WorldWideScience

Sample records for batch loading

  1. Transition to four batch loading scheme in Loviisa NPP

    International Nuclear Information System (INIS)

    The WWER-440 reactors of Loviisa NPP are operated with 1500 MWth power and reduced core. During recent years a 3-batch loading scheme has been used. Loviisa-1 is currently running with BNFL fuel equilibrium cycle and Loviisa-2 with TVEL fuel equilibrium cycle. Our goal is to move to a 4-batch scheme with TVEL fuel for both reactors. To achieve this goal the U-235 enrichment has to be increased from the current designs used. The fuel to be used in the near future is 4.37 % enriched fuel with six Gd2O3 doped rods. The characteristics and consequences of the core consisting of Gd-fuel are discussed based on our target equilibrium loading pattern. With the 4-batch loading scheme the discharge burnups exceed the current assembly burnup limit with a clear margin. Thus, we also have to prepare an application for the safety authority to increase the assembly average burnup limit from the current 45 MWd/kgU to about 56 MWd/kgU. First Gd-fuel assemblies are loaded into Loviisa-1 core in September 2009 and into Loviisa-2 core in October 2010. The reload batch of Loviisa-1 in 2009 consists of 60 Gd-assemblies and 24 non-Gd-assemblies plus 12 followers. In this paper some results are presented from Loviisa-1 zero power startup experiments and the first days of power operation. Among other aspects the six Gd2O3 doped pins used in the assembly have an effect on the pin power profile of the assembly during the first half of the cycle. The influence of the changing pin power profile on the outlet temperature measurements is briefly discussed based on expected effect and measurement (Authors)

  2. EFFECTS OF 4-CHLOROPHENOL LOADINGS ON ACCLIMATION OF BIOMASS WITH OPTIMIZED FIXED TIME SEQUENCING BATCH REACTOR

    Directory of Open Access Journals (Sweden)

    H. Movahedyan, A. Assadi, M. M. Amin

    2008-10-01

    Full Text Available Abstract: Chlorinated phenols in many industrial effluents are usually difficult to be removed by conventional biological treatment processes. Performance of the aerobic sequencing batch reactor treating 4-chlorophenol containing wastewater at different loadings rates from 0.0075 to 1.2 g4CP/L.d was evaluated. The sequencing batch reactor was operated with fill, react, settle and decant phases in the order of 10:370:90:10 min, respectively, for a cycle time of 8 h at 10 days solid retention time and 16 h hydraulic retention time in the stable period. The effects of 4-chlorophenol loadings on the 4-chlorophenol and chemical oxygen demand removal percents, yield coefficient (Y, biomass variation and sludge volume index were investigated. High chemical oxygen demand removal efficiencies (95±3.5% and approximately complete 4-chlorophenol removal (>99% were observed even in the absence of growth substrate. The degradation of 4-chlorophenol led to formation of 5-chloro-2-hydroxymuconic semialdehyde, which was more oxidized, indicating complete disappearance of 4-chlorophenol via meta-cleavage pathway. A compact sludge with excellent settleability (sludge volume index=47±6.1 mL/g developed during entire acclimation period. High removal efficiencies with sequencing batch reactor may be due to enforced short term unsteady state conditions coupled with periodic exposure of the microorganisms to defined process conditions which facilitate the required metabolic pathways for treating xenobiotics containing wastewater.

  3. Iron deficiency and bioavailability in anaerobic batch and submerged membrane bioreactors (SAMBR) during organic shock loads.

    Science.gov (United States)

    Ketheesan, Balachandran; Thanh, Pham Minh; Stuckey, David C

    2016-07-01

    This study examined the effects of Fe(2+) and its bioavailability for controlling VFAs during organic shock loads in batch reactors and a submerged anaerobic membrane bioreactor (SAMBR). When seed grown under Fe-sufficient conditions (7.95±0.05mgFe/g-TSS), an organic shock resulted in leaching of Fe from the residual to organically bound and soluble forms. Under Fe-deficient seed conditions (0.1±0.002mgFe/gTSS), Fe(2+) supplementation (3.34mgFe(2+)/g-TSS) with acetate resulted in a 2.1-3.9 fold increase in the rate of methane production, while with propionate it increased by 1.2-1.5 fold compared to non-Fe(2+) supplemented reactors. Precipitation of Fe(2+) as sulphides and organically bound Fe were bioavailable to methanogens for acetate assimilation. The results confirmed that the transitory/long term limitations of Fe play a significant role in controlling the degradation of VFAs during organic shock loads due to their varying physical/chemical states, and bioavailability. PMID:27015020

  4. Evaluation of the botanical origin of commercial dry bee pollen load batches using pollen analysis: a proposal for technical standardization

    Directory of Open Access Journals (Sweden)

    Ortrud M. Barth

    2010-12-01

    Full Text Available High quality of bee pollen for commercial purpose is required. In order to attend the consumer with the best identification of the botanical and floral origin of the product, 25 bee pollen batches were investigated using two techniques of pollen grain preparation. The first started to identify pollen loads of different colors in two grams of each well mixed batch, and the second to identify pollen grains in a pool made of all the pollen loads comprised in two grams. The best result was obtained by this last technique, when a pollen grain suspension was dropped on a microscope slide and circa 500 pollen grains were counted per sample. This analysis resulted in the recognition of monofloral and bifloral pollen batches, while the use of the first technique resulted in all samples receiving a heterofloral diagnosis.É exigida alta qualidade para a comercialização de pólen apícola. A fim de atender o consumidor com a melhor identificação da origem botânica e floral do produto, 25 partidas de pólen apícola feram investigadas usande duas diferentes técnicas na preparação dos grãos de pólen. A primeira partiu da identificação das cargas polínicas contidas em dois gramas de cada partida bem misturada segundo suas cores. A segunda visava identificar os grãos de pólen de um agrupamento ("pool" de todas as cargas polínicas contidas em dois gramas de cada amostra. O melhor resultado foi obtido pela última técnica, quando uma suspensão de grãos de pólen era gotejada sobre uma lâmina de microscopia e cerca de 500 grãos de pólen eram centades por amostra. Esta análise resultou no reconhecimento de partidas monoflorais e biflorais de pólen apícola, enquanto que usando a primeira técnica, todas as amostras receberam a diagnose heterefloral.

  5. Transient beam loading reduction during multi-batch coalescing in the Fermilab Main Ring

    International Nuclear Information System (INIS)

    Increasing the number of proton bunches in the Tevatron Collider from 6 to 36 places new demands on the bunch coalescing process in the Main Ring. As many as 132 proton bunches may have to be simultaneously coalesced into 12 high intensity bunches before being injected into the Tevatron. In order to efficiently produce these high intensity bunches, the total Main Ring rf cavity fundamental voltage at h=1113 must first be adiabatically reduced to below a few kV. Under these conditions, with many proton bunches filling a fraction of the Main Ring, the transient beam loading voltage generated in the cavities can exceed this value by an order of magnitude. A method of reducing this transient loading by temporarily shorting 16 of the 18 rf cavities is described along with data illustrating the transient voltage reduction

  6. Dry anaerobic digestion of high solids content dairy manure at high organic loading rates in psychrophilic sequence batch reactor.

    Science.gov (United States)

    Massé, Daniel I; Saady, Noori M Cata

    2015-05-01

    Cow manure with bedding is renewable organic biomass available around the year on dairy farms. Developing efficient and cost-effective psychrophilic dry anaerobic digestion (PDAD) processes could contribute to solving farm-related environmental, energy, and manure management problems in cold-climate regions. This study was to increase the organic loading rate (OLR), fed to a novel psychrophilic (20 °C) dry anaerobic digestion of 27% total solid dairy manure (cow feces and wheat straw) in sequence batch reactor (PDAD-SBR), by 133 to 160%. The PDAD-SBR process operated at treatment cycle length of 21 days and OLR of 7.0 and 8.0 g total chemical oxygen demand (TCOD) kg(-1) inoculum day(-1) (5.2 ± 0.1 and 5.8 ± 0.0 g volatile solids (VS) kg(-1) inoculum day(-1)) for four successive cycles (84 days) produced average specific methane yields (SMYs) of 147.1 ± 17.2 and 143.2 ± 11.7 normalized liters (NL) CH4 kg(-1) VS fed, respectively. PDAD of cow feces and wheat straw is possible with VS-based inoculum-to-substrate ratio of 1.45 at OLR of 8.0 g TCOD kg(-1) inoculum day(-1). Hydrolysis was the limiting step reaction. The VS removal averaged around 57.4 ± 0.5 and 60.5 ± 5.7% at OLR 7.0 and 8.0 g TCOD kg(-1) inoculum day(-1), respectively. PMID:25773978

  7. Effects of carbon brush anode size and loading on microbial fuel cell performance in batch and continuous mode

    KAUST Repository

    Lanas, Vanessa

    2014-02-01

    Larger scale microbial fuel cells (MFCs) require compact architectures to efficiently treat wastewater. We examined how anode-brush diameter, number of anodes, and electrode spacing affected the performance of the MFCs operated in fed-batch and continuous flow mode. All anodes were initially tested with the brush core set at the same distance from the cathode. In fed-batch mode, the configuration with three larger brushes (25 mm diameter) produced 80% more power (1240 mW m-2) than reactors with eight smaller brushes (8 mm) (690 mW m-2). The higher power production by the larger brushes was due to more negative and stable anode potentials than the smaller brushes. The same general result was obtained in continuous flow operation, although power densities were reduced. However, by moving the center of the smaller brushes closer to the cathode (from 16.5 to 8 mm), power substantially increased from 690 to 1030 mW m-2 in fed batch mode. In continuous flow mode, power increased from 280 to 1020 mW m-2, resulting in more power production from the smaller brushes than the larger brushes (540 mW m-2). These results show that multi-electrode MFCs can be optimized by selecting smaller anodes, placed as close as possible to the cathode. © 2013 Elsevier B.V. All rights reserved.

  8. Systematic optimization of fed-batch simultaneous saccharification and fermentation at high-solid loading based on enzymatic hydrolysis and dynamic metabolic modeling of Saccharomyces cerevisiae.

    Science.gov (United States)

    Unrean, Pornkamol; Khajeeram, Sutamat; Laoteng, Kobkul

    2016-03-01

    An integrative simultaneous saccharification and fermentation (SSF) modeling is a useful guiding tool for rapid process optimization to meet the techno-economic requirement of industrial-scale lignocellulosic ethanol production. In this work, we have developed the SSF model composing of a metabolic network of a Saccharomyces cerevisiae cell associated with fermentation kinetics and enzyme hydrolysis model to quantitatively capture dynamic responses of yeast cell growth and fermentation during SSF. By using model-based design of feeding profiles for substrate and yeast cell in the fed-batch SSF process, an efficient ethanol production with high titer of up to 65 g/L and high yield of 85 % of theoretical yield was accomplished. The ethanol titer and productivity was increased by 47 and 41 %, correspondingly, in optimized fed-batch SSF as compared to batch process. The developed integrative SSF model is, therefore, considered as a promising approach for systematic design of economical and sustainable SSF bioprocessing of lignocellulose. PMID:26610806

  9. Batch By Batch Longitudinal Emittance Blowup MD

    CERN Document Server

    Mastoridis, T; Butterworth, A; Jaussi, M; Molendijk, J

    2012-01-01

    The transverse bunch emittance increases significantly at 450 GeV from the time of injection till the ramp due to IBS. By selectively blowing up the longitudinal emittance of the incoming batch at each injection, it should be possible to reduce the transverse emittance growth rates due to IBS. An MD was conducted on April 22nd 2012 to test the feasibility and performance of the batch-by-batch longitudinal emittance blowup. There were three main goals during the MD. First, to test the developed hardware, firmware, and software for the batch-by-batch blowup. Then, to measure the transverse emittance growth rates of blown-up and "witness" batches to quantify any improvement, and finally to test the ALLInjectSequencer class, which deals with the complicated gymnastics of introducing or masking the new batch to various RF loops.

  10. Pro Spring Batch

    CERN Document Server

    Minella, Michael T

    2011-01-01

    Since its release, Spring Framework has transformed virtually every aspect of Java development including web applications, security, aspect-oriented programming, persistence, and messaging. Spring Batch, one of its newer additions, now brings the same familiar Spring idioms to batch processing. Spring Batch addresses the needs of any batch process, from the complex calculations performed in the biggest financial institutions to simple data migrations that occur with many software development projects. Pro Spring Batch is intended to answer three questions: *What? What is batch processing? What

  11. Recurrent Batch Normalization

    OpenAIRE

    Cooijmans, Tim; Ballas, Nicolas; Laurent, César; Gülçehre, Çağlar; Courville, Aaron

    2016-01-01

    We propose a reparameterization of LSTM that brings the benefits of batch normalization to recurrent neural networks. Whereas previous works only apply batch normalization to the input-to-hidden transformation of RNNs, we demonstrate that it is both possible and beneficial to batch-normalize the hidden-to-hidden transition, thereby reducing internal covariate shift between time steps. We evaluate our proposal on various sequential problems such as sequence classification, language modeling an...

  12. Spring batch essentials

    CERN Document Server

    Rao, P Raja Malleswara

    2015-01-01

    If you are a Java developer with basic knowledge of Spring and some experience in the development of enterprise applications, and want to learn about batch application development in detail, then this book is ideal for you. This book will be perfect as your next step towards building simple yet powerful batch applications on a Java-based platform.

  13. Batch-to-batch model improvement for cooling crystallization

    OpenAIRE

    Forgione, Marco; Birpoutsoukis, Georgios; Bombois, Xavier; Mesbah, Ali; Daudey, Peter; Van Den Hof, Paul

    2015-01-01

    © 2015 Elsevier Ltd. Two batch-to-batch model update strategies for model-based control of batch cooling crystallization are presented. In Iterative Learning Control, a nominal process model is adjusted by a non-parametric, additive correction term which depends on the difference between the measured output and the model prediction in the previous batch. In Iterative Identification Control, the uncertain model parameters are iteratively estimated using the measured batch data. Due to the diff...

  14. Polling with batch service

    OpenAIRE

    Boxma, O.; Van der Wal; Yechiali, U.

    2008-01-01

    This article considers a batch service polling system. We first study the case in which the server visits the queues cyclically, considering three different service regimes: gated, exhaustive, and globally gated. We subsequently analyze the case (the so-called "Israeli Queue") in which the server first visits the queue with the "oldest" customer. In both cases, queue lengths and waiting times are the main performance measures under consideration.

  15. Modelling of Batch Process Operations

    DEFF Research Database (Denmark)

    Abdul Samad, Noor Asma Fazli; Cameron, Ian; Gani, Rafiqul

    Here a batch cooling crystalliser is modelled and simulated as is a batch distillation system. In the batch crystalliser four operational modes of the crystalliser are considered, namely: initial cooling, nucleation, crystal growth and product removal. A model generation procedure is shown that s...

  16. Kinetic study of batch and fed-batch enzymatic saccharification of pretreated substrate and subsequent fermentation to ethanol

    Directory of Open Access Journals (Sweden)

    Gupta Rishi

    2012-03-01

    Full Text Available Abstract Background Enzymatic hydrolysis, the rate limiting step in the process development for biofuel, is always hampered by its low sugar concentration. High solid enzymatic saccharification could solve this problem but has several other drawbacks such as low rate of reaction. In the present study we have attempted to enhance the concentration of sugars in enzymatic hydrolysate of delignified Prosopis juliflora, using a fed-batch enzymatic hydrolysis approach. Results The enzymatic hydrolysis was carried out at elevated solid loading up to 20% (w/v and a comparison kinetics of batch and fed-batch enzymatic hydrolysis was carried out using kinetic regimes. Under batch mode, the actual sugar concentration values at 20% initial substrate consistency were found deviated from the predicted values and the maximum sugar concentration obtained was 80.78 g/L. Fed-batch strategy was implemented to enhance the final sugar concentration to 127 g/L. The batch and fed-batch enzymatic hydrolysates were fermented with Saccharomyces cerevisiae and ethanol production of 34.78 g/L and 52.83 g/L, respectively, were achieved. Furthermore, model simulations showed that higher insoluble solids in the feed resulted in both smaller reactor volume and shorter residence time. Conclusion Fed-batch enzymatic hydrolysis is an efficient procedure for enhancing the sugar concentration in the hydrolysate. Restricting the process to suitable kinetic regimes could result in higher conversion rates.

  17. FBSNG - batch system for farm architecture

    International Nuclear Information System (INIS)

    FBSNG is a redesigned version of Farm Batch System (FBS), which was developed as a batch process management system for off-line Run II data processing at FNAL. FBSNG is designed for UNIX computer farms and is capable of managing up to 1000 nodes in a single farm. FBSNG allows users to start arrays of parallel processes on one or more farm computers. It uses a simplified abstract resource counting method for load balancing between computers. The resource counting approach allows FBSNG to be a simple and flexible tool for farm resource management. FBSNG scheduler features include guaranteed and controllable 'fair-share' scheduling. FBSNG is easily portable across different flavors of UNIX. The system has been successfully used at Fermilab as well as by off-site collaborators for several years on farms of different sizes and different platforms for off-line data processing, Monte-Carlo data generation and other tasks

  18. More on Combinatorial Batch Codes

    OpenAIRE

    Ruj, Sushmita; Roy, Bimal

    2008-01-01

    Paterson, Stinson and Wei \\cite{PSW} introduced Combinatorial batch codes, which are combinatorial description of Batch code. Batch codes were first presented by Ishai, Kushilevita, Ostrovsky and Sahai \\cite{IKOS} in STOC'04. In this paper we answer some of the questions put forward by Paterson, Stinson and Wei and give some results for the general case $t>1$ which were not studied by the authors.

  19. Modelling of Batch Process Operations

    DEFF Research Database (Denmark)

    Abdul Samad, Noor Asma Fazli; Cameron, Ian; Gani, Rafiqul

    Here a batch cooling crystalliser is modelled and simulated as is a batch distillation system. In the batch crystalliser four operational modes of the crystalliser are considered, namely: initial cooling, nucleation, crystal growth and product removal. A model generation procedure is shown that...... Freedom (DoF) analysis, choice of variables to satisfy DoF and solution strategy. The batch distillation model for setting up and testing an operating sequence is developed and simulated. This looks at such operating policies as constant reflux ratio or set concentration of specific compound in the...

  20. Column and Batch Experiments

    Directory of Open Access Journals (Sweden)

    Jorge L. Gardea-Torresdey

    2005-01-01

    Full Text Available Batch and column experiments were performed to determine the Cu(II binding capacity of silica-immobilized humin biomass. For column studies, 500 bed volumes of a 0.1 mM Cu(II solution were passed through humin packed columns at the flow rates of 1, 1.5, 2, and 3 mL/min. The biopolymer showed an average Cu binding capacity of 12 ± 1.5 mg/g and a Cu recovery of about 96.5 % ± 1.5. The breakthrough points for Cu(II alone were approximately 420, 390, 385, and 300 bed volumes for the flow rates of 1, 1.5, 2 and 3 mL/min, respectively. The interference studies demonstrated that at low concentrations, the hard cations Ca(II and Mg(II did not seem to represent a major interference on Cu(II binding to the humin biopolymer. The selectivity showed by this biopolymer was Cu(II>Ca(II>Mg(II. On the other hand, batch experiments showed that Ca(II + Mg(II at 100mM each reduced the Cu(II binding to 73 %. However, 1000 mM concentrations of Ca(II and Mg(II, separately and in mixture, reduced the Cu(II binding to 47 %, 44 % and 31 %, respectively. The results of this study showed that immobilized humin in a silica matrix could represent an inexpensive bio-source for Cu removal from contaminated water, even in the presence of low concentrations of the hard cations Ca(II and Mg(II.

  1. Heterogeneous batch structures in throughput scheduling

    OpenAIRE

    Weeda, P.J.

    1993-01-01

    Recently a few papers appeared on throughput scheduling, dealing with the relationship between batch structure and process structure in discrete batch production, while maximizing time-constrained throughput. Results have been concentrated on the class of homogeneous batch structures, i.e. batch structures with equal batch sizes for each process per cycle. In this paper heterogeneous batch structures are considered. By numerical examples, it is shown that heterogeneous batch structures can ou...

  2. Research of an Efficient Variant of Batch RSA Algorithm%一种有效的Batch RSA算法的研究

    Institute of Scientific and Technical Information of China (English)

    李云飞; 柳青; 李彤; 郝林

    2011-01-01

    提出了一种改进的Batch RSA算法来提升Batch RSA算法的解密性能.该改进算法结合了负载转移技术和Multi-Power RSA技术,在Batch RSA算法的指数计算阶段提升Batch RSA算法的解密性能.实验结果和理论分析表明,该改进算法使得Batch RSA算法的解密性能得到显著提升,且易于并行实现,可使基于多核平台的Batch RSA算法的整体性能得到进一步提升.%This paper aimed at speeding up Batch RSA decryption. An efficient variant of Batch RSA was proposed to improve the Batch RSA decryption performance. The improved Batch RSA variant speeds up decryption by combining the load transferring technique and multi-power RSA technique in the exponentiation phase. The experimental result and the theoretical values show that the speed of the decryption is substantially improved and the variant can be efficiently implemented in parallel and parallel implementation of the variant on multi-core devices can further improve the overall performance of Batch RSA algorithm.

  3. Transient and Stationary Losses in a Finite-Buffer Queue with Batch Arrivals

    OpenAIRE

    Andrzej Chydzinski; Blazej Adamczyk

    2012-01-01

    We present an analysis of the number of losses, caused by the buffer overflows, in a finite-buffer queue with batch arrivals and autocorrelated interarrival times. Using the batch Markovian arrival process, the formulas for the average number of losses in a finite time interval and the stationary loss ratio are shown. In addition, several numerical examples are presented, including illustrations of the dependence of the number of losses on the average batch size, buffer size, system load, aut...

  4. Microalgal TAG production strategies: why batch beats repeated-batch

    OpenAIRE

    Benvenuti, G.; Lamers, P.P.; Breuer, G.; Bosma, R.; Cerar, Ana; Wijffels, R.H.; Barbosa, M. J.

    2016-01-01

    Background For a commercially feasible microalgal triglyceride (TAG) production, high TAG productivities are required. The operational strategy affects TAG productivity but a systematic comparison between different strategies is lacking. For this, physiological responses of Nannochloropsis sp. to nitrogen (N) starvation and N-rich medium replenishment were studied in lab-scale batch and repeated-batch (part of the culture is periodically harvested and N-rich medium is re-supplied) cultivation...

  5. Adaptation to high throughput batch chromatography enhances multivariate screening.

    Science.gov (United States)

    Barker, Gregory A; Calzada, Joseph; Herzer, Sibylle; Rieble, Siegfried

    2015-09-01

    High throughput process development offers unique approaches to explore complex process design spaces with relatively low material consumption. Batch chromatography is one technique that can be used to screen chromatographic conditions in a 96-well plate. Typical batch chromatography workflows examine variations in buffer conditions or comparison of multiple resins in a given process, as opposed to the assessment of protein loading conditions in combination with other factors. A modification to the batch chromatography paradigm is described here where experimental planning, programming, and a staggered loading approach increase the multivariate space that can be explored with a liquid handling system. The iterative batch chromatography (IBC) approach is described, which treats every well in a 96-well plate as an individual experiment, wherein protein loading conditions can be varied alongside other factors such as wash and elution buffer conditions. As all of these factors are explored in the same experiment, the interactions between them are characterized and the number of follow-up confirmatory experiments is reduced. This in turn improves statistical power and throughput. Two examples of the IBC method are shown and the impact of the load conditions are assessed in combination with the other factors explored. PMID:25914370

  6. Data-driven batch schuduling

    Energy Technology Data Exchange (ETDEWEB)

    Bent, John [Los Alamos National Laboratory; Denehy, Tim [GOOGLE; Arpaci - Dusseau, Remzi [UNIV OF WISCONSIN; Livny, Miron [UNIV OF WISCONSIN; Arpaci - Dusseau, Andrea C [NON LANL

    2009-01-01

    In this paper, we develop data-driven strategies for batch computing schedulers. Current CPU-centric batch schedulers ignore the data needs within workloads and execute them by linking them transparently and directly to their needed data. When scheduled on remote computational resources, this elegant solution of direct data access can incur an order of magnitude performance penalty for data-intensive workloads. Adding data-awareness to batch schedulers allows a careful coordination of data and CPU allocation thereby reducing the cost of remote execution. We offer here new techniques by which batch schedulers can become data-driven. Such systems can use our analytical predictive models to select one of the four data-driven scheduling policies that we have created. Through simulation, we demonstrate the accuracy of our predictive models and show how they can reduce time to completion for some workloads by as much as 80%.

  7. Batch compositions for cordierite ceramics

    Science.gov (United States)

    Hickman, David L.

    1994-07-26

    Ceramic products consisting principally of cordierite and a method for making them are provided, the method employing batches comprising a mineral component and a chemical component, the mineral component comprising clay and talc and the chemical component consisting essentially of a combination of the powdered oxides, hydroxides, or hydrous oxides of magnesium, aluminum and silicon. Ceramics made by extrusion and firing of the batches can exhibit low porosity, high strength and low thermal expansion coefficients.

  8. Shortcut Algorithm for Simulation of Batch Extractive Distillation

    Institute of Scientific and Technical Information of China (English)

    WU Huixiong; XU Shimin; HU Hui; XIAO Bin

    2007-01-01

    The batch extractive distillation (BED) process has the advantages of both batch and extractive distillation. It is one of the most promising means for the separation of azeotropic and close-boiling point systems. However, so far this process has not been applied in industry due to its over-complexity. A new shortcut model was proposed to simulate the operation of the batch extractive distillation operations. This algorithm is based on the assumption that the batch extractive distillation column can be considered as a continuous extractive distillation column with changing feed at anytime. Namely, the whole batch process is simulated as a succession of a finite number of steady states of short duration, in which holdup is considered as constant mole. For each period of time the batch extractive distillation process is solved through the algorithm for continuous extractive distillation. Finally, the practical implementation of the shortcut model is discussed and data from the lab-oratory and literature are presented. It is found that this model has better adaptability, more satisfactory accuracy and less calculative load than previous rigorous model. Hence the algorithm for simulating BED is verified.

  9. BatchJobs and BatchExperiments: Abstraction Mechanisms for Using R in Batch Environments

    Directory of Open Access Journals (Sweden)

    Bernd Bischl

    2015-03-01

    Full Text Available Empirical analysis of statistical algorithms often demands time-consuming experiments. We present two R packages which greatly simplify working in batch computing environments. The package BatchJobs implements the basic objects and procedures to control any batch cluster from within R. It is structured around cluster versions of the well-known higher order functions Map, Reduce and Filter from functional programming. Computations are performed asynchronously and all job states are persistently stored in a database, which can be queried at any point in time. The second package, BatchExperiments, is tailored for the still very general scenario of analyzing arbitrary algorithms on problem instances. It extends package BatchJobs by letting the user define an array of jobs of the kind apply algorithm A to problem instance P and store results. It is possible to associate statistical designs with parameters of problems and algorithms and therefore to systematically study their influence on the results. The packages main features are: (a Convenient usage: All relevant batch system operations are either handled internally or mapped to simple R functions. (b Portability: Both packages use a clear and well-defined interface to the batch system which makes them applicable in most high-performance computing environments. (c Reproducibility: Every computational part has an associated seed to ensure reproducibility even when the underlying batch system changes. (d Abstraction and good software design: The code layers for algorithms, experiment definitions and execution are cleanly separated and enable the writing of readable and maintainable code.

  10. Physicochemical Characteristics of Transferon™ Batches

    Directory of Open Access Journals (Sweden)

    Emilio Medina-Rivero

    2016-01-01

    Full Text Available Transferon, a biotherapeutic agent that has been used for the past 2 decades for diseases with an inflammatory component, has been approved by regulatory authorities in Mexico (COFEPRIS for the treatment of patients with herpes infection. The active pharmaceutical ingredient (API of Transferon is based on polydispersion of peptides that have been extracted from lysed human leukocytes by a dialysis process and a subsequent ultrafiltration step to select molecules below 10 kDa. To physicochemically characterize the drug product, we developed chromatographic methods and an SDS-PAGE approach to analyze the composition and the overall variability of Transferon. Reversed-phase chromatographic profiles of peptide populations demonstrated batch-to-batch consistency from 10 representative batches that harbored 4 primary peaks with a relative standard deviation (RSD of less than 7%. Aminogram profiles exhibited 17 proteinogenic amino acids and showed that glycine was the most abundant amino acid, with a relative content of approximately 18%. Further, based on their electrophoretic migration, the peptide populations exhibited a molecular mass of about 10 kDa. Finally, we determined the Transferon fingerprint using a mass spectrometry tool. Because each batch was produced from independent pooled buffy coat samples from healthy donors, supplied by a local blood bank, our results support the consistency of the production of Transferon and reveal its peptide identity with regard to its physicochemical attributes.

  11. NDA BATCH 2002-02

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence Livermore National Laboratory

    2009-12-09

    QC sample results (daily background checks, 20-gram and 100-gram SGS drum checks) were within acceptable criteria established by WIPP's Quality Assurance Objectives for TRU Waste Characterization. Replicate runs were performed on 5 drums with IDs LL85101099TRU, LL85801147TRU, LL85801109TRU, LL85300999TRU and LL85500979TRU. All replicate measurement results are identical at the 95% confidence level as established by WIPP criteria. Note that the batch covered 5 weeks of SGS measurements from 23-Jan-2002 through 22-Feb-2002. Data packet for SGS Batch 2002-02 generated using gamma spectroscopy with the Pu Facility SGS unit is technically reasonable. All QC samples are in compliance with established control limits. The batch data packet has been reviewed for correctness, completeness, consistency and compliance with WIPP's Quality Assurance Objectives and determined to be acceptable. An Expert Review was performed on the data packet between 28-Feb-02 and 09-Jul-02 to check for potential U-235, Np-237 and Am-241 interferences and address drum cases where specific scan segments showed Se gamma ray transmissions for the 136-keV gamma to be below 0.1 %. Two drums in the batch showed Pu-238 at a relative mass ratio more than 2% of all the Pu isotopes.

  12. Simulated Batch Production of Penicillin

    Science.gov (United States)

    Whitaker, A.; Walker, J. D.

    1973-01-01

    Describes a program in applied biology in which the simulation of the production of penicillin in a batch fermentor is used as a teaching technique to give students experience before handling a genuine industrial fermentation process. Details are given for the calculation of minimum production cost. (JR)

  13. Physicochemical Characteristics of Transferon™ Batches

    Science.gov (United States)

    Pérez-Sánchez, Gilberto; Favari, Liliana; Estrada-Parra, Sergio

    2016-01-01

    Transferon, a biotherapeutic agent that has been used for the past 2 decades for diseases with an inflammatory component, has been approved by regulatory authorities in Mexico (COFEPRIS) for the treatment of patients with herpes infection. The active pharmaceutical ingredient (API) of Transferon is based on polydispersion of peptides that have been extracted from lysed human leukocytes by a dialysis process and a subsequent ultrafiltration step to select molecules below 10 kDa. To physicochemically characterize the drug product, we developed chromatographic methods and an SDS-PAGE approach to analyze the composition and the overall variability of Transferon. Reversed-phase chromatographic profiles of peptide populations demonstrated batch-to-batch consistency from 10 representative batches that harbored 4 primary peaks with a relative standard deviation (RSD) of less than 7%. Aminogram profiles exhibited 17 proteinogenic amino acids and showed that glycine was the most abundant amino acid, with a relative content of approximately 18%. Further, based on their electrophoretic migration, the peptide populations exhibited a molecular mass of about 10 kDa. Finally, we determined the Transferon fingerprint using a mass spectrometry tool. Because each batch was produced from independent pooled buffy coat samples from healthy donors, supplied by a local blood bank, our results support the consistency of the production of Transferon and reveal its peptide identity with regard to its physicochemical attributes. PMID:27525277

  14. NGBAuth - Next Generation Batch Authentication for long running batch jobs.

    CERN Document Server

    Juto, Zakarias

    2015-01-01

    This document describes the prototyping of a new solution for the CERN batch authentication of long running jobs. While the job submission requires valid user credentials, these have to be renewed due to long queuing and execution times. Described within is a new system which will guarantee a similar level of security as the old LSFAuth while simplifying the implementation and the overall architecture. The new system is being built on solid, streamlined and tested components (notably OpenSSL) and a priority has been to make it more generic in order to facilitate the evolution of the current system such as for the expected migration from LSF to Condor as backend batch system.

  15. NDA Batch 2002-13

    Energy Technology Data Exchange (ETDEWEB)

    Hollister, R

    2009-09-17

    QC sample results (daily background check drum and 100-gram SGS check drum) were within acceptance criteria established by WIPP's Quality Assurance Objectives for TRU Waste Characterization. Replicate runs were performed on drum LL85501243TRU. Replicate measurement results are identical at the 95% confidence level as established by WIPP criteria. HWM NCAR No. 02-1000168 issued on 17-Oct-2002 regarding a partially dislodged Cd sheet filter on the HPGe coaxial detector. This physical geometry occurred on 01-Oct-2002 and was not corrected until 10-Oct-2002, during which period is inclusive of the present batch run of drums. Per discussions among the Independent Technical Reviewer, Expert Reviewer and the Technical QA Supervisor, as well as in consultation with John Fleissner, Technical Point of Contact from Canberra, the analytical results are technically reliable. All QC standard runs during this period were in control. Data packet for SGS Batch 2002-13 generated using passive gamma-ray spectroscopy with the Pu Facility SGS unit is technically reasonable. All QC samples are in compliance with establiShed control limits. The batch data packet has been reviewed for correctness, completeness, consistency and compliance with WIPP's Quality Assurance Objectives and determined to be acceptable.

  16. Optimal online-list batch scheduling

    OpenAIRE

    Paulus, JJ Jacob Jan; Ye, Deshi; Zhang, G.

    2008-01-01

    We consider the online-list batch scheduling problem. Jobs arrive one by one and have to be assigned upon arrival to a scheduled batch such that the makespan is minimized. Each batch can accommodate up to B jobs. We give a complete classification of the tractability of this online problem.

  17. 间歇结晶过程的分批优化%Batch-to-batch Optimization of Batch Crystallization Processes

    Institute of Scientific and Technical Information of China (English)

    Woranee Paengjuntuek; Paisan Kittisupakorn; Amornchai Arpornwichanop

    2008-01-01

    It is the fact that several process parameters are either unknown or uncertain. Therefore, an optimal control profile calculated with developed process models with respect to such process parameters may not give an optimal performance when implemented to real processes. This study proposes a batch-to-batch optimization strat-egy for the estimation of uncertain kinetic parameters in a batch crystallization process of potassium sulfate produc-tion. The knowledge of a crystal size distribution of the product at the end of batch operation is used in the proposedmethodology. The updated kinetic parameters are applied for determining an optimal operating temperature policy for the next batch run.

  18. Algal Feedback and Removal Efficiency in a Sequencing Batch Reactor Algae Process (SBAR to Treat the Antibiotic Cefradine.

    Directory of Open Access Journals (Sweden)

    Jianqiu Chen

    Full Text Available Many previous studies focused on the removal capability for contaminants when the algae grown in an unexposed, unpolluted environment and ignored whether the feedback of algae to the toxic stress influenced the removal capability in a subsequent treatment batch. The present research investigated and compared algal feedback and removal efficiency in a sequencing batch reactor algae process (SBAR to remove cefradine. Three varied pollution load conditions (10, 30 and 60 mg/L were considered. Compared with the algal characteristics in the first treatment batch at 10 and 30 mg/L, higher algal growth inhibition rates were observed in the second treatment batch (11.23% to 20.81%. In contrast, algae produced more photosynthetic pigments in response to cefradine in the second treatment batch. A better removal efficiency (76.02% was obtained during 96 h when the alga treated the antibiotic at 60 mg/L in the first treatment batch and at 30 mg/L in the second treatment batch. Additionally, the removal rate per unit algal density was also improved when the alga treated the antibiotic at 30 or 60 mg/L in the first treatment batch, respectively and at 30 mg/L in the second treatment batch. Our result indicated that the green algae were also able to adapt to varied pollution loads in different treatment batches.

  19. Influence of batch or fed-batch growth on Staphylococcus epidermidis biofilm formation

    OpenAIRE

    Cerca, Nuno; Pier, Gerald B.; Vilanova, Manuel; Oliveira, Rosário; Azeredo, Joana

    2004-01-01

    Aims: To make a quantitative evaluation of the differences in biofilm formation by Staphylococcus epidermidis using batch and fed-batch growth systems and to correlate this with production of the major biofilm polysaccharide, poly-N-acetyl glucosamine (PNAG). Methods and Results: Dry weight measurements of biofilms formed in batch and fed-batch conditions were compared with haemagglutination titres, which measure the amount of PNAG produced. Strains grown in batch systems devel...

  20. Design of common heat exchanger network for batch processes

    International Nuclear Information System (INIS)

    Heat integration of energy streams is very important for the efficient energy recovery in production systems. Pinch technology is a very useful tool for heat integration and maximizing energy efficiency. Creating of heat exchangers network as a common solution for systems in batch mode that will be applicable in all existing time slices is very difficult. This paper suggests a new methodology for design of common heat exchanger network for batch processes. Heat exchanger network designs were created for all determined repeatable and non-repeatable time periods – time slices. They are the basis for creating the common heat exchanger network. The common heat exchanger network as solution, satisfies all heat-transfer needs for each time period and for every existing combination of selected streams in the production process. This methodology use split of some heat exchangers into two or more heat exchange units or heat exchange zones. The reason for that is the multipurpose use of heat exchangers between different pairs of streams in different time periods. Splitting of large heat exchangers would maximize the total heat transfer usage of heat exchange units. Final solution contains heat exchangers with the minimum heat load as well as the minimum need of heat transfer area. The solution is applicable for all determined time periods and all existing stream combinations. - Highlights: •Methodology for design of energy efficient systems in batch processes. •Common Heat Exchanger Network solution based on designs with Pinch technology. •Multipurpose use of heat exchangers in batch processes

  1. STUDY ON MAXIMUM SPECIFIC SLUDGE ACIVITY OF DIFFERENT ANAEROBIC GRANULAR SLUDGE BY BATCH TESTS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The maximum specific sludge activity of granular sludge from large-scale UASB, IC and Biobed anaerobic reactors were investigated by batch tests. The limitation factors related to maximum specific sludge activity (diffusion, substrate sort, substrate concentration and granular size) were studied. The general principle and procedure for the precise measurement of maximum specific sludge activity were suggested. The potential capacity of loading rate of the IC and Biobed anaerobic reactors were analyzed and compared by use of the batch tests results.

  2. Combinatorial Batch Codes with Redundancy

    OpenAIRE

    Jung, Jiyoon; Mummert, Carl; Niese, Elizabeth; Schroeder, Michael w.

    2015-01-01

    A combinatorial batch code with redundancy $r$ and parameters $(n,k,m,t)$ can be represented as a system $C$ of $m$ (not necessarily distinct) subsets of an underlying $n$-element set $F$, so that each $k$-subset of $F$ can be covered by every $(m-r)$-subset $K$ of $C$ while taking no more than $t$ elements of $F$ with each set in $K$. The sum of the cardinalities of the sets in $C$ is the weight of the code. We focus on the case $t =1$, and determine the minimal weight for several ranges of ...

  3. Batch processing: definition and event log identification

    OpenAIRE

    Martin, Niels,; SWENNEN, Marijke; Depaire, Benoit; Jans, Mieke; CARIS, An; Vanhoof, Koen

    2015-01-01

    A resource typically executes a particular activity on a series of cases. When a resource performs an activity on several cases simultaneously, (quasi-) sequentially or concurrently, this is referred to as batch processing. Given its influence on process performance, batch processing needs to be taken into account when modeling business processes for performance evaluation purposes. This paper suggests event logs as an information source to gain insight in batching behavior. It marks a first ...

  4. Batch process design: an overview from control

    OpenAIRE

    Zuluaga Bedoya, Christian Camilo

    2015-01-01

    Abstract: batch process design: an overview from control In this work, the topic of batch process design is addressed, through an analysis of the phenomenological-based model and using set-theoretic methods to deduce process constraints and parametric effects in state controllability. A review of literature is presented about characterization of batch process from point of view of design problem. Furthermore simultaneous process and control design is also reviewed, considering the main contri...

  5. Plutonium immobilization feed batching system concept report

    International Nuclear Information System (INIS)

    The Plutonium Immobilization Facility will encapsulate plutonium in ceramic pucks and seal the pucks inside welded cans. Remote equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with high level waste glass for permanent storage. Feed batching is one of the first process steps involved with first stage plutonium immobilization. It will blend plutonium oxide powder before it is combined with other materials to make pucks. This report discusses the Plutonium Immobilization feed batching process preliminary concept, batch splitting concepts, and includes a process block diagram, concept descriptions, a preliminary equipment list, and feed batching development areas

  6. Supervision of Fed-Batch Fermentations

    DEFF Research Database (Denmark)

    Gregersen, Lars; Jørgensen, Sten Bay

    1999-01-01

    Process faults may be detected on-line using existing measurements based upon modelling that is entirely data driven. A multivariate statistical model is developed and used for fault diagnosis of an industrial fed-batch fermentation process. Data from several (25) batches are used to develop a mo...

  7. Operation of a Batch Stripping Distillation Column

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A stripping batch distillation column is preferred when the amount of the light component in the feed is small and the products are to be recovered at high purity. The operation modes of a batch stripping are believed to be the same as those of a rectifier. However, the control system of a stripper is different. In this paper, we explore three different control methods with Hysys (Hyprotech Ltd. 1997) for a batch stripper. The main difference is the control scheme for reboiler liquid level: (a) controlled by reflux flow; (b) controlled by reboiler heat duty; (c) controlled by bottom product flow. The main characteristics of operating a batch stripper with different control scheme are presented in this paper. Guidelines are provided for the startup of a batch stripper, the effects of somecontrol tuning parameters on the column performance are discussed.

  8. BATCH systémy

    OpenAIRE

    Beránek, Jakub

    2013-01-01

    Bakalářská práce je zaměřena na dávkové systémy. V teoretické části je stručně popsána filozofie dávkových systémů a norma ANSI/ISA 88, která je významným dokumentem v dávkovém řízení. V další části je popsáno několik programů pro řízení dávkových procesů z české i celosvětové produkce. Poslední část obsahuje přípravu, návrh a realizaci laboratorní úlohy pro řízení modelového dávkového procesu s použitím modulu COMES Batch.

  9. Batch Scheduling a Fresh Approach

    Science.gov (United States)

    Cardo, Nicholas P.; Woodrow, Thomas (Technical Monitor)

    1994-01-01

    The Network Queueing System (NQS) was designed to schedule jobs based on limits within queues. As systems obtain more memory, the number of queues increased to take advantage of the added memory resource. The problem now becomes too many queues. Having a large number of queues provides users with the capability to gain an unfair advantage over other users by tailoring their job to fit in an empty queue. Additionally, the large number of queues becomes confusing to the user community. The High Speed Processors group at the Numerical Aerodynamics Simulation (NAS) Facility at NASA Ames Research Center developed a new approach to batch job scheduling. This new method reduces the number of queues required by eliminating the need for queues based on resource limits. The scheduler examines each request for necessary resources before initiating the job. Also additional user limits at the complex level were added to provide a fairness to all users. Additional tools which include user job reordering are under development to work with the new scheduler. This paper discusses the objectives, design and implementation results of this new scheduler

  10. 27 CFR 19.748 - Dump/batch records.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Dump/batch records. 19.748.../batch records. (a) Format of dump/batch records. Proprietor's dump/batch records shall contain, as... ingredients used; (10) Formula number; (11) Quantity of ingredients used in the batch that have...

  11. Batch and Fed-Batch Fermentation System on Ethanol Production from Whey using Kluyveromyces marxianus

    Directory of Open Access Journals (Sweden)

    H Hadiyanto

    2013-10-01

    Full Text Available Nowadays reserve of fossil fuel has gradually depleted. This condition forces many researchers to  find energy alternatives which is renewable and sustainable in the future. Ethanol derived from cheese industrial waste (whey using fermentation process can be a new perspective in order to secure both energy and environment. The aim of this study was  to compare the operation modes (batch and fed-batch of fermentation system on ethanol production from whey using Kluyveromyces marxianus. The result showed that the fermentation process for ethanol production by fed-batch system was higher at some point of parameters compared with batch system. Growth rate and ethanol yield (YP/S of fed-batch fermentation were 0.122/h and 0.21 gP/gS respectively; growth rate and ethanol yield (YP/S of batch fermentation were 0.107/h, and 0.12 g ethanol/g substrate, respectively. Based on the data of biomass and ethanol concentrations, the fermentation process for ethanol production by fed-batch system were higher at some point of parameters compared to batch system. Periodic substrate addition performed on fed-batch system leads the yeast growth in low substrate concentrations and consequently  increasing their activity and ethanol productivity. Keywords: batch; ethanol; fed-batch; fermentation;Kluyveromyces marxianus, whey

  12. Integration of virtualized worker nodes in standard batch systems

    International Nuclear Information System (INIS)

    Current experiments in HEP only use a limited number of operating system flavours. Their software might only be validated on one single OS platform. Resource providers might have other operating systems of choice for the installation of the batch infrastructure. This is especially the case if a cluster is shared with other communities, or communities that have stricter security requirements. One solution would be to statically divide the cluster into separated sub-clusters. In such a scenario, no opportunistic distribution of the load can be achieved, resulting in a poor overall utilization efficiency. Another approach is to make the batch system aware of virtualization, and to provide each community with its favoured operating system in a virtual machine. Here, the scheduler has full flexibility, resulting in a better overall efficiency of the resources. In our contribution, we present a lightweight concept for the integration of virtual worker nodes into standard batch systems. The virtual machines are started on the worker nodes just before jobs are executed there. No meta-scheduling is introduced. We demonstrate two prototype implementations, one based on the Sun Grid Engine (SGE), the other using Maui/Torque as a batch system. Both solutions support local job as well as Grid job submission. The hypervisors currently used are Xen and KVM, a port to another system is easily envisageable. To better handle different virtual machines on the physical host, the management solution VmImageManager is developed. We will present first experience from running the two prototype implementations. In a last part, we will show the potential future use of this lightweight concept when integrated into high-level (i.e. Grid) work-flows.

  13. Uranium Adsorption on Granular Activated Carbon – Batch Testing

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Kent E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Golovich, Elizabeth C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wellman, Dawn M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-01

    The uranium adsorption performance of two activated carbon samples (Tusaar Lot B-64, Tusaar ER2-189A) was tested using unadjusted source water from well 299-W19-36. These batch tests support ongoing performance optimization efforts to use the best material for uranium treatment in the Hanford Site 200 West Area groundwater pump-and-treat system. A linear response of uranium loading as a function of the solution-to-solid ratio was observed for both materials. Kd values ranged from ~380,000 to >1,900,000 ml/g for the B-64 material and ~200,000 to >1,900,000 ml/g for the ER2-189A material. Uranium loading values ranged from 10.4 to 41.6 μg/g for the two Tusaar materials.

  14. LSF usage for batch at CERN

    CERN Multimedia

    Schwickerath, Ulrich

    2007-01-01

    Contributed poster to the CHEP07. Original abstract: LSF 7, the latest version of Platform's batch workload management system, addresses many issues which limited the ability of LSF 6.1 to support large scale batch farms, such as the lxbatch service at CERN. In this paper we will present the status of the evaluation and deployment of LSF 7 at CERN, including issues concerning the integration of LSF 7 with the gLite grid middleware suite and, in particular, the steps taken to endure an efficient reporting of the local batch system status and usage to the Grid Information System

  15. Fractional Repetition and Erasure Batch Codes

    OpenAIRE

    Silberstein, Natalia

    2014-01-01

    Batch codes are a family of codes that represent a distributed storage system (DSS) of $n$ nodes so that any batch of $t$ data symbols can be retrieved by reading at most one symbol from each node. Fractional repetition codes are a family of codes for DSS that enable efficient uncoded repairs of failed nodes. In this work these two families of codes are combined to obtain fractional repetition batch (FRB) codes which provide both uncoded repairs and parallel reads of subsets of stored symbols...

  16. Batch Proving and Proof Scripting in PVS

    Science.gov (United States)

    Munoz, Cesar A.

    2007-01-01

    The batch execution modes of PVS are powerful, but highly technical, features of the system that are mostly accessible to expert users. This paper presents a PVS tool, called ProofLite, that extends the theorem prover interface with a batch proving utility and a proof scripting notation. ProofLite enables a semi-literate proving style where specification and proof scripts reside in the same file. The goal of ProofLite is to provide batch proving and proof scripting capabilities to regular, non-expert, users of PVS.

  17. Model Penjadwalan Batch Multi Item dengan Dependent Processing Time

    OpenAIRE

    Sukoyo Sukoyo; TMA. Ari Samadhi; Bermawi P. Iskandar; Abdul Hakim Halim

    2010-01-01

    This paper investigates a development of single machine batch scheduling for multi items with dependent processing time. The batch scheduling problem is to determine simultaneously number of batch (N), which item and its size allocated for each batch, and processing sequences of resulting batches. We use total actual flow time as the objective of schedule performance. The multi item batch scheduling problem could be formulated into a biner-integer nonlinear programming model because the numbe...

  18. Multi-objective optimization of glycopeptide antibiotic production in batch and fed batch processes

    DEFF Research Database (Denmark)

    Maiti, Soumen K.; Eliasson Lantz, Anna; Bhushan, Mani; Wangikar, Pramod P.

    2011-01-01

    as pareto optimal solutions. These solutions gives flexibility in evaluating the trade-offs and selecting the most suitable operating policy. Here, ε-constraint approach was used to generate the pareto solutions for two objectives: product concentration and product per unit cost of media, for batch...... and fed batch operations using process model for Amycolatopsis balhimycina, a glycopeptide antibiotic producer. This resulted in a set of several pareto optimal solutions with the two objectives ranging from (0.75gl−1, 3.97g$-1) to (0.44gl−1, 5.19g$-1) for batch and from (1.5gl−1, 5.46g$-1) to (1.1gl......−1, 6.34g$-1) for fed batch operations. One pareto solution each for batch and for fed batch mode was experimentally validated....

  19. Complete characterisation of the customer delay in a queueing system with batch arrivals and batch service

    OpenAIRE

    Claeys, Dieter; Laevens, Koenraad; Walraevens, Joris; Bruneel, Herwig

    2010-01-01

    Whereas the buffer content of batch-service queueing systems has been studied extensively, the customer delay has only occasionally been studied. The few papers concerning the customer delay share the common feature that only the moments are calculated explicitly. In addition, none of these surveys consider models including the combination of batch arrivals and a server operating under the full-batch service policy (the server waits to initiate service until he can serve at full capacity). In...

  20. Algal Feedback and Removal Efficiency in a Sequencing Batch Reactor Algae Process (SBAR) to Treat the Antibiotic Cefradine

    OpenAIRE

    Chen, Jianqiu; Zheng, Fengzhu; Guo, Ruixin

    2015-01-01

    Many previous studies focused on the removal capability for contaminants when the algae grown in an unexposed, unpolluted environment and ignored whether the feedback of algae to the toxic stress influenced the removal capability in a subsequent treatment batch. The present research investigated and compared algal feedback and removal efficiency in a sequencing batch reactor algae process (SBAR) to remove cefradine. Three varied pollution load conditions (10, 30 and 60 mg/L) were considered. ...

  1. 21 CFR 211.188 - Batch production and control records.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Batch production and control records. 211.188... Reports § 211.188 Batch production and control records. Batch production and control records shall be prepared for each batch of drug product produced and shall include complete information relating to...

  2. 7 CFR 58.728 - Cooking the batch.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Cooking the batch. 58.728 Section 58.728 Agriculture... Procedures § 58.728 Cooking the batch. Each batch of cheese within the cooker, including the optional... cheese particles or ingredients after the cooker batch of cheese has reached the final...

  3. 40 CFR 63.1408 - Aggregate batch vent stream provisions.

    Science.gov (United States)

    2010-07-01

    ... from all aggregate batch vent streams in the compliance demonstration required for reactor batch... comply with the mass emission limit for reactor batch process vents. ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Aggregate batch vent stream...

  4. A Batch Feeder for Inhomogeneous Bulk Materials

    Science.gov (United States)

    Vislov, I. S.; Kladiev, S. N.; Slobodyan, S. M.; Bogdan, A. M.

    2016-04-01

    The work includes the mechanical analysis of mechanical feeders and batchers that find application in various technological processes and industrial fields. Feeders are usually classified according to their design features into two groups: conveyor-type feeders and non-conveyor feeders. Batchers are used to batch solid bulk materials. Less frequently, they are used for liquids. In terms of a batching method, they are divided into volumetric and weighting batchers. Weighting batchers do not provide for sufficient batching accuracy. Automatic weighting batchers include a mass controlling sensor and systems for automatic material feed and automatic mass discharge control. In terms of operating principle, batchers are divided into gravitational batchers and batchers with forced feed of material using conveyors and pumps. Improved consumption of raw materials, decreased loss of materials, ease of use in automatic control systems of industrial facilities allows increasing the quality of technological processes and improve labor conditions. The batch feeder suggested by the authors is a volumetric batcher that has no comparable counterparts among conveyor-type feeders and allows solving the problem of targeted feeding of bulk material batches increasing reliability and hermeticity of the device.

  5. Applying prior knowledge to model batch keeping-quality of cucumber batches

    NARCIS (Netherlands)

    Schouten, R.E.; Tijskens, L.M.M.; Kooten, van O.; Jongbloed, G.

    2004-01-01

    Keeping-quality of individual cucumbers is limited by the green colour; the keeping-quality of batches of cucumbers is limited by the time it takes before 5␘f the cucumbers in the batch reach a predefined colour limit. From literature concerning the synthesis and degradation of chlorophyll and a pub

  6. Quality and Batch-to-Batch Consistency of Original and Biosimilar Epoetin Products.

    Science.gov (United States)

    Halim, Liem Andhyk; Brinks, Vera; Jiskoot, Wim; Romeijn, Stefan; Haselberg, Rob; Burns, Chris; Wadhwa, Meenu; Schellekens, Huub

    2016-02-01

    Comprehensive physicochemical characterization and biological assays are essential parts in assessing quality attributes of biologicals. Here, we compared the quality of different marketed recombinant human erythropoietin (epoetin) products: originators, Eprex and NeoRecormon as well as 2 biosimilars, Retacrit and Binocrit. In addition, assessment of batch-to-batch variability was included by collecting 2 or more batches of each product. Common assays which included sodium dodecyl sulfate-polyacrylamide gel electrophoresis, high-performance size-exclusion chromatography, asymmetrical flow field-flow fractionation, capillary zone electrophoresis, and potency testing were used. Of the tested products and among batches of single products, variations in epoetin content, isoform profiles, and potency were found. Ultimately, this study demonstrated the high quality of epoetin products with some degree of variation among products and batches, confirming the "similar but not identical" paradigm of biologicals. PMID:26869417

  7. The practical effect of batch on genomic prediction

    OpenAIRE

    2012-01-01

    Measurements from microarrays and other high-throughput technologies are susceptible to non-biological artifacts like batch effects. It is known that batch effects can alter or obscure the set of significant results and biological conclusions in high-throughput studies. Here we examine the impact of batch effects on predictors built from genomic technologies. To investigate batch effects, we collected publicly available gene expression measurements with known outcomes, and estimated batches u...

  8. Following an Optimal Batch Bioreactor Operations Model

    DEFF Research Database (Denmark)

    Ibarra-Junquera, V.; Jørgensen, Sten Bay; Virgen-Ortíz, J.J.;

    2012-01-01

    The problem of following an optimal batch operation model for a bioreactor in the presence of uncertainties is studied. The optimal batch bioreactor operation model (OBBOM) refers to the bioreactor trajectory for nominal cultivation to be optimal. A multiple-variable dynamic optimization of fed-batch...... reactor for biomass production is studied using a differential geometry approach. The maximization problem is solved by handling both the optimal filling policy and substrate concentration in the inlet stream. In order to follow the OBBOM, a master–slave synchronization is used. The OBBOM is considered as...... the master system which includes the optimal cultivation trajectory for the feed flow rate and the substrate concentration. The “real” bioreactor, the one with unknown dynamics and perturbations, is considered as the slave system. Finally, the controller is designed such that the real bioreactor is...

  9. Systematic Methodology for Reproducible Optimizing Batch Operation

    DEFF Research Database (Denmark)

    Bonné, Dennis; Jørgensen, Sten Bay

    This contribution presents a systematic methodology for rapid acquirement of discrete-time state space model representations of batch processes based on their historical operation data. These state space models are parsimoniously parameterized as a set of local, interdependent models. The present...... contribution furthermore presents how the asymptotic convergence of Iterative Learning Control is combined with the closed-loop performance of Model Predictive Control to form a robust and asymptotically stable optimal controller for ensuring reliable and reproducible operation of batch processes. This...... controller may also be used for Optimizing control. The modeling and control performance is demonstrated on a fed-batch protein cultivation example. The presented methodologies lend themselves directly for application as Process Analytical Technologies (PAT)....

  10. Dynamic Fractional Resource Scheduling vs. Batch Scheduling

    CERN Document Server

    Casanova, Henri; Vivien, Frédéric

    2011-01-01

    We propose a novel job scheduling approach for homogeneous cluster computing platforms. Its key feature is the use of virtual machine technology to share fractional node resources in a precise and controlled manner. Other VM-based scheduling approaches have focused primarily on technical issues or on extensions to existing batch scheduling systems, while we take a more aggressive approach and seek to find heuristics that maximize an objective metric correlated with job performance. We derive absolute performance bounds and develop algorithms for the online, non-clairvoyant version of our scheduling problem. We further evaluate these algorithms in simulation against both synthetic and real-world HPC workloads and compare our algorithms to standard batch scheduling approaches. We find that our approach improves over batch scheduling by orders of magnitude in terms of job stretch, while leading to comparable or better resource utilization. Our results demonstrate that virtualization technology coupled with light...

  11. Treatemnt of Wastewater with Modified Sequencing Batch Biofilm Reactor Technology

    Institute of Scientific and Technical Information of China (English)

    胡龙兴; 刘宇陆

    2002-01-01

    This paper describes the removel of COD and nitrogen from wastewater with modified sequencing batch biofilm reactor,The strategy of simultaneous feeding and draining was explored.The results show that introduction of a new batch of wastewater and withdrawal of the purifeid water can be conducted simultaneously with the maximum volumetric exchange rate of about 70%,Application of this feeding and draining mode leads to the reduction of the cycle time,the increase of the utilization of the reactor volume and the simplification of the reactor structure.The treatment of a synthetic wastewater containing COD and nitrogen was investigated.The operation mode of F(D)-O(i.e.,simultaneous feeding and draining followed by the aerobic condition)was adopted.It was found that COD was degraded very fast in the initial reaction period of time,then reduced slowly and the ammonia nitrogen and nitrate nitrogen concentrations decreased and increased with time respectively,while the nitrite nitrogen level increased first and then reduced.The relationship between the COD or ammonia nitrogen loading and its removal rate was examined,and the removal of COD,ammonia nitrogen and total nitrogen could exceed 95%,90%and 80% respectively,The fact that nitrogen could e removed more completely under constant aeration(aerobic condition)of the SBBR operation mode is very interesting and could be explained in several respects.

