WorldWideScience

Sample records for basolateral amygdaloid complex

  1. Exposure to high- and low-light conditions in an open-field test of anxiety increases c-Fos expression in specific subdivisions of the rat basolateral amygdaloid complex.

    Science.gov (United States)

    Hale, Matthew W; Bouwknecht, J Adriaan; Spiga, Francesca; Shekhar, Anantha; Lowry, Christopher A

    2006-12-11

    Anxiety states and anxiety-related behaviors appear to be regulated by a distributed and highly interconnected system of forebrain structures including the basolateral amygdaloid complex (basolateral amygdala). Despite a wealth of research examining the role of the basolateral amygdala in anxiety-related behaviors and anxiety states, the specific subdivisions of the basolateral amygdala that are involved in responses to anxiogenic stimuli have not been examined. In this study, we investigated the effects of exposure to a novel open-field environment, with either low- or high-levels of illumination, on expression of the protein product of the immediate-early gene c-Fos in subdivisions of the rat basolateral amygdala. The subdivisions studied included the lateral, ventrolateral and ventromedial parts of the lateral amygdaloid nucleus, the anterior, posterior and ventral parts of the basolateral amygdaloid nucleus and the anterior and posterior part of the basomedial amygdaloid nucleus. Small increases in the number of c-Fos-immunoreactive cells were observed in several, but not all, of the subdivisions of the basolateral amygdala studied following exposure of rats to either the high- or low-light conditions, compared to home cage or handled control groups. Open-field exposure in both the high- and low-light conditions resulted in a marked increase in c-Fos expression in the anterior part of the basolateral amygdaloid nucleus compared to either home cage or handled control groups. These findings point toward anatomical and functional heterogeneity within the basolateral amygdaloid complex and an important role of the anterior part of the basolateral amygdaloid nucleus in the neural mechanisms underlying physiological or behavioral responses to this anxiety-related stimulus.

  2. Exposure to an open-field arena increases c-Fos expression in a distributed anxiety-related system projecting to the basolateral amygdaloid complex.

    Science.gov (United States)

    Hale, M W; Hay-Schmidt, A; Mikkelsen, J D; Poulsen, B; Shekhar, A; Lowry, C A

    2008-08-26

    Anxiety states and anxiety-related behaviors appear to be regulated by a distributed and highly interconnected system of brain structures including the basolateral amygdala. Our previous studies demonstrate that exposure of rats to an open-field in high- and low-light conditions results in a marked increase in c-Fos expression in the anterior part of the basolateral amygdaloid nucleus (BLA) compared with controls. The neural mechanisms underlying the anatomically specific effects of open-field exposure on c-Fos expression in the BLA are not clear, however, it is likely that this reflects activation of specific afferent input to this region of the amygdala. In order to identify candidate brain regions mediating anxiety-induced activation of the basolateral amygdaloid complex in rats, we used cholera toxin B subunit (CTb) as a retrograde tracer to identify neurons with direct afferent projections to this region in combination with c-Fos immunostaining to identify cells responding to exposure to an open-field arena in low-light (8-13 lux) conditions (an anxiogenic stimulus in rats). Adult male Wistar rats received a unilateral microinjection of 4% CTb in phosphate-buffered saline into the basolateral amygdaloid complex. Rats were housed individually for 11 days after CTb injections and handled (HA) for 2 min each day. On the test day rats were either, 1) exposed to an open-field in low-light conditions (8-13 lux) for 15 min (OF); 2) briefly HA or 3) left undisturbed (control). We report that dual immunohistochemical staining for c-Fos and CTb revealed an increase in the percentage of c-Fos-immunopositive basolateral amygdaloid complex-projecting neurons in open-field-exposed rats compared with HA and control rats in the ipsilateral CA1 region of the ventral hippocampus, subiculum and lateral entorhinal cortex. These data are consistent with the hypothesis that exposure to the open-field arena activates an anxiety-related neuronal system with convergent input to the

  3. Quantification of extracellular levels of corticosterone in the basolateral amygdaloid complex of freely-moving rats: a dialysis study of circadian variation and stress-induced modulation.

    Science.gov (United States)

    Bouchez, Gaëlle; Millan, Mark J; Rivet, Jean-Michel; Billiras, Rodolphe; Boulanger, Raphaël; Gobert, Alain

    2012-05-03

    Corticosterone influences emotion and cognition via actions in a diversity of corticolimbic structures, including the amygdala. Since extracellular levels of corticosterone in brain have rarely been studied, we characterized a specific and sensitive enzymatic immunoassay for microdialysis quantification of corticosterone in the basolateral amygdaloid complex of freely-moving rats. Corticosterone levels showed marked diurnal variation with an evening (dark phase) peak and stable, low levels during the day (light phase). The "anxiogenic agents", FG7142 (20 mg/kg) and yohimbine (10 mg/kg), and an environmental stressor, 15-min forced-swim, induced marked and sustained (1-3 h) increases in dialysis levels of corticosterone in basolateral amygdaloid complex. They likewise increased dialysis levels of dopamine and noradrenaline, but not serotonin and GABA. As compared to basal corticosterone levels of ~200-300 pg/ml, the elevation provoked by forced-swim was ca. 20-fold and this increase was abolished by adrenalectomy. Interestingly, stress-induced rises of corticosterone levels in basolateral amygdaloid complex were abrogated by combined but not separate administration of the corticotrophin releasing factor(1) (CRF(1)) receptor antagonist, CP154,526, and the vasopressin(1b) (V(1b)) receptor antagonist, SSR149,415. Underpinning their specificity, they did not block forced-swim-induced elevations in dopamine and noradrenaline. In conclusion, extracellular levels of corticosterone in the basolateral amygdaloid complex display marked diurnal variation. Further, they are markedly elevated by acute stressors, the effects of which are mediated (in contrast to concomitant elevations in levels of monoamines) by co-joint recruitment of CRF(1) and V(1b) receptors. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Nuclear organization of the rock hyrax (Procavia capensis) amygdaloid complex.

    Science.gov (United States)

    Limacher-Burrell, Aude-Marie; Bhagwandin, Adhil; Gravett, Nadine; Maseko, Busisiwe C; Manger, Paul R

    2016-07-01

    The current study details the nuclear organization of the rock hyrax amygdaloid complex using both Nissl and myelin stains, along with a range of immunohistochemical stains. The rock hyrax appears to be the least derived of the Afrotherians, a group with a huge range of body phenotypes, life histories and specialized behaviours, brain sizes, and ecological niches. In this sense, the rock hyrax represents a species where the organization of the amygdaloid complex may be reflective of that in stem Eutherian mammals. Our analysis indicates that the nuclear organization of the rock hyrax amygdaloid complex is indeed very similar to that in other mammals studied, with four major nuclear groupings (the deep or basolateral group; the superficial or cortical-like or corticomedial group; the centromedial group; and the other amygdaloid nuclei) being observed, which is typical of Eutherian mammals. Moreover, each of these groupings is composed of several nuclei, the vast majority of which were readily identified in the rock hyrax. Small nuclei identified in rodents and primates were absent in the superficial and centromedial groups, seemingly involved with olfaction. A novel shell-like nucleus of the accessory basal nuclear cluster was observed in the rock hyrax, again, likely to be involved in olfaction. The current study underlines the conserved nature of nuclear parcellation in the Eutherian mammal amygdaloid complex and indicates that across most species, the flow of information processing related to species-specific affective-laden stimuli and the resultant physiological and behavioural outcomes are likely to be similar across species.

  5. Exposure to an open-field arena increases c-Fos expression in a distributed anxiety-related system projecting to the basolateral amygdaloid complex

    DEFF Research Database (Denmark)

    Hale, M.W.; Hay-Schmidt, A.; Mikkelsen, J.D.

    2008-01-01

    Anxiety states and anxiety-related behaviors appear to be regulated by a distributed and highly interconnected system of brain structures including the basolateral amygdala. Our previous studies demonstrate that exposure of rats to an open-field in high- and low-light conditions results in a marked...... increase in c-Fos expression in the anterior part of the basolateral amygdaloid nucleus (BLA) compared with controls. The neural mechanisms underlying the anatomically specific effects of open-field exposure on c-Fos expression in the BLA are not clear, however, it is likely that this reflects activation...... to this region in combination with c-Fos immunostaining to identify cells responding to exposure to an open-field arena in low-light (8-13 lux) conditions (an anxiogenic stimulus in rats). Adult male Wistar rats received a unilateral microinjection of 4% CTb in phosphate-buffered saline into the basolateral...

  6. Developmental changes of morphology in the basolateral complex of the rabbit amygdala.

    Science.gov (United States)

    Jagalska-Majewska, Hanna; Luczyńska, Anna; Wójcik, Sławomir; Dziewiatkowski, Jerzy; Kurlapska, Renata; Moryś, Janusz

    2003-01-01

    The aim of the present study is to follow topographical and morphological changes in the development of the amygdaloid basolateral complex (BLC) in the rabbit. The material consists of 35 brains of New Zealand rabbits of both sexes, divided into 7 age groups (P2-P90). In cresyl violet preparations BLC is already well visible on P2 and is composed of the lateral (divided into dorsolateral and ventromedial divisions), basolateral and homogenous basomedial nuclei. On about the 7th postnatal day it is possible to divide the basomedial nucleus (BM) into dorsal (Bmd) and ventral (BMv) divisions. The topography and subdivisions set on P7 are maintained in further periods of life. The morphology of neurons (shape, dendrites, staining) changes significantly until P21 in all BLC nuclei. Our results indicate that BLC achieves morphological maturity relatively late, which is probably connected with a long creation of emotional memory and regulation of emotional behaviour.

  7. Asymmetry of limbic structure (hippocampal formation and amygdaloidal complex at PTSD

    Directory of Open Access Journals (Sweden)

    Aida Sarač-Hadžihalilović

    2003-05-01

    Full Text Available Defining exact position of weak anatomic function which is find in a base of neurological and psychiatric disorder is just became the subject of intensive research interest. For this purposes it is important to implement structural and functional MRI techniques, also for further lightening and seeing subject of this work, more concretely connected to PTSD. Therefore, exactly MRI gives most sensitive volumetric measuring of hippocampal formation and amygdaloidal complex.The goal of this work was to research asymmetry of hippocampal formation and amygdaloidal complex to the PTSD patients.Results showed that at the axial slice length of hippocampal formation on the left and right side of all patients are significantly asymmetric. At the sagittal slice from the left side of hippocampal formation is in many cases longer than right about 50 %. At the coronal slice, there are no significant differences toward patient proportion according to symm. / asymm. of the hippocampal formation width at the right and left side. Difference in volume average of hippocampal formation between right and left side for axial and coronal slice is not statistically significant, but it is significant for sagittal slice. In about amygdaloidal complex patients with PTSD toward symm. / asymm. Amygdaloidal complex at the right and left side of axial and sagittal slice in all three measurement shows asymmetry, what is especially shown at sagittal slice. Difference in average length of amygdaloidal complex at the right and left side is not statistically significant for no one slice.Therefore, results of a new research that are used MRI, showed smaller hippocampal level at PTSD (researched by Van der Kolka 1996, Pitman 1996, Bremner et al., 1995.. Application of MRI technique in research of asymmetry of hippocampal formation and amygdaloidal complex, which we used in our research, we recommend as a template for future researches in a sense of lightening anatomic function that is

  8. DBS in the baso-lateral amygdala improves symptoms of autism and related self-injurious behaviourA case report and hypothesis on the pathogenesis of the disorder

    Directory of Open Access Journals (Sweden)

    Volker eSturm

    2013-01-01

    Full Text Available We treated a thirteen year old boy for life-threatening self-injurious behavior (SIB and severe Kanner’s autism with Deep Brain Stimulation (DBS in the amygdaloid complex as well as in the supra-amygdaloid projection system. Two DBS-electrodes were placed in both structures of each hemisphere. The stimulation contacts targeted the paralaminar, the basolateral, the central amygdala as well as the supra-amygdaloid projection system. DBS was applied to each of these structures, but only stimulation of the baso-lateral part proved effective in improving SIB and core symptoms of the autism spectrum in the emotional, social and even cognitive domains over a follow up of now 24 months. These results, which have been gained for the first time in a patient, support hypotheses, according to which the amygdala may be pivotal in the pathogeneses of autism and point to the special relevance of the baso-lateral part.

  9. Neurosecretory cells of the amygdaloid complex during estrous cycle.

    Science.gov (United States)

    Akhmadeev, A V; Kalimullina, L B

    2005-02-01

    Ultrastructure of neurosecretory cells of the dorsomedial nucleus of the cerebral amygdaloid complex (one of the main zones of sexual dimorphism) was studied in different phases of the estrous cycle. The characteristics of the "light" and "dark" cells change depending on the concentrations of sex steroids during estrus and metestrus.

  10. Architectonic subdivisions of the amygdalar complex of a primitive marsupial (Didelphis aurita).

    Science.gov (United States)

    Rocha-Rego, V; Canteras, N S; Anomal, R F; Volchan, E; Franca, J G

    2008-05-15

    The architecture of the amygdaloid complex of a marsupial, the opossum Didelphis aurita, was analyzed using classical stains like Nissl staining and myelin (Gallyas) staining, and enzyme histochemistry for acetylcholinesterase and NADPH-diaphorase. Most of the subdivisions of the amygdaloid complex described in eutherian mammals were identified in the opossum brain. NADPH-diaphorase revealed reactivity in the neuropil of nearly all amygdaloid subdivisions with different intensities, allowing the identification of the medial and lateral subdivisions of the cortical posterior nucleus and the lateral subdivision of the lateral nucleus. The lateral, central, basolateral and basomedial nuclei exhibited acetylcholinesterase positivity, which provided a useful chemoarchitectural criterion for the identification of the anterior basolateral nucleus. Myelin stain allowed the identification of the medial subdivision of the lateral nucleus, and resulted in intense staining of the medial subdivisions of the central nucleus. The medial, posterior, and cortical nuclei, as well as the amygdalopiriform area did not exhibit positivity for myelin staining. On the basis of cyto- and chemoarchitectural criteria, the present study highlights that the opossum amygdaloid complex shares similarities with that of other species, thus supporting the idea that the organization of the amygdala is part of a basic plan conserved through mammalian evolution.

  11. Applying mass spectrometry-based qualitative proteomics to human amygdaloid complex

    Directory of Open Access Journals (Sweden)

    Joaquín eFernández-Irigoyen

    2014-03-01

    Full Text Available The amygdaloid complex is a key brain structure involved in the expression of behaviours and emotions such as learning, fear, and anxiety. Brain diseases including depression, epilepsy, autism, schizophrenia, and Alzheimer`s disease, have been associated with amygdala dysfunction. For several decades, neuroanatomical, neurophysiological, volumetric, and cognitive approaches have been the gold standard techniques employed to characterize the amygdala functionality. However, little attention has been focused specifically on the molecular composition of the human amygdala from the perspective of proteomics. We have performed a global proteome analysis employing protein and peptide fractionation methods followed by nano-liquid chromatography tandem mass spectrometry (nanoLC-MS/MS, detecting expression of at least 1820 protein species in human amygdala, corresponding to 1814 proteins which represent a 9-fold increase in proteome coverage with respect to previous proteomic profiling of the rat amygdala. Gene ontology analysis were used to determine biological process represented in human amygdala highlighting molecule transport, nucleotide binding, and oxidoreductase and GTPase activities. Bioinformatic analyses have revealed that nearly 4% of identified proteins have been previously associated to neurodegenerative syndromes, and 26% of amygdaloid proteins were also found to be present in cerebrospinal fluid (CSF. In particular, a subset of amygdaloid proteins was mainly involved in axon guidance, synaptic vesicle release, L1CAM interactome, and signaling pathways transduced by NGF and NCAM1. Taken together, our data contributes to the repertoire of the human brain proteome, serving as a reference library to provide basic information for understanding the neurobiology of the human amygdala.

  12. Stereological analysis of neuron, glial and endothelial cell numbers in the human amygdaloid complex.

    Directory of Open Access Journals (Sweden)

    María García-Amado

    Full Text Available Cell number alterations in the amygdaloid complex (AC might coincide with neurological and psychiatric pathologies with anxiety imbalances as well as with changes in brain functionality during aging. This stereological study focused on estimating, in samples from 7 control individuals aged 20 to 75 years old, the number and density of neurons, glia and endothelial cells in the entire AC and in its 5 nuclear groups (including the basolateral (BL, corticomedial and central groups, 5 nuclei and 13 nuclear subdivisions. The volume and total cell number in these territories were determined on Nissl-stained sections with the Cavalieri principle and the optical fractionator. The AC mean volume was 956 mm(3 and mean cell numbers (x10(6 were: 15.3 neurons, 60 glial cells and 16.8 endothelial cells. The numbers of endothelial cells and neurons were similar in each AC region and were one fourth the number of glial cells. Analysis of the influence of the individuals' age at death on volume, cell number and density in each of these 24 AC regions suggested that aging does not affect regional size or the amount of glial cells, but that neuron and endothelial cell numbers respectively tended to decrease and increase in territories such as AC or BL. These accurate stereological measures of volume and total cell numbers and densities in the AC of control individuals could serve as appropriate reference values to evaluate subtle alterations in this structure in pathological conditions.

  13. Stereological analysis of neuron, glial and endothelial cell numbers in the human amygdaloid complex.

    Science.gov (United States)

    García-Amado, María; Prensa, Lucía

    2012-01-01

    Cell number alterations in the amygdaloid complex (AC) might coincide with neurological and psychiatric pathologies with anxiety imbalances as well as with changes in brain functionality during aging. This stereological study focused on estimating, in samples from 7 control individuals aged 20 to 75 years old, the number and density of neurons, glia and endothelial cells in the entire AC and in its 5 nuclear groups (including the basolateral (BL), corticomedial and central groups), 5 nuclei and 13 nuclear subdivisions. The volume and total cell number in these territories were determined on Nissl-stained sections with the Cavalieri principle and the optical fractionator. The AC mean volume was 956 mm(3) and mean cell numbers (x10(6)) were: 15.3 neurons, 60 glial cells and 16.8 endothelial cells. The numbers of endothelial cells and neurons were similar in each AC region and were one fourth the number of glial cells. Analysis of the influence of the individuals' age at death on volume, cell number and density in each of these 24 AC regions suggested that aging does not affect regional size or the amount of glial cells, but that neuron and endothelial cell numbers respectively tended to decrease and increase in territories such as AC or BL. These accurate stereological measures of volume and total cell numbers and densities in the AC of control individuals could serve as appropriate reference values to evaluate subtle alterations in this structure in pathological conditions.

  14. A sub-threshold dose of pilocarpine increases glutamine synthetase in reactive astrocytes and enhances the progression of amygdaloid-kindling epilepsy in rats.

    Science.gov (United States)

    Sun, Hong-Liu; Deng, Da-Ping; Pan, Xiao-Hong; Wang, Chao-Yun; Zhang, Xiu-Li; Chen, Xiang-Ming; Wang, Chun-Hua; Liu, Yu-Xia; Li, Shu-Cui; Bai, Xian-Yong; Zhu, Wei

    2016-03-02

    The prognosis of patients exposed to a sub-threshold dose of a proconvulsant is difficult to establish. In this study, we investigated the effect of a single sub-threshold dose of the proconvulsant pilocarpine (PILO) on the progression of seizures that were subsequently induced by daily electrical stimulation (kindling) of the amygdaloid formation. Male Sprague–Dawley rats were each implanted with an electrode in the right basolateral amygdala and an indwelling cannula in the right ventricle. The animals were randomized into groups and were administered one of the following treatments: saline, PILO, saline+L-α-aminoadipic acid (L-AAA; one dosage tested), PILO+L-AAA, or PILO+L-methionine sulfoximine (three dosages tested). Amygdaloid stimulation and electroencephalography were performed once daily. We performed immunohistochemistry and western blot for glial fibrillary acidic protein and glutamine synthetase (GS). We also assayed the enzymic activity of GS in discrete brain regions. An intraperitoneal injection of a sub-threshold PILO dose enhanced the progression of amygdaloid-kindling seizures and was accompanied by an increase in reactive-astrocyte and GS (content and activity) in the hippocampus and piriform cortex. L-AAA and L-methionine sulfoximine, inhibitors of astrocytic and GS function, respectively, abolished the effect of PILO on amygdaloid-kindling seizures. We conclude that one sub-threshold dose of a proconvulsant may enhance the progression of subsequent epilepsy and astrocytic GS may play a role in this phenomenon. Thus, a future therapy for epilepsy could be inhibition of astrocytes and/or GS.

  15. [A case of malignant amygdaloid cyst].

    Science.gov (United States)

    Abdennour, S; Allag, S; Benhalima, H

    2014-12-01

    An amygdaloid cyst is a rare high laterocervical cystic tumor arising from the second branchial cleft. It accounts for 2% of laterocervical tumors and up to 85% of second branchial cleft abnormalities [1]. The incidence of intracystic squamous cell carcinoma ranges from 4 to 22% [2]. The diagnosis of primary carcinoma or intracystic metastasis is a controversial issue. We report a rare case of degenerate amygdaloid cyst meeting the diagnostic criteria for intracystic squamous cell carcinoma determined by Martin and Khafif. A 73-year-old female patient consulted for a left cervical swelling in 2010; the diagnosis was an amygdaloid cyst. She had a history of squamous cell carcinoma of the hard palate (T1NoMo) surgery and radiation therapy in 2009, without recurrence. Three years later, the swelling increased to a large size without any cervical node involvement. An exploratory cervicotomy with histological study revealed intracystic squamous cell degeneration. Primary squamous cell carcinoma location in the wall of an amygdaloid cyst is extremely rare and a highly controversial issue. The challenge is to be able to discriminate between a cystic metastasis of squamous cell carcinoma of the aerodigestive tract and a primary squamous cell carcinoma located in the wall of an amygdaloid cyst. Martin and Khafif defined specific criteria to confirm the diagnosis of primary branchiogenic carcinoma. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  16. Activation of corticotropin-releasing factor receptors from the basolateral or central amygdala increases the tonic immobility response in guinea pigs: an innate fear behavior.

    Science.gov (United States)

    Donatti, Alberto Ferreira; Leite-Panissi, Christie Ramos Andrade

    2011-11-20

    The tonic immobility (TI) behavior is an innate response associated with extreme threat situations such as a predator attack. Several studies have provided evidence suggesting an important role for corticotropin-releasing factor (CRF) in the regulation of the endocrine system, defensive behaviors and behavioral responses to stress. TI has been shown to be positively correlated with the basal plasma levels of corticosterone. CRF receptors and neurons that are immunoreactive to CRF are found in many cerebral regions, especially in the amygdaloid complex. Previous reports have demonstrated the involvement of the basolateral amygdaloid (BLA) and central amygdaloid (CeA) nuclei in the TI response. In this study, we evaluated the CRF system of the BLA and the CeA in the modulation of the TI response in guinea pigs. The activation of CRF receptors in the BLA and in the CeA promoted an increase in the TI response. In contrast, the inhibition of these receptors via alpha-helical-CRF(9-41) decreased the duration of the TI response. Moreover, neither the activation nor inhibition of CRF receptors in the BLA or the CeA altered spontaneous motor activity in the open-field test. These data suggest that the activation of the CRF receptors in the BLA or the CeA probably potentiates fear and anxiety, which may be one of the factors that promote an increase in the TI behavior. Therefore, these data support the role of the CRF system in the control of emotional responses, particularly in the modulation of innate fear. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Opiate modification of amygdaloid-kindled seizures in rats.

    Science.gov (United States)

    Stone, W S; Eggleton, C E; Berman, R F

    1982-05-01

    Male Long-Evans rats were stereotaxically implanted bilaterally with bipolar electrodes in the central amygdala. Rats were then kindled once daily for 1 sec until 3 consecutive Stage V [25] kindled seizures were elicited. On the following day, animals were injected (IP) with either saline, naloxone (10 mg/kg), naltrexone (10mg/kg) or morphine sulfate (10 mg/kg) and again stimulated at the kindling stimulation parameters. Saline injected animals continued to show long bilateral AD's and behaviors (i.e., forelimb clonus, rearing, falling) typical of Stage V kindled animals. In contrast, rats injected with naloxone or naltrexone showed reduced behavioral seizures. Potentiation of post-ictal spiking by morphine in amygdaloid-kindled rats was also observed supporting previous reports [7,21]. In a second experiment, the reduction of kindled seizure serverity by naloxone was systematically replicated. It is concluded that opiates can significantly modify amygdaloid-kindled seizures, and that brain endorphins may play a role in the development or maintenance of an amygdaloid-kindled seizure focus.

  18. The effect of exogenous GM1 ganglioside on kindled-amygdaloid seizures.

    Science.gov (United States)

    Albertson, T E; Walby, W F

    1987-01-01

    The effects of 12 daily doses of 30 mg/kg GM1 ganglioside i.p. on the acquisition of kindled-amygdaloid seizures in the rat was studied. No modification in the rate of kindling or the expression of the elicited seizures was noted during the acquisition phase. Further studies with additional fully amygdaloid kindled rats failed to show significant modification of suprathreshold or threshold elicited seizures after single 30-60 mg/kg i.p. doses of GM1 ganglioside. Despite previous studies which have shown antibodies to GM1 ganglioside to be convulsive, no anticonvulsant activity was demonstrated in this study with exogenous GM1 ganglioside using a battery of kindled-amygdaloid seizure tests in the rat.

  19. Post-Training Reversible Disconnection of the Ventral Hippocampal-Basolateral Amygdaloid Circuits Impairs Consolidation of Inhibitory Avoidance Memory in Rats

    Science.gov (United States)

    Wang, Gong-Wu; Liu, Jian; Wang, Xiao-Qin

    2017-01-01

    The ventral hippocampus (VH) and the basolateral amygdala (BLA) are both crucial in inhibitory avoidance (IA) memory. However, the exact role of the VH-BLA circuit in IA memory consolidation is unclear. This study investigated the effect of post-training reversible disconnection of the VH-BLA circuit in IA memory consolidation. Male Wistar rats…

  20. Basolateral BMP signaling in polarized epithelial cells.

    Directory of Open Access Journals (Sweden)

    Masao Saitoh

    Full Text Available Bone morphogenetic proteins (BMPs regulate various biological processes, mostly mediated by cells of mesenchymal origin. However, the roles of BMPs in epithelial cells are poorly understood. Here, we demonstrate that, in polarized epithelial cells, BMP signals are transmitted from BMP receptor complexes exclusively localized at the basolateral surface of the cell membrane. In addition, basolateral stimulation with BMP increased expression of components of tight junctions and enhanced the transepithelial resistance (TER, counteracting reduction of TER by treatment with TGF-β or an anti-tumor drug. We conclude that BMPs maintain epithelial polarity via intracellular signaling from basolaterally localized BMP receptors.

  1. Cell-specific expression of calcineurin immunoreactivity within the rat basolateral amygdala complex and colocalization with the neuropeptide Y Y1 receptor.

    Science.gov (United States)

    Leitermann, Randy J; Sajdyk, Tammy J; Urban, Janice H

    2012-10-01

    Neuropeptide Y (NPY) produces potent anxiolytic effects via activation of NPY Y1 receptors (Y1r) within the basolateral amygdaloid complex (BLA). The role of NPY in the BLA was recently expanded to include the ability to produce stress resilience and long-lasting reductions in anxiety-like behavior. These persistent behavioral effects are dependent upon activity of the protein phosphatase, calcineurin (CaN), which has long been associated with shaping long-term synaptic signaling. Furthermore, NPY-induced reductions in anxiety-like behavior persist months after intra-BLA delivery, which together indicate a form of neuronal plasticity had likely occurred. To define a site of action for NPY-induced CaN signaling within the BLA, we employed multi-label immunohistochemistry to determine which cell types express CaN and if CaN colocalizes with the Y1r. We have previously reported that both major neuronal cell populations in the BLA, pyramidal projection neurons and GABAergic interneurons, express the Y1r. Therefore, this current study evaluated CaN immunoreactivity in these cell types, along with Y1r immunoreactivity. Antibodies against calcium-calmodulin kinase II (CaMKII) and GABA were used to identify pyramidal neurons and GABAergic interneurons, respectively. A large population of CaN immunoreactive cells displayed Y1r immunoreactivity (90%). Nearly all (98%) pyramidal neurons displayed CaN immunoreactivity, while only a small percentage of interneurons (10%) contained CaN immunoreactivity. Overall, these anatomical findings provide a model whereby NPY could directly regulate CaN activity in the BLA via activation of the Y1r on CaN-expressing, pyramidal neurons. Importantly, they support BLA pyramidal neurons as prime targets for neuronal plasticity associated with the long-term reductions in anxiety-like behavior produced by NPY injections into the BLA. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. The anticonvulsant action of nafimidone on kindled amygdaloid seizures in rats.

    Science.gov (United States)

    Albertson, T E; Walby, W F

    1988-01-01

    The anticonvulsant effectiveness of nafimidone (1-[2-naphthoylmethyl]imidazole hydrochloride) was evaluated in the kindled amygdaloid seizure model in rats. Nafimidone (3.1-120 mg/kg i.p.) was evaluated at 30 min in previously kindled rats using both threshold (20 microA increments) and supranthreshold (400 microA) paradigms. Nafimidone (25-50 mg/kg) significantly reduced supranthreshold elicited afterdischarge length and seizure severity only at doses with some prestimulation toxicity. The maximum anticonvulsant effectiveness for the 25 mg/kg i.p. dose of nafimidone was seen between 15 and 30 min utilizing a suprathreshold kindling paradigm. Nafimidone did not significantly elevate seizure thresholds at the doses tested; however, nafimidone (3.1-50 mg/kg) reduced the severity and afterdischarge duration of threshold elicited seizures in a non-dose response manner. Drug-induced electroencephalographic spikes were seen in both cortex and amygdala in most kindled rats receiving 100-120 mg/kg i.p. within 30 min of dosing before electrical stimulation. The frequency of spike and wave complexes increased in most of these animals leading to drug-induced spontaneous seizures and death in approximately 25% before electrical stimulation. This study has demonstrated that although nafimidone can modify both threshold and suprathreshold elicited kindled amygdaloid seizures, it lacks significant specificity in this model of epilepsy.

  3. Curcumin inhibits amygdaloid kindled seizures in rats.

    Science.gov (United States)

    DU, Peng; Li, Xin; Lin, Hao-Jie; Peng, Wei-Feng; Liu, Jian-Ying; Ma, Yu; Fan, Wei; Wang, Xin

    2009-06-20

    Curcumin can reduce the severity of seizures induced by kainate acid (KA), but the role of curcumin in amygdaloid kindled models is still unknown. This study aimed to explore the effect of curcumin on the development of kindling in amygdaloid kindled rats. With an amygdaloid kindled Sprague-Dawley (SD) rat model and an electrophysiological method, different doses of curcumin (10 mgxkg(-1)xd(-1) and 30 mgxkg(-1)xd(-1) as low dose groups, 100 mgxkg(-1)xd(-1) and 300 mgxkg(-1)xd(-1) as high dose groups) were administrated intraperitoneally during the whole kindling days, by comparison with the course of kindling, afterdischarge (AD) thresholds and the number of ADs to reach the stages of class I to V seizures in the rats between control and experimental groups. One-way or two-way ANOVA and Fisher's least significant difference post hoc test were used for statistical analyses. Curcumin (both 100 mgxkg(-1)xd(-1) and 300 mgxkg(-1)xd(-1)) significantly inhibited the behavioral seizure development in the (19.80 +/- 2.25) and (21.70 +/- 2.21) stimulations respectively required to reach the kindled state. Rats treated with 100 mgxkg(-1)xd(-1) curcumin 30 minutes before kindling stimulation showed an obvious increase in the stimulation current intensity required to evoke AD from (703.3 +/- 85.9) microA to (960.0 +/- 116.5) microA during the progression to class V seizures. Rats treated with 300 mgxkg(-1)xd(-1) curcumin showed a significant increase in the stimulation current intensity required to evoke AD from (735.0 +/- 65.2) microA to (867.0 +/- 93.4) microA during the progression to class V seizures. Rats treated with 300 mgxkg(-1)xd(-1) curcumin required much more evoked ADs to reach the stage of class both IV (as (199.83 +/- 12.47) seconds) and V seizures (as (210.66 +/- 10.68) seconds). Rats treated with 100 mgxkg(-1)xd(-1) curcumin required much more evoked ADs to reach the stage of class V seizures (as (219.56 +/- 18.24) seconds). Our study suggests that curcumin has

  4. Inhibition of amygdaloid dopamine D2 receptors impairs emotional learning measured with fear-potentiated startle.

    Science.gov (United States)

    Greba, Q; Gifkins, A; Kokkinidis, L

    2001-04-27

    Considerable advances have been made in understanding the neurocircuitry underlying the acquisition and expression of Pavlovian conditioned fear responses. Within the complex cellular and molecular processes mediating fearfulness, amygdaloid dopamine (DA), originating from cells in the ventral tegmental area (VTA) of the midbrain, is thought to contribute to fear-motivated responding. Considering that blockade of DA D(2) receptors is a common mechanism of action for antipsychotic agents, we hypothesized that inhibition of D(2) receptors in the amygdala may be involved in the antiparanoid effects of these drugs. To assess the role of amygdaloid DA D(2) receptors in aversive emotionality, the D(2) receptor antagonist raclopride was infused into the amygdala prior to Pavlovian fear conditioning. Potentiated startle was used as a behavioral indicator of fear and anxiety. Classical fear conditioning and acoustic startle testing were conducted in a single session allowing for the concomitant assessment of shock reactivity with startle enhancement. Depending on dose, the results found conditioned fear acquisition and retention to be impaired following administration of raclopride into the amygdala. Additionally, the learning deficit was dissociated from shock detection and from fear expression assessed with the shock sensitization of acoustic startle. These findings further refine the known neural mechanisms of amygdala-based emotional learning and memory and were interpreted to suggest that, along with D(1) receptors, D(2) receptors in the amygdala may mediate the formation and the retention of newly-acquired fear associations.

  5. Comparative analyses of the neuron numbers and volumes of the amygdaloid complex in old and new world primates.

    Science.gov (United States)

    Carlo, C N; Stefanacci, L; Semendeferi, K; Stevens, C F

    2010-04-15

    The amygdaloid complex (AC), a key component of the limbic system, is a brain region critical for the detection and interpretation of emotionally salient information. Therefore, changes in its structure and function are likely to provide correlates of mood and emotion disorders, diseases that afflict a large portion of the human population. Previous gross comparisons of the AC in control and diseased individuals have, however, mainly failed to discover these expected correlations with diseases. We have characterized AC nuclei in different nonhuman primate species to establish a baseline for more refined comparisons between the normal and the diseased amygdala. AC nuclei volume and neuron number in 19 subdivisions are reported from 13 Old and New World primate brains, spanning five primate species, and compared with corresponding data from humans. Analysis of the four largest AC nuclei revealed that volume and neuron number of one component, the central nucleus, has a negative allometric relationship with total amygdala volume and neuron number, which is in contrast with the isometric relationship found in the other AC nuclei (for both neuron number and volume). Neuron density decreases across all four nuclei according to a single power law with an exponent of about minus one-half. Because we have included quantitative comparisons with great apes and humans, our conclusions apply to human brains, and our scaling laws can potentially be used to study the anatomical correlates of the amygdala in disorders involving pathological emotion processing. (c) 2009 Wiley-Liss, Inc.

  6. Amygdaloid projections to the ventral striatum in mice: direct and indirect chemosensory inputs to the brain reward system.

    Science.gov (United States)

    Novejarque, Amparo; Gutiérrez-Castellanos, Nicolás; Lanuza, Enrique; Martínez-García, Fernando

    2011-01-01

    Rodents constitute good models for studying the neural basis of sociosexual behavior. Recent findings in mice have revealed the molecular identity of the some pheromonal molecules triggering intersexual attraction. However, the neural pathways mediating this basic sociosexual behavior remain elusive. Since previous work indicates that the dopaminergic tegmento-striatal pathway is not involved in pheromone reward, the present report explores alternative pathways linking the vomeronasal system with the tegmento-striatal system (the limbic basal ganglia) by means of tract-tracing experiments studying direct and indirect projections from the chemosensory amygdala to the ventral striato-pallidum. Amygdaloid projections to the nucleus accumbens, olfactory tubercle, and adjoining structures are studied by analyzing the retrograde transport in the amygdala from dextran amine and fluorogold injections in the ventral striatum, as well as the anterograde labeling found in the ventral striato-pallidum after dextran amine injections in the amygdala. This combination of anterograde and retrograde tracing experiments reveals direct projections from the vomeronasal cortex to the ventral striato-pallidum, as well as indirect projections through different nuclei of the basolateral amygdala. Direct projections innervate mainly the olfactory tubercle and the islands of Calleja, whereas indirect projections are more widespread and reach the same structures and the shell and core of nucleus accumbens. These pathways are likely to mediate innate responses to pheromones (direct projections) and conditioned responses to associated chemosensory and non-chemosensory stimuli (indirect projections). Comparative studies indicate that similar connections are present in all the studied amniote vertebrates and might constitute the basic circuitry for emotional responses to conspecifics in most vertebrates, including humans.

  7. Endocannabinoid signaling within the basolateral amygdala integrates multiple stress hormone effects on memory consolidation

    NARCIS (Netherlands)

    Atsak, P.; Hauer, D.; Campolongo, P.; Schelling, G.; Fornari, R.V.; Roozendaal, B.

    2015-01-01

    Glucocorticoid hormones are known to act synergistically with other stress-activated neuromodulatory systems, such as norepinephrine and corticotropin-releasing factor (CRF), within the basolateral complex of the amygdala (BLA) to induce optimal strengthening of the consolidation of long-term memory

  8. Electrophysiological study of transport systems in isolated perfused pancreatic ducts: properties of the basolateral membrane

    DEFF Research Database (Denmark)

    Novak, I; Greger, R

    1988-01-01

    - concentration from 0 to 25 mmol/l produced fast and sustained depolarization of PDbl by 8.5 +/- 1.0 mV (n = 149). It was investigated whether the effect of HCO3- was due to a Na+-dependent transport mechanism on the basolateral membrane, where the ion complex transferred into the cell would be positively...... was monitored by electrophysiological techniques. In this report some properties of the basolateral membrane of pancreatic duct cells are described. The transepithelial potential difference (PDte) in ducts bathed in HCO3(-)-free and HCO3(-)-containing solution was -0.8 and -2.6 mV, respectively. The equivalent...... short circuit current (Isc) under similar conditions was 26 and 50 microA . cm-2. The specific transepithelial resistance (Rte) was 88 omega cm2. In control solutions the PD across the basolateral membrane (PDbl) was -63 +/- 1 mV (n = 314). Ouabain (3 mmol/l) depolarized PDbl by 4.8 +/- 1.1 mV (n = 6...

  9. Neurochemical Correlates of Accumbal Dopamine D2 and Amygdaloid 5-HT1B Receptor Densities on Observational Learning of Aggression

    Science.gov (United States)

    Suzuki, Hideo; Lucas, Louis R.

    2015-01-01

    Social learning theory postulates that individuals learn to engage in aggressive behavior through observing an aggressive social model. Prior studies have shown that repeatedly observing aggression, also called “chronic passive exposure to aggression,” changes accumbal dopamine D2 receptor (D2R) and amygdaloid 5-HT1B receptor (5-HT1BR) densities in observers. But, the association between these outcomes remains unknown. Thus, our study used a rat paradigm to comprehensively examine the linkage between aggression, D2R density in the nucleus accumbens core (AcbC) and shell (AcbSh), and 5-HT1BR density in the medial (MeA), basomedial (BMA), and basolateral (BLA) amygdala following chronic passive exposure to aggression. Male Sprague-Dawley rats (N = 72) were passively exposed to either aggression or non-aggression acutely (1 day) or chronically (23 days). When observer rats were exposed to aggression chronically, they showed increased aggressive behavior and reduced D2R density in the bilateral AcbSh. On the other hand, exposure to aggression, regardless of exposure length, increased 5-HT1BR density in the bilateral BLA. Finally, low D2R in the AcbSh significantly interacted with high 5-HT1BR density in the BLA in predicting high levels of aggression in observer rats. Our results advance our understanding of the neurobiological mechanisms for observational learning of aggression, highlighting that dopamine-serotonin interaction, or AcbSh-BLA interaction, may contribute to a risk factor for aggression in observers who chronically witness aggressive interactions. PMID:25650085

  10. The anticonvulsant action of AHR-11748 on kindled amygdaloid seizures in rats.

    Science.gov (United States)

    Albertson, T E; Walby, W F

    1987-03-01

    The anticonvulsant effectiveness of AHR-11748 (3-[3-(trifluoromethyl)phenoxy]-1-azetidinecarboxamide) was evaluated in the kindled amygdaloid seizure model in rats. Doses of AHR-11748 that did not cause prestimulation toxicity significantly attenuated elicited afterdischarge durations and the severity of the accompanying behavioral convulsive response in previously kindled rats. AHR-11748 (25-100 mg/kg i.p.) was evaluated at 30 min in previously kindled rats using both threshold (20 microA increments) and suprathreshold (400 microA) paradigms. AHR-11748 (50-100.mg/kg) reduced suprathreshold elicited after discharges and seizure severity. Utilizing a suprathreshold kindling paradigm, the maximum anticonvulsant effectiveness for the 100 mg/kg i.p. dose of AHR-11748 was seen at 180 min. AHR-11748 significantly elevated seizure thresholds only at the 100 mg/kg dose. AHR-11748 (25-100 mg/kg) significantly reduced the severity of threshold elicited seizures. When AHR-11748 (50 and 100 mg/kg i.p.) was administered daily during kindling acquisition, the number of daily trials necessary to complete kindling significantly increased. A reduction in both the duration and the severity of the responses induced by the daily stimulations during the acquisition period was seen with AHR-11748 treatment. This study has demonstrated that AHR-11748 significantly modifies both the acquisition of kindling and the fully kindled amygdaloid seizures at doses that do not cause behavioral toxicity.

  11. Endocannabinoids in the rat basolateral amygdala enhance memory consolidation and enable glucocorticoid modulation of memory

    NARCIS (Netherlands)

    Campolongo, Patrizia; Roozendaal, Benno; Trezza, Viviana; Hauer, Daniela; Schelling, Gustav; McGaugh, James L.; Cuomo, Vincenzo

    2009-01-01

    Extensive evidence indicates that the basolateral complex of the amygdala (BLA) modulates the consolidation of memories for emotionally arousing experiences, an effect that involves the activation of the glucocorticoid system. Because the BLA expresses high densities of cannabinoid CB1 receptors,

  12. Noradrenergic activation of the basolateral amygdala modulates the consolidation of object-in-context recognition memory

    NARCIS (Netherlands)

    Barsegyan, Areg; McGaugh, James L.; Roozendaal, Benno

    2014-01-01

    Noradrenergic activation of the basolateral complex of the amygdala (BLA) is well known to enhance the consolidation of long-term memory of highly emotionally arousing training experiences. The present study investigated whether such noradrenergic activation of the BLA also influences the

  13. Glucocorticoid Effects on Memory Consolidation Depend on Functional Interactions between the Medial Prefrontal Cortex and Basolateral Amygdala

    NARCIS (Netherlands)

    Roozendaal, Benno; McReynolds, Jayme R.; Van der Zee, Eddy A.; Lee, Sangkwan; McGaugh, James L.; McIntyre, Christa K.

    2009-01-01

    Considerable evidence indicates that the basolateral complex of the amygdala (BLA) interacts with efferent brain regions in mediating glucocorticoid effects on memory consolidation. Here, we investigated whether glucocorticoid influences on the consolidation of memory for emotionally arousing

  14. Electrogenic Na+-independent Pi transport in canine renal basolateral membrane vesicles

    International Nuclear Information System (INIS)

    Schwab, S.J.; Hammerman, M.R.

    1986-01-01

    To define the mechanism by which Pi exists from the renal proximal tubular cell across the basolateral membrane, we measured 32Pi uptake in basolateral membrane vesicles from dog kidney in the absence of Na+. Preloading of basolateral vesicles with 2 mM Pi transstimulated 32Pi uptake, which is consistent with counterflow. We used measurements of transstimulation to quantitate the transport component of 32Pi uptake. Transstimulation of 32Pi uptake was inhibited less than 30% by concentrations of probenecid as high as 50 mM. In contrast, transstimulation of 35SO4(2-) uptake by intravesicular SO4(2-) was inhibited 92% by 5 mM probenecid. Preloading basolateral vesicles with SO4(2-) did not result in transstimulation of 32Pi uptake. Accumulation of 32Pi in basolateral vesicles above steady state was driven by a membrane potential (intravesicular positive), consistent with Na+-independent Pi transport being accompanied by the net transfer of negative charge across the membrane. We conclude that carrier-mediated, electrogenic Na+-independent 32Pi transport can be demonstrated in basolateral vesicles from dog kidney. This process appears to be mediated, at least in part, via a mechanism different from that by which SO4(2-) is transported. Electrogenic Na+-independent Pi transport may reflect one means by which Pi reabsorbed across the luminal membrane exists from the proximal tubular cell down an electrochemical gradient

  15. The human amygdaloid complex: a cytologic and histochemical atlas using Nissl, myelin, acetylcholinesterase and nicotinamide adenine dinucleotide phosphate diaphorase staining.

    Science.gov (United States)

    Sims, K S; Williams, R S

    1990-01-01

    We examined the distribution of acetylcholinesterase and nicotinamide adenine dinucleotide phosphate diaphorase enzyme activity in the human amygdala using histochemical techniques. Both methods revealed compartments of higher or lower enzyme activity, in cells or neuropil, which corresponded to the nuclear subdivisions of the amygdala as defined with classical Nissl and myelin methods. The boundaries between the histochemical compartments were usually so sharp that the identification of these nuclear subdivisions was enhanced. There was also variation of staining intensity within many of the nuclear subdivisions, such as the lateral and central nuclei, anterior amygdaloid area and the intercalated groups. This histochemical difference corresponded to more subtle differences in Nissl and myelin staining patterns, and suggests further structural subdivisions of potential functional significance. We present a revised scheme of anatomical parcellation of the human amygdala based upon serial analysis with all four techniques. Our expectation is that this will allow the delineation of a clearer homology between the cytoarchitectonic subdivisions of the human amygdala and those of experimental animals.

  16. Trafficking of the IKs -Complex in MDCK Cells

    DEFF Research Database (Denmark)

    David, Jens-Peter; Andersen, Martin N; Olesen, Søren-Peter

    2013-01-01

    place in a post-endoplasmic reticulum compartment. We demonstrate that K 7.1 targets the I -complex to the basolateral membrane, but that KCNE1 can redirect the complex to the apical membrane upon mutation of critical K 7.1 basolateral targeting signals. Our data provide a possible explanation...

  17. Effects of the medial or basolateral amygdala upon social anxiety and social recognition in mice.

    Science.gov (United States)

    Wang, Yu; Zhao, Shanshan; Liu, Xu; Fu, Qunying

    2014-01-01

    Though social anxiety and social recognition have been studied extensively, the roles of the medial or basolateral amygdala in the control of social anxiety and social recognition remain to be determined. This study investigated the effects of excitotoxic bilateral medial or basolateral amygdala lesions upon social anxiety and social recognition in-mice. Animals at 9 weeks of age were given bilateral medial or basolateral amygdala lesions via infusion of N-methyl- D-aspartate and then were used for behavioral tests: anxiety-related tests (including open-field test, light-dark test, and elevated-plus maze test), social behavior test in a novel environment, social recognition test, and flavor recognition test. Medial or basolateral amygdala-lesioned mice showed lower levels of anxiety and increased social behaviors in a novel environment. Destruction of the medial or basolateral amygdala neurons impaired social recognition but not flavor recognition. The medial or basolateral amygdala is involved in the control of anxiety-related behavior (social anxiety and social behaviors) in mice. Moreover, both the medial and the basolateral amygdala are essential for social recognition but not flavor recognition in mice.

  18. Hippocampal Ghrelin-positive neurons directly project to arcuate hypothalamic and medial amygdaloid nuclei. Could they modulate food-intake?

    Science.gov (United States)

    Russo, Cristina; Russo, Antonella; Pellitteri, Rosalia; Stanzani, Stefania

    2017-07-13

    Feeding is a process controlled by a complex of associations between external and internal stimuli. The processes that involve learning and memory seem to exert a strong control over appetite and food intake, which is modulated by a gastrointestinal hormone, Ghrelin (Ghre). Recent studies claim that Ghre is involved in cognitive and neurobiological mechanisms that underlie the conditioning of eating behaviors. The expression of Ghre increases in anticipation of food intake based on learned behaviors. The hippocampal Ghre-containing neurons neurologically influence the orexigenic hypothalamus and consequently the learned feeding behavior. The CA1 field of Ammon's horn of the hippocampus (H-CA1) constitutes the most important neural substrate to control both appetitive and ingestive behavior. It also innervates amygdala regions that in turn innervate the hypothalamus. A recent study also implies that Ghre effects on cue-potentiated feeding behavior occur, at the least, via indirect action on the amygdala. In the present study, we investigate the neural substrates through which endogenous Ghre communicates conditioned appetite and feeding behavior within the CNS. We show the existence of a neural Ghre dependent pathway whereby peripherally-derived Ghre activates H-CA1 neurons, which in turn activate Ghre-expressing hypothalamic and amygdaloid neurons to stimulate appetite and feeding behavior. To highlight this pathway, we use two fluorescent retrograde tracers (Fluoro Gold and Dil) and immunohistochemical detection of Ghre expression in the hippocampus. Triple fluorescent-labeling has determined the presence of H-CA1 Ghre-containing collateralized neurons that project to the hypothalamus and amygdala monosynaptically. We hypothesize that H-Ghre-containing neurons in H-CA1 modulate food-intake behavior through direct pathways to the arcuate hypothalamic nucleus and medial amygdaloid nucleus. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. In vitro autoradiographic localization of vasoactive intestinal peptide (VIP) binding sites in the rat central nervous system

    International Nuclear Information System (INIS)

    Besson, J.; Dussaillant, M.; Marie, J.C.; Rostene, W.; Rosselin, G.

    1984-01-01

    This paper describes the autoradiographic distribution of VIP binding sites in the rat central nervous system using monoiodinated 125I-labeled VIP. High densities of VIP binding sites are observed in the granular layer of the dorsal dentate gyrus of the hippocampus, the basolateral amygdaloid nucleus, the dorsolateral and median geniculate nuclei of the thalamus as well as in the ventral part of the hypothalamic dorsomedial nucleus

  20. Binding of IGF I and IGF I-stimulated phosphorylation in canine renal basolateral membranes

    International Nuclear Information System (INIS)

    Hammerman, M.R.; Gavin, J.R. III.

    1986-01-01

    To characterize the interaction of the renal proximal tubular cell with insulin like growth factor I (IGF I), we measured binding of 125 I-IGF I to proximal tubular basolateral membranes from dog kidney and induced IGF I-stimulated phosphorylation of basolateral membranes. Specific binding of 125 I-IGF I to basolateral membranes was observed that was half-maximal at between 10(-9) and 10(-8) M IGF I. 125 I-IGF I was affinity cross-linked to a 135,000 Mr protein in basolateral membranes that was distinct from the alpha-subunit of the insulin receptor and from the IGF II receptor. IGF I-stimulated phosphorylation of a 92,000 Mr protein was effected in detergent-solubilized membranes incubated with 100 microM [gamma- 32 P]ATP. The 32 P-labeled protein was distinct from the beta-subunit of the insulin receptor, the 32 P phosphorylation of which was stimulated by insulin. We conclude that specific receptors for IGF I are present in the basolateral membrane of the renal proximal tubular cell. Physiological actions of IGF I at this nephron site may occur through the binding of this peptide circulating in plasma, to specific basolateral membrane receptors, followed by IGF I stimulated phosphorylation

  1. Hippocampal dendritic spines remodeling and fear memory are modulated by GABAergic signaling within the basolateral amygdala complex.

    Science.gov (United States)

    Giachero, Marcelo; Calfa, Gaston D; Molina, Victor A

    2015-05-01

    GABAergic signaling in the basolateral amygdala complex (BLA) plays a crucial role on the modulation of the stress influence on fear memory. Moreover, accumulating evidence suggests that the dorsal hippocampus (DH) is a downstream target of BLA neurons in contextual fear. Given that hippocampal structural plasticity is proposed to provide a substrate for the storage of long-term memories, the main aim of this study is to evaluate the modulation of GABA neurotransmission in the BLA on spine density in the DH following stress on contextual fear learning. The present findings show that prior stressful experience promoted contextual fear memory and enhanced spine density in the DH. Intra-BLA infusion of midazolam, a positive modulator of GABAa sites, prevented the facilitating influence of stress on both fear retention and hippocampal dendritic spine remodeling. Similarly to the stress-induced effects, the blockade of GABAa sites within the BLA ameliorated fear memory emergence and induced structural remodeling in the DH. These findings suggest that GABAergic transmission in BLA modulates the structural changes in DH associated to the influence of stress on fear memory. © 2015 Wiley Periodicals, Inc.

  2. Endocannabinoids in the rat basolateral amygdala enhance memory consolidation and enable glucocorticoid modulation of memory

    OpenAIRE

    Campolongo, Patrizia; Roozendaal, Benno; Trezza, Viviana; Hauer, Daniela; Schelling, Gustav; McGaugh, James L.; Cuomo, Vincenzo

    2009-01-01

    Extensive evidence indicates that the basolateral complex of the amygdala (BLA) modulates the consolidation of memories for emotionally arousing experiences, an effect that involves the activation of the glucocorticoid system. Because the BLA expresses high densities of cannabinoid CB1 receptors, the present experiments investigated whether the endocannabinoid system in the BLA influences memory consolidation and whether glucocorticoids interact with this system. The CB1 receptor agonist WIN5...

  3. Mesencephalic basolateral domain specification is dependent on Sonic Hedgehog

    Directory of Open Access Journals (Sweden)

    Jesus E. Martinez-Lopez

    2015-02-01

    Full Text Available In the study of central nervous system morphogenesis, the identification of new molecular markers allows us to identify domains along the antero-posterior and dorso-ventral axes. In the past years, the alar and basal plates of the midbrain have been divided into different domains. The precise location of the alar-basal boundary is still under discussion. We have identified Barhl1, Nhlh1 and Six3 as appropriate molecular markers to the adjacent domains of this transition. The description of their expression patterns and the contribution to the different mesencephalic populations corroborated their role in the specification of these domains. We studied the influence of Sonic Hedgehog on these markers and therefore on the specification of these territories. The lack of this morphogen produced severe alterations in the expression pattern of Barhl1 and Nhlh1 with consequent misspecification of the basolateral domain. Six3 expression was apparently unaffected, however its distribution changed leading to altered basal domains. In this study we confirmed the localization of the alar-basal boundary dorsal to the basolateral domain and demonstrated that the development of the basolateral domain highly depends on Shh.

  4. Noradrenergic activation of the basolateral amygdala modulates the consolidation of object-in-context recognition memory

    OpenAIRE

    Barsegyan, Areg; McGaugh, James L.; Roozendaal, Benno

    2014-01-01

    Noradrenergic activation of the basolateral complex of the amygdala (BLA) is well known to enhance the consolidation of long-term memory of highly emotionally arousing training experiences. The present study investigated whether such noradrenergic activation of the BLA also influences the consolidation of object-in-context recognition memory, a low-arousing training task assessing episodic-like memory. Male Sprague-Dawley rats were exposed to two identical objects in one context for either 3 ...

  5. The Dissociative Subtype of Posttraumatic Stress Disorder: Unique Resting-State Functional Connectivity of Basolateral and Centromedial Amygdala Complexes.

    Science.gov (United States)

    Nicholson, Andrew A; Densmore, Maria; Frewen, Paul A; Théberge, Jean; Neufeld, Richard Wj; McKinnon, Margaret C; Lanius, Ruth A

    2015-09-01

    Previous studies point towards differential connectivity patterns among basolateral (BLA) and centromedial (CMA) amygdala regions in patients with posttraumatic stress disorder (PTSD) as compared with controls. Here we describe the first study to compare directly connectivity patterns of the BLA and CMA complexes between PTSD patients with and without the dissociative subtype (PTSD+DS and PTSD-DS, respectively). Amygdala connectivity to regulatory prefrontal regions and parietal regions involved in consciousness and proprioception were expected to differ between these two groups based on differential limbic regulation and behavioral symptoms. PTSD patients (n=49) with (n=13) and without (n=36) the dissociative subtype and age-matched healthy controls (n=40) underwent resting-state fMRI. Bilateral BLA and CMA connectivity patterns were compared using a seed-based approach via SPM Anatomy Toolbox. Among patients with PTSD, the PTSD+DS group exhibited greater amygdala functional connectivity to prefrontal regions involved in emotion regulation (bilateral BLA and left CMA to the middle frontal gyrus and bilateral CMA to the medial frontal gyrus) as compared with the PTSD-DS group. In addition, the PTSD+DS group showed greater amygdala connectivity to regions involved in consciousness, awareness, and proprioception-implicated in depersonalization and derealization (left BLA to superior parietal lobe and cerebellar culmen; left CMA to dorsal posterior cingulate and precuneus). Differences in amygdala complex connectivity to specific brain regions parallel the unique symptom profiles of the PTSD subgroups and point towards unique biological markers of the dissociative subtype of PTSD.

  6. Luminal and basolateral uptake of insulin in isolated perfused, proximal tubules

    International Nuclear Information System (INIS)

    Nielsen, S.; Nielsen, J.T.; Christensen, E.I.

    1987-01-01

    The present study was performed to quantitate compare the luminal and the peritubular uptake of 125 I-insulin in isolated, perfused, proximal tubules from rabbit kidneys. 125 I-insulin was added in physiological concentrations to either the perfusate or the bath fluid for 30 min. The luminal uptake in 30 min averaged 0.76 pg/mm at physiological concentrations and 18.0 pg/mm at high insulin concentrations. About 15-41% of the absorbed insulin was digested and 125 I-insulin at physiological and high concentrations in the bath was 0.136 and 0.318 pg, respectively. The data indicates that insulin is bound/absorbed at the basolateral membranes both by a saturable specific mechanism and a nonspecific, nonsaturable mechanism. The basolateral absorption constituted 15.2 and 1.8% of the total tubular extraction of insulin at physiological and high insulin concentrations, respectively. Electron microscope autoradiography showed that, after luminal as well as basolateral endocytosis, insulin was exclusively accumulated in endocytic vacuoles and lysosomes

  7. Angiotensin II stimulates basolateral 50-pS K channels in the thick ascending limb.

    Science.gov (United States)

    Wang, Mingxiao; Luan, Haiyan; Wu, Peng; Fan, Lili; Wang, Lijun; Duan, Xinpeng; Zhang, Dandan; Wang, Wen-Hui; Gu, Ruimin

    2014-03-01

    We used the patch-clamp technique to examine the effect of angiotensin II (ANG II) on the basolateral K channels in the thick ascending limb (TAL) of the rat kidney. Application of ANG II increased the channel activity and the current amplitude of the basolateral 50-pS K channel. The stimulatory effect of ANG II on the K channels was completely abolished by losartan, an inhibitor of type 1 angiotensin receptor (AT1R), but not by PD123319, an AT2R antagonist. Moreover, inhibition of phospholipase C (PLC) and protein kinase C (PKC) also abrogated the stimulatory effect of ANG II on the basolateral K channels in the TAL. This suggests that the stimulatory effect of ANG II on the K channels was induced by activating PLC and PKC pathways. Western blotting demonstrated that ANG II increased the phosphorylation of c-Src at tyrosine residue 416, an indication of c-Src activation. This effect was mimicked by PKC stimulator but abolished by calphostin C. Moreover, inhibition of NADPH oxidase (NOX) also blocked the effect of ANG II on c-Src tyrosine phosphorylation. The role of Src-family protein tyrosine kinase (SFK) in mediating the effect of ANG II on the basolateral K channel was further suggested by the experiments in which inhibition of SFK abrogated the stimulatory effect of ANG II on the basolateral 50-pS K channel. We conclude that ANG II increases basolateral 50-pS K channel activity via AT1R and that activation of AT1R stimulates SFK by a PLC-PKC-NOX-dependent mechanism.

  8. Fear extinction deficits following acute stress associate with increased spine density and dendritic retraction in basolateral amygdala neurons

    Science.gov (United States)

    Maroun, Mouna; Ioannides, Pericles J.; Bergman, Krista L.; Kavushansky, Alexandra; Holmes, Andrew; Wellman, Cara L.

    2013-01-01

    Stress-sensitive psychopathologies such as post-traumatic stress disorder are characterized by deficits in fear extinction and dysfunction of corticolimbic circuits mediating extinction. Chronic stress facilitates fear conditioning, impairs extinction, and produces dendritic proliferation in the basolateral amygdala (BLA), a critical site of plasticity for extinction. Acute stress impairs extinction, alters plasticity in the medial prefrontal cortex-to-BLA circuit, and causes dendritic retraction in the medial prefrontal cortex. Here, we examined extinction learning and basolateral amygdala pyramidal neuron morphology in adult male rats following a single elevated platform stress. Acute stress impaired extinction acquisition and memory, and produced dendritic retraction and increased mushroom spine density in basolateral amygdala neurons in the right hemisphere. Unexpectedly, irrespective of stress, rats that underwent fear and extinction testing showed basolateral amygdala dendritic retraction and altered spine density relative to non-conditioned rats, particularly in the left hemisphere. Thus, extinction deficits produced by acute stress are associated with increased spine density and dendritic retraction in basolateral amygdala pyramidal neurons. Furthermore, the finding that conditioning and extinction as such was sufficient to alter basolateral amygdala morphology and spine density illustrates the sensitivity of basolateral amygdala morphology to behavioral manipulation. These findings may have implications for elucidating the role of the amygdala in the pathophysiology of stress-related disorders. PMID:23714419

  9. Carrier-mediated ¿-aminobutyric acid transport across the basolateral membrane of human intestinal Caco-2 cell monolayers

    DEFF Research Database (Denmark)

    Nielsen, Carsten Uhd; Carstensen, Mette; Brodin, Birger

    2012-01-01

    and the anticancer prodrug d-aminolevulinic acid across the apical membrane of small intestinal enterocytes. Little is however known about the basolateral transport of these substances. We investigated basolateral transport of GABA in mature Caco-2 cell monolayers using isotope studies. Here we report that, at least...... two transporters seem to be involved in the basolateral transport of GABA. The basolateral uptake consisted of a high-affinity system with a K(m) of 290µM and V(max) of 75pmolcm(-2)min(-1) and a low affinity system with a K(m) of approximately 64mM and V(max) of 1.6nmolcm(-2)min(-1). The high...

  10. Carrier-mediated γ-aminobutyric acid transport across the basolateral membrane of human intestinal Caco-2 cell monolayers.

