WorldWideScience

Sample records for batch culture

  1. Medium optimization for protopectinase production by batch culture of

    African Journals Online (AJOL)

    Medium optimization for protopectinase production by batch culture of. C Fan, Z Liu, L Yao. Abstract. Optimization of medium compositions for protopectinase production by Aspergillus terreus in submerged culture was carried out. The medium components having significant effect on protopectinase production were reported ...

  2. Batch variation between branchial cell cultures: An analysis of variance

    DEFF Research Database (Denmark)

    Hansen, Heinz Johs. Max; Grosell, M.; Kristensen, L.

    2003-01-01

    We present in detail how a statistical analysis of variance (ANOVA) is used to sort out the effect of an unexpected batch-to-batch variation between cell cultures. Two separate cultures of rainbow trout branchial cells were grown on permeable filtersupports ("inserts"). They were supposed...... to be simple duplicates for testing the effect of two induced factors-apical or basolateral addition of radioactive precursors and different apical media-on the incorporation of 14C-acetate and 32Pphosphate intotissue lipids. Unfortunately, they did not altogether give the same result. By accepting this fact...... and introducing the observed difference between batches as one of the factors in an expanded three-dimensional ANOVA, we were able to overcome an otherwisecrucial lack of sufficiently reproducible duplicate values. We could thereby show that the effect of changing the apical medium was much more marked when...

  3. MASS PRODUCTION OF THE BENEFICIAL NEMATODE STEINERNEMA CARPOCAPSAE UTILIZING A FED-BATCH CULTURING PROCESS

    OpenAIRE

    Leonard D. Holmes; Floyd L. Inman III; Sivanadane Mandjiny; Rinu Kooliyottil; Devang Upadhyay

    2013-01-01

    The present study deals with the batch and fed-batch mass production of Steinernema carpocapsae. S. carpocapsae is an entomoparasitic nematode that is used as a biological control agent of soil-borne crop insect pests. The ability and efficiency of fed-batch culture process was successful through the utilization of the nematode’s bacterial symbiont Xenorhabdus nematophila. Results from the fed-batch process were compared to those obtain from the standard batch process. The fed-batch process s...

  4. Lipid production in batch and fed-batch cultures of Rhodosporidium toruloides from 5 and 6 carbon carbohydrates

    Directory of Open Access Journals (Sweden)

    Wiebe Marilyn G

    2012-05-01

    Full Text Available Abstract Background Microbial lipids are a potential source of bio- or renewable diesel and the red yeast Rhodosporidium toruloides is interesting not only because it can accumulate over 50% of its dry biomass as lipid, but also because it utilises both five and six carbon carbohydrates, which are present in plant biomass hydrolysates. Methods R. toruloides was grown in batch and fed-batch cultures in 0.5 L bioreactors at pH 4 in chemically defined, nitrogen restricted (C/N 40 to 100 media containing glucose, xylose, arabinose, or all three carbohydrates as carbon source. Lipid was extracted from the biomass using chloroform-methanol, measured gravimetrically and analysed by GC. Results Lipid production was most efficient with glucose (up to 25 g lipid L−1, 48 to 75% lipid in the biomass, at up to 0.21 g lipid L−1 h−1 as the sole carbon source, but high lipid concentrations were also produced from xylose (36 to 45% lipid in biomass. Lipid production was low (15–19% lipid in biomass with arabinose as sole carbon source and was lower than expected (30% lipid in biomass when glucose, xylose and arabinose were provided simultaneously. The presence of arabinose and/or xylose in the medium increased the proportion of palmitic and linoleic acid and reduced the proportion of oleic acid in the fatty acids, compared to glucose-grown cells. High cell densities were obtained in both batch (37 g L−1, with 49% lipid in the biomass and fed-batch (35 to 47 g L−1, with 50 to 75% lipid in the biomass cultures. The highest proportion of lipid in the biomass was observed in cultures given nitrogen during the batch phase but none with the feed. However, carbohydrate consumption was incomplete when the feed did not contain nitrogen and the highest total lipid and best substrate consumption were observed in cultures which received a constant low nitrogen supply. Conclusions Lipid production in R. toruloides was lower from arabinose and mixed

  5. Lipid production in batch and fed-batch cultures of Rhodosporidium toruloides from 5 and 6 carbon carbohydrates.

    Science.gov (United States)

    Wiebe, Marilyn G; Koivuranta, Kari; Penttilä, Merja; Ruohonen, Laura

    2012-05-30

    Microbial lipids are a potential source of bio- or renewable diesel and the red yeast Rhodosporidium toruloides is interesting not only because it can accumulate over 50% of its dry biomass as lipid, but also because it utilises both five and six carbon carbohydrates, which are present in plant biomass hydrolysates. R. toruloides was grown in batch and fed-batch cultures in 0.5 L bioreactors at pH 4 in chemically defined, nitrogen restricted (C/N 40 to 100) media containing glucose, xylose, arabinose, or all three carbohydrates as carbon source. Lipid was extracted from the biomass using chloroform-methanol, measured gravimetrically and analysed by GC. Lipid production was most efficient with glucose (up to 25 g lipid L(-1), 48 to 75% lipid in the biomass, at up to 0.21 g lipid L(-1) h(-1)) as the sole carbon source, but high lipid concentrations were also produced from xylose (36 to 45% lipid in biomass). Lipid production was low (15-19% lipid in biomass) with arabinose as sole carbon source and was lower than expected (30% lipid in biomass) when glucose, xylose and arabinose were provided simultaneously. The presence of arabinose and/or xylose in the medium increased the proportion of palmitic and linoleic acid and reduced the proportion of oleic acid in the fatty acids, compared to glucose-grown cells. High cell densities were obtained in both batch (37 g L(-1), with 49% lipid in the biomass) and fed-batch (35 to 47 g L(-1), with 50 to 75% lipid in the biomass) cultures. The highest proportion of lipid in the biomass was observed in cultures given nitrogen during the batch phase but none with the feed. However, carbohydrate consumption was incomplete when the feed did not contain nitrogen and the highest total lipid and best substrate consumption were observed in cultures which received a constant low nitrogen supply. Lipid production in R. toruloides was lower from arabinose and mixed carbohydrates than from glucose or xylose. Although high biomass and lipid

  6. Investigation of vinegar production using a novel shaken repeated batch culture system.

    Science.gov (United States)

    Schlepütz, Tino; Büchs, Jochen

    2013-01-01

    Nowadays, bioprocesses are developed or optimized on small scale. Also, vinegar industry is motivated to reinvestigate the established repeated batch fermentation process. As yet, there is no small-scale culture system for optimizing fermentation conditions for repeated batch bioprocesses. Thus, the aim of this study is to propose a new shaken culture system for parallel repeated batch vinegar fermentation. A new operation mode - the flushing repeated batch - was developed. Parallel repeated batch vinegar production could be established in shaken overflow vessels in a completely automated operation with only one pump per vessel. This flushing repeated batch was first theoretically investigated and then empirically tested. The ethanol concentration was online monitored during repeated batch fermentation by semiconductor gas sensors. It was shown that the switch from one ethanol substrate quality to different ethanol substrate qualities resulted in prolonged lag phases and durations of the first batches. In the subsequent batches the length of the fermentations decreased considerably. This decrease in the respective lag phases indicates an adaptation of the acetic acid bacteria mixed culture to the specific ethanol substrate quality. Consequently, flushing repeated batch fermentations on small scale are valuable for screening fermentation conditions and, thereby, improving industrial-scale bioprocesses such as vinegar production in terms of process robustness, stability, and productivity. Copyright © 2013 American Institute of Chemical Engineers.

  7. Optimization of the Production of Polygalacturonase from Aspergillus kawachii Cloned in Saccharomyces cerevisiae in Batch and Fed-Batch Cultures

    Directory of Open Access Journals (Sweden)

    Diego Jorge Baruque

    2011-01-01

    Full Text Available Polygalacturonases (PG; EC 3.2.1.15 catalyze the hydrolysis of pectin and/or pectic acid and are useful for industrial applications such as juice clarification and pectin extraction. Growth and heterologous expression of recombinant Saccharomyces cerevisiae which expresses an acidic PG from Aspergillus kawachii has been studied in batch and fed-batch cultures. Kinetics and stoichiometric parameters of the recombinant yeast were determined in batch cultures in a synthetic medium. In these cultures, the total biomass concentration, protein concentration, and enzyme activity achieved were 2.2 g/L, 10 mg/L, and 3 U/mL, respectively, to give a productivity of 0.06 U/(mL·h. In fed-batch cultures, various strategies for galactose feeding were used: (i after a glucose growth phase, the addition of a single pulse of galactose which gave a productivity of 0.19 U/(mL·h; (ii after a glucose growth phase, a double pulse of galactose at the same final concentration was added, resulting in a productivity of 0.21 U/(mL·h; (iii a simultaneous feeding of glucose and galactose, yielding a productivity of 1.32 U/(mL·h. Based on these results, the simultaneous feeding of glucose and galactose was by far the most suitable strategy for the production of this enzyme. Moreover, some biochemical characteristics of the recombinant enzyme such as a molecular mass of ~60 kDa, an isoelectric point of 3.7 and its ability to hydrolyze polygalacturonic acid at pH=2.5 were determined.

  8. Application of different feeding strategies in fed batch culture for pullulanase production using sago starch.

    Science.gov (United States)

    R, Shankar; M S, Madihah; E M, Shaza; K O, Nur Aswati; A A, Suraini; K, Kamarulzaman

    2014-02-15

    The production of pullulanase by Bacillus flavothermus KWF-1 in batch and fed batch culture were compared using 2L bioreactor. In batch culture, 0.0803 U/mL of pullulanase activity with specific activity of 0.0213 U/mg was produced by controlling the agitation speed and temperature at 200 rpm and 50 °C, respectively. Fed batch production was studied by feeding the culture with different sago starch concentrations in various feeding modes for enhanced pullulanase production. Exponential feeding mode at dilution rate of 0.01/h was the preeminent strategy for enhanced pullulanase production of 0.1710 U/mL with specific activity of 0.066 U/mg. It had shown an increment of pullulanase production and specific activity by 2.1 and 3.1-fold, respectively when compared to batch culture. Increment of pullulanase activity in exponential feeding mode improved hydrolyzation of sago starch into maltotriose and panose by 4.5 and 2.5-fold respectively compared to batch system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Xylitol production by Candida parapsilosis under fed-batch culture

    Directory of Open Access Journals (Sweden)

    Sandra A. Furlan

    2001-06-01

    Full Text Available Xylitol production by Candida parapsilosis was investigated under fed-batch cultivation, using single (xylose or mixed (xylose and glucose sugars as substrates. The presence of glucose in the medium induced the production of ethanol as secondary metabolite and improved specific rates of growth, xylitol formation and substrate consumption. Fractionated supply of the feed medium at constant sugar concentration did not promote any increase on the productivity compared to the single batch cultivation.A produção de xylitol por Candida parapsilosis foi investigada em regime de batelada alimentada, usando substratos açucarados de composição simples (xilose ou composta (xilose e glicose. A presença de glicose no meio induziu a formação de etanol como metabólito secundário. A suplementação fracionada do meio de alimentação numa concentração fixa de açúcar não resultou em aumento da produtividade em relação àquela alcançada em batelada simples.

  10. Production of carotenoids and lipids by Rhodococcus opacus PD630 in batch and fed-batch culture.

    Science.gov (United States)

    Thanapimmetha, Anusith; Suwaleerat, Tharatron; Saisriyoot, Maythee; Chisti, Yusuf; Srinophakun, Penjit

    2017-01-01

    Production of carotenoids by Rhodococcus opacus PD630 is reported. A modified mineral salt medium formulated with glycerol as an inexpensive carbon source was used for the fermentation. Ammonium acetate was the nitrogen source. A dry cell mass concentration of nearly 5.4 g/L could be produced in shake flasks with a carotenoid concentration of 0.54 mg/L. In batch culture in a 5 L bioreactor, without pH control, the maximum dry biomass concentration was ~30 % lower than in shake flasks and the carotenoids concentration was 0.09 mg/L. Both the biomass concentration and the carotenoids concentration could be raised using a fed-batch operation with a feed mixture of ammonium acetate and acetic acid. With this strategy, the final biomass concentration was 8.2 g/L and the carotenoids concentration was 0.20 mg/L in a 10-day fermentation. A control of pH proved to be unnecessary for maximizing the production of carotenoids in this fermentation.

  11. Improvement of xanthan gum production in batch culture using ...

    African Journals Online (AJOL)

    Yomi

    2011-12-21

    Dec 21, 2011 ... In this study, the effect of acetic acid on the improvement of xanthan biosynthesis by Xanthomonas campestris b82 was investigated. ... have been considered to improve xanthan productivity, which include improvement of culture ..... continuous production of xanthan gum. Paper presented at the Fifth.

  12. Increasing the production of desulfurizing biocatalysts by means of fed - batch culture

    International Nuclear Information System (INIS)

    Berdugo, C I; Mena, J A; Acero, J R; Mogollon, L

    2001-01-01

    Over the past years, environmental regulations have driven a lot of effort for the development of new technologies for the upgrading of fossil fuels. Biotechnology offers an alternative way to process fossil fuels by means of a biodesulfurization technology where the production of the biocatalyst is one of the key topics. Traditionally, the production is carried out in batch culture where the maximum cellular concentration is restricted by inherent limitations of the culture type and the microorganism growth rate. This work addresses the production of two desulfurizing microorganisms: Rhodococcus erythropolis IGTS8 and gordona rubropertinctus ICP172 using fed-batch culture. Fed-batch cultures were conducted in a 12 L fermentor using ICP 4 medium containing glucose and DMSO as carbon and sulfur sources. As a result, cell concentration was increased 1.5 and 3 times with fed-batch cultures using constant and exponential flow respectively, achieving a maximum cell concentration of 7.3 g DCW/L of biocatalyst igts8 and 12.85 gGDCW/L of the new biocatalyst ICP172. Both biocatalysts presented biodesulfurization activity in a spiked matrix DBT/HXD and in diesel matrix with the detection of 2-HBP which is the end-product of DBT degradation pathway

  13. Studies of baby hamster kidney natural cell aggregation in suspended batch cultures.

    Science.gov (United States)

    Moreira, J L; Alves, P M; Rodrigues, J M; Cruz, P E; Aunins, J G; Carrondo, M J

    1994-11-30

    Microcarrier cultures of animal cells of industrial relevance are known to shed aggregates into the suspension phase. For a BHK cell line, which is known to be prone to aggregate naturally, microcarrier and aggregate forms of culture are compared in spinner culture. In microcarrier cultures, it is shown that increasing initial microcarrier concentration yields decreasing concentration of smaller aggregates in suspension; roughly equivalent concentrations of total cells and single cells in suspension are obtained. In the absence of Cytodex 3, aggregate final size is hydrodynamically controlled in batch and semicontinuous suspension culture. Rate of agitation is the main variable controlling aggregate size in batch cultures. The range of agitation rates studied (20 to 70 rpm in 250 mL spinner flasks) produced aggregates with maximum sizes of 200 microns. Necrotic centers were not observed; this was confirmed by Trypan blue viability measurements after mechanical dissociation of aggregates and also by the constant productivity obtained from different aggregate sizes. Comparing aggregate and microcarrier culture conditions, it is shown that at 100 rpm maximum total cell concentration is larger in the absence of microcarriers; dead cell concentrations, most of which exist in suspension, are slightly larger in microcarrier culture. Total viable cell concentrations in aggregate, hydrodynamically controlled culture, are almost one order of magnitude higher than in microcarrier cultures. These results suggest that there might be advantages in using aggregate cultures under hydrodynamic control of aggregate size in lieu of microcarrier cultures for naturally aggregating cell lines.

  14. Fed-batch CHO cell culture for lab-scale antibody production

    DEFF Research Database (Denmark)

    Fan, Yuzhou; Ley, Daniel; Andersen, Mikael Rørdam

    2017-01-01

    Fed-batch culture is the most commonly used upstream process in industry today for recombinant monoclonal antibody production using Chinese hamster ovary cells. Developing and optimizing this process in the lab is crucial for establishing process knowledge, which enable rapid and predictable tech...

  15. Selection of chemically defined media for CHO cell fed-batch culture processes

    NARCIS (Netherlands)

    Pan, X.; Streefland, M.; Dalm, C.; Wijffels, R.H.; Martens, D.E.

    2017-01-01

    Two CHO cell clones derived from the same parental CHOBC cell line and producing the same monoclonal antibody (BC-G, a low producing clone; BC-P, a high producing clone) were tested in four basal media in all possible combinations with three feeds (=12 conditions) in fed-batch cultures.
    Higher

  16. Perfusion seed cultures improve biopharmaceutical fed-batch production capacity and product quality.

    Science.gov (United States)

    Yang, William C; Lu, Jiuyi; Kwiatkowski, Chris; Yuan, Hang; Kshirsagar, Rashmi; Ryll, Thomas; Huang, Yao-Ming

    2014-01-01

    Volumetric productivity and product quality are two key performance indicators for any biopharmaceutical cell culture process. In this work, we showed proof-of-concept for improving both through the use of alternating tangential flow perfusion seed cultures coupled with high-seed fed-batch production cultures. First, we optimized the perfusion N-1 stage, the seed train bioreactor stage immediately prior to the production bioreactor stage, to minimize the consumption of perfusion media for one CHO cell line and then successfully applied the optimized perfusion process to a different CHO cell line. Exponential growth was observed throughout the N-1 duration, reaching >40 × 10(6) vc/mL at the end of the perfusion N-1 stage. The cultures were subsequently split into high-seed (10 × 10(6) vc/mL) fed-batch production cultures. This strategy significantly shortened the culture duration. The high-seed fed-batch production processes for cell lines A and B reached 5 g/L titer in 12 days, while their respective low-seed processes reached the same titer in 17 days. The shortened production culture duration potentially generates a 30% increase in manufacturing capacity while yielding comparable product quality. When perfusion N-1 and high-seed fed-batch production were applied to cell line C, higher levels of the active protein were obtained, compared to the low-seed process. This, combined with correspondingly lower levels of the inactive species, can enhance the overall process yield for the active species. Using three different CHO cell lines, we showed that perfusion seed cultures can optimize capacity utilization and improve process efficiency by increasing volumetric productivity while maintaining or improving product quality. © 2014 American Institute of Chemical Engineers.

  17. Oxygen availability strongly affects chronological lifespan and thermotolerance in batch cultures of Saccharomyces cerevisiae

    Science.gov (United States)

    Bisschops, Markus M.; Vos, Tim; Martínez-Moreno, Rubén; Cortés, Pilar T.; Pronk, Jack T.; Daran-Lapujade, Pascale

    2015-01-01

    Stationary-phase (SP) batch cultures of Saccharomyces cerevisiae, in which growth has been arrested by carbon-source depletion, are widely applied to study chronological lifespan, quiescence and SP-associated robustness. Based on this type of experiments, typically performed under aerobic conditions, several roles of oxygen in aging have been proposed. However, SP in anaerobic yeast cultures has not been investigated in detail. Here, we use the unique capability of S. cerevisiae to grow in the complete absence of oxygen to directly compare SP in aerobic and anaerobic bioreactor cultures. This comparison revealed strong positive effects of oxygen availability on adenylate energy charge, longevity and thermotolerance during SP. A low thermotolerance of anaerobic batch cultures was already evident during the exponential growth phase and, in contrast to the situation in aerobic cultures, was not substantially increased during transition into SP. A combination of physiological and transcriptome analysis showed that the slow post-diauxic growth phase on ethanol, which precedes SP in aerobic, but not in anaerobic cultures, endowed cells with the time and resources needed for inducing longevity and thermotolerance. When combined with literature data on acquisition of longevity and thermotolerance in retentostat cultures, the present study indicates that the fast transition from glucose excess to SP in anaerobic cultures precludes acquisition of longevity and thermotolerance. Moreover, this study demonstrates the importance of a preceding, calorie-restricted conditioning phase in the acquisition of longevity and stress tolerance in SP yeast cultures, irrespective of oxygen availability. PMID:28357268

  18. Oxygen availability strongly affects chronological lifespan and thermotolerance in batch cultures of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Markus M.M. Bisschops

    2015-10-01

    Full Text Available Stationary-phase (SP batch cultures of Saccharomyces cerevisiae, in which growth has been arrested by carbon-source depletion, are widely applied to study chronological lifespan, quiescence and SP-associated robustness. Based on this type of experiments, typically performed under aerobic conditions, several roles of oxygen in aging have been proposed. However, SP in anaerobic yeast cultures has not been investigated in detail. Here, we use the unique capability of S. cerevisiae to grow in the complete absence of oxygen to directly compare SP in aerobic and anaerobic bioreactor cultures. This comparison revealed strong positive effects of oxygen availability on adenylate energy charge, longevity and thermotolerance during SP. A low thermotolerance of anaerobic batch cultures was already evident during the exponential growth phase and, in contrast to the situation in aerobic cultures, was not substantially increased during transition into SP. A combination of physiological and transcriptome analysis showed that the slow post-diauxic growth phase on ethanol, which precedes SP in aerobic, but not in anaerobic cultures, endowed cells with the time and resources needed for inducing longevity and thermotolerance. When combined with literature data on acquisition of longevity and thermotolerance in retentostat cultures, the present study indicates that the fast transition from glucose excess to SP in anaerobic cultures precludes acquisition of longevity and thermotolerance. Moreover, this study demonstrates the importance of a preceding, calorie-restricted conditioning phase in the acquisition of longevity and stress tolerance in SP yeast cultures, irrespective of oxygen availability.

  19. Identifying yeast isolated from spoiled peach puree and assessment of its batch culture for invertase production

    Directory of Open Access Journals (Sweden)

    Marcela Vega FERREIRA

    Full Text Available Abstract The identification of yeasts isolated from spoiled Jubileu peach puree using the API 20C AUX method and a commercial yeast as witness were studied. Subsequently, the yeast’s growth potential using two batch culture treatments were performed to evaluate number of colonies (N, reducing sugar concentration (RS, free-invertase (FI, and culture-invertase activity (CI. Stock cultures were maintained on potato dextrose agar (PDA slants at 4 °C and pH 5 for later use for batch-culture (150 rpm at 30°C for 24 h, then they were stored at 4 °C for subsequent invertase extraction. The FI extract was obtained using NaHCO3 as autolysis agent, and CI activity was determined on the supernatant after batch-cultured centrifugation. The activity was followed by an increase in absorbance at 490 nm using the acid 3,5-DNS method with glucose standard. Of the four yeasts identified, Saccharomyces cerevisiae was chosen for legal reasons. It showed logarithmic growth up to 18 h of fermentation with positive correlation CI activity and inverse with RS. FI showed greater activity by the end of the log phase and an inverse correlation with CI activity. Finally, it was concluded that treatment “A” is more effective than “B” to produce invertase (EC 3.2.1.26.

  20. Monitoring and robust adaptive control of fed-batch cultures of microorganisms exhibiting overflow metabolism [abstract

    Directory of Open Access Journals (Sweden)

    Vande Wouwer, A.

    2010-01-01

    Full Text Available Overflow metabolism characterizes cells strains that are likely to produce inhibiting by-products resulting from an excess of substrate feeding and a saturated respiratory capacity. The critical substrate level separating the two different metabolic pathways is generally not well defined. Monitoring of this kind of cultures, going from model identification to state estimation, is first discussed. Then, a review of control techniques which all aim at maximizing the cell productivity of fed-batch fermentations is presented. Two main adaptive control strategies, one using an estimation of the critical substrate level as set-point and another regulating the by-product concentration, are proposed. Finally, experimental investigations of an adaptive RST control scheme using the observer polynomial for the regulation of the ethanol concentration in Saccharomyces cerevisiae fed-batch cultures ranging from laboratory to industrial scales, are also presented.

  1. Salt-induced osmotic stress for lipid overproduction in batch culture ...

    African Journals Online (AJOL)

    Effect of NaCl-induced osmotic stress on lipid production was investigated in batch culture of Chlorella vulgaris. Based on the facts that NaCl stress improved lipid production but inhibited cells growth at the same times, the novel strategies of multiple osmotic stresses with different NaCl additions (2 g/L at 80 h, 4 g/L at 100 h, ...

  2. A framework for the systematic design of fed-batch strategies in mammalian cell culture.

    Science.gov (United States)

    Kyriakopoulos, Sarantos; Kontoravdi, Cleo

    2014-12-01

    A methodology to calculate the required amount of amino acids (a.a.) and glucose in feeds for animal cell culture from monitoring their levels in batch experiments is presented herein. Experiments with the designed feeds on an antibody-producing Chinese hamster ovary cell line resulted in a 3-fold increase in titer compared to batch culture. Adding 40% more nutrients to the same feed further increases the yield to 3.5 higher than in batch culture. Our results show that above a certain threshold there is no linear correlation between nutrient addition and the integral of viable cell concentration. In addition, although high ammonia levels hinder cell growth, they do not appear to affect specific antibody productivity, while we hypothesize that high extracellular lactate concentration is the cause for the metabolic shift towards lactate consumption for the cell line used. Overall, the performance of the designed feeds is comparable to that of a commercial feed that was tested in parallel. Expanding this approach to more nutrients, as well as changing the ratio of certain amino acids as informed by flux balance analysis, could achieve even higher yields. © 2014 Wiley Periodicals, Inc.

  3. Effect of Selenate on Viability and Selenomethionine Accumulation of Chlorella sorokiniana Grown in Batch Culture

    Directory of Open Access Journals (Sweden)

    Živan Gojkovic

    2014-01-01

    Full Text Available The aim of this work was to study the effect of Se(+VI on viability, cell morphology, and selenomethionine accumulation of the green alga Chlorella sorokiniana grown in batch cultures. Culture exposed to sublethal Se concentrations of 40 mg·L−1 (212 μM decreased growth rates for about 25% compared to control. A selenate EC50 value of 45 mg·L−1 (238.2 μM was determined. Results showed that chlorophyll and carotenoids contents were not affected by Se exposure, while oxygen evolution decreased by half. Ultrastructural studies revealed granular stroma, fingerprint-like appearance of thylakoids which did not compromise cell activity. Unlike control cultures, SDS PAGE electrophoresis of crude extracts from selenate-exposed cell cultures revealed appearance of a protein band identified as 53 kDa Rubisco large subunit of Chlorella sorokiniana, suggesting that selenate affects expression of the corresponding chloroplast gene as this subunit is encoded in the chloroplast DNA. Results revealed that the microalga was able to accumulate up to 140 mg·kg−1 of SeMet in 120 h of cultivation. This paper shows that Chlorella sorokiniana biomass can be enriched in the high value aminoacid SeMet in batch cultures, while keeping photochemical viability and carbon dioxide fixation activity intact, if exposed to suitable sublethal concentrations of Se.

  4. Effect of Selenate on Viability and Selenomethionine Accumulation of Chlorella sorokiniana Grown in Batch Culture

    Science.gov (United States)

    Vílchez, Carlos; Torronteras, Rafael; Vigara, Javier; Gómez-Jacinto, Veronica; Janzer, Nora; Gómez-Ariza, José-Luis; Márová, Ivana

    2014-01-01

    The aim of this work was to study the effect of Se(+VI) on viability, cell morphology, and selenomethionine accumulation of the green alga Chlorella sorokiniana grown in batch cultures. Culture exposed to sublethal Se concentrations of 40 mg·L−1 (212 μM) decreased growth rates for about 25% compared to control. A selenate EC50 value of 45 mg·L−1 (238.2 μM) was determined. Results showed that chlorophyll and carotenoids contents were not affected by Se exposure, while oxygen evolution decreased by half. Ultrastructural studies revealed granular stroma, fingerprint-like appearance of thylakoids which did not compromise cell activity. Unlike control cultures, SDS PAGE electrophoresis of crude extracts from selenate-exposed cell cultures revealed appearance of a protein band identified as 53 kDa Rubisco large subunit of Chlorella sorokiniana, suggesting that selenate affects expression of the corresponding chloroplast gene as this subunit is encoded in the chloroplast DNA. Results revealed that the microalga was able to accumulate up to 140 mg·kg−1 of SeMet in 120 h of cultivation. This paper shows that Chlorella sorokiniana biomass can be enriched in the high value aminoacid SeMet in batch cultures, while keeping photochemical viability and carbon dioxide fixation activity intact, if exposed to suitable sublethal concentrations of Se. PMID:24688385

  5. Defined medium for Aquaspirillum serpens VHL effective in batch and continuous culture.

    Science.gov (United States)

    Whitby, G E; Murray, R G

    1980-01-01

    A defined medium for Aquaspirillum serpens VHL allows the replacement of the complex media now in use. It was developed by batch culture methods but supports growth in continuous culture. A basal salts medium supplemented with L-aspartic acid, L-alanine, and L-glutamic acid provided the best growth (turbidity), as long as ammonium chloride was omitted. Ammonium chloride caused either a lag or a reduction or a complete inhibition of the growth of A. serpens VHL on the above amino acids and other organic supplements depending on the combination used. Ammonium sulfate and ammonium hydroxide with L-glutamic acid allowed growth, but the lag period was increased in shake flask cultures. Vitamins, cysteine hydrochloride, and carbon dioxide had no effect on the growth rate. Viability (less than 50%) was inadequate to maintain continuous culture with L-glutamic acid as the sole source of carbon and nitrogen. Combinations of amino and carboxylic acids were then tested and, of these, L-glutamic acid (1 g/liter) and L-histidine (75 mg/liter) without ammonium chloride in the basal salts medium supported growth in batch and continuous culture. L-Glutamic acid was the limiting substrate for growth.

  6. Cell-controlled hybrid perfusion fed-batch CHO cell process provides significant productivity improvement over conventional fed-batch cultures.

    Science.gov (United States)

    Hiller, Gregory W; Ovalle, Ana Maria; Gagnon, Matthew P; Curran, Meredith L; Wang, Wenge

    2017-07-01

    A simple method originally designed to control lactate accumulation in fed-batch cultures of Chinese Hamster Ovary (CHO) cells has been modified and extended to allow cells in culture to control their own rate of perfusion to precisely deliver nutritional requirements. The method allows for very fast expansion of cells to high density while using a minimal volume of concentrated perfusion medium. When the short-duration cell-controlled perfusion is performed in the production bioreactor and is immediately followed by a conventional fed-batch culture using highly concentrated feeds, the overall productivity of the culture is approximately doubled when compared with a highly optimized state-of-the-art fed-batch process. The technology was applied with near uniform success to five CHO cell processes producing five different humanized monoclonal antibodies. The increases in productivity were due to the increases in sustained viable cell densities. Biotechnol. Bioeng. 2017;114: 1438-1447. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Production of lactic acid from cheese whey by batch and repeated batch cultures of Lactobacillus sp. RKY2.

    Science.gov (United States)

    Kim, Hyang-Ok; Wee, Young-Jung; Kim, Jin-Nam; Yun, Jong-Sun; Ryu, Hwa-Won

    2006-01-01

    The fermentative production of lactic acid from cheese whey and corn steep liquor (CSL) as cheap raw materials was investigated by using Lactobacillus sp. RKY2 in order to develop a cost-effective fermentation medium. Lactic acid yields based on consumed lactose were obtained at more than 0.98 g/g from the medium containing whey lactose. Lactic acid productivities and yields obtained from whey lactose medium were slightly higher than those obtained from pure lactose medium. The lactic acid productivity gradually decreased with increase in substrate concentration owing to substrate and product inhibitions. The fermentation efficiencies were improved by the addition of more CSL to the medium. Moreover, through the cell-recycle repeated batch fermentation, lactic acid productivity was maximized to 6.34 g/L/h, which was 6.2 times higher than that of the batch fermentation.

  8. Pseudomonas aeruginosa PAO1 Preferentially Grows as Aggregates in Liquid Batch Cultures and Disperses upon Starvation

    Science.gov (United States)

    Schleheck, David; Barraud, Nicolas; Klebensberger, Janosch; Webb, Jeremy S.; McDougald, Diane; Rice, Scott A.; Kjelleberg, Staffan

    2009-01-01

    In both natural and artificial environments, bacteria predominantly grow in biofilms, and bacteria often disperse from biofilms as freely suspended single-cells. In the present study, the formation and dispersal of planktonic cellular aggregates, or ‘suspended biofilms’, by Pseudomonas aeruginosa in liquid batch cultures were closely examined, and compared to biofilm formation on a matrix of polyester (PE) fibers as solid surface in batch cultures. Plankton samples were analyzed by laser-diffraction particle-size scanning (LDA) and microscopy of aggregates. Interestingly, LDA indicated that up to 90% of the total planktonic biomass consisted of cellular aggregates in the size range of 10–400 µm in diameter during the growth phase, as opposed to individual cells. In cultures with PE surfaces, P. aeruginosa preferred to grow in biofilms, as opposed to planktonicly. However, upon carbon, nitrogen or oxygen limitation, the planktonic aggregates and PE-attached biofilms dispersed into single cells, resulting in an increase in optical density (OD) independent of cellular growth. During growth, planktonic aggregates and PE-attached biofilms contained densely packed viable cells and extracellular DNA (eDNA), and starvation resulted in a loss of viable cells, and an increase in dead cells and eDNA. Furthermore, a release of metabolites and infective bacteriophage into the culture supernatant, and a marked decrease in intracellular concentration of the second messenger cyclic di-GMP, was observed in dispersing cultures. Thus, what traditionally has been described as planktonic, individual cell cultures of P. aeruginosa, are in fact suspended biofilms, and such aggregates have behaviors and responses (e.g. dispersal) similar to surface associated biofilms. In addition, we suggest that this planktonic biofilm model system can provide the basis for a detailed analysis of the synchronized biofilm life cycle of P. aeruginosa. PMID:19436737

  9. Batch culture of Azotobacter vinelandii under oxygen limitation conditionS

    Energy Technology Data Exchange (ETDEWEB)

    Camacho Rubio, F.; Martinez Nieto, L.; Fernandez Serrano, M.; Jimenez Moleon, M.C. [Departamento de Ingenieria Quimica, Universidad de Granada, Granada (Spain)

    1996-12-01

    The batch culture of Azotobacter vinealandii on glucose under nitrogen-fixing conditions, seeking oxygen limitation conditions, has been studied in order to use it as a Biological Test System for the experimental study of oxygen transfer enhancement methods in aerobic fermenters. overall kinetic parameters for exponential growth and for linear growth (under oxygen limitation) have been determined. It was noted an appreciable influence of the oxygen transfer rate on glucose and oxygen uptake, which seems to be due to alginate production, excreted as a nitrogenase protection mechanisms. (Author) 12 refs.

  10. Testing alternative kinetic models for utilization of crystalline cellulose (Avicel) by batch cultures of Clostridium thermocellum.

    Science.gov (United States)

    Holwerda, Evert K; Lynd, Lee R

    2013-09-01

    Descriptive kinetics of batch cellulose (Avicel) and cellobiose fermentation by Clostridium thermocellum were examined with residual substrate and biosynthate concentrations inferred based on elemental analysis. Biosynthate was formed in constant proportion to substrate consumption until substrate was exhausted for cellobiose fermentation, and until near the point of substrate exhaustion for cellulose fermentation. Cell yields (g pellet biosynthate carbon/g substrate carbon) of 0.214 and 0.200 were obtained for cellulose and cellobiose, respectively. For cellulose fermentation a sigmoidal curve fit was applied to substrate and biosynthate concentrations over time, which was then differentiated to calculate instantaneous rates of growth and substrate consumption. Three models were tested to describe the kinetics of Avicel utilization by C. thermocellum: (A) first order in cells, (B) first order in substrate, and (C) first order in cells and substrate, and second order overall. Models (A) and (B) have been proposed in the literature to describe cultures of cellulolytic microorganisms, whereas model (C) has not. Of the three models tested, model (c) provided by far the best fit to batch culture data. A second order rate constant equal to 0.735 L g C(-1)  h(-1) was found for utilization of Avicel by C. thermocellum. Adding an endogenous metabolism term improved the descriptive quality of the model as substrate exhaustion was approached. Such rate constants may in the future find utility for describing and comparing cellulose fermentation involving other microbes and other substrates. Copyright © 2013 Wiley Periodicals, Inc.

  11. Time-dependent radiation characteristics of Nannochloropsis oculata during batch culture

    International Nuclear Information System (INIS)

    Heng, Ri-Liang; Pilon, Laurent

    2014-01-01

    This paper reports the temporal evolution of the scattering and absorbing cross-sections of marine eustigmatophycease Nannochloropsis oculata grown in a flat-plate photobioreactor (PBR). The PBR was operated in batch mode under constant irradiance of 7500 or 10,000 lux provided by red LEDs emitting at 630 nm. The radiation characteristics between 400 and 750 nm and pigment concentrations of N. oculata were measured systematically every 24 h for up to 18 days. They were found to vary significantly with time in response to changes in light and nutrients availability. The results were interpreted in terms of up- and down-regulations of pigments and other intracellular components. Finally, this study demonstrates that the light transfer in the PBR could be predicted using constant radiation characteristics measured during the exponential growth phase with reasonable accuracy provided that the cultures were not nitrogen limited. During nitrogen starvation, pigment concentrations decreased and radiation characteristics evolved rapidly. These results will be useful in the design and operation of PBRs for biofuel production at both small and large scales. - Highlights: • N. oculata cultures were grown in batch mode under two different irradiances. • Temporal evolution of their absorption and scattering cross-sections was reported. • The effects of photoacclimation and nitrogen starvation were quantified. • Results were interpreted in terms of regulation of cell constituents

  12. Algae for controlled ecological life support system diet characterization of cyanobacteria 'spirulina' in batch cultures

    Science.gov (United States)

    Tadros, M. G.

    1990-01-01

    Spirulina sp. is a bioregenerative photosynthetic and edible alga for space craft crews in a Closed Ecological Life Support System (CLESS). It was characterized for growth rate and biomass yield in batch cultures, under various environmental conditions. The cell characteristics were identified for one strain of Spirulina: S. maxima. Fast growth rate and high yield were obtained. The partitioning of the assimulatory products (proteins, carbohydrates, lipids) were manipulated by varying the environmental conditions. Experiments with Spirulina demonstrated that under stress conditions carbohydrate increased at the expense of protein. In other experiments, where the growth media were sufficient in nutrients and incubated under optimum growth conditions, the total proteins were increased up to almost 70 percent of the organic weight. In other words, the nutritional quality of the alga could be manipulated by growth conditions. These results support the feasibility of considering Spirulina as a subsystem in CELSS because of the ease with which its nutrient content can be manipulated.

  13. Synchronous protein cycling in batch cultures of the yeast Saccharomyces cerevisiae at log growth phase.

    Science.gov (United States)

    Romagnoli, Gabriele; Cundari, Enrico; Negri, Rodolfo; Crescenzi, Marco; Farina, Lorenzo; Giuliani, Alessandro; Bianchi, Michele M

    2011-12-10

    The assumption that cells are temporally organized systems, i.e. showing relevant dynamics of their state variables such as gene expression or protein and metabolite concentration, while tacitly given for granted at the molecular level, is not explicitly taken into account when interpreting biological experimental data. This conundrum stems from the (undemonstrated) assumption that a cell culture, the actual object of biological experimentation, is a population of billions of independent oscillators (cells) randomly experiencing different phases of their cycles and thus not producing relevant coordinated dynamics at the population level. Moreover the fact of considering reproductive cycle as by far the most important cyclic process in a cell resulted in lower attention given to other rhythmic processes. Here we demonstrate that growing yeast cells show a very repeatable and robust cyclic variation of the concentration of proteins with different cellular functions. We also report experimental evidence that the mechanism governing this basic oscillator and the cellular entrainment is resistant to external chemical constraints. Finally, cell growth is accompanied by cyclic dynamics of medium pH. These cycles are observed in batch cultures, different from the usual continuous cultures in which yeast metabolic cycles are known to occur, and suggest the existence of basic, spontaneous, collective and synchronous behaviors of the cell population as a whole. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Cell-recycle batch process of Scheffersomyces stipitis and Saccharomyces cerevisiae co-culture for second generation bioethanol production.

    Science.gov (United States)

    Ashoor, Selim; Comitini, Francesca; Ciani, Maurizio

    2015-11-01

    To achieve an optimized co-culture ratio of Scheffersomyces stipitis and Saccharomyces cerevisiae for the production of second generation bioethanol under a cell-recycle batch process. Three Sacc. cerevisiae strains were evaluated in co-culture with Sch. stipitis CBS 5773 at different ratios using synthetic medium containing glucose and xylose. Bioreactor trials indicated that the optimal condition for ethanol production using Sacc. cerevisiae EC1118 and Sch. stipitis co-culture was 1 % of O2 concentration. To increase ethanol production with Sacc. cerevisiae/Sch. stipitis co-culture a cell-recycle batch process was evaluated. Using this process, the maximum ethanol production (9.73 g l(-1)) and ethanol yield (0.42 g g(-1)) were achieved exhibiting a tenfold increase in ethanol productivity in comparison with batch process (2.1 g l(-1) h(-1)). In these conditions a stabilization of the cells ratio Sacc. cerevisiae/Sch. stipitis (1:5) at steady state condition was obtained. Batch cells recycling fermentation is an effective process to use Sch. stipitis/Sacc. cerevisiae co-culture for second generation ethanol production.

  15. Concomitant reduction of lactate and ammonia accumulation in fed-batch cultures: Impact on glycoprotein production and quality.

    Science.gov (United States)

    Karengera, Eric; Robotham, Anna; Kelly, John; Durocher, Yves; De Crescenzo, Gregory; Henry, Olivier

    2018-01-05

    Lactate and ammonia accumulation is a major factor limiting the performance of fed-batch strategies for mammalian cell culture processes. In addition to the detrimental effects of these by-products on production yield, ammonia also contributes to recombinant glycoprotein quality deterioration. In this study, we tackled the accumulation of these two inhibiting metabolic wastes by culturing in glutamine-free fed-batch cultures an engineered HEK293 cell line displaying an improved central carbon metabolism. Batch cultures highlighted the ability of PYC2-overexpressing HEK293 cells to grow and sustain a relatively high viability in absence of glutamine without prior adaptation to the culture medium. In fed-batch cultures designed to maintain glucose at high concentration by daily feeding a glutamine-free concentrated nutrient feed, the maximum lactate and ammonia concentrations did not exceed 5 and 1 mM, respectively. In flask, this resulted in more than a 2.5-fold increase in IFNα2b titer in comparison to the control glutamine-supplied fed-batch. In bioreactor, this strategy led to similar reductions in lactate and ammonia accumulation and an increase in IFNα2b production. Of utmost importance, this strategy did not affect IFNα2b quality with respect to sialylation and glycoform distribution as confirmed by surface plasmon resonance biosensing and LC-MS, respectively. Our strategy thus offers an attractive and simple approach for the development of efficient cell culture processes for the mass production of high-quality therapeutic glycoproteins. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.

  16. A multi-pronged investigation into the effect of glucose starvation and culture duration on fed-batch CHO cell culture

    DEFF Research Database (Denmark)

    Fan, Yuzhou; Jimenez Del Val, Ioscani; Müller, Christian

    2015-01-01

    In this study, omics-based analysis tools were used to explore the effect of glucose starvation and culture duration on monoclonal antibody (mAb) production in fed-batch CHO cell culture to gain better insight into how these parameters can be controlled to ensure optimal mAb productivity and qual...

  17. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation

    DEFF Research Database (Denmark)

    Fan, Yuzhou; Jimenez Del Val, Ioscani; Müller, Christian

    2015-01-01

    Fed-batch Chinese hamster ovary (CHO) cell culture is the most commonly used process for IgG production in the biopharmaceutical industry. Amino acid and glucose consumption, cell growth, metabolism, antibody titer, and N-glycosylation patterns are always the major concerns during upstream process...

  18. Degradation of toluene and trichloroethylene by Burkholderia cepacia G4 in growth-limited fed-batch culture

    NARCIS (Netherlands)

    Mars, Astrid E.; Houwing, Joukje; Dolfing, Jan; Janssen, Dick B.

    Burkholderia (Pseudomonas) cepacia G4 was cultivated in a fed-batch bioreactor on either toluene or toluene plus trichloroethylene (TCE), The culture was allowed to reach a constant cell density under conditions in which the amount of toluene supplied equals the maintenance energy demand of the

  19. Time-dependent radiation characteristics of Nannochloropsis oculata during batch culture

    Science.gov (United States)

    Heng, Ri-Liang; Pilon, Laurent

    2014-09-01

    This paper reports the temporal evolution of the scattering and absorbing cross-sections of marine eustigmatophycease Nannochloropsis oculata grown in a flat-plate photobioreactor (PBR). The PBR was operated in batch mode under constant irradiance of 7500 or 10,000 lux provided by red LEDs emitting at 630 nm. The radiation characteristics between 400 and 750 nm and pigment concentrations of N. oculata were measured systematically every 24 h for up to 18 days. They were found to vary significantly with time in response to changes in light and nutrients availability. The results were interpreted in terms of up- and down-regulations of pigments and other intracellular components. Finally, this study demonstrates that the light transfer in the PBR could be predicted using constant radiation characteristics measured during the exponential growth phase with reasonable accuracy provided that the cultures were not nitrogen limited. During nitrogen starvation, pigment concentrations decreased and radiation characteristics evolved rapidly. These results will be useful in the design and operation of PBRs for biofuel production at both small and large scales.

  20. Factors Involved in the In Vitro Fermentability of Short Carbohydrates in Static Faecal Batch Cultures

    Directory of Open Access Journals (Sweden)

    Eva Gietl

    2012-01-01

    Full Text Available In recent years, research has focused on the positive effects of prebiotics on intestinal health and gut microbiota. The relationship between their chemical structure and their fermentation pattern by human intestinal microbiota is still not well understood. The aim of this study was to improve understanding of this relationship and identify factors that may be used to design galactooligosaccharides that reach more distal regions than commercial prebiotics which mainly target the proximal colon. The following factors were investigated: monomer type, linkage, substitution, and degree of polymerisation. Total organic acid production from sugars by faecal bacteria was fitted to a model which allowed an estimate of the time when half of the maximal organic acid concentration was reached (T50 in static faecal batch cultures. The different factors can be grouped by their effectiveness at prolonging fermentation time as follows: substitution is most effective, with methylgalactose, β-galactose-pentaacetate, D-fucose, and galactitol fermented more slowly than D-galactose. Monomers and linkage also influence fermentation time, with L rhamnose, arabinose, melezitose, and xylose being fermented significantly slower than D-glucose (P<0.05, maltose, isomaltose, cellobiose, and gentiobiose showing that Glcα1-6Glc and Glcβ1-4Glc were utilised slowest. Chain length had the smallest effect on fermentation time.

  1. Proteomic analysis of host cell protein dynamics in the supernatant of Fc-fusion protein-producing CHO DG44 and DUKX-B11 cell lines in batch and fed-batch cultures.

    Science.gov (United States)

    Park, Jin Hyoung; Jin, Jong Hwa; Ji, In Jung; An, Hyun Joo; Kim, Jong Won; Lee, Gyun Min

    2017-10-01

    Chinese hamster ovary (CHO) cells are the most widely used host cell lines for the commercial production of therapeutic proteins including Fc-fusion proteins. During the culture of recombinant CHO (rCHO) cells, host cell proteins (HCPs), secreted from viable cells and released from dead cells, accumulate extracellularly, potentially impairing product quality. In this study, the HCPs that accumulated extracellularly in batch and fed-batch cultures of Fc-fusion protein-producing rCHO cell lines (DG-Fc and DUKX-Fc) were identified and quantified using nanoflow liquid chromatography-tandem mass spectrometry (LC-MS/MS), followed by gene ontology and functional analysis. When the proteome database of Cricetulus griseus was used as a reference to identify the HCPs, more HCPs were identified for DG-Fc (1632 HCPs in batch culture and 1733 HCPs in fed-batch culture) than for DUKX-Fc (1114 HCPs in batch culture and 1002 HCPs in fed-batch culture). Clustering analysis of HCPs, which were classified into four clusters according to their concentration profiles during culture, showed that the concentration profiles of HCPs affecting the quality of Fc-fusion proteins correlated with changes in Fc-fusion protein quality. Taken together, the dataset of HCPs obtained in this study using the two different rCHO cell lines provides insights into the determination of appropriate target proteins to be removed during the culture and purification steps so as to ensure good Fc-fusion protein quality. Biotechnol. Bioeng. 2017;114: 2267-2278. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. A novel process-based model of microbial growth: self-inhibition in Saccharomyces cerevisiae aerobic fed-batch cultures.

    Science.gov (United States)

    Mazzoleni, Stefano; Landi, Carmine; Cartenì, Fabrizio; de Alteriis, Elisabetta; Giannino, Francesco; Paciello, Lucia; Parascandola, Palma

    2015-07-30

    Microbial population dynamics in bioreactors depend on both nutrients availability and changes in the growth environment. Research is still ongoing on the optimization of bioreactor yields focusing on the increase of the maximum achievable cell density. A new process-based model is proposed to describe the aerobic growth of Saccharomyces cerevisiae cultured on glucose as carbon and energy source. The model considers the main metabolic routes of glucose assimilation (fermentation to ethanol and respiration) and the occurrence of inhibition due to the accumulation of both ethanol and other self-produced toxic compounds in the medium. Model simulations reproduced data from classic and new experiments of yeast growth in batch and fed-batch cultures. Model and experimental results showed that the growth decline observed in prolonged fed-batch cultures had to be ascribed to self-produced inhibitory compounds other than ethanol. The presented results clarify the dynamics of microbial growth under different feeding conditions and highlight the relevance of the negative feedback by self-produced inhibitory compounds on the maximum cell densities achieved in a bioreactor.

  3. In vitro fermentation of carbohydrates by porcine faecal inocula and their influence on Salmonella Typhimurium growth in batch culture systems.

    Science.gov (United States)

    Martín-Peláez, Sandra; Gibson, Glenn R; Martín-Orúe, Susana M; Klinder, Annett; Rastall, Robert A; La Ragione, Roberto M; Woodward, Martin J; Costabile, Adele

    2008-12-01

    The aim of this study was to evaluate in vitro the influence of fermentable carbohydrates on the activity of porcine microbiota and survival of Salmonella Typhimurium in a batch culture system simulating the porcine hindgut. The carbohydrates tested were xylooligosaccharides, a mixture of fructooligosaccharides/inulin (FIN), fructooligosaccharides (FOS), gentiooligosaccharides (GEO) and lactulose (LAC). These ingredients stimulated the growth of selected Bifidobacterium and Lactobacillus species in pure cultures. In batch cultures, the carbohydrates influenced some fermentation parameters. For example, GEO and FIN significantly increased lactic acids compared with the control (no added carbohydrate). With the exception of LAC, the test carbohydrates increased the production of short-chain fatty acid (SCFA) and modified SCFA profiles. Quantitative analysis of bacterial populations by FISH revealed increased counts of the Bifidobacterium group compared with control and, with exception of FOS, increased Lactobacillus, Leuconostoc and Weissella spp. counts. Salmonella numbers were the lowest during the fermentation of LAC. This work has looked at carbohydrate metabolism by porcine microbiota in a pH-controlled batch fermentation system. It provides an initial model to analyse interactions with pathogens.

  4. High-cell-density fed-batch culture of Saccharomyces cerevisiae KV-25 using molasses and corn steep liquor.

    Science.gov (United States)

    Vu, Van Hanh; Kim, Keun

    2009-12-01

    High-cell-density cultivation of yeast was investigated using the agricultural waste products corn steep liquor (CSL) and molasses. The Saccharomyces cerevisiae KV-25 cell mass was significantly dependent on the ratio between C and N sources. The concentrations of molasses and CSL in the culture medium were statistically optimized at 10.25% (v/v) and 16.87% (v/v), respectively, by response surface methodology (RSM). Batch culture in a 5-l stirred tank reactor using the optimized medium resulted in a cell mass production of 36.5 g/l. In the fed-batch culture, the feed phase was preceded by a batch phase using the optimized medium, and a very high dried-cell-mass yield of 187.63 g/l was successfully attained by feeding a mixture of 20% (v/v) molasses and 80% (v/v) CSL at a rate of 22 ml/h. In this system, the production of cell mass depended mainly on the agitation speed, the composition of the feed medium, and the glucose level in the medium, but only slightly on the aeration rate.

  5. An evaluation of the accumulation of intracellular inorganic nitrogen pools by marine microalgae in batch cultures

    Directory of Open Access Journals (Sweden)

    Paris L. Lavín

    2005-06-01

    Full Text Available Methods of extraction, changes in concentrations with growth, and effects of culture conditions on intracellular inorganic nitrogen pools (IIN - ammonia, nitrite, and nitrate were studied in nine species of marine microalgae in batch cultures. The microalgae were analysed to compare three methods of extraction of IIN, one of them developed in this study. The extraction of IIN occurs efficient by with all three methods for four out of the nine species tested. However, for five species significant differences were found among the methods, the best results being obtained with the new method. Microalgae accumulate inorganic forms of nitrogen in different proportions. The species show higher concentrations of either ammonia or nitrate, and always lower concentrations of nitrite. Microalgae of smaller cellular volumes tend to attain higher values of IIN per cubic micrometer (the converse in large-volume species, with some exceptions (Amphidinium carterae and Nannochloropsis oculata. The use of aeration in the cultures determines a decrease in the concentrations of IIN, favours nitrogen assimilation, and generates an increase in growth rates and C:N ratio. High concentrations of IIN are characteristic of the exponential growth phase, but in some cases their occurrence may result from carbon deficiency.Métodos de extração, mudanças na concentração durante o crescimento e efeitos de condições de cultivo sobre conteúdos de nitrogênio inorgânico intracelular (NII - amônia, nitrito e nitrato foram estudados em nove espécies de microalgas marinhas em cultivos estanques. As microalgas foram analisadas para comparar três métodos de extração de NII, um dos quais desenvolvido neste estudo. A extração de NII ocorre de forma eficiente com os três métodos para quatro espécies. Contudo, para cinco espécies diferenças significativas foram encontradas e os melhores resultados foram obtidos com o método novo. As microalgas acumulam formas inorg

  6. A high-throughput media design approach for high performance mammalian fed-batch cultures.

    Science.gov (United States)

    Rouiller, Yolande; Périlleux, Arnaud; Collet, Natacha; Jordan, Martin; Stettler, Matthieu; Broly, Hervé

    2013-01-01

    An innovative high-throughput medium development method based on media blending was successfully used to improve the performance of a Chinese hamster ovary fed-batch medium in shaking 96-deepwell plates. Starting from a proprietary chemically-defined medium, 16 formulations testing 43 of 47 components at 3 different levels were designed. Media blending was performed following a custom-made mixture design of experiments considering binary blends, resulting in 376 different blends that were tested during both cell expansion and fed-batch production phases in one single experiment. Three approaches were chosen to provide the best output of the large amount of data obtained. A simple ranking of conditions was first used as a quick approach to select new formulations with promising features. Then, prediction of the best mixes was done to maximize both growth and titer using the Design Expert software. Finally, a multivariate analysis enabled identification of individual potential critical components for further optimization. Applying this high-throughput method on a fed-batch, rather than on a simple batch, process opens new perspectives for medium and feed development that enables identification of an optimized process in a short time frame.

  7. Modeling kinetics of a large-scale fed-batch CHO cell culture by Markov chain Monte Carlo method.

    Science.gov (United States)

    Xing, Zizhuo; Bishop, Nikki; Leister, Kirk; Li, Zheng Jian

    2010-01-01

    Markov chain Monte Carlo (MCMC) method was applied to model kinetics of a fed-batch Chinese hamster ovary cell culture process in 5,000-L bioreactors. The kinetic model consists of six differential equations, which describe dynamics of viable cell density and concentrations of glucose, glutamine, ammonia, lactate, and the antibody fusion protein B1 (B1). The kinetic model has 18 parameters, six of which were calculated from the cell culture data, whereas the other 12 were estimated from a training data set that comprised of seven cell culture runs using a MCMC method. The model was confirmed in two validation data sets that represented a perturbation of the cell culture condition. The agreement between the predicted and measured values of both validation data sets may indicate high reliability of the model estimates. The kinetic model uniquely incorporated the ammonia removal and the exponential function of B1 protein concentration. The model indicated that ammonia and lactate play critical roles in cell growth and that low concentrations of glucose (0.17 mM) and glutamine (0.09 mM) in the cell culture medium may help reduce ammonia and lactate production. The model demonstrated that 83% of the glucose consumed was used for cell maintenance during the late phase of the cell cultures, whereas the maintenance coefficient for glutamine was negligible. Finally, the kinetic model suggests that it is critical for B1 production to sustain a high number of viable cells. The MCMC methodology may be a useful tool for modeling kinetics of a fed-batch mammalian cell culture process.

  8. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation.

    Science.gov (United States)

    Fan, Yuzhou; Jimenez Del Val, Ioscani; Müller, Christian; Wagtberg Sen, Jette; Rasmussen, Søren Kofoed; Kontoravdi, Cleo; Weilguny, Dietmar; Andersen, Mikael Rørdam

    2015-03-01

    Fed-batch Chinese hamster ovary (CHO) cell culture is the most commonly used process for IgG production in the biopharmaceutical industry. Amino acid and glucose consumption, cell growth, metabolism, antibody titer, and N-glycosylation patterns are always the major concerns during upstream process optimization, especially media optimization. Gaining knowledge on their interrelations could provide insight for obtaining higher immunoglobulin G (IgG) titer and better controlling glycosylation-related product quality. In this work, different fed-batch processes with two chemically defined proprietary media and feeds were studied using two IgG-producing cell lines. Our results indicate that the balance of glucose and amino acid concentration in the culture is important for cell growth, IgG titer and N-glycosylation. Accordingly, the ideal fate of glucose and amino acids in the culture could be mainly towards energy and recombinant product, respectively. Accumulation of by-products such as NH4(+) and lactate as a consequence of unbalanced nutrient supply to cell activities inhibits cell growth. The levels of Leu and Arg in the culture, which relate to cell growth and IgG productivity, need to be well controlled. Amino acids with the highest consumption rates correlate with the most abundant amino acids present in the produced IgG, and thus require sufficient availability during culture. Case-by-case analysis is necessary for understanding the effect of media and process optimization on glycosylation. We found that in certain cases the presence of Man5 glycan can be linked to limitation of UDP-GlcNAc biosynthesis as a result of insufficient extracellular Gln. However, under different culture conditions, high Man5 levels can also result from low α-1,3-mannosyl-glycoprotein 2-β-N-acetylglucosaminyltransferase (GnTI) and UDP-GlcNAc transporter activities, which may be attributed to high level of NH4+ in the cell culture. Furthermore, galactosylation of the mAb Fc glycans

  9. Benzoate-induced stress enhances xylitol yield in aerobic fed-batch culture of Candida mogii TISTR 5892.

    Science.gov (United States)

    Wannawilai, Siwaporn; Sirisansaneeyakul, Sarote; Chisti, Yusuf

    2015-01-20

    Production of the natural sweetener xylitol from xylose via the yeast Candida mogii TISTR 5892 was compared with and without the growth inhibitor sodium benzoate in the culture medium. Sodium benzoate proved to be an uncompetitive inhibitor in relatively poorly oxygenated shake flask aerobic cultures. In a better controlled aerobic environment of a bioreactor, the role of sodium benzoate could equally well be described as competitive, uncompetitive or noncompetitive inhibitor of growth. In intermittent fed-batch fermentations under highly aerobic conditions, the presence of sodium benzoate at 0.15gL(-1) clearly enhanced the xylitol titer relative to the control culture without the sodium benzoate. The final xylitol concentration and the average xylitol yield on xylose were nearly 50gL(-1) and 0.57gg(-1), respectively, in the presence of sodium benzoate. Both these values were substantially higher than reported for the same fermentation under microaerobic conditions. Therefore, a fed-batch aerobic fermentation in the presence of sodium benzoate is promising for xylitol production using C. mogii. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Changes of in vivo fluxes through central metabolic pathways during the production of nystatin by Streptomyces noursei in batch culture

    DEFF Research Database (Denmark)

    Jonsbu, E.; Christensen, Bjarke; Nielsen, Jens

    2001-01-01

    of the amino acids and calculated fluxes of the central metabolism showed that changes in the primary and secondary metabolisms occurred simultaneously. Changes in the profiles for the integrated fluxes showed a decreased flux through the pentose phosphate pathway and an increased flux in the tricarboxylic...... acid cycle relative to the glucose uptake rate when the culture entered a phase with reduced specific growth rate and enhanced nystatin yield. The flux through the pentose phosphate pathway seemed to be adjusted according to the NADPH requirement during the different phases of the batch fermentation....

  11. Continuous and batch cultures of Escherichia coli KJ134 for succinic acid fermentation: metabolic flux distributions and production characteristics.

    Science.gov (United States)

    van Heerden, Carel D; Nicol, Willie

    2013-09-17

    Succinic acid (SA) has become a prominent biobased platform chemical with global production quantities increasing annually. Numerous genetically modified E. coli strains have been developed with the main aim of increasing the SA yield of the organic carbon source. In this study, a promising SA-producing strain, E. coli KJ134 [Biotechnol. Bioeng. 101:881-893, 2008], from the Department of Microbiology and Cell Science of the University of Florida was evaluated under continuous and batch conditions using D-glucose and CO2 in a mineral salt medium. Production characteristics entailing growth and maintenance rates, growth termination points and metabolic flux distributions under growth and non-growth conditions were determined. The culture remained stable for weeks under continuous conditions. Under growth conditions the redox requirements of the reductive tricarboxylic acid (TCA) cycle was solely balanced by acetic acid (AcA) production via the pyruvate dehydrogenase route resulting in a molar ratio of SA:AcA of two. A maximum growth rate of 0.22 h(-1) was obtained, while complete growth inhibition occurred at a SA concentration of 18 g L(-1). Batch culture revealed that high-yield succinate production (via oxidative TCA or glyoxylate redox balancing) occurred under non-growth conditions where a SA:AcA molar ratio of up to five was attained, with a final SA yield of 0.94 g g(-1). Growth termination of the batch culture was in agreement with that of the continuous culture. The maximum maintenance production rate of SA under batch conditions was found to be 0.6 g g(-1) h(-1). This is twice the maintenance rate observed in the continuous runs. The study revealed that the metabolic flux of E. coli KJ134 differs significantly for growth and non-growth conditions, with non-growth conditions resulting in higher SA:AcA ratios and SA yields. Bioreaction characteristics entailing growth and maintenance rates, as well as growth termination markers will guide future fermentor

  12. The effect of rhizosphere on growth of Sphingomonas chlorophenolica ATCC 39723 during pentachlorophenol (PCP biodegradation in batch culture and soil

    Directory of Open Access Journals (Sweden)

    Ken Killhan

    2006-12-01

    Full Text Available Studies on the influence of the rhizosphere on the growth of Sphingomonas chlorophenolica during Pentacholophenol (PCP degradation in batch culture and in soil were carried out. In batch culture, a basal minimal medium with or without rhizosphere exudates extracted from winter wheat was used. In soil systems, degradation experiments were performed in the presence and absence of plants. Measurements of PCP concentrations were made using high performance liquid chromatography analysis (HPLC. Bacterial analyses of S. chlorophenolica were carried out by plating on MSM medium. The results showed that the rhizosphere exudates stimulated the growth of the cells of S. chlorophenolica at concentrations of 50 and 80mg kg dry wt soil –1 as well as stimulating the ability of S. chlorophenolica to degrade PCP at a concentration of 80mg Kg dry wt soil -1. In addition, pentachlorophenol had an adverse effect on the growth of S. chlorophenolica. The introduction of S.chlorophenolica into the loamy soil with plants showed a faster degradation when compared to the inoculated soil without plants. There was a significant increase of S. chlorophenolica in the roots in comparison to those in the soil. This study showed that the presence of the inoculum S. chlorophenolica enhanced the PCP degradation in a loamy soil and it indicates the potential for a treatment process under a appropriate environmental conditions such as there present in soil systems.

