WorldWideScience

Sample records for batch cooling crystallization

  1. Systematic Procedure for Generating Operational Policies to Achieve Target Crystal Size Distribution (CSD) in Batch Cooling Crystallization

    DEFF Research Database (Denmark)

    Abdul Samad, Noor Asma Fazli; Singh, Ravendra; Sin, Gürkan

    2011-01-01

    Batch cooling crystallization is one of the important unit operations involving separation of solid-liquid phases. Usually the most common crystal product qualities are directly related to the crystal size distribution (CSD). However the main difficulty in batch crystallization is to obtain a uni...

  2. Optimization of cooling strategy and seeding by FBRM analysis of batch crystallization

    Science.gov (United States)

    Zhang, Dejiang; Liu, Lande; Xu, Shijie; Du, Shichao; Dong, Weibing; Gong, Junbo

    2018-03-01

    A method is presented for optimizing the cooling strategy and seed loading simultaneously. Focused beam reflectance measurement (FBRM) was used to determine the approximating optimal cooling profile. Using these results in conjunction with constant growth rate assumption, modified Mullin-Nyvlt trajectory could be calculated. This trajectory could suppress secondary nucleation and has the potential to control product's polymorph distribution. Comparing with linear and two step cooling, modified Mullin-Nyvlt trajectory have a larger size distribution and a better morphology. Based on the calculating results, the optimized seed loading policy was also developed. This policy could be useful for guiding the batch crystallization process.

  3. Integration of Generic Multi-dimensional Model and Operational Policies for Batch Cooling Crystallization

    DEFF Research Database (Denmark)

    Abdul Samad, Noor Asma Fazli; Singh, Ravendra; Sin, Gürkan

    2011-01-01

    Crystallization processes form an important class of separation methods that are frequently used in the chemical, the pharmaceutical and the food industry. The specifications of the crystal product are usually given in terms of crystal size, shape and purity. In order to predict the desired cryst...

  4. Changes in copper sulfate crystal habit during cooling crystallization

    Science.gov (United States)

    Giulietti, M.; Seckler, M. M.; Derenzo, S.; Valarelli, J. V.

    1996-09-01

    The morphology of technical grade copper(II) sulfate pentahydrate crystals produced from batch cooling experiments in the temperature range of 70 to 30°C is described and correlated with the process conditions. A slow linear cooling rate (batch time of 90 min) predominantly caused the appearance of well-formed crystals. Exponential cooling (120 min) resulted in the additional formation of agglomerates and twins. The presence of seeds for both cooling modes led to round crystals, agglomerates and twins. Fast linear cooling (15 min) gave rise to a mixture of the former types. Broken crystals and adhering fragments were often found. Growth zoning was pronounced in seeded and linear cooling experiments. Fluid inclusions were always found and were more pronounced for larger particles. The occurrence of twinning, zoning and fluid inclusions was qualitatively explained in terms of fundamental principles.

  5. Second crystal cooling on cryogenically cooled undulator and wiggler double crystal monochromators

    International Nuclear Information System (INIS)

    Knapp, G. S.

    1998-01-01

    Simple methods for the cooling of the second crystals of cryogenically cooled undulator and wiggler double crystal monochromators are described. Copper braids between the first and second crystals are used to cool the second crystals of the double crystal monochromators. The method has proved successful for an undulator monochromator and we describe a design for a wiggler monochromator

  6. Monitoring and Characterization of Crystal Nucleation and Growth during Batch Crystallization

    NARCIS (Netherlands)

    Kadam, S.S.

    2012-01-01

    Batch crystallization is commonly used in pharmaceutical, agrochemical, specialty and fine chemicals industry. The advantages of batch crystallization lie in its ease of operation and the relatively simple equipment that can be used. On the other hand a major disadvantage associated with it is the

  7. Optimal Operation of Industrial Batch Crystallizers : A Nonlinear Model-based Control Approach

    NARCIS (Netherlands)

    Mesbah, A.

    2010-01-01

    Batch crystallization is extensively employed in the chemical, pharmaceutical, and food industries to separate and purify high value-added chemical substances. Despite their widespread application, optimal operation of batch crystallizers is particularly challenging. The difficulties primarily

  8. Modelling of Batch Process Operations

    DEFF Research Database (Denmark)

    Abdul Samad, Noor Asma Fazli; Cameron, Ian; Gani, Rafiqul

    2011-01-01

    Here a batch cooling crystalliser is modelled and simulated as is a batch distillation system. In the batch crystalliser four operational modes of the crystalliser are considered, namely: initial cooling, nucleation, crystal growth and product removal. A model generation procedure is shown that s...

  9. DKDP crystal growth controlled by cooling rate

    Science.gov (United States)

    Xie, Xiaoyi; Qi, Hongji; Shao, Jianda

    2017-08-01

    The performance of deuterated potassium dihydrogen phosphate (DKDP) crystal directly affects beam quality, energy and conversion efficiency in the Inertial Confinement Fusion(ICF)facility, which is related with the initial saturation temperature of solution and the real-time supersaturation during the crystal growth. However, traditional method to measure the saturation temperature is neither efficient nor accurate enough. Besides, the supersaturation is often controlled by experience, which yields the higher error and leads to the instability during the crystal growth. In this paper, DKDP solution with 78% deuteration concentration is crystallized in different temperatures. We study the relation between solubility and temperature of DKDP and fit a theoretical curve with a parabola model. With the model, the measurement of saturation temperature is simplified and the control precision of the cooling rate is improved during the crystal growth, which is beneficial for optimizing the crystal growth process.

  10. Batch crystallization of rifapentine for inhalable tuberculosis medication

    Science.gov (United States)

    Wijanarko, Anondho; Meivita, Maria Prisca; Hermansyah, Heri; Sahlan, Muhamad; Lakerveld, Richard

    2018-02-01

    In the midst of Tuberculosis (TB) pandemic, a research about new tuberculosis drug that results in more rapid resolution of tubercular infection is important. It will play a crucial role in accelerating the reductions in tuberculosis incidence that is occurring worldwide. The effectiveness of rifapentine has been assessed and it has been proven to be the most effective antibiotics for TB. A frequent administration and dose of rifapentine resulted in more rapid resolution of tubercular infection. However, based on former research, high exposure levels for treatment shortening may be unachievable with oral administration and might instead be achieved by direct aerosol delivery of rifapentine to the pulmonary site of infection. Therefore, with the growing interest in the effectiveness of rifapentine in frequent administration and dose, this research integrates an inhalable form of crystalline rifapentine prepared using a batch process. Moreover, this research investigates the effect of seed loading, supersaturation ratio, and residence time on the characterization of crystalline rifapentine in order to form a crystalline rifapentine in an inhalable size. The research was carried out by using anti-solvent crystallization method with acetone as a solvent and distilled water as an anti-solvent. Based on the assessment of various operating variables, it can be concluded that the optimum result was obtained at the unseeded experiment with supersaturation ratio = 1.26. Unseeded experiments are preferred because the ideal size for therapeutic aerosol was achieved in unseeded experiments. At the request of all authors the above article is being retracted due to publication without knowledge or consent from one of the principal investigators of the research listed on the article, Dr. Richard Lakerveld. This article is retracted from the scientific record with effect from 18 May 2018.

  11. Crystal agglomeration of europium oxalate in reaction crystallization using double-jet semi-batch reactor

    International Nuclear Information System (INIS)

    Kim, Woo-Sik; Kim, Woon-Soo; Kim, Kwang-Seok; Kim, Joon-Soo; Ward, Michael D.

    2004-01-01

    The particle agglomeration of europium oxalate was investigated in a double-jet semi-batch reactor over a wide range of operating variables, including the agitation speed, reactant feed rate, and reactant concentration. The size of the agglomerates was directly dictated by the particle collision and supersaturation promoting agglomeration and the fluid shear force inhibiting agglomeration. Thus, with a longer feeding time and higher feed concentration for the reaction crystallization, the mean particle size increased, while the corresponding total particle population decreased due to the enhanced chance of particle agglomeration, resulting from a longer residence time and higher supersaturation in the reactor. Agitation was found to exhibit a rather complicated influence on particle agglomeration. Although both particle collision and turbulent fluid shear were promoted by an increase in the mixing intensity, the crystal agglomeration of europium oxalate was maximized at around 500 rpm of agitation speed due to an optimized balance between particle aggregation and breakage

  12. Batch cooling crystallization and pressure filtration of sulphathiazole

    DEFF Research Database (Denmark)

    Häkkinen, Antti; Pöllänen, Kati; Karjalainen, Milja

    2005-01-01

    Currently there is a great interest in new process analytical approaches to increase the process understanding of pharmaceutical unit operations. In the present study, the influence of the solvent composition on the material properties and, further, on the filtration characteristics, of different...

  13. Batch crystallization of rhodopsin for structural dynamics using an X-ray free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wenting; Nogly, Przemyslaw; Rheinberger, Jan; Kick, Leonhard M.; Gati, Cornelius; Nelson, Garrett; Deupi, Xavier; Standfuss, Jörg; Schertler, Gebhard; Panneels, Valérie, E-mail: valerie.panneels@psi.ch [Paul Scherrer Institute, OFLC/103, 5232 Villigen-PSI (Switzerland)

    2015-06-27

    A new batch preparation method is presented for high-density micrometre-sized crystals of the G protein-coupled receptor rhodopsin for use in time-resolved serial femtosecond crystallography at an X-ray free-electron laser using a liquid jet. Rhodopsin is a membrane protein from the G protein-coupled receptor family. Together with its ligand retinal, it forms the visual pigment responsible for night vision. In order to perform ultrafast dynamics studies, a time-resolved serial femtosecond crystallography method is required owing to the nonreversible activation of rhodopsin. In such an approach, microcrystals in suspension are delivered into the X-ray pulses of an X-ray free-electron laser (XFEL) after a precise photoactivation delay. Here, a millilitre batch production of high-density microcrystals was developed by four methodical conversion steps starting from known vapour-diffusion crystallization protocols: (i) screening the low-salt crystallization conditions preferred for serial crystallography by vapour diffusion, (ii) optimization of batch crystallization, (iii) testing the crystal size and quality using second-harmonic generation (SHG) imaging and X-ray powder diffraction and (iv) production of millilitres of rhodopsin crystal suspension in batches for serial crystallography tests; these crystals diffracted at an XFEL at the Linac Coherent Light Source using a liquid-jet setup.

  14. Systematic observability and detectablity analysis of industrial batch crystallizers

    NARCIS (Netherlands)

    Porru, M.; Ozkan, L.

    Motivated by the lack of hardware analysers for particle size distribution (PSD) and solute concentration measurements in industrial crystallizers, this work investigates the feasibility of designing alternative monitoring tools based on state observers. The observability and detectability

  15. Flash crystallization kinetics of methane (sI) hydrate in a thermoelectrically-cooled microreactor.

    Science.gov (United States)

    Chen, Weiqi; Pinho, Bruno; Hartman, Ryan L

    2017-09-12

    The crystallization kinetics of methane (sI) hydrate were investigated in a thermoelectrically-cooled microreactor with in situ Raman spectroscopy. Step-wise and precise control of the temperature allowed acquisition of reproducible data within minutes, while the nucleation of methane hydrates can take up to 24 h in traditional batch reactors. The propagation rates of methane hydrate (from 3.1-196.3 μm s -1 ) at the gas-liquid interface were measured for different Reynolds' numbers (0.7-68.9), pressures (30.0-80.9 bar), and sub-cooling temperatures (1.0-4.0 K). The precise measurement of the propagation rates and their subsequent analyses revealed a transition from mixed heat-transfer-crystallization-rate-limited to mixed heat-transfer-mass-transfer-crystallization-rate-limited kinetics. A theoretical model, based on heat transfer, mass transfer, and intrinsic crystallization kinetics, was derived for the first time to understand the non-linear relationship between the propagation rate and sub-cooling temperature. The molecular diffusivity of methane within a stagnant film (ahead of the propagation front) was discovered to follow Stokes-Einstein, while calculated Hatta (0.50-0.68), Lewis (128-207), and beta (0.79-116) numbers also confirmed that the diffusive flux influences crystal growth. Understanding methane hydrate crystal growth is important to the atmospheric, oceanic, and planetary sciences and to energy production, storage, and transportation. Our discoveries could someday advance the science of other multiphase, high-pressure, and sub-cooled crystallizations.

  16. Investigation of lactose crystallization process during condensed milk cooling using native vacuum-crystallizer

    Directory of Open Access Journals (Sweden)

    E. I. Dobriyan

    2016-01-01

    Full Text Available One of the most general defects of condensed milk with sugar is its consistency heterogeneity – “candying”. The mentioned defect is conditioned by the presence of lactose big crystals in the product. Lactose crystals size up to 10 µm is not organoleptically felt. The bigger crystals impart heterogeneity to the consistency which can be evaluated as “floury”, “sandy”, “crunch on tooth”. Big crystals form crystalline deposit on the can or industrial package bottom in the form of thick layer. Industrial processing of the product with the defective process of crystallization results in the expensive equipment damage of the equipment at the confectionary plant accompanied with heavy losses. One of the factors influencing significantly lactose crystallization is the product cooling rate. Vacuum cooling is the necessary condition for provision of the product consistency homogeneity. For this purpose the vacuum crystallizers of “Vigand” company, Germany, are used. But their production in the last years has been stopped. All-Russian dairy research institute has developed “The references for development of the native vacuum crystallizer” according to which the industrial model has been manufactured. The produced vacuum – crystallizer test on the line for condensed milk with sugar production showed that the product cooling on the native vacuum-crystallizer guarantees production of the finished product with microstructure meeting the requirements of State standard 53436–2009 “Canned Milk. Milk and condensed cream with sugar”. The carried out investigations evidences that the average lactose crystals size in the condensed milk with sugar cooled at the native crystallizer makes up 6,78 µm. The granulometric composition of the product crystalline phase cooled at the newly developed vacuum-crystallizer is completely identical to granulometric composition of the product cooled at “Vigand” vacuum-crystallizer.

  17. Systematic Modelling and Crystal Size Distribution Control for Batch Crystallization Processes

    DEFF Research Database (Denmark)

    Abdul Samad, Noor Asma Fazli; Singh, Ravendra; Sin, Gürkan

    Crystallization processes form an important class of separation methods that are frequently used in the chemical, the pharmaceutical and the food industry. The specifications of the crystal product are usually given in terms of crystal size, shape and purity. In order to predict the desired cryst...

  18. Effect of cooling rate on crystallization in an aluminophosphosilicate melt

    DEFF Research Database (Denmark)

    Liu, S. J.; Zhang, Yanfei; Yue, Yuanzheng

    2011-01-01

    The effect of cooling rate on spontaneous crystallization behavior of an alumino-phospho-silicate melt is studied by means of differential scanning calorimetry, X-ray diffraction, scanning electron microscopy and viscometry. The cooling rates of 160, 2100 and 12000 K/s are attained by subjecting ......, the opalescence of the glass can be tuned by adjusting the cooling rate. This makes the production of opal glasses or transparent glass ceramics more efficient and energy saving, since the conventional isothermal treatment procedure can be left out....

  19. Cryogenic cooling of x-ray crystals using porous matrix

    International Nuclear Information System (INIS)

    Kuzay, T.M.

    1991-01-01

    It is well established that Si and SiC have very desirable thermophysical properties at cryogenic temperatures. This feature makes cryo-cooled optics potentially a good candidate for the first optical crystal of the presently built third generation synchrotron machines with very high heat flux levels. Currently, there is a great deal of interest in such cryo-cooled crystals pursued both experimentally and analytically. The analytical studies involve cut micro or capillary channel crystals. As opposed to the machined channels, porous matrices provide significant advantages. They operate very quietly. Such matrices are known to affect superior heat transfer enhancement. Data available in open literature suggest that surface heat flux levels up to ∼8 kW/cm 2 are possible. For cryogens for which the boiling heat transfer heat flux is rather a low value in conventional geometries, the enhancement available with such matrices is a very significant characteristic. Cryogens are poor thermal conductors themselves. The fact that at the cryogenic temperatures the Si and/or SiC matrix itself becomes highly conductive, the matrix distributes the surface heat flux into the full volume effectively offsetting the poor conductivity of the coolant. In addition the tortuous path of the coolant through the matrix increases the dwell time for better heat transfer, however, at the expense of increased pressure drop. In this study, thermal conductivity of such composite matrices and the effective heat transfer coefficient obtainable using them are investigated. A first optics crystal model of Si with Si and/or Sic porous matrix as its heat exchanger and subject to prototype synchrotron level heat flux is analyzed and limits of the cooling possible with liquid nitrogen in single phase and subcooled boiling heat transfer modes are delineated

  20. Transparent phosphosilicate glasses containing crystals formed during cooling of melts

    DEFF Research Database (Denmark)

    Liu, S. J.; Zhang, Yanfei; He, W.

    2011-01-01

    The effect of P2O5-SiO2 substitution on spontaneous crystallization of SiO2-Al2O3-P2O5- Na2O-MgO melts during cooling was studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and rotation viscometry. Results show that addition of P2O5 leads...... to amorphous phase separation (APS), i.e., phosphate- and silicate-rich phases. It is due to the tendency of Mg2+ to form [MgO4] linking with [SiO4]. Molar substitution of P2O5 for SiO2 enhances the network polymerization of silicate-rich phase in the melts, and thereby the spontaneous crystallization of cubic...... Na2MgSiO4 is also enhanced during cooling of the melts. In addition, the sizes of the local crystalline and separated glassy domains are smaller than the wavelength of the visible light, and this leads to the transparency of the obtained glasses containing crystals....

  1. Time-resolved crystallization of deeply cooled liquid hydrogen isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Kuehnel, Matthias

    2014-02-15

    This thesis serves two main purposes: 1. The introduction of a novel experimental method to investigate phase change dynamics of supercooled liquids 2. First-time measurements for the crystallization behaviour for hydrogen isotopes under various conditions (1) The new method is established by the synergy of a liquid microjet of ∼ 5 μm diameter and a scattering technique with high spatial resolution, here linear Raman spectroscopy. Due to the high directional stability and the known velocity of the liquid filament, its traveling axis corresponds to a time axis static in space. Utilizing evaporative cooling in a vacuum environment, the propagating liquid cools down rapidly and eventually experiences a phase transition to the crystalline state. This temporal evolution is probed along the filament axis, ultimately resulting in a time resolution of 10 ns. The feasibility of this approach is proven successfully within the following experiments. (2) A main object of study are para-hydrogen liquid filaments. Raman spectra reveal a temperature gradient of the liquid across the filament. This behaviour can quantitatively be reconstructed by numerical simulations using a layered model and is rooted in the effectiveness of evaporative cooling on the surface and a finite thermal conductivity. The deepest supercoolings achieved are ∼ 30% below the melting point, at which the filament starts to solidify from the surface towards the core. With a crystal growth velocity extracted from the data the appropriate growth mechanism is identified. The crystal structure that initially forms is metastable and probably the result of Ostwald's rule of stages. Indications for a transition within the solid towards the stable equilibrium phase support this interpretation. The analog isotope ortho-deuterium is evidenced to behave qualitatively similar with quantitative differences being mass related. In further measurements, isotopic mixtures of para-hydrogen and ortho-deuterium are

  2. Time-resolved crystallization of deeply cooled liquid hydrogen isotopes

    International Nuclear Information System (INIS)

    Kuehnel, Matthias

    2014-02-01

    This thesis serves two main purposes: 1. The introduction of a novel experimental method to investigate phase change dynamics of supercooled liquids 2. First-time measurements for the crystallization behaviour for hydrogen isotopes under various conditions (1) The new method is established by the synergy of a liquid microjet of ∼ 5 μm diameter and a scattering technique with high spatial resolution, here linear Raman spectroscopy. Due to the high directional stability and the known velocity of the liquid filament, its traveling axis corresponds to a time axis static in space. Utilizing evaporative cooling in a vacuum environment, the propagating liquid cools down rapidly and eventually experiences a phase transition to the crystalline state. This temporal evolution is probed along the filament axis, ultimately resulting in a time resolution of 10 ns. The feasibility of this approach is proven successfully within the following experiments. (2) A main object of study are para-hydrogen liquid filaments. Raman spectra reveal a temperature gradient of the liquid across the filament. This behaviour can quantitatively be reconstructed by numerical simulations using a layered model and is rooted in the effectiveness of evaporative cooling on the surface and a finite thermal conductivity. The deepest supercoolings achieved are ∼ 30% below the melting point, at which the filament starts to solidify from the surface towards the core. With a crystal growth velocity extracted from the data the appropriate growth mechanism is identified. The crystal structure that initially forms is metastable and probably the result of Ostwald's rule of stages. Indications for a transition within the solid towards the stable equilibrium phase support this interpretation. The analog isotope ortho-deuterium is evidenced to behave qualitatively similar with quantitative differences being mass related. In further measurements, isotopic mixtures of para-hydrogen and ortho-deuterium are

  3. Time-resolved crystallization of deeply cooled liquid hydrogen isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Kuehnel, Matthias

    2014-02-15

    This thesis serves two main purposes: 1. The introduction of a novel experimental method to investigate phase change dynamics of supercooled liquids 2. First-time measurements for the crystallization behaviour for hydrogen isotopes under various conditions (1) The new method is established by the synergy of a liquid microjet of ∼ 5 μm diameter and a scattering technique with high spatial resolution, here linear Raman spectroscopy. Due to the high directional stability and the known velocity of the liquid filament, its traveling axis corresponds to a time axis static in space. Utilizing evaporative cooling in a vacuum environment, the propagating liquid cools down rapidly and eventually experiences a phase transition to the crystalline state. This temporal evolution is probed along the filament axis, ultimately resulting in a time resolution of 10 ns. The feasibility of this approach is proven successfully within the following experiments. (2) A main object of study are para-hydrogen liquid filaments. Raman spectra reveal a temperature gradient of the liquid across the filament. This behaviour can quantitatively be reconstructed by numerical simulations using a layered model and is rooted in the effectiveness of evaporative cooling on the surface and a finite thermal conductivity. The deepest supercoolings achieved are ∼ 30% below the melting point, at which the filament starts to solidify from the surface towards the core. With a crystal growth velocity extracted from the data the appropriate growth mechanism is identified. The crystal structure that initially forms is metastable and probably the result of Ostwald's rule of stages. Indications for a transition within the solid towards the stable equilibrium phase support this interpretation. The analog isotope ortho-deuterium is evidenced to behave qualitatively similar with quantitative differences being mass related. In further measurements, isotopic mixtures of para-hydrogen and ortho-deuterium are

  4. Resistive cooling circuits for charged particle traps using crystal resonators

    CERN Document Server

    Kaltenbacher, T; Doser, M; Kellerbauer, A; Pribyl, W

    2011-01-01

    The paper addresses a novel method to couple a signal from charged particles in a Penning trap to a high Q resonant circuit using a crystal resonator. Traditionally the trap capacity is converted into a resonator by means of an inductance. When normal conducting wires (e.g. copper) are applied to build up a coil, the unloaded Q value is limited to a value in the order of 1000. The tuned circuit’s Q factor is directly linked to the input impedance “seen” by the trapped particles at resonance frequency. This parallel resonance impedance is a measure of the efficiency of resistive cooling and thus it should be optimized. We propose here a commercially available crystal resonator since it exhibits a very high Q value and a parallel resonance impedance of several MOhm. The possibility to tune the parallel resonance frequency of the quartz results in filter behavior that allows covering a broad range of frequencies.

  5. Inhibition of calcium carbonate crystal growth by organic additives using the constant composition method in conditions of recirculating cooling circuits

    Science.gov (United States)

    Chhim, Norinda; Kharbachi, Chams; Neveux, Thibaut; Bouteleux, Céline; Teychené, Sébastien; Biscans, Béatrice

    2017-08-01

    The cooling circuits used in power plants are subject to mineral crystallization which can cause scaling on the surfaces of equipment and construction materials reducing their heat exchange efficiency. Precipitated calcium carbonate is the predominant mineral scale commonly observed in cooling systems. Supersaturation is the key parameter controlling the nucleation and growth of calcite in these systems. The present work focuses on the precipitation of calcite using the constant composition method at constant supersaturation, through controlled addition of reactants to a semi-batch crystallizer, in order to maintain constant solution pH. The determination of the thermodynamic driving force (supersaturation) was based on the relevant chemical equilibria, total alkalinity and calculation of the activity coefficients. Calcite crystallization rates were derived from the experiments performed at supersaturation levels similar to those found in industrial station cooling circuits. Several types of seeds particles were added into the aqueous solution to mimic natural river water conditions in terms of suspended particulate matters content, typically: calcite, silica or illite particles. The effect of citric and copolycarboxylic additive inhibitors added to the aqueous solution was studied. The calcium carbonate growth rate was reduced by 38.6% in the presence of the citric additive and a reduction of 92.7% was observed when the copolycarboxylic additive was used under identical experimental conditions. These results are explained by the location of the adsorbed inhibitor at the crystal surface and by the degree of chemical bonding to the surface.

  6. Parallel Solution of Robust Nonlinear Model Predictive Control Problems in Batch Crystallization

    Directory of Open Access Journals (Sweden)

    Yankai Cao

    2016-06-01

    Full Text Available Representing the uncertainties with a set of scenarios, the optimization problem resulting from a robust nonlinear model predictive control (NMPC strategy at each sampling instance can be viewed as a large-scale stochastic program. This paper solves these optimization problems using the parallel Schur complement method developed to solve stochastic programs on distributed and shared memory machines. The control strategy is illustrated with a case study of a multidimensional unseeded batch crystallization process. For this application, a robust NMPC based on min–max optimization guarantees satisfaction of all state and input constraints for a set of uncertainty realizations, and also provides better robust performance compared with open-loop optimal control, nominal NMPC, and robust NMPC minimizing the expected performance at each sampling instance. The performance of robust NMPC can be improved by generating optimization scenarios using Bayesian inference. With the efficient parallel solver, the solution time of one optimization problem is reduced from 6.7 min to 0.5 min, allowing for real-time application.

  7. Sympathetic cooling and crystallization of ions in a linear Paul trap

    International Nuclear Information System (INIS)

    Drewsen, M.; Bowe, P.; Hornekaer, L.; Brodersen, C.; Schiffer, J.P.; Hangst, J.S.; Schiffer, J.P.

    1999-01-01

    Coulomb crystals, containing up to a few hundred ions of which more than 50% were cooled sympathetically by the Coulomb interaction with laser cooled Mg + ions, have been produced in a linear Paul trap. By controlling the balance of the radiation pressure from the two cooling lasers, the Coulomb crystals could be segregated according to ion species. Previous studies of ion crystals and molecular dynamics simulations suggest that the temperature may be around 10 mK or lower. The obtained results indicate that a wide range of atomic and molecular ions, which due to their internal structures are not amenable to direct laser cooling, can be effectively cooled and localized (crystallized) in linear Paul traps. For high resolution spectroscopy of such ions this may turn out to be very useful. copyright 1999 American Institute of Physics

  8. Preparation and cooling of magnesium ion crystals for sympathetic cooling of highly charged ions in a Penning trap

    Energy Technology Data Exchange (ETDEWEB)

    Murboeck, Tobias

    2017-07-01

    In this work, laser-cooled ion crystals containing 10{sup 3} to 10{sup 5} singly charged magnesium ions (Mg{sup +}) were prepared in a Penning trap. The properties of the ion crystals and their structure displaying long-range ordering were analyzed by various nondestructive techniques. After creation of the Mg{sup +} ions in the form of ion bunches in an external source, the ions were injected into the Penning trap where their temperature was reduced by eight orders of magnitude within seconds using a combination of buffer gas cooling and Doppler laser cooling. The achieved temperatures in the millikelvin-regime were close to the theoretical Doppler-cooling limit and sufficiently low to induce the transition to a crystal phase exhibiting long-range ordering. The structure of these mesoscopic ion crystals is in agreement with a model describing the crystal as a set of planar shells. This allows for a derivation of properties such as the charge density or the temperature of the observed crystals. For the process of combined buffer-gas and Doppler laser cooling an analytical model has been developed, which explains the time development of the temperature and the fluorescence signal in agreement with the experimental results. The external ion source for the production of singly charged magnesium ions was developed and characterized. A SIMION simulation of the ion creation and extraction process allows to describe the ion bunch structure and to increase the Mg{sup +} number by three orders of magnitude to 10{sup 6} Mg{sup +} ions per bunch. Other ion species with charge states between one (H{sup +}{sub 2}, C{sup +}, N{sup +}{sub 2}, CO{sup +}{sub 2}) and three (Ar{sup 3+}) were injected into the Mg{sup +} crystals. Ion crystals containing more than one ion species were observed with structures in agreement with the theory of centrifugal separation, which indicates sympathetic cooling of the non-fluorescing ion species. This preparation of mixed ion crystals is an

  9. Choice of cooling regime of the superconducting magnetic system of the ''Crystal-2'' torsatron

    International Nuclear Information System (INIS)

    Glasov, B.V.; Druj, O.S.; Kurnosov, V.I.; Skibenko, E.I.; Yuferov, V.B.

    1981-01-01

    General requirements to a system of cryogenic cooling of superconducting magnetic systems (SMS) are formulated. Distributions of the value of thermal stresses about the temperature range are obtained for basic construction materials of SMS ''Crystal-2'' torsatron. Concrete circuits of SMS cryoprovision are considered. Values of specific and total heat capacity of the system, specific consumption of liquid are determined taking into consideration constructional peculiarities of SMS of''Crystal-2'' plant. Efficiency of different ways of SMS cooling are estimated, dynamical dependences of cooling and heating of SMS of the ''Crystal-2'' plant are obtained taking this into consideration [ru

  10. Liquid gallium cooling of silicon crystals in high intensity photon beams

    International Nuclear Information System (INIS)

    Smither, R.K.; Forster, G.A.; Bilderback, D.H.; Bedzyk, M.; Finkelstein, K.; Henderson, C.; White, J.; Berman, L.E.; Stefan, P.; Oversluizen, T.

    1989-01-01

    The high-brilliance, insertion-device-based photon beams of the next generation of synchrotron sources (Argonne's APS and Grenoble's ESRF) will deliver large thermal loads (1--10 kW) to the first optical elements. Considering the problems that present synchrotron users are experiencing with beams from recently installed insertion devices, new and improved methods of cooling these first optical elements, particularly when they are diffraction crystals, are clearly needed. A series of finite element calculations were performed to test the efficiency of new cooling geometries and various cooling fluids. The best results were obtained with liquid Ga metal flowing in channels just below the surface of the crystal. Ga was selected because of its good thermal conductivity and thermal capacity, low melting point, high boiling point, low kinetic viscosity, and very low vapor pressure. Its very low vapor pressure, even at elevated temperatures, makes it especially attractive in UHV conditions. A series of experiments were conducted at CHESS in February of 1988 that compared liquid gallium-cooled silicon diffraction crystals with water-cooled crystals. A six-pole wiggler beam was used to perform these tests on three different Si crystals, two with new cooling geometries and the one presently in use. A special high-pressure electromagnetic induction pump, recently developed at Argonne, was used to circulate the liquid gallium through the silicon crystals. In all experiments, the specially cooled crystal was used as the first crystal in a two crystal monochromator. An infrared camera was used to monitor the thermal profiles and correlated them with rocking curve measurements. A second set of cooling experiments were conducted in June of 1988 that used the intense, highly collimated beam from the newly installed ANL/CHESS undulator

  11. The hardness of synthetic products obtained from cooled and crystallized basaltic melts (in Romanian)

    OpenAIRE

    Daniela Ogrean

    2001-01-01

    The Hardness of Synthetic Products Obtained from Cooled and Crystallized Basaltic Melts. Hardness is one of the main properties of the products obtained from cooled and crystallized basaltic melts under a controlled thermal regime. It influences the abrasion tear resistance of the resulted material. The microhardness measurements on the samples (bricks, boards, gutters, armour plates, tubes) indicated Vickers hardness value between 757–926 for the materials obtained from Şanovita basalts (Tim...

  12. Universal crystal cooling device for precession cameras, rotation cameras and diffractometers

    International Nuclear Information System (INIS)

    Hajdu, J.; McLaughlin, P.J.; Helliwell, J.R.; Sheldon, J.; Thompson, A.W.

    1985-01-01

    A versatile crystal cooling device is described for macromolecular crystallographic applications in the 290 to 80 K temperature range. It utilizes a fluctuation-free cold-nitrogen-gas supply, an insulated Mylar crystal cooling chamber and a universal ball joint, which connects the cooling chamber to the goniometer head and the crystal. The ball joint is a novel feature over all previous designs. As a result, the device can be used on various rotation cameras, precession cameras and diffractometers. The lubrication of the interconnecting parts with graphite allows the cooling chamber to remain stationary while the crystal and goniometer rotate. The construction allows for 360 0 rotation of the crystal around the goniometer axis and permits any settings on the arcs and slides of the goniometer head (even if working at 80 K). There are no blind regions associated with the frame holding the chamber. Alternatively, the interconnecting ball joint can be tightened and fixed. This results in a set up similar to the construction described by Bartunik and Schubert where the cooling chamber rotates with the crystal. The flexibility of the systems allows for the use of the device on most cameras or diffractometers. THis device has been installed at the protein crystallographic stations of the Synchrotron Radiation Source at Daresbury Laboratory and in the Laboratory of Molecular Biophysics, Oxford. Several data sets have been collected with processing statistics typical of data collected without a cooling chamber. Tests using the full white beam of the synchrotron also look promising. (orig./BHO)

  13. A generic multi-dimensional model-based system for batch cooling crystallization processes

    DEFF Research Database (Denmark)

    Abdul Samad, Noor Asma Fazli; Singh, Ravendra; Sin, Gürkan

    2011-01-01

    Highly porous deposits of flame-made aerosol nanoparticles were formed by filtration through a porous substrate (α-alumina, average pore diameter 3.7 μm). The aerosol was characterized by transmission electron microscopy (TEM) and scanning mobility particle sizer (SMPS) showing average primary an...

  14. CRYSTALLIZATION IN MULTICOMPONENT GLASSES

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; HRMA PR

    2009-10-08

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  15. Crystallization In Multicomponent Glasses

    International Nuclear Information System (INIS)

    Kruger, A.A.; Hrma, P.R.

    2009-01-01

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  16. Batch and continuous (fixed-bed column) biosorption of crystal violet by Artocarpus heterophyllus (jackfruit) leaf powder.

    Science.gov (United States)

    Saha, Papita Das; Chakraborty, Sagnik; Chowdhury, Shamik

    2012-04-01

    In this study, batch and fixed-bed column experiments were performed to investigate the biosorption potential of Artocarpus heterophyllus (jackfruit) leaf powder (JLP) to remove crystal violet (CV) from aqueous solutions. Batch biosorption studies were carried out as a function of solution pH, contact time, initial dye concentration and temperature. The biosorption equilibrium data showed excellent fit to the Langmuir isotherm model with maximum monolayer biosorption capacity of 43.39 mg g(-1) at pH 7.0, initial dye concentration=50 mg L(-1), temperature=293 K and contact time=120 min. According to Dubinin-Radushkevich (D-R) isotherm model, biosorption of CV by JLP was chemisorption. The biosorption kinetics followed the pseudo-second-order kinetic model. Thermodynamic analysis revealed that biosorption of CV from aqueous solution by JLP was a spontaneous and exothermic process. In order to ascertain the practical applicability of the biosorbent, fixed-bed column studies were also performed. The breakthrough time increased with increasing bed height and decreased with increasing flow rate. The Thomas model as well as the BDST model showed good agreement with the experimental results at all the process parameters studied. It can be concluded that JLP is a promising biosorbent for removal of CV from aqueous solutions. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. CRC DEPLETION CALCULATIONS FOR THE NON-RODDED ASSEMBLIES IN BATCHES 4 AND 5 OF CRYSTAL RIVER UNIT 3

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth D. Wright

    1997-07-30

    The purpose of this design analysis is to document the SAS2H depletion calculations of certain non-rodded fuel assemblies from batches 4 and 5 of the Crystal River Unit 3 pressurized water reactor (PWR) that are required for commercial Reactor Critical (CRC) evaluations to support the development of the disposal criticality methodology. A non-rodded assembly is one which never contains a control rod assembly (CRA) or an axial power shaping rod assembly (APSRA) during its irradiation history. The objective of this analysis is to provide SAS2H generated isotopic compositions for each fuel assembly's depleted fuel and depleted burnable poison materials. These SAS2H generated isotopic compositions are acceptable for use in CRC benchmark reactivity calculations containing the various fuel assemblies.

  18. CRC DEPLETION CALCULATIONS FOR THE RODDED ASSEMBLIES IN BATCHES 1, 2, 3, AND 1X OF CRYSTAL RIVER UNIT 3

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth D. Wright

    1997-09-03

    The purpose of this design analysis is to document the SAS2H depletion calculations of certain rodded fuel assemblies from batches 1, 2, 3, and 1X of the Crystal River Unit 3 pressurized water reactor (PWR) that are required for Commercial Reactor Critical (CRC) evaluations to support the development of the disposal criticality methodology. A rodded assembly is one that contains a control rod assembly (CRA) or an axial power shaping rod assembly (APSRA) for some period of time during its irradiation history. The objective of this analysis is to provide SAS2H calculated isotopic compositions of depleted fuel and depleted burnable poison for each fuel assembly to be used in subsequent CRC reactivity calculations containing the fuel assemblies.

  19. CRC DEPLETION CALCULATIONS FOR THE RODDED ASSEMBLIES IN BATCHES 1, 2, 3, AND 1X OF CRYSTAL RIVER UNIT 3

    International Nuclear Information System (INIS)

    Wright, Kenneth D.

    1997-01-01

    The purpose of this design analysis is to document the SAS2H depletion calculations of certain rodded fuel assemblies from batches 1, 2, 3, and 1X of the Crystal River Unit 3 pressurized water reactor (PWR) that are required for Commercial Reactor Critical (CRC) evaluations to support the development of the disposal criticality methodology. A rodded assembly is one that contains a control rod assembly (CRA) or an axial power shaping rod assembly (APSRA) for some period of time during its irradiation history. The objective of this analysis is to provide SAS2H calculated isotopic compositions of depleted fuel and depleted burnable poison for each fuel assembly to be used in subsequent CRC reactivity calculations containing the fuel assemblies

  20. CRC DEPLETION CALCULATIONS FOR THE NON-RODDED ASSEMBLIES IN BATCHES 8 AND 9 CRYSTAL RIVER UNIT 3

    International Nuclear Information System (INIS)

    Wilson, Michael L.

    2001-01-01

    The purpose of this design analysis is to document the SAS2H depletion calculations of certain non-rodded fuel assemblies from batches 8 and 9 of the Crystal River Unit 3 pressurized water reactor (PWR) that are required for Commercial Reactor Critical (CRC) evaluations to support the development of the disposal criticality methodology. A non-rodded assembly is one which never contains a control rod assembly (CRA) or an axial power shaping rod assembly (APSRA) during its irradiation history. The objective of this analysis is to provide SAS2H generated isotopic compositions for each fuel assembly's depleted fuel and depleted burnable poison materials. These SAS2H generated isotopic compositions are acceptable for use in CRC benchmark reactivity calculations containing the various fuel assemblies

  1. CRC DEPLETION CALCULATIONS FOR THE NON-RODDED ASSEMBLIES IN BATCHES 4 AND 5 OF CRYSTAL RIVER UNIT 3

    International Nuclear Information System (INIS)

    Wright, Kenneth D.

    1997-01-01

    The purpose of this design analysis is to document the SAS2H depletion calculations of certain non-rodded fuel assemblies from batches 4 and 5 of the Crystal River Unit 3 pressurized water reactor (PWR) that are required for commercial Reactor Critical (CRC) evaluations to support the development of the disposal criticality methodology. A non-rodded assembly is one which never contains a control rod assembly (CRA) or an axial power shaping rod assembly (APSRA) during its irradiation history. The objective of this analysis is to provide SAS2H generated isotopic compositions for each fuel assembly's depleted fuel and depleted burnable poison materials. These SAS2H generated isotopic compositions are acceptable for use in CRC benchmark reactivity calculations containing the various fuel assemblies

  2. CRC DEPLETION CALCULATIONS FOR THE NON-RODDED ASSEMBLIES IN BATCHES 1, 2, AND 3 OF CRYSTAL RIVER UNIT 3

    International Nuclear Information System (INIS)

    Wright, Kenneth D.

    1997-01-01

    The purpose of this design analysis is to document the SAS2H depletion calculations of certain non-rodded fuel assemblies from batches 1, 2, and 3 of the Crystal River Unit 3 pressurized water reactor (PWR) that are required for Commercial Reactor Critical (CRC) evaluations to support development of the disposal criticality methodology. A non-rodded assembly is one which never contains a control rod assembly (CRA) or an axial power shaping rod assembly (APSRA) during its irradiation history. The objective of this analysis is to provide SAS2H generated isotopic compositions for each fuel assembly's depleted fuel and depleted burnable poison materials. These SAS2H generated isotopic compositions are acceptable for use in CRC benchmark reactivity calculations containing the various fuel assemblies

  3. Composition dependence of spontaneous crystallization of phosphosilicate glass melts during cooling

    DEFF Research Database (Denmark)

    Liu, S.J.; Zhu, C.F.; Zhang, Y.F.

    2012-01-01

    Crystallization behavior of alumino-phospho-silicate melts during cooling is studied by means of the differential scanning calorimetry, X-ray diffractometry and viscometry. The results show a pronounced impact of alkaline earth oxide, alkali oxide and fluoride on the crystal type and crystallizat......Crystallization behavior of alumino-phospho-silicate melts during cooling is studied by means of the differential scanning calorimetry, X-ray diffractometry and viscometry. The results show a pronounced impact of alkaline earth oxide, alkali oxide and fluoride on the crystal type...... and crystallization degree. It is found that adding NaF into the studied compositions slightly decreases melt fragility and improves both the glass-forming ability and melt workability. This effect is associated with the unique structural role of NaF compared to the other modifier oxides. It is also found...

  4. Effect of Cooling Rates on Shape and Crystal Size Distributions of Mefenamic Acid Polymorph in Ethyl Acetate

    Science.gov (United States)

    Mudalip, S. K. Abdul; Adam, F.; Parveen, J.; Abu Bakar, M. R.; Amran, N.; Sulaiman, S. Z.; Che Man, R.; Arshad, Z. I. Mohd; Shaarani, S. Md.

    2017-06-01

    This study investigate the effect of cooling rates on mefenamic acid crystallisation in ethyl acetate. The cooling rate was varied from 0.2 to 5 °C/min. The in-line conductivity system and turbidity system were employed to detect the onset of the crystallization process. The crystals produced were analysed using optical microscopy and Fourier transform infrared spectroscopy (FTIR). It was found that the crystals produced at different cooling rates were needle-like and exhibit polymorphic form type I. However, the aspect ratio and crystal size distributions were varied with the increased of cooling rate. A high crystals aspect ratio and narrower CSD (100-900 μm) was obtained at cooling rate of 0.5 °C/min. Thus, can be suggested as the most suitable cooling rate for crystallization of mefenamic acid in ethyl acetate.

  5. Nonlinear MIMO Control of a Continuous Cooling Crystallizer

    Directory of Open Access Journals (Sweden)

    Pedro Alberto Quintana-Hernández

    2012-01-01

    Full Text Available In this work, a feedback control algorithm was developed based on geometric control theory. A nonisothermal seeded continuous crystallizer model was used to test the algorithm. The control objectives were the stabilization of the third moment of the crystal size distribution (μ3 and the crystallizer temperature (T; the manipulated variables were the stirring rate and the coolant flow rate. The nonlinear control (NLC was tested at operating conditions established within the metastable zone. Step changes of magnitudes ±0.0015 and ±0.5°C were introduced into the set point values of the third moment and crystallizer temperature, respectively. In addition, a step change of ±1°C was introduced as a disturbance in the feeding temperature. Closed-loop stability was analyzed by calculating the eigenvalues of the internal dynamics. The system presented a stable dynamic behavior when the operation conditions maintain the crystallizer concentration within the metastable zone. Closed-loop simulations with the NLC were compared with simulations that used a classic PID controller. The PID controllers were tuned by minimizing the integral of the absolute value of the error (IAE criterion. The results showed that the NLC provided a suitable option for continuous crystallization control. For all analyzed cases, the IAEs obtained with NLC were smaller than those obtained with the PID controller.

  6. Liquid gallium cooling of silicon crystals in high intensity photon beam

    International Nuclear Information System (INIS)

    Smither, R.K.; Forster, G.A.; Bilderback, D.H.

    1988-11-01

    The high-brilliance, insertion-device-based, photon beams of the next generation of synchrotron sources will deliver large thermal loads (1 kW to 10 kW) to the first optical elements. Considering the problems that present synchrotron users are experiencing with beams from recently installed insertion devices, new and improved methods of cooling these first optical elements, particularly when they are diffraction crystals, are clearly needed. A series of finite element calculations were performed to test the efficiency of new cooling geometries and new cooling fluids. The best results were obtained with liquid Ga metal flowing in channels just below the surface of the crystal. Ga was selected because of its good thermal conductivity and thermal capacity, low melting point, high boiling point, low kinetic viscosity, and very low vapor pressure. Its very low vapor pressure, even at elevated temperatures, makes it especially attractive in uhv conditions. A series of experiments were conducted at CHESS in February of 1988 that compared liquid gallium cooled silicon diffraction crystals with water cooled crystals. 2 refs., 16 figs., 1 tab

  7. Design of a cryo-cooled artificial channel-cut crystal monochromator for the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xiaohao, E-mail: xiaohao.dong@xfel.eu; Sinn, Harald, E-mail: harald.sinn@xfel.eu [European XFEL GmbH, Hamburg, D-22761 (Germany); Shu, Deming, E-mail: shu@aps.anl.gov [Argonne National Laboratory, Argonne, IL 60439, U.S.A (United States)

    2016-07-27

    An artificial channel-cut crystal monochromator for the hard X-Ray beamlines of SASE 1&2, cryogenically cooled by the so-called pulse tube cooler (cryorefrigerator), is currently under development at the European XFEL ( http://www.xfel.eu/ ). The fabrication is on-going. We present here the crystal optical consideration and the novel cooling configuration, according to the X-Ray FEL pulses proprieties. The mechanical design improvements are pointed out as well to implement such kind of monochromator based on the previous similar design.

  8. Design of an adaptive cooled first crystal for an X-ray monochromator

    International Nuclear Information System (INIS)

    Dezoret, D.; Marmoret, R.; Freund, A.K.; Kvick, AA.; Ravelet, R.

    1994-01-01

    We report here on the design of the first crystal in an x-ray monochromator for E.S.R.F. beam lines. This crystal is a thin silicon foil bonded to a cooled beryllium support. A system of piezoelectric actuators is used to counterbalance the deformations induced by synchrotron beams. This work was carried out by the C.E.A. in collaboration with the E.S.R.F. and the LASERDOT Company (Aerospatiale Group). (orig.)

  9. Cooling Crystallization of Indomethacin: Effect of Supersaturation, Temperature and Seeding on Polymorphism and Crystal Size Distribution

    DEFF Research Database (Denmark)

    Malwade, Chandrakant Ramkrishna; Qu, Haiyan

    2018-01-01

    In this work, effect of crystallization parameters i.e., supersaturation, seeding, and temperature on polymorphism and crystal size of a non-steroidal anti-inflammatory drug, indomethacin (IMC), was investigated. Firstly, several crystallization solvents (ethanol, methanol, ethyl acetate, acetone...... of IMC from ethanol confirmed that the supersaturation, operating temperature and seeding does affect the polymorphism as well as crystal size distribution of IMC. Fine needle shaped crystals of metastable α-IMC were obtained at 5 °C with high supersaturation even in presence of γ-IMC seeds, while...... rhombic plates like crystals of thermodynamically stable γ-IMC were obtained in remaining experiments. The amount of seed loading only marginally influenced the crystal growth rate and median particle diameter (d50). Particle size analysis of crystals obtained showed bimodal distribution in all...

  10. Probing polymer crystallization at processing-relevant cooling rates with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Cavallo, Dario, E-mail: Dario.cavallo@unige.it [University of Genoa, Dept. of Chemistry and Industrial Chemistry, Via Dodecaneso 31, 16146 Genoa (Italy); Portale, Giuseppe [ESRF, Dubble CRG, Netherlands Organization of Scientific Research (NWO), 38043 Grenoble (France); Androsch, René [Martin-Luther-University Halle-Wittenberg, Center of Engineering Sciences, D-06099 Halle/S. (Germany)

    2015-12-17

    Processing of polymeric materials to produce any kind of goods, from films to complex objects, involves application of flow fields on the polymer melt, accompanied or followed by its rapid cooling. Typically, polymers solidify at cooling rates which span over a wide range, from a few to hundreds of °C/s. A novel method to probe polymer crystallization at processing-relevant cooling rates is proposed. Using a custom-built quenching device, thin polymer films are ballistically cooled from the melt at rates between approximately 10 and 200 °C/s. Thanks to highly brilliant synchrotron radiation and to state-of-the-art X-ray detectors, the crystallization process is followed in real-time, recording about 20 wide angle X-ray diffraction patterns per second while monitoring the instantaneous sample temperature. The method is applied to a series of industrially relevant polymers, such as isotactic polypropylene, its copolymers and virgin and nucleated polyamide-6. Their crystallization behaviour during rapid cooling is discussed, with particular attention to the occurrence of polymorphism, which deeply impact material’s properties.

  11. Investigation of the operating conditions to morphology evolution of β-L-glutamic acid during seeded cooling crystallization

    Science.gov (United States)

    Zhang, Fangkun; Liu, Tao; Huo, Yan; Guan, Runduo; Wang, Xue Z.

    2017-07-01

    In this paper the effects of operating conditions including cooling rate, initial supersaturation, and seeding temperature were investigated on the morphology evolution of β-L-glutamic acid (β-LGA) during seeded cooling crystallization. Based on the results of in-situ image acquisition of the crystal morphology evolution during the crystallization process, it was found that the crystal products tend to be plate-like or short rod-like under a slow cooling rate, low initial supersaturation, and low seeding temperature. In the opposite, the operating conditions of a faster cooling rate, higher initial supersaturation, and higher seeding temperature tend to produce long rod-like or needle-like crystals, and meanwhile, the length and width of crystal products will be increased together with a wider crystal size distribution (CSD). The aspect ratio of crystals, defined by the crystal length over width measured from in-situ or sample images, was taken as a shape index to analyze the crystal morphologies. Based on comparative analysis of the experimental results, guidelines on these operating conditions were given for obtaining the desired crystal shapes, along with the strategies for obtaining a narrower CSD for better product quality. Experimental verifications were performed to illustrate the proposed guidelines on the operating conditions for seeded cooling crystallization of LGA solution.

  12. Cooling crystallization of Indomethacin from different organic solvents

    DEFF Research Database (Denmark)

    Malwade, Chandrakant Ramkrishna; Qu, Haiyan

    , 25, 35, and 45 °C. The solvents with varying polarities (ethanol, methanol, ethyl acetate, acetone, acetonitrile, and dichloromethane) were used for solubility measurement. Maximum solubility of IMC was observed in acetone, while acetonitrile showed the lowest solubility. Solid phase analysis...... of excess solute with XRPD and Raman spectroscopy confirmed formation of IMC solvate in acetone, methanol and dichloromethane at 15 °C. Based on solubility of IMC, the solvents ethanol, ethyl acetate, acetone, and dichloromethane were selected for crystallization experiments. Nucleation kinetics of IMC...... in selected solvents was investigated through the measurement of induction time at 5 °C and 15 °C. Longer induction times were observed for IMC in ethanol at both temperatures compared to the one in acetone. Metastable α form of IMC was obtained from ethanol, while solvate of IMC was produced from acetone....

  13. Calculation of thermal deformations in water-cooled monochromator crystals

    International Nuclear Information System (INIS)

    Nakamura, Ario; Hashimoto, Shinya; Motohashi, Haruhiko

    1994-11-01

    Through calculation of temperature distribution and thermal deformation of monochromators, optical degradation by the heat loads in SPring-8 have been discussed. Cooling experiments were made on three models of copper structures with the JAERI Electron Beam Irradiation Stand (JEBIS) and the results were used to estimate heat transfer coefficients in the models. The heat transfer coefficients have been adopted to simulate heating processes on silicon models of the same structures as the copper models, for which radiations from the SPring-8 bending magnet and the JAERI prototype undulator (WPH-33J) were considered. It has been concluded that, in the case of bending magnet (with power density of 0.27[MW/m 2 ] on monochromator surface), the temperature at the surface center reaches about 30[degC] from the initial temperature of 27[degC] in all the models. In the case of WPH-33J (with power density of 8.2[MW/m 2 ]), the temperature reaches about 200 to 280[degC] depending on the models. The radiation from WPH-33J yields slope errors bigger than the Darwin's width(23[μrad]). (author)

  14. Incorporation of cooling-induced crystallization into a 2-dimensional axisymmetric conduit heat flow model

    Science.gov (United States)

    Heptinstall, David; Bouvet de Maisonneuve, Caroline; Neuberg, Jurgen; Taisne, Benoit; Collinson, Amy

    2016-04-01

    Heat flow models can bring new insights into the thermal and rheological evolution of volcanic 3 systems. We shall investigate the thermal processes and timescales in a crystallizing, static 4 magma column, with a heat flow model of Soufriere Hills Volcano (SHV), Montserrat. The latent heat of crystallization is initially computed with MELTS, as a function of pressure and temperature for an andesitic melt (SHV groundmass starting composition). Three fractional crystallization simulations are performed; two with initial pressures of 34MPa (runs 1 & 2) and one of 25MPa (run 3). Decompression rate was varied between 0.1MPa/° C (runs 1 & 3) and 0.2MPa/° C (run 2). Natural and experimental matrix glass compositions are accurately reproduced by all MELTS runs. The cumulative latent heat released for runs 1, 2 and 3 differs by less than 9% (8.69E5 J/kg*K, 9.32E5 J/kg*K, and 9.49E5 J/kg*K respectively). The 2D axisymmetric conductive cooling simulations consider a 30m-diameter conduit that extends from the surface to a depth of 1500m (34MPa). The temporal evolution of temperature is closely tracked at depths of 10m, 750m and 1400m in the centre of the conduit, at the conduit walls, and 20m from the walls into the host rock. Following initial cooling by 7-15oC at 10m depth inside the conduit, the magma temperature rebounds through latent heat release by 32-35oC over 85-123 days to a maximum temperature of 1002-1005oC. At 10m depth, it takes 4.1-9.2 years for the magma column to cool by 108-131oC and crystallize to 75wt%, at which point it cannot be easily remobilized. It takes 11-31.5 years to reach the same crystallinity at 750-1400m depth. We find a wide range in cooling timescales, particularly at depths of 750m or greater, attributed to the initial run pressure and the dominant latent heat producing crystallizing phase, Albite-rich Plagioclase Feldspar. Run 1 is shown to cool fastest and run 3 cool the slowest, with surface emissivity having the strongest cooling

  15. Cooling and heating of the ion flux on the transmission through crystals

    International Nuclear Information System (INIS)

    Karamyan, S.A.; Gruener, F.; Assmann, W.