    Science.gov (United States)

    Nielsen, Carsten Uhd; Carstensen, Mette; Brodin, Birger

    2012-06-01

    The aim of the present study was to investigate the transport of γ-aminobutyric acid (GABA) across the basolateral membrane of intestinal cells. The proton-coupled amino acid transporter, hPAT1, mediates the influx of GABA and GABA mimetic drug substances such as vigabatrin and gaboxadol and the anticancer prodrug δ-aminolevulinic acid across the apical membrane of small intestinal enterocytes. Little is however known about the basolateral transport of these substances. We investigated basolateral transport of GABA in mature Caco-2 cell monolayers using isotope studies. Here we report that, at least two transporters seem to be involved in the basolateral transport of GABA. The basolateral uptake consisted of a high-affinity system with a K(m) of 290 μM and V(max) of 75 pmol cm(-2) min(-1) and a low affinity system with a K(m) of approximately 64 mM and V(max) of 1.6 nmol cm(-2) min(-1). The high-affinity transporter is Na(+) and Cl(-) dependent. The substrate specificity of the high-affinity transporter was further studied and Gly-Sar, Leucine, gaboxadol, sarcosine, lysine, betaine, 5-hydroxythryptophan, proline and glycine reduced the GABA uptake to approximately 44-70% of the GABA uptake in the absence of inhibitor. Other substances such as β-alanine, GABA, 5-aminovaleric acid, taurine and δ-aminolevulinic acid reduced the basolateral GABA uptake to 6-25% of the uptake in the absence of inhibitor. Our results indicate that the distance between the charged amino- and acid-groups is particular important for inhibition of basolateral GABA uptake. Thus, there seems to be a partial substrate overlap between the basolateral GABA transporter and hPAT1, which may prove important for understanding drug interactions at the level of intestinal transport. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Basolateral amygdala lesions abolish mutual reward preferences in rats.

    Science.gov (United States)

    Hernandez-Lallement, Julen; van Wingerden, Marijn; Schäble, Sandra; Kalenscher, Tobias

    2016-01-01

    In a recent study, we demonstrated that rats prefer mutual rewards in a Prosocial Choice Task. Here, employing the same task, we show that the integrity of basolateral amygdala was necessary for the expression of mutual reward preferences. Actor rats received bilateral excitotoxic (n=12) or sham lesions (n=10) targeting the basolateral amygdala and were subsequently tested in a Prosocial Choice Task where they could decide between rewarding ("Both Reward") or not rewarding a partner rat ("Own Reward"), either choice yielding identical reward to the actors themselves. To manipulate the social context and control for secondary reinforcement sources, actor rats were paired with either a partner rat (partner condition) or with an inanimate rat toy (toy condition). Sham-operated animals revealed a significant preference for the Both-Reward-option in the partner condition, but not in the toy condition. Amygdala-lesioned animals exhibited significantly lower Both-Reward preferences than the sham group in the partner but not in the toy condition, suggesting that basolateral amygdala was required for the expression of mutual reward preferences. Critically, in a reward magnitude discrimination task in the same experimental setup, both sham-operated and amygdala-lesioned animals preferred large over small rewards, suggesting that amygdala lesion effects were restricted to decision making in social contexts, leaving self-oriented behavior unaffected. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Fear extinction deficits following acute stress associate with increased spine density and dendritic retraction in basolateral amygdala neurons.

    Science.gov (United States)

    Maroun, Mouna; Ioannides, Pericles J; Bergman, Krista L; Kavushansky, Alexandra; Holmes, Andrew; Wellman, Cara L

    2013-08-01

    Stress-sensitive psychopathologies such as post-traumatic stress disorder are characterized by deficits in fear extinction and dysfunction of corticolimbic circuits mediating extinction. Chronic stress facilitates fear conditioning, impairs extinction, and produces dendritic proliferation in the basolateral amygdala (BLA), a critical site of plasticity for extinction. Acute stress impairs extinction, alters plasticity in the medial prefrontal cortex-to-BLA circuit, and causes dendritic retraction in the medial prefrontal cortex. Here, we examined extinction learning and basolateral amygdala pyramidal neuron morphology in adult male rats following a single elevated platform stress. Acute stress impaired extinction acquisition and memory, and produced dendritic retraction and increased mushroom spine density in basolateral amygdala neurons in the right hemisphere. Unexpectedly, irrespective of stress, rats that underwent fear and extinction testing showed basolateral amygdala dendritic retraction and altered spine density relative to non-conditioned rats, particularly in the left hemisphere. Thus, extinction deficits produced by acute stress are associated with increased spine density and dendritic retraction in basolateral amygdala pyramidal neurons. Furthermore, the finding that conditioning and extinction as such was sufficient to alter basolateral amygdala morphology and spine density illustrates the sensitivity of basolateral amygdala morphology to behavioral manipulation. These findings may have implications for elucidating the role of the amygdala in the pathophysiology of stress-related disorders. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  13. Iron repletion relocalizes hephaestin to a proximal basolateral compartment in polarized MDCK and Caco2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Min [Department of Biological Sciences, University of Columbia, NY (United States); Department of Nutritional Science and Toxicology, University of California, Berkeley, CA (United States); Attieh, Zouhair K. [Department of Laboratory Science and Technology, American University of Science and Technology, Ashrafieh (Lebanon); Department of Nutritional Science and Toxicology, University of California, Berkeley, CA (United States); Son, Hee Sook [Department of Food Science and Human Nutrition, College of Human Ecology, Chonbuk National University (Korea, Republic of); Department of Nutritional Science and Toxicology, University of California, Berkeley, CA (United States); Chen, Huijun [Medical School, Nanjing University, Nanjing 210008, Jiangsu Province (China); Department of Nutritional Science and Toxicology, University of California, Berkeley, CA (United States); Bacouri-Haidar, Mhenia [Department of Biology, Faculty of Sciences (I), Lebanese University, Hadath (Lebanon); Department of Nutritional Science and Toxicology, University of California, Berkeley, CA (United States); Vulpe, Chris D., E-mail: vulpe@berkeley.edu [Department of Nutritional Science and Toxicology, University of California, Berkeley, CA (United States)

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer Hephaestin localizes in the perinuclear space in non-polarized cells. Black-Right-Pointing-Pointer Hephaestin localizes in the perinuclear space in iron deficient and polarized cells. Black-Right-Pointing-Pointer Hephaestin with apical iron moves near to basolateral membrane of polarized cells. Black-Right-Pointing-Pointer Peri-basolateral location of hephaestin is accessible to the extracellular space. Black-Right-Pointing-Pointer Hephaestin is involved in iron mobilization from the intestine to circulation. -- Abstract: While intestinal cellular iron entry in vertebrates employs multiple routes including heme and non-heme routes, iron egress from these cells is exclusively channeled through the only known transporter, ferroportin. Reduced intestinal iron export in sex-linked anemia mice implicates hephaestin, a ferroxidase, in this process. Polarized cells are exposed to two distinct environments. Enterocytes contact the gut lumen via the apical surface of the cell, and through the basolateral surface, to the body. Previous studies indicate both local and systemic control of iron uptake. We hypothesized that differences in iron availability at the apical and/or basolateral surface may modulate iron uptake via cellular localization of hephaestin. We therefore characterized the localization of hephaestin in two models of polarized epithelial cell lines, MDCK and Caco2, with varying iron availability at the apical and basolateral surfaces. Our results indicate that hephaestin is expressed in a supra-nuclear compartment in non-polarized cells regardless of the iron status of the cells and in iron deficient and polarized cells. In polarized cells, we found that both apical (as FeSO{sub 4}) and basolateral iron (as the ratio of apo-transferrin to holo-transferrin) affect mobilization of hephaestin from the supra-nuclear compartment. We find that the presence of apical iron is essential for relocalization of hephaestin to a

  14. The Role of the Basolateral Amygdala in Punishment

    Science.gov (United States)

    Dit-Bressel, Philip Jean-Richard; McNally, Gavan P.

    2015-01-01

    Aversive stimuli not only support fear conditioning to their environmental antecedents, they also punish behaviors that cause their occurrence. The amygdala, especially the basolateral nucleus (BLA), has been critically implicated in Pavlovian fear learning but its role in punishment remains poorly understood. Here, we used a within-subjects…

  15. Cellular internalization, transcellular transport, and cellular effects of silver nanoparticles in polarized Caco-2 cells following apical or basolateral exposure

    International Nuclear Information System (INIS)

    Imai, Shunji; Morishita, Yuki; Hata, Tomoyuki; Kondoh, Masuo; Yagi, Kiyohito; Gao, Jian-Qing; Nagano, Kazuya; Higashisaka, Kazuma; Yoshioka, Yasuo; Tsutsumi, Yasuo

    2017-01-01

    When considering the safety of ingested nanomaterials, it is important to quantitate their transfer across intestinal cells; however, little information exists about the effects of nanomaterial size or exposure side (apical versus basolateral epithelial surface) on nanomaterial transfer. Here, we examined cellular internalization and transcellular transport, and the effects of nanomaterials on Caco-2 monolayers after apical or basolateral exposure to Ag or Au nanoparticles with various sizes. After apical treatment, both internalization and transfer to the basolateral side of the monolayers were greater for smaller Ag nanoparticles than for larger Ag nanoparticles. In contrast, after basolateral treatment, larger Ag nanoparticles were more internalized than smaller Ag nanoparticles, but the transfer to the apical side was greater for smaller Ag nanoparticles. Au nanoparticles showed different rules of internalization and transcellular transport compared with Ag nanoparticles. Furthermore, the paracellular permeability of the Caco-2 monolayers was temporarily increased by Ag nanoparticles (5 μg/mL; diameters, ≤10 nm) following basolateral but not apical exposure. We conclude that the internalization, transfer, and effects of nanomaterials in epithelial cell monolayers depend on the size and composition of nanomaterials, and the exposure side. - Highlights: • Ag and Au nanoparticles can transfer across Caco-2 monolayers. • Cellular uptake of nanoparticles change between apical and basolateral exposure. • Basolateral Ag nanoparticle exposure increases the permeability of Caco-2 monolayers.

  16. Basolateral Cl- channels in the larval bullfrog skin epithelium

    DEFF Research Database (Denmark)

    Hillyard, Stanley D.; Rios, K.; Larsen, Erik Hviid

    2002-01-01

    The addition of 150 U/ml nystatin to the mucosal surface of isolated skin from larval bullfrogs increases apical membrane permeability and allows a voltage clamp to be applied to the basolateral membrane. With identical Ringer's solutions bathing either side of the tissue the short-circuit curren...

  17. Differential efferent projections of the anterior, posteroventral and posterodorsal subdivisions of the medial amygdala in mice

    Directory of Open Access Journals (Sweden)

    Cecília ePardo-Bellver

    2012-08-01

    Full Text Available The medial amygdaloid nucleus (Me is a key structure in the control of sociosexual behaviour in mice. It receives direct projections from the main and accessory olfactory bulbs, as well as an important hormonal input. To better understand its behavioural role, in this work we investigate the structures receiving information from the Me, by analysing the efferent projections from its anterior (MeA, posterodorsal (MePD and posteroventral (MePV subdivisions, using anterograde neuronal tracing with biotinylated and tetrametylrhodamine-conjugated dextranamines.The Me is strongly interconnected with the rest of the chemosensory amygdala, but shows only moderate projections to the central nucleus and light projections to the associative nuclei of the basolateral amygdaloid complex. In addition, the MeA originates a strong feedback projection to the deep mitral cell layer of the accessory olfactory bulb, whereas the MePV projects to its granule cell layer. The medial amygdaloid nucleus (especially the MeA has also moderate projections to different olfactory structures, including the piriform cortex. The densest outputs of the Me target the bed nucleus of the stria terminalis (BST and the hypothalamus. The MeA and MePV project to key structures of the circuit involved in the defensive response against predators (medial posterointermediate BST, anterior hypothalamic area, dorsomedial aspect of the ventromedial hypothalamic nucleus, although less dense projections also innervate reproductive-related nuclei. In contrast, the MePD projects mainly to structures that control reproductive behaviours (medial posteromedial BST, medial preoptic nucleus, and ventrolateral aspect of the ventromedial hypothalamic nucleus, although less dense projections to defensive-related nuclei also exist. These results confirm and extend previous results in other rodents and suggest that the medial amygdala is anatomically and functionally compartmentalized.

  18. Inhibitory Gating of Basolateral Amygdala Inputs to the Prefrontal Cortex.

    Science.gov (United States)

    McGarry, Laura M; Carter, Adam G

    2016-09-07

    Interactions between the prefrontal cortex (PFC) and basolateral amygdala (BLA) regulate emotional behaviors. However, a circuit-level understanding of functional connections between these brain regions remains incomplete. The BLA sends prominent glutamatergic projections to the PFC, but the overall influence of these inputs is predominantly inhibitory. Here we combine targeted recordings and optogenetics to examine the synaptic underpinnings of this inhibition in the mouse infralimbic PFC. We find that BLA inputs preferentially target layer 2 corticoamygdala over neighboring corticostriatal neurons. However, these inputs make even stronger connections onto neighboring parvalbumin and somatostatin expressing interneurons. Inhibitory connections from these two populations of interneurons are also much stronger onto corticoamygdala neurons. Consequently, BLA inputs are able to drive robust feedforward inhibition via two parallel interneuron pathways. Moreover, the contributions of these interneurons shift during repetitive activity, due to differences in short-term synaptic dynamics. Thus, parvalbumin interneurons are activated at the start of stimulus trains, whereas somatostatin interneuron activation builds during these trains. Together, these results reveal how the BLA impacts the PFC through a complex interplay of direct excitation and feedforward inhibition. They also highlight the roles of targeted connections onto multiple projection neurons and interneurons in this cortical circuit. Our findings provide a mechanistic understanding for how the BLA can influence the PFC circuit, with important implications for how this circuit participates in the regulation of emotion. The prefrontal cortex (PFC) and basolateral amygdala (BLA) interact to control emotional behaviors. Here we show that BLA inputs elicit direct excitation and feedforward inhibition of layer 2 projection neurons in infralimbic PFC. BLA inputs are much stronger at corticoamygdala neurons compared

  19. Deep brain stimulation of the basolateral amygdala for treatment-refractory combat post-traumatic stress disorder (PTSD): study protocol for a pilot randomized controlled trial with blinded, staggered onset of stimulation.

    Science.gov (United States)

    Koek, Ralph J; Langevin, Jean-Philippe; Krahl, Scott E; Kosoyan, Hovsep J; Schwartz, Holly N; Chen, James W Y; Melrose, Rebecca; Mandelkern, Mark J; Sultzer, David

    2014-09-10

    for PTSD is ethically and scientifically justified, the importance of the amygdaloid complex and its connections for a myriad of emotional, perceptual, behavioral, and vegetative functions requires a complex trial design in terms of outcome measures. Knowledge generated from this pilot trial can be used to design future studies to determine the potential of DBS to benefit both veterans and nonveterans suffering from treatment-refractory PTSD. PCC121657, 19 March 2014.

  20. Basolateral cholesterol depletion alters Aquaporin-2 post-translational modifications and disrupts apical plasma membrane targeting.

    Science.gov (United States)

    Moeller, Hanne B; Fuglsang, Cecilia Hvitfeldt; Pedersen, Cecilie Nøhr; Fenton, Robert A

    2018-01-01

    Apical plasma membrane accumulation of the water channel Aquaporin-2 (AQP2) in kidney collecting duct principal cells is critical for body water homeostasis. Posttranslational modification (PTM) of AQP2 is important for regulating AQP2 trafficking. The aim of this study was to determine the role of cholesterol in regulation of AQP2 PTM and in apical plasma membrane targeting of AQP2. Cholesterol depletion from the basolateral plasma membrane of a collecting duct cell line (mpkCCD14) using methyl-beta-cyclodextrin (MBCD) increased AQP2 ubiquitylation. Forskolin, cAMP or dDAVP-mediated AQP2 phosphorylation at Ser269 (pS269-AQP2) was prevented by cholesterol depletion from the basolateral membrane. None of these effects on pS269-AQP2 were observed when cholesterol was depleted from the apical side of cells, or when MBCD was applied subsequent to dDAVP stimulation. Basolateral, but not apical, MBCD application prevented cAMP-induced apical plasma membrane accumulation of AQP2. These studies indicate that manipulation of the cholesterol content of the basolateral plasma membrane interferes with AQP2 PTM and subsequently regulated apical plasma membrane targeting of AQP2. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Modification of kindled amygdaloid seizures by opiate agonists and antagonists.

    Science.gov (United States)

    Albertson, T E; Joy, R M; Stark, L G

    1984-03-01

    The effects of 19 opiate agonists and antagonists on kindled amygdaloid seizures in the rat were studied. The mu agonists tended to reduce the length of elicited afterdischarges and behavioral ranks, while markedly increasing postictal electroencephalogram spikes and behavioral arrest time. These effects were reversed by naloxone. The kappa agonists reduced behavioral rank and variably reduced afterdischarge length with a concomitant lengthening of postictal behavioral arrest time and number of electroencephalogram spikes. The putative sigma agonist, SKF 10,047, reduced afterdischarge durations only at the higher doses tested. The decreases found after the sigma agonists in postictal electroencephalogram spiking and time of behavioral arrest were not reversed by naloxone. Only the lower doses of normeperidine were found to decrease seizure thresholds. The mixed agonist/antagonists (MAA) cyclazocine and cyclorphan markedly increased seizure threshold and reduced afterdischarge duration and behavioral rank. Only the MAA pentazocine tended to increase threshold but not suprathreshold afterdischarge durations. The order of ability to modify the ictal events was MAA (selected) greater than kappa agonists greater than mu agonists greater than sigma agonists. The increase in postictal events (behavior arrest and spikes) was caused most effectively by pretreatment with mu agonist greater than kappa agonist greater than selected MAA greater than sigma agonists.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Influence of CO2 on electrophysiology and ionic permeability of the basolateral membrane of frog skin

    International Nuclear Information System (INIS)

    Stoddard, J.S.

    1984-01-01

    When short-circuited epithelia of frog skin bathed in an alkaline Ringer solution equilibrated with room air, are exposed to a Ringer solution equilibrated with 5% CO 2 , inhibition of transepithelial Na + transport is observed accompanied by a marked depolarization of the basolateral membrane voltage as measured with intracellular microelectrodes. To study further the mechanisms involved, basolateral membrane influxes and effluxes of 24 Na, 42 K, and 36 Cl were measured in control and CO 2 -treated isolated epithelia. In control epithelia, studies of the bidirectional 24 Na fluxes confirmed the existence of an important basolateral membrane permeability to Na + . In control epithelia, the apical membranes of the cells were found to be virtually impermeable to Cl - , while basolateral membranes were highly permeable to Cl - . Although CO 2 caused a partial inhibition of pump activity as assessed from decreases of pump-mediated Na + efflux and K + influx, CO 2 caused little or no change of the leak influx of Na + or K + . K + efflux was increased markedly with CO 2 resulting in a net loss of K + from the cells. Cl - influx was increased and Cl - efflux was decreased by CO 2 leading to a net influx of Cl - . Analysis of the data according to criteria involving changes of flux, ionic equilibrium potentials, mass and charge balance restrictions indicated that the principle changes involve a transient decrease in electrical conductance to K + with a concurrent increase in electrical conductance to HCO 3 - (OH - or H + ) of the basolateral membranes of the cells

  3. Roles of the basolateral amygdala and hippocampus in social recognition

    NARCIS (Netherlands)

    Gispen, W.H.; Maaswinkel, H.; Baars, A.M.; Spruijt, B.M.

    1996-01-01

    Lesions of the amygdala or hippocampus have a large impact on social behavior of rats. In this study we investigated whether a social recognition test was also affected by those lesions. An NMDA-induced lesion of the basolateral amygdala did not impair the ability to distinguish a familiar from an

  4. Measuring localization and diffusion coefficients of basolateral proteins in lateral versus basal membranes using functionalized substrates and kICS analysis

    DEFF Research Database (Denmark)

    Marlar, Saw; Christensen, Eva Arnspang; Pedersen, Gitte Albinus

    2014-01-01

    Micropatterning enabled semiquantitation of basolateral proteins in lateral and basal membranes of the same cell. Lateral diffusion coefficients of basolateral aquaporin-3 (AQP3-EGFP) and EGFP-AQP4 were extracted from “lateral” and “basal” membranes using identical live-cell imaging and k...

  5. Locus coeruleus to basolateral amygdala noradrenergic projections promote anxiety-like behavior.

    Science.gov (United States)

    McCall, Jordan G; Siuda, Edward R; Bhatti, Dionnet L; Lawson, Lamley A; McElligott, Zoe A; Stuber, Garret D; Bruchas, Michael R

    2017-07-14

    Increased tonic activity of locus coeruleus noradrenergic (LC-NE) neurons induces anxiety-like and aversive behavior. While some information is known about the afferent circuitry that endogenously drives this neural activity and behavior, the downstream receptors and anatomical projections that mediate these acute risk aversive behavioral states via the LC-NE system remain unresolved. Here we use a combination of retrograde tracing, fast-scan cyclic voltammetry, electrophysiology, and in vivo optogenetics with localized pharmacology to identify neural substrates downstream of increased tonic LC-NE activity in mice. We demonstrate that photostimulation of LC-NE fibers in the BLA evokes norepinephrine release in the basolateral amygdala (BLA), alters BLA neuronal activity, conditions aversion, and increases anxiety-like behavior. Additionally, we report that β-adrenergic receptors mediate the anxiety-like phenotype of increased NE release in the BLA. These studies begin to illustrate how the complex efferent system of the LC-NE system selectively mediates behavior through distinct receptor and projection-selective mechanisms.

  6. Bicarbonate-dependent transport of acetate and butyrate across the basolateral membrane of sheep rumen epithelium.

    Science.gov (United States)

    Dengler, F; Rackwitz, R; Benesch, F; Pfannkuche, H; Gäbel, G

    2014-02-01

    This study aimed to assess the role of HCO₃⁻ in the transport of acetate and butyrate across the basolateral membrane of rumen epithelium and to identify transport proteins involved. The effects of basolateral variation in HCO₃⁻ concentrations on acetate and butyrate efflux out of the epithelium and the transepithelial flux of these short-chain fatty acids were tested in Ussing chamber experiments using (14)C-labelled substrates. HCO₃⁻-dependent transport mechanisms were characterized by adding specific inhibitors of candidate proteins to the serosal side. Effluxes of acetate and butyrate out of the epithelium were higher to the serosal side than to the mucosal side. Acetate and butyrate effluxes to both sides of rumen epithelium consisted of HCO₃⁻-independent and -dependent parts. HCO₃⁻-dependent transport across the basolateral membrane was confirmed in studies of transepithelial fluxes. Mucosal to serosal fluxes of acetate and butyrate decreased with lowering serosal HCO₃⁻ concentrations. In the presence of 25 mm HCO₃⁻, transepithelial flux of acetate was inhibited effectively by p-hydroxymercuribenzoic acid or α-cyano-4-hydroxycinnamic acid, while butyrate flux was unaffected by the blockers. Fluxes of both acetate and butyrate from the serosal to the mucosal side were diminished largely by the addition of NO₃⁻ to the serosal side, with this effect being more pronounced for acetate. Our results indicate the existence of a basolateral short-chain fatty acid/HCO₃⁻ exchanger, with monocarboxylate transporter 1 as a primary candidate for acetate transfer. © 2013 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  7. The role of human basolateral amygdala in ambiguous social threat perception

    NARCIS (Netherlands)

    de Gelder, B.; Terburg, D.; Morgan, B.; Hortensius, R.; Stein, D.J.; van Honk, J.

    2014-01-01

    Previous studies have shown that the amygdala (AMG) plays a role in how affective signals are processed. Animal research has allowed this role to be better understood and has assigned to the basolateral amygdala (BLA) an important role in threat perception. Here we show that, when passively exposed

  8. Toxoplasma gondii infection induces dendritic retraction in basolateral amygdala accompanied by reduced corticosterone secretion

    Directory of Open Access Journals (Sweden)

    Rupshi Mitra

    2013-03-01

    Pathological anxiety is thought to reflect a maladaptive state characterized by exaggerated fear. Naturally occurring perturbations that reduce fear can be crucial in the search for new treatments. The protozoan parasite Toxoplasma gondii invades rat brain and removes the fear that rats have of cat odors, a change believed to be parasitic manipulation of host behavior aimed at increasing parasite transmission. It is likely that mechanisms employed by T. gondii can be used as a heuristic tool to understand possible means of fear reduction in clinical settings. Male Long-Evans rats were infected with T. gondii and compared with sham-infected animals 8 weeks after infection. The amount of circulating plasma corticosterone and dendritic arborization of basolateral amygdala principal neurons were quantified. Previous studies have shown that corticosterone, acting within the basolateral amygdala, enhances the fear response to environmental stimuli. Here we show that T. gondii infection causes a dendritic retraction in basolateral amygdala neurons. Such dendritic retraction is accompanied by lower amounts of circulating corticosterone, both at baseline and when induced by an aversive cat odor. The concerted effects of parasitism on two pivotal physiological nodes of the fear response provide an animal model relevant to interactions between stress hormones and amygdalar plasticity.

  9. Indirect coupling to Na+ of p-aminohippuric acid uptake into rat renal basolateral membrane vesicles

    International Nuclear Information System (INIS)

    Shimada, H.; Moewes, B.; Burckhardt, G.

    1987-01-01

    Experiments with basolateral membrane vesicles prepared from rat kidney cortex were performed to study the mechanism by which p-aminohippuric acid (PAH) is taken up across the contraluminal membrane and is concentrated in proximal tubule cells. An inward Na + gradient failed to stimulate [ 3 H]PAH uptake compared with K + or Li + and did not cause intravesicular PAH accumulation above equilibrium distribution. In the absence of Na + , the dicarboxylates glutarate and suberate cis-inhibited and trans-stimulated [ 3 H]PAH uptake, indicating a common transport system. In the presence of Na + , 10 μM glutarate in the incubation medium did not cis-inhibit, but rather stimulated [ 3 H]PAH uptake and caused PAH accumulation above equilibrium distribution (over-shoot). Li + diminished this stimulation, but was without effect on [ 3 H]PAH/PAH- and [ 3 H]PAH/glutarate exchange. The data indicate the coexistence of a Na + -sensitive transport system for dicarboxylates and a Li + -insensitive PAH/dicarboxylate exchanger in the basolateral membrane. The authors propose that dicarboxylates are cotransported with Na + into the cell and subsequently exchange for extracellular PAH at the basolateral membrane. PAH uptake is thereby indirectly coupled to Na + via the Na + /dicarboxylate cotransporter

  10. Changed Synaptic Plasticity in Neural Circuits of Depressive-Like and Escitalopram-Treated Rats

    Science.gov (United States)

    Li, Xiao-Li; Yuan, Yong-Gui; Xu, Hua; Wu, Di; Gong, Wei-Gang; Geng, Lei-Yu; Wu, Fang-Fang; Tang, Hao; Xu, Lin

    2015-01-01

    Background: Although progress has been made in the detection and characterization of neural plasticity in depression, it has not been fully understood in individual synaptic changes in the neural circuits under chronic stress and antidepressant treatment. Methods: Using electron microscopy and Western-blot analyses, the present study quantitatively examined the changes in the Gray’s Type I synaptic ultrastructures and the expression of synapse-associated proteins in the key brain regions of rats’ depressive-related neural circuit after chronic unpredicted mild stress and/or escitalopram administration. Meanwhile, their depressive behaviors were also determined by several tests. Results: The Type I synapses underwent considerable remodeling after chronic unpredicted mild stress, which resulted in the changed width of the synaptic cleft, length of the active zone, postsynaptic density thickness, and/or synaptic curvature in the subregions of medial prefrontal cortex and hippocampus, as well as the basolateral amygdaloid nucleus of the amygdala, accompanied by changed expression of several synapse-associated proteins. Chronic escitalopram administration significantly changed the above alternations in the chronic unpredicted mild stress rats but had little effect on normal controls. Also, there was a positive correlation between the locomotor activity and the maximal synaptic postsynaptic density thickness in the stratum radiatum of the Cornu Ammonis 1 region and a negative correlation between the sucrose preference and the length of the active zone in the basolateral amygdaloid nucleus region in chronic unpredicted mild stress rats. Conclusion: These findings strongly indicate that chronic stress and escitalopram can alter synaptic plasticity in the neural circuits, and the remodeled synaptic ultrastructure was correlated with the rats’ depressive behaviors, suggesting a therapeutic target for further exploration. PMID:25899067

  11. Sociality and the telencephalic distribution of corticotrophin-releasing factor, urocortin 3, and binding sites for CRF type 1 and type 2 receptors: A comparative study of eusocial naked mole-rats and solitary Cape mole-rats.

    Science.gov (United States)

    Coen, Clive W; Kalamatianos, Theodosis; Oosthuizen, Maria K; Poorun, Ravi; Faulkes, Christopher G; Bennett, Nigel C

    2015-11-01

    Various aspects of social behavior are influenced by the highly conserved corticotrophin-releasing factor (CRF) family of peptides and receptors in the mammalian telencephalon. This study has mapped and compared the telencephalic distribution of the CRF receptors, CRF1 and CRF2 , and two of their ligands, CRF and urocortin 3, respectively, in African mole-rat species with diametrically opposed social behavior. Naked mole-rats live in large eusocial colonies that are characterized by exceptional levels of social cohesion, tolerance, and cooperation in burrowing, foraging, defense, and alloparental care for the offspring of the single reproductive female. Cape mole-rats are solitary; they tolerate conspecifics only fleetingly during the breeding season. The telencephalic sites at which the level of CRF1 binding in naked mole-rats exceeds that in Cape mole-rats include the basolateral amygdaloid nucleus, hippocampal CA3 subfield, and dentate gyrus; in contrast, the level is greater in Cape mole-rats in the shell of the nucleus accumbens and medial habenular nucleus. For CRF2 binding, the sites with a greater level in naked mole-rats include the basolateral amygdaloid nucleus and dentate gyrus, but the septohippocampal nucleus, lateral septal nuclei, amygdalostriatal transition area, bed nucleus of the stria terminalis, and medial habenular nucleus display a greater level in Cape mole-rats. The results are discussed with reference to neuroanatomical and behavioral studies of various species, including monogamous and promiscuous voles. By analogy with findings in those species, we speculate that the abundance of CRF1 binding in the nucleus accumbens of Cape mole-rats reflects their lack of affiliative behavior. © 2015 Wiley Periodicals, Inc.

  12. Prior stress promotes the generalization of contextual fear memories: Involvement of the gabaergic signaling within the basolateral amygdala complex.

    Science.gov (United States)

    Bender, C L; Otamendi, A; Calfa, G D; Molina, V A

    2018-04-20

    Fear generalization occurs when a response, previously acquired with a threatening stimulus, is transferred to a similar one. However, it could be maladaptive when stimuli that do not represent a real threat are appraised as dangerous, which is a hallmark of several anxiety disorders. Stress exposure is a major risk factor for the occurrence of anxiety disorders and it is well established that it influences different phases of fear memory; nevertheless, its impact on the generalization of contextual fear memories has been less studied. In the present work, we have characterized the impact of acute restraint stress prior to contextual fear conditioning on the generalization of this fear memory, and the role of the GABAergic signaling within the basolateral amygdala complex (BLA) on the stress modulatory effects. We have found that a single stress exposure promoted the generalization of this memory trace to a different context that was well discriminated in unstressed conditioned animals. Moreover, this effect was dependent on the formation of a contextual associative memory and on the testing order (i.e., conditioning context first vs generalization context first). Furthermore, we observed that increasing GABA-A signaling by intra-BLA midazolam administration prior to the stressful session exposure prevented the generalization of fear memory, whereas intra-BLA administration of the GABA-A antagonist (Bicuculline), prior to fear conditioning, induced the generalization of fear memory in unstressed rats. We concluded that stress exposure, prior to contextual fear conditioning, promotes the generalization of fear memory and that the GABAergic transmission within the BLA has a critical role in this phenomenon. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Memory for fearful faces across development: specialization of amygdala nuclei and medial temporal lobe structures.

    Science.gov (United States)

    Pinabiaux, Charlotte; Hertz-Pannier, Lucie; Chiron, Catherine; Rodrigo, Sébastian; Jambaqué, Isabelle; Noulhiane, Marion

    2013-01-01

    Enhanced memory for emotional faces is a significant component of adaptive social interactions, but little is known on its neural developmental correlates. We explored the role of amygdaloid complex (AC) and medial temporal lobe (MTL) in emotional memory recognition across development, by comparing fMRI activations of successful memory encoding of fearful and neutral faces in children (n = 12; 8-12 years) and adolescents (n = 12; 13-17 years). Memory for fearful faces was enhanced compared with neutral ones in adolescents, as opposed to children. In adolescents, activations associated with successful encoding of fearful faces were centered on baso-lateral AC nuclei, hippocampus, enthorhinal and parahippocampal cortices. In children, successful encoding of fearful faces relied on activations of centro-mesial AC nuclei, which was not accompanied by functional activation of MTL memory structures. Successful encoding of neutral faces depended on activations in anterior MTL region (hippocampal head and body) in adolescents, but more posterior ones (hippocampal tail and parahippocampal cortex) in children. In conclusion, two distinct functional specializations emerge from childhood to adolescence and result in the enhancement of memory for these particular stimuli: the specialization of baso-lateral AC nuclei, which is associated with the expertise in processing emotional facial expression, and which is intimately related to the specialization of MTL memory network. How the interplay between specialization of AC nuclei and of MTL memory structures is fundamental for the edification of social interactions remains to be elucidated.

  14. Memory for fearful faces across development: specialization of amygdala nuclei and medial temporal lobe structures

    Directory of Open Access Journals (Sweden)

    Charlotte ePinabiaux

    2013-12-01

    Full Text Available Enhanced memory for emotional faces is a significant component of adaptive social interactions, but little is known on its neural developmental correlates. We explored the role of amygdaloid complex (AC and medial temporal lobe (MTL in emotional memory recognition across development, by comparing fMRI activations of successful memory encoding of fearful and neutral faces in children (n=12; 8-12 years and adolescents (n=12; 13-17 years. Memory for fearful faces was enhanced compared with neutral ones in adolescents, as opposed to children. In adolescents, activations associated with successful encoding of fearful faces were centered on baso-lateral AC nuclei, hippocampus, enthorhinal and parahippocampal cortices. In children, successful encoding of fearful faces relied on activations of centro-mesial AC nuclei, which was not accompanied by functional activation of MTL memory structures. Successful encoding of neutral faces depended on activations in anterior MTL region (hippocampal head and body in adolescents, but more posterior ones (hippocampal tail and parahippocampal cortex in children. In conclusion, two distinct functional specializations emerge from childhood to adolescence and result in the enhancement of memory for these particular stimuli: the specialization of baso-lateral AC nuclei, which is associated with the expertise in processing emotional facial expression, and which is intimately related to the specialization of MTL memory network. How the interplay between specialization of AC nuclei and of MTL memory structures is fundamental for the edification of social interactions remains to be elucidated.

  15. Basolateral amygdala and stress-induced hyperexcitability affect motivated behaviors and addiction

    OpenAIRE

    Sharp, B M

    2017-01-01

    The amygdala integrates and processes incoming information pertinent to reward and to emotions such as fear and anxiety that promote survival by warning of potential danger. Basolateral amygdala (BLA) communicates bi-directionally with brain regions affecting cognition, motivation and stress responses including prefrontal cortex, hippocampus, nucleus accumbens and hindbrain regions that trigger norepinephrine-mediated stress responses. Disruption of intrinsic amygdala and BLA regulatory neuro...

  16. A novel basolateral type IV secretion model for the CagA oncoprotein of Helicobacter pylori

    Directory of Open Access Journals (Sweden)

    Silja Wessler

    2017-12-01

    Full Text Available Intercellular junctions are crucial structural elements for the formation and maintenance of epithelial barrier functions to control homeostasis or protect against intruding pathogens in humans. Alterations in these complexes represent key events in the development and progression of numerous cancers as well as multiple infectious diseases. Many bacterial pathogens harbor type IV secretion systems (T4SSs, which translocate virulence factors into host cells to hijack cellular processes. The pathology of the gastric pathogen and type-I carcinogen Helicobacter pylori strongly depends on a T4SS encoded by the cag pathogenicity island (cagPAI. This T4SS forms a needle-like pilus and its activity is accomplished by the pilus-associated factors CagL, CagI and CagY which target the host integrin-β1 receptor followed by injection of the CagA oncoprotein into non-polarized AGS gastric epithelial cells. The finding of a T4SS receptor, however, suggested the presence of a sophisticated control mechanism for the injection of CagA. In fact, integrins constitute a group of basolateral receptors, which are normally absent at apical surfaces of the polarized epithelium in vivo. Our new results demonstrate that T4SS-pilus formation during H. pylori infection of polarized epithelial cells occurs preferentially at basolateral sites, and not at apical membranes (Tegtmeyer et al., 2017. We propose a stepwise process how H. pylori interacts with components of intercellular tight junctions (TJs and adherens junctions (AJs, followed by contacting integrin-based focal adhesions to disrupt and transform the epithelial cell layer in the human stomach. The possible impact of this novel signaling cascade on pathogenesis during infection is reviewed.

  17. Fasting induces basolateral uptake transporters of the SLC family in the liver via HNF4alpha and PGC1alpha.

    Science.gov (United States)

    Dietrich, Christoph G; Martin, Ina V; Porn, Anne C; Voigt, Sebastian; Gartung, Carsten; Trautwein, Christian; Geier, Andreas

    2007-09-01

    Fasting induces numerous adaptive changes in metabolism by several central signaling pathways, the most important represented by the HNF4alpha/PGC-1alpha-pathway. Because HNF4alpha has been identified as central regulator of basolateral bile acid transporters and a previous study reports increased basolateral bile acid uptake into the liver during fasting, we hypothesized that HNF4alpha is involved in fasting-induced bile acid uptake via upregulation of basolateral bile acid transporters. In rats, mRNA of Ntcp, Oatp1, and Oatp2 were significantly increased after 48 h of fasting. Protein expression as determined by Western blot showed significant increases for all three transporters 72 h after the onset of fasting. Whereas binding activity of HNF1alpha in electrophoretic mobility shift assays remained unchanged, HNF4alpha binding activity to the Ntcp promoter was increased significantly. In line with this result, we found significantly increased mRNA expression of HNF4alpha and PGC-1alpha. Functional studies in HepG2 cells revealed an increased endogenous NTCP mRNA expression upon cotransfection with either HNF4alpha, PGC-1alpha, or a combination of both. We conclude that upregulation of the basolateral bile acid transporters Ntcp, Oatp1, and Oatp2 in fasted rats is mediated via the HNF4alpha/PGC-1alpha pathway.

  18. Short-term environmental enrichment is sufficient to counter stress-induced anxiety and associated structural and molecular plasticity in basolateral amygdala.

    Science.gov (United States)

    Ashokan, Archana; Hegde, Akshaya; Mitra, Rupshi

    2016-07-01

    Moderate levels of anxiety enable individual animals to cope with stressors through avoidance, and could be an adaptive trait. However, repeated stress exacerbates anxiety to pathologically high levels. Dendritic remodeling in the basolateral amygdala is proposed to mediate potentiation of anxiety after stress. Similarly, modulation of brain-derived neurotrophic factor is thought to be important for the behavioral effects of stress. In the present study, we investigate if relatively short periods of environmental enrichment in adulthood can confer resilience against stress-induced anxiety and concomitant changes in neuronal arborisation and brain derived neurotrophic factor within basolateral amygdala. Two weeks of environmental enrichment countermanded the propensity of increased anxiety following chronic immobilization stress. Environmental enrichment concurrently reduced dendritic branching and spine density of projection neurons of the basolateral amygdala. Moreover, stress increased abundance of BDNF mRNA in the basolateral amygdala in agreement with the dendritic hypertrophy post-stress and role of BDNF in promoting dendritic arborisation. In contrast, environmental enrichment prevented stress-induced rise in the BDNF mRNA abundance. Gain in body weights and adrenal weights remained unaffected by exposure to environmental enrichment. These observations suggest that a short period of environmental enrichment can provide resilience against maladaptive effects of stress on hormonal, neuronal and molecular mediators of anxiogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Effects of the benzodiazepine antagonists RO 15-1788, CGS-8216 and PK-11195 on amygdaloid kindled seizures and the anticonvulsant efficacy of diazepam.

    Science.gov (United States)

    Albertson, T E; Walby, W F

    1986-11-01

    The anticonvulsant effectiveness of the benzodiazepine antagonists RO 15-1788, CGS-8216 and PK-11195 were evaluated against threshold and suprathreshold (400 microA) stimulation in fully amygdaloid-kindled rats. Pretreatment with either RO 15-1788 (3, 10 and 30 mg/kg), CGS-8216 (3, 10 and 30 mg/kg) or PK-11195 (10 and 60 mg/kg) failed in this study to modify consistently either the afterdischarge thresholds or elicited suprathreshold seizures or duration of afterdischarge. Using a double injection paradigm, the effectiveness of these three benzodiazepine antagonists to reverse the anti-convulsant and behavioral effects of diazepam were studied. When diazepam (3 mg/kg) was injected 15 min before or after a second injection of the vehicle control DMSO (0.25 ml/kg), a significant reduction in the duration of afterdischarge and seizure rank, elicited by a suprathreshold stimulation in amygdaloid-kindled rats, occurred. When either CGS 8216 (10 mg/kg) or RO 15-1788 (10 mg/kg) were given 15 min before diazepam (3 mg/kg) prior to stimulation, the anticonvulsant properties of diazepam were blocked. When RO 15-1788 (10 mg/kg) was given 15 min after diazepam, antagonism of the anticonvulsant effects on diazepam was shown. However, when either CGS-8216 (10 mg/kg) or PK-11195 (10 and 60 mg/kg) were given 15 min after diazepam (3 mg/kg), the anticonvulsant properties of diazepam were not blocked. The anticonvulsant effects of diazepam were reversed when CGS-8216 (10 mg/kg) was given 5 min after diazepam (3 mg/kg) or when a larger dose (30 mg/kg) was given at the same 15 min interval.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. The MARVEL transmembrane motif of occludin mediates oligomerization and targeting to the basolateral surface in epithelia.

    Science.gov (United States)

    Yaffe, Yakey; Shepshelovitch, Jeanne; Nevo-Yassaf, Inbar; Yeheskel, Adva; Shmerling, Hedva; Kwiatek, Joanna M; Gaus, Katharina; Pasmanik-Chor, Metsada; Hirschberg, Koret

    2012-08-01

    Occludin (Ocln), a MARVEL-motif-containing protein, is found in all tight junctions. MARVEL motifs are comprised of four transmembrane helices associated with the localization to or formation of diverse membrane subdomains by interacting with the proximal lipid environment. The functions of the Ocln MARVEL motif are unknown. Bioinformatics sequence- and structure-based analyses demonstrated that the MARVEL domain of Ocln family proteins has distinct evolutionarily conserved sequence features that are consistent with its basolateral membrane localization. Live-cell microscopy, fluorescence resonance energy transfer (FRET) and bimolecular fluorescence complementation (BiFC) were used to analyze the intracellular distribution and self-association of fluorescent-protein-tagged full-length human Ocln or the Ocln MARVEL motif excluding the cytosolic C- and N-termini (amino acids 60-269, FP-MARVEL-Ocln). FP-MARVEL-Ocln efficiently arrived at the plasma membrane (PM) and was sorted to the basolateral PM in filter-grown polarized MDCK cells. A series of conserved aromatic amino acids within the MARVEL domain were found to be associated with Ocln dimerization using BiFC. FP-MARVEL-Ocln inhibited membrane pore growth during Triton-X-100-induced solubilization and was shown to increase the membrane-ordered state using Laurdan, a lipid dye. These data demonstrate that the Ocln MARVEL domain mediates self-association and correct sorting to the basolateral membrane.

  1. Basolateral glycylsarcosine (Gly-Sar) transport in Caco-2 cell monolayers is pH dependent

    DEFF Research Database (Denmark)

    Berthelsen, Ragna; Nielsen, Carsten Uhd; Brodin, Birger

    2013-01-01

    Transepithelial di/tripeptide transport in enterocytes occurs via the apical proton-coupled peptide transporter, hPEPT1 (SLC15A1) and a basolateral peptide transporter, which has only been characterized functionally. In this study we examined the pH dependency, substrate uptake kinetics and subst...

  2. Chemogenetic and Optogenetic Activation of Gαs Signaling in the Basolateral Amygdala Induces Acute and Social Anxiety-Like States.

    Science.gov (United States)

    Siuda, Edward R; Al-Hasani, Ream; McCall, Jordan G; Bhatti, Dionnet L; Bruchas, Michael R

    2016-07-01

    Anxiety disorders are debilitating psychiatric illnesses with detrimental effects on human health. These heightened states of arousal are often in the absence of obvious threatening cues and are difficult to treat owing to a lack of understanding of the neural circuitry and cellular machinery mediating these conditions. Activation of noradrenergic circuitry in the basolateral amygdala is thought to have a role in stress, fear, and anxiety, and the specific cell and receptor types responsible is an active area of investigation. Here we take advantage of two novel cellular approaches to dissect the contributions of G-protein signaling in acute and social anxiety-like states. We used a chemogenetic approach utilizing the Gαs DREADD (rM3Ds) receptor and show that selective activation of generic Gαs signaling is sufficient to induce acute and social anxiety-like behavioral states in mice. Second, we use a recently characterized chimeric receptor composed of rhodopsin and the β2-adrenergic receptor (Opto-β2AR) with in vivo optogenetic techniques to selectively activate Gαs β-adrenergic signaling exclusively within excitatory neurons of the basolateral amygdala. We found that optogenetic induction of β-adrenergic signaling in the basolateral amygdala is sufficient to induce acute and social anxiety-like behavior. These findings support the conclusion that activation of Gαs signaling in the basolateral amygdala has a role in anxiety. These data also suggest that acute and social anxiety-like states may be mediated through signaling pathways identical to β-adrenergic receptors, thus providing support that inhibition of this system may be an effective anxiolytic therapy.

  3. The Basolateral Amygdala Is Necessary for the Encoding and the Expression of Odor Memory

    Science.gov (United States)

    Sevelinges, Yannick; Desgranges, Bertrand; Ferreira, Guillaume

    2009-01-01

    Conditioned odor avoidance (COA) results from the association between a novel odor and a delayed visceral illness. The present experiments investigated the role of the basolateral amygdala (BLA) in acquisition and retrieval of COA memory. To address this, we used the GABAA agonist muscimol to temporarily inactivate the BLA during COA acquisition…

  4. Uteroglobin, an apically secreted protein of the uterine epithelium, is secreted non-polarized form MDCK cells and mainly basolaterally from Caco-2 cells

    DEFF Research Database (Denmark)

    Vogel, L K; Suske, G; Beato, M

    1993-01-01

    A complete cDNA encoding rabbit uteroglobin was constructed and expressed in MDCK and Caco-2 cells. The MDCK cells secrete uteroglobin in approximately equal amounts to the apical and the basolateral side, whereas the Caco-2 cells secrete uteroglobin mainly to the basolateral side. Both MDCK...... and Caco-2 cells thus secrete uteroglobin in a non-sorted manner. It has, however, previously been shown that uteroglobin is secreted exclusively at the apical membrane in primary cell culture of endometrial epithelial cells [S.K. Mani et al. (1991) Endocrinology 128, 1563-1573]. This suggests that either...... the endometrial epithelium has an apical default pathway or recognises a sorting signal not recognised by MDCK cells and Caco-2 cells. Our data thus show that a soluble molecule can be secreted at the apical, the basolateral or both membranes depending on the cell type....

  5. Afferent and efferent projections of the anterior cortical amygdaloid nucleus in the mouse.

    Science.gov (United States)

    Cádiz-Moretti, Bernardita; Abellán-Álvaro, María; Pardo-Bellver, Cecília; Martínez-García, Fernando; Lanuza, Enrique

    2017-09-01

    The anterior cortical amygdaloid nucleus (ACo) is a chemosensory area of the cortical amygdala that receives afferent projections from both the main and accessory olfactory bulbs. The role of this structure is unknown, partially due to a lack of knowledge of its connectivity. In this work, we describe the pattern of afferent and efferent projections of the ACo by using fluorogold and biotinylated dextranamines as retrograde and anterograde tracers, respectively. The results show that the ACo is reciprocally connected with the olfactory system and basal forebrain, as well as with the chemosensory and basomedial amygdala. In addition, it receives dense projections from the midline and posterior intralaminar thalamus, and moderate projections from the posterior bed nucleus of the stria terminalis, mesocortical structures and the hippocampal formation. Remarkably, the ACo projects moderately to the central nuclei of the amygdala and anterior bed nucleus of the stria terminalis, and densely to the lateral hypothalamus. Finally, minor connections are present with some midbrain and brainstem structures. The afferent projections of the ACo indicate that this nucleus might play a role in emotional learning involving chemosensory stimuli, such as olfactory fear conditioning. The efferent projections confirm this view and, given its direct output to the medial part of the central amygdala and the hypothalamic 'aggression area', suggest that the ACo can initiate defensive and aggressive responses elicited by olfactory or, to a lesser extent, vomeronasal stimuli. © 2017 Wiley Periodicals, Inc.

  6. Paradoxical facilitation of working memory after basolateral amygdala damage.

    Directory of Open Access Journals (Sweden)

    Barak Morgan

    Full Text Available Working memory is a vital cognitive capacity without which meaningful thinking and logical reasoning would be impossible. Working memory is integrally dependent upon prefrontal cortex and it has been suggested that voluntary control of working memory, enabling sustained emotion inhibition, was the crucial step in the evolution of modern humans. Consistent with this, recent fMRI studies suggest that working memory performance depends upon the capacity of prefrontal cortex to suppress bottom-up amygdala signals during emotional arousal. However fMRI is not well-suited to definitively resolve questions of causality. Moreover, the amygdala is neither structurally or functionally homogenous and fMRI studies do not resolve which amygdala sub-regions interfere with working memory. Lesion studies on the other hand can contribute unique causal evidence on aspects of brain-behaviour phenomena fMRI cannot "see". To address these questions we investigated working memory performance in three adult female subjects with bilateral basolateral amygdala calcification consequent to Urbach-Wiethe Disease and ten healthy controls. Amygdala lesion extent and functionality was determined by structural and functional MRI methods. Working memory performance was assessed using the Wechsler Adult Intelligence Scale-III digit span forward task. State and trait anxiety measures to control for possible emotional differences between patient and control groups were administered. Structural MRI showed bilateral selective basolateral amygdala damage in the three Urbach-Wiethe Disease subjects and fMRI confirmed intact functionality in the remaining amygdala sub-regions. The three Urbach-Wiethe Disease subjects showed significant working memory facilitation relative to controls. Control measures showed no group anxiety differences. Results are provisionally interpreted in terms of a 'cooperation through competition' networks model that may account for the observed paradoxical

  7. Endocannabinoid signaling within the basolateral amygdala integrates multiple stress hormone effects on memory consolidation.

    Science.gov (United States)

    Atsak, Piray; Hauer, Daniela; Campolongo, Patrizia; Schelling, Gustav; Fornari, Raquel V; Roozendaal, Benno

    2015-05-01

    Glucocorticoid hormones are known to act synergistically with other stress-activated neuromodulatory systems, such as norepinephrine and corticotropin-releasing factor (CRF), within the basolateral complex of the amygdala (BLA) to induce optimal strengthening of the consolidation of long-term memory of emotionally arousing experiences. However, as the onset of these glucocorticoid actions appear often too rapid to be explained by genomic regulation, the neurobiological mechanism of how glucocorticoids could modify the memory-enhancing properties of norepinephrine and CRF remained elusive. Here, we show that the endocannabinoid system, a rapidly activated retrograde messenger system, is a primary route mediating the actions of glucocorticoids, via a glucocorticoid receptor on the cell surface, on BLA neural plasticity and memory consolidation. Furthermore, glucocorticoids recruit downstream endocannabinoid activity within the BLA to interact with both the norepinephrine and CRF systems in enhancing memory consolidation. These findings have important implications for understanding the fine-tuned crosstalk between multiple stress hormone systems in the coordination of (mal)adaptive stress and emotional arousal effects on neural plasticity and memory consolidation.

  8. Mesolimbic dopaminergic supersensitivity following electrical kindling of the amygdala

    International Nuclear Information System (INIS)

    Csernansky, J.G.; Mellentin, J.; Beauclair, L.; Lombrozo, L.

    1988-01-01

    Limbic seizures developed in rats following daily electrical stimulation of the basolateral nucleus of the amygdala. Animals were designated as kindled after five complete (stage 5) behavioral seizures were observed. A subgroup, designated as superkindled, received three additional weeks of electrical stimulations. Kindled rats were significantly subsensitive to the stereotypy-inducing effects of apomorphine, a direct dopamine agonist, compared to controls. Superkindled rats were supersensitive to the effects of apomorphine. However, both kindled and superkindled rats demonstrated an increase in 3 H-spiperone Bmax values, reflecting dopamine D2-receptor densities, in the nucleus accumbens ipsilateral to the stimulating electrode. The number of interictal spikes recorded from the stimulating amygdaloid electrode during the last week of kindling was correlated with changes in apomorphine sensitivity in individual animals

  9. The basolateral amygdala modulates specific sensory memory representations in the cerebral cortex

    OpenAIRE

    Chavez, Candice M.; McGaugh, James L.; Weinberger, Norman M.

    2008-01-01

    Stress hormones released by an experience can modulate memory strength via the basolateral amygdala, which in turn acts on sites of memory storage such as the cerebral cortex [McGaugh, J. L. (2004). The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annual Review of Neuroscience, 27, 1–28]. Stimuli that acquire behavioral importance gain increased representation in the cortex. For example, learning shifts the tuning of neurons in the primary auditory cor...

  10. A genetically encoded ratiometric sensor to measure extracellular pH in microdomains bounded by basolateral membranes of epithelial cells.

    Science.gov (United States)

    Urra, Javier; Sandoval, Moisés; Cornejo, Isabel; Barros, L Felipe; Sepúlveda, Francisco V; Cid, L Pablo

    2008-10-01

    Extracellular pH, especially in relatively inaccessible microdomains between cells, affects transport membrane protein activity and might have an intercellular signaling role. We have developed a genetically encoded extracellular pH sensor capable of detecting pH changes in basolateral spaces of epithelial cells. It consists of a chimerical membrane protein displaying concatenated enhanced variants of cyan fluorescence protein (ECFP) and yellow fluorescence protein (EYFP) at the external aspect of the cell surface. The construct, termed pHCECSensor01, was targeted to basolateral membranes of Madin-Darby canine kidney (MDCK) cells by means of a sequence derived from the aquaporin AQP4. The fusion of pH-sensitive EYFP with pH-insensitive ECFP allows ratiometric pH measurements. The titration curve of pHCECSensor01 in vivo had a pK (a) value of 6.5 +/- 0.04. Only minor effects of extracellular chloride on pHCECSensor01 were observed around the physiological concentrations of this anion. In MDCK cells, the sensor was able to detect changes in pH secondary to H(+) efflux into the basolateral spaces elicited by an ammonium prepulse or lactate load. This genetically encoded sensor has the potential to serve as a noninvasive tool for monitoring changes in extracellular pH microdomains in epithelial and other tissues in vivo.

  11. Bile Acids Trigger GLP-1 Release Predominantly by Accessing Basolaterally Located G Protein-Coupled Bile Acid Receptors

    DEFF Research Database (Denmark)

    Brighton, Cheryl A.; Rievaj, Juraj; Kuhre, Rune E.

    2015-01-01

    Bile acids are well-recognized stimuli of glucagon-like peptide-1 (GLP-1) secretion. This action has been attributed to activation of the G protein-coupled bile acid receptor GPBAR1 (TGR5), although other potential bile acid sensors include the nuclear farnesoid receptor and the apical sodium......-coupled bile acid transporter ASBT. The aim of this study was to identify pathways important for GLP-1 release and to determine whether bile acids target their receptors on GLP-1-secreting L-cells from the apical or basolateral compartment. Using transgenic mice expressing fluorescent sensors specifically in L...... to either TLCA or TDCA. We conclude that the action of bile acids on GLP-1 secretion is predominantly mediated by GPBAR1 located on the basolateral L-cell membrane, suggesting that stimulation of gut hormone secretion may include postabsorptive mechanisms....

  12. Insulin and IGF-1 activate Kir4.1/5.1 channels in cortical collecting duct principal cells to control basolateral membrane voltage.

    Science.gov (United States)

    Zaika, Oleg; Palygin, Oleg; Tomilin, Viktor; Mamenko, Mykola; Staruschenko, Alexander; Pochynyuk, Oleh

    2016-02-15

    Potassium Kir4.1/5.1 channels are abundantly expressed at the basolateral membrane of principal cells in the cortical collecting duct (CCD), where they are thought to modulate transport rates by controlling transepithelial voltage. Insulin and insulin-like growth factor-1 (IGF-1) stimulate apically localized epithelial sodium channels (ENaC) to augment sodium reabsorption in the CCD. However, little is known about their actions on potassium channels localized at the basolateral membrane. In this study, we implemented patch-clamp analysis in freshly isolated murine CCD to assess the effect of these hormones on Kir4.1/5.1 at both single channel and cellular levels. We demonstrated that K(+)-selective conductance via Kir4.1/5.1 is the major contributor to the macroscopic current recorded from the basolateral side in principal cells. Acute treatment with 10 μM amiloride (ENaC blocker), 100 nM tertiapin-Q (TPNQ; ROMK inhibitor), and 100 μM ouabain (Na(+)-K(+)-ATPase blocker) failed to produce a measurable effect on the macroscopic current. In contrast, Kir4.1 inhibitor nortriptyline (100 μM), but not fluoxetine (100 μM), virtually abolished whole cell K(+)-selective conductance. Insulin (100 nM) markedly increased the open probability of Kir4.1/5.1 and nortriptyline-sensitive whole cell current, leading to significant hyperpolarization of the basolateral membrane. Inhibition of the phosphatidylinositol 3-kinase cascade with LY294002 (20 μM) abolished action of insulin on Kir4.1/5.1. IGF-1 had similar stimulatory actions on Kir4.1/5.1-mediated conductance only when applied at a higher (500 nM) concentration and was ineffective at 100 nM. We concluded that both insulin and, to a lesser extent, IGF-1 activate Kir4.1/5.1 channel activity and open probability to hyperpolarize the basolateral membrane, thereby facilitating Na(+) reabsorption in the CCD. Copyright © 2016 the American Physiological Society.

  13. Differential efferent projections of the anterior, posteroventral, and posterodorsal subdivisions of the medial amygdala in mice.

    Science.gov (United States)

    Pardo-Bellver, Cecília; Cádiz-Moretti, Bernardita; Novejarque, Amparo; Martínez-García, Fernando; Lanuza, Enrique

    2012-01-01

    The medial amygdaloid nucleus (Me) is a key structure in the control of sociosexual behavior in mice. It receives direct projections from the main and accessory olfactory bulbs (AOB), as well as an important hormonal input. To better understand its behavioral role, in this work we investigate the structures receiving information from the Me, by analysing the efferent projections from its anterior (MeA), posterodorsal (MePD) and posteroventral (MePV) subdivisions, using anterograde neuronal tracing with biotinylated and tetrametylrhodamine-conjugated dextranamines. The Me is strongly interconnected with the rest of the chemosensory amygdala, but shows only moderate projections to the central nucleus and light projections to the associative nuclei of the basolateral amygdaloid complex. In addition, the MeA originates a strong feedback projection to the deep mitral cell layer of the AOB, whereas the MePV projects to its granule cell layer. The Me (especially the MeA) has also moderate projections to different olfactory structures, including the piriform cortex (Pir). The densest outputs of the Me target the bed nucleus of the stria terminalis (BST) and the hypothalamus. The MeA and MePV project to key structures of the circuit involved in the defensive response against predators (medial posterointermediate BST, anterior hypothalamic area, dorsomedial aspect of the ventromedial hypothalamic nucleus), although less dense projections also innervate reproductive-related nuclei. In contrast, the MePD projects mainly to structures that control reproductive behaviors [medial posteromedial BST, medial preoptic nucleus, and ventrolateral aspect of the ventromedial hypothalamic nucleus], although less dense projections to defensive-related nuclei also exist. These results confirm and extend previous results in other rodents and suggest that the medial amygdala is anatomically and functionally compartmentalized.

  14. Virus interaction with the apical junctional complex.

    Science.gov (United States)

    Gonzalez-Mariscal, Lorenza; Garay, Erika; Lechuga, Susana

    2009-01-01

    In order to infect pathogens must breach the epithelial barriers that separate the organism from the external environment or that cover the internal cavities and ducts of the body. Epithelia seal the passage through the paracellular pathway with the apical junctional complex integrated by tight and adherens junctions. In this review we describe how viruses like coxsackie, swine vesicular disease virus, adenovirus, reovirus, feline calcivirus, herpes viruses 1 and 2, pseudorabies, bovine herpes virus 1, poliovirus and hepatitis C use as cellular receptors integral proteins present at the AJC of epithelial cells. Interaction with these proteins contributes in a significant manner in defining the particular tropism of each virus. Besides these proteins, viruses exhibit a wide range of cellular co-receptors among which proteins present in the basolateral cell surface like integrins are often found. Therefore targeting proteins of the AJC constitutes a strategy that might allow viruses to bypass the physical barrier that blocks their access to receptors expressed on the basolateral surface of epithelial cells.

  15. PAH clearance after renal ischemia and reperfusion is a function of impaired expression of basolateral Oat1 and Oat3.

    Science.gov (United States)

    Bischoff, Ariane; Bucher, Michael; Gekle, Michael; Sauvant, Christoph

    2014-02-01

    Determination of renal plasma flow (RPF) by para-aminohippurate (PAH) clearance leads to gross underestimation of this respective parameter due to impaired renal extraction of PAH after renal ischemia and reperfusion injury. However, no mechanistic explanation for this phenomenon is available. Based on our own previous studies we hypothesized that this may be due to impairment of expression of the basolateral rate limiting organic anion transporters Oat1 and Oat3. Thus, we investigated this phenomenon in a rat model of renal ischemia and reperfusion by determining PAH clearance, PAH extraction, PAH net secretion, and the expression of rOat1 and rOat3. PAH extraction was seriously impaired after ischemia and reperfusion which led to a threefold underestimation of RPF when PAH extraction ratio was not considered. PAH extraction directly correlated with the expression of basolateral Oat1 and Oat3. Tubular PAH secretion directly correlated with PAH extraction. Consequently, our data offer an explanation for impaired renal PAH extraction by reduced expression of the rate limiting basolateral organic anion transporters Oat1 and Oat3. Moreover, we show that determination of PAH net secretion is suitable to correct PAH clearance for impaired extraction after ischemia and reperfusion in order to get valid results for RPF.

  16. Stress-induced resistance to the fear memory labilization/reconsolidation process. Involvement of the basolateral amygdala complex.

    Science.gov (United States)

    Espejo, Pablo Javier; Ortiz, Vanesa; Martijena, Irene Delia; Molina, Victor Alejandro

    2016-10-01

    Consolidated memories can enter into a labile state after reactivation followed by a restabilization process defined as reconsolidation. This process can be interfered with Midazolam (MDZ), a positive allosteric modulator of the GABA-A receptor. The present study has evaluated the influence of prior stress on MDZ's interfering effect. We also assessed the influence of both systemic and intra-basolateral amygdala (BLA) infusion of d-cycloserine (DCS), a partial agonist of the NMDA receptors, on the MDZ effect in previously stressed rats. Furthermore, we analyzed the effect of stress on the expression of Zif-268 and the GluN2B sites, two molecular markers of the labilization/reconsolidation process, following reactivation. The results revealed that prior stress resulted into a memory trace that was insensitive to the MDZ impairing effect. Both systemic and intra-BLA DCS administration previous to reactivation restored MDZ's disruptive effect on memory reconsolidation in stressed animals. Further, reactivation enhanced Zif-268 expression in the BLA in control unstressed rats, whereas no elevation was observed in stressed animals. In agreement with the behavioral findings, DCS restored the increased level of Zif-268 expression in the BLA in stressed animals. Moreover, memory reactivation in unstressed animals elevated GluN2B expression in the BLA, thus suggesting that this effect is involved in memory destabilization, whereas stressed animals did not reveal any changes. These findings are consistent with resistance to the MDZ effect in these rats, indicating that stress exposure prevents the onset of destabilization following reactivation. In summary, prior stress limited both the occurrence of the reactivation-induced destabilization and restabilization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Hepatic taurine transport: a Na+-dependent carrier on the basolateral plasma membrane

    International Nuclear Information System (INIS)

    Bucuvalas, J.C.; Goodrich, A.L.; Suchy, F.J.