  13. In Vitro Growth of Curcuma longa L. in Response to Five Mineral Elements and Plant Density in Fed-Batch Culture Systems

    Science.gov (United States)

    El-Hawaz, Rabia F.; Bridges, William C.; Adelberg, Jeffrey W.

    2015-01-01

    Plant density was varied with P, Ca, Mg, and KNO3 in a multifactor experiment to improve Curcuma longa L. micropropagation, biomass and microrhizome development in fed-batch liquid culture. The experiment had two paired D-optimal designs, testing sucrose fed-batch and nutrient sucrose fed-batch techniques. When sucrose became depleted, volume was restored to 5% m/v sucrose in 200 ml of modified liquid MS medium by adding sucrose solutions. Similarly, nutrient sucrose fed-batch was restored to set points with double concentration of treatments’ macronutrient and MS micronutrient solutions, along with sucrose solutions. Changes in the amounts of water and sucrose supplementations were driven by the interaction of P and KNO3 concentrations. Increasing P from 1.25 to 6.25 mM increased both multiplication and biomass. The multiplication ratio was greatest in the nutrient sucrose fed-batch technique with the highest level of P, 6 buds/vessel, and the lowest level of Ca and KNO3. The highest density (18 buds/vessel) produced the highest fresh biomass at the highest concentrations of KNO3 and P with nutrient sucrose fed-batch, and moderate Ca and Mg concentrations. However, maximal rhizome dry biomass required highest P, sucrose fed-batch, and a moderate plant density. Different media formulations and fed-batch techniques were identified to maximize the propagation and storage organ responses. A single experimental design was used to optimize these dual purposes. PMID:25830292

  14. In vitro growth of Curcuma longa L. in response to five mineral elements and plant density in fed-batch culture systems.

    Science.gov (United States)

    El-Hawaz, Rabia F; Bridges, William C; Adelberg, Jeffrey W

    2015-01-01

    Plant density was varied with P, Ca, Mg, and KNO3 in a multifactor experiment to improve Curcuma longa L. micropropagation, biomass and microrhizome development in fed-batch liquid culture. The experiment had two paired D-optimal designs, testing sucrose fed-batch and nutrient sucrose fed-batch techniques. When sucrose became depleted, volume was restored to 5% m/v sucrose in 200 ml of modified liquid MS medium by adding sucrose solutions. Similarly, nutrient sucrose fed-batch was restored to set points with double concentration of treatments' macronutrient and MS micronutrient solutions, along with sucrose solutions. Changes in the amounts of water and sucrose supplementations were driven by the interaction of P and KNO3 concentrations. Increasing P from 1.25 to 6.25 mM increased both multiplication and biomass. The multiplication ratio was greatest in the nutrient sucrose fed-batch technique with the highest level of P, 6 buds/vessel, and the lowest level of Ca and KNO3. The highest density (18 buds/vessel) produced the highest fresh biomass at the highest concentrations of KNO3 and P with nutrient sucrose fed-batch, and moderate Ca and Mg concentrations. However, maximal rhizome dry biomass required highest P, sucrose fed-batch, and a moderate plant density. Different media formulations and fed-batch techniques were identified to maximize the propagation and storage organ responses. A single experimental design was used to optimize these dual purposes.

  15. Kinetics of sugars consumption and ethanol inhibition in carob pulp fermentation by Saccharomyces cerevisiae in batch and fed-batch cultures.

    Science.gov (United States)

    Lima-Costa, Maria Emília; Tavares, Catarina; Raposo, Sara; Rodrigues, Brígida; Peinado, José M

    2012-05-01

    The waste materials from the carob processing industry are a potential resource for second-generation bioethanol production. These by-products are small carob kibbles with a high content of soluble sugars (45-50%). Batch and fed-batch Saccharomyces cerevisiae fermentations of high density sugar from carob pods were analyzed in terms of the kinetics of sugars consumption and ethanol inhibition. In all the batch runs, 90-95% of the total sugar was consumed and transformed into ethanol with a yield close to the theoretical maximum (0.47-0.50 g/g), and a final ethanol concentration of 100-110 g/l. In fed-batch runs, fresh carob extract was added when glucose had been consumed. This addition and the subsequent decrease of ethanol concentrations by dilution increased the final ethanol production up to 130 g/l. It seems that invertase activity and yeast tolerance to ethanol are the main factors to be controlled in carob fermentations. The efficiency of highly concentrated carob fermentation makes it a very promising process for use in a second-generation ethanol biorefinery.

  16. Simulation and prediction of protein production in fed-batch E. coli cultures: An engineering approach.

    Science.gov (United States)

    Calleja, Daniel; Kavanagh, John; de Mas, Carles; López-Santín, Josep

    2016-04-01

    An overall model describing the dynamic behavior of fed-batch E. coli processes for protein production has been built, calibrated and validated. Using a macroscopic approach, the model consists of three interconnected blocks allowing simulation of biomass, inducer and protein concentration profiles with time. The model incorporates calculation of the extra and intracellular inducer concentration, as well as repressor-inducer dynamics leading to a successful prediction of the product concentration. The parameters of the model were estimated using experimental data of a rhamnulose-1-phosphate aldolase-producer strain, grown under a wide range of experimental conditions. After validation, the model has successfully predicted the behavior of different strains producing two different proteins: fructose-6-phosphate aldolase and ω-transaminase. In summary, the presented approach represents a powerful tool for E. coli production process simulation and control. © 2015 Wiley Periodicals, Inc.

  17. Short communication: A nanoemulsified form of oil blends positively affects the fatty acid proportion in ruminal batch cultures.

    Science.gov (United States)

    El-Sherbiny, M; Cieslak, A; Pers-Kamczyc, E; Szczechowiak, J; Kowalczyk, D; Szumacher-Strabel, M

    2016-01-01

    Two consecutive rumen batch cultures were used to study the effect of nanoemulsified oils as a new type of supplement, on the in vitro fatty acid proportion and vaccenic acid formation. Three levels (3, 5, and 7%) of 2 different oil blends [soybean:fish oil (SF) or rapeseed-fish oil (RF)] were used. Both oil blends were used either in the raw form (SF or RF, respectively) or in the nanoemulsified form (NSF or NRF, respectively). The diets were the control (0%), which consisted of a dry total mixed ration without any supplements, the control plus 3, 5, or 7% of the SF or RF oil blend in appropriate form (raw or nanoemulsified). For each treatment, 6 incubation vessels were used. Each batch culture was incubated for 24h and conducted twice in 2 consecutive days. All supplements were calculated as a percentage of the substrate dry matter (400mg). Nanoemulsified supplements were recalculated to make sure the oil amount was equal to the raw oil supplementation levels. The results from both experiments indicated that the proportions of vaccenic acid and cis-9,trans-11 C18:2 increased when a raw oil blend was supplemented; on the other hand, no influence of nanoemulsified form of oil blend was observed on the proportion cis-9,trans-11 C18:2. Generally, supplementation with the nanoemulsified oil blends had less effect on biohydrogenation intermediates than the raw form of oil blends. However, the nanoemulsified form had a greater effect on the increase of n-3 and n-6 fatty acids. Nanoemulsified oil blends had a positive effect on decreasing the transformation rate of polyunsaturated fatty acids to saturated fatty acids in the biohydrogenation environment. Supplements of nanoemulsified oil blends tended to be more effective than supplements of raw oils in preserving a greater proportion of polyunsaturated fatty acids in the fermentation culture. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Development of a chemically defined platform fed-batch culture media for monoclonal antibody-producing CHO cell lines with optimized choline content.

    Science.gov (United States)

    Kuwae, Shinobu; Miyakawa, Ichiko; Doi, Tomohiro

    2018-01-11

    A chemically defined platform basal medium and feed media were developed using a single Chinese hamster ovary (CHO) cell line that produces a monoclonal antibody (mAb). Cell line A, which showed a peak viable cell density of 5.9 × 10 6  cells/mL and a final mAb titer of 0.5 g/L in batch culture, was selected for the platform media development. Stoichiometrically balanced feed media were developed using glucose as an indicator of cell metabolism to determine the feed rates of all other nutrients. A fed-batch culture of cell line A using the platform fed-batch medium yielded a 6.4 g/L mAb titer, which was 12-fold higher than that of the batch culture. To examine the applicability of the platform basal medium and feed media, three other cell lines (A16, B, and C) that produce mAbs were cultured using the platform fed-batch medium, and they yielded mAb titers of 8.4, 3.3, and 6.2 g/L, respectively. The peak viable cell densities of the three cell lines ranged from 1.3 × 10 7 to 1.8 × 10 7  cells/mL. These results show that the nutritionally balanced fed-batch medium and feeds worked well for other cell lines. During the medium development, we found that choline limitation caused a lower cell viability, a lower mAb titer, a higher mAb aggregate content, and a higher mannose-5 content. The optimal choline chloride to glucose ratio for the CHO cell fed-batch culture was determined. Our platform basal medium and feed media will shorten the medium-development time for mAb-producing cell lines.

  19. Production of Medium Chain Length Polyhydroxyalkanoates From Oleic Acid Using Pseudomonas putida PGA1 by Fed Batch Culture

    Directory of Open Access Journals (Sweden)

    Sidik Marsudi

    2010-10-01

    Full Text Available Bacterial polyhydroxyalkanoates (PHAs are a class of p0lymers currently receiving much attention because of their potential as renewable and biodegradable plastics. A wide variety of bacteria has been reported to produce PHAs including Pseudomonas strains. These strains are known as versatile medium chain length PHAs (PHAs-mcl producers using fatty acids as carbon source. Oleic acid was used to produce PHAs-mcl using Pseudomonas putida PGA 1 by continuous feeding of both nitrogen and carbon source, in a fed batch culture. During cell growth, PHAs also accumulated, indicating that PHA production in this organism is growth associated. Residual cell increased until the nitrogen source was depleted. At the end of fermentation, final cell concentration, PHA content, and roductivity were 30.2 g/L, 44.8 % of cell dry weight, and 0.188 g/l/h, respectively.

  20. Fermentative hydrogen yields from different sugars by batch cultures of metabolically engineered Escherichia coli DJT135

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Dipankar; Hallenbeck, Patrick C. [Departement de Microbiologie et Immunologie, Universite de Montreal, CP 6128 succursale Centre-ville, Montreal, Quebec H3C 3J7 (Canada)

    2009-10-15

    Future sustainable production of biofuels will depend upon the ability to use complex substrates present in biomass if the use of simple sugars derived from food crops is to be avoided. Therefore, organisms capable of using a variety of fermentable carbon sources must be found or developed for processes that could produce hydrogen via fermentation. Here we have examined the ability of a metabolically engineered strain of Escherichia coli, DJT135, to produce hydrogen from glucose as well as various other carbon sources, including pentoses. The effects of pH, temperature and carbon source were investigated in batch experiments. Maximal hydrogen production from glucose was obtained at an initial pH of 6.5 and temperature of 35 C. Kinetic growth studies showed that the {mu}max was 0.0495 h{sup -1} with a Ks of 0.0274 g L{sup -1} when glucose was the sole carbon source in M9 (1X) minimal medium. Among the many sugar and sugar derivatives tested, hydrogen yields were highest with fructose, sorbitol and D-glucose; 1.27, 1.46 and 1.51 mol H{sub 2} mol{sup -1} substrate respectively. (author)

  1. Enhancement of fermentative hydrogen production in an extreme-thermophilic (70°C) mixed-culture environment by repeated batch cultivation.

    Science.gov (United States)

    Lu, Wenjing; Fan, Gaoyuan; Zhao, Chenxi; Wang, Hongtao; Chi, Zifang

    2012-05-01

    Repeated batch cultivation was applied to enrich hydrogen fermentative microflora under extreme-thermophilic (70°C) environment. Initial inoculums received from a hydrogen producing reactor fed with organic fraction of household solid wastes. In total seven transfers was conducted and maximum hydrogen yield reached 296 ml H(2)/g (2.38 mol/mol) glucose and 252 ml H(2)/g (2.03 mol/mol) for 1 and 2 g/l glucose medium, respectively. It was found that hydrogen production was firstly decreased and got increased gradually from third generation. Acetate was found to be the main metabolic by-product in all batch cultivation. Furthermore, the diversity of bacterial community got decreased after repeated batch cultivation. It was proved that repeated batch cultivation was a good method to enhance the hydrogen production by enriching the mixed cultures of dominant species.

  2. O2 evolution and cyclic electron flow around photosystem I in long-term ground batch culture of Euglena gracilis

    Science.gov (United States)

    An, Yanjun; Wang, Suqin; Hao, Zongjie; Zhou, Yiyong; Liu, Yongding

    2014-12-01

    Based on the purpose of better exploring the function of green producers in the closed aquatic biological life support system, the condition of dynamic O2 evolution and performance of cyclic electron flow around photosystem I (CEF-PSI) in long-term ground batch culture of Euglena gracilis were studied, the relationship between linear electron flow (LEF) and CEF-PSI was revealed, the function of CEF-PSI was investigated. Excellent consistency in O2 evolution pattern was observed in cultures grown in both closed and open containers, O2 evolution was strictly suppressed in phase 1, but the rate of it increased significantly in phase 2. CEF-PSI was proposed to be active during the whole course of cultivation, even in the declining phase 3, it still operated at the extent of 47-55%. It is suggested that the relationship between LEF and CEF-PSI is not only competition but also reciprocity. CEF-PSI was proposed to contribute to the considerable growth in phase 1; it was also suggested to play an important protective role against photosystem II (PSII) photoinhibition at the greatly enhanced level (approximately 80-95%) on the 2nd day. Our results in this research suggest that E. gracilis had very particular photosynthetic characteristics, the strict O2 evolution suppression in the initial culture phase might be a special light acclimation behavior, and CEF-PSI could be an important mechanism involved in this kind of adaptation to the changeable light environment.

  3. LIPID PRODUCTION BY DUNALIELLA SALINA IN BATCH CULTURE: EFFECTS OF NITROGEN LIMITATION AND LIGHT INTENSITY

    Energy Technology Data Exchange (ETDEWEB)

    Weldy, C.S.; Huesemann, M.

    2007-01-01

    Atmospheric carbon dioxide (CO2) concentrations are increasing and may cause unknown deleterious environmental effects if left unchecked. The Intergovernmental Panel on Climate Change (IPCC) has predicted in its latest report a 2°C to 4°C increase in global temperatures even with the strictest CO2 mitigation practices. Global warming can be attributed in large part to the burning of carbon-based fossil fuels, as the concentration of atmospheric CO2 is directly related to the burning of fossil fuels. Biofuels which do not add CO2 to the atmosphere are presently generated primarily from terrestrial plants, i.e., ethanol from corn grain and biodiesel from soybean oil. The production of biofuels from terrestrial plants is severely limited by the availability of fertile land. Lipid production from microalgae and its corresponding biodiesel production have been studied since the late 1970s but large scale production has remained economically infeasible due to the large costs of sterile growing conditions required for many algal species. This study focuses on the potential of the halophilic microalgae species Dunaliella salina as a source of lipids and subsequent biodiesel production. The lipid production rates under high light and low light as well as nitrogen suffi cient and nitrogen defi cient culture conditions were compared for D. salina cultured in replicate photobioreactors. The results show (a) cellular lipid content ranging from 16 to 44% (wt), (b) a maximum culture lipid concentration of 450mg lipid/L, and (c) a maximum integrated lipid production rate of 46mg lipid/L culture*day. The high amount of lipids produced suggests that D. salina, which can be mass-cultured in non-sterile outdoor ponds, has strong potential to be an economically valuable source for renewable oil and biodiesel production.

  4. ON-LINE MONITORING OF BIOMASS CONCENTRATION BASED ON A CAPACITANCE SENSOR: ASSESSING THE METHODOLOGY FOR DIFFERENT BACTERIA AND YEAST HIGH CELL DENSITY FED-BATCH CULTURES

    Directory of Open Access Journals (Sweden)

    A. C. L. Horta

    2015-12-01

    Full Text Available Abstract The performance of an in-situ capacitance sensor for on-line monitoring of biomass concentration was evaluated for some of the most important microorganisms in the biotechnology industry: Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris and Bacillus megaterium. A total of 33 batch and fed-batch cultures were carried out in a bench-scale bioreactor and biomass formation trends were followed by dielectric measurements during the growth phase as well as the induction phase, for 5 recombinant E. coli strains. Permittivity measurements and viable cellular concentrations presented a linear correlation for all the studied conditions. In addition, the permittivity signal was further used for inference of the cellular growth rate. The estimated specific growth rates mirrored the main trends of the metabolic states of the different cells and they can be further used for setting-up control strategies in fed-batch cultures.

  5. Evidencing the role of lactose permease in IPTG uptake by Escherichia coli in fed-batch high cell density cultures.

    Science.gov (United States)

    Fernández-Castané, Alfred; Vine, Claire E; Caminal, Glòria; López-Santín, Josep

    2012-02-10

    The lac-operon and its components have been studied for decades and it is widely used as one of the common systems for recombinant protein production in Escherichia coli. However, the role of the lactose permease, encoded by the lacY gene, when using the gratuitous inducer IPTG for the overexpression of heterologous proteins, is still a matter of discussion. A lactose permease deficient strain was successfully constructed. Growing profiles and acetate production were compared with its parent strain at shake flask scale. Our results show that the lac-permease deficient strain grows slower than the parent in defined medium at shake flask scale, probably due to a downregulation of the phosphotransferase system (PTS). The distributions of IPTG in the medium and inside the cells, as well as recombinant protein production were measured by HPLC-MS and compared in substrate limiting fed-batch fermentations at different inducer concentrations. For the mutant strain, IPTG concentration in the medium depletes slower, reaching at the end of the culture higher concentration values compared with the parent strain. Final intracellular and medium concentrations of IPTG were similar for the mutant strain, while higher intracellular concentrations than in medium were found for the parent strain. Comparison of the distribution profiles of IPTG of both strains in fed-batch fermentations showed that lac-permease is crucially involved in IPTG uptake. In the absence of the transporter, apparently IPTG only diffuses, while in the presence of lac-permease, the inducer accumulates in the cytoplasm at higher rates emphasizing the significant contribution of the permease-mediated transport. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Enhancement of extracellular lipid production by oleaginous yeast through preculture and sequencing batch culture strategy with acetic acid.

    Science.gov (United States)

    Huang, Xiang-Feng; Shen, Yi; Luo, Hui-Juan; Liu, Jia-Nan; Liu, Jia

    2018-01-01

    Oleaginous yeast Cryptococcus curvatus MUCL 29819, an acid-tolerant lipid producer, was tested to spill lipids extracellularly using different concentrations of acetic acid as carbon source. Extracellular lipids were released when the yeast was cultured with acetic acid exceeding 20g/L. The highest production of lipid (5.01g/L) was obtained when the yeast was cultured with 40g/L acetic acid. When the yeast was cultivated with moderate concentration (20g/L) of acetic acid, lipid production was further increased by 49.6% through preculture with 40g/L acetic acid as stimulant. When applying high concentration (40g/L) of acetic acid as carbon source in sequencing batch cultivation, extracellular lipids accounted up to 50.5% in the last cycle and the extracellular lipids reached 5.43g/L through the whole process. This study provides an effective strategy to enhance extracellular lipid production and facilitate the recovery of microbial lipids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. CHANGES IN CHLOROPHYLL A FLOURESCENCE AND PIGMENT RATIOS DURING DIFFERENT GROWTH PHASES OF A UNICELLULAR MARINE CHAETOCEROS (BACILLAROPHYCEAE) IN BATCH CULTURE

    Science.gov (United States)

    Interpretations of chlorophyll a fluorescence data are based largely on application with green algae and higher plants. This study evaluated the interpretation of fluorescence data for a unicellular marine diatom. Chaetoceros sp. was grown in 4-liter batch cultures on a 16:8, L:D...

  8. Production of functional killer protein in batch cultures upon a shift from aerobic to anaerobic conditions

    Directory of Open Access Journals (Sweden)

    Gildo Almeida da Silva

    2011-06-01

    Full Text Available The aim of this work was to study the production of functional protein in yeast culture. The cells of Saccharomyces cerevisiae Embrapa 1B (K+R+ killed a strain of Saccharomyces cerevisiae Embrapa 26B (K-R-in grape must and YEPD media. The lethal effect of toxin-containing supernatant and the effect of aeration upon functional killer production and the correlation between the products of anaerobic metabolism and the functional toxin formation were evaluated. The results showed that at low sugar concentration, the toxin of the killer strain of Sacch. cerevisiae was only produced under anaerobic conditions . The system of killer protein production showed to be regulated by Pasteur and Crabtree effects. As soon as the ethanol was formed, the functional killer toxin was produced. The synthesis of the active killer toxin seemed to be somewhat associated with the switch to fermentation process and with concomitant alcohol dehydrogenase (ADH activity.

  9. Genetic Algorithmic Optimization of PHB Production by a Mixed Culture in an Optimally Dispersed Fed-batch Bioreactor

    Directory of Open Access Journals (Sweden)

    Pratap R. Patnaik

    2009-10-01

    Full Text Available Poly-β-hydroxybutyrate (PHB is an energy-storage polymer whose properties are similar to those of chemical polymers such as polyethylene and polypropylene. Moreover, PHB is biodegradable, absorbed by human tissues and less energy-consuming than synthetic polymers. Although Ralstonia eutropha is widely used to synthesize PHB, it is inefficient in utilizing glucose and similar sugars. Therefore a co-culture of R. eutropha and Lactobacillus delbrueckii is preferred since the latter can convert glucose to lactate, which R. eutropha can metabolize easily. Tohyama et al. [24] maximized PHB production in a well-mixed fed-batch bioreactor with glucose and (NH42SO4 as the primary substrates. Since production-scale bioreactors often deviate from ideal laboratory-scale reactors, a large bioreactor was simulated by means of a dispersion model with the kinetics determined by Tohyama et al. [24] and dispersion set at an optimum Peclet number of 20 [32]. The time-dependent feed rates of the two substrates were determined through a genetic algorithm (GA to maximize PHB production. This bioreactor produced 22.2% more PHB per liter and 12.8% more cell mass than achieved by Tohyama et al. [24]. These results, and similar observations with other fermentations, indicate the feasibility of enhancing the efficiency of large nonideal bioreactors through GA optimizations.

  10. Calcium transcriptionally regulates the biofilm machinery of Xylella fastidiosa to promote continued biofilm development in batch cultures.

    Science.gov (United States)

    Parker, Jennifer K; Chen, Hongyu; McCarty, Sara E; Liu, Lawrence Y; De La Fuente, Leonardo

    2016-05-01

    The functions of calcium (Ca) in bacteria are less characterized than in eukaryotes, where its role has been studied extensively. The plant-pathogenic bacterium Xylella fastidiosa has several virulence features that are enhanced by increased Ca concentrations, including biofilm formation. However, the specific mechanisms driving modulation of this feature are unclear. Characterization of biofilm formation over time showed that 4 mM Ca supplementation produced denser biofilms that were still developing at 96 h, while biofilm in non-supplemented media had reached the dispersal stage by 72 h. To identify changes in global gene expression in X. fastidiosa grown in supplemental Ca, RNA-Seq of batch culture biofilm cells was conducted at three 24-h time intervals. Results indicate that a variety of genes are differentially expressed in response to Ca, including genes related to attachment, motility, exopolysaccharide synthesis, biofilm formation, peptidoglycan synthesis, regulatory functions, iron homeostasis, and phages. Collectively, results demonstrate that Ca supplementation induces a transcriptional response that promotes continued biofilm development, while biofilm cells in nonsupplemented media are driven towards dispersion of cells from the biofilm structure. These results have important implications for disease progression in planta, where xylem sap is the source of Ca and other nutrients for X. fastidiosa. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. Fuzzy control of ethanol concentration its application to maximum glutathione production in yeast fed-batch culture.

    Science.gov (United States)

    Alfafara, C G; Miura, K; Shimizu, H; Shioya, S; Suga, K; Suzuki, K

    1993-02-20

    A fuzzy logic controller (FLC) for the control of ethanol concentration was developed and utilized to realize the maximum production of glutathione (GSH) in yeast fedbatch culture. A conventional fuzzy controller, which uses the control error and its rate of change in the premise part of the linguistic rules, worked well when the initial error of ethanol concentration was small. However, when the initial error was large, controller overreaction resulted in an overshoot.An improved fuzzy controller was obtained to avoid controller overreaction by diagnostic determination of "glucose emergency states" (i.e., glucose accumulation or deficiency), and then appropriate emergency control action was obtained by the use of weight coefficients and modification of linguistic rules to decrease the overreaction of the controller when the fermentation was in the emergency state. The improved fuzzy controller was able to control a constant ethanol concentration under conditions of large initial error.The improved fuzzy control system was used in the GSH production phase of the optimal operation to indirectly control the specific growth rate mu to its critical value micro(c). In the GSH production phase of the fed-batch culture, the optimal solution was to control micro to micro(c) in order to maintain a maximum specific GSH production rate. The value of micro(c) also coincided with the critical specific growth rate at which no ethanol formation occurs. Therefore, the control of micro to micro(c) could be done indirectly by maintaining a constant ethanol concentration, that is, zero net ethanol formation, through proper manipulation of the glucose feed rate. Maximum production of GSH was realized using the developed FLC; maximum production was a consequence of the substrate feeding strategy and cysteine addition, and the FLC was a simple way to realize the strategy.

  12. Impact of dilution on microbial community structure and functional potential: comparison of numerical simulations and batch culture experiments

    Science.gov (United States)

    Franklin, R. B.; Garland, J. L.; Bolster, C. H.; Mills, A. L.

    2001-01-01

    A series of microcosm experiments was performed using serial dilutions of a sewage microbial community to inoculate a set of batch cultures in sterile sewage. After inoculation, the dilution-defined communities were allowed to regrow for several days and a number of community attributes were measured in the regrown assemblages. Based upon a set of numerical simulations, community structure was expected to differ along the dilution gradient; the greatest differences in structure were anticipated between the undiluted-low-dilution communities and the communities regrown from the very dilute (more than 10(-4)) inocula. Furthermore, some differences were expected among the lower-dilution treatments (e.g., between undiluted and 10(-1)) depending upon the evenness of the original community. In general, each of the procedures used to examine the experimental community structures separated the communities into at least two, often three, distinct groups. The groupings were consistent with the simulated dilution of a mixture of organisms with a very uneven distribution. Significant differences in community structure were detected with genetic (amplified fragment length polymorphism and terminal restriction fragment length polymorphism), physiological (community level physiological profiling), and culture-based (colony morphology on R2A agar) measurements. Along with differences in community structure, differences in community size (acridine orange direct counting), composition (ratio of sewage medium counts to R2A counts, monitoring of each colony morphology across the treatments), and metabolic redundancy (i.e., generalist versus specialist) were also observed, suggesting that the differences in structure and diversity of communities maintained in the same environment can be manifested as differences in community organization and function.

  13. Metabolic Control in Mammalian Fed-Batch Cell Cultures for Reduced Lactic Acid Accumulation and Improved Process Robustness.

    Science.gov (United States)

    Konakovsky, Viktor; Clemens, Christoph; Müller, Markus Michael; Bechmann, Jan; Berger, Martina; Schlatter, Stefan; Herwig, Christoph

    2016-01-11

    Biomass and cell-specific metabolic rates usually change dynamically over time, making the "feed according to need" strategy difficult to realize in a commercial fed-batch process. We here demonstrate a novel feeding strategy which is designed to hold a particular metabolic state in a fed-batch process by adaptive feeding in real time. The feed rate is calculated with a transferable biomass model based on capacitance, which changes the nutrient flow stoichiometrically in real time. A limited glucose environment was used to confine the cell in a particular metabolic state. In order to cope with uncertainty, two strategies were tested to change the adaptive feed rate and prevent starvation while in limitation: (i) inline pH and online glucose concentration measurement or (ii) inline pH alone, which was shown to be sufficient for the problem statement. In this contribution, we achieved metabolic control within a defined target range. The direct benefit was two-fold: the lactic acid profile was improved and pH could be kept stable. Multivariate Data Analysis (MVDA) has shown that pH influenced lactic acid production or consumption in historical data sets. We demonstrate that a low pH (around 6.8) is not required for our strategy, as glucose availability is already limiting the flux. On the contrary, we boosted glycolytic flux in glucose limitation by setting the pH to 7.4. This new approach led to a yield of lactic acid/glucose (Y L/G) around zero for the whole process time and high titers in our labs. We hypothesize that a higher carbon flux, resulting from a higher pH, may lead to more cells which produce more product. The relevance of this work aims at feeding mammalian cell cultures safely in limitation with a desired metabolic flux range. This resulted in extremely stable, low glucose levels, very robust pH profiles without acid/base interventions and a metabolic state in which lactic acid was consumed instead of being produced from day 1. With this contribution

  14. Metabolic Control in Mammalian Fed-Batch Cell Cultures for Reduced Lactic Acid Accumulation and Improved Process Robustness

    Directory of Open Access Journals (Sweden)

    Viktor Konakovsky

    2016-01-01

    Full Text Available Biomass and cell-specific metabolic rates usually change dynamically over time, making the “feed according to need” strategy difficult to realize in a commercial fed-batch process. We here demonstrate a novel feeding strategy which is designed to hold a particular metabolic state in a fed-batch process by adaptive feeding in real time. The feed rate is calculated with a transferable biomass model based on capacitance, which changes the nutrient flow stoichiometrically in real time. A limited glucose environment was used to confine the cell in a particular metabolic state. In order to cope with uncertainty, two strategies were tested to change the adaptive feed rate and prevent starvation while in limitation: (i inline pH and online glucose concentration measurement or (ii inline pH alone, which was shown to be sufficient for the problem statement. In this contribution, we achieved metabolic control within a defined target range. The direct benefit was two-fold: the lactic acid profile was improved and pH could be kept stable. Multivariate Data Analysis (MVDA has shown that pH influenced lactic acid production or consumption in historical data sets. We demonstrate that a low pH (around 6.8 is not required for our strategy, as glucose availability is already limiting the flux. On the contrary, we boosted glycolytic flux in glucose limitation by setting the pH to 7.4. This new approach led to a yield of lactic acid/glucose (Y L/G around zero for the whole process time and high titers in our labs. We hypothesize that a higher carbon flux, resulting from a higher pH, may lead to more cells which produce more product. The relevance of this work aims at feeding mammalian cell cultures safely in limitation with a desired metabolic flux range. This resulted in extremely stable, low glucose levels, very robust pH profiles without acid/base interventions and a metabolic state in which lactic acid was consumed instead of being produced from day 1. With

  15. Batch culture fermentation of Penicillium chrysogenum and a report on the isolation, purification, identification and antibiotic activity of citrinin

    Digital Repository Service at National Institute of Oceanography (India)

    PrabhaDevi; DeSouza, L.; Kamat, T.; Rodrigues, C.; Naik, C.G.

    Batch fermentation of Penicillium chrysogenum, MTCC 5108 was carried out using potato dextrose broth medium prepared in seawater: distilled water (1:1). Biomass as dry weight was determined by gravimetric analysis. Citrinin, the main secondary...

  16. Key Process Conditions for Production of C4 Dicarboxylic Acids in Bioreactor Batch Cultures of an Engineered Saccharomyces cerevisiae Strain▿

    Science.gov (United States)

    Zelle, Rintze M.; de Hulster, Erik; Kloezen, Wendy; Pronk, Jack T.; van Maris, Antonius J. A.

    2010-01-01

    A recent effort to improve malic acid production by Saccharomyces cerevisiae by means of metabolic engineering resulted in a strain that produced up to 59 g liter−1 of malate at a yield of 0.42 mol (mol glucose)−1 in calcium carbonate-buffered shake flask cultures. With shake flasks, process parameters that are important for scaling up this process cannot be controlled independently. In this study, growth and product formation by the engineered strain were studied in bioreactors in order to separately analyze the effects of pH, calcium, and carbon dioxide and oxygen availability. A near-neutral pH, which in shake flasks was achieved by adding CaCO3, was required for efficient C4 dicarboxylic acid production. Increased calcium concentrations, a side effect of CaCO3 dissolution, had a small positive effect on malate formation. Carbon dioxide enrichment of the sparging gas (up to 15% [vol/vol]) improved production of both malate and succinate. At higher concentrations, succinate titers further increased, reaching 0.29 mol (mol glucose)−1, whereas malate formation strongly decreased. Although fully aerobic conditions could be achieved, it was found that moderate oxygen limitation benefitted malate production. In conclusion, malic acid production with the engineered S. cerevisiae strain could be successfully transferred from shake flasks to 1-liter batch bioreactors by simultaneous optimization of four process parameters (pH and concentrations of CO2, calcium, and O2). Under optimized conditions, a malate yield of 0.48 ± 0.01 mol (mol glucose)−1 was obtained in bioreactors, a 19% increase over yields in shake flask experiments. PMID:20008165

  17. The improvement of the quality of polluted irrigation water through a phytoremediation process in a hydroponic batch culture system

    Science.gov (United States)

    Retnaningdyah, Catur

    2017-11-01

    The objective of this research was to determine the effectiveness of a phytoremediation process using some local hydro macrophytes to reduce fertilizer residue in irrigation water in order to support healthy agriculture and to prevent eutrophication and algae bloom in water. A phytoremediation process was carried out in a hydroponic floating system by using transparent plastic bags of 1 m in diameter and 1 m in height that were placed in collecting ponds before they were used for agricultural activities. Paddy soils were used as substrates in this system. The irrigation water was treated with nutrient enrichment (Urea and SP-36 fertilizers). Then, the system was planted with remediation actors (Azolla sp., Ipomoea aquatica, Limnocharis flava, Marsilea crenata, polyculture of those hydro macrophytes and control). The improvement of the water quality as a result of the phytoremediation process was characterized by a decline in the concentration of some physicochemical parameters, which were measured at 7 days after incubation, as well as an increase in the plankton diversity index value. The results showed that all of the hydro macrophytes used in this research, which was grown in the hydroponic batch culture system for a period of 7 days, were able to significantly improve the irrigation water quality, which was enriched by the synthetic fertilizers Urea and SP36. This was reflected by a significant decrease in the concentration of water TSS, nitrate, BOD, COD and total phosphate and an increase in the value of water DO at 7 days after incubation. Improvement of the water quality is also reflected in the increasing plankton diversity index value as a bioindicator of water pollution indicating a change in the pollution status from moderately polluted to slightly polluted at 7 days after incubation.

  18. Determination of some significant batch culture conditions affecting acetyl-xylan esterase production by Penicillium notatum NRRL-1249

    Directory of Open Access Journals (Sweden)

    Akhtar MN

    2011-05-01

    Full Text Available Abstract Background Acetyl-xylan esterase (AXE, EC 3.1.1.72 hydrolyses acetate group from the linear chain of xylopyranose residues bound by β-1,4-linkage. The enzyme finds commercial applications in bio-bleaching of wood pulp, treating animal feed to increase digestibility, processing food to increase clarification and converting lignocellulosics to feedstock and fuel. In the present study, we report on the production of an extracellular AXE from Penicillium notatum NRRL-1249 by solid state fermentation (SSF. Results Wheat bran at a level of 10 g (with 4 cm bed height was optimized as the basal substrate for AXE production. An increase in enzyme activity was observed when 7.5 ml of mineral salt solution (MSS containing 0.1% KH2PO4, 0.05% KCl, 0.05% MgSO4.7H2O, 0.3% NaNO3, 0.001% FeSO4.2H2O and 0.1% (v/w Tween-80 as an initial moisture content was used. Various nitrogen sources including ammonium sulphate, urea, peptone and yeast extract were compared for enzyme production. Maximal enzyme activity of 760 U/g was accomplished which was found to be highly significant (p ≤ 0.05. A noticeable enhancement in enzyme activity was observed when the process parameters including incubation period (48 h, initial pH (5, 0.2% (w/w urea as nitrogen source and 0.5% (v/w Tween-80 as a stimulator were further optimized using a 2-factorial Plackett-Burman design. Conclusion From the results it is clear that an overall improvement of more than 35% in terms of net enzyme activity was achieved compared to previously reported studies. This is perhaps the first report dealing with the use of P. notatum for AXE production under batch culture SSF. The Plackett-Burman model terms were found highly significant (HS, suggesting the potential commercial utility of the culture used (df = 3, LSD = 0.126.

  19. Decrease of UPR- and ERAD-related proteins in Pichia pastoris during methanol-induced secretory insulin precursor production in controlled fed-batch cultures.

    Science.gov (United States)

    Vanz, Ana Letícia; Nimtz, Manfred; Rinas, Ursula

    2014-02-13

    Pichia pastoris is a popular yeast preferably employed for secretory protein production. Secretion is not always efficient and endoplasmic retention of proteins with aberrant folding properties, or when produced at exaggerated rates, can occur. In these cases production usually leads to an unfolded protein response (UPR) and the induction of the endoplasmic reticulum associated degradation (ERAD). P. pastoris is nowadays also an established host for secretory insulin precursor (IP) production, though little is known about the impact of IP production on the host cell physiology, in particular under industrially relevant production conditions. Here, we evaluate the cellular response to aox1 promoter-controlled, secretory IP production in controlled fed-batch processes using a proteome profiling approach. Cells were first grown in a batch procedure using a defined medium with a high glycerol concentration. After glycerol depletion IP production was initiated by methanol addition which was kept constant through continuous methanol feeding. The most prominent changes of the intracellular proteome after the onset of methanol feeding were related to the enzymes of central carbon metabolism. In particular, the enzymes of the methanol dissimilatory pathway - virtually absent in the glycerol batch phase - dominated the proteome during the methanol fed-batch phase. Unexpectedly, a strong decrease of UPR and ERAD related proteins was also observed during methanol-induced IP production. Compared to non-producing control strains grown under identical conditions the UPR down-regulation was less pronounced indicating that IP production elicits a detectable but non prominent UPR response which is repressed by the general culture condition-dependent UPR down-regulation after the shift from glycerol to methanol. The passage of IP through the secretory pathway using an optimized IP vector and growing the strain at fed-batch conditions with a high initial glycerol concentration does

  20. Time-Resolved Transcriptomics and Bioinformatic Analyses Reveal Intrinsic Stress Responses during Batch Culture of Bacillus subtilis

    NARCIS (Netherlands)

    Blom, Evert-Jan; Ridder, Anja N.J.A.; Lulko, Andrzej T.; Roerdink, Jos B.T.M.; Kuipers, Oscar P.

    2011-01-01

    We have determined the time-resolved transcriptome of the model gram-positive organism B. subtilis during growth in a batch fermentor on rich medium. DNA microarrays were used to monitor gene transcription using 10-minute intervals at 40 consecutive time points. From the growth curve and analysis of

  1. Using Raman spectroscopy and chemometrics to identify the growth phase of Lactobacillus casei Zhang during batch culture at the single-cell level.

    Science.gov (United States)

    Ren, Yan; Ji, Yuetong; Teng, Lin; Zhang, Heping

    2017-12-23

    As microbial cultures are comprised of heterogeneous cells that differ according to their size and intracellular concentrations of DNA, proteins, and other constituents, the detailed identification and discrimination of the growth phases of bacterial populations in batch culture is challenging. Cell analysis is indispensable for quality control and cell enrichment. In this paper, we report the results of our investigation on the use of single-cell Raman spectrometry (SCRS) for real-time analysis and prediction of cells in different growth phases during batch culture of Lactobacillus (L.) casei Zhang. A targeted analysis of defined cell growth phases at the level of the single cell, including lag phase, log phase, and stationary phase, was facilitated by SCRS. Spectral shifts were identified in different states of cell growth that reflect biochemical changes specific to each cell growth phase. Raman peaks associated with DNA and RNA displayed a decrease in intensity over time, whereas protein-specific and lipid-specific Raman vibrations increased at different rates. Furthermore, a supervised classification model (Random Forest) was used to specify the lag phase, log phase, and stationary phase of cells based on SCRS, and a mean sensitivity of 90.7% and mean specificity of 90.8% were achieved. In addition, the correct cell type was predicted at an accuracy of approximately 91.2%. To conclude, Raman spectroscopy allows label-free, continuous monitoring of cell growth, which may facilitate more accurate estimates of the growth states of lactic acid bacterial populations during fermented batch culture in industry.

  2. Fermentative and growth performances of Dekkera bruxellensis in different batch systems and the effect of initial low cell counts in co-cultures with Saccharomyces cerevisiae.

    Science.gov (United States)

    Meneghin, Maria Cristina; Bassi, Ana Paula Guarnieri; Codato, Carolina Brito; Reis, Vanda Renata; Ceccato-Antonini, Sandra Regina

    2013-08-01

    Dekkera bruxellensis is a multifaceted yeast present in the fermentative processes used for alcoholic beverage and fuel alcohol production - in the latter, normally regarded as a contaminant. We evaluated the fermentation and growth performance of a strain isolated from water in an alcohol-producing unit, in batch systems with/without cell recycling in pure and co-cultures with Saccharomyces cerevisiae. The ethanol resistance and aeration dependence for ethanol/acid production were verified. Ethanol had an effect on the growth of D. bruxellensis in that it lowered or inhibited growth depending on the concentration. Acid production was verified in agitated cultures either with glucose or sucrose, but more ethanol was produced with glucose in agitated cultures. Regardless of the batch system, low sugar consumption and alcohol production and expressive growth were found with D. bruxellensis. Despite a similar ethanol yield compared to S. cerevisiae in the batch system without cell recycling, ethanol productivity was approximately four times lower. However, with cell recycling, ethanol yield was almost half that of S. cerevisiae. At initial low cell counts of D. bruxellensis (10 and 1000 cells/ml) in co-cultures with S. cerevisiae, a decrease in fermentative efficiency and a substantial growth throughout the fermentative cycles were displayed by D. bruxellensis. Due to the peculiarity of cell repitching in Brazilian fermentation processes, D. bruxellensis is able to establish itself in the process, even when present in low numbers initially, substantially impairing bioethanol production due to the low ethanol productivity, in spite of comparable ethanol yields. Copyright © 2013 John Wiley & Sons, Ltd.

  3. Impact of the freeze-drying process on product appearance, residual moisture content, viability, and batch uniformity of freeze-dried bacterial cultures safeguarded at culture collections.

    Science.gov (United States)

    Peiren, Jindrich; Hellemans, Ann; De Vos, Paul

    2016-07-01

    In this study, causes of collapsed bacterial cultures in glass ampoules observed after freeze-drying were investigated as well as the influence of collapse on residual moisture content (RMC) and viability. Also, the effect of heat radiation and post freeze-drying treatments on the RMC was studied. Cake morphologies of 21 bacterial strains obtained after freeze-drying with one standard protocol could be classified visually into four major types: no collapse, porous, partial collapse, and collapse. The more pronounced the collapse, the higher residual moisture content of the freeze-dried product, ranging from 1.53 % for non-collapsed products to 3.62 % for collapsed products. The most important cause of collapse was the mass of the inserted cotton plug in the ampoule. Default cotton plugs with a mass between 21 and 30 mg inside the ampoule did not affect the viability of freeze-dried Aliivibrio fischeri LMG 4414(T) compared to ampoules without cotton plugs. Cotton plugs with a mass higher than 65 mg inside the ampoule induced a full collapsed product with rubbery look (melt-back) and decreasing viability during storage. Heat radiation effects in the freeze-drying chamber and post freeze-drying treatments such as exposure time to air after freeze-drying and manifold drying time prior to heat sealing of ampoules influenced the RMC of freeze-dried products. To produce uniform batches of freeze-dried bacterial strains with intact cake structures and highest viabilities, inserted cotton plugs should not exceed 21 mg per ampoule. Furthermore, heat radiation effects should be calculated in the design of the primary drying phase and manifold drying time before heat sealing should be determined as a function of exposure time to air.

  4. Endoplasmic Reticulum-Associated rht-PA Processing in CHO Cells: Influence of Mild Hypothermia and Specific Growth Rates in Batch and Chemostat Cultures.

    Directory of Open Access Journals (Sweden)

    Mauricio Vergara

    Full Text Available Chinese hamster ovary (CHO cells are the main host for producing recombinant proteins with human therapeutic applications mainly because of their capability to perform proper folding and glycosylation processes. In addition, mild hypothermia is one of the main strategies for maximising the productivity of these systems. However, little information is available on the effect of culture temperature on the folding and degradation processes of recombinant proteins that takes place in the endoplasmic reticulum.In order to evaluate the effect of the mild hypothermia on processing/endoplasmatic reticulum-associated degradation (ERAD processes, batch cultures of CHO cells producing recombinant human tissue plasminogen activator (rht-PA were carried out at two temperatures (37°C and 33°C and treated with specific inhibitors of glycosylation and ERAD I (Ubiquitin/Proteasome system or ERAD II (Autophagosoma/Lisosomal system pathways. The effect of mild hypothermia was analysed separately from its indirect effect on specific cell growth rate. To do this, chemostat cultures were carried out at the same incubation conditions as the batch cultures, controlling cell growth at high (0.017 h-1 and low (0.012 h-1 dilution rates. For a better understanding of the investigated phenomenon, cell behaviour was also analysed using principal component analysis (PCA.Results suggest that rht-PA is susceptible to degradation by both ERAD pathways studied, revealing that processing and/or ERAD processes are sensitive to temperature cultivation in batch culture. Moreover, by isolating the effect of culture temperature from the effect of cell growth rate verifyed by using chemostat cultures, we have found that processing and/or ERAD processes are more sensitive to reduction in specific growth rate than low temperature, and that temperature reduction may have a positive effect on protein processing. Interestingly, PCA indicated that the integrated performance displayed by CHO

  5. Characterization of nerolidol biotransformation based on indirect on-line estimation of biomass concentration and physiological state in batch cultures of Aspergillus niger.

    Science.gov (United States)

    Hrdlicka, Patrick J; Sørensen, Anders B; Poulsen, Bjarne R; Ruijter, George J G; Visser, Jaap; Iversen, Jens J L

    2004-01-01

    Biotransformation of the sesquiterpenoid trans-nerolidol by Aspergillus niger has previously been investigated as a method for the formation of 12-hydroxy-trans-nerolidol, a precursor in the synthesis of the industrially interesting flavor alpha-sinensal. We characterized biotransformations of cis-nerolidol, trans-nerolidol, and a commercially available cis/trans-nerolidol mixture in repeated batch cultures of A. niger grown in computer-controlled bioreactors. On-line quantification of titrant addition in pH control allowed characterization of (1) maximal specific growth rate in exponential growth phases, (2) exponential induction of acid formation in postexponential phases, (3) inhibition of organic acid formation after nerolidol addition, and (4) exponential recovery from this inhibition. Addition of a (+/-)-cis/trans-nerolidol mixture during exponential or postexponential phase to cultures grown in minimal medium at high dissolved oxygen tension (above 50% air saturation), to cultures at low dissolved oxygen tension (5% air saturation), or to cultures grown in rich medium demonstrated that the physiological state before nerolidol addition had a major influence on biotransformation. The maximal molar yield of 12-hydroxy-trans-nerolidol (9%) was obtained by addition of a (+/-)-cis/trans-nerolidol mixture to the culture in the postexponential phase at high dissolved oxygen tension in minimal medium. Similar yields were obtained in rich medium, where the rate of biotransformation was doubled.

  6. Fermentation characteristics of corn-, triticale-, and wheat-based dried distillers' grains with solubles in barley-based diets determined using continuous and batch culture systems.

    Science.gov (United States)

    Au, Findy; McKeown, Lisa E; McAllister, Tim A; Chaves, Alexandre V

    2010-09-01

    Dried distillers' grains with solubles (DDGS) are becoming increasingly available and popular as an alternative livestock feed. This study used continuous and batch culture techniques to compare the in vitro fermentation characteristics of diets containing corn-, triticale- or wheat-based DDGS at 200 g kg(-1) diet dry matter (DM) against a barley grain-based control diet. In continuous fermentation of wheat DDGS diet, total volatile fatty acid (VFA) concentration was decreased by 15.7% across sampling times and NH(3) concentration was quadrupled compared with control, whereas fermentations of corn- and triticale-DDGS diets were similar to the barley-based control. In batch cultures, corn DDGS differed from control only in increased culture pH. Compared with control diet, triticale DDGS yielded lower total gas production (140.94 versus 148.78 mL g(-1) DM) and in vitro DM digestibility (IVDMD; 0.509 versus 0.535). Wheat DDGS diet yielded decreased total gas production (123.49 mL g(-1) DM) and IVDMD (0.468), as well as total VFA production (105.84 versus 134.20 mmol L(-1)) and substantially increased ammonia concentration (151.61 versus 58.34 mg L(-1)) and acetate:propionate ratio (2.94 versus 1.11). Corn- and triticale- DDGS diets exhibited fermentation characteristics similar to the barley based control diet, consistent with in vivo findings that these diets yielded no adverse effects on production. In vitro ruminal fermentation of wheat DDGS diet differed significantly from control in several aspects including 2.6 to 6X higher ammonia concentrations. Copyright 2010 Society of Chemical Industry.

  7. Effects of Lavandula officinalis and Equisetum arvense dry extracts and isoquercitrin on the fermentation of diets varying in forage contents by rumen microorganisms in batch culture.

    Science.gov (United States)

    Broudiscou, L P; Lassalas, B

    2000-01-01

    The short-term actions of Lavandula officinalis and Equisetum arvense dry extracts, and of isoquercitrin, flavonoid present in Equisetum arvense, on in vitro fermentation by rumen microbes were studied in batch culture. The orchard grass hay:barley ratios in the three experimental diets were 100:0, 75:25, 50:50 on a DM basis. The production rates of all volatile fatty acids except isobutyrate were strongly influenced by the composition of the diet and to a lesser extent, by plant extracts, with significant interactions between both factors. When hay was the only substrate, the addition of L. officinalis and E. arvense enhanced the fermentation rate by 50%, through an increased release of acetate and propionate. On the contrary, with the two other diets, the fermentation rate was strongly lowered by isoquercitrin. Gas outputs were not significantly influenced by plant extracts.

  8. High level expression of Glomerella cingulata cutinase in dense cultures of Pichia pastoris grown under fed-batch conditions.

    Science.gov (United States)

    Seman, W M K Wan; Bakar, S A; Bukhari, N A; Gaspar, S M; Othman, R; Nathan, S; Mahadi, N M; Jahim, J; Murad, A M A; Bakar, F D Abu

    2014-08-20

    A Pichia pastoris transformant carrying the cutinase cDNA of Glomerella cingulata was over-expressed in a 5L bioreactor (2.0L working volume) under fed-batch conditions. Bioreactor experiments rely on varying selected parameters in repeated rounds of optimisation: here these included duration of induction, pH and temperature. Highest cell densities (320gL(-1) wet cell weight) with a cutinase production of 3800mgL(-1) and an activity of 434UmL(-1) were achieved 24h after induction with methanol in basal salt medium (at pH 5 and 28°C). Characterisation of the cutinase showed that it was stable between pH 6 and pH 11, had an optimum pH of 8.0 and retained activity for 30min at 50°C (optimum temperature 25°C).The preferred substrates of G. cingulata cutinase were the medium- to long-chain ρ-nitrophenyl esters of ρ-nitrophenylcaprylate (C8), ρ-nitrophenyllaurate (C12) and ρ-nitrophenylmyristate (C14), with the highest catalytic efficiency, kcat/Km of 7.7±0.7mM(-1)s(-1) for ρ-nitrophenylcaprylate. Microscopic analyses showed that the G. cingulata cutinase was also capable of depolymerising the high molecular weight synthetic polyester, polyethylene terephthalate. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Biodegradation of pulp and paper mill effluent by co-culturing ascomycetous fungi in repeated batch process.

    Science.gov (United States)

    Rajwar, Deepika; Paliwal, Rashmi; Rai, J P N

    2017-08-31

    The competence of novel fungal consortium, consisting of Nigrospora sp. LDF00204 (accession no. KP732542) and Curvularia lunata LDF21 (accession no. KU664593), was investigated for the treatment of pulp and paper mill effluent. Fungal consortium exhibited enhanced biomass production under optimized medium conditions, i.e., glucose as carbon (C), sodium nitrate as nitrogen (N), C/N 1.5:0.5, pH 5, temperature 30 °C, and agitation 140 rpm, and significantly reduced biochemical oxygen demand (85.6%), chemical oxygen demand (80%), color (82.3%), and lignin concentration (76.1%) under catalytic enzyme activity; however, unutilized ligninolytic enzymes, such as laccase (Lac), manganese peroxidase (MnP), and lignin peroxidase (LiP), were observed to be 13.5, 11.4, and 9.4 U/ml after the third cycle of effluent treatment in repeated batch process. Scanning electron microscopy (SEM) of fungal consortium revealed their compatibility through intermingled hyphae and spores, while the FTIR spectra confirmed the alteration of functional groups ensuring structural changes during the effluent treatment. Gas chromatography/mass spectroscopy (GC-MS) analysis showed the reduction of complex compounds and development of numerous low-molecular-weight metabolites, such as 1-3-dimethyl benzene, 2-chloro-3-methyl butane, pentadecanoic acid, and 1-2-benzene dicarboxylic acid, during the treatment, demonstrating the massive potential of the novel fungal consortium to degrade recalcitrant industrial pollutants.

  10. Polyhydroxybutyrate production by direct use of waste activated sludge in phosphorus-limited fed-batch culture.

    Science.gov (United States)

    Cavaillé, Laëtitia; Grousseau, Estelle; Pocquet, Mathieu; Lepeuple, Anne-Sophie; Uribelarrea, Jean-Louis; Hernandez-Raquet, Guillermina; Paul, Etienne

    2013-12-01

    Polyhydroxybutyrate (PHB) production directly by waste activated sludge (WAS) was investigated in aerobic fed-batch conditions using acetic acid as substrate. PHB production was induced by phosphorus limitation. WAS of different origin were tested with various degrees of phosphorus limitation and PHB contents of up to 70% (gCOD PHB/gCOD particulate) were obtained. This strategy showed the importance of maintaining cell growth for PHB production in order to increase PHB concentration and that the degree of phosphorus limitation has a direct impact on the quantity of PHB produced. Pyrosequencing of 16S rRNA transcripts showed changes in the active bacteria of the WAS microbial community as well as the acclimation of populations depending on sludge origin. The monitoring of the process appeared as the key factor for optimal PHB production by WAS. Different strategies are discussed and compared in terms of carbon yield and PHB content with the feast and famine selection process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Biosynthesis of highly enriched 13C-lycopene for human metabolic studies using repeated batch tomato cell culturing with 13C-glucose

    Science.gov (United States)

    Moran, Nancy E.; Rogers, Randy B.; Lu, Chi-Hua; Conlon, Lauren E.; Lila, Mary Ann; Clinton, Steven K.; Erdman, John W.

    2013-01-01

    While putative disease-preventing lycopene metabolites are found in both tomato (Solanum lycopersicum) products and in their consumers, mammalian lycopene metabolism is poorly understood. Advances in tomato cell culturing techniques offer an economical tool for generation of highly-enriched 13C-lycopene for human bioavailability and metabolism studies. To enhance the 13C-enrichment and yields of labeled lycopene from the hp-1 tomato cell line, cultures were first grown in 13C-glucose media for three serial batches and produced increasing proportions of uniformly labeled lycopene (14.3 +/− 1.2 %, 39.6 +/− 0.5 %, and 48.9 +/− 1.5% with consistent yields (from 5.8 to 9 mg/L). An optimized 9-day-long 13C-loading and 18-day-long labeling strategy developed based on glucose utilization and lycopene yields, yielded 13C-lycopene with 93% 13C isotopic purity, and 55% of isotopomers were uniformly labeled. Furthermore, an optimized acetone and hexane extraction led to a four-fold increase in lycopene recovery from cultures compared to a standard extraction. PMID:23561155

  12. Key Process Conditions for Production of C4 Dicarboxylic Acids in Bioreactor Batch Cultures of an Engineered Saccharomyces cerevisiae Strain

    NARCIS (Netherlands)

    Zelle, R.M.; De Hulster, E.; Kloezen, W.; Pronk, J.T.; Van Maris, A.J.A.

    2010-01-01

    A recent effort to improve malic acid production by Saccharomyces cerevisiae by means of metabolic engineering resulted in a strain that produced up to 59 g liter(-1) of malate at a yield of 0.42 mol (mol glucose)(-1) in calcium carbonate-buffered shake flask cultures. With shake flasks, process

  13. Single Cell Protein Production by Saccharomyces cerevisiae Using an Optimized Culture Medium Composition in a Batch Submerged Bioprocess.

    Science.gov (United States)

    Hezarjaribi, Mehrnoosh; Ardestani, Fatemeh; Ghorbani, Hamid Reza

    2016-08-01

    Saccharomyces cerevisiae PTCC5269 growth was evaluated to specify an optimum culture medium to reach the highest protein production. Experiment design was conducted using a fraction of the full factorial methodology, and signal to noise ratio was used for results analysis. Maximum cell of 8.84 log (CFU/mL) was resulted using optimized culture composed of 0.3, 0.15, 1, and 50 g L(-1) of ammonium sulfate, iron sulfate, glycine, and glucose, respectively at 300 rpm and 35 °C. Glycine concentration (39.32 % contribution) and glucose concentration (36.15 % contribution) were determined as the most effective factors on the biomass production, while Saccharomyces cerevisiae growth had showed the least dependence on ammonium sulfate (5.2 % contribution) and iron sulfate (19.28 % contribution). The most interaction was diagnosed between ammonium sulfate and iron sulfate concentrations with interaction severity index of 50.71 %, while the less one recorded for glycine and glucose concentration was equal to 8.12 %. An acceptable consistency of 84.26 % was obtained between optimum theoretical cell numbers determined by software of 8.91 log (CFU/mL), and experimentally measured one at optimal condition confirms the suitability of the applied method. High protein content of 44.6 % using optimum culture suggests that Saccharomyces cerevisiae is a good commercial case for single cell protein production.

  14. The effect of growth phase on the lipid class, fatty acid and sterol composition in the marine dinoflagellate, Gymnodinium sp. in batch culture.

    Science.gov (United States)

    Mansour, Maged P; Volkman, John K; Blackburn, Susan I

    2003-05-01

    We have studied the effects of growth phase on the lipid composition in batch cultures of Gymnodinium sp. CS-380/3 over 43 days of culturing. The lipid content increased two fold, from late logarithmic (day 6) to linear growth phase (day 22) then decreased at stationary phase (day 43) while the lipid yield (mg l(-1)) increased 30-fold from day 6 to 30 mg l(-1) at day 43. Changes in fatty acid content mirrored those observed for the total lipid, while the sterol content continued to increase with culture age through to stationary phase. The largest changes occurred in the lipid classes, especially the polar lipids and triacylglycerols (oil). The proportion of triacylglycerols increased from 8% (of total lipids) at day 6 to 30% at day 43, with a concomitant decrease in the polar lipid fraction. The proportions of 16:0 and DHA [22:6(n-3)] increased while those of 18:5(n-3) and EPA [20:5(n-3)] decreased with increasing culture age. The proportion of the major sterol, dinosterol, decreased from 41% (day 6) to 29% (day 43), while the major dinostanol epimer (23R,24R) increased from 33% (day 6) to 38% (day 22). Despite small changes in the proportion of the main sterols, the same sterols were present at all stages of growth, indicating their value as a chemotaxonomic tool for distinguishing between strains within the same genus. Growth phase could be a useful variable for optimising the oil and DHA content with potential for aquaculture feeds and a source of DHA-rich oils for nutraceuticals.

  15. Production of Gymnemic Acid Depends on Medium, Explants, PGRs, Color Lights, Temperature, Photoperiod, and Sucrose Sources in Batch Culture of Gymnema sylvestre

    Directory of Open Access Journals (Sweden)

    A. Bakrudeen Ali Ahmed

    2012-01-01

    Full Text Available Gymnema sylvestre (R.Br. is an important diabetic medicinal plant which yields pharmaceutically active compounds called gymnemic acid (GA. The present study describes callus induction and the subsequent batch culture optimization and GA quantification determined by linearity, precision, accuracy, and recovery. Best callus induction of GA was noticed in MS medium combined with 2,4-D (1.5 mg/L and KN (0.5 mg/L. Evaluation and isolation of GA from the calluses derived from different plant parts, namely, leaf, stem and petioles have been done in the present case for the first time. Factors such as light, temperature, sucrose, and photoperiod were studied to observe their effect on GA production. Temperature conditions completely inhibited GA production. Out of the different sucrose concentrations tested, the highest yield (35.4 mg/g d.w was found at 5% sucrose followed by 12 h photoperiod (26.86 mg/g d.w. Maximum GA production (58.28 mg/g d.w was observed in blue light. The results showed that physical and chemical factors greatly influence the production of GA in callus cultures of G. sylvestre. The factors optimized for in vitro production of GA during the present study can successfully be employed for their large-scale production in bioreactors.

