g/L. Conductivity in the desalination chamber was reduced by up to 68 ± 3% in a single fed-batch cycle, with electrical energy efficiencies reaching 231 ± 59%, and maximum hydrogen production rates of 0.16 ± 0.05 m3 H2/m3 d obtained at an applied voltage of 0.55 V. The advantage of this system compared to a microbial fuel cell approach is that the potentials between the electrodes can be better controlled, and the hydrogen gas that is produced can be used to recover energy to make the desalination process self-sustaining with respect to electrical power requirements. © 2010 American Chemical Society.

  3. Microbial Electrodialysis Cell for Simultaneous Water Desalination and Hydrogen Gas Production

    KAUST Repository

    Mehanna, Maha; Kiely, Patrick D.; Call, Douglas F.; Logan, Bruce. E.

    2010-01-01

    A new approach to water desalination is to use exoelectrogenic bacteria to generate electrical power from the biodegradation of organic matter, moving charged ions from a middle chamber between two membranes in a type of microbial fuel cell called a microbial desalination cell. Desalination efficiency using this approach is limited by the voltage produced by the bacteria. Here we examine an alternative strategy based on boosting the voltage produced by the bacteria to achieve hydrogen gas evolution from the cathode using a three-chambered system we refer to as a microbial electrodialysis cell (MEDC). We examined the use of the MEDC process using two different initial NaCl concentrations of 5 g/L and 20 g/L. Conductivity in the desalination chamber was reduced by up to 68 ± 3% in a single fed-batch cycle, with electrical energy efficiencies reaching 231 ± 59%, and maximum hydrogen production rates of 0.16 ± 0.05 m3 H2/m3 d obtained at an applied voltage of 0.55 V. The advantage of this system compared to a microbial fuel cell approach is that the potentials between the electrodes can be better controlled, and the hydrogen gas that is produced can be used to recover energy to make the desalination process self-sustaining with respect to electrical power requirements. © 2010 American Chemical Society.

  4. Effects of Microbial Transglutaminase on Physicochemical, Microbial and Sensorial Properties of Kefir Produced by Using Mixture Cow's and Soymilk.

    Science.gov (United States)

    Temiz, Hasan; Dağyıldız, Kübra

    2017-01-01

    The objective of this research was to investigate the effects microbial transglutaminase (m-TGs) on the physicochemical, microbial and sensory properties of kefir produced by using mix cow and soymilk. Kefir batches were prepared using 0, 0.5, 1 and 1.5 Units m-TGs for per g of milk protein. Adding m-TGs to milk caused an increase in the pH and viscosity and caused a decrease in titratable acidity and syneresis in the kefir samples. Total bacteria, lactobacilli and streptococci counts decreased, while yeast counts increased in all the samples during storage. Alcohols and acids compounds have increased in all the samples except in the control samples, while carbonyl compounds have decreased in all the samples during storage (1-30 d). The differences in the percentage of alcohols, carbonyl compounds and acids in total volatiles on the 1st and the 30th d of storage were observed at 8.47-23.52%, 6.94-25.46% and 59.64-63.69%, respectively. The consumer evaluation of the kefir samples showed that greater levels of acceptability were found for samples which had been added 1.5 U m-TGs for per g of milk protein.

  5. DESTRUCTION OF TETRAPHENYLBORATE IN TANK 48H USING WET AIR OXIDATION BATCH BENCH SCALE AUTOCLAVE TESTING WITH ACTUAL RADIOACTIVE TANK 48H WASTE

    Energy Technology Data Exchange (ETDEWEB)

    Adu-Wusu, K; Paul Burket, P

    2009-03-31

    Wet Air Oxidation (WAO) is one of the two technologies being considered for the destruction of Tetraphenylborate (TPB) in Tank 48H. Batch bench-scale autoclave testing with radioactive (actual) Tank 48H waste is among the tests required in the WAO Technology Maturation Plan. The goal of the autoclave testing is to validate that the simulant being used for extensive WAO vendor testing adequately represents the Tank 48H waste. The test objective was to demonstrate comparable test results when running simulated waste and real waste under similar test conditions. Specifically: (1) Confirm the TPB destruction efficiency and rate (same reaction times) obtained from comparable simulant tests, (2) Determine the destruction efficiency of other organics including biphenyl, (3) Identify and quantify the reaction byproducts, and (4) Determine off-gas composition. Batch bench-scale stirred autoclave tests were conducted with simulated and actual Tank 48H wastes at SRNL. Experimental conditions were chosen based on continuous-flow pilot-scale simulant testing performed at Siemens Water Technologies Corporation (SWT) in Rothschild, Wisconsin. The following items were demonstrated as a result of this testing. (1) Tetraphenylborate was destroyed to below detection limits during the 1-hour reaction time at 280 C. Destruction efficiency of TPB was > 99.997%. (2) Other organics (TPB associated compounds), except biphenyl, were destroyed to below their respective detection limits. Biphenyl was partially destroyed in the process, mainly due to its propensity to reside in the vapor phase during the WAO reaction. Biphenyl is expected to be removed in the gas phase during the actual process, which is a continuous-flow system. (3) Reaction byproducts, remnants of MST, and the PUREX sludge, were characterized in this work. Radioactive species, such as Pu, Sr-90 and Cs-137 were quantified in the filtrate and slurry samples. Notably, Cs-137, boron and potassium were shown as soluble as a

  6. Pathogen detection, testing, and control in fresh broccoli sprouts

    Directory of Open Access Journals (Sweden)

    Fahey Jed W

    2006-04-01

    Full Text Available Abstract Background The recent increased interest in consuming green vegetable sprouts has been tempered by the fact that fresh sprouts can in some cases be vehicles for food-borne illnesses. They must be grown according to proper conditions of sanitation and handled as a food product rather than as an agricultural commodity. When sprouts are grown in accordance with the criteria proposed from within the sprout industry, developed by regulatory agencies, and adhered to by many sprouters, green sprouts can be produced with very low risk. Contamination may occur when these guidelines are not followed. Methods A one year program of microbial hold-and-release testing, conducted in concert with strict seed and facility cleaning procedures by 13 U.S. broccoli sprout growers was evaluated. Microbial contamination tests were performed on 6839 drums of sprouts, equivalent to about 5 million consumer packages of fresh green sprouts. Results Only 24 (0.75% of the 3191 sprout samples gave an initial positive test for Escherichia coli O157:H7 or Salmonella spp., and when re-tested, 3 drums again tested positive. Composite testing (e.g., pooling up to 7 drums for pathogen testing was equally sensitive to single drum testing. Conclusion By using a "test-and-re-test" protocol, growers were able to minimize crop destruction. By pooling drums for testing, they were also able to reduce testing costs which now represent a substantial portion of the costs associated with sprout growing. The test-and-hold scheme described herein allowed those few batches of contaminated sprouts to be found prior to packaging and shipping. These events were isolated, and only safe sprouts entered the food supply.

  7. Biological reduction of chlorinated solvents: Batch-scale geochemical modeling

    Science.gov (United States)

    Kouznetsova, Irina; Mao, Xiaomin; Robinson, Clare; Barry, D. A.; Gerhard, Jason I.; McCarty, Perry L.

    2010-09-01

    Simulation of biodegradation of chlorinated solvents in dense non-aqueous phase liquid (DNAPL) source zones requires a model that accounts for the complexity of processes involved and that is consistent with available laboratory studies. This paper describes such a comprehensive modeling framework that includes microbially mediated degradation processes, microbial population growth and decay, geochemical reactions, as well as interphase mass transfer processes such as DNAPL dissolution, gas formation and mineral precipitation/dissolution. All these processes can be in equilibrium or kinetically controlled. A batch modeling example was presented where the degradation of trichloroethene (TCE) and its byproducts and concomitant reactions (e.g., electron donor fermentation, sulfate reduction, pH buffering by calcite dissolution) were simulated. Local and global sensitivity analysis techniques were applied to delineate the dominant model parameters and processes. Sensitivity analysis indicated that accurate values for parameters related to dichloroethene (DCE) and vinyl chloride (VC) degradation (i.e., DCE and VC maximum utilization rates, yield due to DCE utilization, decay rate for DCE/VC dechlorinators) are important for prediction of the overall dechlorination time. These parameters influence the maximum growth rate of the DCE and VC dechlorinating microorganisms and, thus, the time required for a small initial population to reach a sufficient concentration to significantly affect the overall rate of dechlorination. Self-inhibition of chlorinated ethenes at high concentrations and natural buffering provided by the sediment were also shown to significantly influence the dechlorination time. Furthermore, the analysis indicated that the rates of the competing, nonchlorinated electron-accepting processes relative to the dechlorination kinetics also affect the overall dechlorination time. Results demonstrated that the model developed is a flexible research tool that is

  8. Batch-to-Batch Quality Consistency Evaluation of Botanical Drug Products Using Multivariate Statistical Analysis of the Chromatographic Fingerprint

    OpenAIRE

    Xiong, Haoshu; Yu, Lawrence X.; Qu, Haibin

    2013-01-01

    Botanical drug products have batch-to-batch quality variability due to botanical raw materials and the current manufacturing process. The rational evaluation and control of product quality consistency are essential to ensure the efficacy and safety. Chromatographic fingerprinting is an important and widely used tool to characterize the chemical composition of botanical drug products. Multivariate statistical analysis has showed its efficacy and applicability in the quality evaluation of many ...

  9. Fuzzy batch controller for granular materials

    Directory of Open Access Journals (Sweden)

    Zamyatin Nikolaj

    2018-01-01

    Full Text Available The paper focuses on batch control of granular materials in production of building materials from fluorine anhydrite. Batching equipment is intended for smooth operation and timely feeding of supply hoppers at a required level. Level sensors and a controller of an asynchronous screw drive motor are used to control filling of the hopper with industrial anhydrite binders. The controller generates a required frequency and ensures required productivity of a feed conveyor. Mamdani-type fuzzy inference is proposed for controlling the speed of the screw that feeds mixture components. As related to production of building materials based on fluoride anhydrite, this method is used for the first time. A fuzzy controller is proven to be effective in controlling the filling level of the supply hopper. In addition, the authors determined optimal parameters of the batching process to ensure smooth operation and production of fluorine anhydrite materials of specified properties that can compete with gypsum-based products.

  10. Measurement processing for state estimation and fault identification in batch fermentations

    Directory of Open Access Journals (Sweden)

    R. Dondo

    2004-09-01

    Full Text Available This work describes an application of maximum likelihood identification and statistical detection techniques for determining the presence and nature of abnormal behaviors in batch fermentations. By appropriately organizing these established techniques, a novel algorithm that is able to detect and isolate faults in nonlinear and uncertain processes was developed. The technique processes residuals from a nonlinear filter based on the assumed model of fermentation. This information is combined with mass balances to conduct statistical tests that are used as the core of the detection procedure. The approach uses a sliding window to capture the present statistical properties of filtering and mass-balance residuals. In order to avoid divergence of the nonlinear monitor filter, the maximum likelihood states and parameters are periodically estimated. The maximum likelihood parameters are used to update the kinetic parameter values of the monitor filter. If the occurrence of a fault is detected, alternative faulty model structures are evaluated statistically through the use of log-likelihood function values and chi2 detection tests. Simulation obtained for xanthan gum batch fermentations are encouraging.

  11. Integrated challenge test: a new approach evaluating quantitative risk assessment of Listeria in ready to eat foods

    Directory of Open Access Journals (Sweden)

    Paolo Matteini

    2012-02-01

    Full Text Available The study was aimed to predict the maximum concentration of Listeria monocytogenes during the shelf life in chicken liver paté. The prediction has been performed using the integrated challenge test: a test based on the interaction between indigenous lactic flora and L. monocytogenes and their growth parameters. Two different approaches were investigated: the former is based on the time difference between the onset of the L. monocytogenes and the lactic flora stationary phases, while the latter is based on the lactic flora concentration capable to induct the stationary phase of L. monocytogenes. Three different strains of L. monocytogenes, isolated from meat products, were used to perform three challenge tests. Triplicate samples from three different batches of liver paté were inoculated with a single-strain inoculum of 1.8 Log CFU/g. Samples were then stored at 4°C, 8°C and 12°C. Lactobacillus spp. (ISO 15214:1998 and L. monocytogenes (UNI EN ISO 11290-02:2005 plate counts were performed daily on each sample until the stationary phase was reached by both populations. The challenge test results were input in the Combase software to determine the growth parameters, later used for the calculation method. Predictive data were then statically assessed against the results of two additional challenge tests using triplicate samples from two different batches, the same strains and the same single-strain inoculum. Samples from the first batch were stored for 5 days at 4°C + 5 days at 8°C + 5 days at 12°C; samples from the second batch were stored for 3 days at 4°C + 3 days at 8°C + 4 days at 12°C. The results obtained showed that both approaches provided results very close to the reality. Therefore the Integrated challenge test is useful to determine the maximum concentration of L. monocytogenes, by simply knowing the concentration of the concerned microbial populations at a given time.

  12. Mineral solubility and free energy controls on microbial reaction kinetics: Application to contaminant transport in the subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Taillefert, Martial [Georgia Inst. of Technology, Atlanta, GA (United States); Van Cappellen, Philippe [Univ. of Waterloo, ON (Canada)

    2016-11-14

    Recent developments in the theoretical treatment of geomicrobial reaction processes have resulted in the formulation of kinetic models that directly link the rates of microbial respiration and growth to the corresponding thermodynamic driving forces. The overall objective of this project was to verify and calibrate these kinetic models for the microbial reduction of uranium(VI) in geochemical conditions that mimic as much as possible field conditions. The approach combined modeling of bacterial processes using new bioenergetic rate laws, laboratory experiments to determine the bioavailability of uranium during uranium bioreduction, evaluation of microbial growth yield under energy-limited conditions using bioreactor experiments, competition experiments between metabolic processes in environmentally relevant conditions, and model applications at the field scale. The new kinetic descriptions of microbial U(VI) and Fe(III) reduction should replace those currently used in reactive transport models that couple catabolic energy generation and growth of microbial populations to the rates of biogeochemical redox processes. The above work was carried out in collaboration between the groups of Taillefert (batch reactor experiments and reaction modeling) at Georgia Tech and Van Cappellen (retentostat experiments and reactive transport modeling) at University of Waterloo (Canada).

  13. Bacterial communities in batch and continuous-flow wetlands treating the herbicide S-metolachlor

    Energy Technology Data Exchange (ETDEWEB)

    Elsayed, O.F. [Laboratory of Hydrology and Geochemistry of Strasbourg (LHyGeS), UMR 7517 University of Strasbourg/ENGEES/CNRS (France); Génétique Moléculaire, Génomique, Microbiologie (GMGM), UMR 7156 University of Strasbourg/CNRS (France); Maillard, E. [Laboratory of Hydrology and Geochemistry of Strasbourg (LHyGeS), UMR 7517 University of Strasbourg/ENGEES/CNRS (France); Vuilleumier, S. [Génétique Moléculaire, Génomique, Microbiologie (GMGM), UMR 7156 University of Strasbourg/CNRS (France); Imfeld, G., E-mail: imfeld@unistra.fr [Laboratory of Hydrology and Geochemistry of Strasbourg (LHyGeS), UMR 7517 University of Strasbourg/ENGEES/CNRS (France)

    2014-11-15

    Knowledge of wetland bacterial communities in the context of pesticide contamination and hydrological regime is scarce. We investigated the bacterial composition in constructed wetlands receiving Mercantor Gold{sup ®} contaminated water (960 g L{sup −1} of the herbicide S-metolachlor, > 80% of the S-enantiomer) operated under continuous-flow or batch modes to evaluate the impact of the hydraulic regime. In the continuous-flow wetland, S-metolachlor mass removal was > 40%, whereas in the batch wetland, almost complete removal of S-metolachlor (93–97%) was observed. Detection of ethanesulfonic and oxanilic acid degradation products further indicated S-metolachlor biodegradation in the two wetlands. The dominant bacterial populations were characterised by terminal restriction fragment length polymorphism (T-RFLP) and 454 pyrosequencing. The bacterial profiles evolved during the first 35 days of the experiment, starting from a composition similar to that of inlet water, with the use of nitrate and to a lesser extent sulphate and manganese as terminal electron acceptors for microbial metabolism. Proteobacteria were the most abundant phylum, with Beta-, Alpha- and Gammaproteobacteria representing 26%, 19% and 17% respectively of total bacterial abundance. Bacterial composition in wetland water changed gradually over time in continuous-flow wetland and more abruptly in the batch wetland. Differences in overall bacterial water structure in the two systems were modest but significant (p = 0.008), and S-metolachlor, nitrate, and total inorganic carbon concentrations correlated with changes in the bacterial profiles. Together, the results highlight that bacterial composition profiles and their dynamics may be used as bioindicators of herbicide exposure and hydraulic disturbances in wetland systems. - Highlights: • We evaluated the bacterial composition in wetlands treating S-metolachlor • Hydraulic regime impacted biogeochemical processes and S-metolachlor removal

  14. Bacterial communities in batch and continuous-flow wetlands treating the herbicide S-metolachlor

    International Nuclear Information System (INIS)

    Elsayed, O.F.; Maillard, E.; Vuilleumier, S.; Imfeld, G.

    2014-01-01

    Knowledge of wetland bacterial communities in the context of pesticide contamination and hydrological regime is scarce. We investigated the bacterial composition in constructed wetlands receiving Mercantor Gold ® contaminated water (960 g L −1 of the herbicide S-metolachlor, > 80% of the S-enantiomer) operated under continuous-flow or batch modes to evaluate the impact of the hydraulic regime. In the continuous-flow wetland, S-metolachlor mass removal was > 40%, whereas in the batch wetland, almost complete removal of S-metolachlor (93–97%) was observed. Detection of ethanesulfonic and oxanilic acid degradation products further indicated S-metolachlor biodegradation in the two wetlands. The dominant bacterial populations were characterised by terminal restriction fragment length polymorphism (T-RFLP) and 454 pyrosequencing. The bacterial profiles evolved during the first 35 days of the experiment, starting from a composition similar to that of inlet water, with the use of nitrate and to a lesser extent sulphate and manganese as terminal electron acceptors for microbial metabolism. Proteobacteria were the most abundant phylum, with Beta-, Alpha- and Gammaproteobacteria representing 26%, 19% and 17% respectively of total bacterial abundance. Bacterial composition in wetland water changed gradually over time in continuous-flow wetland and more abruptly in the batch wetland. Differences in overall bacterial water structure in the two systems were modest but significant (p = 0.008), and S-metolachlor, nitrate, and total inorganic carbon concentrations correlated with changes in the bacterial profiles. Together, the results highlight that bacterial composition profiles and their dynamics may be used as bioindicators of herbicide exposure and hydraulic disturbances in wetland systems. - Highlights: • We evaluated the bacterial composition in wetlands treating S-metolachlor • Hydraulic regime impacted biogeochemical processes and S-metolachlor removal

  15. Performance and microbial community composition dynamics of aerobic granular sludge from sequencing batch bubble column reactors operated at 20 degrees C, 30 degrees C, and 35 degrees C.

    Science.gov (United States)

    Ebrahimi, Sirous; Gabus, Sébastien; Rohrbach-Brandt, Emmanuelle; Hosseini, Maryam; Rossi, Pierre; Maillard, Julien; Holliger, Christof

    2010-07-01

    Two bubble column sequencing batch reactors fed with an artificial wastewater were operated at 20 degrees C, 30 degrees C, and 35 degrees C. In a first stage, stable granules were obtained at 20 degrees C, whereas fluffy structures were observed at 30 degrees C. Molecular analysis revealed high abundance of the operational taxonomic unit 208 (OTU 208) affiliating with filamentous bacteria Leptothrix spp. at 30 degrees C, an OTU much less abundant at 20 degrees C. The granular sludge obtained at 20 degrees C was used for the second stage during which one reactor was maintained at 20 degrees C and the second operated at 30 degrees C and 35 degrees C after prior gradual increase of temperature. Aerobic granular sludge with similar physical properties developed in both reactors but it had different nutrient elimination performances and microbial communities. At 20 degrees C, acetate was consumed during anaerobic feeding, and biological phosphorous removal was observed when Rhodocyclaceae-affiliating OTU 214 was present. At 30 degrees C and 35 degrees C, acetate was mainly consumed during aeration and phosphorous removal was insignificant. OTU 214 was almost absent but the Gammaproteobacteria-affiliating OTU 239 was more abundant than at 20 degrees C. Aerobic granular sludge at all temperatures contained abundantly the OTUs 224 and 289 affiliating with Sphingomonadaceae indicating that this bacterial family played an important role in maintaining stable granular structures.

  16. Interpreting isotopic analyses of microbial sulfate reduction in oil reservoirs

    Science.gov (United States)

    Hubbard, C. G.; Engelbrektson, A. L.; Druhan, J. L.; Cheng, Y.; Li, L.; Ajo Franklin, J. B.; Coates, J. D.; Conrad, M. E.

    2013-12-01

    Microbial sulfate reduction in oil reservoirs is often associated with secondary production of oil where seawater (28 mM sulfate) is commonly injected to maintain reservoir pressure and displace oil. The hydrogen sulfide produced can cause a suite of operating problems including corrosion of infrastructure, health exposure risks and additional processing costs. We propose that monitoring of the sulfur and oxygen isotopes of sulfate can be used as early indicators that microbial sulfate reduction is occurring, as this process is well known to cause substantial isotopic fractionation. This approach relies on the idea that reactions with reservoir (iron) minerals can remove dissolved sulfide, thereby delaying the transport of the sulfide through the reservoir relative to the sulfate in the injected water. Changes in the sulfate isotopes due to microbial sulfate reduction may therefore be measurable in the produced water before sulfide is detected. However, turning this approach into a predictive tool requires (i) an understanding of appropriate fractionation factors for oil reservoirs, (ii) incorporation of isotopic data into reservoir flow and reactive transport models. We present here the results of preliminary batch experiments aimed at determining fractionation factors using relevant electron donors (e.g. crude oil and volatile fatty acids), reservoir microbial communities and reservoir environmental conditions (pressure, temperature). We further explore modeling options for integrating isotope data and discuss whether single fractionation factors are appropriate to model complex environments with dynamic hydrology, geochemistry, temperature and microbiology gradients.

  17. Effect of cloacal plugging on microbial recovery from partially processed broilers.

    Science.gov (United States)

    Musgrove, M T; Cason, J A; Fletcher, D L; Stern, N J; Cox, N A; Bailey, J S

    1997-03-01

    Experiments were performed to test the contribution of bacteria contained in the intestinal tract of broilers at the beginning of processing to counts on the exterior of modified New York-dressed carcasses. Thirty-two birds were processed for each of seven replications. Within each replication, batches of four birds were electrocuted, scalded, and picked, with batches alternating between treatment and control groups. Treated birds were cloacally plugged with rayon fiber tampons prior to electrocution to prevent escape of intestinal contents during scalding and picking. Control birds were processed in the same manner, except that cloacal plugs were inserted immediately after defeathering to reduce escape of intestinal contents during sampling. Gram-negative enteric bacteria and Campylobacter spp. were enumerated on carcasses by whole carcass rinse procedure and in cecal contents. Counts were converted to log10 and subjected to analysis of variance. Cecal levels of Gram-negative enterics were significantly higher for plugged birds, but there was not a significant difference between levels of cecal Campylobacter spp. between treatment groups. Plugging before electrocution resulted in significantly lower levels (2.5 vs 3.0 log10 cfu/mL) of Campylobacter spp. and Gram-negative enteric bacteria (3.0 vs 3.4 log10 cfu/mL) in carcass rinses of treatment birds than in those of controls. All carcasses were positive for Gram-negative enterics. Cloacal plugging resulted in significantly lower incidence of Campylobacter spp. carcass contamination as determined by chi-square. Intestinal carriage of both campylobacters and Gram-negative enteric bacteria appears to influence the microbial quality of the carcass during processing.

  18. Microbial nar-GFP cell sensors reveal oxygen limitations in highly agitated and aerated laboratory-scale fermentors

    Directory of Open Access Journals (Sweden)

    Rao Govind

    2009-01-01

    Full Text Available Abstract Background Small-scale microbial fermentations are often assumed to be homogeneous, and oxygen limitation due to inadequate micromixing is often overlooked as a potential problem. To assess the relative degree of micromixing, and hence propensity for oxygen limitation, a new cellular oxygen sensor has been developed. The oxygen responsive E. coli nitrate reductase (nar promoter was used to construct an oxygen reporter plasmid (pNar-GFPuv which allows cell-based reporting of oxygen limitation. Because there are greater than 109 cells in a fermentor, one can outfit a vessel with more than 109 sensors. Our concept was tested in high density, lab-scale (5 L, fed-batch, E. coli fermentations operated with varied mixing efficiency – one verses four impellers. Results In both cases, bioreactors were maintained identically at greater than 80% dissolved oxygen (DO during batch phase and at approximately 20% DO during fed-batch phase. Trends for glucose consumption, biomass and DO showed nearly identical behavior. However, fermentations with only one impeller showed significantly higher GFPuv expression than those with four, indicating a higher degree of fluid segregation sufficient for cellular oxygen deprivation. As the characteristic time for GFPuv expression (approx 90 min. is much larger than that for mixing (approx 10 s, increased specific fluorescence represents an averaged effect of oxygen limitation over time and by natural extension, over space. Conclusion Thus, the pNar-GFPuv plasmid enabled bioreactor-wide oxygen sensing in that bacterial cells served as individual recirculating sensors integrating their responses over space and time. We envision cell-based oxygen sensors may find utility in a wide variety of bioprocessing applications.

  19. Utilization of microbial oil obtained from crude glycerol for the production of polyol and its subsequent conversion to polyurethane foams.

    Science.gov (United States)

    Uprety, Bijaya K; Reddy, Jayanth Venkatarama; Dalli, Sai Swaroop; Rakshit, Sudip K

    2017-07-01

    We have demonstrated possible use of microbial oil in biopolymer industries. Microbial oil was produced from biodiesel based crude glycerol and subsequently converted into polyol. Fermentation of crude glycerol in a batch bioreactor using Rhodosporidium toruloides ATCC 10788 produced 18.69g/L of lipid at the end of 7days. The microbial oil was then chemically converted to polyol and characterized using FT-IR and 1 H NMR. For comparison, canola oil and palm oil were also converted into their respective polyols. The hydroxyl numbers of polyols from canola, palm and microbial oil were found to be 266.86, 222.32 and 230.30 (mgKOH/g of sample) respectively. All the polyols were further converted into rigid and semi-rigid polyurethanes (maintaining the molar -NCO/-OH ratio of 1.1) to examine their suitability in polymer applications. Conversion of microbial lipid to polyurethane foam also provides a new route for the production of polymers using biodiesel based crude glycerol. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. History based batch method preserving tally means

    International Nuclear Information System (INIS)

    Shim, Hyung Jin; Choi, Sung Hoon

    2012-01-01

    In the Monte Carlo (MC) eigenvalue calculations, the sample variance of a tally mean calculated from its cycle-wise estimates is biased because of the inter-cycle correlations of the fission source distribution (FSD). Recently, we proposed a new real variance estimation method named the history-based batch method in which a MC run is treated as multiple runs with small number of histories per cycle to generate independent tally estimates. In this paper, the history-based batch method based on the weight correction is presented to preserve the tally mean from the original MC run. The effectiveness of the new method is examined for the weakly coupled fissile array problem as a function of the dominance ratio and the batch size, in comparison with other schemes available

  1. Stochastic models to study the impact of mixing on a fed-batch culture of Saccharomyces cerevisiae.

    Science.gov (United States)

    Delvigne, F; Lejeune, A; Destain, J; Thonart, P

    2006-01-01

    The mechanisms of interaction between microorganisms and their environment in a stirred bioreactor can be modeled by a stochastic approach. The procedure comprises two submodels: a classical stochastic model for the microbial cell circulation and a Markov chain model for the concentration gradient calculus. The advantage lies in the fact that the core of each submodel, i.e., the transition matrix (which contains the probabilities to shift from a perfectly mixed compartment to another in the bioreactor representation), is identical for the two cases. That means that both the particle circulation and fluid mixing process can be analyzed by use of the same modeling basis. This assumption has been validated by performing inert tracer (NaCl) and stained yeast cells dispersion experiments that have shown good agreement with simulation results. The stochastic model has been used to define a characteristic concentration profile experienced by the microorganisms during a fermentation test performed in a scale-down reactor. The concentration profiles obtained in this way can explain the scale-down effect in the case of a Saccharomyces cerevisiae fed-batch process. The simulation results are analyzed in order to give some explanations about the effect of the substrate fluctuation dynamics on S. cerevisiae.

  2. Kinetics of sugars consumption and ethanol inhibition in carob pulp fermentation by Saccharomyces cerevisiae in batch and fed-batch cultures.

    Science.gov (United States)

    Lima-Costa, Maria Emília; Tavares, Catarina; Raposo, Sara; Rodrigues, Brígida; Peinado, José M

    2012-05-01

    The waste materials from the carob processing industry are a potential resource for second-generation bioethanol production. These by-products are small carob kibbles with a high content of soluble sugars (45-50%). Batch and fed-batch Saccharomyces cerevisiae fermentations of high density sugar from carob pods were analyzed in terms of the kinetics of sugars consumption and ethanol inhibition. In all the batch runs, 90-95% of the total sugar was consumed and transformed into ethanol with a yield close to the theoretical maximum (0.47-0.50 g/g), and a final ethanol concentration of 100-110 g/l. In fed-batch runs, fresh carob extract was added when glucose had been consumed. This addition and the subsequent decrease of ethanol concentrations by dilution increased the final ethanol production up to 130 g/l. It seems that invertase activity and yeast tolerance to ethanol are the main factors to be controlled in carob fermentations. The efficiency of highly concentrated carob fermentation makes it a very promising process for use in a second-generation ethanol biorefinery.

  3. Selection of chemically defined media for CHO cell fed-batch culture processes

    NARCIS (Netherlands)

    Pan, X.; Streefland, M.; Dalm, C.; Wijffels, R.H.; Martens, D.E.

    2017-01-01

    Two CHO cell clones derived from the same parental CHOBC cell line and producing the same monoclonal antibody (BC-G, a low producing clone; BC-P, a high producing clone) were tested in four basal media in all possible combinations with three feeds (=12 conditions) in fed-batch cultures.
    Higher

  4. Batch calculations in CalcHEP

    International Nuclear Information System (INIS)

    Pukhov, A.

    2003-01-01

    CalcHEP is a clone of the CompHEP project which is developed by the author outside of the CompHEP group. CompHEP/CalcHEP are packages for automatic calculations of elementary particle decay and collision properties in the lowest order of perturbation theory. The main idea prescribed into the packages is to make available passing on from the Lagrangian to the final distributions effectively with a high level of automation. According to this, the packages were created as a menu driven user friendly programs for calculations in the interactive mode. From the other side, long-time calculations should be done in the non-interactive regime. Thus, from the beginning CompHEP has a problem of batch calculations. In CompHEP 33.23 the batch session was realized by mean of interactive menu which allows to the user to formulate the task for batch. After that the not-interactive session was launched. This way is too restricted, not flexible, and leads to doubling in programming. In this article I discuss another approach how one can force an interactive program to work in non-interactive mode. This approach was realized in CalcHEP 2.1 disposed on http://theory.sinp.msu.ru/~pukhov/calchep.html

  5. E-cigarette liquids: Constancy of content across batches and accuracy of labeling.

    Science.gov (United States)

    Etter, Jean-François; Bugey, Aurélie

    2017-10-01

    To assess whether bottles of refill liquids for e-cigarettes were filled true to label, whether their content was constant across two production batches, and whether they contained impurities. In 2013, we purchased on the Internet 18 models from 11 brands of e-liquids. We purchased a second sample of the same models 4months later. We analyzed their content in nicotine, anabasine, propylene glycol, glycerol, ethylene glycol and diethylene glycol, and tested their pH. The median difference between the nicotine value on the labels and the nicotine content in the bottles was 0.3mg/mL (range -5.4 to +3.5mg/mL, i.e. -8% to +30%). For 82% of the samples, the actual nicotine content was within 10% of the value on the labels. All models contained glycerol (median 407mg/mL), and all but three models contained propylene glycol (median 650mg/mL). For all samples, levels of anabasine, ethylene glycol and diethylene glycol were below our limits of detection. The pH of all the e-liquids was alkaline (median pH=9.1; range 8.1 to 9.9). The measured content of two batches of the same model varied by a median of 0% across batches for propylene glycol, 1% for glycerol, 0% for pH, and 0.5% for nicotine (range -15% to +21%; 5th and 95th percentiles: -15% and +10%). The nicotine content of these e-liquids matched the labels on the bottles, and was relatively constant across production batches. The content of propylene glycol and glycerol was also stable across batches, as was the pH. Copyright © 2017. Published by Elsevier Ltd.

  6. Isotopic insights into microbial sulfur cycling in oil reservoirs

    Directory of Open Access Journals (Sweden)

    Christopher G Hubbard

    2014-09-01

    Full Text Available Microbial sulfate reduction in oil reservoirs (biosouring is often associated with secondary oil production where seawater containing high sulfate concentrations (~28 mM is injected into a reservoir to maintain pressure and displace oil. The sulfide generated from biosouring can cause corrosion of infrastructure, health exposure risks, and higher production costs. Isotope monitoring is a promising approach for understanding microbial sulfur cycling in reservoirs, enabling early detection of biosouring, and understanding the impact of souring. Microbial sulfate reduction is known to result in large shifts in the sulfur and oxygen isotope compositions of the residual sulfate, which can be distinguished from other processes that may be occurring in oil reservoirs, such as precipitation of sulfate and sulfide minerals. Key to the success of this method is using the appropriate isotopic fractionation factors for the conditions and processes being monitored. For a set of batch incubation experiments using a mixed microbial culture with crude oil as the electron donor, we measured a sulfur fractionation factor for sulfate reduction of -30‰. We have incorporated this result into a simplified 1D reservoir reactive transport model to highlight how isotopes can help discriminate between biotic and abiotic processes affecting sulfate and sulfide concentrations. Modeling results suggest that monitoring sulfate isotopes can provide an early indication of souring for reservoirs with reactive iron minerals that can remove the produced sulfide, especially when sulfate reduction occurs in the mixing zone between formation waters containing elevated concentrations of volatile fatty acids and injection water containing elevated sulfate. In addition, we examine the role of reservoir thermal, geochemical, hydrological, operational and microbiological conditions in determining microbial souring dynamics and hence the anticipated isotopic signatures.

  7. Biodegradation of high concentrations of phenol by baker’s yeast in anaerobic sequencing batch reactor

    Directory of Open Access Journals (Sweden)

    Ali Asghar Najafpoor

    2015-06-01

    Full Text Available Background: Phenol, as a pure substance, is used in many fields because of its disinfectant, germicidal, local anesthetic, and peptizing properties. Aqueous solutions of phenol are produced as waste in industries and discharged into the environment. Therefore, elevated concentrations of phenol may be found in air or water because of industrial discharge or the use of phenolic products. Method: The strains of Saccharomyces cerevisiae used in this project were natural strains previously purchased from Razavy company. They were grown at 30°C on Petri plates containing yeast extract glucose (YGC and then purified by being spread onto new plates, and isolated colonies were obtained. These colonies provided the basis of selection. Prepared strains were applied in anaerobic sequencing batch reactors (ASBRs as first seed. The experiment conditions were optimized using response surface methodology (RSM. After the determined runs were performed using Design-Expert software, data were analyzed using mentioned software as well. Results: This study evaluated the capability of baker’s yeast to remove phenol in high concentrations. The tested strains showed excellent tolerance to phenol toxicity at concentrations up to 6100 mg/L. Study of the batch degradation process showed that the phenol removal rate could exceed 99.9% in 24 hours at a concentration of 1000 mg/L. The results showed catechol is the first intermediate product of phenol degradation. In survey results of the Design–Expert software, R2 and Adeq precision were 0.97 and 25.65, respectively. Conclusion: The results demonstrated that ASBR performs robustly under variable influent concentrations of inhibitory compounds. The high removal performance despite the high phenol concentration may be a result of reactor operating strategies. Based on the progressive increase of inlet phenol concentration, allowing for an enhanced biomass acclimation in a short time, results at the microbiological levels

  8. Application of real-time PCR to determination of combined effect of antibiotics on Bacteria, Methanogenic Archaea, Archaea in anaerobic sequencing batch reactors.

    Science.gov (United States)

    Aydin, Sevcan; Ince, Bahar; Ince, Orhan

    2015-06-01

    This study evaluated the long-term effects of erythromycin-tetracycline-sulfamethoxazole (ETS) and sulfamethoxazole-tetracycline (ST) antibiotic combinations on the microbial community and examined the ways in which these antimicrobials impact the performance of anaerobic reactors. Quantitative real-time PCR was used to determine the effect that different antibiotic combinations had on the total and active Bacteria, Archae and Methanogenic Archae. Three primer sets that targeted metabolic genes encoding formylterahydrofolate synthetase, methyl-coenzyme M reductase and acetyl-coA synthetase were also used to determine the inhibition level on the mRNA expression of the homoacetogens, methanogens and specifically acetoclastic methanogens, respectively. These microorganisms play a vital role in the anaerobic degradation of organic waste and targeting these gene expressions offers operators or someone at a treatment plant the potential to control and the improve the anaerobic system. The results of the investigation revealed that acetogens have a competitive advantage over Archaea in the presence of ETS and ST combinations. Although the efficiency with which methane production takes place and the quantification of microbial populations in both the ETS and ST reactors decreased as antibiotic concentrations increased, the ETS batch reactor performed better than the ST batch reactor. According to the expression of genes results, the syntrophic interaction of acetogens and methanogens is critical to the performance of the ETS and ST reactors. Failure to maintain the stability of these microorganisms resulted in a decrease in the performance and stability of the anaerobic reactors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Spatial and temporal variation in Baltic sprat (Sprattus sprattus balticus S.) batch fecundity

    DEFF Research Database (Denmark)

    Haslob, Holger; Tomkiewicz, Jonna; Hinrichsen, Hans-Harald

    ,salinity, oxygen content as well as fish and stock size were tested as explanatory variables. The data obtained in this investigation were used to develop a predictive model of Balticsprat batch fecundity. Coupling these results with existing ichthyoplankton survey and stockstructure data will allow applying...