  12. Optimal Control of Fed-Batch Fermenters

    OpenAIRE

    Valentinotti, S.; Cannizzaro, C; Rhiel, M.; Holmberg, U.; von Stockar, U; Bonvin, D.

    2000-01-01

    Optimal control of fed-batch fermenters S. Valentinotti† C. Cannizzaro‡ M.Rhiel‡ U. Holmberg† U. von Stockar‡ D. Bonvin† †Institut d’Automatique, EPFL, 1015 Lausanne, Switzerland ‡Institut de Genie Chimique, EPFL, 1015 Lausanne, Switzerland Fermentors are often run in a fed-batch manner to avoid the formation of overflow metabolites. At a high growth rate, the most efficient metabolic pathway(s) of certain microorganisms become saturated resulting in overflow metabolite production. These byprodu...

  13. Exploring the Transition From Batch to Online

    DEFF Research Database (Denmark)

    Jørgensen, Anker Helms

    2010-01-01

    truly interactive use of computers known today. The transition invoked changes in a number of areas: technological, such as hybrid forms between batch and online; organisational such as decentralization; and personal as users and developers alike had to adopt new technology, shape new organizational...

  14. Comparison of batch and continuous multi-column protein A capture processes by optimal design.

    Science.gov (United States)

    Baur, Daniel; Angarita, Monica; Müller-Späth, Thomas; Steinebach, Fabian; Morbidelli, Massimo

    2016-07-01

    Multi-column capture processes show several advantages compared to batch capture. It is however not evident how many columns one should use exactly. To investigate this issue, twin-column CaptureSMB, 3- and 4-column periodic counter-current chromatography (PCC) and single column batch capture are numerically optimized and compared in terms of process performance for capturing a monoclonal antibody using protein A chromatography. Optimization is carried out with respect to productivity and capacity utilization (amount of product loaded per cycle compared to the maximum amount possible), while keeping yield and purity constant. For a wide range of process parameters, all three multi-column processes show similar maximum capacity utilization and performed significantly better than batch. When maximizing productivity, the CaptureSMB process shows optimal performance, except at high feed titers, where batch chromatography can reach higher productivity values than the multi-column processes due to the complete decoupling of the loading and elution steps, albeit at a large cost in terms of capacity utilization. In terms of trade-off, i.e. how much the capacity utilization decreases with increasing productivity, CaptureSMB is optimal for low and high feed titers, whereas the 3-column process is optimal in an intermediate region. Using these findings, the most suitable process can be chosen for different production scenarios. PMID:26992151

  15. Monte Carlo simulation on kinetics of batch and semi-batch free radical polymerization

    KAUST Repository

    Shao, Jing

    2015-10-27

    Based on Monte Carlo simulation technology, we proposed a hybrid routine which combines reaction mechanism together with coarse-grained molecular simulation to study the kinetics of free radical polymerization. By comparing with previous experimental and simulation studies, we showed the capability of our Monte Carlo scheme on representing polymerization kinetics in batch and semi-batch processes. Various kinetics information, such as instant monomer conversion, molecular weight, and polydispersity etc. are readily calculated from Monte Carlo simulation. The kinetic constants such as polymerization rate k p is determined in the simulation without of “steady-state” hypothesis. We explored the mechanism for the variation of polymerization kinetics those observed in previous studies, as well as polymerization-induced phase separation. Our Monte Carlo simulation scheme is versatile on studying polymerization kinetics in batch and semi-batch processes.

  16. SLUDGE BATCH VARIABILITY STUDY WITH FRIT 418

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, F.; Edwards, T.

    2010-11-29

    The Defense Waste Processing Facility (DWPF) initiated processing Sludge Batch 6 (SB6) in the summer of 2010. In support of processing, the Savannah River National Laboratory (SRNL) provided a recommendation to utilize Frit 418 to process SB6. This recommendation was based on assessments of the compositional projections for SB6 available at the time from the Liquid Waste Organization (LWO) and SRNL (using a model-based approach). To support qualification of SB6, SRNL executed a variability study to assess the applicability of the current durability models for SB6. The durability models were assessed over the expected Frit 418-SB6 composition range. Seventeen glasses were selected for the variability study based on the sludge projections used in the frit recommendation. Five of the glasses are based on the centroid of the compositional region, spanning a waste loading (WL) range of 32 to 40%. The remaining twelve glasses are extreme vertices (EVs) of the sludge region of interest for SB6 combined with Frit 418 and are all at 36% WL. These glasses were fabricated and characterized using chemical composition analysis, X-ray diffraction (XRD) and the Product Consistency Test (PCT). After initiating the SB6 variability study, the measured composition of the SB6 Tank 51 qualification glass produced at the SRNL Shielded Cells Facility indicated that thorium was present in the glass at an appreciable concentration (1.03 wt%), which made it a reportable element for SB6. This concentration of ThO{sub 2} resulted in a second phase of experimental studies. Five glasses were formulated that were based on the centroid of the new sludge compositional region combined with Frit 418, spanning a WL range of 32 to 40%. These glasses were fabricated and characterized using chemical composition analysis and the PCT. Based on the measured PCT response, all of the glasses (with and without thorium) were acceptable with respect to the Environmental Assessment (EA) reference glass

  17. SLUDGE BATCH 7B GLASS VARIABILITY STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, F.; Edwards, T.

    2011-10-25

    The Defense Waste Processing Facility (DWPF) is preparing to initiate processing Sludge Batch 7b (SB7b). In support of the upcoming processing, the Savannah River National Laboratory (SRNL) provided a recommendation to utilize Frits 418 with a 6% Na{sub 2}O addition (26 wt% Na{sub 2}O in sludge) and 702 with a 4% Na{sub 2}O addition (24 wt% Na{sub 2}O in sludge) to process SB7b. This recommendation was based on assessments of the compositional projections for SB7b available at the time from the Savannah River Remediation (SRR). To support qualification of SB7b, SRNL executed a variability study to assess the applicability of the current durability models for SB7b. The durability models were assessed over the expected composition range of SB7b, including potential caustic additions, combined with Frits 702 and 418 over a 32-40% waste loading (WL) range. Thirty four glasses were selected based on Frits 418 and 702 coupled with the sludge projections with an additional 4-6% Na{sub 2}O to reflect the potential caustic addition. Six of these glasses, based on average nominal sludge compositions including the appropriate caustic addition, were developed for both Frit 418 and Frit 702 at 32, 36 and 40% WL to provide coverage in the center of the anticipated SB7b glass region. All glasses were fabricated and characterized using chemical composition analysis, X-ray diffraction (XRD) and the Product Consistency Test (PCT). To comply with the DWPF Glass Product Control Program, a total of thirty four glasses were fabricated to assess the applicability of the current DWPF PCCS durability models. Based on the measured PCT response, all of the glasses were acceptable with respect to the Environmental Assessment (EA) benchmark glass regardless of thermal history. The NL[B] values of the SB7b variability study glasses were less than 1.99 g/L as compared to 16.695 g/L for EA. A small number of the D-optimally selected 'outer layer' extreme vertices (EV) glasses were not

  18. Sludge Batch Variability Study With Frit 418

    International Nuclear Information System (INIS)

    The Defense Waste Processing Facility (DWPF) initiated processing Sludge Batch 6 (SB6) in the summer of 2010. In support of processing, the Savannah River National Laboratory (SRNL) provided a recommendation to utilize Frit 418 to process SB6. This recommendation was based on assessments of the compositional projections for SB6 available at the time from the Liquid Waste Organization (LWO) and SRNL (using a model-based approach). To support qualification of SB6, SRNL executed a variability study to assess the applicability of the current durability models for SB6. The durability models were assessed over the expected Frit 418-SB6 composition range. Seventeen glasses were selected for the variability study based on the sludge projections used in the frit recommendation. Five of the glasses are based on the centroid of the compositional region, spanning a waste loading (WL) range of 32 to 40%. The remaining twelve glasses are extreme vertices (EVs) of the sludge region of interest for SB6 combined with Frit 418 and are all at 36% WL. These glasses were fabricated and characterized using chemical composition analysis, X-ray diffraction (XRD) and the Product Consistency Test (PCT). After initiating the SB6 variability study, the measured composition of the SB6 Tank 51 qualification glass produced at the SRNL Shielded Cells Facility indicated that thorium was present in the glass at an appreciable concentration (1.03 wt%), which made it a reportable element for SB6. This concentration of ThO2 resulted in a second phase of experimental studies. Five glasses were formulated that were based on the centroid of the new sludge compositional region combined with Frit 418, spanning a WL range of 32 to 40%. These glasses were fabricated and characterized using chemical composition analysis and the PCT. Based on the measured PCT response, all of the glasses (with and without thorium) were acceptable with respect to the Environmental Assessment (EA) reference glass regardless of

  19. Batch and Fed-Batch Fermentation System on Ethanol Production from Whey using Kluyveromyces marxianus

    OpenAIRE

    H Hadiyanto; D. Ariyanti; A.P. Aini; D.S. Pinundi

    2013-01-01

    Nowadays reserve of fossil fuel has gradually depleted. This condition forces many researchers to  find energy alternatives which is renewable and sustainable in the future. Ethanol derived from cheese industrial waste (whey) using fermentation process can be a new perspective in order to secure both energy and environment. The aim of this study was  to compare the operation modes (batch and fed-batch) of fermentation system on ethanol production from whey using Kluyveromyces marxianus. The r...

  20. Sojourn time distributions in a Markovian G-queue with batch arrival and batch removal

    OpenAIRE

    Yang Woo Shin

    1999-01-01

    We consider a single server Markovian queue with two types of customers; positive and negative, where positive customers arrive in batches and arrivals of negative customers remove positive customers in batches. Only positive customers form a queue and negative customers just reduce the system congestion by removing positive ones upon their arrivals. We derive the LSTs of sojourn time distributions for a single server Markovian queue with positive customers and negative customers by using the...

  1. Batch and fed-batch production of butyric acid by Clostridium butyricum ZJUCB

    Institute of Scientific and Technical Information of China (English)

    HE Guo-qing; KONG Qing; CHEN Qi-he; RUAN Hui

    2005-01-01

    The production of butyric acid by Clostridium butyricum ZJUCB at various pH values was investigated. In order to study the effect of pH on cell growth, butyric acid biosynthesis and reducing sugar consumption, different cultivation pH values ranging from 6.0 to 7.5 were evaluated in 5-L bioreactor. In controlled pH batch fermentation, the optimum pH for cell growth and butyric acid production was 6.5 with a cell yield of 3.65 g/L and butyric acid yield of 12.25 g/L. Based on these results, this study then compared batch and fed-batch fermentation of butyric acid production at pH 6.5. Maximum value (16.74 g/L) of butyric acid concentration was obtained in fed-batch fermentation compared to 12.25 g/L in batch fermentation. It was concluded that cultivation under fed-batch fermentation mode could enhance butyric acid production significantly (P<0.01) by C. butyricum ZJUCB.

  2. ARSENATE BIOSORPTION BY IRON-MODIFIED PINE SAWDUST IN BATCH SYSTEMS: KINETICS AND EQUILIBRIUM STUDIES

    OpenAIRE

    María Aranzazú López-Leal,; Raúl Cortés-Martínez; Ruth Alfaro-Cuevas-Villanueva,; Héctor Eduardo Martínez-Flores; , Consuelo De Jesús Cortés-Penagos

    2012-01-01

    The biosorption of As(V) from aqueous solutions by pine sawdust chemically modified with iron in batch systems was investigated. The loading process of Fe in this biomaterial was achieved by hydrolysis of two different ferric salts. This modification of sawdust is an attempt to improve As(V) biosorption for practical applications. The kinetics and maximum biosorption capacities of the unmodified and modified pine sawdust were evaluated. It was found that the pseudo-second order model describe...

  3. Using Forensics to Untangle Batch Effects in TCGA Data - TCGA

    Science.gov (United States)

    Rehan Akbani, Ph.D., and colleagues at the University of Texas MD Anderson Cancer Center developed a tool called MBatch to detect, diagnose, and correct batch effects in TCGA data. Read more about batch effects in this Case Study.

  4. Optimal operation of batch membrane processes

    CERN Document Server

    Paulen, Radoslav

    2016-01-01

    This study concentrates on a general optimization of a particular class of membrane separation processes: those involving batch diafiltration. Existing practices are explained and operational improvements based on optimal control theory are suggested. The first part of the book introduces the theory of membrane processes, optimal control and dynamic optimization. Separation problems are defined and mathematical models of batch membrane processes derived. The control theory focuses on problems of dynamic optimization from a chemical-engineering point of view. Analytical and numerical methods that can be exploited to treat problems of optimal control for membrane processes are described. The second part of the text builds on this theoretical basis to establish solutions for membrane models of increasing complexity. Each chapter starts with a derivation of optimal operation and continues with case studies exemplifying various aspects of the control problems under consideration. The authors work their way from th...

  5. Properties of batch means from stationary ARMA time series

    OpenAIRE

    Kang, Keebom; Schmeiser, Bruce

    1986-01-01

    The batch means process arising from an arbitrary autoregressive moving-average (ARMA) process time series is derived. As side results, the variance and correlation structures of the batch means process as functions of the batch size and parameters of the original process are obtained. Except for the first-order ARMA process, for which a closed-form expression is obtained, the parameters of the batch-means process are determined numerically. Keywords: Monte Carlo method; Simulation. (Author)

  6. Exception Handling in Recipe-Based Batch Control

    OpenAIRE

    Olsson, Rasmus

    2002-01-01

    The focus of this thesis is exception handling in recipe-based batch control. Exception handling is a critical element for achieving long-term success in batch production. It is reported to constitute 40-60 percent of the batch control design and implementation effort. Correct handling of exceptions is a key element in process safety, consistent product quality, and production cost minimization. The previous work on Grafchart for sequential programming, batch process recipe handling and resou...

  7. Capacitated max -Batching with Interval Graph Compatibilities

    Science.gov (United States)

    Nonner, Tim

    We consider the problem of partitioning interval graphs into cliques of bounded size. Each interval has a weight, and the weight of a clique is the maximum weight of any interval in the clique. This natural graph problem can be interpreted as a batch scheduling problem. Solving a long-standing open problem, we show NP-hardness, even if the bound on the clique sizes is constant. Moreover, we give a PTAS based on a novel dynamic programming technique for this case.

  8. Process Modeling for Batch Cooling Crystallization

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The general mathematical model for batch cooling crystallization was established based on the popula tion balance equation considering the change of slurry volume, and simulated with crystallization thermodynamics, kinetics and mass balance employing bed voidage. In the system of vitamin C-water-ethanol, reliability of this model was verified by comparison between simulation results and experimental data. The effects of operation parameters on product quality can be systematically investigated by modeling simulation.

  9. Process Modeling for Batch Cooling Crystallization

    Institute of Scientific and Technical Information of China (English)

    陈慧萍; 王静康

    2001-01-01

    The general mathematical model for batch cooling crystallization was established based on the population balance equation considering the change of slurry volume, and simulated with crystallization thermodynamics,kinetics and mass balance employing bed voidage. In the system of vitamin C-water-ethanol, reliability of this model was verified by comparison between simulation results and experimental data. The effects of operation parameters on product quality can be systematically investigated by modeling simulation.

  10. Isopropyl alcohol recovery by heteroazeotropic batch distillation

    OpenAIRE

    Van Baelen, Guy; Vreysen, Steven; Gerbaud, Vincent; Rodriguez-Donis, Ivonne; Geens, Jeroen; Janssens, Bart

    2010-01-01

    Solvent recovery is becoming a major issue in the pharmaceutical and specialty chemical industries. Solvent recovery by conventional batch distillation is limited by the frequent presence of azeotropes in the used solvent mixtures. Most distillation processes for the separation of azeotropic or difficult zeotropic mixtures involve the addition of an entrainer (homogeneous and heterogeneous azeotropic distillation or extractive distillation). In this study the recovery of IPA (isopropyl alc...

  11. A novel heat integrated batch distillation scheme

    International Nuclear Information System (INIS)

    Highlights: → We develop an internally heat integrated structure for a batch distillation. → The concentric reboiler receives heat from the rectifier operated at high pressure. → A compressor and a throttling valve are installed for pressure adjustment. → Heat integration provides a significant savings in energy as well as cost. -- Abstract: Published studies have been focused mainly on the energy integration of continuous distillation columns. In this contribution, a novel heat integrated batch distillation column (HIBDC) is proposed. Aiming to improve the thermodynamic efficiency and reduce the total annual cost (TAC), a thermally coupled column configuration is explored with introducing heat integration between the rectifying tower and concentric reboiler. A compressor is employed to provide the necessary temperature driving force for the heat transferred from the rectifier to the reboiler. Investigating the feasibility of energy integration in the simulated batch process, a number of sensitivity tests have been conducted to select the value of operating compression ratio. An economic comparison between the proposed HIBDC and the conventional stand alone column is also performed. It is observed that the HIBDC system appears overwhelmingly superior to its conventional counterpart providing about an energy savings of 56.1% and cost (TAC) savings of 40.53%.

  12. SULFATE SOLUBILITY LIMIT VERIFICATION FOR DWPF SLUDGE BATCH 7A

    Energy Technology Data Exchange (ETDEWEB)

    Billings, A.

    2011-04-19

    During processing at the Defense Waste Processing Facility (DWPF), high sulfate concentrations in the feed are a concern to DWPF as it can lead to the formation of a detrimental, sulfate-rich, molten salt phase on the surface of the glass melt pool. To avoid these issues, a sulfate concentration limit was implemented into the Product Composition Control System (PCCS). Related to SB7a frit development efforts, the Savannah River National Laboratory (SRNL) assessed the viability of using the current 0.6 wt % SO{sub 4}{sup 2-} limit set for SB6 (in glass) and the possibility of increasing the SO{sub 4}{sup 2-} solubility limit in PCCS to account for anticipated sulfur concentrations, targeted waste loadings, and inclusion of secondary streams (e.g., Actinide Removal Process (ARP)) with two recommended frits (Frit 418 and Frit 702) for SB7a processing. For a nominal SB7a blend with a 63 inch SB6 heel remaining in Tank 40 (projection SB7a-63), a 0.60 wt% SO{sub 4}{sup 2-} in glass limit was determined for waste loadings of 34 wt% up to 40 wt% with Frit 418 based on crucible melts with batched chemicals. SRNL also examined the inclusion of ARP for the same blending scenario (SB7a-63-ARP) with Frit 418 and at least a 0.6 wt% SO{sub 4}{sup 2-} level, and waste loadings of 34 wt% to 40 wt% were also acceptable. When a visible yellow and/or white sulfate salt layer was visible on the surface of any cooled glass, it was assumed to have surpassed the solubility limit of SO{sub 4}{sup 2-} for that particular composition. All of the glasses fabricated at these concentrations did not exhibit a sulfate rich salt layer on the surface of the glass melt and retained the majority of the batched SO{sub 4}{sup 2-}. At higher levels of SO{sub 4}{sup 2-} 'spiked' into the projected sludge compositions over the aforementioned interval of waste loadings, with Frit 418, low viscosity sulfur layers were observed on the surface of glass melts which confirm exceeding the solubility

  13. 21 CFR 80.37 - Treatment of batch pending certification.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Treatment of batch pending certification. 80.37... COLOR ADDITIVE CERTIFICATION Certification Procedures § 80.37 Treatment of batch pending certification. Immediately after the sample that is to accompany a request for certification of a batch of color additive...

  14. 21 CFR 80.38 - Treatment of batch after certification.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Treatment of batch after certification. 80.38... COLOR ADDITIVE CERTIFICATION Certification Procedures § 80.38 Treatment of batch after certification. (a) Immediately upon notification that a batch of color additive has been certified, the person...

  15. 40 CFR 63.462 - Batch cold cleaning machine standards.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Batch cold cleaning machine standards... National Emission Standards for Halogenated Solvent Cleaning § 63.462 Batch cold cleaning machine standards. (a) Each owner or operator of an immersion batch cold solvent cleaning machine shall comply with...

  16. 40 CFR 63.1321 - Batch process vents provisions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Batch process vents provisions. 63.1321... Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins § 63.1321 Batch process vents provisions. (a) Batch process vents. Except as specified in paragraphs (b) through (d) of this...

  17. 40 CFR 63.1406 - Reactor batch process vent provisions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Reactor batch process vent provisions... § 63.1406 Reactor batch process vent provisions. (a) Emission standards. Owners or operators of reactor... reactor batch process vent located at a new affected source shall control organic HAP emissions...

  18. A Semi-Batch Reactor Experiment for the Undergraduate Laboratory

    Science.gov (United States)

    Derevjanik, Mario; Badri, Solmaz; Barat, Robert

    2011-01-01

    This experiment and analysis offer an economic yet challenging semi-batch reactor experience. Household bleach is pumped at a controlled rate into a batch reactor containing pharmaceutical hydrogen peroxide solution. Batch temperature, product molecular oxygen, and the overall change in solution conductivity are metered. The reactor simulation…

  19. Response variation in a batch of TLDS

    International Nuclear Information System (INIS)

    Full text: At Royal Perth Hospital, LiF thermoluminescent dosimeter rods (TLDs) are handled in batches of 50. Rods in each batch are always annealed together to ensure the same thermal history and an individual batch is used with the same type and energy of radiation. A subset of a batch is used for calibration purposes by exposing them to a range of known doses and their output is used to calculate the dose received by other rods used for a dose measurement. Variation in TLD response is addressed by calculating 95% certainty levels from the calibration rods and applying this to the dose measurement rods. This approach relies on the sensitivity of rods within each batch being similar. This work investigates the validity of this assumption and considers possible benefits of applying individual rod sensitivities. The variation in response of TLD rods was assessed using 25 TLD-100 rods (Harshaw/Bicron) which were uniformly exposed to 1 Gy using 6 MeV photons in a linear accelerator on 5 separate occasions. Rods were read with a Harshaw 5500 reader. During the read process the Harshaw reader periodically checks for noise and PMT gain drift and the data were corrected for these parameters. Replicate exposure data were analysed using 1-way Analysis of Variance (ANOVA) to determine whether the between rod variations were significantly different to the variations within a single rod. A batch of 50 rods was also exposed on three occasions using the above technique. Individual TLD rod sensitivity values were determined using the rod responses from 2 exposures and these values were applied to correct charges on a rod-by-rod basis for the third exposure. ANOVA results on the 5 exposures of 25 rods showed the variance between rods was significantly greater than the within rod variance (p < 0.001). The precision of an individual rod was estimated to have a standard deviation of 2.8%. This suggests that the 95% confidence limits for repeated measurements using the same dose and

  20. BATCH-GE: Batch analysis of Next-Generation Sequencing data for genome editing assessment

    Science.gov (United States)

    Boel, Annekatrien; Steyaert, Woutert; De Rocker, Nina; Menten, Björn; Callewaert, Bert; De Paepe, Anne; Coucke, Paul; Willaert, Andy

    2016-01-01

    Targeted mutagenesis by the CRISPR/Cas9 system is currently revolutionizing genetics. The ease of this technique has enabled genome engineering in-vitro and in a range of model organisms and has pushed experimental dimensions to unprecedented proportions. Due to its tremendous progress in terms of speed, read length, throughput and cost, Next-Generation Sequencing (NGS) has been increasingly used for the analysis of CRISPR/Cas9 genome editing experiments. However, the current tools for genome editing assessment lack flexibility and fall short in the analysis of large amounts of NGS data. Therefore, we designed BATCH-GE, an easy-to-use bioinformatics tool for batch analysis of NGS-generated genome editing data, available from https://github.com/WouterSteyaert/BATCH-GE.git. BATCH-GE detects and reports indel mutations and other precise genome editing events and calculates the corresponding mutagenesis efficiencies for a large number of samples in parallel. Furthermore, this new tool provides flexibility by allowing the user to adapt a number of input variables. The performance of BATCH-GE was evaluated in two genome editing experiments, aiming to generate knock-out and knock-in zebrafish mutants. This tool will not only contribute to the evaluation of CRISPR/Cas9-based experiments, but will be of use in any genome editing experiment and has the ability to analyze data from every organism with a sequenced genome. PMID:27461955

  1. BATCH-GE: Batch analysis of Next-Generation Sequencing data for genome editing assessment.

    Science.gov (United States)

    Boel, Annekatrien; Steyaert, Woutert; De Rocker, Nina; Menten, Björn; Callewaert, Bert; De Paepe, Anne; Coucke, Paul; Willaert, Andy

    2016-01-01

    Targeted mutagenesis by the CRISPR/Cas9 system is currently revolutionizing genetics. The ease of this technique has enabled genome engineering in-vitro and in a range of model organisms and has pushed experimental dimensions to unprecedented proportions. Due to its tremendous progress in terms of speed, read length, throughput and cost, Next-Generation Sequencing (NGS) has been increasingly used for the analysis of CRISPR/Cas9 genome editing experiments. However, the current tools for genome editing assessment lack flexibility and fall short in the analysis of large amounts of NGS data. Therefore, we designed BATCH-GE, an easy-to-use bioinformatics tool for batch analysis of NGS-generated genome editing data, available from https://github.com/WouterSteyaert/BATCH-GE.git. BATCH-GE detects and reports indel mutations and other precise genome editing events and calculates the corresponding mutagenesis efficiencies for a large number of samples in parallel. Furthermore, this new tool provides flexibility by allowing the user to adapt a number of input variables. The performance of BATCH-GE was evaluated in two genome editing experiments, aiming to generate knock-out and knock-in zebrafish mutants. This tool will not only contribute to the evaluation of CRISPR/Cas9-based experiments, but will be of use in any genome editing experiment and has the ability to analyze data from every organism with a sequenced genome. PMID:27461955

  2. On the track of fish batches in three distribution networks

    DEFF Research Database (Denmark)

    Randrup, Maria; Wu, Haiping; Jørgensen, Bo M.

    2012-01-01

    Three fish products sampled in retail shops were traced back to their origin and fish from the same batch were tracked forward towards the retailer, thereby simulating a recall situation. The resulting distribution networks were very complex, but to the extent that companies were willing to provide...... the necessary information, it was possible to locate the end destinations of the fish batches. The batch sizes and the number of companies involved clearly rose when batch joining occurred. Thus, a fault in a small batch can potentially have widespread implications. The study also underlines the...

  3. Low-biodegradable composite chemical wastewater treatment by biofilm configured sequencing batch reactor (SBBR)

    International Nuclear Information System (INIS)

    Biofilm configured system with sequencing/periodic discontinuous batch mode operation was evaluated for the treatment of low-biodegradable composite chemical wastewater (low BOD/COD ratio ∼0.3, high sulfate content: 1.75 g/l) in aerobic metabolic function. Reactor was operated under anoxic-aerobic-anoxic microenvironment conditions with a total cycle period of 24 h [fill: 15 min; reaction: 23 h (aeration along with recirculation); settle: 30 min; decant: 15 min] and the performance of the system was studied at organic loading rates (OLR) of 0.92, 1.50, 3.07 and 4.76 kg COD/cum-day. Substrate utilization showed a steady increase with increase in OLR and system performance sustained at higher loading rates. Maximum non-cumulative substrate utilization was observed after 4 h of the cycle operation. Sulfate removal efficiency of 20% was observed due to the induced anoxic conditions prevailing during the sequence phase operation of the reactor and the existing internal anoxic zones in the biofilm matrix. Biofilm configured sequencing batch reactor (SBR) showed comparatively higher efficiency to the corresponding suspended growth and granular activated carbon (GAC) configured systems studied with same wastewater. Periodic discontinuous batch mode operation of the biofilm reactors results in a more even distribution of the biomass throughout the reactor and was able to treat large shock loads than the continuous flow process. Biofilm configured system coupled with periodic discontinuous batch mode operation imposes regular variations in the substrate concentration on biofilm organisms. As a result, organisms throughout the film achieve maximum growth rates resulting in improved reaction potential leading to stable and robust system which is well suited for treating highly variable wastes

  4. Segmentation, dynamic storage, and variable loading on CDC equipment

    Science.gov (United States)

    Tiffany, S. H.

    1980-01-01

    Techniques for varying the segmented load structure of a program and for varying the dynamic storage allocation, depending upon whether a batch type or interactive type run is desired, are explained and demonstrated. All changes are based on a single data input to the program. The techniques involve: code within the program to suppress scratch pad input/output (I/O) for a batch run or translate the in-core data storage area from blank common to the end-of-code+1 address of a particular segment for an interactive run; automatic editing of the segload directives prior to loading, based upon data input to the program, to vary the structure of the load for interactive and batch runs; and automatic editing of the load map to determine the initial addresses for in core data storage for an interactive run.

  5. Production of ethanol in batch and fed-batch fermentation of soluble sugar

    International Nuclear Information System (INIS)

    Keeping in view of the demand and need for alternate energy source, especially liquid fuels and the availability of raw materials in Pakistan, we have carried out biochemical and technological studies for ethanol through fermentation of renewable substrates. Molasses and sugar cane have been used as substrate for yeast fermentation. Selected yeast were used in both batch and semi continuous fermentation of molasses. Clarified dilute molasses were fermented with different strains of Saccharomyces cerevisiae. Ethanol concentration after 64 hours batch fermentation reached 9.4% with 90% yield based on sugar content. During feed batch system similar results were obtained after a fermentation cycle of 48 hours resulting in higher productivity. Similarly carbohydrates in fruit juices and hydro lysates of biomass can be economically fermented to ethanol to be used as feed stock for other chemicals. (author)

  6. Power consumption evaluation of different fed-batch strategies for enzymatic hydrolysis of sugarcane bagasse.

    Science.gov (United States)

    Corrêa, Luciano Jacob; Badino, Alberto Colli; Cruz, Antonio José Gonçalves

    2016-05-01

    The minimization of costs in the distillation step of lignocellulosic ethanol production requires the use of a high solids loading during the enzymatic hydrolysis to obtain a more concentrated glucose liquor. However, this increase in biomass can lead to problems including increased mass and heat transfer resistance, decreased cellulose conversion, and increased apparent viscosity with the associated increase in power consumption. The use of fed-batch operation offers a promising way to circumvent these problems. In this study, one batch and four fed-batch strategies for solids and/or enzyme feeding during the enzymatic hydrolysis of sugarcane bagasse were evaluated. Determinations of glucose concentration, power consumption, and apparent viscosity were made throughout the experiments, and the different strategies were compared in terms of energy efficiency (mass of glucose produced according to the energy consumed). The best energy efficiency was obtained for the strategy in which substrate and enzyme were added simultaneously (0.35 kgglucose kWh(-1)). This value was 52 % higher than obtained in batch operation. PMID:26899602

  7. Load Measurements

    DEFF Research Database (Denmark)

    Kock, Carsten Weber; Vesth, Allan

    The report describes Load measurements carried out on a given wind turbine. The aim of the measurement program regarding the loads on the turbine is to verify the basic characteristics of the wind turbine and loads on the blades, the rotor and the tower, using [Ref 1], [Ref2] and [Ref 3]. Regarding...

  8. Kinetic Analyses of Desulfurization of Dibenzothiophene by Rhodococcus erythropolis in Batch and Fed-Batch Cultures

    OpenAIRE

    P. Wang; Krawiec, S.

    1996-01-01

    The DbtS(sup+) phenotype (which confers the ability to oxidize selectively the sulfur atom of dibenzothiophene [DBT] or dibenzothiophene sulfone [DBTO(inf2)]) of Rhodococcus erythropolis N1-36 was quantitatively characterized in batch and fed-batch cultures. In flask cultures, production of the desulfurization product, monohydroxybiphenyl (OH-BP), was maximal at pH 6.0, while specific productivity (OH-BP cell(sup-1)) was maximal at pH 5.5. Quantitative measurements in fermentors (in both batc...

  9. Characterization of three LYSO crystal batches

    International Nuclear Information System (INIS)

    We report on three LYSO crystal batches characterized at the Caltech crystal laboratory for future HEP experiments: 25 20 cm long crystals for the SuperB experiment; 12 13 cm long crystals for the Mu2e experiment and 623 14×14×1.5 mm3 plates with five holes for a LYSO/W Shashlik matrix for a beam test at Fermilab. Optical and scintillation properties measured are longitudinal transmittance, light output and FWHM energy resolution. Correlations between these properties are also investigated

  10. Characterization of Three LYSO Crystal Batches

    International Nuclear Information System (INIS)

    We report on three LYSO crystal batches characterized at the Caltech crystal laboratory for future HEP experiments: Twenty-five 20 cm long crystals for the SuperB experiment; twelve 13 cm long crystals for the Mu2e experiment and 623 14×14×1.5 mm plates with five holes for a LYSO/W Shashlik matrix for a beam test at Fermilab. Optical and scintillation properties measured are longitudinal Transmittance, light output and FWHM energy resolution. Correlations between these properties are also investigated

  11. Batch-annealed dual-phase steel

    International Nuclear Information System (INIS)

    Dual-phase steel, consisting essentially of a ferrite matrix containing islands of martensite, is produced by batch annealing of hot or cold rolled steel having carbon below 0.2% and manganese below 2% and at least critical contents of copper (0.4%) and nickel (0.6%), with heat to the alpha plus gamma region, followed by slow cooling. This procedure is effective and controllable, and yields a dual-phase steel product that has high tensile strength with excellent elongation properties and that develops good yield strength upon moderate deformation

  12. Ethanol production potential from fermented rice noodle wastewater treatment using entrapped yeast cell sequencing batch reactor

    Science.gov (United States)

    Siripattanakul-Ratpukdi, Sumana

    2012-03-01

    Fermented rice noodle production generates a large volume of starch-based wastewater. This study investigated the treatment of the fermented rice noodle wastewater using entrapped cell sequencing batch reactor (ECSBR) compared to traditional sequencing batch reactor (SBR). The yeast cells were applied because of their potential to convert reducing sugar in the wastewater to ethanol. In present study, preliminary treatment by acid hydrolysis was performed. A yeast culture, Saccharomyces cerevisiae, with calcium alginate cell entrapment was used. Optimum yeast cell loading in batch experiment and fermented rice noodle treatment performances using ECSBR and SBR systems were examined. In the first part, it was found that the cell loadings (0.6-2.7 × 108 cells/mL) did not play an important role in this study. Treatment reactions followed the second-order kinetics with the treatment efficiencies of 92-95%. In the second part, the result showed that ECSBR performed better than SBR in both treatment efficiency and system stability perspectives. ECSBR maintained glucose removal of 82.5 ± 10% for 5-cycle treatment while glucose removal by SBR declined from 96 to 40% within the 5-cycle treatment. Scanning electron microscopic images supported the treatment results. A number of yeast cells entrapped and attached onto the matrix grew in the entrapment matrix.

  13. 21 CFR 111.260 - What must the batch record include?

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false What must the batch record include? 111.260... for the Batch Production Record § 111.260 What must the batch record include? The batch production record must include the following: (a) The batch, lot, or control number: (1) Of the finished batch...

  14. Batch-to-batch pharmacokinetic variability confounds current bioequivalence regulations: A dry powder inhaler randomized clinical trial.

    Science.gov (United States)

    Burmeister Getz, E; Carroll, K J; Jones, B; Benet, L Z

    2016-09-01

    Current pharmacokinetic (PK) bioequivalence guidelines do not account for batch-to-batch variability in study design or analysis. Here we evaluate the magnitude of batch-to-batch PK variability for Advair Diskus 100/50. Single doses of fluticasone propionate and salmeterol combinations were administered by oral inhalation to healthy subjects in a randomized clinical crossover study comparing three different batches purchased from the market, with one batch replicated across two treatment periods. All pairwise comparisons between different batches failed the PK bioequivalence statistical test, demonstrating substantial PK differences between batches that were large enough to demonstrate bio-inequivalence in some cases. In contrast, between-replicate PK bioequivalence was demonstrated for the replicated batch. Between-batch variance was ∼40-70% of the estimated residual error. This large additional source of variability necessitates re-evaluation of bioequivalence assessment criteria to yield a result that is both generalizable and consistent with the principles of type I and type II error rate control. PMID:27037630

  15. Adaptive quality prediction of batch processes based on PLS model

    Institute of Scientific and Technical Information of China (English)

    LI Chun-fu; ZHANG Jie; WANG Gui-zeng

    2006-01-01

    There are usually no on-line product quality measurements in batch and semi-batch processes,which make the process control task very difficult.In this paper,a model for predicting the end-product quality from the available on-line process variables at the early stage of a batch is developed using partial least squares (PLS)method.Furthermore,some available mid-course quality measurements are used to rectify the final prediction results.To deal with the problem that the process may change with time,recursive PLS (RPLS) algorithm is used to update the model based on the new batch data and the old model parameters after each batch.An application to a simulated batch MMA polymerization process demonstrates the effectiveness of the proposed method.

  16. Evaluation of vitrification factors from DWPF's macro-batch 1

    International Nuclear Information System (INIS)

    The Defense Waste Processing Facility (DWPF) is evaluating new sampling and analytical methods that may be used to support future Slurry Mix Evaporator (SME) batch acceptability decisions. This report uses data acquired during DWPF's processing of macro-batch 1 to determine a set of vitrification factors covering several SME and Melter Feed Tank (MFT) batches. Such values are needed for converting the cation measurements derived from the new methods to a ''glass'' basis. The available data from macro-batch 1 were used to examine the stability of these vitrification factors, to estimate their uncertainty over the course of a macro-batch, and to provide a recommendation on the use of a single factor for an entire macro-batch. The report is in response to Technical Task Request HLW/DWPF/TTR-980015

  17. Load forecasting

    International Nuclear Information System (INIS)

    Slides used in a presentation at The Power of Change Conference in Vancouver, BC in April 1995 about the changing needs for load forecasting were presented. Technological innovations and population increase were said to be the prime driving forces behind the changing needs in load forecasting. Structural changes, market place changes, electricity supply planning changes, and changes in planning objectives were other factors discussed. It was concluded that load forecasting was a form of information gathering, that provided important market intelligence

  18. TANK 50 BATCH 0 SALTSTONE FORMULATION CONFIRMATION

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.

    2006-06-05

    Savannah River National Laboratory (SRNL) personnel were requested to confirm the Tank 50 Batch 0 grout formulation per Technical Task Request, SSF-TTR-2006-0001 (task 1 of 2) [1]. Earlier Batch 0 formulation testing used a Tank 50 sample collected in September 2005 and is described elsewhere [2]. The current testing was performed using a sample of Tank 50 waste collected in May 2006. This work was performed according to the Technical Task and Quality Assurance Plan (TT/QAP), WSRC-RP-2006-00594 [3]. The salt solution collected from Tank 50 in May 2006 contained approximately 3 weight percent more solids than the sample collected in September 2005. The insoluble solids took longer to settle in the new sample which was interpreted as indicating finer particles in the current sample. The saltstone formulation developed for the September 2005 Tank 50 Batch 0 sample was confirmed for the May 2006 sample with one minor exception. Saltstone prepared with the Tank 50 sample collected in May 2006 required 1.5 times more Daratard 17 set retarding admixture than the saltstone prepared with the September In addition, a sample prepared with lower shear mixing (stirring with a spatula) had a higher plastic viscosity (57 cP) than samples made with higher shear mixing in a blender (23cP). The static gel times of the saltstone slurries made with low shear mixing were also shorter ({approx}32 minutes) than those for comparable samples made in the blender ({approx}47 minutes). The addition of the various waste streams (ETP, HEU-HCAN, and GPE-HCAN) to Tank 50 from September 2005 to May 2006 has increased the amount of set retarder, Daratard 17, required for processing saltstone slurries through the Saltstone facility. If these streams are continued to be added to Tank 50, the quantity of admixtures required to maintain the same processing conditions for the Saltstone facility will probably change and additional testing is recommended to reconfirm the Tank 50 Saltstone formulation.

  19. TANK 50 BATCH 0 SALTSTONE FORMULATION CONFIRMATION

    International Nuclear Information System (INIS)

    Savannah River National Laboratory (SRNL) personnel were requested to confirm the Tank 50 Batch 0 grout formulation per Technical Task Request, SSF-TTR-2006-0001 (task 1 of 2) [1]. Earlier Batch 0 formulation testing used a Tank 50 sample collected in September 2005 and is described elsewhere [2]. The current testing was performed using a sample of Tank 50 waste collected in May 2006. This work was performed according to the Technical Task and Quality Assurance Plan (TT/QAP), WSRC-RP-2006-00594 [3]. The salt solution collected from Tank 50 in May 2006 contained approximately 3 weight percent more solids than the sample collected in September 2005. The insoluble solids took longer to settle in the new sample which was interpreted as indicating finer particles in the current sample. The saltstone formulation developed for the September 2005 Tank 50 Batch 0 sample was confirmed for the May 2006 sample with one minor exception. Saltstone prepared with the Tank 50 sample collected in May 2006 required 1.5 times more Daratard 17 set retarding admixture than the saltstone prepared with the September In addition, a sample prepared with lower shear mixing (stirring with a spatula) had a higher plastic viscosity (57 cP) than samples made with higher shear mixing in a blender (23cP). The static gel times of the saltstone slurries made with low shear mixing were also shorter (∼32 minutes) than those for comparable samples made in the blender (∼47 minutes). The addition of the various waste streams (ETP, HEU-HCAN, and GPE-HCAN) to Tank 50 from September 2005 to May 2006 has increased the amount of set retarder, Daratard 17, required for processing saltstone slurries through the Saltstone facility. If these streams are continued to be added to Tank 50, the quantity of admixtures required to maintain the same processing conditions for the Saltstone facility will probably change and additional testing is recommended to reconfirm the Tank 50 Saltstone formulation

  20. Pretreatment of coking wastewater using anaerobic sequencing batch reactor (ASBR)

    Institute of Scientific and Technical Information of China (English)

    LI Bing; SUN Ying-lan; LI Yu-ying

    2005-01-01

    A laboratory-scale anaerobic sequencing batch reactor (ASBR) was used to pretreat coking wastewater. Inoculated anaerobic granular biomass was acclimated for 225 d to the coking wastewater, and then the biochemical methane potential (BMP)of the coking wastewater in the acclimated granular biomass was measured. At the same time, some fundamental technological factors, such as the filling time and the reacting time ratio (tf/tr), the mixing intensity and the intermittent mixing mode, that affect anaerobic pretreatment of coking wastewater with ASBR, were evaluated through orthogonal tests. The COD removal efficiency reached 38%~50% in the stable operation period with the organic loading rate of 0.37~0.54 kg COD/(m3.d) at the optimum conditions of tf/tr, the mixing intensity and the intermittent mixing mode. In addition, the biodegradability of coking wastewater distinctly increased after the pretreatment using ASBR. At the end of the experiment, the microorganism forms on the granulated sludge in the ASBR were observed using SEM (scanning electron microscope) and fluoroscope. The results showed that the dominant microorganism on the granular sludge was Methanosaeta instead of Methanosarcina dominated on the inoculated sludge.

  1. Degradation of formaldehyde in anaerobic sequencing batch biofilm reactor (ASBBR)

    International Nuclear Information System (INIS)

    The present study evaluated the degradation of formaldehyde in a bench-scale anaerobic sequencing batch reactor, which contained biomass immobilized in polyurethane foam matrices. The reactor was operated for 212 days at 35 deg. C with 8 h sequential cycles, under different affluent formaldehyde concentrations ranging from 31.6 to 1104.4 mg/L (formaldehyde loading rates from 0.08 to 2.78 kg/m3 day). The results indicate excellent reactor stability and over 99% efficiency in formaldehyde removal, with average effluent formaldehyde concentration of 3.6 ± 1.7 mg/L. Formaldehyde degradation rates increased from 204.9 to 698.3 mg/L h as the initial concentration of formaldehyde was increased from around 100 to around 1100 mg/L. However, accumulation of organic matter was observed in the effluent (chemical oxygen demand (COD) values above 500 mg/L) due to the presence of non-degraded organic acids, especially acetic and propionic acids. This observation poses an important question regarding the anaerobic route of formaldehyde degradation, which might differ substantially from that reported in the literature. The anaerobic degradation pathway can be associated with the formation of long-chain oligomers from formaldehyde. Such long- or short-chain polymers are probably the precursors of organic acid formation by means of acidogenic anaerobic microorganisms

  2. ENGINEERING CONTRACT ON FY-2 BATCH 2 SATELLITES SIGNED

    Institute of Scientific and Technical Information of China (English)

    SunQing

    2004-01-01

    The signing ceremony of the Engineering Contract on FY-2 Batch 2 (FY-2 02) Satellites was held in Beijing by Commission of Science, Technology and Industry for National Defense (COSTIND) on August 31, 2004. The contract on the development and manufacture of FY-2 batch 2 satellites and the contract on the launch, test and control of FY-2 Batch 2 satellites were signed by China Meteorological Administration (CMA),

  3. Batch routing queuing networks with jump-over blocking

    OpenAIRE

    Boucherie, Richard J.

    1993-01-01

    This paper shows that the equilibrium distribution of a queueing network with batch routing is of product-form if a batch which cannot enter the destination stations, for example as a consequence of capacity constraints, jumps over these stations and selects a new set of destination stations according to the routing probabilities, that is if also customers in the batch who arrive at a non-saturated station jump over that station.

  4. ADVANCES ON BILINEAR MODELING OF BIOCHEMICAL BATCH PROCESSES

    OpenAIRE

    GONZÁLEZ MARTÍNEZ, JOSÉ MARÍA

    2015-01-01

    [EN] This thesis is aimed to study the implications of the statistical modeling approaches proposed for the bilinear modeling of batch processes, develop new techniques to overcome some of the problems that have not been yet solved and apply them to data of biochemical processes. The study, discussion and development of the new methods revolve around the four steps of the modeling cycle, from the alignment, preprocessing and calibration of batch data to the monitoring of batches trajectories....

  5. A Survey of Batch Cataloging Practices and Problems

    OpenAIRE

    Young, Philip

    2011-01-01

    Groups of bibliographic records are added to library catalogs with increasing frequency. Batch cataloging requires knowledge of bulk record transfer as well as current cataloging standards. While more efficient than cataloging items individually, batch cataloging requires different skills and creates new challenges. Responses to a wide-ranging online survey document the workload, tools, practices, and problems of batch cataloging. The unique characteristics of electronic resources affect many...

  6. Spatial and interannual variability in Baltic sprat batch fecundity

    DEFF Research Database (Denmark)

    Haslob, H.; Tomkiewicz, Jonna; Hinrichsen, H.H.;

    2011-01-01

    central Baltic Sea, namely the Bornholm Basin, Gdansk Deep and Southern Gotland Basin. Environmental parameters such as hydrography, fish condition and stock density were tested in order to investigate the observed variability in sprat fecundity. Absolute batch fecundity was found to be positively related...... ambient temperature explained 70% of variability in absolute batch fecundity. Oxygen content and fish condition were not related to sprat batch fecundity. Additionally, a negative effect of stock size on sprat batch fecundity in the Bornholm Basin was revealed. The obtained data and results are important...

  7. Batch sequential designs for computer experiments

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Leslie M [Los Alamos National Laboratory; Williams, Brian J [Los Alamos National Laboratory; Loeppky, Jason L [UBC-OKANAGAN

    2009-01-01

    Computer models simulating a physical process are used in many areas of science. Due to the complex nature of these codes it is often necessary to approximate the code, which is typically done using a Gaussian process. In many situations the number of code runs available to build the Guassian process approximation is limited. When the initial design is small or the underlying response surface is complicated this can lead to poor approximations of the code output. In order to improve the fit of the model, sequential design strategies must be employed. In this paper we introduce two simple distance based metrics that can be used to augment an initial design in a batch sequential manner. In addition we propose a sequential updating strategy to an orthogonal array based Latin hypercube sample. We show via various real and simulated examples that the distance metrics and the extension of the orthogonal array based Latin hypercubes work well in practice.

  8. Maximum thermodynamic efficiency problem in batch distillation

    Directory of Open Access Journals (Sweden)

    J. C. Zavala-Loría

    2011-06-01

    Full Text Available A dynamic batch distillation study of the non-ideal mixture Ethanol-Water is presented. The objective of the study was to calculate an average thermodynamic efficiency of the process under an optimal constant reflux policy and the objective function includes a given production time in order to obtain the desired product quality (measured as the average mole fraction of the accumulated product. An expression for computing the thermodynamic efficiency is presented. The simulation of the column uses a mathematical model considering the complete dynamics of the operation and the problem of optimal control resulting in a non-linear programming problem. A dynamic optimization technique based on a SQP method was used to solve the problem. The average thermodynamic efficiency for the separation process under the conditions presented was 37.95%.

  9. Sewage sludge irradiators: Batch and continuous flow

    International Nuclear Information System (INIS)

    The potential threat to the environment imposed by high pathogenic organism content in municipal wastewater, especially the sludge and the world-wide growing aspirations for a cleaner, salubrious environment have made it mandatory for the sewage and sludge to undergo treatment, prior to their ultimate disposal to mother nature. Incapabilities associated with the conventional wastewater treatments to mitigate the problem of microorganisms have made it necessary to look for other alternatives, radiation treatment being the most reliable, rapid and environmentally sustainable of them. To promote the use of radiation for the sludge hygienization, Department of Atomic Energy has endeavoured to set up an indigenous, Sludge Hygienization Research Irradiator (SHRI) in the city of Baroda. Designed for 18.5 PBq of 60Co to disinfect the digested sludge, the irradiator has additional provision for treatment of effluent and raw sewage. From engineering standpoint, all the subsystems have been functioning satisfactorily since its commissioning in 1990. Prolonged studies, spanning over a period of six years, primarily focused on inactivation of microorganism revealed that 3 kGy dose of gamma radiation is adequate to make the sludge pathogen and odour-free. A dose of 1.6 kGy in raw sewage and 0.5 kGy in effluent reduced coliform counts down to the regulatory discharge limits. These observations reflect a possible cost-effective solution to the burgeoning problem of surface water pollution across the globe. In the past, sub 37 PBq 60Co batch irradiators have been designed and commissioned successfully for the treatment of sludge. Characterized with low dose delivery rates they are well-suited for treating low volumes of sludge in batches. Some concepts of continuous flow 60Co irradiators having larger activities, yet simple and economic in design, are presented in the paper

  10. On the stochastic domination for batch-arrival, batch-service and assemble-transfer queueing networks

    OpenAIRE

    Economou, Antonis

    2003-01-01

    Stochastic monotonicity properties for various classes of queueing networks have been established in the literature mainly with the use of coupling constructions. Miyazawa and Taylor (1997) introduced a class of batch-arrival, batch-service and assemble-transfer queueing networks which can be thought of as generalized Jackson networks with batch movements. We study conditions for stochastic domination within this class of networks. The proofs are based on a certain charac...

  11. Batch-to-batch uniformity of bacterial community succession and flavor formation in the fermentation of Zhenjiang aromatic vinegar.

    Science.gov (United States)

    Wang, Zong-Min; Lu, Zhen-Ming; Yu, Yong-Jian; Li, Guo-Quan; Shi, Jin-Song; Xu, Zheng-Hong

    2015-09-01

    Solid-state fermentation of traditional Chinese vinegar is a mixed-culture refreshment process that proceeds for many centuries without spoilage. Here, we investigated bacterial community succession and flavor formation in three batches of Zhenjiang aromatic vinegar using pyrosequencing and metabolomics approaches. Temporal patterns of bacterial succession in the Pei (solid-state vinegar culture) showed no significant difference (P > 0.05) among three batches of fermentation. In all the batches investigated, the average number of community operational taxonomic units (OTUs) decreased dramatically from 119 ± 11 on day 1 to 48 ± 16 on day 3, and then maintained in the range of 61 ± 9 from day 5 to the end of fermentation. We confirmed that, within a batch of fermentation process, the patterns of bacterial diversity between the starter (took from the last batch of vinegar culture on day 7) and the Pei on day 7 were similar (90%). The relative abundance dynamics of two dominant members, Lactobacillus and Acetobacter, showed high correlation (coefficient as 0.90 and 0.98 respectively) among different batches. Furthermore, statistical analysis revealed dynamics of 16 main flavor metabolites were stable among different batches. The findings validate the batch-to-batch uniformity of bacterial community succession and flavor formation accounts for the quality of Zhenjiang aromatic vinegar. Based on our understanding, this is the first study helps to explain the rationality of age-old artistry from a scientific perspective. PMID:25998816

  12. Continuous Cellulosic Bioethanol Fermentation by Cyclic Fed-Batch Cocultivation

    OpenAIRE

    Jiang, He-Long; He, Qiang; He, Zhili; Hemme, Christopher L.; Wu, Liyou; Zhou, Jizhong

    2013-01-01

    Cocultivation of cellulolytic and saccharolytic microbial populations is a promising strategy to improve bioethanol production from the fermentation of recalcitrant cellulosic materials. Earlier studies have demonstrated the effectiveness of cocultivation in enhancing ethanolic fermentation of cellulose in batch fermentation. To further enhance process efficiency, a semicontinuous cyclic fed-batch fermentor configuration was evaluated for its potential in enhancing the efficiency of cellulose...

  13. Communication and control in small batch part manufacturing

    NARCIS (Netherlands)

    Tiemersma, J.J.; Curtis, W.; Kals, H.J.J.

    1993-01-01

    This paper reports on the development of a real-time control network as an integrated part of a shop floor control system for small batch part manufacturing. The shop floor control system is called the production control system (PCS). The PCS aims at an improved control of small batch part manufactu

  14. Batch variation between branchial cell cultures: An analysis of variance

    DEFF Research Database (Denmark)

    Hansen, Heinz Johs. Max; Grosell, M.; Kristensen, L.

    2003-01-01

    We present in detail how a statistical analysis of variance (ANOVA) is used to sort out the effect of an unexpected batch-to-batch variation between cell cultures. Two separate cultures of rainbow trout branchial cells were grown on permeable filtersupports ("inserts"). They were supposed to be...

  15. Searching CA Condensates, On-Line and Batch.

    Science.gov (United States)

    Kaminecki, Ronald M.; And Others

    Batch mode processing is compared, using cost-effectiveness, with on-line processing for computer-aided searching of chemical abstracts. Consideration for time, need, coverage, and adaptability are found to be the criteria by which a searcher selects a method, and sometimes both methods are used. There is a tradeoff between batch mode's slower…

  16. 40 CFR Table 1 to Subpart H of... - Batch Processes

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Batch Processes 1 Table 1 to Subpart H of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Subpart H of Part 63—Batch Processes Monitoring Frequency for Equipment Other than Connectors...

  17. System Requirements for On-Line and Batch Retrieval.

    Science.gov (United States)

    American Society for Information Science, Washington, DC. Special Interest Group on Computerized Retrieval Services.

    Three papers on system requirements for on-line and batch retrieval presented at the American Society for Information Science (ASIS) annual meeting are included here. At G.D. Searle, data for records related to pharmacology screening are used in a batch system, and an on-line system is used to search information on mutagenic, carcinogenic, and…

  18. Improved batch correction in untargeted MS-based metabolomics

    NARCIS (Netherlands)

    Wehrens, Ron; Hageman, Jos A.; Eeuwijk, van Fred; Kooke, Rik; Flood, Pádraic J.; Wijnker, Erik; Keurentjes, Joost J.B.; Lommen, Arjen; Eekelen, van Henriëtte D.L.M.; Hall, Robert D.; Mumm, Roland; Vos, de Ric C.H.

    2016-01-01

    Introduction: Batch effects in large untargeted metabolomics experiments are almost unavoidable, especially when sensitive detection techniques like mass spectrometry (MS) are employed. In order to obtain peak intensities that are comparable across all batches, corrections need to be performed. S

  19. Biogas Production from Batch Anaerobic Co-Digestion of Night Soil with Food Waste

    OpenAIRE

    Assadawut Khanto; Peerakan Banjerdkij

    2016-01-01

    The objective of this study is to investigate the biogas production from Anaerobic Co-Digestion of Night Soil (NS) with Food Waste (FW). The batch experiment was conducted through the NS and FW with a ratio of 70:30 by weight. The experiment is mainly evaluated by the characteristic of Co-Digestion and Biogas Production. In addition of food waste was inflating the COD loading from 17,863 to 42,063 mg/L which is 135 % increased. As the result, it shows that pH has dropped off in the beginning ...

  20. Hydrolysis of Virgin Coconut Oil Using Immobilized Lipase in a Batch Reactor

    OpenAIRE

    Lee Suan Chua; Meisam Alitabarimansor; Chew Tin Lee; Ramli Mat

    2012-01-01

    Hydrolysis of virgin coconut oil (VCO) had been carried out by using an immobilised lipase from Mucor miehei (Lipozyme) in a water-jacketed batch reactor. The kinetic of the hydrolysis was investigated by varying the parameters such as VCO concentration, enzyme loading, water content, and reaction temperature. It was found that VCO exhibited substrate inhibition at the concentration more than 40% (v/v). Lipozyme also achieved the highest production of free fatty acids, 4.56 mM at 1% (w/v) of ...

  1. Dynamic Simulation of Batch Photocatalytic Reactor (BPR) for Wastewater Treatment

    Science.gov (United States)

    Dutta, Suman

    2012-08-01

    Reactive dyes discharged from dyehouse causes a serious environmental problem. UV/TiO2 photocatalysis has been employed effectively for these organic dyes removal from dye-house effluent. This process produces less amount of non-toxic final product. In this paper a photocatalytic reactor has been designed for Reactive red 198 (RR198) removal from aqueous solution. The reactor is operating in batch mode. After each batch, TiO2 catalyst has been separated and recycled in the next batch. Mathematical model equation of this batch photocatalytic reactor (BPR) has been developed considering Langmuir-Hinshelwood kinetics. Simulation of BPR has been carried out using fourth order Runge-Kutta (RK) method and fifth order RK method (Butcher method). This simulation results can be used to develop an automatic photocatlytic reactor for industrial wastewater treatment. Catalyst activity decay and its effect on each batch have been incorporated in this model.

  2. Batch versus continuous feeding strategies for pharmaceutical removal by subsurface flow constructed wetland

    International Nuclear Information System (INIS)

    This study evaluated the effect of continuous and batch feeding on the removal of 8 pharmaceuticals (carbamazepine, naproxen, diclofenac, ibuprofen, caffeine, salicylic acid, ketoprofen and clofibric acid) from synthetic wastewater in mesocosm-scale constructed wetlands (CWs). Both loading modes were operated at hydraulic application rates of 5.6 cm day−1 and 2.8 cm day−1. Except for carbamazepine, clofibric acid and naproxen, removal in CWs was significantly (p ow) and removal efficiencies of pharmaceutical compounds in the CWs, showed that pharmaceutical removal efficiency was significantly (p ow value, but not with log Kow value. - Highlights: ► Batch feeding in mesocosm-scale constructed wetlands enhances pharmaceutical removal. ► K values for the 8 pharmaceuticals were in the range of 0.01–0.1 m day−1. ► The pharmaceutical removal efficiency was inversely correlated with log Dow value. - Batch (drain and fill) feeding in mesocosm-scale constructed wetlands enhances pharmaceutical removal.