    2003-01-01

    Transmission of charged particles through a monocrystalline medium is accompanied by many interesting phenomena, and a new one - redistribution of the isotropic flux - is now studied experimentally and described. The cooling or heating in the transverse momentum coordinate arises as a result of crystal-induced modification of the transmission trajectories. This indicates the violation of the reversibility rule, and cannot be explained within prevailing theory of channeling. The type of image (enhancement or reduction) and its intensity are dependent on the ion and crystal species, on the energy of ions and on the crystal thickness. Such dependencies have been studied experimentally and the mechanism involving the regular sequence of charge-exchange events with the transverse-energy non-conservation is attracted for understanding. The crystal response to ion flux transmission is also reviewed and characterized by the original results

  16. Gas-liquid reactive crystallization kinetics of 2,4,6-triamino-1,3,5-trinitrobenzene in the semi-batch procedure

    Science.gov (United States)

    Liu, Ruqin; Huang, Ming; Yao, Xiaolu; Chen, Shuang; Wang, Shucun; Suo, Zhirong

    2018-06-01

    2,4,6-Triamino-1,3,5-trinitrobenzene is the attractive insensitive high energetic material used extensively in the military and civil fields. Combined with the double-films theory, the global gas-liquid chemical reaction kinetics of 2,4,6-triamino-1,3,5-trinitrobenzene was developed by means of the infinitesimal material balance calculation. The raw material concentration and reactive temperature effects on the crystallization of 2,4,6-triamino-1,3,5-trinitrobenzene were investigated by the batch experiments. The reactive crystallization kinetics associated ammonia feeding rate of 2,4,6-triamino-1,3,5-trinitrobenzene, including nucleation as well as crystal growth, was systematically investigated in the heterogonous semi-batch procedure. The nucleation and crystal growth kinetic exponents were estimated by the linear least-squares method. The crystallization kinetic results indicated that nucleation rate strongly increased but liner growth rate decreased with the increasing of ammonia feeding rate. In terms of manufacturing coarse 2,4,6-triamino-1,3,5-trinitrobenzene, it was found that a slow ammonia feeding rate and a low raw material concentration were feasible under the present experimental conditions.

  17. Solubility and crystallization of piroxicam from different solvents in evaporative and cooling crystallizations

    DEFF Research Database (Denmark)

    Qu, Haiyan; Ostergaard, Iben

    2018-01-01

    polarities; It has been found that the solubility of piroxicam in the solvents is in the following order: chloroform > dichloromethane > acetone > ethyl acetate > acetonitrile > acetic acid > methanol > hexane. Crystallization of piroxicam from different solvents has been performed with evaporative.......Results obtained in the present work showed the stochastic nature of nucleation of different polymorphs as well as the complexity of the crystallization of a polymorphic system....

  18. Control of heat transfer in continuous-feeding Czochralski-silicon crystal growth with a water-cooled jacket

    Science.gov (United States)

    Zhao, Wenhan; Liu, Lijun

    2017-01-01

    The continuous-feeding Czochralski method is an effective method to reduce the cost of single crystal silicon. By promoting the crystal growth rate, the cost can be reduced further. However, more latent heat will be released at the melt-crystal interface under a high crystal growth rate. In this study, a water-cooled jacket was applied to enhance the heat transfer at the melt-crystal interface. Quasi-steady-state numerical calculation was employed to investigate the impact of the water-cooled jacket on the heat transfer at the melt-crystal interface. Latent heat released during the crystal growth process at the melt-crystal interface and absorbed during feedstock melting at the feeding zone was modeled in the simulations. The results show that, by using the water-cooled jacket, heat transfer in the growing crystal is enhanced significantly. Melt-crystal interface deflection and thermal stress increase simultaneously due to the increase of radial temperature at the melt-crystal interface. With a modified heat shield design, heat transfer at the melt-crystal interface is well controlled. The crystal growth rate can be increased by 20%.

  19. The hardness of synthetic products obtained from cooled and crystallized basaltic melts (in Romanian

    Directory of Open Access Journals (Sweden)

    Daniela Ogrean

    2001-04-01

    Full Text Available The Hardness of Synthetic Products Obtained from Cooled and Crystallized Basaltic Melts. Hardness is one of the main properties of the products obtained from cooled and crystallized basaltic melts under a controlled thermal regime. It influences the abrasion tear resistance of the resulted material. The microhardness measurements on the samples (bricks, boards, gutters, armour plates, tubes indicated Vickers hardness value between 757–926 for the materials obtained from Şanovita basalts (Timiş district and between 539–958 respectively, in case of the Racoş basalts (Braşov district. There is a certain variation of the hardness within the same sample, in various measurement points, within the theoretical limits of the hardnesses of the pyroxenes and that of the spinels.

  20. Methodology of Supervision by Analysis of Thermal Flux for Thermal Conduction of a Batch Chemical Reactor Equipped with a Monofluid Heating/Cooling System

    Directory of Open Access Journals (Sweden)

    Ghania Henini

    2012-01-01

    Full Text Available We present the thermal behavior of a batch reactor to jacket equipped with a monofluid heating/cooling system. Heating and cooling are provided respectively by an electrical resistance and two plate heat exchangers. The control of the temperature of the reaction is based on the supervision system. This strategy of management of the thermal devices is based on the usage of the thermal flux as manipulated variable. The modulation of the monofluid temperature by acting on the heating power or on the opening degrees of an air-to-open valve that delivers the monofluid to heat exchanger. The study shows that the application of this method for the conduct of the pilot reactor gives good results in simulation and that taking into account the dynamics of the various apparatuses greatly improves ride quality of conduct. In addition thermal control of an exothermic reaction (mononitration shows that the consideration of heat generated in the model representation improve the results by elimination any overshooting of the set-point temperature.

  1. Nucleation control and separation of paracetamol polymorphs through swift cooling crystallization process

    Science.gov (United States)

    Sudha, C.; Srinivasan, K.

    2014-09-01

    Polymorphic nucleation behavior of pharmaceutical solid paracetamol has been investigated by performing swift cooling crystallization process. Saturated aqueous solution prepared at 318 K was swiftly cooled to 274 K in steps of every 1 K in the temperature range from 274 K to 313 K with uniform stirring of 100 rpm. The resultant supersaturation generated in the mother solution favours the nucleation of three different polymorphs of paracetamol. Lower supersaturation region σ=0.10-0.83 favours stable mono form I; the intermediate supersaturation region σ=0.92-1.28 favours metastable ortho form II and the higher supersaturation region σ=1.33-1.58 favours unstable form III polymorphic nucleation. Depending upon the level of supersaturation generated during swift cooling process and the corresponding solubility limit and metastable zone width (MSZW) of each polymorph, the nucleation of a particular polymorph occurs in the system. The type of polymorphs was identified by in-situ optical microscopy and the internal structure was confirmed by Powder X-ray diffraction (PXRD) study. By this novel approach, the preferred nucleation regions of all the three polymorphs of paracetamol are optimized in terms of different cooling ranges employed during the swift cooling process. Also solution mediated polymorphic transformations from unstable to mono and ortho to mono polymorphs have been studied by in-situ.

  2. Multi-scale simulation of single crystal hollow turbine blade manufactured by liquid metal cooling process

    Directory of Open Access Journals (Sweden)

    Xuewei Yan

    2018-02-01

    Full Text Available Liquid metal cooling (LMC process as a powerful directional solidification (DS technique is prospectively used to manufacture single crystal (SC turbine blades. An understanding of the temperature distribution and microstructure evolution in LMC process is required in order to improve the properties of the blades. For this reason, a multi-scale model coupling with the temperature field, grain growth and solute diffusion was established. The temperature distribution and mushy zone evolution of the hollow blade was simulated and discussed. According to the simulation results, the mushy zone might be convex and ahead of the ceramic beads at a lower withdrawal rate, while it will be concave and laggard at a higher withdrawal rate, and a uniform and horizontal mushy zone will be formed at a medium withdrawal rate. Grain growth of the blade at different withdrawal rates was also investigated. Single crystal structures were all selected out at three different withdrawal rates. Moreover, mis-orientation of the grains at 8 mm/min reached ~30°, while it was ~5° and ~15° at 10 mm/min and 12 mm/min, respectively. The model for predicting dendritic morphology was verified by corresponding experiment. Large scale for 2D dendritic distribution in the whole sections was investigated by experiment and simulation, and they presented a well agreement with each other. Keywords: Hollow blade, Single crystal, Multi-scale simulation, Liquid metal cooling

  3. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody

    Science.gov (United States)

    Zhu, Linxiao; Raman, Aaswath P.; Fan, Shanhui

    2015-01-01

    A solar absorber, under the sun, is heated up by sunlight. In many applications, including solar cells and outdoor structures, the absorption of sunlight is intrinsic for either operational or aesthetic considerations, but the resulting heating is undesirable. Because a solar absorber by necessity faces the sky, it also naturally has radiative access to the coldness of the universe. Therefore, in these applications it would be very attractive to directly use the sky as a heat sink while preserving solar absorption properties. Here we experimentally demonstrate a visibly transparent thermal blackbody, based on a silica photonic crystal. When placed on a silicon absorber under sunlight, such a blackbody preserves or even slightly enhances sunlight absorption, but reduces the temperature of the underlying silicon absorber by as much as 13 °C due to radiative cooling. Our work shows that the concept of radiative cooling can be used in combination with the utilization of sunlight, enabling new technological capabilities. PMID:26392542

  4. Laser-cooled atoms inside a hollow-core photonic-crystal fiber

    DEFF Research Database (Denmark)

    Bajcsy, Michal; Hofferberth, S.; Peyronel, Thibault

    2011-01-01

    We describe the loading of laser-cooled rubidium atoms into a single-mode hollow-core photonic-crystal fiber. Inside the fiber, the atoms are confined by a far-detuned optical trap and probed by a weak resonant beam. We describe different loading methods and compare their trade-offs in terms...... of implementation complexity and atom-loading efficiency. The most efficient procedure results in loading of ∼30,000 rubidium atoms, which creates a medium with an optical depth of ∼180 inside the fiber. Compared to our earlier study this represents a sixfold increase in the maximum achieved optical depth...

  5. Rapid cooling and cold storage in a silicic magma reservoir recorded in individual crystals.

    Science.gov (United States)

    Rubin, Allison E; Cooper, Kari M; Till, Christy B; Kent, Adam J R; Costa, Fidel; Bose, Maitrayee; Gravley, Darren; Deering, Chad; Cole, Jim

    2017-06-16

    Silicic volcanic eruptions pose considerable hazards, yet the processes leading to these eruptions remain poorly known. A missing link is knowledge of the thermal history of magma feeding such eruptions, which largely controls crystallinity and therefore eruptability. We have determined the thermal history of individual zircon crystals from an eruption of the Taupo Volcanic Zone, New Zealand. Results show that although zircons resided in the magmatic system for 10 3 to 10 5 years, they experienced temperatures >650° to 750°C for only years to centuries. This implies near-solidus long-term crystal storage, punctuated by rapid heating and cooling. Reconciling these data with existing models of magma storage requires considering multiple small intrusions and multiple spatial scales, and our approach can help to quantify heat input to and output from magma reservoirs. Copyright © 2017, American Association for the Advancement of Science.

  6. Measurement of cooling coil film heat transfer coefficient with polymer reaction proceeding in a stirred batch reactor; Jugo sonai ni okeru hanno shinko ni tomonau reikyaku coil no kyomaku netsudentatsu keisu no keiji henka

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, K [Soken Chemical and Engineering Co. Ltd., Saitama (Japan); Nishi, K; Kaminoyama, M; Kamiwano, M [Yokohama National University, Yokohama (Japan). Faculty of Engineering

    1996-09-10

    In radical additional solution polymerization, the viscosity increases with reaction progress. It is important to evaluate beforehand the cooling capacity of the reactor, which worsens with the process. In this study, a stirred batch reactor with both a paddle and a helical screw impeller were studied, and measurements were made for the dynamic changes of the film heat transfer coefficient of the cooling coil with progress of the polymer reaction. We found the change could be evaluated by the calculating heat balance of the generated heat, the viscous dissipation energy and the sensible heat change under conditions of monomer conversion and changing viscosity. 11 refs., 7 figs.

  7. Liquid-metal-cooled, curved-crystal monochromator for Advanced Photon Source bending-magnet beamline 1-BM

    International Nuclear Information System (INIS)

    Brauer, S.; Rodricks, B.; Assoufid, L.; Beno, M.A.; Knapp, G.S.

    1996-06-01

    The authors describe a horizontally focusing curved-crystal monochromator that invokes a 4-point bending scheme and a liquid-metal cooling bath. The device has been designed for dispersive diffraction and spectroscopy in the 5--20 keV range, with a predicted focal spot size of ≤ 100 microm. To minimize thermal distortions and thermal equilibration time, the 355 x 32 x 0.8 mm crystal will be nearly half submerged in a bath of Ga-In-Sn-Zn alloy. The liquid metal thermally couples the crystal to the water-cooled Cu frame, while permitting the required crystal bending. Calculated thermal profiles and anticipated focusing properties are discussed

  8. Cryogenic cooling of x-ray crystals using a porous matrix

    International Nuclear Information System (INIS)

    Kuzay, T.M.

    1992-01-01

    It is well established that Si and SiC have very desirable thermophysical properties (principally, high thermal conductivity, and low thermal expansion) at cryogenic temperatures. Thus, cryocooled optics are a potentially good candidate for the first optical crystal of the third generation synchrotron machines, which will have very high heat flux levels. Currently, there is a great deal of interest, both experimental and analytical in such cryocooled crystals. The analytical studies involve cut micro- or capillary channel crystals. As opposed to machined channels, porous matrices provide significant advantages. Such matrices are known to effect superior heat transfer. They operate very quietly. Data available in the open literature suggest that surface heat flux levels up to ∼8 kW/cm 2 are possible. For cryogens for which the boiling heat transfer heat flux is a rather low value in conventional geometries, the enhancement available with such matrices is very significant. Cryogens are poor thermal conductors themselves. At cryogenic temperatures, the Si and/or SiC matrix itself becomes highly conductive: Thus, the matrix distributes the surface heat flux into the full volume effectively offsetting the poor conductivity of the coolant. In addition, the tortuous path of the coolant through the matrix increases the dwell time resulting in better heat transfer, however, at the expense of an increased pressure drop. In this study, a first optics crystal model of Si with a Si and/or SiC porous matrix as its heat exchanger and subject to prototypic synchrotron loads is analyzed, and the feasibility limits of the cooling possible with liquid nitrogen in single phase are delineated

  9. Melt extraction during heating and cooling of felsic crystal mushes in shallow volcanic systems: An experimental study

    Science.gov (United States)

    Pistone, M.; Baumgartner, L. P.; Sisson, T. W.; Bloch, E. M.

    2017-12-01

    The dynamics and kinetics of melt extraction in near-solidus, rheologically stalled, felsic crystal mushes (> 50 vol.% crystals) are essential to feeding many volcanic eruptions. At shallow depths (volatile-saturated and may be thermally stable for long time periods (104-107 years). In absence of deformation, residual melt can segregate from the mush's crystalline framework stimulated by: 1) gas injecting from hot mafic magmas into felsic mushes (heating / partial melting scenario), and 2) gas exsolving from the crystallizing mush (cooling / crystallizing scenario). The conditions and efficiency of melt extraction from a mush in the two scenarios are not well understood. Thus, we conducted high-temperature (700 to 850 °C) and -pressure (1.1 kbar) cold seal experiments (8-day duration) on synthetic felsic mushes, composed of water-saturated (4.2 wt.%) rhyodacite melt bearing different proportions of added quartz crystals (60, 70, and 80 vol%; 68 mm average particle size). High-spatial resolution X-ray tomography of run products show: 1) in the heating scenario (> 750 °C) melt has not segregated due to coalescence of vesicles (≤ 23 vol%) and large melt connectivity (> 7 vol% glass) / low pressure gradient for melt movement up to 80 vol% crystals; 2) in the cooling scenario (≤ 750 °C) vesicle (< 11 vol%) coalescence is limited or absent and limited amount of melt (3 to 11 vol%) segregated from sample center to its outer periphery (30 to 100 mm melt-rich lenses), testifying to the efficiency of melt extraction dictated by increasing crystallinity. These results suggest that silicic melt hosted within a crystal-rich mush can accumulate rapidly due to the buildup of modest gas pressures during crystallization at temperatures near the solidus.

  10. Effects of Undercooling and Cooling Rate on Peritectic Phase Crystallization Within Ni-Zr Alloy Melt

    Science.gov (United States)

    Lü, P.; Wang, H. P.

    2018-04-01

    The liquid Ni-16.75 at. pct Zr peritectic alloy was substantially undercooled and containerlessly solidified by an electromagnetic levitator and a drop tube. The dependence of the peritectic solidification mode on undercooling was established based on the results of the solidified microstructures, crystal growth velocity, as well as X-ray diffraction patterns. Below a critical undercooling of 124 K, the primary Ni7Zr2 phase preferentially nucleates and grows from the undercooled liquid, which is followed by a peritectic reaction of Ni7Zr2+L → Ni5Zr. The corresponding microstructure is composed of the Ni7Zr2 dendrites, peritectic Ni5Zr phase, and inter-dendritic eutectic. Nevertheless, once the liquid undercooling exceeds the critical undercooling, the peritectic Ni5Zr phase directly precipitates from this undercooled liquid. However, a negligible amount of residual Ni7Zr2 phase still appears in the microstructure, indicating that nucleation and growth of the Ni7Zr2 phase are not completely suppressed. The micromechanical property of the peritectic Ni5Zr phase in terms of the Vickers microhardness is enhanced, which is ascribed to the transition of the peritectic solidification mode. To suppress the formation of the primary phase completely, this alloy was also containerlessly solidified in free fall experiments. Typical peritectic solidified microstructure forms in large droplets, while only the peritectic Ni5Zr phase appears in smaller droplets, which gives an indication that the peritectic Ni5Zr phase directly precipitates from the undercooled liquid by completely suppressing the growth of the primary Ni7Zr2 phase and the peritectic reaction due to the combined effects of the large undercooling and high cooling rate.

  11. Progressing batch hydrolysis process

    Science.gov (United States)

    Wright, J.D.

    1985-01-10

    A progressive batch hydrolysis process is disclosed for producing sugar from a lignocellulosic feedstock. It comprises passing a stream of dilute acid serially through a plurality of percolation hydrolysis reactors charged with feed stock, at a flow rate, temperature and pressure sufficient to substantially convert all the cellulose component of the feed stock to glucose. The cooled dilute acid stream containing glucose, after exiting the last percolation hydrolysis reactor, serially fed through a plurality of pre-hydrolysis percolation reactors, charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the hemicellulose component of said feedstock to glucose. The dilute acid stream containing glucose is cooled after it exits the last prehydrolysis reactor.

  12. Dynamic crystallization of a eucrite basalt. [achondrite textural features produced by superheating and differing cooling rates

    Science.gov (United States)

    Walker, D.; Powell, M. A.; Hays, J. F.; Lofgren, G. E.

    1978-01-01

    The textural features produced in Stannern, a non-porpyritic representative of the eucrite basaltic achondrite class of meteorite, at differing cooling rates and various degrees of initial superheating were studied. Textures produced from mildly superheated melts were found to be fasciculate rather than porphyritic as the result of the cosaturated bulk chemistry of Stannern. The qualitative type of texture apparently depends mainly on the degree of initial superheating, whereas cooling rate exerts a strong influence on the coarseness of texture. Increasing the degree of superheating produces textures from intergranular/subophitic to fasciculate/porphyritic. With initial superheating to 1200 deg C the transition to quasi-porphyritic is controlled by cooling rate, but the development of phenocrysts is merely an overprint on the fasciculate background texture of the groundmass. The suppression of fasciculate texture is completed by a decrease of the degree of initial superheating below the plagioclast entry and suppression of quasi-porphyritic texture is completed by decrease of the degree of initial superheating below pyroxene entry; these qualitative changes do not seem to be produced by changes of cooling rate. A grain size/cooling rate dependence has been used to deduce the cooling rate of fasciculate-textured Stannern clasts (10.1 to 100 deg C/hr).

  13. Three-body crystallization diagrams and the cooling of white dwarfs.

    Science.gov (United States)

    Segretain, L.

    1996-06-01

    The 3-body crystallization diagrams of C/O/Ne ionic mixtures characteristic of white dwarf interiors are examined within the framework of the density-functional theory of freezing. The crystallization process is described more accurately than in former calculations where the three-component system was treated as an effective two-component mixture (Segretain et al. 1994). The distillation process due to neon-crystallization is found to occur only for the late stages of crystallization. At the beginning, the presence of neon plays only a minor role and the phase diagram resembles a pure carbon-oxygen diagram. The final phase diagram is found to exhibit an azeotropic point with a neon concentration x_Ne_=0.22, a carbon concentration x_C_=0.78 and an oxygen concentration x_O_=0, so that during the distillation process, the fluid crystallizes into a pure neon-carbon solid. The critical temperature is T_A_=0.85T_C_, where T_C_ is the pure carbon crystallization temperature. We use this accurate phase diagram to calculate the total gravitational energy released during white dwarf crystallization and the related time delay. The final result yields {DELTA}τ=~2.6Gyr, among which about 20% are due to the neon-distillation process.

  14. Cooling of low-mass carbon-oxygen dwarfs from the planetary nucleus stage through the crystallization stage

    International Nuclear Information System (INIS)

    Iben, I. Jr.; Tutukov, A.V.

    1984-01-01

    The evolution of a carbon-oxygen dwarf of mass Mroughly-equal0.6 Msun has been carried all the way from an initial nuclear burning stage, when it is the central star of a planetary nebula, to the stage of complete internal crystallization, after 10 10 yr of cooling. Shell hydrogen and helium burning, neutrino losses, and the effects of liquification and crystallization have been taken into account. We show how the luminosity-time relationship may be understood in terms of balances between competing physical processes and demonstrate that, after complete crystallization, the time scale for cooling to terrestrial-like temperatures, in our approximation, is simply the optical depth of the outer, nonisothermal layer multiplied by a dimensional constant which, in years, is of the order of unity. A luminosity function based on the results covers the range -5< or approx. =log(L/Lsun)< or approx. =4 and agrees reasonably well with the observed luminosity function extending from the brighest planetary nebula nuclei to the dimmest observed white dwarfs, except perhaps for log(L/L/sub sun/)< or approx. =-4.5. Possible reasons for the apparent discrepancy at low luminosity, apart from the extreme obstacles against discovery, are discussed, one of the simplest is that the oldest dwarfs in the solar vicinity are distributed over a distance from the galactic plane that is approx.5 times larger than is the case for the youngest dwarfs; another possibility is that the opacity in the outer layers of the oldest dwarf models has been overestimated (or underestimatedexclamation) by a factor of 5 or more

  15. Thermal expansion and cooling rate dependence of transition temperature in ZrTiO4 single crystal

    International Nuclear Information System (INIS)

    Park, Y.

    1998-01-01

    Thermal expansion in ZrTiO 4 single crystal was investigated in the temperature range covering the normal, incommensurate, and commensurate phases. Remarkable change was found at the normal-incommensurate phase transition (T I ) in all thermal expansion coefficients a, b, and c. The spontaneous strains χ as and χ bs along the a and b axes show linear temperature dependence, while the spontaneous strain χ cs along the c axis shows a nonlinear temperature dependence. Small discontinuity along the c direction was observed at the incommensurate-commensurate transition temperature, T c = 845 C. dT I /dP and dT c /dP depend on the cooling rate

  16. Comment on "Rapid cooling and cold storage in a silicic magma reservoir recorded in individual crystals".

    Science.gov (United States)

    Wilson, Colin J N; Morgan, Daniel J; Charlier, Bruce L A; Barker, Simon J

    2017-12-22

    Rubin et al (Reports, 16 June 2017, p. 1154) proposed that gradients in lithium abundance in zircons from a rhyolitic eruption in New Zealand reflected short-lived residence at magmatic temperatures interleaved with long-term "cold" (<650°C) storage. Important issues arise with the interpretation of these lithium gradients and consequent crystal thermal histories that raise concerns about the validity of this conclusion. Copyright © 2017, American Association for the Advancement of Science.

  17. Electron spin resonance of Gd in the nuclear cooling agent: PrNi5 single crystals

    International Nuclear Information System (INIS)

    Levin, R.; Davidov, D.; Grayevsky, A.; Shaltiel, D.; Zevin, V.

    1980-01-01

    The ESR of Gd in single crystals of PrNi 5 is observed to exhibit significant angular dependence of the resonance position and linewidth at low temperatures. This is interpreted in terms of the axial spin Hamiltonian which takes the anisotropic susceptibility and the Gd-Pr exchange into consideration. From lineshape analysis the axial crystal field parameter and isotropic Gd-Pr exchange are derived. The Gd ESR linewidth increases with temperature; the thermal broadening is angularly dependent. This is similar to that observed for the Pr NMR in PrNi 5 single crystals. Both the NMR and ESR thermal broadenings are attributed to low-frequency fluctuations of the Pr ions induced by the Pr-Pr exchange coupling. A model for hexagonal Van-Vleck compounds is given and with the linewidth enables the Pr-Pr exchange coupling, under the assumption of a Gaussian or a Lorenzian distribution of the low-frequency fluctuation spectra, to be extracted. It is suggested that the angular dependence of the ESR thermal broadening is due to the Gd-Pr exchange coupling. (UK)

  18. Cooling and crystallization of rhyolite-obsidian lava: Insights from micron-scale projections on plagioclase microlites

    Science.gov (United States)

    Sano, Kyohei; Toramaru, Atsushi

    2017-07-01

    To reveal the cooling process of a rhyolite-obsidian flow, we studied the morphology of plagioclase microlites in the Tokachi-Ishizawa lava of Shirataki, northern Hokkaido, Japan, where the structure of the lava can be observed from obsidian at the base of the flow to the innermost rhyolite. Needle-like micron-scale textures, known as "projections", occur on the short side surfaces of the plagioclase microlites. Using FE-SEM we discovered a positive correlation between the lengths and spacings of these projections. On the basis of the instability theory of an interface between melt and crystal, and to understand the length and spacing data, we developed a model that explains the positive correlation and allows us to simultaneously estimate growth rates and growth times. Applying the model to our morphological data and the estimated growth rates and growth times, we suggest that the characteristics of the projections reflect the degree of undercooling, which in turn correlates with lava structure (the obsidian at the margin of the flow experienced a higher degree of undercooling than the interior rhyolite). The newly developed method provides insights into the degree of undercooling during the final stages of crystallization of a rhyolitic lava flow.

  19. Effect of titanium dioxide (TiO{sub 2}) on largely improving solar reflectance and cooling property of high density polyethylene (HDPE) by influencing its crystallization behavior

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shichao; Zhang, Jun, E-mail: zhangjun@njtech.edu.cn

    2014-12-25

    Highlights: • HDPE/TiO{sub 2} composites have more perfect crystal structure. • Refractive index is the key factor affecting the final solar reflectance. • HDPE/TiO{sub 2} composites can achieve high solar reflectance. • The real cooling property is in accordance with solar reflectance. - Abstract: In this study, the different crystal forms of titanium dioxide (TiO{sub 2}) were added into high density polyethylene (HDPE) to fabricate cool material. Crystal structure, crystallization behavior, crystal morphology were investigated by wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC) and polarized optical microscope (POM). Scanning electron microscope (SEM) was applied to observe dispersion of TiO{sub 2} particles in the HDPE matrix and the cross section morphology. The solar reflectance and actual cooling property were evaluated by UV–Vis–NIR spectrometer and a self-designed device. By adding TiO{sub 2} particles into HDPE matrix, the polymer chain could crystallize into more perfect and thermal stable lamella. The presence of TiO{sub 2} particles dramatically increased the number of nucleation site therefore decreased the crystal size. The subsequent solar reflectance was related to the degree of crystallinity, the spherulite size of HDPE, refractive index, and distribution of TiO{sub 2} particles in HDPE matrix. It was found the rutile TiO{sub 2} could largely improve the total solar reflectance from 28.2% to 51.1%. Finally, the temperature test showed that the composites had excellent cooling property, which was in accordance with solar reflectance result.

  20. Effect of titanium dioxide (TiO2) on largely improving solar reflectance and cooling property of high density polyethylene (HDPE) by influencing its crystallization behavior

    International Nuclear Information System (INIS)

    Wang, Shichao; Zhang, Jun

    2014-01-01

    Highlights: • HDPE/TiO 2 composites have more perfect crystal structure. • Refractive index is the key factor affecting the final solar reflectance. • HDPE/TiO 2 composites can achieve high solar reflectance. • The real cooling property is in accordance with solar reflectance. - Abstract: In this study, the different crystal forms of titanium dioxide (TiO 2 ) were added into high density polyethylene (HDPE) to fabricate cool material. Crystal structure, crystallization behavior, crystal morphology were investigated by wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC) and polarized optical microscope (POM). Scanning electron microscope (SEM) was applied to observe dispersion of TiO 2 particles in the HDPE matrix and the cross section morphology. The solar reflectance and actual cooling property were evaluated by UV–Vis–NIR spectrometer and a self-designed device. By adding TiO 2 particles into HDPE matrix, the polymer chain could crystallize into more perfect and thermal stable lamella. The presence of TiO 2 particles dramatically increased the number of nucleation site therefore decreased the crystal size. The subsequent solar reflectance was related to the degree of crystallinity, the spherulite size of HDPE, refractive index, and distribution of TiO 2 particles in HDPE matrix. It was found the rutile TiO 2 could largely improve the total solar reflectance from 28.2% to 51.1%. Finally, the temperature test showed that the composites had excellent cooling property, which was in accordance with solar reflectance result

  1. Pro Spring Batch

    CERN Document Server

    Minella, Michael T

    2011-01-01

    Since its release, Spring Framework has transformed virtually every aspect of Java development including web applications, security, aspect-oriented programming, persistence, and messaging. Spring Batch, one of its newer additions, now brings the same familiar Spring idioms to batch processing. Spring Batch addresses the needs of any batch process, from the complex calculations performed in the biggest financial institutions to simple data migrations that occur with many software development projects. Pro Spring Batch is intended to answer three questions: *What? What is batch processing? What

  2. Direct transmission electron microscopy observations of martensitic transformations in Ni-rich NiTi single crystals during in situ cooling and straining

    International Nuclear Information System (INIS)

    Kroeger, A.; Dziaszyk, S.; Frenzel, J.; Somsen, Ch.; Dlouhy, A.; Eggeler, G.

    2008-01-01

    We investigate martensitic transformations using transmission electron microscopy (TEM) in compression aged Ni-rich NiTi single crystals with one family of Ni 4 Ti 3 precipitates. Small cylinders from a Ni-rich NiTi single crystal with a Ni content of 51.0 at.% were compression aged at 550 deg. C in the [1 1 1] B2 direction for different aging times. Differential scanning calorimetry (DSC) investigations show that a three-step martensitic transformation (three DSC peaks on cooling from the high temperature regime) can be observed for aging times of 4 ks. In situ cooling TEM investigations reveal that the first peak on cooling is associated with a transformation from B2 to R-phase, starting from all precipitate/matrix interfaces. On further cooling, the B19'-phase appears and grows along precipitate/matrix interfaces (second step). With further decreasing temperature, the remaining R-phase between the precipitates transforms to B19' (third peak). In situ TEM straining experiments of B2 above the martensitic start temperature reveal that first some microstructural regions directly transform in microscopic burst like events from B2 to B19'. On further straining, the B19'-phase grows along precipitate/matrix interfaces. However, no formation of R-phase precedes the formation of stress-induced B19'

  3. The contrasting roles of creep and stress relaxation in the time-dependent deformation during in-situ cooling of a nickel-base single crystal superalloy.

    Science.gov (United States)

    Panwisawas, Chinnapat; D'Souza, Neil; Collins, David M; Bhowmik, Ayan

    2017-09-11

    Time dependent plastic deformation in a single crystal nickel-base superalloy during cooling from casting relevant temperatures has been studied using a combination of in-situ neutron diffraction, transmission electron microscopy and modelling. Visco-plastic deformation during cooling was found to be dependent on the stress and constraints imposed to component contraction during cooling, which mechanistically comprises creep and stress relaxation. Creep results in progressive work hardening with dislocations shearing the γ' precipitates, a high dislocation density in the γ channels and near the γ/γ' interface and precipitate shearing. When macroscopic contraction is restricted, relaxation dominates. This leads to work softening from a decreased dislocation density and the presence of long segment stacking faults in γ phase. Changes in lattice strains occur to a similar magnitude in both the γ and γ' phases during stress relaxation, while in creep there is no clear monotonic trend in lattice strain in the γ phase, but only a marginal increase in the γ' precipitates. Using a visco-plastic law derived from in-situ experiments, the experimentally measured and calculated stresses during cooling show a good agreement when creep predominates. However, when stress relaxation dominates accounting for the decrease in dislocation density during cooling is essential.

  4. Effect of Fe2O3 on the crystallization behavior of glass-ceramics produced from naturally cooled yellow phosphorus furnace slag

    Science.gov (United States)

    Liu, Hong-pan; Huang, Xiao-feng; Ma, Li-ping; Chen, Dan-li; Shang, Zhi-biao; Jiang, Ming

    2017-03-01

    CaO-Al2O3-SiO2 (CAS) glass-ceramics were prepared via a melting method using naturally cooled yellow phosphorus furnace slag as the main raw material. The effects of the addition of Fe2O3 on the crystallization behavior and properties of the prepared glass-ceramics were studied by differential thermal analysis, X-ray diffraction, and scanning electron microscopy. The crystallization activation energy was calculated using the modified Johnson-Mehl-Avrami equation. The results show that the intrinsic nucleating agent in the yellow phosphorus furnace slag could effectively promote the crystallization of CAS. The crystallization activation energy first increased and then decreased with increasing amount of added Fe2O3. At 4wt% of added Fe2O3, the crystallization activation energy reached a maximum of 676.374 kJ·mol-1. The type of the main crystalline phase did not change with the amount of added Fe2O3. The primary and secondary crystalline phases were identified as wollastonite (CaSiO3) and hedenbergite (CaFe(Si2O6)), respectively.

  5. Spring batch essentials

    CERN Document Server

    Rao, P Raja Malleswara

    2015-01-01

    If you are a Java developer with basic knowledge of Spring and some experience in the development of enterprise applications, and want to learn about batch application development in detail, then this book is ideal for you. This book will be perfect as your next step towards building simple yet powerful batch applications on a Java-based platform.

  6. crystal

    Science.gov (United States)

    Yu, Yi; Huang, Yisheng; Zhang, Lizhen; Lin, Zhoubin; Sun, Shijia; Wang, Guofu

    2014-07-01

    A Nd3+:Na2La4(WO4)7 crystal with dimensions of ϕ 17 × 30 mm3 was grown by the Czochralski method. The thermal expansion coefficients of Nd3+:Na2La4(WO4)7 crystal are 1.32 × 10-5 K-1 along c-axis and 1.23 × 10-5 K-1 along a-axis, respectively. The spectroscopic characteristics of Nd3+:Na2La4(WO4)7 crystal were investigated. The Judd-Ofelt theory was applied to calculate the spectral parameters. The absorption cross sections at 805 nm are 2.17 × 10-20 cm2 with a full width at half maximum (FWHM) of 15 nm for π-polarization, and 2.29 × 10-20 cm2 with a FWHM of 14 nm for σ-polarization. The emission cross sections are 3.19 × 10-20 cm2 for σ-polarization and 2.67 × 10-20 cm2 for π-polarization at 1,064 nm. The fluorescence quantum efficiency is 67 %. The quasi-cw laser of Nd3+:Na2La4(WO4)7 crystal was performed. The maximum output power is 80 mW. The slope efficiency is 7.12 %. The results suggest Nd3+:Na2La4(WO4)7 crystal as a promising laser crystal fit for laser diode pumping.

  7. Influence of additive L-phenylalanine on stabilization of metastable α-form of L-glutamic acid in cooling crystallization

    Science.gov (United States)

    Quang, Khuu Chau; Nhan, Le Thi Hong; Huyen, Trinh Thi Thanh; Tuan, Nguyen Anh

    2017-09-01

    The influence of additive amino acid L-phenylalanine on stabilization of metastable α-form of L-glutamic acid was investigated in cooling crystallization. The present study found that the additive L-phenylalanine could be used to stabilize the pure metastable α-form in L-glutamic acid crystallization, where the additive concentration of 0.05-0.1 (g/L) was sufficient to stabilize the 100% wt metastable α-form in solid product at L-glutamic acid concentration of 30-45 (g/L). Additionally, the present results indicated that the adsorption of additive L-phenylalanine on the (001) surface of α-form was more favorable than that of the β-form molecular, so the nucleation sites of stable β-form was occupied by additive molecular, which resulted in inhibition of nucleation and growth of β-form, allowing stabilization of metastable α-form.

  8. History Dependence of the Microstructure on Time-Dependent Deformation During In-Situ Cooling of a Nickel-Based Single-Crystal Superalloy

    Science.gov (United States)

    Panwisawas, Chinnapat; D'Souza, Neil; Collins, David M.; Bhowmik, Ayan; Roebuck, Bryan

    2018-05-01

    Time-dependent plastic deformation through stress relaxation and creep deformation during in-situ cooling of the as-cast single-crystal superalloy CMSX-4® has been studied via neutron diffraction, transmission electron microscopy, electro-thermal miniature testing, and analytical modeling across two temperature regimes. Between 1000 °C and 900 °C, stress relaxation prevails and gives rise to softening as evidenced by a decreased dislocation density and the presence of long segment stacking faults in γ phase. Lattice strains decrease in both the γ matrix and γ' precipitate phases. A constitutive viscoplastic law derived from in-situ isothermal relaxation test under-estimates the equivalent plastic strain in the prediction of the stress and strain evolution during cooling in this case. It is thereby shown that the history dependence of the microstructure needs to be taken into account while deriving a constitutive law and which becomes even more relevant at high temperatures approaching the solvus. Higher temperature cooling experiments have also been carried out between 1300 °C and 1150 °C to measure the evolution of stress and plastic strain close to the γ' solvus temperature. In-situ cooling of samples using ETMT shows that creep dominates during high-temperature deformation between 1300 °C and 1220 °C, but below a threshold temperature, typically 1220 °C work hardening begins to prevail from increasing γ' fraction and resulting in a rapid increase in stress. The history dependence of prior accumulated deformation is also confirmed in the flow stress measurements using a single sample while cooling. The saturation stresses in the flow stress experiments show very good agreement with the stresses measured in the cooling experiments when viscoplastic deformation is dominant. This study demonstrates that experimentation during high-temperature deformation as well as the history dependence of the microstructure during cooling plays a key role in deriving

  9. Multi-dimensional population balance models of crystallization processes

    DEFF Research Database (Denmark)

    Meisler, Kresten Troelstrup; von Solms, Nicolas

    A generic and model-based framework for batch cooling crystallization operations has been extended to incorporate continuous and fed-batch processes. Modules for the framework have been developed, including a module for reactions, allowing the study of reactive crystallization within the framework....... A kinetic model library together with an ontology for knowledge representation has been developed, in which kinetic models and relations from the literature are stored along with the references and data. The model library connects to the generic modelling framework as well, as models can be retrieved......, analyzed, used for simulation and stored again. The model library facilitates comparison of expressions for kinetic phenomena and is tightly integrated with the model analysis tools of the framework.Through the framework, a model for a crystallization operation may be systematically generated...

  10. SPS batch spacing optimisation

    CERN Document Server

    Velotti, F M; Carlier, E; Goddard, B; Kain, V; Kotzian, G

    2017-01-01

    Until 2015, the LHC filling schemes used the batch spac-ing as specified in the LHC design report. The maximumnumber of bunches injectable in the LHC directly dependson the batch spacing at injection in the SPS and hence onthe MKP rise time.As part of the LHC Injectors Upgrade project for LHCheavy ions, a reduction of the batch spacing is needed. In thisdirection, studies to approach the MKP design rise time of150ns(2-98%) have been carried out. These measurementsgave clear indications that such optimisation, and beyond,could be done also for higher injection momentum beams,where the additional slower MKP (MKP-L) is needed.After the successful results from 2015 SPS batch spacingoptimisation for the Pb-Pb run [1], the same concept wasthought to be used also for proton beams. In fact, thanksto the SPS transverse feed back, it was already observedthat lower batch spacing than the design one (225ns) couldbe achieved. For the 2016 p-Pb run, a batch spacing of200nsfor the proton beam with100nsbunch spacing wasreque...

  11. More accurate determination of the quantity of ice crystallized at low cooling rates in the glycerol and 1,2-propanediol aqueous solutions: comparison with equilibrium.

    Science.gov (United States)

    Boutron, P

    1984-04-01

    It is generally assumed that when cells are cooled at rates close to those corresponding to the maximum of survival, once supercooling has ceased, above the eutectic melting temperature the extracellular ice is in equilibrium with the residual solution. This did not seem evident to us due to the difficulty of ice crystallization in cryoprotective solutions. The maximum quantities of ice crystallized in glycerol and 1,2-propanediol solutions have been calculated from the area of the solidification and fusion peaks obtained with a Perkin-Elmer DSC-2 differential scanning calorimeter. The accuracy has been improved by several corrections: better defined baseline, thermal variation of the heat of fusion of the ice, heat of solution of the water from its melting with the residual solution. More ice crystallizes in the glycerol than in the 1,2-propanediol solutions, of which the amorphous residue contains about 40 to 55% 1,2-propanediol. The equilibrium values are unknown in the presence of 1,2-propanediol. With glycerol, in our experiments, the maximum is first lower than the equilibrium but approaches it as the concentration increases. It is not completely determined by the colligative properties of the solutes.

  12. High heat load performance of an inclined crystal monochromator with liquid gallium cooling on the CHESS-ANL undulator

    International Nuclear Information System (INIS)

    Macrander, A.T.; Lee, W.K.; Smither, R.K.; Mills, D.M.

    1992-01-01

    Recent results for the performance of a novel double crystal monochromator subjected to high heat loads on an APS prototype undulator at the Cornell High Energy Synchrotron Source (CHESS) are presented. The monochromator was designed to achieve symmetric diffraction from asymmetric planes to spread out the beam footprint thereby lowering the incident power density. Both crystals had (111) oriented surfaces and were arranged such that the beam was diffracted from the (11 bar 1) planes at 5 KeV. Rocking curves with minimal distortion were obtained at a ring electron current of 100 mA. This corresponded to 380 Watts total power and an average power density of 40 Watts/mm 2 normal to the incident beam. These results are compared to data obtained from the same crystals in the standard geometry (diffracting planes parallel to surface). The footprint area in the inclined case was three times that of the standard case. We also obtained rocking curve data for the (333) reflection at 15 KeV for both standard and inclined cases, and these data also showed a minimal distortion only for the inclined case. In addition, thermal data were obtained via infrared pyrometry. Liquid gallium flow rates of up to 2 gallons per minute were investigated. The diffraction data revealed a dramatically improved performance for the inclined crystal case

  13. Heuristics for batching and sequencing in batch processing machines

    Directory of Open Access Journals (Sweden)

    Chuda Basnet

    2016-12-01

    Full Text Available In this paper, we discuss the “batch processing” problem, where there are multiple jobs to be processed in flow shops. These jobs can however be formed into batches and the number of jobs in a batch is limited by the capacity of the processing machines to accommodate the jobs. The processing time required by a batch in a machine is determined by the greatest processing time of the jobs included in the batch. Thus, the batch processing problem is a mix of batching and sequencing – the jobs need to be grouped into distinct batches, the batches then need to be sequenced through the flow shop. We apply certain newly developed heuristics to the problem and present computational results. The contributions of this paper are deriving a lower bound, and the heuristics developed and tested in this paper.

  14. Prunus dulcis, Batch

    African Journals Online (AJOL)

    STORAGESEVER

    2010-06-07

    Jun 7, 2010 ... almond (Prunus dulcis, Batch) genotypes as revealed by PCR analysis. Yavar Sharafi1*, Jafar Hajilou1, Seyed AbolGhasem Mohammadi2, Mohammad Reza Dadpour1 and Sadollah Eskandari3. 1Department of Horticulture, Faculty of Agriculture, University of Tabriz, Tabriz, 5166614766, Iran.

  15. Response to Comment on "Rapid cooling and cold storage in a silicic magma reservoir recorded in individual crystals".

    Science.gov (United States)

    Cooper, Kari M; Till, Christy B; Kent, Adam J R; Costa, Fidel; Rubin, Allison E; Gravley, Darren; Deering, Chad; Cole, Jim; Bose, Maitrayee

    2017-12-22

    In a recent paper, we used Li concentration profiles and U-Th ages to constrain the thermal conditions of magma storage. Wilson and co-authors argue that the data instead reflect control of Li behavior by charge balance during partitioning and not by experimentally determined diffusion rates. Their arguments are based on (i) a coupled diffusion mechanism for Li, which has been postulated but has not been documented to occur, and (ii) poorly constrained zircon growth rates combined with the assumption of continuous zircon crystallization. Copyright © 2017, American Association for the Advancement of Science.

  16. Time-resolved photoemission spectroscopy of electronic cooling and localization in CH3NH3PbI3 crystals

    Science.gov (United States)

    Chen, Zhesheng; Lee, Min-i.; Zhang, Zailan; Diab, Hiba; Garrot, Damien; Lédée, Ferdinand; Fertey, Pierre; Papalazarou, Evangelos; Marsi, Marino; Ponseca, Carlito; Deleporte, Emmanuelle; Tejeda, Antonio; Perfetti, Luca

    2017-09-01

    We measure the surface of CH3NH3PbI3 single crystals by making use of two-photon photoemission spectroscopy. Our method monitors the electronic distribution of photoexcited electrons, explicitly discriminating the initial thermalization from slower dynamical processes. The reported results disclose the fast-dissipation channels of hot carriers (0.25 ps), set an upper bound to the surface-induced recombination velocity (PbI3 samples is consistent with the progressive reduction of photoconversion efficiency in operating devices. Minimizing the density of shallow traps and solving the aging problem may boost the macroscopic efficiency of solar cells to the theoretical limit.

  17. Development of a neutron irradiation device with a cooled crystal filter: Radiation physical properties and applications in in vivo irradiations

    International Nuclear Information System (INIS)

    Braetter, P.; Galinke, E.; Gatschke, W.; Gawlik, D.; Roesick, U.

    1979-01-01

    The radiation-physical and geometrical properties of a neutron-beam, collimated with a Bi-crystal filter were investigated at the reactor BER II. The influence of the crystal temperature as well as the actions of a reflector and a collimator on neutron flux-density and neutron field of the thermal neutrons were investigated. The dose contributions of the thermal, epithermal and fast neutrons as well as γ-radiation was determined by activation of the sample respective with TLD-measurements. The influence of irradiation and measurement geometry on the sensitivity and detection probability was investigated by means of phantom irradiations. The method prooved to be suitable, to detect changes of the Ca-content in a rat hind leg by about 10%. In investigations on animal groups of about 10 animals a threshold of detectability for changes of the ca-content is to be expected by about 4%. In a further group experiment it was found, that even in the case of multiple radiation the procedure of irradiation and measurement was not followed by a significant change in the Ca-content of the hind legs of the testing animals. (orig.) [de

  18. Monoclinic MB phase and phase instability in [110] field cooled Pb(Zn1/3Nb2/3)O3-4.5%PbTiO3 single crystals

    Science.gov (United States)

    Yao, Jianjun; Cao, Hu; Ge, Wenwei; Li, Jiefang; Viehland, D.

    2009-08-01

    We report the finding of a monoclinic MB phase in Pb(Zn1/3Nb2/3)O3-4.5%PbTiO3 single crystals. High precision x-ray diffraction investigations of [110] field cooled crystals have shown a transformation sequence of cubic(C)→tetragonal(T)→orthorhombic(O)→monoclinic(MB), which is different from that previously reported [A.-E. Renault et al., J. Appl. Phys. 97, 044105 (2005)]. Beginning in the zero-field-cooled condition at 383 K, a rhombohedral (R)→MB→O sequence was observed with increasing field. Coexisting MB and O phases were then found upon removal of field, which fully transformed to MB on cooling to room temperature.

  19. Reduction of Langelier index of cooling water by electrolytic ...

    African Journals Online (AJOL)

    LSI) of the cooling water from a cooling tower of a textile industry was investigated. Sacrificial anodes were employed which prevent obnoxious chlorine generation. A series of batch experiments using stainless steel electrodes were conducted ...

  20. Applications of thin-film sandwich crystallization platforms

    Energy Technology Data Exchange (ETDEWEB)

    Axford, Danny, E-mail: danny.axford@diamond.ac.uk; Aller, Pierre; Sanchez-Weatherby, Juan; Sandy, James [Diamond Light Source, Harwell Oxford, Didcot OX11 0DE (United Kingdom)

    2016-03-24

    Crystallization via sandwiches of thin polymer films is presented and discussed. Examples are shown of protein crystallization in, and data collection from, solutions sandwiched between thin polymer films using vapour-diffusion and batch methods. The crystallization platform is optimal for both visualization and in situ data collection, with the need for traditional harvesting being eliminated. In wells constructed from the thinnest plastic and with a minimum of aqueous liquid, flash-cooling to 100 K is possible without significant ice formation and without any degradation in crystal quality. The approach is simple; it utilizes low-cost consumables but yields high-quality data with minimal sample intervention and, with the very low levels of background X-ray scatter that are observed, is optimal for microcrystals.

  1. Stacking with stochastic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Caspers, Fritz E-mail: Fritz.Caspers@cern.ch; Moehl, Dieter

    2004-10-11

    Accumulation of large stacks of antiprotons or ions with the aid of stochastic cooling is more delicate than cooling a constant intensity beam. Basically the difficulty stems from the fact that the optimized gain and the cooling rate are inversely proportional to the number of particles 'seen' by the cooling system. Therefore, to maintain fast stacking, the newly injected batch has to be strongly 'protected' from the Schottky noise of the stack. Vice versa the stack has to be efficiently 'shielded' against the high gain cooling system for the injected beam. In the antiproton accumulators with stacking ratios up to 10{sup 5} the problem is solved by radial separation of the injection and the stack orbits in a region of large dispersion. An array of several tapered cooling systems with a matched gain profile provides a continuous particle flux towards the high-density stack core. Shielding of the different systems from each other is obtained both through the spatial separation and via the revolution frequencies (filters). In the 'old AA', where the antiproton collection and stacking was done in one single ring, the injected beam was further shielded during cooling by means of a movable shutter. The complexity of these systems is very high. For more modest stacking ratios, one might use azimuthal rather than radial separation of stack and injected beam. Schematically half of the circumference would be used to accept and cool new beam and the remainder to house the stack. Fast gating is then required between the high gain cooling of the injected beam and the low gain stack cooling. RF-gymnastics are used to merge the pre-cooled batch with the stack, to re-create free space for the next injection, and to capture the new batch. This scheme is less demanding for the storage ring lattice, but at the expense of some reduction in stacking rate. The talk reviews the 'radial' separation schemes and also gives some

  2. Cooling techniques

    International Nuclear Information System (INIS)

    Moeller, S.P.

    1994-01-01

    After an introduction to the general concepts of cooling of charged particle beams, some specific cooling methods are discussed, namely stochastic, electron and laser cooling. The treatment concentrates on the physical ideas of the cooling methods and only very crude derivations of cooling times are given. At the end three other proposed cooling schemes are briefly discussed. (orig.)

  3. Crystallization: Key thermodynamic, kinetic and hydrodynamic aspects

    Indian Academy of Sciences (India)

    Crystallization is extensively used in different industrial applications, ... In batch crystallization, a crystalline product with uniform size and shape is desirable, .... y concentration, metastable zone width. C hoi. G. J at. Urbana-Champagne,. USA.

  4. Kubernetes as a batch scheduler

    OpenAIRE

    Souza, Clenimar; Brito Da Rocha, Ricardo

    2017-01-01

    This project aims at executing a CERN batch use case using Kubernetes, in order to figure out what are the advantages and disadvantages, as well as the functionality that can be replicated or is missing. The reference for the batch system is the CERN Batch System, which uses HTCondor. Another goal of this project is to evaluate the current status of federated resources in Kubernetes, in comparison to the single-cluster API resources. Finally, the last goal of this project is to implement buil...

  5. Data-driven batch schuduling

    Energy Technology Data Exchange (ETDEWEB)

    Bent, John [Los Alamos National Laboratory; Denehy, Tim [GOOGLE; Arpaci - Dusseau, Remzi [UNIV OF WISCONSIN; Livny, Miron [UNIV OF WISCONSIN; Arpaci - Dusseau, Andrea C [NON LANL

    2009-01-01

    In this paper, we develop data-driven strategies for batch computing schedulers. Current CPU-centric batch schedulers ignore the data needs within workloads and execute them by linking them transparently and directly to their needed data. When scheduled on remote computational resources, this elegant solution of direct data access can incur an order of magnitude performance penalty for data-intensive workloads. Adding data-awareness to batch schedulers allows a careful coordination of data and CPU allocation thereby reducing the cost of remote execution. We offer here new techniques by which batch schedulers can become data-driven. Such systems can use our analytical predictive models to select one of the four data-driven scheduling policies that we have created. Through simulation, we demonstrate the accuracy of our predictive models and show how they can reduce time to completion for some workloads by as much as 80%.

  6. Ultrasound Assisted Particle Size Control by Continuous Seed Generation and Batch Growth

    OpenAIRE

    Jordens, Jeroen; Canini, Enio; Gielen, Bjorn; Van Gerven, Tom; Braeken, Leen

    2017-01-01

    Controlling particle size is essential for crystal quality in the chemical and pharmaceutical industry. Several articles illustrate the potential of ultrasound to tune this particle size during the crystallization process. This paper investigates how ultrasound can control the particle size distribution (PSD) of acetaminophen crystals by continuous seed generation in a tubular crystallizer followed by batch growth. It is demonstrated that the supersaturation ratio at which ultrasound starts s...

  7. The effect factors of potassium dihydrogen phosphate crystallization in aqueous solution

    Science.gov (United States)

    Zhou, Cun; Sun, Fei; Liu, Xuzhao

    2017-01-01

    The effects of cooling rate and pH on the potassium dihydrogen phosphate crystallization process were studied by means of batch crystallization process. The experiment shows that with the increase of cooling rate, the metastable zone width increase and the induction period decrease. When the pH is 3.0, the metastable zone width and induction period are both the minimum, while the crystallization rate is the highest. The crystallization products were characterized by scanning election microscope. Potassium Dihydrogen Phosphate (KDP) is a kind of excellent nonlinear optical materials, and belongs to tetragonal system, and ideal shape is aggregate of tetragonal prism and tetragonal dipyramid, the (100) cone is alternating accumulation by double positive ions and double negative ions [1-4]. The crystals of aqueous solution method to grow have large electro-optical nonlinear coefficient and high loser-damaged threshold, and it is the only nonlinear optical crystal could be used in inertial confinement fusion (ICF), KDP crystals are the ideal system to study the native defects of complex oxide insulating material [5-7]. With the development of photovoltaic technology, KDP crystals growth and performance have become a research focus worldwide [8, 9]. The merits of the crystallization process directly affect the quality of KDP products, so the study of the effect of crystallization conditions has an important significance on industrial production. This paper studied the change rule of metastable zone width, induction period, crystallization rate and particle size distribution in crystal process, and discussed the technical condition of KDP crystallization.

  8. BatchJS: Implementing Batches in JavaScript

    NARCIS (Netherlands)

    D. Kasemier

    2014-01-01

    htmlabstractNone of our popular programming languages know how to handle distribution well. Yet our programs interact more and more with each other and our data resorts in databases and web services. Batches are a new addition to languages that can finally bring native support for distribution to

  9. Simulated Batch Production of Penicillin

    Science.gov (United States)

    Whitaker, A.; Walker, J. D.