  16. Growth and nitrogen removal capacity of Desmodesmus communis and of a natural microalgae consortium in a batch culture system in view of urban wastewater treatment: part I.

    Science.gov (United States)

    Samorì, Giulia; Samorì, Chiara; Guerrini, Franca; Pistocchi, Rossella

    2013-02-01

    The microalgal biomass applications strongly depend on cell composition and the production of low cost products such as biofuels appears to be economically convenient only in conjunction with wastewater treatment. As a preliminary study, in view of the development of a wastewater treatment pilot plant for nutrient removal and algal biomass production, a biological wastewater system was carried out on a laboratory scale growing a newly isolated freshwater algal strain, Desmodesmus communis, and a natural consortium of microalgae in effluents generated by a local wastewater reclamation facility. Batch cultures were operated by using D. communis under different growth conditions to better understand the effects of CO₂, nutrient concentration and light intensity on the biomass productivity and biochemical composition. The results were compared with those obtained using a natural algal consortium. D. communis showed a great vitality in the wastewater effluents with a biomass productivity of 0.138-0.227 g L⁻¹ d⁻¹ in the primary effluent enriched with CO₂, higher biomass productivity compared with the one achieved by the algal consortium (0.078 g L⁻¹ d⁻¹). D. communis cultures reached also a better nutrient removal efficiency compared with the algal consortium culture, with almost 100% for ammonia and phosphorous at any N/P ratio characterizing the wastewater nutrient composition. Biomass composition was richer in polysaccharides and total fatty acids as the ammonia concentration in the water decreased. In view of a future application of this algal biomass, due to the low total fatty acids content of 1.4-9.3 wt% and the high C/N ratio of 7.6-39.3, anaerobic digestion appeared to be the most appropriate biofuel conversion process. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Evaluation on prebiotic properties of β-glucan and oligo-β-glucan from mushrooms by human fecal microbiota in fecal batch culture

    Directory of Open Access Journals (Sweden)

    Chiraphon Chaikliang

    2015-11-01

    Full Text Available Background: β-glucan is dietary fiber, a structural polysaccharide, β-linked linear chains of D-glucose polymers with variable frequency of branches. β-glucan is isolated from different sources such as cell walls of baker’s yeast (Saccharomyces cerevisiae, cereals (oat and barley and various species of mushrooms. Among 8 mushrooms in the study, Schizophylum commune Fr and Auricularia auricula Judae had the highest in β-glucan contents and the cheapest cost of mushroom per content of β-glucan, respectively. Even the function of β-glucan on immune modulation has been known however no report on interaction between β-glucan and human gut microbiota. Gut microbiota is thought to have health effects by interaction with non-digestible component particular fermentable dietary fiber. It is important to correlate the specific groups of the microbial communities associated with β-glucan fermentation and the consequential SCFA profiles. β-glucan from mushroom may has potential prebiotic function similar to those from commercial yeast (Saccharomyces cerevisiae β-glucan. Objective: To evaluate on prebiotic properties of soluble β-glucans and oligo-β-glucans from Schizophylum commune Fr and Auricularia auricula Judae by fecal fermentation in batch culture. Methods: In vitro fecal fermentation in anaerobic batch cultures under simulated conditions similar to human colon with human faecal samples from three donors were performed. Comparison on 3 β-glucans and 2 oligo-β-glucans have been studied. Sample was taken at 0 h, 24 h and 48 h to analyze the numbers of bacterial changes by fluorescent in situ hybridization (FISH technique. Short chain fatty acids (SCFA were analyzed by HPLC. The prebiotic index (PI was calculated according to the change of 5 specific bacterial genus within 48 h fermentation. Results: Soluble β-glucan from Auricularia auricula Judae increased numbers of bifidobacteria and lactobacillus significantly (P<0.05. The PI of

  18. Detection of Sialic Acid-Utilising Bacteria in a Caecal Community Batch Culture Using RNA-Based Stable Isotope Probing

    Directory of Open Access Journals (Sweden)

    Wayne Young

    2015-03-01

    Full Text Available Sialic acids are monosaccharides typically found on cell surfaces and attached to soluble proteins, or as essential components of ganglioside structures that play a critical role in brain development and neural transmission. Human milk also contains sialic acid conjugated to oligosaccharides, glycolipids, and glycoproteins. These nutrients can reach the large bowel where they may be metabolised by the microbiota. However, little is known about the members of the microbiota involved in this function. To identify intestinal bacteria that utilise sialic acid within a complex intestinal community, we cultured the caecal microbiota from piglets in the presence of 13C-labelled sialic acid. Using RNA-based stable isotope probing, we identified bacteria that consumed 13C-sialic acid by fractionating total RNA in isopycnic buoyant density gradients followed by 16S rRNA gene analysis. Addition of sialic acid caused significant microbial community changes. A relative rise in Prevotella and Lactobacillus species was accompanied by a corresponding reduction in the genera Escherichia/Shigella, Ruminococcus and Eubacterium. Inspection of isotopically labelled RNA sequences suggests that the labelled sialic acid was consumed by a wide range of bacteria. However, species affiliated with the genus Prevotella were clearly identified as the most prolific users, as solely their RNA showed significantly higher relative shares among the most labelled RNA species. Given the relevance of sialic acid in nutrition, this study contributes to a better understanding of their microbial transformation in the intestinal tract with potential implications for human health.

  19. Pilot-Scale Lactic Acid Production via Batch Culturing of Lactobacillus sp. RKY2 Using Corn Steep Liquor As a Nitrogen Source

    Directory of Open Access Journals (Sweden)

    Young-Jung Wee

    2006-01-01

    Full Text Available In this study, the determination of the efficiency of a pilot-scale fermentation process using corn steep liquor as a nitrogen source was attempted in order to produce lactic acid via batch culturing of Lactobacillus sp. RKY2. Using pure glucose, fermentation efficiency characteristics, such as final lactic acid, cell growth, yield, and productivity were not substantially influenced by the scale-up of the laboratory-scale fermentation from 2.5- to 30- and 300-litre scale fermentations. In all experiments, the content of lactic acid produced increased in a linear fashion with increases in the initial glucose concentration. In the experiments using wood hydrolyzate, both lactic acid productivity and cell growth were decreased as a result of the scaling-up of the fermentation. This might be attributed to the toxic chemicals contained in the wood hydrolyzates. However, in all experiments, lactic acid yields remained higher than 90 % with regard to the amount of glucose consumed. Therefore, lactic acid was successfully produced by the pilot-scale bioreactor scheme adopted in this study.

  20. Population analysis of a commercial Saccharomyces cerevisiae wine yeast in a batch culture by electric particle analysis, light diffraction and flow cytometry.

    Science.gov (United States)

    Portell, Xavier; Ginovart, Marta; Carbo, Rosa; Gras, Anna; Vives-Rego, Josep

    2011-02-01

    Data from electric particle analysis, light diffraction and flow cytometry analysis provide information on changes in cell morphology. Here, we report analyses of Saccharomyces cerevisiae populations growing in a batch culture using these techniques. The size distributions were determined by electric particle analysis and by light diffraction in order to compare their outcomes. Flow cytometry parameters forward (related to cell size) and side (related to cell granularity) scatter were also determined to complement this information. These distributions of yeast properties were analysed statistically and by a complexity index. The cell size of Saccharomyces at the lag phase was smaller than that at the beginning of the exponential phase, whereas during the stationary phase, the cell size converged with the values observed during the lag phase. These experimental techniques, when used together, allow us to distinguish among and characterize the cell size, cell granularity and the structure of the yeast population through the three growth phases. Flow cytometry patterns are better than light diffraction and electric particle analysis in showing the existence of subpopulations during the different phases, especially during the stationary phase. The use of a complexity index in this context helped to differentiate these phases and confirmed the yeast cell heterogeneity. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  1. Novel approach of high cell density recombinant bioprocess development: Optimisation and scale-up from microlitre to pilot scales while maintaining the fed-batch cultivation mode of E. coli cultures

    Directory of Open Access Journals (Sweden)

    Rimšeliene Renata

    2010-05-01

    Full Text Available Abstract Background Bioprocess development of recombinant proteins is time consuming and laborious as many factors influence the accumulation of the product in the soluble and active form. Currently, in most cases the developmental line is characterised by a screening stage which is performed under batch conditions followed by the development of the fed-batch process. Performing the screening already under fed-batch conditions would limit the amount of work and guarantee that the selected favoured conditions also work in the production scale. Results Here, for the first time, high throughput multifactorial screening of a cloning library is combined with the fed-batch technique in 96-well plates, and a strategy is directly derived for scaling to bioreactor scale. At the example of a difficult to express protein, an RNase inhibitor, it is demonstrated that screening of various vector constructs and growth conditions can be performed in a coherent line by (i applying a vector library with promoters and ribosome binding sites of different strength and various fusion partners together with (ii an early stage use of the fed-batch technology. It is shown that the EnBase® technology provides an easy solution for controlled cultivation conditions in the microwell scale. Additionally the high cell densities obtained provide material for various analyses from the small culture volumes. Crucial factors for a high yield of the target protein in the actual case were (i the fusion partner, (ii the use of of a mineral salt medium together with the fed-batch technique, and (iii the preinduction growth rate. Finally, it is shown that the favorable conditions selected in the microwell plate and shake flask scales also work in the bioreactor. Conclusions Cultivation media and culture conditions have a major impact on the success of a screening procedure. Therefore the application of controlled cultivation conditions is pivotal. The consequent use of fed-batch

  2. Pro Spring Batch

    CERN Document Server

    Minella, Michael T

    2011-01-01

    Since its release, Spring Framework has transformed virtually every aspect of Java development including web applications, security, aspect-oriented programming, persistence, and messaging. Spring Batch, one of its newer additions, now brings the same familiar Spring idioms to batch processing. Spring Batch addresses the needs of any batch process, from the complex calculations performed in the biggest financial institutions to simple data migrations that occur with many software development projects. Pro Spring Batch is intended to answer three questions: *What? What is batch processing? What

  3. On-line monitoring of important organoleptic methyl-branched aldehydes during batch fermentation of starter culture Staphylococcus xylosus reveal new insight into their production in a model fermentation

    DEFF Research Database (Denmark)

    de Vos Petersen, Christian; Beck, Hans Christian; Lauritsen, Frants R

    2004-01-01

    of the very important flavor compounds 2-methylbutanal, 3-methylbutanal, and 2-methylpropanal with various growth conditions. We found that the aldehydes were present in the culture broth only as transient metabolites. They were produced in the exponential growth phase, reached a maximum concentration when......A small fermentor (55 mL) was directly interfaced to a membrane inlet mass spectrometer for continuous on-line monitoring of oxygen and volatile metabolites during batch fermentations of the starter culture Staphylococcus xylosus. Using this technique, we were able to correlate production...... the culture became anaerobic, and then they rapidly disappeared from the culture medium. This general pattern was observed for three different strains of S. xylosus and S. carnosus. Small amounts of inoculum or increased exposure to oxygen were found to favor production of the aldehydes as a result...

  4. Ethanol effect on batch and fed-batch Arthrospira platensis growth.

    Science.gov (United States)

    Bezerra, Raquel P; Matsudo, Marcelo C; Pérez Mora, Lina S; Sato, Sunao; de Carvalho, João C Monteiro

    2014-04-01

    The ability of Arthrospira platensis to use ethanol as a carbon and energy source was investigated by batch process and fed-batch process. A. platensis was cultivated under the effect of a single addition (batch process) and a daily pulse feeding (fed-batch process) of pure ethanol, at different concentrations, to evaluate cell concentration (X) and specific growth rate (μ). A marked increase was observed in the cell concentration of A. platensis in runs with ethanol addition when compared to control cultures without ethanol addition. The fed-batch process using an ethanol concentration of 38 mg L(-1) days(-1) reached the maximum cell concentration of 2,393 ± 241 mg L(-1), about 1.5-fold that obtained in the control culture. In all experiments, the maximum specific growth rate was observed in the early exponential phase of cell growth. In the fed-batch process, μ decreased more slowly than in the batch process and control culture, resulting in the highest final cell concentration. Ethanol can be used as a feasible carbon and energy source for A. platensis growth via a fed-batch process.

  5. Spring batch essentials

    CERN Document Server

    Rao, P Raja Malleswara

    2015-01-01

    If you are a Java developer with basic knowledge of Spring and some experience in the development of enterprise applications, and want to learn about batch application development in detail, then this book is ideal for you. This book will be perfect as your next step towards building simple yet powerful batch applications on a Java-based platform.

  6. In vitro batch cultures of gut microbiota from healthy and ulcerative colitis (UC) subjects suggest that sulphate-reducing bacteria levels are raised in UC and by a protein-rich diet.

    Science.gov (United States)

    Khalil, Nazeha A; Walton, Gemma E; Gibson, Glenn R; Tuohy, Kieran M; Andrews, Simon C

    2014-02-01

    Imbalances in gut microbiota composition during ulcerative colitis (UC) indicate a role for the microbiota in propagating the disorder. Such effects were investigated using in vitro batch cultures (with/without mucin, peptone or starch) inoculated with faecal slurries from healthy or UC patients; the growth of five bacterial groups was monitored along with short-chain fatty acid (SCFA) production. Healthy cultures gave two-fold higher growth and SCFA levels with up to ten-fold higher butyrate production. Starch gave the highest growth and SCFA production (particularly butyrate), indicating starch-enhanced saccharolytic activity. Sulphate-reducing bacteria (SRB) were the predominant bacterial group (of five examined) for UC inocula whereas they were the minority group for the healthy inocula. Furthermore, SRB growth was stimulated by peptone presumably due to the presence of sulphur-rich amino acids. The results suggest raised SRB levels in UC, which could contribute to the condition through release of toxic sulphide.

  7. SPS batch spacing optimisation

    CERN Document Server

    Velotti, F M; Carlier, E; Goddard, B; Kain, V; Kotzian, G

    2017-01-01

    Until 2015, the LHC filling schemes used the batch spac-ing as specified in the LHC design report. The maximumnumber of bunches injectable in the LHC directly dependson the batch spacing at injection in the SPS and hence onthe MKP rise time.As part of the LHC Injectors Upgrade project for LHCheavy ions, a reduction of the batch spacing is needed. In thisdirection, studies to approach the MKP design rise time of150ns(2-98%) have been carried out. These measurementsgave clear indications that such optimisation, and beyond,could be done also for higher injection momentum beams,where the additional slower MKP (MKP-L) is needed.After the successful results from 2015 SPS batch spacingoptimisation for the Pb-Pb run [1], the same concept wasthought to be used also for proton beams. In fact, thanksto the SPS transverse feed back, it was already observedthat lower batch spacing than the design one (225ns) couldbe achieved. For the 2016 p-Pb run, a batch spacing of200nsfor the proton beam with100nsbunch spacing wasreque...

  8. Batch-to-batch model improvement for cooling crystallization

    OpenAIRE

    Forgione , Marco; Birpoutsoukis , Georgios; Bombois , Xavier; Mesbah , Ali; Daudey , Peter; Van Den Hof , Paul

    2015-01-01

    International audience; Two batch-to-batch model update strategies for model-based control of batch cooling crystallization are presented. In Iterative Learning Control, a nominal process model is adjusted by a non-parametric, additive correction term which depends on the difference between the measured output and the model prediction in the previous batch. In Iterative Identification Control, the uncertain model parameters are iteratively estimated using the measured batch data. Due to the d...

  9. Heuristics for batching and sequencing in batch processing machines

    Directory of Open Access Journals (Sweden)

    Chuda Basnet

    2016-12-01

    Full Text Available In this paper, we discuss the “batch processing” problem, where there are multiple jobs to be processed in flow shops. These jobs can however be formed into batches and the number of jobs in a batch is limited by the capacity of the processing machines to accommodate the jobs. The processing time required by a batch in a machine is determined by the greatest processing time of the jobs included in the batch. Thus, the batch processing problem is a mix of batching and sequencing – the jobs need to be grouped into distinct batches, the batches then need to be sequenced through the flow shop. We apply certain newly developed heuristics to the problem and present computational results. The contributions of this paper are deriving a lower bound, and the heuristics developed and tested in this paper.

  10. CHANGES IN CHLOROPHYLL A FLUORENSCENCE AND PIGMENT RATIOS DURING DIFFERENT GROWTH PHASES OF A UNICELLULAR MARINE CHEATOSEROS (BACILLARIOPHYCEAE) IN BATCH CULTURE

    Science.gov (United States)

    Photosystem II reaction centers per cell decreased as the cultures began to decline. The degree of inactivation increased daily as the cell numbers continued to decrease. The concentration of chlorophyll a per cell and the ratio of the major accessory pigments to chlorophyll a (e...

  11. Prunus dulcis, Batch

    African Journals Online (AJOL)

    STORAGESEVER

    2010-06-07

    Jun 7, 2010 ... almond (Prunus dulcis, Batch) genotypes as revealed by PCR analysis. Yavar Sharafi1*, Jafar Hajilou1, Seyed AbolGhasem Mohammadi2, Mohammad Reza Dadpour1 and Sadollah Eskandari3. 1Department of Horticulture, Faculty of Agriculture, University of Tabriz, Tabriz, 5166614766, Iran.

  12. Comprehensive modeling and investigation of the effect of iron on the growth rate and lipid accumulation of Chlorella vulgaris cultured in batch photobioreactors.

    Science.gov (United States)

    Concas, Alessandro; Steriti, Alberto; Pisu, Massimo; Cao, Giacomo

    2014-02-01

    Recent works have shown that specific strains of microalgae are capable to simultaneously increase their growth rate and lipid content when cultured under suitable concentrations of iron. While these results are promising in view of the exploitation of microalgae for producing biofuels, to the best of our knowledge, no mathematical model capable to describe the effect of iron on lipid accumulation in microalgae, has been so far proposed. A comprehensive mathematical model describing the effect of iron on chlorophyll synthesis, nitrogen assimilation, growth rate and lipid accumulation in a freshwater strain of Chlorella vulgaris is then proposed in this work. Model results are successfully compared with experimental data which confirm the positive effect of growing iron concentrations on lipid productivity of C. vulgaris. Thus, the proposed model might represent a useful tool to optimize iron-based strategies to improve the lipid productivity of microalgal cultures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Endoplasmic Reticulum-Associated rht-PA Processing in CHO Cells: Influence of Mild Hypothermia and Specific Growth Rates in Batch and Chemostat Cultures

    OpenAIRE

    Vergara, Mauricio; Berrios, Julio; Mart?nez, Irene; D?az-Barrera, Alvaro; Acevedo, Cristian; Reyes, Juan G.; Gonzalez, Ramon; Altamirano, Claudia

    2015-01-01

    Background Chinese hamster ovary (CHO) cells are the main host for producing recombinant proteins with human therapeutic applications mainly because of their capability to perform proper folding and glycosylation processes. In addition, mild hypothermia is one of the main strategies for maximising the productivity of these systems. However, little information is available on the effect of culture temperature on the folding and degradation processes of recombinant proteins that takes place in ...

  14. Comparison of transcriptional heterogeneity of eight genes between batch Desulfovibrio vulgaris biofilm and planktonic culture at a single-cell level

    Directory of Open Access Journals (Sweden)

    Zhenhua eQi

    2016-04-01

    Full Text Available Sulfate-reducing bacteria (SRB biofilm formed on metal surfaces can change the physicochemical properties of metals and cause metal corrosion. To enhance understanding of differential gene expression in Desulfovibrio vulgaris under planktonic and biofilm growth modes, a single-cell based RT-qPCR approach was applied to determine gene expression levels of 8 selected target genes in four sets of the 31 individual cells isolated from each growth condition (i.e., biofilm formed on a stainless steel (SS) and planktonic cultures, exponential and stationary phases. The results showed obvious gene-expression heterogeneity for the target genes among D. vulgaris single cells of both biofilm and planktonic cultures. In addition, an increased gene-expression heterogeneity in the D. vulgaris biofilm when compared with the planktonic culture was also observed for seven out of eight selected genes, which may be contributing to the increased complexity in terms of structures and morphology in the biofilm. Moreover, the results showed up-regulation of DVU0281 gene encoding exopolysaccharide biosynthesis protein, and down-regulation of genes involved in energy metabolism (i.e., DVU0434 and DVU0588, stress responses (i.e., DVU2410 and response regulator (i.e., DVU3062 in the D. vulgaris biofilm cells. Finally, the gene (DVU2571 involved in iron transportation was found down-regulated, and two genes (DVU1340 and DVU1397 involved in ferric uptake repressor and iron storage were up-regulated in D. vulgaris biofilm, suggesting their possible roles in maintaining normal metabolism of the D. vulgaris biofilm under environments of high concentration of iron. This study showed that the single-cell based analysis could be a useful approach in deciphering metabolism of microbial biofilms.

  15. Modelling of Batch Process Operations

    DEFF Research Database (Denmark)

    Abdul Samad, Noor Asma Fazli; Cameron, Ian; Gani, Rafiqul

    2011-01-01

    Here a batch cooling crystalliser is modelled and simulated as is a batch distillation system. In the batch crystalliser four operational modes of the crystalliser are considered, namely: initial cooling, nucleation, crystal growth and product removal. A model generation procedure is shown that s...

  16. Effects of sulfur and monensin concentrations on in vitro dry matter disappearance, hydrogen sulfide production, and volatile fatty acid concentrations in batch culture ruminal fermentations.

    Science.gov (United States)

    Smith, D R; Dilorenzo, N; Leibovich, J; May, M L; Quinn, M J; Homm, J W; Galyean, M L

    2010-04-01

    Effects of monensin (MON) and S on in vitro fermentation and H(2)S production were evaluated in 2 experiments. In Exp. 1, 2 ruminally cannulated steers were adapted (>14 d) to a 75% concentrate diet [steam-flaked corn (SFC)-based], and ruminal fluid was collected approximately 4 h after feeding. Substrate composed (DM basis) of 85.2% SFC, 9% alfalfa hay, 5% cottonseed meal, and 0.8% urea was added with ruminal fluid and buffer to sealed 125-mL serum bottles to allow for gas collection. A Na(2)SO(4) solution was added to yield S equivalent to 0.2, 0.4, and 0.8% of substrate DM, and MON was included at 0, 2, 4, and 6 mg/L of culture volume. Bottle head-space gas was analyzed for H(2)S. No MON (P = 0.29) or MON x S interaction (P = 0.41) effects were detected for H(2)S production. Increasing S linearly increased (P molar proportions of acetate, butyrate, and the acetate:propionate ratio (A:P), and linearly increased (P 21 d) to a 75% concentrate diet (SFC base) that contained 15% (DM basis) wet corn distillers grains plus solubles (WDGS) and MON at 22 mg/kg of DM. In vitro substrate DM was composed of 75.4% SFC, 15% WDGS, 9% alfalfa hay, and 0.6% urea, and S and MON concentrations were the same as in Exp. 1. No effects of MON (P = 0.93) or the MON x S interaction (P = 0.99) were noted for H(2)S production; however, increasing S linearly increased (P molar proportions of acetate, butyrate, and A:P and linearly increased (P molar proportions were evident with MON regardless of S concentration.

  17. Antipathogenic activity of probiotics against Salmonella Typhimurium and Clostridium difficile in anaerobic batch culture systems: is it due to synergies in probiotic mixtures or the specificity of single strains?

    Science.gov (United States)

    Tejero-Sariñena, Sandra; Barlow, Janine; Costabile, Adele; Gibson, Glenn R; Rowland, Ian

    2013-12-01

    Probiotics are currently being investigated for prevention of infections caused by enteric pathogens. The aim of this in vitro study was to evaluate the influence of three single probiotics: Lactobacillus casei NCIMB 30185 (PXN 37), Lactobacillus acidophilus NCIMB 30184 (PXN 35), Bifidobacterium breve NCIMB 30180 (PXN 25) and a probiotic mixture containing the above strains plus twelve other strains belonging to the Lactobacillus, Bifidobacterium, Lactococcus, Streptococcus and Bacillus genera on the survival of Salmonella Typhimurium and Clostridium difficile using pH-controlled anaerobic batch cultures containing mixed faecal bacteria. Changes in relevant bacterial groups and effects of probiotic addition on survival of the two pathogens were assessed over 24 h. Quantitative analysis of bacterial populations revealed that there was a significant increase in lactobacilli and/or bifidobacteria numbers, depending on probiotic addition, compared with the control (no added probiotic). There was also a significant reduction in S. Typhimurium and C. difficile numbers in the presence of certain probiotics compared with controls. Of the probiotic treatments, two single strains namely L. casei NCIMB 30185 (PXN 37), and B. breve NCIMB 30180 (PXN 25) were the most potent in reducing the numbers of S. Typhimurium and C. difficile. In addition, the supplementation with probiotics into the systems influenced some fermentations parameters. Acetate was found in the largest concentrations in all vessels and lactate and formate were generally detected in higher amounts in vessels with probiotic addition compared to controls. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. CONVERSION OF PINEAPPLE JUICE WASTE INTO LACTIC ACID IN BATCH AND FED – BATCH FERMENTATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Abdullah Mochamad Busairi

    2012-01-01

    Full Text Available Pineapple juice waste contains valuable components, which are mainly sucrose, glucose, and fructose. Recently, lactic acid has been considered to be an important raw material for the production of biodegradable lactide polymer. The fermentation experiments were carried out in a 3 litres fermentor (Biostat B Model under anaerobic condition with stirring speed of 50 rpm, temperature at 40oC, and pH of 6.00. Effect of feed concentration on lactic acid production, bacterial growth, substrate utilisation and productivity was studied. The results obtained from fed- batch culture fermentation showed that the maximum lactic acid productivity was 0.44 g/L.h for feed concentration of 90 g/L at 48 hours. Whereas the lactic acid productivity obtained from fed-batch culture was twice and half fold higher than that of batch culture productivity.  Buangan jus nanas mengandung komponen yang berharga terutama sukrosa, glukosa, dan fruktosa. Asam laktat adalah bahan baku yang terbaru dan penting untuk dibuat sebagai polimer laktat yang dapat terdegradasi oleh lingkungan. Percobaan dilakukan pada fermentor 3 liter (Model Biostat B di bawah kondisi anaerob dengan kecepatan pengadukan 50 rpm, temperatur 40oC, dan pH 6,00. Pengaruh konsentrasi umpan terhadap produksi asam laktat, pertumbuhan mikroba, pengggunaan substrat dan produktivitas telah dipelajari. Hasil yang didapatkan pada fermentasi dengan menggunakan sistem fed-batch menunjukkan bahwa produktivitas asam laktat maksimum adalah 0.44 g/L,jam dengan konsentrasi umpan, 90 g/L pada waktu 48 jam. Bahkan produktivitas asam laktat yang didapat pada kultur fed-batch lebih tinggi 2,5 kali dari pada proses menggunakan sistem batch

  19. Progressing batch hydrolysis process

    Science.gov (United States)

    Wright, John D.

    1986-01-01

    A progressive batch hydrolysis process for producing sugar from a lignocellulosic feedstock, comprising passing a stream of dilute acid serially through a plurality of percolation hydrolysis reactors charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the cellulose component of the feedstock to glucose; cooling said dilute acid stream containing glucose, after exiting the last percolation hydrolysis reactor, then feeding said dilute acid stream serially through a plurality of prehydrolysis percolation reactors, charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the hemicellulose component of said feedstock to glucose; and cooling the dilute acid stream containing glucose after it exits the last prehydrolysis reactor.

  20. Control and Optimization of Batch Chemical Processes

    OpenAIRE

    Rohani, Sohrab; Chhabra, Raj; Bonvin, Dominique; François, Grégory

    2017-01-01

    A batch process is characterized by the repetition of time-varying operations of finite duration. Due to the repetition, there are two independent “time” variables, namely, the run time during a batch and the batch index. Accordingly, the control and optimization objectives can be defined for a given batch or over several batches. This chapter describes the various control and optimization strategies available for the operation of batch processes. These include online and run-to-run control o...

  1. Data-driven batch schuduling

    Energy Technology Data Exchange (ETDEWEB)

    Bent, John [Los Alamos National Laboratory; Denehy, Tim [GOOGLE; Arpaci - Dusseau, Remzi [UNIV OF WISCONSIN; Livny, Miron [UNIV OF WISCONSIN; Arpaci - Dusseau, Andrea C [NON LANL

    2009-01-01

    In this paper, we develop data-driven strategies for batch computing schedulers. Current CPU-centric batch schedulers ignore the data needs within workloads and execute them by linking them transparently and directly to their needed data. When scheduled on remote computational resources, this elegant solution of direct data access can incur an order of magnitude performance penalty for data-intensive workloads. Adding data-awareness to batch schedulers allows a careful coordination of data and CPU allocation thereby reducing the cost of remote execution. We offer here new techniques by which batch schedulers can become data-driven. Such systems can use our analytical predictive models to select one of the four data-driven scheduling policies that we have created. Through simulation, we demonstrate the accuracy of our predictive models and show how they can reduce time to completion for some workloads by as much as 80%.

  2. Adaptive Batch Mode Active Learning.

    Science.gov (United States)

    Chakraborty, Shayok; Balasubramanian, Vineeth; Panchanathan, Sethuraman

    2015-08-01

    Active learning techniques have gained popularity to reduce human effort in labeling data instances for inducing a classifier. When faced with large amounts of unlabeled data, such algorithms automatically identify the exemplar and representative instances to be selected for manual annotation. More recently, there have been attempts toward a batch mode form of active learning, where a batch of data points is simultaneously selected from an unlabeled set. Real-world applications require adaptive approaches for batch selection in active learning, depending on the complexity of the data stream in question. However, the existing work in this field has primarily focused on static or heuristic batch size selection. In this paper, we propose two novel optimization-based frameworks for adaptive batch mode active learning (BMAL), where the batch size as well as the selection criteria are combined in a single formulation. We exploit gradient-descent-based optimization strategies as well as properties of submodular functions to derive the adaptive BMAL algorithms. The solution procedures have the same computational complexity as existing state-of-the-art static BMAL techniques. Our empirical results on the widely used VidTIMIT and the mobile biometric (MOBIO) data sets portray the efficacy of the proposed frameworks and also certify the potential of these approaches in being used for real-world biometric recognition applications.

  3. BatchJS: Implementing Batches in JavaScript

    NARCIS (Netherlands)

    D. Kasemier

    2014-01-01

    htmlabstractNone of our popular programming languages know how to handle distribution well. Yet our programs interact more and more with each other and our data resorts in databases and web services. Batches are a new addition to languages that can finally bring native support for distribution to

  4. Analysis of Adiabatic Batch Reactor

    Directory of Open Access Journals (Sweden)

    Erald Gjonaj

    2016-05-01

    Full Text Available A mixture of acetic anhydride is reacted with excess water in an adiabatic batch reactor to form an exothermic reaction. The concentration of acetic anhydride and the temperature inside the adiabatic batch reactor are calculated with an initial temperature of 20°C, an initial temperature of 30°C, and with a cooling jacket maintaining the temperature at a constant of 20°C. The graphs of the three different scenarios show that the highest temperatures will cause the reaction to occur faster.

  5. NDA BATCH 2002-02

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence Livermore National Laboratory

    2009-12-09

    QC sample results (daily background checks, 20-gram and 100-gram SGS drum checks) were within acceptable criteria established by WIPP's Quality Assurance Objectives for TRU Waste Characterization. Replicate runs were performed on 5 drums with IDs LL85101099TRU, LL85801147TRU, LL85801109TRU, LL85300999TRU and LL85500979TRU. All replicate measurement results are identical at the 95% confidence level as established by WIPP criteria. Note that the batch covered 5 weeks of SGS measurements from 23-Jan-2002 through 22-Feb-2002. Data packet for SGS Batch 2002-02 generated using gamma spectroscopy with the Pu Facility SGS unit is technically reasonable. All QC samples are in compliance with established control limits. The batch data packet has been reviewed for correctness, completeness, consistency and compliance with WIPP's Quality Assurance Objectives and determined to be acceptable. An Expert Review was performed on the data packet between 28-Feb-02 and 09-Jul-02 to check for potential U-235, Np-237 and Am-241 interferences and address drum cases where specific scan segments showed Se gamma ray transmissions for the 136-keV gamma to be below 0.1 %. Two drums in the batch showed Pu-238 at a relative mass ratio more than 2% of all the Pu isotopes.

  6. NGBAuth - Next Generation Batch Authentication for long running batch jobs.

    CERN Document Server

    Juto, Zakarias

    2015-01-01

    This document describes the prototyping of a new solution for the CERN batch authentication of long running jobs. While the job submission requires valid user credentials, these have to be renewed due to long queuing and execution times. Described within is a new system which will guarantee a similar level of security as the old LSFAuth while simplifying the implementation and the overall architecture. The new system is being built on solid, streamlined and tested components (notably OpenSSL) and a priority has been to make it more generic in order to facilitate the evolution of the current system such as for the expected migration from LSF to Condor as backend batch system.

  7. PROOF on a Batch System

    International Nuclear Information System (INIS)

    Behrenhoff, W; Ehrenfeld, W; Samson, J; Stadie, H

    2011-01-01

    The 'parallel ROOT facility' (PROOF) from the ROOT framework provides a mechanism to distribute the load of interactive and non-interactive ROOT sessions on a set of worker nodes optimising the overall execution time. While PROOF is designed to work on a dedicated PROOF cluster, the benefits of PROOF can also be used on top of another batch scheduling system with the help of temporary per user PROOF clusters. We will present a lightweight tool which starts a temporary PROOF cluster on a SGE based batch cluster or, via a plugin mechanism, e.g. on a set of bare desktops via ssh. Further, we will present the result of benchmarks which compare the data throughput for different data storage back ends available at the German National Analysis Facility (NAF) at DESY.

  8. Differences in stationary-phase cells of a commercial Saccharomyces cerevisiae wine yeast grown in aerobic and microaerophilic batch cultures assessed by electric particle analysis, light diffraction and flow cytometry.

    Science.gov (United States)

    Portell, X; Ginovart, M; Carbó, R; Vives-Rego, J

    2011-01-01

    We applied electric particle analysis, light diffraction and flow cytometry to obtain information on the morphological changes during the stationary phase of Saccharomyces cerevisiae. The reported analyses of S. cerevisiae populations were obtained under two different conditions, aerobic and microaerophilic, at 27°C. The samples analysed were taken at between 20 and 50 h from the beginning of culture. To assist in the interpretation of the observed distributions a complexity index was used. The aerobically grown culture reached significantly greater cell density. Under these conditions, the cell density experienced a much lower reduction (3%) compared with the microaerophilic conditions (30%). Under aerobic conditions, the mean cell size determined by both electric particle analysis and light diffraction was lower and remained similar throughout the experiment. Under microaerophilic conditions, the mean cell size determined by electric particle analysis decreased slightly as the culture progressed through the stationary phase. Forward and side scatter distributions revealed two cell subpopulations under both growth conditions. However, in the aerobic growing culture the two subpopulations were more separated and hence easier to distinguish. The distributions obtained with the three experimental techniques were analysed using the complexity index. This analysis suggested that a complexity index is a good descriptor of the changes that take place in a yeast population in the stationary phase, and that it aids in the discussion and understanding of the implications of these distributions obtained by these experimental techniques.

  9. Family based dispatching with batch availability

    NARCIS (Netherlands)

    van der Zee, D.J.

    2013-01-01

    Family based dispatching rules seek to lower set-up frequencies by grouping (batching) similar types of jobs for joint processing. Hence shop flow times may be improved, as less time is spent on set-ups. Motivated by an industrial project we study the control of machines with batch availability,

  10. Nucleation and crystal growth in batch crystallizers

    NARCIS (Netherlands)

    Janse, A.H.

    1977-01-01

    The aim of the present work is to gain knowledge of the mechanism of formation of the crystal size distribution in batch crystallizers in order to give directives for design and operation of batch crystallizers. The crystal size distribution is important for the separation of crystals and mother

  11. Automatic endpoint determination for batch tea dryers

    NARCIS (Netherlands)

    Temple, S.J.; Boxtel, van A.J.B.

    2001-01-01

    A laboratory batch fluid-bed dryer was developed for handling small samples of tea for experimental batch manufacture, and this dryer required a means of stopping drying when the process was complete. A control system was devised which requires only the initial weight of the sample to be entered

  12. Supervision of Fed-Batch Fermentations

    DEFF Research Database (Denmark)

    Gregersen, Lars; Jørgensen, Sten Bay

    1999-01-01

    Process faults may be detected on-line using existing measurements based upon modelling that is entirely data driven. A multivariate statistical model is developed and used for fault diagnosis of an industrial fed-batch fermentation process. Data from several (25) batches are used to develop a mo...

  13. Cultural

    Science.gov (United States)

    Wilbur F. LaPage

    1971-01-01

    A critical look at outdoor recreation research and some underlying premises. The author focuses on the concept of culture as communication and how it influences our perception of problems and our search for solutions. Both outdoor recreation and science are viewed as subcultures that have their own bodies of mythology, making recreation problems more difficult to...

  14. Uneven batch data alignment with application to the control of batch end-product quality.

    Science.gov (United States)

    Wan, Jian; Marjanovic, Ognjen; Lennox, Barry

    2014-03-01

    Batch processes are commonly characterized by uneven trajectories due to the existence of batch-to-batch variations. The batch end-product quality is usually measured at the end of these uneven trajectories. It is necessary to align the time differences for both the measured trajectories and the batch end-product quality in order to implement statistical process monitoring and control schemes. Apart from synchronizing trajectories with variable lengths using an indicator variable or dynamic time warping, this paper proposes a novel approach to align uneven batch data by identifying short-window PCA&PLS models at first and then applying these identified models to extend shorter trajectories and predict future batch end-product quality. Furthermore, uneven batch data can also be aligned to be a specified batch length using moving window estimation. The proposed approach and its application to the control of batch end-product quality are demonstrated with a simulated example of fed-batch fermentation for penicillin production. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  15. cultural

    Directory of Open Access Journals (Sweden)

    Irene Kreutz

    2006-01-01

    Full Text Available Es un estudio cualitativo que adoptó como referencial teorico-motodológico la antropología y la etnografía. Presenta las experiencias vivenciadas por mujeres de una comunidad en el proceso salud-enfermedad, con el objetivo de comprender los determinantes sócio-culturales e históricos de las prácticas de prevención y tratamiento adoptados por el grupo cultural por medio de la entrevista semi-estructurada. Los temas que emergieron fueron: la relación entre la alimentación y lo proceso salud-enfermedad, las relaciones con el sistema de salud oficial y el proceso salud-enfermedad y lo sobrenatural. Los dados revelaron que los moradores de la comunidad investigada tienen un modo particular de explicar sus procedimientos terapéuticos. Consideramos que es papel de los profesionales de la salud en sus prácticas, la adopción de abordajes o enfoques que consideren al individuo en su dimensión sócio-cultural e histórica, considerando la enorme diversidad cultural en nuestro país.

  16. Fed-batch bioreactor process with recombinant Saccharomyces cerevisiae growing on cheese whey

    Directory of Open Access Journals (Sweden)

    R. Rech

    2006-12-01

    Full Text Available Saccharomyces cerevisiae strain W303 was transformed with two yeast integrative plasmids containing Kluyveromyces lactis LAC4 and LAC12 genes that codify beta-galactosidase and lactose permease respectively. The BLR030 recombinant strain was selected due to its growth and beta-galactosidase production capacity. Different culture media based on deproteinized cheese whey (DCW were tested and the best composition (containing DCW, supplemented with yeast extract 1 %, and peptone 3 % (w/v was chosen for bioreactor experiments. Batch, and fed-batch cultures with linear ascending feeding for 25 (FB25, 35 (FB35, and 50 (FB50 hours, were performed. FB35 and FB50 produced the highest beta-galactosidase specific activities (around 1,800 U/g cells, and also the best productivities (180 U/L.h. Results show the potential use of fed-batch cultures of recombinant S. cerevisiae on industrial applications using supplemented whey as substrate.

  17. Simulation of kefiran production of Lactobacillus kefiranofaciens JCM6985 in fed-batch reactor

    Directory of Open Access Journals (Sweden)

    Benjamas Cheirsilp

    2006-09-01

    Full Text Available Kinetics of kefiran production by Lactobacillus kefiranofaciens JCM6985 has been investigated. A mathematical model taking into account the mechanism of exopolysaccharides production has been developed. Experiments were carried out in batch mode in order to obtain kinetic model parameters that were further applied to simulate fed-batch processes. A simplification of parameter fitting was also introduced for complicated model. The fed-batch mode allows more flexibility in the control of the substrate concentration as well as product concentration in the culture medium. Based on the batch mathematical model, a fed-batch model was developed and simulations were done. Simulation study in fed-batch reactor resulted that substrate concentration should be controlled at 20 g L-1 to soften the product inhibition and also to stimulate utilization of substrate and its hydrolysate. From simulation results of different feeding techniques, it was found that constant feeding at 0.01 L h-1 was most practically effective feeding profile for exopolysaccharides production in fed-batch mode.

  18. LSF usage for batch at CERN

    CERN Multimedia

    Schwickerath, Ulrich

    2007-01-01

    Contributed poster to the CHEP07. Original abstract: LSF 7, the latest version of Platform's batch workload management system, addresses many issues which limited the ability of LSF 6.1 to support large scale batch farms, such as the lxbatch service at CERN. In this paper we will present the status of the evaluation and deployment of LSF 7 at CERN, including issues concerning the integration of LSF 7 with the gLite grid middleware suite and, in particular, the steps taken to endure an efficient reporting of the local batch system status and usage to the Grid Information System

  19. Optimized fed-batch fermentation of Scheffersomyces stipitis for efficient production of ethanol from hexoses and pentoses.

    Science.gov (United States)

    Unrean, Pornkamol; Nguyen, Nhung H A

    2013-03-01

    Scheffersomyces stipitis was cultivated in an optimized, controlled fed-batch fermentation for production of ethanol from glucose-xylose mixture. Effect of feed medium composition was investigated on sugar utilization and ethanol production. Studying influence of specific cell growth rate on ethanol fermentation performance showed the carbon flow towards ethanol synthesis decreased with increasing cell growth rate. The optimum specific growth rate to achieve efficient ethanol production performance from a glucose-xylose mixture existed at 0.1 h(-1). With these optimized feed medium and cell growth rate, a kinetic model has been utilized to avoid overflow metabolism as well as to ensure a balanced feeding of nutrient substrate in fed-batch system. Fed-batch culture with feeding profile designed based on the model resulted in high titer, yield, and productivity of ethanol compared with batch cultures. The maximal ethanol concentration was 40.7 g/L. The yield and productivity of ethanol production in the optimized fed-batch culture was 1.3 and 2 times higher than those in batch culture. Thus, higher efficiency ethanol production was achieved in this study through fed-batch process optimization. This strategy may contribute to an improvement of ethanol fermentation from lignocellulosic biomass by S. stipitis on the industrial scale.

  20. Improvement of the butanol production selectivity and butanol to acetone ratio (B:A) by addition of electron carriers in the batch culture of a new local isolate of Clostridium acetobutylicum YM1.

    Science.gov (United States)

    Nasser Al-Shorgani, Najeeb Kaid; Kalil, Mohd Sahaid; Wan Yusoff, Wan Mohtar; Shukor, Hafiza; Hamid, Aidil Abdul

    2015-12-01

    Improvement in the butanol production selectivity or enhanced butanol:acetone ratio (B:A) is desirable in acetone-butanol-ethanol (ABE) fermentation by Clostridium strains. In this study, artificial electron carriers were added to the fermentation medium of a new isolate of Clostridium acetobutylicum YM1 in order to improve the butanol yield and B:A ratio. The results revealed that medium supplementation with electron carriers changed the metabolism flux of electron and carbon in ABE fermentation by YM1. A decrease in acetone production, which subsequently improved the B:A ratio, was observed. Further improvement in the butanol production and B:A ratios were obtained when the fermentation medium was supplemented with butyric acid. The maximum butanol production (18.20 ± 1.38 g/L) was gained when a combination of methyl red and butyric acid was added. Although the addition of benzyl viologen (0.1 mM) and butyric acid resulted in high a B:A ratio of 16:1 (800% increment compared with the conventional 2:1 ratio), the addition of benzyl viologen to the culture after 4 h resulted in the production of 18.05 g/L butanol. Manipulating the metabolic flux to butanol through the addition of electron carriers could become an alternative strategy to achieve higher butanol productivity and improve the B:A ratio. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Multi-objective optimization of glycopeptide antibiotic production in batch and fed batch processes

    DEFF Research Database (Denmark)

    Maiti, Soumen K.; Eliasson Lantz, Anna; Bhushan, Mani

    2011-01-01

    as pareto optimal solutions. These solutions gives flexibility in evaluating the trade-offs and selecting the most suitable operating policy. Here, ε-constraint approach was used to generate the pareto solutions for two objectives: product concentration and product per unit cost of media, for batch and fed...... batch operations using process model for Amycolatopsis balhimycina, a glycopeptide antibiotic producer. This resulted in a set of several pareto optimal solutions with the two objectives ranging from (0.75gl−1, 3.97g$-1) to (0.44gl−1, 5.19g$-1) for batch and from (1.5gl−1, 5.46g$-1) to (1.1gl−1, 6.34g......$-1) for fed batch operations. One pareto solution each for batch and for fed batch mode was experimentally validated....

  2. Crescimento e composição química de dez espécies de microalgas marinhas em cultivos estanques Growth and chemical composition of ten species of marine microalgae in batch cultures

    Directory of Open Access Journals (Sweden)

    Viviane Borges-Campos

    2010-02-01

    Full Text Available Microalgas apresentam diversas aplicações econômicas consagradas, como usos na aquicultura e na indústria de alimentos, havendo buscas por novos usos, como a geração de biomassa para produção de biodiesel. As possíveis aplicações estão diretamente relacionadas à taxa de crescimento e ao perfil químico das espécies. Assim, a seleção de condições que promovam o aproveitamento da biomassa algácea é fundamental para sua utilização econômica. Neste estudo, 10 espécies de microalgas marinhas foram cultivadas e comparadas quanto ao crescimento e à composição química. Foram observadas diferenças na velocidade de crescimento, com espécies de células menores crescendo mais rapidamente que microalgas maiores. Teores de proteínas, carboidratos, lipídeos e pigmentos fotossintetizantes variaram amplamente entre as espécies, sendo as proteínas as substâncias mais abundantes. Todas as espécies apresentaram concentrações de ácidos aminados semelhantes, sendo os ácidos aspártico e glutâmico os mais abundantes. Algumas espécies apresentaram altas concentrações de ácidos graxos de importância econômica, como os ácidos eicosapentaenoico e linoleico. O balanço dos resultados indica que há poucas tendências gerais relacionadas a grandes grupos taxonômicos.Microalgae show several economic applications, such as uses in aquaculture and in food industry, and there is a search for new uses, such as the biomass production to convert into biodiesel. All possible applications are directly linked to growth rate and the chemical profile of the species. Thus, the selection of conditions to promote a better use of algal biomass is fundamental for economic purposes. In this study, 10 species of marine microalgae were cultured and compared for growth and chemical composition. Remarkable differences of growth performance have been observed, with species with small cell volumes growing faster than species with large cell volumes

  3. 40 CFR 63.1321 - Batch process vents provisions.

    Science.gov (United States)

    2010-07-01

    ... the reference control technology requirements for Group 1 batch process vents in § 63.1322, the.... Owners or operators of all Group 2 batch process vents shall comply with the applicable reference control....1323 is not required. (2) For batch process vents and aggregate batch vent streams, the control...

  4. Batch anaerobic methanogenesis of phenolic coal conversion waste water

    Energy Technology Data Exchange (ETDEWEB)

    Fedorak, P.M.; Hrudey, S.E.

    1985-01-01

    The amenability to anaerobic treatment of a phenolic wastewater from a coal conversion pilot plant was investigated in batch experiments using the Hungate serum bottle technique, using cultures containing unmodified wastewater, wastewater extracted with ether, and pre-reduced, reconstituted wastewater. Data are given on the composition of the wastewater and the concentrations of various phenolic compounds present. Wastewater concentrations of 2, 4 and 6% (vol/vol) increased methane production compared with control cultures, but higher concentrations of the wastewater were inhibitory. Further experiments indicated that the inhibitory components were ether-extractable, but were not any of the major phenolic compounds present in the original wastewater. There was also evidence to confirm that m-cresol was amenable to anaerobic degradation.

  5. Energy efficiency of batch and semi-batch (CCRO) reverse osmosis desalination.

    Science.gov (United States)

    Warsinger, David M; Tow, Emily W; Nayar, Kishor G; Maswadeh, Laith A; Lienhard V, John H

    2016-12-01

    As reverse osmosis (RO) desalination capacity increases worldwide, the need to reduce its specific energy consumption becomes more urgent. In addition to the incremental changes attainable with improved components such as membranes and pumps, more significant reduction of energy consumption can be achieved through time-varying RO processes including semi-batch processes such as closed-circuit reverse osmosis (CCRO) and fully-batch processes that have not yet been commercialized or modelled in detail. In this study, numerical models of the energy consumption of batch RO (BRO), CCRO, and the standard continuous RO process are detailed. Two new energy-efficient configurations of batch RO are analyzed. Batch systems use significantly less energy than continuous RO over a wide range of recovery ratios and source water salinities. Relative to continuous RO, models predict that CCRO and batch RO demonstrate up to 37% and 64% energy savings, respectively, for brackish water desalination at high water recovery. For batch RO and CCRO, the primary reductions in energy use stem from atmospheric pressure brine discharge and reduced streamwise variation in driving pressure. Fully-batch systems further reduce energy consumption by not mixing streams of different concentrations, which CCRO does. These results demonstrate that time-varying processes can significantly raise RO energy efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Model Penjadwalan Batch Multi Item dengan Dependent Processing Time

    Directory of Open Access Journals (Sweden)

    Sukoyo Sukoyo

    2010-01-01

    Full Text Available This paper investigates a development of single machine batch scheduling for multi items with dependent processing time. The batch scheduling problem is to determine simultaneously number of batch (N, which item and its size allocated for each batch, and processing sequences of resulting batches. We use total actual flow time as the objective of schedule performance. The multi item batch scheduling problem could be formulated into a biner-integer nonlinear programming model because the number of batch should be in integer value, the allocation of items to resulting batch need binary values, and also there are some non-linearity on objective function and constraint due to the dependent processing time. By applying relaxation on the decision variable of number of batch (N as parameter, a heuristic procedure could be applied to find solution of the single machine batch scheduling problem for multi items.

  7. Systematic Methodology for Reproducible Optimizing Batch Operation

    DEFF Research Database (Denmark)

    Bonné, Dennis; Jørgensen, Sten Bay

    2006-01-01

    contribution furthermore presents how the asymptotic convergence of Iterative Learning Control is combined with the closed-loop performance of Model Predictive Control to form a robust and asymptotically stable optimal controller for ensuring reliable and reproducible operation of batch processes....... This controller may also be used for Optimizing control. The modeling and control performance is demonstrated on a fed-batch protein cultivation example. The presented methodologies lend themselves directly for application as Process Analytical Technologies (PAT).......This contribution presents a systematic methodology for rapid acquirement of discrete-time state space model representations of batch processes based on their historical operation data. These state space models are parsimoniously parameterized as a set of local, interdependent models. The present...

  8. Fuzzy batch controller for granular materials

    Directory of Open Access Journals (Sweden)

    Zamyatin Nikolaj

    2018-01-01

    Full Text Available The paper focuses on batch control of granular materials in production of building materials from fluorine anhydrite. Batching equipment is intended for smooth operation and timely feeding of supply hoppers at a required level. Level sensors and a controller of an asynchronous screw drive motor are used to control filling of the hopper with industrial anhydrite binders. The controller generates a required frequency and ensures required productivity of a feed conveyor. Mamdani-type fuzzy inference is proposed for controlling the speed of the screw that feeds mixture components. As related to production of building materials based on fluoride anhydrite, this method is used for the first time. A fuzzy controller is proven to be effective in controlling the filling level of the supply hopper. In addition, the authors determined optimal parameters of the batching process to ensure smooth operation and production of fluorine anhydrite materials of specified properties that can compete with gypsum-based products.

  9. Optimization of fed-batch fermentation for a staphylokinase-hirudin ...

    African Journals Online (AJOL)

    Then we replace the R-medium with the complex medium which contains yeast extract and tryptone in fed-batch fermentation based on the GMYT as feeding medium. The results showed that the total protein and STH in the complex medium were 6.29 and 7.76 fold of those in R-medium culturing condition, respectively.

  10. Optimal control of a batch bioreactor for the production of a novel ...

    African Journals Online (AJOL)

    related plant diseases, however, research and development of biological prevention and controlling are of great importance. In this work, the effects of pH and temperature on cell growth and CF66I formation in batch culture of Burkholderia cepecia ...

  11. Production and partial characterization of alkaline feruloyl esterases by Fusarium oxysporum during submerged batch cultivation

    DEFF Research Database (Denmark)

    Topakas, E.; Christakopoulos, Paul

    2004-01-01

    Production of feruloyl esterases (FAEs) by Fusarium oxysporum was enhanced by optimization of initial pH of the culture medium, the type and concentration of nitrogen and carbon source. Submerged batch cultivation in a laboratory bioreactor (17 1) produced activity at 82 nkat g(-1) dry substrate...

  12. Control of Batch Processes Based on Hierarchical Petri Nets

    OpenAIRE

    YAJIMA, Tomoyuki; ITO, Takashi; HASHIZUME, Susumu; KURIMOTO, Hidekazu; ONOGI, Katsuaki

    2004-01-01

    A batch process is a typical concurrent system in which multiple interacting tasks are carried out in parallel on several batches at the same time. A major difficulty in designing a batch control system is the lack of modeling techniques. This paper aims at developing a method of constructing batch control system models in a hierarchical manner and operating batch processes using the constructed models. For this purpose, it first defines process and plant specifications described by partial l...

  13. A fast approach to determine a fed batch feeding profile for recombinant Pichia pastoris strains

    Directory of Open Access Journals (Sweden)

    Herwig Christoph

    2011-10-01

    Full Text Available Abstract Background The microorganism Pichia pastoris is a commonly used microbial host for the expression of recombinant proteins in biotechnology and biopharmaceutical industry. To speed up process development, a fast methodology to determine strain characteristic parameters, which are needed to subsequently set up fed batch feeding profiles, is required. Results Here, we show the general applicability of a novel approach to quantify a certain minimal set of bioprocess-relevant parameters, i.e. the adaptation time of the culture to methanol, the specific substrate uptake rate during the adaptation phase and the maximum specific substrate uptake rate, based on fast and easy-to-do batch cultivations with repeated methanol pulses in a batch culture. A detailed analysis of the adaptation of different P. pastoris strains to methanol was conducted and revealed that each strain showed very different characteristics during adaptation, illustrating the need of individual screenings for an optimal parameter definition during this phase. Based on the results obtained in batch cultivations, dynamic feeding profiles based on the specific substrate uptake rate were employed for different P. pastoris strains. In these experiments the maximum specific substrate uptake rate, which had been defined in batch experiments, also represented the upper limit of methanol uptake, underlining the validity of the determined process-relevant parameters and the overall experimental strategy. Conclusion In this study, we show that a fast approach to determine a minimal set of strain characteristic parameters based on easy-to-do batch cultivations with methanol pulses is generally applicable for different P. pastoris strains and that dynamic fed batch strategies can be designed on the specific substrate uptake rate without running the risk of methanol accumulation.

  14. Improvement of xanthan gum production in batch culture using ...

    African Journals Online (AJOL)

    Yomi

    2011-12-21

    Dec 21, 2011 ... In this study, the effect of acetic acid on the improvement of xanthan biosynthesis by Xanthomonas campestris b82 was investigated. ... shown that citric acid that is used as a chelating agent in medium to prevent the ... pH value close to the acid pKa) in the medium in one pulse, 30 h after incubation (at the ...

  15. Medium optimization for protopectinase production by batch culture ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-11

    Nov 11, 2011 ... African Journal of Biotechnology Vol. ... protopectinase production were reported to be sucrose, yeast extracts and ammonium acetate by the ... influenced by medium compositions such as carbon sources, nitrogen sources, growth factors and inorganic salts. When compared with conventional method,.

  16. Improvement of xanthan gum production in batch culture using ...

    African Journals Online (AJOL)

    In this study, the effect of acetic acid on the improvement of xanthan biosynthesis by Xanthomonas campestris b82 was investigated. Various concentrations of acetic acid from 1.56 to 6.25 mM were added to the medium in the exponential and stationary phase of growth. Analytical studies revealed a considerable increase ...

  17. Monitoring of batch processes using spectroscopy

    NARCIS (Netherlands)

    Gurden, S. P.; Westerhuis, J. A.; Smilde, A. K.

    2002-01-01

    There is an increasing need for new techniques for the understanding, monitoring and the control of batch processes. Spectroscopy is now becoming established as a means of obtaining real-time, high-quality chemical information at frequent time intervals and across a wide range of industrial

  18. Exploring the Transition From Batch to Online

    DEFF Research Database (Denmark)

    Jørgensen, Anker Helms

    2010-01-01

    The transition from using computers in batch mode with punch cards, paper tape, piles of print, and lengthy response times to online mode by way of the video display terminal took place in most organizations in the 1970s and 1980s. The video display terminal was a significant forerunner...

  19. Estimation of the Maximum Theoretical Productivity of Fed-Batch Bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Bomble, Yannick J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); St. John, Peter C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Crowley, Michael F [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-18

    A key step towards the development of an integrated biorefinery is the screening of economically viable processes, which depends sharply on the yields and productivities that can be achieved by an engineered microorganism. In this study, we extend an earlier method which used dynamic optimization to find the maximum theoretical productivity of batch cultures to explicitly include fed-batch bioreactors. In addition to optimizing the intracellular distribution of metabolites between cell growth and product formation, we calculate the optimal control trajectory of feed rate versus time. We further analyze how sensitive the productivity is to substrate uptake and growth parameters.

  20. Development of Fed-Batch Cultivation Strategy for Efficient Oxytetracycline Production by Streptomyces rimosus at Semi-Industrial Scale

    Directory of Open Access Journals (Sweden)

    Elsayed Ahmed Elsayed

    2015-10-01

    Full Text Available ABSTRACTOxytetracycline (OTC production byStreptomyces rimosus was studied in batch and fed-batch cultures in shake flask and bioreactor levels using semi-defined medium. First, the effect of glucose concentration on OTC production and growth kinetics was studied intensively. The optimal glucose concentration in the medium was 15 g/L. Higher glucose concentrations supported higher biomass production by less volumetric and specific antibiotic production. Based on these data, cultivations were carried out at semi-industrial scale 15 L bioreactor in batch culture. At bioreactor level, cell growth and OTC production were higher compared to the shake flask culture by about 18 and 38%, respectively. During the bioreactor cultivation, glucose was totally consumed after only 48 h. Thus, the fed-batch experiment was designed for mono-glucose feeding and complete medium feeding to increase the OTC production by overcoming carbon limitations. The results showed that the fed-batch culture using constant glucose feeding strategy with rate of 0.33 g/L/h produced 1072 mg/L. On the other hand, feeding with complete medium resulted in 45% higher biomass but less OTC production by about 26% compared to mono-glucose fed culture. A further improvement in this process was achieved in by keeping the dissolved oxygen (DO value at 60% saturation by cascading the glucose feeding pump with the DO controller. The later feeding strategy resulted in higher antibiotic production, reaching 1414 mg/L after 108 h.

  1. Monte Carlo simulation on kinetics of batch and semi-batch free radical polymerization

    KAUST Repository

    Shao, Jing

    2015-10-27

    Based on Monte Carlo simulation technology, we proposed a hybrid routine which combines reaction mechanism together with coarse-grained molecular simulation to study the kinetics of free radical polymerization. By comparing with previous experimental and simulation studies, we showed the capability of our Monte Carlo scheme on representing polymerization kinetics in batch and semi-batch processes. Various kinetics information, such as instant monomer conversion, molecular weight, and polydispersity etc. are readily calculated from Monte Carlo simulation. The kinetic constants such as polymerization rate k p is determined in the simulation without of “steady-state” hypothesis. We explored the mechanism for the variation of polymerization kinetics those observed in previous studies, as well as polymerization-induced phase separation. Our Monte Carlo simulation scheme is versatile on studying polymerization kinetics in batch and semi-batch processes.

  2. Optimization of cyclosporin A production by Beauveria nivea in continuous fed-batch fermentation

    Directory of Open Access Journals (Sweden)

    Dong Huijun

    2011-01-01

    Full Text Available To develop the effective control method for fed-batch culture of cyclosporin A production, we chose fructose, L-valine and (NH42HPO4 as feeding nutrients and compared their productivities in relation to different concentrations. The feeding rate of three kinds of feeding materials was controlled to maintain the suitable residual concentration. The fed-batch fermentation results indicated that the optimal concentrations of fructose, L-valine and (NH42HPO4 were about 20 g/L, 0.5 g/L and 0.6 g/L for cyclosporin A production, respectively. The cultivation of Beauveria nivea could produce cyclosporin A up to 6.2 g/L for 240 hrs through a continuous feeding-rate-controlled-batch process under the optimal feeding conditions.

  3. SIMULATION INVESTIGATIONS TOWARDS THE DEVELOPMENT OF A BACTERIAL BIOPESTICIDE FED-BATCH REACTOR

    Directory of Open Access Journals (Sweden)

    Cunha C.C.F. da

    1998-01-01

    Full Text Available In this work, the growth of Bacillus thuringiensis var. israelensis, a bioinsecticide producer, is investigated. Experiments were carried out in batch mode in order to obtain kinetic model parameters that were further applied to simulate fed-batch processes. The fed-batch mode allows more flexibility in the control of the substrate concentration in the culture medium. Different techniques, such as constant feeding, "bang-bang" control and model based control (exponential feeding and singular control, were compared. For the techniques based on a model, combinations of models with and without a substrate inhibition parameter were used to represent the simulated process and the internal model of the feeding controller. Singular control based on the model with an inhibition parameter proved to be the most robust controller.