  3. Iron load

    Directory of Open Access Journals (Sweden)

    Filippo Cassarà

    2013-03-01

    Full Text Available Recent research addressed the main role of hepcidin in the regulation of iron metabolism. However, while this mechanism could be relevant in causing iron load in Thalassemia Intermedia and Sickle-Cell Anemia, its role in Thalassemia Major (TM is marginal. This is mainly due to the high impact of transfusional requirement into the severe increase of body iron. Moreover, the damage of iron load may be worsened by infections, as HCV hepatitis, or liver and endocrinological damage. One of the most relevant associations was found between splenectomy and increase of risk for mortality due,probably, to more severe iron load. These issues suggest as morbidity and mortality of this group of patients they do not depend only by our ability in controlling heart damage but even in preventing or treating particular infections and complications. This finding is supported by the impairment of survival curves in patients with complications different from heart damage. However, because, during recent years different direct and indirect methods to detect iron overload in patients affected by secondary hemochromatosis have been implemented, our ability to maintain under control iron load is significantly improved. Anyway, the future in iron load management remains to be able to have an iron load map of our body for targeting chelation and other medical treatment according to the single organ damage.

  4. Biodenitrification in Sequencing Batch Reactors. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Silverstein, J. [Colorado Univ., Boulder, CO (United States). Dept. of Civil, Environmental, and Architectural Engineering

    1996-01-23

    One plan for stabilization of the Solar Pond waters and sludges at Rocky Flats Plant (RFP), is evaporation and cement solidification of the salts to stabilize heavy metals and radionuclides for land disposal as low-level mixed waste. It has been reported that nitrate (NO{sub 3}{sub {minus}}) salts may interfere with cement stabilization of heavy metals and radionuclides. Therefore, biological nitrate removal (denitrification) may be an important pretreatment for the Solar Pond wastewaters at RFP, improving the stability of the cement final waste form, reducing the requirement for cement (or pozzolan) additives and reducing the volume of cemented low-level mixed waste requiring ultimate disposal. A laboratory investigation of the performance of the Sequencing Batch Reactor (SBR) activated sludge process developed for nitrate removal from a synthetic brine typical of the high-nitrate and high-salinity wastewaters in the Solar Ponds at Rocky Flats Plant was carried out at the Environmental Engineering labs at the University of Colorado, Boulder, between May 1, 1994 and October 1, 1995.

  5. Biodenitrification in Sequencing Batch Reactors. Final report

    International Nuclear Information System (INIS)

    One plan for stabilization of the Solar Pond waters and sludges at Rocky Flats Plant (RFP), is evaporation and cement solidification of the salts to stabilize heavy metals and radionuclides for land disposal as low-level mixed waste. It has been reported that nitrate (NO3-) salts may interfere with cement stabilization of heavy metals and radionuclides. Therefore, biological nitrate removal (denitrification) may be an important pretreatment for the Solar Pond wastewaters at RFP, improving the stability of the cement final waste form, reducing the requirement for cement (or pozzolan) additives and reducing the volume of cemented low-level mixed waste requiring ultimate disposal. A laboratory investigation of the performance of the Sequencing Batch Reactor (SBR) activated sludge process developed for nitrate removal from a synthetic brine typical of the high-nitrate and high-salinity wastewaters in the Solar Ponds at Rocky Flats Plant was carried out at the Environmental Engineering labs at the University of Colorado, Boulder, between May 1, 1994 and October 1, 1995

  6. Bottleneck Management in Discrete Batch Production

    Directory of Open Access Journals (Sweden)

    Ferenčíková Denisa

    2012-06-01

    Full Text Available Today, production planning and scheduling becomes very important part of production management because companies have to react to dynamic market conditions and rising customers´ requirements for shorter delivery times, lower prices and better quality and services. They can use a lot of sophisticated methods and approaches to make their planning processes more efficient and thus meet growing customers´ requirements. However, using these new approaches is not so easy in all types of production systems. This paper deals with production planning and scheduling in discrete batch production that is just an example of very complicated production system. This type of production process is susceptible to demand fluctuation and facility exceptions and this implies bottleneck shifting. Therefore it is quite difficult to implement methods such as Theory of Constraints (TOC for production planning improvement in the standard way. One part of this paper is a case study wherecurrent production planning and scheduling in real factory is improved just through the use TOC principles.

  7. Batch-to-batch learning for model-based control of process systems with application to cooling crystallization

    NARCIS (Netherlands)

    Forgione, M.

    2014-01-01

    From an engineering perspective, the term process refers to a conversion of raw materials into intermediate or final products using chemical, physical, or biological operations. Industrial processes can be performed either in continuous or in batch mode. There exist for instance continuous and batch

  8. 21 CFR 320.35 - Requirements for in vitro testing of each batch.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Requirements for in vitro testing of each batch... of each batch. If a bioequivalence requirement specifies a currently available in vitro test or an in... conduct the test on a sample of each batch of the drug product to assure batch-to-batch uniformity....

  9. 40 CFR 204.57-7 - Acceptance and rejection of batch sequence.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Acceptance and rejection of batch... § 204.57-7 Acceptance and rejection of batch sequence. (a) The manufacturer will continue to inspect consecutive batches until the batch sequence is accepted or rejected. The batch sequence will be accepted...

  10. 40 CFR 63.1322 - Batch process vents-reference control technology.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Batch process vents-reference control... Batch process vents—reference control technology. (a) Batch process vents. The owner or operator of a... venting to any combustion control device, and thus make the batch process vent, aggregate batch...

  11. Morphologically structured model for antitumoral retamycin production during batch and fed-batch cultivations of Streptomyces olindensis.

    Science.gov (United States)

    Giudici, Reinaldo; Pamboukian, Celso R D; Facciotti, Maria Cândida R

    2004-05-20

    A morphologically structured model is proposed to describe trends in biomass growth, substrate consumption, and antitumoral retamycin production during batch and fed-batch cultivations of Streptomyces olindensis. Filamentous biomass is structured into three morphological compartments (apical, subapical, and hyphal), and the production of retamycin, a secondary metabolite, is assumed to take place in the subapical cell compartment. Model accounts for the effect of glucose as well as complex nitrogen source on both the biomass growth and retamycin production. Laboratory data from bench-scale batch and fed-batch fermentations were used to estimate some model parameters by nonlinear regression. The predictive capability of the model was then tested for additional fed-batch and continuous experiments not used in the previous fitting procedure. The model predictions show fair agreement to the experimental data. The proposed model can be useful for further studies on process optimization and control. PMID:15112294

  12. 40 CFR Table 6 to Subpart U of... - Group 1 Batch Front-End Process Vents and Aggregate Batch Vent Streams-Monitoring, Recordkeeping...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Group 1 Batch Front-End Process Vents and Aggregate Batch Vent Streams-Monitoring, Recordkeeping, and Reporting Requirements 6 Table 6 to... 6 to Subpart U of Part 63—Group 1 Batch Front-End Process Vents and Aggregate Batch Vent...

  13. 40 CFR Table 7 to Subpart Jjj of... - Group 1 Batch Process Vents and Aggregate Batch Vent Streams-Monitoring, Recordkeeping, and...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Group 1 Batch Process Vents and Aggregate Batch Vent Streams-Monitoring, Recordkeeping, and Reporting Requirements 7 Table 7 to Subpart JJJ... Table 7 to Subpart JJJ of Part 63—Group 1 Batch Process Vents and Aggregate Batch Vent...

  14. Uranium Adsorption on Ion-Exchange Resins - Batch Testing

    Energy Technology Data Exchange (ETDEWEB)

    Mattigod, Shas V.; Golovich, Elizabeth C.; Wellman, Dawn M.; Cordova, Elsa A.; Smith, Ronald M.

    2010-12-01

    The uranium adsorption performance of five resins (Dowex 1, Dowex 21K 16-30 [fresh], Dowex 21K 16-30 [regenerated], Purofine PFA600/4740, and ResinTech SIR-1200) were tested using unspiked, nitrate-spiked, and nitrate-spiked/pH adjusted source water from well 299-W19-36. These batch tests were conducted in support of a resin selection process in which the best resin to use for uranium treatment in the 200-West Area groundwater pump-and-treat system will be identified. The results from these tests are as follows: • The data from the high-nitrate (1331 mg/L) tests indicated that Dowex 1, Dowex 21K 16-30 (fresh), Purofine PFA600/4740, and ResinTech SIR-1200 all adsorbed uranium similarly well with Kd values ranging from ~15,000 to 95,000 ml/g. All four resins would be considered suitable for use in the treatment system based on uranium adsorption characteristics. • Lowering the pH of the high nitrate test conditions from 8.2 to 7.5 did not significantly change the uranium adsorption isotherms for the four tested resins. The Kd values for these four resins under high nitrate (1338 mg/L), lower pH (7.5) ranged from ~15,000 to 80,000 ml/g. • Higher nitrate concentrations greatly reduced the uranium adsorption on all four resins. Tests conducted with unspiked (no amendments; nitrate at 337 mg/L and pH at 8.2) source water yielded Kd values for Dowex 1, Dowex 21K 16-30 (fresh), Purofine PFA600/4740, and ResinTech SIR-1200 resins ranging from ~800,000 to >3,000,000 ml/g. These values are about two orders of magnitude higher than the Kd values noted from tests conducted using amended source water. • Compared to the fresh resin, the regenerated Dowex 21K 16-30 resin exhibited significantly lower uranium-adsorption performance under all test conditions. The calculated Kd values for the regenerated resin were typically an order of magnitude lower than the values calculated for the fresh resin. • Additional testing using laboratory columns is recommended to better

  15. Dynamic modelling of substrate degradation for urban wastewater treatment by sequencing batch reactor

    International Nuclear Information System (INIS)

    This paper presents the dynamic modelling of substrate degradation for urban wastewater treatment by a pilot-scaled sequencing batch reactor including experimental data of a long-term experimental work performed at different operation conditions. During the study, pH, chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) were measured to investigate SBR treatment performance. Optimum operation times were determined and kinetic constant (k) was calculated (0.60 h-1) with using experimental results for urban wastewater. The Model Simulation estimates were very good fit with the experimental data under organic loading degradation conditions model simulation predictions well match with the experimental results under disturbed organic loading conditions. (author)

  16. A New Batch Verifying Scheme for Identifying Illegal Signatures

    Institute of Scientific and Technical Information of China (English)

    Adrian Atanasiu

    2013-01-01

    The concept of batch verifying multiple digital signatures is to find a method by which multiple digital signatures can be verified simultaneously in a lower time complexity than separately verifying all the signatures.In this article,we analyze the complexity of the batch verifying schemes defined by Li,Hwang and Chen in 2010,and propose a new batch verifying multiple digital signature scheme,in two variants:one for RSA-by completing the Harn's schema with an identifying illegal signatures algorithm,and the other adapted for a modified Elliptic Curve Digital Signature Algorithm protocol.

  17. Beam loading

    CERN Document Server

    Gamp, Alexander

    2013-01-01

    We begin by giving a description of the radio-frequency generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, radio-frequency feedback and feedforward are described. Examples of digital radio-frequency phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.

  18. Green synthesis of isopropyl myristate in novel single phase medium Part I: Batch optimization studies

    Directory of Open Access Journals (Sweden)

    Rajeshkumar N. Vadgama

    2015-12-01

    Full Text Available Isopropyl myristate finds many applications in food, cosmetic and pharmaceutical industries as an emollient, thickening agent, or lubricant. Using a homogeneous reaction phase, non-specific lipase derived from Candida antartica, marketed as Novozym 435, was determined to be most suitable for the enzymatic synthesis of isopropyl myristate. The high molar ratio of alcohol to acid creates novel single phase medium which overcomes mass transfer effects and facilitates downstream processing. The effect of various reaction parameters was optimized to obtain a high yield of isopropyl myristate. Effect of temperature, agitation speed, organic solvent, biocatalyst loading and batch operational stability of the enzyme was systematically studied. The conversion of 87.65% was obtained when the molar ratio of isopropyl alcohol to myristic acid (15:1 was used with 4% (w/w catalyst loading and agitation speed of 150 rpm at 60 °C. The enzyme has also shown good batch operational stability under optimized conditions.

  19. Contaminant removal in septage treatment with vertical flow constructed wetlands operated under batch flow conditions.

    Science.gov (United States)

    Jong, Valerie Siaw Wee; Tang, Fu Ee

    2016-01-01

    Individual septic tanks are the most common means of on-site sanitation in Malaysia, but they result in a significant volume of septage. A two-staged vertical flow constructed wetlands (VFCWs) system for the treatment of septage was constructed and studied in Sarawak, Malaysia. Raw septage was treated in the first stage wetlands, and the resulting percolate was fed onto the second stage wetlands for further treatment. Here, the effects of a batch loading regime on the contaminant removal efficiency at the second stage wetlands, which included palm kernel shell within their filter substrate, are presented. The batch loading regime with pond:rest (P:R) period of 1:1, 2:2 and 3:3 (day:day) was studied. The improvement of the effluent redox condition was evident with P:R = 3:3, resulting in excellent organic matters (chemical oxygen demand and biochemical oxygen demand) and nitrogen reduction. The bed operated with P:R = 1:1 experienced constant clogging, with a water layer observed on the bed surface. For the P:R = 3:3 regime, the dissolved oxygen profile was not found to decay drastically after 24 hours of ponding, suggesting that the biodegradation mainly occurred during the first day. The study results indicate that a suitable application regime with an adequate rest period is important in VFCWs to ensure efficient operation. PMID:26901735

  20. Rf beam loading in the Brookhaven AGS with booster injection

    International Nuclear Information System (INIS)

    Multi-batch bunched beam loading during injection from the Booster to the AGS will be discussed. The full intensity beam injection to the upgraded AGS rf system with beam phase and radial feedbacks will be studied. It is shown that a beam phase feedback is necessary in order to guarantee a predictable hewn behavior after the first batch injection, otherwise the initial phase deviation for the following batch injections cannot be controlled. However, the effectiveness of the phase feedback control of the transient beam loading may be limited by an emittance blow up in the process. It is shown that a fast power amplifier feedback with a moderate gain can significantly reduce the transient effect of the bunched beam injection

  1. Large improvements in application throughput of long-running multi-component applications using batch grids

    OpenAIRE

    Sundari, Sivagama M.; Vadhiyar, Sathish S.; Nanjundiah, Ravi S.

    2012-01-01

    Computational grids with multiple batch systems (batch grids) can be powerful infrastructures for executing long-running multi-component parallel applications. In this paper, we evaluate the potential improvements in throughput of long-running multi-component applications when the different components of the applications are executed on multiple batch systems of batch grids. We compare the multiple batch executions with executions of the components on a single batch system without increasing ...

  2. Investigation of Rheological Impacts on Sludge Batch 3 as Insoluble Solids and Wash Endpoints are Adjusted

    International Nuclear Information System (INIS)

    The Defense Waste Processing Facility (DWPF) is currently processing and immobilizing radioactive sludge slurry into a durable borosilicate glass. The DWPF has already processed three sludge batches (Sludge Batch 1A, Sludge Batch 1B, and Sludge Batch 2) and is currently processing the fourth sludge batch (Sludge Batch 3). A sludge batch is defined as a single tank of sludge slurry or a combination of sludge slurries from different tanks that has been or will be qualified before being transferred to DWPF. As a part of the Sludge Batch 3 (SB3) qualification task, rheology measurements of the sludge slurry were requested at different insoluble solids loadings. These measurements were requested in order to gain insight into potential processing problems that may occur as the insoluble solids are adjusted up or down (by concentration or dilution) during the process. As a part of this study, a portion of the ''as received'' SB3 sample was washed with inhibited water (0.015 M NaOH and 0.015 M NaNO2) to target 0.5M Na versus a measured 1M Na in the supernate. The purpose of the ''washing'' step was to allow a comparison of the SB3 rheological data to the rheological data collected for Sludge Batch 2 (SB2) and to determine if there was a dependence of the yield stress and consistency as a function of washing. The ''as received'' SB3 rheology data was also compared to SB3 simulants prepared by the Simulant Development Program in order to provide guidance for selecting a simulant that is more representative of the rheological properties of the radioactive sludge slurry. A summary of the observations, conclusions are: (1) The yield stress and plastic viscosity increased as the weight percent insoluble solids were increased for the ''as received'' and ''washed'' SB3 samples, at a fixed pH. (2) For the same insoluble solids loading, the yield stress for the SB2 sample is approximately a factor of three higher than the ''as received'' SB3 sample. There also appears to be small

  3. Metamaterial Loading

    Directory of Open Access Journals (Sweden)

    F. Paredes

    2012-01-01

    Full Text Available It is shown that printed antennas loaded with metamaterial resonators can be designed to exhibit multiband functionality. Two different antenna types and metamaterial loading are considered: (i printed dipoles or monopoles loaded with open complementary split ring resonators (OCSRRs and (ii meander line or folded dipole antennas loaded with split ring resonators (SRRs or spiral resonators (SRs. In the first case, multiband operation is achieved by series connecting one or more OCSRRs within the dipole/monopole. Such resonators force opens at their positions, and by locating them at a quarter wavelength (at the required operating frequencies from the feeding point, it is possible to achieve multiple radiation bands. In the second case, dual-band functionality is achieved through the perturbation of the antenna characteristics caused by the presence of the metamaterial resonators. This latter strategy is specially suited to achieve conjugate matching between the antenna and the chip in radiofrequency identification (RFID tags at two of the regulated UHF-RFID bands.

  4. Minimizing makespan in a two-machine no-wait flow shop with batch processing machines

    OpenAIRE

    Muthuswamy, Shanthi; V??lez Gallego, Mario C??sar; Rojas Santiago, Miguel; Maya Toro, Jairo

    2012-01-01

    Given a set of jobs and two batch processing machines (BPMs) arranged in a flow shop environment,the objective is to batch the jobs and sequence the batches such that the makespan is minimized. The job sizes, ready times, and processing times on the two BPMs are knowN -- The batch processing machines can process a batch of jobs as long as the total size of all the jobs assigned to a batch does not exceed its capacity -- Once the jobs are batched, the processing time of the batch on the first ...

  5. Xylitol production by Candida parapsilosis under fed-batch culture

    OpenAIRE

    Furlan Sandra A.; Castro Heizir F. de

    2001-01-01

    Xylitol production by Candida parapsilosis was investigated under fed-batch cultivation, using single (xylose) or mixed (xylose and glucose) sugars as substrates. The presence of glucose in the medium induced the production of ethanol as secondary metabolite and improved specific rates of growth, xylitol formation and substrate consumption. Fractionated supply of the feed medium at constant sugar concentration did not promote any increase on the productivity compared to the single batch culti...

  6. Statistical strategies for microRNAseq batch effect reduction

    OpenAIRE

    Guo, Yan; Zhao, Shilin; Su, Pei-Fang; Li, Chung-I; Ye, Fei; Flynn, Charles R.; Shyr, Yu

    2014-01-01

    RNAseq technology is replacing microarray technology as the tool of choice for gene expression profiling. While providing much richer data than microarray, analysis of RNAseq data has been much more challenging. Among the many difficulties of RNAseq analysis, correctly adjusting for batch effect is a pivotal one for large-scale RNAseq based studies. The batch effect of RNAseq data is most obvious in microRNA (miRNA) sequencing studies. Using real miRNA sequencing (miRNAseq) dat...

  7. Optimal configuration, design and operation of batch distillation processes

    OpenAIRE

    Low, K. H.

    2003-01-01

    The overall objective of this thesis is to study the optimal configuration. design and operating policy of batch distillation processes in different separation scenarios. In so doing, this work also aims to provide conceptual insights and compare the performance of the traditional regular column against unconventional columns. In the first part of the thesis, the optimal operation of extractive batch distillation is investigated. A rigorous dynamic optimisation approach based o...

  8. APPLICATION OF MODEL PREDICTIVE CONTROL TO BATCH POLYMERIZATION REACTOR

    OpenAIRE

    N.M. Ghasem; Hussain, M. A.; S. A. Sata

    2006-01-01

    The absence of a stable operational state in polymerization reactors that operates in batches is factor that determine the need of a special control system. In this study, advanced control methodology is implemented for controlling the operation of a batch polymerization reactor for polystyrene production utilizingmodel predictive control. By utilizing a model of the polymerization process, the necessary operational conditions were determined for producing the polymer within the desired chara...

  9. Dynamic Extensions of Batch Systems with Cloud Resources

    International Nuclear Information System (INIS)

    Compute clusters use Portable Batch Systems (PBS) to distribute workload among individual cluster machines. To extend standard batch systems to Cloud infrastructures, a new service monitors the number of queued jobs and keeps track of the price of available resources. This meta-scheduler dynamically adapts the number of Cloud worker nodes according to the requirement profile. Two different worker node topologies are presented and tested on the Amazon EC2 Cloud service.

  10. Fault Diagnosis of Batch Reactor Using Machine Learning Methods

    OpenAIRE

    2014-01-01

    Fault diagnosis of a batch reactor gives the early detection of fault and minimizes the risk of thermal runaway. It provides superior performance and helps to improve safety and consistency. It has become more vital in this technical era. In this paper, support vector machine (SVM) is used to estimate the heat release (Qr) of the batch reactor both normal and faulty conditions. The signature of the residual, which is obtained from the difference between nominal and estimated faulty Qr values,...

  11. RHEOLOGICAL PROPERTIES OF SAVANNAH RIVER SITE (srs) RADIOACTIVE HIGH LEVEL WASTES AND MELTER FEEDS FOR SLUDGE BATCH 2

    International Nuclear Information System (INIS)

    The Savannah River Site, SRS, is currently pursuing an aggressive program to empty its High Level Waste, HLW, tanks and immobilize its radioactive waste into a durable borosilicate glass in the Defense Waste Processing Facility, DWPF. To create a batch of feed for the DWPF, several tanks of sludge slurry are combined into one of the million gallon, i.e. 3.79E06 liters, feed tanks for DWPF. A batch of feed nominally consists of 500,000 gallons, i.e. 1.89E06 liters. After a batch of feed is prepared, a portion of the batch, 26,500 liters, is transferred to DWPF. This batch is then chemically adjusted in the Chemical Processing Cell, CPC, prior to being fed to the melter to make the final product; canisters filled with glass. During the processing of the third batch, or Sludge Batch 2, of feed through the DWPF CPC, pumping and transfer problems were noted. These problems hindered the processing of the feed through the CPC, and thus impacted canister production in DWPF. In order to investigate the root cause of these problems, data were collected and evaluated for possible trends. One trend noted was the relationship between the pH, solids loading concentration, and temperature of the feed. As any one of these three variables changed, the rheological properties of the feed appeared to change. To determine the dependency of the rheological property, samples were obtained and shipped to Savannah River National Laboratory's, SRNL, Shielded Cells Facility. The samples were processed under two sets of conditions and rheological measurements obtained. The results of the SRNL studies showed that the ending pH of the samples impacted the rheological properties of the sample. Lowering the pH of the sludge slurry resulted in lower plastic viscosity and yield stress values,thus alleviating the processing problems. Increasing the solids loading typically increased both the plastic viscosity and yield stress. There was minimal or no dependency on temperature

  12. [Characteristic of Particulate Emissions from Concrete Batching in Beijing].

    Science.gov (United States)

    Xue, Yi-feng; Zhou, Zhen; Zhong, Lian-hong; Yan, Jing; Qu, Song; Huang, Yu-hu; Tian, He- zhong; Pan, Tao

    2016-01-15

    With the economic development and population growth in Beijing, there is a strong need for construction and housing, which leads to the increase of the construction areas. Meanwhile, as a local provided material, the production of concrete has been raised. In the process of concrete production by concrete batching, there are numerous particulates emitted, which have large effect on the atmospheric environment, however, systematic study about the tempo-spatial characteristics of pollutant emission from concrete batching is still rare. In this study, we estimated the emission of particulates from concrete batching from 1991 to 2012 using emission factor method, analyzed the tempo-spatial characteristics of pollutant emission, established the uncertainty range by adopting Monte-Carlo method, and predicted the future emission in 2020 based on the relative environmental and economical policies. The results showed that: (1) the emissions of particulates from concrete batching showed a trend of "first increase and then decrease", reaching the maximum in 2005, and then decreased due to stricter emission standard and enhanced environmental management. (2) according to spatial distribution, the emission of particulates from concrete batch mainly concentrated in the urban area with more human activities, and the area between the fifth ring and the sixth ring contributed the most. (3) through scenarios analysis, for further reducing the emission from concrete batching in 2020, more stricter standard for green production as well as powerful supervision is needed. PMID:27078945

  13. Batch process monitoring based on multilevel ICA-PCA

    Institute of Scientific and Technical Information of China (English)

    Zhi-qiang GE; Zhi-huan SONG

    2008-01-01

    In this paper,we describe a new batch process monitoring method based on multilevel independent component analysis and principal component analysis (MLICA-PCA).Unlike the conventional multi-way principal component analysis (MPCA) method,MLICA-PCA provides a separated interpretation for multilevel batch process data.Batch process data are partitioned into two levels:the within-batch level and the between-batch level.In each level,the Gaussian and non-Ganssian components of process information can be separately extracted.I2,T2 and SPE statistics are individually built and monitored.The new method facilitates fault diagnosis.Since the two variation levels arc decomposed,the variables responsible for faults in each level can be identified and interpreted more easily.A case study of the Dupont benchmark process showed that the proposed method was more efficient and interpretable in fault detection and diagnosis,compared to the alternative batch process monitoring method.

  14. OPLS in batch monitoring - Opens up new opportunities.

    Science.gov (United States)

    Souihi, Nabil; Lindegren, Anders; Eriksson, Lennart; Trygg, Johan

    2015-02-01

    In batch statistical process control (BSPC), data from a number of "good" batches are used to model the evolution (trajectory) of the process and they also define model control limits, against which new batches may be compared. The benchmark methods used in BSPC include partial least squares (PLS) and principal component analysis (PCA). In this paper, we have used orthogonal projections to latent structures (OPLS) in BSPC and compared the results with PLS and PCA. The experimental study used was a batch hydrogenation reaction of nitrobenzene to aniline characterized by both UV spectroscopy and process data. The key idea is that OPLS is able to separate the variation in data that is correlated to the process evolution (also known as 'batch maturity index') from the variation that is uncorrelated to process evolution. This separation of different types of variations can generate different batch trajectories and hence lead to different established model control limits to detect process deviations. The results demonstrate that OPLS was able to detect all process deviations and provided a good process understanding of the root causes for these deviations. PCA and PLS on the other hand were shown to provide different interpretations for several of these process deviations, or in some cases they were unable to detect actual process deviations. Hence, the use of OPLS in BSPC can lead to better fault detection and root cause analysis as compared to existing benchmark methods and may therefore be used to complement the existing toolbox. PMID:25604817

  15. Effect of batch and fed-batch growth modes on biofilm formation by Listeria monocytogenes at different temperatures

    OpenAIRE

    Rodrigues, Diana Alexandra Ferreira; Almeida, Marta A. S.; Teixeira, P.; Oliveira, Rosário; Azeredo, Joana

    2009-01-01

    The influence of Listeria monocytogenes (L. monocytogenes) biofilm formation feeding conditions (batch and fed-batch) at different temperatures on biofilm biomass and activity was determined. Biofilm biomass and cellular metabolic activity were assessed by Crystal Violet (CV) staining and 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide inner salt (XTT) colorimetric method, respectively. Live/Dead staining was also performed in order to get microscopic visualization of ...

  16. Design and Application of Software Sensors in Batch and Fed-batch Cultivations during Recombinant Protein Expression in Escherichia coli

    OpenAIRE

    Warth, Benedikt

    2008-01-01

    Software sensors are a potent tool to improve biotechnological real time process monitoring and control. In the current project, algorithms for six partly novel, software sensors were established and tested in a microbial reactor system. Eight batch and two fed-batch runs were carried out with a recombinant Escherichia coli to investigate the suitability of the different software sensor models in diverse cultivation stages. Special respect was given to effects on the sensors after recombinant...

  17. Load sensor

    OpenAIRE

    van den Ende, D.; Almeida, P.M.R.; Dingemans, T.J.; Van der Zwaag, S.

    2007-01-01

    The invention relates to a load sensor comprising a polymer matrix and a piezo-ceramic material such as PZT, em not bedded in the polymer matrix, which together form a compos not ite, wherein the polymer matrix is a liquid crystalline resin, and wherein the piezo-ceramic material is a PZT powder forming 30-60% by volume of the composite, and wherein the PZT powder forms 40-50% by volume of the composite.

  18. Batch and Pulsed Fed-Batch Cultures of Aspergillus flavipes FP-500 Growing on Lemon Peel at Stirred Tank Reactor.

    Science.gov (United States)

    Wolf-Márquez, V E; García-García, E; García-Rivero, M; Aguilar-Osorio, G; Martínez Trujillo, M A

    2015-11-01

    Aspergillus flavipes FP-500 grew up on submerged cultures using lemon peel as the only carbon source, developing several batch and pulsed fed-batch trials on a stirred tank reactor. The effect of carbon source concentration, reducing sugar presence and initial pH on exopectinase and endopectinase production, was analyzed on batch cultures. From this, we observed that the highest substrate concentration favored biomass (X max) but had not influence on the corresponding specific production (q p) of both pectinases; the most acid condition provoked higher endopectinase-specific productions but had not a significant effect on those corresponding to exopectinases; and reducing sugar concentrations higher than 1.5 g/L retarded pectinase production. On the other hand, by employing the pulsed fed-batch operation mode, we observed a prolonged growth phase, and an increase of about twofold on endopectinase production without a significant raise on biomass concentration. So, pulsed fed-batch seems to be a good alternative for obtaining higher endopectinase titers by using high lemon peel quantities without having mixing and repression problems to the system. The usefulness of unstructured kinetic models for explaining, under a theoretic level, the behavior of the fungus along the batch culture with regard to pectinase production was evident. PMID:26304128

  19. A study on clavulanic acid production by Streptomyces clavuligerus in batch, fed-batch and continuous processes

    Directory of Open Access Journals (Sweden)

    A. B. Neto

    2005-12-01

    Full Text Available Clavulanic acid (CA is a potent inhibitor of beta-lactamases, enzymes that are responsible for the hydrolysis of beta-lactam antibiotics. It is a secondary metabolite produced by the filamentous aerobic bacterium Streptomyces clavuligerus in submerged cultivations. In the present work clavulanic acid production in batch, fed-batch and continuous bioreactors was studied with the objective of increasing productivity. The operating conditions: temperature, aeration and agitation, were the same in all cases, 28º C, 0.5 vvm and 800 rpm, respectively. The CA concentration obtained in the fed-batch culture, 404 mg L-1, was ca twice the value obtained in the batch culture, 194 mg L-1, while 293 mg L-1 was obtained in the continuous culture. The highest productivity was obtained in the continuous cultivation, 10.6 mg L-1 h-1, as compared with 8.8 mg L-1 h-1 in the fed-batch process and 3.5 mg L-1 h-1 in the batch process, suggesting that continuous culture of Streptomyces clavuligerus is a promising strategy for clavulanic acid production.

  20. Neutron batch size optimisation methodology for Monte Carlo criticality calculations

    International Nuclear Information System (INIS)

    Highlights: • A method is suggested for improving efficiency of MC criticality calculations. • The method optimises the number of neutrons simulated per cycle. • The optimal number of neutrons per cycle depends on allocated computing time. - Abstract: We present a methodology that improves the efficiency of conventional power iteration based Monte Carlo criticality calculations by optimising the number of neutron histories simulated per criticality cycle (the so-called neutron batch size). The chosen neutron batch size affects both the rate of convergence (in computing time) and magnitude of bias in the fission source. Setting a small neutron batch size ensures a rapid simulation of criticality cycles, allowing the fission source to converge fast to its stationary state; however, at the same time, the small neutron batch size introduces a large systematic bias in the fission source. It follows that for a given allocated computing time, there is an optimal neutron batch size that balances these two effects. We approach this problem by studying the error in the cumulative fission source, i.e. the fission source combined over all simulated cycles, as all results are commonly combined over the simulated cycles. We have deduced a simplified formula for the error in the cumulative fission source, taking into account the neutron batch size, the dominance ratio of the system, the error in the initial fission source and the allocated computing time (in the form of the total number of simulated neutron histories). Knowing how the neutron batch size affects the error in the cumulative fission source allows us to find its optimal value. We demonstrate the benefits of the method on a number of numerical test calculations

  1. Batch Scheduling on Two-Machine Flowshop with Machine-Dependent Setup Times

    OpenAIRE

    Daniel Oron; Gur Mosheiov; Lika Ben-Dati

    2009-01-01

    We study a batch scheduling problem on a 2-machine flowshop. We assume unit processing time jobs, batch availability, and machine-dependent setup times. The objective is to find a job allocation to batches of integer size and a batch schedule that minimize makespan. We introduce a very efficient closed form solution for the problem.

  2. 40 CFR 63.486 - Batch front-end process vent provisions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Batch front-end process vent provisions... Batch front-end process vent provisions. (a) Batch front-end process vents. Except as specified in paragraph (b) of this section, owners and operators of new and existing affected sources with batch...

  3. 40 CFR 63.1327 - Batch process vents-reporting requirements.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Batch process vents-reporting... Batch process vents—reporting requirements. (a) The owner or operator of a batch process vent or aggregate batch vent stream at an affected source shall submit the information specified in paragraphs...

  4. 40 CFR 63.1326 - Batch process vents-recordkeeping provisions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Batch process vents-recordkeeping... Batch process vents—recordkeeping provisions. (a) Group determination records for batch process vents... batch process vent subject to the group determination procedures of § 63.1323. Except for paragraph...

  5. 40 CFR Table 3 to Subpart Ooo of... - Batch Process Vent Monitoring Requirements

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Batch Process Vent Monitoring... Resins Pt. 63, Subpt. OOO, Table 3 Table 3 to Subpart OOO of Part 63—Batch Process Vent Monitoring... the batch process vents or aggregate batch vent streams are not introduced with or used as the...

  6. 21 CFR 111.255 - What is the requirement to establish a batch production record?

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false What is the requirement to establish a batch... System: Requirements for the Batch Production Record § 111.255 What is the requirement to establish a batch production record? (a) You must prepare a batch production record every time you manufacture...

  7. 40 CFR 63.492 - Batch front-end process vents-reporting requirements.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Batch front-end process vents-reporting... Batch front-end process vents—reporting requirements. (a) The owner or operator of a batch front-end process vent or aggregate batch vent stream at an affected source shall submit the information...

  8. Loads and loads and loads: the influence of prospective load, retrospective load, and ongoing task load in prospective memory

    OpenAIRE

    Beat eMeier; Zimmermann, Thomas D.

    2015-01-01

    In prospective memory tasks different kinds of load can occur. Adding a prospective memory task can impose a load on ongoing task performance. Adding ongoing task load can affect prospective memory performance. The existence of multiple target events increases prospective load and adding complexity to the to-be-remembered action increases retrospective load. In two experiments, we systematically examined the effects of these different types of load on prospective memory performance. Results s...

  9. Testing SLURM open source batch system for a Tierl/Tier2 HEP computing facility

    International Nuclear Information System (INIS)

    In this work the testing activities that were carried on to verify if the SLURM batch system could be used as the production batch system of a typical Tier1/Tier2 HEP computing center are shown. SLURM (Simple Linux Utility for Resource Management) is an Open Source batch system developed mainly by the Lawrence Livermore National Laboratory, SchedMD, Linux NetworX, Hewlett-Packard, and Groupe Bull. Testing was focused both on verifying the functionalities of the batch system and the performance that SLURM is able to offer. We first describe our initial set of requirements. Functionally, we started configuring SLURM so that it replicates all the scheduling policies already used in production in the computing centers involved in the test, i.e. INFN-Bari and the INFN-Tier1 at CNAF, Bologna. Currently, the INFN-Tier1 is using IBM LSF (Load Sharing Facility), while INFN-Bari, an LHC Tier2 for both CMS and Alice, is using Torque as resource manager and MAUI as scheduler. We show how we configured SLURM in order to enable several scheduling functionalities such as Hierarchical FairShare, Quality of Service, user-based and group-based priority, limits on the number of jobs per user/group/queue, job age scheduling, job size scheduling, and scheduling of consumable resources. We then show how different job typologies, like serial, MPI, multi-thread, whole-node and interactive jobs can be managed. Tests on the use of ACLs on queues or in general other resources are then described. A peculiar SLURM feature we also verified is triggers on event, useful to configure specific actions on each possible event in the batch system. We also tested highly available configurations for the master node. This feature is of paramount importance since a mandatory requirement in our scenarios is to have a working farm cluster even in case of hardware failure of the server(s) hosting the batch system. Among our requirements there is also the possibility to deal with pre-execution and post

  10. Reconfirmation of frit 803 based on the January 2016 sludge batch 9 reprojection

    International Nuclear Information System (INIS)

    On January 11, 2016, Savannah River Remediation (SRR) provided the Savannah River National Laboratory (SRNL) with a Sludge Batch 9 (SB9) reprojection that was developed from the analyzed composition of a Tank 51 sample. This sample was collected after field washing had been completed in Tank 51 to support the alternate reductant task. Based on this reprojection, Frit 803 is still a viable option for the processing of SB9 under sludge-only operations and coupled (Actinide Removal Process (ARP) product with and without monosodium titanate (MST)) operations. The maximum projected volumes of ARP product that can be transferred from the Precipitate Reactor Feed Tank (PRFT) per Sludge Receipt and Adjustment Tank (SRAT) batch and the resulting Na2O concentrations in the SRAT for coupled operations were determined. The Na2O concentrations in the SRAT resulting from the maximum projected ARP product transfer volumes are consistent with those from the previous assessments that were based on the August 2015 projections. Regardless of the presence or absence of MST in the ARP product, the contribution of Na2O to the resulting glass will be similar at the same waste loading (WL). These projected volumes of ARP product are not anticipated to be an issue for SB9. The actual transfer volumes from the PRFT to the SRAT are determined based upon the analyzed Na2O concentrations in the PRFT samples, which has resulted in larger transfer volumes than those allowed by the projections for Sludge Batch 8 (SB8). An operating window of 32-40% WL around the nominal WL of 36% is achievable for both sludge-only and coupled operations; however, each of the glass systems studied does become limited by waste form affecting constraints (durability) at higher volumes of ARP product and WLs of 41-42%.

  11. Elimination of water pathogens with solar radiation using an automated sequential batch CPC reactor

    Energy Technology Data Exchange (ETDEWEB)

    Polo-Lopez, M.I., E-mail: mpolo@psa.es [Plataforma Solar de Almeria - CIEMAT, PO Box 22, 04200 Tabernas, Almeria (Spain); Fernandez-Ibanez, P., E-mail: pilar.fernandez@psa.es [Plataforma Solar de Almeria - CIEMAT, PO Box 22, 04200 Tabernas, Almeria (Spain); Ubomba-Jaswa, E., E-mail: euniceubombajaswa@yahoo.com [Natural Resources and the Environment, CSIR, PO Box 395, Pretoria (South Africa); Navntoft, C., E-mail: christian.navntoft@solarmate.com.ar [Instituto de Investigacion e Ingenieria Ambiental, Universidad Nacional de San Martin (3iA-UNSAM), Peatonal Belgrano 3563, B1650ANQ San Martin (Argentina); Universidad Tecnologica Nacional - Facultad Regional Buenos Aires - Departamento de Ingenieria Civil - Laboratorio de Estudios sobre Energia Solar, (UTN-FRBA-LESES), Mozart 2300, (1407) Ciudad Autonoma de Buenos Aires, Republica Argentina (Argentina); Garcia-Fernandez, I., E-mail: irene.garcia@psa.es [Plataforma Solar de Almeria - CIEMAT, PO Box 22, 04200 Tabernas, Almeria (Spain); Dunlop, P.S.M., E-mail: psm.dunlop@ulster.ac.uk [Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2 (Ireland); Schmid, M. [Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2 (Ireland); Byrne, J.A., E-mail: j.byrne@ulster.ac.uk [Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2 (Ireland); and others

    2011-11-30

    Solar disinfection (SODIS) of water is a well-known, effective treatment process which is practiced at household level in many developing countries. However, this process is limited by the small volume treated and there is no indication of treatment efficacy for the user. Low cost glass tube reactors, together with compound parabolic collector (CPC) technology, have been shown to significantly increase the efficiency of solar disinfection. However, these reactors still require user input to control each batch SODIS process and there is no feedback that the process is complete. Automatic operation of the batch SODIS process, controlled by UVA-radiation sensors, can provide information on the status of the process, can ensure the required UVA dose to achieve complete disinfection is received and reduces user work-load through automatic sequential batch processing. In this work, an enhanced CPC photo-reactor with a concentration factor of 1.89 was developed. The apparatus was automated to achieve exposure to a pre-determined UVA dose. Treated water was automatically dispensed into a reservoir tank. The reactor was tested using Escherichia coli as a model pathogen in natural well water. A 6-log inactivation of E. coli was achieved following exposure to the minimum uninterrupted lethal UVA dose. The enhanced reactor decreased the exposure time required to achieve the lethal UVA dose, in comparison to a CPC system with a concentration factor of 1.0. Doubling the lethal UVA dose prevented the need for a period of post-exposure dark inactivation and reduced the overall treatment time. Using this reactor, SODIS can be automatically carried out at an affordable cost, with reduced exposure time and minimal user input.

  12. Reconfirmation of frit 803 based on the January 2016 sludge batch 9 reprojection

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-02-10

    On January 11, 2016, Savannah River Remediation (SRR) provided the Savannah River National Laboratory (SRNL) with a Sludge Batch 9 (SB9) reprojection that was developed from the analyzed composition of a Tank 51 sample. This sample was collected after field washing had been completed in Tank 51 to support the alternate reductant task. Based on this reprojection, Frit 803 is still a viable option for the processing of SB9 under sludge-only operations and coupled (Actinide Removal Process (ARP) product with and without monosodium titanate (MST)) operations. The maximum projected volumes of ARP product that can be transferred from the Precipitate Reactor Feed Tank (PRFT) per Sludge Receipt and Adjustment Tank (SRAT) batch and the resulting Na2O concentrations in the SRAT for coupled operations were determined. The Na2O concentrations in the SRAT resulting from the maximum projected ARP product transfer volumes are consistent with those from the previous assessments that were based on the August 2015 projections. Regardless of the presence or absence of MST in the ARP product, the contribution of Na2O to the resulting glass will be similar at the same waste loading (WL). These projected volumes of ARP product are not anticipated to be an issue for SB9. The actual transfer volumes from the PRFT to the SRAT are determined based upon the analyzed Na2O concentrations in the PRFT samples, which has resulted in larger transfer volumes than those allowed by the projections for Sludge Batch 8 (SB8). An operating window of 32-40% WL around the nominal WL of 36% is achievable for both sludge-only and coupled operations; however, each of the glass systems studied does become limited by waste form affecting constraints (durability) at higher volumes of ARP product and WLs of 41-42%.

  13. Elimination of water pathogens with solar radiation using an automated sequential batch CPC reactor

    International Nuclear Information System (INIS)

    Solar disinfection (SODIS) of water is a well-known, effective treatment process which is practiced at household level in many developing countries. However, this process is limited by the small volume treated and there is no indication of treatment efficacy for the user. Low cost glass tube reactors, together with compound parabolic collector (CPC) technology, have been shown to significantly increase the efficiency of solar disinfection. However, these reactors still require user input to control each batch SODIS process and there is no feedback that the process is complete. Automatic operation of the batch SODIS process, controlled by UVA-radiation sensors, can provide information on the status of the process, can ensure the required UVA dose to achieve complete disinfection is received and reduces user work-load through automatic sequential batch processing. In this work, an enhanced CPC photo-reactor with a concentration factor of 1.89 was developed. The apparatus was automated to achieve exposure to a pre-determined UVA dose. Treated water was automatically dispensed into a reservoir tank. The reactor was tested using Escherichia coli as a model pathogen in natural well water. A 6-log inactivation of E. coli was achieved following exposure to the minimum uninterrupted lethal UVA dose. The enhanced reactor decreased the exposure time required to achieve the lethal UVA dose, in comparison to a CPC system with a concentration factor of 1.0. Doubling the lethal UVA dose prevented the need for a period of post-exposure dark inactivation and reduced the overall treatment time. Using this reactor, SODIS can be automatically carried out at an affordable cost, with reduced exposure time and minimal user input.

  14. From Fed-batch to Continuous Enzymatic Biodiesel Production

    DEFF Research Database (Denmark)

    Price, Jason Anthony; Nordblad, Mathias; Woodley, John M.;

    2015-01-01

    In this this paper, we use mechanistic modelling to guide the development of acontinuous enzymatic process that is performed as a fed-batch operation. In this workwe use the enzymatic biodiesel process as a case study. A mechanistic model developedin our previous work was used to determine...... measured components (triglycerides, diglycerides, monoglycerides, free fatty acid and fatty acid methyl esters(biodiesel)) much better than using fed-batch data alone given the smaller residuals. We also observe a reduction in the correlation between the parameters.The model was then used to predict that 5...... reactors are required (with a combined residence time of 30 hours) to reach a final biodiesel concentration within 2 % of the95.6 mass % achieved in a fed-batch operation, for 24 hours....

  15. Biogas plasticization coupled anaerobic digestion: batch test results.

    Science.gov (United States)

    Schimel, Keith A

    2007-06-01

    Biogas has unique properties for improving the biodegradability of biomass solids during anaerobic digestion (AD). This report presents batch test results of the first investigation into utilizing biogas plasticization to "condition" organic polymers during active digestion of waste activated sludge (WAS). Preliminary design calculations based on polymer diffusion rate limitation are presented. Analysis of the 20 degrees C batch test data determined the first order (k(1)) COD conversion coefficient to be 0.167 day(-1) with a maximum COD utilization rate of 11.25 g L(-1) day(-1). Comparison of these batch test results to typical conventional AD performance parameters showed orders of magnitude improvement. These results show that biogas plasticization during active AD could greatly improve renewable energy yields from biomass waste materials such as MSW RDF, STP sludges, food wastes, animal manure, green wastes, and agricultural crop residuals. PMID:17054122

  16. Sulfate Solubility Limit Verification For DWPF Sludge Batch 7B

    International Nuclear Information System (INIS)

    The objective of this study was to determine a sulfate solubility limit in glass for Sludge Batch 7b (SB7b). The SB7b composition projection provided by Savannah River Remediation (SRR) on May 25, 2011 was used as the basis for formulating glass compositions to determine the sulfate limit. Additions of Na2O to the projected sludge composition were made by the Savannah River National Laboratory (SRNL) due to uncertainty in the final concentration of Na2O for SB7b, which is dependent on washing effectiveness and the potential need to add NaOH to ensure an acceptable projected operating window. Additions of 4, 6, and 8 wt % Na2O were made to the nominal May 25, 2011 composition projection. An updated SB7b composition projection was received from SRR on August 4, 2011. Due to compositional similarities, no additional experimental work using the August 4, 2011 compositions was considered to be necessary for this study. Both Frit 418 and Frit 702 were included in this study. The targeted sulfate (SO42-) concentrations of the study glasses were selected within the range of 0.6 to 0.9 wt % in glass. A total of 52 glass compositions were selected based on the compositional variables of Na2O addition, Actinide Removal Process (ARP) stream addition, waste loading, frit composition, and sulfate concentration. The glasses were batched, melted, and characterized following SRNL procedures. Visual observations were recorded for each glass after it cooled and used as in indicator of sulfur retention. Representative samples of each of the glasses fabricated were subjected to chemical analysis to determine whether the targeted compositions were met, as well as to determine the quantity of sulfate that was retained after melting. In general, the measured composition data showed that there were only minor issues in meeting the targeted compositions for the study glasses, and the measured sulfate concentrations for each study glass were within 10% of the targeted values. The results for

  17. SULFATE SOLUBILITY LIMIT VERIFICATION FOR DWPF SLUDGE BATCH 7B

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.

    2011-10-03

    The objective of this study was to determine a sulfate solubility limit in glass for Sludge Batch 7b (SB7b). The SB7b composition projection provided by Savannah River Remediation (SRR) on May 25, 2011 was used as the basis for formulating glass compositions to determine the sulfate limit. Additions of Na{sub 2}O to the projected sludge composition were made by the Savannah River National Laboratory (SRNL) due to uncertainty in the final concentration of Na{sub 2}O for SB7b, which is dependent on washing effectiveness and the potential need to add NaOH to ensure an acceptable projected operating window. Additions of 4, 6, and 8 wt % Na{sub 2}O were made to the nominal May 25, 2011 composition projection. An updated SB7b composition projection was received from SRR on August 4, 2011. Due to compositional similarities, no additional experimental work using the August 4, 2011 compositions was considered to be necessary for this study. Both Frit 418 and Frit 702 were included in this study. The targeted sulfate (SO{sub 4}{sup 2-}) concentrations of the study glasses were selected within the range of 0.6 to 0.9 wt % in glass. A total of 52 glass compositions were selected based on the compositional variables of Na{sub 2}O addition, Actinide Removal Process (ARP) stream addition, waste loading, frit composition, and sulfate concentration. The glasses were batched, melted, and characterized following SRNL procedures. Visual observations were recorded for each glass after it cooled and used as in indicator of sulfur retention. Representative samples of each of the glasses fabricated were subjected to chemical analysis to determine whether the targeted compositions were met, as well as to determine the quantity of sulfate that was retained after melting. In general, the measured composition data showed that there were only minor issues in meeting the targeted compositions for the study glasses, and the measured sulfate concentrations for each study glass were within 10% of

  18. Batch-related sterile endophthalmitis following intravitreal injection of bevacizumab

    Directory of Open Access Journals (Sweden)

    Morteza Entezari

    2014-01-01

    Full Text Available Background: To report a series of patients with sterile endophthalmitis after intravitreal bevacizumab (IVB injection from 2 different batches of bevacizumab. Materials and Methods: Records of 11 eyes with severe inflammation after IVB injections from two different batches (7 eyes from one and 4 from the other on two separate days were evaluated. Fifteen eyes of 15 patients in one day were treated with one batch and 18 eyes of 17 patients were treated another day using another batch injected for different retinal diseases. Each batch was opened on the day of injection. We used commercially available bevacizumab (100 mg/4 ml kept at 4°C. Severe cases with hypopyon were admitted to the ward and underwent anterior chamber and vitreous tap for direct smear and culture. Results: Pain, redness and decreased vision began after 11-17 days. All had anterior chamber and vitreous reactions and 5 had hypopyon. Antibiotics and corticosteroids were initiated immediately, but the antibiotics were discontinued after negative culture results. Visual acuity returned to pre-injection levels in 10 eyes after 1 month and only in one eye pars plana vitrectomy was performed. Mean VA at the time of presentation with inflammation (1.76 ± 0.78 logMAR decreased significantly (P = 0.008 compared to the initial mean corrected VA (1.18 ± 0.55 logMAR; however, final mean corrected VA (1.02 ± 0.48 logMAR improved in comparison with the baseline but not to a significant level (P = 0.159. Conclusions: We report a cluster of sterile endophthalmitis following intravitreal injection of bevacizumab from the same batch of bevacizumab that has a favorable prognosis.

  19. Fabrication of Magnetic Nanoparticles with Controllable Drug Loading and Release through a Simple Assembly Approach

    OpenAIRE

    Fang, Chen; Kievit, Forrest M.; Veiseh, Omid; Stephen, Zachary R.; Wang, Tingzhong; Lee, Donghoon; Ellenbogen, Richard G.; Zhang, Mciqin

    2012-01-01

    Nanoparticle-based cancer therapeutics promises to improve drug delivery safety and efficacy. However, fabrication of consistent theranostic nanoparticles with high and controllable drug loading remains a challenge, primarily due to the cumbersome, multi-step synthesis processes conventionally applied. Here, we present a simple and highly controllable method for assembly of theranostic nanoparticles, which may greatly reduce batch-to-batch variation. The major components of this nanoparticle ...

  20. Frit Optimization For Sludge Batch Processing At The Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    The Savannah River National Laboratory (SRNL) Frit Development Team recommends that the Defense Waste Processing Facility (DWPF) utilize Frit 418 for initial processing of high level waste (HLW) Sludge Batch 5 (SB5). The extended SB5 preparation time and need for DWPF feed have necessitated the use of a frit that is already included on the DWPF procurement specification. Frit 418 has been used previously in vitrification of Sludge Batches 3 and 4. Paper study assessments predict that Frit 418 will form an acceptable glass when combined with SB5 over a range of waste loadings (WLs), typically 30-41% based on nominal projected SB5 compositions. Frit 418 has a relatively high degree of robustness with regard to variation in the projected SB5 composition, particularly when the Na2O concentration is varied. The acceptability (chemical durability) and model applicability of the Frit 418-SB5 system will be verified experimentally through a variability study, to be documented separately. Frit 418 has not been designed to provide an optimal melt rate with SB5, but is recommended for initial processing of SB5 until experimental testing to optimize a frit composition for melt rate can be completed. Melt rate performance can not be predicted at this time and must be determined experimentally. Note that melt rate testing may either identify an improved frit for SB5 processing (one which produces an acceptable glass at a faster rate than Frit 418) or confirm that Frit 418 is the best option.

  1. Biological treatment of PAH-contaminated sediments in a Sequencing Batch Reactor

    International Nuclear Information System (INIS)

    The technical feasibility of a sequential batch process for the biological treatment of sediments contaminated by polycyclic aromatic hydrocarbons (PAHs) was evaluated through an experimental study. A bench-scale Sediment Slurry Sequencing Batch Reactor (SS-SBR) was fed with river sediments contaminated by a PAH mixture made by fluorene, anthracene, pyrene and crysene. The process performance was evaluated under different operating conditions, obtained by modifying the influent organic load, the feed composition and the hydraulic residence time. Measurements of the Oxygen Uptake Rates (OURs) provided useful insights on the biological kinetics occurring in the SS-SBR, suggesting the minimum applied cycle time-length of 7 days could be eventually halved, as also confirmed by the trend observed in the volatile solid and total organic carbon data. The removal efficiencies gradually improved during the SS-SBR operation, achieving at the end of the study rather constant removal rates above 80% for both 3-rings PAHs (fluorene and anthracene) and 4-ring PAHs (pyrene and crysene) for an inlet total PAH concentration of 70 mg/kg as dry weight (dw).

  2. Production of tea vinegar by batch and semicontinuous fermentation

    OpenAIRE

    Pardeep KAUR; Kocher, G. S.; Phutela, R. P.

    2010-01-01

    The fermented tea vinegar combines the beneficial properties of tea and vinegar. The complete fermentation takes 4 to 5 weeks in a batch culture and thus can be shortened by semi continuous/ continuous fermentation using immobilized bacterial cells. In the present study, alcoholic fermentation of 1.0 and 1.5% tea infusions using Saccharomyces cerevisae G was carried out that resulted in 84.3 and 84.8% fermentation efficiency (FE) respectively. The batch vinegar fermentation of these wines wit...

  3. JAVA Implementation of the Batched iLab Shared Architecture

    OpenAIRE

    Lenard Payne; Mark Schulz

    2013-01-01

    The MIT iLab Shared Architecture is limited currently to running on the Microsoft Windows platform. A JAVA implementation of the Batched iLab Shared Architecture has been developed that can be used on other operating systems and still interoperate with the existing Microsoft .NET web services of MIT’s iLab ServiceBroker. The Batched iLab Shared Architecture has been revised and separates the Labserver into a LabServer that handles experiment management and a LabEquipment that handles experime...

  4. Stochastic growth logistic model with aftereffect for batch fermentation process

    Energy Technology Data Exchange (ETDEWEB)

    Rosli, Norhayati; Ayoubi, Tawfiqullah [Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang (Malaysia); Bahar, Arifah; Rahman, Haliza Abdul [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Salleh, Madihah Md [Department of Biotechnology Industry, Faculty of Biosciences and Bioengineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)

    2014-06-19

    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.

  5. Stochastic growth logistic model with aftereffect for batch fermentation process

    International Nuclear Information System (INIS)

    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits

  6. Combined treatment of landfill leachate with fecal supernatant in sequencing batch reactor

    Institute of Scientific and Technical Information of China (English)

    ZHOU Shao-qi; ZHANG Hong-guo; SHI Yong

    2006-01-01

    A laboratory-scale sequencing batch reactor (SBR) is used to treat landfill leachate containing high concentration of ammonium nitrogen with municipal fecal supernatant. The SBR system is operated in the following sequential phases: fill period,anoxic period, aeration period, settling period, decant and idle period. The results indicated that the average removal efficiencies of COD, BOD5, TN, NH+4-N were 93.76%, 98.28%, 84.74% and 99.21%, respectively. The average sludge removal loading rates of Highly effective simultaneous nitrification and denitrification was achieved in the SBR system. The ratio of nitrification and denitrification was 99% and 84%, respectively. There was partial NO-2 denitrification in the system.

  7. Aerobic digestion of tannery wastewater in a sequential batch reactor by salt-tolerant bacterial strains

    Science.gov (United States)

    Durai, G.; Rajasimman, M.; Rajamohan, N.

    2011-09-01

    Among the industries generating hyper saline effluents, tanneries are prominent in India. Hyper saline wastewater is difficult to treat by conventional biological treatment methods. Salt-tolerant microbes can adapt to these conditions and degrade the organics in hyper saline wastewater. In this study, the performance of a bench scale aerobic sequencing batch reactor (SBR) was investigated to treat the tannery wastewater by the salt-tolerant bacterial strains namely Pseudomonas aeruginosa, Bacillus flexus, Exiguobacterium homiense and Styphylococcus aureus. The study was carried out under different operating conditions by changing the hydraulic retention time, organic loading rate and initial substrate concentration. From the results it was found that a maximum COD reduction of 90.4% and colour removal of 78.6% was attained. From this study it was found that the salt-tolerant microorganisms could improve the reduction efficiency of COD and colour of the tannery wastewater.