  10. Different substrates and starter inocula govern microbial community structures in biogas reactors.

    Science.gov (United States)

    Satpathy, Preseela; Steinigeweg, Sven; Cypionka, Heribert; Engelen, Bert

    2016-01-01

    The influence of different starter inocula on the microbial communities in biogas batch reactors fed with fresh maize and maize silage as substrates was investigated. Molecular biological analysis by Denaturing Gradient Gel Electrophoresis (DGGE) of 16S rRNA gene fragments showed that each inoculum bore specific microbial communities with varying predominant phylotypes. Both, bacterial and archaeal DGGE profiles displayed three distinct communities that developed depending on the type of inoculum. Although maize and silage are similar substrates, different communities dominated the lactate-rich silage compared to lactate-free fresh maize. Cluster analysis of DGGE gels showed the communities of the same substrates to be stable with their respective inoculum. Bacteria-specific DGGE analysis revealed a rich diversity with Firmicutes being predominant. The other abundant phylotypes were Bacteroidetes and Synergistetes. Archaea-specific DGGE analysis displayed less diverse community structures, identifying members of the Methanosarcinales as the dominant methanogens present in all the three biogas digesters. In general, the source of inoculum played a significant role in shaping microbial communities. Adaptability of the inoculum to the substrates fed also influenced community compositions which further impacted the rates of biogas production.

  11. Analysis of microbial community variation during the mixed culture fermentation of agricultural peel wastes to produce lactic acid.

    Science.gov (United States)

    Liang, Shaobo; Gliniewicz, Karol; Gerritsen, Alida T; McDonald, Armando G

    2016-05-01

    Mixed cultures fermentation can be used to convert organic wastes into various chemicals and fuels. This study examined the fermentation performance of four batch reactors fed with different agricultural (orange, banana, and potato (mechanical and steam)) peel wastes using mixed cultures, and monitored the interval variation of reactor microbial communities with 16S rRNA genes using Illumina sequencing. All four reactors produced similar chemical profile with lactic acid (LA) as dominant compound. Acetic acid and ethanol were also observed with small fractions. The Illumina sequencing results revealed the diversity of microbial community decreased during fermentation and a community of largely lactic acid producing bacteria dominated by species of Lactobacillus developed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Numerical modeling of batch formation in waste incineration plants

    Directory of Open Access Journals (Sweden)

    Obroučka Karel

    2015-03-01

    Full Text Available The aim of this paper is a mathematical description of algorithm for controlled assembly of incinerated batch of waste. The basis for formation of batch is selected parameters of incinerated waste as its calorific value or content of pollutants or the combination of both. The numerical model will allow, based on selected criteria, to compile batch of wastes which continuously follows the previous batch, which is a prerequisite for optimized operation of incinerator. The model was prepared as for waste storage in containers, as well as for waste storage in continuously refilled boxes. The mathematical model was developed into the computer program and its functionality was verified either by practical measurements or by numerical simulations. The proposed model can be used in incinerators for hazardous and municipal waste.

  13. Butyric acid fermentation of sodium hydroxide pretreated rice straw with undefined mixed culture.

    Science.gov (United States)

    Ai, Binling; Li, Jianzheng; Chi, Xue; Meng, Jia; Liu, Chong; Shi, En

    2014-05-01

    This study describes an alternative mixed culture fermentation technology to anaerobically convert lignocellulosic biomass into butyric acid, a valuable product with wide application, without supplementary cellulolytic enzymes. Rice straw was soaked in 1% NaOH solution to increase digestibility. Among the tested pretreatment conditions, soaking rice straw at 50°C for 72 h removed ~66% of the lignin, but retained ~84% of the cellulose and ~71% of the hemicellulose. By using an undefined cellulose-degrading butyrate-producing microbial community as butyric acid producer in batch fermentation, about 6 g/l of butyric acid was produced from the pretreated rice straw, which accounted for ~76% of the total volatile fatty acids. In the repeated-batch operation, the butyric acid production declined batch by batch, which was most possibly caused by the shift of microbial community structure monitored by denaturing gradient gel electrophoresis. In this study, batch operation was observed to be more suitable for butyric acid production.

  14. Thermal pretreatment of the solid fraction of manure: Impact on the biogas reactor performance and microbial community

    DEFF Research Database (Denmark)

    Mladenovska, Z; Hartmann, H.; Kvist, T.

    2006-01-01

    Application of thermal treatment at 100-140 degrees C as a pretreatment method prior to anaerobic digestion of a mixture of cattle and swine manure was investigated. In a batch test, biogasification of manure with thermally pretreated solid fraction proceeded faster and resulted in the increase...... of methane yield. The performances of two thermophilic continuously stirred tank reactors (CSTR) treating manure with solid fraction pretreated for 40 minutes at 140 degrees C and non-treated manure were compared. The digester fed with the thermally pretreated manure had a higher methane productivity...... and butyrate - was low. The kinetic parameters of the VFA conversion revealed a reduced affinity of the microbial community from the CSTR fed with thermally pre-treated manure for acetate, propionate and butyrate. The bacterial and archaeal populations identified by t-RLFP analysis of 16S rRNA genes were found...

  15. Effect of ozonation on microbial fish pathogens, ammonia, nitrate, nitrite, and bod in simulated reuse hatchery water

    Energy Technology Data Exchange (ETDEWEB)

    Colberg, P.J.; Lingg, A.J.

    1978-10-01

    The effectiveness of ozone for eliminating fish pathogens and reducing nitrite, ammonia, and BOD associated with reuse hatchery systems was evaluated. Comparative survival rates of four bacterial fish pathogens and a bacterium-protozoan population during batch and continuous flow ozonation indicated a specific microbial ozone demand during batch treatment and 99% mortality of pathogens during continuous flow treatment. Oxidation of carbon and nitrite by ozone was rapid at low ozone concentrations; carbon and ammonia oxidation rates were pH dependent. The oxidation capacity of ozone in water was greatest at elevated pH even though lower ozone concentrations were used. Ozone treatment appears to be successful for disinfecting hatchery makeup water for recycling. However, the economics of such treatment are yet to be determined. (10 graphs, 28 references, 1 table)

  16. Monitoring a PVC batch process with multivariate statistical process control charts

    NARCIS (Netherlands)

    Tates, A. A.; Louwerse, D. J.; Smilde, A. K.; Koot, G. L. M.; Berndt, H.

    1999-01-01

    Multivariate statistical process control charts (MSPC charts) are developed for the industrial batch production process of poly(vinyl chloride) (PVC). With these MSPC charts different types of abnormal batch behavior were detected on-line. With batch contribution plots, the probable causes of these

  17. Microbial production of polyhydroxybutyrate with tailor-made properties: an integrated modelling approach and experimental validation.

    Science.gov (United States)

    Penloglou, Giannis; Chatzidoukas, Christos; Kiparissides, Costas

    2012-01-01

    The microbial production of polyhydroxybutyrate (PHB) is a complex process in which the final quantity and quality of the PHB depend on a large number of process operating variables. Consequently, the design and optimal dynamic operation of a microbial process for the efficient production of PHB with tailor-made molecular properties is an extremely interesting problem. The present study investigates how key process operating variables (i.e., nutritional and aeration conditions) affect the biomass production rate and the PHB accumulation in the cells and its associated molecular weight distribution. A combined metabolic/polymerization/macroscopic modelling approach, relating the process performance and product quality with the process variables, was developed and validated using an extensive series of experiments and measurements. The model predicts the dynamic evolution of the biomass growth, the polymer accumulation, the consumption of carbon and nitrogen sources and the average molecular weights of the PHB in a bioreactor, under batch and fed-batch operating conditions. The proposed integrated model was used for the model-based optimization of the production of PHB with tailor-made molecular properties in Azohydromonas lata bacteria. The process optimization led to a high intracellular PHB accumulation (up to 95% g of PHB per g of DCW) and the production of different grades (i.e., different molecular weight distributions) of PHB. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Comparison of some characteristics of aerobic granules and sludge flocs from sequencing batch reactors.

    Science.gov (United States)

    Li, J; Garny, K; Neu, T; He, M; Lindenblatt, C; Horn, H

    2007-01-01

    Physical, chemical and biological characteristics were investigated for aerobic granules and sludge flocs from three laboratory-scale sequencing batch reactors (SBRs). One reactor was operated as normal SBR (N-SBR) and two reactors were operated as granular SBRs (G-SBR1 and G-SBR2). G-SBR1 was inoculated with activated sludge and G-SBR2 with granules from the municipal wastewater plant in Garching (Germany). The following major parameters and functions were measured and compared between the three reactors: morphology, settling velocity, specific gravity (SG), sludge volume index (SVI), specific oxygen uptake rate (SOUR), distribution of the volume fraction of extracellular polymeric substances (EPS) and bacteria, organic carbon and nitrogen removal. Compared with sludge flocs, granular sludge had excellent settling properties, good solid-liquid separation, high biomass concentration, simultaneous nitrification and denitrification. Aerobic granular sludge does not have a higher microbial activity and there are some problems including higher effluent suspended solids, lower ratio of VSS/SS and no nitrification at the beginning of cultivation. Measurement with CLSM and additional image analysis showed that EPS glycoconjugates build one main fraction inside the granules. The aerobic granules from G-SBR1 prove to be heavier, smaller and have a higher microbial activity compared with G-SBR2. Furthermore, the granules were more compact, with lower SVI and less filamentous bacteria.

  19. A BATCH REACTOR CONSTRUCTION FOR OBTAINING BIODIESEL FROM OIL Ricinus communis

    Directory of Open Access Journals (Sweden)

    Yolimar Fernández

    2014-06-01

    Full Text Available A batch reactor was constructed to obtain biodiesel from 5 liters of extracted from the seed of Ricinus communis. The reactor is made of stainless steel, 29cm length, 15.24 cm of inner diameter and a conical base of 20cm long, wall thickness of 0.2 cm, 1000 W tubular resistance and 110 volt motor. It is extracted and compared with the respective norms the physical and chemical properties of crude oil. Preliminary tests catalyzed transesterification of the oil with NaOH to verify the feasibility of the reaction and define the performed operational conditions. Obtained biodiesel was characterized and compared with references. The results showed that it is possible to obtain the biofuel in the batch reactor with a conversion 88%, confirming its application in transesterification reactions in a basic medium.

  20. Experimentally simulated global warming and nitrogen enrichment effects on microbial litter decomposers in a marsh

    DEFF Research Database (Denmark)

    Flury, Sabine; Gessner, Mark

    2011-01-01

    obtained by denaturing gradient gel electrophoresis (DGGE) indicated that simulated global warming induced a shift in bacterial community structure. In addition, warming reduced fungal biomass, whereas bacterial biomass was unaffected. The mesh size of the litter bags and sampling date also had......Atmospheric warming and increased nitrogen deposition can lead to changes of microbial communities with possible consequences for biogeochemical processes. We used an enclosure facility in a freshwater marsh to assess the effects on microbes associated with decomposing plant litter under conditions...... of simulated climate warming and pulsed nitrogen supply. Standard batches of litter were placed in coarse-mesh and fine-mesh bags and submerged in a series of heated, nitrogen-enriched, and control enclosures. They were retrieved later and analyzed for a range of microbial parameters. Fingerprinting profiles...

  1. Investigation of extractive microbial transformation in nonionic surfactant micelle aqueous solution using response surface methodology.

    Science.gov (United States)

    Xue, Yingying; Qian, Chen; Wang, Zhilong; Xu, Jian-He; Yang, Rude; Qi, Hanshi

    2010-01-01

    Extractive microbial transformation of L-phenylacetylcarbinol (L-PAC) in nonionic surfactant Triton X-100 micelle aqueous solution was investigated by response surface methodology. Based on the Box-Behnken design, a mathematical model was developed for the predication of mutual interactions between benzaldehyde, Triton X-100, and glucose on L-PAC production. It indicated that the negative or positive effect of nonionic surfactant strongly depended on the substrate concentration. The model predicted that the optimal concentration of benzaldehyde, Triton X-100, and glucose was 1.2 ml, 15 g, and 2.76 g per 100 ml, respectively. Under the optimal condition, the maximum L-PAC production was 27.6 mM, which was verified by a time course of extractive microbial transformation. A discrete fed-batch process for verification of cell activity was also presented.

  2. Status of Design and Manufacturing of ITER 1st batch Assembly Tools

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jin Ho; Nam, Kyoun Go; Chung, Si Kun; Ha, Min Su [ITER Korea National Fusion Research Institute, Daejeon (Korea, Republic of); Kim, Geun Hong [ITER Organization, St Paul lez Durance (France)

    2016-05-15

    The ITER tokamak assembly tools are purpose-built and specially designed to complete the ITER tokamak machine which includes; Vacuum Vessel (VV), VV Thermal Shield (VVTS), Toroidal Field Coil (TFC) and other components contained in the cryostat. KODA has carried out the preliminary and final design of these assembly tools. This paper shows that the current status, first quarter of the 2016, including manufacturing of ITER 1st batch assembly tools and briefly summarized the design process through design work of Sector Sub-assembly Tool (SSAT) that is most important tool representing ITER 1st batch assembly tools. KODA (Korea Domestic Agency) should provide 128 kinds of the purpose-built assembly tools for ITER Tokamak machine, and the ITER 1st batch assembly tools are split into 3 groups. The FDR for Group A was performed in December 2014, and design of SSAT has been verified by FE analysis and engineering calculation using EN cords. The SSAT is now under manufacturing phase to meet the ITER milestone. After factory acceptance test of SSAT on end of 2016, the 1st SSAT will be delivered and arrived in ITER site on second quarter of the 2017.

  3. Microbial Protein Production from Candida tropicalis ATCC13803 in a Submerged Batch Fermentation Process

    Directory of Open Access Journals (Sweden)

    Sahar Golaghaiee

    2017-01-01

    Full Text Available Background and Objective: Microbial protein production can resolve one of the major world challenges, i.e. lack of protein sources. Candida tropicalis growth was investigated to specify a medium to reach the highest cell proliferation and protein production.Material and Methods: Fractional factorial design and the index of signal to noise ratio were applied for optimization of microbial protein production. Optimization process was conducted based on the experimental results of Taguchi approach designs. Fermentationwas performed at 25oC and the agitation speed of 300 rpm for 70 h. Ammonium sulfate, iron sulfate, glycine and glucose concentrations were considered as process variables. Optimization of the culture medium composition was conducted in order to obtain the highest cell biomass concentration and protein content. Experiment design was performed based on the Taguchi approach and L-16 orthogonal arrays using Qualitek-4 software.Results and Conclusion: Maximum biomass of 8.72 log (CFU ml-1 was obtained using the optimized medium with 0.3, 0.15, 2 and 80 g l-1 of ammonium sulfate, iron sulfate, glycine and glucose, respectively. Iron sulfate and ammonium sulfate with 41.76% (w w-1 and 35.27% (w w-1 contributions, respectively, were recognized as the main components for cell growth. Glucose and glycine with 17.12% and 5.86% (w w-1 contributions,respectively, also affected cell production. The highest interaction severity index of +54.16% was observed between glycine and glucose while the least one of +0.43% was recorded for ammonium sulfate and glycine. A deviation of 7% between the highestpredicted cell numbers and the experimented count confirms the suitability of the applied statistical method. High protein content of 52.16% (w w-1 as well as low fat and nucleic acids content suggest that Candida tropicalis is a suitable case for commercial processes.Conflict of interest: The authors declare that there is no conflict of interest.

  4. Microbial succession within an anaerobic sequencing batch biofilm reactor (ASBBR treating cane vinasse at 55ºC

    Directory of Open Access Journals (Sweden)

    Maria Magdalena Ferreira Ribas

    2009-08-01

    Full Text Available The aim of this work was to investigate the anaerobic biomass formation capable of treating vinasse from the production of sugar cane alcohol, which was evolved within an anaerobic sequencing batch biofilm reactor (ASBBR as immobilized biomass on cubes of polyurethane foam at the temperature of 55ºC. The reactor was inoculated with mesophilic granular sludge originally treating poultry slaughterhouse wastewater. The evolution of the biofilm in the polyurethane foam matrices was assessed during seven experimental phases which were thus characterized by the changes in the organic matter concentrations as COD (1.0 to 20.0 g/L. Biomass characterization proceeded with the examination of sludge samples under optical and scanning electron microscopy. The reactor showed high microbial morphological diversity along the trial. The predominance of Methanosaeta-like cells was observed up to the organic load of 2.5 gCOD/L.d. On the other hand, Methanosarcinalike microorganisms were the predominant archaeal population within the foam matrices at high organic loading ratios above 3.3 gCOD/L.d. This was suggested to be associated to a higher specific rate of acetate consumption by the later organisms.Este trabalho investigou a formação de um biofilme anaeróbio capaz de tratar vinhaça da produção de álcool de cana-de-açúcar, que evoluiu dentro de um reator operado em bateladas seqüenciais com biofilme (ASBBR tendo a biomassa imobilizada em cubos de espuma de poliuretano na temperatura de 55ºC. O reator foi inoculado com lodo granular mesofílico tratando água residuária de abatedouro de aves. A evolução do biofilme nas matrizes de espuma de poliuretano foi observada durante sete fases experimentais que foram caracterizadas por mudanças nas concentrações de matéria orgânica como DQO (1,0 a 20,0 g/L. A caracterização da biomassa foi feita por exames de amostras do lodo em microscopia ótica e eletrônica de varredura. O reator apresentou

  5. Cultivation Of Deep Subsurface Microbial Communities

    Science.gov (United States)

    Obrzut, Natalia; Casar, Caitlin; Osburn, Magdalena R.

    2018-01-01

    The potential habitability of surface environments on other planets in our solar system is limited by exposure to extreme radiation and desiccation. In contrast, subsurface environments may offer protection from these stressors and are potential reservoirs for liquid water and energy that support microbial life (Michalski et al., 2013) and are thus of interest to the astrobiology community. The samples used in this project were extracted from the Deep Mine Microbial Observatory (DeMMO) in the former Homestake Mine at depths of 800 to 2000 feet underground (Osburn et al., 2014). Phylogenetic data from these sites indicates the lack of cultured representatives within the community. We used geochemical data to guide media design to cultivate and isolate organisms from the DeMMO communities. Media used for cultivation varied from heterotrophic with oxygen, nitrate or sulfate to autotrophic media with ammonia or ferrous iron. Environmental fluid was used as inoculum in batch cultivation and strains were isolated via serial transfers or dilution to extinction. These methods resulted in isolating aerobic heterotrophs, nitrate reducers, sulfate reducers, ammonia oxidizers, and ferric iron reducers. DNA sequencing of these strains is underway to confirm which species they belong to. This project is part of the NASA Astrobiology Institute Life Underground initiative to detect and characterize subsurface microbial life; by characterizing the intraterrestrials, the life living deep within Earth’s crust, we aim to understand the controls on how and where life survives in subsurface settings. Cultivation of terrestrial deep subsurface microbes will provide insight into the survival mechanisms of intraterrestrials guiding the search for these life forms on other planets.

  6. Optimization studies for the bioconversion of Jerusalem artichoke tubers to ethanol and microbial biomass

    Energy Technology Data Exchange (ETDEWEB)

    Margaritis, A.; Bajpai, P.; Cannell, E.

    1981-01-01

    A total of 8 yeast and other microbial cultures were grown in the extract derived from the tubers of Jerusalem artichoke (Helianthus tuberosus) and screened according to the following optimization criteria: rates and yields of ethanol production, rates and yields of biomass production, and percent of original sugars utilized during fermentation. Batch growth kinetic parameters were also determined for the cultures studied. Kluyveromyces marxianus UCD (FST) 55-82 had the highest specific growth rate, 0.41/h, with a high ethanol yield, 88% of theoretical.

  7. Innovative self-powered submersible microbial electrolysis cell (SMEC) for biohydrogen production from anaerobic reactors

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2012-01-01

    A self-powered submersible microbial electrolysis cell (SMEC), in which a specially designed anode chamber and external electricity supply were not needed, was developed for in situ biohydrogen production from anaerobic reactors. In batch experiments, the hydrogen production rate reached 17.8 m...... improvement of voltage output and reduction of electron losses were essential for efficient hydrogen generation. In addition, alternate exchanging the electricity-assisting and hydrogen-producing function between the two cell units of the SMEC was found to be an effective approach to inhibit methanogens...

  8. Laboratory-scale anaerobic sequencing batch reactor for treatment of stillage from fruit distillation.

    Science.gov (United States)

    Rada, Elena Cristina; Ragazzi, Marco; Torretta, Vincenzo

    2013-01-01

    This work describes batch anaerobic digestion tests carried out on stillages, the residue of the distillation process on fruit, in order to contribute to the setting of design parameters for a planned plant. The experimental apparatus was characterized by three reactors, each with a useful volume of 5 L. The different phases of the work carried out were: determining the basic components of the chemical oxygen demand (COD) of the stillages; determining the specific production of biogas; and estimating the rapidly biodegradable COD contained in the stillages. In particular, the main goal of the anaerobic digestion tests on stillages was to measure the parameters of specific gas production (SGP) and gas production rate (GPR) in reactors in which stillages were being digested using ASBR (anaerobic sequencing batch reactor) technology. Runs were developed with increasing concentrations of the feed. The optimal loads for obtaining the maximum SGP and GPR values were 8-9 gCOD L(-1) and 0.9 gCOD g(-1) volatile solids.

  9. Look-ahead strategies for controlling batch operations in industry - An overview

    NARCIS (Netherlands)

    Zee, Durk-Jouke van der; Chick, SE; Sanchez, PJ; Ferrin, D; Morrice, DJ

    2003-01-01

    Batching jobs in a manufacturing system is a very common policy in most industries. Main reasons for batching are avoidance of set ups and/or facilitation of material handling. Examples of batch-wise production systems are ovens found in aircraft industry and in semiconductor manufacturing. Starting

  10. De novo biosynthesis of biodiesel by Escherichia coli in optimized fed-batch cultivation.

    Directory of Open Access Journals (Sweden)

    Yangkai Duan

    Full Text Available Biodiesel is a renewable alternative to petroleum diesel fuel that can contribute to carbon dioxide emission reduction and energy supply. Biodiesel is composed of fatty acid alkyl esters, including fatty acid methyl esters (FAMEs and fatty acid ethyl esters (FAEEs, and is currently produced through the transesterification reaction of methanol (or ethanol and triacylglycerols (TAGs. TAGs are mainly obtained from oilseed plants and microalgae. A sustainable supply of TAGs is a major bottleneck for current biodiesel production. Here we report the de novo biosynthesis of FAEEs from glucose, which can be derived from lignocellulosic biomass, in genetically engineered Escherichia coli by introduction of the ethanol-producing pathway from Zymomonas mobilis, genetic manipulation to increase the pool of fatty acyl-CoA, and heterologous expression of acyl-coenzyme A: diacylglycerol acyltransferase from Acinetobacter baylyi. An optimized fed-batch microbial fermentation of the modified E. coli strain yielded a titer of 922 mg L(-1 FAEEs that consisted primarily of ethyl palmitate, -oleate, -myristate and -palmitoleate.

  11. Ethanol Production from Whey by Kluyveromyces marxianus in Batch Fermentation System: Kinetics Parameters Estimation

    Directory of Open Access Journals (Sweden)

    Dessy Ariyanti

    2013-03-01

    Full Text Available Whey is the liquid remaining after milk has been curdled and strained. It is a by-product of the manufacture of cheese or casein and has several commercial uses. In environmental point of view, whey is kind of waste which has high pollution level due to it’s contain high organic compound with BOD and COD value 50 and 80 g/L respectively. On the other side, whey also contain an amount of lactose (4.5%-5%; lactose can be used as carbon source and raw material for producing ethanol via fermentation using yeast strain Kluyveromyces marxianus. The objective of this research is to investigate the ethanol production kinetics from crude whey through fermentation using Kluyveromyces marxianus and to predict the model kinetics parameter. The yeast was able to metabolize most of the lactose within 16 h to give 8.64 g/L ethanol, 4.43 g/L biomass, and remain the 3.122 g/L residual lactose. From the results presented it also can be concluded that common kinetic model for microbial growth, substrate consumption, and product formation is a good alternative to describe an experimental batch fermentation of Kluyveromyces marxianus grown on a medium composed of whey. The model was found to be capable of reflecting all batch culture phases to a certain degree of accuracy, giving the parameter value: μmax, Ks, YX/S, α, β : 0.32, 10.52, 0.095, 1.52, and 0.11 respectively. © 2013 BCREC UNDIP. All rights reserved(Selected Paper from International Conference on Chemical and Material Engineering (ICCME 2012Received: 27th September 2012; Revised: 29th November 2012; Accepted: 7th December 2012[How to Cite: D. Ariyanti, H. Hadiyanto, (2013. Ethanol Production from Whey by Kluyveromyces marxianus in Batch Fermentation System: Kinetics Parameters Estimation. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (3: 179-184. (doi:10.9767/bcrec.7.3.4044.179-184][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.7.3.4044.179-184 ] View in  |

  12. Do European Standard Disinfectant tests truly simulate in-use microbial and organic soiling conditions on food preparation surfaces?

    Science.gov (United States)

    Meyer, B; Morin, V N; Rödger, H-J; Holah, J; Bird, C

    2010-04-01

    The results from European standard disinfectant tests are used as one basis to approve the use of disinfectants in Europe. The design of these laboratory-based tests should thus simulate as closely as possible the practical conditions and challenges that the disinfectants would encounter in use. No evidence is available that the organic and microbial loading in these tests simulates actual levels in the food service sector. Total organic carbon (TOC) and total viable count (TVC) were determined on 17 visibly clean and 45 visibly dirty surfaces in two restaurants and the food preparation surfaces of a large retail store. These values were compared to reference values recovered from surfaces soiled with the organic and microbial loading, following the standard conditions of the European Surface Test for bactericidal efficacy, EN 13697. The TOC reference values for clean and dirty conditions were higher than the data from practice, but cannot be regarded as statistical outliers. This was considered as a conservative assessment; however, as additional nine TOC samples from visibly dirty surfaces were discarded from the analysis, as their loading made them impossible to process. Similarly, the recovery of test organisms from surfaces contaminated according to EN 13697 was higher than the TVC from visibly dirty surfaces in practice; though they could not be regarded as statistical outliers of the whole data field. No correlation was found between TVC and TOC in the sampled data, which re-emphasizes the potential presence of micro-organisms on visibly clean surfaces and thus the need for the same degree of disinfection as visibly dirty surfaces. The organic soil and the microbial burden used in EN disinfectant standards represent a realistic worst-case scenario for disinfectants used in the food service and food-processing areas.

  13. Anaerobic digestion of Chinese cabbage waste silage with swine manure for biogas production: batch and continuous study.

    Science.gov (United States)

    Kafle, Gopi Krishna; Bhattarai, Sujala; Kim, Sang Hun; Chen, Lide

    2014-01-01

    The aim of this study was to investigate the potential for anaerobic co-digestion of Chinese cabbage waste silage (CCWS) with swine manure (SM). Batch and continuous experiments were carried out under mesophilic anaerobic conditions (36-38°C). The batch test evaluated the effect of CCWS co-digestion with SM (SM: CCWS=100:0; 25:75; 33:67; 0:100, % volatile solids (VS) basis). The continuous test evaluated the performance of a single stage completely stirred tank reactor with SM alone and with a mixture of SM and CCWS. Batch test results showed no significant difference in biogas yield up to 25-33% of CCWS; however, biogas yield was significantly decreased when CCWS contents in feed increased to 67% and 100%. When testing continuous digestion, the biogas yield at organic loading rate (OLR) of 2.0 g VSL⁻¹ d⁻¹ increased by 17% with a mixture of SM and CCWS (SM:CCWS=75:25) (423 mL g⁻¹ VS) than with SM alone (361 mL g⁻¹ VS). The continuous anaerobic digestion process (biogas production, pH, total volatile fatty acids (TVFA) and TVFA/total alkalinity ratios) was stable when co-digesting SM and CCWS (75:25) at OLR of 2.0 g VSL⁻¹ d⁻¹ and hydraulic retention time of 20 days under mesophilic conditions.

  14. Carbon nanotube-coated macroporous sponge for microbial fuel cell electrodes

    KAUST Repository

    Xie, Xing

    2012-01-01

    The materials that are used to make electrodes and their internal structures significantly affect microbial fuel cell (MFC) performance. In this study, we describe a carbon nanotube (CNT)-sponge composite prepared by coating a sponge with CNTs. Compared to the CNT-coated textile electrodes evaluated in prior studies, CNT-sponge electrodes had lower internal resistance, greater stability, more tunable and uniform macroporous structure (pores up to 1 mm in diameter), and improved mechanical properties. The CNT-sponge composite also provided a three-dimensional scaffold that was favorable for microbial colonization and catalytic decoration. Using a batch-fed H-shaped MFC outfitted with CNT-sponge electrodes, an areal power density of 1.24 W m -2 was achieved when treating domestic wastewater. The maximum volumetric power density of a continuously fed plate-shaped MFC was 182 W m -3. To our knowledge, these are the highest values obtained to date for MFCs fed domestic wastewater: 2.5 times the previously reported maximum areal power density and 12 times the previously reported maximum volumetric power density. © 2011 The Royal Society of Chemistry.

  15. Energy from algae using microbial fuel cells

    KAUST Repository

    Velasquez-Orta, Sharon B.; Curtis, Tom P.; Logan, Bruce E.

    2009-01-01

    Bioelectricity production froma phytoplankton, Chlorella vulgaris, and a macrophyte, Ulva lactuca was examined in single chamber microbial fuel cells (MFCs). MFCs were fed with the two algae (as powders), obtaining differences in energy recovery, degradation efficiency, and power densities. C. vulgaris produced more energy generation per substrate mass (2.5 kWh/kg), but U. lactuca was degraded more completely over a batch cycle (73±1% COD). Maximum power densities obtained using either single cycle or multiple cycle methods were 0.98 W/m2 (277 W/m3) using C. vulgaris, and 0.76 W/m2 (215 W/m3) using U. lactuca. Polarization curves obtained using a common method of linear sweep voltammetry (LSV) overestimated maximum power densities at a scan rate of 1 mV/s. At 0.1 mV/s, however, the LSV polarization data was in better agreement with single- and multiple-cycle polarization curves. The fingerprints of microbial communities developed in reactors had only 11% similarity to inocula and clustered according to the type of bioprocess used. These results demonstrate that algae can in principle, be used as a renewable source of electricity production in MFCs. © 2009 Wiley Periodicals, Inc.

  16. Energy from algae using microbial fuel cells

    KAUST Repository

    Velasquez-Orta, Sharon B.

    2009-08-15

    Bioelectricity production froma phytoplankton, Chlorella vulgaris, and a macrophyte, Ulva lactuca was examined in single chamber microbial fuel cells (MFCs). MFCs were fed with the two algae (as powders), obtaining differences in energy recovery, degradation efficiency, and power densities. C. vulgaris produced more energy generation per substrate mass (2.5 kWh/kg), but U. lactuca was degraded more completely over a batch cycle (73±1% COD). Maximum power densities obtained using either single cycle or multiple cycle methods were 0.98 W/m2 (277 W/m3) using C. vulgaris, and 0.76 W/m2 (215 W/m3) using U. lactuca. Polarization curves obtained using a common method of linear sweep voltammetry (LSV) overestimated maximum power densities at a scan rate of 1 mV/s. At 0.1 mV/s, however, the LSV polarization data was in better agreement with single- and multiple-cycle polarization curves. The fingerprints of microbial communities developed in reactors had only 11% similarity to inocula and clustered according to the type of bioprocess used. These results demonstrate that algae can in principle, be used as a renewable source of electricity production in MFCs. © 2009 Wiley Periodicals, Inc.

  17. PROOF on a Batch System

    International Nuclear Information System (INIS)

    Behrenhoff, W; Ehrenfeld, W; Samson, J; Stadie, H

    2011-01-01

    The 'parallel ROOT facility' (PROOF) from the ROOT framework provides a mechanism to distribute the load of interactive and non-interactive ROOT sessions on a set of worker nodes optimising the overall execution time. While PROOF is designed to work on a dedicated PROOF cluster, the benefits of PROOF can also be used on top of another batch scheduling system with the help of temporary per user PROOF clusters. We will present a lightweight tool which starts a temporary PROOF cluster on a SGE based batch cluster or, via a plugin mechanism, e.g. on a set of bare desktops via ssh. Further, we will present the result of benchmarks which compare the data throughput for different data storage back ends available at the German National Analysis Facility (NAF) at DESY.

  18. Comparative study of trapping parameters of LiF(TLD-100) from different production batches

    Energy Technology Data Exchange (ETDEWEB)

    Bos, A.J.J.; Piters, T.M.; Vries, W. de; Hoogenboom, J.E. (Delft Univ. of Technology (Netherlands). Interfaculty Reactor Institute)

    1990-01-01

    Computerised glow curve analysis has been used to determine the trapping parameters of the main peaks of the thermoluminescent (TL) material LiF(TLD-100). The TL material (solid state chips) originated from six different production batches with at least 19 chips per batch. The maxima of glow peaks 2 to 5 are found at the same temperature within very small limits. The activation energy and frequency factor of the main glow peak (peak 5) of TLD-100 originating from two batches differ significantly from those of the other four investigated batches. Nevertheless, the sensitivity of glow peak 5 is more or less the same for all batches. The trapping parameters of glow peaks 2 to 4 of TLD-100 vary little from batch to batch. The measured half-life of peak 2 differed strongly from batch to batch. For all investigated peaks no correlation has been found between glow peak sensitivity and trapping parameters. The results of this study suggest that both defect concentration and nature of the trapping centres vary from batch to batch. It would appear that as a consequence of selection by the manufacturer, the differences between the batches in terms of total light output are small. (author).

  19. From Fed-batch to Continuous Enzymatic Biodiesel Production

    DEFF Research Database (Denmark)

    Price, Jason Anthony; Nordblad, Mathias; Woodley, John M.

    2015-01-01

    In this this paper, we use mechanistic modelling to guide the development of acontinuous enzymatic process that is performed as a fed-batch operation. In this workwe use the enzymatic biodiesel process as a case study. A mechanistic model developedin our previous work was used to determine...... measured components (triglycerides, diglycerides, monoglycerides, free fatty acid and fatty acid methyl esters(biodiesel)) much better than using fed-batch data alone given the smaller residuals. We also observe a reduction in the correlation between the parameters.The model was then used to predict that 5...... reactors are required (with a combined residence time of 30 hours) to reach a final biodiesel concentration within 2 % of the95.6 mass % achieved in a fed-batch operation, for 24 hours....

  20. Comparative analysis of microbial community of novel lactic acid fermentation inoculated with different undefined mixed cultures.

    Science.gov (United States)

    Liang, Shaobo; Gliniewicz, Karol; Mendes-Soares, Helena; Settles, Matthew L; Forney, Larry J; Coats, Erik R; McDonald, Armando G

    2015-03-01

    Three undefined mixed cultures (activated sludge) from different municipal wastewater treatment plants were used as seeds in a novel lactic acid fermentation process fed with potato peel waste (PPW). Anaerobic sequencing batch fermenters were run under identical conditions to produce predominantly lactic acid. Illumina sequencing was used to examine the 16S rRNA genes of bacteria in the three seeds and fermenters. Results showed that the structure of microbial communities of three seeds were different. All three fermentation products had unique community structures that were dominated (>96%) by species of the genus Lactobacillus, while members of this genus constituted undefined mixed cultures were robust and resilient, which provided engineering prospects for the microbial utilization of carbohydrate wastes to produce lactic acid. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Actual Waste Demonstration of the Nitric-Glycolic Flowsheet for Sludge Batch 9 Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martino, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Reboul, S. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coleman, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Johnson, F. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-01

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs qualification testing to demonstrate that the sludge batch is processable. Testing performed by the Savannah River National Laboratory has shown glycolic acid to be effective in replacing the function of formic acid in the DWPF chemical process. The nitric-glycolic flowsheet reduces mercury, significantly lowers the catalytic generation of hydrogen and ammonia which could allow purge reduction in the Sludge Receipt and Adjustment Tank (SRAT), stabilizes the pH and chemistry in the SRAT and the Slurry Mix Evaporator (SME), allows for effective rheology adjustment, and is favorable with respect to melter flammability. In order to implement the new flowsheet, SRAT and SME cycles, designated SC-18, were performed using a Sludge Batch (SB) 9 slurry blended from SB8 Tank 40H and Tank 51H samples. The SRAT cycle involved adding nitric and glycolic acids to the sludge, refluxing to steam strip mercury, and dewatering to a targeted solids concentration. Data collected during the SRAT cycle included offgas analyses, process temperatures, heat transfer, and pH measurements. The SME cycle demonstrated the addition of glass frit and the replication of six canister decontamination additions. The demonstration concluded with dewatering to a targeted solids concentration. Data collected during the SME cycle included offgas analyses, process temperatures, heat transfer, and pH measurements. Slurry and condensate samples were collected for subsequent analysis

  2. Within-batch prevalence and quantification of human pathogenic Yersinia enterocolitica and Y. pseudotuberculosis in tonsils of pigs at slaughter.