  4. Batch and fed-batch production of butyric acid by Clostridium butyricum ZJUCB

    Science.gov (United States)

    He, Guo-qing; Kong, Qing; Chen, Qi-he; Ruan, Hui

    2005-01-01

    The production of butyric acid by Clostridium butyricum ZJUCB at various pH values was investigated. In order to study the effect of pH on cell growth, butyric acid biosynthesis and reducing sugar consumption, different cultivation pH values ranging from 6.0 to 7.5 were evaluated in 5-L bioreactor. In controlled pH batch fermentation, the optimum pH for cell growth and butyric acid production was 6.5 with a cell yield of 3.65 g/L and butyric acid yield of 12.25 g/L. Based on these results, this study then compared batch and fed-batch fermentation of butyric acid production at pH 6.5. Maximum value (16.74 g/L) of butyric acid concentration was obtained in fed-batch fermentation compared to 12.25 g/L in batch fermentation. It was concluded that cultivation under fed-batch fermentation mode could enhance butyric acid production significantly (P<0.01) by C. butyricum ZJUCB. PMID:16252341

  5. BATCHING PRINCIPLE OF RATING POINT ACCRUAL

    Directory of Open Access Journals (Sweden)

    S. A. Safontsev

    2014-01-01

    Full Text Available The paper analyzes characteristics of the postindustrial educational system, including the credit competence assessment, academic loads, and module-rating discipline structure. The employers’ judgments, reflected in the survey outcomes, make it possible to single out the most significant competencies for students to master. Such findings are regarded as a foundation for developing the assignment modules, integrating the problematic, testing and projecting tasks, designed to master necessary competences; their effectiveness is estimated by using the criteria of behavioral psychology. The paper demonstrates the sequences of monitoring assessment of students’ academic achievements, and recommends the batching principle of rating point accrual, based on criterion-oriented evaluation standards, reflecting students’ competence levels. The authors identify the basic competence indicators: interest in the subject, reflections on the test results, and inner motivation for project activities. The complex of batching equations is given for developing the training cards of academic disciplines, and guaranteeing the effectiveness of education system.

  6. Optimal operation of batch membrane processes

    CERN Document Server

    Paulen, Radoslav

    2016-01-01

    This study concentrates on a general optimization of a particular class of membrane separation processes: those involving batch diafiltration. Existing practices are explained and operational improvements based on optimal control theory are suggested. The first part of the book introduces the theory of membrane processes, optimal control and dynamic optimization. Separation problems are defined and mathematical models of batch membrane processes derived. The control theory focuses on problems of dynamic optimization from a chemical-engineering point of view. Analytical and numerical methods that can be exploited to treat problems of optimal control for membrane processes are described. The second part of the text builds on this theoretical basis to establish solutions for membrane models of increasing complexity. Each chapter starts with a derivation of optimal operation and continues with case studies exemplifying various aspects of the control problems under consideration. The authors work their way from th...

  7. Batch calculations in CalcHEP

    International Nuclear Information System (INIS)

    Pukhov, A.

    2003-01-01

    CalcHEP is a clone of the CompHEP project which is developed by the author outside of the CompHEP group. CompHEP/CalcHEP are packages for automatic calculations of elementary particle decay and collision properties in the lowest order of perturbation theory. The main idea prescribed into the packages is to make available passing on from the Lagrangian to the final distributions effectively with a high level of automation. According to this, the packages were created as a menu driven user friendly programs for calculations in the interactive mode. From the other side, long-time calculations should be done in the non-interactive regime. Thus, from the beginning CompHEP has a problem of batch calculations. In CompHEP 33.23 the batch session was realized by mean of interactive menu which allows to the user to formulate the task for batch. After that the not-interactive session was launched. This way is too restricted, not flexible, and leads to doubling in programming. In this article I discuss another approach how one can force an interactive program to work in non-interactive mode. This approach was realized in CalcHEP 2.1 disposed on http://theory.sinp.msu.ru/~pukhov/calchep.html

  8. Pollution prevention applications in batch manufacturing operations

    Science.gov (United States)

    Sykes, Derek W.; O'Shaughnessy, James

    2004-02-01

    Older, "low-tech" batch manufacturing operations are often fertile grounds for gains resulting from pollution prevention techniques. This paper presents a pollution prevention technique utilized for wastewater discharge permit compliance purposes at a batch manufacturer of detergents, deodorants, and floor-care products. This manufacturer generated industrial wastewater as a result of equipment rinses required after each product batch changeover. After investing a significant amount of capital on end of pip-line wastewater treatment technology designed to address existing discharge limits, this manufacturer chose to investigate alternate, low-cost approaches to address anticipated new permit limits. Mass balances using spreadsheets and readily available formulation and production data were conducted on over 300 products to determine how each individual product contributed to the total wastewater pollutant load. These mass balances indicated that 22 products accounted for over 55% of the wastewater pollutant. Laboratory tests were conducted to determine whether these same products could accept their individual changeover rinse water as make-up water in formulations without sacrificing product quality. This changeover reuse technique was then implement at the plant scale for selected products. Significant reductions in wastewater volume (25%) and wastewater pollutant loading (85+%) were realized as a direct result of this approach.

  9. Batch-batch stable microbial community in the traditional fermentation process of huyumei broad bean pastes.

    Science.gov (United States)

    Zhu, Linjiang; Fan, Zihao; Kuai, Hui; Li, Qi

    2017-09-01

    During natural fermentation processes, a characteristic microbial community structure (MCS) is naturally formed, and it is interesting to know about its batch-batch stability. This issue was explored in a traditional semi-solid-state fermentation process of huyumei, a Chinese broad bean paste product. The results showed that this MCS mainly contained four aerobic Bacillus species (8 log CFU per g), including B. subtilis, B. amyloliquefaciens, B. methylotrophicus, and B. tequilensis, and the facultative anaerobe B. cereus with a low concentration (4 log CFU per g), besides a very small amount of the yeast Zygosaccharomyces rouxii (2 log CFU per g). The dynamic change of the MCS in the brine fermentation process showed that the abundance of dominant species varied within a small range, and in the beginning of process the growth of lactic acid bacteria was inhibited and Staphylococcus spp. lost its viability. Also, the MCS and its dynamic change were proved to be highly reproducible among seven batches of fermentation. Therefore, the MCS naturally and stably forms between different batches of the traditional semi-solid-state fermentation of huyumei. Revealing microbial community structure and its batch-batch stability is helpful for understanding the mechanisms of community formation and flavour production in a traditional fermentation. This issue in a traditional semi-solid-state fermentation of huyumei broad bean paste was firstly explored. This fermentation process was revealed to be dominated by a high concentration of four aerobic species of Bacillus, a low concentration of B. cereus and a small amount of Zygosaccharomyces rouxii. Lactic acid bacteria and Staphylococcus spp. lost its viability at the beginning of fermentation. Such the community structure was proved to be highly reproducible among seven batches. © 2017 The Society for Applied Microbiology.

  10. 40 CFR 63.1408 - Aggregate batch vent stream provisions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Aggregate batch vent stream provisions... § 63.1408 Aggregate batch vent stream provisions. (a) Emission standards. Owners or operators of aggregate batch vent streams at a new or existing affected source shall comply with either paragraph (a)(1...

  11. 7 CFR 58.728 - Cooking the batch.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Cooking the batch. 58.728 Section 58.728 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Procedures § 58.728 Cooking the batch. Each batch of cheese within the cooker, including the optional...

  12. Perfusion based cell culture chips

    DEFF Research Database (Denmark)

    Heiskanen, Arto; Emnéus, Jenny; Dufva, Martin

    2010-01-01

    Performing cell culture in miniaturized perfusion chambers gives possibilities to experiment with cells under near in vivo like conditions. In contrast to traditional batch cultures, miniaturized perfusion systems provide precise control of medium composition, long term unattended cultures...... and tissue like structuring of the cultures. However, as this chapter illustrates, many issues remain to be identified regarding perfusion cell culture such as design, material choice and how to use these systems before they will be widespread amongst biomedical researchers....

  13. Semiautomated, Reproducible Batch Processing of Soy

    Science.gov (United States)

    Thoerne, Mary; Byford, Ivan W.; Chastain, Jack W.; Swango, Beverly E.

    2005-01-01

    A computer-controlled apparatus processes batches of soybeans into one or more of a variety of food products, under conditions that can be chosen by the user and reproduced from batch to batch. Examples of products include soy milk, tofu, okara (an insoluble protein and fiber byproduct of soy milk), and whey. Most processing steps take place without intervention by the user. This apparatus was developed for use in research on processing of soy. It is also a prototype of other soy-processing apparatuses for research, industrial, and home use. Prior soy-processing equipment includes household devices that automatically produce soy milk but do not automatically produce tofu. The designs of prior soy-processing equipment require users to manually transfer intermediate solid soy products and to press them manually and, hence, under conditions that are not consistent from batch to batch. Prior designs do not afford choices of processing conditions: Users cannot use previously developed soy-processing equipment to investigate the effects of variations of techniques used to produce soy milk (e.g., cold grinding, hot grinding, and pre-cook blanching) and of such process parameters as cooking times and temperatures, grinding times, soaking times and temperatures, rinsing conditions, and sizes of particles generated by grinding. In contrast, the present apparatus is amenable to such investigations. The apparatus (see figure) includes a processing tank and a jacketed holding or coagulation tank. The processing tank can be capped by either of two different heads and can contain either of two different insertable mesh baskets. The first head includes a grinding blade and heating elements. The second head includes an automated press piston. One mesh basket, designated the okara basket, has oblong holes with a size equivalent to about 40 mesh [40 openings per inch (.16 openings per centimeter)]. The second mesh basket, designated the tofu basket, has holes of 70 mesh [70 openings

  14. Extracellular production of a glycolipid biosurfactant, mannosylerythritol lipid, by Candida sp. SY16 using fed-batch fermentation.

    Science.gov (United States)

    Kim, Hee-Sik; Jeon, Jong-Woon; Kim, Byung-Hyuk; Ahn, Chi-Yong; Oh, Hee-Mock; Yoon, Byung-Dae

    2006-04-01

    Candida sp. strain SY16 produces a glycolipid-type biosurfactant, mannosylerythritol lipid (MEL-SY16), which can reduce the surface tension of a culture broth from 72 to 30 dyne cm(-1) and highly emulsify hydrocarbons when cultured in soybean-oil-containing media. As such, laboratory-scale fermentation for MEL-SY16 production was performed using optimized conditions. In batch fermentation, MEL-SY16 was mainly produced during the stationary phase of growth, and the concentration of MEL-SY16 reached 37 g l(-1) after 200 h. The effect of pH control on the production of MEL-SY16 was also examined in batch fermentation. The highest production yield of MEL-SY16 was when the pH was controlled at 4.0, and the production was significantly improved compared to batch fermentation without pH control. In fed-batch fermentation, glucose and soybean oil (1:1, w/w) were used in combination as the initial carbon sources for cell growth, and soybean oil was used as the feeding carbon source during the MEL production phase. The feeding of soybean oil resulted in the disappearance of any foam and a sharp increase in the MEL production until 200 h, at which point the concentration of MEL-SY16 was 95 g l(-1). Among the investigated culture systems, the highest MEL-SY16 production and volumetric production rate were achieved with fed-batch fermentation.

  15. Following an Optimal Batch Bioreactor Operations Model

    DEFF Research Database (Denmark)

    Ibarra-Junquera, V.; Jørgensen, Sten Bay; Virgen-Ortíz, J.J.

    2012-01-01

    -batch reactor for biomass production is studied using a differential geometry approach. The maximization problem is solved by handling both the optimal filling policy and substrate concentration in the inlet stream. In order to follow the OBBOM, a master–slave synchronization is used. The OBBOM is considered...... as the master system which includes the optimal cultivation trajectory for the feed flow rate and the substrate concentration. The “real” bioreactor, the one with unknown dynamics and perturbations, is considered as the slave system. Finally, the controller is designed such that the real bioreactor...

  16. A high-yielding, generic fed-batch process for recombinant antibody production of GS-engineered cell lines

    DEFF Research Database (Denmark)

    Fan, Li; Zhao, Liang; Sun, Yating

    2009-01-01

    (lactate and osmolality). The proportionalities of nutritional consumption were determined by direct analysis. And the robust, metabolically responsive feeding strategy was based on the off-line measurement of glucose. The fed-batch process was shown to perform equivalently in GS-CHO and GS-NS0 culture...

  17. Interactive and Batch Analysis at DESY

    Science.gov (United States)

    Künne, K.

    Besides the data taking and reconstruction the analysis of the Physics Data is a major part in Physics Computing. Currently a new structure, which should last for the next years (maybe the next millenium), is introduced in the computing for Physics Analysis at DESY, which closely follows a Client-Server-Model, and which is based on the Workgroup-Server-Concept (first introduced at CERN). The talk will give an overview about this new structure, which includes File-Servers, Workgroup-Servers, and Batch-Servers. Special emphasis will be given to the handling of different classes of data inside of such a distributed system. The important point here is to avoid unnecessary network traffic. Other key topics include management of that distributed system and load balancing issues. Also presented in this talk are experiences with that system and future developments.

  18. Batch Cultivation Model for Biopolymer Production

    Directory of Open Access Journals (Sweden)

    C. E. Torres-Cerna

    2017-04-01

    Full Text Available This paper presents a mathematical model to evaluate the kinetics of two different Pseudomonas putida strains, wild and mutant-type for the microbial production of polyhydroxyalkanoates (PHAs. Model parameters were estimated to represent adequately experimental data from the batch reactor using the differential evolution algorithm. Based on the mathematical model with the best-fit parameter values, simulations suggested that the high production of PHA by the mutant strain can be attributed not only to the higher production of PHA but also to a reduction in the consumption rate of the substrates of approximately 66 %. Remarkably, the cell growth rate value is higher for the wild type than the mutant type, suggesting that the PHA increase is not only to an increase in the production rate but also to the metabolism of the cells. This mathematical model advances comprehension of the PHA production capacity by P. putida paving the road towards environmentally friendly plastics.

  19. Maximum thermodynamic efficiency problem in batch distillation

    Directory of Open Access Journals (Sweden)

    J. C. Zavala-Loría

    2011-06-01

    Full Text Available A dynamic batch distillation study of the non-ideal mixture Ethanol-Water is presented. The objective of the study was to calculate an average thermodynamic efficiency of the process under an optimal constant reflux policy and the objective function includes a given production time in order to obtain the desired product quality (measured as the average mole fraction of the accumulated product. An expression for computing the thermodynamic efficiency is presented. The simulation of the column uses a mathematical model considering the complete dynamics of the operation and the problem of optimal control resulting in a non-linear programming problem. A dynamic optimization technique based on a SQP method was used to solve the problem. The average thermodynamic efficiency for the separation process under the conditions presented was 37.95%.

  20. Optimizing Resource Utilization in Grid Batch Systems

    International Nuclear Information System (INIS)

    Gellrich, Andreas

    2012-01-01

    On Grid sites, the requirements of the computing tasks (jobs) to computing, storage, and network resources differ widely. For instance Monte Carlo production jobs are almost purely CPU-bound, whereas physics analysis jobs demand high data rates. In order to optimize the utilization of the compute node resources, jobs must be distributed intelligently over the nodes. Although the job resource requirements cannot be deduced directly, jobs are mapped to POSIX UID/GID according to the VO, VOMS group and role information contained in the VOMS proxy. The UID/GID then allows to distinguish jobs, if users are using VOMS proxies as planned by the VO management, e.g. ‘role=production’ for Monte Carlo jobs. It is possible to setup and configure batch systems (queuing system and scheduler) at Grid sites based on these considerations although scaling limits were observed with the scheduler MAUI. In tests these limitations could be overcome with a home-made scheduler.

  1. Spatial and interannual variability in Baltic sprat batch fecundity

    DEFF Research Database (Denmark)

    Haslob, H.; Tomkiewicz, Jonna; Hinrichsen, H.H.

    2011-01-01

    and ambient temperature explained 70% of variability in absolute batch fecundity. Oxygen content and fish condition were not related to sprat batch fecundity. Additionally, a negative effect of stock size on sprat batch fecundity in the Bornholm Basin was revealed. The obtained data and results are important...... in the central Baltic Sea, namely the Bornholm Basin, Gdansk Deep and Southern Gotland Basin. Environmental parameters such as hydrography, fish condition and stock density were tested in order to investigate the observed variability in sprat fecundity. Absolute batch fecundity was found to be positively related...

  2. Sewage sludge irradiators: Batch and continuous flow

    International Nuclear Information System (INIS)

    Lavale, D.S.; George, J.R.; Shah, M.R.; Rawat, K.P.

    1998-01-01

    The potential threat to the environment imposed by high pathogenic organism content in municipal wastewater, especially the sludge and the world-wide growing aspirations for a cleaner, salubrious environment have made it mandatory for the sewage and sludge to undergo treatment, prior to their ultimate disposal to mother nature. Incapabilities associated with the conventional wastewater treatments to mitigate the problem of microorganisms have made it necessary to look for other alternatives, radiation treatment being the most reliable, rapid and environmentally sustainable of them. To promote the use of radiation for the sludge hygienization, Department of Atomic Energy has endeavoured to set up an indigenous, Sludge Hygienization Research Irradiator (SHRI) in the city of Baroda. Designed for 18.5 PBq of 60 Co to disinfect the digested sludge, the irradiator has additional provision for treatment of effluent and raw sewage. From engineering standpoint, all the subsystems have been functioning satisfactorily since its commissioning in 1990. Prolonged studies, spanning over a period of six years, primarily focused on inactivation of microorganism revealed that 3 kGy dose of gamma radiation is adequate to make the sludge pathogen and odour-free. A dose of 1.6 kGy in raw sewage and 0.5 kGy in effluent reduced coliform counts down to the regulatory discharge limits. These observations reflect a possible cost-effective solution to the burgeoning problem of surface water pollution across the globe. In the past, sub 37 PBq 60 Co batch irradiators have been designed and commissioned successfully for the treatment of sludge. Characterized with low dose delivery rates they are well-suited for treating low volumes of sludge in batches. Some concepts of continuous flow 60 Co irradiators having larger activities, yet simple and economic in design, are presented in the paper

  3. Survey on batch-to-batch variation in spray paints: a collaborative study.

    Science.gov (United States)

    Muehlethaler, Cyril; Massonnet, Geneviève; Deviterne, Marie; Bradley, Maureen; Herrero, Ana; de Lezana, Itxaso Diaz; Lauper, Sandrine; Dubois, Damien; Geyer-Lippmann, Jochen; Ketterer, Sonja; Milet, Stéphane; Bertrand, Magali; Langer, Wolfgang; Plage, Bernd; Gorzawski, Gabriele; Lamothe, Véronique; Marsh, Louissa; Turunen, Raija

    2013-06-10

    This study represents the most extensive analysis of batch-to-batch variations in spray paint samples to date. The survey was performed as a collaborative project of the ENFSI (European Network of Forensic Science Institutes) Paint and Glass Working Group (EPG) and involved 11 laboratories. Several studies have already shown that paint samples of similar color but from different manufacturers can usually be differentiated using an appropriate analytical sequence. The discrimination of paints from the same manufacturer and color (batch-to-batch variations) is of great interest and these data are seldom found in the literature. This survey concerns the analysis of batches from different color groups (white, papaya (special shade of orange), red and black) with a wide range of analytical techniques and leads to the following conclusions. Colored batch samples are more likely to be differentiated since their pigment composition is more complex (pigment mixtures, added pigments) and therefore subject to variations. These variations may occur during the paint production but may also occur when checking the paint shade in quality control processes. For these samples, techniques aimed at color/pigment(s) characterization (optical microscopy, microspectrophotometry (MSP), Raman spectroscopy) provide better discrimination than techniques aimed at the organic (binder) or inorganic composition (fourier transform infrared spectroscopy (FTIR) or elemental analysis (SEM - scanning electron microscopy and XRF - X-ray fluorescence)). White samples contain mainly titanium dioxide as a pigment and the main differentiation is based on the binder composition (CH stretches) detected either by FTIR or Raman. The inorganic composition (elemental analysis) also provides some discrimination. Black samples contain mainly carbon black as a pigment and are problematic with most of the spectroscopic techniques. In this case, pyrolysis-GC/MS represents the best technique to detect differences

  4. Production of Medium-Chain-Length Poly(3-Hydroxyalkanoates from Saponified Palm Kernel Oil by Pseudomonas putida: Kinetics of Batch and Fed-Batch Fermentations

    Directory of Open Access Journals (Sweden)

    Annuar, M. S. M.

    2006-01-01

    Full Text Available The kinetics of medium-chain-length poly(3-hydroxyalkanoates, PHAMCL production by Pseudomonas putida PGA1 in batch and fed-batch fermentations were studied. With saponified palm kernel oil (SPKO supplying the free fatty acids mixture as the sole carbon and energy source, PHAMCL accumulation is encouraged under ammonium-limited condition, which is a nitrogen stress environment. The amount of PHAMCL accumulated and its specific production rate, qPHA were influenced by the residual ammonium concentration level in the culture medium. It was observed that in both fermentation modes, when the residual ammonium was exhausted (< 0.05 gL-1, the PHAMCL accumulation (11.9% and qPHA (0.0062 h-1 were significantly reduced. However, this effect can be reversed by feeding low amount of ammonium to the culture, resulting in significantly improved PHAMCL yield (71.4% and specific productivity (0.6 h-1. It is concluded that the feeding of low ammonium concentration to the culture medium during the PHAMCL accumulation has a positive effect on sustaining the PHAMCL biosynthetic capability of the organism. It was also found that increasing SPKO concentration in the medium significantly reduced (up to 50% the volumetric oxygen transfer coefficient (KLa of the fermentation system.

  5. Expression of a mutated SPT15 gene in Saccharomyces cerevisiae enhances both cell growth and ethanol production in microaerobic batch, fed-batch, and simultaneous saccharification and fermentations.

    Science.gov (United States)

    Seong, Yeong-Je; Park, Haeseong; Yang, Jungwoo; Kim, Soo-Jung; Choi, Wonja; Kim, Kyoung Heon; Park, Yong-Cheol

    2017-05-01

    The SPT15 gene encodes a Saccharomyces cerevisiae TATA-binding protein, which is able to globally control the transcription levels of various metabolic and regulatory genes. In this study, a SPT15 gene mutant (S42N, S78R, S163P, and I212N) was expressed in S. cerevisiae BY4741 (BSPT15-M3), of which effects on fermentative yeast properties were evaluated in a series of culture types. By applying different nitrogen sources and air supply conditions in batch culture, organic nitrogen sources and microaerobic condition were decided to be more favorable for both cell growth and ethanol production of the BSPT15-M3 strain than the control S. cerevisiae BY4741 strain expressing the SPT15 gene (BSPT15wt). Microaerobic fed-batch cultures of BSPT15-M3 with glucose shock in the presence of high ethanol content resulted in a 9.5-13.4% higher glucose consumption rate and ethanol productivity than those for the BSPT15wt strain. In addition, BSPT15-M3 showed 4.5 and 3.9% increases in ethanol productivity from cassava hydrolysates and corn starch in simultaneous saccharification and fermentation processes, respectively. It was concluded that overexpression of the mutated SPT15 gene would be a potent strategy to develop robust S. cerevisiae strains with enhanced cell growth and ethanol production abilities.

  6. Bioprocess iterative batch-to-batch optimization based on hybrid parametric/nonparametric models.

    Science.gov (United States)

    Teixeira, Ana P; Clemente, João J; Cunha, António E; Carrondo, Manuel J T; Oliveira, Rui

    2006-01-01

    This paper presents a novel method for iterative batch-to-batch dynamic optimization of bioprocesses. The relationship between process performance and control inputs is established by means of hybrid grey-box models combining parametric and nonparametric structures. The bioreactor dynamics are defined by material balance equations, whereas the cell population subsystem is represented by an adjustable mixture of nonparametric and parametric models. Thus optimizations are possible without detailed mechanistic knowledge concerning the biological system. A clustering technique is used to supervise the reliability of the nonparametric subsystem during the optimization. Whenever the nonparametric outputs are unreliable, the objective function is penalized. The technique was evaluated with three simulation case studies. The overall results suggest that the convergence to the optimal process performance may be achieved after a small number of batches. The model unreliability risk constraint along with sampling scheduling are crucial to minimize the experimental effort required to attain a given process performance. In general terms, it may be concluded that the proposed method broadens the application of the hybrid parametric/nonparametric modeling technique to "newer" processes with higher potential for optimization.

  7. Batch process. Batch process used in a beer brewery; Biru kojo no bacchi purosesu

    Energy Technology Data Exchange (ETDEWEB)

    Kihara, K. [Kirin Engneering Co. Ltd. (Japan)

    1997-09-05

    In a beer brewing process, there is a system in which unit operation of chemical engineering is combined with the techniques of food and fermentation engineering in order to brew beer meeting the quality concept. This paper introduces the characteristics of a batch system used in the brewing of beer and the control method for the brewing of beer. The characteristics of the batch system used in a beer brewing process are the following three. In order to minimize the quality variation ascribed to the raw materials and the process, the materials are blended in various parts of the system. In the saccharification step which determines the quality of beer, two methods, i.e. a batch method and a continuous method are used, and beer brewing companies employ a saccharification system meeting the condition for attaining a desired quality of their own products. Two mashing systems are operated at different cycles shifted by half cycle from each other, not starting both at a time, so as to level the peaks of the utilities, whereby the operation of the utility-related facility is optimized. 1 ref., 2 figs., 1 tab.

  8. Unusal pattern of product inhibition: batch acetic acid fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Bar, R.; Gainer, J.L.; Kirwan, D.J.

    1987-04-20

    The limited tolerance of microorganisms to their metabolic products results in inhibited growth and product formation. The relationship between the specific growth rate, micro, and the concentration of an inhibitory product has been described by a number of mathematical models. In most cases, micro was found to be inversely proportional to the product concentration and invariably the rate of substrate utilization followed the same pattern. In this communication, the authors report a rather unusual case in which the formation rate of a product, acetic acid, increased with a decreasing growth rate of the microorganism, Acetobacter aceti. Apparently, a similar behavior was mentioned in a review report with respect to Clostridium thermocellum in a batch culture but was not published in the freely circulating literature. The fermentation of ethanol to acetic acid, C/sub 2/H/sub 5/OH + O/sub 2/ = CH/sub 3/COOH + H/sub 2/O is clearly one of the oldest known fermentations. Because of its association with the commercial production of vinegar it has been a subject of extensive but rather technically oriented studies. Suprisingly, the uncommon uncoupling between the inhibited microbial growth and the product formation appears to have been unnoticed. 13 references.

  9. Improved monitoring of batch processes by incorporating external information

    NARCIS (Netherlands)

    Ramaker, H. J.; van Sprang, E. N. M.; Gurden, S. P.; Westerhuis, J. A.; Smilde, A. K.

    2002-01-01

    In this paper an overview is given of statistical process monitoring with the emphasis on batch processes and the possible steps to take for improving this by incorporating external information. First, the general concept of statistical process monitoring of batches is explained. This concept has

  10. Using warping information for batch process monitoring and fault classification.

    NARCIS (Netherlands)

    González-Martínez, J.M.; Westerhuis, J.A.; Ferrer, A.

    2013-01-01

    This paper discusses how to use the warping information obtained after batch synchronization for process monitoring and fault classification. The warping information can be used for i) building unsupervised control charts or ii) fault classification when a rich faulty batches database is available.

  11. Modelling and Simulation of the Batch Hydrolysis of Acetic ...

    African Journals Online (AJOL)

    The kinetic modelling of the batch synthesis of acetic acid from acetic anhydride was investigated. The kinetic data of the reaction was obtained by conducting the hydrolysis reaction in a batch reactor. A dynamic model was formulated for this process and simulation was carried out using gPROMS® an advanced process ...

  12. Adaptive scheduling of batch servers in flow shops

    NARCIS (Netherlands)

    van der Zee, D.J.

    Batch servicing is a common way of benefiting from economies of scale in manufacturing operations. Good examples of production systems that allow for batch processing are ovens found in the aircraft industry and in semiconductor manufacturing. In this paper we study the issue of dynamic scheduling

  13. Adaptive Scheduling Of Batch Servers In Flow Shops

    NARCIS (Netherlands)

    van der Zee, D.J.

    2001-01-01

    Batch servicing is a common way of benefiting from economies of scale in manufacturing operations. Good examples of production systems that allow for batch processing are ovens found in aircraft industry and in semiconductor manufacturing. In this paper we study the issue of dynamic scheduling of

  14. Solving a chemical batch scheduling problem by local search

    NARCIS (Netherlands)

    Brucker, P.; Hurink, Johann L.

    1999-01-01

    A chemical batch scheduling problem is modelled in two different ways as a discrete optimization problem. Both models are used to solve the batch scheduling problem in a two-phase tabu search procedure. The method is tested on real-world data.

  15. 40 CFR 63.1406 - Reactor batch process vent provisions.

    Science.gov (United States)

    2010-07-01

    ... megagram of product or less for non-solvent-based resin production. (2) The owner or operator of a reactor... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Reactor batch process vent provisions... § 63.1406 Reactor batch process vent provisions. (a) Emission standards. Owners or operators of reactor...

  16. 40 CFR Table 1 to Subpart H of... - Batch Processes

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Batch Processes 1 Table 1 to Subpart H... Subpart H of Part 63—Batch Processes Monitoring Frequency for Equipment Other than Connectors Operating time (% of year) Equivalent continuous process monitoring frequency time in use Monthly Quarterly...

  17. Communication and control in small batch part manufacturing

    NARCIS (Netherlands)

    Tiemersma, J.J.; Curtis, W.; Kals, H.J.J.

    1993-01-01

    This paper reports on the development of a real-time control network as an integrated part of a shop floor control system for small batch part manufacturing. The shop floor control system is called the production control system (PCS). The PCS aims at an improved control of small batch part

  18. Simple control of fed-batch processes for recombinant protein production with E. coli.

    Science.gov (United States)

    Schaepe, Sebastian; Kuprijanov, Artur; Aehle, Mathias; Simutis, Rimvydas; Lübbert, Andreas

    2011-09-01

    A very simple but effective process control technique is proposed that leads to a high batch-to-batch reproducibility with respect to biomass concentration as well as the specific biomass growth rate profiles in E. coli fermentations performed during recombinant protein production. It makes use of the well-established temperature controllers in currently used fermenters, but takes its information from the difference between the controlled culture temperature T (cult) and the temperature T (coolin) of the coolant fed to the fermenter's cooling jacket as adjusted by the fermenter temperature controller. For process control purposes this measured difference is corrected regarding stirrer influences and cumulated before it is used as a new process control variable. As a spin-off of this control, it becomes possible to estimate online the oxygen mass transfer rates and the corresponding k(L)a values during the real cultivation process. © Springer Science+Business Media B.V. 2011

  19. On the track of fish batches in three distribution networks

    DEFF Research Database (Denmark)

    Randrup, Maria; Wu, Haiping; Jørgensen, Bo M.

    2012-01-01

    the necessary information, it was possible to locate the end destinations of the fish batches. The batch sizes and the number of companies involved clearly rose when batch joining occurred. Thus, a fault in a small batch can potentially have widespread implications. The study also underlines the importance......Three fish products sampled in retail shops were traced back to their origin and fish from the same batch were tracked forward towards the retailer, thereby simulating a recall situation. The resulting distribution networks were very complex, but to the extent that companies were willing to provide...... of discovering a fault as early as possible in order to minimise the costs of a recall. The localisation of distributed products during a recall operation can be facilitated by a well-constructed traceability system....

  20. Tailor-made PAT platform for safe syngas fermentations in batch, fed-batch and chemostat mode with Rhodospirillum rubrum.

    Science.gov (United States)

    Karmann, Stephanie; Follonier, Stéphanie; Egger, Daniel; Hebel, Dirk; Panke, Sven; Zinn, Manfred

    2017-11-01

    Recently, syngas has gained significant interest as renewable and sustainable feedstock, in particular for the biotechnological production of poly([R]-3-hydroxybutyrate) (PHB). PHB is a biodegradable, biocompatible polyester produced by some bacteria growing on the principal component of syngas, CO. However, working with syngas is challenging because of the CO toxicity and the explosion danger of H 2 , another main component of syngas. In addition, the bioprocess control needs specific monitoring tools and analytical methods that differ from standard fermentations. Here, we present a syngas fermentation platform with a focus on safety installations and process analytical technology (PAT) that serves as a basis to assess the physiology of the PHB-producing bacterium Rhodospirillum rubrum. The platform includes (i) off-gas analysis with an online quadrupole mass spectrometer to measure CO consumption and production rates of H 2 and CO 2 , (ii) an at-line flow cytometer to determine the total cell count and the intracellular PHB content and (iii) different online sensors, notably a redox sensor that is important to confirm that the culture conditions are suitable for the CO metabolization of R. rubrum. Furthermore, we present as first applications of the platform a fed-batch and a chemostat process with R. rubrum for PHB production from syngas. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  1. Fed-Batch Production of Glucose 6-Phosphate Dehydrogenase Using Recombinant Saccharomyces cerevisiae

    Science.gov (United States)

    Das Neves, Luiz Carlos Martins; Pessoa, Adalberto; Vitolo, Michele

    The strain Saccharomyces cerevisiae W303-181, having the plasmid YEpPGK-G6P (built by coupling the vector YEPLAC 181 with the promoter phosphoglycerate kinase 1), was cultured by fed-batch process in order to evaluate its capability in the formation of glucose 6-phosphate dehydrogenase (EC.1.1.1.49). Two liters of culture medium (10.0 g/L glucose, 3.7 g/L yeast nitrogen broth (YNB), 0.02 g/L l-tryptophan, 0.02 g/L l-histidine, 0.02 g/L uracil, and 0.02 g/L adenine) were inoculated with 1.5 g dry cell/L and left fermenting in the batch mode at pH 5.7, aeration of 2.2 vvm, 30°C, and agitation of 400 rpm. After glucose concentration in the medium was lower than 1.0 g/L, the cell culture was fed with a solution of glucose (10.0 g/L) or micronutrients (l-tryptophan, l-histidine, uracil, and adenine each one at a concentration of 0.02 g/L) following the constant, linear, or exponential mode. The volume of the culture medium in the fed-batch process was varied from 2 L up to 3 L during 5 h. The highest glucose 6-phosphate dehydrogenase activity (350 U/L; 1 U=1 μmol of NADP/min) occurred when the glucose solution was fed into the fermenter through the decreasing linear mode.

  2. Kinetic study of batch and fed-batch enzymatic saccharification of pretreated substrate and subsequent fermentation to ethanol

    Directory of Open Access Journals (Sweden)

    Gupta Rishi

    2012-03-01

    Full Text Available Abstract Background Enzymatic hydrolysis, the rate limiting step in the process development for biofuel, is always hampered by its low sugar concentration. High solid enzymatic saccharification could solve this problem but has several other drawbacks such as low rate of reaction. In the present study we have attempted to enhance the concentration of sugars in enzymatic hydrolysate of delignified Prosopis juliflora, using a fed-batch enzymatic hydrolysis approach. Results The enzymatic hydrolysis was carried out at elevated solid loading up to 20% (w/v and a comparison kinetics of batch and fed-batch enzymatic hydrolysis was carried out using kinetic regimes. Under batch mode, the actual sugar concentration values at 20% initial substrate consistency were found deviated from the predicted values and the maximum sugar concentration obtained was 80.78 g/L. Fed-batch strategy was implemented to enhance the final sugar concentration to 127 g/L. The batch and fed-batch enzymatic hydrolysates were fermented with Saccharomyces cerevisiae and ethanol production of 34.78 g/L and 52.83 g/L, respectively, were achieved. Furthermore, model simulations showed that higher insoluble solids in the feed resulted in both smaller reactor volume and shorter residence time. Conclusion Fed-batch enzymatic hydrolysis is an efficient procedure for enhancing the sugar concentration in the hydrolysate. Restricting the process to suitable kinetic regimes could result in higher conversion rates.

  3. Batch-to-batch quality consistency evaluation of botanical drug products using multivariate statistical analysis of the chromatographic fingerprint.

    Science.gov (United States)

    Xiong, Haoshu; Yu, Lawrence X; Qu, Haibin

    2013-06-01

    Botanical drug products have batch-to-batch quality variability due to botanical raw materials and the current manufacturing process. The rational evaluation and control of product quality consistency are essential to ensure the efficacy and safety. Chromatographic fingerprinting is an important and widely used tool to characterize the chemical composition of botanical drug products. Multivariate statistical analysis has showed its efficacy and applicability in the quality evaluation of many kinds of industrial products. In this paper, the combined use of multivariate statistical analysis and chromatographic fingerprinting is presented here to evaluate batch-to-batch quality consistency of botanical drug products. A typical botanical drug product in China, Shenmai injection, was selected as the example to demonstrate the feasibility of this approach. The high-performance liquid chromatographic fingerprint data of historical batches were collected from a traditional Chinese medicine manufacturing factory. Characteristic peaks were weighted by their variability among production batches. A principal component analysis model was established after outliers were modified or removed. Multivariate (Hotelling T(2) and DModX) control charts were finally successfully applied to evaluate the quality consistency. The results suggest useful applications for a combination of multivariate statistical analysis with chromatographic fingerprinting in batch-to-batch quality consistency evaluation for the manufacture of botanical drug products.

  4. Batch-to-batch learning for model-based control of process systems with application to cooling crystallization

    NARCIS (Netherlands)

    Forgione, M.

    2014-01-01

    From an engineering perspective, the term process refers to a conversion of raw materials into intermediate or final products using chemical, physical, or biological operations. Industrial processes can be performed either in continuous or in batch mode. There exist for instance continuous and batch

  5. Glucoamylase production in batch, chemostat and fed-batch cultivations by an industrial strain of Aspergillus niger

    DEFF Research Database (Denmark)

    Pedersen, Henrik; Beyer, Michael; Nielsen, Jens

    2000-01-01

    The Aspergillus niger strain BO-1 was grown in batch, continuous (chemostat) and fed-batch cultivations in order to study the production of the extracellular enzyme glucoamylase under different growth conditions. In the pH range 2.5-6.0, the specific glucoamylase productivity and the specific...

  6. Batch and fed-batch production of butyric acid by Clostridium butyricum ZJUCB

    OpenAIRE

    He, Guo-qing; Kong, Qing; Chen, Qi-he; Ruan, Hui

    2005-01-01

    The production of butyric acid by Clostridium butyricum ZJUCB at various pH values was investigated. In order to study the effect of pH on cell growth, butyric acid biosynthesis and reducing sugar consumption, different cultivation pH values ranging from 6.0 to 7.5 were evaluated in 5-L bioreactor. In controlled pH batch fermentation, the optimum pH for cell growth and butyric acid production was 6.5 with a cell yield of 3.65 g/L and butyric acid yield of 12.25 g/L. Based on these results, th...

  7. Ethanol production potential from fermented rice noodle wastewater treatment using entrapped yeast cell sequencing batch reactor

    Science.gov (United States)

    Siripattanakul-Ratpukdi, Sumana

    2012-03-01

    Fermented rice noodle production generates a large volume of starch-based wastewater. This study investigated the treatment of the fermented rice noodle wastewater using entrapped cell sequencing batch reactor (ECSBR) compared to traditional sequencing batch reactor (SBR). The yeast cells were applied because of their potential to convert reducing sugar in the wastewater to ethanol. In present study, preliminary treatment by acid hydrolysis was performed. A yeast culture, Saccharomyces cerevisiae, with calcium alginate cell entrapment was used. Optimum yeast cell loading in batch experiment and fermented rice noodle treatment performances using ECSBR and SBR systems were examined. In the first part, it was found that the cell loadings (0.6-2.7 × 108 cells/mL) did not play an important role in this study. Treatment reactions followed the second-order kinetics with the treatment efficiencies of 92-95%. In the second part, the result showed that ECSBR performed better than SBR in both treatment efficiency and system stability perspectives. ECSBR maintained glucose removal of 82.5 ± 10% for 5-cycle treatment while glucose removal by SBR declined from 96 to 40% within the 5-cycle treatment. Scanning electron microscopic images supported the treatment results. A number of yeast cells entrapped and attached onto the matrix grew in the entrapment matrix.

  8. Batch experiment on H2S degradation by bacteria immobilised on activated carbons.

    Science.gov (United States)

    Yan, R; Ng, Y L; Chen, X G; Geng, A L; Gould, W D; Duan, H Q; Liang, D T; Koe, L C C

    2004-01-01

    Biological treatments of odorous compounds, as compared to chemical or physical technologies, are in general ecologically and environmentally favourable. However, there are some inefficiencies relative to the media used in biofiltration processes, such as the need for an adequate residence time; the limited lifetime, and pore blockage of media, which at present render the technology economically non-viable. The aim of the study is to develop novel active media to be used in performance-enhanced biofiltration processes, by achieving an optimum balance and combination of the media adsorption capacity with the biodegradation of H2S through the bacteria immobilised on the media. An enrichment culture was obtained from activated sludges in order to metabolise thiosulphate. Batch-wise experiments were conducted to optimise the bacteria immobilisation on activated carbon, so as to develop a novel "biocarbon". Biofilm was mostly developed through culturing the bacteria with the presence of carbons in mineral media. SEM and BET tests of the carbon along with the culturing process were used to identify, respectively, the biofilm development and biocarbon porosity. Breakthrough tests evaluated the biocarbon performance with varying gas resistance time, inlet H2S concentration, and type of support materials. Fundamental issues were discussed, including type of support material, mode of bacteria immobilisation, pore blockages, and biodegradation kinetics, etc. This batch-wise study provides a basis for our future research on optimisation of the biofiltration process using a bio-trickling reactor.

  9. Estimation of Temperature Dependent Parameters of a Batch Alcoholic Fermentation Process

    Science.gov (United States)

    de Andrade, Rafael Ramos; Rivera, Elmer Ccopa; Costa, Aline C.; Atala, Daniel I. P.; Filho, Francisco Maugeri; Filho, Rubens Maciel

    In this work, a procedure was established to develop a mathematical model considering the effect of temperature on reaction kinetics. Experiments were performed in batch mode in temperatures from 30 to 38°C. The microorganism used was Saccharomyces cerevisiae and the culture media, sugarcane molasses. The objective is to assess the difficulty in updating the kinetic parameters when there are changes in fermentation conditions. We conclude that, although the re-estimation is a time-consuming task, it is possible to accurately describe the process when there are changes in raw material composition if a re-estimation of parameters is performed.

  10. Production and partial characterization of alkaline feruloyl esterases by Fusarium oxysporum during submerged batch cultivation

    DEFF Research Database (Denmark)

    Topakas, E.; Christakopoulos, Paul

    2004-01-01

    Production of feruloyl esterases (FAEs) by Fusarium oxysporum was enhanced by optimization of initial pH of the culture medium, the type and concentration of nitrogen and carbon source. Submerged batch cultivation in a laboratory bioreactor (17 1) produced activity at 82 nkat g(-1) dry substrate...... (corn cobs) which compared favorably to those reported for the other microorganisms. Use of de-esterified corn cobs as carbon source decreased FAE production by 5.5-fold compared to untreated corn cobs even though ferulic acid (FA) was added to the concentration found in alkali-extracts of corn cobs...

  11. Optimal Control of a Fed-Batch Fermentation Involving Multiple Feeds

    Directory of Open Access Journals (Sweden)

    Chongyang Liu

    2012-01-01

    Full Text Available A nonlinear dynamical system, in which the feed rates of glycerol and alkali are taken as the control functions, is first proposed to formulate the fed-batch culture of 1,3-propanediol (1,3-PD production. To maximize the 1,3-PD concentration at the terminal time, a constrained optimal control model is then presented. A solution approach is developed to seek the optimal feed rates based on control vector parametrization method and improved differential evolution algorithm. The proposed methodology yielded an increase by 32.17% of 1,3-PD concentration at the terminal time.

  12. 40 CFR 63.462 - Batch cold cleaning machine standards.

    Science.gov (United States)

    2010-07-01

    .... (a) Each owner or operator of an immersion batch cold solvent cleaning machine shall comply with the... cleaning machine complying with paragraph (a)(2) or (b) of this section shall comply with the work and...

  13. Numerical modeling of batch formation in waste incineration plants

    Directory of Open Access Journals (Sweden)

    Obroučka Karel

    2015-03-01

    Full Text Available The aim of this paper is a mathematical description of algorithm for controlled assembly of incinerated batch of waste. The basis for formation of batch is selected parameters of incinerated waste as its calorific value or content of pollutants or the combination of both. The numerical model will allow, based on selected criteria, to compile batch of wastes which continuously follows the previous batch, which is a prerequisite for optimized operation of incinerator. The model was prepared as for waste storage in containers, as well as for waste storage in continuously refilled boxes. The mathematical model was developed into the computer program and its functionality was verified either by practical measurements or by numerical simulations. The proposed model can be used in incinerators for hazardous and municipal waste.

  14. About the performance of Sphaerotilus natans to reduce hexavalent chromium in batch and continuous reactors

    International Nuclear Information System (INIS)

    Caravelli, Alejandro H.; Zaritzky, Noemi E.

    2009-01-01

    The hexavalent chromium biological reduction constitutes a safe and economical detoxification procedure of wastewaters containing Cr(VI). However, little research has been done to evaluate Cr(VI) tolerance and reduction capacity of microbial cultures under different growth conditions. The aims of this work were (a) to evaluate the capacity of Sphaerotilus natans to reduce Cr(VI) to Cr(III) in a continuous system limited in carbon and energy source or in nitrogen source, (b) to evaluate the toxic effect of Cr(VI) on this microorganism, (c) to carry out a complete analysis of Cr(VI) reduction by S. natans not only in continuous regime but also in batch system, and (d) to model the obtained results mathematically. S. natans exhibited great resistance to Cr(VI) (19-78 mg l -1 ) and optimal growth in continuous and batch systems using a mineral medium supplemented only with citric acid as organic substrate. In carbon- and energy-limited continuous systems, a maximum percentual decrease in Cr(VI) by 13% was reached for low influent Cr(VI) concentration (4.3-5.32 mgCr(VI) l -1 ); the efficiency of the process did not notoriously increase as the length of cellular residence time was increased from 4.16 to 50 h. A nitrogen-limited continuous operation with a cellular residence time of 28.5 h resulted in a Cr(VI) decrease of approximately 26-32%. In batch system, a mathematical model allowed to predict the Cr(VI) concentration as a function of time and the ratio between the initial Cr(VI) concentration and that of the biomass. High concentrations of initial Cr(VI) and biomass produced the highest performance of the process of Cr(VI) reduction reached in batch system, aspects which should be considered in detoxification strategies of wastewaters.

  15. Evaluation of sequencing batch reactor performance for petrochemical wastewater treatment

    OpenAIRE

    Mina Salari; Seyed Ahmad Ataei; Fereshteh Bakhtiyari

    2017-01-01

    Sequencing batch reactor (SBR) technology has found many applications in industrial wastewater treatment in recent years. The aim of this study was to determine the optimal time for a cycle of the sequencing batch reactor (SBR) and evaluate the performance of a SBR for petrochemical wastewater treatment in that cycle time. The reactor was operated with a suspended biomass configuration under aerobic conditions. Carbon removal and operating parameters such as pH, temperature and dissolved oxyg...

  16. BACKGROUND AND PROSPECTS FOR THE OPERATION OF BATCH DISTILLATION

    OpenAIRE

    Lombira Echevarria, J.; Universidad Nacional Mayor de San Marcos, Facultad de Química e Ingeniería Química Unidad de Post Grado, Av . Venezuela s/n Lima -Perú; Otiniano Cáceres, M.; Universidad Naciona l Mayor de San Marcos, Facultad de Química e Ingeniería Química Unidad de Post Grado, Av . Venezuela s/n Lima -Perú

    2014-01-01

    Present contribution constitutes a review that shows the results of bibliographic research carried out about the simulation, design and optimization of batch. Distillation operation. It is analyses the present state of the art of this operation, contrasting its recent achieved results with difficulties that still exist in this area. The different batch distillation columns configurations that have been developed recently, such as the inverted column , middle vessels, multiple effects , extrac...

  17. Improving lactate metabolism in an intensified CHO culture process: productivity and product quality considerations.

    Science.gov (United States)

    Xu, Sen; Hoshan, Linda; Chen, Hao

    2016-11-01

    In this study, we discussed the development and optimization of an intensified CHO culture process, highlighting medium and control strategies to improve lactate metabolism. A few strategies, including supplementing glucose with other sugars (fructose, maltose, and galactose), controlling glucose level at Productivity and product quality attributes differences between batch, fed-batch, and concentrated fed-batch cultures were discussed. The importance of process and cell metabolism understanding when adapting the existing process to a new operational mode was demonstrated in the study.

  18. Polynomial Batch Codes for Efficient IT-PIR

    Directory of Open Access Journals (Sweden)

    Henry Ryan

    2016-10-01

    Full Text Available Private information retrieval (PIR is a way for clients to query a remote database without the database holder learning the clients’ query terms or the responses they generate. Compelling applications for PIR are abound in the cryptographic and privacy research literature, yet existing PIR techniques are notoriously inefficient. Consequently, no such PIRbased application to date has seen real-world at-scale deployment. This paper proposes new “batch coding” techniques to help address PIR’s efficiency problem. The new techniques exploit the connection between ramp secret sharing schemes and efficient information-theoretically secure PIR (IT-PIR protocols. This connection was previously observed by Henry, Huang, and Goldberg (NDSS 2013, who used ramp schemes to construct efficient “batch queries” with which clients can fetch several database records for the same cost as fetching a single record using a standard, non-batch query. The new techniques in this paper generalize and extend those of Henry et al. to construct “batch codes” with which clients can fetch several records for only a fraction the cost of fetching a single record using a standard non-batch query over an unencoded database. The batch codes are highly tuneable, providing a means to trade off (i lower server-side computation cost, (ii lower server-side storage cost, and/or (iii lower uni- or bi-directional communication cost, in exchange for a comparatively modest decrease in resilience to Byzantine database servers.

  19. Batch-to-Batch Quality Consistency Evaluation of Botanical Drug Products Using Multivariate Statistical Analysis of the Chromatographic Fingerprint

    OpenAIRE

    Xiong, Haoshu; Yu, Lawrence X.; Qu, Haibin

    2013-01-01

    Botanical drug products have batch-to-batch quality variability due to botanical raw materials and the current manufacturing process. The rational evaluation and control of product quality consistency are essential to ensure the efficacy and safety. Chromatographic fingerprinting is an important and widely used tool to characterize the chemical composition of botanical drug products. Multivariate statistical analysis has showed its efficacy and applicability in the quality evaluation of many ...

  20. Comparisons between continuous and batch processing to produce clavulanic acid by Streptomyces clavuligerus

    Directory of Open Access Journals (Sweden)

    Álvaro Baptista-Neto

    2005-06-01

    Full Text Available The aim of the present work was to compare CA production in continuous culture with and without cell recycling and in batch process by Streptomyces clavuligerus. Continuous cultivations with high cell concentration using cell recycling were performed utilizing a hollow fiber ultrafiltration module to separate cells from the filtrate broth. The continuous cultures without cell recycling and the batch cultivations were performed conventionally. The highest productivity was attained in the continuous cultivation with cell recycling (22.2 mg.L-1.h-1. The highest CA concentration was obtained in the batch process (470 mg.L-1.h-1.O ácido clavulânico (AC é um importante inibidor de beta-lactamases, enzimas que degradampartir do metabolismo secundário do Streptomyces clavuligerus, bactéria filamentosa e estritamente aeróbia. Considerando que a velocidade de produção de metabólitos secundários está ligada à concentração celular, o presente trabalho teve como objetivo comparar a produção de AC nos processos contínuos com e sem reciclo celular e em batelada, realizando cultivos dessa bactéria com alta densidade celular. Para cumprir com o objetivo proposto, foram realizados experimentos em biorreator operando na forma contínua com reciclo utilizando-se um módulo de filtração tangencial de fibra oca para a separação celular. Os processos contínuos sem reciclo e em batelada foram realizados de forma convencional. A produtividade em AC no cultivo contínuo com reciclo celular (22,2 mg.L-1h-1 foi superior aos processos convencionais, apesar de obter-se maior concentração do produto (470 mg.L-1 em batelada.

  1. Application of culture dependent and cultural-independent techniques to investigate the dynamics of microorganisms during industrial cheese making of a Gouda type cheese

    OpenAIRE

    Perolari, Alessandra

    2012-01-01

    The aim of this work was to study the microbial dynamic in a Gouda type cheese applying a comparison between culture-dependent technique, plate count, and culture-independent technique as PCR-DGGE. The study was also focus on the analyse of the efficiency of the pasteurizer, and its cleaning steps. The study was conducted analysing 4 batches for each of the two days of production, Monday and Friday. Between batch 16 and 17 there was a quick cleaning, and between batch 32 and batch 1, of th...

  2. 40 CFR 63.1326 - Batch process vents-recordkeeping provisions.

    Science.gov (United States)

    2010-07-01

    ... operator of a batch process vent that has chosen to use a control device to comply with § 63.1322(a) shall... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Batch process vents-recordkeeping... Batch process vents—recordkeeping provisions. (a) Group determination records for batch process vents...

  3. 40 CFR 63.487 - Batch front-end process vents-reference control technology.

    Science.gov (United States)

    2010-07-01

    ... § 63.487 Batch front-end process vents—reference control technology. (a) Batch front-end process vents... process vent, reduce organic HAP emissions for the batch cycle by 90 weight percent using a control device... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Batch front-end process vents-reference...

  4. 40 CFR 63.491 - Batch front-end process vents-recordkeeping requirements.

    Science.gov (United States)

    2010-07-01

    ... combustion device to control halogenated batch front-end process vents or halogenated aggregate batch vent... periods of process or control device operation when monitors are not operating. (f) Aggregate batch vent... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Batch front-end process vents...

  5. 40 CFR 63.489 - Batch front-end process vents-monitoring equipment.

    Science.gov (United States)

    2010-07-01

    ... operator of a batch front-end process vent or aggregate batch vent stream that uses a control device to... meets the conditions of § 63.490(b)(3). (i) For batch front-end process vents using a control device to... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Batch front-end process vents...

  6. 40 CFR 63.492 - Batch front-end process vents-reporting requirements.

    Science.gov (United States)

    2010-07-01

    ... recorded under § 63.491(e)(3) when the batch front-end process vent is diverted away from the control... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Batch front-end process vents-reporting... Batch front-end process vents—reporting requirements. (a) The owner or operator of a batch front-end...

  7. Towards Batched Linear Solvers on Accelerated Hardware Platforms

    Energy Technology Data Exchange (ETDEWEB)

    Haidar, Azzam [University of Tennessee (UT); Dong, Tingzing Tim [University of Tennessee (UT); Tomov, Stanimire [University of Tennessee (UT); Dongarra, Jack J [ORNL

    2015-01-01

    As hardware evolves, an increasingly effective approach to develop energy efficient, high-performance solvers, is to design them to work on many small and independent problems. Indeed, many applications already need this functionality, especially for GPUs, which are known to be currently about four to five times more energy efficient than multicore CPUs for every floating-point operation. In this paper, we describe the development of the main one-sided factorizations: LU, QR, and Cholesky; that are needed for a set of small dense matrices to work in parallel. We refer to such algorithms as batched factorizations. Our approach is based on representing the algorithms as a sequence of batched BLAS routines for GPU-contained execution. Note that this is similar in functionality to the LAPACK and the hybrid MAGMA algorithms for large-matrix factorizations. But it is different from a straightforward approach, whereby each of GPU's symmetric multiprocessors factorizes a single problem at a time. We illustrate how our performance analysis together with the profiling and tracing tools guided the development of batched factorizations to achieve up to 2-fold speedup and 3-fold better energy efficiency compared to our highly optimized batched CPU implementations based on the MKL library on a two-sockets, Intel Sandy Bridge server. Compared to a batched LU factorization featured in the NVIDIA's CUBLAS library for GPUs, we achieves up to 2.5-fold speedup on the K40 GPU.

  8. Comparison of batch cultivation strategies for cost-effective biomass production of Micractinium inermum NLP-F014 using a blended wastewater medium.

    Science.gov (United States)

    Park, Seonghwan; Kim, Jeongmi; Park, Younghyun; Son, Suyoung; Cho, Sunja; Kim, Changwon; Lee, Taeho

    2017-06-01

    Two competitive strategies, fed-batch and sequencing-batch cultivation, were compared in cost-effective biomass production of a high lipid microalgae, Micractinium inermum NLP-F014 using a blended wastewater medium. For fed-batch cultivations, additional nutrient was supplemented at day 2 (FB1) or consecutively added at day 2 and 4 (FB2). Through inoculum size test, 1.0g-DCWL -1 was selected for the sequencing-batch cultivation (SB) where about 65% of culture was replaced with fresh medium every 2days. Both fed-batch cultivations showed the maximum biomass productivity of 0.95g-DCWL -1 d -1 , while average biomass productivity in SB was slightly higher as 0.96±0.08g-DCWL -1 d -1 . Furthermore, remained concentrations of organics (426mg-CODL -1 ), total nitrogen (15.4mg-NL -1 ) and phosphorus (0.6mg-PL -1 ) in SB were much lower than those of fed-batch conditions. The results suggested that SB could be a promising strategy to cultivate M. inermum NLP-F014 with the blended wastewater medium. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Influence of feeding conditions on clavulanic acid production in fed-batch cultivation with medium containing glycerol.

    Science.gov (United States)

    Teodoro, Juliana C; Baptista-Neto, Alvaro; Cruz-Hernández, Isara L; Hokka, Carlos O; Badino, Alberto C

    2006-09-01

    First, the effect of different levels of nitrogen source on clavulanic acid (CA) production was evaluated in batch cultivations utilizing complex culture medium containing glycerol and three different levels of soy protein isolate (SPI). Cellular growth, evaluated in terms of the rheological parameter K, was highest with a SPI concentration of 30 g.L(-1) (4.42 g.L(-1) N total). However, the highest production of CA (380 mg.L(-1)) was obtained when an intermediate concentration of 20 g.L(-1) of SPI (2.95 g.L(-1) total N) was used. To address this, the influences of volumetric flow rate (F) and glycerol concentration in the complex feed medium (Cs(F)) in fed-batch cultivations were investigated. The best experimental condition for CA production was F=0.01 L.h(-1) and Cs(F)=120 g.L(-1), and under these conditions maximum CA production was practically twice that obtained in the batch cultivation. A single empirical equation was proposed to relate maximum CA production with F and Cs(F) in fed-batch experiments.

  10. From Fed-batch to Continuous Enzymatic Biodiesel Production

    DEFF Research Database (Denmark)

    Price, Jason Anthony; Nordblad, Mathias; Woodley, John M.

    2015-01-01

    In this this paper, we use mechanistic modelling to guide the development of acontinuous enzymatic process that is performed as a fed-batch operation. In this workwe use the enzymatic biodiesel process as a case study. A mechanistic model developedin our previous work was used to determine...... measured components (triglycerides, diglycerides, monoglycerides, free fatty acid and fatty acid methyl esters(biodiesel)) much better than using fed-batch data alone given the smaller residuals. We also observe a reduction in the correlation between the parameters.The model was then used to predict that 5...... reactors are required (with a combined residence time of 30 hours) to reach a final biodiesel concentration within 2 % of the95.6 mass % achieved in a fed-batch operation, for 24 hours....

  11. A High-Fidelity Batch Simulation Environment for Integrated Batch and Piloted Air Combat Simulation Analysis

    Science.gov (United States)

    Goodrich, Kenneth H.; McManus, John W.; Chappell, Alan R.

    1992-01-01

    A batch air combat simulation environment known as the Tactical Maneuvering Simulator (TMS) is presented. The TMS serves as a tool for developing and evaluating tactical maneuvering logics. The environment can also be used to evaluate the tactical implications of perturbations to aircraft performance or supporting systems. The TMS is capable of simulating air combat between any number of engagement participants, with practical limits imposed by computer memory and processing power. Aircraft are modeled using equations of motion, control laws, aerodynamics and propulsive characteristics equivalent to those used in high-fidelity piloted simulation. Databases representative of a modern high-performance aircraft with and without thrust-vectoring capability are included. To simplify the task of developing and implementing maneuvering logics in the TMS, an outer-loop control system known as the Tactical Autopilot (TA) is implemented in the aircraft simulation model. The TA converts guidance commands issued by computerized maneuvering logics in the form of desired angle-of-attack and wind axis-bank angle into inputs to the inner-loop control augmentation system of the aircraft. This report describes the capabilities and operation of the TMS.

  12. Continuous flow technology vs. the batch-by-batch approach to produce pharmaceutical compounds.

    Science.gov (United States)

    Cole, Kevin P; Johnson, Martin D

    2018-01-01

    For the manufacture of small molecule drugs, many pharmaceutical innovator companies have recently invested in continuous processing, which can offer significant technical and economic advantages over traditional batch methodology. This Expert Review will describe the reasons for this interest as well as many considerations and challenges that exist today concerning continuous manufacturing. Areas covered: Continuous processing is defined and many reasons for its adoption are described. The current state of continuous drug substance manufacturing within the pharmaceutical industry is summarized. Current key challenges to implementation of continuous manufacturing are highlighted, and an outlook provided regarding the prospects for continuous within the industry. Expert commentary: Continuous processing at Lilly has been a journey that started with the need for increased safety and capability. Over twelve years the original small, dedicated group has grown to more than 100 Lilly employees in discovery, development, quality, manufacturing, and regulatory designing in continuous drug substance processing. Recently we have focused on linked continuous unit operations for the purpose of all-at-once pharmaceutical manufacturing, but the technical and business drivers that existed in the very beginning for stand-alone continuous unit operations in hybrid processes have persisted, which merits investment in both approaches.

  13. Stochastic growth logistic model with aftereffect for batch fermentation process

    International Nuclear Information System (INIS)

    Rosli, Norhayati; Ayoubi, Tawfiqullah; Bahar, Arifah; Rahman, Haliza Abdul; Salleh, Madihah Md

    2014-01-01

    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits

  14. Stochastic growth logistic model with aftereffect for batch fermentation process

    Energy Technology Data Exchange (ETDEWEB)

    Rosli, Norhayati; Ayoubi, Tawfiqullah [Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang (Malaysia); Bahar, Arifah; Rahman, Haliza Abdul [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Salleh, Madihah Md [Department of Biotechnology Industry, Faculty of Biosciences and Bioengineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)

    2014-06-19

    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.

  15. Analysis and modelling of the energy requirements of batch processes; Analyse und Modellierung des Energiebedarfes in Batch-Prozessen

    Energy Technology Data Exchange (ETDEWEB)

    Bieler, P.S.