    1973-01-01

    Describes a program in applied biology in which the simulation of the production of penicillin in a batch fermentor is used as a teaching technique to give students experience before handling a genuine industrial fermentation process. Details are given for the calculation of minimum production cost. (JR)

  10. NDA BATCH 2002-02

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence Livermore National Laboratory

    2009-12-09

    QC sample results (daily background checks, 20-gram and 100-gram SGS drum checks) were within acceptable criteria established by WIPP's Quality Assurance Objectives for TRU Waste Characterization. Replicate runs were performed on 5 drums with IDs LL85101099TRU, LL85801147TRU, LL85801109TRU, LL85300999TRU and LL85500979TRU. All replicate measurement results are identical at the 95% confidence level as established by WIPP criteria. Note that the batch covered 5 weeks of SGS measurements from 23-Jan-2002 through 22-Feb-2002. Data packet for SGS Batch 2002-02 generated using gamma spectroscopy with the Pu Facility SGS unit is technically reasonable. All QC samples are in compliance with established control limits. The batch data packet has been reviewed for correctness, completeness, consistency and compliance with WIPP's Quality Assurance Objectives and determined to be acceptable. An Expert Review was performed on the data packet between 28-Feb-02 and 09-Jul-02 to check for potential U-235, Np-237 and Am-241 interferences and address drum cases where specific scan segments showed Se gamma ray transmissions for the 136-keV gamma to be below 0.1 %. Two drums in the batch showed Pu-238 at a relative mass ratio more than 2% of all the Pu isotopes.

  11. Batching System for Superior Service

    Science.gov (United States)

    2001-01-01

    Veridian's Portable Batch System (PBS) was the recipient of the 1997 NASA Space Act Award for outstanding software. A batch system is a set of processes for managing queues and jobs. Without a batch system, it is difficult to manage the workload of a computer system. By bundling the enterprise's computing resources, the PBS technology offers users a single coherent interface, resulting in efficient management of the batch services. Users choose which information to package into "containers" for system-wide use. PBS also provides detailed system usage data, a procedure not easily executed without this software. PBS operates on networked, multi-platform UNIX environments. Veridian's new version, PBS Pro,TM has additional features and enhancements, including support for additional operating systems. Veridian distributes the original version of PBS as Open Source software via the PBS website. Customers can register and download the software at no cost. PBS Pro is also available via the web and offers additional features such as increased stability, reliability, and fault tolerance.A company using PBS can expect a significant increase in the effective management of its computing resources. Tangible benefits include increased utilization of costly resources and enhanced understanding of computational requirements and user needs.

  12. Theory of tapered laser cooling

    International Nuclear Information System (INIS)

    Okamoto, Hiromi; Wei, J.

    1998-01-01

    A theory of tapered laser cooling for fast circulating ion beams in a storage ring is constructed. The authors describe the fundamentals of this new cooling scheme, emphasizing that it might be the most promising way to beam crystallization. The cooling rates are analytically evaluated to study the ideal operating condition. They discuss the physical implication of the tapering factor of cooling laser, and show how to determine its optimum value. Molecular dynamics method is employed to demonstrate the validity of the present theory

  13. Cooling towers

    International Nuclear Information System (INIS)

    Boernke, F.

    1975-01-01

    The need for the use of cooling systems in power plant engineering is dealt with from the point of view of a non-polluting form of energy production. The various cooling system concepts up to the modern natural-draught cooling towers are illustrated by examples. (TK/AK) [de

  14. NGBAuth - Next Generation Batch Authentication for long running batch jobs.

    CERN Document Server

    Juto, Zakarias

    2015-01-01

    This document describes the prototyping of a new solution for the CERN batch authentication of long running jobs. While the job submission requires valid user credentials, these have to be renewed due to long queuing and execution times. Described within is a new system which will guarantee a similar level of security as the old LSFAuth while simplifying the implementation and the overall architecture. The new system is being built on solid, streamlined and tested components (notably OpenSSL) and a priority has been to make it more generic in order to facilitate the evolution of the current system such as for the expected migration from LSF to Condor as backend batch system.

  15. Optimization of heat-liberating batches for ash residue stabilization

    International Nuclear Information System (INIS)

    Karlina, O.K.; Varlackova, G.A.; Ojovan, M.I.; Tivansky, V.M.; Dmitriev, S.A.

    1999-01-01

    The ash residue obtained after incineration of solid radioactive waste is a dusting poly-dispersed powder like material that contains radioactive nuclides ( 137 Cs, 90 Sr, 239 Pu, hor ( ellipsis)). Specific radioactivity of the ash can be about 10 5 --10 7 Bq/kg. In order to dispose of the ash, residue shall be stabilized by producing a monolith material. The ash residue can be either vitrified or stabilized into a ceramic matrix. For this purpose the ash residue is mixed with fluxing agents followed by melting of obtained composition in the different type melters. As a rule this requires both significant energy consumption and complex melting equipment. A stabilization technology of ash residue was proposed recently by using heat liberating batches-compositions with redox properties. The ash residue is melted due to exothermic chemical reactions in the mixture with heat-liberating batch that occur with considerable release of heat. Stabilization method has three stages: (1) preparation of a mixture of heating batch and ash residue with or without glass forming batch (frit); (2) ignition and combustion of mixed composition; (3) cooling (quenching) of obtained vitreous material. Combustion of mixed composition occurs in the form of propagation of reacting wave. The heat released during exothermic chemical reactions provides melting of ash residue components and production of glass-like phase. The final product consists of a glass like matrix with embedded crystalline inclusions of infusible ash residue components

  16. PROOF on a Batch System

    International Nuclear Information System (INIS)

    Behrenhoff, W; Ehrenfeld, W; Samson, J; Stadie, H

    2011-01-01

    The 'parallel ROOT facility' (PROOF) from the ROOT framework provides a mechanism to distribute the load of interactive and non-interactive ROOT sessions on a set of worker nodes optimising the overall execution time. While PROOF is designed to work on a dedicated PROOF cluster, the benefits of PROOF can also be used on top of another batch scheduling system with the help of temporary per user PROOF clusters. We will present a lightweight tool which starts a temporary PROOF cluster on a SGE based batch cluster or, via a plugin mechanism, e.g. on a set of bare desktops via ssh. Further, we will present the result of benchmarks which compare the data throughput for different data storage back ends available at the German National Analysis Facility (NAF) at DESY.

  17. Direct transmission electron microscopy observations of martensitic transformations in Ni-rich NiTi single crystals during in situ cooling and straining

    Czech Academy of Sciences Publication Activity Database

    Kröger, A.; Dziaszyk, S.; Frenzel, J.; Somsen, Ch.; Dlouhý, Antonín; Eggeler, G.

    2008-01-01

    Roč. 481, Sp. Iss. (2008), s. 452-456 ISSN 0921-5093. [ESOMAT 2006. Bochum, 10.09.2006-15.09.2006] Institutional research plan: CEZ:AV0Z20410507 Keywords : In situ TEM * NiTi single crystal * Martensitic transformations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.806, year: 2008

  18. Spray cooling

    International Nuclear Information System (INIS)

    Rollin, Philippe.

    1975-01-01

    Spray cooling - using water spraying in air - is surveyed as a possible system for make-up (peak clipping in open circuit) or major cooling (in closed circuit) of the cooling water of the condensers in thermal power plants. Indications are given on the experiments made in France and the systems recently developed in USA, questions relating to performance, cost and environmental effects of spray devices are then dealt with [fr

  19. Formation of Piroxicam Polymorphism in Solution Crystallization

    DEFF Research Database (Denmark)

    Bruun Hansen, Thomas; Qu, Haiyan

    2015-01-01

    also explored, and new insights into polymorphic control are documented and discussed. The crystal landscape was mapped for cooling crystallization of piroxicam from acetone/water mixtures (0.5 K/min) and for antisolvent crystallization from acetone with water as the antisolvent. Varying cooling rates...

  20. Study on the impact of transition from 3-batch to 4-batch loading at Loviisa NPP on the long-term decay heat and activity inventory

    Energy Technology Data Exchange (ETDEWEB)

    Lahtinen, Tuukka [Fortum Power and Heat Ltd., Fortum (Finland)

    2017-09-15

    The fuel economy of Loviisa NPP was improved by implementing a transition from 3-batch to 4-batch loading scheme between 2009 and 2013. Equilibrium cycle length as well as all process parameters were retained unchanged while the increase of fuel enrichment enabled to reduce the annual reload batch size from 102 to 84 assemblies. The fuel cycle transition obviously had an effect on the long-term decay heat and activity inventory. However, due to simultaneous change in several quantities the net effect over the relevant cooling time region is not self-evident. In this study the effect is analyzed properly, i. e. applying consistent calculation models and detailed description of assembly-wise irradiation histories. The study concludes that for the cooling time, foreseen typical prior to encapsulation of assemblies, the decay heat of discharge batch increases 2 - 3%. It is also concluded that, in order to maintain 100% filling degree of final disposal canisters, the cooling time prior to encapsulation needs to be prolonged by 10 - 15 years.

  1. A Model-based B2B (Batch to Batch) Control for An Industrial Batch Polymerization Process

    Science.gov (United States)

    Ogawa, Morimasa

    This paper describes overview of a model-based B2B (batch to batch) control for an industrial batch polymerization process. In order to control the reaction temperature precisely, several methods based on the rigorous process dynamics model are employed at all design stage of the B2B control, such as modeling and parameter estimation of the reaction kinetics which is one of the important part of the process dynamics model. The designed B2B control consists of the gain scheduled I-PD/II2-PD control (I-PD with double integral control), the feed-forward compensation at the batch start time, and the model adaptation utilizing the results of the last batch operation. Throughout the actual batch operations, the B2B control provides superior control performance compared with that of conventional control methods.

  2. Ventilative Cooling

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols; Kolokotroni, Maria

    This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state-of-the-art of ventil......This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state......-of-the-art of ventilative cooling potentials and limitations, its consideration in current energy performance regulations, available building components and control strategies and analysis methods and tools. In addition, the report provides twenty six examples of operational buildings using ventilative cooling ranging from...

  3. Monte Carlo simulation on kinetics of batch and semi-batch free radical polymerization

    KAUST Repository

    Shao, Jing; Tang, Wei; Xia, Ru; Feng, Xiaoshuang; Chen, Peng; Qian, Jiasheng; Song, Changjiang

    2015-01-01

    experimental and simulation studies, we showed the capability of our Monte Carlo scheme on representing polymerization kinetics in batch and semi-batch processes. Various kinetics information, such as instant monomer conversion, molecular weight

  4. Cooling towers

    International Nuclear Information System (INIS)

    Korik, L.; Burger, R.

    1992-01-01

    What is the effect of 0.6C (1F) temperature rise across turbines, compressors, or evaporators? Enthalpy charts indicate for every 0.6C (1F) hotter water off the cooling tower will require an additional 2 1/2% more energy cost. Therefore, running 2.2C (4F) warmer due to substandard cooling towers could result in a 10% penalty for overcoming high heads and temperatures. If it costs $1,250,000.00 a year to operate the system, $125,000.00 is the energy penalty for hotter water. This paper investigates extra fuel costs involved in maintaining design electric production with cooling water 0.6C (1F) to 3C (5.5F) hotter than design. If design KWH cannot be maintained, paper will calculate dollar loss of saleable electricity. The presentation will conclude with examining the main causes of deficient cold water production. State-of-the-art upgrading and methodology available to retrofit existing cooling towers to optimize lower cooling water temperatures will be discussed

  5. Family based dispatching with batch availability

    NARCIS (Netherlands)

    van der Zee, D.J.

    2013-01-01

    Family based dispatching rules seek to lower set-up frequencies by grouping (batching) similar types of jobs for joint processing. Hence shop flow times may be improved, as less time is spent on set-ups. Motivated by an industrial project we study the control of machines with batch availability,

  6. Flux free growth of large FeSe1/2Te1/2 superconducting single crystals by an easy high temperature melt and slow cooling method

    Directory of Open Access Journals (Sweden)

    P. K. Maheshwari

    2015-09-01

    Full Text Available We report successful growth of flux free large single crystals of superconducting FeSe1/2Te1/2 with typical dimensions of up to few cm. The AC and DC magnetic measurements revealed the superconducting transition temperature (Tc value of around 11.5K and the isothermal MH showed typical type-II superconducting behavior. The lower critical field (Hc1 being estimated by measuring the low field isothermal magnetization in superconducting regime is found to be above 200Oe at 0K. The temperature dependent electrical resistivity ρ(T  showed the Tc (onset to be 14K and the Tc(ρ = 0 at 11.5K. The electrical resistivity under various magnetic fields i.e., ρ(TH for H//ab and H//c demonstrated the difference in the width of Tc with applied field of 14Tesla to be nearly 2K, confirming the anisotropic nature of superconductivity. The upper critical and irreversibility fields at absolute zero temperature i.e., Hc2(0 and Hirr(0 being determined by the conventional one-band Werthamer–Helfand–Hohenberg (WHH equation for the criteria of normal state resistivity (ρn falling to 90% (onset, and 10% (offset is 76.9Tesla, and 37.45Tesla respectively, for H//c and 135.4Tesla, and 71.41Tesla respectively, for H//ab. The coherence length at the zero temperature is estimated to be above 20Å ´ by using the Ginsburg-Landau theory. The activation energy for the FeSe1/2Te1/2 in both directions H//c and H//ab is determined by using Thermally Activation Flux Flow (TAFF model.

  7. Cooling tower

    Energy Technology Data Exchange (ETDEWEB)

    Norbaeck, P; Heneby, H

    1976-01-22

    Cooling towers to be transported on road vehicles as a unit are not allowed to exceed certain dimensions. In order to improve the efficiency of such a cooling tower (of cross-flow design and box-type body) with given dimensions, it is proposed to arrange at least one of the scrubbing bodies displaceable within a module or box. Then it can be moved out of the casing into working position, thereby increasing the front surface available for the inlet of air (and with it the efficiency) by nearly a factor of two.

  8. Analysis and modelling of the energy consumption of chemical batch plants

    Energy Technology Data Exchange (ETDEWEB)

    Bieler, P.S.

    2004-07-01

    This report for the Swiss Federal Office of Energy (SFOE) describes two different approaches for the energy analysis and modelling of chemical batch plants. A top-down model consisting of a linear equation based on the specific energy consumption per ton of production output and the base consumption of the plant is postulated. The model is shown to be applicable to single and multi-product batches for batch plants with constant production mix and multi-purpose batch plants in which only similar chemicals are produced. For multipurpose batch plants with highly varying production processes and changing production mix, the top-down model produced inaccurate results. A bottom-up model is postulated for such plants. The results obtained are discussed that show that the electricity consumption for infrastructure equipment was significant and responsible for about 50% of total electricity consumption. The specific energy consumption for the different buildings was related to the degree of automation and the production processes. Analyses of the results of modelling are presented. More detailed analyses of the energy consumption of this apparatus group show that about 30 to 40% of steam energy is lost and thus a large potential for optimisation exists. Various potentials for making savings, ranging from elimination of reflux conditions to the development of a new heating/cooling-system for a generic batch reactor, are identified.

  9. A crystal barrel

    CERN Multimedia

    2007-01-01

    The production of crystals for the barrel of the CMS electromagnetic calorimeter has been completed. This is an important milestone for the experiment, which received the last of its 62,960 crystals on 9 March. The members of the team responsible for the crystal acceptance testing at CERN display the last crystal for the CMS electromagnetic calorimeter barrel. From left to right: Igor Tarasov, Etiennette Auffray and Hervé Cornet.One of the six machines specially developed to measure 67 different parameters on each crystal. Igor Tarasov is seen inserting the last batch of crystals into the machine. The last of the 62,960 CMS barrel crystals arrived at CERN on 9 March. Once removed from its polystyrene protection, this delicate crystal, like thousands of its predecessors, will be inserted into the last of the 36 supermodules of the barrel electromagnetic calorimeter in a few days' time. This marks the end of an important chapter in an almost 15-year-long journey by the CMS crystals team, some of whose member...

  10. Uneven batch data alignment with application to the control of batch end-product quality.

    Science.gov (United States)

    Wan, Jian; Marjanovic, Ognjen; Lennox, Barry

    2014-03-01

    Batch processes are commonly characterized by uneven trajectories due to the existence of batch-to-batch variations. The batch end-product quality is usually measured at the end of these uneven trajectories. It is necessary to align the time differences for both the measured trajectories and the batch end-product quality in order to implement statistical process monitoring and control schemes. Apart from synchronizing trajectories with variable lengths using an indicator variable or dynamic time warping, this paper proposes a novel approach to align uneven batch data by identifying short-window PCA&PLS models at first and then applying these identified models to extend shorter trajectories and predict future batch end-product quality. Furthermore, uneven batch data can also be aligned to be a specified batch length using moving window estimation. The proposed approach and its application to the control of batch end-product quality are demonstrated with a simulated example of fed-batch fermentation for penicillin production. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Stochastic cooling

    International Nuclear Information System (INIS)

    Bisognano, J.; Leemann, C.

    1982-03-01

    Stochastic cooling is the damping of betatron oscillations and momentum spread of a particle beam by a feedback system. In its simplest form, a pickup electrode detects the transverse positions or momenta of particles in a storage ring, and the signal produced is amplified and applied downstream to a kicker. The time delay of the cable and electronics is designed to match the transit time of particles along the arc of the storage ring between the pickup and kicker so that an individual particle receives the amplified version of the signal it produced at the pick-up. If there were only a single particle in the ring, it is obvious that betatron oscillations and momentum offset could be damped. However, in addition to its own signal, a particle receives signals from other beam particles. In the limit of an infinite number of particles, no damping could be achieved; we have Liouville's theorem with constant density of the phase space fluid. For a finite, albeit large number of particles, there remains a residue of the single particle damping which is of practical use in accumulating low phase space density beams of particles such as antiprotons. It was the realization of this fact that led to the invention of stochastic cooling by S. van der Meer in 1968. Since its conception, stochastic cooling has been the subject of much theoretical and experimental work. The earliest experiments were performed at the ISR in 1974, with the subsequent ICE studies firmly establishing the stochastic cooling technique. This work directly led to the design and construction of the Antiproton Accumulator at CERN and the beginnings of p anti p colliding beam physics at the SPS. Experiments in stochastic cooling have been performed at Fermilab in collaboration with LBL, and a design is currently under development for a anti p accumulator for the Tevatron

  12. Workshop on beam cooling and related topics

    International Nuclear Information System (INIS)

    Bosser, J.

    1994-01-01

    The sessions of the Workshop on Beam Cooling and Related Topics, held in Montreux from 4-8 October 1993, are reported in these Proceedings. This meeting brought together international experts in the field of accelerator beam cooling. Its purpose was to discuss the status of the different cooling techniques currently in use (stochastic, electron, ionization, heavy-ion, and laser) and their actual performances, technological implications, and future prospects. Certain theoretical principles (muon cooling, cyclotron maser cooling) were discussed and are reported on in these Proceedings. Also of interest in this Workshop was the possibility of beam crystallization in accelerators using ultimate cooling. In the first part of these Proceedings, overview talks on the various cooling techniques, their implications, present performance, and future prospects are presented. More detailed reports on all the topics are then given in the form of oral presentations or poster sessions. Finally, the chairmen and/or convenors then present summary talks. (orig.)

  13. LSF usage for batch at CERN

    CERN Multimedia

    Schwickerath, Ulrich

    2007-01-01

    Contributed poster to the CHEP07. Original abstract: LSF 7, the latest version of Platform's batch workload management system, addresses many issues which limited the ability of LSF 6.1 to support large scale batch farms, such as the lxbatch service at CERN. In this paper we will present the status of the evaluation and deployment of LSF 7 at CERN, including issues concerning the integration of LSF 7 with the gLite grid middleware suite and, in particular, the steps taken to endure an efficient reporting of the local batch system status and usage to the Grid Information System

  14. A very cool cooling system

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The NA62 Gigatracker is a jewel of technology: its sensor, which delivers the time of the crossing particles with a precision of less than 200 picoseconds (better than similar LHC detectors), has a cooling system that might become the precursor to a completely new detector technique.   The 115 metre long vacuum tank of the NA62 experiment. The NA62 Gigatracker (GTK) is composed of a set of three innovative silicon pixel detectors, whose job is to measure the arrival time and the position of the incoming beam particles. Installed in the heart of the NA62 detector, the silicon sensors are cooled down (to about -20 degrees Celsius) by a microfluidic silicon device. “The cooling system is needed to remove the heat produced by the readout chips the silicon sensor is bonded to,” explains Alessandro Mapelli, microsystems engineer working in the Physics department. “For the NA62 Gigatracker we have designed a cooling plate on top of which both the silicon sensor and the...

  15. Role of bacterial adhesion in the microbial ecology of biofilms in cooling tower systems.

    Science.gov (United States)

    Liu, Yang; Zhang, Wei; Sileika, Tadas; Warta, Richard; Cianciotto, Nicholas P; Packman, Aaron

    2009-01-01

    The fate of the three heterotrophic biofilm forming bacteria, Pseudomonas aeruginosa, Klebsiella pneumoniae and Flavobacterium sp. in pilot scale cooling towers was evaluated both by observing the persistence of each species in the recirculating water and the formation of biofilms on steel coupons placed in each cooling tower water reservoir. Two different cooling tower experiments were performed: a short-term study (6 days) to observe the initial bacterial colonization of the cooling tower, and a long-term study (3 months) to observe the ecological dynamics with repeated introduction of the test strains. An additional set of batch experiments (6 days) was carried out to evaluate the adhesion of each strain to steel surfaces under similar conditions to those found in the cooling tower experiments. Substantial differences were observed in the microbial communities that developed in the batch systems and cooling towers. P. aeruginosa showed a low degree of adherence to steel surfaces both in batch and in the cooling towers, but grew much faster than K. pneumoniae and Flavobacterium in mixed-species biofilms and ultimately became the dominant organism in the closed batch systems. However, the low degree of adherence caused P. aeruginosa to be rapidly washed out of the open cooling tower systems, and Flavobacterium became the dominant microorganism in the cooling towers in both the short-term and long-term experiments. These results indicate that adhesion, retention and growth on solid surfaces play important roles in the bacterial community that develops in cooling tower systems.

  16. Cooling pancakes

    International Nuclear Information System (INIS)

    Bond, J.R.; Wilson, J.R.

    1984-01-01

    In theories of galaxy formation with a damping cut-off in the density fluctuation spectrum, the first non-linear structures to form are Zeldovich pancakes in which dissipation separates gas from any collisionless dark matter then present. One-dimensional numerical simulations of the collapse, shock heating, and subsequent thermal evolution of pancakes are described. Neutrinos (or any other cool collisionless particles) are followed by direct N-body methods and the gas by Eulerian hydrodynamics with conduction as well as cooling included. It is found that the pressure is relatively uniform within the shocked region and approximately equals the instantaneous ram pressure acting at the shock front. An analytic theory based upon this result accurately describes the numerical calculations. (author)

  17. Cool Sportswear

    Science.gov (United States)

    1982-01-01

    New athletic wear design based on the circulating liquid cooling system used in the astronaut's space suits, allows athletes to perform more strenuous activity without becoming overheated. Techni-Clothes gear incorporates packets containing a heat-absorbing gel that slips into an insulated pocket of the athletic garment and is positioned near parts of the body where heat transfer is most efficient. A gel packet is good for about one hour. Easily replaced from a supply of spares in an insulated container worn on the belt. The products, targeted primarily for runners and joggers and any other athlete whose performance may be affected by hot weather, include cooling headbands, wrist bands and running shorts with gel-pack pockets.

  18. Cooling systems

    International Nuclear Information System (INIS)

    Coutant, C.C.

    1978-01-01

    Progress on the thermal effects project is reported with regard to physiology and distribution of Corbicula; power plant effects studies on burrowing mayfly populations; comparative thermal responses of largemouth bass from northern and southern populations; temperature selection by striped bass in Cherokee Reservoir; fish population studies; and predictive thermoregulation by fishes. Progress is also reported on the following; cause and ecological ramifications of threadfin shad impingement; entrainment project; aquaculture project; pathogenic amoeba project; and cooling tower drift project

  19. Fuzzy batch controller for granular materials

    OpenAIRE

    Zamyatin Nikolaj; Smirnov Gennadij; Fedorchuk Yuri; Rusina Olga

    2018-01-01

    The paper focuses on batch control of granular materials in production of building materials from fluorine anhydrite. Batching equipment is intended for smooth operation and timely feeding of supply hoppers at a required level. Level sensors and a controller of an asynchronous screw drive motor are used to control filling of the hopper with industrial anhydrite binders. The controller generates a required frequency and ensures required productivity of a feed conveyor. Mamdani-type fuzzy infer...

  20. Batch Computed Tomography Analysis of Projectiles

    Science.gov (United States)

    2016-05-01

    ARL-TR-7681 ● MAY 2016 US Army Research Laboratory Batch Computed Tomography Analysis of Projectiles by Michael C Golt, Chris M...Laboratory Batch Computed Tomography Analysis of Projectiles by Michael C Golt and Matthew S Bratcher Weapons and Materials Research...values to account for projectile variability in the ballistic evaluation of armor. 15. SUBJECT TERMS computed tomography , CT, BS41, projectiles

  1. Estimation of the growth kinetics for the cooling crystallisation of paracetamol and ethanol solutions

    Science.gov (United States)

    Mitchell, Niall A.; Ó'Ciardhá, Clifford T.; Frawley, Patrick J.

    2011-08-01

    This work details the estimation of the growth kinetics of paracetamol in ethanol solutions for cooling crystallisation processes, by means of isothermal seeded batch experiments. The growth kinetics of paracetamol crystals were evaluated in isolation, with the growth rate assumed to be size independent. Prior knowledge of the Metastable Zone Width (MSZW) was required, so that supersaturation ratios of 1.7-1.1 could be induced in solution without the occurrence of nucleation. The technique involved the utilisation of two in-situ Process Analytical Techniques (PATs), with a Focused Beam Reflectance Measurement (FBRM ®) utilised to ensure that negligible nucleation occurred and an Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) probe employed for online monitoring of solute concentration. Initial Particle Size Distributions (PSDs) were used in conjunction with desupersaturation profiles to determine the growth rate as a function of temperature and supersaturation. Furthermore, the effects of seed loading and size on the crystal growth rate were investigated. A numerical model, incorporating the population balance equation and the method of moments, was utilised to describe the crystal growth process. Experimental parameters were compared to the model simulation, with the accuracy of the model validated by means of the final product PSDs and solute concentration.

  2. Energy efficiency of batch and semi-batch (CCRO) reverse osmosis desalination.

    Science.gov (United States)

    Warsinger, David M; Tow, Emily W; Nayar, Kishor G; Maswadeh, Laith A; Lienhard V, John H

    2016-12-01

    As reverse osmosis (RO) desalination capacity increases worldwide, the need to reduce its specific energy consumption becomes more urgent. In addition to the incremental changes attainable with improved components such as membranes and pumps, more significant reduction of energy consumption can be achieved through time-varying RO processes including semi-batch processes such as closed-circuit reverse osmosis (CCRO) and fully-batch processes that have not yet been commercialized or modelled in detail. In this study, numerical models of the energy consumption of batch RO (BRO), CCRO, and the standard continuous RO process are detailed. Two new energy-efficient configurations of batch RO are analyzed. Batch systems use significantly less energy than continuous RO over a wide range of recovery ratios and source water salinities. Relative to continuous RO, models predict that CCRO and batch RO demonstrate up to 37% and 64% energy savings, respectively, for brackish water desalination at high water recovery. For batch RO and CCRO, the primary reductions in energy use stem from atmospheric pressure brine discharge and reduced streamwise variation in driving pressure. Fully-batch systems further reduce energy consumption by not mixing streams of different concentrations, which CCRO does. These results demonstrate that time-varying processes can significantly raise RO energy efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Cooling off with physics

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, Chris [Unilever R and D (United Kingdom)

    2003-08-01

    You might think of ice cream as a delicious treat to be enjoyed on a sunny summer's day. However, to the ice-cream scientists who recently gathered in Thessaloniki in Greece for the 2nd International Ice Cream Symposium, it is a complex composite material. Ice cream consists of three dispersed phases: ice crystals, which have a mean size of 50 microns, air bubbles with a diameter of about 70 microns, and fat droplets with a size of 1 micron. These phases are held together by what is called the matrix - not a sci-fi film, but a viscous solution of sugars, milk proteins and polysaccharides. The microstructure, and hence the texture that you experience when you eat ice cream, is created in a freezing process that has remained fundamentally unchanged since the first ice-cream maker was patented in the 1840s. The ingredients - water, milk protein, fat, sugar, emulsifiers, stabilizers, flavours and a lot of air - are mixed together before being pasteurized and homogenized. They are then pumped into a cylinder that is cooled from the outside with a refrigerant. As the mixture touches the cylinder wall it freezes and forms ice crystals, which are quickly scraped off by a rotating blade. The blade is attached to a beater that disperses the ice crystals into the mixture. At the same time, air is injected and broken down into small bubbles by the shear that the beater generates. As the mixture passes along the cylinder, the number of ice crystals increases and its temperature drops. As a result, the viscosity of the mixture increases, so that more energy input is needed to rotate the beater. This energy is dissipated as heat, and when the ice cream reaches about -6 deg. C the energy input through the beater equals the energy removed as heat by the refrigerant. The process therefore becomes self-limiting and it is not possible to cool the ice cream any further. However, at -6 deg. C the microstructure is unstable. The ice cream therefore has to be removed from the freezer

  4. Fuzzy batch controller for granular materials

    Directory of Open Access Journals (Sweden)

    Zamyatin Nikolaj

    2018-01-01

    Full Text Available The paper focuses on batch control of granular materials in production of building materials from fluorine anhydrite. Batching equipment is intended for smooth operation and timely feeding of supply hoppers at a required level. Level sensors and a controller of an asynchronous screw drive motor are used to control filling of the hopper with industrial anhydrite binders. The controller generates a required frequency and ensures required productivity of a feed conveyor. Mamdani-type fuzzy inference is proposed for controlling the speed of the screw that feeds mixture components. As related to production of building materials based on fluoride anhydrite, this method is used for the first time. A fuzzy controller is proven to be effective in controlling the filling level of the supply hopper. In addition, the authors determined optimal parameters of the batching process to ensure smooth operation and production of fluorine anhydrite materials of specified properties that can compete with gypsum-based products.

  5. History based batch method preserving tally means

    International Nuclear Information System (INIS)

    Shim, Hyung Jin; Choi, Sung Hoon

    2012-01-01

    In the Monte Carlo (MC) eigenvalue calculations, the sample variance of a tally mean calculated from its cycle-wise estimates is biased because of the inter-cycle correlations of the fission source distribution (FSD). Recently, we proposed a new real variance estimation method named the history-based batch method in which a MC run is treated as multiple runs with small number of histories per cycle to generate independent tally estimates. In this paper, the history-based batch method based on the weight correction is presented to preserve the tally mean from the original MC run. The effectiveness of the new method is examined for the weakly coupled fissile array problem as a function of the dominance ratio and the batch size, in comparison with other schemes available

  6. Cool snacks

    DEFF Research Database (Denmark)

    Grunert, Klaus G; Brock, Steen; Brunsø, Karen

    2016-01-01

    Young people snack and their snacking habits are not always healthy. We address the questions whether it is possible to develop a new snack product that adolescents will find attractive, even though it is based on ingredients as healthy as fruits and vegetables, and we argue that developing...... such a product requires an interdisciplinary effort where researchers with backgrounds in psychology, anthropology, media science, philosophy, sensory science and food science join forces. We present the COOL SNACKS project, where such a blend of competences was used first to obtain thorough insight into young...... people's snacking behaviour and then to develop and test new, healthier snacking solutions. These new snacking solutions were tested and found to be favourably accepted by young people. The paper therefore provides a proof of principle that the development of snacks that are both healthy and attractive...

  7. Cool visitors

    CERN Multimedia

    2006-01-01

    Pictured, from left to right: Tim Izo (saxophone, flute, guitar), Bobby Grant (tour manager), George Pajon (guitar). What do the LHC and a world-famous hip-hop group have in common? They are cool! On Saturday, 1st July, before their appearance at the Montreux Jazz Festival, three members of the 'Black Eyed Peas' came on a surprise visit to CERN, inspired by Dan Brown's Angels and Demons. At short notice, Connie Potter (Head of the ATLAS secretariat) organized a guided tour of ATLAS and the AD 'antimatter factory'. Still curious, lead vocalist Will.I.Am met CERN physicist Rolf Landua after the concert to ask many more questions on particles, CERN, and the origin of the Universe.

  8. Following an Optimal Batch Bioreactor Operations Model

    DEFF Research Database (Denmark)

    Ibarra-Junquera, V.; Jørgensen, Sten Bay; Virgen-Ortíz, J.J.

    2012-01-01

    The problem of following an optimal batch operation model for a bioreactor in the presence of uncertainties is studied. The optimal batch bioreactor operation model (OBBOM) refers to the bioreactor trajectory for nominal cultivation to be optimal. A multiple-variable dynamic optimization of fed...... as the master system which includes the optimal cultivation trajectory for the feed flow rate and the substrate concentration. The “real” bioreactor, the one with unknown dynamics and perturbations, is considered as the slave system. Finally, the controller is designed such that the real bioreactor...

  9. Supervision of Fed-Batch Fermentations

    DEFF Research Database (Denmark)

    Gregersen, Lars; Jørgensen, Sten Bay

    1999-01-01

    Process faults may be detected on-line using existing measurements based upon modelling that is entirely data driven. A multivariate statistical model is developed and used for fault diagnosis of an industrial fed-batch fermentation process. Data from several (25) batches are used to develop...... a model for cultivation behaviour. This model is validated against 13 data sets and demonstrated to explain a significant amount of variation in the data. The multivariate model may directly be used for process monitoring. With this method faults are detected in real time and the responsible measurements...

  10. Exploring the Transition From Batch to Online

    DEFF Research Database (Denmark)

    Jørgensen, Anker Helms

    2010-01-01

    of the truly interactive use of computers known today. The transition invoked changes in a number of areas: technological, such as hybrid forms between batch and online; organisational such as decentralization; and personal as users and developers alike had to adopt new technology, shape new organizational...... structures, and acquire new skills. This work-in-progress paper extends an earlier study of the transition from batch to online, based on oral history interviews with (ex)-employees in two large Danish Service Bureaus. The paper takes the next step by ana-lyzing a particular genre: the commercial computer...

  11. Production of nattokinase by batch and fed-batch culture of Bacillus subtilis.

    Science.gov (United States)

    Cho, Young-Han; Song, Jae Yong; Kim, Kyung Mi; Kim, Mi Kyoung; Lee, In Young; Kim, Sang Bum; Kim, Hyeon Shup; Han, Nam Soo; Lee, Bong Hee; Kim, Beom Soo

    2010-09-30

    Nattokinase was produced by batch and fed-batch culture of Bacillus subtilis in flask and fermentor. Effect of supplementing complex media (peptone, yeast extract, or tryptone) was investigated on the production of nattokinase. In flask culture, the highest cell growth and nattokinase activity were obtained with 50 g/L of peptone supplementation. In this condition, nattokinase activity was 630 unit/ml at 12 h. In batch culture of B. subtilis in fermentor, the highest nattokinase activity of 3400 unit/ml was obtained at 10h with 50 g/L of peptone supplementation. From the batch kinetics data, it was shown that nattokinase production was growth-associated and culture should be harvested before stationary phase for maximum nattokinase production. In fed-batch culture of B. subtilis using pH-stat feeding strategy, cell growth (optical density monitored at 600 nm) increased to ca. 100 at 22 h, which was 2.5 times higher than that in batch culture. The highest nattokinase activity was 7100 unit/ml at 19 h, which was also 2.1 times higher than that in batch culture. Copyright 2010 Elsevier B.V. All rights reserved.

  12. Divertor cooling device

    International Nuclear Information System (INIS)

    Nakayama, Tadakazu; Hayashi, Katsumi; Handa, Hiroyuki

    1993-01-01

    Cooling water for a divertor cooling system cools the divertor, thereafter, passes through pipelines connecting the exit pipelines of the divertor cooling system and the inlet pipelines of a blanket cooling system and is introduced to the blanket cooling system in a vacuum vessel. It undergoes emission of neutrons, and cooling water in the divertor cooling system containing a great amount of N-16 which is generated by radioactivation of O-16 is introduced to the blanket cooling system in the vacuum vessel by way of pipelines, and after cooling, passes through exit pipelines of the blanket cooling system and is introduced to the outside of the vacuum vessel. Radiation of N-16 in the cooling water is decayed sufficiently with passage of time during cooling of the blanket, thereby enabling to decrease the amount of shielding materials such as facilities and pipelines, and ensure spaces. (N.H.)

  13. WORKSHOP: Beam cooling

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Cooling - the control of unruly particles to provide well-behaved beams - has become a major new tool in accelerator physics. The main approaches of electron cooling pioneered by Gersh Budker at Novosibirsk and stochastic cooling by Simon van der Meer at CERN, are now complemented by additional ideas, such as laser cooling of ions and ionization cooling of muons

  14. Systematic Methodology for Reproducible Optimizing Batch Operation

    DEFF Research Database (Denmark)

    Bonné, Dennis; Jørgensen, Sten Bay

    2006-01-01

    This contribution presents a systematic methodology for rapid acquirement of discrete-time state space model representations of batch processes based on their historical operation data. These state space models are parsimoniously parameterized as a set of local, interdependent models. The present...

  15. Batch extractive distillation for high purity methanol

    International Nuclear Information System (INIS)

    Zhang Weijiang; Ma Sisi

    2006-01-01

    In this paper, the application in chemical industry and microelectronic industry, market status and the present situation of production of high purity methanol at home and abroad were introduced firstly. Purification of industrial methanol for high purity methanol is feasible in china. Batch extractive distillation is the best separation technique for purification of industrial methanol. Dimethyl sulfoxide was better as an extractant. (authors)

  16. Monitoring of batch processes using spectroscopy

    NARCIS (Netherlands)

    Gurden, S. P.; Westerhuis, J. A.; Smilde, A. K.

    2002-01-01

    There is an increasing need for new techniques for the understanding, monitoring and the control of batch processes. Spectroscopy is now becoming established as a means of obtaining real-time, high-quality chemical information at frequent time intervals and across a wide range of industrial

  17. Renewable Heating And Cooling

    Science.gov (United States)

    Renewable heating and cooling is a set of alternative resources and technologies that can be used in place of conventional heating and cooling technologies for common applications such as water heating, space heating, space cooling and process heat.

  18. Characterization of a prototype batch of long polyimide cables designed for fast data transmission on ATLAS ITk strip staves

    CERN Document Server

    Dopke, Jens; The ATLAS collaboration; Sawyer, Craig; Sullivan, Stephanie W

    2018-01-01

    The silicon-strip system in the ATLAS ITk detector has individual sensor modules mounted on staves to provide integrated solution for mechanical support, power, cooling, and data transmission. The data and power are transmitted to individual modules on polyimide tapes placed on thermo-mechanical stave cores. The 1.4 m long tapes transmit module data at the rate of 640 Mbps, along with providing several multi-drop clock and command links, and power lines. The first batch of 25 tapes has been produced. We characterized the line impedance and its variation across the batch, examined the tape cross-section, and assessed the variation between design and fabrication.

  19. Monte Carlo simulation on kinetics of batch and semi-batch free radical polymerization

    KAUST Repository

    Shao, Jing

    2015-10-27

    Based on Monte Carlo simulation technology, we proposed a hybrid routine which combines reaction mechanism together with coarse-grained molecular simulation to study the kinetics of free radical polymerization. By comparing with previous experimental and simulation studies, we showed the capability of our Monte Carlo scheme on representing polymerization kinetics in batch and semi-batch processes. Various kinetics information, such as instant monomer conversion, molecular weight, and polydispersity etc. are readily calculated from Monte Carlo simulation. The kinetic constants such as polymerization rate k p is determined in the simulation without of “steady-state” hypothesis. We explored the mechanism for the variation of polymerization kinetics those observed in previous studies, as well as polymerization-induced phase separation. Our Monte Carlo simulation scheme is versatile on studying polymerization kinetics in batch and semi-batch processes.

  20. Multi-objective optimization of glycopeptide antibiotic production in batch and fed batch processes

    DEFF Research Database (Denmark)

    Maiti, Soumen K.; Eliasson Lantz, Anna; Bhushan, Mani

    2011-01-01

    batch operations using process model for Amycolatopsis balhimycina, a glycopeptide antibiotic producer. This resulted in a set of several pareto optimal solutions with the two objectives ranging from (0.75gl−1, 3.97g$-1) to (0.44gl−1, 5.19g$-1) for batch and from (1.5gl−1, 5.46g$-1) to (1.1gl−1, 6.34g...

  1. Restaurant food cooling practices.

    Science.gov (United States)

    Brown, Laura Green; Ripley, Danny; Blade, Henry; Reimann, Dave; Everstine, Karen; Nicholas, Dave; Egan, Jessica; Koktavy, Nicole; Quilliam, Daniela N

    2012-12-01

    Improper food cooling practices are a significant cause of foodborne illness, yet little is known about restaurant food cooling practices. This study was conducted to examine food cooling practices in restaurants. Specifically, the study assesses the frequency with which restaurants meet U.S. Food and Drug Administration (FDA) recommendations aimed at reducing pathogen proliferation during food cooling. Members of the Centers for Disease Control and Prevention's Environmental Health Specialists Network collected data on food cooling practices in 420 restaurants. The data collected indicate that many restaurants are not meeting FDA recommendations concerning cooling. Although most restaurant kitchen managers report that they have formal cooling processes (86%) and provide training to food workers on proper cooling (91%), many managers said that they do not have tested and verified cooling processes (39%), do not monitor time or temperature during cooling processes (41%), or do not calibrate thermometers used for monitoring temperatures (15%). Indeed, 86% of managers reported cooling processes that did not incorporate all FDA-recommended components. Additionally, restaurants do not always follow recommendations concerning specific cooling methods, such as refrigerating cooling food at shallow depths, ventilating cooling food, providing open-air space around the tops and sides of cooling food containers, and refraining from stacking cooling food containers on top of each other. Data from this study could be used by food safety programs and the restaurant industry to target training and intervention efforts concerning cooling practices. These efforts should focus on the most frequent poor cooling practices, as identified by this study.

  2. Medication waste reduction in pediatric pharmacy batch processes.

    Science.gov (United States)

    Toerper, Matthew F; Veltri, Michael A; Hamrock, Eric; Mollenkopf, Nicole L; Holt, Kristen; Levin, Scott

    2014-04-01

    To inform pediatric cart-fill batch scheduling for reductions in pharmaceutical waste using a case study and simulation analysis. A pre and post intervention and simulation analysis was conducted during 3 months at a 205-bed children's center. An algorithm was developed to detect wasted medication based on time-stamped computerized provider order entry information. The algorithm was used to quantify pharmaceutical waste and associated costs for both preintervention (1 batch per day) and postintervention (3 batches per day) schedules. Further, simulation was used to systematically test 108 batch schedules outlining general characteristics that have an impact on the likelihood for waste. Switching from a 1-batch-per-day to a 3-batch-per-day schedule resulted in a 31.3% decrease in pharmaceutical waste (28.7% to 19.7%) and annual cost savings of $183,380. Simulation results demonstrate how increasing batch frequency facilitates a more just-in-time process that reduces waste. The most substantial gains are realized by shifting from a schedule of 1 batch per day to at least 2 batches per day. The simulation exhibits how waste reduction is also achievable by avoiding batch preparation during daily time periods where medication administration or medication discontinuations are frequent. Last, the simulation was used to show how reducing batch preparation time per batch provides some, albeit minimal, opportunity to decrease waste. The case study and simulation analysis demonstrate characteristics of batch scheduling that may support pediatric pharmacy managers in redesign toward minimizing pharmaceutical waste.

  3. Use of Plastic Capillaries for Macromolecular Crystallization

    Science.gov (United States)

    Potter, Rachel R.; Hong, Young-Soo; Ciszak, Ewa M.

    2003-01-01

    Methods of crystallization of biomolecules in plastic capillaries (Nalgene 870 PFA tubing) are presented. These crystallization methods used batch, free-interface liquid- liquid diffusion alone, or a combination with vapor diffusion. Results demonstrated growth of crystals of test proteins such as thaumatin and glucose isomerase, as well as protein studied in our laboratory such dihydrolipoamide dehydrogenase. Once the solutions were loaded in capillaries, they were stored in the tubes in frozen state at cryogenic temperatures until the desired time of activation of crystallization experiments.

  4. A Differential Scanning Calorimetry Method for Construction of Continuous Cooling Transformation Diagram of Blast Furnace Slag

    Science.gov (United States)

    Gan, Lei; Zhang, Chunxia; Shangguan, Fangqin; Li, Xiuping

    2012-06-01

    The continuous cooling crystallization of a blast furnace slag was studied by the application of the differential scanning calorimetry (DSC) method. A kinetic model describing the correlation between the evolution of the degree of crystallization with time was obtained. Bulk cooling experiments of the molten slag coupled with numerical simulation of heat transfer were conducted to validate the results of the DSC methods. The degrees of crystallization of the samples from the bulk cooling experiments were estimated by means of the X-ray diffraction (XRD) and the DSC method. It was found that the results from the DSC cooling and bulk cooling experiments are in good agreement. The continuous cooling transformation (CCT) diagram of the blast furnace slag was constructed according to crystallization kinetic model and experimental data. The obtained CCT diagram characterizes with two crystallization noses at different temperature ranges.

  5. Environmental compatible cooling water treatment chemicals; Umweltvertraegliche Chemikalien in der Kuehlwasserkonditionierung

    Energy Technology Data Exchange (ETDEWEB)

    Gartiser, S; Urich, E

    2002-02-01

    In Germany about 32 billion m{sup 3}/a cooling water are discharged from industrial plants and power industry. These are conditioned partly with biocides, scaling and corrosion inhibitors. Within the research project the significance of cooling water chemicals was evaluated, identifying the chemicals from product information, calculating their loads from consumption data of more than 180 cooling plants and investigating the basic data needed for an environmental hazard assessment. Additionally the effects of cooling water samples and products were determined in biological test systems. Batch tests were performed under defined conditions in order to measure the inactivation of cooling water biocides. (orig.)

  6. Optimal operation of batch membrane processes

    CERN Document Server

    Paulen, Radoslav

    2016-01-01

    This study concentrates on a general optimization of a particular class of membrane separation processes: those involving batch diafiltration. Existing practices are explained and operational improvements based on optimal control theory are suggested. The first part of the book introduces the theory of membrane processes, optimal control and dynamic optimization. Separation problems are defined and mathematical models of batch membrane processes derived. The control theory focuses on problems of dynamic optimization from a chemical-engineering point of view. Analytical and numerical methods that can be exploited to treat problems of optimal control for membrane processes are described. The second part of the text builds on this theoretical basis to establish solutions for membrane models of increasing complexity. Each chapter starts with a derivation of optimal operation and continues with case studies exemplifying various aspects of the control problems under consideration. The authors work their way from th...

  7. Batch calculations in CalcHEP

    International Nuclear Information System (INIS)

    Pukhov, A.

    2003-01-01

    CalcHEP is a clone of the CompHEP project which is developed by the author outside of the CompHEP group. CompHEP/CalcHEP are packages for automatic calculations of elementary particle decay and collision properties in the lowest order of perturbation theory. The main idea prescribed into the packages is to make available passing on from the Lagrangian to the final distributions effectively with a high level of automation. According to this, the packages were created as a menu driven user friendly programs for calculations in the interactive mode. From the other side, long-time calculations should be done in the non-interactive regime. Thus, from the beginning CompHEP has a problem of batch calculations. In CompHEP 33.23 the batch session was realized by mean of interactive menu which allows to the user to formulate the task for batch. After that the not-interactive session was launched. This way is too restricted, not flexible, and leads to doubling in programming. In this article I discuss another approach how one can force an interactive program to work in non-interactive mode. This approach was realized in CalcHEP 2.1 disposed on http://theory.sinp.msu.ru/~pukhov/calchep.html

  8. Pollution prevention applications in batch manufacturing operations

    Science.gov (United States)

    Sykes, Derek W.; O'Shaughnessy, James

    2004-02-01

    Older, "low-tech" batch manufacturing operations are often fertile grounds for gains resulting from pollution prevention techniques. This paper presents a pollution prevention technique utilized for wastewater discharge permit compliance purposes at a batch manufacturer of detergents, deodorants, and floor-care products. This manufacturer generated industrial wastewater as a result of equipment rinses required after each product batch changeover. After investing a significant amount of capital on end of pip-line wastewater treatment technology designed to address existing discharge limits, this manufacturer chose to investigate alternate, low-cost approaches to address anticipated new permit limits. Mass balances using spreadsheets and readily available formulation and production data were conducted on over 300 products to determine how each individual product contributed to the total wastewater pollutant load. These mass balances indicated that 22 products accounted for over 55% of the wastewater pollutant. Laboratory tests were conducted to determine whether these same products could accept their individual changeover rinse water as make-up water in formulations without sacrificing product quality. This changeover reuse technique was then implement at the plant scale for selected products. Significant reductions in wastewater volume (25%) and wastewater pollutant loading (85+%) were realized as a direct result of this approach.

  9. Batch-batch stable microbial community in the traditional fermentation process of huyumei broad bean pastes.

    Science.gov (United States)

    Zhu, Linjiang; Fan, Zihao; Kuai, Hui; Li, Qi

    2017-09-01

    During natural fermentation processes, a characteristic microbial community structure (MCS) is naturally formed, and it is interesting to know about its batch-batch stability. This issue was explored in a traditional semi-solid-state fermentation process of huyumei, a Chinese broad bean paste product. The results showed that this MCS mainly contained four aerobic Bacillus species (8 log CFU per g), including B. subtilis, B. amyloliquefaciens, B. methylotrophicus, and B. tequilensis, and the facultative anaerobe B. cereus with a low concentration (4 log CFU per g), besides a very small amount of the yeast Zygosaccharomyces rouxii (2 log CFU per g). The dynamic change of the MCS in the brine fermentation process showed that the abundance of dominant species varied within a small range, and in the beginning of process the growth of lactic acid bacteria was inhibited and Staphylococcus spp. lost its viability. Also, the MCS and its dynamic change were proved to be highly reproducible among seven batches of fermentation. Therefore, the MCS naturally and stably forms between different batches of the traditional semi-solid-state fermentation of huyumei. Revealing microbial community structure and its batch-batch stability is helpful for understanding the mechanisms of community formation and flavour production in a traditional fermentation. This issue in a traditional semi-solid-state fermentation of huyumei broad bean paste was firstly explored. This fermentation process was revealed to be dominated by a high concentration of four aerobic species of Bacillus, a low concentration of B. cereus and a small amount of Zygosaccharomyces rouxii. Lactic acid bacteria and Staphylococcus spp. lost its viability at the beginning of fermentation. Such the community structure was proved to be highly reproducible among seven batches. © 2017 The Society for Applied Microbiology.

  10. On-line Scheduling Of Multi-Server Batch Operations

    NARCIS (Netherlands)

    van der Zee, D.J.; van Harten, A.; Schuur, P.C.

    1999-01-01

    Batching jobs in a manufacturing system is a very common policy in most industries. Main reasons for batching are avoidance of setups and/or facilitation of material handling. Good examples of batch-wise production systems are ovens found in aircraft industry and in semiconductor manufacturing.

  11. On-line scheduling of multi-server batch operations

    NARCIS (Netherlands)

    Zee, Durk Jouke van der; Harten, Aart van; Schuur, Peter

    The batching of jobs in a manufacturing system is a very common policy in many industries. The main reasons for batching are the avoidance of setups and/or facilitation of material handling. Good examples of batch-wise production systems are the ovens that are found in the aircraft industry and in

  12. 7 CFR 58.728 - Cooking the batch.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Cooking the batch. 58.728 Section 58.728 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Procedures § 58.728 Cooking the batch. Each batch of cheese within the cooker, including the optional...

  13. 40 CFR 63.1408 - Aggregate batch vent stream provisions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Aggregate batch vent stream provisions... § 63.1408 Aggregate batch vent stream provisions. (a) Emission standards. Owners or operators of aggregate batch vent streams at a new or existing affected source shall comply with either paragraph (a)(1...

  14. Protein-crystal growth experiment (planned)

    Science.gov (United States)

    Fujita, S.; Asano, K.; Hashitani, T.; Kitakohji, T.; Nemoto, H.; Kitamura, S.

    1988-01-01

    To evaluate the effectiveness of a microgravity environment on protein crystal growth, a system was developed using 5 cubic feet Get Away Special payload canister. In the experiment, protein (myoglobin) will be simultaneously crystallized from an aqueous solution in 16 crystallization units using three types of crystallization methods, i.e., batch, vapor diffusion, and free interface diffusion. Each unit has two compartments: one for the protein solution and the other for the ammonium sulfate solution. Compartments are separated by thick acrylic or thin stainless steel plates. Crystallization will be started by sliding out the plates, then will be periodically recorded up to 120 hours by a still camera. The temperature will be passively controlled by a phase transition thermal storage component and recorded in IC memory throughout the experiment. Microgravity environment can then be evaluated for protein crystal growth by comparing crystallization in space with that on Earth.

  15. Cooled Water Production System,

    Science.gov (United States)

    The invention refers to the field of air conditioning and regards an apparatus for obtaining cooled water . The purpose of the invention is to develop...such a system for obtaining cooled water which would permit the maximum use of the cooling effect of the water -cooling tower.

  16. Process fluid cooling system

    International Nuclear Information System (INIS)

    Farquhar, N.G.; Schwab, J.A.

    1977-01-01

    A system of heat exchangers is disclosed for cooling process fluids. The system is particularly applicable to cooling steam generator blowdown fluid in a nuclear plant prior to chemical purification of the fluid in which it minimizes the potential of boiling of the plant cooling water which cools the blowdown fluid

  17. Response variation in a batch of TLDS

    International Nuclear Information System (INIS)

    Burrage, J.; Campbell, A.