    Science.gov (United States)

    Vanantwerpen, Gerty; Van Damme, Inge; De Zutter, Lieven; Houf, Kurt

    2014-03-14

    Yersiniosis is a common bacterial zoonosis in Europe and healthy pigs are known to be the primary reservoir of human pathogenic Yersinia enterocolitica and Y. pseudotuberculosis. However, little information is available about the prevalence of these pathogens within pig batches at time of slaughter. The tonsils of 7047 fattening pigs, belonging to 100 farms, were aseptically collected immediately after evisceration in two Belgian slaughterhouses. The batch size varied between 70 and 930 pigs. On average, 70 pigs were sampled per batch. The tonsils were examined by direct plating on cefsulodin-irgasan-novobiocin (CIN) agar plates and the number of suspect Yersinia colonies was counted. Pathogenic Y. enterocolitica serotype O:3 were found in tonsils of 2009 pigs (28.5%), originating from 85 farms. The within-batch prevalence in positive farms ranged from 5.1 to 64.4%. The number of Y. enterocolitica in positive pigs varied between 2.01 and 5.98 log10 CFU g(-1) tonsil, with an average of 4.00 log10 CFU g(-1) tonsil. Y. pseudotuberculosis was found in seven farms, for which the within-batch prevalence varied from 2 to 10%. In five of these farms, both Y. enterocolitica and Y. pseudotuberculosis were simultaneously present. Human pathogenic Yersinia spp. are widespread in slaughter pig batches in Belgium as 87% of the tested batches were infected with these pathogens at the time of slaughter. The large variation of the prevalence between batches may lead to different levels of contamination of carcasses and risks for public health. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Final Scientific/Technical Report, DE-FG02-06ER64171, Integrated Nucleic Acid System for In-Field Monitoring of Microbial Community Dynamics and Metabolic Activity – Subproject to Co-PI Eric E. Roden

    Energy Technology Data Exchange (ETDEWEB)

    Eric E. Roden

    2009-07-08

    This report summarizes research conducted in conjunction with a project entitled “Integrated Nucleic Acid System for In-Field Monitoring of Microbial Community Dynamics and Metabolic Activity”, which was funded through the Integrative Studies Element of the former NABIR Program (now the Environmental Remediation Sciences Program) within the Office of Biological and Environmental Research. Dr. Darrell Chandler (originally at Argonne National Laboratory, now with Akonni Biosystems) was the overall PI/PD for the project. The overall project goals were to (1) apply a model iron-reducer and sulfate-reducer microarray and instrumentation systems to sediment and groundwater samples from the Scheibe et al. FRC Area 2 field site, UMTRA sediments, and other DOE contaminated sites; (2) continue development and expansion of a 16S rRNA/rDNA¬-targeted probe suite for microbial community dynamics as new sequences are obtained from DOE-relevant sites; and (3) address the fundamental molecular biology and analytical chemistry associated with the extraction, purification and analysis of functional genes and mRNA in environmental samples. Work on the UW subproject focused on conducting detailed batch and semicontinuous culture reactor experiments with uranium-contaminated FRC Area 2 sediment. The reactor experiments were designed to provide coherent geochemical and microbiological data in support of microarray analyses of microbial communities in Area 2 sediments undergoing biostimulation with ethanol. A total of four major experiments were conducted (one batch and three semicontinuous culture), three of which (the batch and two semicontinuous culture) provided samples for DNA microarray analysis. A variety of other molecular analyses (clone libraries, 16S PhyloChip, RT-PCR, and T-RFLP) were conducted on parallel samples from the various experiments in order to provide independent information on microbial community response to biostimulation.

  4. Inorganic fouling mitigation by salinity cycling in batch reverse osmosis

    OpenAIRE

    Maswadeh, Laith A.; Warsinger, David Elan Martin; Tow, Emily W.; Connors, Grace B.; Swaminathan, Jaichander; Lienhard, John H

    2018-01-01

    Enhanced fouling resistance has been observed in recent variants of reverse osmosis (RO) desalination which use time-varying batch or semi-batch processes, such as closed-circuit RO (CCRO) and pulse flow RO (PFRO). However, the mechanisms of batch processes' fouling resistance are not well-understood, and models have not been developed for prediction of their fouling performance. Here, a framework for predicting reverse osmosis fouling is developed by comparing the fluid residence time in bat...

  5. Dynamic Scheduling Of Batch Operations With Non-Identical Machines

    NARCIS (Netherlands)

    van der Zee, D.J.; van Harten, A.; Schuur, P.C.

    1997-01-01

    Batch-wise production is found in many industries. A good example of production systems which process products batch-wise are the ovens found in aircraft industry and in semiconductor manufacturing. These systems mostly consist of multiple machines of different types, given the range and volumes of

  6. Dynamic scheduling of batch operations with non-identical machines

    NARCIS (Netherlands)

    van der Zee, D.J.; van Harten, Aart; Schuur, Peter

    1997-01-01

    Batch-wise production is found in many industries. A good example of production systems which process products batch-wise are the ovens found in aircraft industry and in semiconductor manufacturing. These systems mostly consist of multiple machines of different types, given the range and volumes of

  7. Some performance measures for vacation models with a batch Markovian arrival process

    Directory of Open Access Journals (Sweden)

    Sadrac K. Matendo

    1994-01-01

    Full Text Available We consider a single server infinite capacity queueing system, where the arrival process is a batch Markovian arrival process (BMAP. Particular BMAPs are the batch Poisson arrival process, the Markovian arrival process (MAP, many batch arrival processes with correlated interarrival times and batch sizes, and superpositions of these processes. We note that the MAP includes phase-type (PH renewal processes and non-renewal processes such as the Markov modulated Poisson process (MMPP.

  8. Experimentally simulated global warming and nitrogen enrichment effects on microbial litter decomposers in a marsh.

    Science.gov (United States)

    Flury, Sabine; Gessner, Mark O

    2011-02-01

    Atmospheric warming and increased nitrogen deposition can lead to changes of microbial communities with possible consequences for biogeochemical processes. We used an enclosure facility in a freshwater marsh to assess the effects on microbes associated with decomposing plant litter under conditions of simulated climate warming and pulsed nitrogen supply. Standard batches of litter were placed in coarse-mesh and fine-mesh bags and submerged in a series of heated, nitrogen-enriched, and control enclosures. They were retrieved later and analyzed for a range of microbial parameters. Fingerprinting profiles obtained by denaturing gradient gel electrophoresis (DGGE) indicated that simulated global warming induced a shift in bacterial community structure. In addition, warming reduced fungal biomass, whereas bacterial biomass was unaffected. The mesh size of the litter bags and sampling date also had an influence on bacterial community structure, with the apparent number of dominant genotypes increasing from spring to summer. Microbial respiration was unaffected by any treatment, and nitrogen enrichment had no clear effect on any of the microbial parameters considered. Overall, these results suggest that microbes associated with decomposing plant litter in nutrient-rich freshwater marshes are resistant to extra nitrogen supplies but are likely to respond to temperature increases projected for this century.

  9. Testing nickel tolerance of Sorghastrum nutans and its associated soil microbial community from serpentine and prairie soils

    International Nuclear Information System (INIS)

    Doherty, Jennifer H.; Ji Baoming; Casper, Brenda B.

    2008-01-01

    Ecotypes of Sorghastrum nutans from a naturally metalliferous serpentine grassland and the tallgrass prairie were assessed for Ni tolerance and their utility in remediation of Ni-polluted soils. Plants were inoculated with serpentine arbuscular mycorrhizal (AM) root inoculum or whole soil microbial communities, originating from either prairie or serpentine, to test their effects on plant performance in the presence of Ni. Serpentine plants had marginally higher Ni tolerance as indicated by higher survival. Ni reduced plant biomass and AM root colonization for both ecotypes. The serpentine AM fungi and whole microbial community treatments decreased plant biomass relative to uninoculated plants, while the prairie microbial community had no effect. Differences in how the soil communities affect plant performance were not reflected in patterns of root colonization by AM fungi. Thus, serpentine plants may be suited for reclamation of Ni-polluted soils, but AM fungi that occur on serpentine do not improve Ni tolerance. - Ni tolerance of Sorghastrum nutans differs slightly between serpentine and prairie populations and is negatively affected by serpentine soil and root inoculation

  10. Quality-by-Design approach to monitor the operation of a batch bioreactor in an industrial avian vaccine manufacturing process.

    Science.gov (United States)

    Largoni, Martina; Facco, Pierantonio; Bernini, Donatella; Bezzo, Fabrizio; Barolo, Massimiliano

    2015-10-10

    Monitoring batch bioreactors is a complex task, due to the fact that several sources of variability can affect a running batch and impact on the final product quality. Additionally, the product quality itself may not be measurable on line, but requires sampling and lab analysis taking several days to be completed. In this study we show that, by using appropriate process analytical technology tools, the operation of an industrial batch bioreactor used in avian vaccine manufacturing can be effectively monitored as the batch progresses. Multivariate statistical models are built from historical databases of batches already completed, and they are used to enable the real time identification of the variability sources, to reliably predict the final product quality, and to improve process understanding, paving the way to a reduction of final product rejections, as well as to a reduction of the product cycle time. It is also shown that the product quality "builds up" mainly during the first half of a batch, suggesting on the one side that reducing the variability during this period is crucial, and on the other side that the batch length can possibly be shortened. Overall, the study demonstrates that, by using a Quality-by-Design approach centered on the appropriate use of mathematical modeling, quality can indeed be built "by design" into the final product, whereas the role of end-point product testing can progressively reduce its importance in product manufacturing. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. 21 CFR 80.37 - Treatment of batch pending certification.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Treatment of batch pending certification. 80.37 Section 80.37 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL COLOR ADDITIVE CERTIFICATION Certification Procedures § 80.37 Treatment of batch pending certification...

  12. New insights into the effects of support matrix on the removal of organic micro-pollutants and the microbial community in constructed wetlands.

    Science.gov (United States)

    Zhang, Liang; Lyu, Tao; Ramírez Vargas, Carlos Andrés; Arias, Carlos A; Carvalho, Pedro N; Brix, Hans

    2018-09-01

    Constructed wetlands (CWs) are an eco-friendly and cost-effective technology to remove organic micro-pollutants (OMPs) from wastewater. The support matrix is an important component in CWs as it has a primary role in the growth and development of plants and microbes. However, the roles of the support matrix in CWs in removing OMPs have not been systematically studied. Therefore, in this study, six common materials (sand, zeolite, blast iron slag, petcoke, polonite and crushed autoclaved aerated concrete (CAAC)) as support matrixes were firstly investigated by batch tests to explore their adsorption capacities to selected OMPs (ibuprofen, iohexol, tebuconazole and imazalil). Results showed that the adsorption capacities of the materials were low (at the level of μg/g) compared to well-known sorbents (at the level of mg/g), such as activated carbon and carbon nanotubes. Columns packed with the six materials, respectively, were then built up to study the effects of different materials on microbial community. In the medium-term study (66 days), the removal of four OMPs in all the columns increased by 2-58% from day 25 to day 66, and was mainly attributed to microbial degradation. Furthermore, Community-level physiological profiling (CLPP) analysis indicates that material presence shaped the microbial community metabolic function not only in the interstitial water but also in the biofilm. Overall, all the findings demonstrate that although the adsorption capacities of the common materials are low, they may be a driver to improve the removal of OMPs by altering microbial community function in CWs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Influence of coal batch preparation on the quality of metallurgical соkе

    Directory of Open Access Journals (Sweden)

    Катерина Олегівна Шмельцер

    2015-10-01

    Full Text Available To study the influence of coal batch properties on coke strength we have considered the quality of the coke produced at the plant in Krivoy Rog from 2008 till 2012. Such factors as the large number of coal suppliers, imprecise selection of the optimal degree of batch crushing result in the decline in coke quality, the batch density and contents of the lean class (<0,5 mm are not optimum; poor blending of the batch after crushing; increased moisture and ash content of the coking batch; and extreme fluctuation in the coal and batch characteristics. It was found that high humidity of coal batch and its large fluctuations has most profound effect on the mechanical properties of coke. Under deteriorating resource base the quality of the coking batch preparation is important, To have batch of proper quality the following key aspects must be taken into account: the batch must be crushed to an optimum degree that will result in leaning components decrease and increased contents of vitrivite in it which improves the sinterability and coking, and hence the quality of coke; the degree of mixing of the coking batch in all indices must be up to 98-99%, for uneven distribution in the coal chamber worsens the quality of coke

  14. In vitro evaluation of microbial contamination of orthodontic brackets as received from the manufacturer using microbiological and molecular tests.

    Science.gov (United States)

    Dos Santos Gerzson, Darlene R; Simon, Daniel; Dos Anjos, Aline Lima; Freitas, Maria Perpétua Mota

    2015-11-01

    To test the null hypothesis that orthodontic brackets as supplied by manufacturers do not have microbial contamination. The sample comprised 140 brackets of four different commercially available brands, used directly from the manufacturer's packaging, divided into 14 groups (n  =  10 brackets each). Of the 140 pieces, 60 were full cases and 80 were replacement brackets. Materials were tested to detect bacterial growth, analyze types of bacteria present (biochemical test), and identify bacteria (molecular test with polymerase chain reaction [PCR]). In two of 12 groups the brackets showed microbial contamination: group 1, Morelli full case brackets, and group 12, Abzil-3M Unitek replacement brackets. Staphylococcus aureus and Staphylococcus epidermidis were the bacteria identified in groups 1 and 12, respectively (suggested by the biochemical test and confirmed by PCR). Brackets of two brands (Morelli and Abzil-3M Unitek) were found to be contaminated by bacteria in the original packages supplied by the manufacturers, which suggests a risk for patient contamination. These data suggest that the manufacturers of these materials should improve the quality control of the packaging used, including sterilization, for the security of patient health.

  15. Beyond Batch Processing: Towards Real-Time and Streaming Big Data

    OpenAIRE

    Shahrivari, Saeed; Jalili, Saeed

    2014-01-01

    Today, big data is generated from many sources and there is a huge demand for storing, managing, processing, and querying on big data. The MapReduce model and its counterpart open source implementation Hadoop, has proven itself as the de facto solution to big data processing. Hadoop is inherently designed for batch and high throughput processing jobs. Although Hadoop is very suitable for batch jobs but there is an increasing demand for non-batch processes on big data like: interactive jobs, r...

  16. A novel model-based control strategy for aerobic filamentous fungal fed-batch fermentation processes.

    Science.gov (United States)

    Mears, Lisa; Stocks, Stuart M; Albaek, Mads O; Cassells, Benny; Sin, Gürkan; Gernaey, Krist V

    2017-07-01

    A novel model-based control strategy has been developed for filamentous fungal fed-batch fermentation processes. The system of interest is a pilot scale (550 L) filamentous fungus process operating at Novozymes A/S. In such processes, it is desirable to maximize the total product achieved in a batch in a defined process time. In order to achieve this goal, it is important to maximize both the product concentration, and also the total final mass in the fed-batch system. To this end, we describe the development of a control strategy which aims to achieve maximum tank fill, while avoiding oxygen limited conditions. This requires a two stage approach: (i) calculation of the tank start fill; and (ii) on-line control in order to maximize fill subject to oxygen transfer limitations. First, a mechanistic model was applied off-line in order to determine the appropriate start fill for processes with four different sets of process operating conditions for the stirrer speed, headspace pressure, and aeration rate. The start fills were tested with eight pilot scale experiments using a reference process operation. An on-line control strategy was then developed, utilizing the mechanistic model which is recursively updated using on-line measurements. The model was applied in order to predict the current system states, including the biomass concentration, and to simulate the expected future trajectory of the system until a specified end time. In this way, the desired feed rate is updated along the progress of the batch taking into account the oxygen mass transfer conditions and the expected future trajectory of the mass. The final results show that the target fill was achieved to within 5% under the maximum fill when tested using eight pilot scale batches, and over filling was avoided. The results were reproducible, unlike the reference experiments which show over 10% variation in the final tank fill, and this also includes over filling. The variance of the final tank fill is

  17. Removal of mercury from coal via a microbial pretreatment process

    Science.gov (United States)

    Borole, Abhijeet P [Knoxville, TN; Hamilton, Choo Y [Knoxville, TN

    2011-08-16

    A process for the removal of mercury from coal prior to combustion is disclosed. The process is based on use of microorganisms to oxidize iron, sulfur and other species binding mercury within the coal, followed by volatilization of mercury by the microorganisms. The microorganisms are from a class of iron and/or sulfur oxidizing bacteria. The process involves contacting coal with the bacteria in a batch or continuous manner. The mercury is first solubilized from the coal, followed by microbial reduction to elemental mercury, which is stripped off by sparging gas and captured by a mercury recovery unit, giving mercury-free coal. The mercury can be recovered in pure form from the sorbents via additional processing.

  18. Effects of Microbial Transglutaminase on Physicochemical, Microbial and Sensorial Properties of Kefir Produced by Using Mixture Cow’s and Soymilk

    Science.gov (United States)

    2017-01-01

    The objective of this research was to investigate the effects microbial transglutaminase (m-TGs) on the physicochemical, microbial and sensory properties of kefir produced by using mix cow and soymilk. Kefir batches were prepared using 0, 0.5, 1 and 1.5 Units m-TGs for per g of milk protein. Adding m-TGs to milk caused an increase in the pH and viscosity and caused a decrease in titratable acidity and syneresis in the kefir samples. Total bacteria, lactobacilli and streptococci counts decreased, while yeast counts increased in all the samples during storage. Alcohols and acids compounds have increased in all the samples except in the control samples, while carbonyl compounds have decreased in all the samples during storage (1-30 d). The differences in the percentage of alcohols, carbonyl compounds and acids in total volatiles on the 1st and the 30th d of storage were observed at 8.47-23.52%, 6.94-25.46% and 59.64-63.69%, respectively. The consumer evaluation of the kefir samples showed that greater levels of acceptability were found for samples which had been added 1.5 U m-TGs for per g of milk protein. PMID:28943774

  19. Following an Optimal Batch Bioreactor Operations Model

    DEFF Research Database (Denmark)

    Ibarra-Junquera, V.; Jørgensen, Sten Bay; Virgen-Ortíz, J.J.

    2012-01-01

    The problem of following an optimal batch operation model for a bioreactor in the presence of uncertainties is studied. The optimal batch bioreactor operation model (OBBOM) refers to the bioreactor trajectory for nominal cultivation to be optimal. A multiple-variable dynamic optimization of fed...... as the master system which includes the optimal cultivation trajectory for the feed flow rate and the substrate concentration. The “real” bioreactor, the one with unknown dynamics and perturbations, is considered as the slave system. Finally, the controller is designed such that the real bioreactor...

  20. Limiting factors in Escherichia colifed-batch production of recombinant proteins

    DEFF Research Database (Denmark)

    Sanden, A.M.; Prytz, I.; Tubelekas, I.

    2003-01-01

    recombinant protein production, fed-batch, specific growth rate, feed profile, induction, mRNA, transcription, translation, acetic acid formation......recombinant protein production, fed-batch, specific growth rate, feed profile, induction, mRNA, transcription, translation, acetic acid formation...

  1. Modelling and Simulation of the Batch Hydrolysis of Acetic ...

    African Journals Online (AJOL)

    The kinetic modelling of the batch synthesis of acetic acid from acetic anhydride was investigated. The kinetic data of the reaction was obtained by conducting the hydrolysis reaction in a batch reactor. A dynamic model was formulated for this process and simulation was carried out using gPROMS® an advanced process ...

  2. 40 CFR 63.1326 - Batch process vents-recordkeeping provisions.

    Science.gov (United States)

    2010-07-01

    ....1325(e) for aggregate batch vent streams; (ii) For a boiler or process heater, a description of the location at which the vent stream is introduced into the boiler or process heater; (iii) For a boiler or... process vents or halogenated aggregate batch vent streams, the percent reduction of total hydrogen halides...

  3. Simulation of kefiran production of Lactobacillus kefiranofaciens JCM6985 in fed-batch reactor

    Directory of Open Access Journals (Sweden)

    Benjamas Cheirsilp

    2006-09-01

    Full Text Available Kinetics of kefiran production by Lactobacillus kefiranofaciens JCM6985 has been investigated. A mathematical model taking into account the mechanism of exopolysaccharides production has been developed. Experiments were carried out in batch mode in order to obtain kinetic model parameters that were further applied to simulate fed-batch processes. A simplification of parameter fitting was also introduced for complicated model. The fed-batch mode allows more flexibility in the control of the substrate concentration as well as product concentration in the culture medium. Based on the batch mathematical model, a fed-batch model was developed and simulations were done. Simulation study in fed-batch reactor resulted that substrate concentration should be controlled at 20 g L-1 to soften the product inhibition and also to stimulate utilization of substrate and its hydrolysate. From simulation results of different feeding techniques, it was found that constant feeding at 0.01 L h-1 was most practically effective feeding profile for exopolysaccharides production in fed-batch mode.

  4. Fed-batch culture for the direct conversion of cellulosic substrates to acetic acid/ethanol by Fusarium oxysporum

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P.K.R.; Singh, A.; Schuegerl, K. (Hannover Univ. (Germany). Inst. fuer Technische Chemie)

    1991-01-01

    The production of acetic acid/ethanol and hydrolytic enzymes from potato waste (cellulosic waste from potato starch industries) by Fusarium oxysporum 841 was improved considerably by using fed-batch culture. In this, two types of feed policies were adopted consisting of different substrate concentrations and feeding times. In fed-batch culture, the enzymes tested, namely avicelase, CMCase, cellobiase and xylanase, showed significant improvements over batch fermentations with regard to enzyme titres and productivities. The maximum concentration, yield and productivity of acetic acid were 22.5 g litre{sup -1}, 0.38 g (g {sub strate}){sup -1} and 0.09 g litre{sup -1} h{sup -1}, respectively, and these values for ethanol were 5.7 g litre{sup -1}, 0.1 g (g substrate){sup -1} and 0.03 g litre{sup -1}h{sup -1}, respectively. (author).

  5. Studies of effects of closed microbial ecology. Report of 180-day test period

    Science.gov (United States)

    Kenyon, A. J.

    1972-01-01

    Experiments were performed to determine the influence closed microbial ecologies have on modification or simplification of natural intestinal flora of ferrets in a closed environmental system. On the basis of previous tests in which certain species (Salmonella and Bacteroides) were decreased at 90 days of enclosure, a second trial was constructed for 180-day tests. In this trial there was little difference in the 8 major classes of intestinal flora between animals in the Open and Closed environmental groups except for the level of Lactobacillus. It is of extreme importance to note that when both Open and Closed groups contracted hemorrhagic gastritis, the interrelationship of this agent with other intestinal flora produced a more profound effect on animals from the Closed Group, particularly with reference to Lactobacillus levels.

  6. 40 CFR 63.487 - Batch front-end process vents-reference control technology.

    Science.gov (United States)

    2010-07-01

    ... § 63.487 Batch front-end process vents—reference control technology. (a) Batch front-end process vents... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Batch front-end process vents-reference control technology. 63.487 Section 63.487 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...

  7. In Vitro Growth of Curcuma longa L. in Response to Five Mineral Elements and Plant Density in Fed-Batch Culture Systems

    Science.gov (United States)

    El-Hawaz, Rabia F.; Bridges, William C.; Adelberg, Jeffrey W.

    2015-01-01

    Plant density was varied with P, Ca, Mg, and KNO3 in a multifactor experiment to improve Curcuma longa L. micropropagation, biomass and microrhizome development in fed-batch liquid culture. The experiment had two paired D-optimal designs, testing sucrose fed-batch and nutrient sucrose fed-batch techniques. When sucrose became depleted, volume was restored to 5% m/v sucrose in 200 ml of modified liquid MS medium by adding sucrose solutions. Similarly, nutrient sucrose fed-batch was restored to set points with double concentration of treatments’ macronutrient and MS micronutrient solutions, along with sucrose solutions. Changes in the amounts of water and sucrose supplementations were driven by the interaction of P and KNO3 concentrations. Increasing P from 1.25 to 6.25 mM increased both multiplication and biomass. The multiplication ratio was greatest in the nutrient sucrose fed-batch technique with the highest level of P, 6 buds/vessel, and the lowest level of Ca and KNO3. The highest density (18 buds/vessel) produced the highest fresh biomass at the highest concentrations of KNO3 and P with nutrient sucrose fed-batch, and moderate Ca and Mg concentrations. However, maximal rhizome dry biomass required highest P, sucrose fed-batch, and a moderate plant density. Different media formulations and fed-batch techniques were identified to maximize the propagation and storage organ responses. A single experimental design was used to optimize these dual purposes. PMID:25830292

  8. In vitro growth of Curcuma longa L. in response to five mineral elements and plant density in fed-batch culture systems.

    Science.gov (United States)

    El-Hawaz, Rabia F; Bridges, William C; Adelberg, Jeffrey W

    2015-01-01

    Plant density was varied with P, Ca, Mg, and KNO3 in a multifactor experiment to improve Curcuma longa L. micropropagation, biomass and microrhizome development in fed-batch liquid culture. The experiment had two paired D-optimal designs, testing sucrose fed-batch and nutrient sucrose fed-batch techniques. When sucrose became depleted, volume was restored to 5% m/v sucrose in 200 ml of modified liquid MS medium by adding sucrose solutions. Similarly, nutrient sucrose fed-batch was restored to set points with double concentration of treatments' macronutrient and MS micronutrient solutions, along with sucrose solutions. Changes in the amounts of water and sucrose supplementations were driven by the interaction of P and KNO3 concentrations. Increasing P from 1.25 to 6.25 mM increased both multiplication and biomass. The multiplication ratio was greatest in the nutrient sucrose fed-batch technique with the highest level of P, 6 buds/vessel, and the lowest level of Ca and KNO3. The highest density (18 buds/vessel) produced the highest fresh biomass at the highest concentrations of KNO3 and P with nutrient sucrose fed-batch, and moderate Ca and Mg concentrations. However, maximal rhizome dry biomass required highest P, sucrose fed-batch, and a moderate plant density. Different media formulations and fed-batch techniques were identified to maximize the propagation and storage organ responses. A single experimental design was used to optimize these dual purposes.

  9. Meeting report: batch-to-batch variability in estrogenic activity in commercial animal diets--importance and approaches for laboratory animal research.

    Science.gov (United States)

    Heindel, Jerrold J; vom Saal, Frederick S

    2008-03-01

    We report information from two workshops sponsored by the National Institutes of Health that were held to a) assess whether dietary estrogens could significantly impact end points in experimental animals, and b) involve program participants and feed manufacturers to address the problems associated with measuring and eliminating batch-to-batch variability in rodent diets that may lead to conflicting findings in animal experiments within and between laboratories. Data were presented at the workshops showing that there is significant batch-to-batch variability in estrogenic content of commercial animal diets, and that this variability results in differences in experimental outcomes. A combination of methods were proposed to determine levels of total estrogenic activity and levels of specific estrogenic constituents in soy-containing, casein-containing, and other soy-free rodent diets. Workshop participants recommended that researchers pay greater attention to the type of diet being used in animal studies and choose a diet whose estrogenic activity (or lack thereof) is appropriate for the experimental model and end points of interest. Information about levels of specific phytoestrogens, as well as estrogenic activity caused by other contaminants and measured by bioassay, should be disclosed in scientific publications. This will require laboratory animal diet manufacturers to provide investigators with information regarding the phytoestrogen content and other estrogenic compounds in commercial diets used in animal research.

  10. Tier 3 batch system data locality via managed caches

    Science.gov (United States)

    Fischer, Max; Giffels, Manuel; Jung, Christopher; Kühn, Eileen; Quast, Günter

    2015-05-01

    Modern data processing increasingly relies on data locality for performance and scalability, whereas the common HEP approaches aim for uniform resource pools with minimal locality, recently even across site boundaries. To combine advantages of both, the High- Performance Data Analysis (HPDA) Tier 3 concept opportunistically establishes data locality via coordinated caches. In accordance with HEP Tier 3 activities, the design incorporates two major assumptions: First, only a fraction of data is accessed regularly and thus the deciding factor for overall throughput. Second, data access may fallback to non-local, making permanent local data availability an inefficient resource usage strategy. Based on this, the HPDA design generically extends available storage hierarchies into the batch system. Using the batch system itself for scheduling file locality, an array of independent caches on the worker nodes is dynamically populated with high-profile data. Cache state information is exposed to the batch system both for managing caches and scheduling jobs. As a result, users directly work with a regular, adequately sized storage system. However, their automated batch processes are presented with local replications of data whenever possible.

  11. Actual distribution of Cronobacter spp. in industrial batches of powdered infant formula and consequences for performance of sampling strategies.

    Science.gov (United States)

    Jongenburger, I; Reij, M W; Boer, E P J; Gorris, L G M; Zwietering, M H

    2011-11-15

    The actual spatial distribution of microorganisms within a batch of food influences the results of sampling for microbiological testing when this distribution is non-homogeneous. In the case of pathogens being non-homogeneously distributed, it markedly influences public health risk. This study investigated the spatial distribution of Cronobacter spp. in powdered infant formula (PIF) on industrial batch-scale for both a recalled batch as well a reference batch. Additionally, local spatial occurrence of clusters of Cronobacter cells was assessed, as well as the performance of typical sampling strategies to determine the presence of the microorganisms. The concentration of Cronobacter spp. was assessed in the course of the filling time of each batch, by taking samples of 333 g using the most probable number (MPN) enrichment technique. The occurrence of clusters of Cronobacter spp. cells was investigated by plate counting. From the recalled batch, 415 MPN samples were drawn. The expected heterogeneous distribution of Cronobacter spp. could be quantified from these samples, which showed no detectable level (detection limit of -2.52 log CFU/g) in 58% of samples, whilst in the remainder concentrations were found to be between -2.52 and 2.75 log CFU/g. The estimated average concentration in the recalled batch was -2.78 log CFU/g and a standard deviation of 1.10 log CFU/g. The estimated average concentration in the reference batch was -4.41 log CFU/g, with 99% of the 93 samples being below the detection limit. In the recalled batch, clusters of cells occurred sporadically in 8 out of 2290 samples of 1g taken. The two largest clusters contained 123 (2.09 log CFU/g) and 560 (2.75 log CFU/g) cells. Various sampling strategies were evaluated for the recalled batch. Taking more and smaller samples and keeping the total sampling weight constant, considerably improved the performance of the sampling plans to detect such a type of contaminated batch. Compared to random sampling

  12. Methane production from formate, acetate and H2/CO2; focusing on kinetics and microbial characterization

    DEFF Research Database (Denmark)

    Pan, Xiaofang; Angelidaki, Irini; Alvarado-Morales, Merlin

    2016-01-01

    For evaluating the methanogenesis from typical methanogenic precursors (formate, acetate and H-2/CO2), CH4 production kinetics were investigated at 37 +/- 1 degrees C in batch anaerobic digestion tests and stimulated by modified Gompertz model. The results showed that maximum methanation rate from...... formate, acetate and H-2/CO2 were 19.58 +/- 0.49, 42.65 +/- 1.17 and 314.64 +/- 3.58 N mL/gVS/d in digested manure system and 6.53 +/- 0.31, 132.04 +/- 3.96 and 640.16 +/- 19.92 N mL/gVS/d in sewage sludge system during second generation incubation. Meanwhile the model could not fit well in granular...... sludge system, while the rate of formate methanation was faster than from H-2/CO2 and acetate. Considering both the kinetic results and microbial assay we could conclude that H-2/CO2 methanation was the fastest methanogenic step in digested manure and sewage sludge system with Methanomicrobiales...

  13. An order batching algorithm for wave picking in a parallel-aisle warehouse

    NARCIS (Netherlands)

    Gademann, A.J.R.M.; Berg, van den J.P.; Hoff, van der H.H.

    2001-01-01

    In this paper we address the problem of batching orders in a parallel-aisle warehouse, with the objective to minimize the maximum lead time of any of the batches. This is a typical objective for a wave picking operation. Many heuristics have been suggested to solve order batching problems. We

  14. Fed-batch coculture of Lactobacillus kefiranofaciens with Saccharomyces cerevisiae for effective production of kefiran.

    Science.gov (United States)

    Tada, Shiori; Katakura, Yoshio; Ninomiya, Kazuaki; Shioya, Suteaki

    2007-06-01

    In a batch coculture of kefiran-producing lactic acid bacteria Lactobacillus kefiranofaciens and lactate-assimilating yeast Saccharomyces cerevisiae, lactate accumulation in the medium was observed, which inhibited kefiran production. To enhance kefiran productivity by preventing lactate accumulation, we conducted lactose-feeding batch operation with feedforward/feedback control during the coculture, so that the lactate production rate of L. kefiranofaciens was balanced with the lactate consumption rate of S. cerevisiae. The lactate concentration was maintained at less than 6 g l(-1) throughout the fed-batch coculture using a 5 l jar fermentor, although the concentration reached 33 g l(-1) in the batch coculture. Kefiran production was increased to 6.3 g in 102 h in the fed-batch coculture, whereas 4.5 g kefiran was produced in 97 h in the batch coculture. The kefiran yield on lactose basis was increased up to 0.033 g g(-1) in the fed-batch coculture, whereas that in the batch coculture was 0.027 g g(-1).

  15. Field tests on migration of TRU-nuclide, (2). Migration test for engineered barrier materials in aerated soil

    International Nuclear Information System (INIS)

    Maeda, Toshikatsu; Tanaka, Tadao; Mukai, Masayuki

    2003-01-01

    Field tests on migration of radionuclides for engineered barrier materials such as bentonite and cementitious materials were performed. The tests were run under both wet conditions with artificial rainfall and dry conditions with natural rainfall. Laboratory experiments such as batch adsorption tests were also conducted to analyze the result of field test. The results of field tests agreed with the predicted moisture conditions and the migration behaviors observed at the laboratory experiment that is reported so far. For bentonite material, the movements of the tracer were calculated using known information such as the results of batch sorption tests and migration mechanism. Comparing the result of field test and calculations, it is suggested that tracer migration behavior in bentonite material in field can be evaluated quantitatively by the known migration mechanism and the results of laboratory experiments such as batch sorption test. (author)

  16. A comparative study of the physical and chemical properties of nano-sized ZnO particles from multiple batches of three commercial products

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Hong [Commonwealth Scientific and Industrial Research Organisation, Manufacturing Flagship (Australia); Coleman, Victoria A. [National Measurement Institute Australia, Nanometrology Section (Australia); Casey, Phil S., E-mail: Phil.Casey@csiro.au [Commonwealth Scientific and Industrial Research Organisation, Manufacturing Flagship (Australia); Angel, Brad [Commonwealth Scientific and Industrial Research Organisation, Land and Water Flagship (Australia); Catchpoole, Heather J. [National Measurement Institute Australia, Nanometrology Section (Australia); Waddington, Lynne [Commonwealth Scientific and Industrial Research Organisation, Manufacturing Flagship (Australia); McCall, Maxine J. [Commonwealth Scientific and Industrial Research Organisation, Food and Nutrition Flagship (Australia)

    2015-02-15

    Given the broad commercial applications for ZnO nanomaterials, accurate attribution of physicochemical characteristics that induce toxic effects is particularly important. We report on the physicochemical properties of three commercial nano-ZnO products: Z-COTE and Z-COTE HP1 from BASF, and Nanosun from Micronisers, and, for reference, “bulk” ZnO from Sigma-Aldrich. Z-COTE, Nanosun and “bulk” consist of uncoated particles with different sizes, while Z-COTE HP1 consists of nanoparticles with a hydrophobic coating. Specific batches of these ZnO products were included in the OECD Sponsorship Programme to test manufactured nanomaterials. In order to identify properties potentially susceptible to variations between production runs, three additional batches of Z-COTE and Nanosun and two additional batches of Z-COTE HP1 were also investigated here. In general, all products showed little variation between batches for properties measured from powdered samples, but batch variations in the amount of surface coating were evident for the coated Z-COTE HP1. Properties measured with samples dispersed in liquids (agglomeration, photocatalytic activity, dissolution) were highly dependent on dispersion protocols, and this made it difficult to differentiate between differences due to dispersion and due to batches. However, batch-sensitive properties did appear to be present in Z-COTE and Z-COTE HP1 (photocatalytic activity), and Nanosun (dissolution). Intra-batch time and/or storage-dependent changes in the applied surface coating, noted specifically for the OECD batch of Z-COTE HP1, highlight the need for best practice when storing and accessing stocks of nano products. Awareness of inter-batch and intra-batch variability is essential for commercial applications and for nanotoxicological studies aimed at identifying links between physicochemical properties and any adverse effects in biological systems.

  17. A comparative study of the physical and chemical properties of nano-sized ZnO particles from multiple batches of three commercial products

    Science.gov (United States)

    Yin, Hong; Coleman, Victoria A.; Casey, Phil S.; Angel, Brad; Catchpoole, Heather J.; Waddington, Lynne; McCall, Maxine J.

    2015-02-01

    Given the broad commercial applications for ZnO nanomaterials, accurate attribution of physicochemical characteristics that induce toxic effects is particularly important. We report on the physicochemical properties of three commercial nano-ZnO products: Z-COTE and Z-COTE HP1 from BASF, and Nanosun from Micronisers, and, for reference, "bulk" ZnO from Sigma-Aldrich. Z-COTE, Nanosun and "bulk" consist of uncoated particles with different sizes, while Z-COTE HP1 consists of nanoparticles with a hydrophobic coating. Specific batches of these ZnO products were included in the OECD Sponsorship Programme to test manufactured nanomaterials. In order to identify properties potentially susceptible to variations between production runs, three additional batches of Z-COTE and Nanosun and two additional batches of Z-COTE HP1 were also investigated here. In general, all products showed little variation between batches for properties measured from powdered samples, but batch variations in the amount of surface coating were evident for the coated Z-COTE HP1. Properties measured with samples dispersed in liquids (agglomeration, photocatalytic activity, dissolution) were highly dependent on dispersion protocols, and this made it difficult to differentiate between differences due to dispersion and due to batches. However, batch-sensitive properties did appear to be present in Z-COTE and Z-COTE HP1 (photocatalytic activity), and Nanosun (dissolution). Intra-batch time and/or storage-dependent changes in the applied surface coating, noted specifically for the OECD batch of Z-COTE HP1, highlight the need for best practice when storing and accessing stocks of nano products. Awareness of inter-batch and intra-batch variability is essential for commercial applications and for nanotoxicological studies aimed at identifying links between physicochemical properties and any adverse effects in biological systems.

  18. Exploring the Transition From Batch to Online

    DEFF Research Database (Denmark)

    Jørgensen, Anker Helms

    2010-01-01

    of the truly interactive use of computers known today. The transition invoked changes in a number of areas: technological, such as hybrid forms between batch and online; organisational such as decentralization; and personal as users and developers alike had to adopt new technology, shape new organizational...... structures, and acquire new skills. This work-in-progress paper extends an earlier study of the transition from batch to online, based on oral history interviews with (ex)-employees in two large Danish Service Bureaus. The paper takes the next step by ana-lyzing a particular genre: the commercial computer...

  19. Optimization of the Production of Polygalacturonase from Aspergillus kawachii Cloned in Saccharomyces cerevisiae in Batch and Fed-Batch Cultures

    Directory of Open Access Journals (Sweden)

    Diego Jorge Baruque

    2011-01-01

    Full Text Available Polygalacturonases (PG; EC 3.2.1.15 catalyze the hydrolysis of pectin and/or pectic acid and are useful for industrial applications such as juice clarification and pectin extraction. Growth and heterologous expression of recombinant Saccharomyces cerevisiae which expresses an acidic PG from Aspergillus kawachii has been studied in batch and fed-batch cultures. Kinetics and stoichiometric parameters of the recombinant yeast were determined in batch cultures in a synthetic medium. In these cultures, the total biomass concentration, protein concentration, and enzyme activity achieved were 2.2 g/L, 10 mg/L, and 3 U/mL, respectively, to give a productivity of 0.06 U/(mL·h. In fed-batch cultures, various strategies for galactose feeding were used: (i after a glucose growth phase, the addition of a single pulse of galactose which gave a productivity of 0.19 U/(mL·h; (ii after a glucose growth phase, a double pulse of galactose at the same final concentration was added, resulting in a productivity of 0.21 U/(mL·h; (iii a simultaneous feeding of glucose and galactose, yielding a productivity of 1.32 U/(mL·h. Based on these results, the simultaneous feeding of glucose and galactose was by far the most suitable strategy for the production of this enzyme. Moreover, some biochemical characteristics of the recombinant enzyme such as a molecular mass of ~60 kDa, an isoelectric point of 3.7 and its ability to hydrolyze polygalacturonic acid at pH=2.5 were determined.