  8. A Proposed Algorithm to improve security & Efficiency of SSL-TLS servers using Batch RSA decryption

    CERN Document Server

    Pateriya, R K; Shrivastava, S C; Patel, Jaideep

    2009-01-01

    Today, Internet becomes the essential part of our lives. Over 90 percent of the ecommerce is developed on the Internet. A security algorithm became very necessary for producer client transactions assurance and the financial applications safety. The rsa algorithm applicability derives from algorithm properties like confidentiality, safe authentication, data safety and integrity on the internet. Thus, this kind of networks can have a more easy utilization by practical accessing from short, medium, even long distance and from different public places. Rsa encryption in the client side is relatively cheap, whereas, the corresponding decryption in the server side is expensive because its private exponent is much larger. Thus ssl tls servers become swamped to perform public key decryption operations when the simultaneous requests increase quickly .The batch rsa method is useful for such highly loaded web server .In our proposed algorithm by reducing the response time and clients tolerable waiting time an improvement...

  9. Microbial population dynamics during sludge granulation in an A/O/A sequencing batch reactor.

    Science.gov (United States)

    He, Qiulai; Zhou, Jun; Wang, Hongyu; Zhang, Jing; Wei, Li

    2016-08-01

    The evolution of the bacterial population during formation of denitrifying phosphorus removal granular sludge was investigated using high-throughput pyrosequencing. As a result, mature granules with a compact structure were obtained in an anaerobic/aerobic/anoxic (A/O/A) sequencing batch reactor under an organic loading rate as low as 0.3kg COD/(m(3)·d). Rod-shaped microbes were observed to cover with the outer surface of granules. Besides, reliable COD and simultaneous nitrogen and phosphorus removal efficiencies were achieved over the whole operation period. MiSeq pyrosequencing analysis illustrated that both the microbial diversity and richness increased sharply during the granulation process, whereas they stayed stable after the presence of granules. Some microorganisms seemed to contribute to the formation of granules, and some were identified as functional bacterial groups responsible for constructing the biological reactor. PMID:27115745

  10. Lipid production in batch and fed-batch cultures of Rhodosporidium toruloides from 5 and 6 carbon carbohydrates

    Directory of Open Access Journals (Sweden)

    Wiebe Marilyn G

    2012-05-01

    Full Text Available Abstract Background Microbial lipids are a potential source of bio- or renewable diesel and the red yeast Rhodosporidium toruloides is interesting not only because it can accumulate over 50% of its dry biomass as lipid, but also because it utilises both five and six carbon carbohydrates, which are present in plant biomass hydrolysates. Methods R. toruloides was grown in batch and fed-batch cultures in 0.5 L bioreactors at pH 4 in chemically defined, nitrogen restricted (C/N 40 to 100 media containing glucose, xylose, arabinose, or all three carbohydrates as carbon source. Lipid was extracted from the biomass using chloroform-methanol, measured gravimetrically and analysed by GC. Results Lipid production was most efficient with glucose (up to 25 g lipid L−1, 48 to 75% lipid in the biomass, at up to 0.21 g lipid L−1 h−1 as the sole carbon source, but high lipid concentrations were also produced from xylose (36 to 45% lipid in biomass. Lipid production was low (15–19% lipid in biomass with arabinose as sole carbon source and was lower than expected (30% lipid in biomass when glucose, xylose and arabinose were provided simultaneously. The presence of arabinose and/or xylose in the medium increased the proportion of palmitic and linoleic acid and reduced the proportion of oleic acid in the fatty acids, compared to glucose-grown cells. High cell densities were obtained in both batch (37 g L−1, with 49% lipid in the biomass and fed-batch (35 to 47 g L−1, with 50 to 75% lipid in the biomass cultures. The highest proportion of lipid in the biomass was observed in cultures given nitrogen during the batch phase but none with the feed. However, carbohydrate consumption was incomplete when the feed did not contain nitrogen and the highest total lipid and best substrate consumption were observed in cultures which received a constant low nitrogen supply. Conclusions Lipid production in R. toruloides was lower from arabinose and mixed

  11. Ethanol production from Sorghum bicolor using both separate and simultaneous saccharification and fermentation in batch and fed batch systems

    DEFF Research Database (Denmark)

    Mehmood, Sajid; Gulfraz, M.; Rana, N. F.;

    2009-01-01

    were used in order to increase the monomeric sugar during enzymatic hydrolysis and it has been observed that the addition of these surfactants contributed significantly in cellulosic conversion but no effect was shown on hemicellulosic hydrolysis. Fermentability of hydrolyzate was tested using...... Saccharomyces cerevisiae Ethanol Red (TM) and it was observed that simultaneous saccharification and fermentation ( SSF) with both batch and fed batch resulted in better ethanol yield as compared to separate hydrolysis and fermentation ( SHF). Detoxification of furan during SHF facilitated reduction in...

  12. Continuous cellulosic bioethanol fermentation by cyclic fed-batch cocultivation.

    Science.gov (United States)

    Jiang, He-Long; He, Qiang; He, Zhili; Hemme, Christopher L; Wu, Liyou; Zhou, Jizhong

    2013-03-01

    Cocultivation of cellulolytic and saccharolytic microbial populations is a promising strategy to improve bioethanol production from the fermentation of recalcitrant cellulosic materials. Earlier studies have demonstrated the effectiveness of cocultivation in enhancing ethanolic fermentation of cellulose in batch fermentation. To further enhance process efficiency, a semicontinuous cyclic fed-batch fermentor configuration was evaluated for its potential in enhancing the efficiency of cellulose fermentation using cocultivation. Cocultures of cellulolytic Clostridium thermocellum LQRI and saccharolytic Thermoanaerobacter pseudethanolicus strain X514 were tested in the semicontinuous fermentor as a model system. Initial cellulose concentration and pH were identified as the key process parameters controlling cellulose fermentation performance in the fixed-volume cyclic fed-batch coculture system. At an initial cellulose concentration of 40 g liter(-1), the concentration of ethanol produced with pH control was 4.5-fold higher than that without pH control. It was also found that efficient cellulosic bioethanol production by cocultivation was sustained in the semicontinuous configuration, with bioethanol production reaching 474 mM in 96 h with an initial cellulose concentration of 80 g liter(-1) and pH controlled at 6.5 to 6.8. These results suggested the advantages of the cyclic fed-batch process for cellulosic bioethanol fermentation by the cocultures. PMID:23275517

  13. Discrete time analysis of batch processes in material flow systems

    OpenAIRE

    Schleyer, Marc

    2007-01-01

    Scope of this work is the development of appropriate models for the evaluation of batch processes in material flow systems. The presented analytical methods support the long range planning in an early planning stage, in which capacities are determined to minimize the facility costs under the condition of cycle time targets.

  14. Batch immunoextraction method for efficient purification of aromatic cytokinins

    Czech Academy of Sciences Publication Activity Database

    Hauserová, Eva; Swaczynová, Jana; Doležal, Karel; Lenobel, René; Popa, Igor; Hajdúch, M.; Vydra, D.; Fuksová, Květoslava; Strnad, Miroslav

    2005-01-01

    Roč. 1100, č. 1 (2005), s. 116-125. ISSN 0021-9673 R&D Projects: GA AV ČR IBS4055304 Institutional research plan: CEZ:AV0Z50380511; MSM6198959216 Keywords : antibody * 6-benzylaminopurine * batch immunoextraction Subject RIV: ED - Physiology Impact factor: 3.096, year: 2005

  15. Batch production of YBCO disks for levitation applications

    Czech Academy of Sciences Publication Activity Database

    Plecháček, V.; Jirsa, Miloš; Rameš, Michal; Muralidhar, M.

    2012-01-01

    Roč. 36, č. 2012 (2012), s. 538-543. ISSN 1875-3892 R&D Projects: GA MŠk(CZ) ME10069 Institutional research plan: CEZ:AV0Z10100520 Keywords : YBCO disk * batch production * levitation * levitation force * rapped magnetic field * critical current density Subject RIV: BM - Solid Matter Physics ; Magnetism

  16. Batch profiling calibration for robust NMR metabonomic data analysis.

    Science.gov (United States)

    Fages, Anne; Pontoizeau, Clément; Jobard, Elodie; Lévy, Pierre; Bartosch, Birke; Elena-Herrmann, Bénédicte

    2013-11-01

    Metabonomic studies involve the analysis of large numbers of samples to identify significant changes in the metabolic fingerprints of biological systems, possibly with sufficient statistical power for analysis. While procedures related to sample preparation and spectral data acquisition generally include the use of independent sample batches, these might be sources of systematic variation whose effects should be removed to focus on phenotyping the relevant biological variability. In this work, we describe a grouped-batch profile (GBP) calibration strategy to adjust nuclear magnetic resonance (NMR) metabolomic data-sets for batch effects either introduced during NMR experiments or samples work-up. We show how this method can be applied to data calibration in the context of a large-scale NMR epidemiological study where quality control samples are available. We also illustrate the efficiency of a batch profile correction for NMR metabonomic investigation of cell extracts, where GBP can significantly improve the predictive power of multivariate statistical models for discriminant analysis of the cell infection status. The method is applicable to a broad range of NMR metabolomic/metabonomic cohort studies. PMID:23975089

  17. Reprocessing of spent fuel from AHWR: preliminary batch studies

    International Nuclear Information System (INIS)

    Scheme for the reprocessing of spent fuel from advanced heavy water reactor (AHWR) is under development. Present paper describes the results of some of the preliminary batch studies carried out to collect the data required for conducting counter-current studies. Studies are carried out using simulated solutions and include data on extraction as well as stripping. (author)

  18. Load testing circuit

    DEFF Research Database (Denmark)

    2009-01-01

    A load testing circuit a circuit tests the load impedance of a load connected to an amplifier. The load impedance includes a first terminal and a second terminal, the load testing circuit comprising a signal generator providing a test signal of a defined bandwidth to the first terminal of the load...

  19. Correspondence between Community Structure and Function during Succession in Phenol- and Phenol-plus-Trichloroethene-Fed Sequencing Batch Reactors

    OpenAIRE

    Ayala-del-Río, Héctor L.; Stephen J Callister; Criddle, Craig S.; Tiedje, James M

    2004-01-01

    The effects of more than 2 years of trichloroethene (TCE) application on community succession and function were studied in two aerobic sequencing batch reactors. One reactor was fed phenol, and the second reactor was fed both phenol and TCE in sequence twice per day. After initiation of TCE loading in the second reactor, the TCE transformation rates initially decreased, but they stabilized with an average second-order rate coefficient of 0.044 liter mg−1 day−1 for 2 years. In contrast, the ph...

  20. Influence of Carbon Source on Nitrate Removal by Nitrate-Tolerant Klebsiella oxytoca CECT 4460 in Batch and Chemostat Cultures

    OpenAIRE

    Piñar, Guadalupe; Kovárová, Karin; Egli, Thomas; Ramos, Juan L.

    1998-01-01

    The nitrate-tolerant organism Klebsiella oxytoca CECT 4460 tolerates nitrate at concentrations up to 1 M and is used to treat wastewater with high nitrate loads in industrial wastewater treatment plants. We studied the influence of the C source (glycerol or sucrose or both) on the growth rate and the efficiency of nitrate removal under laboratory conditions. With sucrose as the sole C source the maximum specific growth rate was 0.3 h−1, whereas with glycerol it was 0.45 h−1. In batch cultures...

  1. Computer Simulation of Batch Grinding Process Based on Simulink 5.0

    Institute of Scientific and Technical Information of China (English)

    LI Xia; YANG Ying-jie; DENG Hui-yong; HUANG Guang-yao

    2005-01-01

    How to use Simulink software in grinding system was studied. The method of designing batch grinding subsystem and the steps of building batch grinding blockset were introduced. Based on batch grinding population balance model, batch grinding was simulated with Simulink. The results show that the simulation system designed with Simulink explain reasonably the impersonal rule of batch grinding. On the basis of batch grinding simulation, the computer simulation of mineral processing system with Simulink of grinding and classification, comminution, etc, can be properly explored.

  2. MASS PRODUCTION OF THE BENEFICIAL NEMATODE STEINERNEMA CARPOCAPSAE UTILIZING A FED-BATCH CULTURING PROCESS

    OpenAIRE

    Leonard D. Holmes; Inman III, Floyd L.; Sivanadane Mandjiny; Rinu Kooliyottil; Devang Upadhyay

    2013-01-01

    The present study deals with the batch and fed-batch mass production of Steinernema carpocapsae. S. carpocapsae is an entomoparasitic nematode that is used as a biological control agent of soil-borne crop insect pests. The ability and efficiency of fed-batch culture process was successful through the utilization of the nematode’s bacterial symbiont Xenorhabdus nematophila. Results from the fed-batch process were compared to those obtain from the standard batch process. The fed-batch process s...

  3. Glucoamylase production in batch, chemostat and fed-batch cultivations by an industrial strain of Aspergillus niger

    DEFF Research Database (Denmark)

    Pedersen, Henrik; Beyer, Michael; Nielsen, Jens

    2000-01-01

    The Aspergillus niger strain BO-1 was grown in batch, continuous (chemostat) and fed-batch cultivations in order to study the production of the extracellular enzyme glucoamylase under different growth conditions. In the pH range 2.5-6.0, the specific glucoamylase productivity and the specific...... growth rate of the fungus were independent of pH when grown in batch cultivations. The specific glucoamylase productivity increased linearly with the specific growth rate in the range 0-0.1 h(-1) and was constant in the range 0.1-0.2 h(-1) Maltose and maltodextrin were non-inducing carbon sources...... compared to glucose, and the maximum specific growth rate was 0.19 +/- 0.02 h(-1) irrespective of whether glucose or maltose was the carbon source. In fed-batch cultivations, glucoamylase titres of up to 6.5 g 1(-1) were obtained even though the strain contained only one copy of the glaA gene....

  4. Loads and loads and loads: The influence of prospective load, retrospective load, and ongoing task load in prospective memory

    Directory of Open Access Journals (Sweden)

    Beat eMeier

    2015-06-01

    Full Text Available In prospective memory tasks different kinds of load can occur. Adding a prospective memory task can impose a load on ongoing task performance. Adding ongoing task load can affect prospective memory performance. The existence of multiple target events increases prospective load and adding complexity to the to-be-remembered action increases retrospective load. In two experiments, we systematically examined the effects of these different types of load on prospective memory performance. Results showed an effect of prospective load on costs in the ongoing task for categorical targets (Experiment 2, but not for specific targets (Experiment 1. Retrospective load and ongoing task load both affected remembering the retrospective component of the prospective memory task. We suggest that prospective load can enhance costs in the ongoing task due to additional monitoring requirements. Retrospective load and ongoing task load seem to impact the division of resources between the ongoing task and retrieval of the retrospective component, which may affect disengagement from the ongoing task. In general, the results demonstrate that the different types of load affect prospective memory differentially.

  5. Anaerobic digestion of Chinese cabbage waste silage with swine manure for biogas production: batch and continuous study.

    Science.gov (United States)

    Kafle, Gopi Krishna; Bhattarai, Sujala; Kim, Sang Hun; Chen, Lide

    2014-01-01

    The aim of this study was to investigate the potential for anaerobic co-digestion of Chinese cabbage waste silage (CCWS) with swine manure (SM). Batch and continuous experiments were carried out under mesophilic anaerobic conditions (36-38°C). The batch test evaluated the effect of CCWS co-digestion with SM (SM: CCWS=100:0; 25:75; 33:67; 0:100, % volatile solids (VS) basis). The continuous test evaluated the performance of a single stage completely stirred tank reactor with SM alone and with a mixture of SM and CCWS. Batch test results showed no significant difference in biogas yield up to 25-33% of CCWS; however, biogas yield was significantly decreased when CCWS contents in feed increased to 67% and 100%. When testing continuous digestion, the biogas yield at organic loading rate (OLR) of 2.0 g VSL⁻¹ d⁻¹ increased by 17% with a mixture of SM and CCWS (SM:CCWS=75:25) (423 mL g⁻¹ VS) than with SM alone (361 mL g⁻¹ VS). The continuous anaerobic digestion process (biogas production, pH, total volatile fatty acids (TVFA) and TVFA/total alkalinity ratios) was stable when co-digesting SM and CCWS (75:25) at OLR of 2.0 g VSL⁻¹ d⁻¹ and hydraulic retention time of 20 days under mesophilic conditions. PMID:25176305

  6. MASS PRODUCTION OF THE BENEFICIAL NEMATODE STEINERNEMA CARPOCAPSAE UTILIZING A FED-BATCH CULTURING PROCESS

    Directory of Open Access Journals (Sweden)

    Leonard D. Holmes

    2013-04-01

    Full Text Available The present study deals with the batch and fed-batch mass production of Steinernema carpocapsae. S. carpocapsae is an entomoparasitic nematode that is used as a biological control agent of soil-borne crop insect pests. The ability and efficiency of fed-batch culture process was successful through the utilization of the nematode’s bacterial symbiont Xenorhabdus nematophila. Results from the fed-batch process were compared to those obtain from the standard batch process. The fed-batch process successively improved the mass production process of S. carpocapsae employing liquid medium technology. Within the first week of the fed-batch process (day six, the nematode density obtained was 202,000 nematodes mL−1; whereas on day six, batch culture mode resulted in a nematode density of 23,000 nematodes mL−1. The fed-batch process was superior to that of batch production with a yield approximately 8.8-fold higher. In fed-batch process, the nematode yield was improved 88.6 % higher within a short amount of time compared to the batch process. Fed-batch seems to make the process more efficient and possibly economically viable.

  7. [Analysis of the transcriptional profiling of cell cycle regulatory networks of recombinant Chinese hamster ovary cells in batch and fed-batch cultures].

    Science.gov (United States)

    Liu, Xingmao; Ye, Lingling; Liu, Hong; Li, Shichong; Wang, Qiwei; Wu, Benchuan; Chen, Zhaolie

    2011-08-01

    In the light of Chinese hamster ovary (CHO) cell line 11G-S expressing human recombinant pro-urokinase, the differences of gene expression levels of the cells in different growth phases in both batch and fed-batch cultures were revealed by using gene chip technology. Then, based on the known cell cycle regulatory networks, the transcriptional profiling of the cell cycle regulatory networks of the cells in batch and fed-batch cultures was analyzed by using Genmapp software. Among the approximate 19 191 target genes in gene chip, the number of down-regulated genes was more than those of up-regulated genes of the cells in both batch and fed-batch cultures. The number of down-regulated genes of the cells in the recession phase in fed-batch culture was much more than that of the cells in batch culture. Comparative transcriptional analysis of the key cell cycle regulatory genes of the cells in both culture modes indicated that the cell proliferation and cell viability of the cells in both batch and fed-batch cultures were mainly regulated through down-regulating Cdk6, Cdk2, Cdc2a, Ccne1, Ccne2 genes of CDKs, Cyclin and CKI family and up-regulating Smad4 gene. PMID:22097809

  8. On the choice of batch mode in order to maximize throughput

    OpenAIRE

    Weeda, P.J.

    1990-01-01

    An analysis of serial process configurations consisting of three processes and two machines shows interesting relations between the choice of batch mode (or batch structure), utilization of capacities and maximum throughput.

  9. Sorting Olive Batches for the Milling Process Using Image Processing

    Directory of Open Access Journals (Sweden)

    Daniel Aguilera Puerto

    2015-07-01

    Full Text Available The quality of virgin olive oil obtained in the milling process is directly bound to the characteristics of the olives. Hence, the correct classification of the different incoming olive batches is crucial to reach the maximum quality of the oil. The aim of this work is to provide an automatic inspection system, based on computer vision, and to classify automatically different batches of olives entering the milling process. The classification is based on the differentiation between ground and tree olives. For this purpose, three different species have been studied (Picudo, Picual and Hojiblanco. The samples have been obtained by picking the olives directly from the tree or from the ground. The feature vector of the samples has been obtained on the basis of the olive image histograms. Moreover, different image preprocessing has been employed, and two classification techniques have been used: these are discriminant analysis and neural networks. The proposed methodology has been validated successfully, obtaining good classification results.

  10. Empirical State Error Covariance Matrix for Batch Estimation

    Science.gov (United States)

    Frisbee, Joe

    2015-01-01

    State estimation techniques effectively provide mean state estimates. However, the theoretical state error covariance matrices provided as part of these techniques often suffer from a lack of confidence in their ability to describe the uncertainty in the estimated states. By a reinterpretation of the equations involved in the weighted batch least squares algorithm, it is possible to directly arrive at an empirical state error covariance matrix. The proposed empirical state error covariance matrix will contain the effect of all error sources, known or not. This empirical error covariance matrix may be calculated as a side computation for each unique batch solution. Results based on the proposed technique will be presented for a simple, two observer and measurement error only problem.

  11. Plutonium immobilization ceramic feed batching component test report

    International Nuclear Information System (INIS)

    The Plutonium Immobilization Facility will encapsulate plutonium in ceramic pucks and seal the pucks inside welded cans. Remote equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with high level waste glass for permanent storage. Ceramic feed batching (CFB) is one of the first process steps involved with first stage plutonium immobilization. The CFB step will blend plutonium oxide powder before it is combined with other materials to make pucks. This report discusses the Plutonium Immobilization CFB process preliminary concept (including a process block diagram), batch splitting component test results, CFB development areas, and FY 1999 and 2000 CFB program milestones

  12. APPLICATION OF MODEL PREDICTIVE CONTROL TO BATCH POLYMERIZATION REACTOR

    Directory of Open Access Journals (Sweden)

    N.M. Ghasem

    2006-06-01

    Full Text Available The absence of a stable operational state in polymerization reactors that operates in batches is factor that determine the need of a special control system. In this study, advanced control methodology is implemented for controlling the operation of a batch polymerization reactor for polystyrene production utilizingmodel predictive control. By utilizing a model of the polymerization process, the necessary operational conditions were determined for producing the polymer within the desired characteristics. The maincontrol objective is to bring the reactor temperature to its target temperature as rapidly as possible with minimal temperature overshoot. Control performance for the proposed method is encouraging. It has been observed that temperature overshoot can be minimized by the proposed method with the use of both reactor and jacket energy balance for reactor temperature control.

  13. JAVA Implementation of the Batched iLab Shared Architecture

    Directory of Open Access Journals (Sweden)

    Lenard Payne

    2013-04-01

    Full Text Available The MIT iLab Shared Architecture is limited currently to running on the Microsoft Windows platform. A JAVA implementation of the Batched iLab Shared Architecture has been developed that can be used on other operating systems and still interoperate with the existing Microsoft .NET web services of MIT’s iLab ServiceBroker. The Batched iLab Shared Architecture has been revised and separates the Labserver into a LabServer that handles experiment management and a LabEquipment that handles experiment execution. The JAVA implementation provides a 3-tier code development model that allows code to be reused and to develop only the code that is specific to each experiment.

  14. Electrical load detection aparatus

    DEFF Research Database (Denmark)

    2010-01-01

    A load detection technique for a load comprising multiple frequency-dependant sub-loads comprises measuring a representation of the impedance characteristic of the load; providing stored representations of a multiplicity of impedance characteristics of the load; each one of the stored representat...

  15. On-line Scheduling Algorithm for Penicillin Fed-batch Fermentation

    Institute of Scientific and Technical Information of China (English)

    XUE Yao-feng; YUAN Jing-qi

    2005-01-01

    An on-line scheduling algorithm to maximize gross profit of penicillin fed-batch fermentation is proposed. According to the on-line classification method, fed-batch fermentation batches are classified into three categories. Using the scheduling strategy, the optimal termination sequence of batches is obtained. Pseudo on-line simulations for testing the proposed algorithm with the data from industrial scale penicillin fermentation are carried out.

  16. Health advantages of transition to batch management system in farrow-to-finish pig herds

    OpenAIRE

    Vangroenweghe, F; Suls, L; Van Driessche, E.; Maes, Dominiek; De Graef, E.

    2012-01-01

    Sow batch management systems have become more popular due to advantages in labour planning, piglet batch sizes, all-in all-out practices and health management. The present study investigated the potential health advantages of 10 selected farrow-to-finish pig herds before and after transition from a one week batch management system to a four or five week batch management system. Five different animal categories (gilts, sows, piglets, growers and finishers) were sampled at three time points (T0...

  17. vFlow: A GUI-Based Tool for Building Batch Applications for Cloud Computing

    OpenAIRE

    Gobjuka, Hassan; Ahmat, Kamal

    2011-01-01

    In this paper we introduce vFlow - A framework for rapid designing of batch processing applications for Cloud Computing environment. vFlow batch processing system extracts tasks from the vPlans diagrams, systematically captures the dynamics in batch application management tasks, and translates them to Cloud environment API, named vDocuments, that can be used to execute batch processing applications. vDocuments do not only enable the complete execution of low-level configuration management tas...

  18. Batch gating for data association in monocular SLAM

    OpenAIRE

    Guerra Paradas, Edmundo; Munguía Alcalá, Rodrigo Francisco; Bolea Monte, Yolanda; Grau Saldes, Antoni

    2013-01-01

    This work describes the development and implementation of a single-camera SLAM system, introducing a novel data validation algorithm. A 6-DOF monocular SLAM method developed is based on the Delayed Inverse-Depth (DI-D) Feature Initialization, with the addition of a new data association batch validation technique, the Highest Order Hypothesis Compatibility Test, HOHCT. The DI-D initializes new features in the system defining single hypothesis for the initial depth of features by stoch...

  19. Feasibility of extractive distillation process variants in batch rectifier column

    OpenAIRE

    Stéger, Csaba; Varga, Viktoria; Horvath, Laszlo; Rev, Endre; Fonyo, Zsolt; Meyer, Michel; Lelkes, Zoltan

    2005-01-01

    A systematic comparison is presented about the separation tasks of azeotropic and close-boiling mixtures applying batch extractive distillation (BED) in rectifier. All the eight possible mixture types with at most a single azeotrope (minimum and maximum boiling azeotropes with heavy, light, and intermediate boiling entrainers; and close boiling mixtures with heavy and light entrainers) are compared. The main results of the feasibility studies on the hitherto unpublished cases are presented. A...

  20. Optimization of Recipe Based Batch Control Systems Using Neural Networks

    OpenAIRE

    Šoštarec, A.; Gosak, D.; Hlupić, N.

    2012-01-01

    In the modern pharmaceutical industry many flexible batch plants operate under an integrated business and production system, using ISA S95 and ISA S88 standards for models and terminology, and implementing flexible recipe-based production. In the environment of constantly changing market conditions, adjustment to surroundings is a business necessity. To support necessary production improvement, regulatory authorities have introduced the risk based approach for the control of process dev...

  1. Mathematical modeling of recombinant Escherichia coli aerobic batch fermentations

    OpenAIRE

    Costa, Rafael S; Rocha, I; Ferreira, E. C.

    2008-01-01

    In this work, three competing unstructured mathematical models for the biomass growth by recombinant E. coli strains with different acetate inhibition kinetics terms were evaluated for batch processes at constant temperature and pH. The models considered the dynamics of biomass growth, acetate accumulation, substrate consumption, Green Fluorescence Protein (GFP) production and three metabolic pathways for E. coli. Parameter estimation and model validation was carried out usi...

  2. Voronoi model learning for batch mode reinforcement learning

    OpenAIRE

    Fonteneau, Raphaël; Ernst, Damien

    2010-01-01

    We consider deterministic optimal control problems with continuous state spaces where the information on the system dynamics and the reward function is constrained to a set of system transitions. Each system transition gathers a state, the action taken while being in this state, the immediate reward observed and the next state reached. In such a context, we propose a new model learning--type reinforcement learning (RL) algorithm in batch mode, finite-time and deterministic setting. The algori...

  3. Industrial and Municipal Wastewater Treatment in the Sequencing Batch Reactor

    OpenAIRE

    Vrtovsek, J.; Ros, M.

    2008-01-01

    A mixture of Industrial wastewater from chemical industry (varnish, paint and pigments production) and municipal wastewater was treated in pilot sequencing batch reactor (SBR). Results of the pilot experiments show that the foaming problem has great influence on the behavior of SBR, especially when the ratio between industrial and municipal wastewater is very high. Foaming problem was negligible when the mixture with φ; 20 % of the industrial wastewater and j = 80 % of the municipal wastewate...

  4. SEQUENCING BATCH REACTOR: A PROMISING TECHNOLOGY IN WASTEWATER TREATMENT

    OpenAIRE

    A.H Mahvi

    2008-01-01

    Discharge of domestic and industrial wastewater to surface or groundwater is very dangerous to the environment. Therefore treatment of any kind of wastewater to produce effluent with good quality is necessary. In this regard choosing an effective treatment system is important. Sequencing batch reactor is a modification of activated sludge process which has been successfully used to treat municipal and industrial wastewater. The process could be applied for nutrients removal, high biochemical ...

  5. EFFECT OF DYE CONCENTRATION ON SEQUENCING BATCH REACTOR PERFORMANCE

    OpenAIRE

    A. A. Vaigan ، M. R. Alavi Moghaddam ، H. Hashemi

    2009-01-01

    Reactive dyes have been identified as problematic compounds in textile industries wastewater as they are water soluble and cannot be easily removed by conventional aerobic biological treatment systems. The treatability of a reactive dye (Brill Blue KN-R) by sequencing batch reactor and the influence of the dye concentration on system performance were investigated in this study. Brill Blue KN-R is one of the main dyes that are used in textile industries in Iran. Four cylindrical Plexiglas reac...

  6. Biological Treatment of Dairy Wastewater by Sequencing Batch Reactor

    OpenAIRE

    A Mohseni-Bandpi, H Bazari

    2004-01-01

    A bench scale aerobic Sequencing Batch Reactor (SBR) was investigated to treat the wastewater from an industrial milk factory. The reactor was constructed from plexi glass material and its volume was 22.5 L. The reactor was supplied with oxygen by fine bubble air diffuser. The reactor was fed with milk factory and synthetic wastewater under different operational conditions. The COD removal efficiency was achieved more than 90%, whereas COD concentration varied from 400 to 2500 mg/l. The optim...

  7. Optimal parametric sensitivity control for a fed-batch reactor

    OpenAIRE

    Stigter, J.D.; Keesman, K. J.

    2001-01-01

    The paper presents a method to derive an optimal parametric sensitivity controller for optimal estimation of a set of parameters in an experiment. The method is demonstrated for a fed batch bio-reactor case study for optimal estimation of the saturation constant Ks and, albeit intuitively, the parameter combination "mu-max X/Y" where mu-max is the maximum growth rate [g/min], Y is the yield coefficient [g/g], and X is the (constant) biomass [g].

  8. SLUDGE BATCH 4 SIMULANT FLOWSHEET STUDIES: PHASE II RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Stone, M; David Best, D

    2006-09-12

    The Defense Waste Processing Facility (DWPF) will transition from Sludge Batch 3 (SB3) processing to Sludge Batch 4 (SB4) processing in early fiscal year 2007. Tests were conducted using non-radioactive simulants of the expected SB4 composition to determine the impact of varying the acid stoichiometry during the Sludge Receipt and Adjustment Tank (SRAT) process. The work was conducted to meet the Technical Task Request (TTR) HLW/DWPF/TTR-2004-0031 and followed the guidelines of a Task Technical and Quality Assurance Plan (TT&QAP). The flowsheet studies are performed to evaluate the potential chemical processing issues, hydrogen generation rates, and process slurry rheological properties as a function of acid stoichiometry. Initial SB4 flowsheet studies were conducted to guide decisions during the sludge batch preparation process. These studies were conducted with the estimated SB4 composition at the time of the study. The composition has changed slightly since these studies were completed due to changes in the sludges blended to prepare SB4 and the estimated SB3 heel mass. The following TTR requirements were addressed in this testing: (1) Hydrogen and nitrous oxide generation rates as a function of acid stoichiometry; (2) Acid quantities and processing times required for mercury removal; (3) Acid quantities and processing times required for nitrite destruction; and (4) Impact of SB4 composition (in particular, oxalate, manganese, nickel, mercury, and aluminum) on DWPF processing (i.e. acid addition strategy, foaming, hydrogen generation, REDOX control, rheology, etc.).

  9. Analyzing data flows of WLCG jobs at batch job level

    Science.gov (United States)

    Kuehn, Eileen; Fischer, Max; Giffels, Manuel; Jung, Christopher; Petzold, Andreas

    2015-05-01

    With the introduction of federated data access to the workflows of WLCG, it is becoming increasingly important for data centers to understand specific data flows regarding storage element accesses, firewall configurations, as well as the scheduling of batch jobs themselves. As existing batch system monitoring and related system monitoring tools do not support measurements at batch job level, a new tool has been developed and put into operation at the GridKa Tier 1 center for monitoring continuous data streams and characteristics of WLCG jobs and pilots. Long term measurements and data collection are in progress. These measurements already have been proven to be useful analyzing misbehaviors and various issues. Therefore we aim for an automated, realtime approach for anomaly detection. As a requirement, prototypes for standard workflows have to be examined. Based on measurements of several months, different features of HEP jobs are evaluated regarding their effectiveness for data mining approaches to identify these common workflows. The paper will introduce the actual measurement approach and statistics as well as the general concept and first results classifying different HEP job workflows derived from the measurements at GridKa.

  10. Fault Diagnosis of Batch Reactor Using Machine Learning Methods

    Directory of Open Access Journals (Sweden)

    Sujatha Subramanian

    2014-01-01

    Full Text Available Fault diagnosis of a batch reactor gives the early detection of fault and minimizes the risk of thermal runaway. It provides superior performance and helps to improve safety and consistency. It has become more vital in this technical era. In this paper, support vector machine (SVM is used to estimate the heat release (Qr of the batch reactor both normal and faulty conditions. The signature of the residual, which is obtained from the difference between nominal and estimated faulty Qr values, characterizes the different natures of faults occurring in the batch reactor. Appropriate statistical and geometric features are extracted from the residual signature and the total numbers of features are reduced using SVM attribute selection filter and principle component analysis (PCA techniques. artificial neural network (ANN classifiers like multilayer perceptron (MLP, radial basis function (RBF, and Bayes net are used to classify the different types of faults from the reduced features. It is observed from the result of the comparative study that the proposed method for fault diagnosis with limited number of features extracted from only one estimated parameter (Qr shows that it is more efficient and fast for diagnosing the typical faults.

  11. Spectrophotometric determination of fluoxetine by batch and flow injection methods.

    Science.gov (United States)

    Afkhami, Abbas; Madrakian, Tayyebeh; Khalafi, Lida

    2006-12-01

    A rapid, simple, and accurate spectrophotometric method is presented for the determination of fluoxetine by batch and flow injection analysis methods. The method is based on fluoxetine competitive complexation reaction with phenolphthalein-beta-cyclodextrin (PHP-beta-CD) inclusion complex. The increase in the absorbance of the solution at 554 nm by the addition of fluoxetine was measured. The formation constant for fluoxetin-beta-CD was calculated by non-linear least squares fitting. Fluoxetine can be determined in the range 7.0 x 10(-6)-2.4 x 10(-4) mol l(-1) and 5.0 x 10(-5)-1.0 x 10(-2) mol l(-1) by batch and flow methods, respectively. The limit of detection and limit of quantification were respectively 4.13 x 10(-6) mol l(-1) and 1.38 x 10(-5) mol l(-1) for batch and 2.46 x 10(-5) mol l(-1) and 8.22 x 10(-5) mol l(-1) for flow method. The sampling rate in flow injection analysis method was 80+/-5 samples h(-1). The method was applied to the determination of fluoxetine in pharmaceutical formulations and after addition to human urine samples. PMID:17139097

  12. Study of nitrogen and organics removal in sequencing batch reactor (SBR) using hybrid media.

    Science.gov (United States)

    Thuan, Tran-Hung; Chung, Yun-Chul; Ahn, Dae-Hee

    2003-03-01

    The removal of nitrogen and organics in a sequencing batch reactor (SBR) using hybrid media were investigated in this work. The hybrid media was made by the use of polyurethane foam (PU) cubes and powdered activated carbon (PAC). The function of activated carbon of hybrid media was to offer a suitable active site, which was able to absorb organic substances and ammonia, as well as that of PU was to provide an appropriated surface onto which biomass could be attached and grown. A laboratory-scale moving-bed sequencing batch reactor (SBR) was used for investigating the efficiency of hybrid media. The removal of nitrogen and organics for synthetic wastewater (COD; 490-1,627 mg/L, NH4(+)-N; 180-210 mg/L) were evaluated at different COD/N ratio and different anoxic phase conditions, respectively. The system was operated with the organic loading rate (OLR) of 0.1, 0.16, 0.24, and 0.28 kg COD/m3 day, respectively. Each mode based on OLR was divided as the periods of 45 days of operation time, except for third mode that was operated during 30 days. After acclimatization period, effluent total COD concentrations slightly decreased and the removal efficiency of organics increased to about 90% (COD; 70 mg/L) after 60 days and achieved 98% (COD; 30 mg/L) at the end of experiments. The organics reduction seemed to be less affected by shock loading since high organic loads did not affect the removal efficiency. The NIH4(+)-N concentrations in effluent showed almost lower than 1 mg/L and NO3(-)-N concentrations were high (150 mg/L) during a very low C/N ratio (C/N=2). Over 90% of T-N removal efficiency (T-N; 16 mg/L) was obtained during the last 20 days of the operation after controlling the COD/N ratio (C/N=7). The mixing condition and COD/N ratio at anoxic phase were determined as a main operating factors. In future, the optimal operating conditions of SBR system with hybrid media will be investigated from the view of maintaining a sufficient biomass to the hybrid media under

  13. Nitrification and aerobic denitrification in anoxic-aerobic sequencing batch reactor.

    Science.gov (United States)

    Alzate Marin, Juan C; Caravelli, Alejandro H; Zaritzky, Noemí E

    2016-01-01

    The aim of this study was to evaluate the feasibility of achieving nitrogen (N) removal using a lab-scale sequencing batch reactor (SBR) exposed to anoxic/aerobic (AN/OX) phases, focusing to achieve aerobic denitrification. This process will minimize emissions of N2O greenhouse gas. The effects of different operating parameters on the reactor performance were studied: cycle duration, AN/OX ratio, pH, dissolved oxygen concentration (DOC), and organic load. The highest inorganic N removal (NiR), close to 70%, was obtained at pH=7.5, low organic load (440mgCOD/(Lday)) and high aeration given by 12h cycle, AN/OX ratio=0.5:1.0 and DOC higher than 4.0mgO2/L. Nitrification followed by high-rate aerobic denitrification took place during the aerobic phase. Aerobic denitrification could be attributed to Tetrad-forming organisms (TFOs) with phenotype of glycogen accumulating organisms using polyhydroxyalkanoate and/or glycogen storage. The proposed AN/OX system constitutes an eco-friendly N removal process providing N2 as the end product. PMID:26512862

  14. Hydrolysis of Virgin Coconut Oil Using Immobilized Lipase in a Batch Reactor

    Directory of Open Access Journals (Sweden)

    Lee Suan Chua

    2012-01-01

    Full Text Available Hydrolysis of virgin coconut oil (VCO had been carried out by using an immobilised lipase from Mucor miehei (Lipozyme in a water-jacketed batch reactor. The kinetic of the hydrolysis was investigated by varying the parameters such as VCO concentration, enzyme loading, water content, and reaction temperature. It was found that VCO exhibited substrate inhibition at the concentration more than 40% (v/v. Lipozyme also achieved the highest production of free fatty acids, 4.56 mM at 1% (w/v of enzyme loading. The optimum water content for VCO hydrolysis was 7% (v/v. A relatively high content of water was required because water was one of the reactants in the hydrolysis. The progress curve and the temperature profile of the enzymatic hydrolysis also showed that Lipozyme could be used for free fatty acid production at the temperature up to 50°C. However, the highest initial reaction rate and the highest yield of free fatty acid production were at 45 and 40°C, respectively. A 100 hours of initial reaction time has to be compensated in order to obtain the highest yield of free fatty acid production at 40°C.

  15. Comparison of four enhancement strategies for aerobic granulation in sequencing batch reactors

    International Nuclear Information System (INIS)

    Aerobic granules were developed in four identical sequencing batch reactors (SBRs) with synthetic wastewater to compare different strategies for the enhancement of granulation. The SBRs were operated by (a) increasing organic loading rate in R1; (b) reducing settling time in R2; (c) extending starvation period in R3; and (d) increasing shear force in R4. The results showed that four operational strategies were able to enhance aerobic granulation successfully in SBR, but that also showed different effect on the granulation process and characteristics of mature aerobic granules. The rapidest granulation was observed by using short settling time (R2) and the granules had higher extracellular polymeric substance (EPS) than other reactors. Extended starvation period (R3) and high shear force (R4) resulted in longer granulation period and the granules with higher integrity and smaller size. Higher organic loading rate (R1) resulted in the granules with larger size and higher K value. The maximum specific COD removal rates (qmax) of the granules in all SBRs were at a similar level (0.13-0.16 g COD/h-g VSS) but the granules in R1 and R2 had higher apparent half rate constant (K) of 18 and 16 mg/L, than those in R3 and R4 (2.8 and 3.3 mg/L).

  16. 40 CFR 1065.546 - Validation of minimum dilution ratio for PM batch sampling.

    Science.gov (United States)

    2010-07-01

    ... for PM batch sampling. 1065.546 Section 1065.546 Protection of Environment ENVIRONMENTAL PROTECTION... Specified Duty Cycles § 1065.546 Validation of minimum dilution ratio for PM batch sampling. Use continuous... dilution ratios for PM batch sampling as specified in § 1065.140(e)(2) over the test interval. You may...

  17. 40 CFR Table 2 to Subpart Vvvvvv... - Emission Limits and Compliance Requirements for Batch Process Vents

    Science.gov (United States)

    2010-07-01

    ... Requirements for Batch Process Vents 2 Table 2 to Subpart VVVVVV of Part 63 Protection of Environment... of Part 63—Emission Limits and Compliance Requirements for Batch Process Vents As required in § 63.11496, you must comply with the requirements for batch process vents as shown in the following...

  18. 21 CFR 226.102 - Master-formula and batch-production records.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Master-formula and batch-production records. 226... Records and Reports § 226.102 Master-formula and batch-production records. (a) For each Type A medicated... batch size, or of appropriate size in the case of continuous systems to be produced from the...

  19. 40 CFR 63.1036 - Alternative means of emission limitation: Batch processes.

    Science.gov (United States)

    2010-07-01

    ... limitation: Batch processes. 63.1036 Section 63.1036 Protection of Environment ENVIRONMENTAL PROTECTION... § 63.1036 Alternative means of emission limitation: Batch processes. (a) General requirement. As an... operator of a batch process that operates in regulated material service during the calendar year may...

  20. 40 CFR 65.117 - Alternative means of emission limitation: Batch processes.

    Science.gov (United States)

    2010-07-01

    ... limitation: Batch processes. 65.117 Section 65.117 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... of emission limitation: Batch processes. (a) General requirement. As an alternative to complying with the requirements of §§ 65.106 through 65.114 and § 65.116, an owner or operator of a batch...

  1. 40 CFR 63.178 - Alternative means of emission limitation: Batch processes.

    Science.gov (United States)

    2010-07-01

    ... limitation: Batch processes. 63.178 Section 63.178 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Alternative means of emission limitation: Batch processes. (a) As an alternative to complying with the requirements of §§ 63.163 through 63.171 and §§ 63.173 through 63.176, an owner or operator of a batch...

  2. 40 CFR 1065.545 - Validation of proportional flow control for batch sampling.

    Science.gov (United States)

    2010-07-01

    ... control for batch sampling. 1065.545 Section 1065.545 Protection of Environment ENVIRONMENTAL PROTECTION... Specified Duty Cycles § 1065.545 Validation of proportional flow control for batch sampling. For any proportional batch sample such as a bag or PM filter, demonstrate that proportional sampling was...

  3. 40 CFR 63.487 - Batch front-end process vents-reference control technology.

    Science.gov (United States)

    2010-07-01

    ... § 63.487 Batch front-end process vents—reference control technology. (a) Batch front-end process vents... process vent, reduce organic HAP emissions for the batch cycle by 90 weight percent using a control device... control device as it relates to continuous front-end process vents shall be used. Furthermore,...

  4. 40 CFR 63.1407 - Non-reactor batch process vent provisions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Non-reactor batch process vent... § 63.1407 Non-reactor batch process vent provisions. (a) Emission standards. (1) Owners or operators of non-reactor batch process vents located at new or existing affected sources with 0.25 tons per year...

  5. 40 CFR 63.491 - Batch front-end process vents-recordkeeping requirements.

    Science.gov (United States)

    2010-07-01

    ... reactor for that recipe. (2) A description of, and an emission estimate for, each batch emission episode... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Batch front-end process vents... § 63.491 Batch front-end process vents—recordkeeping requirements. (a) Group determination records...

  6. OSAT: a tool for sample-to-batch allocations in genomics experiments

    Directory of Open Access Journals (Sweden)

    Yan Li

    2012-12-01

    Full Text Available Abstract Background Batch effect is one type of variability that is not of primary interest but ubiquitous in sizable genomic experiments. To minimize the impact of batch effects, an ideal experiment design should ensure the even distribution of biological groups and confounding factors across batches. However, due to the practical complications, the availability of the final collection of samples in genomics study might be unbalanced and incomplete, which, without appropriate attention in sample-to-batch allocation, could lead to drastic batch effects. Therefore, it is necessary to develop effective and handy tool to assign collected samples across batches in an appropriate way in order to minimize the impact of batch effects. Results We describe OSAT (Optimal Sample Assignment Tool, a bioconductor package designed for automated sample-to-batch allocations in genomics experiments. Conclusions OSAT is developed to facilitate the allocation of collected samples to different batches in genomics study. Through optimizing the even distribution of samples in groups of biological interest into different batches, it can reduce the confounding or correlation between batches and the biological variables of interest. It can also optimize the homogeneous distribution of confounding factors across batches. It can handle challenging instances where incomplete and unbalanced sample collections are involved as well as ideally balanced designs.

  7. Elucidating the Short Term Loss Behavior of Markovian-Modulated Batch-Service Queueing Model with Discrete-Time Batch Markovian Arrival Process

    OpenAIRE

    Yung-Chung Wang; Dong-Liang Cai; Li-Hsin Chiang; Cheng-Wei Hu

    2014-01-01

    This paper applies a matrix-analytical approach to analyze the temporal behavior of Markovian-modulated batch-service queue with discrete-time batch Markovian arrival process (DBMAP). The service process is correlated and its structure is presented through discrete-time batch Markovian service process (DBMSP). We examine the temporal behavior of packet loss by means of conditional statistics with respect to congested and noncongested periods that occur in an alternating manner. The congested ...

  8. Distribution load estimation (DLE)

    Energy Technology Data Exchange (ETDEWEB)

    Seppaelae, A.; Lehtonen, M. [VTT Energy, Espoo (Finland)

    1998-08-01

    The load research has produced customer class load models to convert the customers` annual energy consumption to hourly load values. The reliability of load models applied from a nation-wide sample is limited in any specific network because many local circumstances are different from utility to utility and time to time. Therefore there is a need to find improvements to the load models or, in general, improvements to the load estimates. In Distribution Load Estimation (DLE) the measurements from the network are utilized to improve the customer class load models. The results of DLE will be new load models that better correspond to the loading of the distribution network but are still close to the original load models obtained by load research. The principal data flow of DLE is presented

  9. Removal of fluoxetine and its effects in the performance of an aerobic granular sludge sequential batch reactor

    International Nuclear Information System (INIS)

    Highlights: • Enantioselective removal of fluoxetine by aerobic granular sludge was evaluated. • Sorption of fluoxetine to aerobic granules occurred. • Bacterial community gradually changed during operation of sequential batch reactor. • Main biological processes occurring within the granules were preserved. • Overall performance of the reactor was recovered after initial fluoxetine shock loads. - Abstract: Fluoxetine (FLX) is a chiral fluorinated pharmaceutical mainly indicated for treatment of depression and is one of the most distributed drugs. There is a clear evidence of environmental contamination with this drug. Aerobic granular sludge sequencing batch reactors constitute a promising technology for wastewater treatment; however the removal of carbon and nutrients can be affected by micropollutants. In this study, the fate and effect of FLX on reactor performance and on microbial population were investigated. FLX adsorption/desorption to the aerobic granules was observed. FLX shock loads (≤4 μM) did not show a significant effect on the COD removal. Ammonium removal efficiency decreased in the beginning of first shock load, but after 20 days, ammonia oxidizing bacteria became adapted. The nitrite concentration in the effluent was practically null indicating that nitrite oxidizing bacteria was not inhibited, whereas, nitrate was accumulated in the effluent, indicating that denitrification was affected. Phosphate removal was affected at the beginning showing a gradual adaptation, and the effluent concentration was <0.04 mM after 70 days. A shift in microbial community occurred probably due to FLX exposure, which induced adaptation/restructuration of the microbial population. This contributed to the robustness of the reactor, which was able to adapt to the FLX load

  10. Removal of fluoxetine and its effects in the performance of an aerobic granular sludge sequential batch reactor

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Irina S.; Amorim, Catarina L. [CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Dr. António Bernardino Almeida, 4200-072 Porto (Portugal); Ribeiro, Ana R. [CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Dr. António Bernardino Almeida, 4200-072 Porto (Portugal); Centro de Química Medicinal da Universidade do Porto (CEQUIMED-UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto (Portugal); CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra PRD (Portugal); Mesquita, Raquel B.R. [CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Dr. António Bernardino Almeida, 4200-072 Porto (Portugal); Laboratory of Hydrobiology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Institute of Marine Research (CIIMAR), Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto (Portugal); and others

    2015-04-28

    Highlights: • Enantioselective removal of fluoxetine by aerobic granular sludge was evaluated. • Sorption of fluoxetine to aerobic granules occurred. • Bacterial community gradually changed during operation of sequential batch reactor. • Main biological processes occurring within the granules were preserved. • Overall performance of the reactor was recovered after initial fluoxetine shock loads. - Abstract: Fluoxetine (FLX) is a chiral fluorinated pharmaceutical mainly indicated for treatment of depression and is one of the most distributed drugs. There is a clear evidence of environmental contamination with this drug. Aerobic granular sludge sequencing batch reactors constitute a promising technology for wastewater treatment; however the removal of carbon and nutrients can be affected by micropollutants. In this study, the fate and effect of FLX on reactor performance and on microbial population were investigated. FLX adsorption/desorption to the aerobic granules was observed. FLX shock loads (≤4 μM) did not show a significant effect on the COD removal. Ammonium removal efficiency decreased in the beginning of first shock load, but after 20 days, ammonia oxidizing bacteria became adapted. The nitrite concentration in the effluent was practically null indicating that nitrite oxidizing bacteria was not inhibited, whereas, nitrate was accumulated in the effluent, indicating that denitrification was affected. Phosphate removal was affected at the beginning showing a gradual adaptation, and the effluent concentration was <0.04 mM after 70 days. A shift in microbial community occurred probably due to FLX exposure, which induced adaptation/restructuration of the microbial population. This contributed to the robustness of the reactor, which was able to adapt to the FLX load.

  11. Batch Preheat for glass and related furnace processing operations

    Energy Technology Data Exchange (ETDEWEB)

    Energy & Environmental Resources, Inc

    2002-08-12

    The objectives that our development work addressed are: (1) Establish through lab tests a salt eutectic with a melting point of about 250 F and a working range of 250 to 1800 F. (2) Establish the most economical material of construction for the screened salt eutectics identified in the first objective. (3) Establish the material of construction for the salt heater liner. Objectives 2 and 3 were determined through corrosion tests using selected metallurgical samples. Successful completion of the above-stated goals will be incorporated in a heat recovery design that can be used in high temperature processes and furnaces, typical of which is the glass melting process. The process design incorporates the following unit operations: a vertical batch heater (whereby the batch flows down through tubes in a shell and tube exchanger; a molten salt eutectic is circulated on the shell side); a molten salt heater utilizing furnace flue gas in a radiation type heater (molten salt is circulated in the annular space between the inner and outer shells of the vertical heater, and flue gas passes from the furnace exhaust through the inner shell of the heater); a cantilever type molten salt circulating pump; and a jacketed mixer/conveyor to drive off moisture from the batch prior to feeding the batch to the vertical batch heater. Historically, radiation heaters, when applied to glass or fiberglass furnace recuperation, have experienced failures due to uneven heat flux rates, which increases internal stresses and spot overheating conditions. Low heat transfer coefficients result in requirements for large heat transfer surface areas in gas to gas or gas to air exchangers. Fouling is another factor that results in lower unit availability and reduced performance. These factors are accommodated in this process by the incorporation of several design features. The salt heater will be a vertical double wall radiation design, similar to radiation air heaters used in high temperature heat

  12. Kinetic study of batch and fed-batch enzymatic saccharification of pretreated substrate and subsequent fermentation to ethanol

    OpenAIRE

    Gupta Rishi; Kumar Sanjay; Gomes James; Kuhad Ramesh

    2012-01-01

    Abstract Background Enzymatic hydrolysis, the rate limiting step in the process development for biofuel, is always hampered by its low sugar concentration. High solid enzymatic saccharification could solve this problem but has several other drawbacks such as low rate of reaction. In the present study we have attempted to enhance the concentration of sugars in enzymatic hydrolysate of delignified Prosopis juliflora, using a fed-batch enzymatic hydrolysis approach. Results The enzymatic hydroly...

  13. Cultivation of aerobic granules in a novel configuration of sequencing batch airlift reactor.

    Science.gov (United States)

    Rezaei, Laya Siroos; Ayati, Bita; Ganjidoust, Hossein

    2012-01-01

    Aerobic granules can be formed in sequencing batch airlift reactors (SBAR) and sequencing batch reactors (SBR). Comparing these two systems, the SBAR has excellent mixing condition, but due to a high height-to-diameter ratio (H/D), there is no performance capability at full scale at the present time. This research examined a novel configuration of SBAR at laboratory scale (with a box structure) for industrial wastewater treatment. To evaluate chemical oxygen demand (COD) removal efficiency and granule formation of the novel reactor (R1), in comparison a conventional SBAR (R2) was operated under similar conditions during the experimental period. R1 and R2 with working volumes of 3.6 L and 4.5 L, respectively, were used to cultivate aerobic granules. Both reactors were operated for 4 h per cycle. Experiments were done at different organic loading rates (OLRs) ranging from 0.6-4.5 kg COD/m3.d for R1 and from 0.72-5.4 kg COD/m3.d for R2. After 150 days of operation, large-sized black filamentous granules with diameters of 0.5-2 mm and 2-11 mm were formed in R1 and R2, respectively. In the second part of the experiment, the efficiency of removal of a toxic substance by aerobic granules was investigated using aniline as a carbon source with a concentration in the range 1.2-6.6 kg COD/m3.d and 1.44-7.92 kg COD/m3.d in R1 and R2, respectively. It was found that COD removal efficiency of the novel airlift reactor was over 97% and 94.5% using glucose and aniline as carbon sources, respectively. Sludge volume index (SVI) was also decreased to 30 mL/g by granulation in the novel airlift reactor. PMID:23393968

  14. Distribution load estimation - DLE

    Energy Technology Data Exchange (ETDEWEB)

    Seppaelae, A. [VTT Energy, Espoo (Finland)

    1996-12-31

    The load research project has produced statistical information in the form of load models to convert the figures of annual energy consumption to hourly load values. The reliability of load models is limited to a certain network because many local circumstances are different from utility to utility and time to time. Therefore there is a need to make improvements in the load models. Distribution load estimation (DLE) is the method developed here to improve load estimates from the load models. The method is also quite cheap to apply as it utilises information that is already available in SCADA systems

  15. Relaxation of the lower frit loading constraint for DWPF process control

    International Nuclear Information System (INIS)

    The lower limit on the frit loading parameter when measurement uncertainty is introduced has impacted DWPF performance during immobilization of Tank 42 Sludge; therefore, any defensible relaxation or omission of this constraint should correspondingly increase DWPF waste loading and efficiency. Waste loading should be increased because the addition of frit is the current remedy for exceeding the lower frit loading constraint. For example, frit was added to DWPF SME Batches 94, 97 and 98 to remedy these batches for low frit loading. Attempts were also made to add frit in addition to the optimum computed to assure the lower frit loading constraint would be satisfied; however, approximately half of the SME Batches produced after Batch 98 have violated the lower frit loading constraint. If the DWPF batches did not have to be remediated and additional frit added because of the lower frit loading limit, then both, the performance of the DWPF process and the waste loading in the glass produced would be increased. Before determining whether or not the lower frit loading limit can be relaxed or omitted, the origin of this and the other constraints related to durability prediction must be examined. The lower limit loading constraint results from the need to make highly durable glass in DWPF. It is required that DWPF demonstrate that the glass produced would have durability that is at least two standard deviations greater than that of the Environmental Assessment (EA) glass. Glass durability cannot be measured in situ, it must be predicted from composition which can be measured. Fortunately, the leaching characteristics of homogeneous waste glasses is strongly related to the total molar free energy of the constituent species. Thus the waste acceptance specification has been translated into a requirement that the total molar free energy associated with the glass composition that would be produced from a DWPF melter feed batch be less than that of the EA glass accounting for

  16. [Kinetics model for batch culture of white rot fungus].

    Science.gov (United States)

    Xiong, Xiao-ping; Wen, Xiang-hua; Xu, Kang-ning; Bian, Bing-hui

    2008-02-01

    In order to understand ligninolytic enzymes production process during culture of white rot fungus, accordingly to direct the design of fermentation process, a kinetics model was built for the batch culture of Phanerochaete chrysosporium. The parameters in the model were calibrated based on the experimental data from free and immobilized culture separately. The difference between each variable's values calculated based on kinetics model and experimental data is within 15%. Comparing parameters for the free and the immobilized culture, it is found that maximum biomass concentrations are both 1.78 g/L; growth rate ratio of immobilized culture (0.6683 d(-1)) is larger than that of free culture (0.5144 d(-1)); very little glucose is consumed for biomass growth in free culture while in immobilized culture much glucose is used and ammonium nitrogen is consumed at a greater rate. Ligninolytic enzymes production process is non-growth related; fungal pellets can produce MnP (231 U/L) in free culture with a production rate of 115.8 U x (g x d)(-1) before peak and 26.1 U x (g x d)(-1) after peak, thus fed-batch is a possible mode to improve MnP production and fermentation efficiency. MnP (410 U/L) and LiP (721 U/L) can be produced in immobilized culture, but MnP and LiP production rate decrease from 80.1 U x (g x d)(-1) and 248.9 U x (g x d)(-1) to 6.04 U x (g x d)(-1) and 0 U x (g x d)(-1), respectively, indicating a proper feed moment is before the enzymes peak during fed-batch culture. PMID:18613526

  17. A design algorithm for batch stirred tank transesterification reactors

    International Nuclear Information System (INIS)

    Highlights: ► Simplified algorithm for batch biodiesel reactor design was developed. ► C Sharp software tool for implementing the algorithm was also developed. ► 50 L/batch reactor was constructed and used to process neem oil biodiesel. ► Results showed that the produced neem biodiesel is a fuel grade product. ► Scale-up of the reactor was carried out using the developed software. - Abstract: A 50 L per batch, stirred tank reactor, suitable for carrying out transesterification of vegetable oils was designed and constructed. The major design assumptions included stainless steel plate thickness of 2 mm, reaction temperature of 60–65 °C and an initial/final fluid temperature of 25/70 °C. The calculated impeller Reynolds number was in the mixed regime zone of 10–104; the power number was varied between 1 and 5, while a typical propeller speed of 22.5 rev/s (or 1350 rev/min) was adopted. The limiting design conditions were maximum reactor diameter of 1.80 m, straight side height-to-diameter ratio in the range of 0.75–1.5 and minimum agitator motor power of 746 W (1 Hp). Based upon the design, a simple algorithm was developed and interpreted into Microsoft C Sharp computer programming language to enable scale up of the reactor. Performance testing of the realized reactor was carried out while using it to produce Neem oil biodiesel via base – catalyzed methanolysis, which yielded high quality fuel product.