    1987-01-01

    Highly purified rat basolateral liver plasma membrane vesicles were used examine the mechanism and the driving forces for hepatic uptake of the β-amino acid, taurine. An inwardly directed 100 mM NaCl gradient stimulated the initial rate of taurine uptake and energized a transient twofold accumulation of taurine above equilibrium (overshoot). In contrast, uptake was slower and no overshoot was detected in the presence of a KCl gradient. A negative intravesicular electrical potential generated by the presence of permeant anions or an outwardly directed K + gradient with valinomycin increased Na + -stimulated taurine uptake. External Cl - stimulated Na + -dependent taurine uptake independent of effects on the transmembrane electrical potential difference. Na + -dependent taurine uptake showed a sigmoidal dependence on extravesicular Na + concentration, suggesting multiple Na + ions are involved in the translocation of each taurine molecule. Na + -dependent taurine uptake demonstrated Michaelis-Menten kinetics with a maximum velocity of 0.537 nmol x mg protein -1 x min -1 and an apparent K/sub m/ of 174 μM. [ 3 H]taurine uptake was inhibited by the presence of excess unlabeled taurine, β-alanine, or hypotaurine but not by L-glutamine or L-alanine. In summary, using basolateral liver plasma membrane vesicles, the authors have shown that hepatic uptake of taurine occurs by a carrier-mediated, secondary active transport process specific for β-amino acids. Uptake is electrogenic, stimulated by external Cl - , and requires multiple Na + ions for the translocation of each taurine molecule

  18. Priming stimulation of basal but not lateral amygdala affects long-term potentiation in the rat dentate gyrus in vivo.

    Science.gov (United States)

    Li, Z; Richter-Levin, G

    2013-08-29

    The amygdaloid complex, or amygdala, has been implicated in assigning emotional significance to sensory information and producing appropriate behavioral responses to external stimuli. The lateral and basal nuclei (lateral and basal amygdala), which are termed together as basolateral amygdala, play a critical role in emotional and motivational learning and memory. It has been established that the basolateral amygdala activation by behavioral manipulations or direct electrical stimulation can modulate hippocampal long-term potentiation (LTP), a putative cellular mechanism of memory. However, the specific functional role of each subnucleus in the modulation of hippocampal LTP has not been studied yet, even though studies have shown cytoarchitectural differences between the basal and lateral amygdala and differences in the connections of each one of them to other brain areas. In this study we have tested the effects of lateral or basal amygdala pre-stimulation on hippocampal dentate gyrus LTP, induced by theta burst stimulation of the perforant path, in anesthetized rats. We found that while priming stimulation of the lateral amygdala did not affect LTP of the dentate gyrus, priming stimulation of the basal amygdala enhanced the LTP response when the priming stimulation was relatively weak, but impaired it when it was relatively strong. These results show that the basal and lateral nuclei of the amygdala, which have been already shown to differ in their anatomy and connectivity, may also have different functional roles. These findings raise the possibility that the lateral and basal amygdala differentially modulate memory processes in the hippocampus under emotional and motivational situations. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Biogenesis of the rat hepatocyte plasma membrane in vivo: comparison of the pathways taken by apical and basolateral proteins using subcellular fractionation

    International Nuclear Information System (INIS)

    Bartles, J.R.; Feracci, H.M.; Stieger, B.; Hubbard, A.L.

    1987-01-01

    We have used pulse-chase metabolic radiolabeling with L-[ 35 S]methionine in conjunction with subcellular fractionation and specific protein immunoprecipitation techniques to compare the posttranslational transport pathways taken by endogenous domain-specific integral proteins of the rat hepatocyte plasma membrane in vivo. Our results suggest that both apical (HA 4, dipeptidylpeptidase IV, and aminopeptidase N) and basolateral (CE 9 and the asialoglycoprotein receptor [ASGP-R]) proteins reach the hepatocyte plasma membrane with similar kinetics. The mature molecular mass form of each of these proteins reaches its maximum specific radioactivity in a purified hepatocyte plasma membrane fraction after only 45 min of chase. However, at this time, the mature radiolabeled apical proteins are not associated with vesicles derived from the apical domain of the hepatocyte plasma membrane, but instead are associated with vesicles which, by several criteria, appear to be basolateral plasma membrane. These vesicles: (a) fractionate like basolateral plasma membrane in sucrose density gradients and in free-flow electrophoresis; (b) can be separated from the bulk of the likely organellar contaminants, including membranes derived from the late Golgi cisternae, transtubular network, and endosomes; (c) contain the proven basolateral constituents CE 9 and the ASGP-R, as judged by vesicle immunoadsorption using fixed Staphylococcus aureus cells and anti-ASGP-R antibodies; and (d) are oriented with their ectoplasmic surfaces facing outward, based on the results of vesicle immunoadsorption experiments using antibodies specific for the ectoplasmic domain of the ASGP-R. Only at times of chase greater than 45 min do significant amounts of the mature radiolabeled apical proteins arrive at the apical domain, and they do so at different rates

  20. Anti-inflammatory activity of the basolateral fraction of Caco-2 cells exposed to a rosemary supercritical extract

    NARCIS (Netherlands)

    Arranz, E.; Mes, J.J.; Wichers, H.J.; Jaime, L.; Reglero, G.; Santoyo, S.

    2015-01-01

    The anti-inflammatory activity of the basolateral fraction of Caco-2 cells exposed to a rosemary supercritical extract was examined. Uptake of rosemary extract fractions was tested on Caco-2 cell monolayers (2–12 h incubation times) and the quantification of carnosic acid and carnosol was performed

  1. EBIO, an agent causing maintained epithelial chloride secretion by co-ordinate actions at both apical and basolateral membranes.

    Science.gov (United States)

    MacVinish, L J; Keogh, J; Cuthbert, A W

    2001-01-01

    The effect of 1-ethyl-2-benzimidazolone (EBIO) on electrogenic chloride secretion in murine colonic and nasal epithelium was investigated by the short-circuit technique. In the colon, EBIO produces a sustained current increase in the presence of amiloride, which is sensitive to furosemide. In nasal epithelium EBIO causes only a small, transient current increase. Sustained increases in current were obtained in response to forskolin in both epithelia. To examine the mechanisms by which EBIO increases chloride secretion, the effects on intracellular mediators were measured in colonic crypts. There was no effect on [Ca(2+)]i but cAMP content was increased, more so in the presence of IBMX, indicating a direct effect on adenylate cyclase. In colonic epithelia in which the apical surface was permeabilized by nystatin, and the tissue subjected to an apical to basolateral K(+) gradient, EBIO caused a current increase that was entirely sensitive to charybdotoxin (ChTX). In similarly permeabilized colons Br-cAMP caused a current increase that was entirely sensitive to 293B. Thus EBIO increases chloride secretion in the colon by coordinated actions at both the apical and basolateral faces of the cells. These include direct and indirect actions on Ca(2+)-sensitive and cAMP-sensitive K(+) channels respectively, and indirect actions on the basolateral cotransporter and apical CFTR chloride channels via cAMP. In CF colonic epithelia EBIO did not evoke chloride secretion. It is not clear why the nasal epithelium responds poorly to EBIO whereas it gives a sustained response to the related compound chlorzoxazone.

  2. Rapid corticosteroid actions on synaptic plasticity in the mouse basolateral amygdala: relevance of recent stress history and β-adrenergic signaling.

    Science.gov (United States)

    Sarabdjitsingh, R A; Joëls, M

    2014-07-01

    The rodent stress hormone corticosterone rapidly enhances long-term potentiation in the CA1 hippocampal area, but leads to a suppression when acting in a more delayed fashion. Both actions are thought to contribute to stress effects on emotional memory. Emotional memory formation also involves the basolateral amygdala, an important target area for corticosteroid actions. We here (1) investigated the rapid effects of corticosterone on amygdalar synaptic potentiation, (2) determined to what extent these effects depend on the mouse's recent stress history or (3) on prior β-adrenoceptor activation; earlier studies at the single cell level showed that especially a recent history of stress changes the responsiveness of basolateral amygdala neurons to corticosterone. We report that, unlike the hippocampus, stress enhances amygdalar synaptic potentiation in a slow manner. In vitro exposure to 100 nM corticosterone quickly decreases synaptic potentiation, and causes only transient potentiation in tissue from stressed mice. This transient type of potentiation is also seen when β-adrenoceptors are blocked during stress and this is further exacerbated by subsequent in vitro administered corticosterone. We conclude that stress and corticosterone change synaptic potentiation in the basolateral amygdala in a manner opposite to that seen in the hippocampus and that renewed exposure to corticosterone only allows induction of non-persistent forms of synaptic potentiation. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Electrogenic sulfate uptake by crustacean hepatopancreatic basolateral membrane vesicles

    International Nuclear Information System (INIS)

    Cattey, M.A.; Gerencser, G.A.; Aheam, G.A.

    1990-01-01

    Basolateral membrane vesicles (BLMV) were isolated from Atlantic lobster (Homarus americanus) hepatopancreas and purified by discontinuous sucrose gradient centrifugation. BLMV prepared in this fashion were osmotically reactive exhibiting linear dependence of vesicular 35 SO 4 -2 uptake to increasing external osmotic pressure with negligible non-specific isotope binding. Under short circuited conditions (valinomycin/K + ) BLMV responded to either a HCO 3 - gradient directed out or equilibrated HCO 3 - (10 mM) by displaying short term accumulation of sulfate above that of equilibrium. Uptake of divalent anion was unaffected by an inwardly directed transmembrane Na + or tetramethylammonium + gradient. 35 SO 4 -2 /HCO 3 - exchange in the presence of valinomycin was stimulated by transient inside positive K + diffusion potentials and inhibited by transient inside negative K + diffusion potentials. The role of electrogenic anion exchange by hepatopancreas BLMV in transcellular sulfate transport is discussed

  4. Basolateral P2X receptors mediate inhibition of NaCl transport in mouse medullary thick ascending limb (mTAL)

    DEFF Research Database (Denmark)

    Marques, Rita D; de Bruijn, Pauline I.A.; Sørensen, Mads Vaarby

    2012-01-01

    Extracellular nucleotides regulate epithelial transport via luminal and basolateral P2 receptors. Renal epithelia express multiple P2 receptors, which mediate significant inhibition of solute absorption. Recently, we identified several P2 receptors in the medullary thick ascending limb (m...

  5. Excitant amino acid projections from rat amygdala and thalamus to nucleus accumbens

    International Nuclear Information System (INIS)

    Robinson, T.G.; Beart, P.M.

    1988-01-01

    High affinity uptake of D-[ 3 H]aspartate, [ 3 H]choline and [ 3 H]GABA was examined in synaptosomal-containing preparations of rat nucleus accumbens septi 7 to 10 days after unilateral or bilateral N-methyl-D-aspartate lesions confined to the parataenial nucleus of the thalamus or the basolateral nucleus of the amygdala. Uptake of both D-[ 3 H]aspartate and [ 3 H]choline was significantly reduced (11% and 14% less than control, respectively) by unilateral lesion of the thalamus, whereas [ 3 H]GABA uptake was unaffected. Bilateral thalamic lesions significantly reduced D-[ 3 H]aspartate uptake (11% less than control) into homogenates of the nucleus accumbens, whilst [ 3 H]GABA uptake was unaltered. D-[ 3 H]aspartate uptake was significantly reduced (26% less than control) following unilateral lesion of the amygdala, whereas both [ 3 H]GABA and [ 3 H]choline uptake were unaffected. Bilateral amygdaloid lesions significantly increased D-[ 3 H]aspartate uptake (39% greater than control), whilst uptake of [ 3 H]GABA was not affected. The results implicate glutamate and/or aspartate as putative neurotransmitters in afferent projections from the basolateral amygdala and the parataenial thalamus to the nucleus accumbens. Thalamic afferents to the nucleus accumbens may also utilize acetylcholine as their transmitter

  6. Basolateral localisation of KCNQ1 potassium channels in MDCK cells: molecular identification of an N-terminal targeting motif

    DEFF Research Database (Denmark)

    Jespersen, Thomas; Rasmussen, Hanne B; Grunnet, Morten

    2004-01-01

    of the tyrosine residue at position 51 resulted in a non-polarized steady-state distribution of the channel. The importance of tyrosine 51 in basolateral localisation was emphasized by the fact that a short peptide comprising this tyrosine was able to redirect the p75 neurotrophin receptor, an otherwise apically...

  7. [Interneuronal relationships in the basolateral amygdala of cats trained for choice in the quality of food reinforcement].

    Science.gov (United States)

    Merzhanova, G Kh; Dolbakian, E E; Partev, A Z

    1997-01-01

    The alimentary instrumental conditioned bar-pressing reflex was elaborated in cats by the method of "active choice" of either short-delayed reinforcement with bread-meat mixture of delayed more valuable reinforcement with meat. The animals differed in behavior strategy: some animals preferred bar-pressing with the long delay (the so-called "self-control" group), other animals pressed the bar with short delay (the so-called "impulsive" group). The multiunit activity in the basolateral amygdala was recorded with chronically implanted nichrome microelectrodes. The interactions between the spike trains of the neighbouring neurons selected from the multiunit activity were evaluated by means of statistical crosscorrelation analysis. It was shown that the number of correlations between the discharges of neurons was significantly higher in the "impulsive" cats. In both groups the number of cross-correlations was maximal in cases of a difficult choice, i.e., during the omission of the conditioned bar-pressing response. In "impulsive" cats the number of interneuronal correlations was highest with the latencies in the range of 0-30 msec. We suggest that the basolateral amygdala is involved in the system of structures which determine the individual-typological characteristics of animals.

  8. Angiotensin II's role in sodium lactate-induced panic-like responses in rats with repeated urocortin 1 injections into the basolateral amygdala

    DEFF Research Database (Denmark)

    Johnson, Philip L; Sajdyk, Tammy J; Fitz, Stephanie D

    2013-01-01

    Rats treated with three daily urocortin 1 (UCN) injections into the basolateral amygdala (BLA; i.e., UCN/BLA-primed rats) develop prolonged anxiety-associated behavior and vulnerability to panic-like physiological responses (i.e., tachycardia, hypertension and tachypnea) following intravenous...

  9. Proteolytic Cleavage of ProBDNF into Mature BDNF in the Basolateral Amygdala Is Necessary for Defeat-Induced Social Avoidance

    Science.gov (United States)

    Dulka, Brooke N.; Ford, Ellen C.; Lee, Melissa A.; Donnell, Nathaniel J.; Goode, Travis D.; Prosser, Rebecca; Cooper, Matthew A.

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) is essential for memory processes. The present study tested whether proteolytic cleavage of proBDNF into mature BDNF (mBDNF) within the basolateral amygdala (BLA) regulates the consolidation of defeat-related memories. We found that acute social defeat increases the expression of mBDNF, but not proBDNF, in…

  10. Basolateral Endocytic Recycling Requires RAB-10 and AMPH-1 Mediated Recruitment of RAB-5 GAP TBC-2 to Endosomes

    Science.gov (United States)

    Liu, Ou; Grant, Barth D.

    2015-01-01

    The small GTPase RAB-5/Rab5 is a master regulator of the early endosome, required for a myriad of coordinated activities, including the degradation and recycling of internalized cargo. Here we focused on the recycling function of the early endosome and the regulation of RAB-5 by GAP protein TBC-2 in the basolateral C. elegans intestine. We demonstrate that downstream basolateral recycling regulators, GTPase RAB-10/Rab10 and BAR domain protein AMPH-1/Amphiphysin, bind to TBC-2 and help to recruit it to endosomes. In the absence of RAB-10 or AMPH-1 binding to TBC-2, RAB-5 membrane association is abnormally high and recycling cargo is trapped in early endosomes. Furthermore, the loss of TBC-2 or AMPH-1 leads to abnormally high spatial overlap of RAB-5 and RAB-10. Taken together our results indicate that RAB-10 and AMPH-1 mediated down-regulation of RAB-5 is an important step in recycling, required for cargo exit from early endosomes and regulation of early endosome–recycling endosome interactions. PMID:26393361

  11. Fear extinction deficits following acute stress associate with increased spine density and dendritic retraction in basolateral amygdala neurons

    OpenAIRE

    Maroun, Mouna; Ioannides, Pericles J.; Bergman, Krista L.; Kavushansky, Alexandra; Holmes, Andrew; Wellman, Cara L.

    2013-01-01

    Stress-sensitive psychopathologies such as post-traumatic stress disorder are characterized by deficits in fear extinction and dysfunction of corticolimbic circuits mediating extinction. Chronic stress facilitates fear conditioning, impairs extinction, and produces dendritic proliferation in the basolateral amygdala (BLA), a critical site of plasticity for extinction. Acute stress impairs extinction, alters plasticity in the medial prefrontal cortex-to-BLA circuit, and causes dendritic retrac...

  12. Low dose prenatal ethanol exposure induces anxiety-like behaviour and alters dendritic morphology in the basolateral amygdala of rat offspring.

    Directory of Open Access Journals (Sweden)

    Carlie L Cullen

    Full Text Available Prenatal exposure to high levels of alcohol is strongly associated with poor cognitive outcomes particularly in relation to learning and memory. It is also becoming more evident that anxiety disorders and anxiety-like behaviour can be associated with prenatal alcohol exposure. This study used a rat model to determine if prenatal exposure to a relatively small amount of alcohol would result in anxiety-like behaviour and to determine if this was associated with morphological changes in the basolateral amygdala. Pregnant Sprague Dawley rats were fed a liquid diet containing either no alcohol (Control or 6% (vol/vol ethanol (EtOH throughout gestation. Male and Female offspring underwent behavioural testing at 8 months (Adult or 15 months (Aged of age. Rats were perfusion fixed and brains were collected at the end of behavioural testing for morphological analysis of pyramidal neuron number and dendritic morphology within the basolateral amygdala. EtOH exposed offspring displayed anxiety-like behaviour in the elevated plus maze, holeboard and emergence tests. Although sexually dimorphic behaviour was apparent, sex did not impact anxiety-like behaviour induced by prenatal alcohol exposure. This increase in anxiety - like behaviour could not be attributed to a change in pyramidal cell number within the BLA but rather was associated with an increase in dendritic spines along the apical dendrite which is indicative of an increase in synaptic connectivity and activity within these neurons. This study is the first to link increases in anxiety like behaviour to structural changes within the basolateral amygdala in a model of prenatal ethanol exposure. In addition, this study has shown that exposure to even a relatively small amount of alcohol during development leads to long term alterations in anxiety-like behaviour.

  13. Berberine Reduces cAMP-Induced Chloride Secretion in T84 Human Colonic Carcinoma Cells through Inhibition of Basolateral KCNQ1 Channels.

    LENUS (Irish Health Repository)

    Alzamora, Rodrigo

    2011-01-01

    Berberine is a plant alkaloid with multiple pharmacological actions, including antidiarrhoeal activity and has been shown to inhibit Cl(-) secretion in distal colon. The aims of this study were to determine the molecular signaling mechanisms of action of berberine on Cl(-) secretion and the ion transporter targets. Monolayers of T84 human colonic carcinoma cells grown in permeable supports were placed in Ussing chambers and short-circuit current measured in response to secretagogues and berberine. Whole-cell current recordings were performed in T84 cells using the patch-clamp technique. Berberine decreased forskolin-induced short-circuit current in a concentration-dependent manner (IC(50) 80 ± 8 μM). In apically permeabilized monolayers and whole-cell current recordings, berberine inhibited a cAMP-dependent and chromanol 293B-sensitive basolateral membrane K(+) current by 88%, suggesting inhibition of KCNQ1 K(+) channels. Berberine did not affect either apical Cl(-) conductance or basolateral Na(+)-K(+)-ATPase activity. Berberine stimulated p38 MAPK, PKCα and PKA, but had no effect on p42\\/p44 MAPK and PKCδ. However, berberine pre-treatment prevented stimulation of p42\\/p44 MAPK by epidermal growth factor. The inhibitory effect of berberine on Cl(-) secretion was partially blocked by HBDDE (∼65%), an inhibitor of PKCα and to a smaller extent by inhibition of p38 MAPK with SB202190 (∼15%). Berberine treatment induced an increase in association between PKCα and PKA with KCNQ1 and produced phosphorylation of the channel. We conclude that berberine exerts its inhibitory effect on colonic Cl(-) secretion through inhibition of basolateral KCNQ1 channels responsible for K(+) recycling via a PKCα-dependent pathway.

  14. Berberine Reduces cAMP-Induced Chloride Secretion in T84 Human Colonic Carcinoma Cells through Inhibition of Basolateral KCNQ1 Channels.

    LENUS (Irish Health Repository)

    Alzamora, Rodrigo

    2012-02-01

    Berberine is a plant alkaloid with multiple pharmacological actions, including antidiarrhoeal activity and has been shown to inhibit Cl(-) secretion in distal colon. The aims of this study were to determine the molecular signaling mechanisms of action of berberine on Cl(-) secretion and the ion transporter targets. Monolayers of T84 human colonic carcinoma cells grown in permeable supports were placed in Ussing chambers and short-circuit current measured in response to secretagogues and berberine. Whole-cell current recordings were performed in T84 cells using the patch-clamp technique. Berberine decreased forskolin-induced short-circuit current in a concentration-dependent manner (IC(50) 80 +\\/- 8 muM). In apically permeabilized monolayers and whole-cell current recordings, berberine inhibited a cAMP-dependent and chromanol 293B-sensitive basolateral membrane K(+) current by 88%, suggesting inhibition of KCNQ1 K(+) channels. Berberine did not affect either apical Cl(-) conductance or basolateral Na(+)-K(+)-ATPase activity. Berberine stimulated p38 MAPK, PKCalpha and PKA, but had no effect on p42\\/p44 MAPK and PKCdelta. However, berberine pre-treatment prevented stimulation of p42\\/p44 MAPK by epidermal growth factor. The inhibitory effect of berberine on Cl(-) secretion was partially blocked by HBDDE ( approximately 65%), an inhibitor of PKCalpha and to a smaller extent by inhibition of p38 MAPK with SB202190 ( approximately 15%). Berberine treatment induced an increase in association between PKCalpha and PKA with KCNQ1 and produced phosphorylation of the channel. We conclude that berberine exerts its inhibitory effect on colonic Cl(-) secretion through inhibition of basolateral KCNQ1 channels responsible for K(+) recycling via a PKCalpha-dependent pathway.

  15. Unique insula subregion resting-state functional connectivity with amygdala complexes in posttraumatic stress disorder and its dissociative subtype.

    Science.gov (United States)

    Nicholson, Andrew A; Sapru, Iman; Densmore, Maria; Frewen, Paul A; Neufeld, Richard W J; Théberge, Jean; McKinnon, Margaret C; Lanius, Ruth A

    2016-04-30

    The insula and amygdala are implicated in the pathophysiology of posttraumatic stress disorder (PTSD), where both have been shown to be hyper/hypoactive in non-dissociative (PTSD-DS) and dissociative subtype (PTSD+DS) PTSD patients, respectively, during symptom provocation. However, the functional connectivity between individual insula subregions and the amygdala has not been investigated in persons with PTSD, with or without the dissociative subtype. We examined insula subregion (anterior, mid, and posterior) functional connectivity with the bilateral amygdala using a region-of-interest seed-based approach via PickAtlas and SPM8. Resting-state fMRI was conducted with (n=61) PTSD patients (n=44 PTSD-DS; n=17 PTSD+DS), and (n=40) age-matched healthy controls. When compared to controls, the PTSD-DS group displayed increased insula connectivity (bilateral anterior, bilateral mid, and left posterior) to basolateral amygdala clusters in both hemispheres, and the PTSD+DS group displayed increased insula connectivity (bilateral anterior, left mid, and left posterior) to the left basolateral amygdala complex. Moreover, as compared to PTSD-DS, increased insula subregion connectivity (bilateral anterior, left mid, and right posterior) to the left basolateral amygdala was found in PTSD+DS. Depersonalization/derealization symptoms and PTSD symptom severity correlated with insula subregion connectivity to the basolateral amygdala within PTSD patients. This study is an important first step in elucidating patterns of neural connectivity associated with unique symptoms of arousal/interoception, emotional processing, and awareness of bodily states, in PTSD and its dissociative subtype. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Unilateral inactivation of the basolateral amygdala attenuates context-induced renewal of Pavlovian-conditioned alcohol-seeking

    Science.gov (United States)

    Chaudhri, N.; Woods, C. A.; Sahuque, L.L.; Gill, T. M.; Janak, P.H.

    2014-01-01

    Environmental contexts associated with drug use promote craving in humans and drug-seeking in animals. We hypothesized that the basolateral amygdala (BLA) itself, as well as serial connectivity between the basolateral amygdala (BLA) and nucleus accumbens core (NAC core), were required for context-induced renewal of Pavlovian-conditioned alcohol-seeking. Male, Long-Evans rats were trained to discriminate between two conditioned stimuli (CS) - a CS+ that was paired with ethanol (EtOH, 20%, v/v) delivery into a fluid port (0.2 ml/CS+, 3.2 ml/session) and a CS− that was not. Entries into the port during each CS were measured. Next, rats received extinction in a different context where both cues were presented without EtOH. At test, responding to the CS+ and CS− without EtOH was evaluated in the prior training context. Control subjects showed a selective increase in CS+ responding relative to extinction, indicative of renewal. This effect was blocked by pre-test, bilateral inactivation of the BLA using a solution of gamma-amino-butyric-acid receptor agonists (0.1 mM muscimol and 1.0 mM baclofen; M/B; 0.3 µl/side). Renewal was also attenuated following unilateral injections of M/B into the BLA, combined with either M/B, the dopamine D1 receptor antagonist SCH 23390 (0.6 µg/side), or saline infusion in the contralateral NAC core. Hence, unilateral BLA inactivation was sufficient to disrupt renewal, highlighting a critical role for functional activity in the BLA in enabling the reinstatement of alcohol-seeking driven by an alcohol context. PMID:23758059

  17. Interaction between the Basolateral Amygdala and Dorsal Hippocampus Is Critical for Cocaine Memory Reconsolidation and Subsequent Drug Context-Induced Cocaine-Seeking Behaviorin Rats

    Science.gov (United States)

    Wells, Audrey M.; Lasseter, Heather C.; Xie, Xiaohu; Cowhey, Kate E.; Reittinger, Andrew M.; Fuchs, Rita A.

    2011-01-01

    Contextual stimulus control over instrumental drug-seeking behavior relies on the reconsolidation of context-response-drug associative memories into long-term memory storage following retrieval-induced destabilization. According to previous studies, the basolateral amygdala (BLA) and dorsal hippocampus (DH) regulate cocaine-related memory…

  18. Oxytocin Signaling in Basolateral and Central Amygdala Nuclei Differentially Regulates the Acquisition, Expression, and Extinction of Context-Conditioned Fear in Rats

    Science.gov (United States)

    Campbell-Smith, Emma J.; Holmes, Nathan M.; Lingawi, Nura W.; Panayi, Marios C.; Westbrook, R. Frederick

    2015-01-01

    The present study investigated how oxytocin (OT) signaling in the central (CeA) and basolateral (BLA) amygdala affects acquisition, expression, and extinction of context-conditioned fear (freezing) in rats. In the first set of experiments, acquisition of fear to a shocked context was impaired by a preconditioning infusion of synthetic OT into the…

  19. Microtubule-dependent relocation of branchial V-H+-ATPase to the basolateral membrane in the Pacific spiny dogfish (Squalus acanthias): a role in base secretion.

    Science.gov (United States)

    Tresguerres, Martin; Parks, Scott K; Katoh, Fumi; Goss, Greg G

    2006-02-01

    We have previously shown that continuous intravenous infusion of NaHCO3 for 24 h ( approximately 1000 micromol kg(-1) h(-1)) results in the relocation of V-H+-ATPase from the cytoplasm to the basolateral membrane in the gills of the Pacific dogfish. To further investigate this putative base-secretive process we performed similar experiments with the addition of colchicine, an inhibitor of cytoskeleton-dependent cellular trafficking processes. Blood pH and plasma total CO2 were significantly higher in the colchicines-treated, HCO3- -infused fish compared with fish infused with HCO3- alone. The effect of colchicine was highest after 24 h of infusion (8.33+/-0.06 vs 8.02+/-0.03 pH units, 15.72+/-3.29 vs 6.74+/-1.34 mmol CO2 l(-1), N=5). Immunohistochemistry and western blotting confirmed that colchicine blocked the transit of V-H+-ATPase to the basolateral membrane. Furthermore, western blotting analyses from whole gill and cell membrane samples suggest that the short-term (6 h) response to alkaline stress consists of relocation of V-H+-ATPases already present in the cell to the basolateral membrane, while in the longer term (24 h) there is both relocation of preexistent enzyme and upregulation in the synthesis of new units. Our results strongly suggest that cellular relocation of V-H+-ATPase is necessary for enhanced HCO3- secretion across the gills of the Pacific dogfish.

  20. Trace Fear Conditioning Differentially Modulates Intrinsic Excitability of Medial Prefrontal Cortex-Basolateral Complex of Amygdala Projection Neurons in Infralimbic and Prelimbic Cortices.

    Science.gov (United States)

    Song, Chenghui; Ehlers, Vanessa L; Moyer, James R

    2015-09-30

    Neuronal activity in medial prefrontal cortex (mPFC) is critical for the formation of trace fear memory, yet the cellular mechanisms underlying these memories remain unclear. One possibility involves the modulation of intrinsic excitability within mPFC neurons that project to the basolateral complex of amygdala (BLA). The current study used a combination of retrograde labeling and in vitro whole-cell patch-clamp recordings to examine the effect of trace fear conditioning on the intrinsic excitability of layer 5 mPFC-BLA projection neurons in adult rats. Trace fear conditioning significantly enhanced the intrinsic excitability of regular spiking infralimbic (IL) projection neurons, as evidenced by an increase in the number of action potentials after current injection. These changes were also associated with a reduction in spike threshold and an increase in h current. In contrast, trace fear conditioning reduced the excitability of regular spiking prelimbic (PL) projection neurons, through a learning-related decrease of input resistance. Interestingly, the amount of conditioned freezing was (1) positively correlated with excitability of IL-BLA projection neurons after conditioning and (2) negatively correlated with excitability of PL-BLA projection neurons after extinction. Trace fear conditioning also significantly enhanced the excitability of burst spiking PL-BLA projection neurons. In both regions, conditioning-induced plasticity was learning specific (observed in conditioned but not in pseudoconditioned rats), flexible (reversed by extinction), and transient (lasted extinction of trace fear conditioning. Significance statement: Frontal lobe-related function is vital for a variety of important behaviors, some of which decline during aging. This study involves a novel combination of electrophysiological recordings from fluorescently labeled mPFC-to-amygdala projection neurons in rats with acquisition and extinction of trace fear conditioning to determine how

  1. Mesencephalic basolateral domain specification is dependent on Sonic Hedgehog

    Science.gov (United States)

    Martinez-Lopez, Jesus E.; Moreno-Bravo, Juan A.; Madrigal, M. Pilar; Martinez, Salvador; Puelles, Eduardo

    2015-01-01

    In the study of central nervous system morphogenesis, the identification of new molecular markers allows us to identify domains along the antero-posterior and dorso-ventral (DV) axes. In the past years, the alar and basal plates of the midbrain have been divided into different domains. The precise location of the alar-basal boundary is still under discussion. We have identified Barhl1, Nhlh1 and Six3 as appropriate molecular markers to the adjacent domains of this transition. The description of their expression patterns and the contribution to the different mesencephalic populations corroborated their role in the specification of these domains. We studied the influence of Sonic Hedgehog on these markers and therefore on the specification of these territories. The lack of this morphogen produced severe alterations in the expression pattern of Barhl1 and Nhlh1 with consequent misspecification of the basolateral (BL) domain. Six3 expression was apparently unaffected, however its distribution changed leading to altered basal domains. In this study we confirmed the localization of the alar-basal boundary dorsal to the BL domain and demonstrated that the development of the BL domain highly depends on Shh. PMID:25741244

  2. CRF1-R activation of the dynorphin/kappa opioid system in the mouse basolateral amygdala mediates anxiety-like behavior.

    Directory of Open Access Journals (Sweden)

    Michael R Bruchas

    2009-12-01

    Full Text Available Stress is a complex human experience and having both rewarding and aversive motivational properties. The adverse effects of stress are well documented, yet many of underlying mechanisms remain unclear and controversial. Here we report that the anxiogenic properties of stress are encoded by the endogenous opioid peptide dynorphin acting in the basolateral amygdala. Using pharmacological and genetic approaches, we found that the anxiogenic-like effects of Corticotropin Releasing Factor (CRF were triggered by CRF(1-R activation of the dynorphin/kappa opioid receptor (KOR system. Central CRF administration significantly reduced the percent open-arm time in the elevated plus maze (EPM. The reduction in open-arm time was blocked by pretreatment with the KOR antagonist norbinaltorphimine (norBNI, and was not evident in mice lacking the endogenous KOR ligand dynorphin. The CRF(1-R agonist stressin 1 also significantly reduced open-arm time in the EPM, and this decrease was blocked by norBNI. In contrast, the selective CRF(2-R agonist urocortin III did not affect open arm time, and mice lacking CRF(2-R still showed an increase in anxiety-like behavior in response to CRF injection. However, CRF(2-R knockout animals did not develop CRF conditioned place aversion, suggesting that CRF(1-R activation may mediate anxiety and CRF(2-R may encode aversion. Using a phosphoselective antibody (KORp to identify sites of dynorphin action, we found that CRF increased KORp-immunoreactivity in the basolateral amygdala (BLA of wildtype, but not in mice pretreated with the selective CRF(1-R antagonist, antalarmin. Consistent with the concept that acute stress or CRF injection-induced anxiety was mediated by dynorphin release in the BLA, local injection of norBNI blocked the stress or CRF-induced increase in anxiety-like behavior; whereas norBNI injection in a nearby thalamic nucleus did not. The intersection of stress-induced CRF and the dynorphin/KOR system in the BLA was

  3. Subpopulations of somatostatin-immunoreactive nonpyramidal neurons in the amygdala and adjacent external capsule project to the basal forebrain: evidence for the existence of GABAergic projection neurons in the cortical nuclei and basolateral nuclear complex

    Directory of Open Access Journals (Sweden)

    Alexander J. McDonald

    2012-07-01

    Full Text Available The hippocampus and amygdala are key structures of the limbic system whose connections include reciprocal interactions with the basal forebrain (BF. The hippocampus receives both cholinergic and GABAergic afferents from the medial septal area of the BF. Hippocampal projections back to the medial septal area arise from nonpyramidal GABAergic neurons that express somatostatin (SOM, calbindin (CB, and neuropeptide Y (NPY. Recent experiments in our lab have demonstrated that the basolateral amygdala, like the hippocampus, receives both cholinergic and GABAergic afferents from the BF. These projections arise from neurons in the substantia innominata and ventral pallidum. It remained to be determined, however, whether the amygdala has projections back to the BF that arise from GABAergic nonpyramidal neurons. This question was investigated in the present study by combining Fluorogold (FG retrograde tract tracing with immunohistochemistry for GABAergic nonpyramidal cell markers, including SOM, CB, NPY, parvalbumin, calretinin, and glutamic acid decarboxylase (GAD. FG injections into the basal forebrain produced a diffuse array of retrogradely labeled neurons in many nuclei of the amygdala. The great majority of amygdalar FG+ neurons did not express nonpyramidal cell markers. However, a subpopulation of nonpyramidal SOM+ neurons, termed long range nonpyramidal neurons (LRNP neurons, in the external capsule, basolateral amygdala, and cortical and medial amygdalar nuclei were FG+. About one-third of the SOM+ LRNP neurons were CB+ or NPY+, and one-half were GAD+. It remains to be determined if these inhibitory amygdalar projections to the BF, like those from the hippocampus, are important for regulating synchronous oscillations in the amygdalar-BF network.

  4. The Effect of Reversible Abolition of Basolateral Amygdala on Hippocampal Dependent Spatial Memory Processes in Mice

    Directory of Open Access Journals (Sweden)

    A Rashidy-Pour

    2004-04-01

    Full Text Available Introduction: Many evidences have suggested that the Basolateral Amygdala (BLA are probably involved in emotional learning and modulation of spatial memory processes. The aim of this present study was assessment of the effect of reversible abolition of BLA on spatial memory processes in a place avoidance learning model in a stable environment. Methods and Materials: Long-Evans strain rats (280-320 gr. were selected and cannulae aimed at the BLA were surgically implanted bilaterally. The mice were trained to avoid a 60° segment of the arena by punishing with a mild foot shock upon entering the area. The punished sector was defined by room cues during the place avoidance training, which occurred in a single 30-min session and the avoidance memory was assessed during a 30-min extinction trial after 24 hours. The time of the first entry and the number of entrances into the punished sector during extinction were used to measure the place avoidance memory. Bilateral injections of Tetrodotoxin (5ng/0.6ml per side were used to inactivate the BLA 60 min before acquisition, immediately, 60 and 120 min after training, or 60 min before the retrieval test. Control mice were injected saline at the same time. Results : The results indicated that acquisition, consolidation (immediately, 60 min after training and retrieval of spatial memory in stable arena were impaired (p0.05. Conclusion: We conclude that the Basolateral Amygdala (BLA modulate spatial memory processes in place avoidance learning model in stable arena and this effect in regard to consolidation is time dependent.

  5. Dynamin-like protein 1 at the Golgi complex: A novel component of the sorting/targeting machinery en route to the plasma membrane

    International Nuclear Information System (INIS)

    Bonekamp, Nina A.; Vormund, Kerstin; Jacob, Ralf; Schrader, Michael

    2010-01-01

    The final step in the liberation of secretory vesicles from the trans-Golgi network (TGN) involves the mechanical action of the large GTPase dynamin as well as conserved dynamin-independent fission mechanisms, e.g. mediated by Brefeldin A-dependent ADP-ribosylated substrate (BARS). Another member of the dynamin family is the mammalian dynamin-like protein 1 (DLP1/Drp1) that is known to constrict and tubulate membranes, and to divide mitochondria and peroxisomes. Here, we examined a potential role for DLP1 at the Golgi complex. DLP1 localized to the Golgi complex in some but not all cell lines tested, thus explaining controversial reports on its cellular distribution. After silencing of DLP1, an accumulation of the apical reporter protein YFP-GL-GPI, but not the basolateral reporter VSVG-SP-GFP at the Golgi complex was observed. A reduction in the transport of YFP-GL-GPI to the plasma membrane was confirmed by surface immunoprecipitation and TGN-exit assays. In contrast, YFP-GL-GPI trafficking was not disturbed in cells silenced for BARS, which is involved in basolateral sorting and trafficking of VSVG-SP-GFP in COS-7 cells. Our data indicate a new role for DLP1 at the Golgi complex and thus a role for DLP1 as a novel component of the apical sorting machinery at the TGN is discussed.

  6. Activation of NF-κB in basolateral amygdala is required for memory reconsolidation in auditory fear conditioning.

    Science.gov (United States)

    Si, Jijian; Yang, Jianli; Xue, Lifen; Yang, Chenhao; Luo, Yixiao; Shi, Haishui; Lu, Lin

    2012-01-01

    Posttraumatic stress disorder (PTSD) is characterized by acute and chronic changes in the stress response, manifested as conditioned fear memory. Previously formed memories that are susceptible to disruption immediately after retrieval undergo a protein synthesis-dependent process to become persistent, termed reconsolidation, a process that is regulated by many distinct molecular mechanisms that control gene expression. Increasing evidence supports the participation of the transcription factor NF-κB in the different phases of memory. Here, we demonstrate that inhibition of NF-κB in the basolateral amygdala (BLA), but not central nucleus of the amygdala, after memory reactivation impairs the retention of amygdala-dependent auditory fear conditioning (AFC). We used two independent pharmacological strategies to disrupt the reconsolidation of AFC. Bilateral intra-BLA infusion of sulfasalazine, an inhibitor of IκB kinase that activates NF-κB, and bilateral intra-BLA infusion of SN50, a direct inhibitor of the NF-κB DNA-binding complex, immediately after retrieval disrupted the reconsolidation of AFC. We also found that systemic pretreatment with sodium butyrate, a histone deacetylase inhibitor that enhances histone acetylation, in the amygdala rescued the disruption of reconsolidation induced by NF-κB inhibition in the BLA. These findings indicate that NF-κB activity in the BLA is required for memory reconsolidation in AFC, suggesting that NF-κB might be a potential pharmacotherapy target for posttraumatic stress disorder.

  7. PAH clearance after renal ischemia and reperfusion is a function of impaired expression of basolateral Oat1 and Oat3

    OpenAIRE

    Bischoff, Ariane; Bucher, Michael; Gekle, Michael; Sauvant, Christoph

    2014-01-01

    Abstract Determination of renal plasma flow (RPF) by para‐aminohippurate (PAH) clearance leads to gross underestimation of this respective parameter due to impaired renal extraction of PAH after renal ischemia and reperfusion injury. However, no mechanistic explanation for this phenomenon is available. Based on our own previous studies we hypothesized that this may be due to impairment of expression of the basolateral rate limiting organic anion transporters Oat1 and Oat3. Thus, we investigat...

  8. Organization of Valence-Encoding and Projection-Defined Neurons in the Basolateral Amygdala

    Directory of Open Access Journals (Sweden)

    Anna Beyeler

    2018-01-01

    Full Text Available The basolateral amygdala (BLA mediates associative learning for both fear and reward. Accumulating evidence supports the notion that different BLA projections distinctly alter motivated behavior, including projections to the nucleus accumbens (NAc, medial aspect of the central amygdala (CeM, and ventral hippocampus (vHPC. Although there is consensus regarding the existence of distinct subsets of BLA neurons encoding positive or negative valence, controversy remains regarding the anatomical arrangement of these populations. First, we map the location of more than 1,000 neurons distributed across the BLA and recorded during a Pavlovian discrimination task. Next, we determine the location of projection-defined neurons labeled with retrograde tracers and use CLARITY to reveal the axonal path in 3-dimensional space. Finally, we examine the local influence of each projection-defined populations within the BLA. Understanding the functional and topographical organization of circuits underlying valence assignment could reveal fundamental principles about emotional processing.

  9. Cholesterol depletion of enterocytes. Effect on the Golgi complex and apical membrane trafficking

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Niels-Christiansen, L L; Thorsen, Evy

    2000-01-01

    Intestinal brush border enzymes, including aminopeptidase N and sucrase-isomaltase, are associated with "rafts" (membrane microdomains rich in cholesterol and sphingoglycolipids). To assess the functional role of rafts in the present work, we studied the effect of cholesterol depletion on apical......, the rates of the Golgi-associated complex glycosylation and association with rafts of newly synthesized aminopeptidase N were reduced, and less of the enzyme had reached the brush border membrane after 2 h of labeling. In contrast, the basolateral Na(+)/K(+)-ATPase was neither missorted nor raft......-associated. Our results implicate the Golgi complex/trans-Golgi network in raft formation and suggest a close relationship between this event and apical membrane trafficking....

  10. Vasotocin has the potential to inhibit basolateral Na(+)/K (+)-pump current across isolated skin of tree frog in vitro, via its V(2)-type receptor/cAMP pathway.

    Science.gov (United States)

    Takada, Makoto; Fujimaki, Kayo; Hokari, Shigeru

    2008-11-01

    Adult frog skin transports Na(+) from the apical to the basolateral side across the skin. Antidiuretic hormone (ADH) is involved in the regulation of Na(+) transport in both mammals and amphibians. We investigated the effect of arginine vasotocin (AVT), the ADH of amphibians, on the short-circuit current (SCC) across intact skin and on the basolateral Na(+)/K(+)-pump current across apically nystatin-permeabilized skin of the tree frog, Hyla japonica, in which the V(2)-type ADH receptor is expressed in vitro. In intact skin, 1 pM AVT had no effect on the SCC, but 10 nM AVT was sufficient to stimulate the SCC since 10 nM and 1 microM of AVT increased the SCC 3.2- and 3.4-fold, respectively (P > 0.9). However, in permeabilized skin, AVT (1 microM) decreased the Na(+)/K(+)-pump current to 0.79 times vehicle control. Similarly, 500 microM of 8Br-cAMP increased the SCC 3.2-fold, yet 1 mM of 8Br-cAMP decreased the Na(+)/K(+)-pump current to 0.76 times vehicle control. Arachidonic acid (10(-5) M) tended to decrease the Na(+)/K(+)-pump current. To judge from these in vitro experiments, AVT has the potential to inhibit the basolateral Na(+)/K(+)-pump current via the V(2)-type receptor/cAMP pathway in the skin of the tree frog.

  11. Fear extinction learning can be impaired or enhanced by modulation of the CRF system in the basolateral nucleus of the amygdala

    OpenAIRE

    Abiri, Dina; Douglas, Christina E.; Calakos, Katina C.; Barbayannis, Georgia; Roberts, Andrea; Bauer, Elizabeth P.

    2014-01-01

    The neuropeptide corticotropin-releasing factor (CRF) is released during periods of anxiety and modulates learning and memory formation. One region with particularly dense concentrations of CRF receptors is the basolateral nucleus of the amygdala (BLA), a critical structure for both Pavlovian fear conditioning and fear extinction. While CRF has the potential to modify amygdala-dependent learning, its effect on fear extinction has not yet been assessed. In the present study, we examined the mo...

  12. Exposure to an open-field arena increases c-Fos expression in a subpopulation of neurons in the dorsal raphe nucleus, including neurons projecting to the basolateral amygdaloid complex

    DEFF Research Database (Denmark)

    Hale, M.W.; Hay-Schmidt, A.; Mikkelsen, J.D.

    2008-01-01

    Serotonergic systems in the dorsal raphe nucleus are thought to play an important role in the regulation of anxiety states. To investigate responses of neurons in the dorsal raphe nucleus to a mild anxiety-related stimulus, we exposed rats to an open-field, under low-light or high-light conditions....... Treatment effects on c-Fos expression in serotonergic and non-serotonergic cells in the midbrain raphe nuclei were determined 2 h following open-field exposure or home cage control (CO) conditions. Rats tested under both light conditions responded with increases in c-Fos expression in serotonergic neurons...... within subdivisions of the midbrain raphe nuclei compared with CO rats. However, the total numbers of serotonergic neurons involved were small suggesting that exposure to the open-field may affect a subpopulation of serotonergic neurons. To determine if exposure to the open-field activates a subset...

  13. Reorganization of Basolateral Amygdala-Subiculum Circuitry in Mouse Epilepsy Model

    Directory of Open Access Journals (Sweden)

    Dongliang eMa

    2016-01-01

    Full Text Available In this study, we investigated the reorganized basolateral amygdala (BLA-subiculum pathway in a status epilepticus (SE mouse model with epileptic episodes induced by pilocarpine. We have previously observed a dramatic loss of neurons in the CA1-3 fields of the hippocampus in epileptic mice. Herein, we observed a 43-57 % reduction in the number of neurons in the BLA of epileptic mice. However, injection of an anterograde tracer, Phaseolus vulgaris leucoagglutinin (PHA-L into the BLA indicated 25.63 % increase in the number of PHA-L-immunopositive terminal-like structures in the ventral subiculum (v-Sub of epileptic mice as compared to control mice. These data suggest that the projections from the basal nucleus at BLA to the vSub in epileptic mice are resistant to epilepsy-induced damage. Consequently, these epileptic mice exhibit partially impairment but not total loss of context-dependent fear memory. Epileptic mice also show increased c-Fos expression in the BLA and vSub when subjected to contextual memory test, suggesting the participation of these 2 brain areas in foot shock-dependent fear conditioning. These results indicate the presence of functional neural connections between the BLA-vSub regions that participate in learning and memory in epileptic mice.

  14. Extinction of relapsed fear does not require the basolateral amygdala.

    Science.gov (United States)

    Lingawi, Nura W; Westbrook, R Frederick; Laurent, Vincent

    2017-03-01

    It is well established that extinguished fears are restored with the passage of time or a change in physical context. These fear restoration phenomena are believed to mimic the conditions under which relapse occurs in patients that have been treated for anxiety disorders by means of cue-exposure therapy. Here, we used a rodent model to extinguish relapsed fear and assess whether this new extinction prevents further relapse. We found that activity in the basolateral amygdala (BLA) is required to initially extinguish conditioned fear, but this activity was not necessary to subsequently extinguish relapsed fear. That is, extinction of spontaneously recovered or renewed fear was spared by BLA inactivation. Yet, this BLA-independent learning of extinction did not protect against further relapse: extinction of relapsed fear conducted without BLA activity was still likely to return after the passage of time or a shift in physical context. These findings have important clinical implications. They indicate that pharmacological agents with anxiolytic properties may disrupt initial cue-exposure therapy but may be useful when therapy is again needed due to relapse. However, they also suggest that these agents will not protect against further relapse, implying the need for developing drugs that target other brain regions involved in fear inhibition. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Activation of NF-κB in basolateral amygdala is required for memory reconsolidation in auditory fear conditioning.

    Directory of Open Access Journals (Sweden)

    Jijian Si

    Full Text Available Posttraumatic stress disorder (PTSD is characterized by acute and chronic changes in the stress response, manifested as conditioned fear memory. Previously formed memories that are susceptible to disruption immediately after retrieval undergo a protein synthesis-dependent process to become persistent, termed reconsolidation, a process that is regulated by many distinct molecular mechanisms that control gene expression. Increasing evidence supports the participation of the transcription factor NF-κB in the different phases of memory. Here, we demonstrate that inhibition of NF-κB in the basolateral amygdala (BLA, but not central nucleus of the amygdala, after memory reactivation impairs the retention of amygdala-dependent auditory fear conditioning (AFC. We used two independent pharmacological strategies to disrupt the reconsolidation of AFC. Bilateral intra-BLA infusion of sulfasalazine, an inhibitor of IκB kinase that activates NF-κB, and bilateral intra-BLA infusion of SN50, a direct inhibitor of the NF-κB DNA-binding complex, immediately after retrieval disrupted the reconsolidation of AFC. We also found that systemic pretreatment with sodium butyrate, a histone deacetylase inhibitor that enhances histone acetylation, in the amygdala rescued the disruption of reconsolidation induced by NF-κB inhibition in the BLA. These findings indicate that NF-κB activity in the BLA is required for memory reconsolidation in AFC, suggesting that NF-κB might be a potential pharmacotherapy target for posttraumatic stress disorder.

  16. Complementary contributions of basolateral amygdala and orbitofrontal cortex to value learning under uncertainty

    Science.gov (United States)

    Stolyarova, Alexandra; Izquierdo, Alicia

    2017-01-01

    We make choices based on the values of expected outcomes, informed by previous experience in similar settings. When the outcomes of our decisions consistently violate expectations, new learning is needed to maximize rewards. Yet not every surprising event indicates a meaningful change in the environment. Even when conditions are stable overall, outcomes of a single experience can still be unpredictable due to small fluctuations (i.e., expected uncertainty) in reward or costs. In the present work, we investigate causal contributions of the basolateral amygdala (BLA) and orbitofrontal cortex (OFC) in rats to learning under expected outcome uncertainty in a novel delay-based task that incorporates both predictable fluctuations and directional shifts in outcome values. We demonstrate that OFC is required to accurately represent the distribution of wait times to stabilize choice preferences despite trial-by-trial fluctuations in outcomes, whereas BLA is necessary for the facilitation of learning in response to surprising events. DOI: http://dx.doi.org/10.7554/eLife.27483.001 PMID:28682238

  17. The influence of stress on fear memory processes

    Directory of Open Access Journals (Sweden)

    I.D. Martijena

    2012-04-01

    Full Text Available It is well recognized that stressful experiences promote robust emotional memories, which are well remembered. The amygdaloid complex, principally the basolateral complex (BLA, plays a pivotal role in fear memory and in the modulation of stress-induced emotional responses. A large number of reports have revealed that GABAergic interneurons provide a powerful inhibitory control of the activity of projecting glutamatergic neurons in the BLA. Indeed, a reduced GABAergic control in the BLA is essential for the stress-induced influence on the emergence of associative fear memory and on the generation of long-term potentiation (LTP in BLA neurons. The extracellular signal-regulated kinase (ERK subfamily of the mitogen-activated protein kinase (MAPK signaling pathway in the BLA plays a central role in the consolidation process and synaptic plasticity. In support of the view that stress facilitates long-term fear memory, stressed animals exhibited a phospho-ERK2 (pERK2 increase in the BLA, suggesting the involvement of this mechanism in the promoting influence of threatening stimuli on the consolidation fear memory. Moreover, the occurrence of reactivation-induced lability is prevented when fear memory is encoded under intense stressful conditions since the memory trace remains immune to disruption after recall in previously stressed animals. Thus, the underlying mechanism in retrieval-induced instability seems not to be functional in memories formed under stress. All these findings are indicative that stress influences both the consolidation and reconsolidation fear memory processes. Thus, it seems reasonable to propose that the emotional state generated by an environmental challenge critically modulates the formation and maintenance of long-term fear memory.

  18. Glycogen synthase kinase 3β in the basolateral amygdala is critical for the reconsolidation of cocaine reward memory.

    Science.gov (United States)

    Wu, Ping; Xue, Yan-Xue; Ding, Zeng-Bo; Xue, Li-Fen; Xu, Chun-Mei; Lu, Lin

    2011-07-01

    Exposure to cocaine-associated conditioned stimuli elicits craving and increases the probability of cocaine relapse in cocaine users even after extended periods of abstinence. Recent evidence indicates that cocaine seeking can be inhibited by disrupting the reconsolidation of the cocaine cue memories and that basolateral amygdala (BLA) neuronal activity plays a role in this effect. Previous studies demonstrated that glycogen synthase kinase 3β (GSK-3β) plays a role in the reconsolidation of fear memory. Here, we used a conditioned place preference procedure to examine the role of GSK-3β in the BLA in the reconsolidation of cocaine cue memories. GSK-3β activity in the BLA, but not central amygdala (CeA), in rats that acquired cocaine (10 mg/kg)-induced conditioned place preference increased after re-exposure to a previously cocaine-paired chamber (i.e., a memory reactivation procedure). Systemic injections of the GSK-3β inhibitor lithium chloride after memory reactivation impaired the reconsolidation of cocaine cue memories and inhibited subsequent cue-induced GSK-3β activity in the BLA. Basolateral amygdala, but not central amygdala, injections of SB216763, a selective inhibitor of GSK-3β, immediately after the reactivation of cocaine cue memories also disrupted cocaine cue memory reconsolidation and prevented cue-induced increases in GSK-3β activity in the BLA. The effect of SB216763 on the reconsolidation of cocaine cue memories lasted at least 2 weeks and was not recovered by a cocaine priming injection. These results indicate that GSK-3β activity in the BLA mediates the reconsolidation of cocaine cue memories. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  19. IGF-II receptors in luminal and basolateral membranes isolated from pars convoluta and pars recta of rabbit proximal tubule

    DEFF Research Database (Denmark)

    Jacobsen, Christian; Jessen, H; Flyvbjerg, A

    1995-01-01

    the inhibitory effect of beta-galactosidase. Analyses of 125I-IGF-II binding curves in the presence of beta-galactosidase or D-mannose 6-phosphate demonstrated that none of these compounds changed the binding affinity of 125I-IGF-II for the membrane vesicles. The IGF-II/M6P receptor content in the luminal...... membranes was in the range 0.21-0.34 pmol IGF-II/M6P receptor per mg protein and very low compared to 2.27-2.86 pmol IGF-II/M6P receptor per mg protein in basolateral membranes. Udgivelsesdato: 1995-Apr-12...

  20. Noradrenergic activation of the basolateral amygdala modulates the consolidation of object-in-context recognition memory

    Directory of Open Access Journals (Sweden)

    Areg eBarsegyan

    2014-05-01

    Full Text Available Noradrenergic activation of the basolateral complex of the amygdala (BLA is well known to enhance the consolidation of long-term memory of highly emotionally arousing training experiences. The present study investigated whether such noradrenergic activation of the BLA also influences the consolidation of object-in-context recognition memory, a low-arousing training task assessing episodic-like memory. Male Sprague–Dawley rats were exposed to two identical objects in one context for either 3 or 10 min, immediately followed by exposure to two other identical objects in a distinctly different context. Immediately after the training they received bilateral intra-BLA infusions of norepinephrine (0.3, 1.0 or 3.0 μg or the β-adrenoceptor antagonist propranolol (0.1, 0.3 or 1.0 μg. On the 24-h retention test, rats were placed back into one of the training contexts with one copy of each of the two training objects. Thus, although both objects were familiar, one of the objects had not previously been encountered in this particular test context. Hence, if the animal generated a long-term memory for the association between an object and its context, it would spend significantly more time exploring the object that was not previously experienced in this context. Saline-infused control rats exhibited poor 24-h retention when given 3 min of training and good retention when given 10 min of training. Norepinephrine administered after 3 min of object-in-context training induced a dose-dependent memory enhancement, whereas propranolol administered after 10 min of training produced memory impairment. These findings provide evidence that posttraining noradrenergic activation of the BLA also enhances the consolidation of memory of object-in-context recognition training, enabling accuracy of episodic-like memories.

  1. Neuropeptide S interacts with the basolateral amygdala noradrenergic system in facilitating object recognition memory consolidation.

    Science.gov (United States)

    Han, Ren-Wen; Xu, Hong-Jiao; Zhang, Rui-San; Wang, Pei; Chang, Min; Peng, Ya-Li; Deng, Ke-Yu; Wang, Rui

    2014-01-01

    The noradrenergic activity in the basolateral amygdala (BLA) was reported to be involved in the regulation of object recognition memory. As the BLA expresses high density of receptors for Neuropeptide S (NPS), we investigated whether the BLA is involved in mediating NPS's effects on object recognition memory consolidation and whether such effects require noradrenergic activity. Intracerebroventricular infusion of NPS (1nmol) post training facilitated 24-h memory in a mouse novel object recognition task. The memory-enhancing effect of NPS could be blocked by the β-adrenoceptor antagonist propranolol. Furthermore, post-training intra-BLA infusions of NPS (0.5nmol/side) improved 24-h memory for objects, which was impaired by co-administration of propranolol (0.5μg/side). Taken together, these results indicate that NPS interacts with the BLA noradrenergic system in improving object recognition memory during consolidation. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Abnormal functional architecture of amygdala-centered networks in adolescent posttraumatic stress disorder.

    Science.gov (United States)

    Aghajani, Moji; Veer, Ilya M; van Hoof, Marie-José; Rombouts, Serge A R B; van der Wee, Nic J; Vermeiren, Robert R J M

    2016-03-01

    Posttraumatic stress disorder (PTSD) is a prevalent, debilitating, and difficult to treat psychiatric disorder. Very little is known of how PTSD affects neuroplasticity in the developing adolescent brain. Whereas multiple lines of research implicate amygdala-centered network dysfunction in the pathophysiology of adult PTSD, no study has yet examined the functional architecture of amygdala subregional networks in adolescent PTSD. Using intrinsic functional connectivity analysis, we investigated functional connectivity of the basolateral (BLA) and centromedial (CMA) amygdala in 19 sexually abused adolescents with PTSD relative to 23 matched controls. Additionally, we examined whether altered amygdala subregional connectivity coincides with abnormal grey matter volume of the amygdaloid complex. Our analysis revealed abnormal amygdalar connectivity and morphology in adolescent PTSD patients. More specifically, PTSD patients showed diminished right BLA connectivity with a cluster including dorsal and ventral portions of the anterior cingulate and medial prefrontal cortices (p < 0.05, corrected). In contrast, PTSD patients showed increased left CMA connectivity with a cluster including the orbitofrontal and subcallosal cortices (p < 0.05, corrected). Critically, these connectivity changes coincided with diminished grey matter volume within BLA and CMA subnuclei (p < 0.05, corrected), with CMA connectivity shifts additionally relating to more severe symptoms of PTSD. These findings provide unique insights into how perturbations in major amygdalar circuits could hamper fear regulation and drive excessive acquisition and expression of fear in PTSD. As such, they represent an important step toward characterizing the neurocircuitry of adolescent PTSD, thereby informing the development of reliable biomarkers and potential therapeutic targets. © 2016 Wiley Periodicals, Inc.

  3. Fear extinction requires infralimbic cortex projections to the basolateral amygdala.

    Science.gov (United States)

    Bloodgood, Daniel W; Sugam, Jonathan A; Holmes, Andrew; Kash, Thomas L

    2018-03-06

    Fear extinction involves the formation of a new memory trace that attenuates fear responses to a conditioned aversive memory, and extinction impairments are implicated in trauma- and stress-related disorders. Previous studies in rodents have found that the infralimbic prefrontal cortex (IL) and its glutamatergic projections to the basolateral amygdala (BLA) and basomedial amygdala (BMA) instruct the formation of fear extinction memories. However, it is unclear whether these pathways are exclusively involved in extinction, or whether other major targets of the IL, such as the nucleus accumbens (NAc) also play a role. To address this outstanding issue, the current study employed a combination of electrophysiological and chemogenetic approaches in mice to interrogate the role of IL-BLA and IL-NAc pathways in extinction. Specifically, we used patch-clamp electrophysiology coupled with retrograde tracing to examine changes in neuronal activity of the IL and prelimbic cortex (PL) projections to both the BLA and NAc following fear extinction. We found that extinction produced a significant increase in the intrinsic excitability of IL-BLA projection neurons, while extinction appeared to reverse fear-induced changes in IL-NAc projection neurons. To establish a causal counterpart to these observations, we then used a pathway-specific Designer Receptors Exclusively Activated by Designer Drugs (DREADD) strategy to selectively inhibit PFC-BLA projection neurons during extinction acquisition. Using this approach, we found that DREADD-mediated inhibition of PFC-BLA neurons during extinction acquisition impaired subsequent extinction retrieval. Taken together, our findings provide further evidence for a critical contribution of the IL-BLA neural circuit to fear extinction.

  4. Acute Stress Suppresses Synaptic Inhibition and Increases Anxiety via Endocannabinoid Release in the Basolateral Amygdala.