  20. A Model of Batch Scheduling for a Single Batch Processor with Additional Setups to Minimize Total Inventory Holding Cost of Parts of a Single Item Requested at Multi-due-date

    Science.gov (United States)

    Hakim Halim, Abdul; Ernawati; Hidayat, Nita P. A.

    2018-03-01

    This paper deals with a model of batch scheduling for a single batch processor on which a number of parts of a single items are to be processed. The process needs two kinds of setups, i. e., main setups required before processing any batches, and additional setups required repeatedly after the batch processor completes a certain number of batches. The parts to be processed arrive at the shop floor at the times coinciding with their respective starting times of processing, and the completed parts are to be delivered at multiple due dates. The objective adopted for the model is that of minimizing total inventory holding cost consisting of holding cost per unit time for a part in completed batches, and that in in-process batches. The formulation of total inventory holding cost is derived from the so-called actual flow time defined as the interval between arrival times of parts at the production line and delivery times of the completed parts. The actual flow time satisfies not only minimum inventory but also arrival and delivery just in times. An algorithm to solve the model is proposed and a numerical example is shown.

  1. Screening of potential lactobacilli antigenotoxicity by microbial and mammalian cell-based tests.

    Science.gov (United States)

    Caldini, G; Trotta, F; Villarini, M; Moretti, M; Pasquini, R; Scassellati-Sforzolini, G; Cenci, G

    2005-06-25

    Antigenotoxicity is considered an important property for probiotic lactobacilli. The ability of non probiotic lactobacilli from dairy products and starters to inhibit two reference genotoxins: 4-nitroquinoline-1-oxide and N-methyl-N'-nitro-N-nitrosoguanidine was evaluated. The study was carried out using short-term assays with different targets, such as procaryotic cells (SOS-Chromotest for genotoxicity in Escherichia coli and Ames test for mutagenicity in Salmonella typhimurium) and eucaryotic cells (Comet assay for genotoxicity in Caco-2 enterocytes). A high proportion of strains inhibiting 4-nitroquinoline-1-oxide activity was found in Lactobacillus casei, Lactobacillus acidophilus, Lactobacillus rhamnosus, Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus plantarum. Inhibition of N-methyl-N'-nitro-N-nitrosoguanidine activity occurred in only one L. acidophilus strain. All the strains with antigenotoxic properties also demonstrated antimutagenic activity and produced modifications in genotoxin spectroscopic profiles. Strain viability during and after genotoxin exposure was confirmed. Concordance of the results obtained with microbial and mammalian cell-based tests is underlined.

  2. Atomic-batched tensor decomposed two-electron repulsion integrals

    Science.gov (United States)

    Schmitz, Gunnar; Madsen, Niels Kristian; Christiansen, Ove

    2017-04-01

    We present a new integral format for 4-index electron repulsion integrals, in which several strategies like the Resolution-of-the-Identity (RI) approximation and other more general tensor-decomposition techniques are combined with an atomic batching scheme. The 3-index RI integral tensor is divided into sub-tensors defined by atom pairs on which we perform an accelerated decomposition to the canonical product (CP) format. In a first step, the RI integrals are decomposed to a high-rank CP-like format by repeated singular value decompositions followed by a rank reduction, which uses a Tucker decomposition as an intermediate step to lower the prefactor of the algorithm. After decomposing the RI sub-tensors (within the Coulomb metric), they can be reassembled to the full decomposed tensor (RC approach) or the atomic batched format can be maintained (ABC approach). In the first case, the integrals are very similar to the well-known tensor hypercontraction integral format, which gained some attraction in recent years since it allows for quartic scaling implementations of MP2 and some coupled cluster methods. On the MP2 level, the RC and ABC approaches are compared concerning efficiency and storage requirements. Furthermore, the overall accuracy of this approach is assessed. Initial test calculations show a good accuracy and that it is not limited to small systems.

  3. Simulated Batch Production of Penicillin

    Science.gov (United States)

    Whitaker, A.; Walker, J. D.

    1973-01-01

    Describes a program in applied biology in which the simulation of the production of penicillin in a batch fermentor is used as a teaching technique to give students experience before handling a genuine industrial fermentation process. Details are given for the calculation of minimum production cost. (JR)

  4. Development of a two-stage feeding strategy based on the kind and level of feeding nutrients for improving fed-batch production of L-threonine by Escherichia coli.

    Science.gov (United States)

    Liu, Shuwen; Liang, Yong; Liu, Qian; Tao, Tongtong; Lai, Shujuan; Chen, Ning; Wen, Tingyi

    2013-01-01

    Fed-batch fermentation is the predominant method for industrial production of amino acids. In this study, we comprehensively investigated the effects of four kinds of feeding nutrients and developed an accurate optimization strategy for fed-batch production of L-threonine. The production of L-threonine was severely inhibited when cell growth ceased in the bath culture. Similarly, L-threonine production was also associated with cell growth in the carbon-, phosphate-, and sulfate-limited fed-batch cultures, but the accumulation of L-threonine was markedly increased because of the extended production time in the growth stage. Interestingly, auxotrophic amino acid (L-isoleucine)-limited feeding promoted L-threonine production over the non-growth phase. Metabolite analysis indicates that substantial production of acetate and glutamate and the resulting accumulation of ammonium may lead to the inhibition of L-threonine production. During the growth phase, the levels of L-isoleucine were accurately optimized by balancing cell growth and production with Pontryagin's maximum principle, basing on the relationship between the specific growth rate μ and specific production rate ρ. Furthermore, the depletion of L-isoleucine and phosphate at the end of the growth phase favored the synthesis of L-threonine in the subsequent non-growth phase. Combining the two-stage feeding profiles, the final L-threonine concentration and conversion rate were increased by 5.9- and 2.1-fold, respectively, compared to batch processes without feeding control. The identification of efficient feeding nutrient and the development of accurate feeding strategies provide potential guidelines for microbial production of amino acids.

  5. Sludge Batch 7B Qualification Activities With SRS Tank Farm Sludge

    International Nuclear Information System (INIS)

    Pareizs, J.; Click, D.; Lambert, D.; Reboul, S.

    2011-01-01

    Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry - Sludge Batch 7b (SB7b) - be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from H Canyon are often added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL typically simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). With the tight schedule constraints for SB7b and the potential need for caustic addition to allow for an acceptable glass processing window, the qualification for SB7b was approached differently than past batches. For SB7b, SRNL prepared a Tank 51 and a Tank 40 sample for qualification. SRNL did not receive the qualification sample from Tank 51 nor did it simulate all of the Tank Farm washing and decanting operations. Instead, SRNL prepared a Tank 51 SB7b sample from samples of Tank 7 and Tank 51, along with a wash solution to adjust the supernatant composition to the final SB7b Tank 51 Tank Farm projections. SRNL then prepared a sample to represent SB7b in Tank 40 by combining portions of the SRNL-prepared Tank 51 SB7b sample and a Tank 40 Sludge Batch 7a (SB7a) sample. The blended sample was 71% Tank 40 (SB7a) and 29% Tank 7/Tank 51 on an insoluble solids basis. This sample is referred to as the SB7b Qualification Sample. The blend represented the highest projected Tank 40 heel (as of May 25, 2011), and thus, the highest

  6. Glucose-based microbial production of the hormone melatonin in yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Germann, Susanne Manuela; Jacobsen, Simo Abdessamad; Schneider, Konstantin

    2016-01-01

    performed by complex chemical synthesis. In this study, we demonstrate microbial production of melatonin and related compounds, such as serotonin and N-acetylserotonin. We generated Saccharomyces cerevisiae strains that comprise heterologous genes encoding one or more variants of an L-tryptophan hydroxylase...... accomplished increased product titers by altering expression levels of selected pathway enzymes and boosting co-factor supply. The final yeast strain produced melatonin at a titer of 14.50 ± 0.57 mg L−1 in a 76h fermentation using simulated fed-batch medium with glucose as sole carbon source. Our study lays...

  7. Modeling and optimization of energy consumption in multipurpose batch plants - 2006 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Szijjarto, A.

    2006-12-15

    This annual report for the Swiss Federal Office of Energy (SFOE) takes a look at the work done in 2006 on the development of a model that is able to make prognoses concerning the energy consumption of chemical batch processes and thus enable these to be optimised. In the year under review, reliable models and software modelling tools were developed. The tools are based on commercially available simulation software. The authors note that the bottom-up model presented in the previous reports is powerful and robust enough to treat a significant amount of the process data in reasonable time. The model was tested for the modelling of energy consumption in the case-study plant during a period of two months. Up to 30 batches of 9 different products were produced in this period. The resolution of the model is discussed, which is very useful for identification of the process steps with the highest energy consumption. Energy-saving potential is noted. Based on these results, one product was chosen which is to be investigated in the final stage of the project in order to optimise the energy consumption of the case-study plant. The authors note that the methodology and software tools developed can be later applied for other products or chemical batch plants.

  8. Turbidimetric and photometric determination of total tannins in tea using a micro-flow-batch analyzer.

    Science.gov (United States)

    Lima, Marcelo B; Andrade, Stéfani I E; Harding, David P; Pistonesi, Marcelo F; Band, Beatriz S F; Araújo, Mário C U

    2012-01-15

    Both turbidimetric and photometric determinations of total tannins in samples of green and black tea, using a micro-flow-batch analyzer (μFBA) were studied. The miniaturized system was formed using photocurable urethane-acrylate resin and ultraviolet lithography technique. The turbidimetric method was based on the precipitation reaction of Cu (II) with tannins in acetate medium at a pH of 4.5. The photometric method was based on the complexation reaction of tannins with ferrous tartrate. The turbidimetric μFBA was able to test 200 samples per hour. The photometric μFBA allowed 300 analyses per hour, generating 136μL of residue per analysis. The paired t test, at a 95% confidence level, showed no statistically significant differences between results obtained by both methods and the reference method. The urethane-acrylate μFBA maintained satisfactory physical and chemical properties, and represents an improvement over conventional flow-batch analyzer. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Development of a mathematical model for the growth associated Polyhydroxybutyrate fermentation by Azohydromonas australica and its use for the design of fed-batch cultivation strategies.

    Science.gov (United States)

    Gahlawat, Geeta; Srivastava, Ashok K

    2013-06-01

    In the present investigation, batch cultivation of Azohydromonas australica DSM 1124 was carried out in a bioreactor for growth associated PHB production. The observed batch PHB production kinetics data was then used for the development of a mathematical model which adequately described the substrate limitation and inhibition during the cultivation. The statistical validity test demonstrated that the proposed mathematical model predictions were significant at 99% confidence level. The model was thereafter extrapolated to fed-batch to identify various nutrients feeding regimes during the bioreactor cultivation to improve the PHB accumulation. The distinct capability of the mathematical model to predict highly dynamic fed-batch cultivation strategies was demonstrated by experimental implementation of two fed-batch cultivation strategies. A significantly high PHB concentration of 22.65 g/L & an overall PHB content of 76% was achieved during constant feed rate fed-batch cultivation which is the highest PHB content reported so far using A. australica. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Analysis and modelling of the energy consumption of chemical batch plants

    Energy Technology Data Exchange (ETDEWEB)

    Bieler, P.S.

    2004-07-01

    This report for the Swiss Federal Office of Energy (SFOE) describes two different approaches for the energy analysis and modelling of chemical batch plants. A top-down model consisting of a linear equation based on the specific energy consumption per ton of production output and the base consumption of the plant is postulated. The model is shown to be applicable to single and multi-product batches for batch plants with constant production mix and multi-purpose batch plants in which only similar chemicals are produced. For multipurpose batch plants with highly varying production processes and changing production mix, the top-down model produced inaccurate results. A bottom-up model is postulated for such plants. The results obtained are discussed that show that the electricity consumption for infrastructure equipment was significant and responsible for about 50% of total electricity consumption. The specific energy consumption for the different buildings was related to the degree of automation and the production processes. Analyses of the results of modelling are presented. More detailed analyses of the energy consumption of this apparatus group show that about 30 to 40% of steam energy is lost and thus a large potential for optimisation exists. Various potentials for making savings, ranging from elimination of reflux conditions to the development of a new heating/cooling-system for a generic batch reactor, are identified.

  11. Response variation in a batch of TLDS

    International Nuclear Information System (INIS)

    Burrage, J.; Campbell, A.

    2004-01-01

    Full text: At Royal Perth Hospital, LiF thermoluminescent dosimeter rods (TLDs) are handled in batches of 50. Rods in each batch are always annealed together to ensure the same thermal history and an individual batch is used with the same type and energy of radiation. A subset of a batch is used for calibration purposes by exposing them to a range of known doses and their output is used to calculate the dose received by other rods used for a dose measurement. Variation in TLD response is addressed by calculating 95% certainty levels from the calibration rods and applying this to the dose measurement rods. This approach relies on the sensitivity of rods within each batch being similar. This work investigates the validity of this assumption and considers possible benefits of applying individual rod sensitivities. The variation in response of TLD rods was assessed using 25 TLD-100 rods (Harshaw/Bicron) which were uniformly exposed to 1 Gy using 6 MeV photons in a linear accelerator on 5 separate occasions. Rods were read with a Harshaw 5500 reader. During the read process the Harshaw reader periodically checks for noise and PMT gain drift and the data were corrected for these parameters. Replicate exposure data were analysed using 1-way Analysis of Variance (ANOVA) to determine whether the between rod variations were significantly different to the variations within a single rod. A batch of 50 rods was also exposed on three occasions using the above technique. Individual TLD rod sensitivity values were determined using the rod responses from 2 exposures and these values were applied to correct charges on a rod-by-rod basis for the third exposure. ANOVA results on the 5 exposures of 25 rods showed the variance between rods was significantly greater than the within rod variance (p < 0.001). The precision of an individual rod was estimated to have a standard deviation of 2.8%. This suggests that the 95% confidence limits for repeated measurements using the same dose and

  12. Evaluation of Laminaria-based microbial fuel cells (LbMs) for electricity production.

    Science.gov (United States)

    Gadhamshetty, Venkataramana; Belanger, Derek; Gardiner, Carly-Jeanne; Cummings, Anasha; Hynes, Anne

    2013-01-01

    Marine algae represents a sustainable feedstock in microbial fuel cells (MFCs) due to its low water and energy requirements for cultivation, higher capacity to sequester carbondioxide, and high carbohydrate content. Two-compartment MFCs were evaluated under batch-fed mode using Laminaria saccharina as the model for algae-based electron donor, and mixed microbial consortia as the biocatalyst, in the anode compartment. The Laminaria-based MFCs (LBMs) were studied with three different pretreatment conditions for the L. saccharina: (i) autoclaving (Auto), (ii) microwave irradiation (Micro), and (iii) as received treatment (No-Treat). A control was setup to establish base line performance for two-compartment MFCs using glucose as the electron donor in the anode. The performance of LBMs (250 mW/m(2) and 900 mA/m(2)) was on par with glucose-based MFCs. AC impedance analysis revealed that the charge transfer resistance was at least 50-fold higher than the corresponding ohmic losses in both LBMs and glucose-based MFCs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Dose and batch-dependent hepatobiliary toxicity of 10 nm silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Marcella De Maglie

    2015-07-01

    Full Text Available Silver nanoparticles (AgNPs are widely used because of their antimicrobial properties in medical devices and in a variety of consumer products. The extensive use of AgNPs raises concerns about their potential toxicity, although it is still difficult to draw definite conclusions about their toxicity based on published data. Our preliminary studies performed to compare the effect of the AgNPs size (10-40-100 nm on toxicity, demonstrated that the smallest AgNPs determine the most severe toxicological effects. In order to best investigate the impact of physicochemical characteristics of 10 nm AgNPs on toxicity, we compare three different batches of 10 nm AgNPs slightly different in size distribution (Batch A: 8.8±1.7 nm; Batch B: 9.4±1.7 nm; Batch C: 10.0±1.8 nm. Mice were intravenously treated with two doses (5 and 10 mg/kg of the 3 AgNPs. 24 hours after the treatment, mice were euthanized and underwent complete necropsy. Tissues were collected for histopathological examination and total silver content was determined in tissues by inductively coupled plasma mass spectrometry (ICP-MS. All batches induced severe hepatobiliary lesions, i.e. marked hepatocellular necrosis and massive hemorrhage of the gall bladder. The toxicity was dose-dependent and interestingly, the toxic effects were more severe in mice treated with batches A and B that contained smaller AgNPs. Since the total silver mass concentration was similar, the observed batch-dependent toxicity suggest that even subtle differences in size may contribute to relevant changes in the toxicological outcomes, confirming the fundamental involvement of physicochemical features with respect to toxicity.

  14. Cloning, multicopy expression and fed-batch production of Rhodotorula araucariae epoxide hydrolase in yarrowia lipolytica

    CSIR Research Space (South Africa)

    Ramduth, D

    2008-05-01

    Full Text Available demonstrated a 4 fold enhanced EH activity over the transformant. The transformant was then evaluated in batch and fed batch fermentations, where the batch fermentations resulted in - 50% improved EH activity from flask evaluations. In fed batch fermentations...

  15. Simple approximations for the batch-arrival MX/G/1 queue

    NARCIS (Netherlands)

    van Ommeren, Jan C.W.

    1990-01-01

    In this paper we consider the MX/G/I queueing system with batch arrivals. We give simple approximations for the waiting-time probabilities of individual customers. These approximations are checked numerically and they are found to perform very well for a wide variety of batch-size and service-timed

  16. Look-ahead strategies for controlling batch operations in industry - overview, comparison and exploration

    NARCIS (Netherlands)

    Zee, D.J. van der; Harten, A. van; Schuur, P.C.; Joines, JA; Barton, RR; Kang, K; Fishwick, PA

    2000-01-01

    Batching jobs in a manufacturing system is a very common policy in most industries. The main reasons for batching are avoidance of set ups and/or facilitation of material handling. Good examples of batch-wise production systems are ovens found in aircraft industry and in semiconductor manufacturing.

  17. Generation of OH Radical by Ultrasonic Irradiation in Batch and Circulatory Reactor

    Science.gov (United States)

    Fang, Yu; Shimizu, Sayaka; Yamamoto, Takuya; Komarov, Sergey

    2018-03-01

    Ultrasonic technology has been widely investigated in the past as one of the advance oxidation processes to treat wastewater, in this process acoustic cavitation causes generation of OH radical, which play a vital role in improving the treatment efficiency. In this study, OH radical formation rate was measured in batch and circulatory reactor by using Weissler reaction at various ultrasound output power. It is found that the generation rate in batch reactor is higher than that in circulatory reactor at the same output power. The generation rate tended to be slower when output power exceeds 137W. The optimum condition for circulatory reactor was found to be 137W output and 4L/min flow rate. Results of aluminum foil erosion test revealed a strong dependence of cavitation zone length on the ultrasound output power. This is assumed to be one of the reasons why the generation rate of HO radicals becomes slower at higher output power in circulatory reactor.

  18. Kinetic studies on batch cultivation of Trichoderma reesei and application to enhance cellulase production by fed-batch fermentation.

    Science.gov (United States)

    Ma, Lijuan; Li, Chen; Yang, Zhenhua; Jia, Wendi; Zhang, Dongyuan; Chen, Shulin

    2013-07-20

    Reducing the production cost of cellulase as the key enzyme for cellulose hydrolysis to fermentable sugars remains a major challenge for biofuel production. Because of the complexity of cellulase production, kinetic modeling and mass balance calculation can be used as effective tools for process design and optimization. In this study, kinetic models for cell growth, substrate consumption and cellulase production in batch fermentation were developed, and then applied in fed-batch fermentation to enhance cellulase production. Inhibition effect of substrate was considered and a modified Luedeking-Piret model was developed for cellulase production and substrate consumption according to the growth characteristics of Trichoderma reesei. The model predictions fit well with the experimental data. Simulation results showed that higher initial substrate concentration led to decrease of cellulase production rate. Mass balance and kinetic simulation results were applied to determine the feeding strategy. Cellulase production and its corresponding productivity increased by 82.13% after employing the proper feeding strategy in fed-batch fermentation. This method combining mathematics and chemometrics by kinetic modeling and mass balance can not only improve cellulase fermentation process, but also help to better understand the cellulase fermentation process. The model development can also provide insight to other similar fermentation processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. The role of ecological theory in microbial ecology.

    Science.gov (United States)

    Prosser, James I; Bohannan, Brendan J M; Curtis, Tom P; Ellis, Richard J; Firestone, Mary K; Freckleton, Rob P; Green, Jessica L; Green, Laura E; Killham, Ken; Lennon, Jack J; Osborn, A Mark; Solan, Martin; van der Gast, Christopher J; Young, J Peter W

    2007-05-01

    Microbial ecology is currently undergoing a revolution, with repercussions spreading throughout microbiology, ecology and ecosystem science. The rapid accumulation of molecular data is uncovering vast diversity, abundant uncultivated microbial groups and novel microbial functions. This accumulation of data requires the application of theory to provide organization, structure, mechanistic insight and, ultimately, predictive power that is of practical value, but the application of theory in microbial ecology is currently very limited. Here we argue that the full potential of the ongoing revolution will not be realized if research is not directed and driven by theory, and that the generality of established ecological theory must be tested using microbial systems.

  20. Water quality - Evaluation of the aerobic biodegradability of organic compounds at low concentrations. Part 1: Shake-flask batch test with surface water or suface water/sediment suspensions. ISO 14592-1

    DEFF Research Database (Denmark)

    Nyholm, Niels; Pagga, U.

    ISO 14592-1:2002 specifies a test method for evaluating the biodegradability of organic test compounds by aerobic microorganisms in surface waters by means of a shake-flask batch test with suspended biomass. It is applicable to natural surface water, free from coarse particles to simulate a pelagic...... compounds present in lower concentrations (normally below 100 micrograms per litre) than those of natural carbon substrates also present in the system. Under these conditions, the test compounds serve as a secondary substrate and the kinetics for biodegradation would be expected to be first order (non......-growth kinetics). This test method is not recommended for use as proof of ultimate biodegradation which is better assessed using other standardized tests. It is also not applicable to studies on metabolite formation and accumulation which require higher test concentrations....

  1. Batch culture of Azotobacter vinelandii under oxygen limitation conditionS

    Energy Technology Data Exchange (ETDEWEB)

    Camacho Rubio, F.; Martinez Nieto, L.; Fernandez Serrano, M.; Jimenez Moleon, M.C. [Departamento de Ingenieria Quimica, Universidad de Granada, Granada (Spain)

    1996-12-01

    The batch culture of Azotobacter vinealandii on glucose under nitrogen-fixing conditions, seeking oxygen limitation conditions, has been studied in order to use it as a Biological Test System for the experimental study of oxygen transfer enhancement methods in aerobic fermenters. overall kinetic parameters for exponential growth and for linear growth (under oxygen limitation) have been determined. It was noted an appreciable influence of the oxygen transfer rate on glucose and oxygen uptake, which seems to be due to alginate production, excreted as a nitrogenase protection mechanisms. (Author) 12 refs.

  2. Small Scale Mixing Demonstration Batch Transfer and Sampling Performance of Simulated HLW - 12307

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Jesse; Townson, Paul; Vanatta, Matt [EnergySolutions, Engineering and Technology Group, Richland, WA, 99354 (United States)

    2012-07-01

    The ability to effectively mix, sample, certify, and deliver consistent batches of High Level Waste (HLW) feed from the Hanford Double Shell Tanks (DST) to the Waste treatment Plant (WTP) has been recognized as a significant mission risk with potential to impact mission length and the quantity of HLW glass produced. At the end of 2009 DOE's Tank Operations Contractor, Washington River Protection Solutions (WRPS), awarded a contract to EnergySolutions to design, fabricate and operate a demonstration platform called the Small Scale Mixing Demonstration (SSMD) to establish pre-transfer sampling capacity, and batch transfer performance data at two different scales. This data will be used to examine the baseline capacity for a tank mixed via rotational jet mixers to transfer consistent or bounding batches, and provide scale up information to predict full scale operational performance. This information will then in turn be used to define the baseline capacity of such a system to transfer and sample batches sent to WTP. The Small Scale Mixing Demonstration (SSMD) platform consists of 43'' and 120'' diameter clear acrylic test vessels, each equipped with two scaled jet mixer pump assemblies, and all supporting vessels, controls, services, and simulant make up facilities. All tank internals have been modeled including the air lift circulators (ALCs), the steam heating coil, and the radius between the wall and floor. The test vessels are set up to simulate the transfer of HLW out of a mixed tank, and collect a pre-transfer sample in a manner similar to the proposed baseline configuration. The collected material is submitted to an NQA-1 laboratory for chemical analysis. Previous work has been done to assess tank mixing performance at both scales. This work involved a combination of unique instruments to understand the three dimensional distribution of solids using a combination of Coriolis meter measurements, in situ chord length distribution

  3. Analysing Microbial Community Composition through Amplicon Sequencing: From Sampling to Hypothesis Testing

    Directory of Open Access Journals (Sweden)

    Luisa W. Hugerth

    2017-09-01

    Full Text Available Microbial ecology as a scientific field is fundamentally driven by technological advance. The past decade's revolution in DNA sequencing cost and throughput has made it possible for most research groups to map microbial community composition in environments of interest. However, the computational and statistical methodology required to analyse this kind of data is often not part of the biologist training. In this review, we give a historical perspective on the use of sequencing data in microbial ecology and restate the current need for this method; but also highlight the major caveats with standard practices for handling these data, from sample collection and library preparation to statistical analysis. Further, we outline the main new analytical tools that have been developed in the past few years to bypass these caveats, as well as highlight the major requirements of common statistical practices and the extent to which they are applicable to microbial data. Besides delving into the meaning of select alpha- and beta-diversity measures, we give special consideration to techniques for finding the main drivers of community dissimilarity and for interaction network construction. While every project design has specific needs, this review should serve as a starting point for considering what options are available.

  4. 40 CFR 1065.245 - Sample flow meter for batch sampling.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Sample flow meter for batch sampling... Sample flow meter for batch sampling. (a) Application. Use a sample flow meter to determine sample flow... difference between a diluted exhaust sample flow meter and a dilution air meter to calculate raw exhaust flow...

  5. Farm batch system and Fermi inter-process communication and synchronization toolkit

    International Nuclear Information System (INIS)

    Mandrichenko, I.V.

    2001-01-01

    Farms Batch System (FBS) was developed as a batch process management system for off-line Run II data processing at Fermilab. FBS will manage PC farms composed of up to 250 nodes and scalable to 1000 nodes with disk capacity of up to several TB. FBS allows users to start arrays of parallel processes on multiple computers. It uses a simplified resource counting method load balancing. FBS has been successfully used for more than a year at Fermilab by fixed target experiments and will be used for collider experiment off-line data processing. Fermi Inter-Process Communication toolkit (FIPC) was designed as a supplement product for FBS that helps establish synchronization and communication between processes running in a distributed batch environment. However, FIPC is an independent package, and can be used with other batch systems, as well as in a non-batch environment. FIPC provides users with a variety of global distributed objects such as semaphores, queues and string variables. Other types of objects can be easily added to FIPC. FIPC has been running on several PC farms at Fermilab for half a year and is going to be used by CDF for off-line data processing

  6. Removing batch effects for prediction problems with frozen surrogate variable analysis

    Directory of Open Access Journals (Sweden)

    Hilary S. Parker

    2014-09-01

    Full Text Available Batch effects are responsible for the failure of promising genomic prognostic signatures, major ambiguities in published genomic results, and retractions of widely-publicized findings. Batch effect corrections have been developed to remove these artifacts, but they are designed to be used in population studies. But genomic technologies are beginning to be used in clinical applications where samples are analyzed one at a time for diagnostic, prognostic, and predictive applications. There are currently no batch correction methods that have been developed specifically for prediction. In this paper, we propose an new method called frozen surrogate variable analysis (fSVA that borrows strength from a training set for individual sample batch correction. We show that fSVA improves prediction accuracy in simulations and in public genomic studies. fSVA is available as part of the sva Bioconductor package.

  7. Adsorptive removal of arsenate from aqueous solutions by biochar supported zero-valent iron nanocomposite: Batch and continuous flow tests

    International Nuclear Information System (INIS)

    Wang, Shengsen; Gao, Bin; Li, Yuncong; Creamer, Anne Elise; He, Feng

    2017-01-01

    Highlights: • Biochar supported nZVI (nZVI/BC) was synthesized. • nZVI/BC showed excellent As(V) removal efficiency in batch and CMR experiments. • 100% removal efficiency was achieved in CMRs. • Surface adsorption was the dominant removal mechanism. - Abstract: Arsenate (As(V)) removal ability by nanoscale zero-valent iron (nZVI) is compromised by aggregation of nZVI particles. In this work, pine derived biochar (PB) was used as a supporting material to stabilize nZVI for As(V) removal. The biochar supported nZVI (nZVI/BC) was synthesized by precipitating the nanoparticles on carbon surfaces. Experiments using batch and continuous flow, completely mixed reactors (CMRs) were carried out to investigate the removal of As(V) by the nZVI/BC from aqueous solutions. Batch experiments showed that nZVI/BC had high As(V) removal capacity in a wide range of pH (3–8). Kinetic data revealed that equilibrium was reached within 1 h and the isotherm data showed that the Langmuir maximum adsorption capacity of the nZVI/BC for As(V) at pH 4.1 was 124.5 g kg −1 . As(V) (100 mg L −1 ) adsorption in anoxic condition was about 8% more than in oxic conditions, where As(V) reduction was observed in anoxic condition. The performance of the nZVI/BC in flowing condition was evaluated in CMRs at influent As(V) concentrations of 2.1 and 5.5 mg L −1 and the adsorbent removed 100% and 90% of the As(V), respectively. Furthermore, the nZVI/BC composite is magnetic which facilitates collection from aqueous solutions.

  8. Adsorptive removal of arsenate from aqueous solutions by biochar supported zero-valent iron nanocomposite: Batch and continuous flow tests

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shengsen [Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611 (United States); Gao, Bin, E-mail: bg55@ufl.edu [Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611 (United States); Li, Yuncong [Tropical Research and Education Center, University of Florida, Homestead, FL 33031 (United States); Creamer, Anne Elise [Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611 (United States); He, Feng [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014 (China)

    2017-01-15

    Highlights: • Biochar supported nZVI (nZVI/BC) was synthesized. • nZVI/BC showed excellent As(V) removal efficiency in batch and CMR experiments. • 100% removal efficiency was achieved in CMRs. • Surface adsorption was the dominant removal mechanism. - Abstract: Arsenate (As(V)) removal ability by nanoscale zero-valent iron (nZVI) is compromised by aggregation of nZVI particles. In this work, pine derived biochar (PB) was used as a supporting material to stabilize nZVI for As(V) removal. The biochar supported nZVI (nZVI/BC) was synthesized by precipitating the nanoparticles on carbon surfaces. Experiments using batch and continuous flow, completely mixed reactors (CMRs) were carried out to investigate the removal of As(V) by the nZVI/BC from aqueous solutions. Batch experiments showed that nZVI/BC had high As(V) removal capacity in a wide range of pH (3–8). Kinetic data revealed that equilibrium was reached within 1 h and the isotherm data showed that the Langmuir maximum adsorption capacity of the nZVI/BC for As(V) at pH 4.1 was 124.5 g kg{sup −1}. As(V) (100 mg L{sup −1}) adsorption in anoxic condition was about 8% more than in oxic conditions, where As(V) reduction was observed in anoxic condition. The performance of the nZVI/BC in flowing condition was evaluated in CMRs at influent As(V) concentrations of 2.1 and 5.5 mg L{sup −1} and the adsorbent removed 100% and 90% of the As(V), respectively. Furthermore, the nZVI/BC composite is magnetic which facilitates collection from aqueous solutions.

  9. Perchlorate remediation using packed-bed bioreactors and electricity generation in microbial fuel cells (MFCs)

    Science.gov (United States)

    Min, Booki

    Two pilot-scale fixed bed bioreactors were operated in continuous mode in order to treat groundwater contaminated by perchlorate. The bioreactors were constructed and operated side-by-side at the Texas Street Well Facility in Redlands, California. Each reactor was packed with either sand or plastic media. A perchlorate-reducing bacterium, Dechlorosoma sp. KJ, was used to inoculate the bioreactors. Perchlorate was successfully removed down to a non-detectable level (microbial fuel cells (MFCs), which were run either in batch or continuous mode. In batch experiments, both a pure culture (Geobactor metallireducens) and a mixed culture (wastewater inoculum) were used as the biocatalyst, and acetate was added as substrate in the anode chamber of the MFC. Power output in a membrane MFC with either inoculum was essentially the same, with 40 +/- 1 mW/m2 for G. metallireducens and 38 +/- 1 mW/m2 for mixed culture. A different type of the MFC containing a salt bridge instead of a membrane system was examined to generate power using the same substrate and pure culture as used in the membrane MFC. Power output in the salt bridge MFC was 2.2 mW/m 2. It was found that the lower power output was directly attributed to the higher internal resistance of the salt bridge system (19920 +/- 50 O) in comparison with that of the membrane system (1286 +/- 1 O). Continuous electricity generation was examined in a flat plate microbial fuel cell (FPMFC) using domestic wastewater and specific organic substrates. The FPMFC, containing a combined electrode/proton exchange membrane (PEM), was initially acclimated for one month to domestic wastewater, and then was operated as a plug flow reactor system. Power density using domestic wastewater as a substrate was 72 +/- 1 mW/m2 at a liquid flow rate of 0.39 mL/min (1.1 hr hydraulic retention time, HRT), and COD removal was 42%. At a longer HRT of 4.0 hr, the COD removal increased to 79%, and power density was 43 mW/m2. Several organic compounds

  10. Phenotypic responses to interspecies competition and commensalism in a naturally-derived microbial co-culture

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Nymul; Maezato, Yukari; McClure, Ryan S.; Brislawn, Colin J.; Mobberley, Jennifer M.; Isern, Nancy; Chrisler, William B.; Markillie, Lye Meng; Barney, Brett M.; Song, Hyun-Seob; Nelson, William C.; Bernstein, Hans C.

    2018-01-10

    The fundamental question of whether different microbial species will co-exist or compete in a given environment depends on context, composition and environmental constraints. Model microbial systems can yield some general principles related to this question. In this study we employed a naturally occurring co-culture composed of heterotrophic bacteria, Halomonas sp. HL-48 and Marinobacter sp. HL-58, to ask two fundamental scientific questions: 1) how do the phenotypes of two naturally co-existing species respond to partnership as compared to axenic growth? and 2) how do growth and molecular phenotypes of these species change with respect to competitive and commensal interactions? We hypothesized – and confirmed – that co-cultivation under glucose as the sole carbon source would result in a competitive interactions. Similarly, when glucose was swapped with xylose, the interactions became commensal because Marinobacter HL-58 was supported by metabolites derived from Halomonas HL-48. Each species responded to partnership by changing both its growth and molecular phenotype as assayed via batch growth kinetics and global transcriptomics. These phenotypic responses depended nutrient availability and so the environment ultimately controlled how they responded to each other. This simplified model community revealed that microbial interactions are context-specific and different environmental conditions dictate how interspecies partnerships will unfold.

  11. Adaptation to high throughput batch chromatography enhances multivariate screening.

    Science.gov (United States)

    Barker, Gregory A; Calzada, Joseph; Herzer, Sibylle; Rieble, Siegfried

    2015-09-01

    High throughput process development offers unique approaches to explore complex process design spaces with relatively low material consumption. Batch chromatography is one technique that can be used to screen chromatographic conditions in a 96-well plate. Typical batch chromatography workflows examine variations in buffer conditions or comparison of multiple resins in a given process, as opposed to the assessment of protein loading conditions in combination with other factors. A modification to the batch chromatography paradigm is described here where experimental planning, programming, and a staggered loading approach increase the multivariate space that can be explored with a liquid handling system. The iterative batch chromatography (IBC) approach is described, which treats every well in a 96-well plate as an individual experiment, wherein protein loading conditions can be varied alongside other factors such as wash and elution buffer conditions. As all of these factors are explored in the same experiment, the interactions between them are characterized and the number of follow-up confirmatory experiments is reduced. This in turn improves statistical power and throughput. Two examples of the IBC method are shown and the impact of the load conditions are assessed in combination with the other factors explored. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Exploring the controls of soil biogeochemistry in a restored coastal wetland using object-oriented computer simulations of uptake kinetics and thermodynamic optimization in batch reactors

    Science.gov (United States)

    Payn, R. A.; Helton, A. M.; Poole, G.; Izurieta, C.; Bernhardt, E. S.; Burgin, A. J.

    2012-12-01

    Many hypotheses have been proposed to predict patterns of biogeochemical redox reactions based on the availability of electron donors and acceptors and the thermodynamic theory of chemistry. Our objective was to develop a computer model that would allow us to test various alternatives of these hypotheses against data gathered from soil slurry batch reactors, experimental soil perfusion cores, and in situ soil profile observations from the restored Timberlake Wetland in coastal North Carolina, USA. Software requirements to meet this objective included the ability to rapidly develop and compare different hypothetical formulations of kinetic and thermodynamic theory, and the ability to easily change the list of potential biogeochemical reactions used in the optimization scheme. For future work, we also required an object pattern that could easily be coupled with an existing soil hydrologic model. These requirements were met using Network Exchange Objects (NEO), our recently developed object-oriented distributed modeling framework that facilitates simulations of multiple interacting currencies moving through network-based systems. An initial implementation of the object pattern was developed in NEO based on maximizing growth of the microbial community from available dissolved organic carbon. We then used this implementation to build a modeling system for comparing results across multiple simulated batch reactors with varied initial solute concentrations, varied biogeochemical parameters, or varied optimization schemes. Among heterotrophic aerobic and anaerobic reactions, we have found that this model reasonably predicts the use of terminal electron acceptors in simulated batch reactors, where reactions with higher energy yields occur before reactions with lower energy yields. However, among the aerobic reactions, we have also found this model predicts dominance of chemoautotrophs (e.g., nitrifiers) when their electron donor (e.g., ammonium) is abundant, despite the

  13. Model Integrasi Penjadwalan Produksi Batch dan Penjadwalan Perawatan dengan Kendala Due Date

    Directory of Open Access Journals (Sweden)

    Zahedi .