    2002-07-01

    This intermediate report for the Swiss Federal Office of Energy (SFOE) presents the results of a project aiming to model the energy consumption of multi-product, multi-purpose batch production plants. The utilities investigated were electricity, brine and steam. Both top-down and bottom-up approaches are described, whereby top-down was used for the buildings where the batch process apparatus was installed. Modelling showed that for batch-plants at the building level, the product mix can be too variable and the diversity of products and processes too great for simple modelling. Further results obtained by comparing six different production plants that could be modelled are discussed. The several models developed are described and their wider applicability is discussed. Also, the results of comparisons made between modelled and actual values are presented. Recommendations for further work are made.

  16. Design of two-column batch-to-batch recirculation to enhance performance in ion-exchange chromatography.

    Science.gov (United States)

    Persson, Oliver; Andersson, Niklas; Nilsson, Bernt

    2018-01-05

    Preparative liquid chromatography is a separation technique widely used in the manufacturing of fine chemicals and pharmaceuticals. A major drawback of traditional single-column batch chromatography step is the trade-off between product purity and process performance. Recirculation of impure product can be utilized to make the trade-off more favorable. The aim of the present study was to investigate the usage of a two-column batch-to-batch recirculation process step to increase the performance compared to single-column batch chromatography at a high purity requirement. The separation of a ternary protein mixture on ion-exchange chromatography columns was used to evaluate the proposed process. The investigation used modelling and simulation of the process step, experimental validation and optimization of the simulated process. In the presented case the yield increases from 45.4% to 93.6% and the productivity increases 3.4 times compared to the performance of a batch run for a nominal case. A rapid concentration build-up product can be seen during the first cycles, before the process reaches a cyclic steady-state with reoccurring concentration profiles. The optimization of the simulation model predicts that the recirculated salt can be used as a flying start of the elution, which would enhance the process performance. The proposed process is more complex than a batch process, but may improve the separation performance, especially while operating at cyclic steady-state. The recirculation of impure fractions reduces the product losses and ensures separation of product to a high degree of purity. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Shell of Planet Earth – Global Batch Bioreactor.

    Czech Academy of Sciences Publication Activity Database

    Hanika, Jiří; Šolcová, Olga; Kaštánek, P.

    2017-01-01

    Roč. 40, č. 11 (2017), s. 1959-1965 ISSN 0930-7516 R&D Projects: GA TA ČR TE01020080 Institutional support: RVO:67985858 Keywords : critical raw materials * global batch bioreactor * planet earth Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 2.051, year: 2016

  18. Batch arrival discrete time queue with gated vacation system ...

    African Journals Online (AJOL)

    A class of single server vacation queues, which have batch arrivals and single server, is considered in discrete time. Here the server goes on vacation of random length as soon as the system becomes empty. On return from vacation, if he finds any customers waiting in the queue, the server starts serving the customers one ...

  19. DEVELOPMENT OF AN AUTOMATED BATCH-PROCESS SOLAR ...

    African Journals Online (AJOL)

    One of the shortcomings of solar disinfection of water (SODIS) is the absence of a feedback mechanism indicating treatment completion. This work presents the development of an automated batch-process water disinfection system aimed at solving this challenge. Locally sourced materials in addition to an Arduinomicro ...

  20. Quality control for 12 batch of DTPA-Sn

    International Nuclear Information System (INIS)

    Isaac, M.; Gamboa, R.; Leyva, R.; Hernandez, I.; Turino, D.

    1994-01-01

    The quality control is carry out at 12 batch of DTPA-Sn for labeling with 99 m Tc. The instrumental methods of analysis and control charts were discussed in order to find a warranty time for the product. (author). 2 refs, 3 figs, 1 tab

  1. Development of Production Control in Small Batch Production

    Directory of Open Access Journals (Sweden)

    Németh Péter

    2016-01-01

    Full Text Available Our aim with this paper is to develop a new performance measurement and control system for small batch production in the automotive industry. For this reason, we present our previous research results for warehouse performance measurement and adopt its methodology to production control. The proposed method is based on artificial intelligence (neural networks.

  2. Sequencing for Batch Production in a Group Flowline Machine Shop ...

    African Journals Online (AJOL)

    The purpose of the paper is to develop a useful technique for sequencing batches of components through machine shops arranged under the group flowline production system. The approach is to apply a modified version of Petrov's group flowline technique for machining components which follow a unidirectional route.

  3. Comparison of neptunium sorption results using batch and column techniques

    International Nuclear Information System (INIS)

    Triay, I.R.; Furlano, A.C.; Weaver, S.C.; Chipera, S.J.; Bish, D.L.

    1996-08-01

    We used crushed-rock columns to study the sorption retardation of neptunium by zeolitic, devitrified, and vitric tuffs typical of those at the site of the potential high-level nuclear waste repository at Yucca Mountain, Nevada. We used two sodium bicarbonate waters (groundwater from Well J-13 at the site and water prepared to simulate groundwater from Well UE-25p No. 1) under oxidizing conditions. It was found that values of the sorption distribution coefficient, Kd, obtained from these column experiments under flowing conditions, regardless of the water or the water velocity used, agreed well with those obtained earlier from batch sorption experiments under static conditions. The batch sorption distribution coefficient can be used to predict the arrival time for neptunium eluted through the columns. On the other hand, the elution curves showed dispersivity, which implies that neptunium sorption in these tuffs may be nonlinear, irreversible, or noninstantaneous. As a result, use of a batch sorption distribution coefficient to calculate neptunium transport through Yucca Mountain tuffs would yield conservative values for neptunium release from the site. We also noted that neptunium (present as the anionic neptunyl carbonate complex) never eluted prior to tritiated water, which implies that charge exclusion does not appear to exclude neptunium from the tuff pores. The column experiments corroborated the trends observed in batch sorption experiments: neptunium sorption onto devitrified and vitric tuffs is minimal and sorption onto zeolitic tuffs decreases as the amount of sodium and bicarbonate/carbonate in the water increases

  4. On energy optimisation in multipurpose batch plants using heat storage

    CSIR Research Space (South Africa)

    Majozi, T

    2010-10-01

    Full Text Available The use of heat integration in multipurpose batch plants to minimise energy usage has been in the literature for more than two decades. Direct heat integration may be exploited when the heat source and heat sink processes are active over a common...

  5. Batch immunoextraction method for efficient purification of aromatic cytokinins

    Czech Academy of Sciences Publication Activity Database

    Hauserová, Eva; Swaczynová, Jana; Doležal, Karel; Lenobel, René; Popa, Igor; Hajdúch, M.; Vydra, D.; Fuksová, Květoslava; Strnad, Miroslav

    2005-01-01

    Roč. 1100, č. 1 (2005), s. 116-125 ISSN 0021-9673 R&D Projects: GA AV ČR IBS4055304 Institutional research plan: CEZ:AV0Z50380511; MSM6198959216 Keywords : antibody * 6-benzylaminopurine * batch immunoextraction Subject RIV: ED - Physiology Impact factor: 3.096, year: 2005

  6. Tier 3 batch system data locality via managed caches

    Science.gov (United States)

    Fischer, Max; Giffels, Manuel; Jung, Christopher; Kühn, Eileen; Quast, Günter

    2015-05-01

    Modern data processing increasingly relies on data locality for performance and scalability, whereas the common HEP approaches aim for uniform resource pools with minimal locality, recently even across site boundaries. To combine advantages of both, the High- Performance Data Analysis (HPDA) Tier 3 concept opportunistically establishes data locality via coordinated caches. In accordance with HEP Tier 3 activities, the design incorporates two major assumptions: First, only a fraction of data is accessed regularly and thus the deciding factor for overall throughput. Second, data access may fallback to non-local, making permanent local data availability an inefficient resource usage strategy. Based on this, the HPDA design generically extends available storage hierarchies into the batch system. Using the batch system itself for scheduling file locality, an array of independent caches on the worker nodes is dynamically populated with high-profile data. Cache state information is exposed to the batch system both for managing caches and scheduling jobs. As a result, users directly work with a regular, adequately sized storage system. However, their automated batch processes are presented with local replications of data whenever possible.

  7. A recirculating incubation system for hatching small batches of fish ...

    African Journals Online (AJOL)

    This paper describes the design, construction and evaluation of the capacity of a re-circulating incubation system for hatching small batches of fish eggs. ... Water flowed out of the incubation unit through a small section of glass and then plastic tubing inserted through a second hole in the rubber stopper to a PVC drain ...

  8. Spore survival during batch dry rendering of abattoir waste.

    Science.gov (United States)

    Lowry, P D; Fernando, T; Gill, C O

    1979-01-01

    Normal batch dry rendering practice does not ensure sterile products, because bacterial spores are protected against thermal denaturation by the high fat-low water content environment which results from drying the materials at temperatures below those required for sterilization. PMID:117753

  9. Adaptation to high throughput batch chromatography enhances multivariate screening.

    Science.gov (United States)

    Barker, Gregory A; Calzada, Joseph; Herzer, Sibylle; Rieble, Siegfried

    2015-09-01

    High throughput process development offers unique approaches to explore complex process design spaces with relatively low material consumption. Batch chromatography is one technique that can be used to screen chromatographic conditions in a 96-well plate. Typical batch chromatography workflows examine variations in buffer conditions or comparison of multiple resins in a given process, as opposed to the assessment of protein loading conditions in combination with other factors. A modification to the batch chromatography paradigm is described here where experimental planning, programming, and a staggered loading approach increase the multivariate space that can be explored with a liquid handling system. The iterative batch chromatography (IBC) approach is described, which treats every well in a 96-well plate as an individual experiment, wherein protein loading conditions can be varied alongside other factors such as wash and elution buffer conditions. As all of these factors are explored in the same experiment, the interactions between them are characterized and the number of follow-up confirmatory experiments is reduced. This in turn improves statistical power and throughput. Two examples of the IBC method are shown and the impact of the load conditions are assessed in combination with the other factors explored. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. An analysis of DTP- associated reactions by manufacturer, batch ...

    African Journals Online (AJOL)

    Merieux J5497 or SAIMR F08609. Methods of randomisation varied slightly between the two clinic groups in order to minimise clinic disruption. DTP dose numbers and batches were recorded on clinic cards to ensure vaccination with the same ...

  11. A storage assignment model for batch preparation in process industries

    NARCIS (Netherlands)

    Ashayeri, J.; Selen, W.

    2013-01-01

    Purpose – The purpose of this paper is to develop new model formulation for reducing the workload in pre‐batching at a manufacturer of flavors and fragrances, by optimally assigning ingredients to different storage types, taking into account past usage of ingredients and several restrictions about

  12. Synthesis of zero effluent multipurpose batch processes using effective scheduling

    CSIR Research Space (South Africa)

    Gouws, JF

    2008-06-01

    Full Text Available the scheduling of operations in the synthesis phase. The mathematically based method presented in this paper deals with the synthesis of a batch plant operating in the fashion mentioned above. The method determines the optimal size and number of processing...

  13. Comparative Batch and Column Evaluation of Thermal and Wet ...

    African Journals Online (AJOL)

    batch adsorption experiments and continous flow (fixed bed) column experiment to study the mechanism of dye removal by the commercial ... compared with those obtained for thermal regeneration method (qmax = 61.73mgg-1) and wet oxidative method (qmax .... Carbon hardness was determined using a wet attrition test ...

  14. Risk-based Methodology for Validation of Pharmaceutical Batch Processes.

    Science.gov (United States)

    Wiles, Frederick

    2013-01-01

    In January 2011, the U.S. Food and Drug Administration published new process validation guidance for pharmaceutical processes. The new guidance debunks the long-held industry notion that three consecutive validation batches or runs are all that are required to demonstrate that a process is operating in a validated state. Instead, the new guidance now emphasizes that the level of monitoring and testing performed during process performance qualification (PPQ) studies must be sufficient to demonstrate statistical confidence both within and between batches. In some cases, three qualification runs may not be enough. Nearly two years after the guidance was first published, little has been written defining a statistical methodology for determining the number of samples and qualification runs required to satisfy Stage 2 requirements of the new guidance. This article proposes using a combination of risk assessment, control charting, and capability statistics to define the monitoring and testing scheme required to show that a pharmaceutical batch process is operating in a validated state. In this methodology, an assessment of process risk is performed through application of a process failure mode, effects, and criticality analysis (PFMECA). The output of PFMECA is used to select appropriate levels of statistical confidence and coverage which, in turn, are used in capability calculations to determine when significant Stage 2 (PPQ) milestones have been met. The achievement of Stage 2 milestones signals the release of batches for commercial distribution and the reduction of monitoring and testing to commercial production levels. Individuals, moving range, and range/sigma charts are used in conjunction with capability statistics to demonstrate that the commercial process is operating in a state of statistical control. The new process validation guidance published by the U.S. Food and Drug Administration in January of 2011 indicates that the number of process validation batches

  15. Glucoamylase production in batch, chemostat and fed-batch cultivations by an industrial strain of Aspergillus niger

    DEFF Research Database (Denmark)

    Pedersen, Henrik; Beyer, Michael; Nielsen, Jens

    2000-01-01

    growth rate of the fungus were independent of pH when grown in batch cultivations. The specific glucoamylase productivity increased linearly with the specific growth rate in the range 0-0.1 h(-1) and was constant in the range 0.1-0.2 h(-1) Maltose and maltodextrin were non-inducing carbon sources...

  16. Long-term biological hydrogen production by agar immobilized Rhodobacter capsulatus in a sequential batch photobioreactor.

    Science.gov (United States)

    Elkahlout, Kamal; Alipour, Siamak; Eroglu, Inci; Gunduz, Ufuk; Yucel, Meral

    2017-04-01

    In this study, agar immobilization technique was employed for biological hydrogen production using Rhodobacter capsulatus DSM 1710 (wild type) and YO3 (hup-mutant) strains in sequential batch process. Different agar and glutamate concentrations were tested with defined nutrient medium. Agar concentration 4% (w/v) and 4 mM glutamate were selected for bacterial immobilization in terms of rate and longevity of hydrogen production. Acetate concentration was increased from 40 to 60-100 and 60 mM gave best results with both bacterial strains immobilized in 4% (w/v) agar. Cell concentration was increased from 2.5 to 5 mg dcw mL -1 agar and it was found that increasing cell concentration of wild-type strain caused decrease in yield and productivity while these parameters improved by increasing cell concentration of mutant strain. Also, the hydrogen production time has extended from 17 days up to 60 days according to the process conditions and parameters. Hydrogen production by immobilized photosynthetic bacteria is a convenient technology for hydrogen production as it enables to produce hydrogen with high organic acid concentrations comparing to suspended cultures. Besides, immobilization increases the stability of the system and allowed sequential batch operation for long-term application.

  17. Exponential fed-batch strategy for enhancing biosurfactant production by Bacillus subtilis.

    Science.gov (United States)

    Amin, G A

    2014-01-01

    Surfactin produced by Bacillus subtilis BDCC-TUSA-3 from Maldex-15 was used as a growth-associated product in a conventional batch process. Maldex-15 is a cheap industrial by-product recovered during manufacturing of high fructose syrup from corn starch. Surfactin production was greatly improved in exponential fed-batch fermentation. Maldex-15 and other nutrients were exponentially fed into the culture based on the specific growth rate of the bacterium. In order to maximize surfactin yield and productivity, conversion of different quantities of Maldex-15 into surfactin was investigated in five different fermentation runs. In all runs, most of the Maldex-15 was consumed and converted into surfactin and cell biomass with appreciable efficiencies. The best results were obtained with the fermentation run supplied with 204 g Maldex-15. Up to 36.1 g l(-1) of surfactin and cell biomass of 31.8 g l(-1) were achieved in 12 h. Also, a marked substrate yield of 0.272 g g(-1) and volumetric reactor productivity of 2.58 g 1(-1) h(-1) were obtained, confirming the establishment of a cost-effective commercial surfactin production.

  18. Using a medium of free amino acids to produce penicillin g acylase in fed-batch cultivations of Bacillus megaterium ATCC 14945

    Directory of Open Access Journals (Sweden)

    R. G. Silva

    2006-03-01

    Full Text Available The production of penicillin G acylase (PGA, an important industrial enzyme from a wild strain of Bacillus megaterium using a pool of free amino acids as substrate was studied in a bench-scale bioreactor. Experiments carried out in shakers showed that the substitution of casein for free amino acids in the presence of cheese whey was the culture medium that provided the highest productivity. Several cultivations were carried out in a bioreactor operated in either batch or fed-batch mode. Batch runs showed that enzyme production is associated with microorganism growth. The following set of amino acids was preferentially consumed: Ala, Arg, Asp, Gly, Lys, Ser, Thr and Trp. On the other hand, the rates of consumption of His, Ile, Leu, Met, Phe, Pro, Tyr and Val were lower.

  19. The fed-batch principle for the molecular biology lab: controlled nutrient diets in ready-made media improve production of recombinant proteins in Escherichia coli.

    Science.gov (United States)

    Krause, Mirja; Neubauer, Antje; Neubauer, Peter

    2016-06-17

    While the nutrient limited fed-batch technology is the standard of the cultivation of microorganisms and production of heterologous proteins in industry, despite its advantages in view of metabolic control and high cell density growth, shaken batch cultures are still the standard for protein production and expression screening in molecular biology and biochemistry laboratories. This is due to the difficulty and expenses to apply a controlled continuous glucose feed to shaken cultures. New ready-made growth media, e.g. by biocatalytic release of glucose from a polymer, offer a simple solution for the application of the fed-batch principle in shaken plate and flask cultures. Their wider use has shown that the controlled diet not only provides a solution to obtain significantly higher cell yields, but also in many cases folding of the target protein is improved by the applied lower growth rates; i.e. final volumetric yields for the active protein can be a multiple of what is obtained in complex medium cultures. The combination of the conventional optimization approaches with new and easy applicable growth systems has revolutionized recombinant protein production in Escherichia coli in view of product yield, culture robustness as well as significantly increased cell densities. This technical development establishes the basis for successful miniaturization and parallelization which is now an important tool for synthetic biology and protein engineering approaches. This review provides an overview of the recent developments, results and applications of advanced growth systems which use a controlled glucose release as substrate supply.

  20. Liquid state bioconversion of sewage treatment plant sludge in batch fermenter and shake flask.

    Science.gov (United States)

    Alam, Md Zahangir; Fakhru'l-Razi, A

    2004-01-01

    A study on liquid state bioconversion of sewage treatment plant (STP) sludge was assisted to evaluate the performance of batch fermenter compared to shake flask in a laboratory. Bioconversion of STP sludge was highly influenced by the mixed fungal culture of Penicillium corylophilum and Aspergillus niger after 4 days of treatment. The results showed that about 24.9 g kg(-1) dry sludge cake (DSC) was produced with enrichment of fungal biomass protein in fermenter while 20.1 g kg(-1) in shake flask after 4 days of fungal treatment. The effective biodegradation of STP sludge was recorded in both fermenter and shake flask experiment compared to control (uninnoculated sample). The results presented in this study revealed that the overall performance of fermenter in terms of sludge cake (biosolids) accumulation and biodegradation of STP sludge was higher than the shake flask.

  1. Optimal Operation of Industrial Batch Crystallizers : A Nonlinear Model-based Control Approach

    NARCIS (Netherlands)

    Mesbah, A.

    2010-01-01

    Batch crystallization is extensively employed in the chemical, pharmaceutical, and food industries to separate and purify high value-added chemical substances. Despite their widespread application, optimal operation of batch crystallizers is particularly challenging. The difficulties primarily

  2. Selecting local constraint for alignment of batch process data with dynamic time warping

    DEFF Research Database (Denmark)

    Spooner, Max Peter; Kold, David; Kulahci, Murat

    2017-01-01

    observation number for every batch. Dynamic time warping has been shown to be an effective method for meeting these objectives. This is based on a dynamic programming algorithm that aligns a batch to a reference batch, by stretching and compressing its local time dimension. The resulting ”warping function......There are two key reasons for aligning batch process data. The first is to obtain same-length batches so that standard methods of analysis may be applied, whilst the second reason is to synchronise events that take place during each batch so that the same event is associated with the same......” may be interpreted as a progress signature of the batch which may be appended to the aligned data for further analysis. For the warping function to be a realistic reflection of the progress of a batch, it is necessary to impose some constraints on the dynamic time warping algorithm, to avoid...

  3. Mathematical technique for the design of near-zero-effluent batch processess

    CSIR Research Space (South Africa)

    Gouws, JF

    2008-07-01

    Full Text Available Wastewater minimisation in chemical processes has always been the privilege of continuous rather than batch plants. However, this situation is steadily changing, since batch plants have a tendency to generate much more toxic effluent compared...

  4. Heat integration in multipurpose batch plants using a robust scheduling framework

    CSIR Research Space (South Africa)

    Seid, ER

    2014-07-01

    Full Text Available Energy saving is becoming increasingly important in batch processing facilities. Multipurpose batch plants have become more popular than ever in the processing environment due to their inherent flexibility and adaptability to market conditions, even...

  5. On Bottleneck Product Rate Variation Problem with Batching

    Directory of Open Access Journals (Sweden)

    Shree Khadka

    2013-07-01

    Full Text Available The product rate variation problem minimizes the variation in the rate at which different models of a common base product are produced on the assembly lines with the assumption of negligible switch-over cost and unit processing time for each copy of each model. The assumption of significant setup and arbitrary processing times forces the problem to be a two phase problem. The first phase determines the size and the number of batches and the second one sequences the batches of models. In this paper, the bottleneck case i.e. the min-max case of the problem with a generalized objective function is formulated. A Pareto optimal solution is proposed and a relation between optimal sequences for the problem with different objective functions is investigated.

  6. Integration of Grid and Local Batch Resources at DESY

    Science.gov (United States)

    Beyer, Christoph; Finnern, Thomas; Gellrich, Andreas; Hartmann, Thomas; Kemp, Yves; Lewendel, Birgit

    2017-10-01

    As one of the largest resource centres DESY has to support differing work flows of users from various scientific backgrounds. Users can be for one HEP experiments in WLCG or Belle II as well as local HEP users but also physicists from other fields as photon science or accelerator development. By abandoning specific worker node setups in favour of generic flat nodes with middleware resources provided via CVMFS, we gain flexibility to subsume different use cases in a homogeneous environment. Grid jobs and the local batch system are managed in a HTCondor based setup, accepting pilot, user and containerized jobs. The unified setup allows dynamic re-assignment of resources between the different use cases. Monitoring is implemented on global batch system metrics as well as on a per job level utilizing corresponding cgroup information.

  7. APPLICATION OF MODEL PREDICTIVE CONTROL TO BATCH POLYMERIZATION REACTOR

    Directory of Open Access Journals (Sweden)

    N.M. Ghasem

    2006-06-01

    Full Text Available The absence of a stable operational state in polymerization reactors that operates in batches is factor that determine the need of a special control system. In this study, advanced control methodology is implemented for controlling the operation of a batch polymerization reactor for polystyrene production utilizingmodel predictive control. By utilizing a model of the polymerization process, the necessary operational conditions were determined for producing the polymer within the desired characteristics. The maincontrol objective is to bring the reactor temperature to its target temperature as rapidly as possible with minimal temperature overshoot. Control performance for the proposed method is encouraging. It has been observed that temperature overshoot can be minimized by the proposed method with the use of both reactor and jacket energy balance for reactor temperature control.

  8. Continuous Heterogeneous Photocatalysis in Serial Micro-Batch Reactors.

    Science.gov (United States)

    Pieber, Bartholomäus; Shalom, Menny; Antonietti, Markus; Seeberger, Peter H; Gilmore, Kerry

    2018-01-29

    Solid reagents, leaching catalysts, and heterogeneous photocatalysts are commonly employed in batch processes but are ill-suited for continuous-flow chemistry. Heterogeneous catalysts for thermal reactions are typically used in packed-bed reactors, which cannot be penetrated by light and thus are not suitable for photocatalytic reactions involving solids. We demonstrate that serial micro-batch reactors (SMBRs) allow for the continuous utilization of solid materials together with liquids and gases in flow. This technology was utilized to develop selective and efficient fluorination reactions using a modified graphitic carbon nitride heterogeneous catalyst instead of costly homogeneous metal polypyridyl complexes. The merger of this inexpensive, recyclable catalyst and the SMBR approach enables sustainable and scalable photocatalysis. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. JAVA Implementation of the Batched iLab Shared Architecture

    Directory of Open Access Journals (Sweden)

    Lenard Payne

    2013-04-01

    Full Text Available The MIT iLab Shared Architecture is limited currently to running on the Microsoft Windows platform. A JAVA implementation of the Batched iLab Shared Architecture has been developed that can be used on other operating systems and still interoperate with the existing Microsoft .NET web services of MIT’s iLab ServiceBroker. The Batched iLab Shared Architecture has been revised and separates the Labserver into a LabServer that handles experiment management and a LabEquipment that handles experiment execution. The JAVA implementation provides a 3-tier code development model that allows code to be reused and to develop only the code that is specific to each experiment.

  10. Optimization of the liquid biofertilizer production in batch fermentation with by-product from MSG

    Science.gov (United States)

    Namfon, Panjanapongchai; Ratchanok, Sahaworarak; Chalida, Daengbussade

    2017-03-01

    The long term use of chemical fertilizers destroyed the friability of soil which obviously decreased quantity and quality of crops and especially affect microorganisms living in soils. The bio-fertilizer with microbial consortium is an environmental friendly alternative to solve this bottleneck due to harboring soil microorganisms such as Bacillus sp., Micrococcus sp., Pseudomonas sp., Staphylococcus sp. and Deinococcus sp. produced with natural by-product or waste from industries that is alternative and sustainable such as nutrient-rich (by-product) from Mono Sodium Glutamate (MSG) for producing liquid biofertilizer by batch fermentation. In this work, the concentration of reducing sugar from substrate as main carbon source was evaluated in shake flask with mixed cultures. The optimal conditions were studied comparing with two levels of reducing sugar concentration (10, 20 g/L) and inoculums concentration (10, 20 %v/v) with using (2×2) full factorial design. The results indicated that the by-product from monosodium glutamate is feasible for fermentation and inoculums concentration is mainly influenced the batch fermentation process. Moreover, the combined 20 g/L and 10%v/v were considerably concluded as an optimal condition, of which the concentration of vegetative cells and spores attained at 8.29×109 CFU/mL and 1.97×105 CFU/mL, respectively. Their spores cell yields from reducing sugar (Yx/s) were obtained at 1.22×106 and 3.34×105 CFU/g were markedly different. In conclusion, the liquid Biofertilizer was produced satisfactorily at 20 g/L reducing sugar and 10% v/v inoculums in shake flask culture. Moreover, these results suggested that the by-product from monosodium glutamate is feasible for low-cost substrate in economical scale and environmental-friendly.

  11. Recipe-Based Batch Control Using High-Level Grafchart

    OpenAIRE

    Johnsson, Charlotta

    1997-01-01

    High-Level Grafchart is a graphical programming language for control of sequential processes. Sequential control is important in all kinds of industries: discrete, continuous and batch. Sequential elements show up both on the local control level and on the supervisory control level. High-Level Grafchart combines the graphical syntax of Grafcet/SFC with high-level programming language constructs and ideas from High-Level Petri Nets. High-Level Grafchart can be used to control sequential proces...

  12. Using Simulation for Scheduling and Rescheduling of Batch Processes

    OpenAIRE

    Girish Joglekar

    2017-01-01

    The problem of scheduling multiproduct and multipurpose batch processes has been studied for more than 30 years using math programming and heuristics. In most formulations, the manufacturing recipes are represented by simplified models using state task network (STN) or resource task network (RTN), transfers of materials are assumed to be instantaneous, constraints due to shared utilities are often ignored, and scheduling horizons are kept small due to the limits on the problem size that can b...

  13. Integration of virtualized worker nodes in standard batch systems

    International Nuclear Information System (INIS)

    Buege, Volker; Kunze, Marcel; Oberst, Oliver; Quast, Guenter; Scheurer, Armin; Hessling, Hermann; Kemp, Yves; Synge, Owen

    2010-01-01

    Current experiments in HEP only use a limited number of operating system flavours. Their software might only be validated on one single OS platform. Resource providers might have other operating systems of choice for the installation of the batch infrastructure. This is especially the case if a cluster is shared with other communities, or communities that have stricter security requirements. One solution would be to statically divide the cluster into separated sub-clusters. In such a scenario, no opportunistic distribution of the load can be achieved, resulting in a poor overall utilization efficiency. Another approach is to make the batch system aware of virtualization, and to provide each community with its favoured operating system in a virtual machine. Here, the scheduler has full flexibility, resulting in a better overall efficiency of the resources. In our contribution, we present a lightweight concept for the integration of virtual worker nodes into standard batch systems. The virtual machines are started on the worker nodes just before jobs are executed there. No meta-scheduling is introduced. We demonstrate two prototype implementations, one based on the Sun Grid Engine (SGE), the other using Maui/Torque as a batch system. Both solutions support local job as well as Grid job submission. The hypervisors currently used are Xen and KVM, a port to another system is easily envisageable. To better handle different virtual machines on the physical host, the management solution VmImageManager is developed. We will present first experience from running the two prototype implementations. In a last part, we will show the potential future use of this lightweight concept when integrated into high-level (i.e. Grid) work-flows.

  14. Adsorption of Arsenite onto Kemiron in a batch system

    African Journals Online (AJOL)

    doti

    This study investigated the effect of pH and coexisting ions on As(III) adsorption using batch experiment and discovered that pH strongly influenced As(III) adsorption. However, differences in background ionic strengths of 0.001 N NaNO3 and 0.1 N NaNO3 had no effect on the sorption trend. The isotherms followed ...

  15. MATHEMATICAL MODELING OF BATCH ADSORPTION OF MANGANESE ONTO BONE CHAR

    OpenAIRE

    Maria, M. E.; Mansur, M. B.

    2016-01-01

    Abstract The present study investigated the dynamics of batch adsorption of manganese onto bone char by using two distinct mathematical formulations: the diffusion model and the shrinking core model. Both models assumed spherical particles and adequately described the transient behavior of metal adsorption under changing operating conditions. Comparatively, the diffusion model described the manganese adsorption better at distinct particle sizes even when small particles were used (dp ≤ 0.147 ...

  16. Batch production of microchannel plate photo-multipliers

    Energy Technology Data Exchange (ETDEWEB)

    Frisch, Henry J.; Wetstein, Matthew; Elagin, Andrey

    2018-03-06

    In-situ methods for the batch fabrication of flat-panel micro-channel plate (MCP) photomultiplier tube (PMT) detectors (MCP-PMTs), without transporting either the window or the detector assembly inside a vacuum vessel are provided. The method allows for the synthesis of a reflection-mode photocathode on the entrance to the pores of a first MCP or the synthesis of a transmission-mode photocathode on the vacuum side of a photodetector entrance window.

  17. Automated handling for SAF batch furnace and chemistry analysis operations

    International Nuclear Information System (INIS)

    Bowen, W.W.; Sherrell, D.L.; Wiemers, M.J.

    1981-01-01

    The Secure Automated Fabrication Program is developing a remotely operated breeder reactor fuel pin fabrication line. The equipment will be installed in the Fuels and Materials Examination Facility being constructed at Hanford, Washington. Production is scheduled to start in mid-1986. The application of small pneumatically operated industrial robots for loading and unloading product into and out of batch furnaces and for distribution and handling of chemistry samples is described

  18. Sequencing batch-reactor control using Gaussian-process models.

    Science.gov (United States)

    Kocijan, Juš; Hvala, Nadja

    2013-06-01

    This paper presents a Gaussian-process (GP) model for the design of sequencing batch-reactor (SBR) control for wastewater treatment. The GP model is a probabilistic, nonparametric model with uncertainty predictions. In the case of SBR control, it is used for the on-line optimisation of the batch-phases duration. The control algorithm follows the course of the indirect process variables (pH, redox potential and dissolved oxygen concentration) and recognises the characteristic patterns in their time profile. The control algorithm uses GP-based regression to smooth the signals and GP-based classification for the pattern recognition. When tested on the signals from an SBR laboratory pilot plant, the control algorithm provided a satisfactory agreement between the proposed completion times and the actual termination times of the biodegradation processes. In a set of tested batches the final ammonia and nitrate concentrations were below 1 and 0.5 mg L(-1), respectively, while the aeration time was shortened considerably. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Fault Diagnosis of Batch Reactor Using Machine Learning Methods

    Directory of Open Access Journals (Sweden)

    Sujatha Subramanian

    2014-01-01

    Full Text Available Fault diagnosis of a batch reactor gives the early detection of fault and minimizes the risk of thermal runaway. It provides superior performance and helps to improve safety and consistency. It has become more vital in this technical era. In this paper, support vector machine (SVM is used to estimate the heat release (Qr of the batch reactor both normal and faulty conditions. The signature of the residual, which is obtained from the difference between nominal and estimated faulty Qr values, characterizes the different natures of faults occurring in the batch reactor. Appropriate statistical and geometric features are extracted from the residual signature and the total numbers of features are reduced using SVM attribute selection filter and principle component analysis (PCA techniques. artificial neural network (ANN classifiers like multilayer perceptron (MLP, radial basis function (RBF, and Bayes net are used to classify the different types of faults from the reduced features. It is observed from the result of the comparative study that the proposed method for fault diagnosis with limited number of features extracted from only one estimated parameter (Qr shows that it is more efficient and fast for diagnosing the typical faults.

  20. Yields from pyrolysis of refinery residue using a batch process

    Directory of Open Access Journals (Sweden)

    S. Prithiraj

    2017-12-01

    Full Text Available Batch pyrolysis was a valuable process of assessing the potential of recovering and characterising products from hazardous waste materials. This research explored the pyrolysis of hydrocarbon-rich refinery residue, from crude oil processes, in a 1200 L electrically-heated batch retort. Furthermore, the off-gases produced were easily processed in compliance with existing regulatory emission standards. The methodology offers a novel, cost-effective and environmentally compliant method of assessing recovery potential of valuable products. The pyrolysis experiments yielded significant oil (70% with high calorific value (40 MJ/kg, char (14% with carbon content over 80% and non-condensable gas (6% with significant calorific value (240 kJ/mol. The final gas stream was subjected to an oxidative clean-up process with continuous on-line monitoring demonstrating compliance with South African emission standards. The gas treatment was overall economically optimal as only a smaller portion of the original residue was subjected to emission-controlling steps. Keywords: Batch pyrolysis, Volatiles, Oil yields, Char, Emissions, Oil recovery

  1. Analyzing data flows of WLCG jobs at batch job level

    Science.gov (United States)

    Kuehn, Eileen; Fischer, Max; Giffels, Manuel; Jung, Christopher; Petzold, Andreas

    2015-05-01

    With the introduction of federated data access to the workflows of WLCG, it is becoming increasingly important for data centers to understand specific data flows regarding storage element accesses, firewall configurations, as well as the scheduling of batch jobs themselves. As existing batch system monitoring and related system monitoring tools do not support measurements at batch job level, a new tool has been developed and put into operation at the GridKa Tier 1 center for monitoring continuous data streams and characteristics of WLCG jobs and pilots. Long term measurements and data collection are in progress. These measurements already have been proven to be useful analyzing misbehaviors and various issues. Therefore we aim for an automated, realtime approach for anomaly detection. As a requirement, prototypes for standard workflows have to be examined. Based on measurements of several months, different features of HEP jobs are evaluated regarding their effectiveness for data mining approaches to identify these common workflows. The paper will introduce the actual measurement approach and statistics as well as the general concept and first results classifying different HEP job workflows derived from the measurements at GridKa.

  2. Fed-batch production of tetanus toxin by Clostridium tetani.

    Science.gov (United States)

    Fratelli, Fernando; Siquini, Tatiana Joly; de Abreu, Marcelo Estima; Higashi, Hisako Gondo; Converti, Attilio; de Carvalho, João Carlos Monteiro

    2010-01-01

    This study deals with the effects of the initial nitrogen source (NZ Case TT) level and the protocol of glucose addition during the fed-batch production of tetanus toxin by Clostridium tetani. An increase in the initial concentration of NZ Case TT (NZ(0)) accelerated cell growth, increased the consumption of the nitrogen source as well as the final yield of tetanus toxin, which achieved the highest values (50-60 L(f)/mL) for NZ(0) > or = 50 g/L. The addition of glucose at fixed times (16, 56, and 88 h) ensured a toxin yield ( approximately 60 L(f)/mL) about 33% higher than those of fed-batch runs with addition at fixed concentration ( approximately 45 L(f)/mL) and about 300% higher than those obtained in reference batch runs nowadays used at industrial scale. The results of this work promise to substantially improve the present production of tetanus toxin and may be adopted for human vaccine production after detoxification and purification.

  3. Monitoring a PVC batch process with multivariate statistical process control charts

    NARCIS (Netherlands)

    Tates, A. A.; Louwerse, D. J.; Smilde, A. K.; Koot, G. L. M.; Berndt, H.

    1999-01-01

    Multivariate statistical process control charts (MSPC charts) are developed for the industrial batch production process of poly(vinyl chloride) (PVC). With these MSPC charts different types of abnormal batch behavior were detected on-line. With batch contribution plots, the probable causes of these

  4. 40 CFR 63.1323 - Batch process vents-methods and procedures for group determination.

    Science.gov (United States)

    2010-07-01

    ... in § 63.1322(a)(1) or § 63.1322(b)(1) or routing the batch process vent to a control device to comply... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Batch process vents-methods and... Polymers and Resins § 63.1323 Batch process vents—methods and procedures for group determination. (a...

  5. Performance assessment and improvement of control charts for statistical batch process monitoring

    NARCIS (Netherlands)

    Ramaker, Henk-Jan; van Sprang, Eric N. M.; Westerhuis, Johan A.; Gurden, Stephen P.; Smilde, Age K.; van der Meulen, Frank H.

    2006-01-01

    This paper describes the concepts of statistical batch process monitoring and the associated problems. It starts with an introduction to process monitoring in general which is then extended to batch process monitoring. The performance of control charts for batch process monitoring is discussed by

  6. 21 CFR 111.260 - What must the batch record include?

    Science.gov (United States)

    2010-04-01

    ..., LABELING, OR HOLDING OPERATIONS FOR DIETARY SUPPLEMENTS Production and Process Control System: Requirements... record must include the following: (a) The batch, lot, or control number: (1) Of the finished batch of... that quality control personnel: (1) Reviewed the batch production record, including: (i) Review of any...

  7. 40 CFR 63.486 - Batch front-end process vent provisions.

    Science.gov (United States)

    2010-07-01

    ... sources with batch front-end process vents classified as Group 1 shall comply with the reference control... Group 2 batch front-end process vents shall comply with the applicable reference control technology... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Batch front-end process vent provisions...

  8. 40 CFR 63.1322 - Batch process vents-reference control technology.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Batch process vents-reference control technology. 63.1322 Section 63.1322 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Batch process vents—reference control technology. (a) Batch process vents. The owner or operator of a...

  9. 40 CFR 417.10 - Applicability; description of the soap manufacturing by batch kettle subcategory.

    Science.gov (United States)

    2010-07-01

    ... manufacturing by batch kettle subcategory. 417.10 Section 417.10 Protection of Environment ENVIRONMENTAL... CATEGORY Soap Manufacturing by Batch Kettle Subcategory § 417.10 Applicability; description of the soap manufacturing by batch kettle subcategory. The provisions of this subpart are applicable to discharges resulting...

  10. OSAT: a tool for sample-to-batch allocations in genomics experiments

    Directory of Open Access Journals (Sweden)

    Yan Li

    2012-12-01

    Full Text Available Abstract Background Batch effect is one type of variability that is not of primary interest but ubiquitous in sizable genomic experiments. To minimize the impact of batch effects, an ideal experiment design should ensure the even distribution of biological groups and confounding factors across batches. However, due to the practical complications, the availability of the final collection of samples in genomics study might be unbalanced and incomplete, which, without appropriate attention in sample-to-batch allocation, could lead to drastic batch effects. Therefore, it is necessary to develop effective and handy tool to assign collected samples across batches in an appropriate way in order to minimize the impact of batch effects. Results We describe OSAT (Optimal Sample Assignment Tool, a bioconductor package designed for automated sample-to-batch allocations in genomics experiments. Conclusions OSAT is developed to facilitate the allocation of collected samples to different batches in genomics study. Through optimizing the even distribution of samples in groups of biological interest into different batches, it can reduce the confounding or correlation between batches and the biological variables of interest. It can also optimize the homogeneous distribution of confounding factors across batches. It can handle challenging instances where incomplete and unbalanced sample collections are involved as well as ideally balanced designs.

  11. Degradation of chlorophenol mixtures in a fed-batch system by two ...

    African Journals Online (AJOL)

    Degradation of chlorophenol mixtures in a fed-batch system by two soil bacteria. ... This work was undertaken to investigate the effect of variations of the feed rate on a fed-batch set-up used to degrade xenobiotics. ... Keywords: Chlorophenol; fed batch system; aerobic degradation; waste treatment; microbial biocatalysis ...

  12. Look-ahead strategies for controlling batch operations in industry : Overview, comparison and exploration

    NARCIS (Netherlands)

    van der Zee, D.J.

    2000-01-01

    Batching jobs in a manufacturing system is a very common policy in most industries. Main reasons for batching are avoidance of set ups and/or facilitation of material handling. Good examples of batch wise production systems are ovens found in aircraft industry and in semi-conductor manufacturing.

  13. Look-ahead strategies for controlling batch operations in industry - overview, comparison and exploration

    NARCIS (Netherlands)

    Zee, D.J. van der; Harten, A. van; Schuur, P.C.; Joines, JA; Barton, RR; Kang, K; Fishwick, PA

    2000-01-01

    Batching jobs in a manufacturing system is a very common policy in most industries. The main reasons for batching are avoidance of set ups and/or facilitation of material handling. Good examples of batch-wise production systems are ovens found in aircraft industry and in semiconductor manufacturing.

  14. Look-ahead strategies for controlling batch operations in industry - An overview

    NARCIS (Netherlands)

    Zee, Durk-Jouke van der; Chick, SE; Sanchez, PJ; Ferrin, D; Morrice, DJ

    2003-01-01

    Batching jobs in a manufacturing system is a very common policy in most industries. Main reasons for batching are avoidance of set ups and/or facilitation of material handling. Examples of batch-wise production systems are ovens found in aircraft industry and in semiconductor manufacturing. Starting

  15. 40 CFR 63.1407 - Non-reactor batch process vent provisions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Non-reactor batch process vent... § 63.1407 Non-reactor batch process vent provisions. (a) Emission standards. (1) Owners or operators of non-reactor batch process vents located at new or existing affected sources with 0.25 tons per year (0...

  16. Optimization of a fed-batch fermentation process for production of ...

    African Journals Online (AJOL)

    Due to the substrate inhibition that takes place at high levels of carbon source, fed-batch fermentation was proposed as a better alternative for BLM production. The combined effects of batch and fed-batch fermentation and various pH profiles on BLM production in a bioreactor were evaluated. The tested pH profiles included ...

  17. Look-ahead strategies for controlling batch operations in industry : basic insights in rule construction

    NARCIS (Netherlands)

    van der Zee, D.J.; Sullivan, W.A.; Ahmad, M.M.; Fichtner, D.; Sauer, W.; Weigert, G.; Zerna, T.

    2002-01-01

    Batching jobs in a manufacturing system is a very common policy in most industries. Main reasons for batching are avoidance of set ups and/or facilitation of material handling. Examples of batch-wise production systems are ovens found in aircraft industry and in semiconductor manufacturing. Starting

  18. A method of batch-purifying microalgae with multiple antibiotics at extremely high concentrations

    Science.gov (United States)

    Han, Jichang; Wang, Song; Zhang, Lin; Yang, Guanpin; Zhao, Lu; Pan, Kehou

    2016-01-01

    Axenic microalgal strains are highly valued in diverse microalgal studies and applications. Antibiotics, alone or in combination, are often used to avoid bacterial contamination during microalgal isolation and culture. In our preliminary trials, we found that many microalgae ceased growing in antibiotics at extremely high concentrations but could resume growth quickly when returned to an antibiotics-free liquid medium and formed colonies when spread on a solid medium. We developed a simple and highly efficient method of obtaining axenic microalgal cultures based on this observation. First, microalgal strains of different species or strains were treated with a mixture of ampicillin, gentamycin sulfate, kanamycin, neomycin and streptomycin (each at a concentration of 600 mg/L) for 3 days; they were then transferred to antibiotics-free medium for 5 days; and finally they were spread on solid f/2 media to allow algal colonies to form. With this method, five strains of Nannochloropsis sp. (Eustigmatophyceae), two strains of Cylindrotheca sp. (Bacillariophyceae), two strains of Tetraselmis sp. (Chlorodendrophyceae) and one strain of Amphikrikos sp. (Trebouxiophyceae) were purified successfully. The method shows promise for batch-purifying microalgal cultures.

  19. Ethanol production from Sorghum bicolor using both separate and simultaneous saccharification and fermentation in batch and fed batch systems

    DEFF Research Database (Denmark)

    Mehmood, Sajid; Gulfraz, M.; Rana, N. F.

    2009-01-01

    The objective of this work was to find the best combination of different experimental conditions during pre-treatment, enzymatic saccharification, detoxification of inhibitors and fermentation of Sorghum bicolor straw for ethanol production. The optimization of pre-treatment using different...... were used in order to increase the monomeric sugar during enzymatic hydrolysis and it has been observed that the addition of these surfactants contributed significantly in cellulosic conversion but no effect was shown on hemicellulosic hydrolysis. Fermentability of hydrolyzate was tested using...... Saccharomyces cerevisiae Ethanol Red (TM) and it was observed that simultaneous saccharification and fermentation ( SSF) with both batch and fed batch resulted in better ethanol yield as compared to separate hydrolysis and fermentation ( SHF). Detoxification of furan during SHF facilitated reduction...

  20. Continuous citric acid production in repeated-fed batch fermentation by Aspergillus niger immobilized on a new porous foam.

    Science.gov (United States)

    Yu, Bin; Zhang, Xin; Sun, Wenjun; Xi, Xun; Zhao, Nan; Huang, Zichun; Ying, Zhuojun; Liu, Li; Liu, Dong; Niu, Huanqing; Wu, Jinglan; Zhuang, Wei; Zhu, Chenjie; Chen, Yong; Ying, Hanjie

    2018-03-24

    The efficiency of current methods for industrial production of citric acid is limited. To achieve continuous citric acid production with enhanced yield and reduced cost, immobilized fermentation was employed in an Aspergillus niger 831 repeated fed-batch fermentation system. We developed a new type of material (PAF201), which was used as a carrier for the novel adsorption immobilization system. Hydrophobicity, pore size and concentration of carriers were researched in A. niger immobilization. The efficiency of the A. niger immobilization process was analyzed by scanning electron microscopy. Then eight-cycle repeated fed-batch cultures for citric acid production were carried out over 600 h, which showed stable production with maximum citric acid concentrations and productivity levels of 162.7 g/L and 2.26 g L -1  h -1 , respectively. Compared with some other literatures about citric acid yield, PAF201 immobilization system is 11.3% higher than previous results. These results indicated that use of the new adsorption immobilization system could greatly improve citric acid productivity in repeated fed-batch fermentation. Moreover, these results could provide a guideline for A.niger or other filamentous fungi immobilization in industry. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Community dynamics of complex starter cultures for Gouda-type cheeses and its functional consequences

    NARCIS (Netherlands)

    Erkus, O.

    2014-01-01

    Lactic acid bacteria (LAB) are used as starter and adjunct cultures for the production of artisanal and industrial fermented milk products such as yoghurt and cheese.  Artisanal fermentations is propagated with the transfer of an inoculum from old batch of fermented food to the new batch

  2. Community dynamics of complex starter cultures for Gouda-type cheeses and its functional consequences

    NARCIS (Netherlands)

    Erkus, O.

    2014-01-01

    Lactic acid bacteria (LAB) are used as starter and adjunct cultures for the production of artisanal and industrial fermented milk products such as yoghurt and cheese. Artisanal fermentations is propagated with the transfer of an inoculum from old batch of fermented food to the new batch

  3. Factors Causing Compositional Changes in Soy Protein Hydrolysates and Effects on Cell Culture Functionality

    NARCIS (Netherlands)

    Gupta, A.J.; Gruppen, H.; Maes, D.; Boots, J.W.; Wierenga, P.A.

    2013-01-01

    Soy protein hydrolysates significantly enhance cell growth and recombinant protein production in cell cultures. The extent of this enhancement in cell growth and IgG production is known to vary from batch to batch. This can be due to differences in the abundance of different classes of compounds

  4. Biomass and lipid production from Nannochloropsis oculata growth in raceway ponds operated in sequential batch mode under greenhouse conditions.

    Science.gov (United States)

    Millán-Oropeza, Aarón; Fernández-Linares, Luis

    2017-11-01

    The effect of sequential batch cultures of the marine microalgae Nannochloropsis oculata on lipid and biomass production was studied in 200-L raceway ponds for 167 days (nine harvesting cycles) during winter and spring seasons under greenhouse conditions. The highest biomass concentration and productivity were 1.2 g/L and 49.8 mg/L/day on days 73 (5th cycle) and 167 (9th cycle), respectively. The overall interval of lipid production was between 131 and 530 mg/L. Despite the daily and seasonal variations of light irradiance (0-1099 μmol photon/m 2  s), greenhouse temperature (2.1-50.7 °C), and culture temperature (12.5-31.4 °C), ANOVA analysis showed no statistical difference (p value > 0.01) on the fatty acid methyl ester (FAMES) composition over the nine harvesting cycles evaluated. The most abundant FAMES were palmitic (C16:0), stearic (C18:0) and palmitoleic (C16:1∆9) acids with 37.1, 28.6, and 8.4 %, respectively. The sequential batch cultures of N. oculata in raceway ponds showed an increasing biomass production in each new cycle while keeping the quality of the fatty acid mixture under daily and seasonal variations of light irradiance and temperature.

  5. Glycerol as a Cheaper Carbon Source in Bacterial Cellulose (BC) Production by Gluconacetobacter Xylinus DSM46604 in Batch Fermentation System

    International Nuclear Information System (INIS)

    Azila Adnan; Nair, G.R.; Roslan Umar; Roslan Umar

    2015-01-01

    Bacterial cellulose (BC) is a polymer of glucose monomers, which has unique properties including high crystallinity and high strength. It has potential to be used in biomedical applications such as making artificial blood vessel, wound dressings, and in the paper making industry. Extensive study on BC aimed to improve BC production such as by using glycerol as a cheaper carbon source. BC was produced in shake flask culture using five different concentrations of glycerol (10, 20, 30, 40 and 50 g/ L). Using concentration of glycerol above 20 g/ L inhibited culture growth and BC production. Further experiments were performed in batch culture (3-L bioreactor) using 20 g/ L glycerol. It produced yield and productivity of 0.15 g/ g and 0.29 g/ L/ day BC, respectively. This is compared with the control medium, 50 g/ L glucose, which only gave yield and productivity of 0.05 g/ g and 0.23 g/ L/ day, respectively. Twenty g/ L of glycerol enhanced BC production by Gluconacetobacter xylinus DSM46604 in batch fermentation system. (author)

  6. Bioremediation of petroleum wastewater by hyper-phenol tolerant Bacillus cereus: Preliminary studies with laboratory-scale batch process.

    Science.gov (United States)

    Banerjee, Aditi; Ghoshal, Aloke K

    2017-09-03

    Petroleum wastewater samples from oil refinery and oil exploration site were treated by hyper phenol-tolerant Bacillus cereus (AKG1 and AKG2) in laboratory-scale batch process to assess their bioremediation efficacy. Quality of the treated wastewater samples were analyzed in terms of removal of chemical oxygen demand (COD), total organic carbon (TOC) and ammonium nitrogen content, and improvement of biological oxygen demand (BOD). Adaptation of these bacteria to the toxic environment through structural changes in their cell membranes was also highlighted. Among different combinations, the co-culture of AKG1 and AKG2 showed the best performance in degrading the wastewater samples.

  7. Bioethanol production from starchy biomass by direct fermentation using saccharomyces diastaticus in batch free and immobilized cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Kilonzo, P.M.; Margaritis, A. [University of Western Ontario, London, ON (Canada). Dept. of Chemical and Biochemical Engineering; Yu, J.; Ye, Q. [East China Univ. of Science and Technology, Shanghai (China). Biochemical Engineering Research Inst. and State Key Lab

    2006-07-01

    The feasibility of using amylolytic yeasts for the direct fermentation of starchy biomass to ethanol was discussed. Although amylolytic yeasts such as Saccharomycopsis, Lipomyces, and Schwaniomyces secrete both {alpha}-amylase and glucoamylase enzymes that synergistically enhance starch degradation, they are not suitable for industrial bio-ethanol production because of low tolerance for ethanol and slow fermentation rate. For that reason, this study examined the direct ethanol fermentation of soluble starch or dextrin with the amylolytic yeast Saccharomyces diastaticus in batch free and immobilized cells systems. Saccharomyces diastaticus secretes glucoamylase and can therefore assimilate and ferment starch and starch-like biomass. The main focus of the study was on parameters leading to higher ethanol yields from high concentration of dextrin and soluble starch using batch cultures. A natural attachment method was proposed in which polyurethane foam sheets were used as the carrier for amylolytic yeasts immobilization in ethanol fermentations. The support was chosen because it was inexpensive, autoclavable, pliable and could be tailored to suit process requirements regarding net surface charge, shape and size. It was found that Saccharomyces diastaticus was very efficient in terms of fermentation of high initial concentrations of dextrin or soluble starch. Higher concentrations of ethanol were produced. In batch fermentations, the cells fermented high dextrin concentrations more efficiently. In particular, in batch fermentation, more than 92 g-L of ethanol was produced from 240 g-L of dextrin, at conversion efficiency of 90 per cent. The conversion efficiency decreased to 60 per cent but a higher final ethanol concentration of 147 g/L was attained with a medium containing 500 g/L of dextrin. In an immobilized cell bioreactor, Saccharomyces diastaticus produced 83 g/L of ethanol from 240 g/L of dextrin, corresponding to ethanol volumetric productivity of 9.1 g

  8. Influence of coal batch preparation on the quality of metallurgical соkе

    Directory of Open Access Journals (Sweden)

    Катерина Олегівна Шмельцер

    2015-10-01

    Full Text Available To study the influence of coal batch properties on coke strength we have considered the quality of the coke produced at the plant in Krivoy Rog from 2008 till 2012. Such factors as the large number of coal suppliers, imprecise selection of the optimal degree of batch crushing result in the decline in coke quality, the batch density and contents of the lean class (<0,5 mm are not optimum; poor blending of the batch after crushing; increased moisture and ash content of the coking batch; and extreme fluctuation in the coal and batch characteristics. It was found that high humidity of coal batch and its large fluctuations has most profound effect on the mechanical properties of coke. Under deteriorating resource base the quality of the coking batch preparation is important, To have batch of proper quality the following key aspects must be taken into account: the batch must be crushed to an optimum degree that will result in leaning components decrease and increased contents of vitrivite in it which improves the sinterability and coking, and hence the quality of coke; the degree of mixing of the coking batch in all indices must be up to 98-99%, for uneven distribution in the coal chamber worsens the quality of coke

  9. Recommendation of ruthenium source for sludge batch flowsheet studies

    Energy Technology Data Exchange (ETDEWEB)

    Woodham, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-13

    Included herein is a preliminary analysis of previously-generated data from sludge batches 7a, 7b, 8, and 9 sludge simulant and real-waste testing, performed to recommend a form of ruthenium for future sludge batch simulant testing under the nitric-formic flowsheet. Focus is given to reactions present in the Sludge Receipt and Adjustment Tank cycle, given that this cycle historically produces the most changes in chemical composition during Chemical Process Cell processing. Data is presented and analyzed for several runs performed under the nitric-formic flowsheet, with consideration given to effects on the production of hydrogen gas, nitrous oxide gas, consumption of formate, conversion of nitrite to nitrate, and the removal and recovery of mercury during processing. Additionally, a brief discussion is given to the effect of ruthenium source selection under the nitric-glycolic flowsheet. An analysis of data generated from scaled demonstration testing, sludge batch 9 qualification testing, and antifoam degradation testing under the nitric-glycolic flowsheet is presented. Experimental parameters of interest under the nitric-glycolic flowsheet include N2O production, glycolate destruction, conversion of glycolate to formate and oxalate, and the conversion of nitrite to nitrate. To date, the number of real-waste experiments that have been performed under the nitric-glycolic flowsheet is insufficient to provide a complete understanding of the effects of ruthenium source selection in simulant experiments with regard to fidelity to real-waste testing. Therefore, a determination of comparability between the two ruthenium sources as employed under the nitric-glycolic flowsheet is made based on available data in order to inform ruthenium source selection for future testing under the nitric-glycolic flowsheet.

  10. DYNAMICS OF CHANGES IN TEMPERATURE OF BATCH STERILIZERS WITH BACKPRESSURE

    Directory of Open Access Journals (Sweden)

    O. Klymenko

    2017-08-01

    Full Text Available The article describes the construction of dynamic subsystem logical and dynamic model for batch sterilizer with counter-pressure needed for the construction of programmer. To describe the dynamics of counter-pressure autoclave is used mathematical method that takes into account the sequence of the autoclave. Modeling scheme for areas of heating and shutter, and cooling area are programmed in MatLab with the the heat balance equation. There are circuit modeling temperature changes in banks in areas of heating and shutter speed and cooling section.

  11. Batched Triangular DLA for Very Small Matrices on GPUs

    KAUST Repository

    Charara, Ali

    2017-03-13

    In several scientific applications, like tensor contractions in deep learning computation or data compression in hierarchical low rank matrix approximation, the bulk of computation typically resides in performing thousands of independent dense linear algebra operations on very small matrix sizes (usually less than 100). Batched dense linear algebra kernels are becoming ubiquitous for such scientific computations. Within a single API call, these kernels are capable of simultaneously launching a large number of similar matrix computations, removing the expensive overhead of multiple API calls while increasing the utilization of the underlying hardware.

  12. Optimum heat storage design for heat integrated multipurpose batch plants

    CSIR Research Space (South Africa)

    Stamp, J

    2011-01-01

    Full Text Available June 2011 Accepted 7 June 2011 Available online xxx Keywords: a b s t r a c t Heat integration to minimis for more than two decade which leads to suboptimal leading to improved results optimisation of heat storag exhibits MINLP structure, w a... different thermal storage systems were designed to store the heat released during an exothermic reaction phase and reuse the heat for preheating the reactants in the following batch. Savings between 50% and 70% could be achieved, however, payback time...

  13. Online and Batch Supervised Background Estimation via L1 Regression

    KAUST Repository

    Dutta, Aritra

    2017-11-23

    We propose a surprisingly simple model for supervised video background estimation. Our model is based on $\\\\ell_1$ regression. As existing methods for $\\\\ell_1$ regression do not scale to high-resolution videos, we propose several simple and scalable methods for solving the problem, including iteratively reweighted least squares, a homotopy method, and stochastic gradient descent. We show through extensive experiments that our model and methods match or outperform the state-of-the-art online and batch methods in virtually all quantitative and qualitative measures.

  14. Polyhydroxybutyrate production from lactate using a mixed microbial culture

    NARCIS (Netherlands)

    Jiang, Y.; Marang, L.; Kleerebezem, R.; Muijzer, G.; van Loosdrecht, M.C.M.

    2011-01-01

    In this study we investigated the use of lactate and a lactate/acetate mixture for enrichment of poly-3-hydroxybutyrate (PHB) producing mixed cultures. The mixed cultures were enriched in sequencing batch reactors (SBR) that established a feast-famine regime. The SBRs were operated under conditions

  15. Application of simple fed-batch technique to high-level secretory production of insulin precursor using Pichia pastoris with subsequent purification and conversion to human insulin

    Directory of Open Access Journals (Sweden)

    Chugh Dipti

    2010-05-01

    Full Text Available Abstract Background The prevalence of diabetes is predicted to rise significantly in the coming decades. A recent analysis projects that by the year 2030 there will be ~366 million diabetics around the world, leading to an increased demand for inexpensive insulin to make this life-saving drug also affordable for resource poor countries. Results A synthetic insulin precursor (IP-encoding gene, codon-optimized for expression in P. pastoris, was cloned in frame with the Saccharomyces cerevisiae α-factor secretory signal and integrated into the genome of P. pastoris strain X-33. The strain was grown to high-cell density in a batch procedure using a defined medium with low salt and high glycerol concentrations. Following batch growth, production of IP was carried out at methanol concentrations of 2 g L-1, which were kept constant throughout the remaining production phase. This robust feeding strategy led to the secretion of ~3 gram IP per liter of culture broth (corresponding to almost 4 gram IP per liter of cell-free culture supernatant. Using immobilized metal ion affinity chromatography (IMAC as a novel approach for IP purification, 95% of the secreted product was recovered with a purity of 96% from the clarified culture supernatant. Finally, the purified IP was trypsin digested, transpeptidated, deprotected and further purified leading to ~1.5 g of 99% pure recombinant human insulin per liter of culture broth. Conclusions A simple two-phase cultivation process composed of a glycerol batch and a constant methanol fed-batch phase recently developed for the intracellular production of the Hepatitis B surface antigen was adapted to secretory IP production. Compared to the highest previously reported value, this approach resulted in an ~2 fold enhancement of IP production using Pichia based expression systems, thus significantly increasing the efficiency of insulin manufacture.