    Science.gov (United States)

    Di, Shi; Itoga, Christy A; Fisher, Marc O; Solomonow, Jonathan; Roltsch, Emily A; Gilpin, Nicholas W; Tasker, Jeffrey G

    2016-08-10

    Stress and glucocorticoids stimulate the rapid mobilization of endocannabinoids in the basolateral amygdala (BLA). Cannabinoid receptors in the BLA contribute to anxiogenesis and fear-memory formation. We tested for rapid glucocorticoid-induced endocannabinoid regulation of synaptic inhibition in the rat BLA. Glucocorticoid application to amygdala slices elicited a rapid, nonreversible suppression of spontaneous, but not evoked, GABAergic synaptic currents in BLA principal neurons; the effect was also seen with a membrane-impermeant glucocorticoid, but not with intracellular glucocorticoid application, implicating a membrane-associated glucocorticoid receptor. The glucocorticoid suppression of GABA currents was not blocked by antagonists of nuclear corticosteroid receptors, or by inhibitors of gene transcription or protein synthesis, but was blocked by inhibiting postsynaptic G-protein activity, suggesting a postsynaptic nongenomic steroid signaling mechanism that stimulates the release of a retrograde messenger. The rapid glucocorticoid-induced suppression of inhibition was prevented by blocking CB1 receptors and 2-arachidonoylglycerol (2-AG) synthesis, and it was mimicked and occluded by CB1 receptor agonists, indicating it was mediated by the retrograde release of the endocannabinoid 2-AG. The rapid glucocorticoid effect in BLA neurons in vitro was occluded by prior in vivo acute stress-induced, or prior in vitro glucocorticoid-induced, release of endocannabinoid. Acute stress also caused an increase in anxiety-like behavior that was attenuated by blocking CB1 receptor activation and inhibiting 2-AG synthesis in the BLA. Together, these findings suggest that acute stress causes a long-lasting suppression of synaptic inhibition in BLA neurons via a membrane glucocorticoid receptor-induced release of 2-AG at GABA synapses, which contributes to stress-induced anxiogenesis. We provide a cellular mechanism in the basolateral amygdala (BLA) for the rapid stress

  5. Enhancement of striatum-dependent memory by conditioned fear is mediated by beta-adrenergic receptors in the basolateral amygdala

    Directory of Open Access Journals (Sweden)

    Travis D. Goode

    2016-06-01

    Full Text Available Emotional arousal can have a profound impact on various learning and memory processes. For example, unconditioned emotional stimuli (e.g., predator odor or anxiogenic drugs enhance dorsolateral striatum (DLS-dependent habit memory. These effects critically depend on a modulatory role of the basolateral complex of the amygdala (BLA. Recent work indicates that, like unconditioned emotional stimuli, exposure to an aversive conditioned stimulus (CS (i.e., a tone previously paired with shock can also enhance consolidation of DLS-dependent habit memory. The present experiments examined whether noradrenergic activity, particularly within the BLA, is required for a fear CS to enhance habit memory consolidation. First, rats underwent a fear conditioning procedure in which a tone CS was paired with an aversive unconditioned stimulus. Over the course of the next five days, rats received training in a DLS-dependent water plus-maze task, in which rats were reinforced to make a consistent body-turn response to reach a hidden escape platform. Immediately after training on days 1–3, rats received post-training systemic (Experiment 1 or intra-BLA (Experiment 2 administration of the β-adrenoreceptor antagonist, propranolol. Immediately after drug administration, half of the rats were re-exposed to the tone CS in the conditioning context (without shock. Post-training CS exposure enhanced consolidation of habit memory in vehicle-treated rats, and this effect was blocked by peripheral (Experiment 1 or intra-BLA (Experiment 2 propranolol administration. The present findings reveal that noradrenergic activity within the BLA is critical for the enhancement of DLS-dependent habit memory as a result of exposure to conditioned emotional stimuli.

  6. Noradrenergic Activation of the Basolateral Amygdala Enhances Object Recognition Memory and Induces Chromatin Remodeling in the Insular Cortex

    Directory of Open Access Journals (Sweden)

    Hassiba eBeldjoud

    2015-04-01

    Full Text Available It is well established that arousal-induced memory enhancement requires noradrenergic activation of the basolateral complex of the amygdala (BLA and modulatory influences on information storage processes in its many target regions. While this concept is well accepted, the molecular basis of such BLA effects on neural plasticity changes within other brain regions remains to be elucidated. The present study investigated whether noradrenergic activation of the BLA after object recognition training induces chromatin remodeling through histone post-translational modifications in the insular cortex (IC, a brain region that is importantly involved in object recognition memory. Male Sprague–Dawley rats were trained on an object recognition task, followed immediately by bilateral microinfusions of norepinephrine (1.0 µg or saline administered into the BLA. Saline-treated control rats exhibited poor 24-h retention, whereas norepinephrine treatment induced robust 24-h object recognition memory. Most importantly, this memory-enhancing dose of norepinephrine induced a global reduction in the acetylation levels of histone H3 at lysine 14, H2B and H4 in the IC 1 h later, whereas it had no effect on the phosphorylation of histone H3 at serine 10 or tri-methylation of histone H3 at lysine 27. Norepinephrine administered into the BLA of non-trained control rats did not induce any changes in the histone marks investigated in this study. These findings indicate that noradrenergic activation of the BLA induces training-specific effects on chromatin remodeling mechanisms, and presumably gene transcription, in its target regions, which may contribute to the understanding of the molecular mechanisms of stress and emotional arousal effects on memory consolidation.

  7. Enhancing second-order conditioning with lesions of the basolateral amygdala.

    Science.gov (United States)

    Holland, Peter C

    2016-04-01

    Because the occurrence of primary reinforcers in natural environments is relatively rare, conditioned reinforcement plays an important role in many accounts of behavior, including pathological behaviors such as the abuse of alcohol or drugs. As a result of pairing with natural or drug reinforcers, initially neutral cues acquire the ability to serve as reinforcers for subsequent learning. Accepting a major role for conditioned reinforcement in everyday learning is complicated by the often-evanescent nature of this phenomenon in the laboratory, especially when primary reinforcers are entirely absent from the test situation. Here, I found that under certain conditions, the impact of conditioned reinforcement could be extended by lesions of the basolateral amygdala (BLA). Rats received first-order Pavlovian conditioning pairings of 1 visual conditioned stimulus (CS) with food prior to receiving excitotoxic or sham lesions of the BLA, and first-order pairings of another visual CS with food after that surgery. Finally, each rat received second-order pairings of a different auditory cue with each visual first-order CS. As in prior studies, relative to sham-lesioned control rats, lesioned rats were impaired in their acquisition of second-order conditioning to the auditory cue paired with the first-order CS that was trained after surgery. However, lesioned rats showed enhanced and prolonged second-order conditioning to the auditory cue paired with the first-order CS that was trained before amygdala damage was made. Implications for an enhanced role for conditioned reinforcement by drug-related cues after drug-induced alterations in neural plasticity are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  8. Discerning apical and basolateral properties of HT-29/B6 and IPEC-J2 cell layers by impedance spectroscopy, mathematical modeling and machine learning.

    Directory of Open Access Journals (Sweden)

    Thomas Schmid

    Full Text Available Quantifying changes in partial resistances of epithelial barriers in vitro is a challenging and time-consuming task in physiology and pathophysiology. Here, we demonstrate that electrical properties of epithelial barriers can be estimated reliably by combining impedance spectroscopy measurements, mathematical modeling and machine learning algorithms. Conventional impedance spectroscopy is often used to estimate epithelial capacitance as well as epithelial and subepithelial resistance. Based on this, the more refined two-path impedance spectroscopy makes it possible to further distinguish transcellular and paracellular resistances. In a next step, transcellular properties may be further divided into their apical and basolateral components. The accuracy of these derived values, however, strongly depends on the accuracy of the initial estimates. To obtain adequate accuracy in estimating subepithelial and epithelial resistance, artificial neural networks were trained to estimate these parameters from model impedance spectra. Spectra that reflect behavior of either HT-29/B6 or IPEC-J2 cells as well as the data scatter intrinsic to the used experimental setup were created computationally. To prove the proposed approach, reliability of the estimations was assessed with both modeled and measured impedance spectra. Transcellular and paracellular resistances obtained by such neural network-enhanced two-path impedance spectroscopy are shown to be sufficiently reliable to derive the underlying apical and basolateral resistances and capacitances. As an exemplary perturbation of pathophysiological importance, the effect of forskolin on the apical resistance of HT-29/B6 cells was quantified.

  9. Activation of protein kinase A in the amygdala modulates anxiety-like behaviors in social defeat exposed mice.

    Science.gov (United States)

    Yang, Liu; Shi, Li-Jun; Yu, Jin; Zhang, Yu-Qiu

    2016-01-08

    Social defeat (SD) stress induces social avoidance and anxiety-like phenotypes. Amygdala is recognized as an emotion-related brain region such as fear, aversion and anxiety. It is conceivable to hypothesize that activation of amygdala is involved in SD-dependent behavioral defects. SD model was established using C57BL/6J mice that were physically defeated by different CD-1 mice for 10 days. Stressed mice exhibited decreased social interaction level in social interaction test and significant anxiety-like behaviors in elevated plus maze and open field tests. Meanwhile, a higher phosphorylation of PKA and CREB with a mutually linear correlation, and increased Fos labeled cells in the basolateral amygdala (BLA) were observed. Activation of PKA in the BLA by 8-Br-cAMP, a PKA activitor, significantly upregulated pCREB and Fos expression. To address the role of PKA activation on SD stress-induced social avoidance and anxiety-like behaviors, 8-Br-cAMP or H-89, a PKA inhibitor, was continuously administered into the bilateral BLA by a micro-osmotic pump system during the 10-day SD period. Neither H-89 nor 8-Br-cAMP affected the social behavior. Differently, 8-Br-cAMP significantly relieved anxiety-like behaviors in both general and moderate SD protocols. H-89 per se did not have anxiogenic effect in naïve mice, but aggravated moderate SD stress-induced anxiety-like behaviors. The antidepressant clomipramine reduced SD-induced anxiety and up-regulated pPKA level in the BLA. These results suggest that SD-driven PKA activation in the basolateral amygdala is actually a compensatory rather than pathogenic response in the homeostasis, and modulating amygdaloid PKA may exhibit potency in the therapy of social derived disorders.

  10. Reward loss and the basolateral amygdala: A function in reward comparisons.

    Science.gov (United States)

    Kawasaki, Katsuyoshi; Annicchiarico, Iván; Glueck, Amanda C; Morón, Ignacio; Papini, Mauricio R

    2017-07-28

    The neural circuitry underlying behavior in reward loss situations is poorly understood. We considered two such situations: reward devaluation (from large to small rewards) and reward omission (from large rewards to no rewards). There is evidence that the central nucleus of the amygdala (CeA) plays a role in the negative emotion accompanying reward loss. However, little is known about the function of the basolateral nucleus (BLA) in reward loss. Two hypotheses of BLA function in reward loss, negative emotion and reward comparisons, were tested in an experiment involving pretraining excitotoxic BLA lesions followed by training in four tasks: consummatory successive negative contrast (cSNC), autoshaping (AS) acquisition and extinction, anticipatory negative contrast (ANC), and open field testing (OF). Cell counts in the BLA (but not in the CeA) were significantly lower in animals with lesions vs. shams. BLA lesions eliminated cSNC and ANC, and accelerated extinction of lever pressing in AS. BLA lesions had no effect on OF testing: higher activity in the periphery than in the central area. This pattern of results provides support for the hypothesis that BLA neurons are important for reward comparison. The three affected tasks (cSNC, ANC, and AS extinction) involve reward comparisons. However, ANC does not seem to involve negative emotions and it was affected, whereas OF activity is known to involve negative emotion, but it was not affected. It is hypothesized that a circuit involving the thalamus, insular cortex, and BLA is critically involved in the mechanism comparing current and expected rewards. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Basolateral amygdala and stress-induced hyperexcitability affect motivated behaviors and addiction.

    Science.gov (United States)

    Sharp, B M

    2017-08-08

    The amygdala integrates and processes incoming information pertinent to reward and to emotions such as fear and anxiety that promote survival by warning of potential danger. Basolateral amygdala (BLA) communicates bi-directionally with brain regions affecting cognition, motivation and stress responses including prefrontal cortex, hippocampus, nucleus accumbens and hindbrain regions that trigger norepinephrine-mediated stress responses. Disruption of intrinsic amygdala and BLA regulatory neurocircuits is often caused by dysfunctional neuroplasticity frequently due to molecular alterations in local GABAergic circuits and principal glutamatergic output neurons. Changes in local regulation of BLA excitability underlie behavioral disturbances characteristic of disorders including post-traumatic stress syndrome (PTSD), autism, attention-deficit hyperactivity disorder (ADHD) and stress-induced relapse to drug use. In this Review, we discuss molecular mechanisms and neural circuits that regulate physiological and stress-induced dysfunction of BLA/amygdala and its principal output neurons. We consider effects of stress on motivated behaviors that depend on BLA; these include drug taking and drug seeking, with emphasis on nicotine-dependent behaviors. Throughout, we take a translational approach by integrating decades of addiction research on animal models and human trials. We show that changes in BLA function identified in animal addiction models illuminate human brain imaging and behavioral studies by more precisely delineating BLA mechanisms. In summary, BLA is required to promote responding for natural reward and respond to second-order drug-conditioned cues; reinstate cue-dependent drug seeking; express stress-enhanced reacquisition of nicotine intake; and drive anxiety and fear. Converging evidence indicates that chronic stress causes BLA principal output neurons to become hyperexcitable.

  12. Auditory Tones and Foot-Shock Recapitulate Spontaneous Sub-Threshold Activity in Basolateral Amygdala Principal Neurons and Interneurons.

    Directory of Open Access Journals (Sweden)

    François Windels

    Full Text Available In quiescent states such as anesthesia and slow wave sleep, cortical networks show slow rhythmic synchronized activity. In sensory cortices this rhythmic activity shows a stereotypical pattern that is recapitulated by stimulation of the appropriate sensory modality. The amygdala receives sensory input from a variety of sources, and in anesthetized animals, neurons in the basolateral amygdala (BLA show slow rhythmic synchronized activity. Extracellular field potential recordings show that these oscillations are synchronized with sensory cortex and the thalamus, with both the thalamus and cortex leading the BLA. Using whole-cell recording in vivo we show that the membrane potential of principal neurons spontaneously oscillates between up- and down-states. Footshock and auditory stimulation delivered during down-states evokes an up-state that fully recapitulates those occurring spontaneously. These results suggest that neurons in the BLA receive convergent input from networks of cortical neurons with slow oscillatory activity and that somatosensory and auditory stimulation can trigger activity in these same networks.

  13. Administration of riluzole to the basolateral amygdala facilitates fear extinction in rats.

    Science.gov (United States)

    Sugiyama, Azusa; Yamada, Misa; Saitoh, Akiyoshi; Oka, Jun-Ichiro; Yamada, Mitsuhiko

    2018-01-15

    A general understanding exists that inhibition of glutamatergic neurotransmission in the basolateral amygdala (BLA) impairs fear extinction in rodents. Surprisingly, we recently found that systemic administration of riluzole, which has been shown to inhibit the glutamatergic system, facilitates extinction learning in rats with a preconditioned contextual fear response. However, the mechanisms underlying this paradoxical effect of riluzole remain unclear. In this study, adult male Wistar rats were bilaterally cannulated in the BLA to examine the effects of intra-BLA administration of riluzole. We also compared the effects of riluzole with those of d-cycloserine, a partial agonist at the glycine-binding region of the N-methyl-d-aspartate (NMDA) receptor. In this study, intra-BLA administration of either riluzole or d-cycloserine facilitated extinction learning of contextual fear in conditioned rats. In addition, both riluzole and d-cycloserine enhanced the acquisition of recognition memory in the same model. However, intra-BLA injections of riluzole, but not d-cycloserine, had a potent anxiolytic-like effect when investigated using an elevated plus-maze test. Our findings suggest that riluzole-induced facilitation of extinction learning in rats with a preconditioned contextual fear reflects an indirect effect, resulting from the intra-BLA administration of the drug, and might not be directly related to inhibition of glutamatergic signaling. Further research is needed to clarify the mechanisms underlying the paradoxical effect of riluzole on fear extinction learning observed in this study. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. [Hormonal homeostasis and intraocular pressure in chronic emotional stress caused by influences acting on the amygdala].

    Science.gov (United States)

    Isakova, L S; Danilov, G E; Egorkina, S B; Butolin, E G

    1989-01-01

    Changes in intraocular pressure, eye hydrodynamics and the amount of hypophyseal, thyroid, adrenal and pancreatic hormones were studied during continuous stimulation of amygdaloid complex or after administration of angiotensin II into the structure in rabbits. The effects involved changes in hormonal homeostasis and elevation of intraocular pressure due to a hypersecretion of intraocular fluid. The administration of angiotensin II during the amygdala stimulation enhanced the changes.

  15. Afferent projections to the different medial amygdala subdivisions: a retrograde tracing study in the mouse.

    Science.gov (United States)

    Cádiz-Moretti, Bernardita; Otero-García, Marcos; Martínez-García, Fernando; Lanuza, Enrique

    2016-03-01

    The medial amygdaloid nucleus (Me) is a key node in the socio-sexual brain, composed of anterior (MeA), posteroventral (MePV) and posterodorsal (MePD) subdivisions. These subdivisions have been suggested to play a different role in reproductive and defensive behaviours. In the present work we analyse the afferents of the three Me subdivisions using restricted injections of fluorogold in female outbred CD1 mice. The results reveal that the MeA, MePV and MePD share a common pattern of afferents, with some differences in the density of retrograde labelling in several nuclei. Common afferents to Me subdivisions include: the accessory olfactory bulbs, piriform cortex and endopiriform nucleus, chemosensory amygdala (receiving direct inputs from the olfactory bulbs), posterior part of the medial bed nucleus of the stria terminalis (BSTM), CA1 in the ventral hippocampus and posterior intralaminar thalamus. Minor projections originate from the basolateral amygdala and amygdalo-hippocampal area, septum, ventral striatum, several allocortical and periallocortical areas, claustrum, several hypothalamic structures, raphe and parabrachial complex. MeA and MePV share minor inputs from the frontal cortex (medial orbital, prelimbic, infralimbic and dorsal peduncular cortices), but differ in the lack of main olfactory projections to the MePV. By contrast, the MePD receives preferential projections from the rostral accessory olfactory bulb, the posteromedial BSTM and the ventral premammillary nucleus. In summary, the common pattern of afferents to the Me subdivisions and their interconnections suggest that they play cooperative instead of differential roles in the various behaviours (e.g., sociosexual, defensive) in which the Me has been shown to be involved.

  16. Basolateral amygdala inactivation impairs learning-induced long-term potentiation in the cerebellar cortex.

    Directory of Open Access Journals (Sweden)

    Lan Zhu

    Full Text Available Learning to fear dangerous situations requires the participation of basolateral amygdala (BLA. In the present study, we provide evidence that BLA is necessary for the synaptic strengthening occurring during memory formation in the cerebellum in rats. In the cerebellar vermis the parallel fibers (PF to Purkinje cell (PC synapse is potentiated one day following fear learning. Pretraining BLA inactivation impaired such a learning-induced long-term potentiation (LTP. Similarly, cerebellar LTP is affected when BLA is blocked shortly, but not 6 h, after training. The latter result shows that the effects of BLA inactivation on cerebellar plasticity, when present, are specifically related to memory processes and not due to an interference with sensory or motor functions. These data indicate that fear memory induces cerebellar LTP provided that a heterosynaptic input coming from BLA sets the proper local conditions. Therefore, in the cerebellum, learning-induced plasticity is a heterosynaptic phenomenon that requires inputs from other regions. Studies employing the electrically-induced LTP in order to clarify the cellular mechanisms of memory should therefore take into account the inputs arriving from other brain sites, considering them as integrative units. Based on previous and the present findings, we proposed that BLA enables learning-related plasticity to be formed in the cerebellum in order to respond appropriately to new stimuli or situations.

  17. Involvement of CRFR1 in the Basolateral Amygdala in the Immediate Fear Extinction Deficit.

    Science.gov (United States)

    Hollis, Fiona; Sevelinges, Yannick; Grosse, Jocelyn; Zanoletti, Olivia; Sandi, Carmen

    2016-01-01

    Several animal and clinical studies have highlighted the ineffectiveness of fear extinction sessions delivered shortly after trauma exposure. This phenomenon, termed the immediate extinction deficit, refers to situations in which extinction programs applied shortly after fear conditioning may result in the reduction of fear behaviors (in rodents, frequently measured as freezing responses to the conditioned cue) during extinction training, but failure to consolidate this reduction in the long term. The molecular mechanisms driving this immediate extinction resistance remain unclear. Here we present evidence for the involvement of the corticotropin releasing factor (CRF) system in the basolateral amygdala (BLA) in male Wistar rats. Intra-BLA microinfusion of the CRFR 1 antagonist NBI30775 enhances extinction recall, whereas administration of the CRF agonist CRF 6-33 before delayed extinction disrupts recall of extinction. We link the immediate fear extinction deficit with dephosphorylation of GluA1 glutamate receptors at Ser 845 and enhanced activity of the protein phosphatase calcineurin in the BLA. Their reversal after treatment with the CRFR 1 antagonist indicates their dependence on CRFR 1 actions. These findings can have important implications for the improvement of therapeutic approaches to trauma, as well as furthering our understanding of the neurobiological mechanisms underlying fear-related disorders.

  18. Electron-microscopic characteristics of neuroendocrine neurons in the amygdaloid body of the brain in male rats and female rats at different stages of the estral cycle.

    Science.gov (United States)

    Akhmadeev, A V; Kalimullina, L B

    2008-01-01

    The ultrastructural features of neuroendocrine neurons in the dorsomedial nucleus (DMN) of the amygdaloid body of the brain - one of the major zones of sexual dimorphism - in 12 Wistar rats weighing 250-300 g were studied in three males and nine females at different stages of the estral cycle. On the basis of ultrastructural characteristics, analysis of the functional states of an average of 50 DMN neurons were studied in each animal. A morphofunctional classification reflecting hormone-dependent variations in neuron activity is proposed. DMN neurons were found to be in different structural-functional states, which could be classified as the states of rest, moderate activity, elevated activity, tension (maximal activity), decreased activity (types 1 and 2, depending on prior history), return to the initial state, and apoptosis. At the estrus stage, there was a predominance of neurons in the states of elevated activity (40% of all cells) and maximal activity (26%). At the metestrus stage, neurons in the state of decreased activity type 1 (with increased nuclear heterochromatin content) predominated (30% of cells), while 25% and 20% of cells were in the states of maximal activity and elevated activity respectively. In diestrus, neurons in the resting state, in moderate and elevated activity, in maximal activity, and in decreased activity type 1 were present in essentially identical proportions (18%, 21%, 18%, 20%, and 16% respectively). In males, 35% and 22% of neurons were in the states of elevated and maximal activity respectively. Neuron death was seen only in males.

  19. Fear Conditioning Downregulates Rac1 Activity in the Basolateral Amygdala Astrocytes to Facilitate the Formation of Fear Memory.

    Science.gov (United States)

    Liao, Zhaohui; Tao, Yezheng; Guo, Xiaomu; Cheng, Deqin; Wang, Feifei; Liu, Xing; Ma, Lan

    2017-01-01

    Astrocytes are well known to scale synaptic structural and functional plasticity, while the role in learning and memory, such as conditioned fear memory, is poorly elucidated. Here, using pharmacological approach, we find that fluorocitrate (FC) significantly inhibits the acquisition of fear memory, suggesting that astrocyte activity is required for fear memory formation. We further demonstrate that fear conditioning downregulates astrocytic Rac1 activity in basolateral amygdala (BLA) in mice and promotes astrocyte structural plasticity. Ablation of astrocytic Rac1 in BLA promotes fear memory acquisition, while overexpression or constitutive activation of astrocytic Rac1 attenuates fear memory acquisition. Furthermore, temporal activation of Rac1 by photoactivatable Rac1 (Rac1-PA) induces structural alterations in astrocytes and in vivo activation of Rac1 in BLA astrocytes during fear conditioning attenuates the formation of fear memory. Taken together, our study demonstrates that fear conditioning-induced suppression of BLA astrocytic Rac1 activity, associated with astrocyte structural plasticity, is required for the formation of conditioned fear memory.

  20. The CB1 receptor antagonist AM251 impairs reconsolidation of pavlovian fear memory in the rat basolateral amygdala.

    Science.gov (United States)

    Ratano, Patrizia; Everitt, Barry J; Milton, Amy L

    2014-10-01

    We have investigated the requirement for signaling at CB1 receptors in the reconsolidation of a previously consolidated auditory fear memory, by infusing the CB1 receptor antagonist AM251, or the FAAH inhibitor URB597, directly into the basolateral amygdala (BLA) in conjunction with memory reactivation. AM251 disrupted memory restabilization, but only when administered after reactivation. URB597 produced a small, transient enhancement of memory restabilization when administered after reactivation. The amnestic effect of AM251 was rescued by coadministration of the GABAA receptor antagonist bicuculline at reactivation, indicating that the disruption of reconsolidation was mediated by altered GABAergic transmission in the BLA. These data show that the endocannabinoid system in the BLA is an important modulator of fear memory reconsolidation and that its effects on memory are mediated by an interaction with the GABAergic system. Thus, targeting the endocannabinoid system may have therapeutic potential to reduce the impact of maladaptive memories in neuropsychiatric disorders such as posttraumatic stress disorder.

  1. Acute infusion of brain-derived neurotrophic factor in the insular cortex promotes conditioned taste aversion extinction.

    Science.gov (United States)

    Rodríguez-Serrano, Luis M; Ramírez-León, Betsabee; Rodríguez-Durán, Luis F; Escobar, Martha L

    2014-12-01

    Brain-derived neurotrophic factor (BDNF) has emerged as one of the most potent molecular mediators not only for synaptic plasticity, but also for the behavioral organism-environment interactions. Our previous studies in the insular cortex (IC), a neocortical region that has been related with acquisition and retention of conditioned taste aversion (CTA), have demonstrated that intracortical microinfusion of BDNF induces a lasting potentiation of synaptic efficacy in the basolateral amygdaloid nucleus (Bla)-IC projection and enhances the retention of CTA memory of adult rats in vivo. The aim of the present study was to analyze whether acute BDNF-infusion in the IC modifies the extinction of CTA. Accordingly, animals were trained in the CTA task and received bilateral IC microinfusions of BDNF before extinction training. Our results showed that taste aversion was significantly reduced in BDNF rats from the first extinction trial. Additionally, we found that the effect of BDNF on taste aversion did not require extinction training. Finally we showed that the BDNF effect does not degrade the original taste aversion memory trace. These results emphasize that BDNF activity underlies memory extinction in neocortical areas and support the idea that BDNF is a key regulator and mediator of long-term synaptic modifications. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Proton-stimulated Cl-HCO3 antiport by basolateral membrane vesicles of lobster hepatopancreas

    International Nuclear Information System (INIS)

    Ahearn, G.A.; Grover, M.L.; Tsuji, R.T.; Clay, L.P.

    1987-01-01

    Purified epithelial basolateral membrane vesicles were prepared from lobster hepatopancreas by sorbitol gradient centrifugation. Na+-K+-adenosinetriphosphatase, alkaline phosphatase, and cytochrome-c oxidase enzyme activities in the final membrane preparation were enriched 9.6-, 1.4-, and 0.4-fold, respectively, compared with their activities in the original tissue homogenate. Vesicle osmotic reactivity was demonstrated using 60-min equilibrium 36 Cl uptake experiments at a variety of transmembrane osmotic gradients. 36 Cl uptake into vesicles preloaded with HCO 3 was significantly greater than into vesicles lacking HCO 3 . This exchange process was stimulated by a transmembrane proton gradient (internal pH greater than external pH). Proton-gradient-dependent Cl-HCO 3 exchange was potential sensitive and stimulated by an electrically negative vesicle interior. 36 Cl influx (4-s exposures) into HCO 3 -loaded vesicles occurred by the combination of 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid sensitive, carrier-mediated transfer and apparent diffusion. 36 Cl influx was a hyperbolic function of both internal [HCO 3 ] and internal [Cl]. The two internal anions displayed a 100-fold difference in apparent affinity constants with HCO 3 being strongly preferred. 36 Cl influx was stimulated more by preloaded monovalent than by divalent anions. Na was an inhibitor of proton-dependent anion antiport, whereas K had no effect. A model for HCl-HCO 3 antiport is suggested that employs combined transmembrane concentration gradients of Cl and HCO 3 to power anion exchange and transfer protons against a concentration gradient

  3. Reconsolidation of a cocaine associated memory requires DNA methyltransferase activity in the basolateral amygdala

    Science.gov (United States)

    Shi, Hai-Shui; Luo, Yi-Xiao; Yin, Xi; Wu, Hong-Hai; Xue, Gai; Geng, Xu-Hong; Hou, Yan-Ning

    2015-01-01

    Drug addiction is considered an aberrant form of learning, and drug-associated memories evoked by the presence of associated stimuli (drug context or drug-related cues) contribute to recurrent craving and reinstatement. Epigenetic changes mediated by DNA methyltransferase (DNMT) have been implicated in the reconsolidation of fear memory. Here, we investigated the role of DNMT activity in the reconsolidation of cocaine-associated memories. Rats were trained over 10 days to intravenously self-administer cocaine by nosepokes. Each injection was paired with a light/tone conditioned stimulus (CS). After acquisition of stable self-administration behaviour, rats underwent nosepoke extinction (10 d) followed by cue-induced reactivation and subsequent cue-induced and cocaine-priming + cue-induced reinstatement tests or subsequently tested to assess the strength of the cocaine-associated cue as a conditioned reinforcer to drive cocaine seeking behaviour. Bilateral intra-basolateral amygdala (BLA) infusion of the DNMT inhibitor5-azacytidine (5-AZA, 1 μg per side) immediately following reactivation decreased subsequent reinstatement induced by cues or cocaine priming as well as cue-maintained cocaine-seeking behaviour. In contrast, delayed intra-BLA infusion of 5-AZA 6 h after reactivation or 5-AZA infusion without reactivation had no effect on subsequent cue-induced reinstatement. These findings indicate that memory reconsolidation for a cocaine-paired stimulus depends critically on DNMT activity in the BLA. PMID:26289919

  4. [Spatial Cognition and Episodic Memory Formation in the Limbic Cortex].

    Science.gov (United States)

    Kobayashi, Yasushi

    2017-04-01

    The limbic lobe defined by Broca is a cortical region with highly diverse structure and functions, and comprises the paleo-, archi-, and neocortices as well as their transitional zones. In the limbic lobe, Brodmann designated areas 27, 28, 34, 35, and 36 adjacent to the hippocampus, and areas 23, 24, 25, 26, 29, 30, 31, 32, and 33 around the corpus callosum. In the current literature, areas 27 and 28 correspond to the presubiculum and entorhinal cortex, respectively. Area 34 represents the cortico-medial part of the amygdaloid complex. Areas 35 and 36 roughly cover the perirhinal and parahippocampal cortices. Areas 24, 25, 32, and 33 belong to the anterior cingulate gyrus, while areas 23, 26, 29, 30, and 31 to the posterior cingulate gyrus. Areas 25, 32, and the anteroinferior portion of area 24 are deeply involved in emotional responses, particularly in their autonomic functions, through reciprocal connections with the amygdaloid complex, anterior thalamus and projections to the brainstem and spinal visceral centers. Areas 29 and 30 have dense reciprocal connections with areas 23 and 31, the dorsolateral prefrontal areas, and the regions related to the hippocampus. They play pivotal roles in mediating spatial cognition, working memory processing, and episodic memory formation.

  5. GABAergic Synapses at the Axon Initial Segment of Basolateral Amygdala Projection Neurons Modulate Fear Extinction.

    Science.gov (United States)

    Saha, Rinki; Knapp, Stephanie; Chakraborty, Darpan; Horovitz, Omer; Albrecht, Anne; Kriebel, Martin; Kaphzan, Hanoch; Ehrlich, Ingrid; Volkmer, Hansjürgen; Richter-Levin, Gal

    2017-01-01

    Inhibitory synaptic transmission in the amygdala has a pivotal role in fear learning and its extinction. However, the local circuits formed by GABAergic inhibitory interneurons within the amygdala and their detailed function in shaping these behaviors are not well understood. Here we used lentiviral-mediated knockdown of the cell adhesion molecule neurofascin in the basolateral amygdala (BLA) to specifically remove inhibitory synapses at the axon initial segment (AIS) of BLA projection neurons. Quantitative analysis of GABAergic synapse markers and measurement of miniature inhibitory postsynaptic currents in BLA projection neurons after neurofascin knockdown ex vivo confirmed the loss of GABAergic input. We then studied the impact of this manipulation on anxiety-like behavior and auditory cued fear conditioning and its extinction as BLA related behavioral paradigms, as well as on long-term potentiation (LTP) in the ventral subiculum-BLA pathway in vivo. BLA knockdown of neurofascin impaired ventral subiculum-BLA-LTP. While this manipulation did not affect anxiety-like behavior and fear memory acquisition and consolidation, it specifically impaired extinction. Our findings indicate that modification of inhibitory synapses at the AIS of BLA projection neurons is sufficient to selectively impair extinction behavior. A better understanding of the role of distinct GABAergic synapses may provide novel and more specific targets for therapeutic interventions in extinction-based therapies.

  6. Role of beta1-adrenoceptor in the basolateral amygdala of rats with anxiety-like behavior.

    Science.gov (United States)

    Fu, Ailing; Li, Xiaorong; Zhao, Baoquan

    2008-05-23

    There are evidence suggesting that the function of adrenergic receptor is affected in the amygdala of animals with anxiety-like behavior. However, beta-adrenoceptor (beta-AR) subtypes, consisting of three subtypes, exert different effects on anxiety regulation. In order to determine the function of the beta1-AR subtype in anxiety-like behavior, we investigated the change of beta1-AR expression by immunostaining in the basolateral amygdala (BLA) of rats treated by conditional fear training. The results indicated that the level of beta1-AR was significantly increased in the BLA of fear-conditioned animals as compared that of controls. In animal behavioral tests, animals treated with selective beta1-AR antagonist metoprolol before conditional fear training exhibited a significant attenuation of anxiety-like behavior characterized by increased percentage of time spent and percentage of entries in the open arms, and increased number of head-dips in the elevated plus-maze (EPM) test compared with the animals treated with only saline. Furthermore, the rats pretreated with metoprolol in the conditional fear training significantly decreased the freezing behavior in the test compared with the controls. The results suggested that the beta1-AR played an important role in anxiety-like behavior, and inhibition of the beta1-AR in the BLA could produce anxiolytic effect.

  7. Basolateral amygdala bidirectionally modulates stress-induced hippocampal learning and memory deficits through a p25/Cdk5-dependent pathway.

    Science.gov (United States)

    Rei, Damien; Mason, Xenos; Seo, Jinsoo; Gräff, Johannes; Rudenko, Andrii; Wang, Jun; Rueda, Richard; Siegert, Sandra; Cho, Sukhee; Canter, Rebecca G; Mungenast, Alison E; Deisseroth, Karl; Tsai, Li-Huei

    2015-06-09

    Repeated stress has been suggested to underlie learning and memory deficits via the basolateral amygdala (BLA) and the hippocampus; however, the functional contribution of BLA inputs to the hippocampus and their molecular repercussions are not well understood. Here we show that repeated stress is accompanied by generation of the Cdk5 (cyclin-dependent kinase 5)-activator p25, up-regulation and phosphorylation of glucocorticoid receptors, increased HDAC2 expression, and reduced expression of memory-related genes in the hippocampus. A combination of optogenetic and pharmacosynthetic approaches shows that BLA activation is both necessary and sufficient for stress-associated molecular changes and memory impairments. Furthermore, we show that this effect relies on direct glutamatergic projections from the BLA to the dorsal hippocampus. Finally, we show that p25 generation is necessary for the stress-induced memory dysfunction. Taken together, our data provide a neural circuit model for stress-induced hippocampal memory deficits through BLA activity-dependent p25 generation.

  8. Basolateral amygdala bidirectionally modulates stress-induced hippocampal learning and memory deficits through a p25/Cdk5-dependent pathway

    Science.gov (United States)

    Rei, Damien; Mason, Xenos; Seo, Jinsoo; Gräff, Johannes; Rudenko, Andrii; Wang, Jun; Rueda, Richard; Siegert, Sandra; Cho, Sukhee; Canter, Rebecca G.; Mungenast, Alison E.; Deisseroth, Karl; Tsai, Li-Huei

    2015-01-01

    Repeated stress has been suggested to underlie learning and memory deficits via the basolateral amygdala (BLA) and the hippocampus; however, the functional contribution of BLA inputs to the hippocampus and their molecular repercussions are not well understood. Here we show that repeated stress is accompanied by generation of the Cdk5 (cyclin-dependent kinase 5)-activator p25, up-regulation and phosphorylation of glucocorticoid receptors, increased HDAC2 expression, and reduced expression of memory-related genes in the hippocampus. A combination of optogenetic and pharmacosynthetic approaches shows that BLA activation is both necessary and sufficient for stress-associated molecular changes and memory impairments. Furthermore, we show that this effect relies on direct glutamatergic projections from the BLA to the dorsal hippocampus. Finally, we show that p25 generation is necessary for the stress-induced memory dysfunction. Taken together, our data provide a neural circuit model for stress-induced hippocampal memory deficits through BLA activity-dependent p25 generation. PMID:25995364

  9. Amygdala activity at encoding correlated with long-term, free recall of emotional information.

    OpenAIRE

    Cahill, L; Haier, R J; Fallon, J; Alkire, M T; Tang, C; Keator, D; Wu, J; McGaugh, J L

    1996-01-01

    Positron emission tomography of cerebral glucose metabolism in adult human subjects was used to investigate amygdaloid complex (AC) activity associated with the storage of long-term memory for emotionally arousing events. Subjects viewed two videos (one in each of two separate positron emission tomography sessions, separated by 3-7 days) consisting either of 12 emotionally arousing film clips ("E" film session) or of 12 relatively emotionally neutral film clips ("N" film session), and rated t...

  10. Electroconvulsive stimulations prevent chronic stress-induced increases in L-type calcium channel mRNAs in the hippocampus and basolateral amygdala

    DEFF Research Database (Denmark)

    Maigaard, Katrine; Pedersen, Ida Hageman; Jørgensen, Anders

    2012-01-01

    Although affective disorders have high prevalence, morbidity and mortality, we do not fully understand disease etiopathology, nor have we determined the exact mechanisms by which treatment works. Recent research indicates that intracellular calcium ion dysfunction might be involved. Here we use...... the chronic restraint stress model of affective disorder (6 h restraint per day for 21 days) in combination with electroconvulsive stimulations to examine the effects of stress and an effective antidepressive treatment modality on L-type voltage gated calcium channel subunit mRNA expression patterns...... in the brain. We find that stress tended to upregulate Ca(v)1.2 and Ca(v)1.3 channels in a brain region specific manner, while ECS tended to normalise this effect. This was more pronounced for Ca(v)1.2 channels, where stress clearly increased expression in both the basolateral amygdala, dentate gyrus and CA3...

  11. Meditation effects within the hippocampal complex revealed by voxel-based morphometry and cytoarchitectonic probabilistic mapping

    Directory of Open Access Journals (Sweden)

    Eileen eLuders

    2013-07-01

    Full Text Available Scientific studies addressing anatomical variations in meditators’ brains have emerged rapidly over the last few years, where significant links are most frequently reported with respect to gray matter (GM. To advance prior work, this study examined GM characteristics in a large sample of 100 subjects (50 meditators, 50 controls, where meditators have been practicing close to twenty years, on average. A standard, whole-brain voxel-based morphometry approach was applied and revealed significant meditation effects in the vicinity of the hippocampus, showing more GM in meditators than in controls as well as positive correlations with the number of years practiced. However, the hippocampal complex is regionally segregated by architecture, connectivity, and functional relevance. Thus, to establish differential effects within the hippocampal formation (cornu ammonis, fascia dentate, entorhinal cortex, subiculum as well as the hippocampal-amygdaloid transition area, we utilized refined cytoarchitectonic probabilistic maps of (peri- hippocampal subsections. Significant meditation effects were observed within the subiculum specifically. Since the subiculum is known to play a key role in stress regulation and meditation is an established form of stress reduction, these GM findings may reflect neuronal preservation in long-term meditators – perhaps due to an attenuated release of stress hormones and decreased neurotoxicity.

  12. Meditation effects within the hippocampal complex revealed by voxel-based morphometry and cytoarchitectonic probabilistic mapping

    Science.gov (United States)

    Luders, Eileen; Kurth, Florian; Toga, Arthur W.; Narr, Katherine L.; Gaser, Christian

    2013-01-01

    Scientific studies addressing anatomical variations in meditators' brains have emerged rapidly over the last few years, where significant links are most frequently reported with respect to gray matter (GM). To advance prior work, this study examined GM characteristics in a large sample of 100 subjects (50 meditators, 50 controls), where meditators have been practicing close to 20 years, on average. A standard, whole-brain voxel-based morphometry approach was applied and revealed significant meditation effects in the vicinity of the hippocampus, showing more GM in meditators than in controls as well as positive correlations with the number of years practiced. However, the hippocampal complex is regionally segregated by architecture, connectivity, and functional relevance. Thus, to establish differential effects within the hippocampal formation (cornu ammonis, fascia dentata, entorhinal cortex, subiculum) as well as the hippocampal-amygdaloid transition area, we utilized refined cytoarchitectonic probabilistic maps of (peri-) hippocampal subsections. Significant meditation effects were observed within the subiculum specifically. Since the subiculum is known to play a key role in stress regulation and meditation is an established form of stress reduction, these GM findings may reflect neuronal preservation in long-term meditators—perhaps due to an attenuated release of stress hormones and decreased neurotoxicity. PMID:23847572

  13. Activation of ERK2 in basolateral amygdala underlies the promoting influence of stress on fear memory and anxiety: influence of midazolam pretreatment.

    Science.gov (United States)

    Maldonado, N M; Espejo, P J; Martijena, I D; Molina, V A

    2014-02-01

    Exposure to emotionally arousing experiences elicits a robust and persistent memory and enhances anxiety. The amygdala complex plays a key role in stress-induced emotional processing and in the fear memory formation. It is well known that ERK activation in the amygdala is a prerequisite for fear memory consolidation. Moreover, stress elevates p-ERK2 levels in several areas of the brain stress circuitry. Therefore, given that the ERK1/2 cascade is activated following stress and that the role of this cascade is critical in the formation of fear memory, the present study investigated the potential involvement of p-ERK2 in amygdala subnuclei in the promoting influence of stress on fear memory formation and on anxiety-like behavior. A robust and persistent ERK2 activation was noted in the Basolateral amygdala (BLA), which was evident at 5min after restraint and lasted at least one day after the stressful experience. Midazolam, a short-acting benzodiazepine ligand, administered prior to stress prevented the increase in the p-ERK2 level in the BLA. Pretreatment with intra-BLA infusion of U0126 (MEK inhibitor), but not into the adjacent central nucleus of the amygdala, attenuated the stress-induced promoting influence on fear memory formation. Finally, U0126 intra-BLA infusion prevented the enhancement of anxiety-like behavior in stressed animals. These findings suggest that the selective ERK2 activation in BLA following stress exposure is an important mechanism for the occurrence of the promoting influence of stress on fear memory and on anxiety-like behavior. © 2013 Published by Elsevier B.V. and ECNP.

  14. Stimulus Intensity-dependent Modulations of Hippocampal Long-term Potentiation by Basolateral Amygdala Priming

    Directory of Open Access Journals (Sweden)

    Zexuan eLi

    2012-05-01

    Full Text Available There is growing realization that the relationship between memory and stress/emotionality is complicated, and may include both memory enhancing and memory impairing aspects. It has been suggested that the underlying mechanisms involve amygdalar modulation of hippocampal synaptic plasticity, such as long-term potentiation (LTP. We recently reported that while in CA1 basolateral amygdala (BLA priming impaired theta stimulation induced LTP, it enhanced LTP in the dentate gyrus (DG. However, emotional and stressfull experiences were found to activate synaptic plasticity within the BLA, rasing the possibility that BLA modulation of other brain regions may be altered as well, as it may depend on the way the BLA is activated or is responding. In previous studies BLA priming stimulation was relatively weak (1V, 50 µs pulse duration. In the present study we assessed the effects of two stronger levels of BLA priming stimulation (1V or 2V, 100 µs pulse duration on LTP induction in hippocampal DG and CA1, in anesthetized rats. Results show that 1V-BLA priming stimulation enhanced but 2V-BLA priming stimulation impaired DG LTP; however, both levels of BLA priming stimulation impaired CA1 LTP, suggesting that modulation of hippocampal synaptic plasticity by amygdala is dependent on the degree of amygdala activation. These findings suggest that plasticity induced within the amygdala, by stressful experiences induces a form of metaplasticity that would alter the way the amygdala may modulate memory-related processes in other brain areas, such as the hippocampus.

  15. Inactivation of basolateral amygdala specifically eliminates palatability-related information in cortical sensory responses.

    Science.gov (United States)

    Piette, Caitlin E; Baez-Santiago, Madelyn A; Reid, Emily E; Katz, Donald B; Moran, Anan

    2012-07-18

    Evidence indirectly implicates the amygdala as the primary processor of emotional information used by cortex to drive appropriate behavioral responses to stimuli. Taste provides an ideal system with which to test this hypothesis directly, as neurons in both basolateral amygdala (BLA) and gustatory cortex (GC)-anatomically interconnected nodes of the gustatory system-code the emotional valence of taste stimuli (i.e., palatability), in firing rate responses that progress similarly through "epochs." The fact that palatability-related firing appears one epoch earlier in BLA than GC is broadly consistent with the hypothesis that such information may propagate from the former to the latter. Here, we provide evidence supporting this hypothesis, assaying taste responses in small GC single-neuron ensembles before, during, and after temporarily inactivating BLA in awake rats. BLA inactivation (BLAx) changed responses in 98% of taste-responsive GC neurons, altering the entirety of every taste response in many neurons. Most changes involved reductions in firing rate, but regardless of the direction of change, the effect of BLAx was epoch-specific: while firing rates were changed, the taste specificity of responses remained stable; information about taste palatability, however, which normally resides in the "Late" epoch, was reduced in magnitude across the entire GC sample and outright eliminated in most neurons. Only in the specific minority of neurons for which BLAx enhanced responses did palatability specificity survive undiminished. Our data therefore provide direct evidence that BLA is a necessary component of GC gustatory processing, and that cortical palatability processing in particular is, in part, a function of BLA activity.

  16. Identification and characterization of insulin receptors in basolateral membranes of dog intestinal mucosa

    International Nuclear Information System (INIS)

    Gingerich, R.L.; Gilbert, W.R.; Comens, P.G.; Gavin, J.R. III

    1987-01-01

    Little is known about hormonal regulation of substrate transport and metabolism in the mucosal lining of the small intestine. Because insulin regulates these functions in other tissues by binding to its receptor, we have investigated the presence of insulin receptors in canine small intestinal mucosa with basolateral membranes (BLM) and brush border membranes (BBM) prepared by sorbitol density centrifugation. A14-[ 125 I]iodoinsulin was used to study binding and structural characteristics of specific insulin receptors in BLM. Analysis of receptors in BLM identified binding sites with high affinity (Kd 88 pM) and low capacity (0.4 pmol/mg protein) as well as with low affinity (Kd 36 nM) and high capacity (4.7 pmol/mg protein). Binding was time, temperature, and pH dependent, and 125 I-labeled insulin dissociation was enhanced in the presence of unlabeled insulin. Cross-reactivity of these receptors to proinsulin, IGF-II, and IGF-I was 4, 1.8, and less than 1%, respectively. Covalent cross-linking of labeled insulin to BLM insulin receptors with disuccinimidyl suberate revealed a single 135,000-Mr band that was completely inhibited by unlabeled insulin. There was a 16-fold greater specific binding of insulin to BLM (39.0 +/- 2.4%) than to BBM (2.5 +/- 0.6%). These results demonstrate the presence of a highly specific receptor for insulin on the vascular, but not the luminal, surface of the small intestinal mucosa in dogs, and suggest that insulin may play an important role in the regulation of gastrointestinal physiology

  17. Disorganized Amygdala Networks in Conduct-Disordered Juvenile Offenders With Callous-Unemotional Traits.

    Science.gov (United States)

    Aghajani, Moji; Klapwijk, Eduard T; van der Wee, Nic J; Veer, Ilya M; Rombouts, Serge A R B; Boon, Albert E; van Beelen, Peter; Popma, Arne; Vermeiren, Robert R J M; Colins, Olivier F

    2017-08-15

    The developmental trajectory of psychopathy seemingly begins early in life and includes the presence of callous-unemotional (CU) traits (e.g., deficient emotional reactivity, callousness) in conduct-disordered (CD) youth. Though subregion-specific anomalies in amygdala function have been suggested in CU pathophysiology among antisocial populations, system-level studies of CU traits have typically examined the amygdala as a unitary structure. Hence, nothing is yet known of how amygdala subregional network function may contribute to callous-unemotionality in severely antisocial people. We addressed this important issue by uniquely examining the intrinsic functional connectivity of basolateral amygdala (BLA) and centromedial amygdala (CMA) networks across three matched groups of juveniles: CD offenders with CU traits (CD/CU+; n = 25), CD offenders without CU traits (CD/CU-; n = 25), and healthy control subjects (n = 24). We additionally examined whether perturbed amygdala subregional connectivity coincides with altered volume and shape of the amygdaloid complex. Relative to CD/CU- and healthy control youths, CD/CU+ youths showed abnormally increased BLA connectivity with a cluster that included both dorsal and ventral portions of the anterior cingulate and medial prefrontal cortices, along with posterior cingulate, sensory associative, and striatal regions. In contrast, compared with CD/CU- and healthy control youths, CD/CU+ youths showed diminished CMA connectivity with ventromedial/orbitofrontal regions. Critically, these connectivity changes coincided with local hypotrophy of BLA and CMA subregions (without being statistically correlated) and were associated to more severe CU symptoms. These findings provide unique insights into a putative mechanism for perturbed attention-emotion interactions, which could bias salience processing and associative learning in youth with CD/CU+. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights

  18. Basolateral amygdala supports the maintenance of value and effortful choice of a preferred option.

    Science.gov (United States)

    Hart, Evan E; Izquierdo, Alicia

    2017-02-01

    The basolateral amygdala (BLA) is known to be involved in appetitive behavior, yet its role in cost-benefit choice of qualitatively different rewards (more/less preferred), beyond magnitude differences (larger/smaller), is poorly understood. We assessed the effects of BLA inactivations on effortful choice behavior. Rats were implanted with cannulae in BLA and trained to stable lever pressing for sucrose pellets on a progressive ratio schedule. Rats were then introduced to a choice: chow was concurrently available while they could work for the preferred sucrose pellets. Rats were infused with either vehicle control (aCSF) or baclofen/muscimol prior to test. BLA inactivations produced a significant decrease in lever presses for sucrose pellets compared to vehicle, and chow consumption was unaffected. Inactivation had no effect on sucrose pellet preference when both options were freely available. Critically, when lab chow was not concurrently available, BLA inactivations had no effect on the number of lever presses for sucrose pellets, indicating that primary motivation in the absence of choice remains intact with BLA offline. After a test under specific satiety for sucrose pellets, BLA inactivation rendered animals less sensitive to devaluation relative to control. The effects of BLA inactivations in our task are not mediated by decreased appetite, an inability to perform the task, a change in food preference, or decrements in primary motivation. Taken together, BLA supports the specific value and effortful choice of a preferred option. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  19. Stress impairs reconsolidation of drug memory via glucocorticoid receptors in the basolateral amygdala.

    Science.gov (United States)

    Wang, Xiao-Yi; Zhao, Mei; Ghitza, Udi E; Li, Yan-Qin; Lu, Lin

    2008-05-21

    Relapse to drug taking induced by exposure to cues associated with drugs of abuse is a major challenge to the treatment of drug addiction. Previous studies indicate that drug seeking can be inhibited by disrupting the reconsolidation of a drug-related memory. Stress plays an important role in modulating different stages of memory including reconsolidation, but its role in the reconsolidation of a drug-related memory has not been investigated. Here, we examined the effects of stress and corticosterone on reconsolidation of a drug-related memory using a conditioned place preference (CPP) procedure. We also determined the role of glucocorticoid receptors (GRs) in the basolateral amygdala (BLA) in modulating the effects of stress on reconsolidation of this memory. We found that rats acquired morphine CPP after conditioning, and that this CPP was inhibited by stress given immediately after re-exposure to a previously morphine-paired chamber (a reconsolidation procedure). The disruptive effect of stress on reconsolidation of morphine related memory was prevented by inhibition of corticosterone synthesis with metyrapone or BLA, but not central amygdala (CeA), injections of the glucocorticoid (GR) antagonist RU38486 [(11,17)-11-[4-(dimethylamino)phenyl]-17-hydroxy-17-(1-propynyl)estra-4,9-dien-3-one]. Finally, the effect of stress on drug related memory reconsolidation was mimicked by systemic injections of corticosterone or injections of RU28362 [11,17-dihydroxy-6-methyl-17-(1-propynyl)androsta-1,4,6-triene-3-one] (a GR agonist) into BLA, but not the CeA. These results show that stress blocks reconsolidation of a drug-related memory, and this effect is mediated by activation of GRs in the BLA.

  20. Aberrant Functional Connectivity of the Amygdala Complexes in PTSD during Conscious and Subconscious Processing of Trauma-Related Stimuli.

    Directory of Open Access Journals (Sweden)

    Daniela Rabellino

    Full Text Available Post-traumatic stress disorder (PTSD is characterized by altered functional connectivity of the amygdala complexes at rest. However, amygdala complex connectivity during conscious and subconscious threat processing remains to be elucidated. Here, we investigate specific connectivity of the centromedial amygdala (CMA and basolateral amygdala (BLA during conscious and subconscious processing of trauma-related words among individuals with PTSD (n = 26 as compared to non-trauma-exposed controls (n = 20. Psycho-physiological interaction analyses were performed using the right and left amygdala complexes as regions of interest during conscious and subconscious trauma word processing. These analyses revealed a differential, context-dependent responses by each amygdala seed during trauma processing in PTSD. Specifically, relative to controls, during subconscious processing, individuals with PTSD demonstrated increased connectivity of the CMA with the superior frontal gyrus, accompanied by a pattern of decreased connectivity between the BLA and the superior colliculus. During conscious processing, relative to controls, individuals with PTSD showed increased connectivity between the CMA and the pulvinar. These findings demonstrate alterations in amygdala subregion functional connectivity in PTSD and highlight the disruption of the innate alarm network during both conscious and subconscious trauma processing in this disorder.

  1. The role of basolateral amygdala adrenergic receptors in hippocampus dependent spatial memory in rat

    Directory of Open Access Journals (Sweden)

    Vafaei A.L.

    2008-03-01

    Full Text Available Background and the purpose of the study: There are extensive evidences indicating that the noradrenergic system of the basolateral nucleus of the amygdala (BLA is involved in memory processes. The present study investigated the role of the BLA adrenergic receptors (ARs in hippocampus dependent spatial memory in place avoidance task in male rat. Material and Methods: Long Evans rats (n=150 were trained to avoid footshock in a 60° segment while foraging for scattered food on a circular (80-cm diameter arena. The rats were injected bilaterally in the BLA specific ARS (Adrenergic receptors agonist norepinephrine (NE, 0.5 and 1 µg/µl and specific β-ARs antagonist propranolol (PRO, 0.5 and 1 µg/µl before acquisition, after training or before retrieval of the place avoidance task. Control rats received vehicle at the same volume. The learning in a single 30-min session was assessed 24h later by a 30-min extinction trial in which the time to first entrance and the number of entrances to the shocked area measured the avoidance memory. Results: Acquisition and consolidation were enhanced and impaired significantly by NE and PRO when the drugs were injected 10 min before or immediately after training, respectively. In contrast, neither NE nor PRO influenced animal performances when injected before retention testing. Conclusion: Findings of this study indicates that adrenergic system of the BLA plays an important role in regulation of memory storage and show further evidences for the opinion that the BLA plays an important role in integrating hormonal and neurotransmitter influences on memory storage.

  2. Effects of environmental enrichment on the activity of the amygdala in micrencephalic rats exposed to a novel open field.

    Science.gov (United States)

    Matsuda, Wakoto; Ehara, Ayuka; Nakadate, Kazuhiko; Yoshimoto, Kanji; Ueda, Shuichi

    2018-01-01

    Environmental enrichment (EE) mediates recovery from sensory, motor, and cognitive deficits and emotional abnormalities. In the present study, we examined the effects of EE on locomotor activity and neuronal activity in the amygdala in control and methylazoxymethanol acetate (MAM)-induced micrencephalic rats after challenge in a novel open field. Control rats housed in EE (CR) showed reduced locomotor activity compared to rats housed in a conventional cage (CC), whereas hyperactivity was seen in MAM rats housed in a conventional cage (MC) and in MAM rats housed in EE (MR). Novel open field exposure in both CC and MC resulted in a marked increase in Fos expression in the anterior and posterior parts of the basolateral amygdaloid nucleus, basomedial nucleus, and medial nucleus, whereas these increases in expression were not observed in CR. The effect of EE on Fos expression in the amygdala was different in MR exposed to a novel open field compared to CR. Furthermore, we observed a quite different pattern of Fos expression in the central nucleus of the amygdala between control and MAM rats. The present results suggest that neuronal activity in the amygdala that responds to anxiety is altered in MAM rats, especially when the rats are reared in EE. These alterations may cause behavioral differences between control and MAM rats. © 2017 Japanese Teratology Society.

  3. Activation of basolateral amygdala in juvenile C57BL/6J mice during social approach behavior.

    Science.gov (United States)

    Ferri, Sarah L; Kreibich, Arati S; Torre, Matthew; Piccoli, Cara T; Dow, Holly; Pallathra, Ashley A; Li, Hongzhe; Bilker, Warren B; Gur, Ruben C; Abel, Ted; Brodkin, Edward S

    2016-10-29

    There is a strong need to better understand the neurobiology of juvenile sociability (tendency to seek social interaction), a phenotype of central relevance to autism spectrum disorders (ASD). Although numerous genetic mouse models of ASD showing reduced sociability have been reported, and certain brain regions, such as the amygdala, have been implicated in sociability, there has been little emphasis on delineating brain structures and circuits activated during social interactions in the critical juvenile period of the mouse strain that serves as the most common genetic background for these models-the highly sociable C57BL/6J (B6) strain. We measured expression of the immediate early genes Fos and Egr-1 to map activation of brain regions following the Social Approach Test (SAT) in juvenile male B6 mice. We hypothesized that juvenile B6 mice would show activation of the amygdala during social interactions. The basolateral amygdala (BLA) was activated by social exposure in highly sociable, 4-week-old B6 mice. In light of these data, and the many lines of evidence indicating alteration of amygdala circuits in human ASD, future studies are warranted to assess structural and functional alterations in the BLA, particularly at BLA synapses, in various mouse models of ASD. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. The inner mantle of the giant clam, Tridacna squamosa, expresses a basolateral Na+/K+-ATPase α-subunit, which displays light-dependent gene and protein expression along the shell-facing epithelium.

    Directory of Open Access Journals (Sweden)

    Mel V Boo

    Full Text Available Na+/K+-ATPase (NKA is essential for maintaining the Na+ and K+ gradients, and supporting the secondary active transport of certain ions/molecules, across the plasma membrane of animal cells. This study aimed to clone the NKA α-subunit (NKAα from the inner mantle adjacent to the extrapallial fluid of Tridacna squamosa, to determine its subcellular localization, and to examine the effects of light exposure on its transcript level and protein abundance. The cDNA coding sequence of NKAα from T. squamosa comprised 3105 bp, encoding 1034 amino acids with an estimated molecular mass of 114 kDa. NKAα had a basolateral localization along the shell-facing epithelium of the inner mantle. Exposure to 12 h of light led to a significantly stronger basolateral NKAα-immunofluorescence at the shell-facing epithelium, indicating that NKA might play a role in light-enhanced calcification in T. squamosa. After 3 h of light exposure, the transcript level of NKAα decreased transiently in the inner mantle, but returned to the control level thereafter. In comparison, the protein abundance of NKAα remained unchanged at hour 3, but became significantly higher than the control after 12 h of light exposure. Hence, the expression of NKAα in the inner mantle of T. squamosa was light-dependent. It is probable that a higher expression level of NKA was needed in the shell-facing epithelial cells of the inner mantle to cope with a rise in Na+ influx, possibly caused by increases in activities of some Na+-dependent ion transporters/channels involved in light-enhanced calcification.

  5. Modulation of risk/reward decision making by dopaminergic transmission within the basolateral amygdala.

    Science.gov (United States)

    Larkin, Joshua D; Jenni, Nicole L; Floresco, Stan B

    2016-01-01

    Dopamine (DA) transmission within cortico-limbic-striatal circuitry is integral in modulating decisions involving reward uncertainty. The basolateral amygdala (BLA) also plays a role in these processes, yet how DA transmission within this nucleus regulates cost/benefit decision making is unknown. We investigated the contribution of DA transmission within the BLA to risk/reward decision making assessed with a probabilistic discounting task. Rats were well-trained to choose between a small/certain reward and a large/risky reward, with the probability of obtaining the larger reward decreasing (100-12.5 %) or increasing (12.5-100 %) over a session. We examined the effects of antagonizing BLA D1 (SCH 23390, 0.1-1 μg) or D2 (eticlopride, 0.1-1 μg) receptors, as well as intra-BLA infusions of agonists for D1 (SKF 81297, 0.1-1 μg) and D2 (quinpirole, 1-10 μg) receptors. We also assessed how DA receptor stimulation may induce differential effects related to baseline levels of risky choice. BLA D1 receptor antagonism reduced risky choice by decreasing reward sensitivity, whereas D2 antagonism did not affect overall choice patterns. Stimulation of BLA D1 receptors optimized decision making in a baseline-dependent manner: in risk-averse rats, infusions of a lower dose of SKF81297 increased risky choice when reward probabilities were high (50 %), whereas in risk-prone rats, this drug reduced risky choice when probabilities were low (12.5 %). Quinpirole reduced risky choice in risk-prone rats, enhancing lose-shift behavior. These data highlight previously uncharacterized roles for BLA DA D1 and D2 receptors in biasing choice during risk/reward decision making through mediation of reward/negative feedback sensitivity.

  6. Activation of exchange protein activated by cAMP in the rat basolateral amygdala impairs reconsolidation of a memory associated with self-administered cocaine.

    Science.gov (United States)

    Wan, Xun; Torregrossa, Mary M; Sanchez, Hayde; Nairn, Angus C; Taylor, Jane R

    2014-01-01

    The intracellular mechanisms underlying memory reconsolidation critically involve cAMP signaling. These events were originally attributed to PKA activation by cAMP, but the identification of Exchange Protein Activated by cAMP (Epac), as a distinct mediator of cAMP signaling, suggests that cAMP-regulated processes that subserve memory reconsolidation are more complex. Here we investigated how activation of Epac with 8-pCPT-cAMP (8-CPT) impacts reconsolidation of a memory that had been associated with cocaine self-administration. Rats were trained to lever press for cocaine on an FR-1 schedule, in which each cocaine delivery was paired with a tone+light cue. Lever pressing was then extinguished in the absence of cue presentations and cocaine delivery. Following the last day of extinction, rats were put in a novel context, in which the conditioned cue was presented to reactivate the cocaine-associated memory. Immediate bilateral infusions of 8-CPT into the basolateral amygdala (BLA) following reactivation disrupted subsequent cue-induced reinstatement in a dose-dependent manner, and modestly reduced responding for conditioned reinforcement. When 8-CPT infusions were delayed for 3 hours after the cue reactivation session or were given after a cue extinction session, no effect on cue-induced reinstatement was observed. Co-administration of 8-CPT and the PKA activator 6-Bnz-cAMP (10 nmol/side) rescued memory reconsolidation while 6-Bnz alone had no effect, suggesting an antagonizing interaction between the two cAMP signaling substrates. Taken together, these studies suggest that activation of Epac represents a parallel cAMP-dependent pathway that can inhibit reconsolidation of cocaine-cue memories and reduce the ability of the cue to produce reinstatement of cocaine-seeking behavior.