  18. Shot loading platform analysis

    International Nuclear Information System (INIS)

    This document provides the wind/seismic analysis and evaluation for the shot loading platform. Hand calculations were used for the analysis. AISC and UBC load factors were used in this evaluation. The results show that the actual loads are under the allowable loads and all requirements are met

  19. Moving from batch towards continuous organic‐chemical pharmaceutical production

    OpenAIRE

    Cervera Padrell, Albert Emili; Gernaey, Krist; Gani, Rafiqul; Kiil, Søren

    2011-01-01

    Farmaceutiske ingredienser er traditionelt blevet fremstillet i batch reaktorer, dvs i ’multipurpose’ omrørte tanke. Reaktioner og separationer har typisk været skræddersyet til disse enheder, og der har typisk været flere begrænsninger, når der overføres en organisk syntese fra laboratoriet til industriel skala. Opskalering resulterede dermed i mange tilfælde i et lavt udbytte og en relativt ineffektiv separation. Disse begrænsninger blev dog opvejet af en relativt hurtig implementering af p...

  20. Batch Mode Data Analysis at ORNL for Radiation Portal Monitoring

    International Nuclear Information System (INIS)

    The Global Nuclear Security Technology Division at Oak Ridge National Laboratory (ORNL) has developed two batch-mode data analysis tools to address the volume of data generated by radiation portal monitors (RPMs) deployed by the Second Line of Defense (SLD). The first of these tools, the ORNL Data Portal (ORNLDP), serves as both a repository and an analysis environment for the data generated by RPMs. The second tool, the In-Country Analysis Tool (ICAT), is portable and serves primarily as a small-scale analysis environment.

  1. Bounded Parallel-Batch Scheduling on Unrelated Parallel Machines

    Science.gov (United States)

    Miao, Cuixia; Zhang, Yuzhong; Wang, Chengfei

    In this paper, we consider the bounded parallel-batch scheduling problem on unrelated parallel machines. Problems R m |B|F are NP-hard for any objective function F. For this reason, we discuss the special case with p ij = p i for i = 1, 2, ⋯ , m , j = 1, 2, ⋯ , n. We give optimal algorithms for the general scheduling to minimize total weighted completion time, makespan and the number of tardy jobs. And we design pseudo-polynomial time algorithms for the case with rejection penalty to minimize the makespan and the total weighted completion time plus the total penalty of the rejected jobs, respectively.

  2. REAL WASTE TESTING OF SLUDGE BATCH 5 MELTER FEED RHEOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Reboul, S.; Stone, M.

    2010-03-17

    Clogging of the melter feed loop at the Defense Waste Processing Facility (DWPF) has reduced the throughput of Sludge Batch 5 (SB5) processing. After completing a data review, DWPF attributed the clogging to the rheological properties of the Slurry Mix Evaporator (SME) project. The yield stress of the SB5 melter feed material was expected to be high, based on the relatively high pH of the SME product and the rheological results of a previous Chemical Process Cell (CPC) demonstration performed at the Savannah River National Laboratory (SRNL).

  3. Deposition of TiN films in a batch reactor

    OpenAIRE

    Hasper, Albert; Snijders, Gert-Jan; Vandezande, Lieve; De Blank, Marinus J.; Bankras, Radko Gerard

    2006-01-01

    Titanium nitride (TiN) films are formed in a batch reactor using titanium chloride (TiCl4) and ammonia (NH3) as precursors. The TiCl4 is flowed into the reactor in temporally separated pulses. The NH3 can also be flowed into the reactor in temporally spaced pulses which alternate with the TiCl4 pulses, or the NH3 can be flowed continuously into the reactor while the TiCl4 is introduced in pulses. The resulting TiN films exhibit low resistivity and good uniformity.

  4. Collection of uranium by polyurethane foam loaded with LIX 63

    International Nuclear Information System (INIS)

    Recovery of uranium(VI) from dilute solutions by the use of the open-cell polyurethane foam (PUF) loaded with 5,8-diethyl-7-hydroxy-6-dodecanone oxime (LIX 63) has been investigated. Above pH 4.5 more than 99 % of the uranium in the solutions was sorbed onto the LIX 63 loaded PUF. The sorbed uranium was recovered from the PUF with dilute acid solutions, and the loaded PUF could be repeatedly used in a batch or column method. The sorption of uranium was accelerated by squeezing the PUF and by increasing temperature. The sorption capacity for uranium increases linearly with an increase in LIX 63 loading the PUF. Quantitative collection of uranium over a relatively wide range of concentrations can be achieved, provided that the PUF contains an excess of LIX 63. (author)

  5. A comparison study on the high-rate co-digestion of sewage sludge and food waste using a temperature-phased anaerobic sequencing batch reactor system.

    Science.gov (United States)

    Kim, Hyun-Woo; Nam, Joo-Youn; Shin, Hang-Sik

    2011-08-01

    Assessing contemporary anaerobic biotechnologies requires proofs on reliable performance in terms of renewable bioenergy recovery such as methane (CH(4)) production rate, CH(4) yield while removing volatile solid (VS) effectively. This study, therefore, aims to evaluate temperature-phased anaerobic sequencing batch reactor (TPASBR) system that is a promising approach for the sustainable treatment of organic fraction of municipal solid wastes (OFMSW). TPASBR system is compared with a conventional system, mesophilic two-stage anaerobic sequencing batch reactor system, which differs in operating temperature of 1st-stage. Results demonstrate that TPASBR system can obtain 44% VS removal from co-substrate of sewage sludge and food waste while producing 1.2m(3)CH(4)/m(3)(system)/d (0.2m(3)CH(4)/kgVS(added)) at organic loading rate of 6.1gVS/L/d through the synergy of sequencing-batch operation, co-digestion, and temperature-phasing. Consequently, the rapid and balanced anaerobic metabolism at thermophilic stage makes TPASBR system to afford high organic loading rate showing superior performance on OFMSW stabilization. PMID:21600764

  6. A Pneumatic Device for Rapid Loading of DNA Sequencing Gels

    OpenAIRE

    Panussis, Dimitrios A.; Cook, Mark W.; Rifkin, Lisa L.; Snider, Jacqueline E.; Strong, Joseph T.; McGrane, Rebecca M.; Wilson, Richard K.; Elaine R. Mardis

    1998-01-01

    This work describes the design and construction of a device that facilitates the loading of DNA samples onto polyacrylamide gels for detection in the Perkin Elmer/Applied Biosystems (PE/ABI) 373 and 377 DNA sequencing instruments. The device is mounted onto the existing gel cassettes and makes the process of loading high-density gels less cumbersome while the associated time and errors are reduced. The principle of operation includes the simultaneous transfer of the entire batch of samples, i...

  7. Comparison of growth, acetate production, and acetate inhibition of Escherichia coli strains in batch and fed-batch fermentations.

    Science.gov (United States)

    Luli, G W; Strohl, W R

    1990-04-01

    The growth characteristics and acetate production of several Escherichia coli strains were compared by using shake flasks, batch fermentations, and glucose-feedback-controlled fed-batch fermentations to assess the potential of each strain to grow at high cell densities. Of the E. coli strains tested, including JM105, B, W3110, W3100, HB101, DH1, CSH50, MC1060, JRG1046, and JRG1061, strains JM105 and B were found to have the greatest relative biomass accumulation, strain MC1060 accumulated the highest concentrations of acetic acid, and strain B had the highest growth rates under the conditions tested. In glucose-feedback-controlled fed-batch fermentations, strains B and JM105 produced only 2 g of acetate.liter-1 while accumulating up to 30 g of biomass.liter-1. Under identical conditions, strains HB101 and MC1060 accumulated less than 10 g of biomass.liter-1 and strain MC1060 produced 8 g of acetate.liter-1. The addition of various concentrations of sodium acetate to the growth medium resulted in a logarithmic decrease, with respect to acetate concentration, in the growth rates of E. coli JM105, JM105(pOS4201), and JRG1061. These data indicated that the growth of the E. coli strains was likely to be inhibited by the acetate they produced when grown on media containing glucose. A model for the inhibition of growth of E. coli by acetate was derived from these experiments to explain the inhibition of acetate on E. coli strains at neutral pH. PMID:2187400

  8. MEASUREMENT OF WASTE LOADING IN SALTSTONE

    International Nuclear Information System (INIS)

    One of the goals of the Saltstone variability study is to identify the operational and compositional variables that control or influence the important processing and performance properties of Saltstone grout mixtures. One of those properties of importance is the Waste Loading (WL) of the decontaminated salt solution (DSS) in the Saltstone waste form. Waste loading is a measure of the amount of waste that can be incorporated within a waste form. The value of the Saltstone waste loading ultimately determines the number of vaults that will be required to disposition all of the DSS. In this report, the waste loading is defined as the volume in milliliters of DSS per liter of Saltstone waste form. The two most important parameters that determine waste loading for Saltstone are water to cementitious material (w/cm) ratio and the cured grout density. Data are provided that show the dependence of waste loading on the w/cm ratio for a fixed DSS composition using the current premix material (45% Blast Furnace Slag (BFS), 45% Fly Ash (FA) and 10% Ordinary Portland Cement (OPC)). The impact of cured grout density on waste loading was also demonstrated. Mixes (at 0.60 w/cm) made with a Modular Caustic side extraction Unit (MCU) simulant and either OPC or BFS have higher cured grout densities than mixes made with premix and increase the WL to 709 mL/L for the OPC mix and 689 mL/L for the BFS mix versus the value of 653 mL/L for MCU in premix at 0.60 w/cm ratio. Bleed liquid reduces the waste loading and lowers the effective w/cm ratio of Saltstone. A method is presented (and will be used in future tasks) for correcting the waste loading and the w/cm ratio of the as-batched mixes in those cases where bleed liquid is present. For example, the Deliquification, Dissolution and Adjustment (DDA) mix at an as-batched 0.60 w/cm ratio, when corrected for % bleed, gives a mix with a 0.55 w/cm ratio and a WL that has been reduced from 662 to 625 mL/L. An example is provided that

  9. Modeling and Simulation of Thermal Transfer in Batch Reactor

    Directory of Open Access Journals (Sweden)

    Baghli, H.

    2006-01-01

    Full Text Available Batch reactors are frequently used in chemical, petrochemical or biochemical industry, for the production of various quality products. Processes used are discontinuous and varied. Indeed, they are characterized by non stationary and non linear systems. An optimal control of the process; requires a modeling and a simulation of the thermal behaviors inside the agitated jacketed reactor in view of the improvement of a high product quality and conditions of security. In certain fields, where the cost and the difficulty of tests are limiting factors, it is advantageous to develop the numeric simulations of these chemical processes. Thus, this study concerns the modeling and simulation of the thermal transfer in an agitated jacketed batch reactor, it is based on a model developed from the global energy balance and empiric correlations which give relationships between thermal transfer coefficients and the stirrer speed. We have achieved the validation of the model by confronting model results with several sets of experiences; for two types of stirrers.

  10. Detection and isolation of Bluetongue virus from commercial vaccine batches.

    Science.gov (United States)

    Bumbarov, Velizar; Golender, Natalia; Erster, Oran; Khinich, Yevgeny

    2016-06-14

    In this report we describe the detection and identification of Bluetongue virus (BTV) contaminations in commercial vaccines. BTV RNA was detected in vaccine batches of Lumpy skin disease (LSD) and Sheep pox (SP) using quantitative PCR (qPCR) for VP1 and NS3 genes. Both batches were positive for VP1 and NS3 in qPCR. The LSD vaccine-derived sample was positive for VP1 and VP2 in conventional PCR. The SP vaccine-derived sample was examined by amplification of VP1, VP4, VP6, VP7, NS2 and NS3 gene segments in conventional PCR. The SP vaccine-derived sample was further propagated in embryonated chicken eggs (ECE) and Vero cells. Preliminary sequence analysis showed that the LSD vaccine-derived sequence was 98-99% similar to BTV9. Analysis of the six genomic segments from the SP vaccine-derived isolate showed the highest similarity to BTV26 (66.3-97.8%). These findings are particularly important due to the effect of BTV on cattle and sheep, for which the vaccines are intended. They also demonstrate the necessity of rigorous vaccine inspection and strict vaccine production control. PMID:27171751

  11. BEclear: Batch Effect Detection and Adjustment in DNA Methylation Data.

    Science.gov (United States)

    Akulenko, Ruslan; Merl, Markus; Helms, Volkhard

    2016-01-01

    Batch effects describe non-natural variations of, for example, large-scale genomic data sets. If not corrected by suitable numerical algorithms, batch effects may seriously affect the analysis of these datasets. The novel array platform independent software tool BEclear enables researchers to identify those portions of the data that deviate statistically significant from the remaining data and to replace these portions by typical values reconstructed from neighboring data entries based on latent factor models. In contrast to other comparable methods that often use some sort of global normalization of the data, BEclear avoids changing the apparently unaffected parts of the data. We tested the performance of this approach on DNA methylation data for various tumor data sets taken from The Cancer Genome Atlas and compared the results to those obtained with the existing algorithms ComBat, Surrogate Variable Analysis, RUVm and Functional normalization. BEclear constantly performed at par with or better than these methods. BEclear is available as an R package at the Bioconductor project http://bioconductor.org/packages/release/bioc/html/BEclear.html. PMID:27559732

  12. Xylitol production by Candida parapsilosis under fed-batch culture

    Directory of Open Access Journals (Sweden)

    Sandra A. Furlan

    2001-06-01

    Full Text Available Xylitol production by Candida parapsilosis was investigated under fed-batch cultivation, using single (xylose or mixed (xylose and glucose sugars as substrates. The presence of glucose in the medium induced the production of ethanol as secondary metabolite and improved specific rates of growth, xylitol formation and substrate consumption. Fractionated supply of the feed medium at constant sugar concentration did not promote any increase on the productivity compared to the single batch cultivation.A produção de xylitol por Candida parapsilosis foi investigada em regime de batelada alimentada, usando substratos açucarados de composição simples (xilose ou composta (xilose e glicose. A presença de glicose no meio induziu a formação de etanol como metabólito secundário. A suplementação fracionada do meio de alimentação numa concentração fixa de açúcar não resultou em aumento da produtividade em relação àquela alcançada em batelada simples.

  13. A batch-mode micromachining process for spherical structures

    International Nuclear Information System (INIS)

    This paper reports a self-aligned three-dimensional process (3D-SOULE) that incorporates batch-mode micro ultrasonic machining (µUSM), lapping and micro electro-discharge machining (µEDM) for fabrication of concave and mushroom-shaped spherical structures from hard and brittle materials. To demonstrate the process, 1 mm structures are fabricated from glass and ruby spheres. The µEDM technique is used to create the tool for μUSM from stainless steel spheres. Stainless steel 440, which provides a tool wear ratio <5%, is chosen as the tool material. A 2 × 2 array is used for batch processing. For an ultrasound generator frequency of 20 kHz and a vibration amplitude of 15 µm, machining rates of 24 and 12 µm min−1 are obtained for glass and ruby spheres, respectively. An approximate linear relationship is observed between the measured roughness (Ra) of the machined surface and the product of the fracture toughness (KIC) and the hardness (H) of the workpiece material (KIC3/2H1/2). (paper)

  14. SEQUENCING BATCH REACTOR: A PROMISING TECHNOLOGY IN WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    A. H. Mahvi

    2008-04-01

    Full Text Available Discharge of domestic and industrial wastewater to surface or groundwater is very dangerous to the environment. Therefore treatment of any kind of wastewater to produce effluent with good quality is necessary. In this regard choosing an effective treatment system is important. Sequencing batch reactor is a modification of activated sludge process which has been successfully used to treat municipal and industrial wastewater. The process could be applied for nutrients removal, high biochemical oxygen demand containing industrial wastewater, wastewater containing toxic materials such as cyanide, copper, chromium, lead and nickel, food industries effluents, landfill leachates and tannery wastewater. Of the process advantages are single-tank configuration, small foot print, easily expandable, simple operation and low capital costs. Many researches have been conducted on this treatment technology. The authors had been conducted some investigations on a modification of sequencing batch reactor. Their studies resulted in very high percentage removal of biochemical oxygen demand, chemical oxygen demand, total kjeldahl nitrogen, total nitrogen, total phosphorus and total suspended solids respectively. This paper reviews some of the published works in addition to experiences of the authors.

  15. Batch Attribute-Based Encryption for Secure Clouds

    Directory of Open Access Journals (Sweden)

    Chen Yang

    2015-10-01

    Full Text Available Cloud storage is widely used by organizations due to its advantage of allowing universal access with low cost. Attribute-based encryption (ABE is a kind of public key encryption suitable for cloud storage. The secret key of each user and the ciphertext are associated with an access policy and an attribute set, respectively; in addition to holding a secret key, one can decrypt a ciphertext only if the associated attributes match the predetermined access policy, which allows one to enforce fine-grained access control on outsourced files. One issue in existing ABE schemes is that they are designed for the users of a single organization. When one wants to share the data with the users of different organizations, the owner needs to encrypt the messages to the receivers of one organization and then repeats this process for another organization. This situation is deteriorated with more and more mobile devices using cloud services, as the ABE encryption process is time consuming and may exhaust the power supplies of the mobile devices quickly. In this paper, we propose a batch attribute-based encryption (BABE approach to address this problem in a provably-secure way. With our approach, the data owner can outsource data in batches to the users of different organizations simultaneously. The data owner is allowed to decide the receiving organizations and the attributes required for decryption. Theoretical and experimental analyses show that our approach is more efficient than traditional encryption implementations in computation and communication.

  16. BEclear: Batch Effect Detection and Adjustment in DNA Methylation Data

    Science.gov (United States)

    Akulenko, Ruslan; Merl, Markus; Helms, Volkhard

    2016-01-01

    Batch effects describe non-natural variations of, for example, large-scale genomic data sets. If not corrected by suitable numerical algorithms, batch effects may seriously affect the analysis of these datasets. The novel array platform independent software tool BEclear enables researchers to identify those portions of the data that deviate statistically significant from the remaining data and to replace these portions by typical values reconstructed from neighboring data entries based on latent factor models. In contrast to other comparable methods that often use some sort of global normalization of the data, BEclear avoids changing the apparently unaffected parts of the data. We tested the performance of this approach on DNA methylation data for various tumor data sets taken from The Cancer Genome Atlas and compared the results to those obtained with the existing algorithms ComBat, Surrogate Variable Analysis, RUVm and Functional normalization. BEclear constantly performed at par with or better than these methods. BEclear is available as an R package at the Bioconductor project http://bioconductor.org/packages/release/bioc/html/BEclear.html. PMID:27559732

  17. Load Cell Optimization

    OpenAIRE

    Garðar Páll Gíslason 1979

    2011-01-01

    A load cell is a small object which has only one goal and that is to measure load. This is an old invention from the mid-eighteenth century and remains very popular today. Load cells are only one portion of a bigger totality. That is why the shape of the load cell changes between objects. Optimization of a load cell is an effective way to get the highest signal from the cell. The main object of this thesis is optimization of a load cell which is a part of the Rheo Knee® from Össur. This kn...

  18. Commercial Application of Freezing-Irradiation Combination Process for Pasteurization of Two Specific Batches of Cooked, Peeled Shrimps

    International Nuclear Information System (INIS)

    In 1978 microbiological standards for pre-cooked, peeled frozen shrimps imported into Australia were abruptly amended and made more stringent. Large consignments of shrimps failed to meet the new specifications and were placed in quarantine on arrival. Two importers affected by the change in policy obtained permission to investigate the feasibility of using ionizing radiation to reduce to an acceptable level the microbial load on two batches of frozen shrimps. Trial irradiations established that doses of 6 or 8 kGy (600 or 800 krad) reduced microbial levels at least 100-fold, thus enabling these batches to meet the new microbiological standard. Applications to State regulatory authorities resulted in approvals being granted to the importers to irradiate: (1) in New South Wales 47 tonnes of imported frozen shrimps at 6 kGy, using the Research Establishment’s facilities; and (2) in Victoria 14.3 tonnes at 8 kGy using ICI Australia Operations Pty Ltd’s commercial radiation plant at Dandenong. Approvals applied solely to these two batches and marketing of the irradiated shrimps were confined to the State in which they were irradiated. The microbiological basis for the choice of dose, dosimetry, technology, legal aspects, economics and public acceptance of this first limited commercial Use in Australia of radiation for food preservation are described. It is suggested that in standards for irradiation of specific foods, dose limits should be flexible enough to take into account the relationships between the physical state of the food, temperature during irradiation, the extent of chemical change likely to occur at that temperature, and the dose required to produce the desired microbiological effect. (author)

  19. Bagasse hydrolyzates from Agave tequilana as substrates for succinic acid production by Actinobacillus succinogenes in batch and repeated batch reactor.

    Science.gov (United States)

    Corona-González, Rosa Isela; Varela-Almanza, Karla María; Arriola-Guevara, Enrique; Martínez-Gómez, Álvaro de Jesús; Pelayo-Ortiz, Carlos; Toriz, Guillermo

    2016-04-01

    The aim of this work was to obtain fermentable sugars by enzymatic or acid hydrolyses of Agave tequilana Weber bagasse in order to produce succinic acid with Actinobacillus succinogenes. Hydrolyses were carried out with mineral acids (sulfuric and hydrochloric acids) or a commercial cellulolytic enzyme, and were optimized statistically by a response surface methodology, having as factors the concentration of acid/enzyme and time of hydrolysis. The concentration of sugars obtained at optimal conditions for each hydrolysis were 21.7, 22.4y 19.8g/L for H2SO4, HCl and the enzymatic preparation respectively. Concerning succinic acid production, the enzymatic hydrolyzates resulted in the highest yield (0.446g/g) and productivity (0.57g/Lh) using A. succinogenes in a batch reactor system. Repeated batch fermentation with immobilized A. succinogenes in agar and with the enzymatic hydrolyzates resulted in a maximum concentration of succinic acid of 33.6g/L from 87.2g/L monosaccharides after 5 cycles in 40h, obtaining a productivity of 1.32g/Lh. PMID:26802183

  20. A general framework for the synthesis and operational design of batch processes

    DEFF Research Database (Denmark)

    Papaeconomou, Eirini; Gani, Rafiqul; Jørgensen, Sten Bay

    2002-01-01

    , which is the sequence of batch operations performed in order to achieve a specific objective. Important features of the methodology are a set of rule-based algorithms that provide the operational model of the units. Such an algorithm is highlighted, together with the associated rules, for the......The objective of this paper is to present a general problem formulation and a general methodology for the synthesis of batch operations and the operational design of individual batch processes, such as mixing, reaction and separation. The general methodology described supplies the batch routes...... operational design of batch reactors. A case study involving the feasible operation of a batch reactor with multiple desirable and undesirable reactions and operational constraints is presented. Application results including verification of the generated operational sequences (alternatives) through dynamic...

  1. A General framework for the Synthesis and Operational Design of Batch Processes

    DEFF Research Database (Denmark)

    , which is the sequence of batch operations performed in order to achieve a specific objective. Important features of the methodology are a set of rule-based algorithms that provide the operational model of the units. Such an algorithm is highlighted, together with the associated rules, for the......The objective of this paper is to present a general problem formulation and a general methodlogy for the synthesis of batch operations and the operational design of individual batch processes, such as mixing, reaction and separation. The general methodology described supplies the batch routes...... operational design of batch reactors. A case study involving the feasible operation of a batch reactor with multiple desirable and undesirable reactions and operational constraints is presented. Application results including verification of the generated operational sequences (alternatives) through dynamic...

  2. FLOWSHEET FOR ALUMINUM REMOVAL FROM SLUDGE BATCH 6

    Energy Technology Data Exchange (ETDEWEB)

    Pike, J; Jeffrey Gillam, J

    2008-12-17

    Samples of Tank 12 sludge slurry show a substantially larger fraction of aluminum than originally identified in sludge batch planning. The Liquid Waste Organization (LWO) plans to formulate Sludge Batch 6 (SB6) with about one half of the sludge slurry in Tank 12 and one half of the sludge slurry in Tank 4. LWO identified aluminum dissolution as a method to mitigate the effect of having about 50% more solids in High Level Waste (HLW) sludge than previously planned. Previous aluminum dissolution performed in a HLW tank in 1982 was performed at approximately 85 C for 5 days and dissolved nearly 80% of the aluminum in the sludge slurry. In 2008, LWO successfully dissolved 64% of the aluminum at approximately 60 C in 46 days with minimal tank modifications and using only slurry pumps as a heat source. This report establishes the technical basis and flowsheet for performing an aluminum removal process in Tank 51 for SB6 that incorporates the lessons learned from previous aluminum dissolution evolutions. For SB6, aluminum dissolution process temperature will be held at a minimum of 65 C for at least 24 days, but as long as practical or until as much as 80% of the aluminum is dissolved. As planned, an aluminum removal process can reduce the aluminum in SB6 from about 84,500 kg to as little as 17,900 kg with a corresponding reduction of total insoluble solids in the batch from 246,000 kg to 131,000 kg. The extent of the reduction may be limited by the time available to maintain Tank 51 at dissolution temperature. The range of dissolution in four weeks based on the known variability in dissolution kinetics can range from 44 to more than 80%. At 44% of the aluminum dissolved, the mass reduction is approximately 1/2 of the mass noted above, i.e., 33,300 kg of aluminum instead of 66,600 kg. Planning to reach 80% of the aluminum dissolved should allow a maximum of 81 days for dissolution and reduce the allowance if test data shows faster kinetics. 47,800 kg of the dissolved

  3. Biological Treatment of Leachate using Sequencing Batch Reactor

    Directory of Open Access Journals (Sweden)

    WDMC Perera

    2014-12-01

    Full Text Available Normal 0 false false false EN-US X-NONE TA Abstract   In Sri Lanka municipal solid waste is generally disposed in poorly managed open dumps which lack liner systems and leachate collection systems. Rain water percolates through the waste layers to produce leachate which drains in to ground water and finally to nearby water bodies, degrading the quality of water. Leachate thus has become a major environmental concern in municipal waste management and treatment of leachate is a major challenge for the existing and proposed landfill sites.   The study was conducted to assess the feasibility of the usage of the Sequencing Batch Reactor in the treatment of the landfill leachate up to the proposed levels in the draft report of “Proposed Sri Lankan standard for landfill leachate to be disposed to the inland waters". Leachate collected from the open dumpsite at Meethotamulla, Western Province, Sri Lanka was used for leachate characterization.   SBR was constructed with a 10-liter working volume operated in an 18 hour cycle mode and each cycle consists of 15hours of aerobic, 2h settle and 0.5 h of fill/decant stages. The Dissolved Oxygen level within the SBR was maintained at 2 mg/l through the aerobic stage. Infeed was diluted with water during the acclimatization period and a leachate to water ratio of 55:45 was maintained. The removal efficiencies for different parameters were; COD (90.5%, BOD (92.6%, TS (92.1%, Conductivity (83.9%, Alkalinity (97.4%, Hardness (82.2%, Mg (80.5%, Fe (94.2%, Zn (63.4%, Cr (31.69%, Pb (99.6%, Sulphate (98.9%, and Phosphorus (71.4% respectively. In addition Ni and Cd were removed completely during a single SBR cycle. Thus the dilution of leachate in the dumpsites using municipal wastewater, groundwater or rainwater was identified as the most cost effective dilution methods. The effluent from the Sequencing batch reactor is proposed to be further treated using a constructed wetland before releasing to surface water.

  4. Biogas Production from Batch Anaerobic Co-Digestion of Night Soil with Food Waste

    Directory of Open Access Journals (Sweden)

    Assadawut Khanto

    2016-01-01

    Full Text Available The objective of this study is to investigate the biogas production from Anaerobic Co-Digestion of Night Soil (NS with Food Waste (FW. The batch experiment was conducted through the NS and FW with a ratio of 70:30 by weight. The experiment is mainly evaluated by the characteristic of Co-Digestion and Biogas Production. In addition of food waste was inflating the COD loading from 17,863 to 42,063 mg/L which is 135 % increased. As the result, it shows that pH has dropped off in the beginning of 7-day during digestion and it was slightly increased into the range of optimum anaerobic condition. After digestion of the biogas production was 2,184 l and 56.5 % of methane fraction has obtained within 31 days of experimentation. The investigation of Biochemical Methane Potential (BMP and Specific Methanogenic Activities (SMA were highly observed. And the results were obtained by 34.55 mL CH4/gCODremoval and 0.38 g CH4-COD/gVSS-d. While the average COD removal from the 4 outlets got 92%, 94%, 94 % and 92 % respectively. However, the effluent in COD concentration was still high and it needs further treatment before discharge.

  5. Uptake of permanganate from aqueous environment by surfactant modified montmorillonite batch and fixed bed studies

    Indian Academy of Sciences (India)

    N Mahadevaiah; B Vijayakumar; K Hemalatha; B S Jai Prakash

    2011-12-01

    Organo-clay was prepared by incorporating different amounts (in terms of CEC, ranging from 134–840 mg of quaternary ammonium cation (QACs) such as hexadecytrimethylammonium bromide ([C19H42N]Br) into the montmorillonite clay. Prepared organo-clays are characterized by CHN analyser and XRD to measure the amount of elemental content and interlayer spacing of surfactant modified clay. The batch experiments of sorption of permanganate from aqueous media by organo-clays was studied at different acidic strengths (pH 1–7). The experimental results show that the rate and amount of adsorption of permanganate was higher at lower pH compared to raw montmorillonite. Laboratory fixed bed experiments were conducted to evaluate the breakthrough time and nature of breakthrough curves. The shape of the breakthrough curves shows that the initial cationic surfactant loadings at 1.0 CEC of the clay is enough to enter the permanganate ions in to the interlamellar region of the surfactant modified smectile clays. These fixed bed studies were also applied to quantify the effect of bed-depth and breakthrough time during the uptake of permanganate. Calculation of thermodynamic parameters shows that the sorption of permanganate is spontaneous and follows the first order kinetics.

  6. Development and characterization of the partial nitrification aerobic granules in a sequencing batch airlift reactor.

    Science.gov (United States)

    Song, Yanjun; Ishii, Satoshi; Rathnayake, Lashitha; Ito, Tsukasa; Satoh, Hisashi; Okabe, Satoshi

    2013-07-01

    In this study, partial nitrifying (PN) aerobic granules were developed in a sequencing batch airlift reactor by controlling the airflow rate and NH4(+) loading rate. The PN reactor produced an effluent with a NO2(-)/NH4(+) ratio of approximately one and with an NH4(+) conversion rate of 1.22 kg N m(-3)day(-1). More than 95% of the total organic carbon was removed during the process. On the basis of clone library analysis and fluorescence in situ hybridization, ammonia-oxidizing bacteria (AOB) closely related to Nitrosomonas eutropha and putative heterotrophic denitrifiers were mainly present near the surface of the PN aerobic granules. Microelectrode measurements revealed that both NH4(+) and NO2(-) were consumed near the surface (<200 μm), whereas no nitrate (NO3(-)) accumulation was observed throughout the granules. These results indicate that PN by AOB and nitrite denitrification by heterotrophs, but not nitrite oxidation, simultaneously occurred near the surface of the PN aerobic granules. PMID:23665689

  7. High rate psychrophilic anaerobic digestion of high solids (35%) dairy manure in sequence batch reactor.

    Science.gov (United States)

    Saady, Noori M Cata; Massé, Daniel I

    2015-06-01

    Zero liquid discharge is increasingly adopted as an objective for waste treatment process. The objective of this study was to increase the feed total solids (TS) and the organic loading rate (OLR) fed to a novel psychrophilic (20°C) dry anaerobic digestion (PDAD). Duplicate laboratory-scale bioreactors were fed cow feces and wheat straw (35% TS in feed) at OLR of 6.0 g TCOD kg(-1) inoculum d(-1) during long-term operation (147 days consisting of 7 successive cycles). An overall average specific methane yield (SMY) of 151.8±7.9 N L CH4 kg(-1) VS fed with an averaged volatile solids removal of 42.4±4.3% were obtained at a volatile solids-based inoculum-to-substrate ratio (ISR) of 2.13±0.2. The operation was stable as indicated by biogas and VFAs profiles and the results were reproducible in successive cycles; a maximum SMY of 163.3±5.7 N L CH4 kg(-1) VS fed was obtained. Hydrolysis was the reaction limiting step. High rate PDAD of 35% TS dairy manure is possible in sequential batch reactor within 21 days treatment cycle length. PMID:25804501

  8. The valuation of malnutrition in the mono-digestion of maize silage by anaerobic batch tests.

    Science.gov (United States)

    Hinken, L; Urban, I; Haun, E; Urban, I; Weichgrebe, D; Rosenwinkel, K-H

    2008-01-01

    Anaerobic digestion is a technology which is used to produce methane from organic solids and energy crops. Especially in recent years, the fermentation of energy crops has become more and more important because of increasing costs for energy and special benefits for renewable energy sources in Germany. Anaerobic bacteria require macro and micro nutrients to grow. Absence of these elements can inhibit the anaerobic process significantly. In particular mono-substrates like maize or certain industrial wastewater often cannot provide all required nutrients. For this reason this research investigates the influence of substrate and trace elements on anaerobic digestion in detail. Different agricultural anaerobic biomasses are analysed with special regard to their trace element content. Based on these results, the influence of three trace elements (iron, cobalt, and nickel) on anaerobic digestion was studied in anaerobic batch tests at different sludge loading rates and for different substrates (maize and acetate). Biogas production was found to be 35% for maize silage and up to 70% higher for acetate with trace element dosage than in the reference reactor. PMID:18957759

  9. Response of biodegradation characteristics of unacclimated activated sludge to moderate pressure in a batch reactor.

    Science.gov (United States)

    Xu, Rui-Xiao; Li, Bing; Zhang, Yong; Si, Ling; Zhang, Xian-Qiu; Xie, Biao

    2016-04-01

    This study was aimed to investigate the effect of moderate pressure on unacclimated activated sludge. Process of organic degradation, variation of carbon dioxide (CO2) concentration of off-gas and characteristics of extracellular polymeric substances (EPS) of activated sludge were analyzed using pressure-atmospheric comparative experiments in bench-scale batch reactors. It was found that moderate pressure increased the degradation rate more dramatically when the biological process ran under a higher organic load with much more oxygen demand, which illuminated that applications of the pressurized method to high concentration organic wastewaters would be more reasonable and practicable. High oxygen transfer impetus increased utilization of oxygen which not only promoted the biodegradation of organics in wastewater, but also led to more EPS consumption in activated sludge. CO2 concentration of off-gas was lower in the earlier stage due to CO2 being pressed into the liquid phase and converted into inorganic carbon (IC). More CO2 emission was observed during the pressurized aerobic process 160 min later. EPS in pressurized reactor was much lower, which may be an important way of sludge reduction by pressurized technology. PMID:26802261

  10. Accelerating Aerobic Sludge Granulation by Adding Dry Sewage Sludge Micropowder in Sequencing Batch Reactors

    Science.gov (United States)

    Li, Jun; Liu, Jun; Wang, Danjun; Chen, Tao; Ma, Ting; Wang, Zhihong; Zhuo, Weilong

    2015-01-01

    Micropowder (20–250 µm) made from ground dry waste sludge from a municipal sewage treatment plant was added in a sequencing batch reactor (R2), which was fed by synthetic wastewater with acetate as carbon source. Compared with the traditional SBR (R1), aerobic sludge granulation time was shortened 15 days in R2. Furthermore, filamentous bacteria in bulking sludge were controlled to accelerate aerobic granulation and form large granules. Correspondingly, the SVI decreased from 225 mL/g to 37 mL/g. X-ray Fluorescence (XRF) analysis demonstrated that Al and Si from the micropowder were accumulated in granules. A mechanism hypotheses for the acceleration of aerobic granulation by adding dry sludge micropowder is proposed: added micropowder acts as nuclei to induce bacterial attachment; dissolved matters from the micropowder increase abruptly the organic load for starved sludge to control overgrown filamentous bacteria as a framework for aggregation; increased friction from the movement of micropowder forces the filaments which extend outwards to shrink for shaping granules. PMID:26308025

  11. Simultaneous nitrification-denitrification and phosphorus removal in a fixed bed sequencing batch reactor (FBSBR)

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Yousef, E-mail: you.rahimi@gmail.com [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave, Tehran (Iran, Islamic Republic of); Torabian, Ali, E-mail: atorabi@ut.ac.ir [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave, Tehran (Iran, Islamic Republic of); Mehrdadi, Naser, E-mail: mehrdadi@ut.ac.ir [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave, Tehran (Iran, Islamic Republic of); Shahmoradi, Behzad, E-mail: bshahmorady@gmail.com [Department of Environmental Science, University of Mysore, MGM-06 Mysore (India)

    2011-01-30

    Research highlights: {yields} Sludge production in FSBR reactor is 20-30% less than SBR reactor. {yields} FSBR reactor showed more nutrient removal rate than SBR reactor. {yields} FSBR reactor showed less VSS/TSS ratio than SBR reactor. - Abstract: Biological nutrient removal (BNR) was investigated in a fixed bed sequencing batch reactor (FBSBR) in which instead of activated sludge polypropylene carriers were used. The FBSBR performance on carbon and nitrogen removal at different loading rates was significant. COD, TN, and phosphorus removal efficiencies were at range of 90-96%, 60-88%, and 76-90% respectively while these values at SBR reactor were 85-95%, 38-60%, and 20-79% respectively. These results show that the simultaneous nitrification-denitrification (SND) is significantly higher than conventional SBR reactor. The higher total phosphorus (TP) removal in FBSBR correlates with oxygen gradient in biofilm layer. The influence of fixed media on biomass production yield was assessed by monitoring the MLSS concentrations versus COD removal for both reactors and results revealed that the sludge production yield (Y{sub obs}) is significantly less in FBSBR reactors compared with SBR reactor. The FBSBR was more efficient in SND and phosphorus removal. Moreover, it produced less excess sludge but higher in nutrient content and stabilization ratio (less VSS/TSS ratio).

  12. A batch reactor study to determine effectiveness factors of commercial HDS catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Marroquin, G.; Ancheyta, J.; Esteban, C. [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, Mexico, D.F. 07730 (Mexico)

    2005-06-15

    In this work we present a series of experiments in order to determine effectiveness factor of commercial hydrodesulfurization (HDS) catalysts. All the tests were carried out with straight-run gas oil (SRGO) and CoMo/{gamma}-Al{sub 2}O{sub 3} catalyst in a batch reactor at 54kg/cm{sup 2} pressure, 320-380{sup o}C reaction temperature, 1000rpm stirring and reaction times between 1 and 6h. Four sizes of catalyst were employed for HDS experiments: (1) Commercial size, average particle size d{sub p}=2.5mm, (2) d{sub p}=0.833mm (20 mesh), (3) d{sub p}=0.369mm (40 mesh), and (4) d{sub p}=0.246mm (60 mesh). Before HDS tests all the samples were loaded to a continuous high-pressure reactor, then dried, soaked and sulfided with a mixture of SRGO and dimethyl disulfide (DMDS, 1wt.% sulfur) at typical activation conditions. The effects of reaction temperature, reaction time, and catalyst particle size on hydrodesulfurization are discussed and reaction order, kinetic constants, effectiveness factors and activation energies are calculated for each particle size. The values of effectiveness factors are within those reported in the literature.

  13. Simultaneous nitrification-denitrification and phosphorus removal in a fixed bed sequencing batch reactor (FBSBR)

    International Nuclear Information System (INIS)

    Research highlights: → Sludge production in FSBR reactor is 20-30% less than SBR reactor. → FSBR reactor showed more nutrient removal rate than SBR reactor. → FSBR reactor showed less VSS/TSS ratio than SBR reactor. - Abstract: Biological nutrient removal (BNR) was investigated in a fixed bed sequencing batch reactor (FBSBR) in which instead of activated sludge polypropylene carriers were used. The FBSBR performance on carbon and nitrogen removal at different loading rates was significant. COD, TN, and phosphorus removal efficiencies were at range of 90-96%, 60-88%, and 76-90% respectively while these values at SBR reactor were 85-95%, 38-60%, and 20-79% respectively. These results show that the simultaneous nitrification-denitrification (SND) is significantly higher than conventional SBR reactor. The higher total phosphorus (TP) removal in FBSBR correlates with oxygen gradient in biofilm layer. The influence of fixed media on biomass production yield was assessed by monitoring the MLSS concentrations versus COD removal for both reactors and results revealed that the sludge production yield (Yobs) is significantly less in FBSBR reactors compared with SBR reactor. The FBSBR was more efficient in SND and phosphorus removal. Moreover, it produced less excess sludge but higher in nutrient content and stabilization ratio (less VSS/TSS ratio).

  14. A Batch Optimization Solver for diffusion area scheduling in semiconductor manufacturing

    OpenAIRE

    Yugma, Claude; Artigues, Christian; Dauzère-Pérès, Stéphane; Derreumaux, Alexandre; Sibille, Olivier

    2007-01-01

    This paper presents a method and a software for solving a batching and scheduling problem in the diffusion area of a semiconductor plant, the ATMEL fabrication unit in Rousset, France. The diffusion area is one of the most complex area in the fab. A significant number of lots has to be processed while satisfying complex equipment process and line management constraints. The purpose of this study is to investigate approaches to group lots in batches, to assign the batches on the equipment and ...

  15. Data Driven Modeling for Monitoring and Control of Industrial Fed-Batch Cultivations

    DEFF Research Database (Denmark)

    Bonné, Dennis; Alvarez, María Antonieta; Jørgensen, Sten Bay

    2014-01-01

    A systematic methodology for development of a set of discrete-time sequence models for batch control based on historical and online operating data is presented and investigated experimentally. The modeling is based on the two independent characteristic time dimensions of batch processing, being t...... optimization of the bioreactor operations model. The modeling and preliminary control performance is demonstrated on an industrial fed-batch protein cultivation production process. The presented methods lend themselves directly for application as Process Analytical Technologies....

  16. A CATASTROPHIC-CUM-RESTORATIVE QUEUING SYSTEM WITH CORRELATED BATCH ARRIVALS AND VARIABLE CAPACITY

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar

    2008-07-01

    Full Text Available In this paper, we study a catastrophic-cum-restorative queuing system with correlated batch arrivals and service in batches of variable sizes. We perform the transient analysis of the queuing model. We obtain the Laplace Transform of the probability generating function of system size. Finally, some particular cases of the model have been derived and discussed. Keywords: Queue length, Catastrophes, Correlated batch arrivals, Broadband services, Variable service capacity, and Restoration.

  17. Simulation of kefiran production of Lactobacillus kefiranofaciens JCM6985 in fed-batch reactor

    OpenAIRE

    Benjamas Cheirsilp

    2006-01-01

    Kinetics of kefiran production by Lactobacillus kefiranofaciens JCM6985 has been investigated. A mathematical model taking into account the mechanism of exopolysaccharides production has been developed. Experiments were carried out in batch mode in order to obtain kinetic model parameters that were further applied to simulate fed-batch processes. A simplification of parameter fitting was also introduced for complicated model. The fed-batch mode allows more flexibility in the control of the su...

  18. Fed-batch Fermentation of Lactic Acid Bacteria to Improve Biomass Production: A Theoretical Approach

    Science.gov (United States)

    Beng Lee, Boon; Tham, Heng Jin; Chan, Eng Seng

    Recently, fed-batch fermentation has been introduced in an increasing number of fermentation processes. Previous researches showed that fed-batch fermentation can increase the biomass yield of many strains. Improvement of the biomass yield is interested because biomass from lactic acid bacteria (LAB) fermentation is widely used in food and pharmaceutical industry. The aim of this research is to study the ability and feasibility of fed-batch fermentation to improve biomass production of LAB. Appropriate model has been selected from literature. Monod equation described the substrate limitation of LAB and the product inhibition of LAB follows a non-competitive model. Furthermore, the lactic acid production follows Luedeking and Piret model. Then the models are applied to simulate the fermentation of batch and fed-batch cultures by using MATLAB. From the results of simulation, fed-batch fermentation showed that substrate limitation and substrate inhibition can be avoided. Besides that, the variable volume fed-batch fermentation also showed that product inhibition can be eliminated by diluting the product concentration with added fresh feed. However, it was found that fed-batch fermentation is not economically feasible because large amount of substrate is required to reduce the product inhibition effect. Therefore, fed-batch fermentation plays more importance role if the fermentation strain has high Ks value or low Kp value.

  19. Increased CPC batch size study for Tank 42 sludge in the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    A series of experiments have been completed at TNX for the sludge-only REDOX adjusted flowsheet using Tank 42 sludge simulant in response to the Technical Task Request HLW/DWPT/TTR-980013 to increase CPC batch sizes. By increasing the initial SRAT batch size, a melter feed batch at greater waste solids concentration can be prepared and thus increase melter output per batch by about one canister. The increased throughput would allow DWPF to dispose of more waste in a given time period thus shortening the overall campaign

  20. Role of batch depletion of broiler houses on the occurrence of Campylobacter spp. in chicken flocks

    DEFF Research Database (Denmark)

    Hald, Birthe; Rattenborg, Erik; Madsen, Mogens

    2001-01-01

    Aims: The effect of batch depletion of broiler houses for campylobacter occurrence in broiler flocks was estimated in 10 flocks, each comprising a separate female and male batch. Methods and Results: The chicks were sampled first bq; cloacal swabs in the broiler houses before the start of the...... batch depletion of broiler houses increased the prevalence of Campylobacter spp.-infected broilers in the flocks, that the introduction occurred a hen catching the first batch, and that campylobacter spreads through the entire flock within a week. Significance and Impact of the Study: The results from...

  1. Retardation characteristics of radionuclides in geologic media through batch and packed column experiments

    International Nuclear Information System (INIS)

    Batch and packed column experiments are performed to investigate the retardation characteristics of radionuclide,i.e, Cs-137 in geologic media. In batch experiment, the effects of important parameters on the sorption of radionuclide in geologic media, such as nuclide concentration, pH, and particle size are examined. The Kd value obtained from breakthrough curve was compared with that from the batch sorption experiment to investigate the applicability of the Kd value from batch experiment to prediction of radionuclide migration in dynamic flow through porous media. The proposed model of radionuclide migration in porous media is also verified using the experimental results. (Author)

  2. A study on the use of the BioBall® as a biofilm carrier in a sequencing batch reactor.

    Science.gov (United States)

    Masłoń, Adam; Tomaszek, Janusz A

    2015-11-01

    Described in this study are experiments conducted to evaluate the removal of organics and nutrients from synthetic wastewater by a moving bed sequencing batch biofilm reactor using BioBall® carriers as biofilm media. The work involving a 15L-laboratory scale MBSBBR (moving bed sequencing batch biofilm reactor) model showed that the wastewater treatment system was based on biochemical processes taking place with activated sludge and biofilm microorganisms developing on the surface of the BioBall® carriers. Classical nitrification and denitrification and the typical enhanced biological phosphorus removal process were achieved in the reactor analyzed, which operated with a volumetric organic loading of 0.84-0.978gCODL(-1)d(-1). The average removal efficiencies for COD, total nitrogen and total phosphorus were found to be 97.7±0.5%, 87.8±2.6% and 94.3±1.3%, respectively. Nitrification efficiency reached levels in the range 96.5-99.7%. PMID:26298401

  3. Harnessing dark fermentative hydrogen from pretreated mixture of food waste and sewage sludge under sequencing batch mode.

    Science.gov (United States)

    Nam, Joo-Youn; Kim, Dong-Hoon; Kim, Sang-Hyoun; Lee, Wontae; Shin, Hang-Sik; Kim, Hyun-Woo

    2016-04-01

    Food waste and sewage sludge are the most abundant and problematic organic wastes in any society. Mixture of these two wastes may provide appropriate substrate condition for dark fermentative biohydrogen production based on synergistic mutual benefits. This work evaluates continuous hydrogen production from the cosubstrate of food waste and sewage sludge to verify mechanisms of performance improvement in anaerobic sequencing batch reactors. Volatile solid concentration and mixing ratio of food waste and sludge were adjusted to 5 % and 80:20, respectively. Five different hydraulic retention times (HRT) of 36, 42, 48, 72, and 108 h were tested using anaerobic sequencing batch reactors to find out optimal operating condition. Results show that the best performance was achieved at HRT 72 h, where the hydrogen yield, the hydrogen production rate, and hydrogen content were 62.0 mL H2/g VS, 1.0 L H2/L/day, and ~50 %, respectively. Sufficient solid retention time (143 h) and proper loading rate (8.2 g COD/L/day as carbohydrate) at HRT 72h led to the enhanced performance with better hydrogen production showing appropriate n-butyrate/acetate (B/A) ratio of 2.6. Analytical result of terminal-restriction fragment length polymorphism revealed that specific peaks associated with Clostridium sp. and Bacillus sp. were strongly related to enhanced hydrogen production from the cosubstrate of food waste and sewage sludge. PMID:26150291

  4. Biological Treatment of Edible Oil Refinery Wastewater using Activated Sludge Process and Sequencing Batch Reactors - A Review

    Directory of Open Access Journals (Sweden)

    Devendra Dohare

    2014-12-01

    Full Text Available This review paper intends to provide an overall vision of ASP and SBR technology as an alternative method for biological treatment of edible oil refinery wastewater. Edible oil refinery effluent is considered the most harmful waste for the environment if discharged untreated. Edible oil effluent is a yellowish liquid that contains high Dissolved Solids, Oil and Grease, high COD and BOD values, low pH, Total Kjeldahl Nitrogen, Ammonia Nitrogen, and Total Phosphorus. The activated sludge process is used to treat waste stream that are high in organic loading and biodegradable compounds. It is most widely used biological process for the treatment of edible oil refinery wastewater. Sequencing batch reactor is a modification of activated sludge process which has been successfully used to treat edible oil refinery wastewater. The same can be successfully treated by sequencing batch reactor process.The advantages of SBR technology are single-tank configuration, easily expandable, flexibility in operation, feasibility of operation at low retention time, control over microbial population and various reactor configuration. Their studies resulted in very high percentage removal of BOD, COD, Total Dissolved Solids and Suspended Solids respectively. The review discusses some of the published works in addition to experiences of the authors.

  5. Limit loads in nozzles

    International Nuclear Information System (INIS)

    The static method for the evaluation of the limit loads of a perfectly elasto-plastic structure is presented. Using the static theorem of Limit Analysis and the Finite Element Method, a lower bound for the colapso load can be obtained through a linear programming problem. This formulation if then applied to symmetrically loaded shells of revolution and some numerical results of limit loads in nozzles are also presented. (Author)

  6. Treatment of Laboratory Wastewater by Sequence Batch reactor technology

    International Nuclear Information System (INIS)

    These studies were conducted on the characterization and treatment of sewage mixed with waste -water of research and testing laboratory (PCSIR Laboratories Lahore). In this study all the parameters COD, BOD and TSS etc of influent (untreated waste-water) and effluent (treated waste-water) were characterized using the standard methods of examination for water and waste-water. All the results of the analyzed waste-water parameters were above the National Environmental Quality Standards (NEQS) set at National level. Treatment of waste-water was carried out by conventional sequencing batch reactor technique (SBR) using aeration and settling technique in the same treatment reactor at laboratory scale. The results of COD after treatment were reduced from (90-95 %), BOD (95-97 %) and TSS (96-99 %) and the reclaimed effluent quality was suitable for gardening purposes. (author)

  7. Study on the numerical simulation of batch sieving process

    Institute of Scientific and Technical Information of China (English)

    JIAO Hong-guang; MA Jiao; ZHAO Yue-min; CHEN Lun-jian

    2006-01-01

    Screening was widely used in many sectors of industry. However, it is rather incomplete to the cognition of the sieving process for us due to the daedal separation process involving interactions of thousands of particulates. To address this problem, two dimensional numerical simulation of batch sieving process was performed by adopting advanced discrete element method (DEM), which is one of the highly nonlinear digitized dynamic simulative methods and can be used to reveal the quantitative change from particle dimension level. DEM simulation results show that the jam phenomena of sieve-plate apertures of the "blinding particles" in the screen feed can be demonstrated vividly and results also reveal that the velocity of particle moving on the screen plate will vary along with the screen length. This conclusion will be helpful to the design and operation of screen.

  8. Hadoop distributed batch processing for Gaia: a success story

    Science.gov (United States)

    Riello, Marco

    2015-12-01

    The DPAC Cambridge Data Processing Centre (DPCI) is responsible for the photometric calibration of the Gaia data including the low resolution spectra. The large data volume produced by Gaia (~26 billion transits/year), the complexity of its data stream and the self-calibrating approach pose unique challenges for scalability, reliability and robustness of both the software pipelines and the operations infrastructure. DPCI has been the first in DPAC to realise the potential of Hadoop and Map/Reduce and to adopt them as the core technologies for its infrastructure. This has proven a winning choice allowing DPCI unmatched processing throughput and reliability within DPAC to the point that other DPCs have started following our footsteps. In this talk we will present the software infrastructure developed to build the distributed and scalable batch data processing system that is currently used in production at DPCI and the excellent results in terms of performance of the system.

  9. Analytical study plan: Shielded Cells batch 1 campaign; Revision 1

    International Nuclear Information System (INIS)

    Radioactive operations in the Defense Waste Processing Facility (DWPF) will require that the Savannah River Technology Center (SRTC) perform analyses and special studies with actual Savannah River Site (SRS) high-level waste sludge. SRS Tank 42 and Tank 51 will comprise the first batch of sludge to be processed in the DWPF. Approximately 25 liters of sludge from each of these tanks will be characterized and processed in the Shielded Cells of SRTC. During the campaign, processes will include sludge characterization, sludge washing, rheology determination, mixing, hydrogen evolution, feed preparation, and vitrification of the waste. To complete the campaign, the glass will be characterized to determine its durability and crystallinity. This document describes the types of samples that will be produced, the sampling schedule and analyses required, and the methods for sample and analytical control

  10. Simulated annealing and joint manufacturing batch-sizing

    Directory of Open Access Journals (Sweden)

    Sarker Ruhul

    2003-01-01

    Full Text Available We address an important problem of a manufacturing system. The system procures raw materials from outside suppliers in a lot and processes them to produce finished goods. It proposes an ordering policy for raw materials to meet the requirements of a production facility. In return, this facility has to deliver finished products demanded by external buyers at fixed time intervals. First, a general cost model is developed considering both raw materials and finished products. Then this model is used to develop a simulated annealing approach to determining an optimal ordering policy for procurement of raw materials and also for the manufacturing batch size to minimize the total cost for meeting customer demands in time. The solutions obtained were compared with those of traditional approaches. Numerical examples are presented. .

  11. Sample Results From Routine Salt Batch 7 Samples

    International Nuclear Information System (INIS)

    Strip Effluent Hold Tank (SEHT) and Decontaminated Salt Solution Hold Tank (DSSHT) samples from several of the "microbatches" of Integrated Salt Disposition Project (ISDP) Salt Batch ("Macrobatch") 7B have been analyzed for 238Pu, 90Sr, 137Cs, cations (Inductively Coupled Plasma Emission Spectroscopy - ICPES), and anions (Ion Chromatography Anions - IC-A). The analytical results from the current microbatch samples are similar to those from previous macrobatch samples. The Actinide Removal Process (ARP) and the Modular Caustic-Side Solvent Extraction Unit (MCU) continue to show more than adequate Pu and Sr removal, and there is a distinct positive trend in Cs removal (increasing cesium decontamination), due to the use of the Next Generation Solvent (NGS). The bulk chemistry of the DSSHT and SEHT samples do not show any signs of unusual behavior.

  12. CONSOLIDATING BATCH AND TRANSACTIONAL WORKLOADS USING DEPENDENCY STRUCTURE PRIORITIZATION

    Directory of Open Access Journals (Sweden)

    S.NIVETHITHA

    2013-04-01

    Full Text Available Organizations offer efficient services to their customers through cloud. These services can either be a batch or transactional workloads. To offer a real-time service, there comes a need to schedule these workloads in an efficient way. An idea to consolidate these workloads enables us to cut down the energy consumption and infrastructure cost. It will be harder to consolidate both these workloads due to the difference in their nature, performance goals and control mechanisms. The proposed work implements the concept of Dependency Structure Prioritization (DSP to assign priority to the job. This work tends to make effective resource utilization through reducing the number of job migration and missed deadline jobs by considering the deadline and the priority of the job as the most important evaluation factor.

  13. Sample Results From Routine Salt Batch 7 Samples

    Energy Technology Data Exchange (ETDEWEB)

    Peters, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-01-14

    Strip Effluent Hold Tank (SEHT) and Decontaminated Salt Solution Hold Tank (DSSHT) samples from several of the “microbatches” of Integrated Salt Disposition Project (ISDP) Salt Batch (“Macrobatch”) 7B have been analyzed for 238Pu, 90Sr, 137Cs, cations (Inductively Coupled Plasma Emission Spectroscopy - ICPES), and anions (Ion Chromatography Anions - IC-A). The analytical results from the current microbatch samples are similar to those from previous macrobatch samples. The Actinide Removal Process (ARP) and the Modular Caustic-Side Solvent Extraction Unit (MCU) continue to show more than adequate Pu and Sr removal, and there is a distinct positive trend in Cs removal (increasing cesium decontamination), due to the use of the Next Generation Solvent (NGS). The bulk chemistry of the DSSHT and SEHT samples do not show any signs of unusual behavior.

  14. Biological Treatment of Dairy Wastewater by Sequencing Batch Reactor

    Directory of Open Access Journals (Sweden)

    A Mohseni-Bandpi, H Bazari

    2004-10-01

    Full Text Available A bench scale aerobic Sequencing Batch Reactor (SBR was investigated to treat the wastewater from an industrial milk factory. The reactor was constructed from plexi glass material and its volume was 22.5 L. The reactor was supplied with oxygen by fine bubble air diffuser. The reactor was fed with milk factory and synthetic wastewater under different operational conditions. The COD removal efficiency was achieved more than 90%, whereas COD concentration varied from 400 to 2500 mg/l. The optimum dissolved oxygen in the reactor was 2 to 3 mg/l and MLVSS was around 3000 mg/l. Easy operation, low cost and minimal sludge bulking condition make the SBR system an interesting option for the biological medium strength industrial wastewater treatment. The study demonstrated the capability of aerobic SBR for COD removal from dairy industrial wastewater.