    2004-01-01

    Full text: At Royal Perth Hospital, LiF thermoluminescent dosimeter rods (TLDs) are handled in batches of 50. Rods in each batch are always annealed together to ensure the same thermal history and an individual batch is used with the same type and energy of radiation. A subset of a batch is used for calibration purposes by exposing them to a range of known doses and their output is used to calculate the dose received by other rods used for a dose measurement. Variation in TLD response is addressed by calculating 95% certainty levels from the calibration rods and applying this to the dose measurement rods. This approach relies on the sensitivity of rods within each batch being similar. This work investigates the validity of this assumption and considers possible benefits of applying individual rod sensitivities. The variation in response of TLD rods was assessed using 25 TLD-100 rods (Harshaw/Bicron) which were uniformly exposed to 1 Gy using 6 MeV photons in a linear accelerator on 5 separate occasions. Rods were read with a Harshaw 5500 reader. During the read process the Harshaw reader periodically checks for noise and PMT gain drift and the data were corrected for these parameters. Replicate exposure data were analysed using 1-way Analysis of Variance (ANOVA) to determine whether the between rod variations were significantly different to the variations within a single rod. A batch of 50 rods was also exposed on three occasions using the above technique. Individual TLD rod sensitivity values were determined using the rod responses from 2 exposures and these values were applied to correct charges on a rod-by-rod basis for the third exposure. ANOVA results on the 5 exposures of 25 rods showed the variance between rods was significantly greater than the within rod variance (p < 0.001). The precision of an individual rod was estimated to have a standard deviation of 2.8%. This suggests that the 95% confidence limits for repeated measurements using the same dose and

  18. Numerical simulation of distorted crystal Darwin width

    International Nuclear Information System (INIS)

    Wang Li; Xu Zhongmin; Wang Naxiu

    2012-01-01

    A new numerical simulation method according to distorted crystal optical theory was used to predict the direct-cooling crystal monochromator optical properties(crystal Darwin width) in this study. The finite element analysis software was used to calculate the deformed displacements of DCM crystal and to get the local reciprocal lattice vector of distorted crystal. The broadening of direct-cooling crystal Darwin width in meridional direction was estimated at 4.12 μrad. The result agrees well with the experimental data of 5 μrad, while it was 3.89 μrad by traditional calculation method of root mean square (RMS) of the slope error in the center line of footprint. The new method provides important theoretical support for designing and processing of monochromator crystal for synchrotron radiation beamline. (authors)

  19. BATCH-GE: Batch analysis of Next-Generation Sequencing data for genome editing assessment

    Science.gov (United States)

    Boel, Annekatrien; Steyaert, Woutert; De Rocker, Nina; Menten, Björn; Callewaert, Bert; De Paepe, Anne; Coucke, Paul; Willaert, Andy

    2016-01-01

    Targeted mutagenesis by the CRISPR/Cas9 system is currently revolutionizing genetics. The ease of this technique has enabled genome engineering in-vitro and in a range of model organisms and has pushed experimental dimensions to unprecedented proportions. Due to its tremendous progress in terms of speed, read length, throughput and cost, Next-Generation Sequencing (NGS) has been increasingly used for the analysis of CRISPR/Cas9 genome editing experiments. However, the current tools for genome editing assessment lack flexibility and fall short in the analysis of large amounts of NGS data. Therefore, we designed BATCH-GE, an easy-to-use bioinformatics tool for batch analysis of NGS-generated genome editing data, available from https://github.com/WouterSteyaert/BATCH-GE.git. BATCH-GE detects and reports indel mutations and other precise genome editing events and calculates the corresponding mutagenesis efficiencies for a large number of samples in parallel. Furthermore, this new tool provides flexibility by allowing the user to adapt a number of input variables. The performance of BATCH-GE was evaluated in two genome editing experiments, aiming to generate knock-out and knock-in zebrafish mutants. This tool will not only contribute to the evaluation of CRISPR/Cas9-based experiments, but will be of use in any genome editing experiment and has the ability to analyze data from every organism with a sequenced genome. PMID:27461955

  20. Hybrid radiator cooling system

    Science.gov (United States)

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  1. Cavity QED experiments with ion Coulomb crystals

    DEFF Research Database (Denmark)

    Herskind, Peter Fønss; Dantan, Aurélien; Marler, Joan

    2009-01-01

    Cavity QED experimental results demonstrating collective strong coupling between ensembles of atomic ions cooled into Coulomb crystals and optical cavity fields have been achieved. Collective Zeeman coherence times of milliseconds have furthermore been obtained.......Cavity QED experimental results demonstrating collective strong coupling between ensembles of atomic ions cooled into Coulomb crystals and optical cavity fields have been achieved. Collective Zeeman coherence times of milliseconds have furthermore been obtained....

  2. Production of ethanol in batch and fed-batch fermentation of soluble sugar

    International Nuclear Information System (INIS)

    Chaudhary, M.Y.; Shah, M.A.; Shah, F.H.

    1991-01-01

    Keeping in view of the demand and need for alternate energy source, especially liquid fuels and the availability of raw materials in Pakistan, we have carried out biochemical and technological studies for ethanol through fermentation of renewable substrates. Molasses and sugar cane have been used as substrate for yeast fermentation. Selected yeast were used in both batch and semi continuous fermentation of molasses. Clarified dilute molasses were fermented with different strains of Saccharomyces cerevisiae. Ethanol concentration after 64 hours batch fermentation reached 9.4% with 90% yield based on sugar content. During feed batch system similar results were obtained after a fermentation cycle of 48 hours resulting in higher productivity. Similarly carbohydrates in fruit juices and hydro lysates of biomass can be economically fermented to ethanol to be used as feed stock for other chemicals. (author)

  3. Passing in Command Line Arguments and Parallel Cluster/Multicore Batching in R with batch.

    Science.gov (United States)

    Hoffmann, Thomas J

    2011-03-01

    It is often useful to rerun a command line R script with some slight change in the parameters used to run it - a new set of parameters for a simulation, a different dataset to process, etc. The R package batch provides a means to pass in multiple command line options, including vectors of values in the usual R format, easily into R. The same script can be setup to run things in parallel via different command line arguments. The R package batch also provides a means to simplify this parallel batching by allowing one to use R and an R-like syntax for arguments to spread a script across a cluster or local multicore/multiprocessor computer, with automated syntax for several popular cluster types. Finally it provides a means to aggregate the results together of multiple processes run on a cluster.

  4. CONVERSION OF PINEAPPLE JUICE WASTE INTO LACTIC ACID IN BATCH AND FED – BATCH FERMENTATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Abdullah Mochamad Busairi

    2012-01-01

    Full Text Available Pineapple juice waste contains valuable components, which are mainly sucrose, glucose, and fructose. Recently, lactic acid has been considered to be an important raw material for the production of biodegradable lactide polymer. The fermentation experiments were carried out in a 3 litres fermentor (Biostat B Model under anaerobic condition with stirring speed of 50 rpm, temperature at 40oC, and pH of 6.00. Effect of feed concentration on lactic acid production, bacterial growth, substrate utilisation and productivity was studied. The results obtained from fed- batch culture fermentation showed that the maximum lactic acid productivity was 0.44 g/L.h for feed concentration of 90 g/L at 48 hours. Whereas the lactic acid productivity obtained from fed-batch culture was twice and half fold higher than that of batch culture productivity.  Buangan jus nanas mengandung komponen yang berharga terutama sukrosa, glukosa, dan fruktosa. Asam laktat adalah bahan baku yang terbaru dan penting untuk dibuat sebagai polimer laktat yang dapat terdegradasi oleh lingkungan. Percobaan dilakukan pada fermentor 3 liter (Model Biostat B di bawah kondisi anaerob dengan kecepatan pengadukan 50 rpm, temperatur 40oC, dan pH 6,00. Pengaruh konsentrasi umpan terhadap produksi asam laktat, pertumbuhan mikroba, pengggunaan substrat dan produktivitas telah dipelajari. Hasil yang didapatkan pada fermentasi dengan menggunakan sistem fed-batch menunjukkan bahwa produktivitas asam laktat maksimum adalah 0.44 g/L,jam dengan konsentrasi umpan, 90 g/L pada waktu 48 jam. Bahkan produktivitas asam laktat yang didapat pada kultur fed-batch lebih tinggi 2,5 kali dari pada proses menggunakan sistem batch

  5. Morphological evolution of copper nanoparticles: Microemulsion reactor system versus batch reactor system

    Science.gov (United States)

    Xia, Ming; Tang, Zengmin; Kim, Woo-Sik; Yu, Taekyung; Park, Bum Jun

    2017-07-01

    In the synthesis of nanoparticles, the reaction rate is important to determine the morphology of nanoparticles. We investigated morphology evolution of Cu nanoparticles in this two different reactors, microemulsion reactor and batch reactor. In comparison with the batch reactor system, the enhanced mass and heat transfers in the emulsion system likely led to the relatively short nucleation time and the highly homogeneous environment in the reaction mixture, resulting in suppressing one or two dimensional growth of the nanoparticles. We believe that this work can offer a good model system to quantitatively understand the crystal growth mechanism that depends strongly on the local monomer concentration, the efficiency of heat transfer, and the relative contribution of the counter ions (Br- and Cl-) as capping agents.

  6. Sojourn time distributions in a Markovian G-queue with batch arrival and batch removal

    Directory of Open Access Journals (Sweden)

    Yang Woo Shin

    1999-01-01

    Full Text Available We consider a single server Markovian queue with two types of customers; positive and negative, where positive customers arrive in batches and arrivals of negative customers remove positive customers in batches. Only positive customers form a queue and negative customers just reduce the system congestion by removing positive ones upon their arrivals. We derive the LSTs of sojourn time distributions for a single server Markovian queue with positive customers and negative customers by using the first passage time arguments for Markov chains.

  7. Cadmium removal using Cladophora in batch, semi-batch and flow reactors.

    Science.gov (United States)

    Sternberg, Steven P K; Dorn, Ryan W

    2002-02-01

    This study presents the results of using viable algae to remove cadmium from a synthetic wastewater. In batch and semi-batch tests, a local strain of Cladophora algae removed 80-94% of the cadmium introduced. The flow experiments that followed were conducted using non-local Cladophora parriaudii. Results showed that the alga removed only 12.7(+/-6.4)% of the cadmium introduced into the reactor. Limited removal was the result of insufficient algal quantities and poor contact between the algae and cadmium solution.

  8. Characteristics of bulk liquid undercooling and crystallization ...

    Indian Academy of Sciences (India)

    Characteristics of bulk liquid undercooling and crystallization behaviors ... cooling rate is fixed, the change of undercooling depends on the melt processing tem- ... solidification and a deep knowledge of undercooling of ... evolution, to obtain the information for the nucleation and ..... When cooling rate is fixed, the change.

  9. Restaurant Food Cooling Practices†

    Science.gov (United States)

    BROWN, LAURA GREEN; RIPLEY, DANNY; BLADE, HENRY; REIMANN, DAVE; EVERSTINE, KAREN; NICHOLAS, DAVE; EGAN, JESSICA; KOKTAVY, NICOLE; QUILLIAM, DANIELA N.

    2017-01-01

    Improper food cooling practices are a significant cause of foodborne illness, yet little is known about restaurant food cooling practices. This study was conducted to examine food cooling practices in restaurants. Specifically, the study assesses the frequency with which restaurants meet U.S. Food and Drug Administration (FDA) recommendations aimed at reducing pathogen proliferation during food cooling. Members of the Centers for Disease Control and Prevention’s Environmental Health Specialists Network collected data on food cooling practices in 420 restaurants. The data collected indicate that many restaurants are not meeting FDA recommendations concerning cooling. Although most restaurant kitchen managers report that they have formal cooling processes (86%) and provide training to food workers on proper cooling (91%), many managers said that they do not have tested and verified cooling processes (39%), do not monitor time or temperature during cooling processes (41%), or do not calibrate thermometers used for monitoring temperatures (15%). Indeed, 86% of managers reported cooling processes that did not incorporate all FDA-recommended components. Additionally, restaurants do not always follow recommendations concerning specific cooling methods, such as refrigerating cooling food at shallow depths, ventilating cooling food, providing open-air space around the tops and sides of cooling food containers, and refraining from stacking cooling food containers on top of each other. Data from this study could be used by food safety programs and the restaurant industry to target training and intervention efforts concerning cooling practices. These efforts should focus on the most frequent poor cooling practices, as identified by this study. PMID:23212014

  10. Realisation of a novel crystal bender for a fast double crystal monochromator

    CERN Document Server

    Zaeper, R; Wollmann, R; Luetzenkirchen-Hecht, D; Frahm, R

    2001-01-01

    A novel crystal bender for an X-ray undulator beamline as part of a fast double crystal monochromator development for full EXAFS energy range was characterized. Rocking curves of the monochromator crystal system were recorded under different heat loads and bending forces of the indirectly cooled first Si(1 1 1) crystal. The monochromator development implements new piezo-driven tilt tables with wide angular range to adjust the crystals' Bragg angles and a high pressure actuated bender mechanism for the first crystal.

  11. Water cooling coil

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, S; Ito, Y; Kazawa, Y

    1975-02-05

    Object: To provide a water cooling coil in a toroidal nuclear fusion device, in which coil is formed into a small-size in section so as not to increase dimensions, weight or the like of machineries including the coil. Structure: A conductor arranged as an outermost layer of a multiple-wind water cooling coil comprises a hollow conductor, which is directly cooled by fluid, and as a consequence, a solid conductor disposed interiorly thereof is cooled indirectly.

  12. The Cool Colors Project

    Science.gov (United States)

    Gov. Arnold Schwarzenegger, second from left, a sample from the Cool Colors Project, a roof product ) (Jeff Chiu - AP) more Cool Colors make the front page of The Sacramento Bee (3rd highest circulation newspaper in California) on 14 August 2006! Read the article online or as a PDF. The Cool Colors Project

  13. Evaluation of vitrification factors from DWPF's macro-batch 1

    International Nuclear Information System (INIS)

    Edwards, T.B.

    2000-01-01

    The Defense Waste Processing Facility (DWPF) is evaluating new sampling and analytical methods that may be used to support future Slurry Mix Evaporator (SME) batch acceptability decisions. This report uses data acquired during DWPF's processing of macro-batch 1 to determine a set of vitrification factors covering several SME and Melter Feed Tank (MFT) batches. Such values are needed for converting the cation measurements derived from the new methods to a ''glass'' basis. The available data from macro-batch 1 were used to examine the stability of these vitrification factors, to estimate their uncertainty over the course of a macro-batch, and to provide a recommendation on the use of a single factor for an entire macro-batch. The report is in response to Technical Task Request HLW/DWPF/TTR-980015

  14. Commensurability oscillations in NdBa2Cu3Oy single crystals

    Indian Academy of Sciences (India)

    Postfach 3640, 76021 Karlsruhe, Germany. 2Technical ... the vortices are placed between the CuO2 layers, but the energy necessary for the elastic ... Two Nd123 crystals from the same batch were investigated: FK, twinned, transition tem-.

  15. TIME-TEMPERATURE-TRANSFORMATION DIAGRAMS FOR THE SLUDGE BATCH 3 - FRIT 418 GLASS SYSTEM

    International Nuclear Information System (INIS)

    Billings, A.; Edwards, Tommy

    2009-01-01

    As a part of the Waste Acceptance Product Specifications (WAPS) for Vitrified High-Level Waste Forms defined by the Department of Energy - Office of Environmental Management, the phase stability must be determined for each of the projected high-level waste (HLW) types at the Savannah River Site (SRS). Specifically, WAPS 1.4.1 requires the glass transition temperature (Tg) to be defined and time-temperature-transformation (TTT) diagrams to be developed. The Tg of a glass is an indicator of the approximate temperature where the supercooled liquid converts to a solid on cooling or conversely, where the solid begins to behave as a viscoelastic solid on heating. A TTT diagram identifies the crystalline phases that can form as a function of time and temperature for a given waste type or more specifically, the borosilicate glass waste form. In order to assess durability, the Product Consistency Test (PCT) was used and the durability results compared to the Environmental Assessment (EA) glass. The measurement of glass transition temperature and the development of TTT diagrams have already been performed for the seven Defense Waste Processing Facility (DWPF) projected compositions as defined in the Waste Form Compliance Plan (WCP). These measurements were performed before DWPF start-up and the results were incorporated in Volume 7 of the Waste Form Qualification Report (WQR). Additional information exists for other projected compositions, but overall these compositions did not consider some of the processing scenarios now envisioned for DWPF to accelerate throughput. Changes in DWPF processing strategy have required this WAPS specification to be revisited to ensure that the resulting phases have been bounded. Frit 418 was primarily used to process HLW Sludge Batch 3 (SB3) at 38% waste loading (WL) through the DWPF. The Savannah River National Laboratory (SRNL) fabricated a cache of glass from reagent grade oxides to simulate the SB3-Frit 418 system at a 38 wt % WL for glass

  16. Inorganic fouling mitigation by salinity cycling in batch reverse osmosis

    OpenAIRE

    Maswadeh, Laith A.; Warsinger, David Elan Martin; Tow, Emily W.; Connors, Grace B.; Swaminathan, Jaichander; Lienhard, John H

    2018-01-01

    Enhanced fouling resistance has been observed in recent variants of reverse osmosis (RO) desalination which use time-varying batch or semi-batch processes, such as closed-circuit RO (CCRO) and pulse flow RO (PFRO). However, the mechanisms of batch processes' fouling resistance are not well-understood, and models have not been developed for prediction of their fouling performance. Here, a framework for predicting reverse osmosis fouling is developed by comparing the fluid residence time in bat...

  17. Crystallization of glycine with ultrasound

    DEFF Research Database (Denmark)

    Louhi-Kultanen, Marjatta; Karjalainen, Milja; Rantanen, Jukka

    2006-01-01

    Sonocrystallization has proved to be an efficient tool to influence the external appearance and structure of a crystalline product obtained by various crystallization methods. The present work focuses on high intensity sonocrystallization of glycine by varying amplitude of ultrasound with an ultr...... ultrasound power. This study also showed, the higher the ultrasound amplitude the smaller the crystals obtained.......Sonocrystallization has proved to be an efficient tool to influence the external appearance and structure of a crystalline product obtained by various crystallization methods. The present work focuses on high intensity sonocrystallization of glycine by varying amplitude of ultrasound...... with an ultrasound frequency of 20kHz at two temperature ranges 40-50 and 20-30 degrees C in a jacketed 250-ml cooling crystallizer equipped with a stirrer. The polymorph composition of the obtained crystals was analyzed with a temperature variable X-ray powder diffractometer (XRPD). XRPD results showed that...

  18. Growth of emerald single crystals

    International Nuclear Information System (INIS)

    Bukin, G.V.; Godovikov, A.A.; Klyakin, V.A.; Sobolev, V.S.

    1986-01-01

    In addition to its use for jewelry, emerald can also be used in low-noise microwave amplifiers. The authors discuss flux crystallization of emerald and note that when emerald is grown by this method, it is desirable to use solvents which dissolve emerald with minimum deviations from congruence but at the same time with sufficient high efficiency. Emerald synthesis and crystal growth from slowly cooled solutions is discussed as another possibility. The techniques are examined. Vapor synthesis and growht of beryl crystals re reviewed and the authors experimentally study the seeded CVD crystallization of beryl from BeO, Al 2 O 3 and SiO 2 oxides, by using complex compounds as carrier agents. The color of crystals of emerald and other varieties of beryl is detemined by slelective light absorption in teh visible part of the spectrum and depends on the density and structural positions of chromphore ions: chromium, iron, vanadium, nickel, manganese and cobalt

  19. Optimizing Resource Utilization in Grid Batch Systems

    International Nuclear Information System (INIS)

    Gellrich, Andreas

    2012-01-01

    On Grid sites, the requirements of the computing tasks (jobs) to computing, storage, and network resources differ widely. For instance Monte Carlo production jobs are almost purely CPU-bound, whereas physics analysis jobs demand high data rates. In order to optimize the utilization of the compute node resources, jobs must be distributed intelligently over the nodes. Although the job resource requirements cannot be deduced directly, jobs are mapped to POSIX UID/GID according to the VO, VOMS group and role information contained in the VOMS proxy. The UID/GID then allows to distinguish jobs, if users are using VOMS proxies as planned by the VO management, e.g. ‘role=production’ for Monte Carlo jobs. It is possible to setup and configure batch systems (queuing system and scheduler) at Grid sites based on these considerations although scaling limits were observed with the scheduler MAUI. In tests these limitations could be overcome with a home-made scheduler.

  20. Sewage sludge irradiators: Batch and continuous flow

    International Nuclear Information System (INIS)

    Lavale, D.S.; George, J.R.; Shah, M.R.; Rawat, K.P.

    1998-01-01

    The potential threat to the environment imposed by high pathogenic organism content in municipal wastewater, especially the sludge and the world-wide growing aspirations for a cleaner, salubrious environment have made it mandatory for the sewage and sludge to undergo treatment, prior to their ultimate disposal to mother nature. Incapabilities associated with the conventional wastewater treatments to mitigate the problem of microorganisms have made it necessary to look for other alternatives, radiation treatment being the most reliable, rapid and environmentally sustainable of them. To promote the use of radiation for the sludge hygienization, Department of Atomic Energy has endeavoured to set up an indigenous, Sludge Hygienization Research Irradiator (SHRI) in the city of Baroda. Designed for 18.5 PBq of 60 Co to disinfect the digested sludge, the irradiator has additional provision for treatment of effluent and raw sewage. From engineering standpoint, all the subsystems have been functioning satisfactorily since its commissioning in 1990. Prolonged studies, spanning over a period of six years, primarily focused on inactivation of microorganism revealed that 3 kGy dose of gamma radiation is adequate to make the sludge pathogen and odour-free. A dose of 1.6 kGy in raw sewage and 0.5 kGy in effluent reduced coliform counts down to the regulatory discharge limits. These observations reflect a possible cost-effective solution to the burgeoning problem of surface water pollution across the globe. In the past, sub 37 PBq 60 Co batch irradiators have been designed and commissioned successfully for the treatment of sludge. Characterized with low dose delivery rates they are well-suited for treating low volumes of sludge in batches. Some concepts of continuous flow 60 Co irradiators having larger activities, yet simple and economic in design, are presented in the paper

  1. Cooling water distribution system

    Science.gov (United States)

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  2. Cooling tower calculations

    International Nuclear Information System (INIS)

    Simonkova, J.

    1988-01-01

    The problems are summed up of the dynamic calculation of cooling towers with forced and natural air draft. The quantities and relations are given characterizing the simultaneous exchange of momentum, heat and mass in evaporative water cooling by atmospheric air in the packings of cooling towers. The method of solution is clarified in the calculation of evaporation criteria and thermal characteristics of countercurrent and cross current cooling systems. The procedure is demonstrated of the calculation of cooling towers, and correction curves and the effect assessed of the operating mode at constant air number or constant outlet air volume flow on their course in ventilator cooling towers. In cooling towers with the natural air draft the flow unevenness is assessed of water and air relative to its effect on the resulting cooling efficiency of the towers. The calculation is demonstrated of thermal and resistance response curves and cooling curves of hydraulically unevenly loaded towers owing to the water flow rate parameter graded radially by 20% along the cross-section of the packing. Flow rate unevenness of air due to wind impact on the outlet air flow from the tower significantly affects the temperatures of cooled water in natural air draft cooling towers of a design with lower demands on aerodynamics, as early as at wind velocity of 2 m.s -1 as was demonstrated on a concrete example. (author). 11 figs., 10 refs

  3. Simultaneous Synchrotron WAXD and Fast Scanning (Chip) Calorimetry: On the (Isothermal) Crystallization of HDPE and PA11 at High Supercoolings and Cooling Rates up to 200 °C s(-1).

    Science.gov (United States)

    Baeten, Dorien; Mathot, Vincent B F; Pijpers, Thijs F J; Verkinderen, Olivier; Portale, Giuseppe; Van Puyvelde, Peter; Goderis, Bart

    2015-06-01

    An experimental setup, making use of a Flash DSC 1 prototype, is presented in which materials can be studied simultaneously by fast scanning calorimetry (FSC) and synchrotron wide angle X-ray diffraction (WAXD). Accumulation of multiple, identical measurements results in high quality, millisecond WAXD patterns. Patterns at every degree during the crystallization and melting of high density polyethylene at FSC typical scanning rates from 20 up to 200 °C s(-1) are discussed in terms of the temperature and scanning rate dependent material crystallinities and crystal densities. Interestingly, the combined approach reveals FSC thermal lag issues, for which can be corrected. For polyamide 11, isothermal solidification at high supercooling yields a mesomorphic phase in less than a second, whereas at very low supercooling crystals are obtained. At intermediate supercooling, mixtures of mesomorphic and crystalline material are generated at a ratio proportional to the supercooling. This ratio is constant over the isothermal solidification time. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Preventing Crystal Agglomeration of Pharmaceutical Crystals Using Temperature Cycling and a Novel Membrane Crystallization Procedure for Seed Crystal Generation

    Directory of Open Access Journals (Sweden)

    Elena Simone

    2018-01-01

    Full Text Available In this work, a novel membrane crystallization system was used to crystallize micro-sized seeds of piroxicam monohydrate by reverse antisolvent addition. Membrane crystallization seeds were compared with seeds produced by conventional antisolvent addition and polymorphic transformation of a fine powdered sample of piroxicam form I in water. The membrane crystallization process allowed for a consistent production of pure monohydrate crystals with narrow size distribution and without significant agglomeration. The seeds were grown in 350 g of 20:80 w/w acetone-water mixture. Different seeding loads were tested and temperature cycling was applied in order to avoid agglomeration of the growing crystals during the process. Focused beam reflectance measurement (FBRM; and particle vision and measurement (PVM were used to monitor crystal growth; nucleation and agglomeration during the seeded experiments. Furthermore; Raman spectroscopy was used to monitor solute concentration and estimate the overall yield of the process. Membrane crystallization was proved to be the most convenient and consistent method to produce seeds of highly agglomerating compounds; which can be grown via cooling crystallization and temperature cycling.

  5. Examining the role of canister cooling conditions on the formation of nepheline from nuclear waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-01

    Nepheline (NaAlSiO₄) crystals can form during slow cooling of high-level waste (HLW) glass after it has been poured into a waste canister. Formation of these crystals can adversely affect the chemical durability of the glass. The tendency for nepheline crystallization to form in a HLW glass increases with increasing concentrations of Al₂O₃ and Na₂O.

  6. Crystals in crystals

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Schmidt, I.; Carlsson, A.

    2005-01-01

    A major factor governing the performance of catalytically active particles supported on a zeolite carrier is the degree of dispersion. It is shown that the introduction of noncrystallographic mesopores into zeolite single crystals (silicalite-1, ZSM-5) may increase the degree of particle dispersion....... As representative examples, a metal (Pt), an alloy (PtSn), and a metal carbide (beta-Mo2C) were supported on conventional and mesoporous zeolite carriers, respectively, and the degree of particle dispersion was compared by TEM imaging. On conventional zeolites, the supported material aggregated on the outer surface...

  7. Virtual Crystallizer

    Energy Technology Data Exchange (ETDEWEB)

    Land, T A; Dylla-Spears, R; Thorsness, C B

    2006-08-29

    Large dihydrogen phosphate (KDP) crystals are grown in large crystallizers to provide raw material for the manufacture of optical components for large laser systems. It is a challenge to grow crystal with sufficient mass and geometric properties to allow large optical plates to be cut from them. In addition, KDP has long been the canonical solution crystal for study of growth processes. To assist in the production of the crystals and the understanding of crystal growth phenomena, analysis of growth habits of large KDP crystals has been studied, small scale kinetic experiments have been performed, mass transfer rates in model systems have been measured, and computational-fluid-mechanics tools have been used to develop an engineering model of the crystal growth process. The model has been tested by looking at its ability to simulate the growth of nine KDP boules that all weighed more than 200 kg.

  8. single crystals

    Indian Academy of Sciences (India)

    2018-05-18

    May 18, 2018 ... Abstract. 4-Nitrobenzoic acid (4-NBA) single crystals were studied for their linear and nonlinear optical ... studies on the proper growth, linear and nonlinear optical ..... between the optic axes and optic sign of the biaxial crystal.

  9. Crystal Systems.

    Science.gov (United States)

    Schomaker, Verner; Lingafelter, E. C.

    1985-01-01

    Discusses characteristics of crystal systems, comparing (in table format) crystal systems with lattice types, number of restrictions, nature of the restrictions, and other lattices that can accidently show the same metrical symmetry. (JN)

  10. Bioprocess iterative batch-to-batch optimization based on hybrid parametric/nonparametric models.

    Science.gov (United States)

    Teixeira, Ana P; Clemente, João J; Cunha, António E; Carrondo, Manuel J T; Oliveira, Rui

    2006-01-01

    This paper presents a novel method for iterative batch-to-batch dynamic optimization of bioprocesses. The relationship between process performance and control inputs is established by means of hybrid grey-box models combining parametric and nonparametric structures. The bioreactor dynamics are defined by material balance equations, whereas the cell population subsystem is represented by an adjustable mixture of nonparametric and parametric models. Thus optimizations are possible without detailed mechanistic knowledge concerning the biological system. A clustering technique is used to supervise the reliability of the nonparametric subsystem during the optimization. Whenever the nonparametric outputs are unreliable, the objective function is penalized. The technique was evaluated with three simulation case studies. The overall results suggest that the convergence to the optimal process performance may be achieved after a small number of batches. The model unreliability risk constraint along with sampling scheduling are crucial to minimize the experimental effort required to attain a given process performance. In general terms, it may be concluded that the proposed method broadens the application of the hybrid parametric/nonparametric modeling technique to "newer" processes with higher potential for optimization.

  11. Laser cooling of solids

    CERN Document Server

    Petrushkin, S V

    2009-01-01

    Laser cooling is an important emerging technology in such areas as the cooling of semiconductors. The book examines and suggests solutions for a range of problems in the development of miniature solid-state laser refrigerators, self-cooling solid-state lasers and optical echo-processors. It begins by looking at the basic theory of laser cooling before considering such topics as self-cooling of active elements of solid-state lasers, laser cooling of solid-state information media of optical echo-processors, and problems of cooling solid-state quantum processors. Laser Cooling of Solids is an important contribution to the development of compact laser-powered cryogenic refrigerators, both for the academic community and those in the microelectronics and other industries. Provides a timely review of this promising field of research and discusses the fundamentals and theory of laser cooling Particular attention is given to the physics of cooling processes and the mathematical description of these processes Reviews p...

  12. Emergency reactor cooling device

    International Nuclear Information System (INIS)

    Arakawa, Ken.

    1993-01-01

    An emergency nuclear reactor cooling device comprises a water reservoir, emergency core cooling water pipelines having one end connected to a water feeding sparger, fire extinguishing facility pipelines, cooling water pressurizing pumps, a diesel driving machine for driving the pumps and a battery. In a water reservoir, cooling water is stored by an amount required for cooling the reactor upon emergency and for fire extinguishing, and fire extinguishing facility pipelines connecting the water reservoir and the fire extinguishing facility are in communication with the emergency core cooling water pipelines connected to the water feeding sparger by system connection pipelines. Pumps are operated by a diesel power generator to introduce cooling water from the reservoir to the emergency core cooling water pipelines. Then, even in a case where AC electric power source is entirely lost and the emergency core cooling system can not be used, the diesel driving machine is operated using an exclusive battery, thereby enabling to inject cooling water from the water reservoir to a reactor pressure vessel and a reactor container by the diesel drive pump. (N.H.)

  13. Modelling and Simulation of the Batch Hydrolysis of Acetic ...

    African Journals Online (AJOL)

    The kinetic modelling of the batch synthesis of acetic acid from acetic anhydride was investigated. The kinetic data of the reaction was obtained by conducting the hydrolysis reaction in a batch reactor. A dynamic model was formulated for this process and simulation was carried out using gPROMS® an advanced process ...

  14. [Batch release of immunoglobulin and monoclonal antibody products].

    Science.gov (United States)

    Gross, S

    2014-10-01

    The Paul-Ehrlich Institute (PEI) is an independent institution of the Federal Republic of Germany responsible for performing official experimental batch testing of sera. The institute decides about the release of each batch and performs experimental research in the field. The experimental quality control ensures the potency of the product and also the absence of harmful impurities. For release of an immunoglobulin batch the marketing authorization holder has to submit the documentation of the manufacture and the results of quality control measures together with samples of the batch to the PEI. Experimental testing is performed according to the approved specifications regarding the efficacy and safety. Since implementation of the 15th German drug law amendment, the source of antibody is not defined anymore. According to § 32 German drug law, all batches of sera need to be released by an official control laboratory. Sera are medicinal products, which contain antibodies, antibody fragments or fusion proteins with a functional antibody portion. Therefore, all batches of monoclonal antibodies and derivatives must also be released by the PEI and the marketing authorization holder has to submit a batch release application. Under certain circumstances a waiver for certain products can be issued with regard to batch release. The conditions for such a waiver apply to the majority of monoclonal antibodies.

  15. 21 CFR 80.37 - Treatment of batch pending certification.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Treatment of batch pending certification. 80.37 Section 80.37 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL COLOR ADDITIVE CERTIFICATION Certification Procedures § 80.37 Treatment of batch pending certification...

  16. Solving a chemical batch scheduling problem by local search

    NARCIS (Netherlands)

    Brucker, P.; Hurink, Johann L.

    1999-01-01

    A chemical batch scheduling problem is modelled in two different ways as a discrete optimization problem. Both models are used to solve the batch scheduling problem in a two-phase tabu search procedure. The method is tested on real-world data.

  17. Dynamic Scheduling Of Batch Operations With Non-Identical Machines

    NARCIS (Netherlands)

    van der Zee, D.J.; van Harten, A.; Schuur, P.C.

    1997-01-01

    Batch-wise production is found in many industries. A good example of production systems which process products batch-wise are the ovens found in aircraft industry and in semiconductor manufacturing. These systems mostly consist of multiple machines of different types, given the range and volumes of

  18. Dynamic scheduling of batch operations with non-identical machines

    NARCIS (Netherlands)

    van der Zee, D.J.; van Harten, Aart; Schuur, Peter

    1997-01-01

    Batch-wise production is found in many industries. A good example of production systems which process products batch-wise are the ovens found in aircraft industry and in semiconductor manufacturing. These systems mostly consist of multiple machines of different types, given the range and volumes of

  19. A canned food scheduling problem with batch due date

    Science.gov (United States)

    Chung, Tsui-Ping; Liao, Ching-Jong; Smith, Milton

    2014-09-01

    This article considers a canned food scheduling problem where jobs are grouped into several batches. Jobs can be sent to the next operation only when all the jobs in the same batch have finished their processing, i.e. jobs in a batch, have a common due date. This batch due date problem is quite common in canned food factories, but there is no efficient heuristic to solve the problem. The problem can be formulated as an identical parallel machine problem with batch due date to minimize the total tardiness. Since the problem is NP hard, two heuristics are proposed to find the near-optimal solution. Computational results comparing the effectiveness and efficiency of the two proposed heuristics with an existing heuristic are reported and discussed.

  20. Spatial and interannual variability in Baltic sprat batch fecundity

    DEFF Research Database (Denmark)

    Haslob, H.; Tomkiewicz, Jonna; Hinrichsen, H.H.

    2011-01-01

    in the central Baltic Sea, namely the Bornholm Basin, Gdansk Deep and Southern Gotland Basin. Environmental parameters such as hydrography, fish condition and stock density were tested in order to investigate the observed variability in sprat fecundity. Absolute batch fecundity was found to be positively related...... to fish length and weight. Significant differences in absolute and relative batch fecundity of Baltic sprat among areas and years were detected, and could partly be explained by hydrographic features of the investigated areas. A non-linear multiple regression model taking into account fish length...... and ambient temperature explained 70% of variability in absolute batch fecundity. Oxygen content and fish condition were not related to sprat batch fecundity. Additionally, a negative effect of stock size on sprat batch fecundity in the Bornholm Basin was revealed. The obtained data and results are important...

  1. Liquid metal cooling of synchrotron optics

    International Nuclear Information System (INIS)

    Smither, R.K.

    1993-01-01

    The installation of insertion devices at existing synchrotron facilities around the world has stimulated the development of new ways to cool the optical elements in the associated x-ray beamlines. Argonne has been a leader in the development of liquid metal cooling for high heat load x-ray optics for the next generation of synchrotron facilities. The high thermal conductivity, high volume specific heat, low kinematic viscosity, and large working temperature range make liquid metals a very efficient heat transfer fluid. A wide range of liquid metals were considered in the initial phase of this work. The most promising liquid metal cooling fluid identified to date is liquid gallium, which appears to have all the desired properties and the fewest number of undesired features of the liquid metals examined. Besides the special features of liquid metals that make them good heat transfer fluids, the very low vapor pressure over a large working temperature range make liquid gallium an ideal cooling fluid for use in a high vacuum environment. A leak of the liquid gallium into the high vacuum and even into very high vacuum areas will not result in any detectable vapor pressure and may even improve the vacuum environment as the liquid gallium combines with any water vapor or oxygen present in the system. The practical use of a liquid metal for cooling silicon crystals and other high heat load applications depends on having a convenient and efficient delivery system. The requirements for a typical cooling system for a silicon crystal used in a monochromator are pumping speeds of 2 to 5 gpm (120 cc per sec to 600 cc per sec) at pressures up to 100 psi. No liquid metal pump with these capabilities was available commercially when this project was started, so it was necessary to develop a suitable pump in house

  2. Radiant Floor Cooling Systems

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.

    2008-01-01

    In many countries, hydronic radiant floor systems are widely used for heating all types of buildings such as residential, churches, gymnasiums, hospitals, hangars, storage buildings, industrial buildings, and smaller offices. However, few systems are used for cooling.This article describes a floor...... cooling system that includes such considerations as thermal comfort of the occupants, which design parameters will influence the cooling capacity and how the system should be controlled. Examples of applications are presented....

  3. Biodenitrification in Sequencing Batch Reactors. Final report

    International Nuclear Information System (INIS)

    Silverstein, J.

    1996-01-01

    One plan for stabilization of the Solar Pond waters and sludges at Rocky Flats Plant (RFP), is evaporation and cement solidification of the salts to stabilize heavy metals and radionuclides for land disposal as low-level mixed waste. It has been reported that nitrate (NO 3- ) salts may interfere with cement stabilization of heavy metals and radionuclides. Therefore, biological nitrate removal (denitrification) may be an important pretreatment for the Solar Pond wastewaters at RFP, improving the stability of the cement final waste form, reducing the requirement for cement (or pozzolan) additives and reducing the volume of cemented low-level mixed waste requiring ultimate disposal. A laboratory investigation of the performance of the Sequencing Batch Reactor (SBR) activated sludge process developed for nitrate removal from a synthetic brine typical of the high-nitrate and high-salinity wastewaters in the Solar Ponds at Rocky Flats Plant was carried out at the Environmental Engineering labs at the University of Colorado, Boulder, between May 1, 1994 and October 1, 1995

  4. Monomial Crystals and Partition Crystals

    Science.gov (United States)

    Tingley, Peter

    2010-04-01

    Recently Fayers introduced a large family of combinatorial realizations of the fundamental crystal B(Λ0) for ^sln, where the vertices are indexed by certain partitions. He showed that special cases of this construction agree with the Misra-Miwa realization and with Berg's ladder crystal. Here we show that another special case is naturally isomorphic to a realization using Nakajima's monomial crystal.

  5. The cooling of particle beams

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1994-10-01

    A review is given of the various methods which can be employed for cooling particle beams. These methods include radiation damping, stimulated radiation damping, ionization cooling, stochastic cooling, electron cooling, laser cooling, and laser cooling with beam coupling. Laser Cooling has provided beams of the lowest temperatures, namely 1 mK, but only for ions and only for the longitudinal temperature. Recent theoretical work has suggested how laser cooling, with the coupling of beam motion, can be used to reduce the ion beam temperature in all three directions. The majority of this paper is devoted to describing laser cooling and laser cooling with beam coupling

  6. Turbine airfoil cooling system with cooling systems using high and low pressure cooling fluids

    Science.gov (United States)

    Marsh, Jan H.; Messmann, Stephen John; Scribner, Carmen Andrew

    2017-10-25

    A turbine airfoil cooling system including a low pressure cooling system and a high pressure cooling system for a turbine airfoil of a gas turbine engine is disclosed. In at least one embodiment, the low pressure cooling system may be an ambient air cooling system, and the high pressure cooling system may be a compressor bleed air cooling system. In at least one embodiment, the compressor bleed air cooling system in communication with a high pressure subsystem that may be a snubber cooling system positioned within a snubber. A delivery system including a movable air supply tube may be used to separate the low and high pressure cooling subsystems. The delivery system may enable high pressure cooling air to be passed to the snubber cooling system separate from low pressure cooling fluid supplied by the low pressure cooling system to other portions of the turbine airfoil cooling system.

  7. Power electronics cooling apparatus

    Science.gov (United States)

    Sanger, Philip Albert; Lindberg, Frank A.; Garcen, Walter

    2000-01-01

    A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

  8. Semioptimal practicable algorithmic cooling

    International Nuclear Information System (INIS)

    Elias, Yuval; Mor, Tal; Weinstein, Yossi

    2011-01-01

    Algorithmic cooling (AC) of spins applies entropy manipulation algorithms in open spin systems in order to cool spins far beyond Shannon's entropy bound. Algorithmic cooling of nuclear spins was demonstrated experimentally and may contribute to nuclear magnetic resonance spectroscopy. Several cooling algorithms were suggested in recent years, including practicable algorithmic cooling (PAC) and exhaustive AC. Practicable algorithms have simple implementations, yet their level of cooling is far from optimal; exhaustive algorithms, on the other hand, cool much better, and some even reach (asymptotically) an optimal level of cooling, but they are not practicable. We introduce here semioptimal practicable AC (SOPAC), wherein a few cycles (typically two to six) are performed at each recursive level. Two classes of SOPAC algorithms are proposed and analyzed. Both attain cooling levels significantly better than PAC and are much more efficient than the exhaustive algorithms. These algorithms are shown to bridge the gap between PAC and exhaustive AC. In addition, we calculated the number of spins required by SOPAC in order to purify qubits for quantum computation. As few as 12 and 7 spins are required (in an ideal scenario) to yield a mildly pure spin (60% polarized) from initial polarizations of 1% and 10%, respectively. In the latter case, about five more spins are sufficient to produce a highly pure spin (99.99% polarized), which could be relevant for fault-tolerant quantum computing.

  9. Glucoamylase production in batch, chemostat and fed-batch cultivations by an industrial strain of Aspergillus niger

    DEFF Research Database (Denmark)

    Pedersen, Henrik; Beyer, Michael; Nielsen, Jens

    2000-01-01

    The Aspergillus niger strain BO-1 was grown in batch, continuous (chemostat) and fed-batch cultivations in order to study the production of the extracellular enzyme glucoamylase under different growth conditions. In the pH range 2.5-6.0, the specific glucoamylase productivity and the specific...

  10. Batch-to-batch quality consistency evaluation of botanical drug products using multivariate statistical analysis of the chromatographic fingerprint.

    Science.gov (United States)

    Xiong, Haoshu; Yu, Lawrence X; Qu, Haibin

    2013-06-01

    Botanical drug products have batch-to-batch quality variability due to botanical raw materials and the current manufacturing process. The rational evaluation and control of product quality consistency are essential to ensure the efficacy and safety. Chromatographic fingerprinting is an important and widely used tool to characterize the chemical composition of botanical drug products. Multivariate statistical analysis has showed its efficacy and applicability in the quality evaluation of many kinds of industrial products. In this paper, the combined use of multivariate statistical analysis and chromatographic fingerprinting is presented here to evaluate batch-to-batch quality consistency of botanical drug products. A typical botanical drug product in China, Shenmai injection, was selected as the example to demonstrate the feasibility of this approach. The high-performance liquid chromatographic fingerprint data of historical batches were collected from a traditional Chinese medicine manufacturing factory. Characteristic peaks were weighted by their variability among production batches. A principal component analysis model was established after outliers were modified or removed. Multivariate (Hotelling T(2) and DModX) control charts were finally successfully applied to evaluate the quality consistency. The results suggest useful applications for a combination of multivariate statistical analysis with chromatographic fingerprinting in batch-to-batch quality consistency evaluation for the manufacture of botanical drug products.

  11. Batch-To-Batch Rational Feedforward Control : From Iterative Learning to Identification Approaches, with Application to a Wafer Stage

    NARCIS (Netherlands)

    Blanken, L.; Boeren, F.A.J.; Bruijnen, D.J.H.; Oomen, T.A.E.

    2017-01-01

    Feedforward control enables high performance for industrial motion systems that perform nonrepeating motion tasks. Recently, learning techniques have been proposed that improve both performance and flexibility to nonrepeating tasks in a batch-To-batch fashion by using a rational parameterization in

  12. Kinetic study of batch and fed-batch enzymatic saccharification of pretreated substrate and subsequent fermentation to ethanol

    Directory of Open Access Journals (Sweden)

    Gupta Rishi

    2012-03-01

    Full Text Available Abstract Background Enzymatic hydrolysis, the rate limiting step in the process development for biofuel, is always hampered by its low sugar concentration. High solid enzymatic saccharification could solve this problem but has several other drawbacks such as low rate of reaction. In the present study we have attempted to enhance the concentration of sugars in enzymatic hydrolysate of delignified Prosopis juliflora, using a fed-batch enzymatic hydrolysis approach. Results The enzymatic hydrolysis was carried out at elevated solid loading up to 20% (w/v and a comparison kinetics of batch and fed-batch enzymatic hydrolysis was carried out using kinetic regimes. Under batch mode, the actual sugar concentration values at 20% initial substrate consistency were found deviated from the predicted values and the maximum sugar concentration obtained was 80.78 g/L. Fed-batch strategy was implemented to enhance the final sugar concentration to 127 g/L. The batch and fed-batch enzymatic hydrolysates were fermented with Saccharomyces cerevisiae and ethanol production of 34.78 g/L and 52.83 g/L, respectively, were achieved. Furthermore, model simulations showed that higher insoluble solids in the feed resulted in both smaller reactor volume and shorter residence time. Conclusion Fed-batch enzymatic hydrolysis is an efficient procedure for enhancing the sugar concentration in the hydrolysate. Restricting the process to suitable kinetic regimes could result in higher conversion rates.

  13. Kinetic study of batch and fed-batch enzymatic saccharification of pretreated substrate and subsequent fermentation to ethanol

    Science.gov (United States)

    2012-01-01

    Background Enzymatic hydrolysis, the rate limiting step in the process development for biofuel, is always hampered by its low sugar concentration. High solid enzymatic saccharification could solve this problem but has several other drawbacks such as low rate of reaction. In the present study we have attempted to enhance the concentration of sugars in enzymatic hydrolysate of delignified Prosopis juliflora, using a fed-batch enzymatic hydrolysis approach. Results The enzymatic hydrolysis was carried out at elevated solid loading up to 20% (w/v) and a comparison kinetics of batch and fed-batch enzymatic hydrolysis was carried out using kinetic regimes. Under batch mode, the actual sugar concentration values at 20% initial substrate consistency were found deviated from the predicted values and the maximum sugar concentration obtained was 80.78 g/L. Fed-batch strategy was implemented to enhance the final sugar concentration to 127 g/L. The batch and fed-batch enzymatic hydrolysates were fermented with Saccharomyces cerevisiae and ethanol production of 34.78 g/L and 52.83 g/L, respectively, were achieved. Furthermore, model simulations showed that higher insoluble solids in the feed resulted in both smaller reactor volume and shorter residence time. Conclusion Fed-batch enzymatic hydrolysis is an efficient procedure for enhancing the sugar concentration in the hydrolysate. Restricting the process to suitable kinetic regimes could result in higher conversion rates. PMID:22433563

  14. Deposit control in process cooling water systems

    International Nuclear Information System (INIS)

    Venkataramani, B.

    1981-01-01

    In order to achieve efficient heat transfer in cooling water systems, it is essential to control the fouling of heat exchanger surfaces. Solubilities of scale forming salts, their growth into crystals, and the nature of the surfaces play important roles in the deposition phenomenon. Condensed phosphates, organic polymers and compounds like phosphates are effective in controlling deposition of scale forming salts. The surface active agents inhibit crystal growth and modify the crystals of the scale forming salts, and thus prevent deposition of dense, uniformly structured crystalline mass on the heat transfer surface. Understanding the mechanism of biofouling is essential to control it by surface active agents. Certain measures taken in the plant, such as back flushing, to control scaling, sometimes may not be effective and can be detrimental to the system itself. (author)

  15. Cation ordering in orthopyroxenes and cooling rates of meteorites: Low temperature cooling rates of Estherville, Bondoc and Shaw

    Science.gov (United States)

    Ganguly, J.; Yang, H.; Ghose, S.

    1993-01-01

    The cooling rates of meteorites provide important constraints on the size of their parent bodies, and their accretionary and evolutionary histories. However, the cooling rates obtained so far from the commonly used metallographic, radiometric and fission-track methods have been sometimes quite controversial, such as in the case of the mesosiderites and the meteorite Shaw. We have undertaken a systematic study of the cooling rates of meteorites using a different approach, which involves single crystal x-ray determination of Fe(2+)-Mg ordering in orthopyroxenes (OP(x)) in meteorites, subject to bulk compositional constraints, and numerical simulation of the evolution of the ordering state as a function of cooling rate, within the framework of the thermodynamic and kinetic principles governing cation ordering. We report the results obtained for OP(x) crystals from Shaw and two mesosiderites, Estherville and Bondoc.

  16. Multicomponent Diffusion in Experimentally Cooled Melt Inclusions

    Science.gov (United States)

    Saper, L.; Stolper, E.

    2017-12-01

    Glassy olivine-hosted melt inclusions are compositionally zoned, characterized by a boundary layer depleted in olivine-compatible components that extends into the melt inclusion from its wall. The boundary layer forms in response to crystallization of olivine and relaxes with time due to diffusive exchange with the interior of the inclusion. At magmatic temperatures, the time scale for homogenization of inclusions is minutes to hours. Preservation of compositional gradients in natural inclusions results from rapid cooling upon eruption. A model of MgO concentration profiles that couples crystal growth and diffusive relaxation of a boundary layer can be used to solve for eruptive cooling rates [1]. Controlled cooling-rate experiments were conducted to test the accuracy of the model. Mauna Loa olivine containing >80 µm melt inclusions were equilibrated at 1225°C in a 1-atm furnace for 24 hours, followed by linear cooling at rates of 102 - 105 °C/hr. High-resolution concentration profiles of 40 inclusions were obtained using an electron microprobe. The model of [1] fits the experimental data with low residuals and the best-fit cooling rates are within 30% of experimental values. The initial temperature of 1225 °C is underestimated by 65°C. The model was modified using (i) MELTS to calculate the interface melt composition as a function of temperature, and (ii) a concentration-dependent MgO diffusion coefficient using the functional form of [2]. With this calibration the best-fit starting temperatures are within 5°C of the experimental values and the best-fit cooling rates are within 20% of experimental rates. The evolution of the CaO profile during cooling is evidence for strong diffusive coupling between melt components. Because CaO is incompatible in olivine, CaO concentrations are expected to be elevated in the boundary layer adjacent to the growing olivine. Although this is observed at short time scales, as the profile evolves the CaO concentration near the

  17. Cooling of electronic equipment

    DEFF Research Database (Denmark)

    A. Kristensen, Anders Schmidt

    2003-01-01

    Cooling of electronic equipment is studied. The design size of electronic equipment decrease causing the thermal density to increase. This affect the cooling which can cause for example failures of critical components due to overheating or thermal induced stresses. Initially a pin fin heat sink...

  18. Solar absorption cooling

    NARCIS (Netherlands)

    Kim, D.S.

    2007-01-01

    As the world concerns more and more on global climate changes and depleting energy resources, solar cooling technology receives increasing interests from the public as an environment-friendly and sustainable alternative. However, making a competitive solar cooling machine for the market still

  19. Gas-cooled reactors

    International Nuclear Information System (INIS)

    Vakilian, M.

    1977-05-01

    The present study is the second part of a general survey of Gas Cooled Reactors (GCRs). In this part, the course of development, overall performance and present development status of High Temperature Gas Cooled Reactors (HTCRs) and advances of HTGR systems are reviewed. (author)

  20. Coherent electron cooling

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko,V.

    2009-05-04

    Cooling intense high-energy hadron beams remains a major challenge in modern accelerator physics. Synchrotron radiation is still too feeble, while the efficiency of two other cooling methods, stochastic and electron, falls rapidly either at high bunch intensities (i.e. stochastic of protons) or at high energies (e-cooling). In this talk a specific scheme of a unique cooling technique, Coherent Electron Cooling, will be discussed. The idea of coherent electron cooling using electron beam instabilities was suggested by Derbenev in the early 1980s, but the scheme presented in this talk, with cooling times under an hour for 7 TeV protons in the LHC, would be possible only with present-day accelerator technology. This talk will discuss the principles and the main limitations of the Coherent Electron Cooling process. The talk will describe the main system components, based on a high-gain free electron laser driven by an energy recovery linac, and will present some numerical examples for ions and protons in RHIC and the LHC and for electron-hadron options for these colliders. BNL plans a demonstration of the idea in the near future.

  1. The final cool down

    CERN Multimedia

    Thursday 29th May, the cool-down of the final sector (sector 4-5) of LHC has begun, one week after the start of the cool-down of sector 1-2. It will take five weeks for the sectors to be cooled from room temperature to 5 K and a further two weeks to complete the cool down to 1.9 K and the commissioning of cryogenic instrumentation, as well as to fine tune the cryogenic plants and the cooling loops of cryostats.Nearly a year and half has passed since sector 7-8 was cooled for the first time in January 2007. For Laurent Tavian, AT/CRG Group Leader, reaching the final phase of the cool down is an important milestone, confirming the basic design of the cryogenic system and the ability to operate complete sectors. “All the sectors have to operate at the same time otherwise we cannot inject the beam into the machine. The stability and reliability of the cryogenic system and its utilities are now very important. That will be the new challenge for the coming months,” he explains. The status of the cool down of ...

  2. RNA Crystallization

    Science.gov (United States)

    Golden, Barbara L.; Kundrot, Craig E.

    2003-01-01

    RNA molecules may be crystallized using variations of the methods developed for protein crystallography. As the technology has become available to syntheisize and purify RNA molecules in the quantities and with the quality that is required for crystallography, the field of RNA structure has exploded. The first consideration when crystallizing an RNA is the sequence, which may be varied in a rational way to enhance crystallizability or prevent formation of alternate structures. Once a sequence has been designed, the RNA may be synthesized chemically by solid-state synthesis, or it may be produced enzymatically using RNA polymerase and an appropriate DNA template. Purification of milligram quantities of RNA can be accomplished by HPLC or gel electrophoresis. As with proteins, crystallization of RNA is usually accomplished by vapor diffusion techniques. There are several considerations that are either unique to RNA crystallization or more important for RNA crystallization. Techniques for design, synthesis, purification, and crystallization of RNAs will be reviewed here.

  3. Multiple batch recharging for industrial CZ silicon growth

    Science.gov (United States)

    Fickett, B.; Mihalik, G.

    2001-05-01

    The Czochralski (CZ) crystal growth process used in the Siemens Solar Industries’ (SSI) Vancouver, WA facility was non-continuous. Each furnace run's production was limited by the size of the starting charge. Once the charge was depleted, the furnace was shut down, cooled, and set back up for the next run. A recharge system was developed which transforms standard CZ growth into a semi-continuous process. Now when the charge is depleted, the crucible can be refilled in situ as the grown ingot is being removed from the furnace. SSI has demonstrated up to 14 recharge cycles in a single run. The resulting benefits included: significant cost reduction, increased yield, increased throughput, reduced energy consumption, improved process capability, reduced material handling requirements, and reduced labor. The recharge system also enables the use of granular silicon, which requires less than 30% of the energy required when manufacturing silicon-starting materials. This significantly reduces the energy “pay-back” time associated with SSI's finished product, photovoltaic panels.

  4. Reactor core cooling device

    International Nuclear Information System (INIS)

    Kobayashi, Masahiro.

    1986-01-01

    Purpose: To safely and effectively cool down the reactor core after it has been shut down but is still hot due to after-heat. Constitution: Since the coolant extraction nozzle is situated at a location higher than the coolant injection nozzle, the coolant sprayed from the nozzle, is free from sucking immediately from the extraction nozzle and is therefore used effectively to cool the reactor core. As all the portions from the top to the bottom of the reactor are cooled simultaneously, the efficiency of the reactor cooling process is increased. Since the coolant extraction nozzle can be installed at a point considerably higher than the coolant injection nozzle, the distance from the coolant surface to the point of the coolant extraction nozzle can be made large, preventing cavitation near the coolant extraction nozzle. Therefore, without increasing the capacity of the heat exchanger, the reactor can be cooled down after a shutdown safely and efficiently. (Kawakami, Y.)

  5. Stochastic cooling at Fermilab

    International Nuclear Information System (INIS)

    Marriner, J.

    1986-08-01

    The topics discussed are the stochastic cooling systems in use at Fermilab and some of the techniques that have been employed to meet the particular requirements of the anti-proton source. Stochastic cooling at Fermilab became of paramount importance about 5 years ago when the anti-proton source group at Fermilab abandoned the electron cooling ring in favor of a high flux anti-proton source which relied solely on stochastic cooling to achieve the phase space densities necessary for colliding proton and anti-proton beams. The Fermilab systems have constituted a substantial advance in the techniques of cooling including: large pickup arrays operating at microwave frequencies, extensive use of cryogenic techniques to reduce thermal noise, super-conducting notch filters, and the development of tools for controlling and for accurately phasing the system

  6. Cooled-Spool Piston Compressor

    Science.gov (United States)

    Morris, Brian G.