  7. Activation of exchange protein activated by cAMP in the rat basolateral amygdala impairs reconsolidation of a memory associated with self-administered cocaine.

    Directory of Open Access Journals (Sweden)

    Xun Wan

    Full Text Available The intracellular mechanisms underlying memory reconsolidation critically involve cAMP signaling. These events were originally attributed to PKA activation by cAMP, but the identification of Exchange Protein Activated by cAMP (Epac, as a distinct mediator of cAMP signaling, suggests that cAMP-regulated processes that subserve memory reconsolidation are more complex. Here we investigated how activation of Epac with 8-pCPT-cAMP (8-CPT impacts reconsolidation of a memory that had been associated with cocaine self-administration. Rats were trained to lever press for cocaine on an FR-1 schedule, in which each cocaine delivery was paired with a tone+light cue. Lever pressing was then extinguished in the absence of cue presentations and cocaine delivery. Following the last day of extinction, rats were put in a novel context, in which the conditioned cue was presented to reactivate the cocaine-associated memory. Immediate bilateral infusions of 8-CPT into the basolateral amygdala (BLA following reactivation disrupted subsequent cue-induced reinstatement in a dose-dependent manner, and modestly reduced responding for conditioned reinforcement. When 8-CPT infusions were delayed for 3 hours after the cue reactivation session or were given after a cue extinction session, no effect on cue-induced reinstatement was observed. Co-administration of 8-CPT and the PKA activator 6-Bnz-cAMP (10 nmol/side rescued memory reconsolidation while 6-Bnz alone had no effect, suggesting an antagonizing interaction between the two cAMP signaling substrates. Taken together, these studies suggest that activation of Epac represents a parallel cAMP-dependent pathway that can inhibit reconsolidation of cocaine-cue memories and reduce the ability of the cue to produce reinstatement of cocaine-seeking behavior.

  8. Projections from the posterolateral olfactory amygdala to the ventral striatum: neural basis for reinforcing properties of chemical stimuli

    Directory of Open Access Journals (Sweden)

    Lanuza Enrique

    2007-11-01

    Full Text Available Abstract Background Vertebrates sense chemical stimuli through the olfactory receptor neurons whose axons project to the main olfactory bulb. The main projections of the olfactory bulb are directed to the olfactory cortex and olfactory amygdala (the anterior and posterolateral cortical amygdalae. The posterolateral cortical amygdaloid nucleus mainly projects to other amygdaloid nuclei; other seemingly minor outputs are directed to the ventral striatum, in particular to the olfactory tubercle and the islands of Calleja. Results Although the olfactory projections have been previously described in the literature, injection of dextran-amines into the rat main olfactory bulb was performed with the aim of delimiting the olfactory tubercle and posterolateral cortical amygdaloid nucleus in our own material. Injection of dextran-amines into the posterolateral cortical amygdaloid nucleus of rats resulted in anterograde labeling in the ventral striatum, in particular in the core of the nucleus accumbens, and in the medial olfactory tubercle including some islands of Calleja and the cell bridges across the ventral pallidum. Injections of Fluoro-Gold into the ventral striatum were performed to allow retrograde confirmation of these projections. Conclusion The present results extend previous descriptions of the posterolateral cortical amygdaloid nucleus efferent projections, which are mainly directed to the core of the nucleus accumbens and the medial olfactory tubercle. Our data indicate that the projection to the core of the nucleus accumbens arises from layer III; the projection to the olfactory tubercle arises from layer II and is much more robust than previously thought. This latter projection is directed to the medial olfactory tubercle including the corresponding islands of Calleja, an area recently described as critical node for the neural circuit of addiction to some stimulant drugs of abuse.

  9. Infusion of methylphenidate into the basolateral nucleus of amygdala or anterior cingulate cortex enhances fear memory consolidation in rats

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The psychostimulant methylphenidate (MPD; also called Ritalin) is a blocker of dopamine and norepi-nephrine transporter. It has been clinically used for treatment of Attention Deficit and Hyperactivity Disorder (ADHD). There have been inconsistent reports regarding the effects of systemically adminis-tered MPD on learning and memory, either in animals or humans. In the present study, we investigated the effect of direct infusion of MPD into the basolateral nucleus of amygdala (BLA) or the anterior cin-gulate cortex (ACC) on conditioned fear memory. Rats were trained on a one-trial step-through inhibi-tory avoidance task. MPD was infused bilaterally into the BLA or the ACC, either at ‘0’ or 6 h post-training. Saline was administered as control. Memory retention was tested 48 h post-training. In-tra-BLA or intra-ACC infusion of MPD ‘0’ h but not 6 h post-training significantly improved 48-h memory retention: the MPD-treated rats had significant longer step-through latency than controls. The present results indicate that action of MPD in the BLA or the ACC produces a beneficial effect on the consoli-dation of inhibitory avoidance memory.

  10. Optogenetic Inhibition Reveals Distinct Roles for Basolateral Amygdala Activity at Discrete Time Points during Risky Decision Making.

    Science.gov (United States)

    Orsini, Caitlin A; Hernandez, Caesar M; Singhal, Sarthak; Kelly, Kyle B; Frazier, Charles J; Bizon, Jennifer L; Setlow, Barry

    2017-11-29

    Decision making is a multifaceted process, consisting of several distinct phases that likely require different cognitive operations. Previous work showed that the basolateral amygdala (BLA) is a critical substrate for decision making involving risk of punishment; however, it is unclear how the BLA is recruited at different stages of the decision process. To this end, the current study used optogenetics to inhibit the BLA during specific task phases in a model of risky decision making (risky decision-making task) in which rats choose between a small, "safe" reward and a large reward accompanied by varying probabilities of footshock punishment. Male Long-Evans rats received intra-BLA microinjections of viral vectors carrying either halorhodopsin (eNpHR3.0-mCherry) or mCherry alone (control) followed by optic fiber implants and were trained in the risky decision-making task. Laser delivery during the task occurred during intertrial interval, deliberation, or reward outcome phases, the latter of which was further divided into the three possible outcomes (small, safe; large, unpunished; large, punished). Inhibition of the BLA selectively during the deliberation phase decreased choice of the large, risky outcome (decreased risky choice). In contrast, BLA inhibition selectively during delivery of the large, punished outcome increased risky choice. Inhibition had no effect during the other phases, nor did laser delivery affect performance in control rats. Collectively, these data indicate that the BLA can either inhibit or promote choice of risky options, depending on the phase of the decision process in which it is active. SIGNIFICANCE STATEMENT To date, most behavioral neuroscience research on neural mechanisms of decision making has used techniques that preclude assessment of distinct phases of the decision process. Here we show that optogenetic inhibition of the BLA has opposite effects on choice behavior in a rat model of risky decision making, depending on the phase

  11. Early-stage reduction of the dendritic complexity in basolateral amygdala of a transgenic mouse model of Alzheimer's disease

    International Nuclear Information System (INIS)

    Guo, Congdi; Long, Ben; Hu, Yarong; Yuan, Jing; Gong, Hui; Li, Xiangning

    2017-01-01

    Alzheimer's disease is a representative age-related neurodegenerative disease that could result in loss of memory and cognitive deficiency. However, the precise onset time of Alzheimer's disease affecting neuronal circuits and the mechanisms underlying the changes are not clearly known. To address the neuroanatomical changes during the early pathologic developing process, we acquired the neuronal morphological characterization of AD in APP/PS1 double-transgenic mice using the Micro-Optical Sectioning Tomography system. We reconstructed the neurons in 3D datasets with a resolution of 0.32 × 0.32 × 1 μm and used the Sholl method to analyze the anatomical characterization of the dendritic branches. The results showed that, similar to the progressive change in amyloid plaques, the number of dendritic branches were significantly decreased in 9-month-old mice. In addition, a distinct reduction of dendritic complexity occurred in third and fourth-order dendritic branches of 9-month-old mice, while no significant changes were identified in these parameters in 6-month-old mice. At the branch-level, the density distribution of dendritic arbors in the radial direction decreased in the range of 40–90 μm from the neuron soma in 6-month-old mice. These changes in the dendritic complexity suggest that these reductions contribute to the progressive cognitive impairment seen in APP/PS1 mice. This work may yield insights into the early changes in dendritic abnormality and its relevance to dysfunctional mechanisms of learning, memory and emotion in Alzheimer's disease. - Highlights: • Neuron-level, reduction of dendritic complexity in BLA of 9-month-old AD mice. • Specific range of branch decrease in density of 6-month-old AD mice. • 3D imaging with high resolution will provide insights into brain aging.

  12. The effect of basolateral amygdala nucleus lesion on memory under acute,mid and chronic stress in male rats.

    Science.gov (United States)

    Ranjbar, Hoda; Radahmadi, Maryam; Alaei, Hojjatallah; Reisi, Parham; Karimi, Sara

    2016-12-20

    The basolateral amygdala (BLA) modulates memory for emotional events and is involved in both stress and memory. This study investigated different durations of stress and the role of BLA on serum corticosterone level and spatial and cognitive memory. Different durations of stress (acute, mid, and chronic stress), with and without BLA lesion were induced in rats by 6 h/day restraint stress for 1, 7, and 21 days. Memory functions were evaluated by novel object recognition (NOR) and object location test (OLT). The OLT findings showed locomotor activity and spatial memory slightly decreased with different durations of stress. The NOR findings significantly showed locomotor activity impairment in different durations of stress. Cognitive memory deficit was observed in mid stress. The corticosterone level significantly increased in the mid and chronic stress groups. Moreover, the mid stress was the strongest stress condition. There is a possibility that different stress durations act by different mechanisms. The recognition of a novel location decreased in all lesion groups. It was more severe in the NOR. The BLA lesion significantly decreased corticosterone level in the mid and chronic stress groups compared to similar groups without lesion. The BLA lesion caused more damage to cognitive than spatial memory in stressed groups.

  13. [総説]ストレスとアロマテラピーによるセルフケア : 沖縄産ケモタイプ精油の有用性についての一考察

    OpenAIRE

    宮森, 孝子; MIYAMORI, Takako; マリアズリリーアロマテラピースクール; Maria's Lily School of Aromatherapy

    2011-01-01

    Recently, stress has become one of the big health problems in our society. The emotions of fear, anger, anxiety, and pleasure are caused by the amygdaloid bodies in the brain. Fortunately, recent studies have shown that fragrance information has a direct influence on amygdaloid bodies. Aromatherapy is a method of using the activities of the molecules of fragrance and flavor. Therefore, it may be said that the aromatherapy is helpful for stress reduction. The oil used in aromatherapy is called...

  14. Inhibition of projections from the basolateral amygdala to the entorhinal cortex disrupts the acquisition of contextual fear

    Directory of Open Access Journals (Sweden)

    Dennis R. Sparta

    2014-05-01

    Full Text Available The development of excessive fear and/or stress responses to environmental cues such as contexts associated with a traumatic event is a hallmark of post-traumatic stress disorder (PTSD. The basolateral amygdala (BLA has been implicated as a key structure mediating contextual fear conditioning. In addition, the hippocampus has an integral role in the encoding and processing of contexts associated with strong, salient stimuli such as fear. Given that both the BLA and hippocampus play an important role in the regulation of contextual fear conditioning, examining the functional connectivity between these two structures may elucidate a role for this pathway in the development of PTSD. Here, we used optogenetic strategies to demonstrate that the BLA sends a strong glutamatergic projection to the hippocampal formation through the entorhinal cortex (EC. Next, we photoinhibited glutamatergic fibers from the BLA terminating in the EC during the acquisition or expression of contextual fear conditioning. In mice that received optical inhibition of the BLA-to-EC pathway during the acquisition session, we observed a significant decrease in freezing behavior in a context re-exposure session. In contrast, we observed no differences in freezing behavior in mice that were only photoinhibited during the context re-exposure session. These data demonstrate an important role for the BLA-to-EC glutamatergic pathway in the acquisition of contextual fear conditioning.

  15. Disconnection of basolateral amygdala and insular cortex disrupts conditioned approach in Pavlovian lever autoshaping.

    Science.gov (United States)

    Nasser, Helen M; Lafferty, Danielle S; Lesser, Ellen N; Bacharach, Sam Z; Calu, Donna J

    2018-01-01

    Previously established individual differences in appetitive approach and devaluation sensitivity observed in goal- and sign-trackers may be attributed to differences in the acquisition, modification, or use of associative information in basolateral amygdala (BLA) pathways. Here, we sought to determine the extent to which communication of associative information between BLA and anterior portions of insular cortex (IC) supports ongoing Pavlovian conditioned approach behaviors in sign- and goal-tracking rats, in the absence of manipulations to outcome value. We hypothesized that the BLA mediates goal-, but not sign- tracking approach through interactions with the IC, a brain region involved in supporting flexible behavior. We first trained rats in Pavlovian lever autoshaping to determine their sign- or goal-tracking tendency. During alternating test sessions, we gave unilateral intracranial injections of vehicle or a cocktail of gamma-aminobutyric acid (GABA) receptor agonists, baclofen and muscimol, unilaterally into the BLA and contralaterally or ipsilaterally into the IC prior to reinforced lever autoshaping sessions. Consistent with our hypothesis we found that contralateral inactivation of BLA and IC increased the latency to approach the food cup and decreased the number of food cup contacts in goal-trackers. While contralateral inactivation of BLA and IC did not affect the total number of lever contacts in sign-trackers, this manipulation increased the latency to approach the lever. Ipsilateral inactivation of BLA and IC did not impact approach behaviors in Pavlovian lever autoshaping. These findings, contrary to our hypothesis, suggest that communication between BLA and IC maintains a representation of initially learned appetitive associations that commonly support the initiation of Pavlovian conditioned approach behavior regardless of whether it is directed at the cue or the location of reward delivery. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Progressively Disrupted Intrinsic Functional Connectivity of Basolateral Amygdala in Very Early Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Marion Ortner

    2016-09-01

    Full Text Available Abstract:Very early Alzheimer’s disease (AD - i.e., AD at stages of mild cognitive impairment (MCI and mild dementia - is characterized by progressive structural and neuropathologic changes such as atrophy or tangle deposition in medial temporal lobes, including hippocampus and entorhinal cortex but also adjacent amygdala. While progressively disrupted intrinsic connectivity of hippocampus with other brain areas has been demonstrated by many studies, amygdala connectivity was rarely investigated in AD, notwithstanding its known relevance for emotion processing and mood disturbances, which are both important in early AD. Intrinsic functional connectivity (iFC patterns of hippocampus and amygdala overlap in healthy persons. Thus, we hypothesized that increased alteration of iFC patterns along AD is not limited to the hippocampus but also concerns the amygdala, independent from atrophy. To address this hypothesis, we applied structural and functional resting-state MRI in healthy controls (CON, n=33 and patients with AD in the stages of MCI (AD-MCI, n=38 and mild dementia (AD-D, n=36. Outcome measures were voxel-based morphometry (VBM values and region of interest-based intrinsic functional connectivity maps (iFC of basolateral amygdala, which has extended cortical connectivity. Amygdala VBM values were progressively reduced in patients (CON > AD-MCI and AD-D. Amygdala iFC was progressively reduced along impairment severity (CON > AD-MCI > AD-D, particularly for hippocampus, temporal lobes, and fronto-parietal areas. Notably, decreased iFC was independent of amygdala atrophy. Results demonstrate progressively impaired amygdala intrinsic connectivity in temporal and fronto-parietal lobes independent from increasing amygdala atrophy in very early AD. Data suggest that early AD disrupts intrinsic connectivity of medial temporal lobe key regions including that of amygdala.

  17. Memory-enhancing intra-basolateral amygdala infusions of clenbuterol increase Arc and CaMKII-alpha protein expression in the rostral anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Crystal M Holloway-Erickson

    2012-04-01

    Full Text Available Activation of β-adrenoceptors in the basolateral complex of the amygdala (BLA modulates memory through interactions with multiple memory systems. The cellular mechanisms for this interaction remain unresolved. Memory-modulating BLA manipulations influence expression of the protein product of the immediate early gene activity-regulated cytoskeletal-associated protein (Arc in the dorsal hippocampus, and hippocampal expression of Arc protein is critically involved in memory consolidation and long-term potentiation. The present studies examined whether this influence of the BLA is specific to the hippocampus and to Arc protein. Like the hippocampus, the rostral portion of the anterior cingulate cortex (rACC is involved in the consolidation of inhibitory avoidance (IA memory, and IA training increases Arc protein in the rACC. Because the BLA interacts with the rACC in the consolidation of IA memory, the rACC is a potential candidate for further studies of BLA modulation of synaptic plasticity. The alpha isoform of the Calcium/Calmodulin-dependent protein kinase II (CaMKIIα and the immediate early gene c-Fos are involved in long-term potentiation and memory. Both Arc and CaMKIIα proteins can be translated in isolated synapses, where the mRNA is localized, but c-Fos protein remains in the soma. To examine the influence of memory-modulating manipulations of the BLA on expression of these memory and plasticity-associated proteins in the rACC, male Sprague-Dawley rats were trained on an IA task and given intra-BLA infusions of either clenbuterol or lidocaine immediately after training. Findings suggest that noradrenergic stimulation of the BLA may modulate memory consolidation through effects on both synaptic proteins Arc and CaMKIIα, but not the somatic protein c-Fos. Furthermore, protein changes observed in the rACC following BLA manipulations suggest that the influence of the BLA on synaptic proteins is not limited to those in the dorsal

  18. Basolateral amygdala GABA-A receptors mediate stress-induced memory retrieval impairment in rats.

    Science.gov (United States)

    Sardari, Maryam; Rezayof, Ameneh; Khodagholi, Fariba; Zarrindast, Mohammad-Reza

    2014-04-01

    The present study was designed to investigate the involvement of GABA-A receptors of the basolateral amygdala (BLA) in the impairing effect of acute stress on memory retrieval. The BLAs of adult male Wistar rats were bilaterally cannulated and memory retrieval was measured in a step-through type passive avoidance apparatus. Acute stress was evoked by placing the animals on an elevated platform for 10, 20 and 30 min. The results indicated that exposure to 20 and 30 min stress, but not 10 min, before memory retrieval testing (pre-test exposure to stress) decreased the step-through latency, indicating stress-induced memory retrieval impairment. Intra-BLA microinjection of a GABA-A receptor agonist, muscimol (0.005-0.02 μg/rat), 5 min before exposure to an ineffective stress (10 min exposure to stress) induced memory retrieval impairment. It is important to note that pre-test intra-BLA microinjection of the same doses of muscimol had no effect on memory retrieval in the rats unexposed to 10 min stress. The blockade of GABA-A receptors of the BLA by injecting an antagonist, bicuculline (0.4-0.5 μg/rat), 5 min before 20 min exposure to stress, prevented stress-induced memory retrieval. Pre-test intra-BLA microinjection of the same doses of bicuculline (0.4-0.5 μg/rat) in rats unexposed to 20 min stress had no effect on memory retrieval. In addition, pre-treatment with bicuculline (0.1-0.4 μg/rat, intra-BLA) reversed muscimol (0.02 μg/rat, intra-BLA)-induced potentiation on the effect of stress in passive avoidance learning. It can be concluded that pre-test exposure to stress can induce memory retrieval impairment and the BLA GABA-A receptors may be involved in stress-induced memory retrieval impairment.

  19. TRH and TRH receptor system in the basolateral amygdala mediate stress-induced depression-like behaviors.

    Science.gov (United States)

    Choi, Juli; Kim, Ji-eun; Kim, Tae-Kyung; Park, Jin-Young; Lee, Jung-Eun; Kim, Hannah; Lee, Eun-Hwa; Han, Pyung-Lim

    2015-10-01

    Chronic stress is a potent risk factor for depression, but the mechanism by which stress causes depression is not fully understood. To investigate the molecular mechanism underlying stress-induced depression, C57BL/6 inbred mice were treated with repeated restraint to induce lasting depressive behavioral changes. Behavioral states of individual animals were evaluated using the forced swim test, which measures psychomotor withdrawals, and the U-field test, which measures sociability. From these behavioral analyses, individual mice that showed depression-like behaviors in both psychomotor withdrawal and sociability tests, and individuals that showed a resiliency to stress-induced depression in both tests were selected. Among the neuropeptides expressed in the amygdala, thyrotropin-releasing hormone (TRH) was identified as being persistently up-regulated in the basolateral amygdala (BLA) in individuals exhibiting severe depressive behaviors in the two behavior tests, but not in individuals displaying a stress resiliency. Activation of TRH receptors by local injection of TRH in the BLA in normal mice produced depressive behaviors, mimicking chronic stress effects, whereas siRNA-mediated suppression of either TRH or TRHR1 in the BLA completely blocked stress-induced depressive symptoms. The TRHR1 agonist, taltirelin, injection in the BLA increased the level of p-ERK, which mimicked the increased p-ERK level in the BLA that was induced by treatment with repeated stress. Stereotaxic injection of U0126, a potent inhibitor of the ERK pathway, within the BLA blocked stress-induced behavioral depression. These results suggest that repeated stress produces lasting depression-like behaviors via the up-regulation of TRH and TRH receptors in the BLA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Regulation of Alcohol Extinction and Cue-Induced Reinstatement by Specific Projections among Medial Prefrontal Cortex, Nucleus Accumbens, and Basolateral Amygdala.

    Science.gov (United States)

    Keistler, Colby R; Hammarlund, Emma; Barker, Jacqueline M; Bond, Colin W; DiLeone, Ralph J; Pittenger, Christopher; Taylor, Jane R

    2017-04-26

    The ability to inhibit drinking is a significant challenge for recovering alcoholics, especially in the presence of alcohol-associated cues. Previous studies have demonstrated that the regulation of cue-guided alcohol seeking is mediated by the basolateral amygdala (BLA), nucleus accumbens (NAc), and medial prefrontal cortex (mPFC). However, given the high interconnectivity between these structures, it is unclear how mPFC projections to each subcortical structure, as well as projections between BLA and NAc, mediate alcohol-seeking behaviors. Here, we evaluate how cortico-striatal, cortico-amygdalar, and amygdalo-striatal projections control extinction and relapse in a rat model of alcohol seeking. Specifically, we used a combinatorial viral technique to express diphtheria toxin receptors in specific neuron populations based on their projection targets. We then used this strategy to create directionally selective ablations of three distinct pathways after acquisition of ethanol self-administration but before extinction and reinstatement. We demonstrate that ablation of mPFC neurons projecting to NAc, but not BLA, blocks cue-induced reinstatement of alcohol seeking and neither pathway is necessary for extinction of responding. Further, we show that ablating BLA neurons that project to NAc disrupts extinction of alcohol approach behaviors and attenuates reinstatement. Together, these data provide evidence that the mPFC→NAc pathway is necessary for cue-induced reinstatement of alcohol seeking, expand our understanding of how the BLA→NAc pathway regulates alcohol behavior, and introduce a new methodology for the manipulation of target-specific neural projections. SIGNIFICANCE STATEMENT The vast majority of recovering alcoholics will relapse at least once and understanding how the brain regulates relapse will be key to developing more effective behavior and pharmacological therapies for alcoholism. Given the high interconnectivity of cortical, striatal, and limbic

  1. The basolateral amygdala modulates specific sensory memory representations in the cerebral cortex.

    Science.gov (United States)

    Chavez, Candice M; McGaugh, James L; Weinberger, Norman M

    2009-05-01

    Stress hormones released by an experience can modulate memory strength via the basolateral amygdala, which in turn acts on sites of memory storage such as the cerebral cortex [McGaugh, J. L. (2004). The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annual Review of Neuroscience, 27, 1-28]. Stimuli that acquire behavioral importance gain increased representation in the cortex. For example, learning shifts the tuning of neurons in the primary auditory cortex (A1) to the frequency of a conditioned stimulus (CS), and the greater the level of CS importance, the larger the area of representational gain [Weinberger, N. M. (2007). Associative representational plasticity in the auditory cortex: A synthesis of two disciplines. Learning & Memory, 14(1-2), 1-16]. The two lines of research suggest that BLA strengthening of memory might be accomplished in part by increasing the representation of an environmental stimulus. The present study investigated whether stimulation of the BLA can affect cortical memory representations. In male Sprague-Dawley rats studied under urethane general anesthesia, frequency receptive fields were obtained from A1 before and up to 75min after the pairing of a tone with BLA stimulation (BLAstm: 100 trials, 400ms, 100Hz, 400microA [+/-16.54]). Tone started before and continued after BLAstm. Group BLA/1.0 (n=16) had a 1s CS-BLAstm interval while Group BLA/1.6 (n=5) has a 1.6s interval. The BLA/1.0 group did develop specific tuning shifts toward and to the CS, which could change frequency tuning by as much as two octaves. Moreover, its shifts increased over time and were enduring, lasting 75min. However, group BLA/1.6 did not develop tuning shifts, indicating that precise CS-BLAstm timing is important in the anesthetized animal. Further, training in the BLA/1.0 paradigm but stimulating outside of the BLA did not produce tuning shifts. These findings demonstrate that the BLA is capable of exerting highly specific

  2. Basolateral K+ channels in airway epithelia. II. Role in Cl- secretion and evidence for two types of K+ channel

    International Nuclear Information System (INIS)

    McCann, J.D.; Welsh, M.J.

    1990-01-01

    We previously described a Ca2(+)-activated K+ channel (KCLIC) in airway epithelial cells. To determine whether the KCLIC channel is a basolateral membrane channel and to understand its role in Cl- secretion, we studied airway epithelial cells grown on permeable supports. When cells were stimulated with A23187, charybdotoxin (ChTX) inhibited Cl- secretion and 86Rb efflux at the same concentrations, indicating that the KCLIC channel is required for Ca2(+)-stimulated Cl- secretion. We also investigated the function of K+ channels in adenosine 3',5'-cyclic monophosphate-stimulated secretion. Addition of isoproterenol caused a biphasic increase in Cl- secretion; the time course of the transient component correlated with the time course of the isoproterenol-induced increase in Ca2+ concentration [( Ca2+]c). ChTX inhibited the transient component, but not the prolonged component of secretion; Ba2+ inhibited the sustained component. These results suggest that when cells are grown on permeable supports isoproterenol-induced secretion depends on activation of two types of K+ channel: the KCLIC channel that is stimulated initially and a ChTX-insensitive K+ channel that is stimulated during sustained secretion. This conclusion was supported by measurement of 86Rb efflux from cell monolayers

  3. Preferential recruitment of the basolateral amygdala during memory encoding of negative scenes in posttraumatic stress disorder.

    Science.gov (United States)

    Patel, Ronak; Girard, Todd A; Pukay-Martin, Nicole; Monson, Candice

    2016-04-01

    The vast majority of functional neuroimaging studies in posttraumatic stress disorder (PTSD) have examined the amygdala as a unitary structure. However, an emerging body of studies indicates that separable functions are subserved by discrete amygdala subregions. The basolateral subdivision (BLA), as compared with the centromedial amygdala (CMA), plays a unique role in learning and memory-based processes for threatening events, and alterations to the BLA have been implicated in the pathogenesis of PTSD. We assessed whether PTSD is associated with differential involvement of the BLA versus the CMA during successful encoding of emotionally charged events. Participants with PTSD (n=11) and a trauma-exposed comparison (TEC) group (n=11) viewed a series of photos that varied in valence (negative versus positive) and arousal (high versus low) while undergoing functional magnetic resonance imaging (fMRI). Subsequently, participants completed an old/new recognition memory test. Using analytic methods based on probabilistic cytoarchitectonic mapping, PTSD was associated with greater activation of the BLA, as compared to the CMA, during successful encoding of negative scenes, a finding which was not observed in the TEC group. Moreover, this memory-related activity in the BLA independently predicted PTSD status. Contrary to hypotheses, there was no evidence of altered BLA activity during memory encoding of high arousing relative to low arousing scenes. Task-related brain activation in PTSD does not appear to be consistent across the entire amygdala. Importantly, memory-related processing of negative information in PTSD is associated with preferential recruitment of the BLA. Copyright © 2016. Published by Elsevier Inc.

  4. Release of gliotransmitters through astroglial connexin 43 hemichannels is necessary for fear memory consolidation in the basolateral amygdala.

    Science.gov (United States)

    Stehberg, Jimmy; Moraga-Amaro, Rodrigo; Salazar, Christian; Becerra, Alvaro; Echeverría, Cesar; Orellana, Juan A; Bultynck, Geert; Ponsaerts, Raf; Leybaert, Luc; Simon, Felipe; Sáez, Juan C; Retamal, Mauricio A

    2012-09-01

    Recent in vitro evidence indicates that astrocytes can modulate synaptic plasticity by releasing neuroactive substances (gliotransmitters). However, whether gliotransmitter release from astrocytes is necessary for higher brain function in vivo, particularly for memory, as well as the contribution of connexin (Cx) hemichannels to gliotransmitter release, remain elusive. Here, we microinfused into the rat basolateral amygdala (BLA) TAT-Cx43L2, a peptide that selectively inhibits Cx43-hemichannel opening while maintaining synaptic transmission or interastrocyte gap junctional communication. In vivo blockade of Cx43 hemichannels during memory consolidation induced amnesia for auditory fear conditioning, as assessed 24 h after training, without affecting short-term memory, locomotion, or shock reactivity. The amnesic effect was transitory, specific for memory consolidation, and was confirmed after microinfusion of Gap27, another Cx43-hemichannel blocker. Learning capacity was recovered after coinfusion of TAT-Cx43L2 and a mixture of putative gliotransmitters (glutamate, glutamine, lactate, d-serine, glycine, and ATP). We propose that gliotransmitter release from astrocytes through Cx43 hemichannels is necessary for fear memory consolidation at the BLA. Thus, the present study is the first to demonstrate a physiological role for astroglial Cx43 hemichannels in brain function, making these channels a novel pharmacological target for the treatment of psychiatric disorders, including post-traumatic stress disorder.

  5. MicroPET imaging of 5-HT{sub 1A} receptors in rat brain: a test-retest [{sup 18}F]MPPF study

    Energy Technology Data Exchange (ETDEWEB)

    Aznavour, Nicolas [McGill University, Department of Psychiatry, Montreal, QC (Canada)]|[Laboratory of Neuroenergetics and Cellular Dynamics, EPFL, SV, BMI, Lausanne (Switzerland); Benkelfat, Chawki; Gravel, Paul [McGill University, Department of Psychiatry, Montreal, QC (Canada)]|[McGill University, Department of Neurology and Neurosurgery, Montreal, QC (Canada); Aliaga, Antonio [McGill University, Department of Small Animal Imaging Laboratory, Montreal, QC (Canada); Rosa-Neto, Pedro [Douglas Hospital, Molecular NeuroImaging Laboratory, Montreal, QC (Canada); Bedell, Barry [McGill University, Department of Neurology and Neurosurgery, Montreal, QC (Canada)]|[McGill University, Department of Small Animal Imaging Laboratory, Montreal, QC (Canada); Zimmer, Luc [CERMEP, ANIMAGE Department, Lyon (France)]|[Universite Lyon 1 and CNRS, Lyon (France); Descarries, Laurent [Universite de Montreal, Department of Pathology and Cell Biology, Montreal, QC (Canada)]|[Universite de Montreal, Department of Physiology, Montreal, QC (Canada)]|[Universite de Montreal, GRSNC, Montreal, QC (Canada)

    2009-01-15

    Earlier studies have shown that positron emission tomography (PET) imaging with the radioligand [{sup 18}F]MPPF allows for measuring the binding potential of serotonin 5-hydroxytryptamine{sub 1A} (5-HT{sub 1A}) receptors in different regions of animal and human brain, including that of 5-HT{sub 1A} autoreceptors in the raphe nuclei. In the present study, we sought to determine if such data could be obtained in rat, with a microPET (R4, Concorde Microsystems). Scans from isoflurane-anaesthetised rats (n = 18, including six test-retest) were co-registered with magnetic resonance imaging data, and binding potential, blood to plasma ratio and radiotracer efflux were estimated according to a simplified reference tissue model. Values of binding potential for hippocampus (1.2), entorhinal cortex (1.1), septum (1.1), medial prefrontal cortex (1.0), amygdala (0.8), raphe nuclei (0.6), paraventricular hypothalamic nucleus (0.5) and raphe obscurus (0.5) were comparable to those previously measured with PET in cats, non-human primates or humans. Test-retest variability was in the order of 10% in the larger brain regions (hippocampus, medial prefrontal and entorhinal cortex) and less than 20% in small nuclei such as the septum and the paraventricular hypothalamic, basolateral amygdaloid and raphe nuclei. MicroPET brain imaging of 5-HT{sub 1A} receptors with [{sup 18}F]MPPF thus represents a promising avenue for investigating 5-HT{sub 1A} receptor function in rat. (orig.)

  6. Anatomical distribution of estrogen target neurons in turtle brain

    International Nuclear Information System (INIS)

    Kim, Y.S.; Stumpf, W.E.; Sar, M.

    1981-01-01

    Autoradiographic studies with [ 3 H]estradiol-17β in red-eared turtle (Pseudemys scripta elegans) show concentration and retention of radioactivity in nuclei of neurons in certain regions. Accumulations of estrogen target neurons exist in the periventricular brain with relationships to ventral extensions of the forebrain ventricles, including parolfactory, amygdaloid, septal, preoptic, hypothalamic and thalamic areas, as well as the dorsal ventricular ridge, the piriform cortex, and midbrain-pontine periaqueductal structures. The general anatomical pattern of distribution of estrogen target neurons corresponds to those observed not only in another reptile (Anolis carolinensis), but also in birds and mammals, as well as in teleosts and cyclostomes. In Pseudemys, which appears to display an intermediate degree of phylogenetic differentiation, the amygdaloid-septal-preoptic groups of estrogen target neurons constitute a continuum. In phylogenetic ascendency, e.g. in mammals, these cell populations are increasingly separated and distinct, while in phylogenetic descendency, e.g. in teleosts and cyclostomes, an amygdaloid group appears to be absent or contained within the septal-preoptic target cell population. (Auth.)

  7. Anatomical distribution of estrogen target neurons in turtle brain

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y.S.; Stumpf, W.E.; Sar, M. (North Carolina Univ., Chapel Hill (USA))

    1981-12-28

    Autoradiographic studies with (/sup 3/H)estradiol-17..beta.. in red-eared turtle (Pseudemys scripta elegans) show concentration and retention of radioactivity in nuclei of neurons in certain regions. Accumulations of estrogen target neurons exist in the periventricular brain with relationships to ventral extensions of the forebrain ventricles, including parolfactory, amygdaloid, septal, preoptic, hypothalamic and thalamic areas, as well as the dorsal ventricular ridge, the piriform cortex, and midbrain-pontine periaqueductal structures. The general anatomical pattern of distribution of estrogen target neurons corresponds to those observed not only in another reptile (Anolis carolinensis), but also in birds and mammals, as well as in teleosts and cyclostomes. In Pseudemys, which appears to display an intermediate degree of phylogenetic differentiation, the amygdaloid-septal-preoptic groups of estrogen target neurons constitute a continuum. In phylogenetic ascendency, e.g. in mammals, these cell populations are increasingly separated and distinct, while in phylogenetic descendency, e.g. in teleosts and cyclostomes, an amygdaloid group appears to be absent or contained within the septal-preoptic target cell population.

  8. Functional disconnection of the orbitofrontal cortex and basolateral amygdala impairs acquisition of a rat gambling task and disrupts animals' ability to alter decision-making behavior after reinforcer devaluation.

    Science.gov (United States)

    Zeeb, Fiona D; Winstanley, Catharine A

    2013-04-10

    An inability to adjust choice preferences in response to changes in reward value may underlie key symptoms of many psychiatric disorders, including chemical and behavioral addictions. We developed the rat gambling task (rGT) to investigate the neurobiology underlying complex decision-making processes. As in the Iowa Gambling task, the optimal strategy is to avoid choosing larger, riskier rewards and to instead favor options associated with smaller rewards but less loss and, ultimately, greater long-term gain. Given the demonstrated importance of the orbitofrontal cortex (OFC) and basolateral amygdala (BLA) in acquisition of the rGT and Iowa Gambling task, we used a contralateral disconnection lesion procedure to assess whether functional connectivity between these regions is necessary for optimal decision-making. Disrupting the OFC-BLA pathway retarded acquisition of the rGT. Devaluing the reinforcer by inducing sensory-specific satiety altered decision-making in control groups. In contrast, disconnected rats did not update their choice preference following reward devaluation, either when the devalued reward was still delivered or when animals needed to rely on stored representations of reward value (i.e., during extinction). However, all rats exhibited decreased premature responding and slower response latencies after satiety manipulations. Hence, disconnecting the OFC and BLA did not affect general behavioral changes caused by reduced motivation, but instead prevented alterations in the value of a specific reward from contributing appropriately to cost-benefit decision-making. These results highlight the role of the OFC-BLA pathway in the decision-making process and suggest that communication between these areas is vital for the appropriate assessment of reward value to influence choice.

  9. Memory-enhancing corticosterone treatment increases amygdala norepinephrine and Arc protein expression in hippocampal synaptic fractions

    NARCIS (Netherlands)

    McReynolds, Jayme R.; Donowho, Kyle; Abdi, Amin; McGaugh, James L.; Roozendaal, Benno; McIntyre, Christa K.

    Considerable evidence indicates that glucocorticoid hormones enhance the consolidation of memory for emotionally arousing events through interactions with the noradrenergic system of the basolateral complex of the amygdala (BLA). We previously reported that intra-BLA administration of a

  10. Zika Virus Persistently Infects and Is Basolaterally Released from Primary Human Brain Microvascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Megan C. Mladinich

    2017-07-01

    Full Text Available Zika virus (ZIKV is a mosquito-borne Flavivirus that has emerged as the cause of encephalitis and fetal microencephaly in the Americas. ZIKV uniquely persists in human bodily fluids for up to 6 months, is sexually transmitted, and traverses the placenta and the blood-brain barrier (BBB to damage neurons. Cells that support persistent ZIKV replication and mechanisms by which ZIKV establishes persistence remain enigmatic but central to ZIKV entry into protected neuronal compartments. The endothelial cell (EC lining of capillaries normally constrains transplacental transmission and forms the BBB, which selectively restricts access of blood constituents to neurons. We found that ZIKV (strain PRVABC59 persistently infects and continuously replicates in primary human brain microvascular ECs (hBMECs, without cytopathology, for >9 days and following hBMEC passage. ZIKV did not permeabilize hBMECs but was released basolaterally from polarized hBMECs, suggesting a direct mechanism for ZIKV to cross the BBB. ZIKV-infected hBMECs were rapidly resistant to alpha interferon (IFN-α and transiently induced, but failed to secrete, IFN-β and IFN-λ. Global transcriptome analysis determined that ZIKV constitutively induced IFN regulatory factor 7 (IRF7, IRF9, and IFN-stimulated genes (ISGs 1 to 9 days postinfection, despite persistently replicating in hBMECs. ZIKV constitutively induced ISG15, HERC5, and USP18, which are linked to hepatitis C virus (HCV persistence and IFN regulation, chemokine CCL5, which is associated with immunopathogenesis, as well as cell survival factors. Our results reveal that hBMECs act as a reservoir of persistent ZIKV replication, suggest routes for ZIKV to cross hBMECs into neuronal compartments, and define novel mechanisms of ZIKV persistence that can be targeted to restrict ZIKV spread.

  11. Post-training depletions of basolateral amygdala serotonin fail to disrupt discrimination, retention, or reversal learning

    Directory of Open Access Journals (Sweden)

    G. Jesus eOchoa

    2015-05-01

    Full Text Available In goal-directed pursuits, the basolateral amygdala (BLA is critical in learning about changes in the value of rewards. BLA-lesioned rats show enhanced reversal learning, a task employed to measure the flexibility of response to changes in reward. Similarly, there is a trend for enhanced discrimination learning, suggesting that BLA may modulate formation of stimulus-reward associations. There is a parallel literature on the importance of serotonin (5HT in new stimulus-reward and reversal learning. Recent postulations implicate 5HT in learning from punishment. Whereas dopaminergic involvement is critical in behavioral activation and reinforcement, 5HT may be most critical for aversive processing and behavioral inhibition, complementary cognitive processes. Given these findings, a 5HT-mediated mechanism in BLA may mediate the facilitated learning observed previously. The present study investigated the effects of selective 5HT lesions in BLA using 5,7-dihydroxytryptamine (5,7-DHT versus infusions of saline (Sham on discrimination, retention, and deterministic reversal learning. Rats were required to reach an 85% correct pairwise discrimination and single reversal criterion prior to surgery. Postoperatively, rats were then tested on the 1 retention of the pretreatment discrimination pair 2 discrimination of a novel pair and 3 reversal learning performance. We found statistically comparable preoperative learning rates between groups, intact postoperative retention, and unaltered novel discrimination and reversal learning in 5,7-DHT rats. These findings suggest that 5HT in BLA is not required for formation and flexible adjustment of new stimulus-reward associations when the strategy to efficiently solve the task has already been learned. Given the complementary role of orbitofrontal cortex in reward learning and its interconnectivity with BLA, these findings add to the list of dissociable mechanisms for BLA and orbitofrontal cortex in reward learning.

  12. A novel drug–phospholipid complex enriched with micelles: preparation and evaluation in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Xia HJ

    2013-02-01

    Full Text Available Hai-jian Xia,1,2 Zhen-hai Zhang,1 Xin Jin,1 Qin Hu,1 Xiao-yun Chen,1 Xiao-bin Jia11Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, China; 2College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, ChinaAbstract: Mixed micelles are widely used to increase solubility and bioavailability of poorly soluble drugs. One promising antitumor drug candidate is 20(S-protopanaxadiol (PPD, although its clinical application is limited by low water solubility and poor bioavailability after oral administration. In this study, we developed mixed micelles consisting of PPD–phospholipid complexes and Labrasol® and evaluated their potential for oral PPD absorption. Micelles were prepared using a solvent-evaporation method, and their physicochemical properties, including particle size, zeta potential, morphology, crystal type, drug loading, drug entrapment efficiency, and solubility, were characterized. Furthermore, in vitro release was investigated using the dialysis method, and transport and bioavailability of the mixed micelles were investigated through a Caco-2 cell monolayer and in vivo absorption studies performed in rats. Compared with the solubility of free PPD (3 µg/mL, the solubility of PPD in the prepared mixed micelles was 192.41 ± 1.13 µg/mL in water at room temperature. The in vitro release profiles showed a significant difference between the more rapid release of free PPD and the slower and more sustained release of the mixed micelles. At the end of a 4-hour transport study using Caco-2 cells, the apical-to-basolateral apparent permeability coefficients (Papp increased from (1.12 ± 0.21 × 106 cm/s to (1.78 ± 0.16 × 106 cm/s, while the basolateral-to-apical Papp decreased from (2.42 ± 0.16 × 106 cm/s to (2.12 ± 0.32 × 106. In this pharmacokinetic study, compared with the bioavailability of free PPD (area under the curve [AUC]0–8, the

  13. Neurofascin Knock Down in the Basolateral Amygdala Mediates Resilience of Memory and Plasticity in the Dorsal Dentate Gyrus Under Stress.

    Science.gov (United States)

    Saha, Rinki; Kriebel, Martin; Volkmer, Hansjürgen; Richter-Levin, Gal; Albrecht, Anne

    2018-02-05

    Activation of the amygdala is one of the hallmarks of acute stress reactions and a central element of the negative impact of stress on hippocampus-dependent memory and cognition. Stress-induced psychopathologies, such as posttraumatic stress disorder, exhibit a sustained hyperactivity of the amygdala, triggered at least in part by deficits in GABAergic inhibition that lead to shifts in amygdalo-hippocampal interaction. Here, we have utilized lentiviral knock down of neurofascin to reduce GABAergic inhibition specifically at the axon initial segment (AIS) of principal neurons within the basolateral amygdala (BLA) of rats. Metaplastic effects of such a BLA modulation on hippocampal synaptic function were assessed using BLA priming prior to the induction of long-term potentiation (LTP) on dentate gyrus synapses in anesthetized rats in vivo. The knock down of neurofascin in the BLA prevented a priming-induced impairment on LTP maintenance in the dentate gyrus. At the behavioral level, a similar effect was observable, with neurofascin knock down preventing the detrimental impact of acute traumatic stress on hippocampus-dependent spatial memory retrieval in a water maze task. These findings suggest that reducing GABAergic inhibition specifically at the AIS synapses of the BLA alters amygdalo-hippocampal interactions such that it attenuates the adverse impact of acute stress exposure on cognition-related hippocampal functions.

  14. Dissociable contributions of anterior cingulate cortex and basolateral amygdala on a rodent cost/benefit decision-making task of cognitive effort.

    Science.gov (United States)

    Hosking, Jay G; Cocker, Paul J; Winstanley, Catharine A

    2014-06-01

    Personal success often requires the choice to expend greater effort for larger rewards, and deficits in such effortful decision making accompany a number of illnesses including depression, schizophrenia, and attention-deficit/hyperactivity disorder. Animal models have implicated brain regions such as the basolateral amygdala (BLA) and anterior cingulate cortex (ACC) in physical effort-based choice, but disentangling the unique contributions of these two regions has proven difficult, and effort demands in industrialized society are predominantly cognitive in nature. Here we utilize the rodent cognitive effort task (rCET), a modification of the five-choice serial reaction-time task, wherein animals can choose to expend greater visuospatial attention to obtain larger sucrose rewards. Temporary inactivation (via baclofen-muscimol) of BLA and ACC showed dissociable effects: BLA inactivation caused hard-working rats to 'slack off' and 'slacker' rats to work harder, whereas ACC inactivation caused all animals to reduce willingness to expend mental effort. Furthermore, BLA inactivation increased the time needed to make choices, whereas ACC inactivation increased motor impulsivity. These data illuminate unique contributions of BLA and ACC to effort-based decision making, and imply overlapping yet distinct circuitry for cognitive vs physical effort. Our understanding of effortful decision making may therefore require expanding our models beyond purely physical costs.

  15. Effects of substance P and Sar-Met-SP, a NK1 agonist, in distinct amygdaloid nuclei on anxiety-like behavior in rats.

    Science.gov (United States)

    Bassi, Gabriel Shimizu; de Carvalho, Milene Cristina; Brandão, Marcus Lira

    2014-05-21

    The amygdala, together with the dorsal periaqueductal gray (dPAG), medial hypothalamus, and deep layers of the superior and inferior colliculi, constitutes the encephalic aversion system, which has been considered the main neural substrate for the organization of fear and anxiety. The basolateral nucleus of the amygdala (BLA) acts as a filter for aversive stimuli to higher structures while the central (CeA) and the medial (MeA) nuclei constitute the output for the autonomic and somatic components of the emotional reaction through major projections to the limbic and brainstem regions. Although some findings point to the distinct participation of the substance P (SP) and the NK1 receptors system in the different nuclei of the amygdala on the expression of emotional behaviors, it is not clear if this system modulates anxiety-like responses in the distinct nuclei of the amygdala as well as the dPAG. Thus, it was investigated if the injection of SP into the BLA, CeA, or MeA affects the expression of anxiety-like responses of rats submitted to the elevated plus-maze (EPM) test and, if the effects are mediated by NK1 receptors. The results showed that SP and Sar-Met-SP (NK1 receptor selective agonist) injected into the CeA and MeA, but not into the BLA, caused anxiogenic-like effects in the EPM. Altogether, the data indicates that the SP may mimic the effects of anxiogenic stimuli via NK1 receptor activation only in the CeA and MeA (amygdala's nuclei output) and may activate the neural mechanisms involved in the defensive reaction genesis. The SP/NK1 receptors system activation may be phasically involved in very specific aspects of anxiety behaviors. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Dissociable roles for the basolateral amygdala and orbitofrontal cortex in decision-making under risk of punishment.

    Science.gov (United States)

    Orsini, Caitlin A; Trotta, Rose T; Bizon, Jennifer L; Setlow, Barry

    2015-01-28

    Several neuropsychiatric disorders are associated with abnormal decision-making involving risk of punishment, but the neural basis of this association remains poorly understood. Altered activity in brain systems including the basolateral amygdala (BLA) and orbitofrontal cortex (OFC) can accompany these same disorders, and these structures are implicated in some forms of decision-making. The current study investigated the role of the BLA and OFC in decision-making under risk of explicit punishment. Rats were trained in the risky decision-making task (RDT), in which they chose between two levers, one that delivered a small safe reward, and the other that delivered a large reward accompanied by varying risks of footshock punishment. Following training, they received sham or neurotoxic lesions of BLA or OFC, followed by RDT retesting. BLA lesions increased choice of the large risky reward (greater risk-taking) compared to both prelesion performance and sham controls. When reward magnitudes were equated, both BLA lesion and control groups shifted their choice to the safe (no shock) reward lever, indicating that the lesions did not impair punishment sensitivity. In contrast to BLA lesions, OFC lesions significantly decreased risk-taking compared with sham controls, but did not impair discrimination between different reward magnitudes or alter baseline levels of anxiety. Finally, neither lesion significantly affected food-motivated lever pressing under various fixed ratio schedules, indicating that lesion-induced alterations in risk-taking were not secondary to changes in appetitive motivation. Together, these findings indicate distinct roles for the BLA and OFC in decision-making under risk of explicit punishment. Copyright © 2015 the authors 0270-6474/15/351368-12$15.00/0.

  17. Role of adaptor proteins and clathrin in the trafficking of human kidney anion exchanger 1 (kAE1) to the cell surface.

    Science.gov (United States)

    Junking, Mutita; Sawasdee, Nunghathai; Duangtum, Natapol; Cheunsuchon, Boonyarit; Limjindaporn, Thawornchai; Yenchitsomanus, Pa-thai

    2014-07-01

    Kidney anion exchanger 1 (kAE1) plays an important role in acid-base homeostasis by mediating chloride/bicarbornate (Cl-/HCO3-) exchange at the basolateral membrane of α-intercalated cells in the distal nephron. Impaired intracellular trafficking of kAE1 caused by mutations of SLC4A1 encoding kAE1 results in kidney disease - distal renal tubular acidosis (dRTA). However, it is not known how the intracellular sorting and trafficking of kAE1 from trans-Golgi network (TGN) to the basolateral membrane occurs. Here, we studied the role of basolateral-related sorting proteins, including the mu1 subunit of adaptor protein (AP) complexes, clathrin and protein kinase D, on kAE1 trafficking in polarized and non-polarized kidney cells. By using RNA interference, co-immunoprecipitation, yellow fluorescent protein-based protein fragment complementation assays and immunofluorescence staining, we demonstrated that AP-1 mu1A, AP-3 mu1, AP-4 mu1 and clathrin (but not AP-1 mu1B, PKD1 or PKD2) play crucial roles in intracellular sorting and trafficking of kAE1. We also demonstrated colocalization of kAE1 and basolateral-related sorting proteins in human kidney tissues by double immunofluorescence staining. These findings indicate that AP-1 mu1A, AP-3 mu1, AP-4 mu1 and clathrin are required for kAE1 sorting and trafficking from TGN to the basolateral membrane of acid-secreting α-intercalated cells. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Exposure to predator odor influences the relative use of multiple memory systems: role of basolateral amygdala.

    Science.gov (United States)

    Leong, Kah-Chung; Packard, Mark G

    2014-03-01

    In a dual-solution plus-maze task in which both hippocampus-dependent place learning and dorsolateral striatal-dependent response learning provide an adequate solution, the relative use of multiple memory systems can be influenced by emotional state. Specifically, pre-training peripheral or intra-basolateral (BLA) administration of anxiogenic drugs result in the predominant use of response learning. The present experiments were designed to extend these findings by examining whether exposure to a putatively ethologically valid stressor would also produce a predominant use of response learning. In experiment 1, adult male Long-Evans rats were exposed to either a predator odor (trimethylthiazoline [TMT], a component of fox feces) or distilled water prior to training in a dual-solution water plus maze task. On a probe trial 24h following task acquisition, rats previously exposed to TMT predominantly displayed response learning relative to control animals. In experiment 2, rats trained on a single-solution plus maze task that required the use of response learning displayed enhanced acquisition following pre-training TMT exposure. In experiment 3, rats exposed to TMT or distilled water were trained in the dual-solution task and received post-training intra-BLA injections of the sodium channel blocker bupivacaine (1.0% solution, 0.5 μl) or saline. Relative to control animals, rats exposed to TMT predominantly displayed response learning on the probe trial, and this effect was blocked by neural inactivation of the BLA. The findings indicate that (1) the use of dorsal striatal-dependent habit memory produced by emotional arousal generalizes from anxiogenic drug administration to a putatively ecologically valid stressor (i.e. predator odor), and (2) the BLA mediates the modulatory effect of exposure to predator odor on the relative use of multiple memory systems. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Corticotropin-releasing factor in the basolateral amygdala enhances memory consolidation via an interaction with the beta-adrenoceptor-cAMP pathway: dependence on glucocorticoid receptor activation.

    Science.gov (United States)

    Roozendaal, Benno; Schelling, Gustav; McGaugh, James L

    2008-06-25

    Extensive evidence indicates that stress hormone effects on the consolidation of emotionally influenced memory involve noradrenergic activation of the basolateral complex of the amygdala (BLA). The present experiments examined whether corticotropin-releasing factor (CRF) modulates memory consolidation via an interaction with the beta-adrenoceptor-cAMP system in the BLA. In a first experiment, male Sprague Dawley rats received bilateral infusions of the CRF-binding protein ligand inhibitor CRF(6-33) into the BLA either alone or together with the CRF receptor antagonist alpha-helical CRF(9-41) immediately after inhibitory avoidance training. CRF(6-33) induced dose-dependent enhancement of 48 h retention latencies, which was blocked by coadministration of alpha-helical CRF(9-41), suggesting that CRF(6-33) enhances memory consolidation by displacing CRF from its binding protein, thereby increasing "free" endogenous CRF concentrations. In a second experiment, intra-BLA infusions of atenolol (beta-adrenoceptor antagonist) and Rp-cAMPS (cAMP inhibitor), but not prazosin (alpha(1)-adrenoceptor antagonist), blocked CRF(6-33)-induced retention enhancement. In a third experiment, the CRF receptor antagonist alpha-helical CRF(9-41) administered into the BLA immediately after training attenuated the dose-response effects of concurrent intra-BLA infusions of clenbuterol (beta-adrenoceptor agonist). In contrast, alpha-helical CRF(9-41) did not alter retention enhancement induced by posttraining intra-BLA infusions of either cirazoline (alpha(1)-adrenoceptor agonist) or 8-br-cAMP (cAMP analog). These findings suggest that CRF facilitates the memory-modulatory effects of noradrenergic stimulation in the BLA via an interaction with the beta-adrenoceptor-cAMP cascade, at a locus between the membrane-bound beta-adrenoceptor and the intracellular cAMP formation site. Moreover, consistent with evidence that glucocorticoids enhance memory consolidation via a similar interaction with the

  20. Blockade of intracellular Zn2+ signaling in the basolateral amygdala affects object recognition memory via attenuation of dentate gyrus LTP.

    Science.gov (United States)

    Fujise, Yuki; Kubota, Mitsuyasu; Suzuki, Miki; Tamano, Haruna; Takeda, Atsushi

    2017-09-01

    Hippocampus-dependent memory is modulated by the amygdala. However, it is unknown whether intracellular Zn 2+ signaling in the amygdala is involved in hippocampus-dependent memory. On the basis of the evidence that intracellular Zn 2+ signaling in dentate granule cells (DGC) is necessary for object recognition memory via LTP at medial perforant pathway (PP)-DGC synapses, the present study examined whether intracellular Zn 2+ signaling in the amygdala influences object recognition memory via modulation of LTP at medial PP-DGC synapses. When ZnAF-2DA (100 μM, 2 μl) was injected into the basolateral amygdala (BLA), intracellular ZnAF-2 locally chelated intracellular Zn 2+ in the amygdala. Recognition memory was affected when training of object recognition test was performed 20 min after ZnAF-2DA injection into the BLA. Twenty minutes after injection of ZnAF-2DA into the BLA, LTP induction at medial PP-DGC synapses was attenuated, while LTP induction at PP-BLA synapses was potentiated and LTP induction at BLA-DGC synapses was attenuated. These results suggest that intracellular Zn 2+ signaling in the BLA is involved in BLA-associated LTP and modulates LTP at medial PP-DGC synapses, followed by modulation of object recognition memory. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Identification of a dopamine receptor-mediated opiate reward memory switch in the basolateral amygdala-nucleus accumbens circuit.

    Science.gov (United States)

    Lintas, Alessandra; Chi, Ning; Lauzon, Nicole M; Bishop, Stephanie F; Gholizadeh, Shervin; Sun, Ninglei; Tan, Huibing; Laviolette, Steven R

    2011-08-03

    The basolateral amygdala (BLA), ventral tegmental area (VTA), and nucleus accumbens (NAc) play central roles in the processing of opiate-related associative reward learning and memory. The BLA receives innervation from dopaminergic fibers originating in the VTA, and both dopamine (DA) D1 and D2 receptors are expressed in this region. Using a combination of in vivo single-unit extracellular recording in the NAc combined with behavioral pharmacology studies, we have identified a double dissociation in the functional roles of DA D1 versus D2 receptor transmission in the BLA, which depends on opiate exposure state; thus, in previously opiate-naive rats, blockade of intra-BLA D1, but not D2, receptor transmission blocked the acquisition of associative opiate reward memory, measured in an unbiased conditioned place preference procedure. In direct contrast, in rats made opiate dependent and conditioned in a state of withdrawal, intra-BLA D2, but not D1, receptor blockade blocked opiate reward encoding. This functional switch was dependent on cAMP signaling as comodulation of intra-BLA cAMP levels reversed or replicated the functional effects of intra-BLA D1 or D2 transmission during opiate reward processing. Single-unit in vivo extracellular recordings performed in neurons of the NAc confirmed an opiate-state-dependent role for BLA D1/D2 transmission in NAc neuronal response patterns to morphine. Our results characterize and identify a novel opiate addiction switching mechanism directly in the BLA that can control the processing of opiate reward information as a direct function of opiate exposure state via D1 or D2 receptor signaling substrates.

  2. Administration of riluzole into the basolateral amygdala has an anxiolytic-like effect and enhances recognition memory in the rat.

    Science.gov (United States)

    Sugiyama, Azusa; Saitoh, Akiyoshi; Yamada, Misa; Oka, Jun-Ichiro; Yamada, Mitsuhiko

    2017-06-01

    It is widely thought that inactivation of the glutamatergic system impairs recognition memory in rodents. However, we previously demonstrated that systemic administration of riluzole, which blocks the glutamatergic system, enhances recognition memory in the rat novel object recognition (NOR) test. The mechanisms underlying this paradoxical effect of riluzole on recognition memory remain unclear. In the present study, adult male Wistar rats were bilaterally cannulated in the basolateral amygdala (BLA) to examine the effects of intra-BLA administration of riluzole. We also compared the effects of riluzole with those of d-cycloserine, a partial agonist at the glycine binding site on the N-methyl-d-aspartate (NMDA) receptor. The BLA plays a critical role not only in recognition memory, but also in the regulation of anxiety. In the present study, intra-BLA administration of riluzole or d-cycloserine enhanced recognition memory in the NOR test. It was previously suggested that recognition memory can be strongly affected by the state of anxiety in rodents. Interestingly, intra-BLA administration of riluzole, but not d-cycloserine, produced a potent anxiolytic-like effect in the elevated plus-maze test. Thus, the enhancement of recognition memory by riluzole might be an indirect effect resulting from the anxiolytic-like action of the intra-BLA administration of the drug, and may not be directly related to inhibition of the glutamatergic system. Further studies are needed to clarify the mechanisms underlying the memory enhancing effect of riluzole. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Inhibition of basolateral branchial Na{sup +}/K{sup +}-ATPase may be the key mechanism for silver toxicity in fish

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, E.; Hogstrand, C. [Univ. of Kentucky, Lexington, KY (United States). T.H. Morgan School of Biological Science

    1995-12-31

    Recent studies of freshwater fish have indicated that the mechanism of silver toxicity may lie in the ability of the metal to compromise bronchial transport of Na{sup +} and Cl (Wood et al, 1994). As part of a study, investigating the physiological mechanisms of silver toxicity to marine fish, the effect of Ag{sup +} on Na{sup +}/K{sup +}-ATPase in isolated basolateral membranes (BLM) from gills of sea-water acclimated rainbow trout was analyzed. Silver inhibition of purified dog kidney Na{sup +}/K{sup +}-ATPase was studied in a pilot experiment and the results from this experiment were compared to those obtained for rainbow trout BLMS. Michaelis-Menten kinetics of Na{sup +}/K{sup +}-ATPase activity was performed during control conditions by varying the concentrations of Na+ and K+ in the assay medium while keeping the total salt concentration constant. Inhibition of Na{sup +}/K{sup +}-ATPase activities was investigated by adding 1 nM--1 {micro}M of Ag{sup +} to the medium. Assay conditions were optimized separately for dog and rainbow trout Na{sup +}/K{sup +}-ATPase. Results from both series indicate effect of Ag{sup +} at a concentration as low as 1 nM escalating to complete quenching at a Ag{sup +} activity of 1 {micro}M. These results suggest the key mechanism of silver toxicity in marine fish involves blockage of the Na{sup +}/K{sup +}-ATPase activity in the gill epithelium.

  4. CRF1 receptor activation increases the response of neurons in the basolateral nucleus of the amygdala to afferent stimulation

    Directory of Open Access Journals (Sweden)

    2008-07-01

    Full Text Available The basolateral nucleus (BLA of the amygdala contributes to the consolidation of memories for emotional or stressful events. The nucleus contains a high density of CRF1 receptors that are activated by corticotropin-releasing factor (CRF. Modulation of the excitability of neurons in the BLA by CRF may regulate the immediate response to stressful events and the formation of associated memories. In the present study, CRF was found to increase the amplitude of field potentials recorded in the BLA following excitatory afferent stimulation, in vitro. The increase was mediated by CRF1 receptors, since it could be blocked by the selective, non-peptide antagonists, NBI30775 and NBI35583, but not by the CRF2-selective antagonist, astressin 2B. Furthermore, the CRF2-selective agonist, urocortin II had no effect on field potential amplitude. The increase induced by CRF was long-lasting, could not be reversed by subsequent administration of NBI35583, and required the activation of protein kinase C. This effect of CRF in the BLA may be important for increasing the salience of aversive stimuli under stressful conditions, and for enhancing the consolidation of associated memories. The results provide further justification for studying the efficacy of selective antagonists of the CRF1 receptor to reduce memory formation linked to emotional or traumatic events, and suggest that these compounds might be useful as prophylactic treatment for stress-related illness such as post-traumatic stress disorder.

  5. PKMζ maintains drug reward and aversion memory in the basolateral amygdala and extinction memory in the infralimbic cortex.