    2014-01-01

    Full Text Available This paper discusses the integration model of batch production and preventive maintenance scheduling on a single machine producing an item to be delivered at a common due date. The machine is a deteriorating machine that requires preventive maintenance to ensure the availability of the machine at a desired service level. Decision variables of the model are the number of preventive maintenances, the schedule, length of production runs, as well as the number of batches, batch sizes and the production schedule of the resulting batches for each production run. The objective function of the model is to minimize the total cost consisting of inventory costs during parts processing, setup cost and cost of preventive maintenance. The results show three important points: First, the sequence of optimal batches always follows the SPT (short processing time. Second, variation of preventive maintenance unit cost does not influence the sequence of batches. Third, the first production run length from production starting time is smaller than the next production run length and this pattern continues until the due date. When in process inventory unit cost is increased, the pattern will continue until a specified cost limit, and beyond the limit the pattern will change to be the opposite pattern.

  14. Acceptance Test Data for the AGR-5/6/7 Irradiation Test Fuel Composite Defective IPyC Fraction and Pyrocarbon Anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Helmreich, Grant W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hunn, John D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Skitt, Darren J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dyer, John A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Schumacher, Austin T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-01

    Coated particle composite J52R-16-98005 was produced by Babcock and Wilcox Technologies (BWXT) as fuel for the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program’s AGR-5/6/7 irradiation test in the Idaho National Laboratory (INL) Advanced Test Reactor (ATR). This composite was comprised of four coated particle fuel batches J52O-16-93165B (26%), 93168B (26%), 93169B (24%), and 93170B (24%), chosen based on the Quality Control (QC) data acquired for each individual candidate AGR-5/6/7 batch. Each batch was coated in a 150-mm-diameter production-scale fluidized-bed chemical vapor deposition (CVD) furnace. Tristructural isotropic (TRISO) coatings were deposited on 425-μm-nominal-diameter spherical kernels from BWXT Lot J52R-16-69317 containing a mixture of 15.5%-enriched uranium carbide and uranium oxide (UCO). The TRISO coatings consisted of four consecutive CVD layers: a ~50% dense carbon buffer layer with 100-μm-nominal thickness, a dense inner pyrolytic carbon (IPyC) layer with 40-μm-nominal thickness, a silicon carbide (SiC) layer with 35-μm-nominal thickness, and a dense outer pyrolytic carbon (OPyC) layer with 40-μm-nominal thickness. The TRISO-coated particle batches were sieved to upgrade the particles by removing over-sized and under-sized material, and the upgraded batches were designated by appending the letter A to the end of the batch number (e.g., 93165A). Secondary upgrading by sieving was performed on the A-designated batches to remove particles with missing or very-thin buffer layers that were identified during previous analysis of the individual batches for defective IPyC, as reported in the acceptance test data report for the AGR-5/6/7 production batches [Hunn et al. 2017]. The additionally-upgraded batches were designated by appending the letter B to the end of the batch number (e.g., 93165B).

  15. PENENTUAN PRODUCTION LOT SIZES DAN TRANSFER BATCH SIZES DENGAN PENDEKATAN MULTISTAGE

    Directory of Open Access Journals (Sweden)

    Purnawan Adi W

    2012-02-01

    Full Text Available Pengendalian dan perawatan inventori merupakan suatu permasalahan yang sering dihadapi seluruh organisasi dalam berbagai sektor ekonomi. Salah satu tantangan yang yang harus dihadapi dalam pengendalian inventori adalah bagaimana menentukan ukuran lot yang optimal pada suatu sistem produksi dengan berbagai tipe. Analisis batch produksi (production lot dengan pendekatan hybrid simulasi analitik merupakan salah satu penelitian mengenai ukuran lot optimal. Penelitian tersebut menggunakan pendekatan sistem singlestage dimana tidak adanya hubungan antar proses di setiap stage atau dengan kata lain, proses yang satu independen terhadap proses yang lain. Dengan menggunakan objek penelitian yang sama dengan objek penelitian diatas, penelitian ini kemudian mengangkat permasalahan penentuan ukuran production lot dengan pendekatan multistage. Pertama, dengan menggunakan data-data yang sama dengan penelitian sebelumnya ditentukan ukuran production lot yang optimal dengan metode programa linier. Selanjutnya ukuran production lot digunakan sebegai input simulasi untuk menentukan ukuran transfer batch. Rata-rata panjang antrian dan waktu tunggu menjadi ukuran performansi yang digunakan sebagai acuan penentuan ukuran transfer batch dari beberapa alternatif ukuran yang ada. Pada penelitian ini, ukuran production lot yang dihasilkan sama besarnya dengan demand tiap periode. Sedangkan untuk ukuran transfer batch, hasil penentuan dengan menggunakan simulasi kemudian dimplementasikan ke dalam model. Hasilnya adalah adanya penurunan inventori yang terjadi sebesar 76,35% untuk produk connector dan 50,59% untuk produk box connector dari inventori yang dihasilkan dengan pendekatan singlestage. Kata kunci : multistage, production lot, transfer batch     Abstract   Inventory maintenance and inventory control is a problem that often faced by all organization in many economic sectors. One of challenges that must be faced in inventory control is how to determine the

  16. Sensitivity of Deep Soil Organic Carbon Age to Sorption, Transport and Microbial Interactions - Insights from a Calibrated Process Model

    Science.gov (United States)

    Ahrens, B.; Schrumpf, M.; Reichstein, M.

    2013-12-01

    Subsoil soil organic carbon (SOC) is characterized by conventional radiocarbon ages on the order of centuries to millennia. Most vertically explicit SOC turnover models represent this persistence of deep SOC by one pool that has millennial turnover times. This approach lumps different stabilizing mechanisms such as chemical recalcitrance, sorptive stabilization and energy limitation into a single rate constant. As an alternative, we present a continuous, vertically explicit SOC decomposition model that allows for stabilization via sorption and microbial interactions (COMISSION model). We compare the COMISSION model with the SOC profile of a Haplic Podzol under a Norway spruce forest. In the COMISSION model two pools receive aboveground litter input and vertically distributed root litter input. The readily leachable and soluble fraction of litter input enters a dissolved organic carbon pool (DOC), while the rest enters the residue pool which represents polymeric, non-soluble SOC. The residue pool is depolymerized with extracellular enzymes produced by a microbial pool to enter the DOC pool which represents SOC potentially available for assimilation by microbes. The adsorption/desorption of DOC from/to mineral surfaces controls the availability of carbon in the DOC pool for assimilatory uptake by microbes. The sorption of DOC is modeled with dynamic Langmuir equations. The desorbed part of the DOC pool not only constitutes the substrate for the microbial pool, but is also transported via advection. Interactions of microbes with the residue and DOC pool are modeled with Michaelis-Menten kinetics - this not only allows representing ';priming', but also the retardation of decomposition via energy limitation in the deep soil where substrate is scarce. Further, soil organic matter is recycled within the soil profile through microbial processing - dead microbes either enter the DOC or the residue pool, and thereby also contribute to longer residence times with soil depth

  17. Study on the impact of transition from 3-batch to 4-batch loading at Loviisa NPP on the long-term decay heat and activity inventory

    Energy Technology Data Exchange (ETDEWEB)

    Lahtinen, Tuukka [Fortum Power and Heat Ltd., Fortum (Finland)

    2017-09-15

    The fuel economy of Loviisa NPP was improved by implementing a transition from 3-batch to 4-batch loading scheme between 2009 and 2013. Equilibrium cycle length as well as all process parameters were retained unchanged while the increase of fuel enrichment enabled to reduce the annual reload batch size from 102 to 84 assemblies. The fuel cycle transition obviously had an effect on the long-term decay heat and activity inventory. However, due to simultaneous change in several quantities the net effect over the relevant cooling time region is not self-evident. In this study the effect is analyzed properly, i. e. applying consistent calculation models and detailed description of assembly-wise irradiation histories. The study concludes that for the cooling time, foreseen typical prior to encapsulation of assemblies, the decay heat of discharge batch increases 2 - 3%. It is also concluded that, in order to maintain 100% filling degree of final disposal canisters, the cooling time prior to encapsulation needs to be prolonged by 10 - 15 years.

  18. Stability of U(VI) and Tc(VII) Reducing Microbial Communities to Environmental Perturbation: Development and Testing of a Thermodynamic Network Model

    International Nuclear Information System (INIS)

    McKinley, James P.; Istok, Jonathan

    2005-01-01

    Previously published research from in situ field experiments at the NABIR Field Research Center have shown that cooperative metabolism of denitrifiers and Fe(III)/sulfate reducers is essential for creating subsurface conditions favorable for U(VI) and Tc(VII) bioreduction (Istok et al., 2004). The overall goal of this project is to develop and test a thermodynamic network model for predicting the effects of substrate additions and environmental perturbations on the composition and functional stability of subsurface microbial communities. The overall scientific hypothesis is that a thermodynamic analysis of the energy-yielding reactions performed by broadly defined groups of microorganisms can be used to make quantitative and testable predictions of the change in microbial community composition that will occur when a substrate is added to the subsurface or when environmental conditions change. An interactive computer program was developed to calculate the overall growth equation and free energy yield for microorganisms that grow by coupling selected combinations of electron acceptor and electron donor half-reactions. Each group performs a specific function (e.g. oxidation of acetate coupled to reduction of nitrate); collectively the groups provide a theoretical description of the entire natural microbial community. The microbial growth data are combined with an existing thermodynamic data base for associated geochemical reactions and used to simulate the coupled microbial-geochemical response of a complex natural system to substrate addition or any other environmental perturbations

  19. Retardation characteristics of radionuclides in geologic media through batch and packed column experiments

    International Nuclear Information System (INIS)

    Park, Hun Hwee; Han, Kyung Won; Han, Pil Soo; Lee, Jae Owan; Park, Chung Kyun; Yang, Ho Yeon

    1988-03-01

    Batch and packed column experiments are performed to investigate the retardation characteristics of radionuclide,i.e, Cs-137 in geologic media. In batch experiment, the effects of important parameters on the sorption of radionuclide in geologic media, such as nuclide concentration, pH, and particle size are examined. The Kd value obtained from breakthrough curve was compared with that from the batch sorption experiment to investigate the applicability of the Kd value from batch experiment to prediction of radionuclide migration in dynamic flow through porous media. The proposed model of radionuclide migration in porous media is also verified using the experimental results. (Author)

  20. Development of mixed microbial granular biofilms for denitrification of concentrated wastes

    International Nuclear Information System (INIS)

    Krishna Mohan, T.V.; Nancharaiah, Y.V.; Venugopalan, V.P.; Narasimhan, S.V.; Satyasai, P.M.

    2010-01-01

    Nitrate containing wastes are generated at various stages of the nuclear fuel cycle; fuel fabrication and reprocessing. A treatment process for removing nitrate from such concentrated nitrate bearing effluents is needed. Among other available options, biological denitrification is an economical and technically feasible method for nitrate removal. Granular biofilm based sequencing batch reactors (SBRs) may allow designing a compact and high rate processes suitable for the treatment of concentrated effluents. Hence, experiments were carried out in laboratory scale sequencing batch reactors (SBRs) to develop granular biofilms (composed of mixed microbes) for removing nitrate from the concentrated nitrate containing-media. Microbial granular biofilms, capable of consuming nitrate up to 2710 mg/l nitrate-N, were developed under anaerobic conditions in a 6-litre volume sequencing batch reactor (SBR). The SBR was inoculated with activated sludge flocs and operated with 24-h cycle and 50% volumetric exchange ratio. Synthetic media containing acetate as the energy source and electron donor, at carbon to nitrogen molar ratio of 2:1 and 3:1 was fed into the SBRs. Nitrate-N concentration in the SBR was increased in a step-wise manner starting from 677 to 2710 mg/l (1355 to 5420 mg/l in the feed). Complete removal of influent nitrate occurred within the first few hours of SBR cycle period. Effluent nitrate and nitrite levels (∼3 mg/l nitrate-N or nitrite-N) at the end of SBR cycle period (24 h) were found to be below the discharge limits. Under these conditions biomass predominantly consisted of granular biofilms. Results show the potential of granular biofilm based SBR for converting nitrate to nitrogen gas from concentrated nitrate bearing industrial effluents. (author)

  1. Monitoring and Characterization of Crystal Nucleation and Growth during Batch Crystallization

    NARCIS (Netherlands)

    Kadam, S.S.

    2012-01-01

    Batch crystallization is commonly used in pharmaceutical, agrochemical, specialty and fine chemicals industry. The advantages of batch crystallization lie in its ease of operation and the relatively simple equipment that can be used. On the other hand a major disadvantage associated with it is the

  2. Hybrid modeling of microbial exopolysaccharide (EPS) production: The case of Enterobacter A47.

    Science.gov (United States)

    Marques, Rodolfo; von Stosch, Moritz; Portela, Rui M C; Torres, Cristiana A V; Antunes, Sílvia; Freitas, Filomena; Reis, Maria A M; Oliveira, Rui

    2017-03-20

    Enterobacter A47 is a bacterium that produces high amounts of a fucose-rich exopolysaccharide (EPS) from glycerol residue of the biodiesel industry. The fed-batch process is characterized by complex non-linear dynamics with highly viscous pseudo-plastic rheology due to the accumulation of EPS in the culture medium. In this paper, we study hybrid modeling as a methodology to increase the predictive power of models for EPS production optimization. We compare six hybrid structures that explore different levels of knowledge-based and machine-learning model components. Knowledge-based components consist of macroscopic material balances, Monod type kinetics, cardinal temperature and pH (CTP) dependency and power-law viscosity models. Unknown dependencies are set to be identified by a feedforward artificial neural network (ANN). A semiparametric identification schema is applied resorting to a data set of 13 independent fed-batch experiments. A parsimonious hybrid model was identified that describes the dynamics of the 13 experiments with the same parameterization. The final model is specific to Enterobacter A47 but can be easily extended to other microbial EPS processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Optimal operation of batch membrane processes

    CERN Document Server

    Paulen, Radoslav

    2016-01-01

    This study concentrates on a general optimization of a particular class of membrane separation processes: those involving batch diafiltration. Existing practices are explained and operational improvements based on optimal control theory are suggested. The first part of the book introduces the theory of membrane processes, optimal control and dynamic optimization. Separation problems are defined and mathematical models of batch membrane processes derived. The control theory focuses on problems of dynamic optimization from a chemical-engineering point of view. Analytical and numerical methods that can be exploited to treat problems of optimal control for membrane processes are described. The second part of the text builds on this theoretical basis to establish solutions for membrane models of increasing complexity. Each chapter starts with a derivation of optimal operation and continues with case studies exemplifying various aspects of the control problems under consideration. The authors work their way from th...

  4. Application of gain scheduling to the control of batch bioreactors

    Science.gov (United States)

    Cardello, Ralph; San, Ka-Yiu

    1987-01-01

    The implementation of control algorithms to batch bioreactors is often complicated by the inherent variations in process dynamics during the course of fermentation. Such a wide operating range may render the performance of fixed gain PID controllers unsatisfactory. In this work, a detailed study on the control of batch fermentation is performed. Furthermore, a simple batch controller design is proposed which incorporates the concept of gain-scheduling, a subclass of adaptive control, with oxygen uptake rate as an auxiliary variable. The control of oxygen tension in the biorector is used as a vehicle to convey the proposed idea, analysis and results. Simulation experiments indicate significant improvement in controller performance can be achieved by the proposed approach even in the presence of measurement noise.

  5. Investigation of Sludge Batch 3 (Macrobatch 4) Glass Sample Anomalous Behavior

    International Nuclear Information System (INIS)

    Bannochie, C. J.; Bibler, N. E.; Peeler, D. K.

    2005-01-01

    Two Defense Waste Processing Facility (DWPF) glass samples from Sludge Batch 3 (SB3) (Macrobatch 4) were received by the Savannah River National Laboratory (SRNL) on February 23, 2005. One sample, S02244, was designated for the Product Consistency Test (PCT) and elemental and radionuclide analyses. The second sample, S02247, was designated for archival storage. The samples were pulled from the melter pour stream during the feeding of Melter Feed Tank (MFT) Batch 308 and therefore roughly correspond to feed from Slurry Mix Evaporator (SME) Batches 306-308. During the course of preparing sample S02244 for PCT and other analyses two observations were made which were characterized as ''unusual'' or anomalous behavior relative to historical observations of glasses prepared for the PCT. These observations ultimately led to a series of scoping tests in order to determine more about the nature of the behavior and possible mechanisms. The first observation was the behavior of the ground glass fraction (-100 +200 mesh) for PCT analysis when contacted with deionized water during the washing phase of the PCT procedure. The behavior was analogous to that of an organic compound in the presence of water: clumping, floating on the water surface, and crawling up the beaker walls. In other words, the glass sample did not ''wet'' normally, displaying a hydrophobic behavior in water. This had never been seen before in 18 years SRNL PCT tests on either radioactive or non-radioactive glasses. Typical glass behavior is largely to settle to the bottom of the water filled beaker, though there may be suspended fines which result in some cloudiness to the wash water. The typical appearance is analogous to wetting sand. The second observation was the presence of faint black rings at the initial and final solution levels in the Teflon vessels used for the mixed acid digestion of S02244 glass conducted for compositional analysis. The digestion is composed of two stages, and at both the

  6. Look-ahead strategies for controlling batch operations in industry : basic insights in rule construction

    NARCIS (Netherlands)

    van der Zee, D.J.; Sullivan, W.A.; Ahmad, M.M.; Fichtner, D.; Sauer, W.; Weigert, G.; Zerna, T.

    2002-01-01

    Batching jobs in a manufacturing system is a very common policy in most industries. Main reasons for batching are avoidance of set ups and/or facilitation of material handling. Examples of batch-wise production systems are ovens found in aircraft industry and in semiconductor manufacturing. Starting

  7. Control of polymer network topology in semi-batch systems

    Science.gov (United States)

    Wang, Rui; Olsen, Bradley; Johnson, Jeremiah

    Polymer networks invariably possess topological defects: loops of different orders. Since small loops (primary loops and secondary loops) both lower the modulus of network and lead to stress concentration that causes material failure at low deformation, it is desirable to greatly reduce the loop fraction. We have shown that achieving loop fraction close to zero is extremely difficult in the batch process due to the slow decay of loop fraction with the polymer concentration and chain length. Here, we develop a modified kinetic graph theory that can model network formation reactions in semi-batch systems. We demonstrate that the loop fraction is not sensitive to the feeding policy if the reaction volume maintains constant during the network formation. However, if we initially put concentrated solution of small junction molecules in the reactor and continuously adding polymer solutions, the fractions of both primary loop and higher-order loops will be significantly reduced. There is a limiting value (nonzero) of loop fraction that can be achieved in the semi-batch system in condition of extremely slow feeding rate. This minimum loop fraction only depends on a single dimensionless variable, the product of concentration and with single chain pervaded volume, and defines an operating zone in which the loop fraction of polymer networks can be controlled through adjusting the feeding rate of the semi-batch process.

  8. The use of date waste for lactic acid production by a fed-batch culture using Lactobacillus casei subsp. rhamnosus.

    Science.gov (United States)

    Nancib, Aicha; Nancib, Nabil; Boubendir, Abdelhafid; Boudrant, Joseph

    2015-01-01

    The production of lactic acid from date juice by Lactobacillus caseisubsp. rhamnosus in batch and fed-batch cultures has been investigated. The fed-batch culture system gave better results for lactic acid production and volumetric productivity. The aim of this work is to determine the effects of the feeding rate and the concentration of the feeding medium containing date juice glucose on the cell growth, the consumption of glucose and the lactic acid production by Lactobacillus casei subsp. rhamnosus in fed-batch cultures. For this study, two concentrations of the feeding medium (62 and 100 g/L of date juice glucose) were tested at different feeding rates (18, 22, 33, 75 and 150 mL/h). The highest volumetric productivity (1.3 g/L.h) and lactic acid yield (1.7 g/g) were obtained at a feeding rate of 33 mL/h and a date juice glucose concentration of 62 g/L in the feeding medium. As a result, most of the date juice glucose was completely utilised (residual glucose 1 g/L), and a maximum lactic acid production level (89.2 g/L) was obtained.

  9. Functional and community-level soil microbial responses to zinc addition may depend on test system biocomplexity.

    Science.gov (United States)

    Sverdrup, Line E; Linjordet, Roar; Strømman, Gjermund; Hagen, Snorre B; van Gestel, Cornelis A M; Frostegård, Sa; Sørheim, Roald

    2006-12-01

    The effect of zinc on soil nitrification and composition of the microbial community in soil was investigated using a full factorial experiment with five zinc concentrations and four levels of biological complexity (microbes only, microbes and earthworms (Eisenia fetida), microbes and Italian ryegrass (Lolium multiflorum var. Macho), and microbes, ryegrass and earthworms). After 6 weeks of exposure, the activity of soil nitrifying bacteria was measured and the microbial community structure was characterized by phospholipid fatty acid (PLFA) analysis. Soil nitrification and several PLFA markers were significantly influenced by either zinc addition and/or the presence of earthworms or ryegrass, and one of the most pronounced changes was the increase of fungi and decrease of bacteria with increasing concentrations of zinc. Of particular interest, however, was the potential interaction between the presence of plants and/or earthworms and the effect of zinc, which the factorial study design allowed us to explore. Such an effect was observed in two cases: Earthworms reduced the positive effect of zinc on the fungal biomass (ANOVA, p=0.03), and the effect of earthworms on the soil nitrification activity depended on zinc concentration (ANOVA, p<0.05). The effect of earthworm presence was not very large, but it does show that multispecies tests might give information about metal toxicity or bioavailability that cannot be predicted from single-species tests.

  10. Monitoring of batch processes using spectroscopy

    NARCIS (Netherlands)

    Gurden, S. P.; Westerhuis, J. A.; Smilde, A. K.

    2002-01-01

    There is an increasing need for new techniques for the understanding, monitoring and the control of batch processes. Spectroscopy is now becoming established as a means of obtaining real-time, high-quality chemical information at frequent time intervals and across a wide range of industrial

  11. Optimization of the liquid biofertilizer production in batch fermentation with by-product from MSG

    Science.gov (United States)

    Namfon, Panjanapongchai; Ratchanok, Sahaworarak; Chalida, Daengbussade

    2017-03-01

    The long term use of chemical fertilizers destroyed the friability of soil which obviously decreased quantity and quality of crops and especially affect microorganisms living in soils. The bio-fertilizer with microbial consortium is an environmental friendly alternative to solve this bottleneck due to harboring soil microorganisms such as Bacillus sp., Micrococcus sp., Pseudomonas sp., Staphylococcus sp. and Deinococcus sp. produced with natural by-product or waste from industries that is alternative and sustainable such as nutrient-rich (by-product) from Mono Sodium Glutamate (MSG) for producing liquid biofertilizer by batch fermentation. In this work, the concentration of reducing sugar from substrate as main carbon source was evaluated in shake flask with mixed cultures. The optimal conditions were studied comparing with two levels of reducing sugar concentration (10, 20 g/L) and inoculums concentration (10, 20 %v/v) with using (2×2) full factorial design. The results indicated that the by-product from monosodium glutamate is feasible for fermentation and inoculums concentration is mainly influenced the batch fermentation process. Moreover, the combined 20 g/L and 10%v/v were considerably concluded as an optimal condition, of which the concentration of vegetative cells and spores attained at 8.29×109 CFU/mL and 1.97×105 CFU/mL, respectively. Their spores cell yields from reducing sugar (Yx/s) were obtained at 1.22×106 and 3.34×105 CFU/g were markedly different. In conclusion, the liquid Biofertilizer was produced satisfactorily at 20 g/L reducing sugar and 10% v/v inoculums in shake flask culture. Moreover, these results suggested that the by-product from monosodium glutamate is feasible for low-cost substrate in economical scale and environmental-friendly.

  12. Design of Mixed Batch Reactor and Column Studies at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Wu, Weimin; Criddle, Craig S.

    2015-01-01

    We (the Stanford research team) were invited as external collaborators to contribute expertise in environmental engineering and field research at the ORNL IFRC, Oak Ridge, TN, for projects carried out at the Argonne National Laboratory and funded by US DOE. Specifically, we assisted in the design of batch and column reactors using ORNL IFRC materials to ensure the experiments were relevant to field conditions. During the funded research period, we characterized ORNL IFRC groundwater and sediments in batch microcosm and column experiments conducted at ANL, and we communicated with ANL team members through email and conference calls and face-to-face meetings at the annual ERSP PI meeting and national meetings. Microcosm test results demonstrated that U(VI) in sediments was reduced to U(IV) when amended with ethanol. The reduced products were not uraninite but unknown U(IV) complexes associated with Fe. Fe(III) in solid phase was only partially reduced. Due to budget reductions at ANL, Stanford contributions ended in 2011.

  13. Design of Mixed Batch Reactor and Column Studies at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Weimin [Stanford Univ., CA (United States); Criddle, Craig S. [Stanford Univ., CA (United States)

    2015-11-16

    We (the Stanford research team) were invited as external collaborators to contribute expertise in environmental engineering and field research at the ORNL IFRC, Oak Ridge, TN, for projects carried out at the Argonne National Laboratory and funded by US DOE. Specifically, we assisted in the design of batch and column reactors using ORNL IFRC materials to ensure the experiments were relevant to field conditions. During the funded research period, we characterized ORNL IFRC groundwater and sediments in batch microcosm and column experiments conducted at ANL, and we communicated with ANL team members through email and conference calls and face-to-face meetings at the annual ERSP PI meeting and national meetings. Microcosm test results demonstrated that U(VI) in sediments was reduced to U(IV) when amended with ethanol. The reduced products were not uraninite but unknown U(IV) complexes associated with Fe. Fe(III) in solid phase was only partially reduced. Due to budget reductions at ANL, Stanford contributions ended in 2011.

  14. Production of tea vinegar by batch and semicontinuous fermentation

    OpenAIRE

    Kaur, Pardeep; Kocher, G. S.; Phutela, R. P.

    2010-01-01

    The fermented tea vinegar combines the beneficial properties of tea and vinegar. The complete fermentation takes 4 to 5 weeks in a batch culture and thus can be shortened by semi continuous/ continuous fermentation using immobilized bacterial cells. In the present study, alcoholic fermentation of 1.0 and 1.5% tea infusions using Saccharomyces cerevisae G was carried out that resulted in 84.3 and 84.8% fermentation efficiency (FE) respectively. The batch vinegar fermentation of these wines wit...

  15. Set anode potentials affect the electron fluxes and microbial community structure in propionate-fed microbial electrolysis cells

    KAUST Repository

    Rao, Hari Ananda; Katuri, Krishna; Logan, Bruce E.; Saikaly, Pascal

    2016-01-01

    , but their relative abundance varied among the tested SAPs. Microbial community analysis implies that complete degradation of propionate in all the tested SAPs was facilitated by syntrophic interactions between fermenters and Geobacter at the anode and ferementers

  16. Optimal Operation of Industrial Batch Crystallizers : A Nonlinear Model-based Control Approach

    NARCIS (Netherlands)

    Mesbah, A.

    2010-01-01

    Batch crystallization is extensively employed in the chemical, pharmaceutical, and food industries to separate and purify high value-added chemical substances. Despite their widespread application, optimal operation of batch crystallizers is particularly challenging. The difficulties primarily

  17. Three-batch reloading scheme for IRIS reactor extended cycles

    International Nuclear Information System (INIS)

    Jecmenica, R.; Pevec, D.; Grgic, D.

    2004-01-01

    To fully exploit the IRIS reactor optimized maintenance, and at the same time improve fuel utilization, a core design enabling a 4-year operating cycle together with a three-batch reloading scheme is desirable. However, this requires not only the increased allowed burnup but also use of fuel with uranium oxide enriched beyond 5%. This paper considers three-batch reloading scheme for a 4-year operating cycle with the assumptions of increased discharge burnup and fuel enrichment beyond 5%. Calculational model of IRIS reactor core has been developed based on FER FA2D code for group constants generation and NRC's PARCS nodal code for global core analysis. Studies have been performed resulting in a preliminary design of a three-batch core configuration for the first cycle. It must be emphasized that this study is outside the current IRIS licensing efforts, which rely on the present fuel technology (enrichment below 5%), but it is of long-term interest for potential future IRIS design upgrades. (author)

  18. Feed Preparation for Source of Alkali Melt Rate Tests

    International Nuclear Information System (INIS)

    Stone, M. E.; Lambert, D. P.

    2005-01-01

    The purpose of the Source of Alkali testing was to prepare feed for melt rate testing in order to determine the maximum melt-rate for a series of batches where the alkali was increased from 0% Na 2 O in the frit (low washed sludge) to 16% Na 2 O in the frit (highly washed sludge). This document summarizes the feed preparation for the Source of Alkali melt rate testing. The Source of Alkali melt rate results will be issued in a separate report. Five batches of Sludge Receipt and Adjustment Tank (SRAT) product and four batches of Slurry Mix Evaporator (SME) product were produced to support Source of Alkali (SOA) melt rate testing. Sludge Batch 3 (SB3) simulant and frit 418 were used as targets for the 8% Na 2 O baseline run. For the other four cases (0% Na 2 O, 4% Na 2 O, 12% Na 2 O, and 16% Na 2 O in frit), special sludge and frit preparations were necessary. The sludge preparations mimicked washing of the SB3 baseline composition, while frit adjustments consisted of increasing or decreasing Na and then re-normalizing the remaining frit components. For all batches, the target glass compositions were identical. The five SRAT products were prepared for testing in the dry fed melt-rate furnace and the four SME products were prepared for the Slurry-fed Melt-Rate Furnace (SMRF). At the same time, the impacts of washing on a baseline composition from a Chemical Process Cell (CPC) perspective could also be investigated. Five process simulations (0% Na 2 O in frit, 4% Na 2 O in frit, 8% Na 2 O in frit or baseline, 12% Na 2 O in frit, and 16% Na 2 O in frit) were completed in three identical 4-L apparatus to produce the five SRAT products. The SRAT products were later dried and combined with the complementary frits to produce identical glass compositions. All five batches were produced with identical processing steps, including off-gas measurement using online gas chromatographs. Two slurry-fed melter feed batches, a 4% Na 2 O in frit run (less washed sludge combined with

  19. Long-term exposure of bacterial and protozoan communities to TiO2 nanoparticles in an aerobic-sequencing batch reactor

    International Nuclear Information System (INIS)

    Supha, Chitpisud; Boonto, Yuphada; Jindakaraked, Manee; Ananpattarachai, Jirapat; Kajitvichyanukul, Puangrat

    2015-01-01

    Titanium dioxide (TiO 2 ) nanopowders at different concentrations (0–50 mg L −1 ) were injected into an aerobic-sequencing batch reactor (SBR) to investigate the effects of long-term exposure to nanoparticles on bacterial and protozoan communities. The detection of nanoparticles in the bioflocs was analyzed by scanning electron microscopy, transmission electron microscopy, and energy-dispersive x-ray spectroscopy. The SBR wastewater experiments were conducted under the influence of ultraviolet light with photocatalytic TiO 2 . The intrusion of TiO 2 nanoparticles was found both on the surface and inside of the bioflocs. The change of microbial population in terms of mixed liquor-suspended solids and the sludge volume index was monitored. The TiO 2 nanoparticles tentatively exerted an adverse effect on the microbial population, causing the reduction of microorganisms (both bacteria and protozoa) in the SBR. The respiration inhibition rate of the bacteria was increased, and the viability of the microbial population was reduced at the high concentration (50 mg L −1 ) of TiO 2 . The decreasing number of protozoa in the presence of TiO 2 nanoparticles during 20 days of treatment with 0.5 and 1.0 mg L −1 TiO 2 is clearly demonstrated. The measured chemical oxygen demand (COD) in the effluent tends to increase with a long-term operation. The increase of COD in the system suggests a decrease in the efficiency of the wastewater treatment plant. However, the SBR can effectively remove the TiO 2 nanoparticles (up to 50 mg L −1 ) from the effluent. (focus issue paper)

  20. Successful hydraulic strategies to start up OLAND sequencing batch reactors at lab scale.

    Science.gov (United States)

    Schaubroeck, Thomas; Bagchi, Samik; De Clippeleir, Haydée; Carballa, Marta; Verstraete, Willy; Vlaeminck, Siegfried E

    2012-05-01

    Oxygen-limited autotrophic nitrification/denitrification (OLAND) is a one-stage combination of partial nitritation and anammox, which can have a challenging process start-up. In this study, start-up strategies were tested for sequencing batch reactors (SBR), varying hydraulic parameters, i.e. volumetric exchange ratio (VER) and feeding regime, and salinity. Two sequential tests with two parallel SBR were performed, and stable removal rates > 0.4 g N l(-1) day(-1) with minimal nitrite and nitrate accumulation were considered a successful start-up. SBR A and B were operated at 50% VER with 3 g NaCl l(-1) in the influent, and the influent was fed over 8% and 82% of the cycle time respectively. SBR B started up in 24 days, but SBR A achieved no start-up in 39 days. SBR C and D were fed over 65% of the cycle time at 25% VER, and salt was added only to the influent of SBR D (5 g NaCl l(-1)). Start-up of both SBR C and D was successful in 9 and 32 days respectively. Reactor D developed a higher proportion of small aggregates (0.10-0.25 mm), with a high nitritation to anammox rate ratio, likely the cause of the observed nitrite accumulation. The latter was overcome by temporarily including an anoxic period at the end of the reaction phase. All systems achieved granulation and similar biomass-specific nitrogen removal rates (141-220 mg N g(-1) VSS day(-1)). FISH revealed a close juxtapositioning of aerobic and anoxic ammonium-oxidizing bacteria (AerAOB and AnAOB), also in small aggregates. DGGE showed that AerAOB communities had a lower evenness than Planctomycetes communities. A higher richness of the latter seemed to be correlated with better reactor performance. Overall, the fast start-up of SBR B, C and D suggests that stable hydraulic conditions are beneficial for OLAND while increased salinity at the tested levels is not needed for good reactor performance. © 2012 The Authors. Microbial Biotechnology © 2012 Society for Applied Microbiology and Blackwell Publishing

  1. Effect of Different Carbon Substrates on Nitrate Stable Isotope Fractionation During Microbial Denitrification

    DEFF Research Database (Denmark)

    Wunderlich, Anja; Meckenstock, Rainer; Einsiedl, Florian

    2012-01-01

    -labeled water and 18O-labeled nitrite were added to the microcosm experiments to study the effect of putative backward reactions of nitrite to nitrate on the stable isotope fractionation. We found no evidence for a reverse reaction. Significant variations of the stable isotope enrichment factor ε were observed......In batch experiments, we studied the isotope fractionation in N and O of dissolved nitrate during dentrification. Denitrifying strains Thauera aromatica and “Aromatoleum aromaticum strain EbN1” were grown under strictly anaerobic conditions with acetate, benzoate, and toluene as carbon sources. 18O...... of nitrate transport across the cell wall compared to the kinetics of the intracellular nitrate reduction step of microbial denitrification....

  2. Modeling of oxide reduction in repeated-batch pyroprocessing

    International Nuclear Information System (INIS)

    Lee, Hyo Jik; Im, Hun Suk; Park, Geun Il

    2016-01-01

    Highlights: • Pyroprocessing is a complicated batch-type operation. • Discrete event system modeling was used to create an integrated operation model. • Simulation showed that could be accomplished. • The dynamic material flow helps us understand the process operation. • We showed that complex material flow could be simulated in terms of mass balance. - Abstract: Pyroprocessing is a complicated batch-type operation, involving a highly complex material flow logic with a huge number of unit processes. Discrete event system modeling was used to create an integrated operation model for which simulation showed that dynamic material flow could be accomplished to provide considerable insight into the process operation. In the model simulation, the amount of material transported upstream and downstream in the process satisfies a mass balance equation while considering the hold-up incurred by every batch operation. This study also simulated, in detail, an oxide reduction group process embracing electrolytic reduction, cathode processing, and salt purification. Based on the default operation scenario, it showed that complex material flows could be precisely simulated in terms of the mass balance. Specifically, the amount of high-heat elements remaining in the molten salt bath is analyzed to evaluate the operation scenario.

  3. Anaerobic digestion of animal by-products and slaughterhouse waste: main process limitations and microbial community interactions

    OpenAIRE

    Palatsi Civit, Jordi; Viñas, Marc; Guivernau, Miriam; Fernández García, Belén; Flotats Ripoll, Xavier

    2011-01-01

    Fresh pig/cattle slaughterhouse waste mixtures, with different lipid-protein ratios, were characterized and their anaerobic biodegradability assessed in batch tests. The resultant methane potentials were high (270–300 LCH4 kg 1 COD) making them interesting substrates for the anaerobic digestion process. However, when increasing substrate concentrations in consecutive batch tests, up to 15 gCOD kg 1, a clear inhibitory process was monitored. Despite the reported severe inhibition, related to l...