  16. Biodegradation of p-nitrophenol by aerobic granules in a sequencing batch reactor.

    Science.gov (United States)

    Yi, Shan; Zhuang, Wei-Qin; Wu, Bing; Tay, Stephen Tiong-Lee; Tay, Joo-Hwa

    2006-04-01

    In this study, aerobic granules to treat wastewater containing p-nitrophenol (PNP) were successfully developed in a sequencing batch reactor (SBR) using activated sludge as inoculum. A key step was the conditioning of the activated sludge seed to enrich for biomass with improved settleability and higher PNP degradation activity by implementing progressive decreases in settling time and stepwise increases in PNP concentration. The aerobic granules were cultivated at a PNP loading rate of 0.6 kg/ m3 x day, with glucose to boost the growth of PNP-degrading biomass. The granules had a clearly defined shape and appearance, settled significantly faster than activated sludge, and were capable of nearly complete PNP removal. The granules had specific PNP degradation rates that increased with PNP concentration from 0 to 40.1 mg of PNP/L, peaked at 19.3 mg of PNP/(g of VSS) x h (VSS = volatile suspended solids), and declined with further increases in PNP concentration as substrate inhibition effects became significant. Batch incubation experiments show that the PNP-degrading granules could also degrade other phenolic compounds, such as hydroquinone, p-nitrocatechol, phenol, 2,4-dichlorophenol, and 2,6-dichlorophenol. The PNP-degrading granules contained diverse microbial morphotypes, and PNP-degrading bacteria accounted for 49% of the total culturable heterotrophic bacteria. Denaturing gradient gel electrophoresis analysis of 16S rRNA gene fragments showed a gradual temporal shift in microbial community succession as the granules developed from the activated sludge seed. Specific oxygen utilization rates at 100 mg/L PNP were found to increase with the evolution of smaller granules to large granules, suggesting that the granulation process can enhance metabolic efficiency toward biodegradation of PNP. The results in this study demonstrate that it is possible to use aerobic granules for PNP biodegradation and broadens the benefits of using the SBR to target treatment of toxic

  17. Gaseous environments modify physiology in the brewing yeast Saccharomyces cerevisiae during batch alcoholic fermentation.

    Science.gov (United States)

    Pham, T-H; Mauvais, G; Vergoignan, C; De Coninck, J; Dumont, F; Lherminier, J; Cachon, R; Feron, G

    2008-09-01

    To investigate the impact of different gaseous atmospheres on different physiological parameters in the brewing yeast Saccharomyces cerevisiae BRAS291 during batch fermentation. Yeasts were cultivated on a defined medium with a continuous sparging of hydrogen, helium and oxygen or without gas, permitting to obtain three values of external redox. High differences were observed concerning viable cell number, size and metabolites produced during the cultures. The ethanol yields were diminished whereas glycerol, succinate, acetoin, acetate and acetaldehyde yields were enhanced significantly. Moreover, we observed major changes in the intracellular NADH/NAD(+) and GSH/GSSG ratio. The use of gas led to drastic changes in the cell size, primary energy metabolism and internal redox balance and E(h). These changes were different depending on the gas applied throughout the culture. For the first time, our study describes the influence of various gases on the physiology of the brewing yeast S. cerevisiae. These influences concern mainly yeast growth, cell structure, carbon and redox metabolisms. This work may have important implications in alcohol-related industries, where different strategies are currently developed to control better the production of metabolites with a particular attention to glycerol and ethanol.

  18. Concentrated microalgae cultivation in treated sewage by membrane photobioreactor operated in batch flow mode.

    Science.gov (United States)

    Gao, Feng; Yang, Zhao-Hui; Li, Chen; Wang, Yu-jie; Jin, Wei-hong; Deng, Yi-bing

    2014-09-01

    This study investigated the microalgae biomass production and nutrients removal efficiency from treated sewage by newly developed membrane photobioreactor in which Chlorella vulgaris was cultured in batch flow mode. Its performance was compared with conventional photobioreactor. The results show that the volumetric microalgae productivity was 39.93 and 10.36 mg L(-1)d(-1) in membrane photobioreactor and conventional photobioreactor, respectively. The nutrients removal rate in membrane photobioreactor was 4.13 mg N L(-1)d(-1) and 0.43 mg P L(-1)d(-1), which was obviously higher than that in conventional photobioreactor (0.59 mg N L(-1)d(-1) and 0.08 mg P L(-1)d(-1)). The better performance of membrane photobioreactor was due to the submerged membrane module in the reactor which acted as a solid-liquid separator and thereby enabled the reactor to operate with higher supply flow rate of cultivation medium. Moreover, in the outflow stage of the membrane photobioreactor, the microalgae culture liquor in the reactor could be further concentrated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Evaluation of sequencing batch reactor performance for petrochemical wastewater treatment

    Directory of Open Access Journals (Sweden)

    Mina Salari

    2017-09-01

    Full Text Available Sequencing batch reactor (SBR technology has found many applications in industrial wastewater treatment in recent years. The aim of this study was to determine the optimal time for a cycle of the sequencing batch reactor (SBR and evaluate the performance of a SBR for petrochemical wastewater treatment in that cycle time. The reactor was operated with a suspended biomass configuration under aerobic conditions. Carbon removal and operating parameters such as pH, temperature and dissolved oxygen (DO were monitored during the wastewater treatment. The SBR was run at different cycle times and amongst the cycle times tested, the best performance was obtained with a 7 h cycle time composed of a fill time of 15min, reaction of 6 h, settling of 30 min, and withdrawal of 15 min. The SBR with the determined cycle time was used to study the treatment of wastewater with various organic loading rates (12.88 gr COD/L.d, 18.02 gr COD/L.d and 31.39 gr COD/L.d. The SBR performance was evaluated by chemical oxygen demand (COD, total solids (TS total suspended solids (TSS removal efficiencies. During the shock loading tests, the maximum COD, TS and TSS removal efficiencies were 84%, 67% and 92%, respectively.

  20. Near infrared spectroscopy for qualitative comparison of pharmaceutical batches.

    Science.gov (United States)

    Roggo, Y; Roeseler, C; Ulmschneider, M

    2004-11-19

    Pharmaceuticals are produced according to current pharmacopoeias, which require quality parameters. Tablets of identical formulation, produced by different factories should have the same properties before and after storage. In this article, we analyzed samples having two different origins before and after storage (30 degrees C, 75% relative moisture). The aim of the study is to propose two approaches to understand the differences between origins and the storage effect by near infrared spectroscopy. In the first part, the main wavelengths are identified in transmittance and reflectance near infrared spectra in order to identify the major differences between the samples. In this paper, this approach is called fingerprinting. In the second part, principal component analysis (PCA) is computed to confirm the fingerprinting interpretation. The two interpretations show the differences between batches: physical aspect and moisture content. The manufacturing process is responsible for the physical differences between batches. During the storage, changes are due to the increase of moisture content and the decrease of the active content.

  1. Palm Olein Polyols Production by Batch and Continuous Hydrolysis

    International Nuclear Information System (INIS)

    Darfizzi Derawi; Jumat Salimon; Darfizzi Derawi

    2013-01-01

    Di-hydroxy-PO degree (70 % of yield) was synthesised through oxirane cleavage of epoxidized palm olein (EPO degree) by using continuous and batch hydrolysis process. Both hydrolysis processes obtained an optimum oxirane cleavage yield (97.2 %) by using perchloric acid 3 % v/ wt for 90 min (continuous process) and 75 min (batch process). The presence of stretching vibration broadband peak of hydroxyl at wavenumber 3429 cm -1 shown on the Fourier transformation infra-red (FTIR) spectrum, indicate formation of polyols compound. The carbon-nuclear magnetic resonance ( 13 C-NMR) spectrum of di-hydroxy-PO o showed the presence of carbon peak bonded with hydroxyl (74.5 ppm). The proton-nuclear magnetic resonance ( 1 H-NMR) spectrum of di-hydroxy-PO o showed the presence of proton peak attached to the carbon of polyols (3.4 ppm) and proton of hydroxyl (4.6 ppm). Kinematic viscosity of polyols product (110.7 mg KOH/ g oil) were 1435.2 cSt (40 degree Celsius) and 55.2 cSt (100 degree Celsius) with the viscosity index of 78. (author)

  2. Batch Attribute-Based Encryption for Secure Clouds

    Directory of Open Access Journals (Sweden)

    Chen Yang

    2015-10-01

    Full Text Available Cloud storage is widely used by organizations due to its advantage of allowing universal access with low cost. Attribute-based encryption (ABE is a kind of public key encryption suitable for cloud storage. The secret key of each user and the ciphertext are associated with an access policy and an attribute set, respectively; in addition to holding a secret key, one can decrypt a ciphertext only if the associated attributes match the predetermined access policy, which allows one to enforce fine-grained access control on outsourced files. One issue in existing ABE schemes is that they are designed for the users of a single organization. When one wants to share the data with the users of different organizations, the owner needs to encrypt the messages to the receivers of one organization and then repeats this process for another organization. This situation is deteriorated with more and more mobile devices using cloud services, as the ABE encryption process is time consuming and may exhaust the power supplies of the mobile devices quickly. In this paper, we propose a batch attribute-based encryption (BABE approach to address this problem in a provably-secure way. With our approach, the data owner can outsource data in batches to the users of different organizations simultaneously. The data owner is allowed to decide the receiving organizations and the attributes required for decryption. Theoretical and experimental analyses show that our approach is more efficient than traditional encryption implementations in computation and communication.

  3. Stormwater Pollution Prevention Plan - TA-60 Asphalt Batch Plant

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval, Leonard Frank [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-31

    This Storm Water Pollution Prevention Plan (SWPPP) was developed in accordance with the provisions of the Clean Water Act (33 U.S.C. §§1251 et seq., as amended), and the Multi-Sector General Permit for Storm Water Discharges Associated with Industrial Activity (U.S. EPA, June 2015) issued by the U.S. Environmental Protection Agency (EPA) for the National Pollutant Discharge Elimination System (NPDES) and using the industry specific permit requirements for Sector P-Land Transportation and Warehousing as a guide. This SWPPP applies to discharges of stormwater from the operational areas of the TA-60-01 Asphalt Batch Plant at Los Alamos National Laboratory. Los Alamos National Laboratory (also referred to as LANL or the “Laboratory”) is owned by the Department of Energy (DOE), and is operated by Los Alamos National Security, LLC (LANS). Throughout this document, the term “facility” refers to the TA-60 Asphalt Batch Plant and associated areas. The current permit expires at midnight on June 4, 2020.

  4. Optimalisasi Biosorpsi Bekatul Terhadap Kalsium (Ca dengan Menggunakan Metode Batch

    Directory of Open Access Journals (Sweden)

    Subarman Subarman

    2013-01-01

    Full Text Available The study is titled Optimization of biosorption Biomass Against Calcium (Ca by using the method of Batch. Background on this research that, the utilization of biomass as an adsorbent bran on the absorption of calcium metal (Ca and reduce the pollution caused from the bran biomass. This study aims to determine the optimum pH and time as well as processing of biomass with metal biosorption Calcium (Ca. Bran biomass taken directly to rice mills in Kecematan Pallangga Gowa. The method used in  this  study is  the activation process,  the  determination  of  the  optimum  pH,  optimum  timing, method in the determination of biosorption Batch, then the results were analyzed by using Atomic absorption spectrophotometer (AAS.The results obtained from this study is that the pH optimum at pH 9, the optimum contact time to 15 minutes, and the biosorption capacity of 14.1804 mg/L.

  5. Comparison of the release of constituents from granular materials under batch and column testing.

    Science.gov (United States)

    Lopez Meza, Sarynna; Garrabrants, Andrew C; van der Sloot, Hans; Kosson, David S

    2008-01-01

    Column leaching testing can be considered a better basis for assessing field impact data than any other available batch test method and thus provides a fundamental basis from which to estimate constituent release under a variety of field conditions. However, column testing is time-intensive compared to the more simplified batch testing, and may not always be a viable option when making decisions for material reuse. Batch tests are used most frequently as a simple tool for compliance or quality control reasons. Therefore, it is important to compare the release that occurs under batch and column testing, and establish conservative interpretation protocols for extrapolation from batch data when column data are not available. Five different materials (concrete, construction debris, aluminum recycling residue, coal fly ash and bottom ash) were evaluated via batch and column testing, including different column flow regimes (continuously saturated and intermittent unsaturated flow). Constituent release data from batch and column tests were compared. Results showed no significant difference between the column flow regimes when constituent release data from batch and column tests were compared. In most cases batch and column testing agreed when presented in the form of cumulative release. For arsenic in carbonated materials, however, batch testing underestimates the column constituent release for most LS ratios and also on a cumulative basis. For cases when As is a constituent of concern, column testing may be required.

  6. Growth kinetic models of five species of Lactobacilli and lactose consumption in batch submerged culture

    Directory of Open Access Journals (Sweden)

    Fazlollah Rezvani

    Full Text Available Abstract Kinetic behaviors of five Lactobacillus strains were investigated with Contois and Exponential models. Awareness of kinetic behavior of microorganisms is essential for their industrial process design and scale up. The consistency of experimental data was evaluated using Excel software. L. bulgaricus was introduced as the most efficient strain with the highest biomass and lactic acid yield of 0.119 and 0.602 g g-1 consumed lactose, respectively. The biomass and carbohydrate yield of L. fermentum and L. lactis were slightly less and close to L. bulgaricus. Biomass and lactic acid production yield of 0.117 and 0.358 for L. fermentum and 0.114 and 0.437 g g-1 for L.actobacillus lactis were obtained. L. casei and L. delbrueckii had the less biomass yield, nearly 11.8 and 22.7% less than L. bulgaricus, respectively. L. bulgaricus (R 2 = 0.9500 and 0.9156 and L. casei (R 2 = 0.9552 and 0.8401 showed acceptable consistency with both models. The investigation revealed that the above mentioned models are not suitable to describe the kinetic behavior of L. fermentum (R 2 = 0.9367 and 0.6991, L. delbrueckii (R 2 = 0.9493 and 0.7724 and L. lactis (R 2 = 0.8730 and 0.6451. Contois rate equation is a suitable model to describe the kinetic of Lactobacilli. Specific cell growth rate for L. bulgaricus, L. casei, L. fermentum, L. delbrueckii and L. lactis with Contois model in order 3.2, 3.9, 67.6, 10.4 and 9.8-fold of Exponential model.

  7. Growth kinetic models of five species of Lactobacilli and lactose consumption in batch submerged culture.

    Science.gov (United States)

    Rezvani, Fazlollah; Ardestani, Fatemeh; Najafpour, Ghasem

    Kinetic behaviors of five Lactobacillus strains were investigated with Contois and Exponential models. Awareness of kinetic behavior of microorganisms is essential for their industrial process design and scale up. The consistency of experimental data was evaluated using Excel software. L. bulgaricus was introduced as the most efficient strain with the highest biomass and lactic acid yield of 0.119 and 0.602gg -1 consumed lactose, respectively. The biomass and carbohydrate yield of L. fermentum and L. lactis were slightly less and close to L. bulgaricus. Biomass and lactic acid production yield of 0.117 and 0.358 for L. fermentum and 0.114 and 0.437gg -1 for L.actobacillus lactis were obtained. L. casei and L. delbrueckii had the less biomass yield, nearly 11.8 and 22.7% less than L. bulgaricus, respectively. L. bulgaricus (R 2 =0.9500 and 0.9156) and L. casei (R 2 =0.9552 and 0.8401) showed acceptable consistency with both models. The investigation revealed that the above mentioned models are not suitable to describe the kinetic behavior of L. fermentum (R 2 =0.9367 and 0.6991), L. delbrueckii (R 2 =0.9493 and 0.7724) and L. lactis (R 2 =0.8730 and 0.6451). Contois rate equation is a suitable model to describe the kinetic of Lactobacilli. Specific cell growth rate for L. bulgaricus, L. casei, L. fermentum, L. delbrueckii and L. lactis with Contois model in order 3.2, 3.9, 67.6, 10.4 and 9.8-fold of Exponential model. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  8. Effect of culture conditions on lipase production by Fusarium solani in batch fermentation.

    Science.gov (United States)

    Maia, M M; Heasley, A; Camargo de Morais, M M; Melo, E H; Morais, M A; Ledingham, W M; Lima Filho, J L

    2001-01-01

    Lipase (Glycerol ester hydrolase EC 3.1.1.3.) from a Brazilian strain of Fusarium solani FSI has been investigated. The effect of different carbon sources and trace elements added to basal medium was observed with the aim of improving enzyme production. Lipase specific activity was highest (0.45 U mg(-1)) for sesame oil. When this medium was supplemented with trace elements using olive oil, corn oil and sesame oil the lipase specific activity increased to 0.86, 1.89 and 1.64 U mg(-1), respectively, after 96 h cultivation without any considerable biomass increase. The Km of this lipase using pNPP (p-nitrophenylpalmitate) as substrate, was 1.8 mM with a Vmax of 1.7 micromol min(-1) mg protein(-1). Lipase activity increased in the presence of increasing concentrations of hexane and toluene. In contrast, incubation of this enzyme with water-soluble solvents decreased its activity after 10% concentration (v/v) of the solvent. The lipase activity was stable below 35 degrees C but above this temperature activity losses were observed.

  9. On the dynamics and constraints of batch culture growth of the cyanobacterium Cyanothece sp. ATCC 51142

    Czech Academy of Sciences Publication Activity Database

    Sinětova, Maria A.; Červený, Jan; Zavřel, Tomáš; Nedbal, Ladislav

    2012-01-01

    Roč. 162, č. 1 (2012), s. 148-155 ISSN 0168-1656 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Keywords : growth limitation * photoprotection * oscillations * Nitrogen fixation * microbial communication Subject RIV: EH - Ecology, Behaviour Impact factor: 3.183, year: 2012

  10. Bagasse hydrolyzates from Agave tequilana as substrates for succinic acid production by Actinobacillus succinogenes in batch and repeated batch reactor.

    Science.gov (United States)

    Corona-González, Rosa Isela; Varela-Almanza, Karla María; Arriola-Guevara, Enrique; Martínez-Gómez, Álvaro de Jesús; Pelayo-Ortiz, Carlos; Toriz, Guillermo

    2016-04-01

    The aim of this work was to obtain fermentable sugars by enzymatic or acid hydrolyses of Agave tequilana Weber bagasse in order to produce succinic acid with Actinobacillus succinogenes. Hydrolyses were carried out with mineral acids (sulfuric and hydrochloric acids) or a commercial cellulolytic enzyme, and were optimized statistically by a response surface methodology, having as factors the concentration of acid/enzyme and time of hydrolysis. The concentration of sugars obtained at optimal conditions for each hydrolysis were 21.7, 22.4y 19.8g/L for H2SO4, HCl and the enzymatic preparation respectively. Concerning succinic acid production, the enzymatic hydrolyzates resulted in the highest yield (0.446g/g) and productivity (0.57g/Lh) using A. succinogenes in a batch reactor system. Repeated batch fermentation with immobilized A. succinogenes in agar and with the enzymatic hydrolyzates resulted in a maximum concentration of succinic acid of 33.6g/L from 87.2g/L monosaccharides after 5 cycles in 40h, obtaining a productivity of 1.32g/Lh. Copyright © 2016. Published by Elsevier Ltd.

  11. Performance of sequencing batch biofilm and sequencing batch reactors in simultaneous p-nitrophenol and nitrogen removal.

    Science.gov (United States)

    Goh, Chin-Ping; Seng, Chye-Eng; Sujari, Amat Ngilmi Ahmad; Lim, Poh-Eng

    2009-06-01

    The objective of this study is to evaluate the performance of sequencing batch biofilm reactors (SBBRs) and sequencing batch reactor (SBR) in the simultaneous removal of p-nitrophenol (PNP) and ammoniacal nitrogen. SBBRs involved the use of polyurethane sponge cubes and polyethylene rings, respectively, as carrier materials. The results demonstrate that complete removal of PNP was achievable for the SBR and SBBRs up to the PNP concentration of 350 mg/l (loading rate of 0.368 kg/m3 d). At this loading rate, the average ammoniacal nitrogen removal efficiency for the SBR and SBBR (with polyethylene rings) was reduced to 86% and 96%, respectively. However, the SBBR (with polyurethane sponge cubes) still managed to achieve an almost 100% ammoniacal nitrogen removal. Based on the results, the performance of the SBBRs was better than that of SBR in PNP and ammoniacal nitrogen removal. The results of the gas chromatography mass spectroscopy, high-performance liquid chromatography and ultraviolet-visible analyses indicate that complete mineralization of PNP was achieved in all of the reactors.

  12. Citric acid production from hydrolysate of pretreated straw cellulose by Yarrowia lipolytica SWJ-1b using batch and fed-batch cultivation.

    Science.gov (United States)

    Liu, Xiaoyan; Lv, Jinshun; Zhang, Tong; Deng, Yuanfang

    2015-01-01

    In this study, crude cellulase produced by Trichoderma reesei Rut-30 was used to hydrolyze pretreated straw. After the compositions of the hydrolysate of pretreated straw were optimized, the study showed that natural components of pretreated straw without addition of any other components such as (NH4)2SO4, KH2PO4, or Mg(2+) were suitable for citric acid production by Yarrowia lipolytica SWJ-1b, and the optimal ventilatory capacity was 10.0 L/min/L medium. Batch and fed-batch production of citric acid from the hydrolysate of pretreated straw by Yarrowia lipolytica SWJ-1b has been investigated. In the batch cultivation, 25.4 g/L and 26.7 g/L citric acid were yields from glucose and hydrolysate of straw cellulose, respectively, while the cultivation time was 120 hr. In the three-cycle fed-batch cultivation, citric acid (CA) production was increased to 42.4 g/L and the cultivation time was extended to 240 hr. However, iso-citric acid (ICA) yield in fed-batch cultivation (4.0 g/L) was similar to that during the batch cultivation (3.9 g/L), and only 1.6 g/L of reducing sugar was left in the medium at the end of fed-batch cultivation, suggesting that most of the added carbon was used in the cultivation.

  13. A general framework for the synthesis and operational design of batch processes

    DEFF Research Database (Denmark)

    Papaeconomou, Eirini; Gani, Rafiqul; Jørgensen, Sten Bay

    2002-01-01

    , which is the sequence of batch operations performed in order to achieve a specific objective. Important features of the methodology are a set of rule-based algorithms that provide the operational model of the units. Such an algorithm is highlighted, together with the associated rules......The objective of this paper is to present a general problem formulation and a general methodology for the synthesis of batch operations and the operational design of individual batch processes, such as mixing, reaction and separation. The general methodology described supplies the batch routes......, for the operational design of batch reactors. A case study involving the feasible operation of a batch reactor with multiple desirable and undesirable reactions and operational constraints is presented. Application results including verification of the generated operational sequences (alternatives) through dynamic...

  14. A General framework for the Synthesis and Operational Design of Batch Processes

    DEFF Research Database (Denmark)

    , which is the sequence of batch operations performed in order to achieve a specific objective. Important features of the methodology are a set of rule-based algorithms that provide the operational model of the units. Such an algorithm is highlighted, together with the associated rules......The objective of this paper is to present a general problem formulation and a general methodlogy for the synthesis of batch operations and the operational design of individual batch processes, such as mixing, reaction and separation. The general methodology described supplies the batch routes......, for the operational design of batch reactors. A case study involving the feasible operation of a batch reactor with multiple desirable and undesirable reactions and operational constraints is presented. Application results including verification of the generated operational sequences (alternatives) through dynamic...

  15. Design of batch operations: Systematic methodology for generation and analysis of sustainable alternatives

    DEFF Research Database (Denmark)

    Carvalho, Ana; Matos, Henrique A.; Gani, Rafiqul

    2010-01-01

    the operational, environmental, economical and safety related problems inherent in the process (batch or continuous). Alternatives that are more sustainable, compared to a reference, are generated and evaluated by addressing one or more of the identified problems. A decomposition technique as well as a set......The objective of this paper is to present a new methodology that is able to generate, screen and identify sustainable alternatives to continuous chemical processes as well as processes operating in the batch mode. The methodology generates the sustainable (design) alternatives by locating...... of batch indicators for batch operations has been developed and added to the methodology so that a wide range of processes that operate in continuous mode, in semi-continuous and/or in batch modes can be improved. The principal calculation steps of the methodology for applications to continuous and batch...

  16. Biological Treatment of Leachate using Sequencing Batch Reactor

    Directory of Open Access Journals (Sweden)

    WDMC Perera

    2014-12-01

    Full Text Available Normal 0 false false false EN-US X-NONE TA Abstract   In Sri Lanka municipal solid waste is generally disposed in poorly managed open dumps which lack liner systems and leachate collection systems. Rain water percolates through the waste layers to produce leachate which drains in to ground water and finally to nearby water bodies, degrading the quality of water. Leachate thus has become a major environmental concern in municipal waste management and treatment of leachate is a major challenge for the existing and proposed landfill sites.   The study was conducted to assess the feasibility of the usage of the Sequencing Batch Reactor in the treatment of the landfill leachate up to the proposed levels in the draft report of “Proposed Sri Lankan standard for landfill leachate to be disposed to the inland waters". Leachate collected from the open dumpsite at Meethotamulla, Western Province, Sri Lanka was used for leachate characterization.   SBR was constructed with a 10-liter working volume operated in an 18 hour cycle mode and each cycle consists of 15hours of aerobic, 2h settle and 0.5 h of fill/decant stages. The Dissolved Oxygen level within the SBR was maintained at 2 mg/l through the aerobic stage. Infeed was diluted with water during the acclimatization period and a leachate to water ratio of 55:45 was maintained. The removal efficiencies for different parameters were; COD (90.5%, BOD (92.6%, TS (92.1%, Conductivity (83.9%, Alkalinity (97.4%, Hardness (82.2%, Mg (80.5%, Fe (94.2%, Zn (63.4%, Cr (31.69%, Pb (99.6%, Sulphate (98.9%, and Phosphorus (71.4% respectively. In addition Ni and Cd were removed completely during a single SBR cycle. Thus the dilution of leachate in the dumpsites using municipal wastewater, groundwater or rainwater was identified as the most cost effective dilution methods. The effluent from the Sequencing batch reactor is proposed to be further treated using a constructed wetland before releasing to surface water.

  17. FLOWSHEET FOR ALUMINUM REMOVAL FROM SLUDGE BATCH 6

    International Nuclear Information System (INIS)

    Pike, J.; Gillam, J.

    2008-01-01

    Samples of Tank 12 sludge slurry show a substantially larger fraction of aluminum than originally identified in sludge batch planning. The Liquid Waste Organization (LWO) plans to formulate Sludge Batch 6 (SB6) with about one half of the sludge slurry in Tank 12 and one half of the sludge slurry in Tank 4. LWO identified aluminum dissolution as a method to mitigate the effect of having about 50% more solids in High Level Waste (HLW) sludge than previously planned. Previous aluminum dissolution performed in a HLW tank in 1982 was performed at approximately 85 C for 5 days and dissolved nearly 80% of the aluminum in the sludge slurry. In 2008, LWO successfully dissolved 64% of the aluminum at approximately 60 C in 46 days with minimal tank modifications and using only slurry pumps as a heat source. This report establishes the technical basis and flowsheet for performing an aluminum removal process in Tank 51 for SB6 that incorporates the lessons learned from previous aluminum dissolution evolutions. For SB6, aluminum dissolution process temperature will be held at a minimum of 65 C for at least 24 days, but as long as practical or until as much as 80% of the aluminum is dissolved. As planned, an aluminum removal process can reduce the aluminum in SB6 from about 84,500 kg to as little as 17,900 kg with a corresponding reduction of total insoluble solids in the batch from 246,000 kg to 131,000 kg. The extent of the reduction may be limited by the time available to maintain Tank 51 at dissolution temperature. The range of dissolution in four weeks based on the known variability in dissolution kinetics can range from 44 to more than 80%. At 44% of the aluminum dissolved, the mass reduction is approximately 1/2 of the mass noted above, i.e., 33,300 kg of aluminum instead of 66,600 kg. Planning to reach 80% of the aluminum dissolved should allow a maximum of 81 days for dissolution and reduce the allowance if test data shows faster kinetics. 47,800 kg of the dissolved

  18. Look-ahead strategies for controlling batch operations in industry: Overview, comparison and exploration

    OpenAIRE

    van der Zee, D.J.

    2000-01-01

    Batching jobs in a manufacturing system is a very common policy in most industries. Main reasons for batching are avoidance of set ups and/or facilitation of material handling. Good examples of batch wise production systems are ovens found in aircraft industry and in semi-conductor manufacturing. Starting from the early nineties much research efforts have been put in constructing strategies for the dynamic control of these systems in order to reduce cycle times. Typically, these so-called "lo...

  19. Queue Length and Server Content Distribution in an Infinite-Buffer Batch-Service Queue with Batch-Size-Dependent Service

    Directory of Open Access Journals (Sweden)

    U. C. Gupta

    2015-01-01

    Full Text Available We analyze an infinite-buffer batch-size-dependent batch-service queue with Poisson arrival and arbitrarily distributed service time. Using supplementary variable technique, we derive a bivariate probability generating function from which the joint distribution of queue and server content at departure epoch of a batch is extracted and presented in terms of roots of the characteristic equation. We also obtain the joint distribution of queue and server content at arbitrary epoch. Finally, the utility of analytical results is demonstrated by the inclusion of some numerical examples which also includes the investigation of multiple zeros.

  20. Transcriptional response of P. pastoris in fed-batch cultivations to Rhizopus oryzae lipase production reveals UPR induction

    Directory of Open Access Journals (Sweden)

    Valero Francisco

    2007-07-01

    Full Text Available Abstract Background The analysis of transcriptional levels of the genes involved in protein synthesis and secretion is a key factor to understand the host organism's responses to recombinant protein production, as well as their interaction with the cultivation conditions. Novel techniques such as the sandwich hybridization allow monitoring quantitatively the dynamic changes of specific RNAs. In this study, the transcriptional levels of some genes related to the unfolded protein response (UPR and central metabolism of Pichia pastoris were analysed during batch and fed-batch cultivations using an X-33-derived strain expressing a Rhizopus oryzae lipase under control of the formaldehyde dehydrogenase promoter (FLD1, namely the alcohol oxidase gene AOX1, the formaldehyde dehydrogenase FLD1, the protein disulfide isomerase PDI, the KAR2 gene coding for the BiP chaperone, the 26S rRNA and the R. oryzae lipase gene ROL. Results The transcriptional levels of the selected set of genes were first analysed in P. pastoris cells growing in shake flask cultures containing different carbon and nitrogen sources combinations, glycerol + ammonium, methanol + methylamine and sorbitol + methylamine. The transcriptional levels of the AOX1 and FLD1 genes were coherent with the known regulatory mechanism of C1 substrates in P. pastoris, whereas ROL induction lead to the up-regulation of KAR2 and PDI transcriptional levels, thus suggesting that ROL overexpression triggers the UPR. This was further confirmed in fed-batch cultivations performed at different growth rates. Transcriptional levels of the analysed set of genes were generally higher at higher growth rates. Nevertheless, when ROL was overexpressed in a strain having the UPR constitutively activated, significantly lower relative induction levels of these marker genes were detected. Conclusion The bead-based sandwich hybridization assay has shown its potential as a reliable instrument for quantification of

  1. ANAMMOX-like performances for nitrogen removal from ammonium-sulfate-rich wastewater in an anaerobic sequencing batch reactor.

    Science.gov (United States)

    Prachakittikul, Pensiri; Wantawin, Chalermraj; Noophan, Pongsak Lek; Boonapatcharoen, Nimaradee

    2016-01-01

    Ammonium removal by the ANaerobic AMonium OXidation (ANAMMOX) process was observed through the Sulfate-Reducing Ammonium Oxidation (SRAO) process. The same concentration of ammonium (100 mg N L(-1)) was applied to two anaerobic sequencing batch reactors (AnSBRs) that were inoculated with the same activated sludge from the Vermicelli wastewater treatment process, while nitrite was fed in ANAMMOX and sulfate in SRAO reactors. In SRAO-AnSBR, in substrates that were fed with a ratio of NH4(+)/SO4(2-) at 1:0.4 ± 0.03, a hydraulic retention time (HRT) of 48 h and without sludge draining, the Ammonium Removal Rate (ARR) was 0.02 ± 0.01 kg N m(-3).d(-1). Adding specific ANAMMOX substrates to SRAO-AnSBR sludge in batch tests results in specific ammonium and nitrite removal rates of 0.198 and 0.139 g N g(-1) VSS.d, respectively, indicating that the ANAMMOX activity contributes to the removal of ammonium in the SRAO process using the nitrite that is produced from SRAO. Nevertheless, the inability of ANAMMOX to utilize sulfate to oxidize ammonium was also investigated in batch tests by augmenting enriched ANAMMOX culture in SRAO-AnSBR sludge and without nitrite supply. The time course of sulfate in a 24-hour cycle of SRAO-AnSBR showed an increase in sulfate after 6 h. For enriched SRAO culture, the uptake molar ratio of NH4(+)/SO4(2-) at 8 hours in a batch test was 1:0.82 lower than the value of 1:0.20 ± 0.09 as obtained in an SRAO-AnSBR effluent, while the stoichiometric ratio of 1:0.5 that includes the ANAMMOX reaction was in this range. After a longer operation of more than 2 years without sludge draining, the accumulation of sulfate and the reduction of ammonium removal were observed, probably due to the gradual increase in the sulfur denitrification rate and the competitive use of nitrite with ANAMMOX. The 16S rRNA gene PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis) and PCR cloning analyses resulted in the detection of the ANAMMOX

  2. Moving from batch towards continuous organic‐chemical pharmaceutical production

    DEFF Research Database (Denmark)

    Cervera Padrell, Albert Emili

    alkylation reaction was achieved using a filter reactor coupled with a side‐entry tubular reactor, using real‐time in‐line near‐infrared (NIR) spectroscopy for monitoring the reaction and ensuring the right product quality. A subsequent hydrolysis of the alkoxide product was performed in continuous mode......Pharmaceutical ingredients have traditionally been produced in batches using multipurpose stirred vessels. Reactions and separations have typically been tailored to fit these units, facing multiple limitations when transferring synthetic routes from the laboratory to industrial scale. Scaling up...... thus resulted in many cases in low reaction yields and separation efficiencies. These limitations were however compensated by a relatively fast process implementation. For the pharmaceutical industry this meant that new drug products could be exclusively marketed for a longer time period, resulting...

  3. Hadoop distributed batch processing for Gaia: a success story

    Science.gov (United States)

    Riello, Marco

    2015-12-01

    The DPAC Cambridge Data Processing Centre (DPCI) is responsible for the photometric calibration of the Gaia data including the low resolution spectra. The large data volume produced by Gaia (~26 billion transits/year), the complexity of its data stream and the self-calibrating approach pose unique challenges for scalability, reliability and robustness of both the software pipelines and the operations infrastructure. DPCI has been the first in DPAC to realise the potential of Hadoop and Map/Reduce and to adopt them as the core technologies for its infrastructure. This has proven a winning choice allowing DPCI unmatched processing throughput and reliability within DPAC to the point that other DPCs have started following our footsteps. In this talk we will present the software infrastructure developed to build the distributed and scalable batch data processing system that is currently used in production at DPCI and the excellent results in terms of performance of the system.

  4. Combined Estimation and Optimal Control of Batch Membrane Processes

    Directory of Open Access Journals (Sweden)

    Martin Jelemenský

    2016-11-01

    Full Text Available In this paper, we deal with the model-based time-optimal operation of a batch diafiltration process in the presence of membrane fouling. Membrane fouling poses one of the major problems in the field of membrane processes. We model the fouling behavior and estimate its parameters using various methods. Least-squares, least-squares with a moving horizon, recursive least-squares methods and the extended Kalman filter are applied and discussed for the estimation of the fouling behavior on-line during the process run. Model-based optimal non-linear control coupled with parameter estimation is applied in a simulation case study to show the benefits of the proposed approach.

  5. Biological Treatment of Dairy Wastewater by Sequencing Batch Reactor

    Directory of Open Access Journals (Sweden)

    A Mohseni-Bandpi, H Bazari

    2004-10-01

    Full Text Available A bench scale aerobic Sequencing Batch Reactor (SBR was investigated to treat the wastewater from an industrial milk factory. The reactor was constructed from plexi glass material and its volume was 22.5 L. The reactor was supplied with oxygen by fine bubble air diffuser. The reactor was fed with milk factory and synthetic wastewater under different operational conditions. The COD removal efficiency was achieved more than 90%, whereas COD concentration varied from 400 to 2500 mg/l. The optimum dissolved oxygen in the reactor was 2 to 3 mg/l and MLVSS was around 3000 mg/l. Easy operation, low cost and minimal sludge bulking condition make the SBR system an interesting option for the biological medium strength industrial wastewater treatment. The study demonstrated the capability of aerobic SBR for COD removal from dairy industrial wastewater.

  6. Batch study of uranium biosorption by Elodea canadensis biomass

    International Nuclear Information System (INIS)

    Zheng-ji Yi; University of Science and Technology Beijing, Haidian District, Beijing; Jun Yao; Chinese University of Geosciences, Beijing; Mi-jia Zhu; Hui-lun Chen; Fei Wang; Zhi-min Yuan; Xing Liu

    2016-01-01

    The adsorption of U(VI) onto Elodea canadensis was studied via a batch equilibrium method. Kinetic investigation indicated that the U(VI) adsorption by E. canadensis reached an equilibrium in 120 min and followed pseudo-second-order kinetics. The solution pH was the most important parameter controlling adsorption of U(VI) and the optimum pH for U(VI) removal is 6.0. The U(VI) biosorption can be well described by Langmuir model. IR spectrum analysis revealed that -NH 2 , -OH, C=O and C-O could bind strongly with U(VI). XPS spectrum analysis implied that ion exchange and coordination mechanism could be involved in the U(VI) biosorption process. (author)

  7. Treatment of Laboratory Wastewater by Sequence Batch reactor technology

    International Nuclear Information System (INIS)

    Imtiaz, N.; Butt, M.; Khan, R.A.; Saeed, M.T.; Irfan, M.

    2012-01-01

    These studies were conducted on the characterization and treatment of sewage mixed with waste -water of research and testing laboratory (PCSIR Laboratories Lahore). In this study all the parameters COD, BOD and TSS etc of influent (untreated waste-water) and effluent (treated waste-water) were characterized using the standard methods of examination for water and waste-water. All the results of the analyzed waste-water parameters were above the National Environmental Quality Standards (NEQS) set at National level. Treatment of waste-water was carried out by conventional sequencing batch reactor technique (SBR) using aeration and settling technique in the same treatment reactor at laboratory scale. The results of COD after treatment were reduced from (90-95 %), BOD (95-97 %) and TSS (96-99 %) and the reclaimed effluent quality was suitable for gardening purposes. (author)

  8. Convolutional neural networks with balanced batches for facial expressions recognition

    Science.gov (United States)

    Battini Sönmez, Elena; Cangelosi, Angelo

    2017-03-01

    This paper considers the issue of fully automatic emotion classification on 2D faces. In spite of the great effort done in recent years, traditional machine learning approaches based on hand-crafted feature extraction followed by the classification stage failed to develop a real-time automatic facial expression recognition system. The proposed architecture uses Convolutional Neural Networks (CNN), which are built as a collection of interconnected processing elements to simulate the brain of human beings. The basic idea of CNNs is to learn a hierarchical representation of the input data, which results in a better classification performance. In this work we present a block-based CNN algorithm, which uses noise, as data augmentation technique, and builds batches with a balanced number of samples per class. The proposed architecture is a very simple yet powerful CNN, which can yield state-of-the-art accuracy on the very competitive benchmark algorithm of the Extended Cohn Kanade database.

  9. Batch fabrication of disposable screen printed SERS arrays.

    Science.gov (United States)

    Qu, Lu-Lu; Li, Da-Wei; Xue, Jin-Qun; Zhai, Wen-Lei; Fossey, John S; Long, Yi-Tao

    2012-03-07

    A novel facile method of fabricating disposable and highly reproducible surface-enhanced Raman spectroscopy (SERS) arrays using screen printing was explored. The screen printing ink containing silver nanoparticles was prepared and printed on supporting materials by a screen printing process to fabricate SERS arrays (6 × 10 printed spots) in large batches. The fabrication conditions, SERS performance and application of these arrays were systematically investigated, and a detection limit of 1.6 × 10(-13) M for rhodamine 6G could be achieved. Moreover, the screen printed SERS arrays exhibited high reproducibility and stability, the spot-to-spot SERS signals showed that the intensity variation was less than 10% and SERS performance could be maintained over 12 weeks. Portable high-throughput analysis of biological samples was accomplished using these disposable screen printed SERS arrays.

  10. Increased CPC batch size study for Tank 42 sludge in the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Daniel, W.E.

    2000-01-01

    A series of experiments have been completed at TNX for the sludge-only REDOX adjusted flowsheet using Tank 42 sludge simulant in response to the Technical Task Request HLW/DWPT/TTR-980013 to increase CPC batch sizes. By increasing the initial SRAT batch size, a melter feed batch at greater waste solids concentration can be prepared and thus increase melter output per batch by about one canister. The increased throughput would allow DWPF to dispose of more waste in a given time period thus shortening the overall campaign

  11. Increased CPC batch size study for Tank 42 sludge in the Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, W.E.

    2000-01-06

    A series of experiments have been completed at TNX for the sludge-only REDOX adjusted flowsheet using Tank 42 sludge simulant in response to the Technical Task Request HLW/DWPT/TTR-980013 to increase CPC batch sizes. By increasing the initial SRAT batch size, a melter feed batch at greater waste solids concentration can be prepared and thus increase melter output per batch by about one canister. The increased throughput would allow DWPF to dispose of more waste in a given time period thus shortening the overall campaign.

  12. Role of batch depletion of broiler houses on the occurrence of Campylobacter spp. in chicken flocks

    DEFF Research Database (Denmark)

    Hald, Birthe; Rattenborg, Erik; Madsen, Mogens

    2001-01-01

    Aims: The effect of batch depletion of broiler houses for campylobacter occurrence in broiler flocks was estimated in 10 flocks, each comprising a separate female and male batch. Methods and Results: The chicks were sampled first bq; cloacal swabs in the broiler houses before the start...... that batch depletion of broiler houses increased the prevalence of Campylobacter spp.-infected broilers in the flocks, that the introduction occurred a hen catching the first batch, and that campylobacter spreads through the entire flock within a week. Significance and Impact of the Study: The results from...

  13. Optimal control of batch emulsion polymerization of vinyl chloride

    Energy Technology Data Exchange (ETDEWEB)

    Damslora, Andre Johan

    1998-12-31

    The highly exothermic polymerization of vinyl chloride (VC) is carried out in large vessels where the heat removal represents a major limitation of the production rate. Many emulsion polymerization reactors are operated in such a way that a substantial part of the heat transfer capacity is left unused for a significant part of the total batch time. To increase the reaction rate so that it matches the heat removal capacity during the course of the reaction, this thesis proposes the use of a sufficiently flexible initiator system to obtain a reaction rate which is high throughout the reaction and real-time optimization to compute the addition policy for the initiator. This optimization based approach provides a basis for an interplay between design and control and between production and research. A simple model is developed for predicting the polymerization rate. The model is highly nonlinear and open-loop unstable and may serve as an interesting case for comparison of nonlinear control strategies. The model is fitted to data obtained in a laboratory scale reactor. Finally, the thesis discusses optimal control of the emulsion polymerization reactor. Reduction of the batch cycle time is of major economic importance, as long as the quality parameters are within their specifications. The control parameterization had a major influence on the performance. A differentiable spline parameterization was applied and the optimization is illustrated in a number of cases. The best performance is obtained when the reactor temperature is obtained when the optimization is combined with some form of closed-loop control of the reactor temperature. 112 refs., 48 figs., 4 tabs.

  14. Integrating PROOF Analysis in Cloud and Batch Clusters

    International Nuclear Information System (INIS)

    Rodríguez-Marrero, Ana Y; Fernández-del-Castillo, Enol; López García, Álvaro; Marco de Lucas, Jesús; Matorras Weinig, Francisco; González Caballero, Isidro; Cuesta Noriega, Alberto

    2012-01-01

    High Energy Physics (HEP) analysis are becoming more complex and demanding due to the large amount of data collected by the current experiments. The Parallel ROOT Facility (PROOF) provides researchers with an interactive tool to speed up the analysis of huge volumes of data by exploiting parallel processing on both multicore machines and computing clusters. The typical PROOF deployment scenario is a permanent set of cores configured to run the PROOF daemons. However, this approach is incapable of adapting to the dynamic nature of interactive usage. Several initiatives seek to improve the use of computing resources by integrating PROOF with a batch system, such as Proof on Demand (PoD) or PROOF Cluster. These solutions are currently in production at Universidad de Oviedo and IFCA and are positively evaluated by users. Although they are able to adapt to the computing needs of users, they must comply with the specific configuration, OS and software installed at the batch nodes. Furthermore, they share the machines with other workloads, which may cause disruptions in the interactive service for users. These limitations make PROOF a typical use-case for cloud computing. In this work we take profit from Cloud Infrastructure at IFCA in order to provide a dynamic PROOF environment where users can control the software configuration of the machines. The Proof Analysis Framework (PAF) facilitates the development of new analysis and offers a transparent access to PROOF resources. Several performance measurements are presented for the different scenarios (PoD, SGE and Cloud), showing a speed improvement closely correlated with the number of cores used.

  15. Neurovascular modeling: small-batch manufacturing of silicone vascular replicas.

    Science.gov (United States)

    Chueh, J Y; Wakhloo, A K; Gounis, M J

    2009-06-01

    Realistic, population based cerebrovascular replicas are required for the development of neuroendovascular devices. The objective of this work was to develop an efficient methodology for manufacturing realistic cerebrovascular replicas. Brain MR angiography data from 20 patients were acquired. The centerline of the vasculature was calculated, and geometric parameters were measured to describe quantitatively the internal carotid artery (ICA) siphon. A representative model was created on the basis of the quantitative measurements. Using this virtual model, we designed a mold with core-shell structure and converted it into a physical object by fused-deposit manufacturing. Vascular replicas were created by injection molding of different silicones. Mechanical properties, including the stiffness and luminal coefficient of friction, were measured. The average diameter, length, and curvature of the ICA siphon were 4.15 +/- 0.09 mm, 22.60 +/- 0.79 mm, and 0.34 +/- 0.02 mm(-1) (average +/- standard error of the mean), respectively. From these image datasets, we created a median virtual model, which was transformed into a physical replica by an efficient batch-manufacturing process. The coefficient of friction of the luminal surface of the replica was reduced by up to 55% by using liquid silicone rubber coatings. The modulus ranged from 0.67 to 1.15 MPa compared with 0.42 MPa from human postmortem studies, depending on the material used to make the replica. Population-representative, smooth, and true-to-scale silicone arterial replicas with uniform wall thickness were successfully built for in vitro neurointerventional device-testing by using a batch-manufacturing process.

  16. Repeated batch and continuous degradation of chlorpyrifos by Pseudomonas putida.

    Science.gov (United States)

    Pradeep, Vijayalakshmi; Subbaiah, Usha Malavalli

    2015-01-01

    The present study was undertaken with the objective of studying repeated batch and continuous degradation of chlorpyrifos (O,O-diethyl O-3,5,6-trichloropyridin-2-yl phosphorothioate) using Ca-alginate immobilized cells of Pseudomonas putida isolated from an agricultural soil, and to study the genes and enzymes involved in degradation. The study was carried out to reduce the toxicity of chlorpyrifos by degrading it to less toxic metabolites. Long-term stability of pesticide degradation was studied during repeated batch degradation of chlorpyrifos, which was carried out over a period of 50 days. Immobilized cells were able to show 65% degradation of chlorpyrifos at the end of the 50th cycle with a cell leakage of 112 × 10(3) cfu mL(-1). During continuous treatment, 100% degradation was observed at 100 mL h(-1) flow rate with 2% chlorpyrifos, and with 10% concentration of chlorpyrifos 98% and 80% degradation was recorded at 20 mL h(-1) and 100 mL h(-1) flow rate respectively. The products of degradation detected by liquid chromatography-mass spectrometry analysis were 3,5,6-trichloro-2-pyridinol and chlorpyrifos oxon. Plasmid curing experiments with ethidium bromide indicated that genes responsible for the degradation of chlorpyrifos are present on the chromosome and not on the plasmid. The results of Polymerase chain reaction indicate that a ~890-bp product expected for mpd gene was present in Ps. putida. Enzymatic degradation studies indicated that the enzymes involved in the degradation of chlorpyrifos are membrane-bound. The study indicates that immobilized cells of Ps. putida have the potential to be used in bioremediation of water contaminated with chlorpyrifos.

  17. Fecal culture

    Science.gov (United States)

    ... parasites exam Alternative Names Stool culture; Culture - stool; Gastroenteritis fecal culture Images Salmonella typhi organism Yersinia enterocolitica organism Campylobacter jejuni organism Clostridium difficile organism References Beavis, KG, ...

  18. Versatile modeling and optimization of fed batch processes for the production of secreted heterologous proteins with Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Gasser Brigitte

    2006-12-01

    Full Text Available Abstract Background Secretion of heterologous proteins depends both on biomass concentration and on the specific product secretion rate, which in turn is not constant at varying specific growth rates. As fed batch processes usually do not maintain a steady state throughout the feed phase, it is not trivial to model and optimize such a process by mathematical means. Results We have developed a model for product accumulation in fed batch based on iterative calculation in Microsoft Excel spreadsheets, and used the Solver software to optimize the time course of the media feed in order to maximize the volumetric productivity. The optimum feed phase consisted of an exponential feed at maximum specific growth rate, followed by a phase with linearly increasing feed rate and consequently steadily decreasing specific growth rate. The latter phase could be modeled also by exact mathematical treatment by the calculus of variations, yielding the explicit shape of the growth function, however, with certain indeterminate parameters. To evaluate the latter, one needs a numerical optimum search algorithm. The explicit shape of the growth function provides additional evidence that the Excel model results in correct data. Experimental evaluation in two independent fed batch cultures resulted in a good correlation to the optimized model data, and a 2.2 fold improvement of the volumetric productivity. Conclusion The advantages of the procedure we describe here are the ease of use and the flexibility, applying software familiar to every scientist and engineer, and rapid calculation which makes predictions extremely easy, so that many options can be tested in silico quickly. Additional options like further biological and technological constraints or different functions for specific productivity and biomass yield can easily be integrated.

  19. Versatile modeling and optimization of fed batch processes for the production of secreted heterologous proteins with Pichia pastoris.

    Science.gov (United States)

    Maurer, Michael; Kühleitner, Manfred; Gasser, Brigitte; Mattanovich, Diethard

    2006-12-11

    Secretion of heterologous proteins depends both on biomass concentration and on the specific product secretion rate, which in turn is not constant at varying specific growth rates. As fed batch processes usually do not maintain a steady state throughout the feed phase, it is not trivial to model and optimize such a process by mathematical means. We have developed a model for product accumulation in fed batch based on iterative calculation in Microsoft Excel spreadsheets, and used the Solver software to optimize the time course of the media feed in order to maximize the volumetric productivity. The optimum feed phase consisted of an exponential feed at maximum specific growth rate, followed by a phase with linearly increasing feed rate and consequently steadily decreasing specific growth rate. The latter phase could be modeled also by exact mathematical treatment by the calculus of variations, yielding the explicit shape of the growth function, however, with certain indeterminate parameters. To evaluate the latter, one needs a numerical optimum search algorithm. The explicit shape of the growth function provides additional evidence that the Excel model results in correct data. Experimental evaluation in two independent fed batch cultures resulted in a good correlation to the optimized model data, and a 2.2 fold improvement of the volumetric productivity. The advantages of the procedure we describe here are the ease of use and the flexibility, applying software familiar to every scientist and engineer, and rapid calculation which makes predictions extremely easy, so that many options can be tested in silico quickly. Additional options like further biological and technological constraints or different functions for specific productivity and biomass yield can easily be integrated.

  20. Acceptance Test Data for Candidate AGR-5/6/7 TRISO Particle Batches BWXT Coater Batches 93165 93172 Defective IPyC Fraction and Pyrocarbon Anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Helmreich, Grant W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hunn, John D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Skitt, Darren J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dyer, John A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Schumacher, Austin T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-03-01

    Coated particle fuel batches J52O-16-93165, 93166, 93168, 93169, 93170, and 93172 were produced by Babcock and Wilcox Technologies (BWXT) for possible selection as fuel for the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program’s AGR-5/6/7 irradiation test in the Idaho National Laboratory (INL) Advanced Test Reactor (ATR). Some of these batches may alternately be used as demonstration coated particle fuel for other experiments. Each batch was coated in a 150-mm-diameter production-scale fluidized-bed chemical vapor deposition (CVD) furnace. Tristructural isotropic (TRISO) coatings were deposited on 425-μm-nominal-diameter spherical kernels from BWXT lot J52R-16-69317 containing a mixture of 15.5%-enriched uranium carbide and uranium oxide (UCO). The TRISO coatings consisted of four consecutive CVD layers: a ~50% dense carbon buffer layer with 100-μm-nominal thickness, a dense inner pyrolytic carbon (IPyC) layer with 40-μm-nominal thickness, a silicon carbide (SiC) layer with 35-μm-nominal thickness, and a dense outer pyrolytic carbon (OPyC) layer with 40-μmnominal thickness. The TRISO-coated particle batches were sieved to upgrade the particles by removing over-sized and under-sized material, and the upgraded batches were designated by appending the letter A to the end of the batch number (e.g., 93165A).

  1. Linking microbial community structure and product spectrum of rice straw fermentation with undefined mixed culture

    Science.gov (United States)

    Ai, Binling; Chi, Xue; Meng, Jia; Sheng, Zhanwu; Zheng, Lili; Zheng, Xiaoyan; Li, Jianzheng

    2017-12-01

    Undefined mixed culture-based fermentation is an alternative strategy for biofuels and bioproducts production from lignocellulosic biomass without supplementary cellulolytic enzymes. Mixed culture produces mixed carboxylates. To estimate the relationship between microbial community structure and product spectrum, carboxylate production was initiated by mixed cultures with different microbial community structure. All the inoculum cultures were derived from the same enrichment culture from the combination of cattle manure, pig manure compost, corn field soil and rotten wood. Due to the differences in the preparation method and culture time, the inoculum cultures for batch fermentation had high similarity in microbial community structure, while the community structure of each inoculum culture for repeated batch fermentation differed from that of another. The inoculum cultures with similar community structure led to a similar product spectrum. In batch fermentation, the selectivity of main product butyric acid stabilized around 76%. The inoculum cultures with different community structures resulted in different product spectra. In repeated batch fermentation, the butyric acid content gradually decreased to 27%, and the by-product acetic acid content steadily increased to 56%. The other by-products including propionic, valeric and caproic acids were also increased. It is deduced that keeping the microbial community structure stable makes the basic and key precondition for steady production of specific carboxylic acid with undefined mixed culture.

  2. Improved methane production from brown algae under high salinity by fed-batch acclimation.

    Science.gov (United States)

    Miura, Toyokazu; Kita, Akihisa; Okamura, Yoshiko; Aki, Tsunehiro; Matsumura, Yukihiko; Tajima, Takahisa; Kato, Junichi; Nakashimada, Yutaka

    2015-01-01

    Here, a methanogenic microbial community was developed from marine sediments to have improved methane productivity from brown algae under high salinity. Fed-batch cultivation was conducted by adding dry seaweed at 1wt% total solid (TS) based on the liquid weight of the NaCl-containing sediment per round of cultivation. The methane production rate and level of salinity increased 8-fold and 1.6-fold, respectively, at the 10th round of cultivation. Moreover, the rate of methane production remained high, even at the 10th round of cultivation, with accumulation of salts derived from 10wt% TS of seaweed. The salinity of the 10th-round culture was equivalent to 5% NaCl. The improved methane production was attributed to enhanced acetoclastic methanogenesis because acetate became rapidly converted to methane during cultivation. The family Fusobacteriaceae and the genus Methanosaeta, the acetoclastic methanogen, predominated in bacteria and archaea, respectively, after the cultivation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Denitrification performance of acclimated bio-floc in sequencing batch reactor

    Science.gov (United States)

    Wang, Tao; Liu, Qingsong; Li, Hua; Dong, Hongbiao; Duan, Yafei; Zhang, Jiasong

    2018-01-01

    Bio-floc technology (BFT) is a new aquaculture models contain both aquaculture and water treatment. Nevertheless, there exists a universal phenomenon of nitrate accumulation in bio-floc system with zero water exchange. In this study, bio-floc was acclimated under 2 hours anaerobic conditions per day by sequencing batch method, which aims to enrichment culture denitrifying microorganisms. The results illustrated that NH4 +-N and NO2 --N concentration in effluent was remained below 0.5 mg/L and 0.1 mg/L respectively, coupled with NO3 --N below 57 mg/L during 240 days cultivation and acclimation. The nitrate concentration was far less than results reported in other bio-floc system with zero water exchange. After acclimation, the anaerobic denitrification performance of the bio-floc was tested and it exhibited high denitrification activity. Nitrate removal rate was approximately 100%, and special nitrate reduction rate was as high as 475.74 mg/(gVSS·d). This acclimation method made bio-floc could be used to nitrogen removal in aquaculture water treatment.

  4. Limiting factors in Escherichia colifed-batch production of recombinant proteins

    DEFF Research Database (Denmark)

    Sanden, A.M.; Prytz, I.; Tubelekas, I.

    2003-01-01

    recombinant protein production, fed-batch, specific growth rate, feed profile, induction, mRNA, transcription, translation, acetic acid formation......recombinant protein production, fed-batch, specific growth rate, feed profile, induction, mRNA, transcription, translation, acetic acid formation...

  5. Monitoring and Characterization of Crystal Nucleation and Growth during Batch Crystallization

    NARCIS (Netherlands)

    Kadam, S.S.

    2012-01-01

    Batch crystallization is commonly used in pharmaceutical, agrochemical, specialty and fine chemicals industry. The advantages of batch crystallization lie in its ease of operation and the relatively simple equipment that can be used. On the other hand a major disadvantage associated with it is the

  6. Fed-batch fermentation dealing with nitrogen limitation in microbial transglutaminase production by Streptoverticillium mobaraense

    NARCIS (Netherlands)

    Zhu, Y.; Rinzema, A.; Tramper, J.; Bruin, E. de; Bol, J.

    1998-01-01

    In the later stages of a batch fermentation for microbial transglutaminase production by Streptoverticillium mobaraense the availability of a nitrogen source accessible to the microorganism becomes critical. Fed-batch fermentation is investigated with the aim of avoiding this substrate limitation.

  7. Multidimensional Dynamic Programming Algorithm for N-Level Batching with Hierarchical Clustering Structure

    Directory of Open Access Journals (Sweden)

    Seung-Kil Lim

    2017-01-01

    Full Text Available This study focuses on the N-level batching problem with a hierarchical clustering structure. Clustering is the task of grouping a set of item types in such a way that item types in the same cluster are more similar (in some sense or another to each other than to those in other clusters. In hierarchical clustering structure, more and more different item types are clustered together as the level of the hierarchy increases. N-level batching is the process by which items with different types are grouped into several batches passed from level 1 to level N sequentially for given hierarchical clustering structure such that batches in each level should satisfy the maximum and minimum batch size requirements of the level. We consider two types of processing costs of the batches: unit processing cost and batch processing cost. We formulate the N-level batching problem with a hierarchical clustering structure as a nonlinear integer programming model with the objective of minimizing the total processing cost. To solve the problem optimally, we propose a multidimensional dynamic programming algorithm with an example.

  8. Implementation of Sliding Mode Controller with Boundary Layer for Saccharomyces cerevisiae Fed-batch Cultivation

    Directory of Open Access Journals (Sweden)

    Stoyan Tzonkov

    2005-04-01

    Full Text Available An implementation of sliding mode control for yeast fed-batch cultivation is presented in this paper. Developed controller has been implemented on two real fed-batch cultivations of Saccharomyces cerevisiae. The controller successfully stabilizes the process and shows a very good performance at high input disturbances.

  9. Critical evaluation of approaches for on-line batch process monitoring

    NARCIS (Netherlands)

    van Sprang, E. N. M.; Ramaker, H. J.; Westerhuis, J. A.; Gurden, S. P.; Smilde, A. K.

    2002-01-01

    Since the introduction of batch process monitoring using component models in 1992, different approaches for statistical batch process monitoring have been suggested in the literature. This is the first evaluation of five proposed approaches so far. The differences and similarities between the

  10. Fed-batch fermentation dealing with nitrogen limitation in microbial transglutaminase production by Streptoverticillium mobaraense

    NARCIS (Netherlands)

    Rinzema, A; Tramper, J; de Bruin, E; Bol, J

    In the later stages of a batch fermentation for microbial transglutaminase production by Streptoverticillium mobaraense the availability of a nitrogen source accessible to the microorganism becomes critical. Fed-batch fermentation is investigated with the aim of avoiding this substrate limitation.

  11. Landfill leachate treatment by batch supercritical water oxidation

    Directory of Open Access Journals (Sweden)

    Victor Fernando Marulanda Cardona

    2017-01-01

    Full Text Available El tratamiento de lixiviados por medio de diferentes procesos fisicoquímicos y biológicos ha sido ampliamente estudiado. Sin embargo, ningún proceso logra las eficiencias de destruc- ción requeridas en cuanto a materia orgánica y nitrógeno, razón por la cual el tratamiento se realiza por medio de tecnologías combinadas. La oxidación en agua supercrítica o SCWO, proceso que se lleva a cabo a temperaturas y presiones superiores a las del punto crítico del agua en presencia de una fuente de oxígeno, se ha aplicado exitosamente al tratamiento de distintos tipos de aguas residuales de forma eficiente. Por lo tanto, este trabajo presenta un estudio experimental de la oxidación en agua supercrítica de lixiviados de relleno sanitario en un reactor batch, en el rango de temperatura de 400-500°C, tiempos de reacción de 15 a 30 mi- nutos y excesos de oxígeno (OE de 100 % a 300 %. Se midieron las eficiencias de destrucción de carbono orgánico total (COT y nitrógeno total (NT, y se determinó el efecto combinado de los factores estudiados por medio del Análisis de Varianza (ANOVA. Las condiciones de operación óptimas para la destrucción de COT fueron 400°C, 30 min y 100 % OE, y 500°C, 30 min y 100 % OE para el NT. A diferencia de lo reportado en estudios similares, los resultados su- gieren que es posible llevar a cabo la destrucción simultánea del COT y el NT en los lixiviados por medio de SCWO a 400°C, 100 % OE y tiempos de residencia de más de 30 min sin usar un catalizador, ya sea en un proceso batch o continuo, siempre y cuando tanto el oxidante como el agua residual se mezclen y se calienten juntos a la temperatura de reacción.

  12. Inhibition of Sulfide Mineral Oxidation by Surface Coating Agents: Batch

    Science.gov (United States)

    Choi, J.; Ji, M. K.; Yun, H. S.; Park, Y. T.; Gee, E. D.; Lee, W. R.; Jeon, B.-H.