  15. State estimation in a batch suspension polymerization reactor

    International Nuclear Information System (INIS)

    This paper concerns non-linear state estimation in a batch polymerization reactor where suspension polymerization of methyl methacrylate takes place. A kinetic model proposed in the literature is selected and its validity has been verified through an experimental set-up. Based on this model monomer conversion and average molecular weights of the polymer are estimated using only one output measurement (reactor temperature). The performance of the estimator, which has the structure of an extended Kalman filter, is examined through simulation and experimental studies in the presence of different levels of parameter uncertainties. The effects of adding fictitious noise and parameter state to the estimation algorithm are also investigated. To find the best fictitious state, the main parameters of polymerization model are divided into three groups. The parametric study of the MMA polymerization model indicates that, when the source of parameter uncertainty is unknown, the best selection of parameter state is the initial mass of monomer

  16. Hydrolyzed polyacrylamide biodegradation and mechanism in sequencing batch biofilm reactor.

    Science.gov (United States)

    Yan, Miao; Zhao, Lanmei; Bao, Mutai; Lu, Jinren

    2016-05-01

    An investigation was performed to study the performance of a sequencing batch biofilm reactor (SBBR) to treat hydrolyzed polyacrylamides (HPAMs) and to determine the mechanisms of HPAM biodegradation. The mechanisms for the optimized parameters that significantly improved the degradation efficiency of the HPAMs were investigated by a synergistic effect of the co-metabolism in the sludge and the enzyme activities. The HPAM and TOC removal ratio reached 54.69% and 70.14%. A significant decrease in the total nitrogen concentration was measured. The carbon backbone of the HPAMs could be degraded after the separation of the amide group according to the data analysis. The HPLC results indicated that the HPAMs could be converted to polymer fragments without the generation of the acrylamide monomer intermediate. The results from high-throughput sequencing analysis revealed proteobacterias, bacteroidetes and planctomycetes were the key microorganisms involved in the degradation. PMID:26896716

  17. QUARTZ MELT RATE FURNACE EVALUATION USING SLUDGE BATCH 3 FEED

    International Nuclear Information System (INIS)

    The Quartz Melt Rate Furnace (QMRF) was developed to study the melt rate and offgas composition of simulated Defense Waste Processing Facility (DWPF) melter feed. The objective of this testing was to evaluate whether the apparatus could be used to study the offgas chemistry of melting batches and perform small-scale slurry-fed melt rate tests. The furnace was tested in three different configurations: a dry-fed test with offgas analysis, a slurry-fed test without offgas analysis, and a slurry-fed test with offgas analysis. During the dry-fed test, offgas composition was successfully measured throughout the run and total offgas flow was calculated from the helium tracer concentration. During the slurry-feeding tests without offgas analysis, the furnace exhibited stable feeding behavior with no problems with feed tube pluggage. Feeding behavior was used to measure the melt rate of Sludge Batch 3 with Frit 320 and with Frit 418. Both frits had approximately the same melt rate during the tests based on amount of melter feed added per minute. During the slurry-fed test with offgas analysis, spikes in the data prevented overall offgas flow analysis from the helium tracer, but the ratio of different offgas species allowed the composition data to be compared between runs. Minor improvements were identified that would enhance the performance of the furnace and further testing should be performed to optimize the performance of the apparatus. These tests should focus on increasing the stability of offgas composition data by providing more surge capacity in the offgas system, determining the sensitivity of the furnace to melt rate during slurry-fed tests and refining the lid heat power to optimize melt rate measurements, and to develop the capability to utilize the system with radioactive feeds

  18. Optimal control of batch emulsion polymerization of vinyl chloride

    Energy Technology Data Exchange (ETDEWEB)

    Damslora, Andre Johan

    1998-12-31

    The highly exothermic polymerization of vinyl chloride (VC) is carried out in large vessels where the heat removal represents a major limitation of the production rate. Many emulsion polymerization reactors are operated in such a way that a substantial part of the heat transfer capacity is left unused for a significant part of the total batch time. To increase the reaction rate so that it matches the heat removal capacity during the course of the reaction, this thesis proposes the use of a sufficiently flexible initiator system to obtain a reaction rate which is high throughout the reaction and real-time optimization to compute the addition policy for the initiator. This optimization based approach provides a basis for an interplay between design and control and between production and research. A simple model is developed for predicting the polymerization rate. The model is highly nonlinear and open-loop unstable and may serve as an interesting case for comparison of nonlinear control strategies. The model is fitted to data obtained in a laboratory scale reactor. Finally, the thesis discusses optimal control of the emulsion polymerization reactor. Reduction of the batch cycle time is of major economic importance, as long as the quality parameters are within their specifications. The control parameterization had a major influence on the performance. A differentiable spline parameterization was applied and the optimization is illustrated in a number of cases. The best performance is obtained when the reactor temperature is obtained when the optimization is combined with some form of closed-loop control of the reactor temperature. 112 refs., 48 figs., 4 tabs.

  19. A Particle Batch Smoother Approach to Snow Water Equivalent Estimation

    Science.gov (United States)

    Margulis, Steven A.; Girotto, Manuela; Cortes, Gonzalo; Durand, Michael

    2015-01-01

    This paper presents a newly proposed data assimilation method for historical snow water equivalent SWE estimation using remotely sensed fractional snow-covered area fSCA. The newly proposed approach consists of a particle batch smoother (PBS), which is compared to a previously applied Kalman-based ensemble batch smoother (EnBS) approach. The methods were applied over the 27-yr Landsat 5 record at snow pillow and snow course in situ verification sites in the American River basin in the Sierra Nevada (United States). This basin is more densely vegetated and thus more challenging for SWE estimation than the previous applications of the EnBS. Both data assimilation methods provided significant improvement over the prior (modeling only) estimates, with both able to significantly reduce prior SWE biases. The prior RMSE values at the snow pillow and snow course sites were reduced by 68%-82% and 60%-68%, respectively, when applying the data assimilation methods. This result is encouraging for a basin like the American where the moderate to high forest cover will necessarily obscure more of the snow-covered ground surface than in previously examined, less-vegetated basins. The PBS generally outperformed the EnBS: for snow pillows the PBSRMSE was approx.54%of that seen in the EnBS, while for snow courses the PBSRMSE was approx.79%of the EnBS. Sensitivity tests show relative insensitivity for both the PBS and EnBS results to ensemble size and fSCA measurement error, but a higher sensitivity for the EnBS to the mean prior precipitation input, especially in the case where significant prior biases exist.

  20. Sludge Batch 2 (Marcobath 3) Flowsheet Studies with Simulants

    International Nuclear Information System (INIS)

    Sludge-only process simulations of the Sludge Receipt and Adjustment Tank (SRAT) and the Slurry Mix Evaporator (SME) cycle were conducted for the two most likely scenarios for Sludge Batch 2 (Macrobatch 3). The two scenarios are a roughly 50:50 blend of Tank 8 and Tank 40 washed sludge and Tank 40 washed sludge by itself. The testing used new simulants of Tank 8 and Tank 40 washed sludge prepared at the University of South Carolina. The washing endpoint was about 0.5 moles sodium per liter supernate. This report summarizes both the simulant preparation and process simulation activities. The rheology work requested in the Task Plan will be documented in a separate report. Two scoping SRAT simulations were conducted for Tank 40 sludge. This was followed by a complete SRAT and SME simulation using Sludge Batch 1B acid stoichiometry (137.5 percent). Four scoping SRAT simulations were conducted for the Tank 8/40 blend. Three complete SRAT and SME simulations using blended sludge were then performed. One was at the recommended acid stoichiometry of 125 percent. The second used identical acid stoichiometry with HM levels of noble metals. The final run was at worst case noble metals and assumed complete transfer of the Formic Acid Feed Tank. Testing was completed without any major incidents. Hydrogen flow rates in excess of the design bases (0.65 lbs./hr for the SRAT and 0.23 lbs./hr for the SME) are marked in bold. Full details on the noble metals concentrations can be found in the body of the report

  1. Sludge Batch 2 (Marcobath 3) Flowsheet Studies with Simulants

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D.C.

    2001-03-02

    Sludge-only process simulations of the Sludge Receipt and Adjustment Tank (SRAT) and the Slurry Mix Evaporator (SME) cycle were conducted for the two most likely scenarios for Sludge Batch 2 (Macrobatch 3). The two scenarios are a roughly 50:50 blend of Tank 8 and Tank 40 washed sludge and Tank 40 washed sludge by itself. The testing used new simulants of Tank 8 and Tank 40 washed sludge prepared at the University of South Carolina. The washing endpoint was about 0.5 moles sodium per liter supernate. This report summarizes both the simulant preparation and process simulation activities. The rheology work requested in the Task Plan will be documented in a separate report. Two scoping SRAT simulations were conducted for Tank 40 sludge. This was followed by a complete SRAT and SME simulation using Sludge Batch 1B acid stoichiometry (137.5 percent). Four scoping SRAT simulations were conducted for the Tank 8/40 blend. Three complete SRAT and SME simulations using blended sludge were then performed. One was at the recommended acid stoichiometry of 125 percent. The second used identical acid stoichiometry with HM levels of noble metals. The final run was at worst case noble metals and assumed complete transfer of the Formic Acid Feed Tank. Testing was completed without any major incidents. Hydrogen flow rates in excess of the design bases (0.65 lbs./hr for the SRAT and 0.23 lbs./hr for the SME) are marked in bold. Full details on the noble metals concentrations can be found in the body of the report.

  2. Integrating PROOF Analysis in Cloud and Batch Clusters

    International Nuclear Information System (INIS)

    High Energy Physics (HEP) analysis are becoming more complex and demanding due to the large amount of data collected by the current experiments. The Parallel ROOT Facility (PROOF) provides researchers with an interactive tool to speed up the analysis of huge volumes of data by exploiting parallel processing on both multicore machines and computing clusters. The typical PROOF deployment scenario is a permanent set of cores configured to run the PROOF daemons. However, this approach is incapable of adapting to the dynamic nature of interactive usage. Several initiatives seek to improve the use of computing resources by integrating PROOF with a batch system, such as Proof on Demand (PoD) or PROOF Cluster. These solutions are currently in production at Universidad de Oviedo and IFCA and are positively evaluated by users. Although they are able to adapt to the computing needs of users, they must comply with the specific configuration, OS and software installed at the batch nodes. Furthermore, they share the machines with other workloads, which may cause disruptions in the interactive service for users. These limitations make PROOF a typical use-case for cloud computing. In this work we take profit from Cloud Infrastructure at IFCA in order to provide a dynamic PROOF environment where users can control the software configuration of the machines. The Proof Analysis Framework (PAF) facilitates the development of new analysis and offers a transparent access to PROOF resources. Several performance measurements are presented for the different scenarios (PoD, SGE and Cloud), showing a speed improvement closely correlated with the number of cores used.

  3. A process for energy-efficient high-solids fed-batch enzymatic liquefaction of cellulosic biomass.

    Science.gov (United States)

    Cardona, M J; Tozzi, E J; Karuna, N; Jeoh, T; Powell, R L; McCarthy, M J

    2015-12-01

    The enzymatic hydrolysis of cellulosic biomass is a key step in the biochemical production of fuels and chemicals. Economically feasible large-scale implementation of the process requires operation at high solids loadings, i.e., biomass concentrations >15% (w/w). At increasing solids loadings, however, biomass forms a high viscosity slurry that becomes increasingly challenging to mix and severely mass transfer limited, which limits further addition of solids. To overcome these limitations, we developed a fed-batch process controlled by the yield stress and its changes during liquefaction of the reaction mixture. The process control relies on an in-line, non-invasive magnetic resonance imaging (MRI) rheometer to monitor real-time evolution of yield stress during liquefaction. Additionally, we demonstrate that timing of enzyme addition relative to biomass addition influences process efficiency, and the upper limit of solids loading is ultimately limited by end-product inhibition as soluble glucose and cellobiose accumulate in the liquid phase. PMID:26432053

  4. Wind Loads on Structures

    DEFF Research Database (Denmark)

    Dyrbye, Claes; Hansen, Svend Ole

    pressure to structural response) and design criteria. Starting with an introduction of the wind load chain, the book moves on to meteorological considerations, atmospheric boundary layer, static wind load, dynamic wind load and scaling laws used in wind-tunnel tests. The dynamic wind load covers vibrations...... background material. It derives the theoretical background of wind loaded structures and gives practical applications for a large variety of structures, such as low rise static structures, buildings, chimneys and cable-supported bridges. The European Prestandard on Wind Actions, ENV 1991-2-4, is used...

  5. PRELIMINARY FRIT DEVELOPMENT AND MELT RATE TESTING FOR SLUDGE BATCH 6 (SB6)

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Miller, D.; Edwards, T.

    2009-07-21

    The Liquid Waste Organization (LWO) provided the Savannah River National Laboratory (SRNL) with a Sludge Batch 6 (SB6) composition projection in March 2009. Based on this projection, frit development efforts were undertaken to gain insight into compositional effects on the predicted and measured properties of the glass waste form and to gain insight into frit components that may lead to improved melt rate for SB6-like compositions. A series of Sludge Batch 6 (SB6) based glasses was selected, fabricated and characterized in this study to better understand the ability of frit compositions to accommodate uncertainty in the projected SB6 composition. Acceptable glasses (compositions where the Product Composition Control System (PCCS) Measurement Acceptability Region (MAR) predicted acceptable properties, good chemical durability was measured, and no detrimental nepheline crystallization was observed) can be made using Frit 418 with SB6 over a range of Na{sub 2}O and Al{sub 2}O{sub 3} concentrations. However, the ability to accommodate variation in the sludge composition limits the ability to utilize alternative frits for potential improvements in melt rate. Frit 535, which may offer improvements in melt rate due to its increased B2O3 concentration, produced acceptable glasses with the baseline SB6 composition at waste loadings of 34 and 42%. However, the PCCS MAR results showed that it is not as robust as Frit 418 in accommodating variation in the sludge composition. Preliminary melt rate testing was completed in the Melt Rate Furnace (MRF) with four candidate frits for SB6. These four frits were selected to evaluate the impacts of B{sub 2}O{sub 3} and Na{sub 2}O concentrations in the frit relative to those of Frit 418, although they are not necessarily candidates for SB6 vitrification. Higher concentrations of B{sub 2}O{sub 3} in the frit relative to that of Frit 418 appeared to improve melt rate. However, when a higher concentration of B{sub 2}O{sub 3} was coupled

  6. Anaerobic treatment of apple waste with swine manure for biogas production: Batch and continuous operation

    International Nuclear Information System (INIS)

    Highlights: ► Apple waste (AW) was co-digested with swine manure (SM). ► Mixture of AW and SM produced a higher biogas yield than SM only. ► Mixture of AW and SM produced a higher biogas yield at 55 °C than at 36.5 °C. ► Modified Gompertz model best fitted to the substrates used. ► Positive synergetic effect up to 33% AW during continuous digestion. -- Abstract: This study evaluated the performance of anaerobic digesters using a mixture of apple waste (AW) and swine manure (SM). Tests were performed using both batch and continuous digesters. The batch test evaluated the gas potential, gas production rate of the AW and SM (Experiment I), and the effect of AW co-digestion with SM (33:67,% volatile solids (VSs) basis) (Experiment II) at mesophilic and thermophilic temperatures. The first-order kinetic model and modified Gompertz model were also evaluated for methane yield. The continuous test evaluated the performance of a single stage completely stirred tank reactor (CSTR) with different mixture ratios of AW and SM at mesophilic temperature. The ultimate biogas and methane productivity of AW in terms of total chemical oxygen demand (TCOD) was determined to be 510 and 252 mL/g TCOD added, respectively. The mixture of AW and SM improved the biogas yield by approximately 16% and 48% at mesophilic and thermophilic temperatures, respectively, compared to the use of SM only, but no significant difference was found in the methane yield. The difference between the predicted and measured methane yield was higher with a first order kinetic model (4.6–18.1%) than with a modified Gompertz model (1.2–3.4%). When testing continuous digestion, the methane yield increased from 146 to 190 mL/g TCOD added when the AW content in the feed was increased from 25% to 33% (VS basis) at a constant organic loading rate (OLR) of 1.6 g VS/L/d and a hydraulic retention time (HRT) of 30 days. However, the total volatile fatty acids (TVFA) accumulation increased rapidly and the p

  7. Meeting Report: Batch-to-Batch Variability in Estrogenic Activity in Commercial Animal Diets—Importance and Approaches for Laboratory Animal Research

    OpenAIRE

    Heindel, Jerrold J.; vom Saal, Frederick S.

    2007-01-01

    We report information from two workshops sponsored by the National Institutes of Health that were held to a) assess whether dietary estrogens could significantly impact end points in experimental animals, and b) involve program participants and feed manufacturers to address the problems associated with measuring and eliminating batch-to-batch variability in rodent diets that may lead to conflicting findings in animal experiments within and between laboratories. Data were presented at the work...

  8. Sludge Batch 4 Without Tank 4 Simulant Flowsheet Studies: Phase I SRAT Results

    International Nuclear Information System (INIS)

    A set of simulant flowsheet runs using co-precipitated Sludge Batch 4 (SB4) simulant has been performed by the Savannah River National Laboratory (SRNL) - Immobilization Technology Section (ITS). This simulant reflected updated composition information from the Closure Business Unit since Tank 4 has been excluded from SB4 and settling issues have occurred in Tank 51. The flowsheet testing is part of the planning and qualification effort that is performed by SRNL for every sludge batch to be processed in the Defense Waste Processing Facility (DWPF). The work was performed to meet the requirements outlined in Technical Task Request (TTR) HLW/DWPF/TTR-04-0031 (Washburn 2004). A task technical and quality assurance plan was written by Baich (2004) in response to the TTR and provided guidance for the testing. The main objective of this set of tests was to assist in the determination of the SB4 washing endpoint and to bound SB4 processing based on projected compositions. Previous testing (Baich et. al. 2005) addressed compositions for SB4 that included Tank 4 with different washing endpoints and determined an acceptable operating window. However, the changes in composition and planning necessitated another set of flowsheet tests to be performed. For this set of flowsheet runs, the ITS used sludge simulant fabricated by the ITS Simulant Development program. The target composition was based on a SB4/Tank 51 washing strategy to target a ∼1.6M Na endpoint. Once SB4 is qualified, it will be transferred to a heel of SB3 in Tank 40 to meet accelerated closure commitments. The simulant reflected blending with a 40'' heel of SB3 in Tank 40. This level was selected since it contained the higher concentration of anions to be removed during DWPF processing and a higher concentration of SB4, which less is known about. Two Sludge Receipt and Adjustment Tank (SRAT) cycles were performed at different acid addition levels. The lower acid test was at 130% of stoichiometry and was

  9. Frit Development Efforts for Sludge Batch 4 (SB4): Model-Based Assessments

    Energy Technology Data Exchange (ETDEWEB)

    Peeler, D. K.; Edwards, T. B.

    2005-03-05

    The model-based assessments of nominal Sludge Batch 4 (SB4) compositions suggest that a viable frit candidate does not appear to be a limiting factor as the Closure Business Unit (CBU) considers various tank blending options and/or washing strategies. This statement is based solely on the projected operating windows derived from model predictions and does not include assessments of SO{sub 4} solubility or melt rate issues. The viable frit candidates covered a range of Na{sub 2}O concentrations (from 8% to 13%--including Frit 418 and Frit 320) using a ''sliding Na{sub 2}O scale'' concept (i.e., 1% increase in Na{sub 2}O being balanced by a 1% reduction in SiO{sub 2}) which effectively balances the alkali content of the incoming sludge with that in the frit to maintain and/or increase the projected operating window size while potentially leading to improved melt rate and/or waste loadings. This strategy or approach allows alternative tank blending strategies and/or different washing scenarios to be considered and accounted for in an effective manner without wholesale changes to the frit composition. In terms of projected operating windows, in general, the sludge/frit systems evaluated resulted in waste loading intervals from 25 to the mid-40%'s or even the mid-50%'s. The results suggest that a single frit could be selected for use with all 20 options which indicates some degree of frit robustness with respect to sludge compositional variation. In fact, use of Frit 418 or Frit 320 (the ''cornerstone'' frits given previous processing experience in the Defense Waste Processing Facility (DWPF)) are plausible for most (if not all) options being considered. However, the frit selection process also needs to consider potential processing issues such as melt rate. Based on historical trends between melt rate and total alkali content, one may elect to use the frit with the highest alkali content that still yields an acceptable

  10. Challenging Conventional Assumptions of Automated Information Retrieval with Real Users: Boolean Searching and Batch Retrieval Evaluations.

    Science.gov (United States)

    Hersh, William; Turpin, Andrew; Price, Susan; Kraemer, Dale; Olson, Daniel; Chan, Benjamin; Sacherek, Lynetta

    2001-01-01

    Describes research conducted at the TREC (Text Retrieval Conference) interactive track that compared Boolean and natural language searching, showing they achieved comparable results; and assessed the validity of batch-oriented retrieval evaluations, showing that the results from batch evaluations were not comparable to those obtained in…

  11. Variance bias analysis for the Gelbard's batch method

    International Nuclear Information System (INIS)

    In this paper, variances and the bias will be derived analytically when the Gelbard's batch method is applied. And then, the real variance estimated from this bias will be compared with the real variance calculated from replicas. Variance and the bias were derived analytically when the batch method was applied. If the batch method was applied to calculate the sample variance, covariance terms between tallies which exist in the batch were eliminated from the bias. With the 2 by 2 fission matrix problem, we could calculate real variance regardless of whether or not the batch method was applied. However as batch size got larger, standard deviation of real variance was increased. When we perform a Monte Carlo estimation, we could get a sample variance as the statistical uncertainty of it. However, this value is smaller than the real variance of it because a sample variance is biased. To reduce this bias, Gelbard devised the method which is called the Gelbard's batch method. It has been certificated that a sample variance get closer to the real variance when the batch method is applied. In other words, the bias get reduced. This fact is well known to everyone in the MC field. However, so far, no one has given the analytical interpretation on it

  12. 40 CFR 63.489 - Batch front-end process vents-monitoring equipment.

    Science.gov (United States)

    2010-07-01

    ... pressure drop. (B) If the scrubber is subject to regulations in 40 CFR parts 264 through 266 that have... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Batch front-end process vents... § 63.489 Batch front-end process vents—monitoring equipment. (a) General requirements. Each owner...

  13. 40 CFR 63.1324 - Batch process vents-monitoring equipment.

    Science.gov (United States)

    2010-07-01

    .... (B) If the scrubber is subject to regulations in 40 CFR parts 264 through 266 that have required a... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Batch process vents-monitoring... Batch process vents—monitoring equipment. (a) General requirements. Each owner or operator of a...

  14. Goal Selection and Program Monitoring Using Batch and Microcomputer Procedures: A Summary of the Presentation.

    Science.gov (United States)

    Brown, David A.

    The paper reviews the use of the microcomputer in special education program monitoring and contrasts its use with batch mainframe time-sharing computer systems. The mainframe system used by Custer State Hospital, the site of a residential training program for severely and profoundly handicapped persons, is described. The hospital's batch system is…

  15. 7 CFR 58.915 - Batch or continuous in-container thermal processing equipment.

    Science.gov (United States)

    2010-01-01

    ... hermetically sealed containers (21 CFR part 113). The equipment shall be maintained in such a manner as to... 7 Agriculture 3 2010-01-01 2010-01-01 false Batch or continuous in-container thermal processing... and Grading Service 1 Equipment and Utensils § 58.915 Batch or continuous in-container...

  16. Simple approximations for the batch-arrival mx/g/1 queue

    OpenAIRE

    Ommeren, van, F.J.

    1988-01-01

    In this paper we consider the MX/G/I queueing system with batch arrivals. We give simple approximations for the waiting-time probabilities of individual customers. These approximations are checked numerically and they are found to perform very well for a wide variety of batch-size and service-timed distributions.

  17. Implementation of Sliding Mode Controller with Boundary Layer for Saccharomyces cerevisiae Fed-batch Cultivation

    Directory of Open Access Journals (Sweden)

    Stoyan Tzonkov

    2005-04-01

    Full Text Available An implementation of sliding mode control for yeast fed-batch cultivation is presented in this paper. Developed controller has been implemented on two real fed-batch cultivations of Saccharomyces cerevisiae. The controller successfully stabilizes the process and shows a very good performance at high input disturbances.

  18. 40 CFR 1065.245 - Sample flow meter for batch sampling.

    Science.gov (United States)

    2010-07-01

    ... laminar flow element, an ultrasonic flow meter, a subsonic venturi, a critical-flow venturi or multiple... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Sample flow meter for batch sampling... Sample flow meter for batch sampling. (a) Application. Use a sample flow meter to determine sample......

  19. 40 CFR 417.10 - Applicability; description of the soap manufacturing by batch kettle subcategory.

    Science.gov (United States)

    2010-07-01

    ... manufacturing by batch kettle subcategory. 417.10 Section 417.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Soap Manufacturing by Batch Kettle Subcategory § 417.10 Applicability; description of the...

  20. Degradation of the herbicide mecoprop in an aerobic aquifer determined by laboratory batch studies

    DEFF Research Database (Denmark)

    Heron, Gorm; Christensen, Thomas Højlund

    1992-01-01

    The potential of a shallow aerobic aquifer to degrade the herbicide Mecoprop (2-(2-methyl-4-chlorophenoxy)propionic acid) was evaluated in the laboratory using groundwater and sediment suspension batches. Mecoprop was added to the batches to obtain concentrations of 65, 140, 400 and 1400 μg...

  1. Batch estimation of statistical errors in the Monte Carlo calculation of local powers

    International Nuclear Information System (INIS)

    Highlights: → Batch methodology performs well on the practical grounds. → The sample variance without autocorrelation terms is utterly unacceptable. → Non-overlapping and overlapping batch means perform better than standardized time series. → Overlapping batch means can be improved based on autocovariance bias correction without the cost of instability. - Abstract: Batch methodology is among the techniques for computing the standard deviation of sample mean and is applicable to any output series from stationary iteration cycles. In the present article, three forms of the methodology are investigated: non-overlapping batch means (NBM), which dates back to , overlapping batch means (OBM) by , and standardized time series (STS) by . In particular, they are applied to the MC calculation of local powers of a pressurized water reactor. The numerical results reveal that the performance of NBM is equivalent to that of OBM, whereas STS performs poorly for small batch sizes. It is also shown that OBM can be improved based on the method of autocovariance bias correction. For a computational condition leading to 0.5-1.5% statistical errors, the improved OBM for a batch size of 10% of the stationary iteration cycle length yields 88-103% of the reference value of standard deviation at tally cells where the sample standard deviation yields 22-36% of the same reference value.

  2. Reportable Radionuclides In DWPF Sludge Batch 7A (Macrobatch 8)

    International Nuclear Information System (INIS)

    The Waste Acceptance Product Specifications (WAPS) 1.2 require that the waste producer 'shall report the curie inventory of radionuclides that have half-lives longer than 10 years and that are, or will be, present in concentrations greater than 0.05 percent of the total inventory for each waste type indexed to the years 2015 and 3115.' As part of the strategy to meet WAPS 1.2, the Defense Waste Processing Facility (DWPF) will report for each waste type all radionuclides that have half-lives longer than 10 years and contribute greater than 0.01 percent of the total curie inventory from the time of production through the 1100 year period from 2015 through 3115. The initial list of radionuclides to be reported is based on the design-basis glass identified in the Waste Form Compliance Plan (WCP) and Waste Form Qualification Report. However, it is required that the list be expanded if other radionuclides with half-lives greater than 10 years are identified that meet the 'greater than 0.01% of the curie inventory' criterion. Specification 1.6 of the WAPS, International Atomic Energy Agency Safeguards Reporting for High Level Waste (HLW), requires that the ratio by weights of the following uranium and plutonium isotopes be reported: U-233, U-234, U-235, U-236, and U-238; and Pu-238, Pu-239, Pu-240, Pu-241, and Pu-242. Therefore, the complete list of reportable radionuclides must also include these sets of U and Pu isotopes - and the U and Pu isotopic mass distributions must be identified. The DWPF receives HLW sludge slurry from Savannah River Site (SRS) Tank 40. For Sludge Batch 7a (SB7a), the waste in Tank 40 contained a blend of the heel from Sludge Batch 6 (SB6) and the Sludge Batch 7 (SB7) material transferred to Tank 40 from Tank 51. This sludge blend is also referred to as Macrobatch 8. Laboratory analyses of a Tank 40 sludge sample were performed to quantify the concentrations of pertinent radionuclides in the SB7a waste. Subsequently, radiological decay and in

  3. REPORTABLE RADIONUCLIDES IN DWPF SLUDGE BATCH 7A (MACROBATCH 8)

    Energy Technology Data Exchange (ETDEWEB)

    Reboul, S.; Diprete, D.; Click, D.; Bannochie, C.

    2011-12-20

    The Waste Acceptance Product Specifications (WAPS) 1.2 require that the waste producer 'shall report the curie inventory of radionuclides that have half-lives longer than 10 years and that are, or will be, present in concentrations greater than 0.05 percent of the total inventory for each waste type indexed to the years 2015 and 3115.' As part of the strategy to meet WAPS 1.2, the Defense Waste Processing Facility (DWPF) will report for each waste type all radionuclides that have half-lives longer than 10 years and contribute greater than 0.01 percent of the total curie inventory from the time of production through the 1100 year period from 2015 through 3115. The initial list of radionuclides to be reported is based on the design-basis glass identified in the Waste Form Compliance Plan (WCP) and Waste Form Qualification Report. However, it is required that the list be expanded if other radionuclides with half-lives greater than 10 years are identified that meet the 'greater than 0.01% of the curie inventory' criterion. Specification 1.6 of the WAPS, International Atomic Energy Agency Safeguards Reporting for High Level Waste (HLW), requires that the ratio by weights of the following uranium and plutonium isotopes be reported: U-233, U-234, U-235, U-236, and U-238; and Pu-238, Pu-239, Pu-240, Pu-241, and Pu-242. Therefore, the complete list of reportable radionuclides must also include these sets of U and Pu isotopes - and the U and Pu isotopic mass distributions must be identified. The DWPF receives HLW sludge slurry from Savannah River Site (SRS) Tank 40. For Sludge Batch 7a (SB7a), the waste in Tank 40 contained a blend of the heel from Sludge Batch 6 (SB6) and the Sludge Batch 7 (SB7) material transferred to Tank 40 from Tank 51. This sludge blend is also referred to as Macrobatch 8. Laboratory analyses of a Tank 40 sludge sample were performed to quantify the concentrations of pertinent radionuclides in the SB7a waste. Subsequently

  4. Optimisation of load control

    Energy Technology Data Exchange (ETDEWEB)

    Koponen, P. [VTT Energy, Espoo (Finland)

    1998-08-01

    Electricity cannot be stored in large quantities. That is why the electricity supply and consumption are always almost equal in large power supply systems. If this balance were disturbed beyond stability, the system or a part of it would collapse until a new stable equilibrium is reached. The balance between supply and consumption is mainly maintained by controlling the power production, but also the electricity consumption or, in other words, the load is controlled. Controlling the load of the power supply system is important, if easily controllable power production capacity is limited. Temporary shortage of capacity causes high peaks in the energy price in the electricity market. Load control either reduces the electricity consumption during peak consumption and peak price or moves electricity consumption to some other time. The project Optimisation of Load Control is a part of the EDISON research program for distribution automation. The following areas were studied: Optimization of space heating and ventilation, when electricity price is time variable, load control model in power purchase optimization, optimization of direct load control sequences, interaction between load control optimization and power purchase optimization, literature on load control, optimization methods and field tests and response models of direct load control and the effects of the electricity market deregulation on load control. An overview of the main results is given in this chapter

  5. Optimisation of load control

    International Nuclear Information System (INIS)

    Electricity cannot be stored in large quantities. That is why the electricity supply and consumption are always almost equal in large power supply systems. If this balance were disturbed beyond stability, the system or a part of it would collapse until a new stable equilibrium is reached. The balance between supply and consumption is mainly maintained by controlling the power production, but also the electricity consumption or, in other words, the load is controlled. Controlling the load of the power supply system is important, if easily controllable power production capacity is limited. Temporary shortage of capacity causes high peaks in the energy price in the electricity market. Load control either reduces the electricity consumption during peak consumption and peak price or moves electricity consumption to some other time. The project Optimisation of Load Control is a part of the EDISON research program for distribution automation. The following areas were studied: Optimization of space heating and ventilation, when electricity price is time variable, load control model in power purchase optimization, optimization of direct load control sequences, interaction between load control optimization and power purchase optimization, literature on load control, optimization methods and field tests and response models of direct load control and the effects of the electricity market deregulation on load control. An overview of the main results is given in this chapter

  6. The Impact of the Source of Alkali on Sludge Batch 3 Melt Rate

    International Nuclear Information System (INIS)

    Previous Savannah River National Laboratory (SRNL) melt rate tests in support of the Defense Waste Processing Facility (DWPF) have indicated that improvements in melt rate can be achieved through an increase in the total alkali of the melter feed. Higher alkali can be attained by the use of an ''underwashed'' sludge, a high alkali frit, or a combination of the two. Although the general trend between melt rate and total alkali (in particular Na2O content) has been demonstrated, the question of ''does the source of alkali (SOA) matter?'' still exists. Therefore the purpose of this set of tests was to determine if the source of alkali (frit versus sludge) can impact melt rate. The general test concept was to transition from a Na2O-rich frit to a Na2O-deficient frit while compensating the Na2O content in the sludge to maintain the same overall Na2O content in the melter feed. Specifically, the strategy was to vary the amount of alkali in frits and in the sludge batch 3 (SB3) sludge simulant (midpoint or baseline feed was SB3/Frit 418 at 35% waste loading) so that the resultant feeds had the same final glass composition when vitrified. A set of SOA feeds using frits ranging from 0 to 16 weight % Na2O (in 4% increments) was first tested in the Melt Rate Furnace (MRF) to determine if indeed there was an impact. The dry-fed MRF tests indicated that if the alkali is too depleted from either the sludge (16% Na2O feed) or the frit (the 0% Na2O feed), then melt rate was negatively impacted when compared to the baseline SB3/Frit 418 feed currently being processed at DWPF. The MRF melt rates for the 4 and 12% SOA feeds were similar to the baseline SB3/Frit 418 (8% SOA) feed. Due to this finding, a smaller subset of SOA feeds that could be processed in the DWPF (4 and 12% SOA feeds) was then tested in the Slurry-fed Melt Rate Furnace (SMRF). The results from a previous SMRF test with SB3/Frit 418 (Smith et al. 2004) were used as the SMRF melt rate of the baseline feed. The SOA

  7. Inhibition of Sulfide Mineral Oxidation by Surface Coating Agents: Batch

    Science.gov (United States)

    Choi, J.; Ji, M. K.; Yun, H. S.; Park, Y. T.; Gee, E. D.; Lee, W. R.; Jeon, B.-H.

    2012-04-01

    Mining activities and mineral industries have impacted on rapid oxidation of sulfide minerals such as pyrite (FeS2) which leads to Acid Mine Drainage (AMD) formation. Some of the abandoned mines discharge polluted water without proper environmental remediation treatments, largely because of financial constraints in treating AMD. Magnitude of the problem is considerable, especially in countries with a long history of mining. As metal sulfides become oxidized during mining activities, the aqueous environment becomes acid and rich in many metals, including iron, lead, mercury, arsenic and many others. The toxic heavy metals are responsible for the environmental deterioration of stream, groundwater and soils. Several strategies to remediate AMD contaminated sites have been proposed. Among the source inhibition and prevention technologies, microencapsulation (coating) has been considered as a promising technology. The encapsulation is based on inhibition of O2 diffusion by surface coating agent and is expected to control the oxidation of pyrite for a long time. Potential of several surface coating agents for preventing oxidation of metal sulfide minerals from both Young-Dong coal mine and Il-Gwang gold mine were examined by conducting batch experiments and field tests. Powdered pyrite as a standard sulfide mineral and rock samples from two mine outcrops were mixed with six coating agents (KH2PO4, MgO and KMnO4 as chemical agents, and apatite, cement and manganite as mineral agents) and incubated with oxidizing agents (H2O2 or NaClO). Batch experiments with Young-Dong coal mine samples showed least SO42- production in presence of KMnO4 (16% sulfate production compared to no surface coating agents) or cement (4%) within 8 days. In the case of Il-Gwang mine samples, least SO42- production was observed in presence of KH2PO4 (8%) or cement (2%) within 8 days. Field-scale pilot tests at Il-Gwang site also showed that addition of KH2PO4 decreased sulfate production from 200 to

  8. Sludge Batch 7 Preparation: Tank 4 And 12 Characterization

    International Nuclear Information System (INIS)

    Samples of PUREX sludge from Tank 4 and HM sludge from Tank 12 were characterized in preparation for Sludge Batch 7 (SB7) formulation in Tank 51. SRNL analyses on Tank 4 and Tank 12 were requested in separate Technical Assistance Requests (TAR). The Tank 4 samples were pulled on January 19, 2010 following slurry operations by F-Tank Farm. The Tank 12 samples were pulled on February 9, 2010 following slurry operations by H-Tank Farm. At the Savannah River National Laboratory (SRNL), two 200 mL dip samples of Tank 4 and two 200 mL dip samples of Tank 12 were received in the SRNL Shielded Cells. Each tank's samples were composited into clean 500 mL polyethylene storage bottles and weighed. The composited Tank 4 sample was 428.27 g and the composited Tank 12 sample was 502.15 g. As expected there are distinct compositional differences between Tank 4 and Tank 12 sludges. The Tank 12 slurry is much higher in Al, Hg, Mn, and Th, and much lower in Fe, Ni, S, and U than the Tank 4 slurry. The Tank 4 sludge definitely makes the more significant contribution of S to any sludge batch blend. This S, like that observed during SB6 washing, is best monitored by looking at the total S measured by digesting the sample and analyzing by inductively coupled plasma - atomic emission spectroscopy (ICPAES). Alternatively, one can measure the soluble S by ICP-AES and adjust the value upward by approximately 15% to have a pretty good estimate of the total S in the slurry. Soluble sulfate measurements by ion chromatography (IC) will be biased considerably lower than the actual total S, the difference being due to the non-sulfate soluble S and the undissolved S. Tank 12 sludge is enriched in U-235, and hence samples transferred into SRNL from the Tank Farm will need to be placed on the reportable special nuclear material inventory and tracked for total U per SRNL procedure requirements.

  9. Batch and continuous extraction of bromelain enzyme by reversed micelles

    Directory of Open Access Journals (Sweden)

    Ana Maria Frattini Fileti

    2009-10-01

    Full Text Available The main aim of this study was to optimize the conditions for bromelain extraction by reversed micelles from pineapple juice (Ananas comosus. The purification was carried out in batch extraction and a micro-column with pulsed caps for continuous extraction. The cationic micellar solution was made of BDBAC as a surfactant, isooctane as a solvent and hexanol as a co-solvent. For the batch process, a purification factor of 3 times at the best values of surfactant agent, co-solvent and salt concentrations, pH of the back and forward extractions were, 100 mM, 10% v/v, 1 M, 3.5 and 8, respectively. For the continuous operation, independent variables optimal point was determined: ratio between light phase flow rate and total flow rate equal to 0.67 and 1 second for the time interval between the pulses. This optimal point led to a productivity of 1.29 mL/min and a purification factor of 4.96.Este trabalho teve como objetivo principal otimizar as condições para extração da bromelina do suco do abacaxi (Ananas comosus por micelas reversas. A purificação foi feita usando o processo de extração em batelada e contínuo, este último em uma micro-coluna de campânulas pulsantes. A solução micelar catiônica foi preparada com o surfactante BDBAC, i-octano como solvente e hexanol como co-solvente. Na extração em batelada encontrou-se um fator de purificação de 3 vezes, e seus melhores valores de concentração do agente surfactante, co-solvente e sal, de pH da re-extração e extração, foram respectivamente iguais a: 100 mM, 10% v/v, 1 M, 3,5 e 8. Para a operação contínua, as variáveis independentes ótimas foram: 0,67 para a razão entre as taxas de fluxos da fase leve e a total e 1 s para o intervalo de tempo entre pulsos das campânulas. Este ponto ótimo leva a uma produtividade de 1,29 mL/min e a um fator de purificação igual a 4,96.

  10. Phalange Tactile Load Cell

    Science.gov (United States)

    Ihrke, Chris A. (Inventor); Diftler, Myron A. (Inventor); Linn, Douglas Martin (Inventor); Platt, Robert (Inventor); Griffith, Bryan Kristian (Inventor)

    2010-01-01

    A tactile load cell that has particular application for measuring the load on a phalange in a dexterous robot system. The load cell includes a flexible strain element having first and second end portions that can be used to mount the load cell to the phalange and a center portion that can be used to mount a suitable contact surface to the load cell. The strain element also includes a first S-shaped member including at least three sections connected to the first end portion and the center portion and a second S-shaped member including at least three sections coupled to the second end portion and the center portion. The load cell also includes eight strain gauge pairs where each strain gauge pair is mounted to opposing surfaces of one of the sections of the S-shaped members where the strain gauge pairs provide strain measurements in six-degrees of freedom.

  11. Early-warning process/control for anaerobic digestion and biological nitrogen transformation processes: Batch, semi-continuous, and/or chemostat experiments. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hickey, R. [Science Applications International Corp., McLean, VA (United States)

    1992-09-01

    The objective of this project was to develop and test an early-warning/process control model for anaerobic sludge digestion (AD). The approach was to use batch and semi-continuously fed systems and to assemble system parameter data on a real-time basis. Specific goals were to produce a real-time early warning control model and computer code, tested for internal and external validity; to determine the minimum rate of data collection for maximum lag time to predict failure with a prescribed accuracy and confidence in the prediction; and to determine and characterize any trends in the real-time data collected in response to particular perturbations to feedstock quality. Trends in the response of trace gases carbon monoxide and hydrogen in batch experiments, were found to depend on toxicant type. For example, these trace gases respond differently for organic substances vs. heavy metals. In both batch and semi-continuously feed experiments, increased organic loading lead to proportionate increases in gas production rates as well as increases in CO and H{sub 2} concentration. An analysis of variance of gas parameters confirmed that CO was the most sensitive indicator variable by virtue of its relatively larger variance compared to the others. The other parameters evaluated including gas production, methane production, hydrogen, carbon monoxide, carbon dioxide and methane concentration. In addition, a relationship was hypothesized between gaseous CO concentration and acetate concentrations in the digester. The data from semicontinuous feed experiments were supportive.

  12. Kinetics of electrochemical dechlorination of 2-chlorobiphenyl on a palladium-modified nickel foam cathode in a basic medium: From batch to continuous reactor operation

    International Nuclear Information System (INIS)

    A kinetic model for the electrochemical dechlorination of polychlorinated biphenyls (PCBs) will be an important contribution to the design and optimization of a continuous reactor. Initially, the electrocatalytic hydrodechlorination of 2-chlorobiphenyl (2-ClBP) to biphenyl at a palladium-modified nickel foam (Pd/Ni) cathode in a batch reactor was used as a model reaction for a quantitative study of the influences of the operating parameters, including temperature, the initial concentrations of PCBs, current density and the amount of Pd loading, on the apparent reaction rate. The dechlorination was found to follow pseudo first-order kinetics with respect to the 2-ClBP concentration. It was also found that a simple global power law rate equation, with Arrhenius dependency, can be used to describe the correlation between the pseudo first-order reaction rate constants and the reaction conditions. Subsequently, a mathematical model for predicting the performance of reductive dechlorination of 2-ClBP on Pd/Ni electrodes in a continuous stirred tank reactor was constructed, based on the batch-reaction kinetics. The suitability of the model was validated by performing experiments in and out of the range of reaction conditions applied in the batch reactor. The results show that the calculated values are a good fit to the experimental data

  13. Catalytic hydroliquefaction of coal: about the methodology in batch experiments

    Energy Technology Data Exchange (ETDEWEB)

    Besson, M.; Bacaud, R.; Charcosset, H.; Cebolla-Burillo, V.; Oberson, M.

    1986-03-01

    The results of catalytic hydroliquefaction under batch conditions depend on a large number of variables. The present results concern a few of these variables, in particular the influence of the catalyst concentration, of the mode of sulfidation or (and) of introduction of the catalyst in the coal/solvent mixture, and of the nature of the model compound solvent. The results indicate that increasing the concentration of catalyst increase the conversion of coal into toluene soluble products and the hydrogen consumption but has a small effect on oil formation. An inhibition of the figst fractions of a NiMo/Al/sub 2/O/sub 3/ catalyst added is shown. Strong effects of the sulfiding mode of an iron oxide catalyst, and of the temperature of introduction of the iron oxide into the autoclave are observed relative to the hydrogenation activity of the iron catalyst, when at the same time there is no influence on coal conversions. The replacement of tetralin by a non-donor solvent, 1-methylnaphthalene, suggests that the direct hydrogen transfer process from molecular hydrogen to coal fragment radicals on the catalyst surface may be important. 9 tabs., 4 firs., 16 refs.

  14. Changes of Resistance During Polyelectrolyte-enhanced Stirred Batch Ultrafiltration

    Institute of Scientific and Technical Information of China (English)

    ZHU Xin-Sheng; Kwang-Ho CHOO

    2007-01-01

    The permeation flux or the resistance in the ultrafiltration process is mainly limited by osmotic pressure,and it may originate from various kinds of polymer interactions. However, the real origin of permeation resistance hasn't been clarified yet in the light of polymer solution nature. The removal of nitrate contamination by polyelectrolytes was carried out with stirred batch ultrafiltration. The polyelectrolyte concentrations both in permeate and retentate were analyzed with total organic carbon analyzer and permeate mass was acquired by electronic balance connected with computer. The total resistance was calculated and interpreted based on the osmotic pressures in three concentration regimes. In the dilute region, the resistance was proportional to polymer concentration; in the semidilute region, the resistance depended on polymer concentration in the parabolic relationship; in the highly concentrated solution regime, the osmotic pressure factor (OPF) would dominate the total resistance; and the deviation from OPF control could come from the electrostatic repulsion between the tightly compacted and charged polyelectrolyte particles at extremely concentrated solution regime. It was first found that dilute and semidilute concentration regions can be easily detected by plotting the log-log curves of the polymer concentration versus the ratio of the total resistance to polymer concentration. The new concept OPF was defined and did work well at highly concentrated regime.

  15. Methods for batch fabrication of cold cathode vacuum switch tubes

    Science.gov (United States)

    Walker, Charles A.; Trowbridge, Frank R.

    2011-05-10

    Methods are disclosed for batch fabrication of vacuum switch tubes that reduce manufacturing costs and improve tube to tube uniformity. The disclosed methods comprise creating a stacked assembly of layers containing a plurality of adjacently spaced switch tube sub-assemblies aligned and registered through common layers. The layers include trigger electrode layer, cathode layer including a metallic support/contact with graphite cathode inserts, trigger probe sub-assembly layer, ceramic (e.g. tube body) insulator layer, and metallic anode sub-assembly layer. Braze alloy layers are incorporated into the stacked assembly of layers, and can include active metal braze alloys or direct braze alloys, to eliminate costs associated with traditional metallization of the ceramic insulator layers. The entire stacked assembly is then heated to braze/join/bond the stack-up into a cohesive body, after which individual switch tubes are singulated by methods such as sawing. The inventive methods provide for simultaneously fabricating a plurality of devices as opposed to traditional methods that rely on skilled craftsman to essentially hand build individual devices.

  16. Equipment and wafer modeling of batch furnaces by neural networks

    Science.gov (United States)

    Benesch, N.; Schneider, Claus; Lehnert, Wolfgang; Pfitzner, Lothar; Ryssel, Heiner

    1999-04-01

    In semiconductor manufacturing there is a great demand for innovations towards higher cost-effectiveness. The increasing employment of advanced control systems for process and equipment control is one means to improve manufacturing processes effectively and, hence, to lower costs. A precondition for an accurate and fast control is the availability of process models. In this paper neural networks are applied to non-linear system identification as an alternative or addition to physical models. Neural empirical models are developed with the help of measured input and output data of a system or process. After a brief summary of the theory of neural networks their application to system identification is described in detail. The capabilities of the neural network models are demonstrated by several examples. The temperature dynamics of a vertical furnace for the oxidation of 300 mm wafers as well as the zone temperatures of a 150 mm LPCVD furnace are simulated and the results are verified by measurements. Moreover, in order to control wafer temperatures in batch furnaces, an appropriate model was developed and implemented in a model- based controller.

  17. Simultaneous denitrifying phosphorus accumulation in a sequencing batch reactor

    Institute of Scientific and Technical Information of China (English)

    YUAN Linjiang; HAN Wei; WANG Lei; YANG Yongzhe; WANG Zhiying

    2007-01-01

    In order to achieve simultaneous nitrogen and phosphorus removal in the biological treatment process,denitrifying phosphorus accumulation(DNPA)and its affecting factors were studied in a sequencing batch reactor(SBR)with synthetic wastewater.The results showed that when acetate was used as the sole carbon resource in the influent.the sludge acclimatized under anaerobic/aerobic operation had good phosphorus removal ability.Denitrifying phosphorus accumulation was observed soon when fed with nitrate instead of aeration following the anaerobic stage,which is a vital premise to DNPA.If DNPA sludge is fed with nitrate prior to the anaerobic stage,the DNPA would weaken or even disappear.At the high concen tration of nitrate fed in the anoxic stage,the longer anoxic time needed,the better the DNPA was.Induced DNPA did not disappear even though an aerobic stage followed the anoxic stage,but the shorter the aerobic stage lasted,the higher the proportions of phosphorus removal via DNPA to total removal.

  18. Efficient flotation of yeast cells grown in batch culture.

    Science.gov (United States)

    Palmieri, M C; Greenhalf, W; Laluce, C

    1996-05-01

    A fast flotation assay was used to select new floating yeast strains. The flotation ability did not seem to be directly correlated to total extracellular protein concentration of the culture. However, the hydrophobicity of the cell was definitely correlated to the flotation capacity. The Saccharomyces strains (FLT strains) were highly hydrophobic and showed an excellent flotation performance in batch cultures without additives (flotation agents) and with no need for a special flotation chamber or flotation column. A stable and well-organized structure was evident in the dried foam as shown by scanning electron microscopy which revealed its unique structure showing mummified cells (dehydrated) attached to each other. The attachment among the cells and the high protein concentration of the foams indicated that proteins might be involved in the foam formation. The floating strains (strains FLT) which were not flocculent and showed no tendency to aggregate, were capable of growing and producing ethanol in a synthetic medium containing high glucose concentration as a carbon source. The phenomenon responsible for flotation seems to be quite different from the flocculation phenomenon. PMID:18626952

  19. Kinetics of steel slag leaching: Batch tests and modeling

    International Nuclear Information System (INIS)

    Reusing steel slag as an aggregate for road construction requires to characterize the leaching kinetics and metal releases. In this study, basic oxygen furnace (BOF) steel slag were subjected to batch leaching tests at liquid to solid ratios (L/S) of 10 and 100 over 30 days; the leachate chemistry being regularly sampled in time. A geochemical model of the steel slag is developed and validated from experimental data, particularly the evolution with leaching of mineralogical composition of the slag and trace element speciation. Kinetics is necessary for modeling the primary phase leaching, whereas a simple thermodynamic equilibrium approach can be used for secondary phase precipitation. The proposed model simulates the kinetically-controlled dissolution (hydrolysis) of primary phases, the precipitation of secondary phases (C-S-H, hydroxide and spinel), the pH and redox conditions, and the progressive release of major elements as well as the metals Cr and V. Modeling indicates that the dilution effect of the L/S ratio is often coupled to solubility-controlled processes, which are sensitive to both the pH and the redox potential. A sensitivity analysis of kinetic uncertainties on the modeling of element releases is performed.

  20. Biodegradation of phenanthrene in an anaerobic batch reactor: growth kinetics

    Directory of Open Access Journals (Sweden)

    H.S. Nasrollahzadeh

    2010-07-01

    Full Text Available The purpose of the present research was to demonstrate the ability of mixed consortia of microorganisms to degrade high concentrations of phenanthrene (PHE as the sole carbon source. Batch experiments were carried out by the induction of mineral salt medium containing PHE to the seed culture and monitoring PHE biodegradation. The microbial propagation was conducted using PHE concentrations in the range of 20 to 100 mg/l. The microbial growth on PHE was defined based on Monod and modified Logistic rate models. The kinetic studies revealed that maximum specific growth rates (μm for PHE concentrations of 20, 50 and 100 mg/l were 0.12, 0.23 and 0.035 h-1, respectively. The doubling times for microbial population in PHE concentrations of 20, 50 and 100 mg/l were 13, 15 and 17.5 h, respectively. Also, maximum cell dry weight (xm of 54.23 mg/l was achieved, while the inhibition coefficient was 0.023 h-1. It was observed that the experimental data were well represented by the proposed models. It was also found that the biodegradation of PHE was successfully performed by the isolated strains.

  1. Separation of Benzene and Cyclohexane by Batch Extractive Distillation

    Institute of Scientific and Technical Information of China (English)

    XU Jiao; ZHANG Weijiang; GUI Xia

    2007-01-01

    Azeotropic liquid mixture cannot be separated by conventional distillation. But extractive distillation or combination of the two can be valid for them. An experiment to separate benzene and cyclohexane by batch extractive distillation was carried out with N, N-dimethylformide (DMF), dimethyl sulfoxide (DMSO) and their mixture as extractive solvent. The effect of the operation parameterssuch as solvent flow rate and reflux ratio on the separation was studied under the same operating conditions. The results show that the separation effect was improved with the increase of solvent flow rate and the reflux ratio; all the three extractive solvents can separate benzene and cyclohexane, with DMF being the most efficient one, the mixture the second, and DMSO the least. In the experiment the best operation conditions are with DMF as extractive solvent, the solvent flow rate being 12.33 mL/min, and the reflux ratio being 6. As a result, we can get cyclohexane from the top of tower with the average product content being 86.98%, and its recovering ratio being 83.10%.

  2. EFFECT OF DYE CONCENTRATION ON SEQUENCING BATCH REACTOR PERFORMANCE

    Directory of Open Access Journals (Sweden)

    A. A. Vaigan ، M. R. Alavi Moghaddam ، H. Hashemi

    2009-01-01

    Full Text Available Reactive dyes have been identified as problematic compounds in textile industries wastewater as they are water soluble and cannot be easily removed by conventional aerobic biological treatment systems. The treatability of a reactive dye (Brill Blue KN-R by sequencing batch reactor and the influence of the dye concentration on system performance were investigated in this study. Brill Blue KN-R is one of the main dyes that are used in textile industries in Iran. Four cylindrical Plexiglas reactors were run for 36 days (5 days for acclimatization of sludge and 31 days for normal operation at different initial dye concentrations. The dye concentrations were adjusted to be 20, 25, 30 and 40 mg/L in the reactors R1, R2, R3 and R4, respectively. In all reactors, effective volume, influent wastewater flowrate and sludge retention time were 5.5 L, 3.0 L/d and 10 d, respectively. According to the obtained data, average dye removal efficiencies of R1, R2, R3 and R4 were 57% ± 2, 50.18% ± 3, 44.97% ± 3 and 30.98% ± 3, respectively. The average COD removal efficiencies of all reactors were 97% ± 1, 97.12% ± 1, 96.93% ± 1 and 97.22% ± 1, respectively. The dye removal efficiency was decreased by increasing the dye concentration with the correlation coefficient of 0.997.

  3. Operational strategies for nitrogen removal in granular sequencing batch reactor

    International Nuclear Information System (INIS)

    This study investigated the effects of different operational strategies for nitrogen removal by aerobic granules with mean granule sizes of 1.5 mm and 0.7 mm in a sequencing batch reactor (SBR). With an alternating anoxic/oxic (AO) operation mode without control of dissolve oxygen (DO), the granular sludge with different size achieved the total inorganic nitrogen (TIN) removal efficiencies of 67.8-71.5%. While under the AO condition with DO controlled at 2 mg/l at the oxic phase, the TIN removal efficiency was improved up to 75.0-80.4%. A novel operational strategy of alternating anoxic/oxic combined with the step-feeding mode was developed for nitrogen removal by aerobic granules. It was found that nitrogen removal efficiencies could be further improved to 93.0-95.9% with the novel strategy. Obviously, the alternating anoxic/oxic strategy combined with step-feeding is the optimal way for TIN removal by granular sludge, which is independent of granule size.

  4. molecular weight control of a batch suspension polymerization reactor

    International Nuclear Information System (INIS)

    This paper concerns molecular weight control of a batch polymerization reactor where suspension polymerization of methyl methylacrylate (MMA) takes place. For this purpose, a cascade control structure with two control loops has been selected. The slave loop is used for temperature control using on-line temperature measurements, and the master loop controls the average molecular weights based on its estimated values. Two different control algorithms namely proportional-integral (PI) controller and globally linearizing controller (GLC) have been used for temperature control. An estimator, which has the structure of an extended Kalman filter(EKF), is used for estimating monomer conversion and average molecular weights of polymer using reactor temperature measurements. The performance of proposed control algorithm is evaluated through simulation and experimental studies. The results indicate that a constant average molecular weight cannot be achieved in case of strong gel effect. However, the polydispersity of product will be lower in comparison to isothermal operation. It is also shown that in case of mo dek mismatch, the performance of cascade control is superior compared to the case where only reactor temperature is controlled based on desired temperature trajectory obtained through cascade strategy

  5. Sample Results from Routine Salt Batch 7 Samples

    Energy Technology Data Exchange (ETDEWEB)

    Peters, T. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-05-13

    Strip Effluent Hold Tank (SEHT) and Decontaminated Salt Solution Hold Tank (DSSHT) samples from several of the “microbatches” of Integrated Salt Disposition Project (ISDP) Salt Batch (“Macrobatch”) 7B have been analyzed for 238Pu, 90Sr, 137Cs, Inductively Coupled Plasma Emission Spectroscopy (ICPES), and Ion Chromatography Anions (IC-A). The results from the current microbatch samples are similar to those from earlier samples from this and previous macrobatches. The Actinide Removal Process (ARP) and the Modular Caustic-Side Solvent Extraction Unit (MCU) continue to show more than adequate Pu and Sr removal, and there is a distinct positive trend in Cs removal, due to the use of the Next Generation Solvent (NGS). The Savannah River National Laboratory (SRNL) notes that historically, most measured Concentration Factor (CF) values during salt processing have been in the 12-14 range. However, recent processing gives CF values closer to 11. This observation does not indicate that the solvent performance is suffering, as the Decontamination Factor (DF) has still maintained consistently high values. Nevertheless, SRNL will continue to monitor for indications of process upsets. The bulk chemistry of the DSSHT and SEHT samples do not show any signs of unusual behavior.