    1994-01-01

    Proposed cooled-spool piston compressor driven by hydraulic power and features internal cooling of piston by flowing hydraulic fluid to limit temperature of compressed gas. Provides sufficient cooling for higher compression ratios or reactive gases. Unlike conventional piston compressors, all parts of compressed gas lie at all times within relatively short distance of cooled surface so that gas cooled more effectively.

  7. Crystallization mechanisms of acicular crystals

    Science.gov (United States)

    Puel, François; Verdurand, Elodie; Taulelle, Pascal; Bebon, Christine; Colson, Didier; Klein, Jean-Paul; Veesler, Stéphane

    2008-01-01

    In this contribution, we present an experimental investigation of the growth of four different organic molecules produced at industrial scale with a view to understand the crystallization mechanism of acicular or needle-like crystals. For all organic crystals studied in this article, layer-by-layer growth of the lateral faces is very slow and clear, as soon as the supersaturation is high enough, there is competition between growth and surface-activated secondary nucleation. This gives rise to pseudo-twinned crystals composed of several needle individuals aligned along a crystallographic axis; this is explained by regular over- and inter-growths as in the case of twinning. And when supersaturation is even higher, nucleation is fast and random. In an industrial continuous crystallization, the rapid growth of needle-like crystals is to be avoided as it leads to fragile crystals or needles, which can be partly broken or totally detached from the parent crystals especially along structural anisotropic axis corresponding to weaker chemical bonds, thus leading to slower growing faces. When an activated mechanism is involved such as a secondary surface nucleation, it is no longer possible to obtain a steady state. Therefore, the crystal number, size and habit vary significantly with time, leading to troubles in the downstream processing operations and to modifications of the final solid-specific properties. These results provide valuable information on the unique crystallization mechanisms of acicular crystals, and show that it is important to know these threshold and critical values when running a crystallizer in order to obtain easy-to-handle crystals.

  8. Crystallization of ornithine acetyltransferase from yeast by counter-diffusion and preliminary X-ray study

    Energy Technology Data Exchange (ETDEWEB)

    Maes, Dominique, E-mail: dominique.maes@vub.ac.be; Crabeel, Marjolaine [Laboratorium voor Ultrastructuur, Vrije Universiteit Brussel (VUB) and Vlaams Interuniversitair Instituut voor Biotechnologie (VIB), Pleinlaan 2, B-1050 Brussels (Belgium); Van de Weerdt, Cécile; Martial, Joseph [Laboratoire de Biologie Moléculaire et de Génie Génétique, Université de Liège, Allée de la Chimie 3, B-4000 Liège (Belgium); Peeters, Eveline; Charlier, Daniël [Erfelijkheidsleer en Microbiologie, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels (Belgium); Decanniere, Klaas; Vanhee, Celine; Wyns, Lode; Zegers, Ingrid [Laboratorium voor Ultrastructuur, Vrije Universiteit Brussel (VUB) and Vlaams Interuniversitair Instituut voor Biotechnologie (VIB), Pleinlaan 2, B-1050 Brussels (Belgium)

    2006-12-01

    A study on the crystallization of ornithine acetyltransferase from yeast, catalysing the fifth step in microbial arginine synthesis, is presented. The use of the counter-diffusion technique removes the disorder present in one dimension in crystals grown by either batch or hanging-drop techniques. A study is presented on the crystallization of ornithine acetyltransferase from yeast, which catalyzes the fifth step in microbial arginine synthesis. The use of the counter-diffusion technique removes the disorder present in one dimension in crystals grown by either the batch or hanging-drop techniques. This makes the difference between useless crystals and crystals that allow successful determination of the structure of the protein. The crystals belong to space group P4, with unit-cell parameters a = b = 66.98, c = 427.09 Å, and a data set was collected to 2.76 Å.

  9. Single Crystal Piezoelectric Stack Actuator DM with Integrated Low-Power HVA-Based Driver ASIC, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I project aims to develop an innovative batch fabrication technique to create single crystal PMN-PT stack actuator deformable mirrors (DM) at low...

  10. A new titanium-bearing calcium aluminosilicate phase. 2: Crystallography and crystal chemistry of grains formed in slowly cooled melts with bulk compositions of calcium-aluminium-rich inclusions

    Science.gov (United States)

    Barber, David J.; Beckett, John R.; Paque, Julie M.; Stolper, Edward

    1994-01-01

    The crystallography and crystal chemistry of a new calcium- titanium-aluminosilicate mineral (UNK) observed in synthetic analogs to calcium-aluminum-rich inclusions (CAIs) from carbonaceous chondrites was studied by electron diffraction techniques. The unit cell is primitive hexagonal or trigonal, with a = 0.790 +/- 0.02 nm and c = 0.492 +/- 0.002 nm, similar to the lattice parameters of melilite and consistent with cell dimensions for crystals in a mixer furnace slag described by Barber and Agrell (1994). The phase frequently displays an epitactic relationship in which melilite acts as the host, with (0001)(sub UNK) parallel (001)(sub mel) and zone axis group 1 0 -1 0(sub UNK) parallel zone axis group 1 0 0(sub mel). If one of the two space groups determined by Barber and Agrell (1994) for their sample of UNK is applicable (P3m1 or P31m), then the structure is probably characterized by puckered sheets of octahedra and tetrahedra perpendicular to the c-axis with successive sheets coordinated by planar arrays of Ca. In this likely structure, each unit cell contains three Ca sites located in mirror planes, one octahedrally coordinated cation located along a three-fold axis and five tetrahedrally coordinated cations, three in mirrors and two along triads. The octahedron contains Ti but, because there are 1.3-1.9 cations of Ti/formula unit, some of the Ti must also be in tetrahedral coordination, an unusual but not unprecedented situation for a silicate. Tetrahedral sites in mirror planes would contain mostly Si, with lesser amounts of Al while those along the triads correspondingly contain mostly Al with subordinate Ti. The structural formula, therefore, can be expressed as Ca(sub 3)(sup VIII)(Ti,Al)(sup VI)(Al,Ti,Si)(sub 2)(sup IV)(Si,Al)(sub 3)(sup IV)O14 with Si + Ti = 4. Compositions of meteoritic and synthetic Ti-bearing samples of the phase can be described in terms of a binary solid solution between the end-members Ca3TiAl2Si3O14 and Ca3Ti(AlTi)(AlSi2)O14. A Ti

  11. Batch-to-batch uniformity of bacterial community succession and flavor formation in the fermentation of Zhenjiang aromatic vinegar.

    Science.gov (United States)

    Wang, Zong-Min; Lu, Zhen-Ming; Yu, Yong-Jian; Li, Guo-Quan; Shi, Jin-Song; Xu, Zheng-Hong

    2015-09-01

    Solid-state fermentation of traditional Chinese vinegar is a mixed-culture refreshment process that proceeds for many centuries without spoilage. Here, we investigated bacterial community succession and flavor formation in three batches of Zhenjiang aromatic vinegar using pyrosequencing and metabolomics approaches. Temporal patterns of bacterial succession in the Pei (solid-state vinegar culture) showed no significant difference (P > 0.05) among three batches of fermentation. In all the batches investigated, the average number of community operational taxonomic units (OTUs) decreased dramatically from 119 ± 11 on day 1 to 48 ± 16 on day 3, and then maintained in the range of 61 ± 9 from day 5 to the end of fermentation. We confirmed that, within a batch of fermentation process, the patterns of bacterial diversity between the starter (took from the last batch of vinegar culture on day 7) and the Pei on day 7 were similar (90%). The relative abundance dynamics of two dominant members, Lactobacillus and Acetobacter, showed high correlation (coefficient as 0.90 and 0.98 respectively) among different batches. Furthermore, statistical analysis revealed dynamics of 16 main flavor metabolites were stable among different batches. The findings validate the batch-to-batch uniformity of bacterial community succession and flavor formation accounts for the quality of Zhenjiang aromatic vinegar. Based on our understanding, this is the first study helps to explain the rationality of age-old artistry from a scientific perspective. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Second sector cool down

    CERN Multimedia

    2007-01-01

    At the beginning of July, cool-down is starting in the second LHC sector, sector 4-5. The cool down of sector 4-5 may occasionally generate mist at Point 4, like that produced last January (photo) during the cool-down of sector 7-8.Things are getting colder in the LHC. Sector 7-8 has been kept at 1.9 K for three weeks with excellent stability (see Bulletin No. 16-17 of 16 April 2007). The electrical tests in this sector have got opt to a successful start. At the beginning of July the cryogenic teams started to cool a second sector, sector 4-5. At Point 4 in Echenevex, where one of the LHC’s cryogenic plants is located, preparations for the first phase of the cool-down are underway. During this phase, the sector will first be cooled to 80 K (-193°C), the temperature of liquid nitrogen. As for the first sector, 1200 tonnes of liquid nitrogen will be used for the cool-down. In fact, the nitrogen circulates only at the surface in the ...

  13. Dry well cooling device

    International Nuclear Information System (INIS)

    Suzuki, Hiroyuki.

    1997-01-01

    A plurality of blowing ports with introduction units are disposed to a plurality of ducts in a dry well, and a cooling unit comprising a cooler, a blower and an isolating valve is disposed outside of the dry well. Cooling air and the atmosphere in the dry well are mixed to form a cooling gas and blown into the dry well to control the temperature. Since the cooling unit is disposed outside of the dry well, the maintenance of the cooling unit can be performed even during the plant operation. In addition, since dampers opened/closed depending on the temperature of the atmosphere are disposed to the introduction units for controlling the temperature of the cooling gas, the temperature of the atmosphere in the dry well can be set to a predetermined level rapidly. Since an axial flow blower is used as the blower of the cooling unit, it can be contained in a ventilation cylinder. Then, the atmosphere in the dry well flowing in the ventilation cylinder can be prevented from leaking to the outside. (N.H.)

  14. Batched Triangular DLA for Very Small Matrices on GPUs

    KAUST Repository

    Charara, Ali; Keyes, David E.; Ltaief, Hatem

    2017-01-01

    linear algebra operations on very small matrix sizes (usually less than 100). Batched dense linear algebra kernels are becoming ubiquitous for such scientific computations. Within a single API call, these kernels are capable of simultaneously launching a

  15. Groundwater arsenic remediation using zerovalent iron: Batch and column tests

    Science.gov (United States)

    Recently, increasing efforts have been made to explore the applicability and limitations of zerovalent iron (Fe0) for the treatment of arsenicbearing groundwater and wastewater. The experimental batch and column tests have demonstrated that arsenate and arsenite are removed effec...

  16. Batch Adsorption Study of Methylene Blue in Aqueous Solution ...

    African Journals Online (AJOL)

    PROF HORSFALL

    of methylene blue (azo dye) from the synthetic industrial wastewater was investigated in a batch system. Rice husk and coconut shell were ... the textiles, rubber, paper, plastics, cosmetic, and .... wastewater by. Fenton's oxidation: Kinetic study.

  17. Automated batch emulsion copolymerization of styrene and butyl acrylate

    NARCIS (Netherlands)

    Mballa Mballa, M.A.; Schubert, U.S.; Heuts, J.P.A.; Herk, van A.M.

    2011-01-01

    This article describes a method for carrying out emulsion copolymerization using an automated synthesizer. For this purpose, batch emulsion copolymerizations of styrene and butyl acrylate were investigated. The optimization of the polymerization system required tuning the liquid transfer method,

  18. development of an automated batch-process solar water disinfection

    African Journals Online (AJOL)

    user

    This work presents the development of an automated batch-process water disinfection system ... Locally sourced materials in addition to an Arduinomicro processor were used to control ..... As already mentioned in section 3.1.1, a statistical.

  19. Numerical modeling of batch formation in waste incineration plants

    Directory of Open Access Journals (Sweden)

    Obroučka Karel

    2015-03-01

    Full Text Available The aim of this paper is a mathematical description of algorithm for controlled assembly of incinerated batch of waste. The basis for formation of batch is selected parameters of incinerated waste as its calorific value or content of pollutants or the combination of both. The numerical model will allow, based on selected criteria, to compile batch of wastes which continuously follows the previous batch, which is a prerequisite for optimized operation of incinerator. The model was prepared as for waste storage in containers, as well as for waste storage in continuously refilled boxes. The mathematical model was developed into the computer program and its functionality was verified either by practical measurements or by numerical simulations. The proposed model can be used in incinerators for hazardous and municipal waste.

  20. 40 CFR 63.462 - Batch cold cleaning machine standards.

    Science.gov (United States)

    2010-07-01

    .... (a) Each owner or operator of an immersion batch cold solvent cleaning machine shall comply with the... cleaning machine complying with paragraph (a)(2) or (b) of this section shall comply with the work and...

  1. Time measurements for thermalequilibrium in spodumene crystals

    International Nuclear Information System (INIS)

    Fujii, A.T.; Isotani, S.

    1982-01-01

    Experiments for measurement of time taken to reach thermal equilibrium in Spodumene crystals - 2mm to 5,4mm thick - in the temperature range 100 0 to 250 0 C are described. The measurements indicate a linear relationship between time and thickenes for heating as well as for cooling. Difference in thermal equilibrium time for heating and for cooling is about of 20 seconds. (author) [pt

  2. Dynamic Extensions of Batch Systems with Cloud Resources

    International Nuclear Information System (INIS)

    Hauth, T; Quast, G; Büge, V; Scheurer, A; Kunze, M; Baun, C

    2011-01-01

    Compute clusters use Portable Batch Systems (PBS) to distribute workload among individual cluster machines. To extend standard batch systems to Cloud infrastructures, a new service monitors the number of queued jobs and keeps track of the price of available resources. This meta-scheduler dynamically adapts the number of Cloud worker nodes according to the requirement profile. Two different worker node topologies are presented and tested on the Amazon EC2 Cloud service.

  3. Effect of glass-batch makeup on the melting process

    International Nuclear Information System (INIS)

    Hrma, Pavel R.; Schweiger, Michael J.; Humrickhouse, Carissa J.; Moody, J. Adam; Tate, Rachel M.; Rainsdon, Timothy T.; Tegrotenhuis, Nathan E.; Arrigoni, Benjamin M.; Marcial, Jose; Rodriguez, Carmen P.; Tincher, Benjamin

    2010-01-01

    The response of a glass batch to heating is determined by the batch makeup and in turn determines the rate of melting. Batches formulated for a high-alumina nuclear waste to be vitrified in an all-electric melter were heated at a constant temperature-increase rate to determine changes in melting behavior in response to the selection of batch chemicals and silica grain-size as well as the addition of heat-generating reactants. The type of batch materials and the size of silica grains determine how much, if any, primary foam occurs during melting. Small quartz grains, 5 (micro)m in size, caused extensive foaming because their major portion dissolved at temperatures 800 C when batch gases no longer evolved. The exothermal reaction of nitrates with sucrose was ignited at a temperature as low as 160 C and caused a temporary jump in temperature of several hundred degrees. Secondary foam, the source of which is oxygen from redox reactions, occurred in all batches of a limited composition variation involving five oxides, B 2 O 3 , CaO, Li 2 O, MgO, and Na 2 O. The foam volume at the maximum volume-increase rate was a weak function of temperature and melt basicity. Neither the batch makeup nor the change in glass composition had a significant impact on the dissolution of silica grains. The impacts of primary foam generation on glass homogeneity and the rate of melting in large-scale continuous furnaces have yet to be established via mathematical modeling and melter experiments.

  4. Effect Of Glass-Batch Makeup On The Melting Process

    International Nuclear Information System (INIS)

    Kruger, A.A.; Hrma, P.

    2010-01-01

    The response of a glass batch to heating is determined by the batch makeup and in turn determines the rate of melting. Batches formulated for a high-alumina nuclear waste to be vitrified in an all-electric melter were heated at a constant temperature-increase rate to determine changes in melting behavior in response to the selection of batch chemicals and silica grain-size as well as the addition of heat-generating reactants. The type of batch materials and the size of silica grains determine how much, if any, primary foam occurs during melting. Small quartz grains, 5 (micro)m in size, caused extensive foaming because their major portion dissolved at temperatures 800 C when batch gases no longer evolved. The exothermal reaction of nitrates with sucrose was ignited at a temperature as low as 160 C and caused a temporary jump in temperature of several hundred degrees. Secondary foam, the source of which is oxygen from redox reactions, occurred in all batches of a limited composition variation involving five oxides, B 2 O 3 , CaO, Li 2 O, MgO, and Na 2 O. The foam volume at the maximum volume-increase rate was a weak function of temperature and melt basicity. Neither the batch makeup nor the change in glass composition had a significant impact on the dissolution of silica grains. The impacts of primary foam generation on glass homogeneity and the rate of melting in large-scale continuous furnaces have yet to be established via mathematical modeling and melter experiments.

  5. Application of the fuzzy theory to simulation of batch fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Filev, D P; Kishimoto, M; Sengupta, S; Yoshida, T; Taguchi, H

    1985-12-01

    A new approach for system identification with a linguistic model of batch fermentation processes is proposed. The fuzzy theory was applied in order to reduce the uncertainty of quantitative description of the processes by use of qualitative characteristics. An example of fuzzy modeling was illustrated in the simulation of batch ethanol production from molasses after interpretation of the new method, and extension of the fuzzy model was also discussed for several cases of different measurable variables.

  6. A Study of the Batch Annealing of Cold-Rolled HSLA Steels Containing Niobium or Titanium

    Science.gov (United States)

    Fang, Chao; Garcia, C. Isaac; Choi, Shi-Hoon; DeArdo, Anthony J.

    2015-08-01

    The batch annealing behavior of two cold-rolled, microalloyed HSLA steels has been studied in this program. One steel was microalloyed with niobium while the other with titanium. A successfully batch annealed steel will exhibit minimum variation in properties along the length of the coil, even though the inner and outer wraps experience faster heating and cooling rates and lower soaking temperatures, i.e., the so-called "cold spot" areas, than the mid-length portion of the coil, i.e., the so-called "hot spot" areas. The variation in strength and ductility is caused by differences in the extent of annealing in the different areas. It has been known for 30 years that titanium-bearing HSLA steels show more variability after batch annealing than do the niobium-bearing steels. One of the goals of this study was to try to explain this observation. In this study, the annealing kinetics of the surface and center layers of the cold-rolled sheet were compared. The surface and center layers of the niobium steel and the surface layer of the titanium steel all showed similar annealing kinetics, while the center layer of the titanium steel exhibited much slower kinetics. Metallographic results indicate that the stored energy of the cold-rolled condition, as revealed by grain center sub-grain boundary density, appeared to strongly influence the annealing kinetics. The kinetics were followed by the Kernel Average Misorientation reconstruction of the microstructure at different stages on annealing. Possible pinning effects caused by microalloy precipitates were also considered. Methods of improving uniformity and increasing kinetics, involving optimizing both hot-rolled and cold-rolled microstructure, are suggested.

  7. Cooling towers: a bibliography

    International Nuclear Information System (INIS)

    Whitson, M.O.

    1981-02-01

    This bibliography cites 300 selected references containing information on various aspects of large cooling tower technology, including design, construction, operation, performance, economics, and environmental effects. The towers considered include natural-draft and mechanical-draft types employing wet, dry, or combination wet-dry cooling. A few references deal with alternative cooling methods, principally ponds or spray canals. The citations were compiled for the DOE Energy Information Data Base (EDB) covering the period January to December 1980. The references are to reports from the Department of Energy and its contractors, reports from other government or private organizations, and journal articles, books, conference papers, and monographs from US originators

  8. History of nuclear cooling

    International Nuclear Information System (INIS)

    Kuerti, M.

    1998-01-01

    The historical development of producing extreme low temperatures by magnetic techniques is overviewed. With electron spin methods, temperatures down to 1 mK can be achieved. With nuclear spins theoretically 10 -9 K can be produced. The idea of cooling with nuclear demagnetization is not new, it is a logical extension of the concept of electron cooling. Using nuclear demagnetization experiment with 3 T water cooled solenoids 3 mK could be produced. The cold record is held by Olli Lounasmaa in Helsinki with temperatures below 10 -9 K. (R.P.)

  9. Liquid nitrogen dewar for protein crystal growth

    Science.gov (United States)

    2001-01-01

    Gaseous Nitrogen Dewar apparatus developed by Dr. Alex McPherson of the University of California, Irvine for use aboard Mir and the International Space Station allows large quantities of protein samples to be crystallized in orbit. The specimens are contained either in plastic tubing (heat-sealed at each end). Biological samples are prepared with a precipitating agent in either a batch or liquid-liquid diffusion configuration. The samples are then flash-frozen in liquid nitrogen before crystallization can start. On orbit, the Dewar is placed in a quiet area of the station and the nitrogen slowly boils off (it is taken up by the environmental control system), allowing the proteins to thaw to begin crystallization. The Dewar is returned to Earth after one to four months on orbit, depending on Shuttle flight opportunities. The tubes then are analyzed for crystal presence and quality

  10. Numerical and experimental simulation of mechanical and microstructural transformations in Batch annealing steels

    International Nuclear Information System (INIS)

    Monsalve, A.; Artigas, A.; Celentano, D.; Melendez, F.

    2004-01-01

    The heating and cooling curves during batch annealing process of low carbon steel have been modeled using the finite element technique. This has allowed to predict the transient thermal profile for every point of the annealed coils, particularly for the hottest and coldest ones. Through experimental measurements, the results have been adequately validated since a good agreement has been found between experimental values and those predicted by the model. Moreover, an Avrami recrystallization model. Moreover, and Avrami recrystallization model has been coupled to this thermal balance computation. Interrupted annealing experiments have been made by measuring the recrystallized fraction on the extreme points of the coil foe different times. These data gave the possibility to validate the developed recrystallization model through a reasonably good numerical-experimental fittings. (Author) 6 refs

  11. Polynomial Batch Codes for Efficient IT-PIR

    Directory of Open Access Journals (Sweden)

    Henry Ryan

    2016-10-01

    Full Text Available Private information retrieval (PIR is a way for clients to query a remote database without the database holder learning the clients’ query terms or the responses they generate. Compelling applications for PIR are abound in the cryptographic and privacy research literature, yet existing PIR techniques are notoriously inefficient. Consequently, no such PIRbased application to date has seen real-world at-scale deployment. This paper proposes new “batch coding” techniques to help address PIR’s efficiency problem. The new techniques exploit the connection between ramp secret sharing schemes and efficient information-theoretically secure PIR (IT-PIR protocols. This connection was previously observed by Henry, Huang, and Goldberg (NDSS 2013, who used ramp schemes to construct efficient “batch queries” with which clients can fetch several database records for the same cost as fetching a single record using a standard, non-batch query. The new techniques in this paper generalize and extend those of Henry et al. to construct “batch codes” with which clients can fetch several records for only a fraction the cost of fetching a single record using a standard non-batch query over an unencoded database. The batch codes are highly tuneable, providing a means to trade off (i lower server-side computation cost, (ii lower server-side storage cost, and/or (iii lower uni- or bi-directional communication cost, in exchange for a comparatively modest decrease in resilience to Byzantine database servers.

  12. Morphology and antimony segregation of spangles on batch hot-dip galvanized coatings

    Science.gov (United States)

    Peng, Shu; Lu, Jintang; Che, Chunshan; Kong, Gang; Xu, Qiaoyu

    2010-06-01

    Spangles produced by batch hot-dip galvanizing process have a rougher surface and a greater surface segregation of alloying element compared with those in continuous hot-dip galvanizing line (CGL), owing to the cooling rate of the former is much smaller than that of the later. Therefore, typical spangles on a batch hot-dipped Zn-0.05Al-0.2Sb alloy coating were investigated. The chemical, morphological characterization and identification of the phases on the spangles were examined by scanning electron microscopy (SEM), backscattered electron imaging (BSE), atomic force microscopy (AFM), energy dispersive spectroscopy (EDS) and X-ray diffraction analysis (XRD). The results showed that the coating surface usually exhibited three kinds of spangles: shiny, feathery and dull spangle, of which extensively antimony surface segregation was detected. The nature of precipitate on the coating surface was identified as β-Sb 3Zn 4, The precipitated β-Sb 3Zn 4 particles distributed randomly on the shiny spangle surface, both β-Sb 3Zn 4 particles and dentritic segregation of antimony dispersed in the dendritic secondary arm spacings of the feathery spangle and on the whole dull spangle surface. The dentritic segregation of antimony and precipitation of Sb 3Zn 4 compound are discussed by a proposed model.

  13. Morphology and antimony segregation of spangles on batch hot-dip galvanized coatings

    Energy Technology Data Exchange (ETDEWEB)

    Peng Shu, E-mail: shu.peng@mail.scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, No. 371 Wushan Road, Tianhe District, Guangzhou 510640 (China); Lu Jintang; Che Chunshan; Kong Gang; Xu Qiaoyu [School of Materials Science and Engineering, South China University of Technology, No. 371 Wushan Road, Tianhe District, Guangzhou 510640 (China)

    2010-06-01

    Spangles produced by batch hot-dip galvanizing process have a rougher surface and a greater surface segregation of alloying element compared with those in continuous hot-dip galvanizing line (CGL), owing to the cooling rate of the former is much smaller than that of the later. Therefore, typical spangles on a batch hot-dipped Zn-0.05Al-0.2Sb alloy coating were investigated. The chemical, morphological characterization and identification of the phases on the spangles were examined by scanning electron microscopy (SEM), backscattered electron imaging (BSE), atomic force microscopy (AFM), energy dispersive spectroscopy (EDS) and X-ray diffraction analysis (XRD). The results showed that the coating surface usually exhibited three kinds of spangles: shiny, feathery and dull spangle, of which extensively antimony surface segregation was detected. The nature of precipitate on the coating surface was identified as {beta}-Sb{sub 3}Zn{sub 4}, The precipitated {beta}-Sb{sub 3}Zn{sub 4} particles distributed randomly on the shiny spangle surface, both {beta}-Sb{sub 3}Zn{sub 4} particles and dentritic segregation of antimony dispersed in the dendritic secondary arm spacings of the feathery spangle and on the whole dull spangle surface. The dentritic segregation of antimony and precipitation of Sb{sub 3}Zn{sub 4} compound are discussed by a proposed model.

  14. Efficient Havinga–Kondepudi resolution of conglomerate amino acid derivatives by slow cooling and abrasive grinding

    NARCIS (Netherlands)

    Leeman, Michel; Noorduin, Wim L.; Millemaggi, Alessia; Vlieg, Elias; Meekes, Hugo; Enckevort, Willem J.P. van; Kaptein, Bernard; Kellogg, Richard M.

    2010-01-01

    The complete resolution of the conglomerate racemates of two amino acid derivatives susceptible to racemization in solution was achieved by slow crystallization from a supersaturated solution accompanied by cooling and abrasive grinding.

  15. Microbial analysis of meatballs cooled with vacuum and conventional cooling.

    Science.gov (United States)

    Ozturk, Hande Mutlu; Ozturk, Harun Kemal; Koçar, Gunnur

    2017-08-01

    Vacuum cooling is a rapid evaporative cooling technique and can be used for pre-cooling of leafy vegetables, mushroom, bakery, fishery, sauces, cooked food, meat and particulate foods. The aim of this study was to apply the vacuum cooling and the conventional cooling techniques for the cooling of the meatball and to show the vacuum pressure effect on the cooling time, the temperature decrease and microbial growth rate. The results of the vacuum cooling and the conventional cooling (cooling in the refrigerator) were compared with each other for different temperatures. The study shows that the conventional cooling was much slower than the vacuum cooling. Moreover, the microbial growth rate of the vacuum cooling was extremely low compared with the conventional cooling. Thus, the lowest microbial growth occurred at 0.7 kPa and the highest microbial growth was observed at 1.5 kPa for the vacuum cooling. The mass loss ratio for the conventional cooling and vacuum cooling was about 5 and 9% respectively.

  16. Gas cooled reactors

    International Nuclear Information System (INIS)

    Kojima, Masayuki.

    1985-01-01

    Purpose: To enable direct cooling of reactor cores thereby improving the cooling efficiency upon accidents. Constitution: A plurality sets of heat exchange pipe groups are disposed around the reactor core, which are connected by way of communication pipes with a feedwater recycling device comprising gas/liquid separation device, recycling pump, feedwater pump and emergency water tank. Upon occurrence of loss of primary coolants accidents, the heat exchange pipe groups directly absorb the heat from the reactor core through radiation and convection. Although the water in the heat exchange pipe groups are boiled to evaporate if the forcive circulation is interrupted by the loss of electric power source, water in the emergency tank is supplied due to the head to the heat exchange pipe groups to continue the cooling. Furthermore, since the heat exchange pipe groups surround the entire circumference of the reactor core, cooling is carried out uniformly without resulting deformation or stresses due to the thermal imbalance. (Sekiya, K.)

  17. Warm and Cool Dinosaurs.

    Science.gov (United States)

    Mannlein, Sally

    2001-01-01

    Presents an art activity in which first grade students draw dinosaurs in order to learn about the concept of warm and cool colors. Explains how the activity also helped the students learn about the concept of distance when drawing. (CMK)

  18. Cooling of wood briquettes

    Directory of Open Access Journals (Sweden)

    Adžić Miroljub M.

    2013-01-01

    Full Text Available This paper is concerned with the experimental research of surface temperature of wood briquettes during cooling phase along the cooling line. The cooling phase is an important part of the briquette production technology. It should be performed with care, otherwise the quality of briquettes could deteriorate and possible changes of combustion characteristics of briquettes could happen. The briquette surface temperature was measured with an IR camera and a surface temperature probe at 42 sections. It was found that the temperature of briquette surface dropped from 68 to 34°C after 7 minutes spent at the cooling line. The temperature at the center of briquette, during the 6 hour storage, decreased to 38°C.

  19. A parametric study ot protease production in batch and fed-batch cultures of Bacillus firmus.

    Science.gov (United States)

    Moon, S H; Parulekar, S J

    1991-03-05

    Proteolytic enzymes produced by Bacillus species find a wide variety of applications in brewing, detergent, food, and leather industries. Owing to significant differences normally observed in culture conditions promoting cell growth and those promoting production of metabolites such as enzymes, for increased efficacy of bioreactor operations it is essential to identify these sets of conditions (including medium formulation). This study is focused on formulation of a semidefined medium that substantially enhances synthesis and secretion of an alkaline protease in batch cultures of Bacillus firmus NRS 783, a known superior producer of this enzyme. The series of experiments conducted to identify culture conditions that lead to improved protease production also enables investigation of the regulatory effects of important culture parameters including pH, dissolved oxygen, and concentrations of nitrogen and phosphorous sources and yeast extract in the medium on cell growth, synthesis and secretion of protease, and production of two major nonbiomass products, viz., acetic acid and ethanol. Cell growth and formation of the three nonbiomass products are hampered significantly under nitrogen, phosphorous, or oxygen limitation, with the cells being unable to grow in an oxygen-free environment. Improvement in protease production is achieved with respect to each culture parameter, leading in the process to 80% enhancement in protease activity over that attained using media reported in the literature. Results of a few fed-batch experiments with constant feed rate, conducted to examine possible enhancement in protease production and to further investigate repression of protease synthesis by excess of the principal carbon and nitrogen sources, are also discussed. The detailed investigation of stimulatory and repressory effects of simple and complex nutrients on protease production and metabolism of Bacillus firmus conducted in this study will provide useful guidelines for design

  20. Sludge Batch Variability Study With Frit 418

    International Nuclear Information System (INIS)

    Johnson, F.; Edwards, T.

    2010-01-01

    The Defense Waste Processing Facility (DWPF) initiated processing Sludge Batch 6 (SB6) in the summer of 2010. In support of processing, the Savannah River National Laboratory (SRNL) provided a recommendation to utilize Frit 418 to process SB6. This recommendation was based on assessments of the compositional projections for SB6 available at the time from the Liquid Waste Organization (LWO) and SRNL (using a model-based approach). To support qualification of SB6, SRNL executed a variability study to assess the applicability of the current durability models for SB6. The durability models were assessed over the expected Frit 418-SB6 composition range. Seventeen glasses were selected for the variability study based on the sludge projections used in the frit recommendation. Five of the glasses are based on the centroid of the compositional region, spanning a waste loading (WL) range of 32 to 40%. The remaining twelve glasses are extreme vertices (EVs) of the sludge region of interest for SB6 combined with Frit 418 and are all at 36% WL. These glasses were fabricated and characterized using chemical composition analysis, X-ray diffraction (XRD) and the Product Consistency Test (PCT). After initiating the SB6 variability study, the measured composition of the SB6 Tank 51 qualification glass produced at the SRNL Shielded Cells Facility indicated that thorium was present in the glass at an appreciable concentration (1.03 wt%), which made it a reportable element for SB6. This concentration of ThO 2 resulted in a second phase of experimental studies. Five glasses were formulated that were based on the centroid of the new sludge compositional region combined with Frit 418, spanning a WL range of 32 to 40%. These glasses were fabricated and characterized using chemical composition analysis and the PCT. Based on the measured PCT response, all of the glasses (with and without thorium) were acceptable with respect to the Environmental Assessment (EA) reference glass regardless of

  1. Laser cooling of solids

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, Richard I [Los Alamos National Laboratory; Sheik-bahae, Mansoor [UNM

    2008-01-01

    We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

  2. Cooling with Superfluid Helium

    Energy Technology Data Exchange (ETDEWEB)

    Lebrun, P; Tavian, L [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    The technical properties of helium II (‘superfluid’ helium) are presented in view of its applications to the cooling of superconducting devices, particularly in particle accelerators. Cooling schemes are discussed in terms of heat transfer performance and limitations. Large-capacity refrigeration techniques below 2 K are reviewed, with regard to thermodynamic cycles as well as process machinery. Examples drawn from existing or planned projects illustrate the presentation. Keywords: superfluid helium, cryogenics.

  3. Batch-to-Batch Quality Consistency Evaluation of Botanical Drug Products Using Multivariate Statistical Analysis of the Chromatographic Fingerprint

    OpenAIRE

    Xiong, Haoshu; Yu, Lawrence X.; Qu, Haibin

    2013-01-01

    Botanical drug products have batch-to-batch quality variability due to botanical raw materials and the current manufacturing process. The rational evaluation and control of product quality consistency are essential to ensure the efficacy and safety. Chromatographic fingerprinting is an important and widely used tool to characterize the chemical composition of botanical drug products. Multivariate statistical analysis has showed its efficacy and applicability in the quality evaluation of many ...

  4. FRIT DEVELOPMENT FOR HIGH LEVEL WASTE SLUDGE BATCH 5: COMPOSITIONAL TRENDS FOR VARYING ALUMINUM CONCENTRATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K; Tommy Edwards; David Best; Irene Reamer; Phyllis Workman

    2008-08-28

    for some of the oxides for some of the glasses. Although minor differences were observed, they did not have a significant impact on the conclusions made in this study. Several of the study compositions showed retention of more than 0.5 wt% SO{sub 4}{sup 2-} in glass. Trevorite (a spinel) was the only crystalline phase that was positively identified in a few of the study glasses after the canister centerline cooled (CCC) heat treatment. Spinels are not of concern as they have been shown to have little impact on the durability of high level waste glasses. The crystallization behavior of the surrogate glasses was generally the same as that of their U{sub 3}O{sub 8}-containing counterparts. There are two pairs that were exceptions: SB5-04 (amorphous) and SB5-24 (possible trevorite), along with SB5-07 (amorphous) and SB5-25 (trevorite). In these cases, the surrogate glasses (SB5-24 and SB5-25) appear to be more conservative (more prone to crystallization) than their U{sub 3}O{sub 8}-containing counterparts. Chemical durability was quantified using the Product Consistency Test (PCT). The normalized leachate (NL) values for B, Li, Na and Si for all of the study glasses were well below those of the Environmental Assessment (EA) benchmark glass, regardless of heat treatment or compositional view. This indicates that all of the glasses had very acceptable durability performance. The highest NL [B] for the study glasses was 0.914 g/L (the quenched version of glass SB5-13), normalized using the measured, bias-correct composition. There was little practical impact of the CCC heat treatment on the PCT responses of the study glasses. The measured PCT responses were predictable by the current {Delta}G{sub p} models. In general, the PCT responses for the surrogate glasses or the glasses without U{sub 3}O{sub 8} were quite similar to their U{sub 3}O{sub 8}-containing counterparts. The average percent error in NL [B] normalized by the measured, bias-corrected compositions for the

  5. FRIT DEVELOPMENT FOR HIGH LEVEL WASTE SLUDGE BATCH 5: COMPOSITIONAL TRENDS FOR VARYING ALUMINUM CONCENTRATIONS

    International Nuclear Information System (INIS)

    Fox, K; Tommy Edwards; David Best; Irene Reamer; Phyllis Workman

    2008-01-01

    for some of the oxides for some of the glasses. Although minor differences were observed, they did not have a significant impact on the conclusions made in this study. Several of the study compositions showed retention of more than 0.5 wt% SO 4 2- in glass. Trevorite (a spinel) was the only crystalline phase that was positively identified in a few of the study glasses after the canister centerline cooled (CCC) heat treatment. Spinels are not of concern as they have been shown to have little impact on the durability of high level waste glasses. The crystallization behavior of the surrogate glasses was generally the same as that of their U 3 O 8 -containing counterparts. There are two pairs that were exceptions: SB5-04 (amorphous) and SB5-24 (possible trevorite), along with SB5-07 (amorphous) and SB5-25 (trevorite). In these cases, the surrogate glasses (SB5-24 and SB5-25) appear to be more conservative (more prone to crystallization) than their U 3 O 8 -containing counterparts. Chemical durability was quantified using the Product Consistency Test (PCT). The normalized leachate (NL) values for B, Li, Na and Si for all of the study glasses were well below those of the Environmental Assessment (EA) benchmark glass, regardless of heat treatment or compositional view. This indicates that all of the glasses had very acceptable durability performance. The highest NL [B] for the study glasses was 0.914 g/L (the quenched version of glass SB5-13), normalized using the measured, bias-correct composition. There was little practical impact of the CCC heat treatment on the PCT responses of the study glasses. The measured PCT responses were predictable by the current ΔG p models. In general, the PCT responses for the surrogate glasses or the glasses without U 3 O 8 were quite similar to their U 3 O 8 -containing counterparts. The average percent error in NL [B] normalized by the measured, bias-corrected compositions for the surrogate glasses compared with their radioactive

  6. Comparing Social Stories™ to Cool versus Not Cool

    Science.gov (United States)

    Leaf, Justin B.; Mitchell, Erin; Townley-Cochran, Donna; McEachin, John; Taubman, Mitchell; Leaf, Ronald

    2016-01-01

    In this study we compared the cool versus not cool procedure to Social Stories™ for teaching various social behaviors to one individual diagnosed with autism spectrum disorder. The researchers randomly assigned three social skills to the cool versus not cool procedure and three social skills to the Social Stories™ procedure. Naturalistic probes…

  7. Effect of temperature on the morphology and electro-optical properties of liquid crystal physical gel

    International Nuclear Information System (INIS)

    Leaw, W.L.; Mamat, C.R.; Triwahyono, S.; Jalil, A.A.; Bidin, N.

    2016-01-01

    Liquid crystal physical gels were (thermally) prepared with cholesteryl stearate as a gelator in nematic liquid crystal, 4-cyano-4′-pentylbiphenyl. The electro-optical performance of liquid crystal physical gels is almost entirely dependent on the gels' inherent morphology. This study involved an empirical investigation of the relationships among all of the gelation temperature, morphology, and electro-optical properties. Besides continuous cooling at room temperature, isothermal cooling was also performed at both 18 and 0 °C, corresponding to near-solid and solid phases of 4-cyano-4′-pentylbiphenyl respectively. Nevertheless, the liquid crystal physical gel was also isothermally rapidly cooled using liquid nitrogen. Polarizing optical microscopy showed that the gel structure became thinner when isothermal cooling was carried out. These thinner gel aggregates then interconnected to form larger liquid crystal domains. Moreover, it was also revealed that the gel networks were randomized. Electron spin resonance results showed that the liquid crystal director orientation was severely randomized in the presence of gel networks. Conversely, isothermal cooling using liquid nitrogen generated a higher liquid crystal director orientation order. The 6.0 wt% cholesteryl stearate/4-cyano-4′-pentylbiphenyl physical gel that was isothermally cooled using liquid nitrogen showed the lowest response time in a twisted nematic mode optical cell. - Graphical abstract: Liquid crystal physical gel was prepared using nematic liquid crystal, 4-cyano-4′-pentylbiphenyl and cholesteryl stearate as gelator. Isothermal cooling at lower temperature produced thinner gel network and larger liquid crystal domain. - Highlights: • 5CB nematic liquid crystal was successfully gelled by cholesteryl stearate gelator. • The morphology of gel network was controlled by different cooling conditions. • Thinner gel network was formed by the rapid cooling using liquid nitrogen. • Enhanced

  8. Effect of temperature on the morphology and electro-optical properties of liquid crystal physical gel

    Energy Technology Data Exchange (ETDEWEB)

    Leaw, W.L. [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor (Malaysia); Mamat, C.R., E-mail: che@kimia.fs.utm.my [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor (Malaysia); Triwahyono, S. [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor (Malaysia); Jalil, A.A. [Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor (Malaysia); Centre of Hydrogen Energy, Institute of Future Energy, Univerisiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor (Malaysia); Bidin, N. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor (Malaysia)

    2016-12-01

    Liquid crystal physical gels were (thermally) prepared with cholesteryl stearate as a gelator in nematic liquid crystal, 4-cyano-4′-pentylbiphenyl. The electro-optical performance of liquid crystal physical gels is almost entirely dependent on the gels' inherent morphology. This study involved an empirical investigation of the relationships among all of the gelation temperature, morphology, and electro-optical properties. Besides continuous cooling at room temperature, isothermal cooling was also performed at both 18 and 0 °C, corresponding to near-solid and solid phases of 4-cyano-4′-pentylbiphenyl respectively. Nevertheless, the liquid crystal physical gel was also isothermally rapidly cooled using liquid nitrogen. Polarizing optical microscopy showed that the gel structure became thinner when isothermal cooling was carried out. These thinner gel aggregates then interconnected to form larger liquid crystal domains. Moreover, it was also revealed that the gel networks were randomized. Electron spin resonance results showed that the liquid crystal director orientation was severely randomized in the presence of gel networks. Conversely, isothermal cooling using liquid nitrogen generated a higher liquid crystal director orientation order. The 6.0 wt% cholesteryl stearate/4-cyano-4′-pentylbiphenyl physical gel that was isothermally cooled using liquid nitrogen showed the lowest response time in a twisted nematic mode optical cell. - Graphical abstract: Liquid crystal physical gel was prepared using nematic liquid crystal, 4-cyano-4′-pentylbiphenyl and cholesteryl stearate as gelator. Isothermal cooling at lower temperature produced thinner gel network and larger liquid crystal domain. - Highlights: • 5CB nematic liquid crystal was successfully gelled by cholesteryl stearate gelator. • The morphology of gel network was controlled by different cooling conditions. • Thinner gel network was formed by the rapid cooling using liquid nitrogen.

  9. A PAT-based qualification of pharmaceutical excipients produced by batch or continuous processing.

    Science.gov (United States)

    Hertrampf, A; Müller, H; Menezes, J C; Herdling, T

    2015-10-10

    Pharmaceutical excipients have an influence on the main requirements for medicinal products (viz., quality, safety and efficacy) but also on their manufacturability. During product lifecycle it may become necessary to introduce minor changes (e.g., to continuously improve it) or major changes in the validated process (e.g., moving it to a new production site, replacing process version or even disruptively changing processing type). Those changes can influence the critical to quality attributes of the product. Therefore, it is important to enhance process understanding to avoid the risk of any significant quality changes. Process analytical technology can support better decision making and risk-management as required in quality by design - viz., by many pharmaceutical regulatory authorities. This study compares the quality of the pharmaceutical excipient sodium carbonate (anhydrous) produced either in a batch or a continuous process. For continuous processing two different production lines were available that differed on the dryer and crystallizer types used. Therefore their influence on critical to quality attributes of sodium carbonate was investigated for each of the three processing alternatives. The overall goal was to identify which of the continuous processes ensures a similar product quality to batch processing. Namely, changes on chemical and physical attributes of the product were investigated with Raman spectroscopy, laser diffraction and X-ray powder diffraction. Principal component analysis, a very common multivariate analysis technique, was applied to extract relevant information from small differences at multiple spectral regions from samples from each process type and from each analytical technique used. Changing processing from batch to continuous improved consistency of certain attributes (e.g., particle size distribution) but affected others. However, the increased process/product knowledge gained can lead to an enhanced control strategy and

  10. Mechanism of Phase Formation in the Batch Mixtures for Slag-Bearing Glass Ceramics - 12207

    Energy Technology Data Exchange (ETDEWEB)

    Stefanovsky, Sergey V.; Stefanovsky, Olga I.; Malinina, Galina A. [SIA Radon, 7th Rostovskii lane 2/14, Moscow 119121 (Russian Federation)

    2012-07-01

    Slag surrogate was produced from chemicals by heating to 900 deg. C and keeping at this temperature for 1 hr. The product obtained was intermixed with either sodium di-silicate (75 wt.% waste loading) or borax (85 wt.% slag loading). The mixtures were heat-treated within a temperature range of 25 to 1300 deg. C. The products were examined by X-ray diffraction and infrared spectroscopy. The products prepared at temperatures of up to 1000 deg. C contained both phase typical of the source slag and intermediate phases as well as phases typical of the materials melted at 1350 deg. C such as nepheline, britholite, magnetite and matrix vitreous phase. Vitrification process in batch mixtures consisting of slag surrogate and either sodium di-silicate or sodium tetraborate runs through formation of intermediate phases mainly silico-phosphates capable to incorporate Sm as trivalent actinides surrogate. Reactions in the batch mixtures are in the whole completed by ∼1000 deg. C but higher temperatures are required to homogenize the products. If in the borate-based system the mechanism is close to simple dissolution of slag constituents in the low viscous borate melt, then in the silicate-based system the mechanism was found to be much complicated and includes re-crystallization during melting with segregation of newly-formed nepheline type phase. (authors)

  11. Kinetic model for quartz and spinel dissolution during melting of high-level-waste glass batch

    International Nuclear Information System (INIS)

    Pokorny, Richard; Rice, Jarrett A.; Crum, Jarrod V.; Schweiger, Michael J.; Hrma, Pavel

    2013-01-01

    The dissolution of quartz particles and the growth and dissolution of crystalline phases during the conversion of batch to glass potentially affects both the glass melting process and product quality. Crystals of spinel exiting the cold cap to molten glass below can be troublesome during the vitrification of iron-containing high-level wastes. To estimate the distribution of quartz and spinel fractions within the cold cap, we used kinetic models that relate fractions of these phases to temperature and heating rate. Fitting the model equations to data showed that the heating rate, apart from affecting quartz and spinel behavior directly, also affects them indirectly via concurrent processes, such as the formation and motion of bubbles. Because of these indirect effects, it was necessary to allow one kinetic parameter (the pre-exponential factor) to vary with the heating rate. The resulting kinetic equations are sufficiently simple for the detailed modeling of batch-to-glass conversion as it occurs in glass melters. The estimated fractions and sizes of quartz and spinel particles as they leave the cold cap, determined in this study, will provide the source terms needed for modeling the behavior of these solid particles within the flow of molten glass in the melter

  12. Batch fabrication of polymer microfluidic cartridges for QCM sensor packaging by direct bonding

    Science.gov (United States)

    Sandström, Niklas; Zandi Shafagh, Reza; Gylfason, Kristinn B.; Haraldsson, Tommy; van der Wijngaart, Wouter

    2017-12-01

    Quartz crystal microbalance (QCM) sensing is an established technique commonly used in laboratory based life-science applications. However, the relatively complex, multi-part design and multi-step fabrication and assembly of state-of-the-art QCM cartridges make them unsuited for disposable applications such as point-of-care (PoC) diagnostics. In this work, we present the uncomplicated manufacturing of QCMs in polymer microfluidic cartridges. Our novel approach comprises two key innovations: the batch reaction injection molding of microfluidic parts; and the integration of the cartridge components by direct, unassisted bonding. We demonstrate molding of batches of 12 off-stoichiometry thiol-ene epoxy polymer (OSTE+) polymer parts in a single molding cycle using an adapted reaction injection molding process; and the direct bonding of the OSTE+  parts to other OSTE+  substrates, to printed circuit boards, and to QCMs. The microfluidic QCM OSTE+  cartridges were successfully evaluated in terms of liquid sealing as well as electrical properties, and the sensor performance characteristics are on par with those of a commercially available QCM biosensor cartridge. The simplified manufacturing of QCM sensors with maintained performance potentializes novel application areas, e.g. as disposable devices in a point of care setting. Moreover, our results can be extended to simplifying the fabrication of other microfluidic devices with multiple heterogeneously integrated components.

  13. Laser cooling of neutral atoms

    International Nuclear Information System (INIS)

    1993-01-01

    A qualitative description of laser cooling of neutral atoms is given. Two of the most important mechanisms utilized in laser cooling, the so-called Doppler Cooling and Sisyphus Cooling, are reviewed. The minimum temperature reached by the atoms is derived using simple arguments. (Author) 7 refs

  14. Technology of power plant cooling

    International Nuclear Information System (INIS)

    Maulbetsch, J.S.; Zeren, R.W.

    1976-01-01

    The following topics are discussed: the thermodynamics of power generation and the need for cooling water; the technical, economic, and legislative constraints within which the cooling problem must be solved; alternate cooling methods currently available or under development; the water treatment requirements of cooling systems; and some alternatives for modifying the physical impact on aquatic systems

  15. Meltdown reactor core cooling facility

    International Nuclear Information System (INIS)

    Matsuoka, Tsuyoshi.

    1992-01-01

    The meltdown reactor core cooling facility comprises a meltdown reactor core cooling tank, a cooling water storage tank situates at a position higher than the meltdown reactor core cooling tank, an upper pipeline connecting the upper portions of the both of the tanks and a lower pipeline connecting the lower portions of them. Upon occurrence of reactor core meltdown, a high temperature meltdown reactor core is dropped on the cooling tank to partially melt the tank and form a hole, from which cooling water is flown out. Since the water source of the cooling water is the cooling water storage tank, a great amount of cooling water is further dropped and supplied and the reactor core is submerged and cooled by natural convection for a long period of time. Further, when the lump of the meltdown reactor core is small and the perforated hole of the meltdown reactor cooling tank is small, cooling water is boiled by the high temperature lump intruding into the meltdown reactor core cooling tank and blown out from the upper pipeline to the cooling water storage tank to supply cooling water from the lower pipeline to the meltdown reactor core cooling tank. Since it is constituted only with simple static facilities, the facility can be simplified to attain improvement of reliability. (N.H.)

  16. Cool WISPs for stellar cooling excesses

    Energy Technology Data Exchange (ETDEWEB)

    Giannotti, Maurizio [Physical Sciences, Barry University, 11300 NE 2nd Avenue, Miami Shores, FL 33161 (United States); Irastorza, Igor; Redondo, Javier [Departamento de Física Teórica, Universidad de Zaragoza, Pedro Cerbuna 12, E-50009, Zaragoza, España (Spain); Ringwald, Andreas, E-mail: mgiannotti@barry.edu, E-mail: igor.irastorza@cern.ch, E-mail: jredondo@unizar.es, E-mail: andreas.ringwald@desy.de [Theory group, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg (Germany)

    2016-05-01

    Several stellar systems (white dwarfs, red giants, horizontal branch stars and possibly the neutron star in the supernova remnant Cassiopeia A) show a mild preference for a non-standard cooling mechanism when compared with theoretical models. This exotic cooling could be provided by Weakly Interacting Slim Particles (WISPs), produced in the hot cores and abandoning the star unimpeded, contributing directly to the energy loss. Taken individually, these excesses do not show a strong statistical weight. However, if one mechanism could consistently explain several of them, the hint could be significant. We analyze the hints in terms of neutrino anomalous magnetic moments, minicharged particles, hidden photons and axion-like particles (ALPs). Among them, the ALP or a massless HP represent the best solution. Interestingly, the hinted ALP parameter space is accessible to the next generation proposed ALP searches, such as ALPS II and IAXO and the massless HP requires a multi TeV energy scale of new physics that might be accessible at the LHC.

  17. Cool WISPs for stellar cooling excesses

    International Nuclear Information System (INIS)

    Giannotti, Maurizio; Irastorza, Igor; Redondo, Javier; Ringwald, Andreas

    2016-01-01

    Several stellar systems (white dwarfs, red giants, horizontal branch stars and possibly the neutron star in the supernova remnant Cassiopeia A) show a mild preference for a non-standard cooling mechanism when compared with theoretical models. This exotic cooling could be provided by Weakly Interacting Slim Particles (WISPs), produced in the hot cores and abandoning the star unimpeded, contributing directly to the energy loss. Taken individually, these excesses do not show a strong statistical weight. However, if one mechanism could consistently explain several of them, the hint could be significant. We analyze the hints in terms of neutrino anomalous magnetic moments, minicharged particles, hidden photons and axion-like particles (ALPs). Among them, the ALP or a massless HP represent the best solution. Interestingly, the hinted ALP parameter space is accessible to the next generation proposed ALP searches, such as ALPS II and IAXO and the massless HP requires a multi TeV energy scale of new physics that might be accessible at the LHC.

  18. Cloning, multicopy expression and fed-batch production of Rhodotorula araucariae epoxide hydrolase in yarrowia lipolytica

    CSIR Research Space (South Africa)

    Ramduth, D

    2008-05-01

    Full Text Available demonstrated a 4 fold enhanced EH activity over the transformant. The transformant was then evaluated in batch and fed batch fermentations, where the batch fermentations resulted in - 50% improved EH activity from flask evaluations. In fed batch fermentations...

  19. Gas-cooled reactors

    International Nuclear Information System (INIS)

    Schulten, R.; Trauger, D.B.

    1976-01-01

    Experience to date with operation of high-temperature gas-cooled reactors has been quite favorable. Despite problems in completion of construction and startup, three high-temperature gas-cooled reactor (HTGR) units have operated well. The Windscale Advanced Gas-Cooled Reactor (AGR) in the United Kingdom has had an excellent operating history, and initial operation of commercial AGRs shows them to be satisfactory. The latter reactors provide direct experience in scale-up from the Windscale experiment to fullscale commercial units. The Colorado Fort St. Vrain 330-MWe prototype helium-cooled HTGR is now in the approach-to-power phase while the 300-MWe Pebble Bed THTR prototype in the Federal Republic of Germany is scheduled for completion of construction by late 1978. THTR will be the first nuclear power plant which uses a dry cooling tower. Fuel reprocessing and refabrication have been developed in the laboratory and are now entering a pilot-plant scale development. Several commercial HTGR power station orders were placed in the U.S. prior to 1975 with similar plans for stations in the FRG. However, the combined effects of inflation, reduced electric power demand, regulatory uncertainties, and pricing problems led to cancellation of the 12 reactors which were in various stages of planning, design, and licensing

  20. Gas cooled leads

    International Nuclear Information System (INIS)

    Shutt, R.P.; Rehak, M.L.; Hornik, K.E.

    1993-01-01

    The intent of this paper is to cover as completely as possible and in sufficient detail the topics relevant to lead design. The first part identifies the problems associated with lead design, states the mathematical formulation, and shows the results of numerical and analytical solutions. The second part presents the results of a parametric study whose object is to determine the best choice for cooling method, material, and geometry. These findings axe applied in a third part to the design of high-current leads whose end temperatures are determined from the surrounding equipment. It is found that cooling method or improved heat transfer are not critical once good heat exchange is established. The range 5 5 but extends over a large of values. Mass flow needed to prevent thermal runaway varies linearly with current above a given threshold. Below that value, the mass flow is constant with current. Transient analysis shows no evidence of hysteresis. If cooling is interrupted, the mass flow needed to restore the lead to its initially cooled state grows exponentially with the time that the lead was left without cooling

  1. Emergency core cooling system

    International Nuclear Information System (INIS)

    Arai, Kenji; Oikawa, Hirohide.