  4. Comparison of Batch Assay and Random Assay Using Automatic Dispenser in Radioimmunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Seung Hwan; Jang, Su Jin; Kang, Ji Yeon; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul [Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul (Korea, Republic of); Lee, Ho Young; Shin, Sun Young; Min, Gyeong Sun; Lee, Hyun Joo [Seoul National University college of Medicine, Seoul (Korea, Republic of)

    2009-08-15

    Radioimmunoassay (RIA) was usually performed by the batch assay. To improve the efficiency of RIA without increase of the cost and time, random assay could be a choice. We investigated the possibility of the random assay using automatic dispenser by assessing the agreement between batch assay and random assay. The experiments were performed with four items; Triiodothyronine (T3), free thyroxine (fT4), Prostate specific antigen (PSA), Carcinoembryonic antigen (CEA). In each item, the sera of twenty patients, the standard, and the control samples were used. The measurements were done 4 times with 3 hour time intervals by random assay and batch assay. The coefficient of variation (CV) of the standard samples and patients' data in T3, fT4, PSA, and CEA were assessed. ICC (Intraclass correlation coefficient) and coefficient of correlation were measured to assessing the agreement between two methods. The CVs (%) of T3, fT4, PSA, and CEA measured by batch assay were 3.2+-1.7%, 3.9+-2.1%, 7.1+-6.2%, 11.2+-7.2%. The CVs by random assay were 2.1+-1.7%, 4.8+-3.1%, 3.6+-4.8%, and 7.4+-6.2%. The ICC between the batch assay and random assay were 0.9968 (T3), 0.9973 (fT4), 0.9996 (PSA), and 0.9901 (CEA). The coefficient of correlation between the batch assay and random assay were 0.9924(T3), 0.9974 (fT4), 0.9994 (PSA), and 0.9989 (CEA) (p<0.05). The results of random assay showed strong agreement with the batch assay in a day. These results suggest that random assay using automatic dispenser could be used in radioimmunoassay

  5. Comparison of Batch Assay and Random Assay Using Automatic Dispenser in Radioimmunoassay

    International Nuclear Information System (INIS)

    Moon, Seung Hwan; Jang, Su Jin; Kang, Ji Yeon; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul; Lee, Ho Young; Shin, Sun Young; Min, Gyeong Sun; Lee, Hyun Joo

    2009-01-01

    Radioimmunoassay (RIA) was usually performed by the batch assay. To improve the efficiency of RIA without increase of the cost and time, random assay could be a choice. We investigated the possibility of the random assay using automatic dispenser by assessing the agreement between batch assay and random assay. The experiments were performed with four items; Triiodothyronine (T3), free thyroxine (fT4), Prostate specific antigen (PSA), Carcinoembryonic antigen (CEA). In each item, the sera of twenty patients, the standard, and the control samples were used. The measurements were done 4 times with 3 hour time intervals by random assay and batch assay. The coefficient of variation (CV) of the standard samples and patients' data in T3, fT4, PSA, and CEA were assessed. ICC (Intraclass correlation coefficient) and coefficient of correlation were measured to assessing the agreement between two methods. The CVs (%) of T3, fT4, PSA, and CEA measured by batch assay were 3.2±1.7%, 3.9±2.1%, 7.1±6.2%, 11.2±7.2%. The CVs by random assay were 2.1±1.7%, 4.8±3.1%, 3.6±4.8%, and 7.4±6.2%. The ICC between the batch assay and random assay were 0.9968 (T3), 0.9973 (fT4), 0.9996 (PSA), and 0.9901 (CEA). The coefficient of correlation between the batch assay and random assay were 0.9924(T3), 0.9974 (fT4), 0.9994 (PSA), and 0.9989 (CEA) (p<0.05). The results of random assay showed strong agreement with the batch assay in a day. These results suggest that random assay using automatic dispenser could be used in radioimmunoassay

  6. Results of the quality assurance testing program for radiopharmaceuticals 1995

    Energy Technology Data Exchange (ETDEWEB)

    Baldas, J.; Binnyman, J.; Ivanov, Z.; Lauder, R.

    1996-07-01

    The results of the quality assurance testing conducted by the Australian Radiation Laboratory is summarised. Overall 111 batches of 27 different types of radiopharmaceuticals were tested on samples obtained through normal commercial channels. Failure to meet full specifications was observed in 10 of the 111 batches. All technetium-99m cold kits were reconstituted according to the directions in the package insert using sodium pertechnetate ( {sup 99m}Tc) injection. Radionuclidic purity has been determined at the calibration time, except for Thallous [{sup 201}Tl] Chloride injection where the highest impurity level up to product expiry is quoted. Non-compliance of the vial label was observed in one of the ten batches failing specification and was the sole cause of product failure for this batch. Vial label non-compliance consisted of, absence of volume in the vial. Six batches failed the biodistribution test but in no case did this involve failure of the distribution for the target organs. tabs.

  7. Results of the quality assurance testing program for radiopharmaceuticals 1995

    International Nuclear Information System (INIS)

    Baldas, J.; Binnyman, J.; Ivanov, Z.; Lauder, R.

    1996-07-01

    The results of the quality assurance testing conducted by the Australian Radiation Laboratory is summarised. Overall 111 batches of 27 different types of radiopharmaceuticals were tested on samples obtained through normal commercial channels. Failure to meet full specifications was observed in 10 of the 111 batches. All technetium-99m cold kits were reconstituted according to the directions in the package insert using sodium pertechnetate ( 99m Tc) injection. Radionuclidic purity has been determined at the calibration time, except for Thallous [ 201 Tl] Chloride injection where the highest impurity level up to product expiry is quoted. Non-compliance of the vial label was observed in one of the ten batches failing specification and was the sole cause of product failure for this batch. Vial label non-compliance consisted of, absence of volume in the vial. Six batches failed the biodistribution test but in no case did this involve failure of the distribution for the target organs. tabs

  8. Design and construction of a batch oven for investigation of industrial continuous baking processes

    DEFF Research Database (Denmark)

    Stenby Andresen, Mette; Risum, Jørgen; Adler-Nissen, Jens

    2013-01-01

    A new batch oven has been constructed to mimic industrial convection tunnel ovens for research and development of continuous baking processes. The process parameters (air flow, air temperature, air humidity, height of baking area and the baking band velocity) are therefore highly controllable...... and adjustable over a wide range of settings. It is possible to monitor the product weight and temperature continuously during baking. The simultaneous measuring of mass and a window allowing for visual (e.g., by video recording) control is unique for this experimental batch oven. Two validation steps have been...... carried out. The uniformity of heating in the oven was assessed by measurements of local heat transfer coefficients and confirmed by baking tests. The methods showed that the oven is able to heat and bake uniformly across the baking area. Hereafter, the oven was validated against a commercial 10-m tunnel...

  9. Batch Scheduling for Hybrid Assembly Differentiation Flow Shop to Minimize Total Actual Flow Time

    Science.gov (United States)

    Maulidya, R.; Suprayogi; Wangsaputra, R.; Halim, A. H.

    2018-03-01

    A hybrid assembly differentiation flow shop is a three-stage flow shop consisting of Machining, Assembly and Differentiation Stages and producing different types of products. In the machining stage, parts are processed in batches on different (unrelated) machines. In the assembly stage, each part of the different parts is assembled into an assembly product. Finally, the assembled products will further be processed into different types of final products in the differentiation stage. In this paper, we develop a batch scheduling model for a hybrid assembly differentiation flow shop to minimize the total actual flow time defined as the total times part spent in the shop floor from the arrival times until its due date. We also proposed a heuristic algorithm for solving the problems. The proposed algorithm is tested using a set of hypothetic data. The solution shows that the algorithm can solve the problems effectively.

  10. Hierarchical Bayesian models to assess between- and within-batch variability of pathogen contamination in food.

    Science.gov (United States)

    Commeau, Natalie; Cornu, Marie; Albert, Isabelle; Denis, Jean-Baptiste; Parent, Eric

    2012-03-01

    Assessing within-batch and between-batch variability is of major interest for risk assessors and risk managers in the context of microbiological contamination of food. For example, the ratio between the within-batch variability and the between-batch variability has a large impact on the results of a sampling plan. Here, we designed hierarchical Bayesian models to represent such variability. Compatible priors were built mathematically to obtain sound model comparisons. A numeric criterion is proposed to assess the contamination structure comparing the ability of the models to replicate grouped data at the batch level using a posterior predictive loss approach. Models were applied to two case studies: contamination by Listeria monocytogenes of pork breast used to produce diced bacon and contamination by the same microorganism on cold smoked salmon at the end of the process. In the first case study, a contamination structure clearly exists and is located at the batch level, that is, between batches variability is relatively strong, whereas in the second a structure also exists but is less marked. © 2012 Society for Risk Analysis.

  11. Establishing column batch repeatability according to Quality by Design (QbD) principles using modeling software.

    Science.gov (United States)

    Rácz, Norbert; Kormány, Róbert; Fekete, Jenő; Molnár, Imre

    2015-04-10

    Column technology needs further improvement even today. To get information of batch-to-batch repeatability, intelligent modeling software was applied. Twelve columns from the same production process, but from different batches were compared in this work. In this paper, the retention parameters of these columns with real life sample solutes were studied. The following parameters were selected for measurements: gradient time, temperature and pH. Based on calculated results, batch-to-batch repeatability of BEH columns was evaluated. Two parallel measurements on two columns from the same batch were performed to obtain information about the quality of packing. Calculating the average of individual working points at the highest critical resolution (R(s,crit)) it was found that the robustness, calculated with a newly released robustness module, had a success rate >98% among the predicted 3(6) = 729 experiments for all 12 columns. With the help of retention modeling all substances could be separated independently from the batch and/or packing, using the same conditions, having high robustness of the experiments. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Fructose production by Zymomonas mobilis in fed-batch culture with minimal sorbitol formation

    Energy Technology Data Exchange (ETDEWEB)

    Edye, L A; Johns, M R; Ewings, K N

    1989-08-01

    Fed-batch cultures of Zymomonas mobilis (UQM 2864), a mutant unable to metabolise fructose, grown on diluted sugar cane syrup (200 g/l sucrose) achieved yields of 90.5 g/l fructose and 48.3 g/l ethanol with minimal sorbitol formation and complete utilization of the substrate. The effect of inoculum size on sorbitol formation in the batch stage of fed-batch fermentation are reported. Fermentation of sucrose (350 g/l) supplemented with nutrients yielded 142 g/l fructose and 76.5 g/l ethanol. Some fructose product loss at high fructose concentrations was observed. The fed-batch fermentation process offers a method for obtaining high concentrations of fructose and ethanol from sucrose materials. (orig.).

  13. From batch to continuous extractive distillation using thermodynamic insight: class 1.0-2 case B

    OpenAIRE

    Shen, Weifeng; Benyounes, Hassiba; Gerbaud, Vincent

    2011-01-01

    A systematic feasibility analysis is presented for the separation azeotropic mixtures by batch and continuous extractive distillation. Based on batch feasibility knowledge, batch and continuous separation feasibility is studied under reflux ratio and entrainer flow-rate for the ternary system chloroform-vinyl acetate-butyl acetate, which belongs to the class 1.0-2 separating maximum boiling temperature azeotropes using a heavy entrainer. How information on feasibility of batch mode could be e...

  14. Fed-batch CHO cell culture for lab-scale antibody production

    DEFF Research Database (Denmark)

    Fan, Yuzhou; Ley, Daniel; Andersen, Mikael Rørdam

    2017-01-01

    Fed-batch culture is the most commonly used upstream process in industry today for recombinant monoclonal antibody production using Chinese hamster ovary cells. Developing and optimizing this process in the lab is crucial for establishing process knowledge, which enable rapid and predictable tech......-transfer to manufacturing scale. In this chapter, we will describe stepwise how to carry out fed-batch CHO cell culture for lab-scale antibody production....

  15. Improving cellulase productivity of Penicillium oxalicum RE-10 by repeated fed-batch fermentation strategy.

    Science.gov (United States)

    Han, Xiaolong; Song, Wenxia; Liu, Guodong; Li, Zhonghai; Yang, Piao; Qu, Yinbo

    2017-03-01

    Medium optimization and repeated fed-batch fermentation were performed to improve the cellulase productivity by P. oxalicum RE-10 in submerged fermentation. First, Plackett-Burman design (PBD) and central composite design (CCD) were used to optimize the medium for cellulase production. PBD demonstrated wheat bran and NaNO 3 had significant influences on cellulase production. The CCD results showed the maximum filter paper activity (FPA) production of 8.61U/mL could be achieved in Erlenmeyer flasks. The maximal FPA reached 12.69U/mL by submerged batch fermentation in a 7.5-L stirred tank, 1.76-fold higher than that on the original medium. Then, the repeated fed-batch fermentation strategy was performed successfully for increasing the cellulase productivity from 105.75U/L/h in batch fermentation to 158.38U/L/h. The cellulase activity and the glucan conversion of delignined corn cob residue hydrolysis had no significant difference between the enzymes sampled from different cycles of the repeated fed-batch fermentation and that from batch culture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Microbial functional diversity plays an important role in the degradation of polyhydroxybutyrate (PHB) in soil.

    Science.gov (United States)

    Dey, Samrat; Tribedi, Prosun

    2018-03-01

    Towards bioremediation of recalcitrant materials like synthetic polymer, soil has been recognized as a traditional site for disposal and subsequent degradation as some microorganisms in soil can degrade the polymer in a non-toxic, cost-effective, and environment friendly way. Microbial functional diversity is a constituent of biodiversity that includes wide range of metabolic activities that can influence numerous aspects of ecosystem functioning like ecosystem stability, nutrient availability, ecosystem dynamics, etc. Thus, in the current study, we assumed that microbial functional diversity could play an important role in polymer degradation in soil. To verify this hypothesis, we isolated soil from five different sites of landfill and examined several microbiological parameters wherein we observed a significant variation in heterotrophic microbial count as well as microbial activities among the soil microcosms tested. Multivariate analysis (principle component analysis) based on the carbon sources utilization pattern revealed that soil microcosms showed different metabolic patterns suggesting the variable distribution of microorganisms among the soil microcosms tested. Since microbial functional diversity depends on both microbial richness and evenness, Shannon diversity index was determined to measure microbial richness and Gini coefficient was determined to measure microbial evenness. The tested soil microcosms exhibited variation in both microbial richness and evenness suggesting the considerable difference in microbial functional diversity among the tested microcosms. We then measured polyhydroxybutyrate (PHB) degradation in soil microcosms after desired period of incubation of PHB in soil wherein we found that soil microcosms having higher functional diversity showed enhanced PHB degradation and soil microcosms having lower functional diversity showed reduced PHB degradation. We also noticed that all the tested soil microcosms showed similar pattern in both

  17. Effects of phosphate addition on methane fermentation in the batch and upflow anaerobic sludge blanket (UASB) reactors.

    Science.gov (United States)

    Suzuki, Sho; Shintani, Masaki; Sanchez, Zoe Kuizon; Kimura, Kohei; Numata, Mitsuru; Yamazoe, Atsushi; Kimbara, Kazuhide

    2015-12-01

    Ammonia inhibition of methane fermentation is one of the leading causes of failure of anaerobic digestion reactors. In a batch anaerobic digestion reactor with 429 mM NH3-N/L of ammonia, the addition of 25 mM phosphate resulted in an increase in methane production rate. Similar results were obtained with the addition of disodium phosphate in continuous anaerobic digestion using an upflow anaerobic sludge blanket (UASB) reactor. While methane content and production rate decreased in the presence of more than 143 mM NH3-N/L of ammonium chloride in UASB, the addition of 5 mM disodium phosphate suppressed ammonia inhibition at 214 mM NH3-N/L of ammonium chloride. The addition prevented acetate/propionate accumulation, which might be one of the effects of the phosphate on the ammonia inhibition. The effects on the microbial community in the UASB reactor was also assessed, which was composed of Bacteria involved in hydrolysis, acidogenesis, acetogenesis, and dehydrogenation, as well as Archaea carrying out methanogenesis. The change in the microbial community was observed by ammonia inhibition and the addition of phosphate. The change indicates that the suppression of ammonia inhibition by disodium phosphate addition could stimulate the activity of methanogens, reduce shift in bacterial community, and enhance hydrogen-producing bacteria. The addition of phosphate will be an important treatment for future studies of methane fermentation.

  18. Leaching of cadmium and tellurium from cadmium telluride (CdTe) thin-film solar panels under simulated landfill conditions

    Science.gov (United States)

    Ramos-Ruiz, Adriana; Wilkening, Jean V.; Field, James A.; Sierra-Alvarez, Reyes

    2017-01-01

    A crushed non-encapsulated CdTe thin-film solar cell was subjected to two standardized batch leaching tests (i.e., Toxicity Characteristic Leaching Procedure (TCLP) and California Waste Extraction Test (WET)) and to a continuous-flow column test to assess cadmium (Cd) and tellurium (Te) dissolution under conditions simulating the acidic- and the methanogenic phases of municipal solid waste landfills. Low levels of Cd and Te were solubilized in both batch leaching tests (leaching behavior of CdTe in the columns is related to different aqueous pH and redox conditions promoted by the microbial communities in the columns, and is in agreement with thermodynamic predictions. PMID:28472709

  19. Optimization of heat-liberating batches for ash residue stabilization

    International Nuclear Information System (INIS)

    Karlina, O.K.; Varlackova, G.A.; Ojovan, M.I.; Tivansky, V.M.; Dmitriev, S.A.

    1999-01-01

    The ash residue obtained after incineration of solid radioactive waste is a dusting poly-dispersed powder like material that contains radioactive nuclides ( 137 Cs, 90 Sr, 239 Pu, hor ( ellipsis)). Specific radioactivity of the ash can be about 10 5 --10 7 Bq/kg. In order to dispose of the ash, residue shall be stabilized by producing a monolith material. The ash residue can be either vitrified or stabilized into a ceramic matrix. For this purpose the ash residue is mixed with fluxing agents followed by melting of obtained composition in the different type melters. As a rule this requires both significant energy consumption and complex melting equipment. A stabilization technology of ash residue was proposed recently by using heat liberating batches-compositions with redox properties. The ash residue is melted due to exothermic chemical reactions in the mixture with heat-liberating batch that occur with considerable release of heat. Stabilization method has three stages: (1) preparation of a mixture of heating batch and ash residue with or without glass forming batch (frit); (2) ignition and combustion of mixed composition; (3) cooling (quenching) of obtained vitreous material. Combustion of mixed composition occurs in the form of propagation of reacting wave. The heat released during exothermic chemical reactions provides melting of ash residue components and production of glass-like phase. The final product consists of a glass like matrix with embedded crystalline inclusions of infusible ash residue components

  20. Production of carotenoids and lipids by Rhodococcus opacus PD630 in batch and fed-batch culture.

    Science.gov (United States)

    Thanapimmetha, Anusith; Suwaleerat, Tharatron; Saisriyoot, Maythee; Chisti, Yusuf; Srinophakun, Penjit

    2017-01-01

    Production of carotenoids by Rhodococcus opacus PD630 is reported. A modified mineral salt medium formulated with glycerol as an inexpensive carbon source was used for the fermentation. Ammonium acetate was the nitrogen source. A dry cell mass concentration of nearly 5.4 g/L could be produced in shake flasks with a carotenoid concentration of 0.54 mg/L. In batch culture in a 5 L bioreactor, without pH control, the maximum dry biomass concentration was ~30 % lower than in shake flasks and the carotenoids concentration was 0.09 mg/L. Both the biomass concentration and the carotenoids concentration could be raised using a fed-batch operation with a feed mixture of ammonium acetate and acetic acid. With this strategy, the final biomass concentration was 8.2 g/L and the carotenoids concentration was 0.20 mg/L in a 10-day fermentation. A control of pH proved to be unnecessary for maximizing the production of carotenoids in this fermentation.

  1. A CATASTROPHIC-CUM-RESTORATIVE QUEUING SYSTEM WITH CORRELATED BATCH ARRIVALS AND VARIABLE CAPACITY

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar

    2008-07-01

    Full Text Available In this paper, we study a catastrophic-cum-restorative queuing system with correlated batch arrivals and service in batches of variable sizes. We perform the transient analysis of the queuing model. We obtain the Laplace Transform of the probability generating function of system size. Finally, some particular cases of the model have been derived and discussed. Keywords: Queue length, Catastrophes, Correlated batch arrivals, Broadband services, Variable service capacity, and Restoration.

  2. A Job Monitoring and Accounting Tool for the LSF Batch System

    International Nuclear Information System (INIS)

    Sarkar, Subir; Taneja, Sonia

    2011-01-01

    This paper presents a web based job monitoring and group-and-user accounting tool for the LSF Batch System. The user oriented job monitoring displays a simple and compact quasi real-time overview of the batch farm for both local and Grid jobs. For Grid jobs the Distinguished Name (DN) of the Grid users is shown. The overview monitor provides the most up-to-date status of a batch farm at any time. The accounting tool works with the LSF accounting log files. The accounting information is shown for a few pre-defined time periods by default. However, one can also compute the same information for any arbitrary time window. The tool already proved to be an extremely useful means to validate more extensive accounting tools available in the Grid world. Several sites have already been using the present tool and more sites running the LSF batch system have shown interest. We shall discuss the various aspects that make the tool essential for site administrators and end-users alike and outline the current status of development as well as future plans.

  3. Biogenic Hydrogen Conversion of De-Oiled Jatropha Waste via Anaerobic Sequencing Batch Reactor Operation: Process Performance, Microbial Insights, and CO2 Reduction Efficiency

    Directory of Open Access Journals (Sweden)

    Gopalakrishnan Kumar

    2014-01-01

    Full Text Available We report the semicontinuous, direct (anaerobic sequencing batch reactor operation hydrogen fermentation of de-oiled jatropha waste (DJW. The effect of hydraulic retention time (HRT was studied and results show that the stable and peak hydrogen production rate of 1.48 L/L*d and hydrogen yield of 8.7 mL H2/g volatile solid added were attained when the reactor was operated at HRT 2 days (d with a DJW concentration of 200 g/L, temperature 55°C, and pH 6.5. Reduced HRT enhanced the production performance until 1.75 d. Further reduction has lowered the process efficiency in terms of biogas production and hydrogen gas content. The effluent from hydrogen fermentor was utilized for methane fermentation in batch reactors using pig slurry and cow dung as seed sources. The results revealed that pig slurry was a feasible seed source for methane generation. Peak methane production rate of 0.43 L CH4/L*d and methane yield of 20.5 mL CH4/g COD were observed at substrate concentration of 10 g COD/L, temperature 30°C, and pH 7.0. PCR-DGGE analysis revealed that combination of celluloytic and fermentative bacteria were present in the hydrogen producing ASBR.

  4. Effect of inoculum-substrate ratio on acclimatization of pharmaceutical effluent in an anaerobic batch reactor.

    Science.gov (United States)

    Muruganandam, B; Saravanane, R; Lavanya, M; Sivacoumar, R

    2008-07-01

    Anaerobic treatment has gained tremendous success over the past two decades for treatment of industrial effluents. Over the past 30 years, the popularity of anaerobic wastewater treatment has increased as public utilities and industries have utilized its considerable benefits. Low biomass production, row nutrient requirements and the energy production in terms of methane yield are the significant advantages over aerobic treatment process. Due to the disadvantages reported in the earlier investigations, during the past decade, anaerobic biotechnology now seems to become a stable process technology in respect of generating a high quality effluent. The objective of the present experimental study was to compare the biodegradability of recalcitrant effluent (pharmaceutical effluent) for various inoculum-substrate ratios. The batch experiments were conducted over 6 months to get effect of ratio of inoculum-substrate on the acclimatization of pharmaceutical effluent. The tests were carried out in batch reactors, serum bottles, of volume 2000 mL and plastic canes of 10000 mL. Each inoculum was filled with a cow dung, sewage and phosphate buffer. The batch was made-up of diluted cow dung at various proportions of water and cow dung, i.e., 1:1 and 1:2 (one part of cow dung and one part of water by weight for 1:1). The bottles were incubated at ambient temperature (32 degrees C-35 degrees C). The bottles were closed tightly so that the anaerobic condition is maintained. The samples were collected and biodegradability was measured once in four days. The bottles were carefully stirred before gas measurement. The substrate was added to a mixture of inoculum and phosphate nutrients. The variations in pH, conductivity, alkalinity, COD, TS, TVS, VSS, and VFA were measured for batch process. The biogas productivity was calculated for various batches of inoculum-substrate addition and conclusions were drawn for expressing the biodegradability of pharmaceutical effluent on

  5. Influence of the incubation temperature and the batch components on the sensitivity of an enzyme-linked immunosorbent assay to detect Aujeszky's disease virus glycoprotein E (gE).

    Science.gov (United States)

    Cay, A B; Van der Stede, Y

    2010-12-01

    Although licensed batches of an enzyme-linked immunosorbent assay (ELISA) for Aujeszky's disease virus (ADV) were used, and the assays were performed within an ISO/IEC 17025 accredited quality control system, certain routine runs of the ADV ELISA were not validated using the quality system criteria, even when all technical parameters were controlled. Incubation at different temperatures and batch composition were identified as parameters that could result in non-validated assays/runs. Therefore, the effect of incubation temperature and batch composition on the analytical sensitivity of the ELISA was investigated. The World Organisation for Animal Health (OIE) standard reference serum ADV1 was diluted 1:8 and tested in 94 different glycoprotein E ELISA runs performed with different batches and different incubation temperatures. The incubation temperature and batch components had a significant influence on the qualitative result for the OIE standard reference serum. An incubation temperature of at least 22 degrees C was recommended, based on the results of this analysis. Which of the batch components caused these differences in sensitivity was not investigated further.

  6. Arabinoxylo-Oligosaccharides and Inulin Impact Inter-Individual Variation on Microbial Metabolism and Composition, Which Immunomodulates Human Cells.

    Science.gov (United States)

    Van den Abbeele, Pieter; Taminiau, Bernard; Pinheiro, Iris; Duysburgh, Cindy; Jacobs, Heidi; Pijls, Loek; Marzorati, Massimo

    2018-02-07

    Fecal batch fermentations coupled to cocultures of epithelial cells and macrophages were used to compare how arabinoxylo-oligosaccharides (AXOS) and inulin modulate gut microbial activity and composition of three different human donors and subsequently the epithelial permeability and immune response. Both inulin and AXOS decreased the pH during incubation (-1.5 pH units), leading to increased productions of acetate, propionate, and butyrate. Differences in terms of metabolites production could be linked to specific microbial alterations at genus level upon inulin/AXOS supplementation (i.e., Bifidobacterium, Bacteroides, Prevotella and unclassified Erysipelotrichaceae), as shown by 16S-targeted Illumina sequencing. Both products stimulated gut barrier and immune function with increases in TEER, NF-KB, IL-10, and IL-6. Ingredients with different structures selectively modulate the microbiota of a specific donor leading to differential changes at metabolic level. The extent of this effect is donor specific and is linked to a final specific modulation of the host's immune system.

  7. On time discretizations for the simulation of the batch settling-compression process in one dimension.

    Science.gov (United States)

    Bürger, Raimund; Diehl, Stefan; Mejías, Camilo

    2016-01-01

    The main purpose of the recently introduced Bürger-Diehl simulation model for secondary settling tanks was to resolve spatial discretization problems when both hindered settling and the phenomena of compression and dispersion are included. Straightforward time integration unfortunately means long computational times. The next step in the development is to introduce and investigate time-integration methods for more efficient simulations, but where other aspects such as implementation complexity and robustness are equally considered. This is done for batch settling simulations. The key findings are partly a new time-discretization method and partly its comparison with other specially tailored and standard methods. Several advantages and disadvantages for each method are given. One conclusion is that the new linearly implicit method is easier to implement than another one (semi-implicit method), but less efficient based on two types of batch sedimentation tests.

  8. Design of neural network model-based controller in a fed-batch microbial electrolysis cell reactor for bio-hydrogen gas production

    Science.gov (United States)

    Azwar; Hussain, M. A.; Abdul-Wahab, A. K.; Zanil, M. F.; Mukhlishien

    2018-03-01

    One of major challenge in bio-hydrogen production process by using MEC process is nonlinear and highly complex system. This is mainly due to the presence of microbial interactions and highly complex phenomena in the system. Its complexity makes MEC system difficult to operate and control under optimal conditions. Thus, precise control is required for the MEC reactor, so that the amount of current required to produce hydrogen gas can be controlled according to the composition of the substrate in the reactor. In this work, two schemes for controlling the current and voltage of MEC were evaluated. The controllers evaluated are PID and Inverse neural network (NN) controller. The comparative study has been carried out under optimal condition for the production of bio-hydrogen gas wherein the controller output is based on the correlation of optimal current and voltage to the MEC. Various simulation tests involving multiple set-point changes and disturbances rejection have been evaluated and the performances of both controllers are discussed. The neural network-based controller results in fast response time and less overshoots while the offset effects are minimal. In conclusion, the Inverse neural network (NN)-based controllers provide better control performance for the MEC system compared to the PID controller.

  9. Batch variation between branchial cell cultures: An analysis of variance

    DEFF Research Database (Denmark)

    Hansen, Heinz Johs. Max; Grosell, M.; Kristensen, L.

    2003-01-01

    We present in detail how a statistical analysis of variance (ANOVA) is used to sort out the effect of an unexpected batch-to-batch variation between cell cultures. Two separate cultures of rainbow trout branchial cells were grown on permeable filtersupports ("inserts"). They were supposed...... and introducing the observed difference between batches as one of the factors in an expanded three-dimensional ANOVA, we were able to overcome an otherwisecrucial lack of sufficiently reproducible duplicate values. We could thereby show that the effect of changing the apical medium was much more marked when...... the radioactive lipid precursors were added on the apical, rather than on the basolateral, side. Theinsert cell cultures were obviously polarized. We argue that it is not reasonable to reject troublesome experimental results, when we do not know a priori that something went wrong. The ANOVA is a very useful...

  10. Microbial Contamination of Pastry Cream: Evidence from Iran

    Directory of Open Access Journals (Sweden)

    Mohamadreza Pajohi-alamoti

    2016-07-01

    Full Text Available Background & Aims of the Study: Given the importance of microbial contamination in creating food-borne diseases, this study was conducted to assess level of microbial contamination of pastry creams in Hamedan, Iran. Materials and Methods: Totally, 80 samples were randomly collected from the confectioneries and analyzed for microbial contamination according to Iranian national standard microbial tests. Results: Data indicated that 49 (61.2% samples were contaminated, mostly comprised of Coliforms (92.5%. Moreover, the infection was seen to be higher in jelly roll compared to puff pastry. Yeast contamination was about 82.5 percent, which could accelerate the decay of such products. However, yeast contamination of puff pastries was higher than jelly roll. The microbial contamination with Staphylococcus aureus, total viable count and molds were 57.5%, 35% and 37.5%; respectively. Conclusion: Nevertheless, Salmonella, Escherichia coli and Listeria monocytogenes were not found in any of the samples. Abundance of microbial contamination in the puff pastry samples might put consumer’s health at risk.

  11. Temporal Microbial Community Dynamics in Microbial Electrolysis Cells – Influence of Acetate and Propionate Concentration

    KAUST Repository

    Rao, Hari Ananda

    2017-07-20

    Microbial electrolysis cells (MECs) are widely considered as a next generation wastewater treatment system. However, fundamental insight on the temporal dynamics of microbial communities associated with MEC performance under different organic types with varied loading concentrations is still unknown, nevertheless this knowledge is essential for optimizing this technology for real-scale applications. Here, the temporal dynamics of anodic microbial communities associated with MEC performance was examined at low (0.5 g COD/L) and high (4 g COD/L) concentrations of acetate or propionate, which are important intermediates of fermentation of municipal wastewaters and sludge. The results showed that acetate-fed reactors exhibited higher performance in terms of maximum current density (I: 4.25 ± 0.23 A/m), coulombic efficiency (CE: 95 ± 8%), and substrate degradation rate (98.8 ± 1.2%) than propionate-fed reactors (I: 2.7 ± 0.28 A/m; CE: 68 ± 9.5%; substrate degradation rate: 84 ± 13%) irrespective of the concentrations tested. Despite of the repeated sampling of the anodic biofilm over time, the high-concentration reactors demonstrated lower and stable performance in terms of current density (I: 1.1 ± 0.14 to 4.2 ± 0.21 A/m), coulombic efficiency (CE: 44 ± 4.1 to 103 ± 7.2%) and substrate degradation rate (64.9 ± 6.3 to 99.7 ± 0.5%), while the low-concentration reactors produced higher and dynamic performance (I: 1.1 ± 0.12 to 4.6 ± 0.1 A/m; CE: 52 ± 2.5 to 105 ± 2.7%; substrate degradation rate: 87.2 ± 0.2 to 99.9 ± 0.06%) with the different substrates tested. Correlating reactor\\'s performance with temporal dynamics of microbial communities showed that relatively similar anodic microbial community composition but with varying relative abundances was observed in all the reactors despite differences in the substrate and concentrations tested. Particularly, Geobacter was the predominant bacteria on the anode biofilm of all MECs over time suggesting its

  12. Conjugated Polymers Via Direct Arylation Polymerization in Continuous Flow: Minimizing the Cost and Batch-to-Batch Variations for High-Throughput Energy Conversion

    DEFF Research Database (Denmark)

    Gobalasingham, Nemal S.; Carlé, Jon Eggert; Krebs, Frederik C

    2017-01-01

    of high-performance materials. To demonstrate the usefulness of the method, DArP-prepared PPDTBT via continuous flow synthesis is employed for the preparation of indium tin oxide (ITO)-free and flexible roll-coated solar cells to achieve a power conversion efficiency of 3.5% for 1 cm2 devices, which...... is comparable to the performance of PPDTBT polymerized through Stille cross coupling. These efforts demonstrate the distinct advantages of the continuous flow protocol with DArP avoiding use of toxic tin chemicals, reducing the associated costs of polymer upscaling, and minimizing batch-to-batch variations...

  13. [Effect of microbial nutrient concentration on improvement of municipal sewage sludge dewaterability through bioleaching].

    Science.gov (United States)

    Song, Yong-wei; Liu, Fen-wu; Zhou, Li-xiang

    2012-08-01

    In this study, shaking flask batch experiments and practical engineering application tests were performed to investigate the effect of microbial nutrient concentration on the dewaterability of municipal sewage sludge with 2%, 3%, 4% and 5% solid contents via bioleaching. Meanwhile, the changes of pH value and the utilization efficiency of microbial nutrients during bioleaching were analyzed in this study. The results showed that the pH value decreased gradually at the beginning and then maintained a stable state in the treatments with different solid contents, and the nutrients were completely used up by the microorganisms after 2 days of bioleaching. It was found that the SRF of 2%, 3%, 4%, 5% sludges decreased quickly and then rose gradually with the extension of bioleaching time. In addition, the higher solid content the greater the increase. It was determined that the optimum microbial nutrient dosage for sludge with solid content of 2%, 3%, 4% and 5% were 3.0 g x L(-1), 4.5 g x L(-1), 8.3 g x L(-1) and 12.8 g x L(-1) respectively. At this point, the lowest SRF of sludge with each solid content were 0.61 x 10(12) m x kg(-1), 1.22 x 10(12) m x kg(-1), 3.09 x 10(12) m x kg(-1) and 4.83 x 10(12) m x kg(-1), respectively. Through the engineering application, it was showed that diluting the solid content of sewage sludge from 5% to 3% before bioleaching was feasible. It could not only improve the dewaterability of bioleached sewage sludge (the SRF declined from 3.29 x 10(12) m x kg(-1) to 1.10 x 10(12) m x kg(-1)), but also shorten the sludge nutrient time (shortened from 4 days to 2.35 days) and reduce the operation costs. Therefore, the results of this study have important significance for the engineering application of bioleaching of municipal sewage sludge with high solid content.

  14. The behaviour of Zy-4 tubes in microbial media

    International Nuclear Information System (INIS)

    Tunaru, M.; Velciu, L.; Popa, L.; Stancu, M.

    2013-01-01

    Despite of the high purity of the demineralised water used in spent fuel storage pools, some microbial activity developed ( more accelerated during the summer months) , causing fouling and clogging of filters and ion exchange resins. In this context, the paper presents an assessment (by experimental tests) of the behaviour of Zircaloy- 4 (the material of Candu nuclear fuel) samples in certain microbiological media. Samples of Zircaloy- 4 used in the tests were initially oxidized under the NPP primary circuit (by autoclaving for 110 days in lithium water, ph 10.5, at a temperature of 310 0 C). Some of samples were immersed in microbial environment in order microbiological analysis of their surface and another part was used to perform accelerated electrochemical tests to determine electrochemical parameters for the system Zircaloy- 4 / microbial medium (corrosion rate, the polarization resistance of the surface, susceptibility to pitting corrosion). At the end of the tests, the surface of samples was analyzed by metallographic and microbiologically techniques. (authors)

  15. Successful treatment of high azo dye concentration wastewater using combined anaerobic/aerobic granular activated carbon-sequencing batch biofilm reactor (GAC-SBBR): simultaneous adsorption and biodegradation processes.

    Science.gov (United States)

    Hosseini Koupaie, E; Alavi Moghaddam, M R; Hashemi, S H

    2013-01-01

    The application of a granular activated carbon-sequencing batch biofilm reactor (GAC-SBBR) for treatment of wastewater containing 1,000 mg/L Acid Red 18 (AR18) was investigated in this research. The treatment system consisted of a sequencing batch reactor equipped with moving GAC as biofilm support. Each treatment cycle consisted of two successive anaerobic (14 h) and aerobic (8 h) reaction phases. Removal of more than 91% chemical oxygen demand (COD) and 97% AR18 was achieved in this study. Investigation of dye decolorization kinetics showed that the dye removal was stimulated by the adsorption capacity of the GAC at the beginning of the anaerobic phase and then progressed following a first-order reaction. Based on COD analysis results, at least 77.8% of the dye total metabolites were mineralized during the applied treatment system. High-performance liquid chromatography analysis revealed that more than 97% of 1-naphthyalamine-4-sulfonate as one of the main sulfonated aromatic constituents of AR18 was removed during the aerobic reaction phase. According to the scanning electron microscopic analysis, the microbial biofilms grew in most cavities and pores of the GAC, but not on the external surfaces of the GAC.

  16. Location of Microbial Ecology Evaluation Device in Apollo Command Module

    Science.gov (United States)

    1971-01-01

    The location of the Microbial Ecology Evaluation Device (MEED) installed on the open hatch of the Apollo Command Module is illustrated in this photograph. The MEED, equipment of the Microbial Response in Space Environment experiment, will house a selection of microbial systems. The MEED will be deployed during the extravehicular activity on the transearth coast phase of the Aopllo 16 lunar landing mission. The purpose of the experiment will be to measure the effects of certain space environmental parameters on the microbial test systems.

  17. Effect of environmental conditions on the fatty acid fingerprint of microbial communities

    Science.gov (United States)

    Biryukov, Mikhail; Dippold, Michaela; Kuzyakov, Yakov

    2014-05-01

    Lipid biomarkers, especially phospholipids, are routinely used to characterize microbial community structure in environmental samples. Interpretations of these fingerprints mainly depend on rare results of pure cultures which were cultivated under standardized batch conditions. However, membrane lipids (e.g. phopholipid biomarker) build up the interface between microorganisms and their environment and consequently are prone to be adapted according to the environmental conditions. We cultivated several bacteria, isolated from soil (gram-positive and gram-negative) under various conditions e.g. C supply and temperature regimes. Effect of growth conditions on phospholipids fatty acid (PLFA) as well as neutral lipid fatty acids (NLFA) and glycolipid fatty acids (GLFA) was investigated by conventional method of extraction and derivatization, followed by assessments with gas chromatography mass spectrometry (GC-MS). In addition, phospholipids were measured as intact molecules by ultra high performance liquid chromatography - quadrupole - time of flight mass spectrometer (UHPLC-Q-ToF) to further assess the composition of headgroups with fatty acids residues and their response on changing environmental conditions. PLFA fingerprints revealed a strong effect of growth stage, C supply and temperature e.g. decrease of temperature increased the amount of branched and/or unsaturated fatty acids to maintain the membrane fluidity. This strongly changes the ratio of specific to unspecific fatty acids depending on environmental conditions. Therefore, amounts of specific fatty acids cannot be used to assess biomass of a functional microbial group in soil. Intracellular neutral lipids depended less on environmental conditions reflecting a more stable biomarker group but also showed less specific fatty acids then PLFA. Therefore, combination of several lipid classes is suggested as more powerful tool to assess amounts and functionality of environmental microbial communities. Further

  18. A microbial trigger for gelled polymers

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, S.; Bryant, R.; Zhu, T.