    2012-04-01

    Mining activities and mineral industries have impacted on rapid oxidation of sulfide minerals such as pyrite (FeS2) which leads to Acid Mine Drainage (AMD) formation. Some of the abandoned mines discharge polluted water without proper environmental remediation treatments, largely because of financial constraints in treating AMD. Magnitude of the problem is considerable, especially in countries with a long history of mining. As metal sulfides become oxidized during mining activities, the aqueous environment becomes acid and rich in many metals, including iron, lead, mercury, arsenic and many others. The toxic heavy metals are responsible for the environmental deterioration of stream, groundwater and soils. Several strategies to remediate AMD contaminated sites have been proposed. Among the source inhibition and prevention technologies, microencapsulation (coating) has been considered as a promising technology. The encapsulation is based on inhibition of O2 diffusion by surface coating agent and is expected to control the oxidation of pyrite for a long time. Potential of several surface coating agents for preventing oxidation of metal sulfide minerals from both Young-Dong coal mine and Il-Gwang gold mine were examined by conducting batch experiments and field tests. Powdered pyrite as a standard sulfide mineral and rock samples from two mine outcrops were mixed with six coating agents (KH2PO4, MgO and KMnO4 as chemical agents, and apatite, cement and manganite as mineral agents) and incubated with oxidizing agents (H2O2 or NaClO). Batch experiments with Young-Dong coal mine samples showed least SO42- production in presence of KMnO4 (16% sulfate production compared to no surface coating agents) or cement (4%) within 8 days. In the case of Il-Gwang mine samples, least SO42- production was observed in presence of KH2PO4 (8%) or cement (2%) within 8 days. Field-scale pilot tests at Il-Gwang site also showed that addition of KH2PO4 decreased sulfate production from 200 to

  13. Batch and continuous extraction of bromelain enzyme by reversed micelles

    Directory of Open Access Journals (Sweden)

    Ana Maria Frattini Fileti

    2009-10-01

    Full Text Available The main aim of this study was to optimize the conditions for bromelain extraction by reversed micelles from pineapple juice (Ananas comosus. The purification was carried out in batch extraction and a micro-column with pulsed caps for continuous extraction. The cationic micellar solution was made of BDBAC as a surfactant, isooctane as a solvent and hexanol as a co-solvent. For the batch process, a purification factor of 3 times at the best values of surfactant agent, co-solvent and salt concentrations, pH of the back and forward extractions were, 100 mM, 10% v/v, 1 M, 3.5 and 8, respectively. For the continuous operation, independent variables optimal point was determined: ratio between light phase flow rate and total flow rate equal to 0.67 and 1 second for the time interval between the pulses. This optimal point led to a productivity of 1.29 mL/min and a purification factor of 4.96.Este trabalho teve como objetivo principal otimizar as condições para extração da bromelina do suco do abacaxi (Ananas comosus por micelas reversas. A purificação foi feita usando o processo de extração em batelada e contínuo, este último em uma micro-coluna de campânulas pulsantes. A solução micelar catiônica foi preparada com o surfactante BDBAC, i-octano como solvente e hexanol como co-solvente. Na extração em batelada encontrou-se um fator de purificação de 3 vezes, e seus melhores valores de concentração do agente surfactante, co-solvente e sal, de pH da re-extração e extração, foram respectivamente iguais a: 100 mM, 10% v/v, 1 M, 3,5 e 8. Para a operação contínua, as variáveis independentes ótimas foram: 0,67 para a razão entre as taxas de fluxos da fase leve e a total e 1 s para o intervalo de tempo entre pulsos das campânulas. Este ponto ótimo leva a uma produtividade de 1,29 mL/min e a um fator de purificação igual a 4,96.

  14. Case-by-case risk assessment of broiler meat batches: An effective control strategy for Campylobacter

    DEFF Research Database (Denmark)

    Christensen, Bjarke Bak; Nauta, Maarten; Korsgaard, Helle

    2013-01-01

    In 2006, the Danish government decided to take new measures to control Salmonella and Campylobacter in Danish and imported retail meat. The legal basis for these new measures was article 14 in the EU food law, which states that food shall not be placed on the market if it is unsafe, among others......, for reasons of contamination. This provision allows each member state to make a specific risk assessment of food batches, and decide whether a batch poses an unacceptable risk to the consumer or not. Here we present the basis for the risk assessment model on Campylobacter used in this new approach...... and the results of more than 3,000 batches of broiler meat tested since 2007. The risk was assessed for batches with one or more samples positive for Campylobacter (>100 cfu/g). Reductions in the number of positive batches from 2007 to 2010 were observed for both domestic (from 17% to 7%, p=0.01) and imported...

  15. Batch Growth of Chlorella Vulgaris CCALA 896 versus Semi-Continuous Regimen for Enhancing Oil-Rich Biomass Productivity

    Directory of Open Access Journals (Sweden)

    Sigita Vaičiulytė

    2014-06-01

    Full Text Available The aim of this study was to induce lipid accumulation in Chlorella cells by creating stressful growth conditions. Chlorella vulgaris CCALA 896 was grown under various batch growth modes in basal and modified BG-11 and Kolkwitz culture broths, using a continuous light regimen of 150 µE/m2/s, at 30 °C. In order to perform the experiments, two indoor photobioreactor shapes were used: a cylindrical glass photobioreactor (CGPBR with a working volume of 350 mL, and a flat glass photobioreactor (FGPBR with a working volume of 550 mL. Stress-eliciting conditions, such as nitrogen and phosphorous starvation, were imposed in order to induce lipid accumulation. The results demonstrated that more than 56% of the lipids can be accumulated in Chlorella biomass grown under two-phase batch growth conditions. The highest biomass productivity of 0.30 g/L/d was obtained at the highest nominal dilution rate (0.167 day−1 during a semi-continuous regimen, using a modified Kolkwitz medium. During the pH-stress cycles, the amount of lipids did not increase significantly and a flocculation of Chlorella cells was noted.

  16. Evaluation of several protein a resins for application to multicolumn chromatography for the rapid purification of fed-batch bioreactors.

    Science.gov (United States)

    Hilbold, Nicolas-Julian; Le Saoût, Xavier; Valery, Eric; Muhr, Laurence; Souquet, Jonathan; Lamproye, Alain; Broly, Hervé

    2017-07-01

    Most of the existing production capacity is based on fed-batch bioreactors. Thanks to the development of more efficient cell lines and the development of high-performance culture media, cell productivity dramatically increased. In a manufacturing perspective, it is necessary to clear as quickly as possible the protein A capture step to respect the manufacturing agenda. This article describes the methodology applied for the design of a multicolumn chromatography process with the objective of purifying as quickly as possible 1,000 and 15,000 L fed-batch bioreactors. Several recent and reference protein A resins are compared based on characteristic values obtained from breakthrough curves. The importance and relevance of resin parameters are explained, and purposely simple indicators are proposed to quickly evaluate the potential of each candidate. Based on simulation data, the optimum BioSC systems associated with each resin are then compared. The quality of the elution delivered by each resin is also compared to complete the assessment. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:941-953, 2017. © 2017 American Institute of Chemical Engineers.

  17. Isolation and characterization of isopimaric acid-degrading bacteria from a sequencing batch reactor.

    Science.gov (United States)

    Wilson, A E; Moore, E R; Mohn, W W

    1996-09-01

    We isolated two aerobic, gram-negative bacteria which grew on the diterpene resin acid isopimaric acid (IpA) as the sole carbon source and electron donor. The source of the isolates was a sequencing batch reactor treating a high-strength process stream from a paper mill. The isolates, IpA-1 and IpA-2, also grew on pimaric and dehydroabietic acids, and IpA-1 grew on abietic acid. Both strains used fatty acids, but neither strain used camphor, sitosterol, or betulin. Strain IpA-1 grew anaerobically with nitrate as an electron acceptor. Strains IpA-1 and IpA-2 had growth yields of 0.19 and 0.23 g of protein per g of IpA, respectively. During growth, both strains transformed IpA carbon to approximately equal amounts of biomass, carbon dioxide, and dissolved organic carbon. In both strains, growth on IpA induced an enzymatic system which caused cell suspensions to transform all four of the above resin acids. Cell suspensions of IpA-1 and IpA-2 removed IpA at rates of 0.56 and 0.13 mumol mg of protein-1 h-1, respectively. Cultures and cell suspensions of both strains failed to completely consume pimaric acid and yielded small amounts of an apparent metabolite from this acid. Cultures and cell suspensions of both strains yielded large amounts of three apparent metabolites from dehydroabietic acid. Analysis of 16S rDNA sequences indicated that the isolates are distinct members of the genus Pseudomonas sensu stricto.

  18. Lactic Acid Bacterial Starter Culture with Antioxidant and γ-Aminobutyric Acid Biosynthetic Activities Isolated from Flatfish-Sikhae Fermentation.

    Science.gov (United States)

    Won, Yeong Geol; Yu, Hyun-Hee; Chang, Young-Hyo; Hwang, Han-Joon

    2015-12-01

    The aim of this study is to select a lactic acid bacterial strain as a starter culture for flatfish-Sikhae fermentation and to evaluate its suitability for application in a food system. Four strains of lactic acid bacteria isolated from commercial flatfish-Sikhae were identified and selected as starter culture candidates through investigation of growth rates, salt tolerance, food safety, and functional properties such as antioxidative and antimicrobial activities. The fermentation properties of the starter candidates were also examined in food systems prepared with these strains (candidate batch) in comparison with a spontaneous fermentation process without starter culture (control batch) at 15°C. The results showed that the candidate YG331 batch had better fermentation properties such as viable cell count, pH, and acidity than the other experimental batches, including the control batch. The results are expressed according to selection criteria based on a preliminary sensory evaluation and physiochemical investigation. Also, only a small amount of histamine was detected with the candidate YG331 batch. The radical scavenging activity of the candidate batches was better compared with the control batch, and especially candidate YG331 batch showed the best radical scavenging activity. Also, we isolated another starter candidate (identified as Lactobacillus brevis PM03) with γ-aminobutyric acid (GABA)-producing activity from commercial flatfish-Sikhae products. The sensory scores of the candidate YG331 batch were better than those of the other experimental batches in terms of flavor, color, and overall acceptance. In this study, we established selection criteria for the lactic acid bacterial starter for the flatfish-Sikhae production and finally selected candidate YG331 as the most suitable starter.

  19. Aerobic granulation in a sequencing batch airlift reactor.

    Science.gov (United States)

    Beun, J J; van Loosdrecht, M C M; Heijnen, J J

    2002-02-01

    Aerobic granular sludge was cultivated in an intensely mixed sequencing batch airlift reactor (SBAR). A COD loading of 2.5 kg Acetate-COD/(m3 d) was applied. Granules developed in the reactor within one week after inoculation with suspended activated sludge from a conventional wastewater treatment plant. Selection of the dense granules from the biomass mixture occurs because of the differences in settling velocities between granules (fast settling biomass), and filaments and flocs (slow settling biomass). At 'steady state' the granules had an average diameter of 2.5 mm, a biomass density of 60g VSS/I of granules, and a settling rate of > 10 m/h. The biomass consisted of both heterotrophic and nitrifying bacteria. The reactor was operated over a long period during which the granular sludge proved to remain stable. The performance of the intermittently fed SBAR was compared to that of the continuously fed biofilm airlift suspension reactor (BASR). The most importance difference was that the density of the granules in the SBAR was much higher than the density of the biofilms in the BASR. It is discussed that this could be due to the fact that the SBAR is intermittently fed, while the BASR is continuously fed.

  20. Batch management based monitoring system: design, implement, and visualization

    International Nuclear Information System (INIS)

    Kan Bowen; Shi Jingyan

    2012-01-01

    Torque, an efficient PBS (Portable Batch System)-based open source Resource Management system, was originally developed by Ames research center of NASA, which was designed to satisfy the computing requirements of heterogeneous network. With the development of distributed computing, Torque has been widely used in high performance computing cluster. However, because of the lack of a well designed monitoring system, it is difficult to monitor, record, and control, leading to low stability, reliability and manageability. To overcome those problems, this paper designs and implements an adaptive lightweight monitoring system for torque from five aspects. 1) A lightweight circulating filtration logging system is developed to obtain the real-time running status of torque; 2) One uniform interface was provided for administrators to define monitoring commands, which can query management resources of torque; 3) Storage strategy is designed to make monitoring information persistent; 4) One uniform interface is provided for users to customized alarms, which can submit exceptions and errors to users via emails and SMS in real time; 5) HTML5 technology is applied in the customizable visualization of the jobs' status in torque in real time. (authors)

  1. Degradation of formaldehyde in anaerobic sequencing batch biofilm reactor (ASBBR)

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, N.S. [Laboratorio de Processos Biologicos (LPB), Departamento de Hidraulica e Saneamento, Escola de Engenharia de Sao Carlos (EESC), Universidade de Sao Paulo - USP, Engenharia Ambiental, Bloco 4-F, Av. Joao Dagnone, 1100 Santa Angelina, 13.563-120 Sao Carlos, SP (Brazil); Zaiat, M. [Laboratorio de Processos Biologicos (LPB), Departamento de Hidraulica e Saneamento, Escola de Engenharia de Sao Carlos (EESC), Universidade de Sao Paulo - USP, Engenharia Ambiental, Bloco 4-F, Av. Joao Dagnone, 1100 Santa Angelina, 13.563-120 Sao Carlos, SP (Brazil)], E-mail: zaiat@sc.usp.br

    2009-04-30

    The present study evaluated the degradation of formaldehyde in a bench-scale anaerobic sequencing batch reactor, which contained biomass immobilized in polyurethane foam matrices. The reactor was operated for 212 days at 35 deg. C with 8 h sequential cycles, under different affluent formaldehyde concentrations ranging from 31.6 to 1104.4 mg/L (formaldehyde loading rates from 0.08 to 2.78 kg/m{sup 3} day). The results indicate excellent reactor stability and over 99% efficiency in formaldehyde removal, with average effluent formaldehyde concentration of 3.6 {+-} 1.7 mg/L. Formaldehyde degradation rates increased from 204.9 to 698.3 mg/L h as the initial concentration of formaldehyde was increased from around 100 to around 1100 mg/L. However, accumulation of organic matter was observed in the effluent (chemical oxygen demand (COD) values above 500 mg/L) due to the presence of non-degraded organic acids, especially acetic and propionic acids. This observation poses an important question regarding the anaerobic route of formaldehyde degradation, which might differ substantially from that reported in the literature. The anaerobic degradation pathway can be associated with the formation of long-chain oligomers from formaldehyde. Such long- or short-chain polymers are probably the precursors of organic acid formation by means of acidogenic anaerobic microorganisms.

  2. Batch crystallization of rifapentine for inhalable tuberculosis medication

    Science.gov (United States)

    Wijanarko, Anondho; Meivita, Maria Prisca; Hermansyah, Heri; Sahlan, Muhamad; Lakerveld, Richard

    2018-02-01

    In the midst of Tuberculosis (TB) pandemic, a research about new tuberculosis drug that results in more rapid resolution of tubercular infection is important. It will play a crucial role in accelerating the reductions in tuberculosis incidence that is occurring worldwide. The effectiveness of rifapentine has been assessed and it has been proven to be the most effective antibiotics for TB. A frequent administration and dose of rifapentine resulted in more rapid resolution of tubercular infection. However, based on former research, high exposure levels for treatment shortening may be unachievable with oral administration and might instead be achieved by direct aerosol delivery of rifapentine to the pulmonary site of infection. Therefore, with the growing interest in the effectiveness of rifapentine in frequent administration and dose, this research integrates an inhalable form of crystalline rifapentine prepared using a batch process. Moreover, this research investigates the effect of seed loading, supersaturation ratio, and residence time on the characterization of crystalline rifapentine in order to form a crystalline rifapentine in an inhalable size. The research was carried out by using anti-solvent crystallization method with acetone as a solvent and distilled water as an anti-solvent. Based on the assessment of various operating variables, it can be concluded that the optimum result was obtained at the unseeded experiment with supersaturation ratio = 1.26. Unseeded experiments are preferred because the ideal size for therapeutic aerosol was achieved in unseeded experiments.

  3. Colored noise effects on batch attitude accuracy estimates

    Science.gov (United States)

    Bilanow, Stephen

    1991-01-01

    The effects of colored noise on the accuracy of batch least squares parameter estimates with applications to attitude determination cases are investigated. The standard approaches used for estimating the accuracy of a computed attitude commonly assume uncorrelated (white) measurement noise, while in actual flight experience measurement noise often contains significant time correlations and thus is colored. For example, horizon scanner measurements from low Earth orbit were observed to show correlations over many minutes in response to large scale atmospheric phenomena. A general approach to the analysis of the effects of colored noise is investigated, and interpretation of the resulting equations provides insight into the effects of any particular noise color and the worst case noise coloring for any particular parameter estimate. It is shown that for certain cases, the effects of relatively short term correlations can be accommodated by a simple correction factor. The errors in the predicted accuracy assuming white noise and the reduced accuracy due to the suboptimal nature of estimators that do not take into account the noise color characteristics are discussed. The appearance of a variety of sample noise color characteristics are demonstrated through simulation, and their effects are discussed for sample estimation cases. Based on the analysis, options for dealing with the effects of colored noise are discussed.

  4. Environmental Hazard Assessment of Jarosite Waste Using Batch Leaching Tests

    Directory of Open Access Journals (Sweden)

    M. Kerolli – Mustafa

    2018-01-01

    Full Text Available Jarosite waste samples from Trepça Zinc Industry in Kosovo were subjected to two batch leaching tests as an attempt to characterize the leaching behavior and mobility of minor and major elements of jarosite waste. To achieve this, deionized water and synthetic acidic rain leaching tests were employed. A two-step acidic treatment in microwave digestion system were used to dissolve jarosite waste samples, followed by determination of Al, Ag, As, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, P, Pb, S, Si, Sr, and Zn by inductively coupled plasma optical emission spectrometry (ICP-OES. The validation of the procedure was performed by the analysis of two geochemical reference materials, S JR-3 and S Jsy-1. Two toxicity leaching tests revealed a high metal releasing of Cd, Cu, Ni, Mn, Pb, Zn, and As, and the metal release risk for these elements is still very high due the low pH and acid rain. The statistical analysis showed useful data information on the relationship between elements in jarosite samples in two different extraction conditions (deionized water and synthetic acid rain.

  5. EFFECT OF DYE CONCENTRATION ON SEQUENCING BATCH REACTOR PERFORMANCE

    Directory of Open Access Journals (Sweden)

    A. A. Vaigan ، M. R. Alavi Moghaddam ، H. Hashemi

    2009-01-01

    Full Text Available Reactive dyes have been identified as problematic compounds in textile industries wastewater as they are water soluble and cannot be easily removed by conventional aerobic biological treatment systems. The treatability of a reactive dye (Brill Blue KN-R by sequencing batch reactor and the influence of the dye concentration on system performance were investigated in this study. Brill Blue KN-R is one of the main dyes that are used in textile industries in Iran. Four cylindrical Plexiglas reactors were run for 36 days (5 days for acclimatization of sludge and 31 days for normal operation at different initial dye concentrations. The dye concentrations were adjusted to be 20, 25, 30 and 40 mg/L in the reactors R1, R2, R3 and R4, respectively. In all reactors, effective volume, influent wastewater flowrate and sludge retention time were 5.5 L, 3.0 L/d and 10 d, respectively. According to the obtained data, average dye removal efficiencies of R1, R2, R3 and R4 were 57% ± 2, 50.18% ± 3, 44.97% ± 3 and 30.98% ± 3, respectively. The average COD removal efficiencies of all reactors were 97% ± 1, 97.12% ± 1, 96.93% ± 1 and 97.22% ± 1, respectively. The dye removal efficiency was decreased by increasing the dye concentration with the correlation coefficient of 0.997.

  6. Batched Tile Low-Rank GEMM on GPUs

    KAUST Repository

    Charara, Ali

    2018-02-01

    Dense General Matrix-Matrix (GEMM) multiplication is a core operation of the Basic Linear Algebra Subroutines (BLAS) library, and therefore, often resides at the bottom of the traditional software stack for most of the scientific applications. In fact, chip manufacturers give a special attention to the GEMM kernel implementation since this is exactly where most of the high-performance software libraries extract the hardware performance. With the emergence of big data applications involving large data-sparse, hierarchically low-rank matrices, the off-diagonal tiles can be compressed to reduce the algorithmic complexity and the memory footprint. The resulting tile low-rank (TLR) data format is composed of small data structures, which retains the most significant information for each tile. However, to operate on low-rank tiles, a new GEMM operation and its corresponding API have to be designed on GPUs so that it can exploit the data sparsity structure of the matrix while leveraging the underlying TLR compression format. The main idea consists in aggregating all operations onto a single kernel launch to compensate for their low arithmetic intensities and to mitigate the data transfer overhead on GPUs. The new TLR GEMM kernel outperforms the cuBLAS dense batched GEMM by more than an order of magnitude and creates new opportunities for TLR advance algorithms.

  7. Treatment of winery wastewater by an anaerobic sequencing batch reactor.

    Science.gov (United States)

    Ruíz, C; Torrijos, M; Sousbie, P; Lebrato Martínez, J; Moletta, R; Delgenès, J P

    2002-01-01

    Treatment of winery wastewater was investigated using an anaerobic sequencing batch reactor (ASBR). Biogas production rate was monitored and permitted the automation of the bioreactor by a simple control system. The reactor was operated at an organic loading rate (ORL) around 8.6 gCOD/L.d with soluble chemical oxygen demand (COD) removal efficiency greater than 98%, hydraulic retention time (HRT) of 2.2 d and a specific organic loading rate (SOLR) of 0.96 gCOD/gVSS.d. The kinetics of COD and VFA removal were investigated for winery wastewater and for simple compounds such as ethanol, which is a major component of winery effluent, and acetate, which is the main volatile fatty acid (VFA) produced. The comparison of the profiles obtained with the 3 substrates shows that, overall, the acidification of the organic matter and the methanisation of the VFA follow zero order reactions, in the operating conditions of our study. The effect on the gas production rate resulted in two level periods separated by a sharp break when the acidification stage was finished and only the breaking down of the VFA continued.

  8. MATHEMATICAL MODELING OF BATCH ADSORPTION OF MANGANESE ONTO BONE CHAR

    Directory of Open Access Journals (Sweden)

    M. E. Maria

    Full Text Available Abstract The present study investigated the dynamics of batch adsorption of manganese onto bone char by using two distinct mathematical formulations: the diffusion model and the shrinking core model. Both models assumed spherical particles and adequately described the transient behavior of metal adsorption under changing operating conditions. Comparatively, the diffusion model described the manganese adsorption better at distinct particle sizes even when small particles were used (dp ≤ 0.147 mm; the shrinking core model proved to be more reliable when larger adsorbent particles were used (dp > 0.147 mm, and it described experimental data better at changing solid-liquid ratios. Manganese adsorption was favored when: (i smaller adsorbing particles were used due to the increase in the contact area and easier access to reacting sites of the char; however, such an effect proved to be limited to dp ≤ 0.147 mm, and (ii higher solid-liquid ratios were used due to the increase in the available reacting sites. External and intraparticle mass transfer dependences on particle size and solid-liquid ratio were also investigated, and results corroborated with prior investigations found in the literature.

  9. Hydrogen generation from glycerol in batch fermentation process

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, K.; Waligorska, M.; Wojtowski, M.; Laniecki, M. [Faculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznan (Poland)

    2009-05-15

    The influence of concentration of glycerol, inoculum and total nitrogen on hydrogen generation, in batch dark fermentation process in the presence of digested sludge (at 37 C and at initial pH = 6) was studied. Changes in substrate and products concentrations were modeled with modified Gompertz equations (correlation coefficient R{sup 2} = 0.9015). The 1,3-propandiol, butyric acid, acetic acid, lactic acid and ethanol were found as the main liquid metabolites. Maximal substrate yield for hydrogen was 0.41 mol H{sub 2}/mol glycerol and was obtained for medium containing 10 g/l of glycerol with the lowest amount of inoculum - 1.16 g volatile suspended solid (VSS)/l. Increase of glycerol concentration from 5 to 30 g/l resulted in much better hydrogen generation, namely from 0.345 to 0.715 l H{sub 2}/l. Further increase of glycerol concentration did not cause any changes. The H{sub 2}:CO{sub 2} ratio in biogas in system with the highest substrate yield was always 1. The initial concentration of glycerol does not influence the rate of hydrogen generation. The increase of initial concentration of inoculum from 1.2 to 11.6 g VSS/l results in the decrease of specific hydrogen yield. Nitrogen concentration in medium does not influence the hydrogen production. (author)

  10. Pembuatan Biodiesel Secara Batch Dengan Memanfaatkan Gelombang Mikro (Microwave

    Directory of Open Access Journals (Sweden)

    Rhesa Purnama Putra

    2012-09-01

    Full Text Available Biodiesel merupakan bioenergi atau bahan bakar nabati yang dibuat dari minyak nabati, baik minyak baru atau bekas penggorengan melalui proses transesterifikasi, esterifikasi, atau proses esterifikasi-transesterifikasi. Tujuan penelitian ini adalah untuk membuat biodiesel dari minyak goreng secara batch melalui proses transesterifikasi dengan menggunakan radiasi mikrowave serta mempelajari berapa daya dan waktu optimal yang diperlukan untuk proses pembuatan biodiesel dengan radiasi microwave dengan katalis CaO, H2SO4, dan tanpa katalis. Dalam penelitian ini digunakan tiga variabel, yaitu daya (Watt;100,200,300,400, waktu (menit; 5,10,15,20 dan jenis katalis; CaO, H2SO4, dan tanpa katalis. Pada tahap persiapan menghitung volume minyak dan metanol yang akan dicampur. Kemudian mencampurnya didalam reaktor. Lalu mendinginkan campuran hingga terbentuk dua lapisan atas dan bawah dilanjutkan dengan melakukan pemisahan lapisan atas (biodiesel dari lapisan bawah (gliserol. Adapun pada tahap analisis, biodiesel hasil reaksi transesterfikasi dianalisa untuk mendapatkan data yield metil ester, densitas, viskositas, dan flash point. Dari penelitian diketahui bahwa hasil yang didapatkan masih belum dapat memenuhi standar biodiesel yang ditetapkan. Katalis CaO dapat memberikan hasil yang lebih baik dibandingkan dengan katalis H2SO4 dan tanpa katalis. Kondisi operasi untuk menghasilkan kualitas yield biodiesel terbaik yaitu pada daya 200 Watt selama 20 menit dengan menggunakan katalis CaO. Yield biodiesel terbesar didapatkan yield sebesar 60,11 %.

  11. Virtual Sensors for Biodiesel Production in a Batch Reactor

    Directory of Open Access Journals (Sweden)

    Betty Y. López-Zapata

    2017-03-01

    Full Text Available Fossil fuel combustion produces around 98% of coal emissions. Therefore, liquid and gaseous biofuels have become more attractive due to their environmental benefits. The biodiesel production process requires measurements that help to control and supervise the variables involved in the process. The measurements provide valuable information about the operation conditions and give estimations about the critical variables of the process. The information from measurements is essential for monitoring the state of a process and verifying if it has an optimal performance. The objective of this study was the conception of a virtual sensor based on the Extended Kalman Filter (EKF and the model of a batch biodiesel reactor for estimating concentrations of triglycerides (TG, diglycerides (DG, monoglycerides (MG, methyl ester (E, alcohol (A, and glycerol (GL in real-time through measurement of the temperature and pH. Estimation of the TG, DG, MG, E, A, and Gl through this method eliminates the need for additional sensors and allows the use of different types of control. For the performance analysis of the virtual sensor, the data obtained from the EKF are compared with experimental data reported in the literature, with the mean square error of the estimate then being calculated. In addition, the results of this approach can be implemented in a real system, since it only uses measurements available in a reactor such as temperature and pH.

  12. Butyric acid fermentation of sodium hydroxide pretreated rice straw with undefined mixed culture.

    Science.gov (United States)

    Ai, Binling; Li, Jianzheng; Chi, Xue; Meng, Jia; Liu, Chong; Shi, En

    2014-05-01

    This study describes an alternative mixed culture fermentation technology to anaerobically convert lignocellulosic biomass into butyric acid, a valuable product with wide application, without supplementary cellulolytic enzymes. Rice straw was soaked in 1% NaOH solution to increase digestibility. Among the tested pretreatment conditions, soaking rice straw at 50°C for 72 h removed ~66% of the lignin, but retained ~84% of the cellulose and ~71% of the hemicellulose. By using an undefined cellulose-degrading butyrate-producing microbial community as butyric acid producer in batch fermentation, about 6 g/l of butyric acid was produced from the pretreated rice straw, which accounted for ~76% of the total volatile fatty acids. In the repeated-batch operation, the butyric acid production declined batch by batch, which was most possibly caused by the shift of microbial community structure monitored by denaturing gradient gel electrophoresis. In this study, batch operation was observed to be more suitable for butyric acid production.

  13. Evaluation of batch effect elimination using quality control replicates in LC-MS metabolite profiling.

    Science.gov (United States)

    Sánchez-Illana, Ángel; Piñeiro-Ramos, Jose David; Sanjuan-Herráez, Juan Daniel; Vento, Máximo; Quintás, Guillermo; Kuligowski, Julia

    2018-08-17

    Systematic variation of the instrument's response both within- and between-batches is frequently observed in untarget LC-MS metabolomics involving the analysis of a large number of samples. The so-called batch effect decreases the statistical power and has a negative impact on repeatability and reproducibility of the results. As there is no standard way of assessing or correcting LC-MS batch effects and there is no single method providing optimal results in all situations, the selection of the optimal approach is not trivial. This work explores the effectiveness of a set of tools for batch effect assessment. Qualitative tools include the monitoring of spiked internal standards, principal component analysis and hierarchical cluster analysis. Quantitative tools comprise the distribution of RSD QC values, the median Pearson correlation coefficient in QCs, the ratio of random features in QCs using the runs test, as well as multivariate tools such as the δ-statistic, Silhouette plots, Principal Variance Component Analysis and the expected technical variation in the prediction. Results show that qualitative and quantitative approaches are complementary and that by limiting the analysis to QCs the power to detect and evaluate both within and between batch effects is increased. Besides, the graphical integration of outputs from multiple quantitative tools facilitates the evaluation of batch effects and it is proposed as a straightforward way for comparing and tailoring batch effect elimination approaches. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Cell engineering of Escherichia coli allows high cell density accumulation without fed-batch process control.

    Science.gov (United States)

    Bäcklund, Emma; Markland, Katrin; Larsson, Gen

    2008-01-01

    A set of mutations in the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) was used to create Escherichia coli strains with a reduced uptake rate of glucose. This allows a growth restriction, which is controlled on cellular rather than reactor level, which is typical of the fed-batch cultivation concept. Batch growth of the engineered strains resulted in cell accumulation profiles corresponding to a growth rate of 0.78, 0.38 and 0.25 h(-1), respectively. The performance of the mutants in batch cultivation was compared to fed-batch cultivation of the wild type cell using restricted glucose feed to arrive at the corresponding growth profiles. Results show that the acetate production, oxygen consumption and product formation were similar, when a recombinant product was induced from the lacUV5 promoter. Ten times more cells could be produced in batch cultivation using the mutants without the growth detrimental production of acetic acid. This allows high cell density production without the establishment of elaborate fed-batch control equipment. The technique is suggested as a versatile tool in high throughput multiparallel protein production but also for increasing the number of experiments performed during process development while keeping conditions similar to the large-scale fed-batch performance.

  15. Statistical Review of Data from DWPF's Process Samples for Batches 19 Through 30

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, T.B.

    1999-04-06

    The measurements derived from samples taken during the processing of batches 19 through 30 at the Defense Waste Processing Facility (DWPF) affords an opportunity for review and comparisons. This report has looked at some of the statistics from these data. Only the data reported by the DWPF lab (that is, the data provided by the lab as representative of the samples taken) are available for this analysis. In some cases, the sample results reported may be a subset of the sample results generated by the analytical procedures. A thorough assessment of the DWPF lab's analytical procedures would require the complete set of data. Thus, the statistics reported here, specifically, as they relate to analytical uncertainties, are limited to the reported data for these samples, A fell for the consistency of the incoming slurry is the estimation of the components of variation for the Sludge Receipt and Adjustment Tank (SRAT) receipts. In general, for all of the vessels, the data from batches after 21 show smaller batch-to-batch variation than the data from all the batches. The relative contributions of batch-to-batch versus residual, which includes analytical, are presented in these analyses.

  16. Scaling relations for use of batch data in design of reactive tracer tests

    International Nuclear Information System (INIS)

    Bahr, J.M.

    1990-01-01

    Tracer tests employing reacting solutes can be used to evaluate the rates and extents of in-situ retardation and transformation of groundwater contaminants. Preliminary estimates of retardation and transformation rates can aid in selecting appropriate input concentrations, monitoring network density and sampling schedules. Results of laboratory batch experiments provide one source of data for such estimates, as well as the basis for models that can be used to interpret tracer test results. IN some cases, batch experiments are designed to identify rate laws and rate constants for the reactions of interest. MOre frequently, however, batch experiments are conducted to determine equilibrium relations for sorption or other reversible reactions. Kinetic information provided by these equilibrium experiments generally consists only of estimated equilibration times. In this paper, analytic integrated rate laws for batch conditions are compared to results of numerical simulations of solute transport affected by homogeneous and heterogeneous reactions in order to establish scaling relations between batch equilibration times and transport times required to approach local equilibrium. For homogeneous reactions similar time scales are required for batch equilibration and to approach local equilibrium during transport. HOwever, significant differences in time scales can exist between batch and transport conditions for cases involving heterogeneous reactions. Use of the resulting scaling relations in the design of reactive tracer tests is discussed for cases of finite and continuous tracer input. (Author) (15 refs., 6 figs.)

  17. Establishing column batch repeatability according to Quality by Design (QbD) principles using modeling software.

    Science.gov (United States)

    Rácz, Norbert; Kormány, Róbert; Fekete, Jenő; Molnár, Imre

    2015-04-10

    Column technology needs further improvement even today. To get information of batch-to-batch repeatability, intelligent modeling software was applied. Twelve columns from the same production process, but from different batches were compared in this work. In this paper, the retention parameters of these columns with real life sample solutes were studied. The following parameters were selected for measurements: gradient time, temperature and pH. Based on calculated results, batch-to-batch repeatability of BEH columns was evaluated. Two parallel measurements on two columns from the same batch were performed to obtain information about the quality of packing. Calculating the average of individual working points at the highest critical resolution (R(s,crit)) it was found that the robustness, calculated with a newly released robustness module, had a success rate >98% among the predicted 3(6) = 729 experiments for all 12 columns. With the help of retention modeling all substances could be separated independently from the batch and/or packing, using the same conditions, having high robustness of the experiments. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Tc-99 Adsorption on Selected Activated Carbons - Batch Testing Results

    Energy Technology Data Exchange (ETDEWEB)

    Mattigod, Shas V.; Wellman, Dawn M.; Golovich, Elizabeth C.; Cordova, Elsa A.; Smith, Ronald M.

    2010-12-01

    CH2M HILL Plateau Remediation Company (CHPRC) is currently developing a 200-West Area groundwater pump-and-treat system as the remedial action selected under the Comprehensive Environmental Response, Compensation, and Liability Act Record of Decision for Operable Unit (OU) 200-ZP-1. This report documents the results of treatability tests Pacific Northwest National Laboratory researchers conducted to quantify the ability of selected activated carbon products (or carbons) to adsorb technetium-99 (Tc-99) from 200-West Area groundwater. The Tc-99 adsorption performance of seven activated carbons (J177601 Calgon Fitrasorb 400, J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, J177612 Norit GAC830, J177613 Norit GAC830, and J177617 Nucon LW1230) were evaluated using water from well 299-W19-36. Four of the best performing carbons (J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, and J177613 Norit GAC830) were selected for batch isotherm testing. The batch isotherm tests on four of the selected carbons indicated that under lower nitrate concentration conditions (382 mg/L), Kd values ranged from 6,000 to 20,000 mL/g. In comparison. Under higher nitrate (750 mg/L) conditions, there was a measureable decrease in Tc-99 adsorption with Kd values ranging from 3,000 to 7,000 mL/g. The adsorption data fit both the Langmuir and the Freundlich equations. Supplemental tests were conducted using the two carbons that demonstrated the highest adsorption capacity to resolve the issue of the best fit isotherm. These tests indicated that Langmuir isotherms provided the best fit for Tc-99 adsorption under low nitrate concentration conditions. At the design basis concentration of Tc 0.865 µg/L(14,700 pCi/L), the predicted Kd values from using Langmuir isotherm constants were 5,980 mL/g and 6,870 mL/g for for the two carbons. These Kd values did not meet the target Kd value of 9,000 mL/g. Tests

  19. SLUDGE BATCH 6/TANK 51 SIMULANT CHEMICAL PROCESS CELL SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, David; Best, David

    2010-04-28

    Qualification simulant testing was completed to determine appropriate processing conditions and assumptions for the Sludge Batch 6 (SB6) Shielded Cells demonstration of the DWPF flowsheet using the qualification sample from Tank 51 for SB6 after SRNL washing. It was found that an acid addition window of 105-139% of the DWPF acid equation (100-133% of the Koopman minimum acid equation) gave acceptable Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) results for nitrite destruction and hydrogen generation. Hydrogen generation occurred continuously after acid addition in three of the four tests. The three runs at 117%, 133%, and 150% stoichiometry (Koopman) were all still producing around 0.1 lb hydrogen/hr at DWPF scale after 42 hours of boiling in the SRAT. The 150% acid run reached 110% of the DWPF SRAT limit of 0.65 lb H{sub 2}/hr, and the 133% acid run reached 75% of the DWPF SME limit of 0.223 lb H{sub 2}/hr. Conversely, nitrous oxide generation was subdued compared to previous sludge batches, staying below 25 lb/hr in all four tests or about a fourth as much as in comparable SB4 testing. Two other processing issues were noted. First, incomplete mercury suspension impacted mercury stripping from the SRAT slurry. This led to higher SRAT product mercury concentrations than targeted (>0.45 wt% in the total solids). Associated with this issue was a general difficulty in quantifying the mass of mercury in the SRAT vessel as a function of time, especially as acid stoichiometry increased. About ten times more mercury was found after drying the 150% acid SME product to powder than was indicated by the SME product sample results. Significantly more mercury was also found in the 133% acid SME product samples than was found during the SRAT cycle sampling. It appears that mercury is segregating from the bulk slurry in the SRAT vessel, as mercury amalgam deposits for example, and is not being resuspended by the agitators. The second processing issue

  20. Specialized hybrid batch fabrication process for MEMS RF voltage sensors

    Science.gov (United States)

    Dittmer, Jan; Judaschke, Rolf; Büttgenbach, Stephanus

    2007-12-01

    RF voltage measurement based on electrostatic RMS voltage-to-force conversion is an alternative method in comparison to the classical thermal power dissipation method. It is based on a parallel-plate capacitor with one elastically hinged plate. By applying an AC voltage, a force proportional to its RMS value is generated between the plates, and consequently the movable plate swings to the equilibrium position between spring force and electrostatic force. For a theoretically adequate resolution and precision, the necessary geometrical dimensions of the sensor practically require the use of advanced micromachining techniques. In this contribution, we discuss a unique batch fabrication process to meet the challenge of having two very large plane-parallel surfaces separated by only a few microns. The basic design consists of an actuator made of silicon embedded between two glass wafers for electrical contacting and sealing. Each step of this hybrid process has been optimized to prevent residual liquids leading to stiction and breaking of the fragile parts of the micro-structures. Flat grooves in the silicon define the gap between the capacitor electrodes, and an anisotropic dry-etch step releases the actuator. A second glass wafer builds the top of the stack and is fixated using a patterned photo-resist. Bumpers on the bottom layer and ridges in the top wafer improve the robustness of the structure. In this paper, we present a detailed analysis of the production process, pointing out critical as well as alternative design steps towards the optimized sensor. Finally, results of working devices are shown.

  1. Neural Network Control for a Batch Distillation Column

    Directory of Open Access Journals (Sweden)

    Duraid Fadhil Ahmed

    2016-07-01

    Full Text Available The  present  work  deals  with  studying  the  dynamic  behavior  of  a  batch  distillation  column  and implemented  two  types  of  control  strategies  for  the  separation  different  types  of  binary  systems.  The model  was  derived  and  then  simulated  using  "MATLAB"  program.  The  experimental  data  of  dynamic behavior  were  to  tune  the  parameters  of  PID  controller  and  developed  the  training  of  neural  networks controller by using supervised  learning algorithms. The simulation results show a qualitatively acceptable behavior.  This  study  shows  also  that  the  response  of  PID  controller  was  oscillatory  behavior  with  high offset value while neural network controller gave less offset value and less  time to reach the steady state. In general, a good improvement is achieved when the  neural network controller  is used compared with PID control.

  2. Integrating Preventive Maintenance Scheduling As Probability Machine Failure And Batch Production Scheduling

    Directory of Open Access Journals (Sweden)

    Zahedi Zahedi

    2016-06-01

    Full Text Available This paper discusses integrated model of batch production scheduling and machine maintenance scheduling. Batch production scheduling uses minimize total actual flow time criteria and machine maintenance scheduling uses the probability of machine failure based on Weibull distribution. The model assumed no nonconforming parts in a planning horizon. The model shows an increase in the number of the batch (length of production run up to a certain limit will minimize the total actual flow time. Meanwhile, an increase in the length of production run will implicate an increase in the number of PM. An example was given to show how the model and algorithm work.

  3. Decolorization of reactive dyes under batch anaerobic condition by ...

    African Journals Online (AJOL)

    However, decolorization was lower for the dye of RB 49 than other two dyes in all concentrations despite 72 h incubation period by mixed anaerobic culture. All of the three dyes correlated with 1st order reaction kinetic with respect to decolorization kinetics. The results of the study demonstrated that high decolorization was ...

  4. Real-time synchronization of batch trajectories for on-line multivariate statistical process control using Dynamic Time Warping

    NARCIS (Netherlands)

    Gonzáles-Martínez, J.M.; Ferrer, A.; Westerhuis, J.A.

    2011-01-01

    This paper addresses the real-time monitoring of batch processes with multiple different local time trajectories of variables measured during the process run. For Unfold Principal Component Analysis (U-PCA)—or Unfold Partial Least Squares (U-PLS)-based on-line monitoring of batch processes, batch

  5. Urine culture

    Science.gov (United States)

    Culture and sensitivity - urine ... when urinating. You also may have a urine culture after you have been treated for an infection. ... when bacteria or yeast are found in the culture. This likely means that you have a urinary ...

  6. Safeguards Culture

    Energy Technology Data Exchange (ETDEWEB)

    Frazar, Sarah L.; Mladineo, Stephen V.

    2012-07-01

    The concepts of nuclear safety and security culture are well established; however, a common understanding of safeguards culture is not internationally recognized. Supported by the National Nuclear Security Administration, the authors prepared this report, an analysis of the concept of safeguards culture, and gauged its value to the safeguards community. The authors explored distinctions between safeguards culture, safeguards compliance, and safeguards performance, and evaluated synergies and differences between safeguards culture and safety/security culture. The report concludes with suggested next steps.

  7. Conjugated Polymers Via Direct Arylation Polymerization in Continuous Flow: Minimizing the Cost and Batch-to-Batch Variations for High-Throughput Energy Conversion

    DEFF Research Database (Denmark)

    Gobalasingham, Nemal S.; Carlé, Jon Eggert; Krebs, Frederik C

    2017-01-01

    of high-performance materials. To demonstrate the usefulness of the method, DArP-prepared PPDTBT via continuous flow synthesis is employed for the preparation of indium tin oxide (ITO)-free and flexible roll-coated solar cells to achieve a power conversion efficiency of 3.5% for 1 cm2 devices, which...... is comparable to the performance of PPDTBT polymerized through Stille cross coupling. These efforts demonstrate the distinct advantages of the continuous flow protocol with DArP avoiding use of toxic tin chemicals, reducing the associated costs of polymer upscaling, and minimizing batch-to-batch variations...

  8. Feeding strategies for the improved biosynthesis of canthaxanthin from enzymatic hydrolyzed molasses in the fed-batch fermentation of Dietzia natronolimnaea HS-1.

    Science.gov (United States)

    Gharibzahedi, Seyed Mohammad Taghi; Razavi, Seyed Hadi; Mousavi, Mohammad

    2014-02-01

    The effect of two enzymatic hydrolyzed molasses (EHM)-feeding strategies including constant-(CFR) and exponential-(EFR) feeding rate on canthaxanthin (CTX) biosynthesis by Dietzia natronolimnaea HS-1 fed-batch fermentation was studied. The results showed that the CFR of 7 ml/h with an EHM content of 45 g/l led to the highest values of specific growth rate (0.127 h(-1)), biomass dry weight (17.66 g/l), total carotenoid (16.31 mg/l) and CTX (14.67 mg/l). A significant decrease in the kinetic growth and production parameters by the increasing EHM concentration from 30 to 60 g/l during EFR fed-batch bioprocess was observed (p<0.01). This study concluded that EHM alone can displace glucose-based medium towards improved CTX biosynthesis from D. natronolimnaea HS-1 using a CFR strategy during fed-batch culture. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Towards the Integration of Dark- and Photo-Fermentative Waste Treatment. 4. Repeated Batch Sequential Dark- and Photofermentation using Starch as Substrate

    Energy Technology Data Exchange (ETDEWEB)

    Laurinavichene, T. V.; Belokopytov, B. F.; Laurinavichius, K. S.; Khusnutdinova, A. N.; Seibert, M.; Tsygankov, A. A.

    2012-05-01

    In this study we demonstrated the technical feasibility of a prolonged, sequential two-stage integrated process under a repeated batch mode of starch fermentation. In this durable scheme, the photobioreactor with purple bacteria in the second stage was fed directly with dark culture from the first stage without centrifugation, filtration, or sterilization (not demonstrated previously). After preliminary optimization, both the dark- and the photo-stages were performed under repeated batch modes with different process parameters. Continuous H{sub 2} production in this system was observed at a H{sub 2} yield of up to 1.4 and 3.9 mole mole{sup -1} hexose during the dark- and photo-stage, respectively (for a total of 5.3 mole mole{sup -1} hexose), and rates of 0.9 and 0.5 L L{sup -1} d{sup -1}, respectively. Prolonged repeated batch H{sub 2} production was maintained for up to 90 days in each stage and was rather stable under non-aseptic conditions. Potential for improvements in these results are discussed.

  10. Organizational Culture

    Directory of Open Access Journals (Sweden)

    Adrian HUDREA

    2006-02-01

    Full Text Available Cultural orientations of an organization can be its greatest strength, providing the basis for problem solving, cooperation, and communication. Culture, however, can also inhibit needed changes. Cultural changes typically happen slowly – but without cultural change, many other organizational changes are doomed to fail. The dominant culture of an organization is a major contributor to its success. But, of course, no organizational culture is purely one type or another. And the existence of secondary cultures can provide the basis for change. Therefore, organizations need to understand the cultural environments and values.

  11. Production of high-density Chlorella culture grown in fermenters

    Czech Academy of Sciences Publication Activity Database

    Doucha, Jiří; Lívanský, Karel

    2012-01-01

    Roč. 24, č. 1 (2012), s. 35-43 ISSN 0921-8971 R&D Projects: GA MŠk OE09025 Institutional support: RVO:61388971 Keywords : Chlorella vulgaris * Heterotrophic culture * Fed-batch Subject RIV: EE - Microbiology, Virology Impact factor: 2.326, year: 2012

  12. Effects Of Heavy Metals On Growing Cultures Of Chlorella emersonii ...

    African Journals Online (AJOL)

    Under batch culture conditions no growth occurred with any of the silver concentrations tested. Chlorella that had been exposed to silver (1.0 mg/l) prior to cultivation without added metal showed growth. Above concentrations of 1.0 mg/l exposure there was no growth. Copper stimulated growth of Chlorella under continuous ...

  13. SLUDGE BATCH 5 VARIABILITY STUDY WITH FRIT 418

    Energy Technology Data Exchange (ETDEWEB)

    Raszewski, F; Tommy Edwards, T; David Peeler, D

    2008-09-29

    The Defense Waste Processing Facility (DWPF) is preparing to initiate processing Sludge Batch 5 (SB5) in early FY 2009. In support of the upcoming processing, the Savannah River National Laboratory (SRNL) provided a recommendation to utilize Frit 418 as a transitional frit to initiate processing of SB5. This recommendation was based on the results of assessments on the compositional projections for SB5 available at that time from both the Liquid Waste Organization (LWO) and SRNL (using a model-based approach). To support qualification of the Frit 418-SB5 system, SRNL executed a variability study to assess the acceptability of the Frit 418-SB5 glasses with respect to durability and the applicability of the current durability models. Twenty one glasses were selected for the variability study based on the available SB5 projections primarily spanning a waste loading (WL) range of 25-37%. In order to account for the addition of caustic to Tank 40, which occurred in July 2008, 3 wt% Na2O was added to the original Tank 40 heel projections. The addition of the Actinide Removal Process (ARP) stream to the blend composition was also included. Two of the glasses were fabricated at 25% and 28% WL in order to challenge the homogeneity constraint of the Product Composition Control System (PCCS) for SB5 coupled operations. These twenty one glasses were fabricated and characterized using chemical composition analysis, X-ray Diffraction (XRD) and the Product Consistency Test (PCT). The results of this study indicate that Frit 418 is a viable option for sludge-only and coupled operations. The addition of ARP did not have any negative impacts on the acceptability and predictability of the variability study glasses. Based on the measured PCT response, all of the glasses were acceptable as compared to the Environmental Assessment (EA) reference glass regardless of the thermal history and were also predictable using the current PCCS model for durability. The homogeneity constraint can

  14. Tank 40 Final Sludge Batch 8 Chemical Characterization Results

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, Christopher J.

    2013-09-19

    A sample of Sludge Batch 8 (SB8) was pulled from Tank 40 in order to obtain radionuclide inventory analyses necessary for compliance with the Waste Acceptance Product Specifications (WAPS). The SB8 WAPS sample was also analyzed for chemical composition, including noble metals, and fissile constituents, and these results are reported here. These analyses along with the WAPS radionuclide analyses will help define the composition of the sludge in Tank 40 that is currently being fed to the Defense Waste Processing Facility (DWPF) as SB8. At SRNL, the 3-L Tank 40 SB8 sample was transferred from the shipping container into a 4-L high density polyethylene bottle and solids were allowed to settle. Supernate was then siphoned off and circulated through the shipping container to complete the transfer of the sample. Following thorough mixing of the 3-L sample, a 553 g sub-sample was removed. This sub-sample was then utilized for all subsequent slurry sample preparations. Eight separate aliquots of the slurry were digested, four with HNO{sub 3}/HCl (aqua regia) in sealed Teflon(r) vessels and four with NaOH/Na{sub 2}O{sub 2} (alkali or peroxide fusion) using Zr crucibles. Two Analytical Reference Glass - 1 (ARG-1) standards were digested along with a blank for each preparation. Each aqua regia digestion and blank was diluted to 1:100 mL with deionized water and submitted to Analytical Development (AD) for inductively coupled plasma - atomic emission spectroscopy (ICP-AES) analysis, inductively coupled plasma - mass spectrometry (ICP-MS) analysis, atomic absorption spectroscopy (AA) for As and Se, and cold vapor atomic absorption spectroscopy (CV-AA) for Hg. Equivalent dilutions of the alkali fusion digestions and blank were submitted to AD for ICP-AES analysis. Tank 40 SB8 supernate was collected from a mixed slurry sample in the SRNL Shielded Cells and submitted to AD for ICP-AES, ion chromatography (IC), total base/free OH-/other base, total inorganic carbon/total organic

  15. Batch Cooling Crystallization of Potassium Sulphate from Water Solution

    Directory of Open Access Journals (Sweden)

    Kalšan, M.

    2009-12-01

    Full Text Available Batch cooling crystallization, at the rotation speed of 700 min–1, of an aqueous solution of a potassium sulphate has been investigated on a laboratory scale. The effect of hydrodynamics conditions on the crystallization process were investigated by using different type of impellers. Two types of impellers were investigated; the four-pitched blade impeller which generates axi-al flow and the six-blades Rusthon turbine which generates radial flow. The experiments were performed at four different linear cooling rates in the range from 8-20 °C h–1 for both types of impeller.The influence of the cooling rates on the metastable zone width, the crystallization kinetics and the granulometric properties of the obtained crystals were investigated. The experimental data show that higher cooling rate expands the metastable zone for all the types of impeller (Fig. 2 and influences the crystal size distribution (Fig. 7 and Fig. 8.At low cooling rates, supersaturation was kept at a constant value for a longer period. It resulted in improved conditions for mass transfer and the crystals grew. Bigger crystals were obtained at lower cooling rates (Fig. 7.It is stated that radial flow (Rusthon turbine is particularly inappropriate for the nucleation process, and for crystallization. Nucleation started at a lower temperature and higher supersaturation (Fig. 3. These conditions resulted in a high nucleation’s rate and large number of nucleation centres.Also, the obtained crystals settled on the wall of the reactor, baffles and stirrer. A great part of the obtained crystals was agglomerated. The nucleation order, n and coefficient of nucleation, kn were determined for different cooling rates (Fig. 5a. The nucleation order is higher at radial flow (nucleation started at higher supersaturation. The relation between the rate of concentration drop in a solution and supersaturation has beenapproximated with a power low equation (Fig. 5b. For the used impellers

  16. Effect of Ethanol Blends and Batching Operations on SCC of Carbon Steel

    Science.gov (United States)

    2011-02-08

    This is the draft final report of the project on blending and batching (WP#325) of the Consolidated Program on Development of Guidelines for Safe and Reliable Pipeline Transportation of Ethanol Blends. The other two aspects of the consolidated progra...

  17. Optimization of energy and water use in multipurpose batch plants using an improved mathematical formulation

    CSIR Research Space (South Africa)

    Seid, ER

    2014-05-01

    Full Text Available Presented in this contribution is a formulation that addresses optimization of both water and energy, while simultaneously optimizing the batch process schedule. The scheduling framework used in this study is based on the recent and efficient...

  18. A discrete time formulation for batch processes with storage capacity and storage time limitations

    NARCIS (Netherlands)

    Kilic, O.A.; van Donk, D.P.; Wijngaard, J.

    This paper extends the conventional discrete time mixed integer linear programming (MILP) formulation for scheduling multiproduct/multipurpose batch processes by introducing storage capacity and storage time limitations. For this purpose, storage vessels are explicitly modeled on which material

  19. Designing an Autonomous Integrated Downstream Sequence From a Batch Separation Process - An Industrial Case Study.

    Science.gov (United States)

    Löfgren, Anton; Andersson, Niklas; Sellberg, Anton; Nilsson, Bernt; Löfgren, Magnus; Wood, Susanne

    2017-12-16

    This work is a proof of concept of how a sequence of industrial batch separation steps together are used to form an integrated autonomous downstream process. The sequence in this case study consisted of an anion chromatography step, virus inactivation and finally a hydrophobic chromatography step. Moving from batch to integrated separation minimizes hold-up times, storage tanks, and required equipment. The conversion from batch to integrated mode is achieved by extracting operating points and separation data from batch chromatograms. The integrated separation process is realized on an ÄKTA Pure controlled by an open research software called Orbit, making it possible to operate complex process configurations including multiple steps. The results from this case study is the principle and method of the steps taken to automation, achieving a more continuous and efficient downstream process. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Data Driven Modeling for Monitoring and Control of Industrial Fed-Batch Cultivations

    DEFF Research Database (Denmark)

    Bonné, Dennis; Alvarez, María Antonieta; Jørgensen, Sten Bay

    2014-01-01

    A systematic methodology for development of a set of discrete-time sequence models for batch control based on historical and online operating data is presented and investigated experimentally. The modeling is based on the two independent characteristic time dimensions of batch processing, being...... convergence of iterative learning control is combined with the closed-loop performance of model predictive control to form an optimal controller aiming to ensure reliable and reproducible operation of the batch process. This learning model predictive controller may also be used for optimizing control through...... optimization of the bioreactor operations model. The modeling and preliminary control performance is demonstrated on an industrial fed-batch protein cultivation production process. The presented methods lend themselves directly for application as Process Analytical Technologies....

  1. Model-Based Control of Industrial Batch Crystallizers : Experiments on Enhanced Controllability by Seeding Actuation

    NARCIS (Netherlands)

    Kalbasenka, A.N.

    2009-01-01

    Crystallization is one of the oldest separation and purification techniques. Batch crystallizers are widely used in production of fine chemicals, food ingredients, specialty chemicals, and active pharmaceutical ingredients. Control of the crystalline material properties is a challenging task due to

  2. Observation and mathematical description of the acceleration phenomenon in batch respirograms associated with ammonium oxidation

    DEFF Research Database (Denmark)

    Guisasola, A.; Chandran, K.; Smets, Barth F.

    2006-01-01

    Two-step nitrification models are generally calibrated using short-term respirometric batch experiments. Important discrepancies appear between model predictions and experimental observations just after the pulse addition since a fast transient in the OUR profile is experimentally observed...

  3. Design and synthesis of multipurpose batch plant using a robust scheduling platform

    CSIR Research Space (South Africa)

    Seid, ER

    2013-10-01

    Full Text Available The increasing interest in multipurpose batch plants is evident, because of their inherent flexibility to cope with an ever changing market environment. These plants are easily reconfigured for product modifications, to cover a wide range...

  4. Sequencing Batch Reactor Biodegradation of Hydrolyzed GB as Sole Carbon Source

    National Research Council Canada - National Science Library

    Harvey, Steven

    2002-01-01

    ... % in aqueous sodium hydroxide yielding primarily o-isopropyl methylphosphonic acid (IMPA). This hydrolysate was diluted and fed as sole carbon source to activated sludge in an aerobic sequencing batch reactor...

  5. Stormwater Pollution Prevention Plan TA-60 Asphalt Batch Plant Revision 2: January 2017

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval, Leonard Frank [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-01

    The Stormwater Pollution Prevention Team (PPT) is applicable to operations at the Technical Area (TA)- 60 Asphalt Batch Plant (ABP) located on Eniwetok Drive/Sigma Mesa, in Los Alamos County, New Mexico at Los Alamos National Laboratory (LANL).

  6. Batched Triangular Dense Linear Algebra Kernels for Very Small Matrix Sizes on GPUs

    KAUST Repository

    Charara, Ali

    2017-03-06

    Batched dense linear algebra kernels are becoming ubiquitous in scientific applications, ranging from tensor contractions in deep learning to data compression in hierarchical low-rank matrix approximation. Within a single API call, these kernels are capable of simultaneously launching up to thousands of similar matrix computations, removing the expensive overhead of multiple API calls while increasing the occupancy of the underlying hardware. A challenge is that for the existing hardware landscape (x86, GPUs, etc.), only a subset of the required batched operations is implemented by the vendors, with limited support for very small problem sizes. We describe the design and performance of a new class of batched triangular dense linear algebra kernels on very small data sizes using single and multiple GPUs. By deploying two-sided recursive formulations, stressing the register usage, maintaining data locality, reducing threads synchronization and fusing successive kernel calls, the new batched kernels outperform existing state-of-the-art implementations.

  7. Novel technique for prediction of time points for scheduling of multipurpose batch plants

    CSIR Research Space (South Africa)

    Seid, R

    2012-01-01

    Full Text Available This paper presents a mathematical technique for prediction of the optimal number of time points in short-term scheduling of multipurpose batch plants. The mathematical formulation is based on state sequence network (SSN) representation...

  8. Evaluation of LexisNexis Batch Solutions in the New York State Cancer Registry

    OpenAIRE

    Pradhan, Eva; Boscoe, Francis P.

    2014-01-01

    Using Lexis Nexis Batch Solutions, the New York State Cancer Registry was able to identify substantial numbers of missing addresses, birth dates, and social security numbers, for persons diagnosed as far back as 1976.

  9. Culturing larvae of marine invertebrates.

    Science.gov (United States)

    Strathmann, Richard R

    2014-01-01

    Larvae of marine invertebrates cultured in the laboratory experience conditions that they do not encounter in nature, but development and survival to metamorphic competence can be obtained in such cultures. This protocol emphasizes simple methods suitable for a wide variety of larvae. Culturing larvae requires seawater of adequate quality and temperature within the tolerated range. Beyond that, feeding larvae require appropriate food, but a few kinds of algae and animals are sufficient as food for diverse larvae. Nontoxic materials include glass, many plastics, hot-melt glue, and some solvents, once evaporated. Cleaners that do not leave toxic residues after rinsing include dilute hydrochloric or acetic acid, sodium hypochlorite (commercial bleach), and ethanol. Materials that can leave toxic residues, such as formaldehyde, glutaraldehyde, detergents, and hand lotions, should be avoided, especially with batch cultures that lack continuously renewed water. Reverse filtration can be used to change water gently at varying frequencies, depending on temperature and the kinds of food that are provided. Bacterial growth can be limited by antibiotics, but antibiotics are often unnecessary. Survival and growth are increased by low concentrations of larvae and stirring of large or dense cultures. One method of stirring large numbers of containers is a rack of motor-driven paddles. Most of the methods and materials are inexpensive and portable. If necessary, a room within a few hours of the sea could be temporarily equipped for larval culture.

  10. Actual waste demonstration of the nitric-glycolic flowsheet for sludge batch 9 qualification

    Energy Technology Data Exchange (ETDEWEB)

    Newell, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martino, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Reboul, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coleman, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Johnson, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-03-09

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs qualification testing to demonstrate that the sludge batch is processable. Based on the results of this actual-waste qualification and previous simulant studies, SRNL recommends implementation of the nitric-glycolic acid flowsheet in DWPF. Other recommendations resulting from this demonstration are reported in section 5.0.

  11. Influence of starter culture strains, pH adjustment and incubation ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-09-01

    Sep 1, 2009 ... production during batch cultures with free and immobilized. Lactobacillus rhamnosus RW-9595M. J. Appl. Microbiol. 95: 1049-. 1057. Bouzar F, Cerning J, Desmazeaud M (1997). Exopolysaccharide production and texture-promoting abilities of mixed-strain starter cultures in yogurt production. J. Dairy Sci.

  12. Different Abilities of Eight Mixed Cultures of Methane-oxidizing Bacteria to Degrade TCE

    DEFF Research Database (Denmark)

    Broholm, Kim; Christensen, Thomas Højlund; Jensen, Bjørn K.