    1990-01-01

    The device according to this invention can ensure cooling water required for emerency core cooling upon emergence such as abnormally, for example, loss of coolant accident, without using dynamic equipments such as a centrifugal pump or large-scaled tank. The device comprises a pressure accumulation tank containing a high pressure nitrogen gas and cooling water inside, a condensate storage tank, a pressure suppression pool and a jet stream pump. In this device there are disposed a pipeline for guiding cooling water in the pressure accumulation tank as a jetting water to a jetting stream pump, a pipeline for guiding cooling water stored in the condensate storage tank and the pressure suppression pool as pumped water to the jetting pump and, further, a pipeline for guiding the discharged water from the jet stream pump which is a mixed stream of pumped water and jetting water into the reactor pressure vessel. In this constitution, a sufficient amount of water ranging from relatively high pressure to low pressure can be supplied into the reactor pressure vessel, without increasing the size of the pressure accumulation tank. (I.S.)

  2. Emergency reactor cooling circuit

    International Nuclear Information System (INIS)

    Araki, Hidefumi; Matsumoto, Tomoyuki; Kataoka, Yoshiyuki.

    1994-01-01

    Cooling water in a gravitationally dropping water reservoir is injected into a reactor pressure vessel passing through a pipeline upon occurrence of emergency. The pipeline is inclined downwardly having one end thereof being in communication with the pressure vessel. During normal operation, the cooling water in the upper portion of the inclined pipeline is heated by convection heat transfer from the communication portion with the pressure vessel. On the other hand, cooling water present at a position lower than the communication portion forms cooling water lumps. Accordingly, temperature stratification layers are formed in the inclined pipeline. Therefore, temperature rise of water in a vertical pipeline connected to the inclined pipeline is small. With such a constitution, the amount of heat lost from the pressure vessel by way of the water injection pipeline is reduced. Further, there is no worry that cooling water to be injected upon occurrence of emergency is boiled under reduced pressure in the injection pipeline to delay the depressurization of the pressure vessel. (I.N.)

  3. Detection of gas-permeable fuel particles for highl 7490 temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Thiele, B.A.; Stinton, D.P.; Costanzo, D.A.

    1980-01-01

    Fuel for High-Temperature Gas-Cooled Reactors (HTGR) consists of uranium oxide-carbide and thoria microspheres coated with layers of pyrolytic carbon and silicon carbide. The pyrolytic carbon coatings must be gas-tight to perform properly during irradiation. Therefore, particles must be carefully characterized to determine the number of defective particles (ie bare kernels, and cracked or permeable coatings). Although techniques are available to determine the number of bare kernels or cracked coatings, no reliable technique has been available to measure coating permeability. This work describes a technique recently developed to determine whether coatings for a batch of particles are gas-tight or permeable. Although most of this study was performed on Biso-coated particles, the technique applies equally well to Triso-coated particles. About 150 randomly selected Biso-particle batches were studied in this work. These batches were first subjected to an 18-hr chlorination at 15000C, and the volatile thorium tetrachloride released through cracked or very permeable coatings was measured versus chlorination time. Chlorinated batches were also radiographed to detect any thorium that had migrated from the kernel into the coatings. From this work a technique was developed to determine coating permeability. This consists of an 18-hr chlorination of multiple samples without measurement of the heavy metal released. Each batch is then radiographed and the heavy metal diffusion within each particle is examined so it can be determined if a particle batch is permeable, slightly permeable, or gas-tight. (author)

  4. Phosphorus zoning as a recorder of crystal growth kinetics

    DEFF Research Database (Denmark)

    Baziotis, I.; Asimow, P.D.; Ntaflos, T.

    2017-01-01

    spectrometry. The petrogenetic history of each vein involves melt intrusion, cooling accompanied by both wall-rock reaction and crystallization, quench of melt to a glass, and possibly later modifications. Exotic secondary olivine crystals in the veins display concentric phosphorus (P)-rich zoning, P...

  5. Diffusion-Cooled Tantalum Hot-Electron Bolometer Mixers

    Science.gov (United States)

    Skalare, Anders; McGrath, William; Bumble, Bruce; LeDuc, Henry

    2004-01-01

    A batch of experimental diffusion-cooled hot-electron bolometers (HEBs), suitable for use as mixers having input frequencies in the terahertz range and output frequencies up to about a gigahertz, exploit the superconducting/normal-conducting transition in a thin strip of tantalum. The design and operation of these HEB mixers are based on mostly the same principles as those of a prior HEB mixer that exploited the superconducting/normal- conducting transition in a thin strip of niobium and that was described elsewhere.

  6. Crystallization and Characterization of a New Magnesium Sulfate Hydrate MgSO4.11H2O

    NARCIS (Netherlands)

    Genceli, F.E.; Lutz, M.; Spek, A.L.; Witkamp, G.J.

    2007-01-01

    The MgSO4 crystal hydrate formed below approximately 0 °C was proven to be the undecahydrate, MgSO4 • 11H2O (meridianiite) instead of the reported dodecahydrate MgSO4 • 12H2O. The crystals were grown from solution by eutectic freeze and by cooling crystallization. The crystal structure analysis and

  7. Core cooling systems

    International Nuclear Information System (INIS)

    Hoeppner, G.

    1980-01-01

    The reactor cooling system transports the heat liberated in the reactor core to the component - heat exchanger, steam generator or turbine - where the energy is removed. This basic task can be performed with a variety of coolants circulating in appropriately designed cooling systems. The choice of any one system is governed by principles of economics and natural policies, the design is determined by the laws of nuclear physics, thermal-hydraulics and by the requirement of reliability and public safety. PWR- and BWR- reactors today generate the bulk of nuclear energy. Their primary cooling systems are discussed under the following aspects: 1. General design, nuclear physics constraints, energy transfer, hydraulics, thermodynamics. 2. Design and performance under conditions of steady state and mild transients; control systems. 3. Design and performance under conditions of severe transients and loss of coolant accidents; safety systems. (orig./RW)

  8. Reactor cooling system

    International Nuclear Information System (INIS)

    Kato, Etsuji.

    1979-01-01

    Purpose: To eliminate cleaning steps in the pipelines upon reactor shut-down by connecting a filtrating and desalting device to the cooling system to thereby always clean up the water in the pipelines. Constitution: A filtrating and desalting device is connected to the pipelines in the cooling system by way of drain valves and a check valve. Desalted water is taken out from the exit of the filtrating and desalting device and injected to one end of the cooling system pipelines by way of the drain valve and the check valve and then returned by way of another drain valve to the desalting device. Water in the pipelines is thus always desalted and the cleaning step in the pipelines is no more required in the shut-down. (Kawakami, Y.)

  9. ELECTRON COOLING FOR RHIC

    International Nuclear Information System (INIS)

    BEN-ZVI, I.; AHRENS, L.; BRENNAN, M.; HARRISON, M.; KEWISCH, J.; MACKAY, W.; PEGGS, S.; ROSER, T.; SATOGATA, T.; TRBOJEVIC, D.; YAKIMENKO, V.

    2001-01-01

    We introduce plans for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This project has a number of new features as electron coolers go: It will cool 100 GeV/nucleon ions with 50 MeV electrons; it will be the first attempt to cool a collider at storage-energy; and it will be the first cooler to use a bunched beam and a linear accelerator as the electron source. The linac will be superconducting with energy recovery. The electron source will be based on a photocathode gun. The project is carried out by the Collider-Accelerator Department at BNL in collaboration with the Budker Institute of Nuclear Physics

  10. Muon ionization cooling experiment

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    A neutrino factory based on a muon storage ring is the ultimate tool for studies of neutrino oscillations, including possibly leptonic CP violation. It is also the first step towards muon colliders. The performance of this new and promising line of accelerators relies heavily on the concept of ionisation cooling of minimum ionising muons, for which much R&D is required. The concept of a muon ionisation cooling experiment has been extensively studied and first steps are now being taken towards its realisation by a joint international team of accelerator and particle physicists. The aim of the workshop is to to explore at least two versions of an experiment based on existing cooling channel designs. If such an experiment is feasible, one shall then select, on the basis of effectiveness, simplicity, availability of components and overall cost, a design for the proposed experiment, and assemble the elements necessary to the presentation of a proposal. Please see workshop website.

  11. Emergency core cooling device

    International Nuclear Information System (INIS)

    Suzaki, Kiyoshi; Inoue, Akihiro.

    1979-01-01

    Purpose: To improve core cooling effect by making the operation region for a plurality of water injection pumps more broader. Constitution: An emergency reactor core cooling device actuated upon failure of recycling pipe ways is adapted to be fed with cooling water through a thermal sleeve by way of a plurality of water injection pump from pool water in a condensate storage tank and a pressure suppression chamber as water feed source. Exhaust pipes and suction pipes of each of the pumps are connected by way of switching valves and the valves are switched so that the pumps are set to a series operation if the pressure in the pressure vessel is high and the pumps are set to a parallel operation if the pressure in the pressure vessel is low. (Furukawa, Y.)

  12. Monitoring Cray Cooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, Don E [ORNL; Ezell, Matthew A [ORNL; Becklehimer, Jeff [Cray, Inc.; Donovan, Matthew J [ORNL; Layton, Christopher C [ORNL

    2014-01-01

    While sites generally have systems in place to monitor the health of Cray computers themselves, often the cooling systems are ignored until a computer failure requires investigation into the source of the failure. The Liebert XDP units used to cool the Cray XE/XK models as well as the Cray proprietary cooling system used for the Cray XC30 models provide data useful for health monitoring. Unfortunately, this valuable information is often available only to custom solutions not accessible by a center-wide monitoring system or is simply ignored entirely. In this paper, methods and tools used to harvest the monitoring data available are discussed, and the implementation needed to integrate the data into a center-wide monitoring system at the Oak Ridge National Laboratory is provided.

  13. Cooling nuclear reactor fuel

    International Nuclear Information System (INIS)

    Porter, W.H.L.

    1975-01-01

    Reference is made to water or water/steam cooled reactors of the fuel cluster type. In such reactors it is usual to mount the clusters in parallel spaced relationship so that coolant can pass freely between them, the coolant being passed axially from one end of the cluster in an upward direction through the cluster and being effective for cooling under normal circumstances. It has been suggested, however, that in addition to the main coolant flow an auxiliary coolant flow be provided so as to pass laterally into the cluster or be sprayed over the top of the cluster. This auxiliary supply may be continuously in use, or may be held in reserve for use in emergencies. Arrangements for providing this auxiliary cooling are described in detail. (U.K.)

  14. Application of gain scheduling to the control of batch bioreactors

    Science.gov (United States)

    Cardello, Ralph; San, Ka-Yiu

    1987-01-01

    The implementation of control algorithms to batch bioreactors is often complicated by the inherent variations in process dynamics during the course of fermentation. Such a wide operating range may render the performance of fixed gain PID controllers unsatisfactory. In this work, a detailed study on the control of batch fermentation is performed. Furthermore, a simple batch controller design is proposed which incorporates the concept of gain-scheduling, a subclass of adaptive control, with oxygen uptake rate as an auxiliary variable. The control of oxygen tension in the biorector is used as a vehicle to convey the proposed idea, analysis and results. Simulation experiments indicate significant improvement in controller performance can be achieved by the proposed approach even in the presence of measurement noise.

  15. Batch variation between branchial cell cultures: An analysis of variance

    DEFF Research Database (Denmark)

    Hansen, Heinz Johs. Max; Grosell, M.; Kristensen, L.

    2003-01-01

    We present in detail how a statistical analysis of variance (ANOVA) is used to sort out the effect of an unexpected batch-to-batch variation between cell cultures. Two separate cultures of rainbow trout branchial cells were grown on permeable filtersupports ("inserts"). They were supposed...... and introducing the observed difference between batches as one of the factors in an expanded three-dimensional ANOVA, we were able to overcome an otherwisecrucial lack of sufficiently reproducible duplicate values. We could thereby show that the effect of changing the apical medium was much more marked when...... the radioactive lipid precursors were added on the apical, rather than on the basolateral, side. Theinsert cell cultures were obviously polarized. We argue that it is not reasonable to reject troublesome experimental results, when we do not know a priori that something went wrong. The ANOVA is a very useful...

  16. From Fed-batch to Continuous Enzymatic Biodiesel Production

    DEFF Research Database (Denmark)

    Price, Jason Anthony; Nordblad, Mathias; Woodley, John M.

    2015-01-01

    In this this paper, we use mechanistic modelling to guide the development of acontinuous enzymatic process that is performed as a fed-batch operation. In this workwe use the enzymatic biodiesel process as a case study. A mechanistic model developedin our previous work was used to determine...... measured components (triglycerides, diglycerides, monoglycerides, free fatty acid and fatty acid methyl esters(biodiesel)) much better than using fed-batch data alone given the smaller residuals. We also observe a reduction in the correlation between the parameters.The model was then used to predict that 5...... reactors are required (with a combined residence time of 30 hours) to reach a final biodiesel concentration within 2 % of the95.6 mass % achieved in a fed-batch operation, for 24 hours....

  17. Continuous flow technology vs. the batch-by-batch approach to produce pharmaceutical compounds.

    Science.gov (United States)

    Cole, Kevin P; Johnson, Martin D

    2018-01-01

    For the manufacture of small molecule drugs, many pharmaceutical innovator companies have recently invested in continuous processing, which can offer significant technical and economic advantages over traditional batch methodology. This Expert Review will describe the reasons for this interest as well as many considerations and challenges that exist today concerning continuous manufacturing. Areas covered: Continuous processing is defined and many reasons for its adoption are described. The current state of continuous drug substance manufacturing within the pharmaceutical industry is summarized. Current key challenges to implementation of continuous manufacturing are highlighted, and an outlook provided regarding the prospects for continuous within the industry. Expert commentary: Continuous processing at Lilly has been a journey that started with the need for increased safety and capability. Over twelve years the original small, dedicated group has grown to more than 100 Lilly employees in discovery, development, quality, manufacturing, and regulatory designing in continuous drug substance processing. Recently we have focused on linked continuous unit operations for the purpose of all-at-once pharmaceutical manufacturing, but the technical and business drivers that existed in the very beginning for stand-alone continuous unit operations in hybrid processes have persisted, which merits investment in both approaches.

  18. A High-Fidelity Batch Simulation Environment for Integrated Batch and Piloted Air Combat Simulation Analysis

    Science.gov (United States)

    Goodrich, Kenneth H.; McManus, John W.; Chappell, Alan R.

    1992-01-01

    A batch air combat simulation environment known as the Tactical Maneuvering Simulator (TMS) is presented. The TMS serves as a tool for developing and evaluating tactical maneuvering logics. The environment can also be used to evaluate the tactical implications of perturbations to aircraft performance or supporting systems. The TMS is capable of simulating air combat between any number of engagement participants, with practical limits imposed by computer memory and processing power. Aircraft are modeled using equations of motion, control laws, aerodynamics and propulsive characteristics equivalent to those used in high-fidelity piloted simulation. Databases representative of a modern high-performance aircraft with and without thrust-vectoring capability are included. To simplify the task of developing and implementing maneuvering logics in the TMS, an outer-loop control system known as the Tactical Autopilot (TA) is implemented in the aircraft simulation model. The TA converts guidance commands issued by computerized maneuvering logics in the form of desired angle-of-attack and wind axis-bank angle into inputs to the inner-loop control augmentation system of the aircraft. This report describes the capabilities and operation of the TMS.

  19. Macromolecular Crystal Growth by Means of Microfluidics

    Science.gov (United States)

    vanderWoerd, Mark; Ferree, Darren; Spearing, Scott; Monaco, Lisa; Molho, Josh; Spaid, Michael; Brasseur, Mike; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    We have performed a feasibility study in which we show that chip-based, microfluidic (LabChip(TM)) technology is suitable for protein crystal growth. This technology allows for accurate and reliable dispensing and mixing of very small volumes while minimizing bubble formation in the crystallization mixture. The amount of (protein) solution remaining after completion of an experiment is minimal, which makes this technique efficient and attractive for use with proteins, which are difficult or expensive to obtain. The nature of LabChip(TM) technology renders it highly amenable to automation. Protein crystals obtained in our initial feasibility studies were of excellent quality as determined by X-ray diffraction. Subsequent to the feasibility study, we designed and produced the first LabChip(TM) device specifically for protein crystallization in batch mode. It can reliably dispense and mix from a range of solution constituents into two independent growth wells. We are currently testing this design to prove its efficacy for protein crystallization optimization experiments. In the near future we will expand our design to incorporate up to 10 growth wells per LabChip(TM) device. Upon completion, additional crystallization techniques such as vapor diffusion and liquid-liquid diffusion will be accommodated. Macromolecular crystallization using microfluidic technology is envisioned as a fully automated system, which will use the 'tele-science' concept of remote operation and will be developed into a research facility for the International Space Station as well as on the ground.

  20. Stochastic cooling for beginners

    International Nuclear Information System (INIS)

    Moehl, D.

    1984-01-01

    These two lectures have been prepared to give a simple introduction to the principles. In Part I we try to explain stochastic cooling using the time-domain picture which starts from the pulse response of the system. In Part II the discussion is repeated, looking more closely at the frequency-domain response. An attempt is made to familiarize the beginners with some of the elementary cooling equations, from the 'single particle case' up to equations which describe the evolution of the particle distribution. (orig.)

  1. Sodium cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hokkyo, N; Inoue, K; Maeda, H

    1968-11-21

    In a sodium cooled fast neutron reactor, an ultrasonic generator is installed at a fuel assembly hold-down mechanism positioned above a blanket or fission gas reservoir located above the core. During operation of the reactor an ultrsonic wave of frequency 10/sup 3/ - 10/sup 4/ Hz is constantly transmitted to the core to resonantly inject the primary bubble with ultrasonic energy to thereby facilitate its growth. Hence, small bubbles grow gradually to prevent the sudden boiling of sodium if an accident occurs in the cooling system during operation of the reactor.

  2. Cooling pond fog studies

    International Nuclear Information System (INIS)

    Hicks, B.B.

    1978-01-01

    The Fog Excess Water Index (FEWI) method of fog prediction has been verified by the use of data obtained at the Dresden cooling pond during 1976 and 1977 and by a reanalysis of observations made in conjunction with a study of cooling pond simulators during 1974. For applications in which the method is applied to measurements or estimates of bulk water temperature, a critical value of about 0.7 mb appears to be most appropriate. The present analyses confirm the earlier finding that wind speed plays little part in determining the susceptibility for fog generation

  3. Hydrothermal syntheses and single crystal structural ...

    Indian Academy of Sciences (India)

    Unknown

    Colourless. 84 lined stainless steel bomb. After heating in a pro- grammable oven at the respective temperatures and autogenous pressures for the notified time scale, cooling was carried out on a ramp of 10°C/h to room temperature. The crystals were collected by filtration, washed with, deionized water followed by diethyl-.

  4. Production of tea vinegar by batch and semicontinuous fermentation

    OpenAIRE

    Kaur, Pardeep; Kocher, G. S.; Phutela, R. P.

    2010-01-01

    The fermented tea vinegar combines the beneficial properties of tea and vinegar. The complete fermentation takes 4 to 5 weeks in a batch culture and thus can be shortened by semi continuous/ continuous fermentation using immobilized bacterial cells. In the present study, alcoholic fermentation of 1.0 and 1.5% tea infusions using Saccharomyces cerevisae G was carried out that resulted in 84.3 and 84.8% fermentation efficiency (FE) respectively. The batch vinegar fermentation of these wines wit...

  5. Stochastic growth logistic model with aftereffect for batch fermentation process

    Science.gov (United States)

    Rosli, Norhayati; Ayoubi, Tawfiqullah; Bahar, Arifah; Rahman, Haliza Abdul; Salleh, Madihah Md

    2014-06-01

    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.

  6. Stochastic growth logistic model with aftereffect for batch fermentation process

    International Nuclear Information System (INIS)

    Rosli, Norhayati; Ayoubi, Tawfiqullah; Bahar, Arifah; Rahman, Haliza Abdul; Salleh, Madihah Md

    2014-01-01

    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits

  7. Stochastic growth logistic model with aftereffect for batch fermentation process

    Energy Technology Data Exchange (ETDEWEB)

    Rosli, Norhayati; Ayoubi, Tawfiqullah [Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang (Malaysia); Bahar, Arifah; Rahman, Haliza Abdul [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Salleh, Madihah Md [Department of Biotechnology Industry, Faculty of Biosciences and Bioengineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)

    2014-06-19

    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.

  8. Optimum heat storage design for heat integrated multipurpose batch plants

    CSIR Research Space (South Africa)

    Stamp, J

    2011-01-01

    Full Text Available procedure is presented tha journal homepage: www All rights reserved. ajozi T, Optimum heat storage grated multipurpose batch plants , South Africa y usage in multipurpose batch plants has been in published literature most present methods, time... � 2pL?u?kins ? 1 h3A3?u?cu?U (36) The internal area for heat loss by convection from the heat transfer medium is given by Constraint (37) and the area for convective heat transfer losses to the environment is given in Constraint (38). A1?u? ? 2...

  9. Laser-cooling effects in few-ion clouds of Yb[sup +

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, C.S. (National Physical Lab., Teddington (United Kingdom)); Gill, P. (National Physical Lab., Teddington (United Kingdom)); Klein, H.A. (National Physical Lab., Teddington (United Kingdom)); Levick, A.P. (National Physical Lab., Teddington (United Kingdom)); Rowley, W.R.C. (National Physical Lab., Teddington (United Kingdom))

    1994-08-01

    We report some laser-cooling effects in a few [sup 172]Yb[sup +] ions held in a Paul trap. Pronounced cloud-to-crystal phase transitions have been observed as discontinuities in the Yb[sup +] fluorescence spectrum of the 369 nm cooling transition. The first reported two-dimensional images of Yb[sup +] clouds with evidence of crystal structure have been recorded using a photon-counting position-sensitive detector. An ion temperature of 100 mK has been estimated from the size of a single ion image. Stepwise cooling of a re-heated, few-ion Yb[sup +] cloud was also observed. (orig.)

  10. Laser-cooling effects in few-ion clouds of Yb+

    International Nuclear Information System (INIS)

    Edwards, C.S.; Gill, P.; Klein, H.A.; Levick, A.P.; Rowley, W.R.C.

    1994-01-01

    We report some laser-cooling effects in a few 172 Yb + ions held in a Paul trap. Pronounced cloud-to-crystal phase transitions have been observed as discontinuities in the Yb + fluorescence spectrum of the 369 nm cooling transition. The first reported two-dimensional images of Yb + clouds with evidence of crystal structure have been recorded using a photon-counting position-sensitive detector. An ion temperature of 100 mK has been estimated from the size of a single ion image. Stepwise cooling of a re-heated, few-ion Yb + cloud was also observed. (orig.)

  11. Study of crystallization kinetics of peek thermoplastics using Nakamura equation

    Science.gov (United States)

    Chalid, Mochamad; Muhammad Joshua Y., B.; Fikri, Arbi Irsyad; Gregory, Noel; Priadi, Dedi; Fatriansyah, Jaka Fajar

    2018-04-01

    We have simulated the time evolution of relative crystallization of PEEK at various cooling rates (10, 15, 20 °C/min) and made comparison with the experiments. The simulation was conducted using Nakamura model which is a modified Avrami model. The model is a 1 cm radius of circle with the cooling plate which was placed in the upper part of the circle. The cooling plate temperature was varied in order to obtain particular cooling rates. The measurement point is located near upper boundary in order to minimize the heat transfer effect. The general trend of time evolution of crystallization was well captured although some discrepancies occured. These discrepancies may be attributed to the heat transfer effect and secondary crystallization.

  12. Monolithic I-Beam Crystal Monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Bagnasco, John

    2001-10-16

    Curved crystal, focusing monochromators featuring cubed-root thickness profiles typically employ side-clamped cooling to reduce thermally induced overall bend deformation of the crystal. While performance is improved, residual bend deformation is often an important limiting factor in the monochromator performance. A slightly asymmetric ``I-beam'' crystal cross section with cubed-root flange profiles has been developed to further reduce this effect. Physical motivation, finite-element modeling evaluation and performance characteristics of this design are discussed. Reduction of high mounting stress at the fixed end of the crystal required the soldering of an Invar support fixture to the crystal. Detailed descriptions of this process along with its performance characteristics are also presented.

  13. Elementary stochastic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Tollestrup, A.V.; Dugan, G

    1983-12-01

    Major headings in this review include: proton sources; antiproton production; antiproton sources and Liouville, the role of the Debuncher; transverse stochastic cooling, time domain; the accumulator; frequency domain; pickups and kickers; Fokker-Planck equation; calculation of constants in the Fokker-Planck equation; and beam feedback. (GHT)

  14. ELECTRON COOLING FOR RHIC

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    2001-01-01

    The Accelerator Collider Department (CAD) at Brookhaven National Laboratory is operating the Relativistic Heavy Ion Collider (RHIC), which includes the dual-ring, 3.834 km circumference superconducting collider and the venerable AGS as the last part of the RHIC injection chain. CAD is planning on a luminosity upgrade of the machine under the designation RHIC II. One important component of the RHIC II upgrade is electron cooling of RHIC gold ion beams. For this purpose, BNL and the Budker Institute of Nuclear Physics in Novosibirsk entered into a collaboration aimed initially at the development of the electron cooling conceptual design, resolution of technical issues, and finally extend the collaboration towards the construction and commissioning of the cooler. Many of the results presented in this paper are derived from the Electron Cooling for RHIC Design Report [1], produced by the, BINP team within the framework of this collaboration. BNL is also collaborating with Fermi National Laboratory, Thomas Jefferson National Accelerator Facility and the University of Indiana on various aspects of electron cooling

  15. ELECTRON COOLING FOR RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    BEN-ZVI,I.

    2001-05-13

    The Accelerator Collider Department (CAD) at Brookhaven National Laboratory is operating the Relativistic Heavy Ion Collider (RHIC), which includes the dual-ring, 3.834 km circumference superconducting collider and the venerable AGS as the last part of the RHIC injection chain. CAD is planning on a luminosity upgrade of the machine under the designation RHIC II. One important component of the RHIC II upgrade is electron cooling of RHIC gold ion beams. For this purpose, BNL and the Budker Institute of Nuclear Physics in Novosibirsk entered into a collaboration aimed initially at the development of the electron cooling conceptual design, resolution of technical issues, and finally extend the collaboration towards the construction and commissioning of the cooler. Many of the results presented in this paper are derived from the Electron Cooling for RHIC Design Report [1], produced by the, BINP team within the framework of this collaboration. BNL is also collaborating with Fermi National Laboratory, Thomas Jefferson National Accelerator Facility and the University of Indiana on various aspects of electron cooling.

  16. Cooling tower and environment

    International Nuclear Information System (INIS)

    Becker, J.; Ederhof, A.; Gosdowski, J.; Harms, A.; Ide, G.; Klotz, B.; Kowalczyk, R.; Necker, P.; Tesche, W.

    The influence of a cooling tower on the environment, or rather the influence of the environment on the cooling tower stands presently -along with the cooling water supply - in the middle of much discussion. The literature on these questions can hardly be overlooked by the experts concerned, especially not by the power station designers and operators. The document 'Cooling Tower and Environment' is intented to give a general idea of the important publications in this field, and to inform of the present state of technology. In this, the explanations on every section make it easier to get to know the specific subject area. In addition to older standard literature, this publication contains the best-known literature of recent years up to spring 1975, including some articles written in English. Further English literature has been collected by the ZAED (KFK) and is available at the VGB-Geschaefsstelle. Furthermore, The Bundesumweltamt compiles the literature on the subject of 'Environmental protection'. On top of that, further documentation centres are listed at the end of this text. (orig.) [de

  17. Warm and Cool Cityscapes

    Science.gov (United States)

    Jubelirer, Shelly

    2012-01-01

    Painting cityscapes is a great way to teach first-grade students about warm and cool colors. Before the painting begins, the author and her class have an in-depth discussion about big cities and what types of buildings or structures that might be seen in them. They talk about large apartment and condo buildings, skyscrapers, art museums,…

  18. Measure Guideline: Ventilation Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Springer, D. [Alliance for Residential Building Innovation (ARBI), David, CA (United States); Dakin, B. [Alliance for Residential Building Innovation (ARBI), David, CA (United States); German, A. [Alliance for Residential Building Innovation (ARBI), David, CA (United States)

    2012-04-01

    The purpose of this measure guideline is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  19. Passive cooling containment study

    International Nuclear Information System (INIS)

    Shin, J.J.; Iotti, R.C.; Wright, R.F.

    1993-01-01

    Pressure and temperature transients of nuclear reactor containment following postulated loss of coolant accident with a coincident station blackout due to total loss of all alternating current power are studied analytically and experimentally for the full scale NPR (New Production Reactor). All the reactor and containment cooling under this condition would rely on the passive cooling system which removes reactor decay heat and provides emergency core and containment cooling. Containment passive cooling for this study takes place in the annulus between containment steel shell and concrete shield building by natural convection air flow and thermal radiation. Various heat transfer coefficients inside annular air space were investigated by running the modified CONTEMPT code CONTEMPT-NPR. In order to verify proper heat transfer coefficient, temperature, heat flux, and velocity profiles were measured inside annular air space of the test facility which is a 24 foot (7.3m) high, steam heated inner cylinder of three foot (.91m) diameter and five and half foot (1.7m) diameter outer cylinder. Comparison of CONTEMPT-NPR and WGOTHIC was done for reduced scale NPR

  20. High energy beam cooling

    International Nuclear Information System (INIS)

    Berger, H.; Herr, H.; Linnecar, T.; Millich, A.; Milss, F.; Rubbia, C.; Taylor, C.S.; Meer, S. van der; Zotter, B.

    1980-01-01

    The group concerned itself with the analysis of cooling systems whose purpose is to maintain the quality of the high energy beams in the SPS in spite of gas scattering, RF noise, magnet ripple and beam-beam interactions. Three types of systems were discussed. The status of these activities is discussed below. (orig.)

  1. Emergency core cooling system

    International Nuclear Information System (INIS)

    Ando, Masaki.

    1987-01-01

    Purpose: To actuate an automatic pressure down system (ADS) and a low pressure emergency core cooling system (ECCS) upon water level reduction of a nuclear reactor other than loss of coolant accidents (LOCA). Constitution: ADS in a BWR type reactor is disposed for reducing the pressure in a reactor container thereby enabling coolant injection from a low pressure ECCS upon LOCA. That is, ADS has been actuated by AND signal for a reactor water level low signal and a dry well pressure high signal. In the present invention, ADS can be actuated further also by AND signal of the reactor water level low signal, the high pressure ECCS and not-operation signal of reactor isolation cooling system. In such an emergency core cooling system thus constituted, ADS operates in the same manner as usual upon LOCA and, further, ADS is operated also upon loss of feedwater accident in the reactor pressure vessel in the case where there is a necessity for actuating the low pressure ECCS, although other high pressure ECCS and reactor isolation cooling system are not operated. Accordingly, it is possible to improve the reliability upon reactor core accident and mitigate the operator burden. (Horiuchi, T.)

  2. Emergency core cooling system

    International Nuclear Information System (INIS)

    Kato, Ken.

    1989-01-01

    In PWR type reactors, a cooling water spray portion of emergency core cooling pipelines incorporated into pipelines on high temperature side is protruded to the inside of an upper plenum. Upon rupture of primary pipelines, pressure in a pressure vessel is abruptly reduced to generate a great amount of steams in the reactor core, which are discharged at a high flow rate into the primary pipelines on high temperature side. However, since the inside of the upper plenum has a larger area and the steam flow is slow, as compared with that of the pipelines on the high temperature side, ECCS water can surely be supplied into the reactor core to promote the re-flooding of the reactor core and effectively cool the reactor. Since the nuclear reactor can effectively be cooled to enable the promotion of pressure reduction and effective supply of coolants during the period of pressure reduction upon LOCA, the capacity of the pressure accumulation vessel can be decreased. Further, the re-flooding time for the reactor is shortened to provide an effect contributing to the improvement of the safety and the reduction of the cost. (N.H.)

  3. The Spectral Shift Control Reactor as an option for much improved uranium utilisation in single-batch SMRs

    Energy Technology Data Exchange (ETDEWEB)

    Lindley, B.A., E-mail: bal29@cam.ac.uk; Parks, G.T.

    2016-12-01

    Highlights: • A PWR with mixed D{sub 2}O/H{sub 2}O moderator/coolant is investigated for SMR applications. • Heavy water concentration varied over the cycle to give ‘spectral shift’ operation. • Much wetter lattice than normal is neutronically favourable. • Taller fuel stack is thus needed to ensure acceptable MDNBR. • 35–43% increase in uranium utilisation for single batch reactor is possible. - Abstract: The Spectral Shift Control Reactor (SSCR) uses a mix of D{sub 2}O and H{sub 2}O to moderate and cool the reactor. Initially, a high proportion of D{sub 2}O is used, such that the reactor is substantially under-moderated, with excess neutrons being primarily captured in {sup 238}U, breeding {sup 239}Pu. Towards the end of the cycle (EOC), the coolant is predominantly H{sub 2}O, thermalising the neutron spectrum and increasing reactivity. Recently, small modular reactors (SMRs) have gained significant interest as a means of providing a power source that requires little maintenance and refuelling. This motivates long cycles and reduced batch operation. For a single-batch reactor, there is typically a 33% penalty to uranium utilisation compared to a 3-batch reactor. Lattice calculations demonstrate the potential of the SSCR to greatly improve uranium utilisation in single-batch reactors over a range of enrichments. A relatively ‘wet’ lattice is employed which further improves uranium utilisation. Cases with 5% and 15% fissile loading are considered, for which it is respectively possible to achieve 47% and 39% increases in natural uranium utilisation using the SSCR relative to a ‘reference’ light water reactor. In the latter case, if 25% thorium is mixed into the fuel, the improvement in uranium utilisation increases to a total of 49%. Hence, in both cases, it is possible to in effect eliminate the penalty of using a single fuel batch. The ‘wet’ lattice introduces substantial thermal-hydraulic challenges due to the significantly higher fuel

  4. Design of two-column batch-to-batch recirculation to enhance performance in ion-exchange chromatography.

    Science.gov (United States)

    Persson, Oliver; Andersson, Niklas; Nilsson, Bernt

    2018-01-05

    Preparative liquid chromatography is a separation technique widely used in the manufacturing of fine chemicals and pharmaceuticals. A major drawback of traditional single-column batch chromatography step is the trade-off between product purity and process performance. Recirculation of impure product can be utilized to make the trade-off more favorable. The aim of the present study was to investigate the usage of a two-column batch-to-batch recirculation process step to increase the performance compared to single-column batch chromatography at a high purity requirement. The separation of a ternary protein mixture on ion-exchange chromatography columns was used to evaluate the proposed process. The investigation used modelling and simulation of the process step, experimental validation and optimization of the simulated process. In the presented case the yield increases from 45.4% to 93.6% and the productivity increases 3.4 times compared to the performance of a batch run for a nominal case. A rapid concentration build-up product can be seen during the first cycles, before the process reaches a cyclic steady-state with reoccurring concentration profiles. The optimization of the simulation model predicts that the recirculated salt can be used as a flying start of the elution, which would enhance the process performance. The proposed process is more complex than a batch process, but may improve the separation performance, especially while operating at cyclic steady-state. The recirculation of impure fractions reduces the product losses and ensures separation of product to a high degree of purity. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Helium crystals

    International Nuclear Information System (INIS)

    Lipson, S.G.

    1987-01-01

    Hexagonal close-packed helium crystals in equilibrium with superfluid have been found to be one of the few systems in which an anisotropic solid comes into true thermodynamic equilibrium with its melt. The discovery of roughening transitions at the liquid-solid interface have shown this system to be ideal for the study of the statistical mechanics of interface structures. We describe the effect of roughening on the shape and growth of macroscopic crystals from both the theoretical and experimental points of view. (author)

  6. Lipid production in batch and fed-batch cultures of Rhodosporidium toruloides from 5 and 6 carbon carbohydrates

    Directory of Open Access Journals (Sweden)

    Wiebe Marilyn G

    2012-05-01

    Full Text Available Abstract Background Microbial lipids are a potential source of bio- or renewable diesel and the red yeast Rhodosporidium toruloides is interesting not only because it can accumulate over 50% of its dry biomass as lipid, but also because it utilises both five and six carbon carbohydrates, which are present in plant biomass hydrolysates. Methods R. toruloides was grown in batch and fed-batch cultures in 0.5 L bioreactors at pH 4 in chemically defined, nitrogen restricted (C/N 40 to 100 media containing glucose, xylose, arabinose, or all three carbohydrates as carbon source. Lipid was extracted from the biomass using chloroform-methanol, measured gravimetrically and analysed by GC. Results Lipid production was most efficient with glucose (up to 25 g lipid L−1, 48 to 75% lipid in the biomass, at up to 0.21 g lipid L−1 h−1 as the sole carbon source, but high lipid concentrations were also produced from xylose (36 to 45% lipid in biomass. Lipid production was low (15–19% lipid in biomass with arabinose as sole carbon source and was lower than expected (30% lipid in biomass when glucose, xylose and arabinose were provided simultaneously. The presence of arabinose and/or xylose in the medium increased the proportion of palmitic and linoleic acid and reduced the proportion of oleic acid in the fatty acids, compared to glucose-grown cells. High cell densities were obtained in both batch (37 g L−1, with 49% lipid in the biomass and fed-batch (35 to 47 g L−1, with 50 to 75% lipid in the biomass cultures. The highest proportion of lipid in the biomass was observed in cultures given nitrogen during the batch phase but none with the feed. However, carbohydrate consumption was incomplete when the feed did not contain nitrogen and the highest total lipid and best substrate consumption were observed in cultures which received a constant low nitrogen supply. Conclusions Lipid production in R. toruloides was lower from arabinose and mixed

  7. Cooling Tower Losses in Industry

    OpenAIRE

    Barhm Mohamad

    2017-01-01

    Cooling towers are a very important part of many chemical plants. The primary task of a cooling tower is to reject heat into the atmosphere. They represent a relatively inexpensive and dependable means of removing low-grade heat from cooling water. The make-up water source is used to replenish water lost to evaporation. Hot water from heat exchangers is sent to the cooling tower. The water exits the cooling tower and is sent back to the exchangers or to other units for further cooling.

  8. Cooling concepts for HTS components

    International Nuclear Information System (INIS)

    Binneberg, A.; Buschmann, H.; Neubert, J.

    1993-01-01

    HTS components require that low-cost, reliable cooling systems be used. There are no general solutions to such systems. Any cooling concept has to be tailored to the specific requirements of a system. The following has to he taken into consideration when designing cooling concepts: - cooling temperature - constancy and controllability of the cooling temperature - cooling load and refrigerating capacity - continuous or discontinuous mode - degree of automation - full serviceability or availability before evacuation -malfunctions caused by microphonic, thermal or electromagnetic effects -stationary or mobile application - investment and operating costs (orig.)

  9. Cooling out of the blue

    International Nuclear Information System (INIS)

    Schmid, W.

    2006-01-01

    This article takes a look at solar cooling and air-conditioning, the use of which is becoming more and more popular. The article discusses how further research and development is necessary. The main challenge for professional experts is the optimal adaptation of building, building technology and solar-driven cooling systems to meet these new requirements. Various solar cooling technologies are looked at, including the use of surplus heat for the generation of cold for cooling systems. Small-scale solar cooling systems now being tested in trials are described. Various developments in Europe are discussed, as are the future chances for solar cooling in the market

  10. Preliminary calculations on the cooling rate of the Renca batholit, Sierra de San Luis, Argentina

    International Nuclear Information System (INIS)

    Lopez de Luchi, M.G.; Ostera, H.A.; Linares, E; Rosello, E.A

    2001-01-01

    Cooling rates can be used to constrain the unroofing history of plutonic-metamorphic system. Geocronological cooling rates (Spear and Parrish, 1996) can be unravelled using age calculations on minerals that were open systems and subsequently passed through their closure temperatures (Dodson, 1973) during cooling. Several age determinations on different minerals are needed in order to accurately constrain the cooling path of a pluton (Hodges 1991, Spear and Parrish, 1996 and references therein). Isotopic open-system behaviour in minerals can be modelled as volume diffusion process (Hodges, 1991 and references therein), which depends on the cooling rate of the whole system. We present the first results on the calculation of the cooling rate of the Renca batholith on the basis of the combination of both thermometric calculations and available crystallization and cooling ages (au)

  11. Vitrification and Crystallization of Phase-Separated Metallic Liquid

    Directory of Open Access Journals (Sweden)

    Yun Cheng

    2017-02-01

    Full Text Available The liquid–liquid phase separation (LLPS behavior of Fe50Cu50 melt from 3500 K to 300 K with different rapid quenching is investigated by molecular dynamics (MD simulation based on the embedded atom method (EAM. The liquid undergoes metastable phase separation by spinodal decomposition in the undercooled regime and subsequently solidifies into three different Fe-rich microstructures: the interconnected-type structure is kept in the glass and crystal at a higher cooling rate, while the Fe-rich droplets are found to crystalize at a lower cooling rate. During the crystallization process, only Fe-rich clusters can act as the solid nuclei. The twinning planes can be observed in the crystal and only the homogeneous atomic stacking shows mirror symmetry along the twinning boundary. Our present work provides atomic-scale understanding of LLPS melt during the cooling process.

  12. Adaptation to high throughput batch chromatography enhances multivariate screening.

    Science.gov (United States)

    Barker, Gregory A; Calzada, Joseph; Herzer, Sibylle; Rieble, Siegfried

    2015-09-01

    High throughput process development offers unique approaches to explore complex process design spaces with relatively low material consumption. Batch chromatography is one technique that can be used to screen chromatographic conditions in a 96-well plate. Typical batch chromatography workflows examine variations in buffer conditions or comparison of multiple resins in a given process, as opposed to the assessment of protein loading conditions in combination with other factors. A modification to the batch chromatography paradigm is described here where experimental planning, programming, and a staggered loading approach increase the multivariate space that can be explored with a liquid handling system. The iterative batch chromatography (IBC) approach is described, which treats every well in a 96-well plate as an individual experiment, wherein protein loading conditions can be varied alongside other factors such as wash and elution buffer conditions. As all of these factors are explored in the same experiment, the interactions between them are characterized and the number of follow-up confirmatory experiments is reduced. This in turn improves statistical power and throughput. Two examples of the IBC method are shown and the impact of the load conditions are assessed in combination with the other factors explored. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Control of polymer network topology in semi-batch systems

    Science.gov (United States)

    Wang, Rui; Olsen, Bradley; Johnson, Jeremiah

    Polymer networks invariably possess topological defects: loops of different orders. Since small loops (primary loops and secondary loops) both lower the modulus of network and lead to stress concentration that causes material failure at low deformation, it is desirable to greatly reduce the loop fraction. We have shown that achieving loop fraction close to zero is extremely difficult in the batch process due to the slow decay of loop fraction with the polymer concentration and chain length. Here, we develop a modified kinetic graph theory that can model network formation reactions in semi-batch systems. We demonstrate that the loop fraction is not sensitive to the feeding policy if the reaction volume maintains constant during the network formation. However, if we initially put concentrated solution of small junction molecules in the reactor and continuously adding polymer solutions, the fractions of both primary loop and higher-order loops will be significantly reduced. There is a limiting value (nonzero) of loop fraction that can be achieved in the semi-batch system in condition of extremely slow feeding rate. This minimum loop fraction only depends on a single dimensionless variable, the product of concentration and with single chain pervaded volume, and defines an operating zone in which the loop fraction of polymer networks can be controlled through adjusting the feeding rate of the semi-batch process.

  14. State and parameter estimation in biotechnical batch reactors

    NARCIS (Netherlands)

    Keesman, K.J.

    2000-01-01

    In this paper the problem of state and parameter estimation in biotechnical batch reactors is considered. Models describing the biotechnical process behaviour are usually nonlinear with time-varying parameters. Hence, the resulting large dimensions of the augmented state vector, roughly > 7, in

  15. Batch distillation column modeling for quality control program

    NARCIS (Netherlands)

    Betlem, Bernardus H.L.

    2000-01-01

    For batch distillation, the dynamic composition behaviour can be described by the dominant time constant and the bottom exhaustion. Its magnitude is determined by the change of the composition distribution and is maximal when the inflection point of the molar fraction profile is located in the

  16. Sequencing for Batch Production in a Group Flowline Machine Shop ...

    African Journals Online (AJOL)

    The purpose of the paper is to develop a useful technique for sequencing batches of components through machine shops arranged under the group flowline production system. The approach is to apply a modified version of Petrov's group flowline technique for machining components which follow a unidirectional route.

  17. Quality control for 12 batch of DTPA-Sn

    International Nuclear Information System (INIS)

    Isaac, M.; Gamboa, R.; Leyva, R.; Hernandez, I.; Turino, D.

    1994-01-01

    The quality control is carry out at 12 batch of DTPA-Sn for labeling with 99 m Tc. The instrumental methods of analysis and control charts were discussed in order to find a warranty time for the product. (author). 2 refs, 3 figs, 1 tab

  18. Flash chemistry: flow chemistry that cannot be done in batch.

    Science.gov (United States)

    Yoshida, Jun-ichi; Takahashi, Yusuke; Nagaki, Aiichiro

    2013-11-04

    Flash chemistry based on high-resolution reaction time control using flow microreactors enables chemical reactions that cannot be done in batch and serves as a powerful tool for laboratory synthesis of organic compounds and for production in chemical and pharmaceutical industries.

  19. Adsorption of Arsenite onto Kemiron in a batch system

    African Journals Online (AJOL)

    doti

    This study investigated the effect of pH and coexisting ions on As(III) adsorption using batch experiment and discovered that pH strongly influenced As(III) adsorption. However, differences ... contamination by such heavy metals as arsenic (As). Arsenite ..... and then transition through point of zero charge (PZC) and then into ...

  20. Development of Production Control in Small Batch Production

    Directory of Open Access Journals (Sweden)

    Németh Péter

    2016-01-01

    Full Text Available Our aim with this paper is to develop a new performance measurement and control system for small batch production in the automotive industry. For this reason, we present our previous research results for warehouse performance measurement and adopt its methodology to production control. The proposed method is based on artificial intelligence (neural networks.

  1. Shell of Planet Earth – Global Batch Bioreactor.

    Czech Academy of Sciences Publication Activity Database

    Hanika, Jiří; Šolcová, Olga; Kaštánek, P.

    2017-01-01

    Roč. 40, č. 11 (2017), s. 1959-1965 ISSN 0930-7516 R&D Projects: GA TA ČR TE01020080 Institutional support: RVO:67985858 Keywords : critical raw materials * global batch bioreactor * planet earth Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 2.051, year: 2016

  2. Design of common heat exchanger network for batch processes

    International Nuclear Information System (INIS)

    Anastasovski, Aleksandar

    2014-01-01

    Heat integration of energy streams is very important for the efficient energy recovery in production systems. Pinch technology is a very useful tool for heat integration and maximizing energy efficiency. Creating of heat exchangers network as a common solution for systems in batch mode that will be applicable in all existing time slices is very difficult. This paper suggests a new methodology for design of common heat exchanger network for batch processes. Heat exchanger network designs were created for all determined repeatable and non-repeatable time periods – time slices. They are the basis for creating the common heat exchanger network. The common heat exchanger network as solution, satisfies all heat-transfer needs for each time period and for every existing combination of selected streams in the production process. This methodology use split of some heat exchangers into two or more heat exchange units or heat exchange zones. The reason for that is the multipurpose use of heat exchangers between different pairs of streams in different time periods. Splitting of large heat exchangers would maximize the total heat transfer usage of heat exchange units. Final solution contains heat exchangers with the minimum heat load as well as the minimum need of heat transfer area. The solution is applicable for all determined time periods and all existing stream combinations. - Highlights: •Methodology for design of energy efficient systems in batch processes. •Common Heat Exchanger Network solution based on designs with Pinch technology. •Multipurpose use of heat exchangers in batch processes

  3. A fixed-size batch service queue with vacations

    Directory of Open Access Journals (Sweden)

    Ho Woo Lee

    1996-01-01

    Full Text Available The paper deals with batch service queues with vacations in which customers arrive according to a Poisson process. Decomposition method is used to derive the queue length distributions both for single and multiple vacation cases. The authors look at other decomposition techniques and discuss some related open problems.

  4. Comparative Batch and Column Evaluation of Thermal and Wet ...

    African Journals Online (AJOL)

    The efficiency of regenerated spent commercial activated carbon for synthetic dye removal was studied using thermal and wet oxidative regeneration methods. Two types of experiments were carried out, batch adsorption experiments and continous flow (fixed bed) column experiment to study the mechanism of dye removal ...

  5. DEVELOPMENT OF AN AUTOMATED BATCH-PROCESS SOLAR ...

    African Journals Online (AJOL)

    One of the shortcomings of solar disinfection of water (SODIS) is the absence of a feedback mechanism indicating treatment completion. This work presents the development of an automated batch-process water disinfection system aimed at solving this challenge. Locally sourced materials in addition to an Arduinomicro ...

  6. Medium optimization for protopectinase production by batch culture of

    African Journals Online (AJOL)

    Medium optimization for protopectinase production by batch culture of. C Fan, Z Liu, L Yao. Abstract. Optimization of medium compositions for protopectinase production by Aspergillus terreus in submerged culture was carried out. The medium components having significant effect on protopectinase production were reported ...

  7. Batch immunoextraction method for efficient purification of aromatic cytokinins

    Czech Academy of Sciences Publication Activity Database

    Hauserová, Eva; Swaczynová, Jana; Doležal, Karel; Lenobel, René; Popa, Igor; Hajdúch, M.; Vydra, D.; Fuksová, Květoslava; Strnad, Miroslav

    2005-01-01

    Roč. 1100, č. 1 (2005), s. 116-125 ISSN 0021-9673 R&D Projects: GA AV ČR IBS4055304 Institutional research plan: CEZ:AV0Z50380511; MSM6198959216 Keywords : antibody * 6-benzylaminopurine * batch immunoextraction Subject RIV: ED - Physiology Impact factor: 3.096, year: 2005

  8. Tier 3 batch system data locality via managed caches

    Science.gov (United States)

    Fischer, Max; Giffels, Manuel; Jung, Christopher; Kühn, Eileen; Quast, Günter

    2015-05-01

    Modern data processing increasingly relies on data locality for performance and scalability, whereas the common HEP approaches aim for uniform resource pools with minimal locality, recently even across site boundaries. To combine advantages of both, the High- Performance Data Analysis (HPDA) Tier 3 concept opportunistically establishes data locality via coordinated caches. In accordance with HEP Tier 3 activities, the design incorporates two major assumptions: First, only a fraction of data is accessed regularly and thus the deciding factor for overall throughput. Second, data access may fallback to non-local, making permanent local data availability an inefficient resource usage strategy. Based on this, the HPDA design generically extends available storage hierarchies into the batch system. Using the batch system itself for scheduling file locality, an array of independent caches on the worker nodes is dynamically populated with high-profile data. Cache state information is exposed to the batch system both for managing caches and scheduling jobs. As a result, users directly work with a regular, adequately sized storage system. However, their automated batch processes are presented with local replications of data whenever possible.

  9. modelling and simulation of the batch hydrolysis of acetic ing

    African Journals Online (AJOL)

    eobe

    The kinetic modelling of the batch synthesis of acetic acid from acetic. The kinetic modelling of ... integral method of analysis to determine the kinetic parameters .... Equation (5) is applied to all the components ... In common chemical engineering terminology, the degree of ..... of Physical Organic Chemistry, Vol. 25, Number ...

  10. Comparison of neptunium sorption results using batch and column techniques

    International Nuclear Information System (INIS)

    Triay, I.R.; Furlano, A.C.; Weaver, S.C.; Chipera, S.J.; Bish, D.L.

    1996-08-01

    We used crushed-rock columns to study the sorption retardation of neptunium by zeolitic, devitrified, and vitric tuffs typical of those at the site of the potential high-level nuclear waste repository at Yucca Mountain, Nevada. We used two sodium bicarbonate waters (groundwater from Well J-13 at the site and water prepared to simulate groundwater from Well UE-25p No. 1) under oxidizing conditions. It was found that values of the sorption distribution coefficient, Kd, obtained from these column experiments under flowing conditions, regardless of the water or the water velocity used, agreed well with those obtained earlier from batch sorption experiments under static conditions. The batch sorption distribution coefficient can be used to predict the arrival time for neptunium eluted through the columns. On the other hand, the elution curves showed dispersivity, which implies that neptunium sorption in these tuffs may be nonlinear, irreversible, or noninstantaneous. As a result, use of a batch sorption distribution coefficient to calculate neptunium transport through Yucca Mountain tuffs would yield conservative values for neptunium release from the site. We also noted that neptunium (present as the anionic neptunyl carbonate complex) never eluted prior to tritiated water, which implies that charge exclusion does not appear to exclude neptunium from the tuff pores. The column experiments corroborated the trends observed in batch sorption experiments: neptunium sorption onto devitrified and vitric tuffs is minimal and sorption onto zeolitic tuffs decreases as the amount of sodium and bicarbonate/carbonate in the water increases

  11. Magnetocaloric Effect and Thermoelectric Cooling - A Synergistic Cooling Technology

    Science.gov (United States)

    2018-01-16

    Thermoelectric Cooling - A Synergistic Cooling Technology Sb. GRANT NUMBER N00173-14-1-G016 Sc. PROGRAM ELEMENT NUMBER 82-2020-17 6. AUTHOR(S) 5d...Magnetocaloric Effect and Thermoelectric Cooling - A Synergistic Cooling Technology NRL Grant N00173-14-l-G016 CODE 8200: Spacecraft Engineering Department...82-11-0 1: Space and Space Systems Technology General Engineering & Research, L.L.C. Technical & Administrative point of contact: Dr. Robin

  12. Heat load studies of a water-cooled minichannel monochromator for synchrotron x-ray beams

    Science.gov (United States)

    Freund, Andreas K.; Arthur, John R.; Zhang, Lin

    1997-12-01

    We fabricated a water-cooled silicon monochromator crystal with small channels for the special case of a double-crystal fixed-exit monochromator design where the beam walks across the crystal when the x-ray energy is changed. The two parts of the cooled device were assembled using a new technique based on low melting point solder. The bending of the system produced by this technique could be perfectly compensated by mechanical counter-bending. Heat load tests of the monochromator in a synchrotron beam of 75 W total power, 3 mm high and 15 mm wide, generated by a multipole wiggler at SSRL, showed that the thermal slope error of the crystal is 1 arcsec/40 W power, in full agreement with finite element analysis. The cooling scheme is adequate for bending magnet beamlines at the ESRF and present wiggler beamlines at the SSRL.

  13. The cryogenic cooling program at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Rogers, C.S.; Mills, D.M.; Assoufid, L.