    1995-12-31

    A process using a microbially gelled biopolymer was developed and used to modify permeability in coreflood experiments. Alkaline-soluble curdlan biopolymer was mixed with microbial nutrients and acid-producing alkaliphilic bacteria, and injected into Berea sandstone cores. Concurrent bottle tests with the polymer solution were incubated beside the core. Polymer in the bottle tests formed rigid gel in 2-5 days at 27{degree}C. After 7 days incubation, 25-35 psi fluid pressure was required to begin flow through the cores. Permeability of the cores was decreased from 852 md to 2.99 md and from 904 md to 4.86 md, respectively, giving residual resistance factors of 334 and 186.

  19. Detection and identification of the atypical bovine pestiviruses in commercial foetal bovine serum batches.

    Directory of Open Access Journals (Sweden)

    Hongyan Xia

    Full Text Available The recently emerging atypical bovine pestiviruses have been detected in commercial foetal bovine serum (FBS of mainly South American origin so far. It is unclear how widely the viruses are presented in commercial FBS of different geographic origins. To further investigate the possible pestivirus contamination of commercially available FBS batches, 33 batches of FBS were obtained from ten suppliers and analysed in this study for the presence of both the recognised and the atypical bovine pestiviruses. All 33 batches of FBS were positive by real-time RT-PCR assays for at least one species of bovine pestiviruses. According to the certificate of analysis that the suppliers claimed for each batch of FBS, BVDV-1 was detected in all 11 countries and BVDV-2 was detected exclusively in the America Continent. The atypical pestiviruses were detected in 13 batches claimed to originate from five countries. Analysis of partial 5'UTR sequences showed a high similarity among these atypical bovine pestiviruses. This study has demonstrated, for the first time that commercial FBS batches of different geographic origins are contaminated not only with the recognised species BVDV-1 and BVDV-2, but also with the emerging atypical bovine pestiviruses.

  20. Support vector regression model of wastewater bioreactor performance using microbial community diversity indices: effect of stress and bioaugmentation.

    Science.gov (United States)

    Seshan, Hari; Goyal, Manish K; Falk, Michael W; Wuertz, Stefan

    2014-04-15

    The relationship between microbial community structure and function has been examined in detail in natural and engineered environments, but little work has been done on using microbial community information to predict function. We processed microbial community and operational data from controlled experiments with bench-scale bioreactor systems to predict reactor process performance. Four membrane-operated sequencing batch reactors treating synthetic wastewater were operated in two experiments to test the effects of (i) the toxic compound 3-chloroaniline (3-CA) and (ii) bioaugmentation targeting 3-CA degradation, on the sludge microbial community in the reactors. In the first experiment, two reactors were treated with 3-CA and two reactors were operated as controls without 3-CA input. In the second experiment, all four reactors were additionally bioaugmented with a Pseudomonas putida strain carrying a plasmid with a portion of the pathway for 3-CA degradation. Molecular data were generated from terminal restriction fragment length polymorphism (T-RFLP) analysis targeting the 16S rRNA and amoA genes from the sludge community. The electropherograms resulting from these T-RFs were used to calculate diversity indices - community richness, dynamics and evenness - for the domain Bacteria as well as for ammonia-oxidizing bacteria in each reactor over time. These diversity indices were then used to train and test a support vector regression (SVR) model to predict reactor performance based on input microbial community indices and operational data. Considering the diversity indices over time and across replicate reactors as discrete values, it was found that, although bioaugmentation with a bacterial strain harboring a subset of genes involved in the degradation of 3-CA did not bring about 3-CA degradation, it significantly affected the community as measured through all three diversity indices in both the general bacterial community and the ammonia-oxidizer community (

  1. Evaluation of intensity drift correction strategies using MetaboDrift, a normalization tool for multi-batch metabolomics data.

    Science.gov (United States)

    Thonusin, Chanisa; IglayReger, Heidi B; Soni, Tanu; Rothberg, Amy E; Burant, Charles F; Evans, Charles R

    2017-11-10

    In recent years, mass spectrometry-based metabolomics has increasingly been applied to large-scale epidemiological studies of human subjects. However, the successful use of metabolomics in this context is subject to the challenge of detecting biologically significant effects despite substantial intensity drift that often occurs when data are acquired over a long period or in multiple batches. Numerous computational strategies and software tools have been developed to aid in correcting for intensity drift in metabolomics data, but most of these techniques are implemented using command-line driven software and custom scripts which are not accessible to all end users of metabolomics data. Further, it has not yet become routine practice to assess the quantitative accuracy of drift correction against techniques which enable true absolute quantitation such as isotope dilution mass spectrometry. We developed an Excel-based tool, MetaboDrift, to visually evaluate and correct for intensity drift in a multi-batch liquid chromatography - mass spectrometry (LC-MS) metabolomics dataset. The tool enables drift correction based on either quality control (QC) samples analyzed throughout the batches or using QC-sample independent methods. We applied MetaboDrift to an original set of clinical metabolomics data from a mixed-meal tolerance test (MMTT). The performance of the method was evaluated for multiple classes of metabolites by comparison with normalization using isotope-labeled internal standards. QC sample-based intensity drift correction significantly improved correlation with IS-normalized data, and resulted in detection of additional metabolites with significant physiological response to the MMTT. The relative merits of different QC-sample curve fitting strategies are discussed in the context of batch size and drift pattern complexity. Our drift correction tool offers a practical, simplified approach to drift correction and batch combination in large metabolomics studies

  2. Electrochemically Driven Fermentation of Organic Substrates with Undefined Mixed Microbial Cultures.

    Science.gov (United States)

    Villano, Marianna; Paiano, Paola; Palma, Enza; Miccheli, Alfredo; Majone, Mauro

    2017-08-10

    Growing scientific interest in mixed microbial culture-based anaerobic biotechnologies for the production of value-added chemicals and fuels from organic waste residues requires a parallel focus on the development and implementation of strategies to control the distribution of products. This study examined the feasibility of an electrofermentation approach, based on the introduction of a polarized (-700 mV vs. the standard hydrogen electrode) graphite electrode in the fermentation medium, to steer the product distribution during the conversion of organic substrates (glucose, ethanol, and acetate supplied as single compounds or in mixtures) by undefined mixed microbial cultures. In batch experiments, the polarized electrode triggered a nearly 20-fold increase (relative to open circuit controls) in the yield of isobutyrate production (0.43±0.01 vs. 0.02±0.02 mol mol -1 glucose) during the anaerobic fermentation of the ternary mixture of substrates, without adversely affecting the rate of substrate bioconversion. The observed change in the fermentative metabolism was most likely triggered by the (potentiostatic) regulation of the oxidation-reduction potential of the reaction medium rather than by the electrode serving as an electron donor. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Application of the fuzzy theory to simulation of batch fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Filev, D P; Kishimoto, M; Sengupta, S; Yoshida, T; Taguchi, H

    1985-12-01

    A new approach for system identification with a linguistic model of batch fermentation processes is proposed. The fuzzy theory was applied in order to reduce the uncertainty of quantitative description of the processes by use of qualitative characteristics. An example of fuzzy modeling was illustrated in the simulation of batch ethanol production from molasses after interpretation of the new method, and extension of the fuzzy model was also discussed for several cases of different measurable variables.

  4. Design of common heat exchanger network for batch processes

    International Nuclear Information System (INIS)

    Anastasovski, Aleksandar

    2014-01-01

    Heat integration of energy streams is very important for the efficient energy recovery in production systems. Pinch technology is a very useful tool for heat integration and maximizing energy efficiency. Creating of heat exchangers network as a common solution for systems in batch mode that will be applicable in all existing time slices is very difficult. This paper suggests a new methodology for design of common heat exchanger network for batch processes. Heat exchanger network designs were created for all determined repeatable and non-repeatable time periods – time slices. They are the basis for creating the common heat exchanger network. The common heat exchanger network as solution, satisfies all heat-transfer needs for each time period and for every existing combination of selected streams in the production process. This methodology use split of some heat exchangers into two or more heat exchange units or heat exchange zones. The reason for that is the multipurpose use of heat exchangers between different pairs of streams in different time periods. Splitting of large heat exchangers would maximize the total heat transfer usage of heat exchange units. Final solution contains heat exchangers with the minimum heat load as well as the minimum need of heat transfer area. The solution is applicable for all determined time periods and all existing stream combinations. - Highlights: •Methodology for design of energy efficient systems in batch processes. •Common Heat Exchanger Network solution based on designs with Pinch technology. •Multipurpose use of heat exchangers in batch processes

  5. Systematic Methodology for Reproducible Optimizing Batch Operation

    DEFF Research Database (Denmark)

    Bonné, Dennis; Jørgensen, Sten Bay

    2006-01-01

    This contribution presents a systematic methodology for rapid acquirement of discrete-time state space model representations of batch processes based on their historical operation data. These state space models are parsimoniously parameterized as a set of local, interdependent models. The present...

  6. Omega-3 production by fermentation of Yarrowia lipolytica: From fed-batch to continuous.

    Science.gov (United States)

    Xie, Dongming; Miller, Edward; Sharpe, Pamela; Jackson, Ethel; Zhu, Quinn

    2017-04-01

    The omega-3 fatty acid, cis-5,8,11,14,17-eicosapentaenoic acid (C20:5; EPA) has wide-ranging benefits in improving heart health, immune function, and mental health. A sustainable source of EPA production through fermentation of metabolically engineered Yarrowia lipolytica has been developed. In this paper, key fed-batch fermentation conditions were identified to achieve 25% EPA in the yeast biomass, which is so far the highest EPA titer reported in the literature. Dynamic models of the EPA fermentation process were established for analyzing, optimizing, and scaling up the fermentation process. In addition, model simulations were used to develop a two-stage continuous process and compare to single-stage continuous and fed- batch processes. The two stage continuous process, which is equipped with a smaller growth fermentor (Stage 1) and a larger production fermentor (Stage 2), was found to be a superior process to achieve high titer, rate, and yield of EPA. A two-stage continuous fermentation experiment with Y. lipolytica strain Z7334 was designed using the model simulation and then tested in a 2 L and 5 L fermentation system for 1,008 h. Compared with the standard 2 L fed-batch process, the two-stage continuous fermentation process improved the overall EPA productivity by 80% and EPA concentration in the fermenter by 40% while achieving comparable EPA titer in biomass and similar conversion yield from glucose. During the long-term experiment it was also found that the Y. lipolytica strain evolved to reduce byproduct and increase lipid production. This is one of the few continuous fermentation examples that demonstrated improved productivity and concentration of a final product with similar conversion yield compared with a fed-batch process. This paper suggests the two-stage continuous fermentation could be an effective process to achieve improved production of omega-3 and other fermentation products where non-growth or partially growth associated kinetics

  7. Microbial characterization for the Source-Term Waste Test Program (STTP) at Los Alamos

    International Nuclear Information System (INIS)

    Leonard, P.A.; Strietelmeier, B.A.; Pansoy-Hjelvik, M.E.; Villarreal, R.

    1999-01-01

    The effects of microbial activity on the performance of the proposed underground nuclear waste repository, the Waste Isolation Pilot Plant (WIPP) at Carlsbad, New Mexico are being studied at Los Alamos National Laboratory (LANL) as part of an ex situ large-scale experiment. Actual actinide-containing waste is being used to predict the effect of potential brine inundation in the repository in the distant future. The study conditions are meant to simulate what might exist should the underground repository be flooded hundreds of years after closure as a result of inadvertent drilling into brine pockets below the repository. The Department of Energy (DOE) selected LANL to conduct the Actinide Source-Term Waste Test Program (STTP) to confirm the predictive capability of computer models being developed at Sandia National Laboratory

  8. Microbial characterization for the Source-Term Waste Test Program (STTP) at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, P.A.; Strietelmeier, B.A.; Pansoy-Hjelvik, M.E.; Villarreal, R.

    1999-04-01

    The effects of microbial activity on the performance of the proposed underground nuclear waste repository, the Waste Isolation Pilot Plant (WIPP) at Carlsbad, New Mexico are being studied at Los Alamos National Laboratory (LANL) as part of an ex situ large-scale experiment. Actual actinide-containing waste is being used to predict the effect of potential brine inundation in the repository in the distant future. The study conditions are meant to simulate what might exist should the underground repository be flooded hundreds of years after closure as a result of inadvertent drilling into brine pockets below the repository. The Department of Energy (DOE) selected LANL to conduct the Actinide Source-Term Waste Test Program (STTP) to confirm the predictive capability of computer models being developed at Sandia National Laboratory.

  9. SLUDGE MASS REDUCTION: PRIMARY COMPOSITIONAL FACTORS THAT INFLUENCE MELT RATE FOR FUTURE SLUDGE BATCH PROJECTIONS

    International Nuclear Information System (INIS)

    Newell, J; Miller, D; Stone, M; Pickenheim, B

    2008-01-01

    The Savannah River National Laboratory (SRNL) was tasked to provide an assessment of the downstream impacts to the Defense Waste Processing Facility (DWPF) of decisions regarding the implementation of Al-dissolution to support sludge mass reduction and processing. Based on future sludge batch compositional projections from the Liquid Waste Organization's (LWO) sludge batch plan, assessments have been made with respect to the ability to maintain comparable projected operating windows for sludges with and without Al-dissolution. As part of that previous assessment, candidate frits were identified to provide insight into melt rate for average sludge batches representing with and without Al-dissolution flowsheets. Initial melt rate studies using the melt rate furnace (MRF) were performed using five frits each for Cluster 2 and Cluster 4 compositions representing average without and with Al-dissolution. It was determined, however, that the REDOX endpoint (Fe 2+ /ΣFe for the glass) for Clusters 2 and 4 resulted in an overly oxidized feed which negatively affected the initial melt rate tests. After the sludge was adjusted to a more reduced state, additional testing was performed with frits that contained both high and low concentrations of sodium and boron oxides. These frits were selected strictly based on the ability to ascertain compositional trends in melt rate and did not necessarily apply to any acceptability criteria for DWPF processing. The melt rate data are in general agreement with historical trends observed at SRNL and during processing of SB3 (Sludge Batch 3)and SB4 in DWPF. When MAR acceptability criteria were applied, Frit 510 was seen to have the highest melt rate at 0.67 in/hr for Cluster 2 (without Al-dissolution), which is compositionally similar to SB4. For Cluster 4 (with Al-dissolution), which is compositionally similar to SB3, Frit 418 had the highest melt rate at 0.63 in/hr. Based on this data, there appears to be a slight advantage of the Frit

  10. The development of an industrial-scale fed-batch fermentation simulation.

    Science.gov (United States)

    Goldrick, Stephen; Ştefan, Andrei; Lovett, David; Montague, Gary; Lennox, Barry

    2015-01-10

    This paper describes a simulation of an industrial-scale fed-batch fermentation that can be used as a benchmark in process systems analysis and control studies. The simulation was developed using a mechanistic model and validated using historical data collected from an industrial-scale penicillin fermentation process. Each batch was carried out in a 100,000 L bioreactor that used an industrial strain of Penicillium chrysogenum. The manipulated variables recorded during each batch were used as inputs to the simulator and the predicted outputs were then compared with the on-line and off-line measurements recorded in the real process. The simulator adapted a previously published structured model to describe the penicillin fermentation and extended it to include the main environmental effects of dissolved oxygen, viscosity, temperature, pH and dissolved carbon dioxide. In addition the effects of nitrogen and phenylacetic acid concentrations on the biomass and penicillin production rates were also included. The simulated model predictions of all the on-line and off-line process measurements, including the off-gas analysis, were in good agreement with the batch records. The simulator and industrial process data are available to download at www.industrialpenicillinsimulation.com and can be used to evaluate, study and improve on the current control strategy implemented on this facility. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  11. High throughput automated microbial bioreactor system used for clone selection and rapid scale-down process optimization.

    Science.gov (United States)

    Velez-Suberbie, M Lourdes; Betts, John P J; Walker, Kelly L; Robinson, Colin; Zoro, Barney; Keshavarz-Moore, Eli

    2018-01-01

    High throughput automated fermentation systems have become a useful tool in early bioprocess development. In this study, we investigated a 24 x 15 mL single use microbioreactor system, ambr 15f, designed for microbial culture. We compared the fed-batch growth and production capabilities of this system for two Escherichia coli strains, BL21 (DE3) and MC4100, and two industrially relevant molecules, hGH and scFv. In addition, different carbon sources were tested using bolus, linear or exponential feeding strategies, showing the capacity of the ambr 15f system to handle automated feeding. We used power per unit volume (P/V) as a scale criterion to compare the ambr 15f with 1 L stirred bioreactors which were previously scaled-up to 20 L with a different biological system, thus showing a potential 1,300 fold scale comparability in terms of both growth and product yield. By exposing the cells grown in the ambr 15f system to a level of shear expected in an industrial centrifuge, we determined that the cells are as robust as those from a bench scale bioreactor. These results provide evidence that the ambr 15f system is an efficient high throughput microbial system that can be used for strain and molecule selection as well as rapid scale-up. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 34:58-68, 2018. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.

  12. Sorption of radioiodide in an acidic, nutrient-poor boreal bog: insights into the microbial impact

    International Nuclear Information System (INIS)

    Lusa, M.; Bomberg, M.; Aromaa, H.; Knuutinen, J.; Lehto, J.

    2015-01-01

    Batch sorption experiments were conducted to evaluate the sorption behaviour of iodide and the microbial impact on iodide sorption in the surface moss, subsurface peat, gyttja, and clay layers of a nutrient-poor boreal bog. The batch distribution coefficient (K d ) values of iodide decreased as a function of sampling depth. The highest K d values, 4800 L/Kg dry weight (DW) (geometric mean), were observed in the fresh surface moss and the lowest in the bottom clay (geometric mean 90 mL/g DW). In the surface moss, peat and gyttja layers, which have a high organic matter content (on average 97%), maximum sorption was observed at a pH between ∼4 and 5 and in the clay layer at pH 2. The K d values were significantly lower in sterilized samples, being 20-fold lower than the values found for the unsterilized samples. In addition, the recolonization of sterilized samples with a microbial population from the fresh samples restored the sorption capacity of surface moss, peat and gyttja samples, indicating that the decrease in the sorption was due to the destruction of microbes and supporting the hypothesis that microbes are necessary for the incorporation of iodide into the organic matter. Anoxic conditions reduced the sorption of iodide in fresh, untreated samples, similarly to the effect of sterilization, which supports the hypothesis that iodide is oxidized into I 2 /HIO before incorporation into the organic matter. Furthermore, the K d values positively correlated with peroxidase activity in surface moss, subsurface peat and gyttja layers at +20 °C, and with the bacterial cell counts obtained from plate count agar at +4 °C. Our results demonstrate the importance of viable microbes for the sorption of iodide in the bog environment, having a high organic matter content and a low pH. - Highlights: • Sorption of iodide is highest on the surface Sphagnum layer of the bog. • Sterilization of peat decreases the sorption of iodide. • Anoxic conditions decrease

  13. Role of commercial starter cultures on microbiological, physicochemical characteristics, volatile compounds and sensory properties of dry-cured foal sausage

    Directory of Open Access Journals (Sweden)

    Rubén Domínguez

    2016-05-01

    Full Text Available Objective: To assess the effect of three commercial starter cultures on microbial counts, physicochemical changes, volatile profile and sensory characteristics of dry-cured foal sausage. Methods: Microbial counts (lactic acid bacteria, Enterobacteriaceae, total viable counts and yeast, proximate parameters (moisture, fat and protein, colour analysis, texture analysis (texture profile analysis test, volatile compounds (solid-phase microextraction-gas chromatography-mass spectrometer technique and sensory analysis were evaluated in the drycured foal sausages using the standard food analysis techniques. Results: The results revealed that the use of starter cultures increased the number of lactic acid bacteria and total viable counts, while completely reduced Enterobacteriaceae count. Started sausages presented the lowest value of pH, while CX and FL batches had the highest protein amount. In contrast, the use of starter cultures did not affect the other physicochemical parameters. According to volatile profile, there were no differences between batches in total volatile compounds, however, control batch presented the highest amount of aldehydes, derived from lipid oxidation. The sensory analysis showed low differences. Control batch presented higher flavour intensity and lower acid taste score and black pepper odour than inoculated batches. Conclusions: As a general conclusion, the use of starter cultures contributed to improve the hygienic quality with low impact in physicochemical and sensory properties.

  14. Influence of platinum group metal-free catalyst synthesis on microbial fuel cell performance

    Science.gov (United States)

    Santoro, Carlo; Rojas-Carbonell, Santiago; Awais, Roxanne; Gokhale, Rohan; Kodali, Mounika; Serov, Alexey; Artyushkova, Kateryna; Atanassov, Plamen

    2018-01-01

    Platinum group metal-free (PGM-free) ORR catalysts from the Fe-N-C family were synthesized using sacrificial support method (SSM) technique. Six experimental steps were used during the synthesis: 1) mixing the precursor, the metal salt, and the silica template; 2) first pyrolysis in hydrogen rich atmosphere; 3) ball milling; 4) etching the silica template using harsh acids environment; 5) the second pyrolysis in ammonia rich atmosphere; 6) final ball milling. Three independent batches were fabricated following the same procedure. The effect of each synthetic parameters on the surface chemistry and the electrocatalytic performance in neutral media was studied. Rotating ring disk electrode (RRDE) experiment showed an increase in half wave potential and limiting current after the pyrolysis steps. The additional improvement was observed after etching and performing the second pyrolysis. A similar trend was seen in microbial fuel cells (MFCs), in which the power output increased from 167 ± 2 μW cm-2 to 214 ± 5 μW cm-2. X-ray Photoelectron Spectroscopy (XPS) was used to evaluate surface chemistry of catalysts obtained after each synthetic step. The changes in chemical composition were directly correlated with the improvements in performance. We report outstanding reproducibility in both composition and performance among the three different batches.

  15. Actual distribution of Cronobacter spp. in industrial batches of powdered infant formula and consequences for performance of sampling strategies

    NARCIS (Netherlands)

    Jongenburger, I.; Reij, M.W.; Boer, E.P.J.; Gorris, L.G.M.; Zwietering, M.H.

    2011-01-01

    The actual spatial distribution of microorganisms within a batch of food influences the results of sampling for microbiological testing when this distribution is non-homogeneous. In the case of pathogens being non-homogeneously distributed, it markedly influences public health risk. This study

  16. Synthetic microbial ecology and the dynamic interplay between microbial genotypes.

    Science.gov (United States)

    Dolinšek, Jan; Goldschmidt, Felix; Johnson, David R

    2016-11-01

    Assemblages of microbial genotypes growing together can display surprisingly complex and unexpected dynamics and result in community-level functions and behaviors that are not readily expected from analyzing each genotype in isolation. This complexity has, at least in part, inspired a discipline of synthetic microbial ecology. Synthetic microbial ecology focuses on designing, building and analyzing the dynamic behavior of ‘ecological circuits’ (i.e. a set of interacting microbial genotypes) and understanding how community-level properties emerge as a consequence of those interactions. In this review, we discuss typical objectives of synthetic microbial ecology and the main advantages and rationales of using synthetic microbial assemblages. We then summarize recent findings of current synthetic microbial ecology investigations. In particular, we focus on the causes and consequences of the interplay between different microbial genotypes and illustrate how simple interactions can create complex dynamics and promote unexpected community-level properties. We finally propose that distinguishing between active and passive interactions and accounting for the pervasiveness of competition can improve existing frameworks for designing and predicting the dynamics of microbial assemblages.

  17. Stability of U(VI) and Tc(VII) Reducing Microbial Communities to EnvironmentalPerturbation: Development and Testing of a Thermodynamic Network Model. Technical Report

    International Nuclear Information System (INIS)

    Jonathan D. Istok

    2008-01-01

    'Bioimmobilization' of redox-sensitive metals and radionuclides is being investigated as a way to remediate contaminated groundwater and sediments. In this approach, growth-limiting substrates are added to stimulate the activity of targeted groups of indigenous microorganisms and create conditions favorable for the microbially-mediated precipitation ('bioimmobilization') of targeted contaminants. This project investigated a fundamentally new approach for modeling this process that couples thermodynamic descriptions for microbial growth with associated geochemical reactions. In this approach, a synthetic microbial community is defined as a collection of defined microbial groups; each with a growth equation derived from bioenergetic principles. The growth equations and standard-state free energy yields are appended to a thermodynamic database for geochemical reactions and the combined equations are solved simultaneously to predict the effect of added substrates on microbial biomass, community composition, and system geochemistry. This approach, with a single set of thermodynamic parameters (one for each growth equation), was used to predict the results of laboratory and field bioimmobilization experiments at two geochemically diverse research sites. Predicted effects of ethanol or acetate addition on uranium and technetium solubility, major ion geochemistry, mineralogy, microbial biomass and community composition were in general agreement with experimental observations although the available experimental data precluded rigorous model testing. Model simulations provide insight into the long-standing difficulty in transferring experimental results from the laboratory to the field and from one field site to the next, especially if the form, concentration, or delivery of growth substrate is varied from one experiment to the next. Although originally developed for use in better understanding bioimmobilization of uranium and technetium via reductive precipitation, the

  18. Comparative study between chemostat and batch reactors to quantify membrane permeability changes on bacteria exposed to silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Anaya, Nelson M.; Faghihzadeh, Fatemeh [Department of Civil and Environmental Engineering, University of Rhode Island, 1 Lippitt Rd., Bliss Hall 203, Kingston, RI 02881 (United States); Ganji, Nasim; Bothun, Geoff [Department of Chemical Engineering, University of Rhode Island, 16 Greenhouse Rd., Crawford Hall, Kingston, RI 02881 (United States); Oyanedel-Craver, Vinka, E-mail: craver@uri.edu [Department of Civil and Environmental Engineering, University of Rhode Island, 1 Lippitt Rd., Bliss Hall 203, Kingston, RI 02881 (United States)

    2016-09-15

    Continuous and batch reactors were used to assess the effect of the exposure of casein-coated silver nanoparticles (AgNPs) on Escherichia coli (E. coli). Additionally, E. coli membrane extracts, membrane permeability and Langmuir film balance assays were used to determine integrity and changes in lipid composition in response to AgNPs exposure. Results showed that batch conditions were not appropriate for the tests due to the production of exopolymeric substances (EPS) during the growth phase. After 5 h of contact between AgNPs and the used growth media containing EPS, the nanoparticles increased in size from 86 nm to 282 nm reducing the stability and thus limiting cell-nanoparticle interactions. AgNPs reduced E. coli growth by 20% at 1 mg/L, in terms of Optical Density 670 (OD670), while no effect was detected at 15 mg/L. At 50 mg/L of AgNPs was not possible to perform the test due to aggregation and sedimentation of the nanoparticles. Membrane extract assays showed that at 1 mg/L AgNPs had a greater change in area (− 4.4cm{sup 2}) on bacteria compared to 15 mg/L (− 4.0cm{sup 2}). This area increment suggested that membrane disruption caused by AgNPs had a stabilizing/rigidifying effect where the cells responded by shifting their lipid composition to more unsaturated lipids to counteract membrane rigidification. In chemostats, the constant inflow of fresh media and aeration resulted in less AgNPs aggregation, thus increased the AgNPs-bacteria interactions, in comparison to batch conditions. AgNPs at 1 mg/L, 15 mg/L, and 50 mg/L inhibited the growth (OD670 reduction) by 0%, 11% and 16.3%, respectively. Membrane extracts exposed to 1 mg/L, 15 mg/L, and 50 mg/L of AgNPs required greater changes in area by − 0.5 cm{sup 2}, 2.7 cm{sup 2} and 3.6 cm{sup 2}, respectively, indicating that the bacterial membranes were disrupted and bacteria responded by synthesizing lipids that stabilize or strengthen membranes. This study showed that the chemostat is more

  19. Sulfamethoxazole and COD increase abundance of sulfonamide resistance genes and change bacterial community structures within sequencing batch reactors.

    Science.gov (United States)

    Guo, Xueping; Pang, Weihai; Dou, Chunling; Yin, Daqiang

    2017-05-01

    The abundant microbial community in biological treatment processes in wastewater treatment plants (WWTPs) may potentially enhance the horizontal gene transfer of antibiotic resistance genes with the presence of antibiotics. A lab-scale sequencing batch reactor was designed to investigate response of sulfonamide resistance genes (sulI, sulII) and bacterial communities to various concentrations of sulfamethoxazole (SMX) and chemical oxygen demand (COD) of wastewater. The SMX concentrations (0.001 mg/L, 0.1 mg/L and 10 mg/L) decreased with treatment time and higher SMX level was more difficult to remove. The presence of SMX also significantly reduced the removal efficiency of ammonia nitrogen, affecting the normal function of WWTPs. All three concentrations of SMX raised both sulI and sulII genes with higher concentrations exhibiting greater increases. The abundance of sul genes was positive correlated with treatment time and followed the second-order reaction kinetic model. Interestingly, these two genes have rather similar activity. SulI and sulII gene abundance also performed similar response to COD. Simpson index and Shannon-Weiner index did not show changes in the microbial community diversity. However, the 16S rRNA gene cloning and sequencing results showed the bacterial community structures varied during different stages. The results demonstrated that influent antibiotics into WWTPs may facilitate selection of ARGs and affect the wastewater conventional treatment as well as the bacteria community structures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Integrating Preventive Maintenance Scheduling As Probability Machine Failure And Batch Production Scheduling

    Directory of Open Access Journals (Sweden)

    Zahedi Zahedi

    2016-06-01

    Full Text Available This paper discusses integrated model of batch production scheduling and machine maintenance scheduling. Batch production scheduling uses minimize total actual flow time criteria and machine maintenance scheduling uses the probability of machine failure based on Weibull distribution. The model assumed no nonconforming parts in a planning horizon. The model shows an increase in the number of the batch (length of production run up to a certain limit will minimize the total actual flow time. Meanwhile, an increase in the length of production run will implicate an increase in the number of PM. An example was given to show how the model and algorithm work.

  1. Capacity Planning for Batch and Perfusion Bioprocesses Across Multiple Biopharmaceutical Facilities

    OpenAIRE

    Siganporia, Cyrus C; Ghosh, Soumitra; Daszkowski, Thomas; Papageorgiou, Lazaros G; Farid, Suzanne S

    2014-01-01

    Production planning for biopharmaceutical portfolios becomes more complex when products switch between fed-batch and continuous perfusion culture processes. This article describes the development of a discrete-time mixed integer linear programming (MILP) model to optimize capacity plans for multiple biopharmaceutical products, with either batch or perfusion bioprocesses, across multiple facilities to meet quarterly demands. The model comprised specific features to account for products with fe...

  2. Microbial community assessment of mealworm larvae (Tenebrio molitor) and grasshoppers (Locusta migratoria migratorioides) sold for human consumption.

    Science.gov (United States)

    Stoops, J; Crauwels, S; Waud, M; Claes, J; Lievens, B; Van Campenhout, L

    2016-02-01

    In Western countries, the popularity of edible insects as an alternative animal protein source is increasing. Nevertheless, there is a lack of profound insight into the microbial safety and shelf life of living insects sold for human consumption. The purpose of this study was to characterise the microflora of fresh edible mealworm larvae and grasshoppers in a quantitative and qualitative way. Therefore, culture-dependent analyses (the total viable aerobic count, Enterobacteriaceae, lactic acid bacteria, yeasts and moulds, and bacterial endospores) and next-generation sequencing (454amplicon pyrosequencing) were performed. High microbial counts were obtained for both insect species. Different insect batches resulted in quite similar microbial numbers, except for bacterial endospores. However, the bacterial community composition differed between both insect species. The most abundant operational taxonomic unit in mealworm larvae was Propionibacterium. Also members of the genera Haemophilus, Staphylococcus and Clostridium were found. Grasshoppers were mainly dominated by Weissella, Lactococcus and Yersinia/Rahnella. Overall, a variety of potential spoilage bacteria and food pathogens were characterised. The results of this study suggest that a processing step with a microbiocidal effect is required to avoid or minimize risks involved with the consumption of edible insects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Optimizing Resource Utilization in Grid Batch Systems

    International Nuclear Information System (INIS)

    Gellrich, Andreas

    2012-01-01

    On Grid sites, the requirements of the computing tasks (jobs) to computing, storage, and network resources differ widely. For instance Monte Carlo production jobs are almost purely CPU-bound, whereas physics analysis jobs demand high data rates. In order to optimize the utilization of the compute node resources, jobs must be distributed intelligently over the nodes. Although the job resource requirements cannot be deduced directly, jobs are mapped to POSIX UID/GID according to the VO, VOMS group and role information contained in the VOMS proxy. The UID/GID then allows to distinguish jobs, if users are using VOMS proxies as planned by the VO management, e.g. ‘role=production’ for Monte Carlo jobs. It is possible to setup and configure batch systems (queuing system and scheduler) at Grid sites based on these considerations although scaling limits were observed with the scheduler MAUI. In tests these limitations could be overcome with a home-made scheduler.

  4. Continuous Heterogeneous Photocatalysis in Serial Micro-Batch Reactors.

    Science.gov (United States)

    Pieber, Bartholomäus; Shalom, Menny; Antonietti, Markus; Seeberger, Peter H; Gilmore, Kerry

    2018-01-29

    Solid reagents, leaching catalysts, and heterogeneous photocatalysts are commonly employed in batch processes but are ill-suited for continuous-flow chemistry. Heterogeneous catalysts for thermal reactions are typically used in packed-bed reactors, which cannot be penetrated by light and thus are not suitable for photocatalytic reactions involving solids. We demonstrate that serial micro-batch reactors (SMBRs) allow for the continuous utilization of solid materials together with liquids and gases in flow. This technology was utilized to develop selective and efficient fluorination reactions using a modified graphitic carbon nitride heterogeneous catalyst instead of costly homogeneous metal polypyridyl complexes. The merger of this inexpensive, recyclable catalyst and the SMBR approach enables sustainable and scalable photocatalysis. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Temporal variability of available P, microbial P and some ...

    African Journals Online (AJOL)

    Temporal variability of available P, microbial P and some phosphomonoesterase activities in a sewage sludge treated soil: The effect of soil water potential. ... African Journal of Biotechnology ... The objective of this study was to test the effects of water potential on soil available P, microbial biomass P(MBP) and some

  6. The influence of habitat structure on energy allocation tactics in an estuarine batch spawner

    Science.gov (United States)

    Brigolin, D.; Cavraro, F.; Zanatta, V.; Pastres, R.; Malavasi, S.

    2016-04-01

    Trade-off between fecundity and survival was tested in a batch spawner, the Mediterranean killifish Aphanius fasciatus, using an integrated modelling-data approach based on previously collected empirical data. Two sites of the lagoon of Venice (Northern Adriatic sea, Italy) were selected in order to compare the energy allocation between growth and reproduction in two contrasting habitats. These were characterised by high and comparable level of richness in basal resources, but showed two different mortality schedules: an open natural salt marsh, exposed to high level of predation, and a confined artificial site protected from piscivorous predation. By means of a bioenergetic Scope for Growth model, developed and calibrated for the specific goals of this work, we compared the average individual life history between the two habitats. The average individual life history is characterised by a higher number of spawning events and lower per-spawning investment in the confined site exposed to lower predation risk, compared to the site connected with the open lagoon. Thus, model predictions suggest that habitat structure with different extrinsic mortality schedules may shape the life history strategy in modulating the pattern of energy allocation. Model application highlights the central role of energy partitioning through batch spawning, in determining the life history strategy. The particular ovary structure of a batch spawner seems therefore to allow the fish to modulate timing and investment of spawning events, shaping the optimal life history in relation to the environmental conditions.

  7. Integration of virtualized worker nodes in standard batch systems

    International Nuclear Information System (INIS)

    Buege, Volker; Kunze, Marcel; Oberst, Oliver; Quast, Guenter; Scheurer, Armin; Hessling, Hermann; Kemp, Yves; Synge, Owen

    2010-01-01

    Current experiments in HEP only use a limited number of operating system flavours. Their software might only be validated on one single OS platform. Resource providers might have other operating systems of choice for the installation of the batch infrastructure. This is especially the case if a cluster is shared with other communities, or communities that have stricter security requirements. One solution would be to statically divide the cluster into separated sub-clusters. In such a scenario, no opportunistic distribution of the load can be achieved, resulting in a poor overall utilization efficiency. Another approach is to make the batch system aware of virtualization, and to provide each community with its favoured operating system in a virtual machine. Here, the scheduler has full flexibility, resulting in a better overall efficiency of the resources. In our contribution, we present a lightweight concept for the integration of virtual worker nodes into standard batch systems. The virtual machines are started on the worker nodes just before jobs are executed there. No meta-scheduling is introduced. We demonstrate two prototype implementations, one based on the Sun Grid Engine (SGE), the other using Maui/Torque as a batch system. Both solutions support local job as well as Grid job submission. The hypervisors currently used are Xen and KVM, a port to another system is easily envisageable. To better handle different virtual machines on the physical host, the management solution VmImageManager is developed. We will present first experience from running the two prototype implementations. In a last part, we will show the potential future use of this lightweight concept when integrated into high-level (i.e. Grid) work-flows.

  8. Heterogeneous batch distillation processes for waste solvent recovery in pharmaceutical industry

    OpenAIRE

    Rodriguez-Donis, Ivonne; Gerbaud, Vincent; Arias-Barreto, Alien; Joulia, Xavier

    2009-01-01

    A summary about our experiences in the introduction of heterogeneous entrainers in azeotropic and extractive batch distillation is presented in this work. Essential advantages of the application of heterogeneous entrainers are showed by rigorous simulation and experimental verification in a bench batch distillation column for separating several azeotropic mixtures such as acetonitrile – water, n hexane – ethyl acetate and chloroform – methanol, commonly found in pharmaceutical industry.