  6. Electrical load modeling

    Energy Technology Data Exchange (ETDEWEB)

    Valgas, Helio Moreira; Pinto, Roberto del Giudice R.; Franca, Carlos [Companhia Energetica de Minas Gerais (CEMIG), Belo Horizonte, MG (Brazil); Lambert-Torres, Germano; Silva, Alexandre P. Alves da; Pires, Robson Celso; Costa Junior, Roberto Affonso [Escola Federal de Engenharia de Itajuba, MG (Brazil)

    1994-12-31

    Accurate dynamic load models allow more precise calculations of power system controls and stability limits, which are critical mainly in the operation planning of power systems. This paper describes the development of a computer program (software) for static and dynamic load model studies using the measurement approach for the CEMIG system. Two dynamic load model structures are developed and tested. A procedure for applying a set of measured data from an on-line transient recording system to develop load models is described. (author) 6 refs., 17 figs.

  7. Microcontroller based electronic load

    International Nuclear Information System (INIS)

    A microcontroller based electronic load has been designed and developed for testing of power supplies in CAT, Indore. This system is designed to operate in 4 different modes viz. constant current, constant power, constant resistance and constant resistance-inductance mode. This dynamic electronic load is very useful because a single load can be used in four different modes and different values can be emulated in each mode. It can be used as a switching load too. User interface has been provided to set the mode of operation and the set point during run time. (author)

  8. Critical Axial Load

    Directory of Open Access Journals (Sweden)

    Walt Wells

    2008-01-01

    Full Text Available Our objective in this paper is to solve a second order differential equation for a long, simply supported column member subjected to a lateral axial load using Heun's numerical method. We will use the solution to find the critical load at which the column member will fail due to buckling. We will calculate this load using Euler's derived analytical approach for an exact solution, as well as Euler's Numerical Method. We will then compare the three calculated values to see how much they deviate from one another. During the critical load calculation, it will be necessary to calculate the moment of inertia for the column member.

  9. Laterally loaded masonry

    DEFF Research Database (Denmark)

    Raun Gottfredsen, F.

    In this thesis results from experiments on mortar joints and masonry as well as methods of calculation of strength and deformation of laterally loaded masonry are presented. The strength and deformation capacity of mortar joints have been determined from experiments involving a constant compressive...... stress and increasing shear. The results show a transition to pure friction as the cohesion is gradually destroyed. An interface model of a mortar joint that can take into account this aspect has been developed. Laterally loaded masonry panels have also been tested and it is found to be characteristic...... that laterally loaded masonry exhibits a non-linear load-displacement behaviour with some ductility....

  10. Individual and combined effects of organic, toxic, and hydraulic shocks on sequencing batch reactor in treating petroleum refinery wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Mizzouri, Nashwan Sh., E-mail: nashwan_mizzouri@yahoo.com [Department of Civil Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Department of Civil Engineering, University of Duhok, Kurdistan (Iraq); Shaaban, Md Ghazaly [Department of Civil Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia)

    2013-04-15

    Highlights: ► This research focuses on the combined impact of shock loads on the PRWW treatment. ► System failure resulted when combined shock of organic and hydraulic was applied. ► Recovery was achieved by replacing glucose with PRWW and OLR was decreased to half. ► Worst COD removals were 68.9, and 57.8% for organic, and combined shocks. -- Abstract: This study analyzes the effects of toxic, hydraulic, and organic shocks on the performance of a lab-scale sequencing batch reactor (SBR) with a capacity of 5 L. Petroleum refinery wastewater (PRWW) was treated with an organic loading rate (OLR) of approximately 0.3 kg chemical oxygen demand (COD)/kg MLSS d at 12.8 h hydraulic retention time (HRT). A considerable variation in the COD was observed for organic, toxic, hydraulic, and combined shocks, and the worst values observed were 68.9, 77.1, 70.2, and 57.8%, respectively. Improved control of toxic shock loads of 10 and 20 mg/L of chromium (VI) was identified. The system was adversely affected by the organic shock when a shock load thrice the normal value was used, and this behavior was repeated when the hydraulic shock was 4.8 h HRT. The empirical recovery period was greater than the theoretical period because of the inhibitory effects of phenols, sulfides, high oil, and grease in the PRWW. The system recovery rates from the shocks were in the following order: toxic, organic, hydraulic, and combined shocks. System failure occurred when the combined shocks of organic and hydraulic were applied. The system was resumed by replacing the PRWW with glucose, and the OLR was reduced to half its initial value.

  11. Individual and combined effects of organic, toxic, and hydraulic shocks on sequencing batch reactor in treating petroleum refinery wastewater

    International Nuclear Information System (INIS)

    Highlights: ► This research focuses on the combined impact of shock loads on the PRWW treatment. ► System failure resulted when combined shock of organic and hydraulic was applied. ► Recovery was achieved by replacing glucose with PRWW and OLR was decreased to half. ► Worst COD removals were 68.9, and 57.8% for organic, and combined shocks. -- Abstract: This study analyzes the effects of toxic, hydraulic, and organic shocks on the performance of a lab-scale sequencing batch reactor (SBR) with a capacity of 5 L. Petroleum refinery wastewater (PRWW) was treated with an organic loading rate (OLR) of approximately 0.3 kg chemical oxygen demand (COD)/kg MLSS d at 12.8 h hydraulic retention time (HRT). A considerable variation in the COD was observed for organic, toxic, hydraulic, and combined shocks, and the worst values observed were 68.9, 77.1, 70.2, and 57.8%, respectively. Improved control of toxic shock loads of 10 and 20 mg/L of chromium (VI) was identified. The system was adversely affected by the organic shock when a shock load thrice the normal value was used, and this behavior was repeated when the hydraulic shock was 4.8 h HRT. The empirical recovery period was greater than the theoretical period because of the inhibitory effects of phenols, sulfides, high oil, and grease in the PRWW. The system recovery rates from the shocks were in the following order: toxic, organic, hydraulic, and combined shocks. System failure occurred when the combined shocks of organic and hydraulic were applied. The system was resumed by replacing the PRWW with glucose, and the OLR was reduced to half its initial value

  12. Applying burnable poison particles to reduce the reactivity swing in high temperature reactors with batch-wise fuel loading

    International Nuclear Information System (INIS)

    Burnup calculations have been performed on a standard HTR fuel pebble with a radius of 3 cm containing 9 g of 8% enriched uranium and burnable poison particles (BPP) made of B4C highly enriched in 10B. The radius of the BPP and the number of particles per fuel pebble have been varied to find the flattest reactivity-to-time curve. It was found that for a k∞ of 1.1, a reactivity swing as low as 2% can be obtained when each fuel pebble contains about 1070 BPP with a radius of 75 μm. For coated BPP that consist of a graphite kernel with a radius of 300 μm covered with a B4C burnable poison layer, a similar value for the reactivity swing can be obtained. Cylindrical particles seem to perform worse. In general, the modification of the geometry of BPP is an effective means to tailor the reactivity curve of HTRs

  13. Biological removal of cyanide compounds from electroplating wastewater (EPWW) by sequencing batch reactor (SBR) system

    International Nuclear Information System (INIS)

    Biological treatment system especially, sequencing batch reactor (SBR) system could not be applied to treat the raw electroplating wastewater (EPWW) due to the low organic matter concentration of 10 ± 3 mg-BOD5/L and toxic of high cyanide concentration of 23.0 ± 2.2 mg-CN/L. However, EPWW could be used as the nitrogen source for the bio-sludge of SBR system. And 10% of EPWW (the final cyanide concentration of 2.3 ± 0.2 mg/L) was most suitable to supplement into the wastewater as the nitrogen source. SBR system showed the highest COD, BOD5, TKN and cyanide removal efficiencies of 79 ± 2%, 85 ± 3%, 49.0 ± 2.1% and 97.7 ± 0.7%, respectively with 4-times diluted Thai-rice noodle wastewater (TRNWW) containing 10% EPWW and 138 mg/L NH4Cl (BOD5: TN of 100:10) at SRT of 72 ± 13 days (under organic and cyanide loadings of 0.40 kg-BOD5/m3 d and 0.0023 kg-CN/m3 d, respectively). However, the effluent ammonia was still high of 22.6 ± 0.4 mg-N/L while the effluent nitrate and nitrite was only 9.9 ± 0.4 and 1.2 ± 0.9 mg-N/L, respectively. And SVI and effluent SS of the system were higher than 95 and 75 mg/L, respectively

  14. ARSENATE BIOSORPTION BY IRON-MODIFIED PINE SAWDUST IN BATCH SYSTEMS: KINETICS AND EQUILIBRIUM STUDIES

    Directory of Open Access Journals (Sweden)

    María Aranzazú López-Leal,

    2012-02-01

    Full Text Available The biosorption of As(V from aqueous solutions by pine sawdust chemically modified with iron in batch systems was investigated. The loading process of Fe in this biomaterial was achieved by hydrolysis of two different ferric salts. This modification of sawdust is an attempt to improve As(V biosorption for practical applications. The kinetics and maximum biosorption capacities of the unmodified and modified pine sawdust were evaluated. It was found that the pseudo-second order model described the As(V biosorption kinetic data and the Langmuir-Freundlich equation described the arsenate sorption equilibrium. These results indicated that the sorption mechanism was chemisorption on a heterogeneous material. The pH effects governing biosorption capacities were also evaluated, showing a decrease as pH value rises, indicating that this biosorption process is highly pH-dependent. The estimated maximum biosorption capacities of As(V, based on the Langmuir-Freundlich fit to the data were, at pH 4, 4.4 mg/g of untreated sawdust, (UN-SW, 12.85 mg/g of ferric chloride modified sawdust (FeCl-SW, and 6 mg/g of ferric nitrate modified sawdust (FeNit-SW; and at pH 7, 2.6 mg/g of UN-SW, 5.9 mg/g of FeCl-SW, and 4.6 mg/g of FeNit-SW. Sorption capacities of iron-modified pine sawdust were evidently higher than other similar biosorbents previously reported.

  15. Aerobic granules formation and nutrients removal characteristics in sequencing batch airlift reactor (SBAR) at low temperature

    International Nuclear Information System (INIS)

    To understand the effect of low temperature on the formation of aerobic granules and their nutrient removal characteristics, an aerobic granular sequencing batch airlift reactor (SBAR) has been operated at 10 deg. C using a mixed carbon source of glucose and sodium acetate. The results showed that aerobic granules were obtained and that the reactor performed in stable manner under the applied conditions. The granules had a compact structure and a clear out-surface. The average parameters of the granules were: diameter 3.4 mm, wet density 1.036 g mL-1, sludge volume index 37 mL g-1, and settling velocity 18.6-65.1 cm min-1. Nitrite accumulation was observed, with a nitrite accumulation rate (NO2--N/NOx--N) between 35% and 43% at the beginning of the start-up stage. During the stable stage, NOx was present at a level below the detection limit. However, when the influent COD concentration was halved (resulting in COD/N a reduction of the COD/N from 20:1 to 10:1) nitrite accumulation was observed once more with an effluent nitrite accumulation rate of 94.8%. Phosphorus release was observed in the static feeding phase and also during the initial 20-30 min of the aerobic phase. Neither the low temperature nor adjustment of the COD/P ratio from 100:1 to 25:1 had any influence on the phosphorus removal efficiency under the operating conditions. In the granular reactor with the influent load rates for COD, NH4+-N, and PO43--P of 1.2-2.4, 0.112 and 0.012-0.024 kg m-3 d-1, the respective removal efficiencies at low temperature were 90.6-95.4%, 72.8-82.1% and 95.8-97.9%.

  16. Concentrated loads on concrete

    DEFF Research Database (Denmark)

    Lorenzen, Karen Grøndahl; Nielsen, Mogens Peter

    1997-01-01

    This report deals with concentrated loads on concrete.A new upper bound solution in the axisymmetrical case of a point load in the center of the end face of a cylinder is developed.Based on previous work dealing with failure mechanisms and upper bound solutions, new approximate formulas are...

  17. Establishing column batch repeatability according to Quality by Design (QbD) principles using modeling software.

    Science.gov (United States)

    Rácz, Norbert; Kormány, Róbert; Fekete, Jenő; Molnár, Imre

    2015-04-10

    Column technology needs further improvement even today. To get information of batch-to-batch repeatability, intelligent modeling software was applied. Twelve columns from the same production process, but from different batches were compared in this work. In this paper, the retention parameters of these columns with real life sample solutes were studied. The following parameters were selected for measurements: gradient time, temperature and pH. Based on calculated results, batch-to-batch repeatability of BEH columns was evaluated. Two parallel measurements on two columns from the same batch were performed to obtain information about the quality of packing. Calculating the average of individual working points at the highest critical resolution (R(s,crit)) it was found that the robustness, calculated with a newly released robustness module, had a success rate >98% among the predicted 3(6) = 729 experiments for all 12 columns. With the help of retention modeling all substances could be separated independently from the batch and/or packing, using the same conditions, having high robustness of the experiments. PMID:25703234

  18. Shortcut Procedure for Inverted Batch Distillation Column (Ⅰ) Multicomponent Ideal System

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Inverted batch distillation colunm(stripper) is opposed to a conventional batch distillation column(rectifier). It has a storage vessel at the top and products leave the column at the bottom. The batch stripper is favourable to separate mixtures with a small amount of light components by removing the heavy components as bottom products. In this paper, we are presenting a shortcut procedure based on our earlier work for design and simulation of the inverted batch distillation column, which is equivalent to the Fenske-Underwood-Gilliland procedure for continuous distillation. Given a separation task, we propose to compute the minimum number of stages(Nbmin)and the minimum reboil ratio(Rbmin) required in a batch stripper,which are the stages and reboil ratio required in a hypothetical inverted batch distillation colnmn operating in total reboil ratio or having an infinite number of stages,respectively. Then, it is shown that the performance of inverted batch columns with a finite number of stages and reboil ratios could be correlated in Gilliland coordinates with the minimum stages Nbmin and the minimum reboil ratio Rbmin.

  19. Simulation of kefiran production of Lactobacillus kefiranofaciens JCM6985 in fed-batch reactor

    Directory of Open Access Journals (Sweden)

    Benjamas Cheirsilp

    2006-09-01

    Full Text Available Kinetics of kefiran production by Lactobacillus kefiranofaciens JCM6985 has been investigated. A mathematical model taking into account the mechanism of exopolysaccharides production has been developed. Experiments were carried out in batch mode in order to obtain kinetic model parameters that were further applied to simulate fed-batch processes. A simplification of parameter fitting was also introduced for complicated model. The fed-batch mode allows more flexibility in the control of the substrate concentration as well as product concentration in the culture medium. Based on the batch mathematical model, a fed-batch model was developed and simulations were done. Simulation study in fed-batch reactor resulted that substrate concentration should be controlled at 20 g L-1 to soften the product inhibition and also to stimulate utilization of substrate and its hydrolysate. From simulation results of different feeding techniques, it was found that constant feeding at 0.01 L h-1 was most practically effective feeding profile for exopolysaccharides production in fed-batch mode.

  20. SLUDGE BATCH 6/TANK 51 SIMULANT CHEMICAL PROCESS CELL SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, David; Best, David

    2010-04-28

    Qualification simulant testing was completed to determine appropriate processing conditions and assumptions for the Sludge Batch 6 (SB6) Shielded Cells demonstration of the DWPF flowsheet using the qualification sample from Tank 51 for SB6 after SRNL washing. It was found that an acid addition window of 105-139% of the DWPF acid equation (100-133% of the Koopman minimum acid equation) gave acceptable Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) results for nitrite destruction and hydrogen generation. Hydrogen generation occurred continuously after acid addition in three of the four tests. The three runs at 117%, 133%, and 150% stoichiometry (Koopman) were all still producing around 0.1 lb hydrogen/hr at DWPF scale after 42 hours of boiling in the SRAT. The 150% acid run reached 110% of the DWPF SRAT limit of 0.65 lb H{sub 2}/hr, and the 133% acid run reached 75% of the DWPF SME limit of 0.223 lb H{sub 2}/hr. Conversely, nitrous oxide generation was subdued compared to previous sludge batches, staying below 25 lb/hr in all four tests or about a fourth as much as in comparable SB4 testing. Two other processing issues were noted. First, incomplete mercury suspension impacted mercury stripping from the SRAT slurry. This led to higher SRAT product mercury concentrations than targeted (>0.45 wt% in the total solids). Associated with this issue was a general difficulty in quantifying the mass of mercury in the SRAT vessel as a function of time, especially as acid stoichiometry increased. About ten times more mercury was found after drying the 150% acid SME product to powder than was indicated by the SME product sample results. Significantly more mercury was also found in the 133% acid SME product samples than was found during the SRAT cycle sampling. It appears that mercury is segregating from the bulk slurry in the SRAT vessel, as mercury amalgam deposits for example, and is not being resuspended by the agitators. The second processing issue

  1. Tc-99 Adsorption on Selected Activated Carbons - Batch Testing Results

    Energy Technology Data Exchange (ETDEWEB)

    Mattigod, Shas V.; Wellman, Dawn M.; Golovich, Elizabeth C.; Cordova, Elsa A.; Smith, Ronald M.

    2010-12-01

    CH2M HILL Plateau Remediation Company (CHPRC) is currently developing a 200-West Area groundwater pump-and-treat system as the remedial action selected under the Comprehensive Environmental Response, Compensation, and Liability Act Record of Decision for Operable Unit (OU) 200-ZP-1. This report documents the results of treatability tests Pacific Northwest National Laboratory researchers conducted to quantify the ability of selected activated carbon products (or carbons) to adsorb technetium-99 (Tc-99) from 200-West Area groundwater. The Tc-99 adsorption performance of seven activated carbons (J177601 Calgon Fitrasorb 400, J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, J177612 Norit GAC830, J177613 Norit GAC830, and J177617 Nucon LW1230) were evaluated using water from well 299-W19-36. Four of the best performing carbons (J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, and J177613 Norit GAC830) were selected for batch isotherm testing. The batch isotherm tests on four of the selected carbons indicated that under lower nitrate concentration conditions (382 mg/L), Kd values ranged from 6,000 to 20,000 mL/g. In comparison. Under higher nitrate (750 mg/L) conditions, there was a measureable decrease in Tc-99 adsorption with Kd values ranging from 3,000 to 7,000 mL/g. The adsorption data fit both the Langmuir and the Freundlich equations. Supplemental tests were conducted using the two carbons that demonstrated the highest adsorption capacity to resolve the issue of the best fit isotherm. These tests indicated that Langmuir isotherms provided the best fit for Tc-99 adsorption under low nitrate concentration conditions. At the design basis concentration of Tc 0.865 µg/L(14,700 pCi/L), the predicted Kd values from using Langmuir isotherm constants were 5,980 mL/g and 6,870 mL/g for for the two carbons. These Kd values did not meet the target Kd value of 9,000 mL/g. Tests

  2. Batch phenol biodegradation study and application of factorial experimental design

    Directory of Open Access Journals (Sweden)

    A. Hellal

    2010-01-01

    Full Text Available A bacterium, Pseudomonas aeruginosa (ATTC27853, was investigated for its ability to grow and to degrade phenol as solecarbon source, in aerobic batch culture. The parameters which affect the substrate biodegradation such as the adaptation ofbacteria to phenol, the temperature, and the nature of the bacteria were investigated. The results show that for a range oftemperature of 30 to 40°C, the best degradation of phenol for a concentration of 100mg/l was observed at 30°C. The regenerationof the bacterium which allows the reactivation of its enzymatic activity, shows that the degradation of 100 mg/ l ofsubstrate at 30° C required approximately 50 hours with revivified bacteria, while it only starts after 72 hours for those norevivified. Adapted to increasing concentrations, allows the bacteria to degrade a substrate concentration of about 400mg/l in less than 350 hours.A second part was consisted in the determination of a substrate degradation model using the factorial experiment design,as a function of temperature (30-40°C and of the size of the inoculums (260.88 - 521.76mg/ l. The results were analyzedstatistically using the Student’s t-test, analysis of variance, and F-test. The value of R2 (0.99872 and adjusted R2 (0.9962close to 1.0, verifies the good correlation between the observed and the predicted values, and provides the excellent relationshipbetween the independent variables (factors and the response (the time of the phenol degradation. F-value found above200, indicates that the considered model is statistically significant.

  3. Sorption of fluoride by quartz sand: batch tests

    Directory of Open Access Journals (Sweden)

    Eduardo Usunoff

    2009-06-01

    Full Text Available Despite the many efforts of scientists, in particular those from the field of soil science, the fate and distribution of fluorine (F species in soils and aquifers remain relatively unraveled. As for groundwater systems, such a shortcoming makes difficult the finding and development of safe water supplies. Likewise, the use of transport models does not render acceptable results because of the many uncertainties related to the behavior of F in aqueous media. This paper presents the results of four batch test in which solutions of different pH and [F-] (concentration of fluoride were in contact during 48 hours with clean quartz sand grains. The resulting data were fitted by linear versions of the Freundlich, the Langmuir, and the Langmuir-Freundlich models. The [F-] was varied between 0,5 and 10 mg L-1, except in one batch where a large initial concentration of F was used (45 mg L-1, and the range of pH used was 2,95 to 5,02. From a sieve analysis, the quartz grains had a medium size (d50 of 0,25 mm, and a uniformity coefficient (d40/d90 of 1,65. According to the fits and some dedicated goodness of fit indices, the Langmuir-Freundlich approach gave the best results for the batch test at the lowest pH, whereas the three remaining tests data were fitted by the Freundlich equation. It has to be mentioned that the pH of the equilibrium solutions were higher than the pH of the initial solutions, which was interpreted as an exchange process of OH- by F- on the quartz sand surface. However, such an exchange does not stand out as the exclusive mechanism promoting the F- disappearance from solution. It is deemed that the obtained results can be used as initial estimates of parameters in models used for calibrating the transport of F- in aquifers.A pesar de los muchos esfuerzos de los científicos, en particular de aquellos dedicados a las ciencias del suelo, el destino y la distribución de las especies de F (flúor en suelos y acuíferos continúan siendo

  4. Energy generation by fermentation of glucose in a batch flow microbial fuel cell

    Science.gov (United States)

    Badea, Silviu-Laurentiu; Enache, Stanica; Tamaian, Radu; Buga, Mihaela-Ramona; Pirvu, Cristian; Varlam, Mihai

    2016-04-01

    In the last years, microbial fuel cells (MFCs) have emerged like a novel research technologies for production of sustainable and clean electricity energy through bioxidation of organic materials, representing a promising alternative to combustion energy sources. In this study, production of bioelectricity in MFC in batch system (dual chambered MFC) was investigated. A dual chambered MFC from glass was built for this purpose. Saccharomyces cerevisiae as an active biocatalyst was explored for power generation. Graphite plates were used as electrodes and glucose as substrate. Saccharomyces cerevisiae was initially grown on a period of 72h at 30 degree Celsius, on medium of modified Sabouraud liquid medium containing 30 g glucose/L. A volume of inoculated medium (80 mL) was transferred in the anode compartment of MFC together with 20 mL glucose 1M, while neutral red was used as mediator (electron shuttle) in concentration of 200 μM in anaerobic anode chamber. Potassium permanganate (KMnO4) was used as oxidizing agent in the cathode in wide concentration range (400 μM-40 000 μM). Cathodic compartment was loaded initially with 40 mM potassium permanganate, and afterwards was supplied two times more with KMnO4 of the same concentration, in order to maintain MFC functionality. The MFC was operated on a water bath heated by a combined hot-plate magnetic-stirrer device at 30 degree Celsius and mixed at 180 rpm. The maximum open circuit potential (OCV) recorded of about 0.6 V was reached after the 3rd loading with 40 milimolles of potassium permanganate. Using a potentiostat, the polarization curve was recorded by varying the potential between 0.5 V and 0.0 V, while the intensity of current increased from 0.0 to about 1.5 mA respectively, corresponding to an anodic current density of about 0.81 A/m2. In order to optimize the design and performance of the MFC, the goal of the further research is to use variously concentrations of potassium permanganate. Furthermore, a dual

  5. A Statistical Review of Composition Data from DWPF's Process Samples for Macro-Batch 1

    International Nuclear Information System (INIS)

    The measurements derived from samples taken during the processing of macro-batch 1 (MB1) at the Defense Waste Processing Facility (DWPF) have been reviewed and compared in this report. Batches 22 through 93 were the focal point of this study. Statistical control charts were developed for each analyte for each vessel to identify influential or exceptional results in the variation, central tendency, or both for the measurements. These charts should serve as a basis for observing the (expected) impact of some decisions made during the processing of this macro-batch

  6. Multi-batch slip stacking in the Main Injector at Fermilab

    International Nuclear Information System (INIS)

    The Main Injector (MI) at Fermilab is planning to use multi-batch slip stacking scheme in order to increase the proton intensity at the NuMI target by about a factor of 1.5.[1] [2] By using multi-batch slip stacking, a total of 11 Booster batches are merged into 6, 5 double ones and one single. We have successfully demonstrated the multibatch slip stacking in MI and accelerated a record intensity of 4.6E13 particle per cycle to 120 GeV. The technical issues and beam loss mechanisms for multibatch slip stacking scheme are discussed

  7. Functional Unfold Principal Component Regression Methodology for Analysis of Industrial Batch Process Data

    DEFF Research Database (Denmark)

    Mears, Lisa; Nørregaard, Rasmus; Sin, Gürkan;

    2016-01-01

    . It is shown that application of functional data analysis and the choice of variance scaling method have the greatest impact on the prediction accuracy. Considering the vast amount of batch process data continuously generated in industry, this methodology can potentially contribute as a tool to identify......This work proposes a methodology utilizing functional unfold principal component regression (FUPCR), for application to industrial batch process data as a process modeling and optimization tool. The methodology is applied to an industrial fermentation dataset, containing 30 batches of a production...

  8. 21 CFR 320.34 - Requirements for batch testing and certification by the Food and Drug Administration.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Requirements for batch testing and certification... § 320.34 Requirements for batch testing and certification by the Food and Drug Administration. (a) If the Commissioner determines that individual batch testing by the Food and Drug Administration...

  9. 40 CFR Table 5 to Subpart Ppp of... - Process Vents From Batch Unit Operations-Monitoring, Recordkeeping, and Reporting Requirements

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Process Vents From Batch Unit... Subpart PPP of Part 63—Process Vents From Batch Unit Operations—Monitoring, Recordkeeping, and Reporting... monitor was continuously operating during batch emission episodes selected for control and whether a...

  10. 40 CFR 80.581 - What are the batch testing and sample retention requirements for motor vehicle diesel fuel, NRLM...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false What are the batch testing and sample...; and ECA Marine Fuel Sampling and Testing § 80.581 What are the batch testing and sample retention... refiner and importer shall collect a representative sample from each batch of motor vehicle or NRLM...

  11. Mechanism isolates load weighing cell during lifting of load

    Science.gov (United States)

    Haigler, J. S.

    1966-01-01

    Load weighing cell used in conjuction with a hoist is isolated during lifting and manipulation of the load. A simple mechanism, attached to a crane hook, provides a screw adjustment for engaging the load cell during weighing of the load and isolating it from lift forces during hoisting of the load.

  12. Load Balancing Scientific Applications

    Energy Technology Data Exchange (ETDEWEB)

    Pearce, Olga Tkachyshyn [Texas A & M Univ., College Station, TX (United States)

    2014-12-01

    The largest supercomputers have millions of independent processors, and concurrency levels are rapidly increasing. For ideal efficiency, developers of the simulations that run on these machines must ensure that computational work is evenly balanced among processors. Assigning work evenly is challenging because many large modern parallel codes simulate behavior of physical systems that evolve over time, and their workloads change over time. Furthermore, the cost of imbalanced load increases with scale because most large-scale scientific simulations today use a Single Program Multiple Data (SPMD) parallel programming model, and an increasing number of processors will wait for the slowest one at the synchronization points. To address load imbalance, many large-scale parallel applications use dynamic load balance algorithms to redistribute work evenly. The research objective of this dissertation is to develop methods to decide when and how to load balance the application, and to balance it effectively and affordably. We measure and evaluate the computational load of the application, and develop strategies to decide when and how to correct the imbalance. Depending on the simulation, a fast, local load balance algorithm may be suitable, or a more sophisticated and expensive algorithm may be required. We developed a model for comparison of load balance algorithms for a specific state of the simulation that enables the selection of a balancing algorithm that will minimize overall runtime.

  13. Modeling and monitoring cyclic and linear volatile methylsiloxanes in a wastewater treatment plant using constant water level sequencing batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, De-Gao, E-mail: degaowang@dlmu.edu.cn; Du, Juan; Pei, Wei; Liu, Yongjun; Guo, Mingxing

    2015-04-15

    The fate of cyclic and linear volatile methylsiloxanes (VMSs) was evaluated in a wastewater treatment plant (WWTP) using constant water level sequencing batch reactors from Dalian, China. Influent, effluent, and sewage sludge samples were collected for seven consecutive days. The mean concentrations of cyclic VMSs (cVMSs) in influent and effluent samples are 1.05 μg L{sup −1} and 0.343 μg L{sup −1}; the total removal efficiency of VMSs is > 60%. Linear VMS (lVMS) concentration is under the quantification limitation in aquatic samples but is found in sludge samples with a value of 90 μg kg{sup −1}. High solid-water partition coefficients result in high VMS concentrations in sludge with the mean value of 5030 μg kg{sup −1}. No significant differences of the daily mass flows are found when comparing the concentration during the weekend and during working days. The estimated mass load of total cVMSs is 194 mg d{sup −1} 1000 inhabitants{sup −1} derived for the population. A mass balance model of the WWTP was developed and derived to simulate the fate of cVMSs. The removal by sorption on sludge increases, and the volatilization decreases with increasing hydrophobicity and decreasing volatility for cVMSs. Sensitivity analysis shows that the total suspended solid concentration in the effluent, mixed liquor suspended solid concentration, the sewage sludge flow rate, and the influent flow rate are the most influential parameters on the mass distribution of cVMSs in this WWTP. - Highlights: • A mass balance model for siloxanes was developed in sequencing batch reactor. • Total suspended solid in effluent has the most influence on removal efficiency. • Enhancement of suspended solid removal reduces the release to aquatic environment.

  14. Coal fly ash interaction with environmental fluids: Geochemical and strontium isotope results from combined column and batch leaching experiments

    International Nuclear Information System (INIS)

    Highlights: ► Element release during fly ash extraction experiments controlled by mineralogy. ► Strontium isotopes in fly ash are not homogenized during coal combustion. ► Element correlations with 87Sr/86Sr indicate chemically resistant silicate phase. ► Sr isotopes can uniquely identify fly ash fluids leaking into the environment. - Abstract: The major element and Sr isotope systematics and geochemistry of coal fly ash and its interactions with environmental waters were investigated using laboratory flow-through column leaching experiments (sodium carbonate, acetic acid, nitric acid) and sequential batch leaching experiments (water, acetic acid, hydrochloric acid). Column leaching of Class F fly ash samples shows rapid release of most major elements early in the leaching procedure, suggesting an association of these elements with soluble and surface bound phases. Delayed release of certain elements (e.g., Al, Fe, Si) signals gradual dissolution of more resistant silicate or glass phases as leaching continues. Strontium isotope results from both column and batch leaching experiments show a marked increase in 87Sr/86Sr ratio with continued leaching, yielding a total range of values from 0.7107 to 0.7138. For comparison, the isotopic composition of fluid output from a fly ash impoundment in West Virginia falls in a narrow range around 0.7124. The experimental data suggest the presence of a more resistant, highly radiogenic silicate phase that survives the combustion process and is leached after the more soluble minerals are removed. Strontium isotopic homogenization of minerals in coal does not always occur during the combustion process, despite the high temperatures encountered in the boiler. Early-released Sr tends to be isotopically uniform; thus the Sr isotopic composition of fly ash could be distinguishable from other sources and is a useful tool for quantifying the possible contribution of fly ash leaching to the total dissolved load in natural surface

  15. Coal fly ash interaction with environmental fluids: Geochemical and strontium isotope results from combined column and batch leaching experiments

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, Tonya M; Stewart, Brian W; Capo, Rosemary C; Schroeder, Karl T; Chapman, Elizabeth C; Spivak-Birndorf, Lev J; Vesper, Dorothy J; Cardone, Carol R; Rohar, Paul C

    2013-05-01

    The major element and Sr isotope systematics and geochemistry of coal fly ash and its interactions with environmental waters were investigated using laboratory flow-through column leaching experiments (sodium carbonate, acetic acid, nitric acid) and sequential batch leaching experiments (water, acetic acid, hydrochloric acid). Column leaching of Class F fly ash samples shows rapid release of most major elements early in the leaching procedure, suggesting an association of these elements with soluble and surface bound phases. Delayed release of certain elements (e.g., Al, Fe, Si) signals gradual dissolution of more resistant silicate or glass phases as leaching continues. Strontium isotope results from both column and batch leaching experiments show a marked increase in {sup 87}Sr/{sup 86}Sr ratio with continued leaching, yielding a total range of values from 0.7107 to 0.7138. For comparison, the isotopic composition of fluid output from a fly ash impoundment in West Virginia falls in a narrow range around 0.7124. The experimental data suggest the presence of a more resistant, highly radiogenic silicate phase that survives the combustion process and is leached after the more soluble minerals are removed. Strontium isotopic homogenization of minerals in coal does not always occur during the combustion process, despite the high temperatures encountered in the boiler. Early-released Sr tends to be isotopically uniform; thus the Sr isotopic composition of fly ash could be distinguishable from other sources and is a useful tool for quantifying the possible contribution of fly ash leaching to the total dissolved load in natural surface and ground waters.

  16. Influence of carbon source on nitrate removal by nitrate-tolerant Klebsiella oxytoca CECT 4460 in batch and chemostat cultures

    Energy Technology Data Exchange (ETDEWEB)

    Pinar, G.; Ramos, J.L. [Consejo Superior de Investigaciones Cientificas, Granada (Spain); Kovarova, K.; Egli, T. [Swiss Federal Inst. for Environmental Science and Technology, Duebendorf (Switzerland). Dept. of Microbiology

    1998-08-01

    The nitrate-tolerant organism Klebsiella oxytoca CECT-4460 tolerates nitrate at concentrations up to 1 M and is used to treat wastewater with high nitrate loads in industrial wastewater treatment plants. The authors studied the influence of the C source (glycerol or sucrose or both) on the growth rate and the efficiency of nitrate removal under laboratory conditions. With sucrose as the sole C source the maximum specific growth rate was 0.3 h{sup {minus}1}, whereas with glycerol it was 0.45 h{sup {minus}1}. In batch cultures K. oxytoca cells grown on sucrose or glycerol were able to immediately use sucrose as a sole C source, suggesting that sucrose uptake and metabolism were constitutive. In contrast, glycerol uptake occurred preferentially in glycerol-grown cells. Independent of the preculture conditions, when sucrose and glycerol were added simultaneously to batch cultures, the sucrose was used first, and once the supply of sucrose was exhausted, the glycerol was consumed. Utilization of nitrate as an N source occurred without nitrite of ammonium accumulation when glycerol was used, but nitrite accumulated when sucrose was used. In chemostat cultures K. oxytoca CECT 4460 efficiently removed nitrate without accumulation of nitrite or ammonium when sucrose, glycerol, or mixtures of these two C sources were used. The growth yields and the efficiencies of C and N utilization were determined at different growth rates in chemostat cultures. Regardless of the C source, yield carbon (Y{sub C}) ranged between 1.3 and 1.0 g (dry weight) per g of sucrose C or glycerol C consumed. Regardless of the specific growth rate and the C source, yield nitrogen (Y{sub N}) ranged from 17.2 to 12.5 g (dry weight) per g of nitrate N consumed.

  17. Modeling and monitoring cyclic and linear volatile methylsiloxanes in a wastewater treatment plant using constant water level sequencing batch reactors

    International Nuclear Information System (INIS)

    The fate of cyclic and linear volatile methylsiloxanes (VMSs) was evaluated in a wastewater treatment plant (WWTP) using constant water level sequencing batch reactors from Dalian, China. Influent, effluent, and sewage sludge samples were collected for seven consecutive days. The mean concentrations of cyclic VMSs (cVMSs) in influent and effluent samples are 1.05 μg L−1 and 0.343 μg L−1; the total removal efficiency of VMSs is > 60%. Linear VMS (lVMS) concentration is under the quantification limitation in aquatic samples but is found in sludge samples with a value of 90 μg kg−1. High solid-water partition coefficients result in high VMS concentrations in sludge with the mean value of 5030 μg kg−1. No significant differences of the daily mass flows are found when comparing the concentration during the weekend and during working days. The estimated mass load of total cVMSs is 194 mg d−1 1000 inhabitants−1 derived for the population. A mass balance model of the WWTP was developed and derived to simulate the fate of cVMSs. The removal by sorption on sludge increases, and the volatilization decreases with increasing hydrophobicity and decreasing volatility for cVMSs. Sensitivity analysis shows that the total suspended solid concentration in the effluent, mixed liquor suspended solid concentration, the sewage sludge flow rate, and the influent flow rate are the most influential parameters on the mass distribution of cVMSs in this WWTP. - Highlights: • A mass balance model for siloxanes was developed in sequencing batch reactor. • Total suspended solid in effluent has the most influence on removal efficiency. • Enhancement of suspended solid removal reduces the release to aquatic environment

  18. Rational design and optimization of fed-batch and continuous fermentations.

    Science.gov (United States)

    Zhang, Wenhui; Inan, Mehmet; Meagher, Michael M

    2007-01-01

    This chapter provides rational approaches to design and optimize fed-batch and continuous fermentations of both Mut+ and Muts (methanol utilization plus and slow) Pichia pastoris strains. The methods are described in detail for glycerol batch, glycerol fed-batch, transition, and methanol fed-batch/mixed feed/ continuous stirred tank reactor (CSTR) phases of the process based on glycerol and methanol consumption models. Cell density, broth volume, substrate feed rate, and the length of each phase are rationally designed to conduct runs with selected parameters for optimizing a process. The optimization is anchored by the impact of a specific growth rate/dilution time (for CSTRs) on productivity. Equations for simulation of a process with optimal parameters are derived for an optimal process design. This protocol can be used as a practical manual for process development of a P. pastoris recombinant fermentation, and also as a reference for fermentation of other microorganisms. PMID:17951634

  19. A cellular automata model for simulating fed-batch penicillin fermentation process

    Institute of Scientific and Technical Information of China (English)

    Yu Naigong; Ruan Xiaogang

    2006-01-01

    A cellular automata model to simulate penicillin fed-batch fermentation process(CAPFM)was established in this study,based on a morphologically structured dynamic penicillin production model,that is in turn based on the growth mechanism of penicillin producing microorganisms and the characteristics of penicillin fed-batch fermentation.CAPFM uses the three-dimensional cellular automata as a growth space,and a Moore-type neighborhood as the cellular neighborhood.The transition roles of CAPFM are designed based on mechanical and structural kinetic models of penicillin batch-fed fermentation processes.Every cell of CAPFM represents a single or specific number of penicillin producing microorganisms,and has various state.The simulation experimental results show that CAPFM replicates the evolutionary behavior of penicillin batch-fed fermentation processes described by the structured penicillin production kinetic model accordingly.

  20. Removing batch effects for prediction problems with frozen surrogate variable analysis

    Directory of Open Access Journals (Sweden)

    Hilary S. Parker

    2014-09-01

    Full Text Available Batch effects are responsible for the failure of promising genomic prognostic signatures, major ambiguities in published genomic results, and retractions of widely-publicized findings. Batch effect corrections have been developed to remove these artifacts, but they are designed to be used in population studies. But genomic technologies are beginning to be used in clinical applications where samples are analyzed one at a time for diagnostic, prognostic, and predictive applications. There are currently no batch correction methods that have been developed specifically for prediction. In this paper, we propose an new method called frozen surrogate variable analysis (fSVA that borrows strength from a training set for individual sample batch correction. We show that fSVA improves prediction accuracy in simulations and in public genomic studies. fSVA is available as part of the sva Bioconductor package.

  1. The second batch of RE export quota in 2009 released/Brief News

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ In accordance with"Regulation on Import and Export of Commodities of the People's Republic of China",the Ministry of Commerce released the second batch of RE export quota of common trade in 2009 on June 29.

  2. MOFCOM announced supplement to the first batch of 2012 export quotas

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The Ministry of Commerce of China supplemented the first batch of rare earth export quotas, which were assigned to the companies that had passed the inspection of the Ministry of Environmental Protection.

  3. Design and Construction of a Batch Oven for Investigation of Industrial Continuous

    DEFF Research Database (Denmark)

    Stenby, Mette; Nielsen, Brian; Risum, Jørgen

    2011-01-01

    A new batch oven has been designed and build to model baking processes as seen in large scale tunnel ovens. In order to simulate the conditions found in tunnel ovens a number of critical parameters are controllable: The temperature, the humidity and the air velocity. The band movement is simulate...... few adjustments are still needed in the batch oven setup, it is clear that the batch oven, with its continuous data collection and high degree of process control will be a very valuable tool in the future work with modelling of baking process and products.......A new batch oven has been designed and build to model baking processes as seen in large scale tunnel ovens. In order to simulate the conditions found in tunnel ovens a number of critical parameters are controllable: The temperature, the humidity and the air velocity. The band movement is simulated...

  4. Enhanced methane production via repeated batch bioaugmentation pattern of enriched microbial consortia.

    Science.gov (United States)

    Yang, Zhiman; Guo, Rongbo; Xu, Xiaohui; Wang, Lin; Dai, Meng

    2016-09-01

    Using batch and repeated batch cultivations, this study investigated the effects of bioaugmentation with enriched microbial consortia (named as EMC) on methane production from effluents of hydrogen-producing stage of potato slurry, as well as on the indigenous bacterial community. The results demonstrated that the improved methane production and shift of the indigenous bacterial community structure were dependent on the EMC/sludge ratio and bioaugmentation patterns. The methane yield and production rate in repeated batch bioaugmentation pattern of EMC were, respectively, average 15% and 10% higher than in one-time bioaugmentation pattern of EMC. DNA-sequencing approach showed that the enhanced methane production in the repeated batch bioaugmentation pattern of EMC mainly resulted from the enriched iron-reducing bacteria and the persistence of the introduced Syntrophomonas, which led to a rapid degradation of individual VFAs to methane. The findings contributed to understanding the correlation between the bioaugmentation of microbial consortia, community shift, and methane production. PMID:27262722

  5. Batch sequential design to achieve predictive maturity with calibrated computer models

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Brian J., E-mail: brianw@lanl.gov [Statistical Sciences Group, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Loeppky, Jason L., E-mail: jason@stat.ubc.ca [Department of Mathematics and Statistics, University of British Columbia, Okanagan, Kelowna, BC V1V 1V7 (Canada); Moore, Leslie M., E-mail: lmoore@lanl.gov [Statistical Sciences Group, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Macklem, Mason S., E-mail: mason.macklem@ubc.ca [Department of Mathematics and Statistics, University of British Columbia, Okanagan, Kelowna, BC V1V 1V7 (Canada)

    2011-09-15

    Sequential experiment design strategies have been proposed for efficiently augmenting initial designs to solve many problems of interest to computer experimenters, including optimization, contour and threshold estimation, and global prediction. We focus on batch sequential design strategies for achieving maturity in global prediction of discrepancy inferred from computer model calibration. Predictive maturity focuses on adding field experiments to efficiently improve discrepancy inference. Several design criteria are extended to allow batch augmentation, including integrated and maximum mean square error, maximum entropy, and two expected improvement criteria. In addition, batch versions of maximin distance and weighted distance criteria are developed. Two batch optimization algorithms are considered: modified Fedorov exchange and a binning methodology motivated by optimizing augmented fractional factorial skeleton designs.

  6. Batch sequential design to achieve predictive maturity with calibrated computer models

    International Nuclear Information System (INIS)

    Sequential experiment design strategies have been proposed for efficiently augmenting initial designs to solve many problems of interest to computer experimenters, including optimization, contour and threshold estimation, and global prediction. We focus on batch sequential design strategies for achieving maturity in global prediction of discrepancy inferred from computer model calibration. Predictive maturity focuses on adding field experiments to efficiently improve discrepancy inference. Several design criteria are extended to allow batch augmentation, including integrated and maximum mean square error, maximum entropy, and two expected improvement criteria. In addition, batch versions of maximin distance and weighted distance criteria are developed. Two batch optimization algorithms are considered: modified Fedorov exchange and a binning methodology motivated by optimizing augmented fractional factorial skeleton designs.

  7. UNBOUNDED BATCH SCHEDULING WITH A COMMON DUE WINDOW ON A SINGLE MACHINE

    Institute of Scientific and Technical Information of China (English)

    Hongluan ZHAO; Guojun LI

    2008-01-01

    The common due window scheduling problem with batching on a single machine is dealt with to minimize the total penalty of weighted earliness and tardiness. In this paper it is assumed that a job incurs no penalty as long as it is completed within the common due window. It is the first time for the due window scheduling to be extended to this situation so that jobs can be processed in batches. An unbounded version of batch scheduling is also considered. Hence, jobs, no matter how many there are, can be processed in a batch once the machine is free. For two cases that the location of due window is either a decision variable or a given parameter, polynomial algorithms are proposed based on several optimal properties.

  8. Quality of rolled barley flakes as affected by batch of grain and processing technique.

    Science.gov (United States)

    Sundberg, B; Abrahamsson, L; Aman, P

    1994-02-01

    Rolled barely flakes were prepared from three different batches of grain by pearling, steaming and rolling. Autoclaved and malted barleys from the three batches were also processed in the same way. Analysis of the nine products showed that both batch of barley and process had significant effects on chemical composition and viscosity. Puddings were prepared from the products and mechanical consistency, juiciness and grain consistency were graded on both newly prepared and heated puddings by a sensory taste panel. Batch of barley had no effect on mechanical consistency but significant effects on juiciness and grain consistency. Type of processing had significant effect on all three parameters for both newly prepared and heated puddings. PMID:8153065

  9. A Novel Operation Policy for Dilute Component Separation Quasi-batch Distillation

    Institute of Scientific and Technical Information of China (English)

    罗祎青; 袁希钢; 杨祖杰; 刘春江

    2005-01-01

    A new operation policy--quasi-batch distillation for recovering infinitesimal amounts species existing in a mixture is presented. In quasi-batch distillation operation, feed is introduced with a constant flow rate onto the feed stage of the column, and the flow rate of the distillate is the same as that of the feed, whereas the bottom product is withdrawn periodically. The behavior of quasi-batch distillation is simulated and analyzed through an example on heavy water separation. Comparing with continuous or batch distillation, the new operation policy is more reliable and efficient to achieve higher recovery of dilute component. This is especially suitable for separating small amount of precious species from large amount of raw material.

  10. CONVERTING FROM BATCH TO CONTINUOUS INTENSIFIED PROCESSING IN THE STT? REACTOR

    Science.gov (United States)

    The fluid dynamics, the physical dimensions and characteristics of the reaction zones of continuous process intensification reactors are often quite different from those of the batch reactors they replace. Understanding these differences is critical to the successful transit...

  11. Aerobic Granulation in Sequencing Batch Reactor (SBR Treating Saline Wastewater

    Directory of Open Access Journals (Sweden)

    Ensieh Taheri

    2012-04-01

    Full Text Available Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 Background and Objectives: Aerobic sludge granulation is an advanced phenomenonin which its mechanisms have not been understood. Granulation can be a promising and novel biological wastewater treatment technology to eliminate organic and inorganic materials in future. High salinity is a parameter which leads to plasmolisatian and reduction of the cell activity. This could be a problem for biological treatment of the saline wastewater. Aerobic granule was formed and investigated during this study. Materials and Methods: This study is an intervention study on the treatment of wastewater with 500-10000 mg/L concentration of NaCl by sequencing batch reactor. Asynthesized wastewater including nutrient required for microorganism's growth was prepared. Input and output pH and EC were measured. Range of pH and DO varied between 7-8, and 2-5 mg/L, respectively. SEM technology was used to identify graduals properties.Results: In terms of color, granules divided into two groups of light brown and black. Granule ranged in 3-7mm with the sediment velocity of 0.9-1.35 m/s and density of 32-60 g/L.Properties of granules were varied. Filamentous bacteria and fungi were dominant in some granules. However non filamentous bacteria were dominant in others. EDX analysis indicated the presence of Ca and PO4.Conclusion: Granules with non filamentous bacterial were compact and settled faster. Presence of different concentrations of salinity leaded to plasmolysis of the bacterial cells and increased concentrations of EPS  in the system as a result  of which granulation accelerated. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso

  12. Tank 40 Final Sludge Batch 8 Chemical Characterization Results

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, Christopher J.

    2013-09-19

    A sample of Sludge Batch 8 (SB8) was pulled from Tank 40 in order to obtain radionuclide inventory analyses necessary for compliance with the Waste Acceptance Product Specifications (WAPS). The SB8 WAPS sample was also analyzed for chemical composition, including noble metals, and fissile constituents, and these results are reported here. These analyses along with the WAPS radionuclide analyses will help define the composition of the sludge in Tank 40 that is currently being fed to the Defense Waste Processing Facility (DWPF) as SB8. At SRNL, the 3-L Tank 40 SB8 sample was transferred from the shipping container into a 4-L high density polyethylene bottle and solids were allowed to settle. Supernate was then siphoned off and circulated through the shipping container to complete the transfer of the sample. Following thorough mixing of the 3-L sample, a 553 g sub-sample was removed. This sub-sample was then utilized for all subsequent slurry sample preparations. Eight separate aliquots of the slurry were digested, four with HNO{sub 3}/HCl (aqua regia) in sealed Teflon(r) vessels and four with NaOH/Na{sub 2}O{sub 2} (alkali or peroxide fusion) using Zr crucibles. Two Analytical Reference Glass - 1 (ARG-1) standards were digested along with a blank for each preparation. Each aqua regia digestion and blank was diluted to 1:100 mL with deionized water and submitted to Analytical Development (AD) for inductively coupled plasma - atomic emission spectroscopy (ICP-AES) analysis, inductively coupled plasma - mass spectrometry (ICP-MS) analysis, atomic absorption spectroscopy (AA) for As and Se, and cold vapor atomic absorption spectroscopy (CV-AA) for Hg. Equivalent dilutions of the alkali fusion digestions and blank were submitted to AD for ICP-AES analysis. Tank 40 SB8 supernate was collected from a mixed slurry sample in the SRNL Shielded Cells and submitted to AD for ICP-AES, ion chromatography (IC), total base/free OH-/other base, total inorganic carbon/total organic

  13. Batch Cooling Crystallization of Potassium Sulphate from Water Solution

    Directory of Open Access Journals (Sweden)

    Kalšan, M.

    2009-12-01

    Full Text Available Batch cooling crystallization, at the rotation speed of 700 min–1, of an aqueous solution of a potassium sulphate has been investigated on a laboratory scale. The effect of hydrodynamics conditions on the crystallization process were investigated by using different type of impellers. Two types of impellers were investigated; the four-pitched blade impeller which generates axi-al flow and the six-blades Rusthon turbine which generates radial flow. The experiments were performed at four different linear cooling rates in the range from 8-20 °C h–1 for both types of impeller.The influence of the cooling rates on the metastable zone width, the crystallization kinetics and the granulometric properties of the obtained crystals were investigated. The experimental data show that higher cooling rate expands the metastable zone for all the types of impeller (Fig. 2 and influences the crystal size distribution (Fig. 7 and Fig. 8.At low cooling rates, supersaturation was kept at a constant value for a longer period. It resulted in improved conditions for mass transfer and the crystals grew. Bigger crystals were obtained at lower cooling rates (Fig. 7.It is stated that radial flow (Rusthon turbine is particularly inappropriate for the nucleation process, and for crystallization. Nucleation started at a lower temperature and higher supersaturation (Fig. 3. These conditions resulted in a high nucleation’s rate and large number of nucleation centres.Also, the obtained crystals settled on the wall of the reactor, baffles and stirrer. A great part of the obtained crystals was agglomerated. The nucleation order, n and coefficient of nucleation, kn were determined for different cooling rates (Fig. 5a. The nucleation order is higher at radial flow (nucleation started at higher supersaturation. The relation between the rate of concentration drop in a solution and supersaturation has beenapproximated with a power low equation (Fig. 5b. For the used impellers

  14. Characteristics of anoxic phosphors removal in sequence batch reactor

    Institute of Scientific and Technical Information of China (English)

    WANG Ya-yi; PAN Mian-li; Yan Min; PENG Yong-zhen; WANG Shu-ying

    2007-01-01

    The characteristics of anaerobic phosphorus release and anoxic phosphorus uptake was investigated in sequencing batch reactors using denitrifying phosphorus removing bacteria (DPB) sludge. The lab-scale experiments were accomplished under conditions of various nitrite concentrations (5.5, 9.5, and 15 mg/L) and mixed liquor suspended solids (MLSS) (1844, 3231, and 6730 mg/L). The results obtained confirmed that nitrite, MLSS, and pH were key factors, which had a significant impact on anaerobic phosphorus release and anoxic phosphorus uptake in the biological phosphorous removal process. The nitrites were able to successfully act as electron acceptors for phosphorous uptake at a limited concentration between 5.5 and 9.5 mg/L. The denitrification and dephosphorous were inhibited when the nitrite concentration reached 15 mg/L. This observation indicated that the nitrite would not inhibit phosphorus uptake before it exceeded a threshold concentration. It was assumed that an increase of MLSS concentration from 1844 mg/L to 6730 mg/L led to the increase of denitrification and anoxic P-uptake rate. On the contrary, the average P uptake/N denitrifying reduced from 2.10 to 1.57 mg PO43--P/mg NO3--N. Therefore, it could be concluded that increasing MLSS of the DEPHANOX system might shorten the reaction time of phosphorus release and anoxic phosphorus uptake. However, excessive MLSS might reduce the specific denitrifying rate. Meanwhile, a rapid pH increase occurred at the beginning of the anoxic conditions as a result of denitrification and anoxic phosphate uptake. Anaerobic P release rate increased with an increase in pH. Moreover, when pH exceeded a relatively high value of 8.0, the dissolved P concentration decreased in the liquid phase, because of chemical precipitation. This observation suggested that pH should be strictly controlled below 8.0 to avoid chemical precipitation if the biological denitrifying phosphorus removal capability is to be studied accurately.

  15. Biological chip technology to quickly batch select optimum cryopreservation procedure

    Institute of Scientific and Technical Information of China (English)

    YU Lina; LIU Jing; ZHOU Yixin; HUA Zezhao

    2007-01-01

    In the practices of cryobiology,selection of an optimum freeze/thawing program and an idealistic cryoprotective agent often requires rather tedious,time consuming and repetitive tests.Integrating the functions of sample preparation and viability detection,the concept of biochip technology was introduced to the field of cryopreservation,aiming at quickly finding an optimum freezing and thawing program.Prototype devices were fabricated and corresponding experimental tests were performed.It was shown that microflow-channel chip could not offer a high quality solution distribution.As an alternative,the spot-dropping chip proved to be an excellent way to load the sample quickly and reliably.Infrared thermal mapping on such a chip showed that it had a rather uniform heat transfer boundary.Applying the spot-dropping chip combined with the thermoelectric cooling device,the final output of cryopreservation of multiple samples was tested,and the optimal freeze/thawing program as well as the potentially best concentration of the cryoprotective agent was found by analyzing the results.Further,application of this technique to measure the thermo-physical properties of the cryo-protective agent was also investigated.The study demonstrated that a biochip with integrated automatic loading and inspection units opens the possibility of a massive optimization of the complex cryopreservation program in a quicker and more economical way.

  16. Cognitive load theory

    OpenAIRE

    Kirschner, Paul A.; Kirschner, Femke; Paas, Fred

    2010-01-01

    Kirschner, P. A., Kirschner, F. C., & Paas, F. (2009). Cognitive load theory. In E. M. Anderman & L. H. Anderman (Eds.). Psychology of classroom learning: An encyclopedia, Volume 1, a-j (pp. 205-209). Detroit, MI: Macmillan Reference.

  17. Plug Load Data

    Data.gov (United States)

    National Aeronautics and Space Administration — We provide MATLAB binary files (.mat) and comma separated values files of data collected from a pilot study of a plug load management system that allows for the...

  18. Static Loads Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides the capability to perform large-scale structural loads testing on spacecraft and other structures. Results from these tests can be used to verify...

  19. LOADING SIMULATION PROGRAM C

    Data.gov (United States)

    U.S. Environmental Protection Agency — LSPC is the Loading Simulation Program in C++, a watershed modeling system that includes streamlined Hydrologic Simulation Program Fortran (HSPF) algorithms for...

  20. Effect of nitrification on phosphorus dissolving in a piggery effluent treated by a sequencing batch reactor

    OpenAIRE

    Daumer, M.L.; Béline, F.; Guiziou, F.; Spérandio, M

    2007-01-01

    The effect of the nitrification on dissolved phosphorus during the treatment of piggery wastewater by a modified sequencing batch reactor has been observed in a previous study. The high solid mineral phosphorus content in the piggery wastewater and the chemical mechanism induced by the fall in pH during the nitrification were proposed to explain this effect. In this work, trials using modified sequencing batch reactors were performed to study the influence of the amount of nitrified nitrogen ...

  1. INVESTIGATION OF INTERMITTENT CHLORINATION SYSTEM IN BIOLOGICAL EXCESS SLUDGE REDUCTION BY SEQUENCING BATCH REACTORS

    OpenAIRE

    A. Takdastan ، N. Mehrdadi ، A. A. Azimi ، A. Torabian ، G. Nabi Bidhendi

    2009-01-01

    The excessive biological sludge production is one of the disadvantages of aerobic wastewater treatment processes such as sequencing batch reactors. To solve the problem of excess sludge production, oxidizing some of the sludge by chlorine, thus reducing the biomass coefficient as well as the sewage sludge disposal may be a suitable idea. In this study, two sequencing batch reactors, each with 20 L volume and controlled by on-line system were used. After providing the steady state conditions i...

  2. Dissolution of intact UO2 pellet in batch and rotary dissolver conditions

    International Nuclear Information System (INIS)

    Comparative dissolution of intact un-irradiated UO2 pellet of PHWR fuel dimensions was performed in batch and dynamic rotary dissolver conditions in aqueous nitric acid solutions at elevated temperatures. The extent of dissolution was estimated by determining the uranium concentration of the resulting aqueous solution. It was observed that rate of dissolution was much faster in dynamic conditions as compared to static batch conditions. (author)

  3. Batch effect correction for genome-wide methylation data with Illumina Infinium platform

    OpenAIRE

    Sun Zhifu; Chai High; Wu Yanhong; White Wendy M; Donkena Krishna V; Klein Christopher J; Garovic Vesna D; Therneau Terry M; Kocher Jean-Pierre A

    2011-01-01

    Abstract Background Genome-wide methylation profiling has led to more comprehensive insights into gene regulation mechanisms and potential therapeutic targets. Illumina Human Methylation BeadChip is one of the most commonly used genome-wide methylation platforms. Similar to other microarray experiments, methylation data is susceptible to various technical artifacts, particularly batch effects. To date, little attention has been given to issues related to normalization and batch effect correct...