    1994-06-01

    This paper describes the experimental and analytical program in cryogenic cooling of high-heat-load optics at the Advanced-Photon Source. A prototype liquid nitrogen pumping system has been procured. This pump provides a variable flow rate of 1 to 10 gpm of pressurized liquid nitrogen and is sized to handle up to 5 kW of optic heat load. Also, a high-vacuum, double-crystal monochromator testing tank has been fabricated. This system will be used to test cryogenic crystals at existing synchrotron sources. A finite element analysis has been performed for a cryogenically cooled Si crystal in the inclined geometry for Undulator A at 100 mA. The inclination angle was 80 degrees. It was set to diffract from the (111) planes at the first harmonic energy of 4.2 keV. The maximum slope error in the diffraction plane was calculated to be about 1 μrad with a peak temperature of 94 K. An analysis has also been performed for a cryogenically-cooled ''thin'' crystal oriented in the Bragg geometry which accepts 87% of the lst harmonic photons at 3.866 keV. The total absorbed power was 131 W at 100 mA current and the peak temperature was 124 K

  14. Effects of temperature and solvent concentration on the solvent crystallization of palm-based dihydroxystearic acid with isopropyl alcohol

    Institute of Scientific and Technical Information of China (English)

    Gregory F.L.Koay; Teong-Guan Chuah; Sumaiya Zainal-Abidin; Salmiah Ahmad; Thomas S.Y.Choong

    2012-01-01

    Palm-based dihydroxystearic acid of 69.55% purity was produced in a 500-kg-per-batch operation pilot plant and purified through solvent crystallization in a custom fabricated simultaneous batch crystallizer unit.The effects of temperature and solvent concentration on yield,particle size distribution and purity were studied.The purity was higher,while the yield and particle size were lower and smaller,respectively,at higher temperature and solvent concentration.The solvent crystallization process efficiency was rated at 66-69% when carried out with 70-80% isopropyl alcohol at 20 ℃.

  15. Magnetic entropy and cooling

    DEFF Research Database (Denmark)

    Hansen, Britt Rosendahl; Kuhn, Luise Theil; Bahl, Christian Robert Haffenden

    2010-01-01

    Some manifestations of magnetism are well-known and utilized on an everyday basis, e.g. using a refrigerator magnet for hanging that important note on the refrigerator door. Others are, so far, more exotic, such as cooling by making use of the magnetocaloric eect. This eect can cause a change...... in the temperature of a magnetic material when a magnetic eld is applied or removed. For many years, experimentalists have made use of dilute paramagnetic materials to achieve milliKelvin temperatures by use of the magnetocaloric eect. Also, research is done on materials, which might be used for hydrogen, helium...... or nitrogen liquefaction or for room-temperature cooling. The magnetocaloric eect can further be used to determine phase transition boundaries, if a change in the magnetic state occurs at the boundary.In this talk, I will introduce the magnetocaloric eect (MCE) and the two equations, which characterize...

  16. Self pumping magnetic cooling

    International Nuclear Information System (INIS)

    Chaudhary, V; Wang, Z; Ray, A; Ramanujan, R V; Sridhar, I

    2017-01-01

    Efficient thermal management and heat recovery devices are of high technological significance for innovative energy conservation solutions. We describe a study of a self-pumping magnetic cooling device, which does not require external energy input, employing Mn–Zn ferrite nanoparticles suspended in water. The device performance depends strongly on magnetic field strength, nanoparticle content in the fluid and heat load temperature. Cooling (Δ T ) by ∼20 °C and ∼28 °C was achieved by the application of 0.3 T magnetic field when the initial temperature of the heat load was 64 °C and 87 °C, respectively. These experiments results were in good agreement with simulations performed with COMSOL Multiphysics. Our system is a self-regulating device; as the heat load increases, the magnetization of the ferrofluid decreases; leading to an increase in the fluid velocity and consequently, faster heat transfer from the heat source to the heat sink. (letter)

  17. Laser cooling at resonance

    Science.gov (United States)

    Yudkin, Yaakov; Khaykovich, Lev

    2018-05-01

    We show experimentally that three-dimensional laser cooling of lithium atoms on the D2 line is possible when the laser light is tuned exactly to resonance with the dominant atomic transition. Qualitatively, it can be understood by applying simple Doppler cooling arguments to the specific hyperfine structure of the excited state of lithium atoms, which is both dense and inverted. However, to build a quantitative theory, we must resolve to a full model which takes into account both the entire atomic structure of all 24 Zeeman sublevels and the laser light polarization. Moreover, by means of Monte Carlo simulations, we show that coherent processes play an important role in showing consistency between the theory and the experimental results.

  18. ITER cooling systems

    International Nuclear Information System (INIS)

    Natalizio, A.; Hollies, R.E.; Sochaski, R.O.; Stubley, P.H.

    1992-06-01

    The ITER reference system uses low-temperature water for heat removal and high-temperature helium for bake-out. As these systems share common equipment, bake-out cannot be performed until the cooling system is drained and dried, and the reactor cannot be started until the helium has been purged from the cooling system. This study examines the feasibility of using a single high-temperature fluid to perform both heat removal and bake-out. The high temperature required for bake-out would also be in the range for power production. The study examines cost, operational benefits, and impact on reactor safety of two options: a high-pressure water system, and a low-pressure organic system. It was concluded that the cost savings and operational benefits are significant; there are no significant adverse safety impacts from operating either the water system or the organic system; and the capital costs of both systems are comparable

  19. High performance batch production of LREBa2Cu3Oy using novel thin film Nd-123 seed

    International Nuclear Information System (INIS)

    Muralidhar, M.; Suzuki, K.; Fukumoto, Y.; Ishihara, A.; Tomita, M.

    2011-01-01

    A batch production for fabrication of LREBa 2 Cu 3 O y (LRE: Sm, Gd, NEG) 'LRE-123' pellets are developed in air and Ar-1% O 2 using a novel thin film Nd-123 seeds grown on MgO crystals. The SEM and XRD results conformed that the quality and orientation of the seed crystals are excellent. On the other hand, new seeds can withstand temperatures >1100 deg. C, as a result, the cold seeding process was applied even to grow Sm-123 material in Air. The trapped field observed in the best 45 mm single-grain puck of Gd-123 was in the range of 1.35 T and 0.35 T at 77.3 K and 87.3 K, respectively. The average trapped field at 77.3 K in the 24 mm diameter NEG-123 samples batch lies between 0.9 and 1 T. The maximum trapped field of 1.2 T was recorded at the sample surface. Further, the maximum trapped field of 0.23 T at 77 K was recorded in a sample with 16 mm diameter of Sm-123 with 3 mol% BaO 2 addition. As a result we made more then 130 single grain pucks within a couple of months. Taking advantage of the single grain batch processed material, we constructed self-made chilled levitation disk, which was used on the open day of railway technical research Institute. More then 150 children stood on the levitation disk and revel the experience of levitation. The present results prove that a high-performance good-quality class of LREBa 2 Cu 3 O y material can be made by using a novel thin film Nd-123 seeds.

  20. Cooling your home naturally

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    This fact sheet describes some alternatives to air conditioning which are common sense suggestions and low-cost retrofit options to cool a house. It first describes how to reflect heat away from roofs, walls, and windows. Blocking heat by using insulation or shading are described. The publication then discusses removing built-up heat, reducing heat-generating sources, and saving energy by selecting energy efficient retrofit appliances. A resource list is provided for further information.

  1. Cooling and dehumidifying coils

    International Nuclear Information System (INIS)

    Murthy, M.V.K.

    1988-01-01

    The operating features of cooling and dehumidifying coils and their constructional details are discussed. The heat transfer relations as applicable to the boiling refrigerant and a single phase fluid are presented. Methods of accounting for the effect of moisture condensation on the air side heat transfer coefficient and the fin effectiveness are explained. The logic flow necessary to analyze direct expansion coils and chilled water coils is discussed

  2. Solar heating and cooling.

    Science.gov (United States)

    Duffie, J A

    1976-01-01

    Solar energy is discussed as an energy resource that can be converted into useful energy forms to meet a variety of energy needs. The review briefly explains the nature of this energy resource, the kinds of applications that can be made useful, and the status of several systems to which it has been applied. More specifically, information on solar collectors, solar water heating, solar heating of buildings, solar cooling plus other applications, are included.

  3. Cooling device for reactor container

    International Nuclear Information System (INIS)

    Arai, Kenji.

    1996-01-01

    Upon assembling a static container cooling system to an emergency reactor core cooling system using dynamic pumps in a power plant, the present invention provides a cooling device of lowered center of gravity and having a good cooling effect by lowering the position of a cooling water pool of the static container cooling system. Namely, the emergency reactor core cooling system injects water to the inside of a pressure vessel using emergency cooling water stored in a suppression pool as at least one water source upon loss of reactor coolant accident. In addition, a cooling water pool incorporating a heat exchanger is disposed at the circumference of the suppression pool at the outside of the container. A dry well and the heat exchanger are connected by way of steam supply pipes, and the heat exchanger is connected with the suppression pool by way of a gas exhaustion pipe and a condensate returning pipeline. With such a constitution, the position of the heat exchanger is made higher than an ordinary water level of the suppression pool. As a result, the emergency cooling water of the suppression pool water is injected to the pressure vessel by the operation of the reactor cooling pumps upon loss of coolant accident to cool the reactor core. (I.S.)

  4. Conduction cooling: multicrate fastbus hardware

    International Nuclear Information System (INIS)

    Makowiecki, D.; Sims, W.; Larsen, R.

    1980-11-01

    Described is a new and novel approach for cooling nuclear instrumentation modules via heat conduction. The simplicity of liquid cooled crates and ease of thermal management with conduction cooled modules are described. While this system was developed primarily for the higher power levels expected with Fastbus electronics, it has many general applications

  5. Electron Cooling of RHIC

    CERN Document Server

    Ben-Zvi, Ilan; Barton, Donald; Beavis, Dana; Blaskiewicz, Michael; Bluem, Hans; Brennan, Joseph M; Bruhwiler, David L; Burger, Al; Burov, Alexey; Burrill, Andrew; Calaga, Rama; Cameron, Peter; Chang, Xiangyun; Cole, Michael; Connolly, Roger; Delayen, Jean R; Derbenev, Yaroslav S; Eidelman, Yury I; Favale, Anthony; Fedotov, Alexei V; Fischer, Wolfram; Funk, L W; Gassner, David M; Hahn, Harald; Harrison, Michael; Hershcovitch, Ady; Holmes, Douglas; Hseuh Hsiao Chaun; Johnson, Peter; Kayran, Dmitry; Kewisch, Jorg; Kneisel, Peter; Koop, Ivan; Lambiase, Robert; Litvinenko, Vladimir N; MacKay, William W; Mahler, George; Malitsky, Nikolay; McIntyre, Gary; Meng, Wuzheng; Merminga, Lia; Meshkov, Igor; Mirabella, Kerry; Montag, Christoph; Nagaitsev, Sergei; Nehring, Thomas; Nicoletti, Tony; Oerter, Brian; Parkhomchuk, Vasily; Parzen, George; Pate, David; Phillips, Larry; Preble, Joseph P; Rank, Jim; Rao, Triveni; Rathke, John; Roser, Thomas; Russo, Thomas; Scaduto, Joseph; Schultheiss, Tom; Sekutowicz, Jacek; Shatunov, Yuri; Sidorin, Anatoly O; Skrinsky, Aleksander Nikolayevich; Smirnov, Alexander V; Smith, Kevin T; Todd, Alan M M; Trbojevic, Dejan; Troubnikov, Grigory; Wang, Gang; Wei, Jie; Williams, Neville; Wu, Kuo-Chen; Yakimenko, Vitaly; Zaltsman, Alex; Zhao, Yongxiang; ain, Animesh K

    2005-01-01

    We report progress on the R&D program for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This electron cooler is designed to cool 100 GeV/nucleon at storage energy using 54 MeV electrons. The electron source will be a superconducting RF photocathode gun. The accelerator will be a superconducting energy recovery linac. The frequency of the accelerator is set at 703.75 MHz. The maximum electron bunch frequency is 9.38 MHz, with bunch charge of 20 nC. The R&D program has the following components: The photoinjector and its photocathode, the superconducting linac cavity, start-to-end beam dynamics with magnetized electrons, electron cooling calculations including benchmarking experiments and development of a large superconducting solenoid. The photoinjector and linac cavity are being incorporated into an energy recovery linac aimed at demonstrating ampere class current at about 20 MeV. A Zeroth Order Design Report is in an advanced draft state, and can be found on the web at http://www.ags...

  6. Lamination cooling system

    Science.gov (United States)

    Rippel, Wally E.; Kobayashi, Daryl M.

    2005-10-11

    An electric motor, transformer or inductor having a lamination cooling system including a stack of laminations, each defining a plurality of apertures at least partially coincident with apertures of adjacent laminations. The apertures define a plurality of cooling-fluid passageways through the lamination stack, and gaps between the adjacent laminations are sealed to prevent a liquid cooling fluid in the passageways from escaping between the laminations. The gaps are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. The apertures of each lamination can be coincident with the same-sized apertures of adjacent laminations to form straight passageways, or they can vary in size, shape and/or position to form non-axial passageways, angled passageways, bidirectional passageways, and manifold sections of passageways that connect a plurality of different passageway sections. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

  7. ITER cooling system

    International Nuclear Information System (INIS)

    Kveton, O.K.

    1990-11-01

    The present specification of the ITER cooling system does not permit its operation with water above 150 C. However, the first wall needs to be heated to higher temperatures during conditioning at 250 C and bake-out at 350 C. In order to use the cooling water for these operations the cooling system would have to operate during conditioning at 37 Bar and during bake-out at 164 Bar. This is undesirable from the safety analysis point of view, and alternative heating methods are to be found. This review suggests that superheated steam or gas heating can be used for both baking and conditioning. The blanket design must consider the use of dual heat transfer media, allowing for change from one to another in both directions. Transfer from water to gas or steam is the most intricate and risky part of the entire heating process. Superheated steam conditioning appears unfavorable. The use of inert gas is recommended, although alternative heating fluids such as organic coolant should be investigated

  8. Reactor container cooling device

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Koji; Kinoshita, Shoichiro

    1995-11-10

    The device of the present invention efficiently lowers pressure and temperature in a reactor container upon occurrence of a severe accident in a BWR-type reactor and can cool the inside of the container for a long period of time. That is, (1) pipelines on the side of an exhaustion tower of a filter portion in a filter bent device of the reactor container are in communication with pipelines on the side of a steam inlet of a static container cooling device by way of horizontal pipelines, (2) a back flow check valve is disposed to horizontal pipelines, (3) a steam discharge valve for a pressure vessel is disposed closer to the reactor container than the joint portion between the pipelines on the side of the steam inlet and the horizontal pipelines. Upon occurrence of a severe accident, when the pressure vessel should be ruptured and steams containing aerosol in the reactor core should be filled in the reactor container, the inlet valve of the static container cooling device is closed. Steams are flown into the filter bent device of the reactor container, where the aerosols can be removed. (I.S.).

  9. Emergency core cooling system

    International Nuclear Information System (INIS)

    Abe, Nobuaki.

    1993-01-01

    A reactor comprises a static emergency reactor core cooling system having an automatic depressurization system and a gravitationally dropping type water injection system and a container cooling system by an isolation condenser. A depressurization pipeline of the automatic depressurization system connected to a reactor pressure vessel branches in the midway. The branched depressurizing pipelines are extended into an upper dry well and a lower dry well, in which depressurization valves are disposed at the top end portions of the pipelines respectively. If loss-of-coolant accidents should occur, the depressurization valve of the automatic depressurization system is actuated by lowering of water level in the pressure vessel. This causes nitrogen gases in the upper and the lower dry wells to transfer together with discharged steams effectively to a suppression pool passing through a bent tube. Accordingly, the gravitationally dropping type water injection system can be actuated faster. Further, subsequent cooling for the reactor vessel can be ensured sufficiently by the isolation condenser. (I.N.)

  10. Proceedings: Cooling tower and advanced cooling systems conference

    International Nuclear Information System (INIS)

    1995-02-01

    This Cooling Tower and Advanced Cooling Systems Conference was held August 30 through September 1, 1994, in St. Petersburg, Florida. The conference was sponsored by the Electric Power Research Institute (EPRI) and hosted by Florida Power Corporation to bring together utility representatives, manufacturers, researchers, and consultants. Nineteen technical papers were presented in four sessions. These sessions were devoted to the following topics: cooling tower upgrades and retrofits, cooling tower performance, cooling tower fouling, and dry and hybrid systems. On the final day, panel discussions addressed current issues in cooling tower operation and maintenance as well as research and technology needs for power plant cooling. More than 100 people attended the conference. This report contains the technical papers presented at the conference. Of the 19 papers, five concern cooling tower upgrades and retrofits, five to cooling tower performance, four discuss cooling tower fouling, and five describe dry and hybrid cooling systems. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  11. On-line monitoring of the crystallization process: relationship between crystal size and electrical impedance spectra

    International Nuclear Information System (INIS)

    Zhao, Yanlin; Yao, Jun; Wang, Mi

    2016-01-01

    On-line monitoring of crystal size in the crystallization process is crucial to many pharmaceutical and fine-chemical industrial applications. In this paper, a novel method is proposed for the on-line monitoring of the cooling crystallization process of L-glutamic acid (LGA) using electrical impedance spectroscopy (EIS). The EIS method can be used to monitor the growth of crystal particles relying on the presence of an electrical double layer on the charged particle surface and the polarization of double layer under the excitation of alternating electrical field. The electrical impedance spectra and crystal size were measured on-line simultaneously by an impedance analyzer and focused beam reflectance measurement (FBRM), respectively. The impedance spectra were analyzed using the equivalent circuit model and the equivalent circuit elements in the model can be obtained by fitting the experimental data. Two equivalent circuit elements, including capacitance ( C 2 ) and resistance ( R 2 ) from the dielectric polarization of the LGA solution and crystal particle/solution interface, are in relation with the crystal size. The mathematical relationship between the crystal size and the equivalent circuit elements can be obtained by a non-linear fitting method. The function can be used to predict the change of crystal size during the crystallization process. (paper)

  12. Cooling lubricants; Kuehlschmierstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Pfeiffer, W. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Breuer, D. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Blome, H. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Deininger, C. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Hahn, J.U. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Kleine, H. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Nies, E. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Pflaumbaum, W. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Stockmann, R. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Willert, G. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Sonnenschein, G. [Maschinenbau- und Metall-Berufsgenossenschaft, Duesseldorf (Germany)

    1996-08-01

    As a rule, the base substances used are certain liquid hydrocarbons from mineral oils as well as from native and synthetic oils. Through the addition of further substances the cooling lubricant takes on the particular qualities required for the use in question. Employees working with cooling lubricants are exposed to various hazards. The assessment of the concentrations at the work station is carried out on the basis of existing technical rules for contact with hazardous substances. However, the application/implementation of compulsory investigation and supervision in accordance with these rules is made difficult by the fact that cooling lubricants are, as a rule, made up of complicated compound mixtures. In addition to protecting employees from exposure to mists and vapours from the cooling lubricants, protection for the skin is also of particular importance. Cooling lubricants should not, if at all possible, be brought into contact with the skin. Cleansing the skin and skin care is just as important as changing working clothes regularly, and hygiene and cleanliness at the workplace. Unavoidable emissions are to be immediately collected at the point where they arise or are released and safely disposed of. This means taking into account all sources of emissions. The programme presented in this report therefore gives a very detailed account of the individual protective measures and provides recommendations for the design of technical protection facilities. (orig./MG) [Deutsch] Als Basisstoffe dienen in der Regel bestimmte fluessige Kohlenwasserstoffverbindungen aus Mineraloelen sowie aus nativen oder synthetischen Oelen. Durch die Zugabe von weiteren Stoffen erlangt der Kuehlschmierstoff seine fuer den jeweiligen Anwendungsabfall geforderten Eigenschaften. Beschaeftigte, die mit Kuehlschmierstoffen umgehen, sind unterschiedliche Gefahren ausgesetzt. Die Beurteilung der Kuehlschmierstoffkonzentrationen in der Luft am Arbeitsplatz erfolgt auf der Grundlage bestehender

  13. Magnetophotonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, M [Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Fujikawa, R [Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Baryshev, A [Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Khanikaev, A [Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Lim, P B [CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan (Japan); Uchida, H [Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Aktsipetrov, O [Lomonosov Moscow State University, Leninskie Gory, Moscow, 119992 (Russian Federation); Fedyanin, A [Lomonosov Moscow State University, Leninskie Gory, Moscow, 119992 (Russian Federation); Murzina, T [Lomonosov Moscow State University, Leninskie Gory, Moscow, 119992 (Russian Federation); Granovsky, A [Lomonosov Moscow State University, Leninskie Gory, Moscow, 119992 (Russian Federation)

    2006-04-21

    When the constitutive materials of photonic crystals (PCs) are magnetic, or even only a defect introduced in PCs is magnetic, the resultant PCs exhibit very unique optical and magneto-optical properties. The strong photon confinement in the vicinity of magnetic defects results in large enhancement in linear and nonlinear magneto-optical responses of the media. Novel functions, such as band Faraday effect, magnetic super-prism effect and non-reciprocal or magnetically controllable photonic band structure, are predicted to occur theoretically. All the unique features of the media arise from the existence of magnetization in media, and hence they are called magnetophotonic crystals providing the spin-dependent nature in PCs. (topical review)

  14. Magnetophotonic crystals

    International Nuclear Information System (INIS)

    Inoue, M; Fujikawa, R; Baryshev, A; Khanikaev, A; Lim, P B; Uchida, H; Aktsipetrov, O; Fedyanin, A; Murzina, T; Granovsky, A

    2006-01-01

    When the constitutive materials of photonic crystals (PCs) are magnetic, or even only a defect introduced in PCs is magnetic, the resultant PCs exhibit very unique optical and magneto-optical properties. The strong photon confinement in the vicinity of magnetic defects results in large enhancement in linear and nonlinear magneto-optical responses of the media. Novel functions, such as band Faraday effect, magnetic super-prism effect and non-reciprocal or magnetically controllable photonic band structure, are predicted to occur theoretically. All the unique features of the media arise from the existence of magnetization in media, and hence they are called magnetophotonic crystals providing the spin-dependent nature in PCs. (topical review)

  15. Formation of co-crystals: Kinetic and thermodynamic aspects

    Science.gov (United States)

    Gagnière, E.; Mangin, D.; Puel, F.; Rivoire, A.; Monnier, O.; Garcia, E.; Klein, J. P.

    2009-04-01

    Co-crystallisation is a recent method of great interest for the pharmaceutical industry, since pharmaceutical co-crystals represent useful materials for drug products. In this study, an active pharmaceutical ingredient (carbamazepine (CBZ)) co-crystallized with a vitamin (nicotinamide (NCT)) was chosen as a model substance. This work was focused on the construction of a phase diagram for the system CBZ/NCT, split in six domains for kinetic reasons (the different solid phases which might appear during the crystallisation) and in four domains according to thermodynamic aspects (the stable final phase obtained). Although co-crystals are not ionic compounds, the supersaturation of co-crystals can be evaluated by considering the solubility product. Batch crystallisation operations were carried out in a stirred vessel equipped with an in situ video probe. This latter device was a powerful analysis tool to monitor the CBZ/NCT co-crystals and single CBZ crystals since these two crystalline phases grown in ethanol exhibited needle and platelet habits. As concerns kinetics, the different solid phases which might appear during the experiments were observed and competed against each others. In accordance with thermodynamics, the stable solid form was obtained at the end of the operation. Finally some preliminary results indicate that the nucleation of co-crystals may be favoured by the presence of CBZ crystals. Epitaxial relationships between CBZ/NCT co-crystals and CBZ crystals were suspected.

  16. Characterization of ion Coulomb crystals in a linear Paul trap

    International Nuclear Information System (INIS)

    Okada, K.; Takayanagi, T.; Wada, M.; Ohtani, S.; Schuessler, H. A.

    2010-01-01

    We describe a simple and fast method for simulating observed images of ion Coulomb crystals. In doing so, cold elastic collisions between Coulomb crystals and virtual very light atoms are implemented in a molecular dynamics (MD) simulation code. Such an approach reproduces the observed images of Coulomb crystals by obtaining density plots of the statistics of existence of each ion. The simple method has the advantage of short computing time in comparison with previous calculation methods. As a demonstration of the simulation, the formation of a planar Coulomb crystal with a small number of ions has been investigated in detail in a linear ion trap both experimentally and by simulation. However, also large Coulomb crystals including up to 1400 ions have been photographed and simulated to extract the secular temperature and the number of ions. For medium-sized crystals, a comparison between experiments and calculations has been performed. Moreover, an MD simulation of the sympathetic cooling of small molecular ions was performed in order to test the possibility of extracting the temperature and the number of refrigerated molecular ions from crystal images of laser-cooled ions. Such information is basic to studying ultracold ion-molecule reactions using ion Coulomb crystals including sympathetically cooled molecular ions.

  17. Cooling of molecular ion beams

    International Nuclear Information System (INIS)

    Wolf, A.; Krohn, S.; Kreckel, H.; Lammich, L.; Lange, M.; Strasser, D.; Grieser, M.; Schwalm, D.; Zajfman, D.

    2004-01-01

    An overview of the use of stored ion beams and phase space cooling (electron cooling) is given for the field of molecular physics. Emphasis is given to interactions between molecular ions and electrons studied in the electron cooler: dissociative recombination and, for internally excited molecular ions, electron-induced ro-vibrational cooling. Diagnostic methods for the transverse ion beam properties and for the internal excitation of the molecular ions are discussed, and results for phase space cooling and internal (vibrational) cooling are presented for hydrogen molecular ions

  18. Improve crossflow cooling tower operation

    International Nuclear Information System (INIS)

    Burger, R.

    1989-01-01

    This paper reports how various crossflow cooling tower elements can be upgraded. A typical retrofit example is presented. In the past decade, cooling tower technology has progressed. If a cooling tower is over ten years old, chances are the heat transfer media and mechanical equipment were designed over 30 to 40 years ago. When a chemical plant expansion is projected or a facility desires to upgrade its equipment for greater output and energy efficiency, the cooling tower is usually neglected until someone discovers that the limiting factor of production is the quality of cold water returning from the cooling tower

  19. Removal of phenol from synthetic wastewater using carbon-mineral composite: Batch mechanisms and composition study

    Science.gov (United States)

    Kamaruddin, Mohamad Anuar; Alrozi, Rasyidah; Aziz, Hamidi Abdul; Han, Tan Yong; Yusoff, Mohd Suffian

    2017-09-01

    This study investigates the treatability of composite adsorbent made from waste materials and minerals which is widely available in Malaysia. The composite adsorbent was prepared based on wet attrition method which focuses on the determination of optimum dosage of each of raw materials amount by conventional design of experiment work. Zeolite, activated carbon, rice husk and limestone were ground to obtained particle size of 150 µm. 45.94% zeolite, 15.31% limestone, 4.38% activated carbon, 4.38% rice husk carbon and 30% of ordinary Portland cement (OPC). The mixture was mixed together under pre-determined mixing time. About 60% (by weight) of water was added and the mixture paste was allowed to harden for 24 hours and then submersed in water for three days for curing. Batch experimental study was performed on synthetic dissolving a known amount of solid crystal phenol with distilled water into the volumetric flasks. From the batch experimental study, it was revealed that the optimum shaking speed for removal of phenol was 200 rpm. The removal efficiency was 65%. The optimum shaking time for removing phenol was 60 minutes; the percentage achieved was 55%. The removal efficiency increased with the increased of the amount of composite adsorbent. The removal efficiency for optimum adsorbent dosage achieved 86%. Furthermore, the influence of pH solution was studied. The optimum pH for removing phenol was pH 6, with the removal percentage of 95%. The results implies that carbon-mineral based composite adsorbent is promising replacement for commercial adsorbent that provides alternative source for industrial adsorption application in various types of effluent treatment system.

  20. Cooling device in thermonuclear device

    International Nuclear Information System (INIS)

    Honda, Tsutomu.

    1988-01-01

    Purpose: To prevent loss of cooling effect over the entire torus structure directly after accidental toubles in a cooling device of a thermonuclear device. Constitution: Coolant recycling means of a cooling device comprises two systems, which are alternately connected with in-flow pipeways and exit pipeways of adjacent modules. The modules are cooled by way of the in-flow pipeways and the exist pipeways connected to the respective modules by means of the coolant recycling means corresponding to the respective modules. So long as one of the coolant recycling means is kept operative, since every one other modules of the torus structure is still kept cooled, the heat generated from the module put therebetween, for which the coolant recycling is interrupted, is removed by means of heat conduction or radiation from the module for which the cooling is kept continued. No back-up emergency cooling system is required and it can provide high economic reliability. (Kamimura, M.)

  1. Continuous Heterogeneous Photocatalysis in Serial Micro-Batch Reactors.

    Science.gov (United States)

    Pieber, Bartholomäus; Shalom, Menny; Antonietti, Markus; Seeberger, Peter H; Gilmore, Kerry

    2018-01-29

    Solid reagents, leaching catalysts, and heterogeneous photocatalysts are commonly employed in batch processes but are ill-suited for continuous-flow chemistry. Heterogeneous catalysts for thermal reactions are typically used in packed-bed reactors, which cannot be penetrated by light and thus are not suitable for photocatalytic reactions involving solids. We demonstrate that serial micro-batch reactors (SMBRs) allow for the continuous utilization of solid materials together with liquids and gases in flow. This technology was utilized to develop selective and efficient fluorination reactions using a modified graphitic carbon nitride heterogeneous catalyst instead of costly homogeneous metal polypyridyl complexes. The merger of this inexpensive, recyclable catalyst and the SMBR approach enables sustainable and scalable photocatalysis. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Cooling water systems design using process integration

    CSIR Research Space (South Africa)

    Gololo, KV

    2010-09-01

    Full Text Available Cooling water systems are generally designed with a set of heat exchangers arranged in parallel. This arrangement results in higher cooling water flowrate and low cooling water return temperature thus reducing cooling tower efficiency. Previous...

  3. A parallel ILP algorithm that incorporates incremental batch learning

    OpenAIRE

    Nuno Fonseca; Rui Camacho; Fernado Silva

    2003-01-01

    In this paper we tackle the problems of eciency and scala-bility faced by Inductive Logic Programming (ILP) systems. We proposethe use of parallelism to improve eciency and the use of an incrementalbatch learning to address the scalability problem. We describe a novelparallel algorithm that incorporates into ILP the method of incremen-tal batch learning. The theoretical complexity of the algorithm indicatesthat a linear speedup can be achieved.

  4. Automated handling for SAF batch furnace and chemistry analysis operations

    International Nuclear Information System (INIS)

    Bowen, W.W.; Sherrell, D.L.; Wiemers, M.J.

    1981-01-01

    The Secure Automated Fabrication Program is developing a remotely operated breeder reactor fuel pin fabrication line. The equipment will be installed in the Fuels and Materials Examination Facility being constructed at Hanford, Washington. Production is scheduled to start in mid-1986. The application of small pneumatically operated industrial robots for loading and unloading product into and out of batch furnaces and for distribution and handling of chemistry samples is described

  5. Integration of virtualized worker nodes in standard batch systems

    International Nuclear Information System (INIS)

    Buege, Volker; Kunze, Marcel; Oberst, Oliver; Quast, Guenter; Scheurer, Armin; Hessling, Hermann; Kemp, Yves; Synge, Owen

    2010-01-01

    Current experiments in HEP only use a limited number of operating system flavours. Their software might only be validated on one single OS platform. Resource providers might have other operating systems of choice for the installation of the batch infrastructure. This is especially the case if a cluster is shared with other communities, or communities that have stricter security requirements. One solution would be to statically divide the cluster into separated sub-clusters. In such a scenario, no opportunistic distribution of the load can be achieved, resulting in a poor overall utilization efficiency. Another approach is to make the batch system aware of virtualization, and to provide each community with its favoured operating system in a virtual machine. Here, the scheduler has full flexibility, resulting in a better overall efficiency of the resources. In our contribution, we present a lightweight concept for the integration of virtual worker nodes into standard batch systems. The virtual machines are started on the worker nodes just before jobs are executed there. No meta-scheduling is introduced. We demonstrate two prototype implementations, one based on the Sun Grid Engine (SGE), the other using Maui/Torque as a batch system. Both solutions support local job as well as Grid job submission. The hypervisors currently used are Xen and KVM, a port to another system is easily envisageable. To better handle different virtual machines on the physical host, the management solution VmImageManager is developed. We will present first experience from running the two prototype implementations. In a last part, we will show the potential future use of this lightweight concept when integrated into high-level (i.e. Grid) work-flows.

  6. Hydrothermal liquefaction of biomass: Developments from batch to continuous process

    OpenAIRE

    Elliott, DC; Biller, P; Ross, AB; Schmidt, AJ; Jones, SB

    2015-01-01

    This review describes the recent results in hydrothermal liquefaction (HTL) of biomass in continuous-flow processing systems. Although much has been published about batch reactor tests of biomass HTL, there is only limited information yet available on continuous-flow tests, which can provide a more reasonable basis for process design and scale-up for commercialization. High-moisture biomass feedstocks are the most likely to be used in HTL. These materials are described and results of their pr...

  7. Batch production of microchannel plate photo-multipliers

    Energy Technology Data Exchange (ETDEWEB)

    Frisch, Henry J.; Wetstein, Matthew; Elagin, Andrey

    2018-03-06

    In-situ methods for the batch fabrication of flat-panel micro-channel plate (MCP) photomultiplier tube (PMT) detectors (MCP-PMTs), without transporting either the window or the detector assembly inside a vacuum vessel are provided. The method allows for the synthesis of a reflection-mode photocathode on the entrance to the pores of a first MCP or the synthesis of a transmission-mode photocathode on the vacuum side of a photodetector entrance window.

  8. BATCH PROCESS INTEGRATION OF APPLYING TECHNOLOGY OF ACID CARMINIC PINCH

    OpenAIRE

    Erazo E., Raymundo; Cárdenas R., Jorge L.; Woolcott H., Juan C.

    2014-01-01

    This work was developed in order to implement the PINCH technology integration batch process for carminic acid. The method used consisted of the application of the concepts of bottle necks total process (OPB) together with part-time models (TAM) and time fractionated! (TSM). The drying operation is identified as the rate limiting step of the process identifying it as an OPB plant capacity. The extraction yield was 95% w / p carminic acid with an energy savings of approximately 60% of the...

  9. Copper solubility in DWPF, Batch 1 waste glass: Update report

    International Nuclear Information System (INIS)

    Schumacker, R.F.

    1992-01-01

    The ''Late Washing'' Step in the processing of precipitate will require the use of additional copper formate in the Precipitate Reactor to catalyze the hydrolysis reaction. The increased copper concentration in the melter feed increases the potential for metal precipitation during the vitrification of the melter feed. This report describes recent results with a conservative glass selected from the DWPF acceptable region in the Batch 1 Variability Study

  10. Mixing volume determination in batch transfers through sonic detectors

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Renan Martins [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas]. E-mail: renan@cenpes.petrobras.com.br; Rachid, Felipe Bastos de Freitas [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Dept. de Engenharia Mecanica]. E-mail: rachid@mec.uff.br; Araujo, Jose Henrique Carneiro de [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Dept. de Ciencia da Computacao]. E-mail: jhca@dcc.ic.uff.br

    2000-07-01

    An experimental methodology to evaluate mixing volumes in batch transfers by means of sonic detectors has been reported in this paper. Mixing volumes have then been computed in a transfer of diesel/gasoline carried out through a pipeline operated by Petrobras for different interface points. It has been shown that an adequate choice of the interface points is crucial for keeping the mixing volume uncertainty within acceptable limits. (author)

  11. On the track of fish batches in three distribution networks

    DEFF Research Database (Denmark)

    Randrup, Maria; Wu, Haiping; Jørgensen, Bo M.

    2012-01-01

    Three fish products sampled in retail shops were traced back to their origin and fish from the same batch were tracked forward towards the retailer, thereby simulating a recall situation. The resulting distribution networks were very complex, but to the extent that companies were willing to provi...... of discovering a fault as early as possible in order to minimise the costs of a recall. The localisation of distributed products during a recall operation can be facilitated by a well-constructed traceability system....

  12. Yields from pyrolysis of refinery residue using a batch process

    Directory of Open Access Journals (Sweden)

    S. Prithiraj

    2017-12-01

    Full Text Available Batch pyrolysis was a valuable process of assessing the potential of recovering and characterising products from hazardous waste materials. This research explored the pyrolysis of hydrocarbon-rich refinery residue, from crude oil processes, in a 1200 L electrically-heated batch retort. Furthermore, the off-gases produced were easily processed in compliance with existing regulatory emission standards. The methodology offers a novel, cost-effective and environmentally compliant method of assessing recovery potential of valuable products. The pyrolysis experiments yielded significant oil (70% with high calorific value (40 MJ/kg, char (14% with carbon content over 80% and non-condensable gas (6% with significant calorific value (240 kJ/mol. The final gas stream was subjected to an oxidative clean-up process with continuous on-line monitoring demonstrating compliance with South African emission standards. The gas treatment was overall economically optimal as only a smaller portion of the original residue was subjected to emission-controlling steps. Keywords: Batch pyrolysis, Volatiles, Oil yields, Char, Emissions, Oil recovery

  13. Treatment of slaughterhouse wastewater in anaerobic sequencing batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Masse, D. I.; Masse, L. [Agriculture and Agri-Food Canada, Lennoxville, PQ (Canada)

    2000-09-01

    Slaughterhouse waste water was treated in anaerobic sequencing batch reactors operated at 30 degrees C. Two of the batch reactors were seeded with anaerobic granular sludge from a milk processing plant reactor; two others received anaerobic non-granulated sludge from a municipal waste water treatment plant. Influent total chemical oxygen demand was reduced by 90 to 96 per cent at organic loading rates ranging from 2.07 kg to 4.93 kg per cubic meter. Reactors seeded with municipal sludge performed slightly better than those containing sludge from the milk processing plant. The difference was particularly noticeable during start-up, but the differences between the two sludges were reduced with time. The reactors produced a biogas containing 75 per cent methane. About 90.5 per cent of the chemical oxygen demand removed was methanized; volatile suspended solids accumulation was determined at 0.068 kg per kg of chemical oxygen demand removed. The high degree of methanization suggests that most of the soluble and suspended organic material in slaughterhouse waste water was degraded during the treatment in the anaerobic sequencing batch reactors. 30 refs., 1 tab., 6 figs.

  14. Modeling of oxide reduction in repeated-batch pyroprocessing

    International Nuclear Information System (INIS)

    Lee, Hyo Jik; Im, Hun Suk; Park, Geun Il

    2016-01-01

    Highlights: • Pyroprocessing is a complicated batch-type operation. • Discrete event system modeling was used to create an integrated operation model. • Simulation showed that could be accomplished. • The dynamic material flow helps us understand the process operation. • We showed that complex material flow could be simulated in terms of mass balance. - Abstract: Pyroprocessing is a complicated batch-type operation, involving a highly complex material flow logic with a huge number of unit processes. Discrete event system modeling was used to create an integrated operation model for which simulation showed that dynamic material flow could be accomplished to provide considerable insight into the process operation. In the model simulation, the amount of material transported upstream and downstream in the process satisfies a mass balance equation while considering the hold-up incurred by every batch operation. This study also simulated, in detail, an oxide reduction group process embracing electrolytic reduction, cathode processing, and salt purification. Based on the default operation scenario, it showed that complex material flows could be precisely simulated in terms of the mass balance. Specifically, the amount of high-heat elements remaining in the molten salt bath is analyzed to evaluate the operation scenario.

  15. Automation of gamwave batch irradiator in Natal, South Africa

    International Nuclear Information System (INIS)

    Basson, J.K.; Basson, R.A.; Botha, J.

    1995-01-01

    High Energy Processing (HEPRO) has operated a Nordion JS 8200 Batch Irradiator for several years at Gamwave in Durban, South Africa. Product is loaded into aluminium totes and manually transported on trolleys into the irradiation chamber. Unirradiated totes are then exchanged with all the irradiated totes in the product pass mechanism, after which the source is raised and the batch irradiation process is started. Due to the inefficient Cobalt utilization experienced in this type of plant, it was decided to upgrade and automate the facility. This was done in what we believe is a simple and unique solution to the problem facing the future of such batch facilities. The design concept used for the Gamwave irradiator was based on irradiating product in carbons or bags of variable dimensions as per customer requirements. The intention was to convey product automatically in and out of the irradiation chamber eliminating the product change over downtime and thereby increasing source up utilization. Minor extensions were carried out to the Bioshield with the existing irradiator in full operation awaiting installation of the new source pass mechanism and conveyor system. Total plant shutdown for conversion to automation, including source reload and safety checks, was estimated to take ten days to fit the equipment. (author)

  16. Fault Diagnosis of Batch Reactor Using Machine Learning Methods

    Directory of Open Access Journals (Sweden)

    Sujatha Subramanian

    2014-01-01

    Full Text Available Fault diagnosis of a batch reactor gives the early detection of fault and minimizes the risk of thermal runaway. It provides superior performance and helps to improve safety and consistency. It has become more vital in this technical era. In this paper, support vector machine (SVM is used to estimate the heat release (Qr of the batch reactor both normal and faulty conditions. The signature of the residual, which is obtained from the difference between nominal and estimated faulty Qr values, characterizes the different natures of faults occurring in the batch reactor. Appropriate statistical and geometric features are extracted from the residual signature and the total numbers of features are reduced using SVM attribute selection filter and principle component analysis (PCA techniques. artificial neural network (ANN classifiers like multilayer perceptron (MLP, radial basis function (RBF, and Bayes net are used to classify the different types of faults from the reduced features. It is observed from the result of the comparative study that the proposed method for fault diagnosis with limited number of features extracted from only one estimated parameter (Qr shows that it is more efficient and fast for diagnosing the typical faults.

  17. Impact of Sterile Compounding Batch Frequency on Pharmaceutical Waste.

    Science.gov (United States)

    Abbasi, Ghalib; Gay, Evan

    2017-01-01

    Purpose: To measure the impact of increasing sterile compounding batch frequency on pharmaceutical waste as it relates to cost and quantity. Methods: Pharmaceutical IV waste at a tertiary care hospital was observed and recorded for 7 days. The batching frequency of compounded sterile products (CSPs) was then increased from twice daily to 4 times daily. After a washout period, pharmaceutical IV waste was then recorded for another 7 days. The quantity of units wasted and the cost were compared between both phases to determine the impact that batching frequency has on IV waste, specifically among high- and low-cost drugs. Results: Patient days increased from 2,459 during phase 1 to 2,617 during phase 2. The total number of CSPs wasted decreased from 3.6 to 2.7 doses per 100 patient days. Overall cost was reduced from $4,585.36 in phase 1 to $4,453.88 in phase 2. The value of wasted high-cost drugs per 100 patient days increased from $146 in phase 1 to $149 in phase 2 ( p > .05). The value of wasted low cost drugs per 100 patient days decreased from $41 in phase 1 to $21 in phase 2 ( p waste quantity and cost. The highest impact of the intervention was observed among low-cost CSPs.

  18. Analyzing data flows of WLCG jobs at batch job level

    Science.gov (United States)

    Kuehn, Eileen; Fischer, Max; Giffels, Manuel; Jung, Christopher; Petzold, Andreas

    2015-05-01

    With the introduction of federated data access to the workflows of WLCG, it is becoming increasingly important for data centers to understand specific data flows regarding storage element accesses, firewall configurations, as well as the scheduling of batch jobs themselves. As existing batch system monitoring and related system monitoring tools do not support measurements at batch job level, a new tool has been developed and put into operation at the GridKa Tier 1 center for monitoring continuous data streams and characteristics of WLCG jobs and pilots. Long term measurements and data collection are in progress. These measurements already have been proven to be useful analyzing misbehaviors and various issues. Therefore we aim for an automated, realtime approach for anomaly detection. As a requirement, prototypes for standard workflows have to be examined. Based on measurements of several months, different features of HEP jobs are evaluated regarding their effectiveness for data mining approaches to identify these common workflows. The paper will introduce the actual measurement approach and statistics as well as the general concept and first results classifying different HEP job workflows derived from the measurements at GridKa.

  19. Three-batch reloading scheme for IRIS reactor extended cycles

    International Nuclear Information System (INIS)

    Jecmenica, R.; Pevec, D.; Grgic, D.

    2004-01-01

    To fully exploit the IRIS reactor optimized maintenance, and at the same time improve fuel utilization, a core design enabling a 4-year operating cycle together with a three-batch reloading scheme is desirable. However, this requires not only the increased allowed burnup but also use of fuel with uranium oxide enriched beyond 5%. This paper considers three-batch reloading scheme for a 4-year operating cycle with the assumptions of increased discharge burnup and fuel enrichment beyond 5%. Calculational model of IRIS reactor core has been developed based on FER FA2D code for group constants generation and NRC's PARCS nodal code for global core analysis. Studies have been performed resulting in a preliminary design of a three-batch core configuration for the first cycle. It must be emphasized that this study is outside the current IRIS licensing efforts, which rely on the present fuel technology (enrichment below 5%), but it is of long-term interest for potential future IRIS design upgrades. (author)

  20. Effect of γ-radiation on crystallization of polycaprolactone

    International Nuclear Information System (INIS)

    Zhu Guangming; Xu, Qianyong; Qin Ruifeng; Yan Hongxia; Liang Guozheng

    2005-01-01

    The crystallization behavior of radiation cross-linked poly(ε-caprolactone) (PCL) was studied by DSC at different cooling rates. The crystallization process was analyzed by the Ozawa equation and the Mo-Zhishen method that is developed from combining the Avrami equation and the Ozawa equation. It was concluded that the crystallization of radiation crosslinked PCL is governed by heterogeneous nucleation and single-dimension growth; the crystal fraction and rates of crystallization are related to the radiation dose and degree of cross-linking; the relationship between relative crystallinity and time follows the Ozawa equation: The higher the degree of crosslinking, the less the crystal velocity constant. The activation energy of crystallization for irradiated PCL is between 65 and 54kJ/mol

  1. Some performance measures for vacation models with a batch Markovian arrival process

    Directory of Open Access Journals (Sweden)

    Sadrac K. Matendo

    1994-01-01

    Full Text Available We consider a single server infinite capacity queueing system, where the arrival process is a batch Markovian arrival process (BMAP. Particular BMAPs are the batch Poisson arrival process, the Markovian arrival process (MAP, many batch arrival processes with correlated interarrival times and batch sizes, and superpositions of these processes. We note that the MAP includes phase-type (PH renewal processes and non-renewal processes such as the Markov modulated Poisson process (MMPP.

  2. From batch to continuous extractive distillation using thermodynamic insight: class 1.0-2 case B

    OpenAIRE

    Shen, Weifeng; Benyounes, Hassiba; Gerbaud, Vincent

    2011-01-01

    A systematic feasibility analysis is presented for the separation azeotropic mixtures by batch and continuous extractive distillation. Based on batch feasibility knowledge, batch and continuous separation feasibility is studied under reflux ratio and entrainer flow-rate for the ternary system chloroform-vinyl acetate-butyl acetate, which belongs to the class 1.0-2 separating maximum boiling temperature azeotropes using a heavy entrainer. How information on feasibility of batch mode could be e...

  3. Superconducting magnet cooling system

    Science.gov (United States)

    Vander Arend, Peter C.; Fowler, William B.

    1977-01-01

    A device is provided for cooling a conductor to the superconducting state. The conductor is positioned within an inner conduit through which is flowing a supercooled liquid coolant in physical contact with the conductor. The inner conduit is positioned within an outer conduit so that an annular open space is formed therebetween. Through the annular space is flowing coolant in the boiling liquid state. Heat generated by the conductor is transferred by convection within the supercooled liquid coolant to the inner wall of the inner conduit and then is removed by the boiling liquid coolant, making the heat removal from the conductor relatively independent of conductor length.

  4. Illumination and radiative cooling

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Shanhui; Raman, Aaswath Pattabhi; Zhu, Linxiao; Rephaeli, Eden

    2018-03-20

    Aspects of the present disclosure are directed to providing and/or controlling electromagnetic radiation. As may be implemented in accordance with one or more embodiments, an apparatus includes a first structure that contains an object, and a second structure that is transparent at solar wavelengths and emissive in the atmospheric electromagnetic radiation transparency window. The second structure operates with the first structure to pass light into the first structure for illuminating the object, and to radiatively cool the object while preserving the object's color.

  5. Rotary engine cooling system

    Science.gov (United States)

    Jones, Charles (Inventor); Gigon, Richard M. (Inventor); Blum, Edward J. (Inventor)

    1985-01-01

    A rotary engine has a substantially trochoidal-shaped housing cavity in which a rotor planetates. A cooling system for the engine directs coolant along a single series path consisting of series connected groups of passages. Coolant enters near the intake port, passes downwardly and axially through the cooler regions of the engine, then passes upwardly and axially through the hotter regions. By first flowing through the coolest regions, coolant pressure is reduced, thus reducing the saturation temperature of the coolant and thereby enhancing the nucleate boiling heat transfer mechanism which predominates in the high heat flux region of the engine during high power level operation.

  6. Gas cooled HTR

    International Nuclear Information System (INIS)

    Schweiger, F.

    1985-01-01

    In the He-cooled, graphite-moderated HTR with spherical fuel elements, the steam generator is fixed outside the pressure vessel. The heat exchangers are above the reactor level. The hot gases stream from the reactor bottom over the heat exchanger, through an annular space around the heat exchanger and through feed lines in the side reflector of the reactor back to its top part. This way, in case of shutdown there is a supplementary natural draught that helps the inner natural circulation (chimney draught effect). (orig./PW)

  7. Homogeneous crystal nucleation in polymers.

    Science.gov (United States)

    Schick, C; Androsch, R; Schmelzer, J W P

    2017-11-15

    The pathway of crystal nucleation significantly influences the structure and properties of semi-crystalline polymers. Crystal nucleation is normally heterogeneous at low supercooling, and homogeneous at high supercooling, of the polymer melt. Homogeneous nucleation in bulk polymers has been, so far, hardly accessible experimentally, and was even doubted to occur at all. This topical review summarizes experimental findings on homogeneous crystal nucleation in polymers. Recently developed fast scanning calorimetry, with cooling and heating rates up to 10 6 K s -1 , allows for detailed investigations of nucleation near and even below the glass transition temperature, including analysis of nuclei stability. As for other materials, the maximum homogeneous nucleation rate for polymers is located close to the glass transition temperature. In the experiments discussed here, it is shown that polymer nucleation is homogeneous at such temperatures. Homogeneous nucleation in polymers is discussed in the framework of the classical nucleation theory. The majority of our observations are consistent with the theory. The discrepancies may guide further research, particularly experiments to progress theoretical development. Progress in the understanding of homogeneous nucleation is much needed, since most of the modelling approaches dealing with polymer crystallization exclusively consider homogeneous nucleation. This is also the basis for advancing theoretical approaches to the much more complex phenomena governing heterogeneous nucleation.

  8. Substantial increase in acceleration potential of pyroelectric crystals

    International Nuclear Information System (INIS)

    Tornow, W.; Lynam, S. M.; Shafroth, S. M.

    2010-01-01

    We report on a substantial increase in the acceleration potential achieved with a LiTaO 3 pyroelectric crystal. With a single 2.5 cm diameter and 2.5 cm long z-cut crystal without electric field-enhancing nanotip we produced positive ion beams with maximal energies between 300 and 310 keV during the cooling phase when the crystal was exposed to 5 mTorr of deuterium gas. These values are about a factor of 2 larger than previously obtained with single pyroelectric crystals.

  9. Comparative study of trapping parameters of LiF(TLD-100) from different production batches

    Energy Technology Data Exchange (ETDEWEB)

    Bos, A.J.J.; Piters, T.M.; Vries, W. de; Hoogenboom, J.E. (Delft Univ. of Technology (Netherlands). Interfaculty Reactor Institute)

    1990-01-01

    Computerised glow curve analysis has been used to determine the trapping parameters of the main peaks of the thermoluminescent (TL) material LiF(TLD-100). The TL material (solid state chips) originated from six different production batches with at least 19 chips per batch. The maxima of glow peaks 2 to 5 are found at the same temperature within very small limits. The activation energy and frequency factor of the main glow peak (peak 5) of TLD-100 originating from two batches differ significantly from those of the other four investigated batches. Nevertheless, the sensitivity of glow peak 5 is more or less the same for all batches. The trapping parameters of glow peaks 2 to 4 of TLD-100 vary little from batch to batch. The measured half-life of peak 2 differed strongly from batch to batch. For all investigated peaks no correlation has been found between glow peak sensitivity and trapping parameters. The results of this study suggest that both defect concentration and nature of the trapping centres vary from batch to batch. It would appear that as a consequence of selection by the manufacturer, the differences between the batches in terms of total light output are small. (author).

  10. An order batching algorithm for wave picking in a parallel-aisle warehouse

    NARCIS (Netherlands)

    Gademann, A.J.R.M.; Berg, van den J.P.; Hoff, van der H.H.

    2001-01-01

    In this paper we address the problem of batching orders in a parallel-aisle warehouse, with the objective to minimize the maximum lead time of any of the batches. This is a typical objective for a wave picking operation. Many heuristics have been suggested to solve order batching problems. We

  11. Look-ahead strategies for controlling batch operations in industry - overview, comparison and exploration

    NARCIS (Netherlands)

    Zee, D.J. van der; Harten, A. van; Schuur, P.C.; Joines, JA; Barton, RR; Kang, K; Fishwick, PA

    2000-01-01

    Batching jobs in a manufacturing system is a very common policy in most industries. The main reasons for batching are avoidance of set ups and/or facilitation of material handling. Good examples of batch-wise production systems are ovens found in aircraft industry and in semiconductor manufacturing.

  12. Look-ahead strategies for controlling batch operations in industry - An overview

    NARCIS (Netherlands)

    Zee, Durk-Jouke van der; Chick, SE; Sanchez, PJ; Ferrin, D; Morrice, DJ

    2003-01-01

    Batching jobs in a manufacturing system is a very common policy in most industries. Main reasons for batching are avoidance of set ups and/or facilitation of material handling. Examples of batch-wise production systems are ovens found in aircraft industry and in semiconductor manufacturing. Starting

  13. 40 CFR 63.487 - Batch front-end process vents-reference control technology.

    Science.gov (United States)

    2010-07-01

    ... § 63.487 Batch front-end process vents—reference control technology. (a) Batch front-end process vents... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Batch front-end process vents-reference control technology. 63.487 Section 63.487 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...

  14. Monitoring a PVC batch process with multivariate statistical process control charts

    NARCIS (Netherlands)

    Tates, A. A.; Louwerse, D. J.; Smilde, A. K.; Koot, G. L. M.; Berndt, H.

    1999-01-01

    Multivariate statistical process control charts (MSPC charts) are developed for the industrial batch production process of poly(vinyl chloride) (PVC). With these MSPC charts different types of abnormal batch behavior were detected on-line. With batch contribution plots, the probable causes of these

  15. Look-ahead strategies for controlling batch operations in industry : basic insights in rule construction

    NARCIS (Netherlands)

    van der Zee, D.J.; Sullivan, W.A.; Ahmad, M.M.; Fichtner, D.; Sauer, W.; Weigert, G.; Zerna, T.

    2002-01-01

    Batching jobs in a manufacturing system is a very common policy in most industries. Main reasons for batching are avoidance of set ups and/or facilitation of material handling. Examples of batch-wise production systems are ovens found in aircraft industry and in semiconductor manufacturing. Starting

  16. 40 CFR 63.1322 - Batch process vents-reference control technology.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Batch process vents-reference control technology. 63.1322 Section 63.1322 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Batch process vents—reference control technology. (a) Batch process vents. The owner or operator of a...

  17. Onderzoeksrapportage duurzaam koelen : EOS Renewable Cooling

    NARCIS (Netherlands)

    Broeze, J.; Sluis, van der S.; Wissink, E.

    2010-01-01

    For reducing energy use for cooling, alternative methods (that do not rely on electricity) are needed. Renewable cooling is based on naturally available resources such as evaporative cooling, free cooling, phase change materials, ground subcooling, solar cooling, wind cooling, night radiation &

  18. Cooling power technology at a turning point

    International Nuclear Information System (INIS)

    Hese, L.H.