    Science.gov (United States)

    He, Ying-Ying; Xue, Yan-Xue; Wang, Ji-Shi; Fang, Qin; Liu, Jian-Feng; Xue, Li-Fen; Lu, Lin

    2011-09-01

    The intense associative memories that develop between drug-paired contextual cues and rewarding stimuli or the drug withdrawal-associated aversive feeling have been suggested to contribute to the high rate of relapse. Various studies have elucidated the mechanisms underlying the formation and expression of drug-related cue memories, but how this mechanism is maintained is unknown. Protein kinase M ζ (PKMζ) was recently shown to be necessary and sufficient for long-term potentiation maintenance and memory storage. In the present study, we used conditioned place preference (CPP) and aversion (CPA) to examine whether PKMζ maintains both morphine-associated reward memory and morphine withdrawal-associated aversive memory in the basolateral amygdala (BLA). We also investigate the role of PKMζ in the infralimbic cortex in the extinction memory of morphine reward-related cues and morphine withdrawal-related aversive cues. We found that intra-BLA but not central nucleus of the amygdala injection of the selective PKMζ inhibitor ZIP 1 day after CPP and CPA training impaired the expression of CPP and CPA 1 day later, and the effect of ZIP on memory lasted at least 2 weeks. Inhibiting PKMζ activity in the infralimbic cortex, but not prelimbic cortex, disrupted the expression of the extinction memory of CPP and CPA. These results indicate that PKMζ in the BLA is required for the maintenance of associative morphine reward memory and morphine withdrawal-associated aversion memory, and PKMζ in the infralimbic cortex is required for the maintenance of extinction memory of morphine reward-related cues and morphine withdrawal-related aversive cues.

  6. Serotonin gating of cortical and thalamic glutamate inputs onto principal neurons of the basolateral amygdala.

    Science.gov (United States)

    Guo, Ji-Dong; O'Flaherty, Brendan M; Rainnie, Donald G

    2017-11-01

    The basolateral amygdala (BLA) is a key site for crossmodal association of sensory stimuli and an important relay in the neural circuitry of emotion. Indeed, the BLA receives substantial glutamatergic inputs from multiple brain regions including the prefrontal cortex and thalamic nuclei. Modulation of glutamatergic transmission in the BLA regulates stress- and anxiety-related behaviors. Serotonin (5-HT) also plays an important role in regulating stress-related behavior through activation of both pre- and postsynaptic 5-HT receptors. Multiple 5-HT receptors are expressed in the BLA, where 5-HT has been reported to modulate glutamatergic transmission. However, the 5-HT receptor subtype mediating this effect is not yet clear. The aim of this study was to use patch-clamp recordings from BLA neurons in an ex vivo slice preparation to examine 1) the effect of 5-HT on extrinsic sensory inputs, and 2) to determine if any pathway specificity exists in 5-HT regulation of glutamatergic transmission. Two independent input pathways into the BLA were stimulated: the external capsule to mimic cortical input, and the internal capsule to mimic thalamic input. Bath application of 5-HT reversibly reduced the amplitude of evoked excitatory postsynaptic currents (eEPSCs) induced by stimulation of both pathways. The decrease was associated with an increase in the paired-pulse ratio and coefficient of variation of eEPSC amplitude, suggesting 5-HT acts presynaptically. Moreover, the effect of 5-HT in both pathways was mimicked by the selective 5-HT 1B receptor agonist CP93129, but not by the 5-HT 1A receptor agonist 8-OH DPAT. Similarly the effect of exogenous 5-HT was blocked by the 5-HT 1B receptor antagonist GR55562, but not affected by the 5-HT 1A receptor antagonist WAY 100635 or the 5-HT 2 receptor antagonists pirenperone and MDL 100907. Together these data suggest 5-HT gates cortical and thalamic glutamatergic inputs into the BLA by activating presynaptic 5-HT 1B receptors

  7. Autoradiographic study of the efferent connections of the entorhinal cortex in the rat

    International Nuclear Information System (INIS)

    Wyss, J.M.

    1981-01-01

    The major findings can be summarized as follows. Whereas the projection of the lateral entorhinal area (LEA) to the dentate gyrus is broad in its longitudinal extent, the medial entorhinal area (MEA), and especially the ventral portion of this zone, projects in a more lamellar fashion. In the transverse plane the LEA preferentially projects to the inner (dorsal) blade of the dentate gyrus, while the MEA innervates both blades equally. Within the radial dimension, the entorhinal cortex projects to the dentate gyrus according to a medial to lateral gradient, with lateral portions of the LEA projecting along the pial surface and successively more medial portions of the entorhinal projecting closer to the granule cells. The commissural entorhinal to dentate projections are similar to the ipsilateral projections in location; however, they are considerably reduced in septotemporal extent and do not arise from cells in the ventral half of either LEA or the intermediate entorhinal area (IEA). The projection of the entorhinal cortex to Ammon's horn reflects the same longitudinal characteristics as the dentate projections. An alvear input which extends only to the pyramidal cells at the CA1-subicular junction was most noticeable at ventral hippocampal levels. The extrahippocampal projections arise predominantly from cells in the LEA and project forward along the angular bundle to the piriform and periamygdaloid cortices, as well as the endopiriform nucleus, the lateral, basolateral, and cortical amygdaloid nuclei, the nucleus of the lateral olfactory tract, the olfactory tubercle, the anterior olfactory nucleus, the taenia tecta, and the indusium griseum

  8. CaMKII Requirement for in Vivo Insular Cortex LTP Maintenance and CTA Memory Persistence

    Directory of Open Access Journals (Sweden)

    Yectivani Juárez-Muñoz

    2017-11-01

    Full Text Available Calcium-calmodulin/dependent protein kinase II (CaMKII plays an essential role in LTP induction, but since it has the capacity to remain persistently activated even after the decay of external stimuli it has been proposed that it can also be necessary for LTP maintenance and therefore for memory persistence. It has been shown that basolateral amygdaloid nucleus (Bla stimulation induces long-term potentiation (LTP in the insular cortex (IC, a neocortical region implicated in the acquisition and retention of conditioned taste aversion (CTA. Our previous studies have demonstrated that induction of LTP in the Bla-IC pathway before CTA training increased the retention of this task. Although it is known that IC-LTP induction and CTA consolidation share similar molecular mechanisms, little is known about the molecular actors that underlie their maintenance. The purpose of the present study was to evaluate the role of CaMKII in the maintenance of in vivo Bla-IC LTP as well as in the persistence of CTA long-term memory (LTM. Our results show that acute microinfusion of myr-CaMKIINtide, a selective inhibitor of CaMKII, in the IC of adult rats during the late-phase of in vivo Bla-IC LTP blocked its maintenance. Moreover, the intracortical inhibition of CaMKII 24 h after CTA acquisition impairs CTA-LTM persistence. Together these results indicate that CaMKII is a central key component for the maintenance of neocortical synaptic plasticity as well as for persistence of CTA-LTM.

  9. Preferential reduction of binding of 125I-iodopindolol to beta-1 adrenoceptors in the amygdala of rat after antidepressant treatments

    International Nuclear Information System (INIS)

    Ordway, G.A.; Gambarana, C.; Tejani-Butt, S.M.; Areso, P.; Hauptmann, M.; Frazer, A.

    1991-01-01

    This study utilized quantitative receptor autoradiography to examine the effects of repeated administration of antidepressants to rats on the binding of the beta adrenoceptor antagonist, 125 I-iodopindolol ( 125 I-IPIN) to either beta-1 or beta-2 adrenoceptors in various regions of brain. Antidepressants were selected to represent various chemical and pharmacological classes including tricyclic compounds (desipramine and protriptyline), monoamine oxidase inhibitors (clorgyline, phenelzine and tranylcypromine), atypical antidepressants (mianserin and trazodone) and selective inhibitors of the uptake of serotonin (citalopram and sertraline). Additionally, rats were treated with various psychotropic drugs that lack antidepressant efficacy (cocaine, deprenyl, diazepam and haloperidol). Repeated treatment of rats with desipramine, protriptyline, clorgyline, phenelzine, tranylcypromine or mianserin reduced the binding of 125 I-IPIN to beta-1 adrenoceptors in many brain areas. Only in the basolateral and lateral nuclei of the amygdala did all six of these antidepressants significantly reduce 125 I-IPIN binding to beta-1 adrenoceptors. In these amygdaloid nuclei, the magnitude of the reduction in the binding of 125 I-IPIN caused by each of these drugs was comparable to or greater than the reduction in binding produced in any other region of brain. Reductions of binding of 125 I-IPIN after antidepressant treatments were not consistently observed in the cortex, the area of brain examined most often in homogenate binding studies. Only the monoamine oxidase inhibitors caused reductions in the binding of 125 I-IPIN to beta-2 adrenoceptors, and this effect was generally localized to the amygdala and hypothalamus

  10. Human kidney anion exchanger 1 interacts with adaptor-related protein complex 1 μ1A (AP-1 mu1A)

    International Nuclear Information System (INIS)

    Sawasdee, Nunghathai; Junking, Mutita; Ngaojanlar, Piengpaga; Sukomon, Nattakan; Ungsupravate, Duangporn; Limjindaporn, Thawornchai; Akkarapatumwong, Varaporn; Noisakran, Sansanee; Yenchitsomanus, Pa-thai

    2010-01-01

    Research highlights: → Trafficking defect of kAE1 is a cause of dRTA but trafficking pathway of kAE1 has not been clearly described. → Adaptor-related protein complex 1 μ1A (AP-1 mu1A) was firstly reported to interact with kAE1. → The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXO motif. → AP-1 mu1A knockdown showed a marked reduction of kAE1 on the cell membrane and its accumulation in endoplasmic reticulum. → AP-1 mu1A has a critical role in kAE1 trafficking to the plasma membrane. -- Abstract: Kidney anion exchanger 1 (kAE1) mediates chloride (Cl - ) and bicarbonate (HCO 3 - ) exchange at the basolateral membrane of kidney α-intercalated cells. Impaired trafficking of kAE1 leads to defect of the Cl - /HCO 3 - exchange at the basolateral membrane and failure of proton (H + ) secretion at the apical membrane, causing a kidney disease - distal renal tubular acidosis (dRTA). To gain a better insight into kAE1 trafficking, we searched for proteins physically interacting with the C-terminal region of kAE1 (Ct-kAE1), which contains motifs crucial for intracellular trafficking, by a yeast two-hybrid (Y2H) system. An adaptor-related protein complex 1 μ1A (AP-1 mu1A) subunit was found to interact with Ct-kAE1. The interaction between either Ct-kAE1 or full-length kAE1 and AP-1 mu1A were confirmed in human embryonic kidney (HEK) 293T by co-immunoprecipitation, affinity co-purification, co-localization, yellow fluorescent protein (YFP)-based protein fragment complementation assay (PCA) and GST pull-down assay. The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXO motif. Interestingly, suppression of endogenous AP-1 mu1A in HEK 293T by small interfering RNA (siRNA) decreased membrane localization of kAE1 and increased its intracellular accumulation, suggesting for the first time that AP-1 mu1A is involved in the kAE1 trafficking of kidney α-intercalated cells.

  11. Human kidney anion exchanger 1 interacts with adaptor-related protein complex 1 {mu}1A (AP-1 mu1A)

    Energy Technology Data Exchange (ETDEWEB)

    Sawasdee, Nunghathai; Junking, Mutita [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Ngaojanlar, Piengpaga [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Department of Immunology and Graduate Program in Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Sukomon, Nattakan; Ungsupravate, Duangporn [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Limjindaporn, Thawornchai [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Akkarapatumwong, Varaporn [Institute of Molecular Biosciences, Mahidol University at Salaya Campus, Nakorn Pathom 73170 (Thailand); Noisakran, Sansanee [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Yenchitsomanus, Pa-thai, E-mail: grpye@mahidol.ac.th [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand)

    2010-10-08

    Research highlights: {yields} Trafficking defect of kAE1 is a cause of dRTA but trafficking pathway of kAE1 has not been clearly described. {yields} Adaptor-related protein complex 1 {mu}1A (AP-1 mu1A) was firstly reported to interact with kAE1. {yields} The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXO motif. {yields} AP-1 mu1A knockdown showed a marked reduction of kAE1 on the cell membrane and its accumulation in endoplasmic reticulum. {yields} AP-1 mu1A has a critical role in kAE1 trafficking to the plasma membrane. -- Abstract: Kidney anion exchanger 1 (kAE1) mediates chloride (Cl{sup -}) and bicarbonate (HCO{sub 3}{sup -}) exchange at the basolateral membrane of kidney {alpha}-intercalated cells. Impaired trafficking of kAE1 leads to defect of the Cl{sup -}/HCO{sub 3}{sup -} exchange at the basolateral membrane and failure of proton (H{sup +}) secretion at the apical membrane, causing a kidney disease - distal renal tubular acidosis (dRTA). To gain a better insight into kAE1 trafficking, we searched for proteins physically interacting with the C-terminal region of kAE1 (Ct-kAE1), which contains motifs crucial for intracellular trafficking, by a yeast two-hybrid (Y2H) system. An adaptor-related protein complex 1 {mu}1A (AP-1 mu1A) subunit was found to interact with Ct-kAE1. The interaction between either Ct-kAE1 or full-length kAE1 and AP-1 mu1A were confirmed in human embryonic kidney (HEK) 293T by co-immunoprecipitation, affinity co-purification, co-localization, yellow fluorescent protein (YFP)-based protein fragment complementation assay (PCA) and GST pull-down assay. The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXO motif. Interestingly, suppression of endogenous AP-1 mu1A in HEK 293T by small interfering RNA (siRNA) decreased membrane localization of kAE1 and increased its intracellular accumulation, suggesting for the first time that AP-1 mu1A is involved in the kAE1

  12. Reversible Inactivation of the Higher Order Auditory Cortex during Fear Memory Consolidation Prevents Memory-Related Activity in the Basolateral Amygdala during Remote Memory Retrieval.

    Science.gov (United States)

    Cambiaghi, Marco; Renna, Annamaria; Milano, Luisella; Sacchetti, Benedetto

    2017-01-01

    Recent findings have shown that the auditory cortex, and specifically the higher order Te2 area, is necessary for the consolidation of long-term fearful memories and that it interacts with the amygdala during the retrieval of long-term fearful memories. Here, we tested whether the reversible blockade of Te2 during memory consolidation may affect the activity changes occurring in the amygdala during the retrieval of fearful memories. To address this issue, we blocked Te2 in a reversible manner during memory consolidation processes. After 4 weeks, we assessed the activity of Te2 and individual nuclei of the amygdala during the retrieval of long-term memories. Rats in which Te2 was inactivated upon memory encoding showed a decreased freezing and failed to show Te2-to-basolateral amygdala (BLA) synchrony during memory retrieval. In addition, the expression of the immediate early gene zif268 in the lateral, basal and central amygdala nuclei did not show memory-related enhancement. As all sites were intact upon memory retrieval, we propose that the auditory cortex represents a key node in the consolidation of fear memories and it is essential for amygdala nuclei to support memory retrieval process.

  13. Inactivation of basolateral amygdala prevents chronic immobilization stress-induced memory impairment and associated changes in corticosterone levels.

    Science.gov (United States)

    Tripathi, Sunil Jamuna; Chakraborty, Suwarna; Srikumar, B N; Raju, T R; Shankaranarayana Rao, B S

    2017-07-01

    Chronic stress causes detrimental effects on various forms of learning and memory. The basolateral amygdala (BLA) not only plays a crucial role in mediating certain forms of memory, but also in the modulation of the effects of stress. Chronic immobilization stress (CIS) results in hypertrophy of the BLA, which is believed to be one of the underlying causes for stress' effects on learning. Thus, it is plausible that preventing the effects of CIS on amygdala would preclude its deleterious cognitive effects. Accordingly, in the first part, we evaluated the effect of excitotoxic lesion of the BLA on chronic stress-induced hippocampal-dependent spatial learning using a partially baited radial arm maze task. The BLA was ablated bilaterally using ibotenic acid prior to CIS. Chronically stressed rats showed impairment in spatial learning with decreased percentage correct choice and increased reference memory errors. Excitotoxic lesion of the BLA prevented the impairment in spatial learning and reference memory. In the retention test, lesion of the BLA was able to rescue the chronic stress-induced impairment. Interestingly, stress-induced enhanced plasma corticosterone levels were partially prevented by the lesion of BLA. These results motivated us to evaluate if the same effects can be observed with temporary inactivation of BLA, only during stress. We found that chronic stress-induced spatial learning deficits were also prevented by temporary inactivation of the BLA. Additionally, temporary inactivation of BLA partially precluded the stress-induced increase in plasma corticosterone levels. Thus, inactivation of BLA precludes stress-induced spatial learning deficits, and enhanced plasma corticosterone levels. It is speculated that BLA inactivation-induced reduction in corticosterone levels during stress, might be crucial in restoring spatial learning impairments. Our study provides evidence that amygdalar modulation during stress might be beneficial for strategic

  14. The Amygdala Is Not Necessary for Unconditioned Stimulus Inflation after Pavlovian Fear Conditioning in Rats

    Science.gov (United States)

    Rabinak, Christine A.; Orsini, Caitlin A.; Zimmerman, Joshua M.; Maren, Stephen

    2009-01-01

    The basolateral complex (BLA) and central nucleus (CEA) of the amygdala play critical roles in associative learning, including Pavlovian conditioning. However, the precise role for these structures in Pavlovian conditioning is not clear. Recent work in appetitive conditioning paradigms suggests that the amygdala, particularly the BLA, has an…

  15. β-Adrenoceptor Blockade in the Basolateral Amygdala, But Not the Medial Prefrontal Cortex, Rescues the Immediate Extinction Deficit.

    Science.gov (United States)

    Giustino, Thomas F; Seemann, Jocelyn R; Acca, Gillian M; Goode, Travis D; Fitzgerald, Paul J; Maren, Stephen

    2017-12-01

    Early psychological interventions, such as exposure therapy, rely on extinction learning to reduce the development of stress- and trauma-related disorders. However, recent research suggests that extinction often fails to reduce fear when administered soon after trauma. This immediate extinction deficit (IED) may be due to stress-induced dysregulation of neural circuits involved in extinction learning. We have shown that systemic β-adrenoceptor blockade with propranolol rescues the IED, but impairs delayed extinction. Here we sought to determine the neural locus of these effects. Rats underwent auditory fear conditioning and then received either immediate (30 min) or delayed (24 h) extinction training. We used bilateral intracranial infusions of propranolol into either the infralimbic division of the medial prefrontal cortex (mPFC) or the basolateral amygdala (BLA) to examine the effects of β-adrenoceptor blockade on immediate and delayed extinction learning. Interestingly, intra-BLA, but not intra-mPFC, propranolol rescued the IED; animals receiving intra-BLA propranolol prior to immediate extinction showed less spontaneous recovery of fear during extinction retrieval. Importantly, this was not due to impaired consolidation of the conditioning memory. In contrast, neither intra-BLA nor intra-mPFC propranolol affected delayed extinction learning. Overall, these data contribute to a growing literature suggesting dissociable roles for key nodes in the fear extinction circuit depending on the timing of extinction relative to conditioning. These data also suggest that heightened noradrenergic activity in the BLA underlies stress-induced extinction deficits. Propranolol may be a useful adjunct to behavioral therapeutic interventions in recently traumatized individuals who are at risk for developing trauma-related disorders.

  16. Basolateral amygdalar D2 receptor activation is required for the companions-exerted suppressive effect on the cocaine conditioning.

    Science.gov (United States)

    Tzeng, Wen-Yu; Cherng, Chian-Fang G; Yu, Lung; Wang, Ching-Yi

    2017-01-01

    The presence of companions renders decreases in cocaine-stimulated dopamine release in the nucleus accumbens and cocaine-induced conditioned place preference (CPP) magnitude. Limbic systems are widely believed to underlie the modulation of accumbal dopamine release and cocaine conditioning. Thus, this study aimed to assess whether intact basolateral nucleus of amygdala (BLA), dorsal hippocampus (DH), and dorsolateral striatum (DLS) is required for the companions-exerted suppressive effect on the cocaine-induced CPP. Three cage mates, serving as companions, were arranged to house with the experimental mice in the cocaine conditioning compartment throughout the cocaine conditioning sessions. Approximately 1week before the conditioning procedure, intracranial ibotenic acid infusions were done in an attempt to cause excitotoxic lesions targeting bilateral BLA, DH and DLS. Albeit their BLA, DH, and DLS lesions, the lesioned mice exhibited comparable cocaine-induced CPP magnitudes compared to the intact and sham lesion controls. Bilateral BLA, but not DH or DLS, lesions abolished the companions-exerted suppressive effect on the cocaine-induced CPP. Intact mice receiving intra-BLA infusion of raclopride, a selective D2 antagonist, 30min prior to the cocaine conditioning did not exhibit the companions-exerted suppressive effect on the cocaine-induced CPP. Intra-BLA infusion of Sch23390, a selective D1 antagonist, did not affect the companions-exerted suppressive effect on the CPP. These results, taken together, prompt us to conclude that the intactness of BLA is required for the companions-exerted suppressive effect on the cocaine-induced CPP. Importantly, activation of D2 receptor in the BLA is required for such suppressive effect on the CPP. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Interaction of basolateral amygdala, ventral hippocampus and medial prefrontal cortex regulates the consolidation and extinction of social fear.

    Science.gov (United States)

    Qi, Chu-Chu; Wang, Qing-Jun; Ma, Xue-Zhu; Chen, Hai-Chao; Gao, Li-Ping; Yin, Jie; Jing, Yu-Hong

    2018-03-19

    Following a social defeat, the balanced establishment and extinction of aversive information is a beneficial strategy for individual survival. Abnormal establishment or extinction is implicated in the development of mental disorders. This study investigated the time course of the establishment and extinction of aversive information from acute social defeat and the temporal responsiveness of the basolateral amygdala (BLA), ventral hippocampus (vHIP) and medial prefrontal cortex (mPFC) in this process. Mouse models of acute social defeat were established by using the resident-intruder paradigm. To evaluate the engram of social defeat, the intruder mice were placed into the novel context at designated time to test the social behavior. Furthermore, responses of BLA, vHIP and mPFC were investigated by analyzing the expression of immediate early genes, such as zif268, arc, and c-fos. The results showed after an aggressive attack, aversive memory was maintained for approximately 7 days before gradually diminishing. The establishment and maintenance of aversive stimulation were consistently accompanied by BLA activity. By contrast, vHIP and mPFC response was inhibited from this process. Additionally, injecting muscimol (Mus), a GABA receptor agonist, into the BLA alleviated the freezing behavior and social fear and avoidance. Simultaneously, Mus treatment decreased the zif268 and arc expression in BLA, but it increased their expression in vHIP. Our data support and extend earlier findings that implicate BLA, vHIP and mPFC in social defeat. The time courses of the establishment and extinction of social defeat are particularly consistent with the contrasting BLA and vHIP responses involved in this process.

  18. Dissociable effects of basolateral amygdala lesions on decision making biases in rats when loss or gain is emphasized.

    Science.gov (United States)

    Tremblay, Melanie; Cocker, Paul J; Hosking, Jay G; Zeeb, Fiona D; Rogers, Robert D; Winstanley, Catharine A

    2014-12-01

    Individuals switch from risk seeking to risk aversion when mathematically identical options are described in terms of loss versus gains, as exemplified in the reflection and framing effects. Determining the neurobiology underlying such cognitive biases could inform our understanding of decision making in health and disease. Although reports vary, data using human subjects have implicated the amygdala in such biases. Animal models enable more detailed investigation of neurobiological mechanisms. We therefore tested whether basolateral amygdala (BLA) lesions would affect risk preference for gains or losses in rats. Choices in both paradigms were always between options of equal expected value-a guaranteed outcome, or the 50:50 chance of double or nothing. In the loss-chasing task, most rats exhibited strong risk seeking preferences, gambling at the risk of incurring double the penalty, regardless of the size of the guaranteed loss. In the betting task, the majority of animals were equivocal in their choice, irrespective of bet size; however, a wager-sensitive subgroup progressively shifted away from the uncertain option as the bet size increased, which is reminiscent of risk aversion. BLA lesions increased preference for the smaller guaranteed loss in the loss-chasing task, without affecting choice on the betting task, which is indicative of reduced risk seeking for losses, but intact risk aversion for gains. These data support the hypothesis that the amygdala plays a more prominent role in choice biases related to losses. Given the importance of the amygdala in representing negative affect, the aversive emotional reaction to loss, rather than aberrant estimations of probability or loss magnitude, may underlie risk seeking for losses.

  19. Repeated homotypic stress elevates 2-arachidonoylglycerol levels and enhances short-term endocannabinoid signaling at inhibitory synapses in basolateral amygdala.

    Science.gov (United States)

    Patel, Sachin; Kingsley, Philip J; Mackie, Ken; Marnett, Lawrence J; Winder, Danny G

    2009-12-01

    Psychosocial stress is a risk factor for development and exacerbation of neuropsychiatric illness. Repeated stress causes biochemical adaptations in endocannabinoid (eCB) signaling that contribute to stress-response habituation, however, the synaptic correlates of these adaptations have not been examined. Here, we show that the synthetic enzyme for the eCB 2-arachidonoylglycerol (2-AG), diacylglycerol (DAG) lipase alpha, is heterogeneously expressed in the amygdala, and that levels of 2-AG and precursor DAGs are increased in the basolateral amygdala (BLA) after 10 days, but not 1 day, of restraint stress. In contrast, arachidonic acid was decreased after both 1 and 10 days of restraint stress. To examine the synaptic correlates of these alterations in 2-AG metabolism, we used whole-cell electrophysiology to determine the effects of restraint stress on depolarization-induced suppression of inhibition (DSI) in the BLA. A single restraint stress exposure did not alter DSI compared with control mice. However, after 10 days of restraint stress, DSI duration, but not magnitude, was significantly prolonged. Inhibition of 2-AG degradation with MAFP also prolonged DSI duration; the effects of repeated restraint stress and MAFP were mutually occlusive. These data indicate that exposure to repeated, but not acute, stress produces neuroadaptations that confer BLA neurons with an enhanced capacity to elevate 2-AG content and engage in 2-AG-mediated short-term retrograde synaptic signaling. We suggest stress-induced enhancement of eCB-mediated suppression of inhibitory transmission in the BLA could contribute to affective dysregulation associated with chronic stress.

  20. Prefrontal cortex or basolateral amygdala lesions blocked the stress-induced inversion of serial memory retrieval pattern in mice.

    Science.gov (United States)

    Chauveau, F; Piérard, C; Coutan, M; Drouet, I; Liscia, P; Béracochéa, D

    2008-09-01

    Previous data from our team have shown that pre-test stress in mice reversed the pattern of memory retrieval in a contextual serial spatial task (CSD; Celerier, A., Pierard, C., Rachbauer, D., Sarrieau, A., & Beracochea, D. (2004). Contextual and serial discriminations: A new learning paradigm to assess simultaneously the effects of acute stress on retrieval of flexible or stable information in mice. Learning and Memory, 11, 196-204). The present study is aimed at determining brain areas which might be critically involved in mediating the stress effect on memory retrieval in the CSD task. For that purpose, we studied hereby the effects of ibotenic acid lesions of either the prefrontal cortex (PFC) or the basolateral amygdala (BLA) in Stressed or Non-Stressed Balb/c mice on memory retrieval in the CSD task. In that task, mice learned two successive spatial discriminations (D1 and D2) within two different internal contexts in a four-hole board. The stressor (electric footshocks) was delivered 5 min before test, occurring 24 h after acquisition. During test, mice were relocated either on the floor of the first or of the second discrimination. Results showed that (i) spatial memory was substantial and remained unaffected both by lesions and stress; (ii) Non-Stressed controls as well as Non-Stressed or Stressed PFC and BLA-lesioned mice remembered accurately D1 but not D2; and (iii) in contrast, Stressed controls accurately remembered D2 but not D1. In parallel to behavioral experiments, we also showed that PFC and BLA lesions did not affect the stress-induced increase of plasma corticosterone levels. All together, PFC and BLA integrity are not necessary for retrieval processes per se; in contrast, the PFC and BLA are critically involved in the mediation of the deleterious stress effects on serial order memory retrieval.

  1. Biological alterations of rat podocytes cultured under basolateral hydrostatic pressure

    NARCIS (Netherlands)

    Coers, W.; Vos, J. T.; Huitema, S.; Dijk, F.; Weening, J. J.

    1996-01-01

    In vivo, glomerular visceral epithelial cells (GVEC), or podocytes, are morphologically highly differentiated cells which are in close contact with adjacent cells by complex interdigitating foot processes. In vitro, the dedifferentiated appearance of podocytes hampers investigations on podocyte

  2. Mutations in ap1b1 cause mistargeting of the Na(+/K(+-ATPase pump in sensory hair cells.

    Directory of Open Access Journals (Sweden)

    Rachel Clemens Grisham

    Full Text Available The hair cells of the inner ear are polarized epithelial cells with a specialized structure at the apical surface, the mechanosensitive hair bundle. Mechanotransduction occurs within the hair bundle, whereas synaptic transmission takes place at the basolateral membrane. The molecular basis of the development and maintenance of the apical and basal compartments in sensory hair cells is poorly understood. Here we describe auditory/vestibular mutants isolated from forward genetic screens in zebrafish with lesions in the adaptor protein 1 beta subunit 1 (ap1b1 gene. Ap1b1 is a subunit of the adaptor complex AP-1, which has been implicated in the targeting of basolateral membrane proteins. In ap1b1 mutants we observed that although the overall development of the inner ear and lateral-line organ appeared normal, the sensory epithelium showed progressive signs of degeneration. Mechanically-evoked calcium transients were reduced in mutant hair cells, indicating that mechanotransduction was also compromised. To gain insight into the cellular and molecular defects in ap1b1 mutants, we examined the localization of basolateral membrane proteins in hair cells. We observed that the Na(+/K(+-ATPase pump (NKA was less abundant in the basolateral membrane and was mislocalized to apical bundles in ap1b1 mutant hair cells. Accordingly, intracellular Na(+ levels were increased in ap1b1 mutant hair cells. Our results suggest that Ap1b1 is essential for maintaining integrity and ion homeostasis in hair cells.

  3. Activation of the basolateral amygdala induces long-term enhancement of specific memory representations in the cerebral cortex.

    Science.gov (United States)

    Chavez, Candice M; McGaugh, James L; Weinberger, Norman M

    2013-03-01

    The basolateral amygdala (BLA) modulates memory, particularly for arousing or emotional events, during post-training periods of consolidation. It strengthens memories whose substrates in part or whole are stored remotely, in structures such as the hippocampus, striatum and cerebral cortex. However, the mechanisms by which the BLA influences distant memory traces are unknown, largely because of the need for identifiable target mnemonic representations. Associative tuning plasticity in the primary auditory cortex (A1) constitutes a well-characterized candidate specific memory substrate that is ubiquitous across species, tasks and motivational states. When tone predicts reinforcement, the tuning of cells in A1 shifts toward or to the signal frequency within its tonotopic map, producing an over-representation of behaviorally important sounds. Tuning shifts have the cardinal attributes of forms of memory, including associativity, specificity, rapid induction, consolidation and long-term retention and are therefore likely memory representations. We hypothesized that the BLA strengthens memories by increasing their cortical representations. We recorded multiple unit activity from A1 of rats that received a single discrimination training session in which two tones (2.0 s) separated by 1.25 octaves were either paired with brief electrical stimulation (400 ms) of the BLA (CS+) or not (CS-). Frequency response areas generated by presenting a matrix of test tones (0.5-53.82 kHz, 0-70 dB) were obtained before training and daily for 3 weeks post-training. Tuning both at threshold and above threshold shifted predominantly toward the CS+ beginning on day 1. Tuning shifts were maintained for the entire 3 weeks. Absolute threshold and bandwidth decreased, producing less enduring increases in sensitivity and selectivity. BLA-induced tuning shifts were associative, highly specific and long-lasting. We propose that the BLA strengthens memory for important experiences by increasing the

  4. Differential role of Rac in the basolateral amygdala and cornu ammonis 1 in the reconsolidation of auditory and contextual Pavlovian fear memory in rats.

    Science.gov (United States)

    Wu, Ping; Ding, Zeng-Bo; Meng, Shi-Qiu; Shen, Hao-Wei; Sun, Shi-Chao; Luo, Yi-Xiao; Liu, Jian-Feng; Lu, Lin; Zhu, Wei-Li; Shi, Jie

    2014-08-01

    A conditioned stimulus (CS) is associated with a fearful unconditioned stimulus (US) in the traditional fear conditioning model. After fear conditioning, the CS-US association memory undergoes the consolidation process to become stable. Consolidated memory enters an unstable state after retrieval and requires the reconsolidation process to stabilize again. Evidence indicates the important role of Rac (Ras-related C3 botulinum toxin substrate) in the acquisition and extinction of fear memory. In the present study, we hypothesized that Rac in the amygdala is crucial for the reconsolidation of auditory and contextual Pavlovian fear memory. Auditory and contextual fear conditioning and microinjections of the Rac inhibitor NSC23766 were used to explore the role of Rac in the reconsolidation of auditory and contextual Pavlovian fear memory in rats. A microinjection of NSC23766 into the basolateral amygdala (BLA) but not central amygdala (CeA) or cornu ammonis 1 (CA1) immediately after memory retrieval disrupted the reconsolidation of auditory Pavlovian fear memory. A microinjection of NSC23766 into the CA1 but not BLA or CeA after memory retrieval disrupted the reconsolidation of contextual Pavlovian fear memory. Our experiments demonstrate that Rac in the BLA is crucial for the reconsolidation of auditory Pavlovian fear memory, whereas Rac in the CA1 is critical for the reconsolidation of contextual Pavlovian fear memory.

  5. Glucocorticoid receptors in the basolateral amygdala mediated the restraint stress-induced reinstatement of methamphetamine-seeking behaviors in rats.

    Science.gov (United States)

    Taslimi, Zahra; Sarihi, Abdolrahman; Haghparast, Abbas

    2018-04-21

    Methamphetamine (METH) addiction is a growing epidemic worldwide. It is a common psychiatric disease and stress has an important role in the drug seeking and relapse behaviors. The involvement of the basolateral amygdala (BLA) in effects of stress on the reward pathway has been discussed in several studies. In this study, we tried to find out the involvement of glucocorticoid receptors (GRs) in the BLA in stress-induced reinstatement of the extinguished METH-induced conditioned place preference (CPP) in rats. The CPP paradigm was done in eighty-one adult male Wistar rats weighing 220-250 g. The animals received a daily injection of methamphetamine (0.5 mg/kg), during the conditioning phase. In extinction phase, the rats were put in the CPP box for 30 min per day for 8 days. After the extinction, the animals were exposed to acute restraint stress (ARS), 3 h before subcutaneous administration of sub-threshold dose of methamphetamine (0.125 mg/kg), based on our previous study, in reinstatement phase. In separated groups, the rats were exposed to chronic restraint stress (CRS) for 1 h each day during the extinction phase. To block the GRs in BLA, the animals unilaterally received RU38486 as GRs antagonist (10, 30 and 90 ng/0.3 μl DMSO) in all ARS groups on reinstatement day. In separated experiments, RU38486 (3, 10 and 30 ng/0.3 μl DMSO) was microinjected into the BLA in CRS groups prior to exposure to stress every day in extinction phase. The results revealed that intra-BLA RU38486 in ARS (90 ng) and CRS (10 and 30 ng) groups significantly prevented the stress-induced reinstatement. It can be proposed that stress partially exerts its effect on the reward pathway via GRs in the BLA. This effect was not quite similar in acute and chronic stress conditions. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Region-specific role of Rac in nucleus accumbens core and basolateral amygdala in consolidation and reconsolidation of cocaine-associated cue memory in rats.

    Science.gov (United States)

    Ding, Zeng-Bo; Wu, Ping; Luo, Yi-Xiao; Shi, Hai-Shui; Shen, Hao-Wei; Wang, Shen-Jun; Lu, Lin

    2013-08-01

    Drug reinforcement and the reinstatement of drug seeking are associated with the pathological processing of drug-associated cue memories that can be disrupted by manipulating memory consolidation and reconsolidation. Ras-related C3 botulinum toxin substrate (Rac) is involved in memory processing by regulating actin dynamics and neural structure plasticity. The nucleus accumbens (NAc) and amygdala have been implicated in the consolidation and reconsolidation of emotional memories. Therefore, we hypothesized that Rac in the NAc and amygdala plays a role in the consolidation and reconsolidation of cocaine-associated cue memory. Conditioned place preference (CPP) and microinjection of Rac inhibitor NSC23766 were used to determine the role of Rac in the NAc and amygdala in the consolidation and reconsolidation of cocaine-associated cue memory in rats. Microinjections of NSC23766 into the NAc core but not shell, basolateral (BLA), or central amygdala (CeA) after each cocaine-conditioning session inhibited the consolidation of cocaine-induced CPP. A microinjection of NSC23766 into the BLA but not CeA, NAc core, or NAc shell immediately after memory reactivation induced by exposure to a previously cocaine-paired context disrupted the reconsolidation of cocaine-induced CPP. The effect of memory disruption on cocaine reconsolidation was specific to reactivated memory, persisted at least 2 weeks, and was not reinstated by a cocaine-priming injection. Our findings indicate that Rac in the NAc core and BLA are required for the consolidation and reconsolidation of cocaine-associated cue memory, respectively.

  7. Accretionary Tectonics of Rock Complexes in the Western Margin of the Siberian Craton

    Science.gov (United States)

    Likhanov, I. I.; Nozhkin, A. D.; Savko, K. A.

    2018-01-01

    The geological, geochemical, and isotope-geochronological evidence of the events at the final stage of the Neoproterozoic history of the Yenisei Range is considered (beginning from the formation of fragments of the oceanic crust in the region and their accretion to the Siberian Craton until the postaccretionary stage of crustal tension and onset of the Caledonian orogeny). Based on an analysis of new data on the petrogeochemical composition, age, and geodynamic nature of the formation of contrasting rocks in the composition of tectonic mélange of the Near-Yenisei (Prieniseiskaya) regional shear zone, we have found the chronological sequence of events that marks the early stages of the Paleoasian Ocean evolution in the zone of its junction with the Siberian Craton. These events are documented by the continental marginal, ophiolitic, and island-arc geological complexes, each of which has different geochemical features. The most ancient structures are represented by fragments of oceanic crust and island arcs from the Isakovka terrane (700-620 Ma). The age of glaucophane-schist metamorphic units that formed in the paleosubduction zone corresponds to the time interval of 640-620 Ma. The formation of high-pressure tectonites in the suture zone, about 600 Ma in age, marks the finishing stage of accretion of the Isakovka block to the western margin of the Siberian Craton. The final events in the early history of the Asian Paleoocean were related to the formation of Late Vendian riftogenic amygdaloidal basalts (572 ± 6.5 Ma) and intrusion of postcollisional leucogranites of the Osinovka massif (550-540 Ma), which intruded earlier fragments of the oceanic crust in the Isakovka terrane. These data allow us to refine the Late Precambrian stratigraphic scheme in the northwestern Trans-Angarian part of the Yenisei Range and the evolutionary features of the Sayan-Yenisei accretionary belt. The revealed Late Neoproterozoic landmarks of the evolution of the Isakovka terrane are

  8. Vomeronasal inputs to the rodent ventral striatum.

    Science.gov (United States)

    Ubeda-Bañon, I; Novejarque, A; Mohedano-Moriano, A; Pro-Sistiaga, P; Insausti, R; Martinez-Garcia, F; Lanuza, E; Martinez-Marcos, A

    2008-03-18

    Vertebrates sense chemical signals through the olfactory and vomeronasal systems. In squamate reptiles, which possess the largest vomeronasal system of all vertebrates, the accessory olfactory bulb projects to the nucleus sphericus, which in turn projects to a portion of the ventral striatum known as olfactostriatum. Characteristically, the olfactostriatum is innervated by neuropeptide Y, tyrosine hydroxylase and serotonin immunoreactive fibers. In this study, the possibility that a structure similar to the reptilian olfactostriatum might be present in the mammalian brain has been investigated. Injections of dextran-amines have been aimed at the posteromedial cortical amygdaloid nucleus (the putative mammalian homologue of the reptilian nucleus sphericus) of rats and mice. The resulting anterograde labeling includes the olfactory tubercle, the islands of Calleja and sparse terminal fields in the shell of the nucleus accumbens and ventral pallidum. This projection has been confirmed by injections of retrograde tracers into the ventral striato-pallidum that render retrograde labeling in the posteromedial cortical amygdaloid nucleus. The analysis of the distribution of neuropeptide Y, tyrosine hydroxylase, serotonin and substance P in the ventral striato-pallidum of rats, and the anterograde tracing of the vomeronasal amygdaloid input in the same material confirm that, similar to reptiles, the ventral striatum of mammals includes a specialized vomeronasal structure (olfactory tubercle and islands of Calleja) displaying dense neuropeptide Y-, tyrosine hydroxylase- and serotonin-immunoreactive innervations. The possibility that parts of the accumbens shell and/or ventral pallidum could be included in the mammalian olfactostriatum cannot be discarded.

  9. Hydrogeological Studies of Mendhwan Watershed, Ahmadnagar District, Maharashtra, India

    Science.gov (United States)

    Muley, R. B.; Babar, Md.; Kulkarni, P. S.

    2011-07-01

    The Mendhwan watershed area is a part of chronic drought prone region of Ahmadnagar district of Maharashtra state, India which is considered for the study with reference to hydrogeological characteristics in Deccan basaltic terrain. In order to enhance groundwater availability and to demarcate the area of high groundwater potential, Geoforum, Parbhani Chapter has carried out hydrological investigation of this watershed area. Geologically, the study area belongs to the Deccan trap basalts of late Cretaceous to early Eocene period. The entire study area consists of thin irregular vesicular-amygdaloidal basalt flows also known as compound pahoehoe flows. The area is traversed by two prominent dykes, which are almost perpendicular to each other. In most of the southern part of the area, amygdaloidal basalt is exposed at the surface. The fresh amygdaloidal basalt flow is free from joints and occurs as homogeneous watertight mass. As dykes are jointed, they provide favorable conditions for percolation and ground water potential of this area is found to be satisfactory. It was observed that in Mendhwan area a large number of water conservation structures have been constructed across the streams. Incidentally groundwater potential shows notable increase only in those localities where the structures had been constructed on the dyke rock. The result of the study is found to be very much beneficial to the rural populace of this draught prone area so as to plan the optimum utilization of this precious natural resource.

  10. High-resolution magnetic resonance imaging reveals nuclei of the human amygdala: manual segmentation to automatic atlas

    DEFF Research Database (Denmark)

    Saygin, Z M; Kliemann, D; Iglesias, J. E.

    2017-01-01

    The amygdala is composed of multiple nuclei with unique functions and connections in the limbic system and to the rest of the brain. However, standard in vivo neuroimaging tools to automatically delineate the amygdala into its multiple nuclei are still rare. By scanning postmortem specimens at high...... resolution (100-150µm) at 7T field strength (n = 10), we were able to visualize and label nine amygdala nuclei (anterior amygdaloid, cortico-amygdaloid transition area; basal, lateral, accessory basal, central, cortical medial, paralaminar nuclei). We created an atlas from these labels using a recently...... developed atlas building algorithm based on Bayesian inference. This atlas, which will be released as part of FreeSurfer, can be used to automatically segment nine amygdala nuclei from a standard resolution structural MR image. We applied this atlas to two publicly available datasets (ADNI and ABIDE...

  11. Early Adolescent MK-801 Exposure Impairs the Maturation of Ventral Hippocampal Control of Basolateral Amygdala Drive in the Adult Prefrontal Cortex

    Science.gov (United States)

    Thomases, Daniel R.; Cass, Daryn K.; Meyer, Jacqueline D.; Caballero, Adriana

    2014-01-01

    The adolescent susceptibility to the onset of psychiatric disorders is only beginning to be understood when factoring in the development of the prefrontal cortex (PFC). The functional maturation of the PFC is dependent upon proper integration of glutamatergic inputs from the ventral hippocampus (vHipp) and the basolateral amygdala (BLA). Here we assessed how transient NMDAR blockade during adolescence alters the functional interaction of vHipp–BLA inputs in regulating PFC plasticity. Local field potential recordings were used to determine changes in long-term depression (LTD) and long-term potentiation (LTP) of PFC responses resulting from vHipp and BLA high-frequency stimulation in adult rats that received repeated injections of saline or the NMDAR antagonist MK-801 from postnatal day 35 (P35) to P40. We found that early adolescent MK-801 exposure elicited an age- and input-specific dysregulation of vHipp–PFC plasticity, characterized by a shift from LTD to LTP without altering the BLA-induced LTP. Data also showed that the vHipp normally resets the LTP state of BLA transmission; however, this inhibitory regulation is absent following early adolescent MK-801 treatment. This deficit was reminiscent of PFC responses seen in drug-naive juveniles. Notably, local prefrontal upregulation of GABAAα1 function completely restored vHipp functionality and its regulation of BLA plasticity in MK-801-treated rats. Thus, NMDAR signaling is critical for the periadolescent acquisition of a GABA-dependent hippocampal control of PFC plasticity, which enables the inhibitory control of the prefrontal output by the vHipp. A dysregulation of this pathway can alter PFC processing of other converging afferents such as those from the BLA. PMID:24990926

  12. Time-dependent involvement of the dorsal hippocampus in trace fear conditioning in mice

    NARCIS (Netherlands)

    Misane, I.; Tovote, P.; Meyer, M.; Spiess, J.; Ögren, S.O.; Stiedl, O.

    2005-01-01

    Hippocampal and amygdaloid neuroplasticity are important substrates for Pavlovian fear conditioning. The hippocampus has been implicated in trace fear conditioning. However, a systematic investigation of the significance of the trace interval has not yet been performed. Therefore, this study

  13. The basolateral amygdala determines the effects of fear memory on sleep in an animal model of PTSD.

    Science.gov (United States)

    Wellman, Laurie L; Fitzpatrick, Mairen E; Machida, Mayumi; Sanford, Larry D

    2014-05-01

    Fear conditioning [inescapable shock training (ST)] and fearful context re-exposure (CR) alone can produce significant fear indicated by increased freezing and reductions in subsequent rapid eye movement (REM) sleep. Damage to or inactivation of the basolateral nucleus of the amygdala (BLA) prior to or after ST or prior to CR generally has been found to attenuate freezing in the shock training context. However, no one has examined the impact of BLA inactivation on fear-induced changes in sleep. Here, we used the GABAA agonist, muscimol (MUS), to inactivate BLA prior to ST, the period when fear is learned, and assessed sleep after ST and sleep and freezing after two CR sessions. Wistar rats (n = 14) were implanted with electrodes for recording sleep and with cannulae aimed bilaterally into BLA. After recovery, the animals were habituated to the injection procedure (handling) over 2 consecutive days and baseline sleep following handling was recorded. On experimental day 1, the rats were injected (0.5 μl) into BLA with either MUS (1.0 μM; n = 7) or vehicle (distilled water, n = 7) 30 min prior to ST (20 footshocks, 0.8 mA, 0.5-s duration, 60-s interstimulus interval). On experimental days 7 and 21, the animals experienced CR (CR1 and CR2, respectively) alone. Electroencephalogram and electromyogram were recorded for 8 h on each day, and the recording was scored for non-rapid eye movement sleep, REM sleep, and wakefulness. Freezing was examined during CR1 and CR2. MUS microinjections into BLA prior to ST blocked the post-training reduction in REM sleep seen in vehicle-treated rats. Furthermore, in MUS-treated rats, REM sleep after CR1 and CR2 was at baseline levels and freezing was significantly attenuated. Thus, BLA inactivation prior to ST blocks the effects of footshock stress on sleep and reduces fear memory, as indicated by the lack of freezing and changes in sleep after CR. These data indicate that BLA is an important regulator of stress-induced alterations in

  14. Reduced integrity of the uncinate fasciculus and cingulum in depression: A stem-by-stem analysis.

    Science.gov (United States)

    Bhatia, Kartik D; Henderson, Luke A; Hsu, Eugene; Yim, Mark

    2018-04-07

    The subgenual cingulate gyrus (Brodmann's Area 25: BA25) is hypermetabolic in depression and has been targeted successfully with deep brain stimulation. Two of the white matter tracts that play a role in treatment response are the uncinate fasciculus (UF) and the cingulum bundle. The UF has three prefrontal stems, the most medial of which extends from BA25 (which deals with mood regulation) and the most lateral of which extends from the dorso-lateral prefrontal cortex (concerned with executive function). The cingulum bundle has numerous fibers connecting the lobes of the cerebrum, with the longest fibers extending from BA25 to the amygdala. We hypothesize that there is reduced integrity in the UF, specific to the medial prefrontal stems, as well as in the subgenual and amygdaloid fibers of the cingulum bundle. Our secondary hypothesis is that these changes are present from the early stages of depression. Compare the white matter integrity of stems of the UF and components of the cingulum bundle in first-onset depressed, recurrent/chronic depressed, and non-depressed control subjects. Depressed patients (n = 103, first-onset = 57, chronic = 46) and non-depressed control subjects (n = 74) underwent MRI with 32-directional DTI sequences. The uncinate fasciculi and cingulum bundles were seeded, and the fractional anisotropy (FA) measured in each of the three prefrontal stems and the body of the UF, as well as the subgenual, body, and amygdaloid fiber components of the cingulum bundle. FA measurements were compared between groups using ANOVA testing with post-hoc Tukey analysis. There were significant reductions in FA in the subgenual and polar stems of the UF bilaterally, as well as the subgenual and amygdaloid fibers of the cingulum bundle, in depressed patients compared with controls (p lateral UF stem or the main body of the cingulum. No significant difference was demonstrated in any of the tracts between first-onset and chronic depression patients

  15. Bidirectional modulation of taste aversion extinction by insular cortex LTP and LTD.

    Science.gov (United States)

    Rodríguez-Durán, Luis F; Martínez-Moreno, Araceli; Escobar, Martha L

    2017-07-01

    The history of activity of a given neuron has been proposed to bidirectionally influence its future response to synaptic inputs. In particular, induction of synaptic plasticity expressions such as long-term potentiation (LTP) and long-term depression (LTD) modifies the performance of several behavioral tasks. Our previous studies in the insular cortex (IC), a neocortical region that has been related to acquisition and retention of conditioned taste aversion (CTA), have demonstrated that induction of LTP in the basolateral amygdaloid nucleus (Bla)-IC pathway before CTA training enhances the retention of this task. In addition, we reported that CTA training triggers a persistent impairment in the ability to induce in vivo LTP in the IC. The aim of the present study was to investigate whether LTD can be induced in the Bla-IC projection in vivo, as well as, whether the extinction of CTA is bidirectionally modified by previous synaptic plasticity induction in this pathway. Thus, rats received 900 train pulses (five 250μs pulses at 250Hz) delivered at 1Hz in the Bla-IC projection in order to induce LTD or 10 trains of 100Hz/1s with an intertrain interval of 20s in order to induce LTP. Seven days after surgery, rats were trained in the CTA task including the extinction trials. Our results show that the Bla-IC pathway is able to express in vivo LTD in an N-Methyl-D-aspartate (NMDA) receptor-dependent manner. Induction of LTD in the Bla-IC projection previous to CTA training facilitates the extinction of this task. Conversely, LTP induction enhances CTA retention. The present results show the bidirectional modulation of CTA extinction in response to IC-LTP and LTD, providing evidence of the homeostatic adaptation of taste learning. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. NMDA receptor activation and PKC but not PKA lead to the modification of the long-term potentiation in the insular cortex induced by conditioned taste aversion: differential role of kinases in metaplasticity.

    Science.gov (United States)

    Rodríguez-Durán, Luis F; Escobar, Martha L

    2014-06-01

    It has been reported that training in behavioral tasks modifies the ability to induce long-term potentiation (LTP) in an N-methyl-D-aspartate receptor (NMDAR)-dependent manner. This receptor leads to calcium entry into neuronal cells, promoting the activation of protein kinases as protein kinase A (PKA) and protein kinase C (PKC), which contribute significantly to the formation of different types of memories and play a pivotal role in the expression of LTP. Our previous studies involving the insular cortex (IC) have demonstrated that induction of LTP in the basolateral amygdaloid nucleus (BLA)-IC projection prior to conditioned taste aversion (CTA) training enhances the retention of this task. Recently, we showed that CTA training triggers a persistent impairment in the ability to induce subsequent synaptic plasticity on the BLA-IC pathway in a protein synthesis-dependent manner, but the underlying molecular mechanisms remain unclear. In the present study we investigated whether the blockade of NMDAR, as well as the inhibition of PKC and PKA affects the CTA-dependent impairment of the IC-LTP. Thus, CTA-trained rats received high frequency stimulation in the Bla-IC projection in order to induce LTP 48 h after the aversion test. The NMDAR antagonist CPP and the specific inhibitors for PKC (chelerythrine) and PKA (KT-5720) were intracortically administered during the acquisition session. Our results show that the blockade of NMDAR and the inhibition of PKC activity prevent the CTA memory-formation as well as the IC-LTP impairment. Nevertheless, PKA inhibition prevents the memory formation of taste aversion but produces no interference with the CTA-dependent impairment of the IC-LTP. These findings reveal the differential roles of protein kinases on CTA-dependent modification of IC-LTP enhancing our understanding of the effects of memory-related changes on synaptic function. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. PKMζ inhibition prevents the metaplastic change induced by conditioned taste aversion on insular cortex long-term potentiation in vivo.

    Science.gov (United States)

    Ángeles-Durán, Sandybel; Ramos-Languren, Laura E; Escobar, Martha L

    2012-01-01

    The activity history of a given neuron or pathway has been suggested to influence its future responses to synaptic inputs. In particular, training in several learning tasks produces a metaplastic change, that is, a change in the ability to induce subsequent synaptic plasticity. Experimental evidence shows that the maintenance of long term memory and long-term potentiation (LTP) requires the persistent action of the atypical protein kinase Cisoform, protein kinase M ζ (PKM ζ ). Recent work has demonstrated that the inactivation of PKM ζ in the insular cortex (IC) abolishes conditioned taste aversion (CTA) long term memory. Our previous studies in the IC have demonstrated that the induction of LTP in the basolateral amygdaloid nucleus (Bla)-IC projection previous to CTA training enhances the retention of this task. Moreover, recently, we have observed that CTA training blocks the subsequent induction of LTP in the Bla-IC projection. The aim of the present study was to investigate the participation of PKM ζon the CTA-dependent modification of the ability to induce subsequent LTP in the Bla-IC projection in vivo . Thus, we have delivered high-frequency stimulation in the Bla-IC projection in order to induce in vivo IC-LTP in the rats that underwent or did not have an impairment of CTA retention due to the intracortical administration of the selective PKM ζ pseudosubstrate inhibitory peptide, ZIP. Our results show that the microinfusion of ZIP into the IC of the behaving rats impairs long-term memory of CTA and prevents its effects on IC-LTP. These results indicate that PKM ζ is a key component of the cellular mechanisms necessary for the persistence of lasting memory traces as well as for those underlying metaplastic changes in neocortex, contributing to the persistence of aversive memories.

  18. Conditioned taste aversion modifies persistently the subsequent induction of neocortical long-term potentiation in vivo.

    Science.gov (United States)

    Rodríguez-Durán, Luis F; Castillo, Diana V; Moguel-González, Minerva; Escobar, Martha L

    2011-05-01

    The ability of neurons to modify their synaptic strength in an activity-dependent manner has a crucial role in learning and memory processes. It has been proposed that homeostatic forms of plasticity might provide the global regulation necessary to maintain synaptic strength and plasticity within a functional dynamic range. Similarly, it is considered that the capacity of synapses to express plastic changes is itself subject to variation dependent on previous experience. In particular, training in several behavioral tasks modifies the possibility to induce long-term potentiation (LTP). Our previous studies in the insular cortex (IC) have shown that induction of LTP in the basolateral amygdaloid nucleus (Bla)-IC projection previous to conditioned taste aversion (CTA) training enhances the retention of this task. The aim of the present study was to analyze whether CTA training modifies the ability to induce subsequent LTP in the Bla-IC projection in vivo. Thus, CTA trained rats received high frequency stimulation in the Bla-IC projection in order to induce LTP 48, 72, 96 and 120 h after the aversion test. Our results show that CTA training prevents the subsequent induction of LTP in the Bla-IC projection, for at least 120 h after CTA training. We also showed that pharmacological inhibition of CTA consolidation with anisomycin (1 μl/side; 100 μg/μl) prevents the CTA effect on IC-LTP. These findings reveal that CTA training produces a persistent change in the ability to induce subsequent LTP in the Bla-IC projection in a protein-synthesis dependent manner, suggesting that changes in the ability to induce subsequent synaptic plasticity contribute to the formation and persistence of aversive memories. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Afferent and Efferent Connections of the Cortex-Amygdala Transition Zone in Mice.

    Science.gov (United States)

    Cádiz-Moretti, Bernardita; Abellán-Álvaro, María; Pardo-Bellver, Cecília; Martínez-García, Fernando; Lanuza, Enrique

    2016-01-01

    The transitional zone between the ventral part of the piriform cortex and the anterior cortical nucleus of the amygdala, named the cortex-amygdala transition zone (CxA), shows two differential features that allow its identification as a particular structure. First, it receives dense cholinergic and dopaminergic innervations as compared to the adjacent piriform cortex and amygdala, and second, it receives projections from the main and accessory olfactory bulbs. In this work we have studied the pattern of afferent and efferent projections of the CxA, which are mainly unknown, by using the retrograde tracer Fluorogold and the anterograde tracer biotinylated dextranamine. The results show that the CxA receives a relatively restricted set of intratelencephalic connections, originated mainly by the olfactory system and basal forebrain, with minor afferents from the amygdala. The only relevant extratelencephalic afference originates in the ventral tegmental area (VTA). The efferent projections of the CxA reciprocate the inputs from the piriform cortex and olfactory amygdala. In addition, the CxA projects densely to the basolateral amygdaloid nucleus and the olfactory tubercle. The extratelencephalic projections of the CxA are very scarce, and target mainly hypothalamic structures. The pattern of connections of the CxA suggests that it is indeed a transitional area between the piriform cortex and the cortical amygdala. Double labeling with choline acetyltransferase indicates that the afferent projection from the basal forebrain is the origin of its distinctive cholinergic innervation, and double labeling with dopamine transporter shows that the projection from the VTA is the source of dopaminergic innervation. These connectivity and neurochemical features, together with the fact that it receives vomeronasal in addition to olfactory information, suggest that the CxA may be involved in processing olfactory information endowed with relevant biological meaning, such as odors

  20. Intracellular mechanisms of cocaine-memory reconsolidation in the basolateral amygdala and dorsal hippocampus

    Science.gov (United States)

    Wells, Audrey Marie

    The ability of cocaine-associated environmental contexts to promote relapse in abstinent humans and reinstatement of cocaine-seeking behavior in laboratory animals depends on the formation and maintenance of maladaptive context-response-cocaine associative memories, the latter of which can be disrupted by manipulations that interfere with memory reconsolidation. Memory reconsolidation refers to a protein synthesis-dependent phenomenon whereby memory traces are reincorporated back into long-term memory storage following their retrieval and subsequent destabilization. To elucidate the distinctive roles of the basolateral amygdala (BLA) and dorsal hippocampus (DH) in the reconsolidation of context-response-cocaine memories, Experiments 1-3 evaluated novel molecular mechanisms within each structure that control this phenomenon. Experiment 1 tested the hypothesis that activation of the extracellular signal-regulated kinase (ERK) in the BLA and nucleus accumbens core (NACc - a substrate for Pavlovian cocaine-memory reconsolidation) would critically control instrumental cocaine-memory reconsolidation. To determine this, rats were re-exposed to a context that had previously been used for cocaine self-administration (i.e., cocaine memory-reactivation) and immediately thereafter received bilateral intra-BLA or intra-NACc microinfusions of the ERK inhibitor U0126 or vehicle (VEH) and were subsequently tested for drug context-induced cocaine-seeking behavior (non-reinforced lever responding) ~72 h later. Re-exposure to the cocaine-paired context at test fully reinstated cocaine-seeking behavior, relative to responding in an alternate, extinction context, and post-reactivation U0126 treatment in the BLA, but not the NACc, impaired cocaine-seeking behavior, relative to VEH. This effect was associated with a temporary increase in ERK2, but not ERK1, phosphorylation in the BLA and required explicit reactivation of the target memory trace (i.e., did not similarly manifest when U

  1. The basolateral amygdala can mediate the effects of fear memory on sleep independently of fear behavior and the peripheral stress response.

    Science.gov (United States)

    Wellman, Laurie L; Fitzpatrick, Mairen E; Hallum, Olga Y; Sutton, Amy M; Williams, Brook L; Sanford, Larry D

    2017-01-01

    Fear conditioning associated with inescapable shock training (ST) and fearful context re-exposure (CR) alone can produce significant behavioral fear, a stress response and alterations in subsequent REM sleep. These alterations may vary among animals and are mediated by the basolateral nucleus of the amygdala (BLA). Here, we used the GABA A agonist, muscimol (Mus), to inactivate BLA prior to CR and examined the effects on sleep, freezing and stress-induced hyperthermia (SIH). Wistar rats (n=28) were implanted with electrodes for recording sleep, data loggers for recording core body temperature, and with cannulae aimed bilaterally into BLA. After recovery, the animals were habituated to the injection procedure and baseline sleep was recorded. On experimental day 1, rats received ST (20 footshocks, 0.8mA, 0.5s duration, 60s interstimulus interval). On experimental day 7, the rats received microinjections (0.5μl) into BLA of either Mus (1.0μM; n=13) or vehicle (Veh; n=15) prior to CR (CR1). On experimental day 21, the animals experienced a second CR (CR2) without Mus. For analysis, the rats were separated into 4 groups: (Veh-vulnerable (Veh-Vul; n=8), Veh-resilient (Veh-Res; n=7), Mus-vulnerable (Mus-Vul; n=7), and Mus-resilient (Mus-Res; n=6)) based on whether or not REM was decreased, compared to baseline, during the first 4h following ST. Pre-CR1 inactivation of BLA did not alter freezing or SIH, but did block the reduction in REM in the Mus-Vul group compared to the Veh-Vul group. These data indicate that BLA is an important region for mediating the effects of fearful memories on sleep. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Distribution of IGF receptors in the plasma membrane of proximal tubular cells

    International Nuclear Information System (INIS)

    Hammerman, M.R.; Rogers, S.

    1987-01-01

    To characterize the distribution of receptors for insulin-like growth factors I and II (IGF I and II) in the plasma membrane of the renal proximal tubular cell, the authors measured binding of 125 I-labeled IGF I and 125 I-labeled IGF II to proximal tubular basolateral and brush-border membranes and characterized IGF I-stimulated phosphorylation of detergent-solubilized membranes. 125 I-IGF bound primarily to a 135,000 relative molecular weight (M r ) protein and IGF II to a 260,000 M r protein in isolated membranes. Binding of 125 I-IGF I was severalfold greater in basolateral than in brush-border membranes. IGF I-stimulated phosphorylation of the 92,000 M r β-subunit of its receptors could be demonstrated only in basolateral membranes. These findings are consistent with an asymmetrical distribution of receptors for IGF I in the plasma membrane of the renal proximal tubular cell, localization being primary on the basolateral side. In contrast, binding of 125 I-IGF II to isolated basolateral and brush-border membranes was equivalent, suggesting that receptors for this peptide are distributed more symmetrically in the plasma membrane. The findings suggest that the action of IGF I in proximal tubule are mediated via interaction of circulating peptide with specific receptors in the basolateral membrane. However, the findings established the potential for actions of IGF II to be exerted in proximal tubule via interaction with both basolateral and/or brush-border membrane receptors

  3. Facilitation of Contextual Fear Extinction by Orexin-1 Receptor Antagonism Is Associated with the Activation of Specific Amygdala Cell Subpopulations.