  4. Stratified randomization controls better for batch effects in 450K methylation analysis: A cautionary tale

    OpenAIRE

    Buhule, Olive D.; Minster, Ryan L.; Nicola L. Hawley; Mario eMedvedovic; Guangyun eSun; Satupaitea eViali; Ranjan eDeka; Stephen T McGarvey; Weeks, Daniel E.

    2014-01-01

    Background: Batch effects in DNA methylation microarray experiments can lead to spurious results if not properly handled during the plating of samples. Methods: Two pilot studies examining the association of DNA methylation patterns across the genome with obesity in Samoan men were investigated for chip- and row-specific batch effects. For each study, the DNA of 46 obese men and 46 lean men were assayed using Illumina's Infinium HumanMethylation450 BeadChip. In the first study (Sample One),...

  5. Stratified randomization controls better for batch effects in 450K methylation analysis: a cautionary tale

    OpenAIRE

    Buhule, Olive D.; Minster, Ryan L.; Nicola L. Hawley; Medvedovic, Mario; SUN, GUANGYUN; Viali, Satupaitea; Deka, Ranjan; Stephen T McGarvey; Weeks, Daniel E.

    2014-01-01

    Background: Batch effects in DNA methylation microarray experiments can lead to spurious results if not properly handled during the plating of samples. Methods: Two pilot studies examining the association of DNA methylation patterns across the genome with obesity in Samoan men were investigated for chip- and row-specific batch effects. For each study, the DNA of 46 obese men and 46 lean men were assayed using Illumina's Infinium HumanMethylation450 BeadChip. In the first study (Sample One), s...

  6. Optimization and control of feb-batch fermentation processes by using artificial neural systems

    OpenAIRE

    Valencia Peroni, Catalina

    2002-01-01

    This work focuses on the application of neural networks in the areas of modelling, identification, control and optimization of biothechnology processes, mainly fed-batch bioreactors. The basic ideas and techniques of artificial neural networks are presented with the notation familiar to control engineers. The applications of a variety of neural network architectures in control and control schemes are first surveyed. Some especific fed-batch bioreactor processes are mentioned to illustrate par...

  7. Bacteriocin Production with Lactobacillus amylovorus DCE 471 Is Improved and Stabilized by Fed-Batch Fermentation

    OpenAIRE

    Callewaert, Raf; De Vuyst, Luc

    2000-01-01

    Amylovorin L471 is a small, heat-stable, and hydrophobic bacteriocin produced by Lactobacillus amylovorus DCE 471. The nutritional requirements for amylovorin L471 production were studied with fed-batch fermentations. A twofold increase in bacteriocin titer was obtained when substrate addition was controlled by the acidification rate of the culture, compared with the titers reached with constant substrate addition or pH-controlled batch cultures carried out under the same conditions. An inter...

  8. The functionalization of carbon nanotubes using a batch oscillatory flow reactor

    OpenAIRE

    Melendi, Sonia; Bonyadi, S; Castell, P.; Martinez, M.T.; Mackley, M.R.

    2012-01-01

    This paper describes an efficient method for the functionalizing of multi-walled carbon nanotubes (MWCNT) using oscillatory flow mixing (OFM). A 3. l batch oscillatory flow reactor (OFR) was designed and constructed for pilot scale functionalization of MWCNT in order to potentially improve their compatibility within a thermoplastic polyphenylene sulphide (PPS) matrix. The OFM batch reactor consisted of a jacketed cylindrical vessel with a vertical axial oscillator that contained a series of b...

  9. Batch and Continuous Lactic Acid Production from Cassava by Streptococcus bovis

    OpenAIRE

    Fachrul Razi; S D Yuwono

    2006-01-01

    Process variables were optimized for the production of lactic acid from cassava by Streptococcus bovis for batch and continuous fermentations. In the batch fermentation, maximum yield 82.5% and maximum lactic acid productivity 2.43 was achieved at 39 oC, pH 5.5 with 50 g/l cassava concentration. In the continuous fermentation maximum productivity lactic acid 1.25 g/l.h was obtained at dilution rate 0.05 /h.

  10. Batch chemical microreactors: Reversible, in-situ UHV sealing of a microcavity

    DEFF Research Database (Denmark)

    Monkowski, Adam; Johansson, Martin; Nielsen, Jane Hvolbæk; Chorkendorff, Ib; Hansen, Ole

    We propose a new type of microreactor to study heterogeneous catalytic systems. The proposed device operates using a batch reactor scheme, in which catalyst and reactant are introduced in one step and analyzed in a subsequent step. This differs from a flow microreactor in which reaction and...... analysis take place continuously. A batch microreactor could evaluate the products from a very small amount of catalyst possibly...

  11. Coexistence of nitrifying, anammox and denitrifying bacteria in a sequencing batch reactor

    OpenAIRE

    MichelaLangone; JiaYan

    2014-01-01

    Elevated nitrogen removal efficiencies from ammonium-rich wastewaters have been demonstrated by several applications, that combine nitritation and anammox processes. Denitrification will occur simultaneously when organic carbon is also present. In this study, the activity of aerobic ammonia oxidizing, anammox and denitrifying bacteria in a full scale Sequencing Batch Reactor, treating digester supernatants, was studied by means of batch-assays. AOB and anammox activities were maximum at pH of...

  12. Load of coal

    Energy Technology Data Exchange (ETDEWEB)

    Woof, M.

    1998-06-01

    An electric skid steer loader has been developed in the UK by Hay Royds, offering an innovative approach to underground loading. Its compact design makes it ideal for loading thin coal piled at the face to conveyors in restricted headroom conditions. The loader is in operation at Hay Royd`s colliery near Huddersfield in Yorkshire and at Rashiehill mine near Edinburgh. The article describes the design and operation of the skid steer loader. 1 photo.

  13. Load research manual. Volume 3. Load research for advanced technologies

    Energy Technology Data Exchange (ETDEWEB)

    Brandenburg, L.; Clarkson, G.; Grund, Jr., C.; Leo, J.; Asbury, J.; Brandon-Brown, F.; Derderian, H.; Mueller, R.; Swaroop, R.

    1980-11-01

    This three-volume manual presents technical guidelines for electric utility load research. Special attention is given to issues raised by the load data reporting requirements of the Public Utility Regulatory Policies Act of 1978 and to problems faced by smaller utilities that are initiating load research programs. The manual includes guides to load research literature and glossaries of load research and statistical terms. In Volume 3, special load research procedures are presented for solar, wind, and cogeneration technologies.

  14. The use of fed batch approaches to maximise yields in bacterial fermentation and protein expression

    International Nuclear Information System (INIS)

    A fermentation facility for the scale up of bacterial and yeast fermentations has been set up at the University of Queensland under the auspices of the ARC Special Research Centre for Functional and Applied Genomics. A major application is the production of recombinant proteins for determination of tertiary structures by X-ray crystallography or nuclear magnetic resonance. For this purpose, large amounts of protein arc needed and the yield from a single fermentation run is crucial to success within constrained laboratory budgets. To achieve maximal yields we are optimising fed batch approaches in bacterial fermentation. Fed batch offers many advantages over batch cultures. Coupled with the ability to monitor online the internal conditions of the fermentation including pH and dissolved oxygen and stirrer cascading functions it is possible to ensure that the nutritional environment of the microorganism is optimised for its growth and or for optimal protein expression. The poster will describe some of our experience in setting up fed batch fermentations and successful applications of fed batches to increasing protein yield. It will also outline services that are available to academic groups outside the University of Queensland For structure determination and functional studies, the production of radiolabelled proteins can also be an advantage. We will describe initial experiments aimed at coupling the principles of fed batch fermentation to the introduction of carbon or nitrogen isotopes into the recombinant protein

  15. Analysis and modelling of the energy consumption of chemical batch plants

    Energy Technology Data Exchange (ETDEWEB)

    Bieler, P.S.

    2004-07-01

    This report for the Swiss Federal Office of Energy (SFOE) describes two different approaches for the energy analysis and modelling of chemical batch plants. A top-down model consisting of a linear equation based on the specific energy consumption per ton of production output and the base consumption of the plant is postulated. The model is shown to be applicable to single and multi-product batches for batch plants with constant production mix and multi-purpose batch plants in which only similar chemicals are produced. For multipurpose batch plants with highly varying production processes and changing production mix, the top-down model produced inaccurate results. A bottom-up model is postulated for such plants. The results obtained are discussed that show that the electricity consumption for infrastructure equipment was significant and responsible for about 50% of total electricity consumption. The specific energy consumption for the different buildings was related to the degree of automation and the production processes. Analyses of the results of modelling are presented. More detailed analyses of the energy consumption of this apparatus group show that about 30 to 40% of steam energy is lost and thus a large potential for optimisation exists. Various potentials for making savings, ranging from elimination of reflux conditions to the development of a new heating/cooling-system for a generic batch reactor, are identified.

  16. Detection and identification of the atypical bovine pestiviruses in commercial foetal bovine serum batches.

    Directory of Open Access Journals (Sweden)

    Hongyan Xia

    Full Text Available The recently emerging atypical bovine pestiviruses have been detected in commercial foetal bovine serum (FBS of mainly South American origin so far. It is unclear how widely the viruses are presented in commercial FBS of different geographic origins. To further investigate the possible pestivirus contamination of commercially available FBS batches, 33 batches of FBS were obtained from ten suppliers and analysed in this study for the presence of both the recognised and the atypical bovine pestiviruses. All 33 batches of FBS were positive by real-time RT-PCR assays for at least one species of bovine pestiviruses. According to the certificate of analysis that the suppliers claimed for each batch of FBS, BVDV-1 was detected in all 11 countries and BVDV-2 was detected exclusively in the America Continent. The atypical pestiviruses were detected in 13 batches claimed to originate from five countries. Analysis of partial 5'UTR sequences showed a high similarity among these atypical bovine pestiviruses. This study has demonstrated, for the first time that commercial FBS batches of different geographic origins are contaminated not only with the recognised species BVDV-1 and BVDV-2, but also with the emerging atypical bovine pestiviruses.

  17. An order-picking operations system for managing the batching activities in a warehouse

    Science.gov (United States)

    Lam, Cathy H. Y.; Choy, K. L.; Ho, G. T. S.; Lee, C. K. M.

    2014-06-01

    Nowadays, customer orders with high product variety in small quantities are often received and requested for timely delivery. However, the order-picking process is a labour-intensive and costly activity to handle those small orders separately. In such cases, small orders are often grouped into batches so that two or more orders can be served at once to increase the picking efficiency and thus reduce the travel distance. In this paper, an order-picking operations system (OPOS) is proposed to assist the formulation of an order-picking plan and batch-handling sequence. The study integrates a mathematical model and fuzzy logic technique to divide the receiving orders into batches and prioritise the batch-handling sequence for picking, respectively. Through the proposed system, the order-picking process can be managed as batches with common picking locations to minimise the travel distance, and the batch-picking sequence can be determined as well. To demonstrate the use of the system, a case study in a third-party logistics warehouse is presented, and the result shows that both the order-picking activity and labour utilisation can be better organised.

  18. An LMI Method to Robust Iterative Learning Fault-tolerant Guaranteed Cost Control for Batch Processes

    Institute of Scientific and Technical Information of China (English)

    WANG Limin; CHEN Xi; GAO Furong

    2013-01-01

    Based on an equivalent two-dimensional Fornasini-Marchsini model for a batch process in industry,a closed-loop robust iterative learning fault-tolerant guaranteed cost control scheme is proposed for batch processes with actuator failures.This paper introduces relevant concepts of the fault-tolerant guaranteed cost control and formulates the robust iterative learning reliable guaranteed cost controller (ILRGCC).A significant advantage is that the proposed ILRGCC design method can be used for on-line optimization against batch-to-batch process uncertainties to realize robust tracking of set-point trajectory in time and batch-to-batch sequences.For the convenience of implementation,only measured output errors of current and previous cycles are used to design a synthetic controller for iterative learning control,consisting of dynamic output feedback plus feed-forward control.The proposed controller can not only guarantee the closed-loop convergency along time and cycle sequences but also satisfy the H∞ performance level and a cost function with upper bounds for all admissible uncertainties and any actuator failures.Sufficient conditions for the controller solution are derived in terms of linear matrix inequalities (LMIs),and design procedures,which formulate a convex optimization problem with LMI constraints,are presented.An example of injection molding is given to illustrate the effectiveness and advantages of the ILRGCC design approach.

  19. An Empirical State Error Covariance Matrix for Batch State Estimation

    Science.gov (United States)

    Frisbee, Joseph H., Jr.

    2011-01-01

    state estimate, regardless as to the source of the uncertainty. Also, in its most straight forward form, the technique only requires supplemental calculations to be added to existing batch algorithms. The generation of this direct, empirical form of the state error covariance matrix is independent of the dimensionality of the observations. Mixed degrees of freedom for an observation set are allowed. As is the case with any simple, empirical sample variance problems, the presented approach offers an opportunity (at least in the case of weighted least squares) to investigate confidence interval estimates for the error covariance matrix elements. The diagonal or variance terms of the error covariance matrix have a particularly simple form to associate with either a multiple degree of freedom chi-square distribution (more approximate) or with a gamma distribution (less approximate). The off diagonal or covariance terms of the matrix are less clear in their statistical behavior. However, the off diagonal covariance matrix elements still lend themselves to standard confidence interval error analysis. The distributional forms associated with the off diagonal terms are more varied and, perhaps, more approximate than those associated with the diagonal terms. Using a simple weighted least squares sample problem, results obtained through use of the proposed technique are presented. The example consists of a simple, two observer, triangulation problem with range only measurements. Variations of this problem reflect an ideal case (perfect knowledge of the range errors) and a mismodeled case (incorrect knowledge of the range errors).

  20. Dose and batch-dependent hepatobiliary toxicity of 10 nm silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Marcella De Maglie

    2015-07-01

    Full Text Available Silver nanoparticles (AgNPs are widely used because of their antimicrobial properties in medical devices and in a variety of consumer products. The extensive use of AgNPs raises concerns about their potential toxicity, although it is still difficult to draw definite conclusions about their toxicity based on published data. Our preliminary studies performed to compare the effect of the AgNPs size (10-40-100 nm on toxicity, demonstrated that the smallest AgNPs determine the most severe toxicological effects. In order to best investigate the impact of physicochemical characteristics of 10 nm AgNPs on toxicity, we compare three different batches of 10 nm AgNPs slightly different in size distribution (Batch A: 8.8±1.7 nm; Batch B: 9.4±1.7 nm; Batch C: 10.0±1.8 nm. Mice were intravenously treated with two doses (5 and 10 mg/kg of the 3 AgNPs. 24 hours after the treatment, mice were euthanized and underwent complete necropsy. Tissues were collected for histopathological examination and total silver content was determined in tissues by inductively coupled plasma mass spectrometry (ICP-MS. All batches induced severe hepatobiliary lesions, i.e. marked hepatocellular necrosis and massive hemorrhage of the gall bladder. The toxicity was dose-dependent and interestingly, the toxic effects were more severe in mice treated with batches A and B that contained smaller AgNPs. Since the total silver mass concentration was similar, the observed batch-dependent toxicity suggest that even subtle differences in size may contribute to relevant changes in the toxicological outcomes, confirming the fundamental involvement of physicochemical features with respect to toxicity.

  1. OPTIMIZING BATCH REKEYING INTERVAL FOR SECURE GROUP COMMUNICATION BASED ON QUEUING MODEL

    Directory of Open Access Journals (Sweden)

    A. Vasanthi

    2014-01-01

    Full Text Available Rapid growth of Internet spawns many group oriented multicast applications like Internet pay TV, news dissemination and stock quote system. The fortes of these applications are the support of dynamic, scalable group membership and group members are geographically divergent. As members of the group move in and out, an imperative cryptographic rekeying model should be applied to preserve the confidentiality of the group. A symmetric key called as session key is employed to defend the group communication data during transit. Forward and backward secrecy is attained by updating the session key for every change in group membership. Depends on the application immediate rekeying or batch rekeying can be used employed. The problem with the batch rekeying algorithm is to determine the pertinent batch size and the optimal time for rekeying process. The main aim is to propose a mathematical model based on queuing theory principles by considering the request for rekeying as Poisson process, rekeying service as an exponential distribution. The performance of the proposed model is analyzed using Java based simulator. By varying the arrival rate and rekeying service rate the optimal batch size can be attained. The optimal rekeying interval improves the performance of the group when the group membership grows dynamically. Reduces the long waiting time of the rekeying requests and find the best batch size for the rekeying. Proposed mathematical model analyses the various control parameters for batch rekeying and locates the best values for the batch size and interval time using the M/M/1/K model queues.

  2. Resin-based preparation of HTGR fuels: operation of an engineering-scale uranium loading system

    International Nuclear Information System (INIS)

    The fuel particles for recycle of 233U to High-Temperature Gas-Cooled Reactors are prepared from uranium-loaded carboxylic acid ion exchange resins which are subsequently carbonized, converted, and refabricated. The development and operation of individual items of equipment and of an integrated system are described for the resin-loading part of the process. This engineering-scale system was full scale with respect to a hot demonstration facility, but was operated with natural uranium. The feed uranium, which consisted of uranyl nitrate solution containing excess nitric acid, was loaded by exchange with resin in the hydrogen form. In order to obtain high loadings, the uranyl nitrate must be acid deficient; therefore, nitric acid was extracted by a liquid organic amine which was regenerated to discharge a NaNO3 or NH4NO3 solution waste. Water was removed from the uranyl nitrate solution by an evaporator that yielded condensate containing less than 0.5 ppM of uranium. The uranium-loaded resin was washed with condensate and dried to a controlled water content via microwave heating. The loading process was controlled via in-line measurements of the pH and density of the uranyl nitrate. The demonstrated capacity was 1 kg of uranium per hour for either batch loading contractors or a continuous column as the resin loading contractor. Fifty-four batch loading runs were made without a single failure of the process outlined in the chemical flowsheet or any evidence of inability to control the conditions dictated by the flowsheet

  3. Loading coal down under

    Energy Technology Data Exchange (ETDEWEB)

    McHale, B. [Kanawha Scales and Systems, Poca, WV (United States)

    1999-09-01

    The two major coal producing states in Australia are New South Wales and Queensland. Most of the mines are located on loops off the main rail arteries. So, scheduling of rail movements of empty cars from the port to the mines and the return movement of the loaded cars to the ports is quite a juggling act. The situation is further complicated by the need to increase loading capacity of the port facilities to facilitate a quick turn around of ships arriving off the ports for loading. Most of the mines are within 80-110 miles of the port facilities. The train schedules are for the most part driven by the ship schedules. (orig.)

  4. Batch-reactor microfluidic device: first human use of a microfluidically produced PET radiotracer.

    Science.gov (United States)

    Lebedev, Artem; Miraghaie, Reza; Kotta, Kishore; Ball, Carroll E; Zhang, Jianzhong; Buchsbaum, Monte S; Kolb, Hartmuth C; Elizarov, Arkadij

    2013-01-01

    The very first microfluidic device used for the production of (18)F-labeled tracers for clinical research is reported along with the first human Positron Emission Tomography scan obtained with a microfluidically produced radiotracer. The system integrates all operations necessary for the transformation of [(18)F]fluoride in irradiated cyclotron target water to a dose of radiopharmaceutical suitable for use in clinical research. The key microfluidic technologies developed for the device are a fluoride concentration system and a microfluidic batch reactor assembly. Concentration of fluoride was achieved by means of absorption of the fluoride anion on a micro ion-exchange column (5 μL of resin) followed by release of the radioactivity with 45 μL of the release solution (95 ± 3% overall efficiency). The reactor assembly includes an injection-molded reactor chip and a transparent machined lid press-fitted together. The resulting 50 μL cavity has a unique shape designed to minimize losses of liquid during reactor filling and liquid evaporation. The cavity has 8 ports for gases and liquids, each equipped with a 2-way on-chip mechanical valve rated for pressure up to 20.68 bar (300 psi). The temperature is controlled by a thermoelectric heater capable of heating the reactor up to 180 °C from RT in 150 s. A camera captures live video of the processes in the reactor. HPLC-based purification and reformulation units are also integrated in the device. The system is based on "split-box architecture", with reagents loaded from outside of the radiation shielding. It can be installed either in a standard hot cell, or as a self-shielded unit. Along with a high level of integration and automation, split-box architecture allowed for multiple production runs without the user being exposed to radiation fields. The system was used to support clinical trials of [(18)F]fallypride, a neuroimaging radiopharmaceutical under IND Application #109,880. PMID:23135409

  5. The impact of the MCU life extension solvent on sludge batch 8 projected operating windows

    International Nuclear Information System (INIS)

    As a part of the Actinide Removal Process (ARP)/Modular Caustic Side Solvent Extraction Unit (MCU) Life Extension Project, a next generation solvent (NGS) and a new strip acid will be deployed. The strip acid will be changed from dilute nitric acid to dilute boric acid (0.01 M). Because of these changes, experimental testing or evaluations with the next generation solvent are required to determine the impact of these changes (if any) to Chemical Process Cell (CPC) activities, glass formulation strategies, and melter operations at the Defense Waste Processing Facility (DWPF). The introduction of the dilute (0.01 M) boric acid stream into the DWPF flowsheet has a potential impact on glass formulation and frit development efforts since B203 is a major oxide in frits developed for DWPF. Prior knowledge of this stream can be accounted for during frit development efforts but that was not the case for Sludge Batch 8 (SB8). Frit 803 has already been recommended and procured for SB8 processing; altering the frit to account for the incoming boron from the strip effluent (SE) is not an option for SB8. Therefore, the operational robustness of Frit 803 to the introduction of SE including its compositional tolerances (i.e., up to 0.0125M boric acid) is of interest and was the focus of this study. The primary question to be addressed in the current study was: What is the impact (if any) on the projected operating windows for the Frit 803 - SB8 flowsheet to additions of B203 from the SE in the Sludge Receipt and Adjustment Tank (SRAT)? More specifically, will Frit 803 be robust to the potential compositional changes occurring in the SRAT due to sludge variation, varying additions of ARP and/or the introduction of SE by providing access to waste loadings (WLs) of interest to DWPF? The Measurement Acceptability Region (MAR) results indicate there is very little, if any, impact on the projected operating windows for the Frit 803 - SB8 system regardless of the presence or absence of

  6. Aerobic granules formation and nutrients removal characteristics in sequencing batch airlift reactor (SBAR) at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Bao Ruiling [State Key Laboratory of Urban Water Resource and Environment, Harbin University of Technology, Harbin 150090 (China); Yu Shuili, E-mail: ysl@vip.163.com [State Key Laboratory of Urban Water Resource and Environment, Harbin University of Technology, Harbin 150090 (China) and State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Shi Wenxin; Zhang Xuedong; Wang Yulan [State Key Laboratory of Urban Water Resource and Environment, Harbin University of Technology, Harbin 150090 (China)

    2009-09-15

    To understand the effect of low temperature on the formation of aerobic granules and their nutrient removal characteristics, an aerobic granular sequencing batch airlift reactor (SBAR) has been operated at 10 deg. C using a mixed carbon source of glucose and sodium acetate. The results showed that aerobic granules were obtained and that the reactor performed in stable manner under the applied conditions. The granules had a compact structure and a clear out-surface. The average parameters of the granules were: diameter 3.4 mm, wet density 1.036 g mL{sup -1}, sludge volume index 37 mL g{sup -1}, and settling velocity 18.6-65.1 cm min{sup -1}. Nitrite accumulation was observed, with a nitrite accumulation rate (NO{sub 2}{sup -}-N/NO{sub x}{sup -}-N) between 35% and 43% at the beginning of the start-up stage. During the stable stage, NO{sub x} was present at a level below the detection limit. However, when the influent COD concentration was halved (resulting in COD/N a reduction of the COD/N from 20:1 to 10:1) nitrite accumulation was observed once more with an effluent nitrite accumulation rate of 94.8%. Phosphorus release was observed in the static feeding phase and also during the initial 20-30 min of the aerobic phase. Neither the low temperature nor adjustment of the COD/P ratio from 100:1 to 25:1 had any influence on the phosphorus removal efficiency under the operating conditions. In the granular reactor with the influent load rates for COD, NH{sub 4}{sup +}-N, and PO{sub 4}{sup 3-}-P of 1.2-2.4, 0.112 and 0.012-0.024 kg m{sup -3} d{sup -1}, the respective removal efficiencies at low temperature were 90.6-95.4%, 72.8-82.1% and 95.8-97.9%.

  7. Wave Loads on Cylinders

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Frigaard, Peter

    1989-01-01

    Wave loads may be defined as time varying forces on a body resulting from the wave induced flow fields which surrounds the body in whole or in part. Such unsteady fluid forces are the net result of pressure and shear forces integrated over the instantaneous wetted area.......Wave loads may be defined as time varying forces on a body resulting from the wave induced flow fields which surrounds the body in whole or in part. Such unsteady fluid forces are the net result of pressure and shear forces integrated over the instantaneous wetted area....

  8. 40 CFR Table 8 to Subpart Jjj of... - Operating Parameters for Which Levels Are Required To Be Established for Continuous and Batch...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Operating Parameters for Which Levels Are Required To Be Established for Continuous and Batch Process Vents and Aggregate Batch Vent Streams... Required To Be Established for Continuous and Batch Process Vents and Aggregate Batch Vent Streams...

  9. SLUDGE BATCH 6/TANK 40 SIMULANT CHEMICAL PROCESS CELL SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, David

    2010-04-28

    Phase III simulant flowsheet testing was completed using the latest composition estimates for SB6/Tank 40 feed to DWPF. The goals of the testing were to determine reasonable operating conditions and assumptions for the startup of SB6 processing in the DWPF. Testing covered the region from 102-159% of the current DWPF stoichiometric acid equation. Nitrite ion concentration was reduced to 90 mg/kg in the SRAT product of the lowest acid run. The 159% acid run reached 60% of the DWPF Sludge Receipt and Adjustment Tank (SRAT) limit of 0.65 lb H2/hr, and then sporadically exceeded the DWPF Slurry Mix Evaporator (SME) limit of 0.223 lb H2/hr. Hydrogen generation rates peaked at 112% of the SME limit, but higher than targeted wt% total solids levels may have been partially responsible for rates seen. A stoichiometric factor of 120% met both objectives. A processing window for SB6 exists from 102% to something close to 159% based on the simulant results. An initial recommendation for SB6 processing is at 115-120% of the current DWPF stoichiometric acid equation. The addition of simulated Actinide Removal Process (ARP) and Modular Caustic Side Solvent Extraction Unit (MCU) streams to the SRAT cycle had no apparent impact on the preferred stoichiometric factor. Hydrogen generation occurred continuously after acid addition in three of the four tests. The three runs at 120%, 118.4% with ARP/MCU, and 159% stoichiometry were all still producing around 0.1 lb hydrogen/hr at DWPF scale after 36 hours of boiling in the SRAT. The 120% acid run reached 23% of the SRAT limit and 37% of the SME limit. Conversely, nitrous oxide generation was subdued compared to previous sludge batches, staying below 29 lb/hr in all four tests or about a fourth as much as in comparable SB4 testing. Two processing issues, identified during SB6 Phase II flowsheet testing and qualification simulant testing, were monitored during Phase III. Mercury material balance closure was impacted by acid stoichiometry

  10. Comparison of batch and column tests for the elution of artificial turf system components.

    Science.gov (United States)

    Krüger, O; Kalbe, U; Berger, W; Nordhauβ, K; Christoph, G; Walzel, H-P

    2012-12-18

    Synthetic athletic tracks and turf areas for outdoor sporting grounds may release contaminants due to the chemical composition of some components. A primary example is that of zinc from reused scrap tires (main constituent, styrene butadiene rubber, SBR), which might be harmful to the environment. Thus, methods for the risk assessment of those materials are required. Laboratory leaching methods like batch and column tests are widely used to examine the soil-groundwater pathway. We tested several components for artificial sporting grounds with batch tests at a liquid to solid (LS) ratio of 2 L/kg and column tests with an LS up to 26.5 L/kg. We found a higher zinc release in the batch test eluates for all granules, ranging from 15% higher to 687% higher versus data from column tests for SBR granules. Accompanying parameters, especially the very high turbidity of one ethylene propylene diene monomer rubber (EPDM) or thermoplastic elastomer (TPE) eluates, reflect the stronger mechanical stress of batch testing. This indicates that batch test procedures might not be suitable for the risk assessment of synthetic sporting ground components. Column tests, on the other hand, represent field conditions more closely and allow for determination of time-dependent contaminants release. PMID:23153171

  11. Time requirements in closed and open batch distillation arrangements for separation of a binary mixture

    Directory of Open Access Journals (Sweden)

    Zhao Shuo

    2014-12-01

    Full Text Available Batch time requirements are provided for the separation of binary zeotropic mixtures in two different multivessel columns (with and without vapor bypass, a non-cyclic two-vessel column and a regular batch column based on dynamic simulations. The first three columns are operated as closed (total reflux systems and the regular batch column is operated as an open (partial reflux system. We analyze the effects of feed composition, relative volatility and product specification on the time requirements. The multivessel arrangements perform better than the regular batch column, which requires from 4.00 to 34.67% more time to complete a given separation. The elimination of the vapor bypass in the multivessel column is impractical though it has a positive effect on the batch time requirements. Thus, the multivessel column, with the vapor stream bypassing the intermediate vessel, is proposed as the best candidate for a binary zeotropic mixture with low concentration of light component, low relative volatility and high product purity demand. Furthermore, an experimental multivessel column with vapor bypass is built and the corresponding experiments verify the simulations.

  12. Kinetics of D-lactic acid production by Sporolactobacillus sp. strain CASD using repeated batch fermentation.

    Science.gov (United States)

    Zhao, Bo; Wang, Limin; Li, Fengsong; Hua, Dongliang; Ma, Cuiqing; Ma, Yanhe; Xu, Ping

    2010-08-01

    D-lactic acid was produced by Sporolactobacillus sp. strain CASD in repeated batch fermentation with one- and two-reactor systems. The strain showed relatively high energy consumption in its growth-related metabolism in comparison with other lactic acid producers. When the fermentation was repeated with 10% (v/v) of previous culture to start a new batch, D-lactic acid production shifted from being cell-maintenance-dependent to cell-growth-dependent. In comparison with the one-reactor system, D-lactic acid production increased approximately 9% in the fourth batch of the two-reactor system. Strain CASD is an efficient D-lactic acid producer with increased growth rate at the early stage of repeated cycles, which explains the strain's physiological adaptation to repeated batch culture and improved performance in the two-reactor fermentation system. From a kinetic point of view, two-reactor fermentation system was shown to be an alternative for conventional one-reactor repeated batch operation. PMID:20374976

  13. [Metabolic characteristics and kinetic model of recombinant CHO cells in serum-free suspension batch culture].

    Science.gov (United States)

    Liu, Xingmao; Liu, Hong; Ye, Lingling; Li, Shichong; Wu, Benchuan; Wang, Haitao; Xie, Jing; Chen, Zhaolie

    2010-01-01

    By using the cell density, cell viability, Pro-UK activity, specific consumption rate of glucose (q(glc)), specific production rate of lactate (q(lac)), yield of lactate to glucose (Y(lac/glc)) and as the evaluation indexes, the growth and metabolism characteristics of pro-urokinase (Pro-UK) expressing CHO cells in serum-free suspension batch culture were examined and compared to those in serum-containing suspension batch culture. We observed hardly differences in growth and metabolism characteristics between the CHO cell populations grown in serum-free suspension batch culture and serum-containing suspension batch culture. The optimal mathematical model parameters for the CHO cells grown in suspension batch culture were obtained by non-linear programming of data representing the growth, substrate consumption and product formation of the CHO cells during logarithmic growth phase using MATLAB software, and the kinetic model of the cell growth and metabolism in serum-free culture were established. PMID:20353097

  14. Probabilistic Load Flow

    DEFF Research Database (Denmark)

    Chen, Peiyuan; Chen, Zhe; Bak-Jensen, Birgitte

    2008-01-01

    This paper reviews the development of the probabilistic load flow (PLF) techniques. Applications of the PLF techniques in different areas of power system steady-state analysis are also discussed. The purpose of the review is to identify different available PLF techniques and their corresponding...

  15. Duration of load revisited

    DEFF Research Database (Denmark)

    Hoffmeyer, Preben; Sørensen, John Dalsgaard

    2007-01-01

    samples were formed. Four groups were subjected to short-term strength tests, and four groups were subjected to long-term tests. Creep and time to failure were moni-tored. Time to failure as a function of stress level was established and the reliability of stress level assessment was discussed. A...... significant mechanosorptive effect was demonstrated both in terms of increased creep and shortening of time to failure. The test results were employed for the calibration of four existing duration of load models. The effect of long-term loading was expressed as the stress level SL50 to cause failure after 50...... years of loading. SL50 was found to be of the order 0.60 for MC = 11 %, 0.50 for MC = 20 % and 0.44 MC varying be-tween 11 % and 20 %. The test results revealed no evidence of a threshold stress level. A reliability based cali-bration of load-duration factors was performed using probabilistic models of...

  16. Ferrite loaded rf cavity

    International Nuclear Information System (INIS)

    The mechanism of a ferrite-loaded rf cavity is explained from the point of view of its operation. Then, an analysis of the automatic cavity-tuning system is presented using the transfer function; and a systematic analysis of a beam-feedback system using transfer functions is also presented. (author)

  17. Load research and load estimation in electricity distribution

    Energy Technology Data Exchange (ETDEWEB)

    Seppaelae, A. [VTT Energy, Espoo (Finland). Energy Systems

    1996-12-31

    The topics introduced in this thesis are: the Finnish load research project, a simple form customer class load model, analysis of the origins of customers load distribution, a method for the estimation of the confidence interval of customer loads and Distribution Load Estimation (DLE) which utilises both the load models and measurements from distribution networks. The Finnish load research project started in 1983. The project was initially coordinated by the Association of Finnish Electric Utilities and 40 utilities joined the project. Now there are over 1000 customer hourly load recordings in a database. A simple form customer class load model is introduced. The model is designed to be practical for most utility applications and has been used by the Finnish utilities for several years. The only variable of the model is the customers annual energy consumption. The model gives the customers average hourly load and standard deviation for a selected month, day and hour. The statistical distribution of customer loads is studied and a model for customer electric load variation is developed. The model results in a lognormal distribution as an extreme case. Using the `simple form load model`, a method for estimating confidence intervals (confidence limits) of customer hourly load is developed. The two methods selected for final analysis are based on normal and lognormal distribution estimated in a simplified manner. The estimation of several cumulated customer class loads is also analysed. Customer class load estimation which combines the information from load models and distribution network load measurements is developed. This method, called Distribution Load Estimation (DLE), utilises information already available in the utilities databases and is thus easy to apply

  18. Repeated-batch production of kojic acid in a cell-retention fermenter using Aspergillus oryzae M3B9.

    Science.gov (United States)

    Wan, H M; Chen, C C; Giridhar, R; Chang, T S; Wu, W T

    2005-06-01

    A cell-retention fermenter was used for the pilot-scale production of kojic acid using an improved strain of Aspergillus oryzae in repeated-batch fermentations. Among the various carbon and nitrogen sources used, sucrose and yeast extract promoted pellet morphology of fungi and higher kojic acid production. Repeated-batch culture using a medium replacement ratio of 75% gave a productivity of 5.3 gL(-1)day(-1) after 11.5 days of cultivation. While batch culture in shake-flasks resulted in a productivity of 5.1 gL(-1)day(-1), a productivity of 5 gL(-1)day(-1) was obtained in a pilot-scale fermenter. By converting the batch culture into repeated batches, the non-productive downtime of cleaning, filling and sterilizing the fermenter between each batch were eliminated, thereby increasing the kojic acid productivity. PMID:15895266

  19. Optimization of glutathione production in batch and fed-batch cultures by the wild-type and recombinant strains of the methylotrophic yeast Hansenula polymorpha DL-1

    Directory of Open Access Journals (Sweden)

    Malyshev Alexander Y

    2011-01-01

    Full Text Available Abstract Background Tripeptide glutathione (gamma-glutamyl-L-cysteinyl-glycine is the most abundant non-protein thiol that protects cells from metabolic and oxidative stresses and is widely used as medicine, food additives and in cosmetic industry. The methylotrophic yeast Hansenula polymorpha is regarded as a rich source of glutathione due to the role of this thiol in detoxifications of key intermediates of methanol metabolism. Cellular and extracellular glutathione production of H. polymorpha DL-1 in the wild type and recombinant strains which overexpress genes of glutathione biosynthesis (GSH2 and its precursor cysteine (MET4 was studied. Results Glutathione producing capacity of H. polymorpha DL-1 depending on parameters of cultivation (dissolved oxygen tension, pH, stirrer speed, carbon substrate (glucose, methanol and type of overexpressed genes of glutathione and its precursor biosynthesis during batch and fed-batch fermentations were studied. Under optimized conditions of glucose fed-batch cultivation, the glutathione productivity of the engineered strains was increased from ~900 up to ~ 2300 mg of Total Intracellular Glutathione (TIG or GSH+GSSGin, per liter of culture medium. Meantime, methanol fed-batch cultivation of one of the recombinant strains allowed achieving the extracellular glutathione productivity up to 250 mg of Total Extracellular Glutathione (TEG or GSH+GSSGex, per liter of the culture medium. Conclusions H. polymorpha is an competitive glutathione producer as compared to other known yeast and bacteria strains (Saccharomyces cerevisiae, Candida utilis, Escherichia coli, Lactococcus lactis etc. with good perspectives for further improvement especially for production of extracellular form of glutathione.

  20. Effect of the C:N:P ratio on the denitrifying dephosphatation in a sequencing batch biofilm reactor (SBBR).

    Science.gov (United States)

    Mielcarek, Artur; Rodziewicz, Joanna; Janczukowicz, Wojciech; Thornton, Arthur J; Jóźwiak, Tomasz; Szymczyk, Paula

    2015-12-01

    A series of investigations were conducted using sequencing batch biofilm reactor (SBBR) to explore the influence of C:N:P ratio on biological dephosphatation including the denitrifying dephosphatation and the denitrification process. Biomass in the reactor occurred mainly in the form of a biofilm attached to completely submerged disks. Acetic acid was used as the source of organic carbon. C:N:P ratios have had a significant effect on the profiles of phosphate release and phosphate uptake and nitrogen removal. The highest rates of phosphate release and phosphate uptake were recorded at the C:N:P ratio of 140:70:7. The C:N ratio of 2.5:1 ensured complete denitrification. The highest rate of denitrification was achieved at the C:N:P ratio of 140:35:7. The increase of nitrogen load caused an increase in phosphates removal until a ratio C:N:P of 140:140:7. Bacteria of the biofilm exposed to alternate conditions of mixing and aeration exhibited enhanced intracellular accumulation of polyphosphates. Also, the structure of the biofilm encouraged anaerobic-aerobic as well as anoxic-anaerobic and absolutely anaerobic conditions in a SBBR. These heterogeneous conditions in the presence of nitrates may be a significant factor determining the promotion of denitrifying polyphosphate accumulating organism (DNPAO) development. PMID:26702975

  1. [Development of a batched image delete system for multi-vender picture archiving and communication system environment].

    Science.gov (United States)

    Yamada, Kenji; Amano, Masafumi; Yuasa, Masao; Yamamoto, Yuichiro; Tada, Akihisa; Harada, Masafumi

    2014-01-01

    A picture archiving and communication system (PACS) for multi-vendor imaging servers is useful, since it can provide a variety of image-processing services. However, to delete an image file in the PACS, it is necessary to delete not only the image but all its associated images that are stored in multiple servers: this is a lengthy and painstaking process. To reduce this workload, we have developed a system consisting of a computer program with a graphical user interface that can delete the target image and all related images by means of batch processing. The developed system creates an extensible markup language (XML)-format file that describes the operation for deleting an image and forwards the XML file to the main server. Using a Windows file-sharing system (SMB/CIFS), each server shares the XML file and deletes the images in its own database in response to the instructions described in the XML file. We can also rigorously manage information concerning the deleted images using the information that is output from the main server to external storage. We also discuss the degree of load reduction in our system compared with that of ordinary systems. PMID:24464060

  2. Bioaugmentation of a sequencing batch reactor with Pseudomonas putida ONBA-17, and its impact on reactor bacterial communities

    International Nuclear Information System (INIS)

    This study demonstrates the feasibility of using Pseudomonasputida ONBA-17 to bioaugment a sequencing batch reactor (SBR) treating o-nitrobenzaldehyde (ONBA) synthetic wastewater. To monitor its survival, the strain was chromosomally marked with gfp gene. After a transient adaptation, almost 100% degradation of ONBA was obtained within 8 days as compared with 23.47% of the non-inoculated control. The bioaugmented reactor has a better chemical oxygen demand (COD) removal performance (96.28%) than that (79.26%) of the control. The bioaugmentation not only enhanced the removal capability of target compound, but shortened system start-up time. After the increase in ONBA load, performance fluctuation of two reactors was observed, and the final treating effects of them were comparable. What is more, denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA genes via a combination of pattern comparison and sequence phylogenetic analysis was performed to uncover changes in sludge microbial communities. Only the members of alpha, beta and gamma subdivisions of Proteobacteria were identified. To isolate ONBA-degrading relevant microorganisms, spread plate was used and four bacterial strains were obtained. Subsequent systematic studies on these bacteria characterized their traits which to some extent explained why such bacteria could be kept in the system. This study will help future research in better understanding of the bioreactor bioaugmentation.

  3. Upgrading of a mechanical biological treatment plant with a solid anaerobic digestion batch: a real case study.

    Science.gov (United States)

    Di Maria, Francesco

    2012-10-01

    The energetic and treatment efficiency analysis of an existing mechanical biological treatment (MBT) plant shows that more than 60% of the 25 kWh consumed per each tonne of non-differentiated waste (NDW) treated is due to the electric fans. About 7.5 kWh per tonne of NDW is used for supplying the process air for stabilizing the waste organic fraction (WOF). Exploitation of the solid anaerobic digestion batch (SADB) for processing the WOF before it enters the aerobic section of the MBT leads to the production of biogas and, when subsequently fed to a gas engine, electric power at a magnitude of about 150 kWh per tonne of WOF, resulting in an energy surplus of about 48 kWh per tonne of NDW treated by the MBT facility. The SADB can also reduce the organic load rate at which the aerobic section operates up to 40%, leading to further positive effects on the whole MBT process. PMID:22751849

  4. Photodegradation of Methylene Blue in a Batch Fixed Bed Photoreactor Using Activated Carbon Fibers Supported TiO2 Photocatalyst

    Institute of Scientific and Technical Information of China (English)

    傅平丰; 赵卓; 彭鹏; 戴学刚

    2008-01-01

    A batch fixed bed photoreactor, using felt-form activated carbon fibers (ACF) supported TiO2 photocatalyst(TiO2/ACF), was developed to carry out photocatalytic degradation of methylene blue (MB) solution. The effects of TiO2 particle size, loaded TiO2 amount, initial MB concentration, airflow rate and successive run on the decomposition rate were investigated. The results showed that photodegradation process followed a pseudo-first-order reaction kinetic law. The apparent first-order reaction constant kapp was larger than 0.047 min-1 with half reaction time t1/2 shorter than 15 min, which was comparable to reported data using suspended Degussa P-25 TiO2 particles. The high degradation rate was mainly attributed to adsorption of MB molecules onto the surface of TiO2/ACF. The photocatalytic efficiency still remained nearly 90% after 12 successive runs, showing that successive usage of the designed photoreactor was possible. The synergic enhancement effect in combination of adsorption with ACF and photodegradation with TiO2 was proved by comparing MB removal rates in the successive degradation and adsorption runs, respectively.

  5. Effect of inorganic carbon on the completely autotrophic nitrogen removal over nitrite (CANON) process in a sequencing batch biofilm reactor.

    Science.gov (United States)

    Chen, You-Peng; Li, Shan; Fang, Fang; Guo, Jin-Song; Zhang, Qiang; Gao, Xu

    2012-12-01

    Ammonia-oxidizing bacteria (AOB) and anaerobic ammonia-oxidizing bacteria (AnAOB) are autotrophic microorganisms. Inorganic carbon (IC) is their main carbon source. The effects of IC limitation on AOB and AnAOB in the completely autotrophic nitrogen removal over nitrite (CANON) process in a sequencing batch biofilm reactor (SBBR) were examined. The optimal IC concentration in the influent was investigated. The start-up time of the CANON process from the activated sludge in the SBBR was 80 d under controlled free ammonia (FA) conditions and sufficient IC source. The AOB and AnAOB activities were limited by an IC concentration of 50 mg-C-L(-1) in the influent, whilst the nitrogen loading rate (NLR) was 200 mg-N x L(-1) x d(-1). The experiment on recovering the influent IC showed that AOB and AnAOB activities were affected by the IC limitation, and not by the pH or FA, at 200mg-N x L(-1) x d(-1) NLR and 50mg-C x L(-1) IC in the CANON process. The activities were recovered by increasing the IC concentration in the influent. From an economic point of view, the optimal IC concentration in the influent was 250mg-C x L(-1) at 200mg-N x L(-1) x d(-1) NLR in this CANON system. PMID:23437661

  6. Fuzzy logic feedback control for fed-batch enzymatic hydrolysis of lignocellulosic biomass.

    Science.gov (United States)

    Tai, Chao; Voltan, Diego S; Keshwani, Deepak R; Meyer, George E; Kuhar, Pankaj S

    2016-06-01

    A fuzzy logic feedback control system was developed for process monitoring and feeding control in fed-batch enzymatic hydrolysis of a lignocellulosic biomass, dilute acid-pretreated corn stover. Digested glucose from hydrolysis reaction was assigned as input while doser feeding time and speed of pretreated biomass were responses from fuzzy logic control system. Membership functions for these three variables and rule-base were created based on batch hydrolysis data. The system response was first tested in LabVIEW environment then the performance was evaluated through real-time hydrolysis reaction. The feeding operations were determined timely by fuzzy logic control system and efficient responses were shown to plateau phases during hydrolysis. Feeding of proper amount of cellulose and maintaining solids content was well balanced. Fuzzy logic proved to be a robust and effective online feeding control tool for fed-batch enzymatic hydrolysis. PMID:26915095

  7. Design and construction of a batch oven for investigation of industrial continuous baking processes

    DEFF Research Database (Denmark)

    Stenby Andresen, Mette; Risum, Jørgen; Adler-Nissen, Jens

    2013-01-01

    A new batch oven has been constructed to mimic industrial convection tunnel ovens for research and development of continuous baking processes. The process parameters (air flow, air temperature, air humidity, height of baking area and the baking band velocity) are therefore highly controllable...... oven, with a butter cookie as the test product. The investigated quality parameters for the butter cookies were mass loss and surface browning, where the uniformity of browning was evaluated subjectively against a scale of standards and objectively by L* value measurements. Good reproducibility...... of the baking was documented over a range of temperatures (160C to 190C). Practical Applications The purpose of this paper is to describe a new specially designed pilot scale batch oven. The batch oven is designed and constructed to imitate the baking processes in continuous tunnel ovens with forced convection...

  8. Optimization of cyclosporin A production by Beauveria nivea in continuous fed-batch fermentation

    Directory of Open Access Journals (Sweden)

    Dong Huijun

    2011-01-01

    Full Text Available To develop the effective control method for fed-batch culture of cyclosporin A production, we chose fructose, L-valine and (NH42HPO4 as feeding nutrients and compared their productivities in relation to different concentrations. The feeding rate of three kinds of feeding materials was controlled to maintain the suitable residual concentration. The fed-batch fermentation results indicated that the optimal concentrations of fructose, L-valine and (NH42HPO4 were about 20 g/L, 0.5 g/L and 0.6 g/L for cyclosporin A production, respectively. The cultivation of Beauveria nivea could produce cyclosporin A up to 6.2 g/L for 240 hrs through a continuous feeding-rate-controlled-batch process under the optimal feeding conditions.

  9. MEMS Batch Fabrication of the Bipolar Micro Magnet Array for Electromagnetic Vibration Harvester

    International Nuclear Information System (INIS)

    This article introduces a MEMS batch fabrication process of micro magnet array with bipolar magnetic pole for an electromagnetic vibration energy harvester. In order to obtain the large electromotive force from large magnetic flux density change, we established the fine patterned alternating magnetized bipolar magnetic structure. The batch fabrication process of bipolar magnet array is composed of two wafers processing with S-pole and N-pole magnetization and bonding process. By the prototype fabrication of bipolar magnet with the 200 μm SN-interval, we showed the usability of the batch fabrication process of the bipolar magnet array. In addition, we estimated the generated power of energy harvester with a bipolar magnet array. Compared to a harvester with monopolar magnet array, we showed the good result for bipolar one

  10. Spatial and temporal variation in Baltic sprat (Sprattus sprattus balticus S.) batch fecundity

    DEFF Research Database (Denmark)

    Haslob, Holger; Tomkiewicz, Jonna; Hinrichsen, Hans-Harald; Kraus, Gerd

    Over the last decade the size of the Baltic sprat spawning stock declined from a record highof over 1.7 million tonnes in 1996 to 910.000 tonnes in 2008. From the perspective of stockrecovery it is of central interest how reproductive parameters have changed over this periodof strongly changing...... stock size. Batch fecundity of Baltic sprat (Sprattus sprattus balticusS.)during peak spawning time was investigated in relation to fish length and weight applyingthe hydrated oocyte method. A series of ten years was established covering importantspawning areas in the Central Baltic Sea, i. e., the...... Bornholm Basin, the Gdansk Deep and forsome years the Gotland Basin. Analysis of Covariance (ANCOVA) showed significantdifferences in batch fecundity of Baltic sprat between areas and years. To detect possiblecauses for this variation in batch fecundity environmental factors such as water temperature...

  11. LifeRaft: Data-Driven, Batch Processing for the Exploration of Scientific Databases

    CERN Document Server

    Wang, Xiaodan; Malik, Tanu

    2009-01-01

    Workloads that comb through vast amounts of data are gaining importance in the sciences. These workloads consist of "needle in a haystack" queries that are long running and data intensive so that query throughput limits performance. To maximize throughput for data-intensive queries, we put forth LifeRaft: a query processing system that batches queries with overlapping data requirements. Rather than scheduling queries in arrival order, LifeRaft executes queries concurrently against an ordering of the data that maximizes data sharing among queries. This decreases I/O and increases cache utility. However, such batch processing can increase query response time by starving interactive workloads. LifeRaft addresses starvation using techniques inspired by head scheduling in disk drives. Depending upon the workload saturation and queuing times, the system adaptively and incrementally trades-off processing queries in arrival order and data-driven batch processing. Evaluating LifeRaft in the SkyQuery federation of astr...

  12. Sludge Batch 3 Simulant Flowsheet Studies: Phase II SRAT/SME Results

    International Nuclear Information System (INIS)

    The Savannah River Technology Center (SRTC) - Immobilization Technology Section (ITS) was requested to perform simulant bench-scale flowsheet studies to qualify Sludge Batch 3 (SB3), the next sludge batch to be processed at the Defense Waste Processing Facility (DWPF). Simulant flowsheet runs have been performed for every sludge batch that has been qualified for DWPF processing to date. SB3 will consist primarily of Tank 7 sludge, but will also contain transfers from other tanks and processes at the SRS and other materials not considered typical for DWPF processing. Projections also indicate that SB3 may contain higher than previously observed levels of noble metals. Over the last year, SRTC has focused significant effort on studies to understand the behavior of SB3 and to evaluate any necessary process changes

  13. Sludge Batch 3 Simulant Flowsheet Studies: Final Phase SRAT/SME Results

    International Nuclear Information System (INIS)

    Simulant flowsheet runs have been performed by the Savannah River Technology Center (SRTC) - Immobilization Technology Section for every sludge batch that has been qualified for Defense Waste Processing Facility processing. The next sludge batch to be qualified is Sludge Batch 3. The simulant Chemical Process Cell runs for SB3 were designed to meet the requirements of Technical Task Request HLW/DWPF/TTR-02-0016. Due to the many non-traditional components believed to be in SB3, SRTC has focused significant effort on studies to understand the behavior of SB3 and to evaluate any necessary process changes.The simulant flowsheet runs for the chemical process cell were divided into phases. A phased approach was used to obtain a better understanding about the non-traditional components and to allow flexibility to respond to characterization results as they became available

  14. Modeling and Optimization for Short-term Scheduling of Multipurpose Batch Plants

    Institute of Scientific and Technical Information of China (English)

    陈国辉; 鄢烈祥; 史彬

    2014-01-01

    In the past two decades, short-term scheduling of multipurpose batch plants has received significant at-tention. Most scheduling problems are modeled using either state-task-network or resource-task-network (RTN) process representation. In this paper, an improved mixed integer linear programming model for short-term schedul-ing of multipurpose batch plants under maximization of profit is proposed based on RTN representation and unit-specific events. To solve the model, a hybrid algorithm based on line-up competition algorithm and linear pro-gramming is presented. The proposed model and hybrid algorithm are applied to two benchmark examples in lit-erature. The simulation results show that the proposed model and hybrid algorithm are effective for short-term scheduling of multipurpose batch plants.

  15. Single-machine batch scheduling minimizing weighted flow times and delivery costs with job release times

    Directory of Open Access Journals (Sweden)

    Amir Ebrahimzadeh Pilerood

    2012-04-01

    Full Text Available This paper addresses scheduling a set of weighted jobs on a single machine in presence of release date for delivery in batches to customers or to other machines for further processing. The problem is a natural extension of minimizing the sum of weighted flow times by considering the possibility of delivering jobs in batches and introducing batch delivery costs. The classical problem is NP-hard and then the extended version of the problem is NP-hard. The objective function is that of minimizing the sum of weighted flow times and delivery costs. The extended problem arises in a real supply chain network by cooperation between two layers of chain. Structural properties of the problem are investigated and used to devise a branch-and-bound solution scheme. Computational experiments show the efficiency of suggested algorithm for solving instances up to 40 jobs.

  16. Optimal Feed Rate Control of Escherichia coli Fed-batch Fermentation

    Directory of Open Access Journals (Sweden)

    Olympia Roeva

    2005-04-01

    Full Text Available In this paper an optimal control algorithm for E. coli fed-batch fermentation has been developed. A simple material balance model is used to describe the E. coli fermentation process. The optimal feed rate control of a primary metabolite process is studied and a biomass production is used as an example. An optimization of a fed-batch fermentation process is usually done using the calculus of variations to determine an optimal feed rate profile. In the optimal control literature the problem is formulated as a free final time problem where the control objective is to maximise biomass at the end of the process. The obtained optimal feed rate profile consists of sequences of maximum and minimum feed rates. The obtained results are used for optimization of E. coli fed-batch fermentation and the presented simulations show a good efficiency of the developed optimal feed rate profile.

  17. Performance of biological hydrogen production process from synthesis gas, mass transfer in batch and continuous bioreactors

    International Nuclear Information System (INIS)

    Biological hydrogen production by anaerobic bacterium, rhodospirillum rubrum was studied in batch and continuous bioreactors using synthesis gas(Co) as substrate. The systems were operated at ambient temperature and pressure. Correlations available in the literature were used to estimate the gas-liquid mass transfer coefficients (KLa) in batch reactor. Based on experimental results for the continuous reactor, new correlation was generated. The results showed that the agitation. gas flow rate and dilution rate were greatly influenced the hydrogen production as well as on KLa. It was found that the KLa of continuous bioreactor was 180 times higher than the mass transfer coefficient reported in batch reactor. It can be considered that the estimation of KLa for the continuous bioreactor may be successful for the large-scale biological hydrogen production

  18. Operation parameters of a small scale batch distillation column for hydrous ethanol fuel (HEF production

    Directory of Open Access Journals (Sweden)

    F. D. Mayer

    2015-04-01

    Full Text Available Batch distillation applied to hydrous ethanol fuel (HEF production on a small scale still requires operating conditions that ensure optimal top product quality and productivity. The aim of this study is to statistically validate a batch still through the employment of response surface methodology (RSM. Operational and productivity parameters were formulated in order to guarantee quality compliance with the legal requirements for the top product concentration, besides providing support information to control the production of HEF on a small scale. The reboiler control and dephlegmator temperatures maintained within the range of 97.5 to 99.5°C and 60 to 70°C, respectively, combined with a variable reflux ratio, was satisfactory in obtaining a top product concentration, in accordance with legal regulations, as well as high productivity. The results of this study may contribute to the assembly of a simple and low-cost batch distillation control system.

  19. The use of date waste for lactic acid production by a fed-batch culture using Lactobacillus casei subsp. rhamnosus

    OpenAIRE

    Aicha Nancib; Nabil Nancib; Abdelhafid Boubendir; Joseph Boudrant

    2015-01-01

    The production of lactic acid from date juice by Lactobacillus caseisubsp. rhamnosus in batch and fed-batch cultures has been investigated. The fed-batch culture system gave better results for lactic acid production and volumetric productivity. The aim of this work is to determine the effects of the feeding rate and the concentration of the feeding medium containing date juice glucose on the cell growth, the consumption of glucose and the lactic acid production by Lactobacillus casei subsp. r...

  20. Citric acid production from glycerol-containing waste of biodiesel industry by Yarrowia lipolytica in batch, repeated batch, and cell recycle regimes

    Energy Technology Data Exchange (ETDEWEB)

    Rymowicz, Waldemar; Rywinska, Anita [Wroclaw Univ. of Environmental and Life Sciences (Poland). Dept. of Biotechnology and Food Microbiology; Fatykhova, Alina R.; Kamzolova, Svetlana V.; Morgunov, Igor G. [Russian Academy of Sciences, Pushchino (Russian Federation). G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms

    2010-07-15

    Yarrowia lipolytica A-101-1.22 produces high citric acid (112 g l{sup -1}) with a yield of 0.6 g g{sup -1} and a productivity of 0.71 g l{sup -1} h{sup -1} during batch cultivation in the medium with glycerol-containing waste of biodiesel industry. However, it was observed that the specific citric acid production rate, which was maximal at the beginning of the biosynthesis, gradually decreases in the late production phase and it makes continuation of the process over 100 h pointless. The cell recycle and the repeated batch regimes were performed as ways for prolongation of citric acid synthesis by yeast. Using cell recycle, the active citric acid biosynthesis (96-107 g l{sup -1}) with a yield of 0.64 g g{sup -1} and a productivity of 1.42 g l{sup -1} h{sup -1} was prolongated up to 300 h. Repeated batch culture remained stable for over 1000 h; the RB variant of 30% feed every 3 days showed the best results: 124.2 g l{sup -1} citric acid with a yield of 0.77 g g{sup -1} and a productivity of 0.85 g l{sup -1} h{sup -1}. (orig.)