    1978-01-01

    From freshwater cooling and efflux condenser cooling to wet recirculation cooling, hybrid and dry cooling towers, cooling tower technology has seen a development characterized by higher cooling tower costs and reduced power plant efficiency. Therefore, all research work done at the moment concentrates on making up for the economic losses connected with improved environmental protection. (orig.) [de

  19. Ethanol production from Sorghum bicolor using both separate and simultaneous saccharification and fermentation in batch and fed batch systems

    DEFF Research Database (Denmark)

    Mehmood, Sajid; Gulfraz, M.; Rana, N. F.

    2009-01-01

    The objective of this work was to find the best combination of different experimental conditions during pre-treatment, enzymatic saccharification, detoxification of inhibitors and fermentation of Sorghum bicolor straw for ethanol production. The optimization of pre-treatment using different...... were used in order to increase the monomeric sugar during enzymatic hydrolysis and it has been observed that the addition of these surfactants contributed significantly in cellulosic conversion but no effect was shown on hemicellulosic hydrolysis. Fermentability of hydrolyzate was tested using...... Saccharomyces cerevisiae Ethanol Red (TM) and it was observed that simultaneous saccharification and fermentation ( SSF) with both batch and fed batch resulted in better ethanol yield as compared to separate hydrolysis and fermentation ( SHF). Detoxification of furan during SHF facilitated reduction...

  20. Optimization of the Production of Polygalacturonase from Aspergillus kawachii Cloned in Saccharomyces cerevisiae in Batch and Fed-Batch Cultures

    Directory of Open Access Journals (Sweden)

    Diego Jorge Baruque

    2011-01-01

    Full Text Available Polygalacturonases (PG; EC 3.2.1.15 catalyze the hydrolysis of pectin and/or pectic acid and are useful for industrial applications such as juice clarification and pectin extraction. Growth and heterologous expression of recombinant Saccharomyces cerevisiae which expresses an acidic PG from Aspergillus kawachii has been studied in batch and fed-batch cultures. Kinetics and stoichiometric parameters of the recombinant yeast were determined in batch cultures in a synthetic medium. In these cultures, the total biomass concentration, protein concentration, and enzyme activity achieved were 2.2 g/L, 10 mg/L, and 3 U/mL, respectively, to give a productivity of 0.06 U/(mL·h. In fed-batch cultures, various strategies for galactose feeding were used: (i after a glucose growth phase, the addition of a single pulse of galactose which gave a productivity of 0.19 U/(mL·h; (ii after a glucose growth phase, a double pulse of galactose at the same final concentration was added, resulting in a productivity of 0.21 U/(mL·h; (iii a simultaneous feeding of glucose and galactose, yielding a productivity of 1.32 U/(mL·h. Based on these results, the simultaneous feeding of glucose and galactose was by far the most suitable strategy for the production of this enzyme. Moreover, some biochemical characteristics of the recombinant enzyme such as a molecular mass of ~60 kDa, an isoelectric point of 3.7 and its ability to hydrolyze polygalacturonic acid at pH=2.5 were determined.

  1. Antarctica: Cooling or Warming?

    Science.gov (United States)

    Bunde, Armin; Ludescher, Josef; Franzke, Christian

    2013-04-01

    We consider the 14 longest instrumental monthly mean temperature records from the Antarctica and analyse their correlation properties by wavelet and detrended fluctuation analysis. We show that the stations in the western and the eastern part of the Antarctica show significant long-term memory governed by Hurst exponents close to 0.8 and 0.65, respectively. In contrast, the temperature records at the inner part of the continent (South Pole and Vostok), resemble white noise. We use linear regression to estimate the respective temperature differences in the records per decade (i) for the annual data, (ii) for the summer and (iii) for the winter season. Using a recent approach by Lennartz and Bunde [1] we estimate the respective probabilities that these temperature differences can be exceeded naturally without inferring an external (anthropogenic) trend. We find that the warming in the western part of the continent and the cooling at the South Pole is due to a gradually changes in the cold extremes. For the winter months, both cooling and warming are well outside the 95 percent confidence interval, pointing to an anthropogenic origin. In the eastern Antarctica, the temperature increases and decreases are modest and well within the 95 percent confidence interval. [1] S. Lennartz and A. Bunde, Phys. Rev. E 84, 021129 (2011)

  2. Cooled spool piston compressor

    Science.gov (United States)

    Morris, Brian G. (Inventor)

    1993-01-01

    A hydraulically powered gas compressor receives low pressure gas and outputs a high pressure gas. The housing of the compressor defines a cylinder with a center chamber having a cross-sectional area less than the cross-sectional area of a left end chamber and a right end chamber, and a spool-type piston assembly is movable within the cylinder and includes a left end closure, a right end closure, and a center body that are in sealing engagement with the respective cylinder walls as the piston reciprocates. First and second annual compression chambers are provided between the piston enclosures and center housing portion of the compressor, thereby minimizing the spacing between the core gas and a cooled surface of the compressor. Restricted flow passageways are provided in the piston closure members and a path is provided in the central body of the piston assembly, such that hydraulic fluid flows through the piston assembly to cool the piston assembly during its operation. The compressor of the present invention may be easily adapted for a particular application, and is capable of generating high gas pressures while maintaining both the compressed gas and the compressor components within acceptable temperature limits.

  3. Kinetic studies on batch cultivation of Trichoderma reesei and application to enhance cellulase production by fed-batch fermentation.

    Science.gov (United States)

    Ma, Lijuan; Li, Chen; Yang, Zhenhua; Jia, Wendi; Zhang, Dongyuan; Chen, Shulin

    2013-07-20

    Reducing the production cost of cellulase as the key enzyme for cellulose hydrolysis to fermentable sugars remains a major challenge for biofuel production. Because of the complexity of cellulase production, kinetic modeling and mass balance calculation can be used as effective tools for process design and optimization. In this study, kinetic models for cell growth, substrate consumption and cellulase production in batch fermentation were developed, and then applied in fed-batch fermentation to enhance cellulase production. Inhibition effect of substrate was considered and a modified Luedeking-Piret model was developed for cellulase production and substrate consumption according to the growth characteristics of Trichoderma reesei. The model predictions fit well with the experimental data. Simulation results showed that higher initial substrate concentration led to decrease of cellulase production rate. Mass balance and kinetic simulation results were applied to determine the feeding strategy. Cellulase production and its corresponding productivity increased by 82.13% after employing the proper feeding strategy in fed-batch fermentation. This method combining mathematics and chemometrics by kinetic modeling and mass balance can not only improve cellulase fermentation process, but also help to better understand the cellulase fermentation process. The model development can also provide insight to other similar fermentation processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Modelization of cooling system components

    Energy Technology Data Exchange (ETDEWEB)

    Copete, Monica; Ortega, Silvia; Vaquero, Jose Carlos; Cervantes, Eva [Westinghouse Electric (Spain)

    2010-07-01

    In the site evaluation study for licensing a new nuclear power facility, the criteria involved could be grouped in health and safety, environment, socio-economics, engineering and cost-related. These encompass different aspects such as geology, seismology, cooling system requirements, weather conditions, flooding, population, and so on. The selection of the cooling system is function of different parameters as the gross electrical output, energy consumption, available area for cooling system components, environmental conditions, water consumption, and others. Moreover, in recent years, extreme environmental conditions have been experienced and stringent water availability limits have affected water use permits. Therefore, modifications or alternatives of current cooling system designs and operation are required as well as analyses of the different possibilities of cooling systems to optimize energy production taking into account water consumption among other important variables. There are two basic cooling system configurations: - Once-through or Open-cycle; - Recirculating or Closed-cycle. In a once-through cooling system (or open-cycle), water from an external water sources passes through the steam cycle condenser and is then returned to the source at a higher temperature with some level of contaminants. To minimize the thermal impact to the water source, a cooling tower may be added in a once-through system to allow air cooling of the water (with associated losses on site due to evaporation) prior to returning the water to its source. This system has a high thermal efficiency, and its operating and capital costs are very low. So, from an economical point of view, the open-cycle is preferred to closed-cycle system, especially if there are no water limitations or environmental restrictions. In a recirculating system (or closed-cycle), cooling water exits the condenser, goes through a fixed heat sink, and is then returned to the condenser. This configuration

  5. Lab-on-a-Chip Based Protein Crystallization

    Science.gov (United States)

    vanderWoerd, Mark J.; Brasseur, Michael M.; Spearing, Scott F.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    We are developing a novel technique with which we will grow protein crystals in very small volumes, utilizing chip-based, microfluidic ("LabChip") technology. This development, which is a collaborative effort between NASA's Marshall Space Flight Center and Caliper Technologies Corporation, promises a breakthrough in the field of protein crystal growth. Our initial results obtained from two model proteins, Lysozyme and Thaumatin, show that it is feasible to dispense and adequately mix protein and precipitant solutions on a nano-liter scale. The mixtures have shown crystal growth in volumes in the range of 10 nanoliters to 5 microliters. In addition, large diffraction quality crystals were obtained by this method. X-ray data from these crystals were shown to be of excellent quality. Our future efforts will include the further development of protein crystal growth with LabChip(trademark) technology for more complex systems. We will initially address the batch growth method, followed by the vapor diffusion method and the liquid-liquid diffusion method. The culmination of these chip developments is to lead to an on orbit protein crystallization facility on the International Space Station. Structural biologists will be invited to utilize the on orbit Iterative Biological Crystallization facility to grow high quality macromolecular crystals in microgravity.

  6. Development and test of small-scale batch-fired straw boilers in Denmark

    International Nuclear Information System (INIS)

    Kristensen, E.F.; Kristensen, J.K.

    2004-01-01

    In Denmark, government subsidies for the testing and installation of biomass-fired boilers were available for the period from 1995 until 2002. Each boiler type had to pass an official approval test to achieve subsidy. The combustion abilities of the boiler were optimized prior to the test. The main aim of this subsidy was to encourage the development of energy-efficient and environmentally friendly boilers. The scheme was therefore organized in such a way that the greatest subsidies were awarded for boilers with high efficiency and low emissions. This goal has in effect been achieved for batch-fired straw boilers, where the typical efficiency has been increased from about 75% in 1995 to about 87% in 2002. Similarly, the carbon monoxide emissions have been reduced from 5000 ppm (reference value 10% O 2 ) in 1995 to less than 1000 ppm in 2002. These improvements are mainly due to better insulation inside the combustion chamber, more efficient techniques for supplying air to the combustion process, improved cooling of the flue gas, and optimization of the electronic control unit for the air supply

  7. Review of cavity optomechanical cooling

    International Nuclear Information System (INIS)

    Liu Yong-Chun; Hu Yu-Wen; Xiao Yun-Feng; Wong Chee Wei

    2013-01-01

    Quantum manipulation of macroscopic mechanical systems is of great interest in both fundamental physics and applications ranging from high-precision metrology to quantum information processing. For these purposes, a crucial step is to cool the mechanical system to its quantum ground state. In this review, we focus on the cavity optomechanical cooling, which exploits the cavity enhanced interaction between optical field and mechanical motion to reduce the thermal noise. Recent remarkable theoretical and experimental efforts in this field have taken a major step forward in preparing the motional quantum ground state of mesoscopic mechanical systems. This review first describes the quantum theory of cavity optomechanical cooling, including quantum noise approach and covariance approach; then, the up-to-date experimental progresses are introduced. Finally, new cooling approaches are discussed along the directions of cooling in the strong coupling regime and cooling beyond the resolved sideband limit. (topical review - quantum information)

  8. Electronic cooling using thermoelectric devices

    Energy Technology Data Exchange (ETDEWEB)

    Zebarjadi, M., E-mail: m.zebarjadi@rutgers.edu [Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey 08854 (United States); Institute of Advanced Materials, Devices, and Nanotechnology, Rutgers University, Piscataway, New Jersey 08854 (United States)

    2015-05-18

    Thermoelectric coolers or Peltier coolers are used to pump heat in the opposite direction of the natural heat flux. These coolers have also been proposed for electronic cooling, wherein the aim is to pump heat in the natural heat flux direction and from hot spots to the colder ambient temperature. In this manuscript, we show that for such applications, one needs to use thermoelectric materials with large thermal conductivity and large power factor, instead of the traditionally used high ZT thermoelectric materials. We further show that with the known thermoelectric materials, the active cooling cannot compete with passive cooling, and one needs to explore a new set of materials to provide a cooling solution better than a regular copper heat sink. We propose a set of materials and directions for exploring possible materials candidates suitable for electronic cooling. Finally, to achieve maximum cooling, we propose to use thermoelectric elements as fins attached to copper blocks.

  9. CRYSTALLIZATION KINETICS OF AMMONIUM PERCHLORATE IN AN AGITATED VESSEL

    Directory of Open Access Journals (Sweden)

    Nahidh Kaseer

    2013-05-01

    Full Text Available 31Overall crystal growth kinetics for ammonium perchlorate in laboratory scale batch  agitated vessel crystallizer have been determined from batch experiments performed in an integral mode. The effects of temperature between 30-60ºC, seed size 0.07, 0.120 and 0.275 mm and stirrer speed 160, 340, and 480 rpm, on the kinetics of crystal growth were investigated. Two different methods, viz. polynomial fitting and initial derivative were used to predict the kinetics expression. In general both methods gave comparable results for growth kinetics estimation. The order of growth process is not more than two. The activation energy for crystal growth of ammonium perchlorate was determined and found  to be equal to 5.8 kJ/ mole.            Finally, the influence of the affecting parameters on the crystal growth rate gives general expression that had an obvious dependence of the growth rate on each variables of concern (temperature, seed size, and stirrer speed .The general overall growth rate expression had shown that super saturation is the most significant variable. While the positive dependence of the stirrer speed demonstrates the importance of the diffusional step in the growth rate model. Moreover, the positive dependence of the seed size demonstrate the importance of the surface integration  step in the growth rate model. All the studied variables tend to suggest that the growth rate characteristics  of ammonium perchlorate from aqueous solution commenced in a batch crystallizer are diffusion kinetic controlled process.

  10. COOLING STAGES OF CRYOGENIC SYSTEMS

    OpenAIRE

    Троценко, А. В.

    2011-01-01

    The formalized definition for cooling stage of low temperature system is done. Based on existing information about the known cryogenic unit cycles the possible types of cooling stages are single out. From analyses of these stages their classification by various characteristics is suggested. The results of thermodynamic optimization of final throttle stage of cooling, which are used as working fluids helium, hydrogen and nitrogen, are shown.

  11. Stochastic cooling technology at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Pasquinelli, R.J. E-mail: pasquin@fnal.gov

    2004-10-11

    The first antiproton cooling systems were installed and commissioned at Fermilab in 1984-1985. In the interim period, there have been several major upgrades, system improvements, and complete reincarnation of cooling systems. This paper will present some of the technology that was pioneered at Fermilab to implement stochastic cooling systems in both the Antiproton Source and Recycler accelerators. Current performance data will also be presented.

  12. Stochastic cooling technology at Fermilab

    Science.gov (United States)

    Pasquinelli, Ralph J.

    2004-10-01

    The first antiproton cooling systems were installed and commissioned at Fermilab in 1984-1985. In the interim period, there have been several major upgrades, system improvements, and complete reincarnation of cooling systems. This paper will present some of the technology that was pioneered at Fermilab to implement stochastic cooling systems in both the Antiproton Source and Recycler accelerators. Current performance data will also be presented.

  13. Stochastic cooling technology at Fermilab

    International Nuclear Information System (INIS)

    Pasquinelli, R.J.

    2004-01-01

    The first antiproton cooling systems were installed and commissioned at Fermilab in 1984-1985. In the interim period, there have been several major upgrades, system improvements, and complete reincarnation of cooling systems. This paper will present some of the technology that was pioneered at Fermilab to implement stochastic cooling systems in both the Antiproton Source and Recycler accelerators. Current performance data will also be presented

  14. Photonic time crystals.

    Science.gov (United States)

    Zeng, Lunwu; Xu, Jin; Wang, Chengen; Zhang, Jianhua; Zhao, Yuting; Zeng, Jing; Song, Runxia

    2017-12-07

    When space (time) translation symmetry is spontaneously broken, the space crystal (time crystal) forms; when permittivity and permeability periodically vary with space (time), the photonic crystal (photonic time crystal) forms. We proposed the concept of photonic time crystal and rewritten the Maxwell's equations. Utilizing Finite Difference Time Domain (FDTD) method, we simulated electromagnetic wave propagation in photonic time crystal and photonic space-time crystal, the simulation results show that more intensive scatter fields can obtained in photonic time crystal and photonic space-time crystal.

  15. Operation condition for continuous anti-solvent crystallization of CBZ-SAC cocrystal considering deposition risk of undesired crystals

    Science.gov (United States)

    Nishimaru, Momoko; Nakasa, Miku; Kudo, Shoji; Takiyama, Hiroshi

    2017-07-01

    Crystallization operation of cocrystal production has deposition risk of undesired crystals. Simultaneously, continuous manufacturing processes are focused on. In this study, conditions for continuous cocrystallization considering risk reduction of undesired crystals deposition were investigated on the view point of thermodynamics and kinetics. The anti-solvent cocrystallization was carried out in four-component system of carbamazepine, saccharin, methanol and water. From the preliminary batch experiment, the relationships among undesired crystal deposition, solution composition decided by mixing ratio of solutions, and residence time for the crystals were considered, and then the conditions of continuous experiment were decided. Under these conditions, the continuous experiment was carried out. The XRD patterns of obtained crystals in the continuous experiment showed that desired cocrystals were obtained without undesired crystals. This experimental result was evaluated by using multi-component phase diagrams from the view point of the operation point's movement. From the evaluation, it was found that there is a certain operation condition which the operation point is fixed with time in the specific domain without the deposition risk of undesired single component crystals. It means the possibility of continuous production of cocrystals without deposition risk of undesired crystals was confirmed by using multi-component phase diagrams.

  16. [Anaerobic hydrolysis of terramycin crystallizing mother solution].

    Science.gov (United States)

    Ma, W; Wang, J; Liang, C; Qi, R; Yang, M

    2001-09-01

    The terramycin crystallizing mother solution contained high organics and high nitrogen. There were many kinds of bioinhibition in it but not enough electronic donor. Anaerobic hydrolysis of terramycin crystallizing mother solution was completed with up anarobic sludge bed in order to improve the biodegradability of wastewater and electronic donor in it. The variations of pH, COD, NH4+, and SO4(2-) were monitored. The COD removal was in a narrow range between 10% and 16.4% even when the HRT of the reactor was changed from 1.5 h to 6 h. pH increased because of formation of NH3 and reduction of SO4(2-). Most of SO4(2-) was reduced to S2- when the HRT was longer than 2 h. Batch experiments on hydrolyzed wastewater demonstrated that reaction rates of nitrification and denitrification increased by 90.9% and 45.2%, respectively.

  17. Direct cooled power electronics substrate

    Science.gov (United States)

    Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Lowe, Kirk T [Knoxville, TN

    2010-09-14

    The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

  18. Influence of coal batch preparation on the quality of metallurgical соkе

    Directory of Open Access Journals (Sweden)

    Катерина Олегівна Шмельцер

    2015-10-01

    Full Text Available To study the influence of coal batch properties on coke strength we have considered the quality of the coke produced at the plant in Krivoy Rog from 2008 till 2012. Such factors as the large number of coal suppliers, imprecise selection of the optimal degree of batch crushing result in the decline in coke quality, the batch density and contents of the lean class (<0,5 mm are not optimum; poor blending of the batch after crushing; increased moisture and ash content of the coking batch; and extreme fluctuation in the coal and batch characteristics. It was found that high humidity of coal batch and its large fluctuations has most profound effect on the mechanical properties of coke. Under deteriorating resource base the quality of the coking batch preparation is important, To have batch of proper quality the following key aspects must be taken into account: the batch must be crushed to an optimum degree that will result in leaning components decrease and increased contents of vitrivite in it which improves the sinterability and coking, and hence the quality of coke; the degree of mixing of the coking batch in all indices must be up to 98-99%, for uneven distribution in the coal chamber worsens the quality of coke

  19. Optimization of anisotropic photonic density of states for Raman cooling of solids

    Science.gov (United States)

    Chen, Yin-Chung; Ghosh, Indronil; Schleife, André; Carney, P. Scott; Bahl, Gaurav

    2018-04-01

    Optical refrigeration of solids holds tremendous promise for applications in thermal management. It can be achieved through multiple mechanisms including inelastic anti-Stokes Brillouin and Raman scattering. However, engineering of these mechanisms remains relatively unexplored. The major challenge lies in the natural unfavorable imbalance in transition rates for Stokes and anti-Stokes scattering. We consider the influence of anisotropic photonic density of states on Raman scattering and derive expressions for cooling in such photonically anisotropic systems. We demonstrate optimization of the Raman cooling figure of merit considering all possible orientations for the material crystal and two example photonic crystals. We find that the anisotropic description of the photonic density of states and the optimization process is necessary to obtain the best Raman cooling efficiency for systems having lower symmetry. This general result applies to a wide array of other laser cooling methods in the presence of anisotropy.

  20. Is cold better ? - exploring the feasibility of liquid-helium-cooled optics

    International Nuclear Information System (INIS)

    Assoufid, L.; Mills, D.; Macrander, A.; Tajiri, G.

    1999-01-01

    Both simulations and recent experiments conducted at the Advanced Photon Source showed that the performance of liquid-nitrogen-cooled single-silicon crystal monochromators can degrade in a very rapid nonlinear fashion as the power and for power density is increased. As a further step towards improving the performance of silicon optics, we propose cooling with liquid helium, which dramatically improves the thermal properties of silicon beyond that of liquid nitrogen and brings the performance of single silicon-crystal-based synchrotrons radiation optics up to the ultimate limit. The benefits of liquid helium cooling as well as some of the associated technical challenges will be discussed, and results of thermal and structural finite elements simulations comparing the performance of silicon monochromators cooled with liquid nitrogen and helium will be given

  1. Water cooled nuclear reactor

    International Nuclear Information System (INIS)

    1975-01-01

    A description is given of a cooling water intake collector for a nuclear reactor. It includes multiple sub-collectors extending out in a generally parallel manner to each other, each one having a first end and a second one separated along their length, and multiple water outlets for connecting each one to a corresponding pressure tube of the reactor. A first end tube and a second one connect the sub-collector tubes together to their first and second ends respectively. It also includes multiple collector tubes extending transversely by crossing over the sub-collector tubes and separated from each other in the direction of these tubes. Each collector tubes has a water intake for connecting to a water pump and multiple connecting tubes separated over its length and connecting each one to the corresponding sub-collector [fr

  2. Emergency core cooling systems

    International Nuclear Information System (INIS)

    Kubokoya, Takashi; Okataku, Yasukuni.

    1984-01-01

    Purpose: To maintain the fuel soundness upon loss of primary coolant accidents in a pressure tube type nuclear reactor by injecting cooling heavy water at an early stage, to suppress the temperature of fuel cans at a lower level. Constitution: When a thermometer detects the temperature rise and a pressure gauge detects that the pressure for the primary coolants is reduced slightly from that in the normal operation upon loss of coolant accidents in the vicinity of the primary coolant circuit, heavy water is caused to flow in the heavy water feed pipeway by a controller. This enables to inject the heavy water into the reactor core in a short time upon loss of the primary coolant accidents to suppress the temperature rise in the fuel can thereby maintain the fuel soundness. (Moriyama, K.)

  3. Cooling of rectangular bars

    International Nuclear Information System (INIS)

    Frainer, V.J.

    1979-01-01

    A solution of the time-transient Heat Transfer Differential Equation in rectangular coordinates is presented, leading to a model which describes the temperature drop with time in rectangular bars. It is similar to an other model for cilindrical bars which has been previously developed in the Laboratory of Mechanical Metallurgy of UFRGS. Following these models, a generalization has been made, which permits cooling time evaluation for all profiles. These results are compared with experimental laboratory data in the 1200 to 800 0 C range. Some other existing models were also studied which have the purpose of studing the same phenomenon. Their mathematical forms and their evaluated values are analyzed and compared with experimental ones. (Author) [pt

  4. ATLAS' major cooling project

    CERN Multimedia

    2005-01-01

    In 2005, a considerable effort has been put into commissioning the various units of ATLAS' complex cryogenic system. This is in preparation for the imminent cooling of some of the largest components of the detector in their final underground configuration. The liquid helium and nitrogen ATLAS refrigerators in USA 15. Cryogenics plays a vital role in operating massive detectors such as ATLAS. In many ways the liquefied argon, nitrogen and helium are the life-blood of the detector. ATLAS could not function without cryogens that will be constantly pumped via proximity systems to the superconducting magnets and subdetectors. In recent weeks compressors at the surface and underground refrigerators, dewars, pumps, linkages and all manner of other components related to the cryogenic system have been tested and commissioned. Fifty metres underground The helium and nitrogen refrigerators, installed inside the service cavern, are an important part of the ATLAS cryogenic system. Two independent helium refrigerators ...

  5. Controlled in meso phase crystallization--a method for the structural investigation of membrane proteins.

    Directory of Open Access Journals (Sweden)

    Jan Kubicek

    Full Text Available We investigated in meso crystallization of membrane proteins to develop a fast screening technology which combines features of the well established classical vapor diffusion experiment with the batch meso phase crystallization, but without premixing of protein and monoolein. It inherits the advantages of both methods, namely (i the stabilization of membrane proteins in the meso phase, (ii the control of hydration level and additive concentration by vapor diffusion. The new technology (iii significantly simplifies in meso crystallization experiments and allows the use of standard liquid handling robots suitable for 96 well formats. CIMP crystallization furthermore allows (iv direct monitoring of phase transformation and crystallization events. Bacteriorhodopsin (BR crystals of high quality and diffraction up to 1.3 Å resolution have been obtained in this approach. CIMP and the developed consumables and protocols have been successfully applied to obtain crystals of sensory rhodopsin II (SRII from Halobacterium salinarum for the first time.

  6. Core catcher cooling for a gas-cooled fast breeder

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Dorner, S.; Schretzmann, K.

    1976-01-01

    Water, molten salts, and liquid metals are under discussion as coolants for the core catcher of a gas-cooled fast breeder. The authors state that there is still no technically mature method of cooling a core melt. However, the investigations carried out so far suggest that there is a solution to this problem. (RW/AK) [de

  7. Film cooling for a closed loop cooled airfoil

    Science.gov (United States)

    Burdgick, Steven Sebastian; Yu, Yufeng Phillip; Itzel, Gary Michael

    2003-01-01

    Turbine stator vane segments have radially inner and outer walls with vanes extending therebetween. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. At least one film cooling hole is defined through a wall of at least one of the cavities for flow communication between an interior of the cavity and an exterior of the vane. The film cooling hole(s) are defined adjacent a potential low LCF life region, so that cooling medium that bleeds out through the film cooling hole(s) reduces a thermal gradient in a vicinity thereof, thereby the increase the LCF life of that region.

  8. Recommendation of ruthenium source for sludge batch flowsheet studies

    Energy Technology Data Exchange (ETDEWEB)

    Woodham, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-13

    Included herein is a preliminary analysis of previously-generated data from sludge batches 7a, 7b, 8, and 9 sludge simulant and real-waste testing, performed to recommend a form of ruthenium for future sludge batch simulant testing under the nitric-formic flowsheet. Focus is given to reactions present in the Sludge Receipt and Adjustment Tank cycle, given that this cycle historically produces the most changes in chemical composition during Chemical Process Cell processing. Data is presented and analyzed for several runs performed under the nitric-formic flowsheet, with consideration given to effects on the production of hydrogen gas, nitrous oxide gas, consumption of formate, conversion of nitrite to nitrate, and the removal and recovery of mercury during processing. Additionally, a brief discussion is given to the effect of ruthenium source selection under the nitric-glycolic flowsheet. An analysis of data generated from scaled demonstration testing, sludge batch 9 qualification testing, and antifoam degradation testing under the nitric-glycolic flowsheet is presented. Experimental parameters of interest under the nitric-glycolic flowsheet include N2O production, glycolate destruction, conversion of glycolate to formate and oxalate, and the conversion of nitrite to nitrate. To date, the number of real-waste experiments that have been performed under the nitric-glycolic flowsheet is insufficient to provide a complete understanding of the effects of ruthenium source selection in simulant experiments with regard to fidelity to real-waste testing. Therefore, a determination of comparability between the two ruthenium sources as employed under the nitric-glycolic flowsheet is made based on available data in order to inform ruthenium source selection for future testing under the nitric-glycolic flowsheet.

  9. Effect of solvent on crystallization behavior of xylitol

    Science.gov (United States)

    Hao, Hongxun; Hou, Baohong; Wang, Jing-Kang; Lin, Guangyu

    2006-04-01

    Effect of organic solvents content on crystallization behavior of xylitol was studied. Solubility and crystallization kinetics of xylitol in methanol-water system were experimentally determined. It was found that the solubility of xylitol at various methanol content all increases with increase of temperature. But it decreases when increasing methanol content at constant temperature. Based on the theory of population balance, the nucleation and growth rates of xylitol in methanol-water mixed solvents were calculated by moments method. From a series of experimental population density data of xylitol gotten from a batch-operated crystallizer, parameters of crystal nucleation and growth rate equations at different methanol content were got by the method of nonlinear least-squares. By analyzing, it was found that the content of methanol had an apparent effect on nucleation and growth rate of xylitol. At constant temperature, the nucleation and growth rate of xylitol all decrease with increase of methanol content.

  10. Cooling Tower Overhaul of Secondary Cooling System in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Chul; Lee, Young Sub; Jung, Hoan Sung; Lim, In Chul [KAERI, Daejeon (Korea, Republic of)

    2007-07-01

    HANARO, an open-tank-in-pool type research reactor of 30 MWth power in Korea, has been operating normally since its initial criticality in February, 1995. For the last about ten years, A cooling tower of a secondary cooling system has been operated normally in HANARO. Last year, the cooling tower has been overhauled for preservative maintenance including fills, eliminators, wood support, water distribution system, motors, driving shafts, gear reducers, basements, blades and etc. This paper describes the results of the overhaul. As results, it is confirmed that the cooling tower maintains a good operability through a filed test. And a cooling capability will be tested when a wet bulb temperature is maintained about 28 .deg. C in summer and the reactor is operated with the full power.

  11. Batch biomethanation of banana trash and coir path

    Energy Technology Data Exchange (ETDEWEB)

    Deivanai, K.; Bai, R.K. [Madurai Kamaraj Univ. (India)

    1995-08-01

    Anaerobic digestion of banana trash and coir pith was carried out for a period of one month by batch digestion. During biomethanation reduction of total- and volatile-solids was, respectively, 25.3 and 39.6% in banana trash and 13.6 and 21.6% in coir pith. A production of 9.22 l and 1.69 l (per kg TS added) of biogas with average methane content of 72 and 80% was achieved from banana trash and coir pith, respectively. (author)

  12. Batched Triangular DLA for Very Small Matrices on GPUs

    KAUST Repository

    Charara, Ali

    2017-03-13

    In several scientific applications, like tensor contractions in deep learning computation or data compression in hierarchical low rank matrix approximation, the bulk of computation typically resides in performing thousands of independent dense linear algebra operations on very small matrix sizes (usually less than 100). Batched dense linear algebra kernels are becoming ubiquitous for such scientific computations. Within a single API call, these kernels are capable of simultaneously launching a large number of similar matrix computations, removing the expensive overhead of multiple API calls while increasing the utilization of the underlying hardware.

  13. Online and Batch Supervised Background Estimation via L1 Regression

    KAUST Repository

    Dutta, Aritra

    2017-11-23

    We propose a surprisingly simple model for supervised video background estimation. Our model is based on $\\\\ell_1$ regression. As existing methods for $\\\\ell_1$ regression do not scale to high-resolution videos, we propose several simple and scalable methods for solving the problem, including iteratively reweighted least squares, a homotopy method, and stochastic gradient descent. We show through extensive experiments that our model and methods match or outperform the state-of-the-art online and batch methods in virtually all quantitative and qualitative measures.

  14. Online and Batch Supervised Background Estimation via L1 Regression

    KAUST Repository

    Dutta, Aritra; Richtarik, Peter

    2017-01-01

    We propose a surprisingly simple model for supervised video background estimation. Our model is based on $\\ell_1$ regression. As existing methods for $\\ell_1$ regression do not scale to high-resolution videos, we propose several simple and scalable methods for solving the problem, including iteratively reweighted least squares, a homotopy method, and stochastic gradient descent. We show through extensive experiments that our model and methods match or outperform the state-of-the-art online and batch methods in virtually all quantitative and qualitative measures.

  15. Simple multicomponent batch distillation procedure with a variable reflux policy

    Directory of Open Access Journals (Sweden)

    A. N. García

    2014-06-01

    Full Text Available This paper describes a shortcut procedure for batch distillation simulation with a variable reflux policy. The procedure starts from a shortcut method developed by Sundaram and Evans in 1993 and uses an iterative cycle to calculate the reflux ratio at each moment. The functional relationship between the concentrations at the bottom and the dome is evaluated using the Fenske equation and is complemented with the equations proposed by Underwood and Gilliland. The results of this procedure are consistent with those obtained using a fast method widely validated in the relevant literature.

  16. DISPATCHING CONTROL SYSTEM OF THE CONCRETE BATCHING PLANTS

    Directory of Open Access Journals (Sweden)

    Andrey Vladimirovich Ostroukh

    2015-09-01

    Full Text Available This paper proposes an approach to the design of dispatching control system of the concrete batching plant, which is a set of hardware maintenance, information, mathematical and software for control of technological objects. The proposed system is scalable and can include a control subsystem of mobile concrete plant, laboratory, subsystems, access control, and personnel management jobs. The system provides optimum automating the collection and processing of information for generating control signals and transmitting them without loss and distortion to the actuators in order to achieve the most efficient operation of process control object as a whole.

  17. Cryogenics for the MuCool Test Area (MTA)

    International Nuclear Information System (INIS)

    Darve, Christine; Norris, Barry; Pei, Liujin

    2006-01-01

    MuCool Test Area (MTA) is a complex of buildings at Fermi National Accelerator Laboratory, which are dedicated to operate components of a cooling cell to be used for Muon Collider and Neutrino Factory R and D. The long-term goal of this facility is to test ionization cooling principles by operating a 25-liter liquid hydrogen (LH2) absorber embedded in a 5 Tesla superconducting solenoid magnet. The MTA solenoid magnet will be used with RF cavities exposed to a high intensity beam. Cryogens used at the MTA include LHe, LN2 and LH2. The latter dictates stringent system design for hazardous locations. The cryogenic plant is a modified Tevatron refrigerator based on the Claude cycle. The implementation of an in-house refrigerator system and two 300 kilowatt screw compressors is under development. The helium refrigeration capacity is 500 W at 14 K. In addition the MTA solenoid magnet will be batch-filled with LHe every 2 days using the same cryo-plant. This paper reviews cryogenic systems used to support the Muon Collider and Neutrino Factory R and D programs and emphasizes the feasibility of handling cryogenic equipment at MTA in a safe manner

  18. Onderzoeksrapportage duurzaam koelen : EOS Renewable Cooling

    OpenAIRE

    Broeze, J.; Sluis, van der, S.; Wissink, E.

    2010-01-01

    For reducing energy use for cooling, alternative methods (that do not rely on electricity) are needed. Renewable cooling is based on naturally available resources such as evaporative cooling, free cooling, phase change materials, ground subcooling, solar cooling, wind cooling, night radiation & storage. The project was aimed to create innovative combinations of these renewable cooling technologies and sophisticated control systems, to design renewable climate systems for various applicati...

  19. Mathematical modeling of static layer crystallization for propellant grade hydrogen peroxide

    Science.gov (United States)

    Hao, Lin; Chen, Xinghua; Sun, Yaozhou; Liu, Yangyang; Li, Shuai; Zhang, Mengqian

    2017-07-01

    Hydrogen peroxide (H2O2) is an important raw material widely used in many fields. In this work a mathematical model of heat conduction with a moving boundary was proposed to study the melt crystallization process of hydrogen peroxide which was carried out outside a cylindrical crystallizer. Considering the effects of the temperature of the cooling fluid on the thermal conductivity of crude crystal, the model is an improvement of Guardani's research and can be solved by analytic iteration method. An experiment was designed to measure the thickness of crystal layer with time under different conditions. A series of analysis, including the effects of different refrigerant temperature on crystal growth rate, the effects of different cooling rates on crystal layer growth rate, the effects of crystallization temperature on heat transfer and the model's application scope were conducted based on the comparison between experimental results and simulation results of the model.

  20. Device for isolation of seed crystals during processing of solution

    Science.gov (United States)

    Montgomery, K.E.; Zaitseva, N.P.; Deyoreo, J.J.; Vital, R.L.

    1999-05-18

    A device is described for isolation of seed crystals during processing of solutions. The device enables a seed crystal to be introduced into the solution without exposing the solution to contaminants or to sources of drying and cooling. The device constitutes a seed protector which allows the seed to be present in the growth solution during filtration and overheating operations while at the same time preventing the seed from being dissolved by the under saturated solution. When the solution processing has been completed and the solution cooled to near the saturation point, the seed protector is opened, exposing the seed to the solution and allowing growth to begin. 3 figs.

  1. Photonic Crystal Fibers

    National Research Council Canada - National Science Library

    Kristiansen, Rene E

    2005-01-01

    This report results from a contract tasking Crystal Fibre A/S as follows: Crystal Fibre will conduct research and development of large mode area, dual clad multi-core Yb-doped photonic crystal fiber...

  2. Newton's Law of Cooling Revisited

    Science.gov (United States)

    Vollmer, M.

    2009-01-01

    The cooling of objects is often described by a law, attributed to Newton, which states that the temperature difference of a cooling body with respect to the surroundings decreases exponentially with time. Such behaviour has been observed for many laboratory experiments, which led to a wide acceptance of this approach. However, the heat transfer…

  3. Be Cool, Man! / Jevgeni Levik

    Index Scriptorium Estoniae

    Levik, Jevgeni

    2005-01-01

    Järg 1995. aasta kriminaalkomöödiale "Tooge jupats" ("Get Shorty") : mängufilm "Be Cool, Chili Palmer on tagasi!" ("Be Cool") : režissöör F. Gary Gray, peaosades J. Travolta ja U. Thurman : USA 2005. Lisatud J. Travolta ja U. Thurmani lühiintervjuud

  4. Core cooling system for reactor

    International Nuclear Information System (INIS)

    Kondo, Ryoichi; Amada, Tatsuo.

    1976-01-01

    Purpose: To improve the function of residual heat dissipation from the reactor core in case of emergency by providing a secondary cooling system flow channel, through which fluid having been subjected to heat exchange with the fluid flowing in a primary cooling system flow channel flows, with a core residual heat removal system in parallel with a main cooling system provided with a steam generator. Constitution: Heat generated in the core during normal reactor operation is transferred from a primary cooling system flow channel to a secondary cooling system flow channel through a main heat exchanger and then transferred through a steam generator to a water-steam system flow channel. In the event if removal of heat from the core by the main cooling system becomes impossible due to such cause as breakage of the duct line of the primary cooling system flow channel or a trouble in a primary cooling system pump, a flow control valve is opened, and steam generator inlet and outlet valves are closed, thus increasing the flow rate in the core residual heat removal system. Thereafter, a blower is started to cause dissipation of the core residual heat from the flow channel of a system for heat dissipation to atmosphere. (Seki, T.)

  5. Facile fabrication of single-crystal-diamond nanostructures with ultrahigh aspect ratio.

    OpenAIRE

    Tao Ye; Degen Christian

    2013-01-01

    A robust and facile approach for making single crystal diamond MEMS and NEMS devices is presented. The approach relies entirely on commercial diamond material and standard cleanroom processes. As an example batch fabrication of cantilever beams of thickness down to 45 nm and aspect ratios exceeding 2000:1 is demonstrated.

  6. Design of an integrated fermentation-crystallization process applied to the production of DOIP

    NARCIS (Netherlands)

    Blokker, S.; Dabkowski, M.; Groendijk, W.; Renckens, D.; De Rond, J.

    2004-01-01

    The design problem of CPD3312 was the comparison of the conventional batch (Base case) and the new integrated fermentation-crystallization process (In Situ Product Removal or ISPR case) in particular for the production of 2 tonnes 6R-dihydrooxoisophorone (DOIP) from 4-oxo-isophorone (OIP) per year.

  7. Dendritic microstructure and hot cracking of laser additive manufactured Inconel 718 under improved base cooling

    International Nuclear Information System (INIS)

    Chen, Yuan; Lu, Fenggui; Zhang, Ke; Nie, Pulin; Elmi Hosseini, Seyed Reza; Feng, Kai; Li, Zhuguo

    2016-01-01

    The base cooling effect was improved by imposing the continuous water flow on the back of the substrate during the laser additive manufacturing of Inconel 718 (IN718). The dendritic microstructure, crystal orientation and hot cracking behavior were studied by using optical microscopy (OM), scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD) techniques. The results showed that the crystal orientation was increased by increasing the base cooling effect during the deposition. Also, highly ordered columnar dendrites were established, and mono-crystalline texture was constructed in the final clad. It was fund that the effect of solidification cracking on the properties of final clad was negligible since it was only generated at the top region of the deposit, while liquation cracking was produced and remained in the heat affected zone (HAZ) and needed to be carefully controlled. The susceptibility to the liquation cracking showed a high dependence on the grain boundary misorientation, which was considered to be attributed to the stability of interdendritic liquation films, as well as the magnitude of local stress concentration in the last stage of solidification. - Highlights: • The base cooling effect was increased during laser additive manufacturing. • Highly ordered dendrites were established under improved base cooling. • The crystal orientation was increased by improving the base cooling effect. • Liquation cracking tendency was reduced due to the increase of base cooling. • Liquation cracking increased with the increase of grain boundary misorientation.

  8. Dendritic microstructure and hot cracking of laser additive manufactured Inconel 718 under improved base cooling

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yuan; Lu, Fenggui; Zhang, Ke; Nie, Pulin; Elmi Hosseini, Seyed Reza; Feng, Kai, E-mail: fengkai@sjtu.edu.cn; Li, Zhuguo, E-mail: lizg@sjtu.edu.cn

    2016-06-15

    The base cooling effect was improved by imposing the continuous water flow on the back of the substrate during the laser additive manufacturing of Inconel 718 (IN718). The dendritic microstructure, crystal orientation and hot cracking behavior were studied by using optical microscopy (OM), scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD) techniques. The results showed that the crystal orientation was increased by increasing the base cooling effect during the deposition. Also, highly ordered columnar dendrites were established, and mono-crystalline texture was constructed in the final clad. It was fund that the effect of solidification cracking on the properties of final clad was negligible since it was only generated at the top region of the deposit, while liquation cracking was produced and remained in the heat affected zone (HAZ) and needed to be carefully controlled. The susceptibility to the liquation cracking showed a high dependence on the grain boundary misorientation, which was considered to be attributed to the stability of interdendritic liquation films, as well as the magnitude of local stress concentration in the last stage of solidification. - Highlights: • The base cooling effect was increased during laser additive manufacturing. • Highly ordered dendrites were established under improved base cooling. • The crystal orientation was increased by improving the base cooling effect. • Liquation cracking tendency was reduced due to the increase of base cooling. • Liquation cracking increased with the increase of grain boundary misorientation.

  9. Theory of semiconductor laser cooling

    Science.gov (United States)

    Rupper, Greg

    Recently laser cooling of semiconductors has received renewed attention, with the hope that a semiconductor cooler might be able to achieve cryogenic temperatures. In order to study semiconductor laser cooling at cryogenic temperatures, it is crucial that the theory include both the effects of excitons and the electron-hole plasma. In this dissertation, I present a theoretical analysis of laser cooling of bulk GaAs based on a microscopic many-particle theory of absorption and luminescence of a partially ionized electron-hole plasma. This theory has been analyzed from a temperature 10K to 500K. It is shown that at high temperatures (above 300K), cooling can be modeled using older models with a few parameter changes. Below 200K, band filling effects dominate over Auger recombination. Below 30K excitonic effects are essential for laser cooling. In all cases, excitonic effects make cooling easier then predicted by a free carrier model. The initial cooling model is based on the assumption of a homogeneous undoped semiconductor. This model has been systematically modified to include effects that are present in real laser cooling experiments. The following modifications have been performed. (1) Propagation and polariton effects have been included. (2) The effect of p-doping has been included. (n-doping can be modeled in a similar fashion.) (3) In experiments, a passivation layer is required to minimize non-radiative recombination. The passivation results in a npn heterostructure. The effect of the npn heterostructure on cooling has been analyzed. (4) The effect of a Gaussian pump beam was analyzed and (5) Some of the parameters in the cooling model have a large uncertainty. The effect of modifying these parameters has been analyzed. Most of the extensions to the original theory have only had a modest effect on the overall results. However we find that the current passivation technique may not be sufficient to allow cooling. The passivation technique currently used appears

  10. The effect of freestream turbulence on film cooling adiabatic effectiveness

    International Nuclear Information System (INIS)

    Mayhew, James E.; Baughn, James W.; Byerley, Aaron R.

    2003-01-01

    The film-cooling performance of a flat plate in the presence of low and high freestream turbulence is investigated using liquid crystal thermography. This paper contributes high-resolution color images that clearly show how the freestream turbulence spreads the cooling air around a larger area of the film-cooled surface. Distributions of the adiabatic effectiveness are determined over the film-cooled surface of the flat plate using the hue method and image processing. Three blowing rates are investigated for a model with three straight holes spaced three diameters apart, with density ratio near unity. High freestream turbulence is shown to increase the area-averaged effectiveness at high blowing rates, but decrease it at low blowing rates. At low blowing ratio, freestream turbulence clearly reduces the coverage area of the cooling air due to increased mixing with the main flow. However, at high blowing ratio, when much of the jet has lifted off in the low turbulence case, high freestream turbulence turns its increased mixing into an asset, entraining some of the coolant that penetrates into the main flow and mixing it with the air near the surface

  11. Closed loop steam cooled airfoil

    Science.gov (United States)

    Widrig, Scott M.; Rudolph, Ronald J.; Wagner, Gregg P.

    2006-04-18

    An airfoil, a method of manufacturing an airfoil, and a system for cooling an airfoil is provided. The cooling system can be used with an airfoil located in the first stages of a combustion turbine within a combined cycle power generation plant and involves flowing closed loop steam through a pin array set within an airfoil. The airfoil can comprise a cavity having a cooling chamber bounded by an interior wall and an exterior wall so that steam can enter the cavity, pass through the pin array, and then return to the cavity to thereby cool the airfoil. The method of manufacturing an airfoil can include a type of lost wax investment casting process in which a pin array is cast into an airfoil to form a cooling chamber.

  12. Batch Attribute-Based Encryption for Secure Clouds

    Directory of Open Access Journals (Sweden)

    Chen Yang

    2015-10-01

    Full Text Available Cloud storage is widely used by organizations due to its advantage of allowing universal access with low cost. Attribute-based encryption (ABE is a kind of public key encryption suitable for cloud storage. The secret key of each user and the ciphertext are associated with an access policy and an attribute set, respectively; in addition to holding a secret key, one can decrypt a ciphertext only if the associated attributes match the predetermined access policy, which allows one to enforce fine-grained access control on outsourced files. One issue in existing ABE schemes is that they are designed for the users of a single organization. When one wants to share the data with the users of different organizations, the owner needs to encrypt the messages to the receivers of one organization and then repeats this process for another organization. This situation is deteriorated with more and more mobile devices using cloud services, as the ABE encryption process is time consuming and may exhaust the power supplies of the mobile devices quickly. In this paper, we propose a batch attribute-based encryption (BABE approach to address this problem in a provably-secure way. With our approach, the data owner can outsource data in batches to the users of different organizations simultaneously. The data owner is allowed to decide the receiving organizations and the attributes required for decryption. Theoretical and experimental analyses show that our approach is more efficient than traditional encryption implementations in computation and communication.

  13. "Batch" kinetics in flow: online IR analysis and continuous control.

    Science.gov (United States)

    Moore, Jason S; Jensen, Klavs F

    2014-01-07

    Currently, kinetic data is either collected under steady-state conditions in flow or by generating time-series data in batch. Batch experiments are generally considered to be more suitable for the generation of kinetic data because of the ability to collect data from many time points in a single experiment. Now, a method that rapidly generates time-series reaction data from flow reactors by continuously manipulating the flow rate and reaction temperature has been developed. This approach makes use of inline IR analysis and an automated microreactor system, which allowed for rapid and tight control of the operating conditions. The conversion/residence time profiles at several temperatures were used to fit parameters to a kinetic model. This method requires significantly less time and a smaller amount of starting material compared to one-at-a-time flow experiments, and thus allows for the rapid generation of kinetic data. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Stormwater Pollution Prevention Plan - TA-60 Asphalt Batch Plant

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval, Leonard Frank [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-31

    This Storm Water Pollution Prevention Plan (SWPPP) was developed in accordance with the provisions of the Clean Water Act (33 U.S.C. §§1251 et seq., as amended), and the Multi-Sector General Permit for Storm Water Discharges Associated with Industrial Activity (U.S. EPA, June 2015) issued by the U.S. Environmental Protection Agency (EPA) for the National Pollutant Discharge Elimination System (NPDES) and using the industry specific permit requirements for Sector P-Land Transportation and Warehousing as a guide. This SWPPP applies to discharges of stormwater from the operational areas of the TA-60-01 Asphalt Batch Plant at Los Alamos National Laboratory. Los Alamos National Laboratory (also referred to as LANL or the “Laboratory”) is owned by the Department of Energy (DOE), and is operated by Los Alamos National Security, LLC (LANS). Throughout this document, the term “facility” refers to the TA-60 Asphalt Batch Plant and associated areas. The current permit expires at midnight on June 4, 2020.

  15. SEQUENCING BATCH REACTOR: A PROMISING TECHNOLOGY IN WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    A. H. Mahvi

    2008-04-01

    Full Text Available Discharge of domestic and industrial wastewater to surface or groundwater is very dangerous to the environment. Therefore treatment of any kind of wastewater to produce effluent with good quality is necessary. In this regard choosing an effective treatment system is important. Sequencing batch reactor is a modification of activated sludge process which has been successfully used to treat municipal and industrial wastewater. The process could be applied for nutrients removal, high biochemical oxygen demand containing industrial wastewater, wastewater containing toxic materials such as cyanide, copper, chromium, lead and nickel, food industries effluents, landfill leachates and tannery wastewater. Of the process advantages are single-tank configuration, small foot print, easily expandable, simple operation and low capital costs. Many researches have been conducted on this treatment technology. The authors had been conducted some investigations on a modification of sequencing batch reactor. Their studies resulted in very high percentage removal of biochemical oxygen demand, chemical oxygen demand, total kjeldahl nitrogen, total nitrogen, total phosphorus and total suspended solids respectively. This paper reviews some of the published works in addition to experiences of the authors.

  16. Near infrared spectroscopy for qualitative comparison of pharmaceutical batches.

    Science.gov (United States)

    Roggo, Y; Roeseler, C; Ulmschneider, M

    2004-11-19

    Pharmaceuticals are produced according to current pharmacopoeias, which require quality parameters. Tablets of identical formulation, produced by different factories should have the same properties before and after storage. In this article, we analyzed samples having two different origins before and after storage (30 degrees C, 75% relative moisture). The aim of the study is to propose two approaches to understand the differences between origins and the storage effect by near infrared spectroscopy. In the first part, the main wavelengths are identified in transmittance and reflectance near infrared spectra in order to identify the major differences between the samples. In this paper, this approach is called fingerprinting. In the second part, principal component analysis (PCA) is computed to confirm the fingerprinting interpretation. The two interpretations show the differences between batches: physical aspect and moisture content. The manufacturing process is responsible for the physical differences between batches. During the storage, changes are due to the increase of moisture content and the decrease of the active content.

  17. Atomic-batched tensor decomposed two-electron repulsion integrals

    Science.gov (United States)

    Schmitz, Gunnar; Madsen, Niels Kristian; Christiansen, Ove

    2017-04-01

    We present a new integral format for 4-index electron repulsion integrals, in which several strategies like the Resolution-of-the-Identity (RI) approximation and other more general tensor-decomposition techniques are combined with an atomic batching scheme. The 3-index RI integral tensor is divided into sub-tensors defined by atom pairs on which we perform an accelerated decomposition to the canonical product (CP) format. In a first step, the RI integrals are decomposed to a high-rank CP-like format by repeated singular value decompositions followed by a rank reduction, which uses a Tucker decomposition as an intermediate step to lower the prefactor of the algorithm. After decomposing the RI sub-tensors (within the Coulomb metric), they can be reassembled to the full decomposed tensor (RC approach) or the atomic batched format can be maintained (ABC approach). In the first case, the integrals are very similar to the well-known tensor hypercontraction integral format, which gained some attraction in recent years since it allows for quartic scaling implementations of MP2 and some coupled cluster methods. On the MP2 level, the RC and ABC approaches are compared concerning efficiency and storage requirements. Furthermore, the overall accuracy of this approach is assessed. Initial test calculations show a good accuracy and that it is not limited to small systems.

  18. Xylitol production by Candida parapsilosis under fed-batch culture

    Directory of Open Access Journals (Sweden)

    Sandra A. Furlan

    2001-06-01

    Full Text Available Xylitol production by Candida parapsilosis was investigated under fed-batch cultivation, using single (xylose or mixed (xylose and glucose sugars as substrates. The presence of glucose in the medium induced the production of ethanol as secondary metabolite and improved specific rates of growth, xylitol formation and substrate consumption. Fractionated supply of the feed medium at constant sugar concentration did not promote any increase on the productivity compared to the single batch cultivation.A produção de xylitol por Candida parapsilosis foi investigada em regime de batelada alimentada, usando substratos açucarados de composição simples (xilose ou composta (xilose e glicose. A presença de glicose no meio induziu a formação de etanol como metabólito secundário. A suplementação fracionada do meio de alimentação numa concentração fixa de açúcar não resultou em aumento da produtividade em relação àquela alcançada em batelada simples.

  19. Magma oceanography. II - Chemical evolution and crustal formation. [lunar crustal rock fractional crystallization model

    Science.gov (United States)

    Longhi, J.

    1977-01-01

    A description is presented of an empirical model of fractional crystallization which predicts that slightly modified versions of certain of the proposed whole moon compositions can reproduce the major-element chemistry and mineralogy of most of the primitive highland rocks through equilibrium and fractional crystallization processes combined with accumulation of crystals and trapping of residual liquids. These compositions contain sufficient Al to form a plagioclase-rich crust 60 km thick on top of a magma ocean that was initially no deeper than about 300 km. Implicit in the model are the assumptions that all cooling and crystallization take place at low pressure and that there are no compositional or thermal gradients in the liquid. Discussions of the cooling and crystallization of the proposed magma ocean show these assumptions to be disturbingly naive when applied to the ocean as a whole. However, the model need not be applied to the whole ocean, but only to layers of cooling liquid near the surface.

  20. Film cooling air pocket in a closed loop cooled airfoil

    Science.gov (United States)

    Yu, Yufeng Phillip; Itzel, Gary Michael; Osgood, Sarah Jane; Bagepalli, Radhakrishna; Webbon, Waylon Willard; Burdgick, Steven Sebastian

    2002-01-01

    Turbine stator vane segments have radially inner and outer walls with vanes extending between them. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. To provide for air film cooing of select portions of the airfoil outer surface, at least one air pocket is defined on a wall of at least one of the cavities. Each air pocket is substantially closed with respect to the cooling medium in the cavity and cooling air pumped to the air pocket flows through outlet apertures in the wall of the airfoil to cool the same.