    Science.gov (United States)

    Flores, África; Herry, Cyril; Maldonado, Rafael; Berrendero, Fernando

    2017-08-01

    Orexins are hypothalamic neuropeptides recently involved in the regulation of emotional memory. The basolateral amygdala, an area orchestrating fear memory processes, appears to be modulated by orexin transmission during fear extinction. However, the neuronal types within the basolateral amygdala involved in this modulation remain to be elucidated. We used retrograde tracing combined with immunofluorescence techniques in mice to identify basolateral amygdala projection neurons and cell subpopulations in this brain region influenced by orexin transmission during contextual fear extinction consolidation. Treatment with the orexin-1 receptor antagonist SB334867 increased the activity of basolateral amygdala neurons projecting to infralimbic medial prefrontal cortex during fear extinction. GABAergic interneurons expressing calbindin, but not parvalbumin, were also activated by orexin-1 receptor antagonism in the basolateral amygdala. These data identify neuronal circuits and cell populations of the amygdala associated with the facilitation of fear extinction consolidation induced by the orexin-1 receptor antagonist SB334867. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  4. Impairment of decision making and disruption of synchrony between basolateral amygdala and anterior cingulate cortex in the maternally separated rat.

    Science.gov (United States)

    Cao, Bing; Wang, Jun; Zhang, Xu; Yang, Xiangwei; Poon, David Chun-Hei; Jelfs, Beth; Chan, Rosa H M; Wu, Justin Che-Yuen; Li, Ying

    2016-12-01

    There is considerable evidence to suggest early life experiences, such as maternal separation (MS), play a role in the prevalence of emotional dysregulation and cognitive impairment. At the same time, optimal decision making requires functional integrity between the amygdala and anterior cingulate cortex (ACC), and any dysfunction of this system is believed to induce decision-making deficits. However, the impact of MS on decision-making behavior and the underlying neurophysiological mechanisms have not been thoroughly studied. As such, we consider the impact of MS on the emotional and cognitive functions of rats by employing the open-field test, elevated plus-maze test, and rat gambling task (RGT). Using multi-channel recordings from freely behaving rats, we assessed the effects of MS on the large scale synchrony between the basolateral amygdala (BLA) and the ACC; while also characterizing the relationship between neural spiking activity and the ongoing oscillations in theta frequency band across the BLA and ACC. The results indicated that the MS rats demonstrated anxiety-like behavior. While the RGT showed a decrease in the percentage of good decision-makers, and an increase in the percentage of poor decision-makers. Electrophysiological data revealed an increase in the total power in the theta band of the LFP in the BLA and a decrease in theta power in the ACC in MS rats. MS was also found to disrupt the spike-field coherence of the ACC single unit spiking activity to the ongoing theta oscillations in the BLA and interrupt the synchrony in the BLA-ACC pathway. We provide specific evidence that MS leads to decision-making deficits that are accompanied by alteration of the theta band LFP in the BLA-ACC circuitries and disruption of the neural network integrity. These observations may help revise fundamental notions regarding neurophysiological biomarkers to treat cognitive impairment induced by early life stress. Copyright © 2016 Elsevier Inc. All rights

  5. c-Fos expression in the supraoptic nucleus is the most intense during different durations of restraint water-immersion stress in the rat.

    Science.gov (United States)

    Zhang, Yu-Yu; Zhu, Wen-Xing; Cao, Guo-Hong; Cui, Xi-Yun; Ai, Hong-Bin

    2009-09-01

    Restraint water-immersion stress (RWIS) can induce anxiety, hypothermia, and severe vagally-mediated gastric dysfunction. The present work explored the effects of different durations of RWIS on neuronal activities of the forebrain by c-Fos expression in conscious rats exposed to RWIS for 0, 30, 60, 120, or 180 min. The peak of c-Fos induction was distinct for different forebrain regions. The most intense c-Fos induction was always observed in the supraoptic nucleus (SON), and then in the hypothalamic paraventricular nucleus (PVN), posterior cortical amygdaloid nucleus (PCoA), central amygdaloid nucleus (CeA), and medial prefrontal cortex (mPFC). Moreover, body temperature was reduced to the lowest degree after 60 min of RWIS, and the gastric lesions tended to gradually worsen with the prolonging of RWIS duration. These data strongly suggest that these nuclei participate in the organismal response to RWIS to different degrees, and may be involved in the hypothermia and gastric lesions induced by RWIS.

  6. Behavioral and electrographic effects of opioids on kindled seizures in rats.

    Science.gov (United States)

    Caldecott-Hazard, S; Shavit, Y; Ackermann, R F; Engel, J; Frederickson, R C; Liebeskind, J C

    1982-11-18

    Our laboratory previously suggested that opioid peptides are released by an amygdaloid kindled seizure and may affect the elicitation of a subsequent seizure. The present study examined the effects of morphine, naloxone, enkephalin analogues, and conditions of morphine tolerance and withdrawal on the severity and duration of a series of amygdaloid kindled seizures. The results suggest two distinct opiate/opioid actions on seizures. The first is an anticonvulsant effect on the behavioral manifestations of seizures. This effect is seen following a high dose (50 mg/kg) of morphine or a low dose (6 mg/kg) of enkephalin analogue (LY146104), and is reversed by naloxone. The second is a naloxone-reversible prolonging effect of the high dose of morphine on the electrographic components of the seizures. Receptor affinities of these various opiate/opioid drugs suggest that these two actions are mediated by different receptors which appear not to include high affinity mu receptors.

  7. Lateral/Basolateral Amygdala Serotonin Type-2 Receptors Modulate Operant Self-administration of a Sweetened Ethanol Solution via Inhibition of Principal Neuron Activity

    Directory of Open Access Journals (Sweden)

    Brian eMccool

    2014-01-01

    Full Text Available The lateral/basolateral amygdala (BLA forms an integral part of the neural circuitry controlling innate anxiety and learned fear. More recently, BLA dependent modulation of self-administration behaviors suggests a much broader role in the regulation of reward evaluation. To test this, we employed a self-administration paradigm that procedurally segregates ‘seeking’ (exemplified as lever-press behaviors from consumption (drinking directed at a sweetened ethanol solution. Microinjection of the nonselective serotonin type-2 receptor agonist, alpha-methyl-5-hydroxytryptamine (-m5HT into the BLA reduced lever pressing behaviors in a dose-dependent fashion. This was associated with a significant reduction in the number of response-bouts expressed during non-reinforced sessions without altering the size of a bout or the rate of responding. Conversely, intra-BLA -m5HT only modestly effected consumption-related behaviors; the highest dose reduced the total time spent consuming a sweetened ethanol solution but did not inhibit the total number of licks, number of lick bouts, or amount of solution consumed during a session. In vitro neurophysiological characterization of BLA synaptic responses showed that -m5HT significantly reduced extracellular field potentials. This was blocked by the 5-HT2A/C antagonist ketanserin suggesting that 5-HT2-like receptors mediate the behavioral effect of -m5HT. During whole-cell patch current-clamp recordings, we subsequently found that -m5HT increased action potential threshold and hyperpolarized the resting membrane potential of BLA pyramidal neurons. Together, our findings show that the activation of BLA 5-HT2A/C receptors inhibits behaviors related to reward-seeking by suppressing BLA principal neuron activity. These data are consistent with the hypothesis that the BLA modulates reward-related behaviors and provides specific insight into BLA contributions during operant self-administration of a

  8. Total hepatocellular disposition profiling of rosuvastatin and pitavastatin in sandwich-cultured human hepatocytes.

    Science.gov (United States)

    Kanda, Katsuhiro; Takahashi, Ryosuke; Yoshikado, Takashi; Sugiyama, Yuichi

    2018-04-09

    This study describes the total disposition profiling of rosuvastatin (RSV) and pitavastatin (PTV) using a single systematic procedure called D-PREX (Disposition Profile Exploration) in sandwich-cultured human hepatocytes (SCHH). The biliary excretion fractions of both statins were clearly observed, which were significantly decreased dependent on the concentration of Ko143, an inhibitor for breast cancer resistance protein (BCRP). Ko143 also decreased the basolateral efflux fraction of RSV, whereas that of PTV was not significantly affected. To understand these phenomena, effects of Ko143 on biliary excretion (BCRP and multidrug resistance-associated protein (MRP) 2) and basolateral efflux (MRP3 and MRP4) transporters were examined using transporter-expressing membrane vesicles. BCRP, MRP3 and MRP4-mediated transport of RSV was observed, and Ko143 inhibited these transporters except MRP3. BCRP and MRP4 also mediated the transport of PTV, but the Ko143-mediated inhibition was only clear for BCRP. These results might explain the Ko143-mediated complete and partial inhibition of the biliary excretion and the basolateral efflux of RSV, respectively, in SCHH. In conclusion, D-PREX with sequential sampling of supernatants prior to cell lysis enables the evaluation of total drug disposition profiles resulting from complex interplays of intracellular pathways, which would provide high-throughput evaluation of drug disposition during drug discovery. Copyright © 2018 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  9. Connectivity and neurochemistry of the commissura anterior of the pigeon (Columba livia).

    Science.gov (United States)

    Letzner, Sara; Simon, Annika; Güntürkün, Onur

    2016-02-01

    The anterior commissure (AC) and the much smaller hippocampal commissure constitute the only interhemispheric pathways at the telencephalic level in birds. Since the degeneration study from Zeier and Karten (), no detailed description of the topographic organization of the AC has been performed. This information is not only necessary for a better understanding of interhemispheric transfer in birds, but also for a comparative analysis of the evolution of commissural systems in the vertebrate classes. We therefore examined the fiber connections of the AC by using choleratoxin subunit B (CTB) and biotinylated dextran amine (BDA). Injections into subareas of the arcopallium and posterior amygdala (PoA) demonstrated contralateral projection fields within the anterior arcopallium (AA), intermediate arcopallium (AI), PoA, lateral, caudolateral and central nidopallium, dorsal and ventral mesopallium, and medial striatum (MSt). Interestingly, only arcopallial and amygdaloid projections were reciprocally organized, and all AC projections originated within a rather small area of the arcopallium and the PoA. The commissural neurons were not GABA-positive, and thus possibly not of an inhibitory nature. In sum, our neuroanatomical study demonstrates that a small group of arcopallial and amygdaloid neurons constitute a wide range of contralateral projections to sensorimotor and limbic structures. Different from mammals, in birds the neurons that project via the AC constitute mostly heterotopically organized and unidirectional connections. In addition, the great majority of pallial areas do not participate by themselves in interhemispheric exchange in birds. Instead, commissural exchange rests on a rather small arcopallial and amygdaloid cluster of neurons. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  10. The effects of stimulus novelty and familiarity on neuronal activity in the amygdala of monkeys performing recognition memory tasks.

    Science.gov (United States)

    Wilson, F A; Rolls, E T

    1993-01-01

    The function of the amygdala in behavioural responses to novel stimuli and its possible function in recognition memory were investigated by recording the responses of 659 amygdaloid neurons in monkeys performing recognition memory and visual discrimination tasks. The aim was to determine the contribution of the amygdala in the encoding of familiarity and therefore its role in supporting memory-related neuronal mechanisms in the basal forebrain. The responses of three groups of neurons reflected different forms of memory. One group (n = 10) responded maximally to novel stimuli and significantly less so to the same stimuli when they were familiar. The calculated memory spans of these neurons were in the range of 2-10 intervening trials, and this short-term retention of information may reflect the operation of a neural mechanism encoding memory for the recency of stimulus presentation. Two other groups responded to the sight of particular categories of familiar stimuli: to foods (n = 6) or to faces (n = 10). The responses of some of these stimulus-selective neurons declined with repeated presentations of foods (3/4 tests) and faces (2/6 tests). The activity of these latter two groups of neurons may be involved in behavioural responses to familiar visual stimuli, particularly when such stimuli have affective or motivational significance. We conclude that the neurophysiological data provide evidence of amygdaloid mechanisms for the recognition of recently seen visual stimuli. However, these amygdaloid mechanisms do not appear to be sufficient to support the performance of long-term recognition memory tasks without additional and complementary functions carried out by other ventromedial temporal, prefrontal and diencephalic structures which also project to the basal forebrain.

  11. Disease-Causing Mutations in BEST1 Gene Are Associated with Altered Sorting of Bestrophin-1 Protein

    Science.gov (United States)

    Doumanov, Jordan A.; Zeitz, Christina; Gimenez, Paloma Dominguez; Audo, Isabelle; Krishna, Abhay; Alfano, Giovanna; Diaz, Maria Luz Bellido; Moskova-Doumanova, Veselina; Lancelot, Marie-Elise; Sahel, José-Alain; Nandrot, Emeline F.; Bhattacharya, Shomi S.

    2013-01-01

    Mutations in BEST1 gene, encoding the bestrophin-1 (Best1) protein are associated with macular dystrophies. Best1 is predominantly expressed in the retinal pigment epithelium (RPE), and is inserted in its basolateral membrane. We investigated the cellular localization in polarized MDCKII cells of disease-associated Best1 mutant proteins to study specific sorting motifs of Best1. Real-time PCR and western blots for endogenous expression of BEST1 in MDCK cells were performed. Best1 mutant constructs were generated using site-directed mutagenesis and transfected in MDCK cells. For protein sorting, confocal microscopy studies, biotinylation assays and statistical methods for quantification of mislocalization were used. Analysis of endogenous expression of BEST1 in MDCK cells revealed the presence of BEST1 transcript but no protein. Confocal microscopy and quantitative analyses indicate that transfected normal human Best1 displays a basolateral localization in MDCK cells, while cell sorting of several Best1 mutants (Y85H, Q96R, L100R, Y227N, Y227E) was altered. In contrast to constitutively active Y227E, constitutively inactive Y227F Best1 mutant localized basolaterally similar to the normal Best1 protein. Our data suggest that at least three basolateral sorting motifs might be implicated in proper Best1 basolateral localization. In addition, non-phosphorylated tyrosine 227 could play a role for basolateral delivery. PMID:23880862

  12. Interaction between morphine and noradrenergic system of basolateral amygdala on anxiety and memory in the elevated plus-maze test based on a test-retest paradigm.

    Science.gov (United States)

    Valizadegan, Farhad; Oryan, Shahrbanoo; Nasehi, Mohammad; Zarrindast, Mohammad Reza

    2013-05-01

    The amygdala is the key brain structure for anxiety and emotional memory storage. We examined the involvement of β-adrenoreceptors in the basolateral amygdala (BLA) and their interaction with morphine in modulating these behaviors. The elevated plus-maze has been employed for investigating anxiety and memory. Male Wistar rats were used for this test. We injected morphine (4, 5, and 6 mg/kg) intraperitoneally, while salbutamol (albuterol) (1, 2, and 4 μg/rat) and propranolol (1, 2, and 4 μg/rat) were injected into the BLA. Open- arms time percentage (%OAT), open- arms entry percentage (%OAE), and locomotor activity were determined by this behavioral test. Retention was tested 24 hours later. Intraperitoneal injection of morphine (6 mg/kg) had an anxiolytic-like effect and improvement of memory. The highest dose of salbutamol decreased the anxiety parameters in test session and improved the memory in retest session. Coadministration of salbutamol and ineffective dose of morphine presenting anxiolytic response. In this case, the memory was improved. Intra-BLA administration of propranolol (4 μg/rat) decreased %OAT in the test session, while had no effect on memory formation. Coadministration of propranolol and morphine (6 mg/kg) showed an increase in %OAT. There was not any significant change in the above- mentioned parameter in the retest session. Coadministration of morphine and propranolol with the effective dose of salbutamol showed that propranolol could reverse anxiolytic-like effect. We found that opioidergic and β-adrenergic systems have the same effects on anxiety and memory in the BLA; but these effects are independent of each other.

  13. Orexin 1 and orexin 2 receptor antagonism in the basolateral amygdala modulate long-term potentiation of the population spike in the perforant path-dentate gyrus-evoked field potential in rats.

    Science.gov (United States)

    Ardeshiri, Motahareh Rouhi; Hosseinmardi, Narges; Akbari, Esmaeil

    2018-03-01

    Involvement of amygdalo-hippocampal substructures in patients with narcolepsy due to deficiencies in the orexinergic system, and the presence of hippocampus-dependent memory impairments in this disorder, have led us to investigate the effects of orexin 1 and 2 receptor antagonism in the basolateral amygdala (BLA) on long-term potentiation (LTP) of dentate gyrus (DG) granular cells. We used a 200-Hz high-frequency stimulation protocol in anesthetized rats. We studied the long-term synaptic plasticity of perforant path-dentate gyrus granule cells following the inactivation of orexin receptors before and after tetanic stimulation. LTP of the DG population spike was attenuated in the presence of orexin 1 and 2 receptor antagonism (treatment with SB-334867-A and TCS-OX2-29, respectively) in the BLA when compared to that observed following treatment with dimethyl sulfoxide (DMSO). However, the population excitatory post-synaptic potentials were not affected. Moreover, when orexin 1 and 2 receptors in the BLA were blocked after LTP induction, there were no differences between the DMSO and treatment groups. Our findings suggest that the orexinergic system of the BLA plays a modulatory role in the regulation of hippocampal plasticity in rats. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. 5-HT1A receptor blockade targeting the basolateral amygdala improved stress-induced impairment of memory consolidation and retrieval in rats.

    Science.gov (United States)

    Sardari, M; Rezayof, A; Zarrindast, M-R

    2015-08-06

    The aim of the present study was to investigate the possible role of basolateral amygdala (BLA) 5-HT1A receptors in memory formation under stress. We also examined whether the blockade of these receptors is involved in stress-induced state-dependent memory. Adult male Wistar rats received cannula implants that bilaterally targeted the BLA. Long-term memory was examined using the step-through type of passive avoidance task. Behavioral stress was evoked by exposure to an elevated platform (EP) for 10, 20 and 30min. Post-training exposure to acute stress (30min) impaired the memory consolidation. In addition, pre-test exposure to acute stress-(20 and 30min) induced the impairment of memory retrieval. Interestingly, the memory impairment induced by post-training exposure to stress was restored in the animals that received 20- or 30-min pre-test stress exposure, suggesting stress-induced state-dependent memory retrieval. Post-training BLA-targeted injection of a selective 5-HT1A receptor antagonist, (S)-WAY-100135 (2μg/rat), prevented the impairing effect of stress on memory consolidation. Pre-test injection of the same doses of (S)-WAY-100135 that was targeted to the BLA also reversed stress-induced memory retrieval impairment. It should be considered that post-training or pre-test BLA-targeted injection of (S)-WAY-100135 (0.5-2μg/rat) by itself had no effect on the memory formation. Moreover, pre-test injection of (S)-WAY-100135 (2μg/rat) that targeted the BLA inhibited the stress-induced state-dependent memory retrieval. Taken together, our findings suggest that post-training or pre-test exposure to acute stress induced the impairment of memory consolidation, retrieval and state-dependent learning. The BLA 5-HT1A receptors have a critical role in learning and memory under stress. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Effect of Unpleasant Loud Noise on Hippocampal Activities during Picture Encoding: An fMRI Study

    Science.gov (United States)

    Hirano, Yoshiyuki; Fujita, Masafumi; Watanabe, Kazuko; Niwa, Masami; Takahashi, Toru; Kanematsu, Masayuki; Ido, Yasushi; Tomida, Mihoko; Onozuka, Minoru

    2006-01-01

    The functional link between the amygdala and hippocampus in humans has not been well documented. We examined the effect of unpleasant loud noise on hippocampal and amygdaloid activities during picture encoding by means of fMRI, and on the correct response in humans. The noise reduced activity in the hippocampus during picture encoding, decreased…

  16. Opiate exposure state controls dopamine D3 receptor and cdk5/calcineurin signaling in the basolateral amygdala during reward and withdrawal aversion memory formation.

    Science.gov (United States)

    Rosen, Laura G; Rushlow, Walter J; Laviolette, Steven R

    2017-10-03

    The dopamine (DA) D3 receptor (D3R) is highly expressed in the basolateral nucleus of the amygdala (BLA), a neural region critical for processing opiate-related reward and withdrawal aversion-related memories. Functionally, D3R transmission is linked to downstream Cdk5 and calcineurin signaling, both of which regulate D3R activity states and play critical roles in memory-related synaptic plasticity. Previous evidence links D3R transmission to opiate-related memory processing, however little is known regarding how chronic opiate exposure may alter D3R-dependent memory mechanisms. Using conditioned place preference (CPP) and withdrawal aversion (conditioned place aversion; CPA) procedures in rats, combined with molecular analyses of BLA protein expression, we examined the effects of chronic opiate exposure on the functional role of intra-BLA D3R transmission during the acquisition of opiate reward or withdrawal aversion memories. Remarkably, we report that the state of opiate exposure during behavioural conditioning (opiate-naïve/non-dependent vs. chronically exposed and in withdrawal) controlled the functional role of intra-BLA D3R transmission during the acquisition of both opiate reward memories and withdrawal-aversion associative memories. Thus, whereas intra-BLA D3R blockade had no effect on opiate reward memory formation in the non-dependent state, blockade of intra-BLA D3R transmission prevented the formation of opiate reward and withdrawal aversion memory in the chronically exposed state. This switch in the functional role of D3R transmission corresponded to significant increases in Cdk5 phosphorylation and total expression levels of calcineurin, and a corresponding decrease in intra-BLA D3R expression. Inhibition of either intra-BLA Cdk5 or calcineurin reversed these effects, switching intra-BLA associative memory formation back to a D3R-independent mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Higher-Order Sensory Cortex Drives Basolateral Amygdala Activity during the Recall of Remote, but Not Recently Learned Fearful Memories.

    Science.gov (United States)

    Cambiaghi, Marco; Grosso, Anna; Likhtik, Ekaterina; Mazziotti, Raffaele; Concina, Giulia; Renna, Annamaria; Sacco, Tiziana; Gordon, Joshua A; Sacchetti, Benedetto

    2016-02-03

    Negative experiences are quickly learned and long remembered. Key unresolved issues in the field of emotional memory include identifying the loci and dynamics of memory storage and retrieval. The present study examined neural activity in the higher-order auditory cortex Te2 and basolateral amygdala (BLA) and their crosstalk during the recall of recent and remote fear memories. To this end, we obtained local field potentials and multiunit activity recordings in Te2 and BLA of rats that underwent recall at 24 h and 30 d after the association of an acoustic conditioned (CS, tone) and an aversive unconditioned stimulus (US, electric shock). Here we show that, during the recall of remote auditory threat memories in rats, the activity of the Te2 and BLA is highly synchronized in the theta frequency range. This functional connectivity stems from memory consolidation processes because it is present during remote, but not recent, memory retrieval. Moreover, the observed increase in synchrony is cue and region specific. A preponderant Te2-to-BLA directionality characterizes this dialogue, and the percentage of time Te2 theta leads the BLA during remote memory recall correlates with a faster latency to freeze to the auditory conditioned stimulus. The blockade of this information transfer via Te2 inhibition with muscimol prevents any retrieval-evoked neuronal activity in the BLA and animals are unable to retrieve remote memories. We conclude that memories stored in higher-order sensory cortices drive BLA activity when distinguishing between learned threatening and neutral stimuli. How and where in the brain do we store the affective/motivational significance of sensory stimuli acquired through life experiences? Scientists have long investigated how "limbic" structures, such as the amygdala, process affective stimuli. Here we show that retrieval of well-established threat memories requires the functional interplay between higher-order components of the auditory cortex and the

  18. Computer ranking of the sequence of appearance of 73 features of the brain and related structures in staged human embryos during the sixth week of development.

    Science.gov (United States)

    O'Rahilly, R; Müller, F; Hutchins, G M; Moore, G W

    1987-09-01

    The sequence of events in the development of the brain in human embryos, already published for stages 8-15, is here continued for stages 16 and 17. With the aid of a computerized bubble-sort algorithm, 71 individual embryos were ranked in ascending order of the features present. Whereas these numbered 100 in the previous study, the increasing structural complexity gave 27 new features in the two stages now under investigation. The chief characteristics of stage 16 (approximately 37 postovulatory days) are protruding basal nuclei, the caudal olfactory elevation (olfactory tubercle), the tectobulbar tracts, and ascending fibers to the cerebellum. The main features of stage 17 (approximately 41 postovulatory days) are the cortical nucleus of the amygdaloid body, an intermediate layer in the tectum mesencephali, the posterior commissure, and the habenulo-interpeduncular tract. In addition, a typical feature at stage 17 is the crescentic shape of the lens cavity.

  19. (Glyco)sphingolipids are sorted in sub-apical compartments in HepG2 cells : A role for non-Golgi-related intracellular sites in the polarized distribution of (glyco)sphingolipids

    NARCIS (Netherlands)

    van IJzendoorn, SCD; Hoekstra, D

    1998-01-01

    In polarized HepG2 cells, the fluorescent sphingolipid analogues of glucosylceramide (C-6-NBD-GlcCer) and sphingomyelin (C-6-NBD-SM) display a preferential localization at the apical and basolateral domain, respectively, which is expressed during apical to basolateral transcytosis of the lipids (van

  20. FKBP5 and specific microRNAs via glucocorticoid receptor in the basolateral amygdala involved in the susceptibility to depressive disorder in early adolescent stressed rats.

    Science.gov (United States)

    Xu, Jingjing; Wang, Rui; Liu, Yuan; Liu, Dexiang; Jiang, Hong; Pan, Fang

    2017-12-01

    Exposure to stressful events induces depressive-like symptoms and increases susceptibility to depression. However, the molecular mechanisms are not fully understood. Studies reported that FK506 binding protein51 (FKBP5), the co-chaperone protein of glucocorticoid receptors (GR), plays a crucial role. Further, miR-124a and miR-18a are involved in the regulation of FKBP5/GR function. However, few studies have referred to effects of early life stress on depressive-like behaviours, GR and FKBP5, as well as miR-124a and miR-18a in the basolateral amygdala (BLA) from adolescence to adulthood. This study aimed to examine the dynamic alternations of depressive-like behaviours, GR and FKBP5, as well as miR-124a and miR-18a expressions in the BLA of chronic unpredictable mild stress (CUMS) rats and dexamethasone administration rats during the adolescent period. Meanwhile, the GR antagonist, RU486, was used as a means of intervention. We found that CUMS and dexamethasone administration in the adolescent period induced permanent depressive-like behaviours and memory impairment, decreased GR expression, and increased FKBP5 and miR-124a expression in the BLA of both adolescent and adult rats. However, increased miR-18a expression in the BLA was found only in adolescent rats. Depressive-like behaviours were positively correlated with the level of miR-124a, whereas GR levels were negatively correlated with those in both adolescent and adult rats. Our results suggested FKBP5/GR and miR-124a in the BLA were associated with susceptibility to depressive disorder in the presence of stressful experiences in early life. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Communication complexity and information complexity

    Science.gov (United States)

    Pankratov, Denis

    Information complexity enables the use of information-theoretic tools in communication complexity theory. Prior to the results presented in this thesis, information complexity was mainly used for proving lower bounds and direct-sum theorems in the setting of communication complexity. We present three results that demonstrate new connections between information complexity and communication complexity. In the first contribution we thoroughly study the information complexity of the smallest nontrivial two-party function: the AND function. While computing the communication complexity of AND is trivial, computing its exact information complexity presents a major technical challenge. In overcoming this challenge, we reveal that information complexity gives rise to rich geometrical structures. Our analysis of information complexity relies on new analytic techniques and new characterizations of communication protocols. We also uncover a connection of information complexity to the theory of elliptic partial differential equations. Once we compute the exact information complexity of AND, we can compute exact communication complexity of several related functions on n-bit inputs with some additional technical work. Previous combinatorial and algebraic techniques could only prove bounds of the form theta( n). Interestingly, this level of precision is typical in the area of information theory, so our result demonstrates that this meta-property of precise bounds carries over to information complexity and in certain cases even to communication complexity. Our result does not only strengthen the lower bound on communication complexity of disjointness by making it more exact, but it also shows that information complexity provides the exact upper bound on communication complexity. In fact, this result is more general and applies to a whole class of communication problems. In the second contribution, we use self-reduction methods to prove strong lower bounds on the information

  2. Amygdala subsystems and control of feeding behavior by learned cues.

    Science.gov (United States)

    Petrovich, Gorica D; Gallagher, Michela

    2003-04-01

    A combination of behavioral studies and a neural systems analysis approach has proven fruitful in defining the role of the amygdala complex and associated circuits in fear conditioning. The evidence presented in this chapter suggests that this approach is also informative in the study of other adaptive functions that involve the amygdala. In this chapter we present a novel model to study learning in an appetitive context. Furthermore, we demonstrate that long-recognized connections between the amygdala and the hypothalamus play a crucial role in allowing learning to modulate feeding behavior. In the first part we describe a behavioral model for motivational learning. In this model a cue that acquires motivational properties through pairings with food delivery when an animal is hungry can override satiety and promote eating in sated rats. Next, we present evidence that a specific amygdala subsystem (basolateral area) is responsible for allowing such learned cues to control eating (override satiety and promote eating in sated rats). We also show that basolateral amygdala mediates these actions via connectivity with the lateral hypothalamus. Lastly, we present evidence that the amygdalohypothalamic system is specific for the control of eating by learned motivational cues, as it does not mediate another function that depends on intact basolateral amygdala, namely, the ability of a conditioned cue to support new learning based on its acquired value. Knowledge about neural systems through which food-associated cues specifically control feeding behavior provides a defined model for the study of learning. In addition, this model may be informative for understanding mechanisms of maladaptive aspects of learned control of eating that contribute to eating disorders and more moderate forms of overeating.

  3. Effect of bicarbonate on potassium conductance of isolated perfused rat pancreatic ducts

    DEFF Research Database (Denmark)

    Novak, I; Greger, R

    1991-01-01

    dissected from rat pancreas. The basolateral membrane potential PDbl of unstimulated duct cells was between -60 mV and -70 mV, and the cells had a relatively large K+ conductance in the basolateral membrane as demonstrated by (a) 20-22 mV depolarization of PDbl in response to increase in bath K...

  4. New insights into the nanometer-scaled cell-surface interspace by cell-sensor measurements

    International Nuclear Information System (INIS)

    Lehmann, Mirko; Baumann, Werner

    2005-01-01

    The culture of adherent cells on solid surfaces is an established in vitro method, and the adhesion process of a cell is considered as an important trigger for many cellular processes (e.g., polarity and tumor genesis). However, not all of the eliciting biochemical or biophysical reactions are yet understood. Interestingly, there are not much experimental data about the impact that the interspace between an adherent cell and the (solid) substrate has on the cell's behavior. This interspace is mainly built by the basolateral side of epithelial cells and the substrate. This paper gives some new results of non-invasive and non-optical measurements in the interspace. The measurements were made with silicon cell-sensor hybrids. Measurements of acidification, adhesion, and respiration are analyzed in view of the situation in the interspace. The results show that, in general, the release of an ion or molecule on the basolateral side can have much more influence on the biophysical situation than a release of an ion or molecule on the apical side. In particular, the apical acidification (i.e., amount of extruded protons) of, e.g., epithelial tumor cells is several orders of magnitude higher than the basolateral acidification. These experimental results are a simple consequence of the fact that the basolateral volume of the interspace is several orders of magnitudes smaller than the apical volume. These results have the following consequences for the cell adhesion:a)static situation: if a cell is already adhered to a solid substrate, the basolateral and apical release and uptake of molecules have to be considered in a very differentiated way; b)dynamic situation: if the cell is adhering to the substrate, the then built basolateral side changes in a much stronger way than the apical side. This effect is here discussed as a possible eliciting and general mechanism for essential intracellular changes

  5. Role of NH3 and NH4+ transporters in renal acid-base transport.

    Science.gov (United States)

    Weiner, I David; Verlander, Jill W

    2011-01-01

    Renal ammonia excretion is the predominant component of renal net acid excretion. The majority of ammonia excretion is produced in the kidney and then undergoes regulated transport in a number of renal epithelial segments. Recent findings have substantially altered our understanding of renal ammonia transport. In particular, the classic model of passive, diffusive NH3 movement coupled with NH4+ "trapping" is being replaced by a model in which specific proteins mediate regulated transport of NH3 and NH4+ across plasma membranes. In the proximal tubule, the apical Na+/H+ exchanger, NHE-3, is a major mechanism of preferential NH4+ secretion. In the thick ascending limb of Henle's loop, the apical Na+-K+-2Cl- cotransporter, NKCC2, is a major contributor to ammonia reabsorption and the basolateral Na+/H+ exchanger, NHE-4, appears to be important for basolateral NH4+ exit. The collecting duct is a major site for renal ammonia secretion, involving parallel H+ secretion and NH3 secretion. The Rhesus glycoproteins, Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg), are recently recognized ammonia transporters in the distal tubule and collecting duct. Rhcg is present in both the apical and basolateral plasma membrane, is expressed in parallel with renal ammonia excretion, and mediates a critical role in renal ammonia excretion and collecting duct ammonia transport. Rhbg is expressed specifically in the basolateral plasma membrane, and its role in renal acid-base homeostasis is controversial. In the inner medullary collecting duct (IMCD), basolateral Na+-K+-ATPase enables active basolateral NH4+ uptake. In addition to these proteins, several other proteins also contribute to renal NH3/NH4+ transport. The role and mechanisms of these proteins are discussed in depth in this review.

  6. Functional classification of mitochondrion-rich cells in euryhaline Mozambique tilapia (Oreochromis mossambicus) embryos, by means of triple immunofluorescence staining for Na+/K+-ATPase, Na +/K+/2Cl- cotransporter and CFTR anion channel

    Science.gov (United States)

    Hiroi, J.; McCormick, S.D.; Ohtani-Kaneko, R.; Kaneko, T.

    2005-01-01

    Mozambique tilapia Oreochromis mossambicus embryos were transferred from freshwater to seawater and vice versa, and short-term changes in the localization of three major ion transport proteins, Na+/K +-ATPase, Na+/K+/2Cl- cotransporter (NKCC) and cystic fibrosis transmembrane conductance regulator (CFTR) were examined within mitochondrion-rich cells (MRCs) in the embryonic yolk-sac membrane. Triple-color immunofluorescence staining allowed us to classify MRCs into four types: type I, showing only basolateral Na+/K +-ATPase staining; type II, basolateral Na+/K +-ATPase and apical NKCC; type III, basolateral Na+/K +-ATPase and basolateral NKCC; type IV, basolateral Na +/K+-ATPase, basolateral NKCC and apical CFTR. In freshwater, type-I, type-II and type-III cells were observed. Following transfer from freshwater to seawater, type-IV cells appeared at 12 h and showed a remarkable increase in number between 24 h and 48 h, whereas type-III cells disappeared. When transferred from seawater back to freshwater, type-IV cells decreased and disappeared at 48 h, type-III cells increased, and type-II cells, which were not found in seawater, appeared at 12 h and increased in number thereafter. Type-I cells existed consistently irrespective of salinity changes. These results suggest that type I is an immature MRC, type II is a freshwater-type ion absorptive cell, type III is a dormant type-IV cell and/or an ion absorptive cell (with a different mechanism from type II), and type IV is a seawater-type ion secretory cell. The intracellular localization of the three ion transport proteins in type-IV cells is completely consistent with a widely accepted model for ion secretion by MRCs. A new model for ion absorption is proposed based on type-II cells possessing apical NKCC.

  7. Chemosensory function of the amygdala.

    Science.gov (United States)

    Gutiérrez-Castellanos, Nicolás; Martínez-Marcos, Alino; Martínez-García, Fernando; Lanuza, Enrique

    2010-01-01

    The chemosensory amygdala has been traditionally divided into two divisions based on inputs from the main (olfactory amygdala) or accessory (vomeronasal amygdala) olfactory bulbs, supposedly playing different and independent functional roles detecting odors and pheromones, respectively. Recently, there has been increased anatomical evidence of convergence inputs from the main and accessory bulbs in some areas of the amygdala, and this is correlated with functional evidence of interrelationships between the olfactory and the vomeronasal systems. This has lead to the characterization of a third division of the chemosensory amygdala, the mixed chemosensory amygdala, providing a new perspective of how chemosensory information is processed in the amygdaloid complex, in particular in relation to emotional behaviors. In this chapter, we analyze the anatomical and functional organization of the chemosensory amygdala from this new perspective. Finally, the evolutionary changes of the chemosensory nuclei of the mammalian amygdala are discussed, paying special attention to the case of primates, including humans. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Receptor for advanced glycation end-products is a marker of type I lung alveolar cells.

    Science.gov (United States)

    Shirasawa, Madoka; Fujiwara, Naoyuki; Hirabayashi, Susumu; Ohno, Hideki; Iida, Junko; Makita, Koshi; Hata, Yutaka

    2004-02-01

    Lung alveolar epithelial cells are comprised of type I (ATI) and type II (ATII) cells. ATI cells are polarized, although they have very flat morphology. The identification of marker proteins for apical and basolateral membranes of ATI cells is important to investigate into the differentiation of ATI cells. In this paper, we characterized receptor for advanced glycation end-products (RAGE) as a marker for ATI cells. RAGE was localized on basolateral membranes of ATI cells in the immunoelectron microscopy and its expression was enhanced in a parallel manner to the differentiation of ATI cells in vivo and in primary cultures of ATII cells. RAGE and T1 alpha, a well-known ATI marker protein, were targeted to basolateral and apical membranes, respectively, when expressed in polarized Madine Darby canine kidney cells. Moreover, RAGE was expressed in ATI cells after T1 alpha in vivo and in ex in vivo organ cultures. In conclusion, RAGE is a marker for basolateral membranes of well-differentiated ATI cells. ATI cells require some signal provided by the in vivo environment to express RAGE.

  9. Study on CT scanning technique of inferior horn of lateral ventricle

    International Nuclear Information System (INIS)

    Kakoi, Iwao; Okubo, Mitsuo; Nakamura, Sumio; Yoshinaga, Toshihiko; Shimono, Tetsuo

    1984-01-01

    It is said that temporal lobe epilepsy (TLE), one of the incurable epilepsies, results from the lesions of various structrues located in the medial and deep portion of the temporal lobe such as the hippocampus and amygdaloid nucleus. Routine CT scanning techniques cannot adequately delineate these structures in the assessment of TLE. The anatomical relationship between these medial temporal structures and the inferior horn of lateral ventricle which is lateral to them and easily identified by CT lead us to believe that the sections through the longitudinal plane of the inferior horn may clearly delineate them. The present experimental study was undertaken to develop the CT scan technique of the inferior horn of lateral ventricle, which results in the clear delineation of the region of the hippocampus and amygdaloid nucleus. As a result, A total of the 3-4 reversed axial 5 mm-thick section centered at 2.5 cm cephalad to the roof of the external auditory canal at a reversed 25 0 angle to ABL are adequate to delineate the inferior horn and the medial temporal structures. This scan technique is considered to be useful in the assessment of TLE. (author)

  10. Pathological and Pathophysiological Alterations in Temporal Lobe Structures After Mild Traumatic Brain Injury

    Science.gov (United States)

    2014-01-31

    Acetylcholinesterase inhibition in the basolateral amygdala plays a key role in the induction of status epilepticus after soman exposure...alterations in the rat basolateral amygdala after soman-induced status epilepticus : Relation to anxiety-like behavior...INHIBITION IN THE BASOLA TERAL AMYGDALA PLAYS A KEY ROLE IN THE INDUCTION OF STATUS EPILEPTICUS AFTER SOMAN EXPOSURE. Prager EM, Aroniadou

  11. Effects of Optogenetic inhibition of BLA on Sleep Brief Optogenetic Inhibition of the Basolateral Amygdala in Mice Alters Effects of Stressful Experiences on Rapid Eye Movement Sleep.

    Science.gov (United States)

    Machida, Mayumi; Wellman, Laurie L; Fitzpatrick Bs, Mairen E; Hallum Bs, Olga; Sutton Bs, Amy M; Lonart, György; Sanford, Larry D

    2017-04-01

    Stressful events can directly produce significant alterations in subsequent sleep, in particular rapid eye movement sleep (REM); however, the neural mechanisms underlying the process are not fully known. Here, we investigated the role of the basolateral nuclei of the amygdala (BLA) in regulating the effects of stressful experience on sleep. We used optogenetics to briefly inhibit glutamatergic cells in BLA during the presentation of inescapable footshock (IS) and assessed effects on sleep, the acute stress response, and fear memory. c-Fos expression was also assessed in the amygdala and the medial prefrontal cortex (mPFC), both regions involved in coping with stress, and in brain stem regions implicated in the regulation of REM. Compared to control mice, peri-shock inhibition of BLA attenuated an immediate reduction in REM after IS and produced a significant overall increase in REM. Moreover, upon exposure to the shock context alone, mice receiving peri-shock inhibition of BLA during training showed increased REM without altered freezing (an index of fear memory) or stress-induced hyperthermia (an index of acute stress response). Inhibition of BLA during REM under freely sleeping conditions enhanced REM only when body temperature was high, suggesting the effect was influenced by stress. Peri-shock inhibition of BLA also led to elevated c-Fos expression in the central nucleus of the amygdala and mPFC and differentially altered c-Fos activity in the selected brain stem regions. Glutamatergic cells in BLA can modulate the effects of stress on REM and can mediate effects of fear memory on sleep that can be independent of behavioral fear. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  12. In vivo antibody-mediated modulation of aminopeptidase A in mouse proximal tubular epithelial cells.

    Science.gov (United States)

    Mentzel, S; Dijkman, H B; van Son, J P; Wetzels, J F; Assmann, K J

    1999-07-01

    Aminopeptidase A (APA) is one of the many renal hydrolases. In mouse kidney, APA is predominantly expressed on the brush borders and sparsely on the basolateral membranes of proximal tubular epithelial cells. However, when large amounts of monoclonal antibodies (MAbs) against APA were injected into mice, we observed strong binding of the MAbs to the basolateral membranes, whereas the MAbs bound only transiently to the brush borders of the proximal tubular epithelial cells. In parallel, APA itself disappeared from the brush borders by both endocytosis and shedding, whereas it was increasingly expressed on the basolateral sides. Using ultrastructural immunohistology, we found no evidence for transcellular transport of endocytosed APA to the basolateral side of the proximal tubular epithelial cells. The absence of transcellular transport was confirmed by experiments in which we used a low dose of the MAbs. Such a low dose did not result in binding of the MAbs to the brush borders and had no effect on the presence of APA in the brush borders of the proximal tubular epithelial cells. In these experiments we still could observe binding of the MAbs to the basolateral membranes in parallel with the local appearance of APA. In addition, treatment of mice with chlorpromazine, a calmodulin antagonist that interferes with cytoskeletal function, largely inhibited the MAb-induced modulation of APA. Our studies suggest that injection of MAbs to APA specifically interrupts the normal intracellular traffic of this enzyme in proximal tubular epithelial cells. This intracellular transport is dependent on the action of cytoskeletal proteins.

  13. Dorsal hippocampal NMDA receptor blockade impairs extinction of naloxone-precipitated conditioned place aversion in acute morphine-treated rats by suppressing ERK and CREB phosphorylation in the basolateral amygdala.

    Science.gov (United States)

    Wang, Wei-Sheng; Chen, Zhong-Guo; Liu, Wen-Tao; Chi, Zhi-Qiang; He, Ling; Liu, Jing-Gen

    2015-01-01

    Substantial evidence shows that negative reinforcement resulting from the aversive affective consequences of opiate withdrawal may play a crucial role in drug relapse. Understanding the mechanisms underlying the loss (extinction) of conditioned aversion of drug withdrawal could facilitate the treatment of drug addiction. Naloxone-induced conditioned place aversion (CPA) of Sprague-Dawley rats was used to measure conditioned aversion. An NMDA receptor antagonist and MAPK kinase inhibitor were applied through intracranial injections. The phosphorylation of ERK and cAMP response element-binding protein (CREB) was detected using Western blot. The extinction of CPA behaviour increased the phosphorylation of ERK and CREB in the dorsal hippocampus (DH) and basolateral amygdala (BLA), but not in the central amygdala (CeA). Intra-DH injection of AP5 or intra-BLA injection of AP-5 or U0126 before extinction training significantly attenuated ERK and CREB phosphorylation in the BLA and impaired the extinction of CPA behaviour. Although intra-DH injections of AP-5 attenuated extinction training-induced activation of the ERK-CREB pathway in the BLA, intra-BLA injection of AP5 had no effect on extinction training-induced activation of the ERK-CREB pathway in the DH. These results suggest that activation of ERK and CREB in the BLA and DH is involved in the extinction of CPA behaviour and that the DH, via a direct or indirect pathway, modulates the activity of ERK and CREB in the BLA through activation of NMDA receptors after extinction training. Understanding the mechanisms underlying the extinction of conditioned aversion could facilitate the treatment of drug addiction. This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2. © 2014 The British Pharmacological Society.

  14. The Complexities of Interpreting Reversible Elevated Serum Creatinine Levels in Drug Development: Does a Correlation with Inhibition of Renal Transporters Exist?

    Science.gov (United States)

    Chu, Xiaoyan; Bleasby, Kelly; Chan, Grace Hoyee; Nunes, Irene; Evers, Raymond

    2016-09-01

    In humans, creatinine is formed by a multistep process in liver and muscle and eliminated via the kidney by a combination of glomerular filtration and active transport. Based on current evidence, creatinine can be taken up into renal proximal tubule cells by the basolaterally localized organic cation transporter 2 (OCT2) and the organic anion transporter 2, and effluxed into the urine by the apically localized multidrug and toxin extrusion protein 1 (MATE1) and MATE2K. Drug-induced elevation of serum creatinine (SCr) and/or reduced creatinine renal clearance is routinely used as a marker for acute kidney injury. Interpretation of elevated SCr can be complex, because such increases can be reversible and explained by inhibition of renal transporters involved in active secretion of creatinine or other secondary factors, such as diet and disease state. Distinction between these possibilities is important from a drug development perspective, as increases in SCr can result in the termination of otherwise efficacious drug candidates. In this review, we discuss the challenges associated with using creatinine as a marker for kidney damage. Furthermore, to evaluate whether reversible changes in SCr can be predicted prospectively based on in vitro transporter inhibition data, an in-depth in vitro-in vivo correlation (IVIVC) analysis was conducted for 16 drugs with in-house and literature in vitro transporter inhibition data for OCT2, MATE1, and MATE2K, as well as total and unbound maximum plasma concentration (Cmax and Cmax,u) data measured in the clinic. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  15. The involvement of CRF1 receptor within the basolateral amygdala and dentate gyrus in the naloxone-induced conditioned place aversion in morphine-dependent mice.

    Science.gov (United States)

    Valero, E; Gómez-Milanés, I; Almela, P; Ribeiro Do Couto, B; Laorden, M L; Milanés, M V; Núñez, C

    2018-06-08

    Drug withdrawal-associated aversive memories trigger relapse to drug-seeking behavior. Corticotrophin-releasing factor (CRF) is an important mediator of the reinforcing properties of drugs of abuse. However, the involvement of CRF1 receptor (CRF1R) in aversive memory induced by opiate withdrawal has yet to be elucidated. We used the conditioned-place aversion (CPA) paradigm to evaluate the role of CRF1R on opiate withdrawal memory acquisition, along with plasticity-related processes that occur after CPA within the basolateral amygdala (BLA) and dentate gyrus (DG). Male mice were rendered dependent on morphine and injected acutely with naloxone before paired to confinement in a naloxone-associated compartment. The CPA scores as well as the number of TH-positive neurons (in the NTS-A2 noradrenergic cell group), and the expression of the transcription factors Arc and pCREB (in the BLA and DG) were measured with and without CRF1R blockade. Mice subjected to conditioned naloxone-induced morphine withdrawal robustly expressed CPA. Pre-treatment with the selective CRF1R antagonist CP-154,526 before naloxone conditioning session impaired morphine withdrawal-induced aversive memory acquisition. CP-154,526 also antagonized the enhanced number of TH-positive neurons in the NTS-A2 that was seen after CPA. Increased Arc expression and Arc-pCREB co-localization were seen in the BLA after CPA, which was not modified by CP-154,526. In the DG, CPA was accompanied by a decrease of Arc expression and no changes in Arc-pCREB co-localization, whereas pre-treatment with CP-154,526 induced an increase in both parameters. These results indicate that CRF-CRF1R pathway could be a critical factor governing opiate withdrawal memory storage and retrieval and might suggest a role for TH-NA pathway in the effects of withdrawal on memory. Our results might indicate that the blockade of CRF1R could represent a promising pharmacological treatment strategy approach for the attenuation of the relapse

  16. Distinct actions of ancestral vinclozolin and juvenile stress on neural gene expression in the male rat

    Directory of Open Access Journals (Sweden)

    Ross eGillette

    2015-03-01

    Full Text Available Exposure to the endocrine disrupting chemical vinclozolin during gestation of an F0 generation and/or chronic restraint stress during adolescence of the F3 descendants affects behavior, physiology, and gene expression in the brain. Genes related to the networks of growth factors, signaling peptides and receptors, steroid hormone receptors and enzymes, and epigenetic related factors were measured using quantitative polymerase chain reaction via Taqman low density arrays targeting 48 genes in the central amygdaloid nucleus, medial amygdaloid nucleus, medial preoptic area, lateral hypothalamus, and the ventromedial nucleus of the hypothalamus. We found that growth factors are particularly vulnerable to ancestral exposure in the central and medial amygdala; restraint stress during adolescence affected neural growth factors in the medial amygdala. Signaling peptides were affected by both ancestral exposure and stress during adolescence primarily in hypothalamic nuclei. Steroid hormone receptors and enzymes were strongly affected by restraint stress in the medial preoptic area. Epigenetic related genes were affected by stress in the ventromedial hypothalamus and by both ancestral exposure and stress during adolescence independently in the central amygdala. It is noteworthy that the lateral hypothalamus showed no effects of either manipulation. Gene expression is discussed in the context of behavioral and physiological measures previously published.

  17. Distinct actions of ancestral vinclozolin and juvenile stress on neural gene expression in the male rat.

    Science.gov (United States)

    Gillette, Ross; Miller-Crews, Isaac; Skinner, Michael K; Crews, David

    2015-01-01

    Exposure to the endocrine disrupting chemical vinclozolin during gestation of an F0 generation and/or chronic restraint stress during adolescence of the F3 descendants affects behavior, physiology, and gene expression in the brain. Genes related to the networks of growth factors, signaling peptides, and receptors, steroid hormone receptors and enzymes, and epigenetic related factors were measured using quantitative polymerase chain reaction via Taqman low density arrays targeting 48 genes in the central amygdaloid nucleus, medial amygdaloid nucleus, medial preoptic area (mPOA), lateral hypothalamus (LH), and the ventromedial nucleus of the hypothalamus. We found that growth factors are particularly vulnerable to ancestral exposure in the central and medial amygdala; restraint stress during adolescence affected neural growth factors in the medial amygdala. Signaling peptides were affected by both ancestral exposure and stress during adolescence primarily in hypothalamic nuclei. Steroid hormone receptors and enzymes were strongly affected by restraint stress in the mPOA. Epigenetic related genes were affected by stress in the ventromedial nucleus and by both ancestral exposure and stress during adolescence independently in the central amygdala. It is noteworthy that the LH showed no effects of either manipulation. Gene expression is discussed in the context of behavioral and physiological measures previously published.

  18. Replacement of the cytoplasmic domain alters sorting of a viral glycoprotein in polarized cells.

    OpenAIRE

    Puddington, L; Woodgett, C; Rose, J K

    1987-01-01

    The envelope glycoprotein (G protein) of vesicular stomatitis virus (VSV) is transported to the basolateral plasma membrane of polarized epithelial cells, whereas the hemagglutinin glycoprotein (HA protein) of influenza virus is transported to the apical plasma membrane. To determine if the cytoplasmic domain of VSV G protein might be important in directing G protein to the basolateral membrane, we derived polarized Madin-Darby canine kidney cell lines expressing G protein or G protein with i...

  19. Permeability of surface modified polyamidoamine (PAMAM) dendrimers across Caco-2 cell monolayers

    OpenAIRE

    Yellepeddi, Venkata K.; Pisal, Dipak S.; Kumar, Ajay; Kaushik, Radhey S.; Hildreth, Michael B.; Guan, Xiangming; Palakurthi, Srinath

    2007-01-01

    Aim of this study was to prepare polyamine-conjugated PAMAM dendrimers and study their permeability across Caco-2 cell monolayers. Polyamines, namely, arginine and ornithine were conjugated to the amine terminals of the G4 PAMAM dendrimers by Fmoc synthesis. The apical-to-basolateral (AB) and basolateral-to-apical (BA) apparent permeability coefficients (Papp) for the PAMAM dendrimers increased by conjugating the dendrimers with both of the polyamines. The enhancement in permeability was depe...

  20. Complex chemistry

    International Nuclear Information System (INIS)

    Kim, Bong Gon; Kim, Jae Sang; Kim, Jin Eun; Lee, Boo Yeon

    2006-06-01

    This book introduces complex chemistry with ten chapters, which include development of complex chemistry on history coordination theory and Warner's coordination theory and new development of complex chemistry, nomenclature on complex with conception and define, chemical formula on coordination compound, symbol of stereochemistry, stereo structure and isomerism, electron structure and bond theory on complex, structure of complex like NMR and XAFS, balance and reaction on solution, an organo-metallic chemistry, biology inorganic chemistry, material chemistry of complex, design of complex and calculation chemistry.

  1. The mRNA expression of amino acid and sugar transporters, aminopeptidase, as well as the di- and tri-peptide transporter PepT1 in the intestines of Eimeria infected broiler chickens.

    Science.gov (United States)

    Miska, K B; Fetterer, R H

    2017-02-01

    Coccidiosis in chickens is caused by infection of gut epithelial cells with protozoan parasites of the genus Eimeria This disease causes losses to the poultry industry since infected birds fail to gain weight as rapidly as non-infected birds and efficiency of feed conversion is compromised. For the present study the effect of Eimeria on expression of components of amino acid and sugar uptake mechanisms was determined. Broiler chicks were infected with Eimeria maxima, which infects the jejunum; Eimeria acervulina, which infects the duodenum; or Eimeria tenella, which infects the ceca. Sections of the jejunum, duodenum, and ceca (depending on species of Eimeria) were taken at several time points between d zero and 14 post infection (PI) for mRNA expression analysis. Genes examined included one digestive enzyme, 7 peptide and amino acid transporters located on the brush border, 8 transporters located at the basolateral surface of the gut epithelium, and 5 sugar transporters. All 3 Eimeria species examined caused decrease in expression of brush border transporters particularly at d 5 to 7 PI, which corresponds to the time when pathology is greatest. The same pattern was seen in expression of sugar transporters. However, the expression of basolateral transporters differed among species. Eimeria tenella infection resulted in decreased expression of all basolateral transporters, while E. maxima infection caused increased expression of 2 genes and slight decrease in expression of the remaining 5 genes. Infection with E. acervulina resulted in increased expression at the height of infection of all but one basolateral transporter. In conclusion, Eimeria infection causes a general decrease in gene expression of sugar transporter and brush border AATs at the height of infection. However the expression of basolateral transporters is increased in E. maxima and E. acervulina infected birds. It is possible that decreased expression of brush border transporters in combination with

  2. Rearing in enriched environment increases parvalbumin-positive small neurons in the amygdala and decreases anxiety-like behavior of male rats.

    Science.gov (United States)

    Urakawa, Susumu; Takamoto, Kouich; Hori, Etsuro; Sakai, Natsuko; Ono, Taketoshi; Nishijo, Hisao

    2013-01-25

    Early life experiences including physical exercise, sensory stimulation, and social interaction can modulate development of the inhibitory neuronal network and modify various behaviors. In particular, alteration of parvalbumin-expressing neurons, a gamma-aminobutyric acid (GABA)ergic neuronal subpopulation, has been suggested to be associated with psychiatric disorders. Here we investigated whether rearing in enriched environment could modify the expression of parvalbumin-positive neurons in the basolateral amygdala and anxiety-like behavior. Three-week-old male rats were divided into two groups: those reared in an enriched environment (EE rats) and those reared in standard cages (SE rats). After 5 weeks of rearing, the EE rats showed decreased anxiety-like behavior in an open field than the SE rats. Under another anxiogenic situation, in a beam walking test, the EE rats more quickly traversed an elevated narrow beam. Anxiety-like behavior in the open field was significantly and negatively correlated with walking time in the beam-walking test. Immunohistochemical tests revealed that the number of parvalbumin-positive neurons significantly increased in the basolateral amygdala of the EE rats than that of the SE rats, while the number of calbindin-D28k-positive neurons did not change. These parvalbumin-positive neurons had small, rounded soma and co-expressed the glutamate decarboxylase (GAD67). Furthermore, the number of parvalbumin-positive small cells in the basolateral amygdala tended to positively correlate with emergence in the center arena of the open field and negatively correlated with walking time in the beam walking test. Rearing in the enriched environment augmented the number of parvalbumin-containing specific inhibitory neuron in the basolateral amygdala, but not that of calbindin-containing neuronal phenotype. Furthermore, the number of parvalbumin-positive small neurons in the basolateral amygdala was negatively correlated with walking time in the

  3. CENTRAL AMYGDALOID INVOLVEMENT IN NEUROENDOCRINE CORRELATES OF CONDITIONED STRESS RESPONSES

    NARCIS (Netherlands)

    ROOZENDAAL, B; KOOLHAAS, JM; BOHUS, B

    The purpose of this study was to examine the effects of bilateral electrolytic lesions of the central nucleus of the amygdala (CEA) in comparison with sham lesions on neuroendocrine responses during conditioned emotional stress in male Wistar rats. Lesions in the CEA, made either before or after the

  4. Deconstructing white matter connectivity of human amygdala nuclei with thalamus and cortex subdivisions in vivo.

    Science.gov (United States)

    Abivardi, Aslan; Bach, Dominik R

    2017-08-01

    Structural alterations in long-range amygdala connections are proposed to crucially underlie several neuropsychiatric disorders. While progress has been made in elucidating the function of these connections, our understanding of their structure in humans remains sparse and non-systematic. Harnessing diffusion-weighted imaging and probabilistic tractography in humans, we investigate connections between two main amygdala nucleus groups, thalamic nuclei, and cortex. We first parcellated amygdala into deep (basolateral) and superficial (centrocortical) nucleus groups, and thalamus into six subregions, using previously established protocols based on connectivity. Cortex was parcellated based on T1-weighted images. We found substantial amygdala connections to thalamus, with different patterns for the two amygdala nuclei. Crucially, we describe direct subcortical connections between amygdala and paraventricular thalamus. Different from rodents but similar to non-human primates, these are more pronounced for basolateral than centrocortical amygdala. Substantial white-matter connectivity between amygdala and visual pulvinar is also more pronounced for basolateral amygdala. Furthermore, we establish detailed connectivity profiles for basolateral and centrocortical amygdala to cortical regions. These exhibit cascadic connections with sensory cortices as suggested previously based on tracer methods in non-human animals. We propose that the quantitative connectivity profiles provided here may guide future work on normal and pathological function of human amygdala. Hum Brain Mapp 38:3927-3940, 2017. © 2017 Wiley Periodicals, Inc. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  5. Localization of alpha-dystroglycan on the podocyte: from top to toe.

    Science.gov (United States)

    Vogtländer, Nils P J; Dijkman, Henry; Bakker, Marinka A H; Campbell, Kevin P; van der Vlag, Johan; Berden, Jo H M

    2005-11-01

    alpha-Dystroglycan (DG) is a negatively charged membrane-associated glycoprotein that links the cytoskeleton to the extracellular matrix. Previously, we described that alpha-DG covers the whole podocyte cell membrane in the rat. However, our finding was challenged by the description of a strictly basolateral localization in human kidney biopsies, using a different antibody against alpha-DG. Therefore, we studied the exact localization of glomerular alpha-DG by using these two antibodies in both species. The studies were performed by using monoclonal antibodies (MoAbs) IIH6 and VIA4.1 in immunofluorescence, confocal microscopy, and immunoelectron microscopy on both rat and human kidney sections, as well as on cultured mouse podocytes. The apical localization of alpha-DG on podocytes was more dominant than the basolateral localization. The basolateral staining with MoAb VIA4.1 was more pronounced than that of MoAb IIH6. With both MoAbs, the staining in rat kidneys was more prominent, in comparison to human kidneys. We conclude that alpha-DG is expressed at both the basolateral and apical sides of the podocyte. This localization suggests that alpha-DG plays a dual role in the maintenance of the unique architecture of podocytes by its binding to the glomerular basement membrane, and in the maintenance of the integrity of the filtration slit, respectively.

  6. Effect of colchicine on rat small intestinal absorptive cells. II. Distribution of label after incorporation of [3H]fucose into plasma membrane glycoproteins

    International Nuclear Information System (INIS)

    Ellinger, A.; Pavelka, M.; Gangl, A.

    1983-01-01

    By means of radioautography the influence was tested of various periods (5, 15, 30, 40 min, 2 hr) of pretreatment with colchicine, administered intraperitoneally to rats at a dosage of 0.5 mg/100 g of body weight, on the intracellular pathway of [ 3 H]fucose in absorptive cells of the small intestine. Administration of colchicine for 30 min and longer time intervals causes delay in the insertion of [ 3 H]fucose into the oligosaccharide chains of glycoconjugates in the Golgi apparatus, and results in redistribution of the label apparent over the different portions of the plasma membrane. In controls, at 2 and 4 hr after administration of [ 3 H]fucose the apical plasma membrane is strongly labeled. Colchicine causes equalization of the reaction of apical and basolateral regions of the plasma membrane: the number of silver grains attributable to the apical plasma membrane is reduced; following treatment with colchicine, apical portions of the plasma membrane comprise 31.6 +/- 1.8% of the silver grains, 38.6 +/- 3.8% are attributable to basolateral membrane regions. The colchicine-induced equalization of the density of label of apical and basolateral regions of the plasma membrane, in addition to the occurrence of basolateral microvillus borders, suggests microtubules to be important in the maintenance of the polar organization of small intestinal absorptive cells

  7. The importance of claudin-7 palmitoylation on membrane subdomain localization and metastasis-promoting activities

    OpenAIRE

    Heiler, Sarah; Mu, Wei; Z?ller, Margot; Thuma, Florian

    2015-01-01

    Background Claudin-7 (cld7), a tight junction (TJ) component, is also found basolaterally and in the cytoplasm. Basolaterally located cld7 is enriched in glycolipid-enriched membrane domains (GEM), where it associates with EpCAM (EpC). The conditions driving cld7 out of TJ into GEM, which is associated with a striking change in function, were not defined. Thus, we asked whether cld7 serines or palmitoylation affect cld7 location and protein, particularly EpCAM, associations. Results HEK cells...

  8. Mechanism of cisplatin proximal tubule toxicity revealed by integrating transcriptomics, proteomics, metabolomics and biokinetics.