  9. SLUDGE WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS FOR SLUDGE BATCH 7A QUALIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J.; Billings, A.; Click, D.

    2011-07-08

    Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry (Sludge Batch 7a*) be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from H Canyon are often added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). Sludge Batch 7a (SB7a) is composed of portions of Tanks 4, 7, and 12; the Sludge Batch 6 heel in Tank 51; and a plutonium stream from H Canyon. SRNL received the Tank 51 qualification sample (sample ID HTF-51-10-125) following sludge additions to Tank 51. This report documents: (1) The washing (addition of water to dilute the sludge supernate) and concentration (decanting of supernate) of the SB7a - Tank 51 qualification sample to adjust sodium content and weight percent insoluble solids to Tank Farm projections. (2) The performance of a DWPF Chemical Process Cell (CPC) simulation using the washed Tank 51 sample. The simulation included a Sludge Receipt and Adjustment Tank (SRAT) cycle, where acid was added to the sludge to destroy nitrite and reduce mercury, and a Slurry Mix Evaporator (SME) cycle, where glass frit was added to the sludge in preparation for vitrification. The SME cycle also included replication of five canister decontamination additions and concentrations. Processing parameters were based on work with a non

  10. Treatment of slaughterhouse wastewater in anaerobic sequencing batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Masse, D. I.; Masse, L. [Agriculture and Agri-Food Canada, Lennoxville, PQ (Canada)

    2000-09-01

    Slaughterhouse waste water was treated in anaerobic sequencing batch reactors operated at 30 degrees C. Two of the batch reactors were seeded with anaerobic granular sludge from a milk processing plant reactor; two others received anaerobic non-granulated sludge from a municipal waste water treatment plant. Influent total chemical oxygen demand was reduced by 90 to 96 per cent at organic loading rates ranging from 2.07 kg to 4.93 kg per cubic meter. Reactors seeded with municipal sludge performed slightly better than those containing sludge from the milk processing plant. The difference was particularly noticeable during start-up, but the differences between the two sludges were reduced with time. The reactors produced a biogas containing 75 per cent methane. About 90.5 per cent of the chemical oxygen demand removed was methanized; volatile suspended solids accumulation was determined at 0.068 kg per kg of chemical oxygen demand removed. The high degree of methanization suggests that most of the soluble and suspended organic material in slaughterhouse waste water was degraded during the treatment in the anaerobic sequencing batch reactors. 30 refs., 1 tab., 6 figs.

  11. Fault Diagnosis of Batch Reactor Using Machine Learning Methods

    Directory of Open Access Journals (Sweden)

    Sujatha Subramanian

    2014-01-01

    Full Text Available Fault diagnosis of a batch reactor gives the early detection of fault and minimizes the risk of thermal runaway. It provides superior performance and helps to improve safety and consistency. It has become more vital in this technical era. In this paper, support vector machine (SVM is used to estimate the heat release (Qr of the batch reactor both normal and faulty conditions. The signature of the residual, which is obtained from the difference between nominal and estimated faulty Qr values, characterizes the different natures of faults occurring in the batch reactor. Appropriate statistical and geometric features are extracted from the residual signature and the total numbers of features are reduced using SVM attribute selection filter and principle component analysis (PCA techniques. artificial neural network (ANN classifiers like multilayer perceptron (MLP, radial basis function (RBF, and Bayes net are used to classify the different types of faults from the reduced features. It is observed from the result of the comparative study that the proposed method for fault diagnosis with limited number of features extracted from only one estimated parameter (Qr shows that it is more efficient and fast for diagnosing the typical faults.

  12. Set anode potentials affect the electron fluxes and microbial community structure in propionate-fed microbial electrolysis cells

    KAUST Repository

    Rao, Hari Ananda

    2016-12-09

    Anode potential has been shown to be a critical factor in the rate of acetate removal in microbial electrolysis cells (MECs), but studies with fermentable substrates and set potentials are lacking. Here, we examined the impact of three different set anode potentials (SAPs; −0.25, 0, and 0.25 V vs. standard hydrogen electrode) on the electrochemical performance, electron flux to various sinks, and anodic microbial community structure in two-chambered MECs fed with propionate. Electrical current (49–71%) and CH4 (22.9–41%) were the largest electron sinks regardless of the potentials tested. Among the three SAPs tested, 0 V showed the highest electron flux to electrical current (71 ± 5%) and the lowest flux to CH4 (22.9 ± 1.2%). In contrast, the SAP of −0.25 V had the lowest electron flux to current (49 ± 6%) and the highest flux to CH4 (41.1 ± 2%). The most dominant genera detected on the anode of all three SAPs based on 16S rRNA gene sequencing were Geobacter, Smithella and Syntrophobacter, but their relative abundance varied among the tested SAPs. Microbial community analysis implies that complete degradation of propionate in all the tested SAPs was facilitated by syntrophic interactions between fermenters and Geobacter at the anode and ferementers and hydrogenotrophic methanogens in suspension.

  13. The Impact of the Source of Alkali on Sludge Batch 3 Melt Rate

    International Nuclear Information System (INIS)

    Smith, M

    2005-01-01

    Previous Savannah River National Laboratory (SRNL) melt rate tests in support of the Defense Waste Processing Facility (DWPF) have indicated that improvements in melt rate can be achieved through an increase in the total alkali of the melter feed. Higher alkali can be attained by the use of an ''underwashed'' sludge, a high alkali frit, or a combination of the two. Although the general trend between melt rate and total alkali (in particular Na 2 O content) has been demonstrated, the question of ''does the source of alkali (SOA) matter?'' still exists. Therefore the purpose of this set of tests was to determine if the source of alkali (frit versus sludge) can impact melt rate. The general test concept was to transition from a Na 2 O-rich frit to a Na 2 O-deficient frit while compensating the Na 2 O content in the sludge to maintain the same overall Na 2 O content in the melter feed. Specifically, the strategy was to vary the amount of alkali in frits and in the sludge batch 3 (SB3) sludge simulant (midpoint or baseline feed was SB3/Frit 418 at 35% waste loading) so that the resultant feeds had the same final glass composition when vitrified. A set of SOA feeds using frits ranging from 0 to 16 weight % Na 2 O (in 4% increments) was first tested in the Melt Rate Furnace (MRF) to determine if indeed there was an impact. The dry-fed MRF tests indicated that if the alkali is too depleted from either the sludge (16% Na 2 O feed) or the frit (the 0% Na 2 O feed), then melt rate was negatively impacted when compared to the baseline SB3/Frit 418 feed currently being processed at DWPF. The MRF melt rates for the 4 and 12% SOA feeds were similar to the baseline SB3/Frit 418 (8% SOA) feed. Due to this finding, a smaller subset of SOA feeds that could be processed in the DWPF (4 and 12% SOA feeds) was then tested in the Slurry-fed Melt Rate Furnace (SMRF). The results from a previous SMRF test with SB3/Frit 418 (Smith et al. 2004) were used as the SMRF melt rate of the baseline

  14. Development of interactive graphic user interfaces for modeling reaction-based biogeochemical processes in batch systems with BIOGEOCHEM

    Science.gov (United States)

    Chang, C.; Li, M.; Yeh, G.

    2010-12-01

    The BIOGEOCHEM numerical model (Yeh and Fang, 2002; Fang et al., 2003) was developed with FORTRAN for simulating reaction-based geochemical and biochemical processes with mixed equilibrium and kinetic reactions in batch systems. A complete suite of reactions including aqueous complexation, adsorption/desorption, ion-exchange, redox, precipitation/dissolution, acid-base reactions, and microbial mediated reactions were embodied in this unique modeling tool. Any reaction can be treated as fast/equilibrium or slow/kinetic reaction. An equilibrium reaction is modeled with an implicit finite rate governed by a mass action equilibrium equation or by a user-specified algebraic equation. A kinetic reaction is modeled with an explicit finite rate with an elementary rate, microbial mediated enzymatic kinetics, or a user-specified rate equation. None of the existing models has encompassed this wide array of scopes. To ease the input/output learning curve using the unique feature of BIOGEOCHEM, an interactive graphic user interface was developed with the Microsoft Visual Studio and .Net tools. Several user-friendly features, such as pop-up help windows, typo warning messages, and on-screen input hints, were implemented, which are robust. All input data can be real-time viewed and automated to conform with the input file format of BIOGEOCHEM. A post-processor for graphic visualizations of simulated results was also embedded for immediate demonstrations. By following data input windows step by step, errorless BIOGEOCHEM input files can be created even if users have little prior experiences in FORTRAN. With this user-friendly interface, the time effort to conduct simulations with BIOGEOCHEM can be greatly reduced.

  15. DEVELOPMENT OF AN AUTOMATED BATCH-PROCESS SOLAR ...

    African Journals Online (AJOL)

    One of the shortcomings of solar disinfection of water (SODIS) is the absence of a feedback mechanism indicating treatment completion. This work presents the development of an automated batch-process water disinfection system aimed at solving this challenge. Locally sourced materials in addition to an Arduinomicro ...

  16. Optimization of fed-batch fermentation for xylitol production by Candida tropicalis.

    Science.gov (United States)

    Kim, J-H; Han, K-C; Koh, Y-H; Ryu, Y-W; Seo, J-H

    2002-07-01

    Xylitol, a functional sweetener, was produced from xylose by biological conversion using Candida tropicalis ATCC 13803. Based on a two-substrate fermentation using glucose for cell growth and xylose for xylitol production, fed-batch fermentations were undertaken to increase the final xylitol concentration. The effects of xylose and xylitol on xylitol production rate were studied to determine the optimum concentrations for fed-batch fermentation. Xylose concentration in the medium (100 g l(-1)) and less than 200 g l(-1) total xylose plus xylitol concentration were determined as optimum for maximum xylitol production rate and xylitol yield. Increasing the concentrations of xylose and xylitol decreased the rate and yield of xylitol production and the specific cell growth rate, probably because of an increase in osmotic stress that would interfere with xylose transport, xylitol flux to secretion to cell metabolism. The feeding rate of xylose solution during the fed-batch mode of operation was determined by using the mass balance equations and kinetic parameters involved in the equations in order to increase final xylitol concentration without affecting xylitol and productivity. The optimized fed-batch fermentation resulted in 187 g l(-1) xylitol concentration, 0.75 g xylitol g xylose(-1) xylitol yield and 3.9 g xylitol l(-1) h(-1) volumetric productivity.

  17. Recombinant production of plant lectins in microbial systems for biomedical application – the frutalin case study

    Directory of Open Access Journals (Sweden)

    Carla eOliveira

    2014-08-01

    Full Text Available Frutalin is a homotetrameric partly-glycosylated alpha-D-galactose-binding lectin of biomedical interest from Artocarpus incisa (breadfruit seeds, belonging to the jacalin-related lectins family. As other plant lectins, frutalin is a heterogeneous mixture of several isoforms possibly with distinct biological activities. The main problem of using such lectins as biomedical tools is that batch-to-batch variation in isoforms content may lead to inconstant results. The production of lectins by recombinant means has the advantage of obtaining high amounts of proteins with defined amino-acid sequences and more precise properties. In this mini review, we provide the strategies followed to produce two different forms of frutalin in two different microbial systems: Escherichia coli and Pichia pastoris. The processing and functional properties of the recombinant frutalin obtained from these hosts are compared to those of frutalin extracted from breadfruit. Emphasis is given particularly to recombinant frutalin produced in P. pastoris, which showed a remarkable capacity as biomarker of human prostate cancer and as apoptosis-inducer of cancer cells. Recombinant frutalin production opens perspectives for its development as a new tool in human medicine.

  18. Interactions between microbial-feeding and predatory soil fauna trigger N2O emissions

    NARCIS (Netherlands)

    Thakur, M.P.; Groenigen, van J.W.; Kuiper, I.; Deyn, de G.B.

    2014-01-01

    Recent research has shown that microbial-feeding invertebrate soil fauna species can significantly contribute to N2O emissions. However, in soil food webs microbial-feeding soil fauna interact with each other and with their predators, which affects microbial activity. To date we lack empirical tests

  19. Optimum heat storage design for heat integrated multipurpose batch plants

    CSIR Research Space (South Africa)

    Stamp, J

    2011-01-01

    Full Text Available procedure is presented tha journal homepage: www All rights reserved. ajozi T, Optimum heat storage grated multipurpose batch plants , South Africa y usage in multipurpose batch plants has been in published literature most present methods, time... � 2pL?u?kins ? 1 h3A3?u?cu?U (36) The internal area for heat loss by convection from the heat transfer medium is given by Constraint (37) and the area for convective heat transfer losses to the environment is given in Constraint (38). A1?u? ? 2...

  20. Evaluation of pharmaceuticals removal by sewage sludge-derived adsorbents with rapid small-scale column tests

    Science.gov (United States)

    Zhang, P.; Ding, R.; Wallace, R.; Bandosz, T.

    2015-12-01

    New composite adsorbents were developed by pyrolyzing sewage sludge and fish waste (75:25 or 90:10 dry mass ratio) at 650 oC and 950 oC. Batch adsorption experiments demonstrated that the composite adsorbents were able to adsorb a wide range of organic contaminants (volatile organic compounds, pharmaceuticals and endocrine disrupting compounds (EDCs), and nitrosamine disinfection byproducts) with high capacities. Here we further examine the performance of the adsorbents for the simultaneous removal of 8 pharmaceuticals and EDCs with rapid small-scale column tests (RSSCT). Results show that the order of breakthrough in RSSCT is in general consistent with the affinity determined via batch tests. As expected, the maximum amount of adsorption for each compound obtained from RSSCT is identical to or less than that obtained from batch tests (with only one exception), due to adsorption kinetics. However, despite the very different input concentration (1 mg/L vs. 100 mg/L) and contact time (2 min empty bed contact time vs. 16 hour equilibrium time) used in RSSCT and batch tests, the maximum amount of pharmaceuticals and EDCs adsorbed under RSSCT is still about one half of that under equilibrium batch tests, validating the approach of using batch tests with much higher input concentrations to determine adsorption capacities. Results of a pilot-scale column test in a drinking water treatment plant for pharmaceuticals removal will also be presented.

  1. Study on Batch Culture Growth Model for Lactococcus lactis IO-1

    OpenAIRE

    Ishizaki, Ayaaki; Ohta, Tomomi; Kobayashi, Genta; 石崎, 文彬; 太田, 智美; 小林, 元太

    1991-01-01

    L-lactate fermentation employing Lactncoccus lactis IO-1 demonstrated a typical end product inhibition. By numerical analysis of fermentation results of the batch culture of this microorganism, the specific rates for cell growth, substrate consumption and product formation were clearly expressed by the end product inhibition formulae. All constants for those formulae were determined by the fermentation results. A mathematical model for batch culture growth of this microorganism in which the n...

  2. Microbial Reduction of Fe(III) and SO42- and Associated Microbial Communities in the Alluvial Aquifer Groundwater and Sediments.

    Science.gov (United States)

    Lee, Ji-Hoon; Lee, Bong-Joo

    2017-11-25

    Agricultural demands continuously increased use of groundwater, causing drawdown of water table and need of artificial recharge using adjacent stream waters. River water intrusion into groundwater can alter the geochemical and microbiological characteristics in the aquifer and subsurface. In an effort to investigate the subsurface biogeochemical activities before operation of artificial recharge at the test site, established at the bank of Nakdong River, Changwon, South Korea, organic carbon transported from river water to groundwater was mimicked and the effect on the indigenous microbial communities was investigated with the microcosm incubations of the groundwater and subsurface sediments. Laboratory incubations indicated microbial reduction of Fe(III) and sulfate. Next-generation Illumina MiSeq sequences of V4 region of 16S rRNA gene provided that the shifts of microbial taxa to Fe(III)-reducing and/or sulfate-reducing microorganisms such as Geobacter, Albidiferax, Desulfocapsa, Desulfuromonas, and Desulfovibrio were in good correlation with the sequential flourishment of microbial reduction of Fe(III) and sulfate as the incubations progressed. This suggests the potential role of dissolved organic carbons migrated with the river water into groundwater in the managed aquifer recharge system on the indigenous microbial community composition and following alterations of subsurface biogeochemistry and microbial metabolic activities.

  3. Anaerobic digestion of spent mushroom substrate under thermophilic conditions: performance and microbial community analysis.

    Science.gov (United States)

    Xiao, Zheng; Lin, Manhong; Fan, Jinlin; Chen, Yixuan; Zhao, Chao; Liu, Bin

    2018-01-01

    Spent mushroom substrate (SMS) is the residue of edible mushroom production occurring in huge amounts. The SMS residue can be digested for biogas production in the mesophilic anaerobic digestion. In the present study, performance of batch thermophilic anaerobic digestion (TAD) of SMS was investigated as well as the interconnected microbial population structure changes. The analyzed batch TAD process lasted for 12 days with the cumulative methane yields of 177.69 mL/g volatile solid (VS). Hydrolytic activities of soluble sugar, crude protein, and crude fat in SMS were conducted mainly in the initial phase, accompanied by the excessive accumulation of volatile fatty acids and low methane yield. Biogas production increased dramatically from days 4 to 6. The degradation rates of cellulose and hemicellulose were 47.53 and 55.08%, respectively. The high-throughput sequencing of 16S rRNA gene amplicons revealed that Proteobacteria (56.7%-62.8%) was the dominant phylum in different fermentative stages, which was highly specific compared with other anaerobic processes of lignocellulosic materials reported in the literature. Crenarchaeota was abundant in the archaea. The most dominant genera of archaea were retrieved as Methanothermobacter and Methanobacterium, but the latter decreased sharply with time. This study shows that TAD is a feasible method to handle the waste SMS.

  4. Microbial Community Structure of an Alluvial Aquifer Treated to Encourage Microbial Induced Calcite Precipitation

    Science.gov (United States)

    Ohan, J.; Saneiyan, S.; Lee, J.; Ntarlagiannis, D.; Burns, S.; Colwell, F. S.

    2017-12-01

    An oligotrophic aquifer in the Colorado River floodplain (Rifle, CO) was treated with molasses and urea to encourage microbial induced calcite precipitation (MICP). This would stabilize the soil mass by reducing porosity and strengthening the mineral fabric. Over the course of a 15-day treatment period, microbial biomass was collected from monitoring well groundwater for DNA extraction and sequencing. Bromide, a conservative tracer, was co-injected and subsequently detected in downgradient wells, confirming effective nutrient delivery. Conductivity increased during the injection regime and an overall decrease in pH was observed. Groundwater chemistry showed a marked increase in ammonia, suggesting urea hydrolysis - a process catalyzed by the enzyme urease - the primary enzyme implicated in MICP. Additionally, soluble iron was detected, suggesting a general increase in microbial activity; possibly as iron-reducing bacteria changed insoluble ferric oxide to soluble ferrous hydroxide in the anoxic aquifer. DNA sequencing of the 16S rRNA gene confirmed the presence of iron reducing bacteria, including Shewanella and Desulfuromonadales. Generally, a decrease in microbial community diversity was observed when pre-injection community taxa were compared with post-injection community taxa. Phyla indicative of anoxic aquifers were represented in accordance with previous literature at the Rifle site. Linear discriminant analysis showed significant differences in representative phyla over the course of the injection series. Geophysical monitoring of the site further suggested changes that could be due to MICP. Induced polarization increased the phase shift in the primary treated area, in agreement with laboratory experiments. Cross-hole seismic testing confirmed that the shear wave velocities increased in the treated soil mass, implying the soil matrix became more stable. Future investigations will help elucidate the viability and efficacy of MICP treatment in changing

  5. Treatment of Laboratory Wastewater by Sequence Batch reactor technology

    International Nuclear Information System (INIS)

    Imtiaz, N.; Butt, M.; Khan, R.A.; Saeed, M.T.; Irfan, M.

    2012-01-01

    These studies were conducted on the characterization and treatment of sewage mixed with waste -water of research and testing laboratory (PCSIR Laboratories Lahore). In this study all the parameters COD, BOD and TSS etc of influent (untreated waste-water) and effluent (treated waste-water) were characterized using the standard methods of examination for water and waste-water. All the results of the analyzed waste-water parameters were above the National Environmental Quality Standards (NEQS) set at National level. Treatment of waste-water was carried out by conventional sequencing batch reactor technique (SBR) using aeration and settling technique in the same treatment reactor at laboratory scale. The results of COD after treatment were reduced from (90-95 %), BOD (95-97 %) and TSS (96-99 %) and the reclaimed effluent quality was suitable for gardening purposes. (author)

  6. Role of batch depletion of broiler houses on the occurrence of Campylobacter spp. in chicken flocks

    DEFF Research Database (Denmark)

    Hald, Birthe; Rattenborg, Erik; Madsen, Mogens

    2001-01-01

    Aims: The effect of batch depletion of broiler houses for campylobacter occurrence in broiler flocks was estimated in 10 flocks, each comprising a separate female and male batch. Methods and Results: The chicks were sampled first bq; cloacal swabs in the broiler houses before the start...... that batch depletion of broiler houses increased the prevalence of Campylobacter spp.-infected broilers in the flocks, that the introduction occurred a hen catching the first batch, and that campylobacter spreads through the entire flock within a week. Significance and Impact of the Study: The results from...

  7. Dissipation of hydrological tracers and the herbicide S-metolachlor in batch and continuous-flow wetlands.

    Science.gov (United States)

    Maillard, Elodie; Lange, Jens; Schreiber, Steffi; Dollinger, Jeanne; Herbstritt, Barbara; Millet, Maurice; Imfeld, Gwenaël

    2016-02-01

    Pesticide dissipation in wetland systems with regard to hydrological conditions and operational modes is poorly known. Here, we investigated in artificial wetlands the impact of batch versus continuous-flow modes on the dissipation of the chiral herbicide S-metolachlor (S-MET) and hydrological tracers (bromide, uranine and sulforhodamine B). The wetlands received water contaminated with the commercial formulation Mercantor Gold(®) (960 g L(-1) of S-MET, 87% of the S-enantiomer). The tracer mass budget revealed that plant uptake, sorption, photo- and presumably biodegradation were prominent under batch mode (i.e. characterized by alternating oxic-anoxic conditions), in agreement with large dissipation of S-MET (90%) under batch mode. Degradation was the main dissipation pathway of S-MET in the wetlands. The degradate metolachlor oxanilic acid (MOXA) mainly formed under batch mode, whereas metolachlor ethanesulfonic acid (MESA) prevailed under continuous-flow mode, suggesting distinct degradation pathways in each wetland. R-enantiomer was preferentially degraded under batch mode, which indicated enantioselective biodegradation. The release of MESA and MOXA by the wetlands as well as the potential persistence of S-MET compared to R-MET under both oxic and anoxic conditions may be relevant for groundwater and ecotoxicological risk assessment. This study shows the effect of batch versus continuous modes on pollutant dissipation in wetlands, and that alternate biogeochemical conditions under batch mode enhance S-MET biodegradation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Batched Triangular Dense Linear Algebra Kernels for Very Small Matrix Sizes on GPUs

    KAUST Repository

    Charara, Ali; Keyes, David E.; Ltaief, Hatem

    2017-01-01

    Batched dense linear algebra kernels are becoming ubiquitous in scientific applications, ranging from tensor contractions in deep learning to data compression in hierarchical low-rank matrix approximation. Within a single API call, these kernels are capable of simultaneously launching up to thousands of similar matrix computations, removing the expensive overhead of multiple API calls while increasing the occupancy of the underlying hardware. A challenge is that for the existing hardware landscape (x86, GPUs, etc.), only a subset of the required batched operations is implemented by the vendors, with limited support for very small problem sizes. We describe the design and performance of a new class of batched triangular dense linear algebra kernels on very small data sizes using single and multiple GPUs. By deploying two-sided recursive formulations, stressing the register usage, maintaining data locality, reducing threads synchronization and fusing successive kernel calls, the new batched kernels outperform existing state-of-the-art implementations.

  9. Batched Triangular Dense Linear Algebra Kernels for Very Small Matrix Sizes on GPUs

    KAUST Repository

    Charara, Ali

    2017-03-06

    Batched dense linear algebra kernels are becoming ubiquitous in scientific applications, ranging from tensor contractions in deep learning to data compression in hierarchical low-rank matrix approximation. Within a single API call, these kernels are capable of simultaneously launching up to thousands of similar matrix computations, removing the expensive overhead of multiple API calls while increasing the occupancy of the underlying hardware. A challenge is that for the existing hardware landscape (x86, GPUs, etc.), only a subset of the required batched operations is implemented by the vendors, with limited support for very small problem sizes. We describe the design and performance of a new class of batched triangular dense linear algebra kernels on very small data sizes using single and multiple GPUs. By deploying two-sided recursive formulations, stressing the register usage, maintaining data locality, reducing threads synchronization and fusing successive kernel calls, the new batched kernels outperform existing state-of-the-art implementations.

  10. Enhanced biological phosphorus removal in a sequencing batch reactor using propionate as the sole carbon source.

    Science.gov (United States)

    Pijuan, M; Saunders, A M; Guisasola, A; Baeza, J A; Casas, C; Blackall, L L

    2004-01-05

    An enhanced biological phosphorus removal (EBPR) system was developed in a sequencing batch reactor (SBR) using propionate as the sole carbon source. The microbial community was followed using fluorescence in situ hybridization (FISH) techniques and Candidatus 'Accumulibacter phosphatis' were quantified from the start up of the reactor until steady state. A series of SBR cycle studies was performed when 55% of the SBR biomass was Accumulibacter, a confirmed polyphosphate accumulating organism (PAO) and when Candidatus 'Competibacter phosphatis', a confirmed glycogen-accumulating organism (GAO), was essentially undetectable. These experiments evaluated two different carbon sources (propionate and acetate), and in every case, two different P-release rates were detected. The highest rate took place while there was volatile fatty acid (VFA) in the mixed liquor, and after the VFA was depleted a second P-release rate was observed. This second rate was very similar to the one detected in experiments performed without added VFA.A kinetic and stoichiometric model developed as a modification of Activated Sludge Model 2 (ASM2) including glycogen economy, was fitted to the experimental profiles. The validation and calibration of this model was carried out with the cycle study experiments performed using both VFAs. The effect of pH from 6.5 to 8.0 on anaerobic P-release and VFA-uptake and aerobic P-uptake was also studied using propionate. The optimal overall working pH was around 7.5. This is the first study of the microbial community involved in EBPR developed with propionate as a sole carbon source along with detailed process performance investigations of the propionate-utilizing PAOs. Copyright 2003 Wiley Periodicals, Inc.

  11. Microbial ecology-based engineering of Microbial Electrochemical Technologies.

    Science.gov (United States)

    Koch, Christin; Korth, Benjamin; Harnisch, Falk

    2018-01-01

    Microbial ecology is devoted to the understanding of dynamics, activity and interaction of microorganisms in natural and technical ecosystems. Bioelectrochemical systems represent important technical ecosystems, where microbial ecology is of highest importance for their function. However, whereas aspects of, for example, materials and reactor engineering are commonly perceived as highly relevant, the study and engineering of microbial ecology are significantly underrepresented in bioelectrochemical systems. This shortfall may be assigned to a deficit on knowledge and power of these methods as well as the prerequisites for their thorough application. This article discusses not only the importance of microbial ecology for microbial electrochemical technologies but also shows which information can be derived for a knowledge-driven engineering. Instead of providing a comprehensive list of techniques from which it is hard to judge the applicability and value of information for a respective one, this review illustrates the suitability of selected techniques on a case study. Thereby, best practice for different research questions is provided and a set of key questions for experimental design, data acquisition and analysis is suggested. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  12. Fed-batch and perfusion culture processes: economic, environmental, and operational feasibility under uncertainty.

    Science.gov (United States)

    Pollock, James; Ho, Sa V; Farid, Suzanne S

    2013-01-01

    This article evaluates the current and future potential of batch and continuous cell culture technologies via a case study based on the commercial manufacture of monoclonal antibodies. The case study compares fed-batch culture to two perfusion technologies: spin-filter perfusion and an emerging perfusion technology utilizing alternating tangential flow (ATF) perfusion. The operational, economic, and environmental feasibility of whole bioprocesses based on these systems was evaluated using a prototype dynamic decision-support tool built at UCL encompassing process economics, discrete-event simulation and uncertainty analysis, and combined with a multi-attribute decision-making technique so as to enable a holistic assessment. The strategies were compared across a range of scales and titres so as to visualize how their ranking changes in different industry scenarios. The deterministic analysis indicated that the ATF perfusion strategy has the potential to offer cost of goods savings of 20% when compared to conventional fed-batch manufacturing processes when a fivefold increase in maximum viable cell densities was assumed. Savings were also seen when the ATF cell density dropped to a threefold increase over the fed-batch strategy for most combinations of titres and production scales. In contrast, the fed-batch strategy performed better in terms of environmental sustainability with a lower water and consumable usage profile. The impact of uncertainty and failure rates on the feasibility of the strategies was explored using Monte Carlo simulation. The risk analysis results demonstrated the enhanced robustness of the fed-batch process but also highlighted that the ATF process was still the most cost-effective option even under uncertainty. The multi-attribute decision-making analysis provided insight into the limited use of spin-filter perfusion strategies in industry. The resulting sensitivity spider plots enabled identification of the critical ratio of weightings of

  13. Microbial bebop: creating music from complex dynamics in microbial ecology.

    Science.gov (United States)

    Larsen, Peter; Gilbert, Jack

    2013-01-01

    In order for society to make effective policy decisions on complex and far-reaching subjects, such as appropriate responses to global climate change, scientists must effectively communicate complex results to the non-scientifically specialized public. However, there are few ways however to transform highly complicated scientific data into formats that are engaging to the general community. Taking inspiration from patterns observed in nature and from some of the principles of jazz bebop improvisation, we have generated Microbial Bebop, a method by which microbial environmental data are transformed into music. Microbial Bebop uses meter, pitch, duration, and harmony to highlight the relationships between multiple data types in complex biological datasets. We use a comprehensive microbial ecology, time course dataset collected at the L4 marine monitoring station in the Western English Channel as an example of microbial ecological data that can be transformed into music. Four compositions were generated (www.bio.anl.gov/MicrobialBebop.htm.) from L4 Station data using Microbial Bebop. Each composition, though deriving from the same dataset, is created to highlight different relationships between environmental conditions and microbial community structure. The approach presented here can be applied to a wide variety of complex biological datasets.

  14. Yields from pyrolysis of refinery residue using a batch process

    Directory of Open Access Journals (Sweden)

    S. Prithiraj

    2017-12-01

    Full Text Available Batch pyrolysis was a valuable process of assessing the potential of recovering and characterising products from hazardous waste materials. This research explored the pyrolysis of hydrocarbon-rich refinery residue, from crude oil processes, in a 1200 L electrically-heated batch retort. Furthermore, the off-gases produced were easily processed in compliance with existing regulatory emission standards. The methodology offers a novel, cost-effective and environmentally compliant method of assessing recovery potential of valuable products. The pyrolysis experiments yielded significant oil (70% with high calorific value (40 MJ/kg, char (14% with carbon content over 80% and non-condensable gas (6% with significant calorific value (240 kJ/mol. The final gas stream was subjected to an oxidative clean-up process with continuous on-line monitoring demonstrating compliance with South African emission standards. The gas treatment was overall economically optimal as only a smaller portion of the original residue was subjected to emission-controlling steps. Keywords: Batch pyrolysis, Volatiles, Oil yields, Char, Emissions, Oil recovery

  15. Microbial community functional change during vertebrate carrion decomposition.

    Directory of Open Access Journals (Sweden)

    Jennifer L Pechal

    Full Text Available Microorganisms play a critical role in the decomposition of organic matter, which contributes to energy and nutrient transformation in every ecosystem. Yet, little is known about the functional activity of epinecrotic microbial communities associated with carrion. The objective of this study was to provide a description of the carrion associated microbial community functional activity using differential carbon source use throughout decomposition over seasons, between years and when microbial communities were isolated from eukaryotic colonizers (e.g., necrophagous insects. Additionally, microbial communities were identified at the phyletic level using high throughput sequencing during a single study. We hypothesized that carrion microbial community functional profiles would change over the duration of decomposition, and that this change would depend on season, year and presence of necrophagous insect colonization. Biolog EcoPlates™ were used to measure the variation in epinecrotic microbial community function by the differential use of 29 carbon sources throughout vertebrate carrion decomposition. Pyrosequencing was used to describe the bacterial community composition in one experiment to identify key phyla associated with community functional changes. Overall, microbial functional activity increased throughout decomposition in spring, summer and winter while it decreased in autumn. Additionally, microbial functional activity was higher in 2011 when necrophagous arthropod colonizer effects were tested. There were inconsistent trends in the microbial function of communities isolated from remains colonized by necrophagous insects between 2010 and 2011, suggesting a greater need for a mechanistic understanding of the process. These data indicate that functional analyses can be implemented in carrion studies and will be important in understanding the influence of microbial communities on an essential ecosystem process, carrion decomposition.

  16. Repeated batch production of ethanol from Jerusalem artichoke tubers using recycled immobilized cells of Kluyveromyces fragilis

    Energy Technology Data Exchange (ETDEWEB)

    Margaritis, A.; Bajpai, P.

    1981-01-01

    Recycled immobilized cells of K. fragilis ATCC 28244 were used for repeated batch production of EtOH from the inulin sugars derived from Jerusalem artichoke tubers. Using 10% initial sugar concentration, a maximum EtOH concentration of 48 g/l was achieved in 7 h when the immobilized cell concentration in the Ca alginate beads was 72 g dry weight immobilized cell/l bioreactor vol.-h. The same Ca alginate beads containing the cells were used repeatedly for 11 batch runs starting with fresh medium at the beginning of each run. The EtOH yield was almost constant at 96% of the theoretical for all 11 batch runs, while the maximum EtOH production rate during the last batch run was 70% of the original EtOH rate obtained in the 1st batch run.

  17. Batch experiment on H2S degradation by bacteria immobilised on activated carbons.

    Science.gov (United States)

    Yan, R; Ng, Y L; Chen, X G; Geng, A L; Gould, W D; Duan, H Q; Liang, D T; Koe, L C C

    2004-01-01

    Biological treatments of odorous compounds, as compared to chemical or physical technologies, are in general ecologically and environmentally favourable. However, there are some inefficiencies relative to the media used in biofiltration processes, such as the need for an adequate residence time; the limited lifetime, and pore blockage of media, which at present render the technology economically non-viable. The aim of the study is to develop novel active media to be used in performance-enhanced biofiltration processes, by achieving an optimum balance and combination of the media adsorption capacity with the biodegradation of H2S through the bacteria immobilised on the media. An enrichment culture was obtained from activated sludges in order to metabolise thiosulphate. Batch-wise experiments were conducted to optimise the bacteria immobilisation on activated carbon, so as to develop a novel "biocarbon". Biofilm was mostly developed through culturing the bacteria with the presence of carbons in mineral media. SEM and BET tests of the carbon along with the culturing process were used to identify, respectively, the biofilm development and biocarbon porosity. Breakthrough tests evaluated the biocarbon performance with varying gas resistance time, inlet H2S concentration, and type of support materials. Fundamental issues were discussed, including type of support material, mode of bacteria immobilisation, pore blockages, and biodegradation kinetics, etc. This batch-wise study provides a basis for our future research on optimisation of the biofiltration process using a bio-trickling reactor.

  18. JOSHUA-SYSTEM, Data Base Management System for Batch and Interactive Operation

    International Nuclear Information System (INIS)

    Honeck, H.C.; Boyce, R.L. Jr. and others

    1982-01-01

    1 - Description of problem or function: JOSHUA is a scientific, modular data-based system for batch and terminal operation. Large volumes of data can be stored and retrieved for computation and display. 2 - Method of solution: The JOSHUA Operating System facilitates the execution of problems by the preservation of conveniently reusable da- ta and programs that are stored on-line. The data may be used in batch operation by computational programs and created and displayed on IBM 3270 terminals

  19. Characterization of microbial community and antibiotic resistance genes in activated sludge under tetracycline and sulfamethoxazole selection pressure

    International Nuclear Information System (INIS)

    Zhang, Yingying; Geng, Jinju; Ma, Haijun; Ren, Hongqiang; Xu, Ke; Ding, Lili

    2016-01-01

    To investigate the microbial community characteristics, antibiotic resistance genes (ARGs), and bioreactor effluent quality change under tetracycline (TC) and sulfamethoxazole (SMX) selection pressure, sequencing batch reactors (SBRs) were used with environmentally relevant concentration and high-level of TC and SMX concentrations (0, 5 ppb, 50 ppb and 10 ppm). Chemical oxygen demand (COD) and ammonia nitrogen (NH_4"+−N) removals appeared unchanged (p > 0.05) with 5 and 50 ppb, but decreased significantly with 10 ppm (p tetG > sul2 > tetA > intI1 > tetS > tetC. Pearson correlation analysis showed most ARGs (tetA, tetC, tetG, tetK, tetM, sul1) were significantly correlated with intI1 (p < 0.01). - Highlights: • COD and NH_4"+−N removals significantly decrease under 10 ppm TC or SMX. • Activated sludge EPS concentrations increase with increasing TC or SMX concentrations. • TC and SMX affect the microbial community diversity of activated sludge. • Actinobacteria abundances increase with increase of TC or SMX concentration. • ARGs abundance increases with addition of TC or SMX.

  20. Effects of co-inoculating rice straw with ruminal microbiota and anaerobic sludge: digestion performance and spatial distribution of microbial communities.

    Science.gov (United States)

    Deng, Yuying; Huang, Zhenxing; Zhao, Mingxing; Ruan, Wenquan; Miao, Hengfeng; Ren, Hongyan

    2017-07-01

    Ruminal microbiota (RM) were co-inoculated with anaerobic sludge (AS) at different ratios to study the digestion of rice straw in batch experiments. The CH 4 yield reached 273.64 mL/g volatile solid (VS) at a co-inoculum ratio of 1:1. The xylanase and cellulase activities were 198.88-212.88 and 24.51-29.08 U/mL in co-inoculated samples, respectively, and were significantly different compared to the results for single inoculum (p rumen did not settle in the co-inoculated system, whereas Clostridiales members became the main polysaccharide degraders. Microbial interactions involving hydrolytic bacteria and acetoclastic methanogens in the residue were considered to be significant for hydrolysis activities and methane production. Syntrophy involving propionate oxidizers with associated methanogens occurred in the liquid phase. Our findings provide a better understanding of the anaerobic digestion of rice straw that is driven by specific microbial populations.