    1993-01-01

    The ability of eight mixed cultures of methane-oxidizing bacteria to degrade trichloroethylene (TCE) was examined in laboratory batch experiments. This is one of the first reported works studying TCE degradation by mixed cultures of methane-oxidizing bacteria at 10°C, a common temperature for soils...

  13. An order-picking operations system for managing the batching activities in a warehouse

    Science.gov (United States)

    Lam, Cathy H. Y.; Choy, K. L.; Ho, G. T. S.; Lee, C. K. M.

    2014-06-01

    Nowadays, customer orders with high product variety in small quantities are often received and requested for timely delivery. However, the order-picking process is a labour-intensive and costly activity to handle those small orders separately. In such cases, small orders are often grouped into batches so that two or more orders can be served at once to increase the picking efficiency and thus reduce the travel distance. In this paper, an order-picking operations system (OPOS) is proposed to assist the formulation of an order-picking plan and batch-handling sequence. The study integrates a mathematical model and fuzzy logic technique to divide the receiving orders into batches and prioritise the batch-handling sequence for picking, respectively. Through the proposed system, the order-picking process can be managed as batches with common picking locations to minimise the travel distance, and the batch-picking sequence can be determined as well. To demonstrate the use of the system, a case study in a third-party logistics warehouse is presented, and the result shows that both the order-picking activity and labour utilisation can be better organised.

  14. Analysis and modelling of the energy consumption of chemical batch plants

    Energy Technology Data Exchange (ETDEWEB)

    Bieler, P.S.

    2004-07-01

    This report for the Swiss Federal Office of Energy (SFOE) describes two different approaches for the energy analysis and modelling of chemical batch plants. A top-down model consisting of a linear equation based on the specific energy consumption per ton of production output and the base consumption of the plant is postulated. The model is shown to be applicable to single and multi-product batches for batch plants with constant production mix and multi-purpose batch plants in which only similar chemicals are produced. For multipurpose batch plants with highly varying production processes and changing production mix, the top-down model produced inaccurate results. A bottom-up model is postulated for such plants. The results obtained are discussed that show that the electricity consumption for infrastructure equipment was significant and responsible for about 50% of total electricity consumption. The specific energy consumption for the different buildings was related to the degree of automation and the production processes. Analyses of the results of modelling are presented. More detailed analyses of the energy consumption of this apparatus group show that about 30 to 40% of steam energy is lost and thus a large potential for optimisation exists. Various potentials for making savings, ranging from elimination of reflux conditions to the development of a new heating/cooling-system for a generic batch reactor, are identified.

  15. Model Integrasi Penjadwalan Produksi Batch dan Penjadwalan Perawatan dengan Kendala Due Date

    Directory of Open Access Journals (Sweden)

    Zahedi .

    2014-01-01

    Full Text Available This paper discusses the integration model of batch production and preventive maintenance scheduling on a single machine producing an item to be delivered at a common due date. The machine is a deteriorating machine that requires preventive maintenance to ensure the availability of the machine at a desired service level. Decision variables of the model are the number of preventive maintenances, the schedule, length of production runs, as well as the number of batches, batch sizes and the production schedule of the resulting batches for each production run. The objective function of the model is to minimize the total cost consisting of inventory costs during parts processing, setup cost and cost of preventive maintenance. The results show three important points: First, the sequence of optimal batches always follows the SPT (short processing time. Second, variation of preventive maintenance unit cost does not influence the sequence of batches. Third, the first production run length from production starting time is smaller than the next production run length and this pattern continues until the due date. When in process inventory unit cost is increased, the pattern will continue until a specified cost limit, and beyond the limit the pattern will change to be the opposite pattern.

  16. Detection and identification of the atypical bovine pestiviruses in commercial foetal bovine serum batches.

    Directory of Open Access Journals (Sweden)

    Hongyan Xia

    Full Text Available The recently emerging atypical bovine pestiviruses have been detected in commercial foetal bovine serum (FBS of mainly South American origin so far. It is unclear how widely the viruses are presented in commercial FBS of different geographic origins. To further investigate the possible pestivirus contamination of commercially available FBS batches, 33 batches of FBS were obtained from ten suppliers and analysed in this study for the presence of both the recognised and the atypical bovine pestiviruses. All 33 batches of FBS were positive by real-time RT-PCR assays for at least one species of bovine pestiviruses. According to the certificate of analysis that the suppliers claimed for each batch of FBS, BVDV-1 was detected in all 11 countries and BVDV-2 was detected exclusively in the America Continent. The atypical pestiviruses were detected in 13 batches claimed to originate from five countries. Analysis of partial 5'UTR sequences showed a high similarity among these atypical bovine pestiviruses. This study has demonstrated, for the first time that commercial FBS batches of different geographic origins are contaminated not only with the recognised species BVDV-1 and BVDV-2, but also with the emerging atypical bovine pestiviruses.

  17. Culture matters.

    Science.gov (United States)

    Arif, Zeba

    Zebaa Arif reflects on changes during her career as a mental health nurse in relation to cultural care issues: Cultural awareness is becoming embedded in patient care. All aspects of care are influenced by cultural beliefs and should form part of assessment. Leadership is essential in influencing cultural care, as is organisational commitment.

  18. Cultural entrepreneurship

    NARCIS (Netherlands)

    A. Klamer (Arjo)

    2011-01-01

    textabstractCultural entrepreneurship is a new character in the cultural sector. This paper characterizes the cultural entrepreneur paying homage to the hermeneutic approach of Don Lavoie and others. The challenge is to render the "cultural" meaningful. An invention is the highlighting of the

  19. 40 CFR Table 6 to Subpart U of... - Group 1 Batch Front-End Process Vents and Aggregate Batch Vent Streams-Monitoring, Recordkeeping...

    Science.gov (United States)

    2010-07-01

    ... monitoring data are not collected. Boiler or process heater with a design heat input capacity less than 44... and Aggregate Batch Vent Streams-Monitoring, Recordkeeping, and Reporting Requirements 6 Table 6 to... Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins Pt. 63, Subpt. U, Table 6 Table...

  20. Batch and fed-batch bioreactor studies for the enhanced production of glutaminase-free L-asparaginase from Pectobacterium carotovorum MTCC 1428.

    Science.gov (United States)

    Kumar, Sanjay; Prabhu, Ashish A; Dasu, V Venkata; Pakshirajan, Kannan

    2017-01-02

    The effect of dissolved oxygen (DO) level and pH (controlled/uncontrolled) was first studied to enhance the production of novel glutaminase-free L-asparaginase by Pectobacterium carotovorum MTCC 1428 in a batch bioreactor. The optimum level of DO was found to be 20%. The production of L-asparaginase was found to be maximum when pH of the medium was maintained at 8.5 after 12 h of fermentation. Under these conditions, P. carotovorum produced 17.97 U/mL of L-asparaginase corresponding to the productivity of 1497.50 U/L/h. The production of L-asparaginase was studied in fed-batch bioreactor by feeding L-asparagine (essential substrate for production) and/or glucose (carbon source for growth) at the end of the reaction period of 12 h. The initial medium containing both L-asparagine and glucose in the batch mode and L-asparagine in the feeding stream was found to be the best combination for enhanced production of glutaminase-free L-asparaginase. Under this condition, the L-asparaginase production was increased to 38.8 U/mL, which corresponded to a productivity of 1615.8 U/L/h. The production and productivity were increased by 115.8% and 7.9%, respectively, both of which are higher than those obtained in the batch bioreactor experiments.

  1. Study on the impact of transition from 3-batch to 4-batch loading at Loviisa NPP on the long-term decay heat and activity inventory

    Energy Technology Data Exchange (ETDEWEB)

    Lahtinen, Tuukka [Fortum Power and Heat Ltd., Fortum (Finland)

    2017-09-15

    The fuel economy of Loviisa NPP was improved by implementing a transition from 3-batch to 4-batch loading scheme between 2009 and 2013. Equilibrium cycle length as well as all process parameters were retained unchanged while the increase of fuel enrichment enabled to reduce the annual reload batch size from 102 to 84 assemblies. The fuel cycle transition obviously had an effect on the long-term decay heat and activity inventory. However, due to simultaneous change in several quantities the net effect over the relevant cooling time region is not self-evident. In this study the effect is analyzed properly, i. e. applying consistent calculation models and detailed description of assembly-wise irradiation histories. The study concludes that for the cooling time, foreseen typical prior to encapsulation of assemblies, the decay heat of discharge batch increases 2 - 3%. It is also concluded that, in order to maintain 100% filling degree of final disposal canisters, the cooling time prior to encapsulation needs to be prolonged by 10 - 15 years.

  2. Continuous culture methodology for the screening of microalgae for oil.

    Science.gov (United States)

    Del Río, Esperanza; Armendáriz, Ana; García-Gómez, Elena; García-González, Mercedes; Guerrero, Miguel G

    2015-02-10

    A basic criterion in the selection of microalgae suitable as source of oil for biodiesel should be their actual capacity to produce lipids or, more properly, the fatty acid yield. Performance assessment of 10 preselected microalgae under both batch and continuous culture points to the latter approach as the most adequate for evaluating fatty acid productivity. Differences were patent in continuous culture among strains that otherwise had analogous oil accumulation potential under batch culture. Some promising strains under batch culture (like Muriella aurantiaca and Monoraphidium braunii) exhibited, however, values for actual fatty acid productivity lower than 40 mgL(-1)d(-1) in continuous regime. The analysis performed in photochemostat under continuous culture regime revealed the great potential of Chlorococcum olefaciens, Pseudokirchneriella subcapitata and Scenedesmus almeriensis as oil producing microalgae. Fatty acid productivity levels over 90 mgL(-1)d(-1) were recorded for the latter strains under moderate nitrogen limitation, conditions which led to an enrichment in saturated and monounsaturated fatty acids, a more suitable profile as raw material for biodiesel. The continuous culture methodology employed represents a sound procedure for screening microalgae for biofuel production, providing a reliable evaluation of their fatty acid production capacity, under conditions close to those of outdoor production systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. An Empirical State Error Covariance Matrix for Batch State Estimation

    Science.gov (United States)

    Frisbee, Joseph H., Jr.

    2011-01-01

    state estimate, regardless as to the source of the uncertainty. Also, in its most straight forward form, the technique only requires supplemental calculations to be added to existing batch algorithms. The generation of this direct, empirical form of the state error covariance matrix is independent of the dimensionality of the observations. Mixed degrees of freedom for an observation set are allowed. As is the case with any simple, empirical sample variance problems, the presented approach offers an opportunity (at least in the case of weighted least squares) to investigate confidence interval estimates for the error covariance matrix elements. The diagonal or variance terms of the error covariance matrix have a particularly simple form to associate with either a multiple degree of freedom chi-square distribution (more approximate) or with a gamma distribution (less approximate). The off diagonal or covariance terms of the matrix are less clear in their statistical behavior. However, the off diagonal covariance matrix elements still lend themselves to standard confidence interval error analysis. The distributional forms associated with the off diagonal terms are more varied and, perhaps, more approximate than those associated with the diagonal terms. Using a simple weighted least squares sample problem, results obtained through use of the proposed technique are presented. The example consists of a simple, two observer, triangulation problem with range only measurements. Variations of this problem reflect an ideal case (perfect knowledge of the range errors) and a mismodeled case (incorrect knowledge of the range errors).

  4. [Application of DOSC combined with SBC in batches transfer of NIR quantitative model].

    Science.gov (United States)

    Jia, Yi-Fei; Zhang, Ying-Ying; Xu, Bing; Wang, An-Dong; Zhan, Xue-Yan

    2017-06-01

    Near infrared model established under a certain condition can be applied to the new samples status, environmental conditions or instrument status through the model transfer. Spectral background correction and model update are two types of data process methods of NIR quantitative model transfer, and orthogonal signal regression (OSR) is a method based on spectra background correction, in which virtual standard spectra is used to fit a linear relation between master batches spectra and slave batches spectra, and map the slave batches spectra to the master batch spectra to realize the transfer of near infrared quantitative model. However, the above data processing method requires the represent activeness of the virtual standard spectra, otherwise the big error will occur in the process of regression. Therefore, direct orthogonal signal correction-slope and bias correction (DOSC-SBC) method was proposed in this paper to solve the problem of PLS model's failure to predict accurately the content of target components in the formula of different batches, analyze the difference between the spectra background of the samples from different sources and the prediction error of PLS models. DOSC method was used to eliminate the difference of spectral background unrelated to target value, and after being combined with SBC method, the system errors between the different batches of samples were corrected to make the NIR quantitative model transferred between different batches. After DOSC-SBC method was used in the preparation process of water extraction and ethanol precipitation of Lonicerae Japonicae Flos in this paper, the prediction error of new batches of samples was decreased to 7.30% from 32.3% and to 4.34% from 237%, with significantly improved prediction accuracy, so that the target component in the new batch samples can be quickly quantified. DOSC-SBC model transfer method has realized the transfer of NIR quantitative model between different batches, and this method does

  5. Comparison of Batch Assay and Random Assay Using Automatic Dispenser in Radioimmunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Seung Hwan; Jang, Su Jin; Kang, Ji Yeon; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul [Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul (Korea, Republic of); Lee, Ho Young; Shin, Sun Young; Min, Gyeong Sun; Lee, Hyun Joo [Seoul National University college of Medicine, Seoul (Korea, Republic of)

    2009-08-15

    Radioimmunoassay (RIA) was usually performed by the batch assay. To improve the efficiency of RIA without increase of the cost and time, random assay could be a choice. We investigated the possibility of the random assay using automatic dispenser by assessing the agreement between batch assay and random assay. The experiments were performed with four items; Triiodothyronine (T3), free thyroxine (fT4), Prostate specific antigen (PSA), Carcinoembryonic antigen (CEA). In each item, the sera of twenty patients, the standard, and the control samples were used. The measurements were done 4 times with 3 hour time intervals by random assay and batch assay. The coefficient of variation (CV) of the standard samples and patients' data in T3, fT4, PSA, and CEA were assessed. ICC (Intraclass correlation coefficient) and coefficient of correlation were measured to assessing the agreement between two methods. The CVs (%) of T3, fT4, PSA, and CEA measured by batch assay were 3.2+-1.7%, 3.9+-2.1%, 7.1+-6.2%, 11.2+-7.2%. The CVs by random assay were 2.1+-1.7%, 4.8+-3.1%, 3.6+-4.8%, and 7.4+-6.2%. The ICC between the batch assay and random assay were 0.9968 (T3), 0.9973 (fT4), 0.9996 (PSA), and 0.9901 (CEA). The coefficient of correlation between the batch assay and random assay were 0.9924(T3), 0.9974 (fT4), 0.9994 (PSA), and 0.9989 (CEA) (p<0.05). The results of random assay showed strong agreement with the batch assay in a day. These results suggest that random assay using automatic dispenser could be used in radioimmunoassay

  6. Dose and batch-dependent hepatobiliary toxicity of 10 nm silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Marcella De Maglie

    2015-07-01

    Full Text Available Silver nanoparticles (AgNPs are widely used because of their antimicrobial properties in medical devices and in a variety of consumer products. The extensive use of AgNPs raises concerns about their potential toxicity, although it is still difficult to draw definite conclusions about their toxicity based on published data. Our preliminary studies performed to compare the effect of the AgNPs size (10-40-100 nm on toxicity, demonstrated that the smallest AgNPs determine the most severe toxicological effects. In order to best investigate the impact of physicochemical characteristics of 10 nm AgNPs on toxicity, we compare three different batches of 10 nm AgNPs slightly different in size distribution (Batch A: 8.8±1.7 nm; Batch B: 9.4±1.7 nm; Batch C: 10.0±1.8 nm. Mice were intravenously treated with two doses (5 and 10 mg/kg of the 3 AgNPs. 24 hours after the treatment, mice were euthanized and underwent complete necropsy. Tissues were collected for histopathological examination and total silver content was determined in tissues by inductively coupled plasma mass spectrometry (ICP-MS. All batches induced severe hepatobiliary lesions, i.e. marked hepatocellular necrosis and massive hemorrhage of the gall bladder. The toxicity was dose-dependent and interestingly, the toxic effects were more severe in mice treated with batches A and B that contained smaller AgNPs. Since the total silver mass concentration was similar, the observed batch-dependent toxicity suggest that even subtle differences in size may contribute to relevant changes in the toxicological outcomes, confirming the fundamental involvement of physicochemical features with respect to toxicity.

  7. Biosynthesis of Citric Acid from Glycerol by Acetate Mutants of Yarrowia lipolytica in Fed-Batch Fermentation

    Directory of Open Access Journals (Sweden)

    Anita Rywińska

    2009-01-01

    Full Text Available Pure and crude glycerol from biodiesel production have been used as substrates for citric acid production by acetate-negative mutants of Yarrowia lipolytica in fed-batch fermentation. Both the final concentration and the yield of the product were the highest when Y. lipolytica Wratislavia AWG7 strain was used in the culture with pure or crude glycerol. With a medium containing 200 g/L of glycerol, production reached a maximum of citric acid of 139 g/L after 120 h. This high yield of the product (up to 0.69 g of citric acid per gram of glycerol consumed was achieved with both pure and crude glycerol. Lower yield of citric acid in the culture with Y. lipolytica Wratislavia K1 strain (about 0.45 g/g resulted from increased erythritol concentrations (up to 40 g/L, accumulated simultaneously with the citric acid. The concentration of isocitric acid, a by-product in this fermentation, was very low, in the range from 2.6 to 4.6 g/L.

  8. Cultural Neuroscience

    Science.gov (United States)

    Ames, Daniel L.; Fiske, Susan T.

    2013-01-01

    Cultural neuroscience issues from the apparently incompatible combination of neuroscience and cultural psychology. A brief literature sampling suggests, instead, several preliminary topics that demonstrate proof of possibilities: cultural differences in both lower-level processes (e.g. perception, number representation) and higher-order processes (e.g. inferring others’ emotions, contemplating the self) are beginning to shed new light on both culture and cognition. Candidates for future cultural neuroscience research include cultural variations in the default (resting) network, which may be social; regulation and inhibition of feelings, thoughts, and actions; prejudice and dehumanization; and neural signatures of fundamental warmth and competence judgments. PMID:23874143

  9. Algal Feedback and Removal Efficiency in a Sequencing Batch Reactor Algae Process (SBAR to Treat the Antibiotic Cefradine.

    Directory of Open Access Journals (Sweden)

    Jianqiu Chen

    Full Text Available Many previous studies focused on the removal capability for contaminants when the algae grown in an unexposed, unpolluted environment and ignored whether the feedback of algae to the toxic stress influenced the removal capability in a subsequent treatment batch. The present research investigated and compared algal feedback and removal efficiency in a sequencing batch reactor algae process (SBAR to remove cefradine. Three varied pollution load conditions (10, 30 and 60 mg/L were considered. Compared with the algal characteristics in the first treatment batch at 10 and 30 mg/L, higher algal growth inhibition rates were observed in the second treatment batch (11.23% to 20.81%. In contrast, algae produced more photosynthetic pigments in response to cefradine in the second treatment batch. A better removal efficiency (76.02% was obtained during 96 h when the alga treated the antibiotic at 60 mg/L in the first treatment batch and at 30 mg/L in the second treatment batch. Additionally, the removal rate per unit algal density was also improved when the alga treated the antibiotic at 30 or 60 mg/L in the first treatment batch, respectively and at 30 mg/L in the second treatment batch. Our result indicated that the green algae were also able to adapt to varied pollution loads in different treatment batches.

  10. Algal Feedback and Removal Efficiency in a Sequencing Batch Reactor Algae Process (SBAR) to Treat the Antibiotic Cefradine

    Science.gov (United States)

    Chen, Jianqiu; Zheng, Fengzhu; Guo, Ruixin

    2015-01-01

    Many previous studies focused on the removal capability for contaminants when the algae grown in an unexposed, unpolluted environment and ignored whether the feedback of algae to the toxic stress influenced the removal capability in a subsequent treatment batch. The present research investigated and compared algal feedback and removal efficiency in a sequencing batch reactor algae process (SBAR) to remove cefradine. Three varied pollution load conditions (10, 30 and 60 mg/L) were considered. Compared with the algal characteristics in the first treatment batch at 10 and 30 mg/L, higher algal growth inhibition rates were observed in the second treatment batch (11.23% to 20.81%). In contrast, algae produced more photosynthetic pigments in response to cefradine in the second treatment batch. A better removal efficiency (76.02%) was obtained during 96 h when the alga treated the antibiotic at 60 mg/L in the first treatment batch and at 30 mg/L in the second treatment batch. Additionally, the removal rate per unit algal density was also improved when the alga treated the antibiotic at 30 or 60 mg/L in the first treatment batch, respectively and at 30 mg/L in the second treatment batch. Our result indicated that the green algae were also able to adapt to varied pollution loads in different treatment batches. PMID:26177093

  11. SLUDGE BATCH 6/TANK 40 SIMULANT CHEMICAL PROCESS CELL SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, David

    2010-04-28

    Phase III simulant flowsheet testing was completed using the latest composition estimates for SB6/Tank 40 feed to DWPF. The goals of the testing were to determine reasonable operating conditions and assumptions for the startup of SB6 processing in the DWPF. Testing covered the region from 102-159% of the current DWPF stoichiometric acid equation. Nitrite ion concentration was reduced to 90 mg/kg in the SRAT product of the lowest acid run. The 159% acid run reached 60% of the DWPF Sludge Receipt and Adjustment Tank (SRAT) limit of 0.65 lb H2/hr, and then sporadically exceeded the DWPF Slurry Mix Evaporator (SME) limit of 0.223 lb H2/hr. Hydrogen generation rates peaked at 112% of the SME limit, but higher than targeted wt% total solids levels may have been partially responsible for rates seen. A stoichiometric factor of 120% met both objectives. A processing window for SB6 exists from 102% to something close to 159% based on the simulant results. An initial recommendation for SB6 processing is at 115-120% of the current DWPF stoichiometric acid equation. The addition of simulated Actinide Removal Process (ARP) and Modular Caustic Side Solvent Extraction Unit (MCU) streams to the SRAT cycle had no apparent impact on the preferred stoichiometric factor. Hydrogen generation occurred continuously after acid addition in three of the four tests. The three runs at 120%, 118.4% with ARP/MCU, and 159% stoichiometry were all still producing around 0.1 lb hydrogen/hr at DWPF scale after 36 hours of boiling in the SRAT. The 120% acid run reached 23% of the SRAT limit and 37% of the SME limit. Conversely, nitrous oxide generation was subdued compared to previous sludge batches, staying below 29 lb/hr in all four tests or about a fourth as much as in comparable SB4 testing. Two processing issues, identified during SB6 Phase II flowsheet testing and qualification simulant testing, were monitored during Phase III. Mercury material balance closure was impacted by acid stoichiometry

  12. Dynamic model of temperature impact on cell viability and major product formation during fed-batch and continuous ethanolic fermentation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Amillastre, Emilie; Aceves-Lara, César-Arturo; Uribelarrea, Jean-Louis; Alfenore, Sandrine; Guillouet, Stéphane E

    2012-08-01

    The impact of the temperature on an industrial yeast strain was investigated in very high ethanol performance fermentation fed-batch process within the range of 30-47 °C. As previously observed with a lab strain, decoupling between growth and glycerol formation occurred at temperature of 36 °C and higher. A dynamic model was proposed to describe the impact of the temperature on the total and viable biomass, ethanol and glycerol production. The model validation was implemented with experimental data sets from independent cultures under different temperatures, temperature variation profiles and cultivation modes. The proposed model fitted accurately the dynamic evolutions for products and biomass concentrations over a wide range of temperature profiles. R2 values were above 0.96 for ethanol and glycerol in most experiments. The best results were obtained at 37 °C in fed-batch and chemostat cultures. This dynamic model could be further used for optimizing and monitoring the ethanol fermentation at larger scale. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. BatchPrimer3: A high throughput web application for PCR and sequencing primer design

    Directory of Open Access Journals (Sweden)

    Ma Yaqin

    2008-05-01

    Full Text Available Abstract Background Microsatellite (simple sequence repeat – SSR and single nucleotide polymorphism (SNP markers are two types of important genetic markers useful in genetic mapping and genotyping. Often, large-scale genomic research projects require high-throughput computer-assisted primer design. Numerous such web-based or standard-alone programs for PCR primer design are available but vary in quality and functionality. In particular, most programs lack batch primer design capability. Such a high-throughput software tool for designing SSR flanking primers and SNP genotyping primers is increasingly demanded. Results A new web primer design program, BatchPrimer3, is developed based on Primer3. BatchPrimer3 adopted the Primer3 core program as a major primer design engine to choose the best primer pairs. A new score-based primer picking module is incorporated into BatchPrimer3 and used to pick position-restricted primers. BatchPrimer3 v1.0 implements several types of primer designs including generic primers, SSR primers together with SSR detection, and SNP genotyping primers (including single-base extension primers, allele-specific primers, and tetra-primers for tetra-primer ARMS PCR, as well as DNA sequencing primers. DNA sequences in FASTA format can be batch read into the program. The basic information of input sequences, as a reference of parameter setting of primer design, can be obtained by pre-analysis of sequences. The input sequences can be pre-processed and masked to exclude and/or include specific regions, or set targets for different primer design purposes as in Primer3Web and primer3Plus. A tab-delimited or Excel-formatted primer output also greatly facilitates the subsequent primer-ordering process. Thousands of primers, including wheat conserved intron-flanking primers, wheat genome-specific SNP genotyping primers, and Brachypodium SSR flanking primers in several genome projects have been designed using the program and validated

  14. Culturing Protozoa.

    Science.gov (United States)

    Stevenson, Paul

    1980-01-01

    Compares various nutrient media, growth conditions, and stock solutions used in culturing protozoa. A hay infusion in Chalkey's solution maintained at a stable temperature is recommended for producing the most dense and diverse cultures. (WB)

  15. Application of heat compensation calorimetry to an E. coli fed-batch process.

    Science.gov (United States)

    Müller, Matthias; Meusel, Wolfram; Husemann, Ute; Greller, Gerhard; Kraume, Matthias

    2018-01-20

    The application of biocalorimetry to fermentation processes offers advantageous insights, while being less complex compared to other, sophisticated PAT solutions. Although the general concept is established, calorimetric methods vary in detail. In this work, a special approach, called heat compensation calorimetry, was applied to an E. coli fed-batch process. Much work has been done for batch processes, proving the validity and accuracy of this calorimetric mode. However, the adaption of this strategy to fed-batch processes has some implications. In the first section of this work, batch fermentations were performed, comparing heat capacity calorimetry to the compensation mode. Both processes showed very good agreement by means of growth behavior. The heat related differences, e.g. temperature profiles, were obvious. In addition, the impact of the chosen mode on the calculation of in-process heat transfer coefficients was shown. Finally, a fed-batch fermentation was performed. The compensation mode was kept sufficiently, up to the point where the metabolic heat production accelerated strongly. Controller tuning was a neuralgic point, which would have needed further optimization under these conditions. Nevertheless, in the present work it was possible to realize a working compensation process while demonstrating critical aspects that must be considered when establishing such approach. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Bile culture

    Science.gov (United States)

    Culture - bile ... is placed in a special dish called a culture medium to see if bacteria, viruses, or fungi ... Chernecky CC, Berger BJ. Body fluid - anaerobic culture. In: ... . 6th ed. St Louis, MO: Elsevier Saunders; 2013:225-226. Kim AY, ...

  17. Investigation of the degradation kinetics of gramineous silages in In-Sacco batch experiments; Untersuchungen zur Abbaukinetik von Grassilagen in In-Sacco-Batch Versuchen

    Energy Technology Data Exchange (ETDEWEB)

    Demmig, Claudia [Rostock Univ. (Germany). Professur fuer Abfall- und Stoffstromwirtschaft; Hoeppner, Frank; Banemann, Dirk; Nelles, Michael

    2011-07-01

    In an ''In-Sacco-Batch-Fermentation-Test'' the kinetic of the decomposition of structural substances of grassilage with and without adding of enzymes were opposed. Therefore grass was ensiled in lab scale and after 90 days of ensiling time the grass silage was fermented in an ''In-Sacco-Batch-Fermentation-Test''. In the first 10 trial days you can find a significantly higher decomposition of the structural substances NDF and ADF within the enzyme treated grass silage. The results show that enzyme mixtures accelerated the degradation of plant fibres. As a result the space-time-ratio is positive influenced, this means, substrates will be implemented faster and the hydraulic retention time in biogas plants becomes shorter. (orig.)

  18. In vitro propagation of plant virus using different forms of plant tissue culture and modes of culture operation.

    Science.gov (United States)

    Shih, Sharon M-H; Doran, Pauline M

    2009-09-10

    Plant virus accumulation was investigated in vitro using three different forms of plant tissue culture. Suspended cells, hairy roots and shooty teratomas of Nicotiana benthamiana were infected with tobacco mosaic virus (TMV) using the same initial virus:biomass ratio. Viral infection did not affect tissue growth or morphology in any of the three culture systems. Average maximum virus concentrations in hairy roots and shooty teratomas were similar and about an order of magnitude higher than in suspended cells. Hairy roots were considered the preferred host because of their morphological stability in liquid medium and relative ease of culture. The average maximum virus concentration in the hairy roots was 0.82+/-0.14 mg g(-1) dry weight; viral coat protein represented a maximum of approximately 6% of total soluble protein in the biomass. Virus accumulation in hairy roots was investigated further using different modes of semi-continuous culture operation aimed at prolonging the root growth phase and providing nutrient supplementation; however, virus concentrations in the roots were not enhanced compared with simple batch culture. The relative infectivity of virus in the biomass declined by 80-90% during all the cultures tested, irrespective of the form of plant tissue used or mode of culture operation. Hairy root cultures inoculated with a transgenic TMV-based vector in batch culture accumulated green fluorescent protein (GFP); however, maximum GFP concentrations in the biomass were relatively low at 39 microg g(-1) dry weight, probably due to genetic instability of the vector. This work highlights the advantages of using hairy roots for in vitro propagation of TMV compared with shooty teratomas and suspended plant cells, and demonstrates that batch root culture is more effective than semi-continuous operations for accumulation of high virus concentrations in the biomass.

  19. Operation parameters of a small scale batch distillation column for hydrous ethanol fuel (HEF production

    Directory of Open Access Journals (Sweden)

    Edson Luiz Foletto

    2015-01-01

    Full Text Available Batch distillation applied to hydrous ethanol fuel (HEF production on a small scale still requires operating conditions that ensure optimal top product quality and productivity. The aim of this study is to statistically validate a batch still through the employment of response surface methodology (RSM. Operational and productivity parameters were formulated in order to guarantee quality compliance with the legal requirements for the top product concentration, besides providing support information to control the production of HEF on a small scale. The reboiler control and dephlegmator temperatures maintained within the range of 97.5 to 99.5°C and 60 to 70°C, respectively, combined with a variable reflux ratio, was satisfactory in obtaining a top product concentration, in accordance with legal regulations, as well as high productivity. The results of this study may contribute to the assembly of a simple and low-cost batch distillation control system.

  20. A novel model-based control strategy for aerobic filamentous fungal fed-batch fermentation processes

    DEFF Research Database (Denmark)

    Mears, Lisa; Stocks, Stuart M.; Albaek, Mads O.

    2017-01-01

    A novel model-based control strategy has been developed for filamentous fungal fed-batch fermentation processes. The system of interest is a pilot scale (550 L) filamentous fungus process operating at Novozymes A/S. In such processes, it is desirable to maximize the total product achieved...... in a batch in a defined process time. In order to achieve this goal, it is important to maximize both the product concentration, and also the total final mass in the fed-batch system. To this end, we describe the development of a control strategy which aims to achieve maximum tank fill, while avoiding oxygen...... limited conditions. This requires a two stage approach: (i) calculation of the tank start fill; and (ii) on-line control in order to maximize fill subject to oxygen transfer limitations. First, a mechanistic model was applied off-line in order to determine the appropriate start fill for processes...

  1. Design and Construction of a Batch Oven for Investigation of Industrial Continuous

    DEFF Research Database (Denmark)

    Stenby, Mette; Nielsen, Brian; Risum, Jørgen

    2011-01-01

    A new batch oven has been designed and build to model baking processes as seen in large scale tunnel ovens. In order to simulate the conditions found in tunnel ovens a number of critical parameters are controllable: The temperature, the humidity and the air velocity. The band movement is simulated...... by moving the two air ducts above and below the products; in this way it is possible to keep the baking tray steady for continuous measurements of the product weight. During baking the shape and colour of the product can be monitored visually through a window. The simultaneous measuring of mass and visual...... aspects is a unique feature of this batch oven. Initial experiments of reproducing tunnel oven baking in the batch oven have shown good results, based on comparisons of weight loss, dry matter content and surface colour. The measured quality parameters did not differ significantly. Even though a few...

  2. Waste heat recovery at the glass industry with the intervention of batch and cullet preheating

    Directory of Open Access Journals (Sweden)

    Dolianitis Ioannis

    2016-01-01

    Full Text Available A promising option to reduce the specific energy consumption and CO2 emissions at a conventional natural gas fired container glass furnace deals with the advanced utilization of the exhaust gases downstream the air regenerators by means of batch and cullet preheating. A 3-dimensional computational model that simulates this process using mass and heat transfer equations inside a preheater has been developed. A case study for an efficient small-sized container glass furnace is presented dealing with the investigation of the impact of different operating and design configurations on specific energy consumption, CO2 emissions, flue gas energy recovery, batch temperature and preheater efficiency. In specific, the effect of various parameters is studied, including the preheater’s dimensions, flue gas temperature, batch moisture content, glass pull, combustion air excess and cullet fraction. Expected energy savings margin is estimated to 12-15%.

  3. The association between measurements of antimicrobial use and resistance in the faeces microbiota of finisher batches

    DEFF Research Database (Denmark)

    Dalhoff Andersen, Vibe; de Knegt, Leonardo; Munk, Patrick

    2017-01-01

    The objectives were to present three approaches for calculating antimicrobial (AM) use in pigs that take into account the rearing period and rearing site, and to study the association between these measurements and phenotypical resistance and abundance of resistance genes in faeces samples from 10...... finisher batches. The AM use was calculated relative to the rearing period of the batches as (i) 'Finisher Unit Exposure' at unit level, (ii) 'Lifetime Exposure' at batch level and (iii) 'Herd Exposure' at herd level. A significant effect on the occurrence of tetracycline resistance measured by cultivation...... effect was observed on the occurrence of genes coding for the AM resistance classes: aminoglycoside, lincosamide, macrolide, β-lactam, sulfonamide and tetracycline. No effect was observed for Finisher Unit Exposure. Overall, the study shows that Lifetime Exposure is an efficient measurement of AM use...

  4. Development of batch producible hot embossing 3D nanostructured surface-enhanced Raman scattering chip technology

    Science.gov (United States)

    Huang, Chu-Yu; Tsai, Ming-Shiuan

    2017-09-01

    The main purpose of this study is to develop a batch producible hot embossing 3D nanostructured surface-enhanced Raman chip technology for high sensitivity label-free plasticizer detection. This study utilizing the AAO self-assembled uniform nano-hemispherical array barrier layer as a template to create a durable nanostructured nickel mold. With the hot embossing technique and the durable nanostructured nickel mold, we are able to batch produce the 3D Nanostructured Surface-enhanced Raman Scattering Chip with consistent quality. In addition, because of our SERS chip can be fabricated by batch processing, the fabrication cost is low. Therefore, the developed method is very promising to be widespread and extensively used in rapid chemical and biomolecular detection applications.

  5. Functional Unfold Principal Component Regression Methodology for Analysis of Industrial Batch Process Data

    DEFF Research Database (Denmark)

    Mears, Lisa; Nørregaard, Rasmus; Sin, Gürkan

    2016-01-01

    This work proposes a methodology utilizing functional unfold principal component regression (FUPCR), for application to industrial batch process data as a process modeling and optimization tool. The methodology is applied to an industrial fermentation dataset, containing 30 batches of a production...... process operating at Novozymes A/S. Following the FUPCR methodology, the final product concentration could be predicted with an average prediction error of 7.4%. Multiple iterations of preprocessing were applied by implementing the methodology to identify the best data handling methods for the model....... It is shown that application of functional data analysis and the choice of variance scaling method have the greatest impact on the prediction accuracy. Considering the vast amount of batch process data continuously generated in industry, this methodology can potentially contribute as a tool to identify...

  6. Fuzzy logic feedback control for fed-batch enzymatic hydrolysis of lignocellulosic biomass.

    Science.gov (United States)

    Tai, Chao; Voltan, Diego S; Keshwani, Deepak R; Meyer, George E; Kuhar, Pankaj S

    2016-06-01

    A fuzzy logic feedback control system was developed for process monitoring and feeding control in fed-batch enzymatic hydrolysis of a lignocellulosic biomass, dilute acid-pretreated corn stover. Digested glucose from hydrolysis reaction was assigned as input while doser feeding time and speed of pretreated biomass were responses from fuzzy logic control system. Membership functions for these three variables and rule-base were created based on batch hydrolysis data. The system response was first tested in LabVIEW environment then the performance was evaluated through real-time hydrolysis reaction. The feeding operations were determined timely by fuzzy logic control system and efficient responses were shown to plateau phases during hydrolysis. Feeding of proper amount of cellulose and maintaining solids content was well balanced. Fuzzy logic proved to be a robust and effective online feeding control tool for fed-batch enzymatic hydrolysis.

  7. Cultural tourism and tourism cultures

    DEFF Research Database (Denmark)

    Ooi, Can-Seng

    Presenting a comprehensive and dynamic understanding of cultural tourism, this volume examines cultural mediators and how they help tourists appreciate foreign cultures. It also shows how tourism experiences are strategically crafted by mediators, the complexity of the mediation process, and how...... various products are mediated differently. A number of different products are investigated, including destination brand identities, "living" cultures and everyday life, art and history. The author illustrates his arguments by comparing the tourism strategies of Copenhagen and Singapore, and demonstrates...

  8. A high-yielding, generic fed-batch process for recombinant antibody production of GS-engineered cell lines

    DEFF Research Database (Denmark)

    Fan, Li; Zhao, Liang; Sun, Yating

    2009-01-01

    An animal component-free and chemically defined fed-batch process for GS-engineered cell lines producing recombinant antibodies has been developed. The fed-batch process relied on supplying sufficient nutrients to match their consumption, simultaneously minimizing the accumulation of byproducts....... This generic and high-yielding fed-batch process would shorten development time, and ensure process stability, thereby facilitating the manufacture of therapeutic antibodies by GS-engineered cell lines....

  9. SU-E-T-386: Evaluation of EBT3 Film Response in Different Batches

    Energy Technology Data Exchange (ETDEWEB)

    Escarcia, F [Universidad Nacional Autonoma de Mexico, Mexico Df, DF (Mexico); Herrera, J; Garcia, O [Instituto Nacional de Neurologia y Neurocirugia, Mexico Df, DF (Mexico)

    2015-06-15

    Purpose: To investigate the uniformity of film response of EBT3 film of two different film batches. It has been reported that the response of the EBT film family is not homogenous between film batches. The later may have an impact in the dosimetry of small radiotherapy beams. Methods: A solid water phantom was used for dosimetric measurements. EBT3 film irradiation was performed with a 6 MV photon beam at 5 cm depth with a SAD of 100 cm. All irradiations were performed perpendicularly to the film plane covering the dose range 1 to 10 Gy. Three square field sizes were used to analyze the film response energy dependence: 10, 5 and 1 cm{sup 2}. Two batches of film EBT3 were used #A03181302 (B1) and #03031403 (B2). Film read out was carrying out with an Epson Perfection V750-Pro flatbed scanner in transmission mode with a spatial resolution of 72 dpi, with all post-processing and colour management options turned off, using 48 bits RGB colour depth. The scans were analyzed with the red channel. Results: The results shown that there were differences between the film response for each batch. The differences between batches for 1 Gy were 2%, 6% and 12% for 10, 5 and 1 cm2 square field sizes, respectively. The differences found for 10 Gy were 13%, 14% and 13% for 10, 5 and 1 cm{sup 2} square field sizes, respectively. It can be observed that the dependence with field size dismissed for higher doses. The later may be due to film response saturation at 10 Gy. Conclusion: The EBT3 film -as its predecessors-, it suffer for inter-batch variability in the film response. Further research is required to assess the possible impact in small beam dosimetry.

  10. SU-E-T-386: Evaluation of EBT3 Film Response in Different Batches

    International Nuclear Information System (INIS)

    Escarcia, F; Herrera, J; Garcia, O

    2015-01-01

    Purpose: To investigate the uniformity of film response of EBT3 film of two different film batches. It has been reported that the response of the EBT film family is not homogenous between film batches. The later may have an impact in the dosimetry of small radiotherapy beams. Methods: A solid water phantom was used for dosimetric measurements. EBT3 film irradiation was performed with a 6 MV photon beam at 5 cm depth with a SAD of 100 cm. All irradiations were performed perpendicularly to the film plane covering the dose range 1 to 10 Gy. Three square field sizes were used to analyze the film response energy dependence: 10, 5 and 1 cm 2 . Two batches of film EBT3 were used #A03181302 (B1) and #03031403 (B2). Film read out was carrying out with an Epson Perfection V750-Pro flatbed scanner in transmission mode with a spatial resolution of 72 dpi, with all post-processing and colour management options turned off, using 48 bits RGB colour depth. The scans were analyzed with the red channel. Results: The results shown that there were differences between the film response for each batch. The differences between batches for 1 Gy were 2%, 6% and 12% for 10, 5 and 1 cm2 square field sizes, respectively. The differences found for 10 Gy were 13%, 14% and 13% for 10, 5 and 1 cm 2 square field sizes, respectively. It can be observed that the dependence with field size dismissed for higher doses. The later may be due to film response saturation at 10 Gy. Conclusion: The EBT3 film -as its predecessors-, it suffer for inter-batch variability in the film response. Further research is required to assess the possible impact in small beam dosimetry

  11. Enhanced lipid production by Rhodosporidium toruloides using different fed-batch feeding strategies with lignocellulosic hydrolysate as the sole carbon source.

    Science.gov (United States)

    Fei, Qiang; O'Brien, Marykate; Nelson, Robert; Chen, Xiaowen; Lowell, Andrew; Dowe, Nancy

    2016-01-01

    Industrial biotechnology that is able to provide environmentally friendly bio-based products has attracted more attention in replacing petroleum-based industries. Currently, most of the carbon sources used for fermentation-based bioprocesses are obtained from agricultural commodities that are used as foodstuff for human beings. Lignocellulose-derived sugars as the non-food, green, and sustainable alternative carbon sources have great potential to avoid this dilemma for producing the renewable, bio-based hydrocarbon fuel precursors, such as microbial lipid. Efficient bioconversion of lignocellulose-based sugars into lipids is one of the critical parameters for industrial application. Therefore, the fed-batch cultivation, which is a common method used in industrial applications, was investigated to achieve a high cell density culture along with high lipid yield and productivity. In this study, several fed-batch strategies were explored to improve lipid production using lignocellulosic hydrolysates derived from corn stover. Compared to the batch culture giving a lipid yield of 0.19 g/g, the dissolved-oxygen-stat feeding mode increased the lipid yield to 0.23 g/g and the lipid productivity to 0.33 g/L/h. The pulse feeding mode further improved lipid productivity to 0.35 g/L/h and the yield to 0.24 g/g. However, the highest lipid yield (0.29 g/g) and productivity (0.4 g/L/h) were achieved using an automated online sugar control feeding mode, which gave a dry cell weight of 54 g/L and lipid content of 59 % (w/w). The major fatty acids of the lipid derived from lignocellulosic hydrolysates were predominately palmitic acid and oleic acid, which are similar to those of conventional oilseed plants. Our results suggest that the fed-batch feeding strategy can strongly influence the lipid production. The online sugar control feeding mode was the most appealing strategy for high cell density, lipid yield, and lipid productivity using lignocellulosic hydrolysates as

  12. Development and validation of a novel monitoring system for batch flocculant solids settling process

    DEFF Research Database (Denmark)

    Valverde Pérez, Borja; Zhang, Xueqian; Penkarski-Rodon, Elena

    2017-01-01

    Secondary sedimentation is the main hydraulic bottleneck of effective pollution control WWTP under wetweather flow conditions. Therefore, online monitoring tools are required for control and optimization of the settling process under dynamic conditions. In this work we propose a novel monitoring...... system able to monitor batch settling tests by tracking the sludge blanket height and solid concentration along the column in the range of 1 to 8 g L-1. The system could be efficiently applied to monitor the batch settling tests of several full scale treatment plants run under different operational...... conditions....

  13. Mechanistic Models for Process Development and Optimization of Fed-batch Fermentation Systems

    DEFF Research Database (Denmark)

    Mears, Lisa; Stocks, Stuart M.; Albæk, Mads O.

    2016-01-01

    . This is based on on-line gas measurements and ammonia addition flow rate measurements. Additionally, a mechanistic model is applied offline as a tool for batch planning, based on definition of the process back pressure, aeration rate and stirrer speed. This allows the batch starting fill to be planned, taking...... into account the oxygen transfer conditions, as well as the evaporation rates of the system. Mechanistic models are valuable tools which are applicable for both process development and optimization. The state estimator described will be a valuable tool for future work as part of control strategy development...... for on-line process control and optimization....

  14. Oocyte batch development and enumeration in the European anchovy (Engraulis encrasicolus

    Directory of Open Access Journals (Sweden)

    R. FERRERI

    2016-09-01

    Full Text Available An alternative method to the traditional hydrated oocyte (HO method has been evaluated for the Sicilian anchovy, Engraulis encrasicolus. The method is based on the processing of ovarian whole mount images and the identification of the spawning batch in oocyte size frequency distributions and shows the advantage that it can be applied to various oocyte stages rather than strictly to the HO stage. Despite the peculiar elliptical shape of anchovy oocytes, this image analysis technique was fully successful since the yolked stage appeared to perform equally to the HO stage for anchovy batch fecundity measurements.

  15. Batched QR and SVD Algorithms on GPUs with Applications in Hierarchical Matrix Compression

    KAUST Repository

    Halim Boukaram, Wajih

    2017-09-14

    We present high performance implementations of the QR and the singular value decomposition of a batch of small matrices hosted on the GPU with applications in the compression of hierarchical matrices. The one-sided Jacobi algorithm is used for its simplicity and inherent parallelism as a building block for the SVD of low rank blocks using randomized methods. We implement multiple kernels based on the level of the GPU memory hierarchy in which the matrices can reside and show substantial speedups against streamed cuSOLVER SVDs. The resulting batched routine is a key component of hierarchical matrix compression, opening up opportunities to perform H-matrix arithmetic efficiently on GPUs.

  16. Batch removal of manganese from acid mine drainage using bone char

    OpenAIRE

    Sicupira, D. C.; Silva, T. Tolentino; Leão, V. A.; Mansur, M. B.

    2014-01-01

    The present study investigated batch kinetics and the batch equilibrium of manganese removal from acid mine drainage (AMD) using bone char as an adsorbent. Equilibrium tests revealed that the Langmuir-based maximum manganese uptake capacity was 22 mg g-1 for AMD effluents and 20 mg g-1 for laboratory solutions at a pH ranging from 5.5 to 5.7. The pseudo-second order model best described the manganese kinetics within bone char. Manganese removal was mainly influenced by the operating variables...

  17. Control of continuous fed-batch fermentation process using neural network based model predictive controller.

    Science.gov (United States)

    Kiran, A Uma Maheshwar; Jana, Asim Kumar

    2009-10-01

    Cell growth and metabolite production greatly depend on the feeding of the nutrients in fed-batch fermentations. A strategy for controlling the glucose feed rate in fed-batch baker's yeast fermentation and a novel controller was studied. The difference between the specific carbon dioxide evolution rate and oxygen uptake rate (Qc - Qo) was used as controller variable. The controller evaluated was neural network based model predictive controller and optimizer. The performance of the controller was evaluated by the set point tracking. Results showed good performance of the controller.

  18. Change in hyphal morphology of Aspergillus Oryzae during fed-batch cultivation

    DEFF Research Database (Denmark)

    Haack, Martin Brian; Olsson, Lisbeth; Hansen, K

    2006-01-01

    the batch phase from 2.8-2.9 up to 4.0-4.4 mu m. The diameter of the hyphal elements remained constant, around 4 mu m, after the feed was started. However, the diameter of the immediate hyphal tip, where the enzyme secretion is thought to take place, increased dramatically with up to a factor 2.5 during......Industrial enzymes are often produced by filamentous fungi in fed-batch cultivations. During cultivation, the different morphological forms displayed by the fungi have an impact on the overall production. The morphology of a recombinant lipase producing Aspergillus oryzae strain was investigated...

  19. Batch chemical microreactors: Reversible, in-situ UHV sealing of a microcavity

    DEFF Research Database (Denmark)

    Monkowski, Adam; Johansson, Martin; Nielsen, Jane Hvolbæk

    2009-01-01

    We propose a new type of microreactor to study heterogeneous catalytic systems. The proposed device operates using a batch reactor scheme, in which catalyst and reactant are introduced in one step and analyzed in a subsequent step. This differs from a flow microreactor in which reaction and analy......We propose a new type of microreactor to study heterogeneous catalytic systems. The proposed device operates using a batch reactor scheme, in which catalyst and reactant are introduced in one step and analyzed in a subsequent step. This differs from a flow microreactor in which reaction...

  20. Simultaneous environmental manipulations in semi-perfusion cultures of CHO cells producing rh-tPA

    OpenAIRE

    Vergara,Mauricio; Becerra,Silvana; Díaz-Barrera,Alvaro; Berrios,Julio; Altamirano,Claudia

    2012-01-01

    We evaluated the combined effect of decreasing the temperature to a mild hypothermia range (34 and 31ºC) and switching to a slowly metabolizable carbon source (glucose substituted by galactose) on the growth and production of a recombinant human tissue plasminogen activator (rh-tPA) by Chinese hamster ovary cells in batch and semi-perfusion cultures. In batch cultures using glucose as a carbon source, decreasing the temperature caused a reduction in cell growth and an increase in specific pro...

  1. Culture evolves

    Science.gov (United States)

    Whiten, Andrew; Hinde, Robert A.; Laland, Kevin N.; Stringer, Christopher B.

    2011-01-01

    Culture pervades human lives and has allowed our species to create niches all around the world and its oceans, in ways quite unlike any other primate. Indeed, our cultural nature appears so distinctive that it is often thought to separate humanity from the rest of nature and the Darwinian forces that shape it. A contrary view arises through the recent discoveries of a diverse range of disciplines, here brought together to illustrate the scope of a burgeoning field of cultural evolution and to facilitate cross-disciplinary fertilization. Each approach emphasizes important linkages between culture and evolutionary biology rather than quarantining one from the other. Recent studies reveal that processes important in cultural transmission are more widespread and significant across the animal kingdom than earlier recognized, with important implications for evolutionary theory. Recent archaeological discoveries have pushed back the origins of human culture to much more ancient times than traditionally thought. These developments suggest previously unidentified continuities between animal and human culture. A third new array of discoveries concerns the later diversification of human cultures, where the operations of Darwinian-like processes are identified, in part, through scientific methods borrowed from biology. Finally, surprising discoveries have been made about the imprint of cultural evolution in the predispositions of human minds for cultural transmission. PMID:21357216

  2. Culture evolves.

    Science.gov (United States)

    Whiten, Andrew; Hinde, Robert A; Laland, Kevin N; Stringer, Christopher B

    2011-04-12

    Culture pervades human lives and has allowed our species to create niches all around the world and its oceans, in ways quite unlike any other primate. Indeed, our cultural nature appears so distinctive that it is often thought to separate humanity from the rest of nature and the Darwinian forces that shape it. A contrary view arises through the recent discoveries of a diverse range of disciplines, here brought together to illustrate the scope of a burgeoning field of cultural evolution and to facilitate cross-disciplinary fertilization. Each approach emphasizes important linkages between culture and evolutionary biology rather than quarantining one from the other. Recent studies reveal that processes important in cultural transmission are more widespread and significant across the animal kingdom than earlier recognized, with important implications for evolutionary theory. Recent archaeological discoveries have pushed back the origins of human culture to much more ancient times than traditionally thought. These developments suggest previously unidentified continuities between animal and human culture. A third new array of discoveries concerns the later diversification of human cultures, where the operations of Darwinian-like processes are identified, in part, through scientific methods borrowed from biology. Finally, surprising discoveries have been made about the imprint of cultural evolution in the predispositions of human minds for cultural transmission.

  3. Spatial Culture

    DEFF Research Database (Denmark)

    Reeh, Henrik

    2012-01-01

    Spatial Culture – A Humanities Perspective Abstract of introductory essay by Henrik Reeh Secured by alliances between socio-political development and cultural practices, a new field of humanistic studies in spatial culture has developed since the 1990s. To focus on links between urban culture...... and modern society is, however, an intellectual practice which has a much longer history. Already in the 1980s, the debate on the modern and the postmodern cited Paris and Los Angeles as spatio-cultural illustrations of these major philosophical concepts. Earlier, in the history of critical studies, the work...... Foucault considered a constitutive feature of 20th-century thinking and one that continues to occupy intellectual and cultural debates in the third millennium. A conceptual framework is, nevertheless, necessary, if the humanities are to adequa-tely address city and space – themes that have long been...

  4. Manuscript Cultures

    DEFF Research Database (Denmark)

    What do Mesoamerica, Greece, Byzantium, Island, Chad, Ethiopia, India, Tibet, China and Japan have in common? Like many other cultures of the world, they share a particular form of cultural heritage: ancient handwritten documents. In 2007, scholars from some20 countries around the world gathered...... at the University of Copenhagen for a workshop on manuscripts to compare notes. This event led to the publication of this volume, which brings together16 articles on philological, cultural, and material aspects of manuscripts in search for a common ground across disciplines and cultures....

  5. Novel pH control strategy for glutathione overproduction in batch ...

    African Journals Online (AJOL)

    The effects of pH values on cell growth and glutathione (GSH) production were studied in batch cultivation of Candida utilis. According to the fact that lower pH value favors cells growth but retards GSH production and higher pH value promotes GSH production while inhibits cells growth, a pH-shift strategy, optimized via ...

  6. A review of control strategies for manipulating the feed rate in fed-batch fermentation processes

    DEFF Research Database (Denmark)

    Mears, Lisa; Stocks, Stuart M.; Sin, Gürkan

    2017-01-01

    A majority of industrial fermentation processes are operated in fed-batch mode. In this case, the rate of feed addition to the system is a focus for optimising the process operation, as it directly impacts metabolic activity, as well as directly affecting the volume dynamics in the system...

  7. Kinetics of anaerobic digestion of labaneh whey in a batch reactor

    African Journals Online (AJOL)

    SAM

    2014-04-16

    Apr 16, 2014 ... In this work, anaerobic digestion of labanah whey was carried out in a 100 L batch reactor (RE-BIOMAS) at temperature of 30-40°C and pH 6 - 7. During the experiments, the biogas production and chemical oxygen demand (COD) concentration were recorded with time. During fermentation of labaneh ...

  8. 21 CFR 111.255 - What is the requirement to establish a batch production record?

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false What is the requirement to establish a batch production record? 111.255 Section 111.255 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CURRENT GOOD MANUFACTURING PRACTICE IN...

  9. Recurring colisepticaemia in batches of birds in a poultry farm in ...

    African Journals Online (AJOL)

    Repeated outbreaks of Escherichia coli infection in pullets and laying birds in a poultry farm in Nsukka, southeast Nigeria are reported. The outbreaks were recorded in four batches of birds; the initial cases occurring in birds 12 – 16 weeks of age while subsequent outbreaks were in birds 28–31 weeks of age. The disease ...

  10. 40 CFR Table 3 to Subpart Ooo of... - Batch Process Vent Monitoring Requirements

    Science.gov (United States)

    2010-07-01

    ....1416(d).b Boiler or process heater with a design heat input capacity less than 44 megawatts and where... Requirements 3 Table 3 to Subpart OOO of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Resins Pt. 63, Subpt. OOO, Table 3 Table 3 to Subpart OOO of Part 63—Batch Process Vent Monitoring...

  11. Fault detection properties of global, local and time evolving models for batch process monitoring

    NARCIS (Netherlands)

    Ramaker, H. J.; van Sprang, E. N. M.; Westerhuis, J. A.; Smilde, A. K.

    2005-01-01

    This paper discusses alternative methods for batch process monitoring. Two alternative methods are investigated and compared to an existing one (the benchmark). A description of the models is given and the performance is discussed by means of fault detection performance indices. The performance

  12. Novel pH control strategy for glutathione overproduction in batch ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-16

    Nov 16, 2009 ... Key words: Batch fermentation, Candida utilis, glutathione (GSH), gauss function, pH-shift strategy. INTRODUCTION. Glutathione ...... Effect of amino acids addition and feedback control strategies on the high-cell-density cultivation of. Saccharomyces cerevisiae for glutathione production. Process. Biochem.

  13. Recursive Gaussian Process Regression Model for Adaptive Quality Monitoring in Batch Processes

    Directory of Open Access Journals (Sweden)

    Le Zhou

    2015-01-01

    Full Text Available In chemical batch processes with slow responses and a long duration, it is time-consuming and expensive to obtain sufficient normal data for statistical analysis. With the persistent accumulation of the newly evolving data, the modelling becomes adequate gradually and the subsequent batches will change slightly owing to the slow time-varying behavior. To efficiently make use of the small amount of initial data and the newly evolving data sets, an adaptive monitoring scheme based on the recursive Gaussian process (RGP model is designed in this paper. Based on the initial data, a Gaussian process model and the corresponding SPE statistic are constructed at first. When the new batches of data are included, a strategy based on the RGP model is used to choose the proper data for model updating. The performance of the proposed method is finally demonstrated by a penicillin fermentation batch process and the result indicates that the proposed monitoring scheme is effective for adaptive modelling and online monitoring.

  14. Optimal Feeding Trajectories Design for E. coli Fed-batch Fermentations

    Directory of Open Access Journals (Sweden)

    Olympia Roeva

    2010-08-01

    Full Text Available In this paper optimal control algorithms for two E. coli fed-batch fermentations are developed. Fed-batch fermentation processes of E. coli strain MC4110 and E. coli strain BL21(DE3pPhyt109 are considered. Simple material balance models are used to describe the E. coli fermentation processes. The optimal feed rate control of a primary metabolite process is studied and a biomass production is used as an example. The optimization of the considered fed-batch fermentation processes is done using the calculus of variations to determine the optimal feed rate profiles. The problem is formulated as a free final time problem where the control objective is to maximize biomass at the end of the process. The obtained optimal feed rate profiles consist of sequences of maximum and minimum feed rates. The resulting profiles are used for optimization of the E. coli fed-batch fermentations. Presented simulations show a good efficiency of the developed optimal feed rate profiles.

  15. Multivariate statistical process control of batch processes based on three-way models

    NARCIS (Netherlands)

    Louwerse, D. J.; Smilde, A. K.

    2000-01-01

    The theory of batch MSPC control charts is extended and improved control charts an developed. Unfold-PCA, PARAFAC and Tucker3 models are discussed and used as a basis for these charts. The results of the different models are compared and the performance of the control charts based on these models is

  16. Fault detection properties of global, local and time evolving models for batch process monitoring.

    NARCIS (Netherlands)

    Ramaker, H.J.; van Sprang, E.N.M.; Westerhuis, J.A.; Smilde, A.K.

    2005-01-01

    This paper discusses alternative methods for batch process monitoring. Two alternative methods are investigated and compared to an existing one (the benchmark). A description of the models is given and the performance is discussed by means of fault detection performance indices. The performance

  17. Experimental Verification of Dynamic Operation of Continuous and Multivessel Batch Distillation

    Energy Technology Data Exchange (ETDEWEB)

    Wittgens, Bernd

    1999-07-01

    This thesis presents a rigorous model based on first principles for dynamic simulation of the composition dynamics of a staged high-purity continuous distillation columns and experiments performed to verify it. The thesis also demonstrates the importance of tray hydraulics to obtain good agreement between simulation and experiment and derives analytic expressions for dynamic time constants for use in simplified and vapour dynamics. A newly developed multivessel batch distillation column consisting of a reboiler, intermediate vessels and a condenser vessel provides a generalization of previously proposed batch distillation schemes. The total reflux operation of this column was presented previously and the present thesis proposes a simple feedback control strategy for its operation based on temperature measurements. The feasibility of this strategy is demonstrated by simulations and verified by laboratory experiments. It is concluded that the multivessel column can be easily operated with simple temperature controllers, where the holdups are only controlled indirectly. For a given set of temperature setpoints, the final product compositions are independent of the initial feed composition. When the multivessel batch distillation column is compared to a conventional batch column, both operated under feedback control, it is found that the energy required to separate a multicomponent mixture into highly pure products is much less for the multivessel system. This system is also the simplest one to operate.

  18. Endogenous model state and parameter estimation from an extensive batch experiment

    NARCIS (Netherlands)

    Keesman, K.J.; Spanjers, H.

    2000-01-01

    In this paper an extensive batch experiment of endogenous process behavior in an aerobic biodegradation process is presented. From these experimental data, comprising measurements of MLVSS (mixed liquor volatile suspended solids) and respiration rate, in a first step the states and unknown

  19. A microfluidic device for the batch adsorption of a protein on adsorbent particles

    NARCIS (Netherlands)

    Rho, Hoon Suk; Hanke, Alexander Thomas; Ottens, Marcel; Gardeniers, J.G.E.

    2017-01-01

    A microfluidic platform or “microfluidic batch adsorption device” is presented, which performs two sets of 9 parallel protein incubations with/without adsorbent particles to achieve an adsorption isotherm of a protein in a single experiment. The stepwise concentration gradient of a target protein

  20. Kinetic study of COS with tertiary alkanolamine solutions 1. Experiments in an intensely stirred batch reactor

    NARCIS (Netherlands)

    Littel, R.J.; Littel, R.J.; Versteeg, Geert; van Swaaij, Willibrordus Petrus Maria

    1992-01-01

    The reaction between COS and various tertiary alkanolamines in aqueous solutions has been studied in an intensely stirred batch reactor. Experiments for TEA, DMMEA, and DEMEA were carried out at 303 K the reaction between COS and aqueous MDEA has been studied at temperaturm ranging from 293 to 323