    Science.gov (United States)

    Wilmes, Anja; Bielow, Chris; Ranninger, Christina; Bellwon, Patricia; Aschauer, Lydia; Limonciel, Alice; Chassaigne, Hubert; Kristl, Theresa; Aiche, Stephan; Huber, Christian G; Guillou, Claude; Hewitt, Philipp; Leonard, Martin O; Dekant, Wolfgang; Bois, Frederic; Jennings, Paul

    2015-12-25

    Cisplatin is one of the most widely used chemotherapeutic agents for the treatment of solid tumours. The major dose-limiting factor is nephrotoxicity, in particular in the proximal tubule. Here, we use an integrated omics approach, including transcriptomics, proteomics and metabolomics coupled to biokinetics to identify cell stress response pathways induced by cisplatin. The human renal proximal tubular cell line RPTEC/TERT1 was treated with sub-cytotoxic concentrations of cisplatin (0.5 and 2 μM) in a daily repeat dose treating regime for up to 14 days. Biokinetic analysis showed that cisplatin was taken up from the basolateral compartment, transported to the apical compartment, and accumulated in cells over time. This is in line with basolateral uptake of cisplatin via organic cation transporter 2 and bioactivation via gamma-glutamyl transpeptidase located on the apical side of proximal tubular cells. Cisplatin affected several pathways including, p53 signalling, Nrf2 mediated oxidative stress response, mitochondrial processes, mTOR and AMPK signalling. In addition, we identified novel pathways changed by cisplatin, including eIF2 signalling, actin nucleation via the ARP/WASP complex and regulation of cell polarization. In conclusion, using an integrated omic approach together with biokinetics we have identified both novel and established mechanisms of cisplatin toxicity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. (Na+ + K+)-ATPase and plasma membrane polarity of intestinal epithelial cells: Presence of a brush border antigen in the distal large intestine that is immunologically related to beta subunit

    Energy Technology Data Exchange (ETDEWEB)

    Marxer, A.; Stieger, B.; Quaroni, A.; Kashgarian, M.; Hauri, H.P. (Univ. of Basel (Switzerland))

    1989-09-01

    The previously produced monoclonal antibody IEC 1/48 against cultured rat intestinal crypt cells was extensively characterized and found to be directed against the beta subunit of (Na+ + K+)-ATPase as assessed by immunological and enzymatic criteria. Under nondenaturing conditions the antibody precipitated the alpha-beta enzyme complex (98,000 and 48,000 Mr). This probe, together with the monoclonal antibody C 62.4 against the alpha subunit was used to localize (Na+ + K+)-ATPase in epithelial cells along the rat intestinal tract by immunofluorescence and immunoelectron microscopy. Both antibodies exclusively labeled the basolateral membrane of small intestine and proximal colon epithelial cells. However, in the distal colon, IEC 1/48, but not C 62.4, also labeled the brush border membrane. The cross-reacting beta-subunit-like antigen on the apical cell pole was tightly associated with isolated brush borders but was apparently devoid of (Na+ + K+)-ATPase activity. Subcellular fractionation of colonocytes in conjunction with limited proteolysis and surface radioiodination of intestinal segments suggested that the cross-reacting antigen in the brush border may be very similar to the beta subunit. The results support the notion that in the small intestine and proximal colon the enzyme subunits are exclusively targeted to the basolateral membrane while in the distal colon nonassembled beta subunit or a beta-subunit-like protein is also transported to the apical cell pole.

  10. ComplexViewer: visualization of curated macromolecular complexes.

    Science.gov (United States)

    Combe, Colin W; Sivade, Marine Dumousseau; Hermjakob, Henning; Heimbach, Joshua; Meldal, Birgit H M; Micklem, Gos; Orchard, Sandra; Rappsilber, Juri

    2017-11-15

    Proteins frequently function as parts of complexes, assemblages of multiple proteins and other biomolecules, yet network visualizations usually only show proteins as parts of binary interactions. ComplexViewer visualizes interactions with more than two participants and thereby avoids the need to first expand these into multiple binary interactions. Furthermore, if binding regions between molecules are known then these can be displayed in the context of the larger complex. freely available under Apache version 2 license; EMBL-EBI Complex Portal: http://www.ebi.ac.uk/complexportal; Source code: https://github.com/MICommunity/ComplexViewer; Package: https://www.npmjs.com/package/complexviewer; http://biojs.io/d/complexviewer. Language: JavaScript; Web technology: Scalable Vector Graphics; Libraries: D3.js. colin.combe@ed.ac.uk or juri.rappsilber@ed.ac.uk. © The Author 2017. Published by Oxford University Press.

  11. Synchronization in node of complex networks consist of complex chaotic system

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Qiang, E-mail: qiangweibeihua@163.com [Beihua University computer and technology College, BeiHua University, Jilin, 132021, Jilin (China); Digital Images Processing Institute of Beihua University, BeiHua University, Jilin, 132011, Jilin (China); Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, 116024 (China); Xie, Cheng-jun [Beihua University computer and technology College, BeiHua University, Jilin, 132021, Jilin (China); Digital Images Processing Institute of Beihua University, BeiHua University, Jilin, 132011, Jilin (China); Liu, Hong-jun [School of Information Engineering, Weifang Vocational College, Weifang, 261041 (China); Li, Yan-hui [The Library, Weifang Vocational College, Weifang, 261041 (China)

    2014-07-15

    A new synchronization method is investigated for node of complex networks consists of complex chaotic system. When complex networks realize synchronization, different component of complex state variable synchronize up to different scaling complex function by a designed complex feedback controller. This paper change synchronization scaling function from real field to complex field for synchronization in node of complex networks with complex chaotic system. Synchronization in constant delay and time-varying coupling delay complex networks are investigated, respectively. Numerical simulations are provided to show the effectiveness of the proposed method.

  12. Brain nicotinic acetylcholine receptors are involved in stress-induced potentiation of nicotine reward in rats.

    Science.gov (United States)

    Javadi, Parastoo; Rezayof, Ameneh; Sardari, Maryam; Ghasemzadeh, Zahra

    2017-07-01

    The aim of the present study was to examine the possible role of nicotinic acetylcholine receptors of the dorsal hippocampus (CA1 regions), the medial prefrontal cortex or the basolateral amygdala in the effect of acute or sub-chronic stress on nicotine-induced conditioned place preference. Our results indicated that subcutaneous administration of nicotine (0.2 mg/kg) induced significant conditioned place preference. Exposure to acute or sub-chronic elevated platform stress potentiated the response of an ineffective dose of nicotine. Pre-conditioning intra-CA1 (0.5-4 µg/rat) or intra-medial prefrontal cortex (0.2-0.3 µg/rat) microinjection of mecamylamine (a non-selective nicotinic acetylcholine receptor antagonist) reversed acute stress-induced potentiation of nicotine reward as measured in the conditioned place preference paradigm. By contrast, pre-conditioning intra-basolateral amygdala microinjection of mecamylamine (4 µg/rat) potentiated the effects of acute stress on nicotine reward. Our findings also showed that intra-CA1 or intra-medial prefrontal cortex, but not intra-basolateral amygdala, microinjection of mecamylamine (4 µg/rat) prevented the effect of sub-chronic stress on nicotine reward. These findings suggest that exposure to elevated platform stress potentiates the rewarding effect of nicotine which may be associated with the involvement of nicotinic acetylcholine receptors. It seems that there is a different contribution of the basolateral amygdala, the medial prefrontal cortex or the CA1 nicotinic acetylcholine receptors in stress-induced potentiation of nicotine-induced conditioned place preference.

  13. Generalized Combination Complex Synchronization for Fractional-Order Chaotic Complex Systems

    Directory of Open Access Journals (Sweden)

    Cuimei Jiang

    2015-07-01

    Full Text Available Based on two fractional-order chaotic complex drive systems and one fractional-order chaotic complex response system with different dimensions, we propose generalized combination complex synchronization. In this new synchronization scheme, there are two complex scaling matrices that are non-square matrices. On the basis of the stability theory of fractional-order linear systems, we design a general controller via active control. Additionally, by virtue of two complex scaling matrices, generalized combination complex synchronization between fractional-order chaotic complex systems and real systems is investigated. Finally, three typical examples are given to demonstrate the effectiveness and feasibility of the schemes.

  14. Apomorphine and its esters

    DEFF Research Database (Denmark)

    Borkar, Nrupa; Chen, Zhizhong; Saaby, Lasse

    2016-01-01

    Oral delivery of apomorphine via prodrug principle may be a potential treatment for Parkinson's disease. The purpose of this study was to investigate the transport and stability of apomorphine and its esters across Caco-2 cell monolayer and their affinity towards chylomicrons. Apomorphine......, monolauroyl apomorphine (MLA) and dilauroyl apomorphine (DLA) were subjected to apical to basolateral (A-B) and basolateral to apical (B-A) transport across Caco-2 cell monolayer. The stability of these compounds was also assessed by incubation at intestinal pH and physiological pH with and without Caco-2...

  15. Autoradiographic localization of Na+-K+-ATPase with 3H-ouabain

    International Nuclear Information System (INIS)

    Dormans, J.A.M.A.

    1976-01-01

    Using 3 H-ouabain as an inhibitor, the site of the Na + -K + -ATPase system in cells was determined autoradiographically. Experiments were performed woth guinea pig's kidney tissue. The application of light microscopical autoradiography to freeze-dried tissue showed that especially the distal tubule, and to a smaller extent the proximal tubule and the collecting tubule have Na + -K + -ATPase. Electron microscopical autoradiography showed that this activity is restricted to the baso-lateral plasmamembranes. The quantity of specific bound ouabain turns out to be correlated to the quantity of baso-lateral plasmamembrane's surface

  16. Complexity explained

    CERN Document Server

    Erdi, Peter

    2008-01-01

    This book explains why complex systems research is important in understanding the structure, function and dynamics of complex natural and social phenomena. Readers will learn the basic concepts and methods of complex system research.

  17. HK2 Proximal Tubule Epithelial Cells Synthesize and Secrete Plasma Proteins Predominantly Through the Apical Surface.

    Science.gov (United States)

    Zhao, Ke-Wei; Murray, Elsa J Brochmann; Murray, Samuel S

    2017-04-01

    Renal proximal tubule epithelial cells (PTECs) are known to reabsorb salts and small plasma proteins filtered through Bowman's capsule. Following acute kidney injury, PTECs assume some characteristics of hepatocytes in producing various plasma proteins. We now demonstrate that even at a resting state, a PTEC cell line, HK2 expresses mRNAs for and synthesizes and secretes plasma proteins in a complex with complement C3, an α 2 -macroglobulin family chaperone, including albumin, transferrin, α 1 -antitrypsin, α 1 -antichymotrypsin, α 2 -HS-glycoprotein, ceruloplasmin, haptoglobin, C1-inhibitor, secreted phosphoprotein-24, and insulin-like growth factor-1. When grown on transwell inserts, HK2 cells predominantly secrete (∼90%) plasma proteins into the apical side and a smaller fraction into the basolateral side as determined by ELISA assays. When cultured in the presence of exogenous cytokines such as IL1β, IL6, TNFα, BMP2, or TGFβ1, HK2 cell mRNA expressions for plasma proteins were variably affected whereas basolateral secretions were elevated to or in excess of those of the apical level. In addition, HK2 cells produce proTGFβ1 with its intact N-terminal latency associated peptide and latent-TGF-β-binding proteins. The complex cannot be dissociated under conditions of SDS, heating, and electrophoresis. Moreover, HK2 cells maintain their ability to quickly uptake exogenously added serum proteins from the culture medium, as if they are recognized differently by the endocytic receptors. These results provide new insight into the hepatization of PTECs. In addition to their unique uptake of plasma proteins and salts from the filtrate, they are a source of urinary proteins under normal conditions as wells as in chronic and acute kidney diseases. J. Cell. Biochem. 118: 924-933, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Transport inhibition of digoxin using several common P-gp expressing cell lines is not necessarily reporting only on inhibitor binding to P-gp.

    Directory of Open Access Journals (Sweden)

    Annie Albin Lumen

    Full Text Available We have reported that the P-gp substrate digoxin required basolateral and apical uptake transport in excess of that allowed by digoxin passive permeability (as measured in the presence of GF120918 to achieve the observed efflux kinetics across MDCK-MDR1-NKI (The Netherlands Cancer Institute confluent cell monolayers. That is, GF120918 inhibitable uptake transport was kinetically required. Therefore, IC50 measurements using digoxin as a probe substrate in this cell line could be due to inhibition of P-gp, of digoxin uptake transport, or both. This kinetic analysis is now extended to include three additional cell lines: MDCK-MDR1-NIH (National Institute of Health, Caco-2 and CPT-B2 (Caco-2 cells with BCRP knockdown. These cells similarly exhibit GF120918 inhibitable uptake transport of digoxin. We demonstrate that inhibition of digoxin transport across these cell lines by GF120918, cyclosporine, ketoconazole and verapamil is greater than can be explained by inhibition of P-gp alone. We examined three hypotheses for this non-P-gp inhibition. The inhibitors can: (1 bind to a basolateral digoxin uptake transporter, thereby inhibiting digoxin's cellular uptake; (2 partition into the basolateral membrane and directly reduce membrane permeability; (3 aggregate with digoxin in the donor chamber, thereby reducing the free concentration of digoxin, with concomitant reduction in digoxin uptake. Data and simulations show that hypothesis 1 was found to be uniformly acceptable. Hypothesis 2 was found to be uniformly unlikely. Hypothesis 3 was unlikely for GF120918 and cyclosporine, but further studies are needed to completely adjudicate whether hetero-dimerization contributes to the non-P-gp inhibition for ketoconazole and verapamil. We also find that P-gp substrates with relatively low passive permeability such as digoxin, loperamide and vinblastine kinetically require basolateral uptake transport over that allowed by +GF120918 passive permeability, while

  19. On Measuring the Complexity of Networks: Kolmogorov Complexity versus Entropy

    Directory of Open Access Journals (Sweden)

    Mikołaj Morzy

    2017-01-01

    Full Text Available One of the most popular methods of estimating the complexity of networks is to measure the entropy of network invariants, such as adjacency matrices or degree sequences. Unfortunately, entropy and all entropy-based information-theoretic measures have several vulnerabilities. These measures neither are independent of a particular representation of the network nor can capture the properties of the generative process, which produces the network. Instead, we advocate the use of the algorithmic entropy as the basis for complexity definition for networks. Algorithmic entropy (also known as Kolmogorov complexity or K-complexity for short evaluates the complexity of the description required for a lossless recreation of the network. This measure is not affected by a particular choice of network features and it does not depend on the method of network representation. We perform experiments on Shannon entropy and K-complexity for gradually evolving networks. The results of these experiments point to K-complexity as the more robust and reliable measure of network complexity. The original contribution of the paper includes the introduction of several new entropy-deceiving networks and the empirical comparison of entropy and K-complexity as fundamental quantities for constructing complexity measures for networks.

  20. Complex dynamical invariants for two-dimensional complex potentials

    Indian Academy of Sciences (India)

    Abstract. Complex dynamical invariants are searched out for two-dimensional complex poten- tials using rationalization method within the framework of an extended complex phase space characterized by x = x1 + ip3, y = x2 + ip4, px = p1 + ix3, py = p2 + ix4. It is found that the cubic oscillator and shifted harmonic oscillator ...

  1. Complex Fuzzy Set-Valued Complex Fuzzy Measures and Their Properties

    Science.gov (United States)

    Ma, Shengquan; Li, Shenggang

    2014-01-01

    Let F*(K) be the set of all fuzzy complex numbers. In this paper some classical and measure-theoretical notions are extended to the case of complex fuzzy sets. They are fuzzy complex number-valued distance on F*(K), fuzzy complex number-valued measure on F*(K), and some related notions, such as null-additivity, pseudo-null-additivity, null-subtraction, pseudo-null-subtraction, autocontionuous from above, autocontionuous from below, and autocontinuity of the defined fuzzy complex number-valued measures. Properties of fuzzy complex number-valued measures are studied in detail. PMID:25093202

  2. The complex portal--an encyclopaedia of macromolecular complexes.

    Science.gov (United States)

    Meldal, Birgit H M; Forner-Martinez, Oscar; Costanzo, Maria C; Dana, Jose; Demeter, Janos; Dumousseau, Marine; Dwight, Selina S; Gaulton, Anna; Licata, Luana; Melidoni, Anna N; Ricard-Blum, Sylvie; Roechert, Bernd; Skyzypek, Marek S; Tiwari, Manu; Velankar, Sameer; Wong, Edith D; Hermjakob, Henning; Orchard, Sandra

    2015-01-01

    The IntAct molecular interaction database has created a new, free, open-source, manually curated resource, the Complex Portal (www.ebi.ac.uk/intact/complex), through which protein complexes from major model organisms are being collated and made available for search, viewing and download. It has been built in close collaboration with other bioinformatics services and populated with data from ChEMBL, MatrixDB, PDBe, Reactome and UniProtKB. Each entry contains information about the participating molecules (including small molecules and nucleic acids), their stoichiometry, topology and structural assembly. Complexes are annotated with details about their function, properties and complex-specific Gene Ontology (GO) terms. Consistent nomenclature is used throughout the resource with systematic names, recommended names and a list of synonyms all provided. The use of the Evidence Code Ontology allows us to indicate for which entries direct experimental evidence is available or if the complex has been inferred based on homology or orthology. The data are searchable using standard identifiers, such as UniProt, ChEBI and GO IDs, protein, gene and complex names or synonyms. This reference resource will be maintained and grow to encompass an increasing number of organisms. Input from groups and individuals with specific areas of expertise is welcome. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Complexity Plots

    KAUST Repository

    Thiyagalingam, Jeyarajan

    2013-06-01

    In this paper, we present a novel visualization technique for assisting the observation and analysis of algorithmic complexity. In comparison with conventional line graphs, this new technique is not sensitive to the units of measurement, allowing multivariate data series of different physical qualities (e.g., time, space and energy) to be juxtaposed together conveniently and consistently. It supports multivariate visualization as well as uncertainty visualization. It enables users to focus on algorithm categorization by complexity classes, while reducing visual impact caused by constants and algorithmic components that are insignificant to complexity analysis. It provides an effective means for observing the algorithmic complexity of programs with a mixture of algorithms and black-box software through visualization. Through two case studies, we demonstrate the effectiveness of complexity plots in complexity analysis in research, education and application. © 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and Blackwell Publishing Ltd.

  4. Complex differential geometry

    CERN Document Server

    Zheng, Fangyang

    2002-01-01

    The theory of complex manifolds overlaps with several branches of mathematics, including differential geometry, algebraic geometry, several complex variables, global analysis, topology, algebraic number theory, and mathematical physics. Complex manifolds provide a rich class of geometric objects, for example the (common) zero locus of any generic set of complex polynomials is always a complex manifold. Yet complex manifolds behave differently than generic smooth manifolds; they are more coherent and fragile. The rich yet restrictive character of complex manifolds makes them a special and interesting object of study. This book is a self-contained graduate textbook that discusses the differential geometric aspects of complex manifolds. The first part contains standard materials from general topology, differentiable manifolds, and basic Riemannian geometry. The second part discusses complex manifolds and analytic varieties, sheaves and holomorphic vector bundles, and gives a brief account of the surface classifi...

  5. (II) complexes

    African Journals Online (AJOL)

    activities of Schiff base tin (II) complexes. Neelofar1 ... Conclusion: All synthesized Schiff bases and their Tin (II) complexes showed high antimicrobial and ...... Singh HL. Synthesis and characterization of tin (II) complexes of fluorinated Schiff bases derived from amino acids. Spectrochim Acta Part A: Molec Biomolec.

  6. Workshop on Recommendation in Complex Scenarios (ComplexRec 2017)

    DEFF Research Database (Denmark)

    Bogers, Toine; Koolen, Marijn; Mobasher, Bamshad

    2017-01-01

    Recommendation algorithms for ratings prediction and item ranking have steadily matured during the past decade. However, these state-of-the-art algorithms are typically applied in relatively straightforward scenarios. In reality, recommendation is often a more complex problem: it is usually just...... a single step in the user's more complex background need. These background needs can often place a variety of constraints on which recommendations are interesting to the user and when they are appropriate. However, relatively little research has been done on these complex recommendation scenarios....... The ComplexRec 2017 workshop addressed this by providing an interactive venue for discussing approaches to recommendation in complex scenarios that have no simple one-size-fits-all-solution....

  7. Release of zinc from the brain of El (epilepsy) mice during seizure induction.

    Science.gov (United States)

    Takeda, A; Hanajima, T; Ijiro, H; Ishige, A; Iizuka, S; Okada, S; Oku, N

    1999-05-15

    Brain distribution after i.v. injection of 65ZnCl2 into El mice, an animal model of genetically determined epilepsy, was studied by autoradiography to study the utilization of zinc in the brain. The distribution of 65Zn in the brain of El mice 6 days after injection was almost the same as that of ddY (normal) mice, suggesting that the uptake of zinc by the brain of El mice is normal. To study the movement of zinc in the brain in the course of seizure induction, the concentrations of 65Zn in the brain of seizure-afflicted and untreated control El mice were compared 20 days after 65Zn injection. The concentration of 65Zn in the brain of seized El mice was overall lower than that of control El mice; the concentration of 65Zn was decreased notably in the piriform cortex and amygdaloid nuclei complex during convulsion. These results suggest that the release of zinc from the El mouse brain is enhanced during convulsion. The decrease in actively functioning zinc in the brain may be associated with the increase in susceptibility to seizure in the El mouse. Copyright 1999 Elsevier Science B.V.

  8. New saliva secretion model based on the expression of Na+-K+ pump and K+ channels in the apical membrane of parotid acinar cells.

    Science.gov (United States)

    Almássy, János; Siguenza, Elias; Skaliczki, Marianna; Matesz, Klara; Sneyd, James; Yule, David I; Nánási, Péter P

    2018-04-01

    The plasma membrane of parotid acinar cells is functionally divided into apical and basolateral regions. According to the current model, fluid secretion is driven by transepithelial ion gradient, which facilitates water movement by osmosis into the acinar lumen from the interstitium. The osmotic gradient is created by the apical Cl - efflux and the subsequent paracellular Na + transport. In this model, the Na + -K + pump is located exclusively in the basolateral membrane and has essential role in salivary secretion, since the driving force for Cl - transport via basolateral Na + -K + -2Cl - cotransport is generated by the Na + -K + pump. In addition, the continuous electrochemical gradient for Cl - flow during acinar cell stimulation is maintained by the basolateral K + efflux. However, using a combination of single-cell electrophysiology and Ca 2+ -imaging, we demonstrate that photolysis of Ca 2+ close to the apical membrane of parotid acinar cells triggered significant K + current, indicating that a substantial amount of K + is secreted into the lumen during stimulation. Nevertheless, the K + content of the primary saliva is relatively low, suggesting that K + might be reabsorbed through the apical membrane. Therefore, we investigated the localization of Na + -K + pumps in acinar cells. We show that the pumps appear evenly distributed throughout the whole plasma membrane, including the apical pole of the cell. Based on these results, a new mathematical model of salivary fluid secretion is presented, where the pump reabsorbs K + from and secretes Na + to the lumen, which can partially supplement the paracellular Na + pathway.

  9. Stimulation of Na+ -K+ -pump currents by epithelial nicotinic receptors in rat colon.

    Science.gov (United States)

    Bader, Sandra; Lottig, Lena; Diener, Martin

    2017-05-01

    Acetylcholine-induced epithelial Cl - secretion is generally thought to be mediated by epithelial muscarinic receptors and nicotinic receptors on secretomotor neurons. However, recent data have shown expression of nicotinic receptors by intestinal epithelium and the stimulation of Cl - secretion by nicotine, in the presence of the neurotoxin, tetrodotoxin. Here, we aimed to identify the transporters activated by epithelial nicotinic receptors and to clarify their role in cholinergic regulation of intestinal ion transport. Ussing chamber experiments were performed, using rat distal colon with intact epithelia. Epithelia were basolaterally depolarized to measure currents across the apical membrane. Apically permeabilized tissue was also used to measure currents across the basolateral membrane in the presence of tetrodotoxin. Nicotine had no effect on currents through Cl - channels in the apical membrane or on currents through K + channels in the apical or the basolateral membrane. Instead, nicotine stimulated the Na + -K + -pump as indicated by Na + -dependency and sensitivity of the nicotine-induced current across the basolateral membrane to cardiac steroids. Effects of nicotine were inhibited by nicotinic receptor antagonists such as hexamethonium and mimicked by dimethyl-4-phenylpiperazinium, a chemically different nicotinic agonist. Simultaneous stimulation of epithelial muscarinic and nicotinic receptors led to a strong potentiation of transepithelial Cl - secretion. These results suggest a novel concept for the cholinergic regulation of transepithelial ion transport by costimulation of muscarinic and nicotinic epithelial receptors and a unique role of nicotinic receptors controlling the activity of the Na + -K + -ATPase. © 2017 The British Pharmacological Society.

  10. Dynamic complexity: plant receptor complexes at the plasma membrane.

    Science.gov (United States)

    Burkart, Rebecca C; Stahl, Yvonne

    2017-12-01

    Plant receptor complexes at the cell surface perceive many different external and internal signalling molecules and relay these signals into the cell to regulate development, growth and immunity. Recent progress in the analyses of receptor complexes using different live cell imaging approaches have shown that receptor complex formation and composition are dynamic and take place at specific microdomains at the plasma membrane. In this review we focus on three prominent examples of Arabidopsis thaliana receptor complexes and how their dynamic spatio-temporal distribution at the PM has been studied recently. We will elaborate on the newly emerging concept of plasma membrane microdomains as potential hubs for specific receptor complex assembly and signalling outputs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Imaging of water distribution in the rat brain by activation autoradiography

    International Nuclear Information System (INIS)

    Kogure, K.; Kawashima, K.; Iwata, R.; Ido, T.

    1990-01-01

    Regional water distribution in the rat brain was obtained autoradiographically by activation analysis. The autoradiogram obtained for the normal rat brain showed high accumulation of water in the areas of sensory-motor cortex, hippocampus, thalamus, and amygdaloid cortex, whereas corpus callosum and internal capsule showed low water contents as expected. The estimated values of water content were 78.6 +/- 4.9 weight % for gray matter, and 73.5 +/- 4.9 weight % for white matter, respectively. The mean values of the water content were consistent with those obtained by a conventional drying-weighing method

  12. Identification of multidrug resistance protein 1 (MRP1/ABCC1) as a molecular gate for cellular export of cobalamin

    DEFF Research Database (Denmark)

    Beedholm-Ebsen, Rasmus; van de Wetering, Koen; Hardlei, Tore

    2010-01-01

    transporters by cellular gene silencing showed a role in cellular Cbl efflux of the ATP-binding cassette (ABC)-drug transporter, ABCC1, alias multidrug resistance protein 1 (MRP1), which is present in the basolateral membrane of intestinal epithelium and in other cells. The ability of MRP1 to mediate ATP...... and kidney. In contrast, Cbl accumulates in the terminal part of the intestine of these mice, suggesting a functional malabsorption because of a lower epithelial basolateral Cbl efflux. The identification of this Cbl export mechanism now allows the delineation of a coherent pathway for Cbl trafficking from...

  13. Effect of secretin and inhibitors of HCO3-/H+ transport on the membrane voltage of rat pancreatic duct cells

    DEFF Research Database (Denmark)

    Novak, I; Pahl, C

    1993-01-01

    depolarized the basolateral membrane voltage, Vbl, by up to 35 mV (n = 37); a half-maximal response was obtained at 3 x 10(-11) mol/l. In unstimulated ducts a decrease in the luminal Cl- concentration (120 to 37 mmol/l) had a marginal effect on Vbl, but after maximal secretin stimulation it evoked a 14 +/- 2......), respectively. The fractional resistance of the basolateral membrane (FRbl) doubled, and the depolarizing responses to changes in bath K+ concentrations (5 to 20 mmol/l) decreased from 22 +/- 1 to 11 +/- 2 mV.(ABSTRACT TRUNCATED AT 250 WORDS)...

  14. Revitalizing Complex Analysis: A Transition-to-Proof Course Centered on Complex Topics

    Science.gov (United States)

    Sachs, Robert

    2017-01-01

    A new transition course centered on complex topics would help in revitalizing complex analysis in two ways: first, provide early exposure to complex functions, sparking greater interest in the complex analysis course; second, create extra time in the complex analysis course by eliminating the "complex precalculus" part of the course. In…

  15. 3D complex: a structural classification of protein complexes.

    Directory of Open Access Journals (Sweden)

    Emmanuel D Levy

    2006-11-01

    Full Text Available Most of the proteins in a cell assemble into complexes to carry out their function. It is therefore crucial to understand the physicochemical properties as well as the evolution of interactions between proteins. The Protein Data Bank represents an important source of information for such studies, because more than half of the structures are homo- or heteromeric protein complexes. Here we propose the first hierarchical classification of whole protein complexes of known 3-D structure, based on representing their fundamental structural features as a graph. This classification provides the first overview of all the complexes in the Protein Data Bank and allows nonredundant sets to be derived at different levels of detail. This reveals that between one-half and two-thirds of known structures are multimeric, depending on the level of redundancy accepted. We also analyse the structures in terms of the topological arrangement of their subunits and find that they form a small number of arrangements compared with all theoretically possible ones. This is because most complexes contain four subunits or less, and the large majority are homomeric. In addition, there is a strong tendency for symmetry in complexes, even for heteromeric complexes. Finally, through comparison of Biological Units in the Protein Data Bank with the Protein Quaternary Structure database, we identified many possible errors in quaternary structure assignments. Our classification, available as a database and Web server at http://www.3Dcomplex.org, will be a starting point for future work aimed at understanding the structure and evolution of protein complexes.

  16. Unraveling chaotic attractors by complex networks and measurements of stock market complexity

    International Nuclear Information System (INIS)

    Cao, Hongduo; Li, Ying

    2014-01-01

    We present a novel method for measuring the complexity of a time series by unraveling a chaotic attractor modeled on complex networks. The complexity index R, which can potentially be exploited for prediction, has a similar meaning to the Kolmogorov complexity (calculated from the Lempel–Ziv complexity), and is an appropriate measure of a series' complexity. The proposed method is used to research the complexity of the world's major capital markets. None of these markets are completely random, and they have different degrees of complexity, both over the entire length of their time series and at a level of detail. However, developing markets differ significantly from mature markets. Specifically, the complexity of mature stock markets is stronger and more stable over time, whereas developing markets exhibit relatively low and unstable complexity over certain time periods, implying a stronger long-term price memory process

  17. Unraveling chaotic attractors by complex networks and measurements of stock market complexity.

    Science.gov (United States)

    Cao, Hongduo; Li, Ying

    2014-03-01

    We present a novel method for measuring the complexity of a time series by unraveling a chaotic attractor modeled on complex networks. The complexity index R, which can potentially be exploited for prediction, has a similar meaning to the Kolmogorov complexity (calculated from the Lempel-Ziv complexity), and is an appropriate measure of a series' complexity. The proposed method is used to research the complexity of the world's major capital markets. None of these markets are completely random, and they have different degrees of complexity, both over the entire length of their time series and at a level of detail. However, developing markets differ significantly from mature markets. Specifically, the complexity of mature stock markets is stronger and more stable over time, whereas developing markets exhibit relatively low and unstable complexity over certain time periods, implying a stronger long-term price memory process.

  18. Complex Correspondence Principle

    International Nuclear Information System (INIS)

    Bender, Carl M.; Meisinger, Peter N.; Hook, Daniel W.; Wang Qinghai

    2010-01-01

    Quantum mechanics and classical mechanics are distinctly different theories, but the correspondence principle states that quantum particles behave classically in the limit of high quantum number. In recent years much research has been done on extending both quantum and classical mechanics into the complex domain. These complex extensions continue to exhibit a correspondence, and this correspondence becomes more pronounced in the complex domain. The association between complex quantum mechanics and complex classical mechanics is subtle and demonstrating this relationship requires the use of asymptotics beyond all orders.

  19. Lysinuric protein intolerance (LPI): a multi organ disease by far more complex than a classic urea cycle disorder.

    Science.gov (United States)

    Ogier de Baulny, Hélène; Schiff, Manuel; Dionisi-Vici, Carlo

    2012-05-01

    Lysinuric protein intolerance (LPI) is an inherited defect of cationic amino acid (lysine, arginine and ornithine) transport at the basolateral membrane of intestinal and renal tubular cells caused by mutations in SLC7A7 encoding the y(+)LAT1 protein. LPI has long been considered a relatively benign urea cycle disease, when appropriately treated with low-protein diet and l-citrulline supplementation. However, the severe clinical course of this disorder suggests that LPI should be regarded as a severe multisystem disease with uncertain outcome. Specifically, immune dysfunction potentially attributable to nitric oxide (NO) overproduction secondary to arginine intracellular trapping (due to defective efflux from the cell) might be a crucial pathophysiological route explaining many of LPI complications. The latter comprise severe lung disease with pulmonary alveolar proteinosis, renal disease, hemophagocytic lymphohistiocytosis with subsequent activation of macrophages, various auto-immune disorders and an incompletely characterized immune deficiency. These results have several therapeutic implications, among which lowering the l-citrulline dosage may be crucial, as excessive citrulline may worsen intracellular arginine accumulation. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Uranium thiolate complexes

    International Nuclear Information System (INIS)

    Leverd, Pascal C.

    1994-01-01

    This research thesis proposes a new approach to the chemistry of uranium thiolate complexes as these compounds are very promising for various uses (in bio-inorganic chemistry, in some industrial processes like oil desulphurization). It more particularly addresses the U-S bond or more generally bonds between polarizable materials and hard metals. The author thus reports the study of uranium organometallic thiolates (tricyclo-penta-dienic and mono-cyclo-octa-tetraenylic complexes), and of uranium homoleptic thiolates (tetra-thiolate complexes, hexa-thiolate complexes, reactivity of homoleptic thiolate complexes) [fr

  1. Clinical Complexity in Medicine: A Measurement Model of Task and Patient Complexity.

    Science.gov (United States)

    Islam, R; Weir, C; Del Fiol, G

    2016-01-01

    Complexity in medicine needs to be reduced to simple components in a way that is comprehensible to researchers and clinicians. Few studies in the current literature propose a measurement model that addresses both task and patient complexity in medicine. The objective of this paper is to develop an integrated approach to understand and measure clinical complexity by incorporating both task and patient complexity components focusing on the infectious disease domain. The measurement model was adapted and modified for the healthcare domain. Three clinical infectious disease teams were observed, audio-recorded and transcribed. Each team included an infectious diseases expert, one infectious diseases fellow, one physician assistant and one pharmacy resident fellow. The transcripts were parsed and the authors independently coded complexity attributes. This baseline measurement model of clinical complexity was modified in an initial set of coding processes and further validated in a consensus-based iterative process that included several meetings and email discussions by three clinical experts from diverse backgrounds from the Department of Biomedical Informatics at the University of Utah. Inter-rater reliability was calculated using Cohen's kappa. The proposed clinical complexity model consists of two separate components. The first is a clinical task complexity model with 13 clinical complexity-contributing factors and 7 dimensions. The second is the patient complexity model with 11 complexity-contributing factors and 5 dimensions. The measurement model for complexity encompassing both task and patient complexity will be a valuable resource for future researchers and industry to measure and understand complexity in healthcare.

  2. Thinking Forbidden Thoughts: The Oedipus Complex as a Complex of Knowing.

    Science.gov (United States)

    Schein, Michael

    2016-04-01

    The Oedipus complex, considered by Freud the "nuclear complex of development," played a central role in the evolution of psychoanalytic thought. This paper returns to the point of transition from the seduction theory, Freud's initial theorem, to the oedipal model, and suggests that the Oedipus complex is first and foremost a text and as such contains a multiplicity of narratives. In particular, the author articulates the close relation between the Oedipus complex and the subject of knowing, postulating that underlying its surface level, the deep-level structure of this complex is one of knowing. As a complex of knowing it is of dual quality, both promoting and impeding the ability to know.

  3. Different behaviour of 63Ni and 59Fe during absorption in iron-deficient and iron-adequate jejunal rat segments ex vivo

    International Nuclear Information System (INIS)

    Mueller-Fassbender, M.; Elsenhans, B.; McKie, A.T.; Schuemann, K.

    2003-01-01

    Nickel exhibits low oral toxicity. It shares the absorptive pathways for iron, though there are substantial quantitative differences in handling of both metals. To analyse these differences more closely, jejunal segments from iron-deficient and iron-adequate rats were luminally perfused ex vivo with 59 Fe and 63 Ni at six different concentrations (1-500 μmo1/l) under steady state conditions. 59 Fe over-all absorption increased 2.0-4.6-fold in iron-deficiency at luminal concentrations between 1 and 100 μmol/l, while 63 Ni absorption increased to a much lower extent (2.6-fold at 1 μmol/l and 1.5-fold at higher luminal concentrations). Moreover, there was a 5-7-fold higher concentration for 63 Ni in the jejunal tissue than in the absorbate at luminal concentrations above 50 μmol/l which was not observed at 1 μmol 63 Ni/l and not for 59 Fe. 63 Ni tissue load showed a linear and a saturable fraction. In iron-deficiency the saturable 63 Ni fraction increased 4-fold as compared to only 1.5-fold increments for 59 Fe. Moreover, a substantially higher share of 63 Ni was retained in the jejunal tissue at high as compare to low luminal concentrations after perfusion had been continued without luminal radioactivity. This was not found for 59 Fe and suggests a concentration-dependent block of 63 Ni export across the enterocytes' basolateral membrane. To explain these results one may speculate that 63 Ni may bind more tightly to tissue ligands than 59 Fe due to the higher thermodynamic and kinetic stability of nickel complexes. In particular, nickel may bind to a basolateral population of metal carriers and block its own basolateral transfer in a concentration-dependent manner. Tight 63 Ni binding to non-specific jejunal ligands is responsible for the unaltered high linear fraction of jejunal 63 Ni load in iron-deficient and iron-adequate segments. Binding of 63 Ni to food and tissue ligands in the small intestine may, thus, be a likely explanation for the low oral nickel

  4. Complexity-management in SME : organization of complex relationships

    NARCIS (Netherlands)

    Gregus, M.; Mandorf, S.

    2009-01-01

    The complexity of companies' environment IS growmg. Complexity management and restructuring of small and medium-sized enterprises (SME) become big challenges of business studies in the next future. A chance could be seen in the use of e-business strategies and the implementation of information

  5. An in vitro and in silico study on the flavonoid-mediated modulation of the transport of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) through Caco-2 monolayers

    International Nuclear Information System (INIS)

    Schutte, Maaike E.; Freidig, Andreas P.; Sandt, Johannes J.M. van de; Alink, Gerrit M.; Rietjens, Ivonne M.C.M.; Groten, John P.

    2006-01-01

    The present study describes the effect of different flavonoids on the absorption of the pro-carcinogen PhIP through Caco-2 monolayers and the development of an in silico model describing this process taking into account passive diffusion and active transport of PhIP. Various flavonoids stimulated the apical to basolateral PhIP transport. Using the in silico model for flavone, kaempferol and chrysoeriol, the apparent Ki value for inhibition of the active transport to the apical side was estimated to be below 53 μM and for morin, robinetin and taxifolin between 164 and 268 μM. For myricetin, luteolin, naringenin and quercetin, the apparent Ki values were determined more accurately and amounted to 37.3, 12.2, 11.7 and 5.6 μM respectively. Additional experiments revealed that the apical to basolateral PhIP transport was also increased in the presence of a typical BCRP or MRP inhibitor with apparent Ki values in the same range as those of the flavonoids. This observation together with the fact that flavonoids are known to be inhibitors of MRPs and BCRP, corroborates that inhibition of these apical membrane transporters is involved in the flavonoid-mediated increased apical to basolateral PhIP transport. Based on the apparent Ki values obtained, it is concluded that the flavonols, at the levels present in the regular Western diet, are capable of stimulating the transport of PhIP through Caco-2 monolayers from the apical to the basolateral compartment. This points to flavonoid-mediated stimulation of the bioavailability of PhIP and, thus, a possible adverse effect of these supposed beneficial food ingredients

  6. Estrogen inhibits chloride secretion caused by cholera and Escherichia coli enterotoxins in female rat distal colon.

    LENUS (Irish Health Repository)

    Alzamora, Rodrigo

    2011-05-08

    Excessive Cl(-) secretion is the driving force for secretory diarrhea. 17β-Estradiol has been shown to inhibit Cl(-) secretion in rat distal colon through a nongenomic pathway. We examined whether 17β-estradiol inhibits Cl(-) secretion in an animal model of secretory diarrhea and the downstream effectors involved. The effect of 17β-estradiol on cholera toxin and heat-stable enterotoxin induced Cl(-) secretion in rat colonic mucosal sheets was studied by current-voltage clamping. Selective permeabilization of apical or basolateral membranes with amphotericin B or nystatin was used to isolate basolateral K(+) channel and apical Cl(-) channel activity, respectively. 17β-Estradiol dose-dependently inhibited secretory responses to both toxins with IC(50) values of approximately 1nM. This effect was female-gender specific, with no inhibition observed in male tissues. 17β-Estradiol responses were insensitive to the pure anti-estrogen ICI 182,720. 17β-Estradiol exerted its effects downstream of enterotoxin-induced production of second messengers (cAMP and cGMP) but was dependent on PKCδ activation. In nystatin-permeabilized tissues, apical Cl(-) currents were unaffected by 17β-estradiol treatment while basolateral K(+) current was profoundly inhibited by the hormone. This current was sensitive to the specific KCNQ1 channel inhibitors chromanol 293B and HMR-1556. In conclusion, 17β-estradiol inhibits enterotoxin-induced Cl(-) secretion via a PKCδ-dependent mechanism involving inhibition of basolateral KCNQ1 channels. These data elucidate mechanisms of 17β-estradiol inhibition of Cl(-) secretion induced by enterotoxins in intestinal epithelia, which may be relevant for the treatment of diarrheal diseases.

  7. Estrogen inhibits chloride secretion caused by cholera and Escherichia coli enterotoxins in female rat distal colon.

    LENUS (Irish Health Repository)

    Alzamora, Rodrigo

    2012-02-01

    Excessive Cl(-) secretion is the driving force for secretory diarrhea. 17beta-Estradiol has been shown to inhibit Cl(-) secretion in rat distal colon through a nongenomic pathway. We examined whether 17beta-estradiol inhibits Cl(-) secretion in an animal model of secretory diarrhea and the downstream effectors involved. The effect of 17beta-estradiol on cholera toxin and heat-stable enterotoxin induced Cl(-) secretion in rat colonic mucosal sheets was studied by current-voltage clamping. Selective permeabilization of apical or basolateral membranes with amphotericin B or nystatin was used to isolate basolateral K(+) channel and apical Cl(-) channel activity, respectively. 17beta-Estradiol dose-dependently inhibited secretory responses to both toxins with IC(50) values of approximately 1nM. This effect was female-gender specific, with no inhibition observed in male tissues. 17beta-Estradiol responses were insensitive to the pure anti-estrogen ICI 182,720. 17beta-Estradiol exerted its effects downstream of enterotoxin-induced production of second messengers (cAMP and cGMP) but was dependent on PKCdelta activation. In nystatin-permeabilized tissues, apical Cl(-) currents were unaffected by 17beta-estradiol treatment while basolateral K(+) current was profoundly inhibited by the hormone. This current was sensitive to the specific KCNQ1 channel inhibitors chromanol 293B and HMR-1556. In conclusion, 17beta-estradiol inhibits enterotoxin-induced Cl(-) secretion via a PKCdelta-dependent mechanism involving inhibition of basolateral KCNQ1 channels. These data elucidate mechanisms of 17beta-estradiol inhibition of Cl(-) secretion induced by enterotoxins in intestinal epithelia, which may be relevant for the treatment of diarrheal diseases.

  8. Data-based mathematical modeling of vectorial transport across double-transfected polarized cells.

    Science.gov (United States)

    Bartholomé, Kilian; Rius, Maria; Letschert, Katrin; Keller, Daniela; Timmer, Jens; Keppler, Dietrich

    2007-09-01

    Vectorial transport of endogenous small molecules, toxins, and drugs across polarized epithelial cells contributes to their half-life in the organism and to detoxification. To study vectorial transport in a quantitative manner, an in vitro model was used that includes polarized MDCKII cells stably expressing the recombinant human uptake transporter OATP1B3 in their basolateral membrane and the recombinant ATP-driven efflux pump ABCC2 in their apical membrane. These double-transfected cells enabled mathematical modeling of the vectorial transport of the anionic prototype substance bromosulfophthalein (BSP) that has frequently been used to examine hepatobiliary transport. Time-dependent analyses of (3)H-labeled BSP in the basolateral, intracellular, and apical compartments of cells cultured on filter membranes and efflux experiments in cells preloaded with BSP were performed. A mathematical model was fitted to the experimental data. Data-based modeling was optimized by including endogenous transport processes in addition to the recombinant transport proteins. The predominant contributions to the overall vectorial transport of BSP were mediated by OATP1B3 (44%) and ABCC2 (28%). Model comparison predicted a previously unrecognized endogenous basolateral efflux process as a negative contribution to total vectorial transport, amounting to 19%, which is in line with the detection of the basolateral efflux pump Abcc4 in MDCKII cells. Rate-determining steps in the vectorial transport were identified by calculating control coefficients. Data-based mathematical modeling of vectorial transport of BSP as a model substance resulted in a quantitative description of this process and its components. The same systems biology approach may be applied to other cellular systems and to different substances.

  9. Transport of sennosides and sennidines from Cassia angustifolia and Cassia senna across Caco-2 monolayers--an in vitro model for intestinal absorption.

    Science.gov (United States)

    Waltenberger, B; Avula, B; Ganzera, M; Khan, I A; Stuppner, H; Khan, S I

    2008-05-01

    Laxative effects of Senna preparations are mainly mediated by rheinanthrone, a metabolite formed in the intestinal flora from dianthrones. Nevertheless, it was not clear whether dianthrones are bioavailable at all and contribute to the overall effects of this important medicinal plant. Using the Caco-2 human colonic cell line as an in vitro model of the human intestinal mucosal barrier, the bioavailability of dianthrones was studied in apical to basolateral (absorptive) and basolateral to apical (secretive) direction. Permeability coefficients (P(c)) and percent transport were calculated based on quantitations by HPLC. From the data obtained it was concluded that sennosides A and B, as well as their aglycones sennidine A and B are transported through the Caco-2 monolayers in a concentration-dependent manner and their transport was linear with time. The absorption in apical to basolateral direction was poor and P(c) values were comparable to mannitol. The transport was higher in the secretory direction, indicating a significant efflux (e.g. by efflux pumps) of the (poorly) absorbed compounds in the intestinal lumen again. Our findings support the general understanding that the laxative effects of Senna are explainable mainly by metabolites and not by the natively present dianthrones.

  10. Managing Complexity

    DEFF Research Database (Denmark)

    Maylath, Bruce; Vandepitte, Sonia; Minacori, Patricia

    2013-01-01

    and into French. The complexity of the undertaking proved to be a central element in the students' learning, as the collaboration closely resembles the complexity of international documentation workplaces of language service providers. © Association of Teachers of Technical Writing.......This article discusses the largest and most complex international learning-by-doing project to date- a project involving translation from Danish and Dutch into English and editing into American English alongside a project involving writing, usability testing, and translation from English into Dutch...

  11. Mathematics for electric engineers. Complex numbers; Mathematiques pour l`electricien. Nombres complexes

    Energy Technology Data Exchange (ETDEWEB)

    Rouxel, C. [Conservatoire National des Arts et Metiers (CNAM), 75 - Paris (France)

    1999-05-01

    Complex numbers are widely used in electrical engineering. This article is divided into 5 parts dealing successively with: the cartesian form of complex numbers (definition, conjugated complex numbers, graphical representation); the trigonometrical form of complex numbers (module and argument, trigonometrical form, exponential notation, multiplication and division of two complex numbers); Moivre and Euler formulae; applications (square root and second degree equation, n. roots, plan rotation and similarity); cissoidal transformation (definition, properties, applications to electricity: complex impedance in permanent sinusoidal regime, transfer function of a linear system in permanent regime, study of an example). (J.S.)

  12. ComplexRec 2017

    DEFF Research Database (Denmark)

    a single step in the user's more complex background need. These background needs can often place a variety of constraints on which recommendations are interesting to the user and when they are appropriate. However, relatively little research has been done on these complex recommendation scenarios....... The ComplexRec 2017 workshop addressed this by providing an interactive venue for discussing approaches to recommendation in complex scenarios that have no simple one-size-fits-all-solution....

  13. Evidence for a Na+/Ca2+ exchange mechanism in frog skin epithelium

    DEFF Research Database (Denmark)

    Madsen, K H; Brodin, Birger; Nielsen, R

    1999-01-01

    In the present study we investigated the possible existence of a Na+/Ca2+ exchange mechanism in the basolateral membrane of the frog skin epithelium and whether such a mechanism plays a role in the regulation of transepithelial Na+ transport. Cytosolic calcium ([Ca2+]i) was measured with the probe...... in serosal Na+ were followed by stepwise changes in [Ca2+]i. These observations indicate the existence of a Na+/Ca2+ exchange mechanism in the basolateral membrane of the frog skin epithelium. The transepithelial Na+ transport decreased from 13.2+/-1.8 to 9.2+/-1.5 microA cm-2 (n=8, P=0.049) when Na...

  14. Complex variables

    CERN Document Server

    Fisher, Stephen D

    1999-01-01

    The most important topics in the theory and application of complex variables receive a thorough, coherent treatment in this introductory text. Intended for undergraduates or graduate students in science, mathematics, and engineering, this volume features hundreds of solved examples, exercises, and applications designed to foster a complete understanding of complex variables as well as an appreciation of their mathematical beauty and elegance. Prerequisites are minimal; a three-semester course in calculus will suffice to prepare students for discussions of these topics: the complex plane, basic

  15. Complexity Management In Projects Between Rational Momentum And Complex Conditions

    DEFF Research Database (Denmark)

    Mac, Anita; Schlamovitz, Jesper

    2015-01-01

    Abstract: This study takes its departure in a model of complexity, developed by Stacey (1993), to test and discuss its practical benefit as perceived by practicing project managers. Based on a survey, the study finds that complexity is a phenomenon recognized by project managers, and complexity...... management is associated with benefits in the development of tasks and managing stakeholders. It is also associated with some difficulty in terms of an increased need for dialogue and a risk of creating goal ambiguity. Based on the findings, we conclude that classical project management approaches can...... benefit from incorporating complexity management....

  16. Complexity management in projects between rational momentum and complex conditions

    DEFF Research Database (Denmark)

    Mac, Anita; Schlamovitz, Jesper

    This study takes its departure in a model of complexity, developed by Stacey (1993), to test and discuss its practical benefit as perceived by practicing project managers. Based on a survey, the study finds that complexity is a phenomenon recognized by project managers, and complexity management...... is associated with benefits in the development of tasks and managing stakeholders. It is also associated with some difficulty in terms of an increased need for dialogue and a risk of creating goal ambiguity. Based on the findings, we conclude that classical project management approaches can benefit from...... incorporating complexity management....

  17. Neuropathologic features of the hippocampus and amygdala in cats with familial spontaneous epilepsy.

    Science.gov (United States)

    Yu, Yoshihiko; Hasegawa, Daisuke; Hamamoto, Yuji; Mizoguchi, Shunta; Kuwabara, Takayuki; Fujiwara-Igarashi, Aki; Tsuboi, Masaya; Chambers, James Ken; Fujita, Michio; Uchida, Kazuyuki

    2018-03-01

    OBJECTIVE To investigate epilepsy-related neuropathologic changes in cats of a familial spontaneous epileptic strain (ie, familial spontaneous epileptic cats [FSECs]). ANIMALS 6 FSECs, 9 age-matched unrelated healthy control cats, and 2 nonaffected (without clinical seizures)dams and 1 nonaffected sire of FSECs. PROCEDURES Immunohistochemical analyses were used to evaluate hippocampal sclerosis, amygdaloid sclerosis, mossy fiber sprouting, and granule cell pathological changes. Values were compared between FSECs and control cats. RESULTS Significantly fewer neurons without gliosis were detected in the third subregion of the cornu ammonis (CA) of the dorsal and ventral aspects of the hippocampus as well as the central nucleus of the amygdala in FSECs versus control cats. Gliosis without neuronal loss was also observed in the CA4 subregion of the ventral aspect of the hippocampus. No changes in mossy fiber sprouting and granule cell pathological changes were detected. Moreover, similar changes were observed in the dams and sire without clinical seizures, although to a lesser extent. CONCLUSIONS AND CLINICAL RELEVANCE Findings suggested that the lower numbers of neurons in the CA3 subregion of the hippocampus and the central nucleus of the amygdala were endophenotypes of familial spontaneous epilepsy in cats. In contrast to results of other veterinary medicine reports, severe epilepsy-related neuropathologic changes (eg, hippocampal sclerosis, amygdaloid sclerosis, mossy fiber sprouting, and granule cell pathological changes) were not detected in FSECs. Despite the use of a small number of cats with infrequent seizures, these findings contributed new insights on the pathophysiologic mechanisms of genetic-related epilepsy in cats.

  18. Behavioural, neurochemical and neuroendocrine effects of the endogenous β-carboline harmane in fear-conditioned rats.

    Science.gov (United States)

    Smith, Karen L; Ford, Gemma K; Jessop, David S; Finn, David P

    2013-02-01

    The putative endogenous imidazoline binding site ligand harmane enhances neuronal activation in response to psychological stress and alters behaviour in animal models of anxiety and antidepressant efficacy. However, the neurobiological mechanisms underlying harmane's psychotropic effects are poorly understood. We investigated the effects of intraperitoneal injection of harmane (2.5 and 10 mg/kg) on fear-conditioned behaviour, hypothalamo-pituitary-adrenal axis activity, and monoaminergic activity within specific fear-associated areas of the rat brain. Harmane had no significant effect on the duration of contextually induced freezing or 22 kHz ultrasonic vocalisations and did not alter the contextually induced suppression of motor activity, including rearing. Harmane reduced the duration of rearing and tended to increase freezing in non-fear-conditioned controls, suggesting potential sedative effects. Harmane increased plasma ACTH and corticosterone concentrations, and serotonin (in hypothalamus, amygdaloid cortex, prefrontal cortex and hippocampus) and noradrenaline (prefrontal cortex) content, irrespective of fear-conditioning. Furthermore, harmane reduced dopamine and serotonin turnover in the PFC and hypothalamus, and serotonin turnover in the amygdaloid cortex in both fear-conditioned and non-fear-conditioned rats. In contrast, harmane increased dopamine and noradrenaline content and reduced dopamine turnover in the amygdala of fear-conditioned rats only, suggesting differential effects on catecholaminergic transmission in the presence and absence of fear. The precise mechanism(s) mediating these effects of harmane remain to be determined but may involve its inhibitory action on monoamine oxidases. These findings support a role for harmane as a neuromodulator, altering behaviour, brain neurochemistry and neuroendocrine function.

  19. Are the effects of benzodiazepines on discrimination and punishment dissociable?

    Science.gov (United States)

    Hodges, H; Green, S

    1987-01-01

    Studies have shown that benzodiazepines (BZs) both disrupt discrimination and increase resistance to punishment. Using a delayed response task, we provide evidence that effects of BZs on discrimination cannot be fully explained by deficits in either short or long term memory, or by intolerance for delay of reward. A schedule with rewarded, nonrewarded (Time out: TO) and conflict components was used to investigate effects in rats of compounds active at the BZ receptor on successive discrimination and punished responding in parallel. The GABA transaminase inhibitor ethanolamine-O-sulphate exerted additive effects with chlordiazepoxide (CDP) on punished but not TO responding. Both GABA and CDP injected into the amygdala selectively increased conflict rates, but with peripheral treatment CDP also increased TO rates. Two inverse BZ agonists, CGS 8216 and FG 7142 antagonzied the anti-conflict effects of GABA and CDP, given within the amygdala or peripherally, but the increase in TO rates induced by systemic CDP was counteracted only by peripheral treatments. These compounds also reduced rates of conflict responding below baseline, consistent with anxiogenic activity. Effects of the BZ antagonist Ro 15-1788 were broadly similar to those of the inverse agonists, except that it did not antagonise the anti-conflict action of intra-amygdaloid GABA, nor significantly reduce punished responding at the single dose used. We conclude from these results that the anti-conflict effects of BZs are mediated by a GABAergic amygdaloid mechanism, but that the same mechanism is not involved in BZ effects on discrimination.

  20. Complexity Theory

    Science.gov (United States)

    Lee, William H K.

    2016-01-01

    A complex system consists of many interacting parts, generates new collective behavior through self organization, and adaptively evolves through time. Many theories have been developed to study complex systems, including chaos, fractals, cellular automata, self organization, stochastic processes, turbulence, and genetic algorithms.

  1. Phospholyl-uranium complexes

    International Nuclear Information System (INIS)

    Gradoz, Philippe

    1993-01-01

    After having reported a bibliographical study on penta-methylcyclopentadienyl uranium complexes, and a description of the synthesis and radioactivity of uranium (III) and (IV) boron hydrides compounds, this research thesis reports the study of mono and bis-tetramethyl-phospholyl uranium complexes comprising chloride, boron hydride, alkyl and alkoxide ligands. The third part reports the comparison of structures, stabilities and reactions of homologue complexes in penta-methylcyclopentadienyl and tetramethyl-phospholyl series. The last part addresses the synthesis of tris-phospholyl uranium (III) and (IV) complexes. [fr

  2. Complex saddle points and the sign problem in complex Langevin simulation

    International Nuclear Information System (INIS)

    Hayata, Tomoya; Hidaka, Yoshimasa; Tanizaki, Yuya

    2016-01-01

    We show that complex Langevin simulation converges to a wrong result within the semiclassical analysis, by relating it to the Lefschetz-thimble path integral, when the path-integral weight has different phases among dominant complex saddle points. Equilibrium solution of the complex Langevin equation forms local distributions around complex saddle points. Its ensemble average approximately becomes a direct sum of the average in each local distribution, where relative phases among them are dropped. We propose that by taking these phases into account through reweighting, we can solve the wrong convergence problem. However, this prescription may lead to a recurrence of the sign problem in the complex Langevin method for quantum many-body systems.

  3. [Food-procuring stereotype movements is accompanied by changes of c-Fos gene expression in the amygdala and modulation of heart rate in rats].

    Science.gov (United States)

    Dovgan', O V; Vlasenko, O V; Buzyka, T V; Maĭs'kyĭ, V O; Piliavs'kyĭ, O I; Maznychenko, A V

    2012-01-01

    The distribution of Fos-immunoreactive (Fos-ir) and NADPH Diaphorase reactive (NADPH-dr-) neurons in the different subnuclei of amygdala and insular cortex (on the level -2,12 to -3,14 mm from bregma), and the associated changes of heart rate (HR) in intact, food-deprivated and executed food-procuring movements of rats were studied. In comparison with other groups of animals, the mean number of the Fos-ir neurons in the central nucleus of amygdala (Ce) and the insular cortex (GI/DI) at all studied levels was significantly greater in the executed food-procuring movements in rats. The main focus of localization of the Fos-ir neurons was found in lateral part of the Ce (58.5 +/- 1.9 units in 40-microm-thick section) at the level -2.56 mm. The mean number of Fos-ir neurons was significantly greater also in the lateral and capsular parts of the Ce. The mean number of Fos-ir neurons in the GI/DI was 165.5 +/- 3.2 cells in section. The number and density of NADPH-d reactive neurons was not significantly different in the brain structures of all animal groups studied. The double stained neurons (Fos-ir + NADPH-dr) were registered in medial, basolateral, anterior cortical amygdaloid nuclei and substantia innominata (SI) in rats after realization food-procuring movements. It was found that realization of food-procuring movements by the forelimb during repeated sessions was accompanied with the gradual decline of mean values of the HR (from 5% to 12% of control level) with subsequent renewal of them to the initial values (tonic component). The analysis of dynamics of the HR changes during realization of separate purposeful motion has shown the transient period of the HR suppression (500 ms), which coincided with the terminal phase of grasping of food pellet (phasic component). We suggest that the revealed focuses of localization of Fos-ir neurons in the lateral and medial subregions of amigdaloid Ce and also GI/DI, and SI testified that these structures of brain are involved

  4. Complex and symplectic geometry

    CERN Document Server

    Medori, Costantino; Tomassini, Adriano

    2017-01-01

    This book arises from the INdAM Meeting "Complex and Symplectic Geometry", which was held in Cortona in June 2016. Several leading specialists, including young researchers, in the field of complex and symplectic geometry, present the state of the art of their research on topics such as the cohomology of complex manifolds; analytic techniques in Kähler and non-Kähler geometry; almost-complex and symplectic structures; special structures on complex manifolds; and deformations of complex objects. The work is intended for researchers in these areas.

  5. Basalts of the Khodzhirbulak Suite and Assessment their Feasibility for Basalt Fiber (Surkhantau Mountains, Southwestern Shoots of the Hissar Ridge

    Directory of Open Access Journals (Sweden)

    N. M. Khakberdyev

    2017-06-01

    Full Text Available The results of preliminary assessment of basalt of the Khodzhirbulakskoy Suite of Surkhantau Mountains for the basalt fiber production are presented. According to petrographic study, the rocks are described as basalts of amygdaloidal structure. On the base of content of the amount of glassy form and nodular calcite, three groups of basalts were identified. The inverse relationship between the bulk content of the volcanic rock and the content of calcite: the greater volume of volcanic rocks, the less content of calcite, and vice versa. The basalt material demonstrates average pH module of 3.52.

  6. Adaptive generalized combination complex synchronization of uncertain real and complex nonlinear systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shi-bing, E-mail: wang-shibing@dlut.edu.cn, E-mail: wangxy@dlut.edu.cn [School of Computer and Information Engineering, Fuyang Normal University, Fuyang 236041 (China); Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024 (China); Wang, Xing-yuan, E-mail: wang-shibing@dlut.edu.cn, E-mail: wangxy@dlut.edu.cn [Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024 (China); Wang, Xiu-you [School of Computer and Information Engineering, Fuyang Normal University, Fuyang 236041 (China); Zhou, Yu-fei [College of Electrical Engineering and Automation, Anhui University, Hefei 230601 (China)

    2016-04-15

    With comprehensive consideration of generalized synchronization, combination synchronization and adaptive control, this paper investigates a novel adaptive generalized combination complex synchronization (AGCCS) scheme for different real and complex nonlinear systems with unknown parameters. On the basis of Lyapunov stability theory and adaptive control, an AGCCS controller and parameter update laws are derived to achieve synchronization and parameter identification of two real drive systems and a complex response system, as well as two complex drive systems and a real response system. Two simulation examples, namely, ACGCS for chaotic real Lorenz and Chen systems driving a hyperchaotic complex Lü system, and hyperchaotic complex Lorenz and Chen systems driving a real chaotic Lü system, are presented to verify the feasibility and effectiveness of the proposed scheme.

  7. A new generative complexity science of learning for a complex pedagogy

    NARCIS (Netherlands)

    Jörg, T.

    2007-01-01

    Proposal for the SIG Chaos and Complexity Theories at AERA 2007 Title: A New Generative Complexity Science of Learning for a Complex Pedagogy Ton Jörg IVLOS Institute of Education University of Utrecht The Netherlands A.G.D.Jorg@ivlos.uu.nl Introduction My paper focuses on the link between thinking

  8. Quantum complex rotation and uniform semiclassical calculations of complex energy eigenvalues

    International Nuclear Information System (INIS)

    Connor, J.N.L.; Smith, A.D.

    1983-01-01

    Quantum and semiclassical calculations of complex energy eigenvalues have been carried out for an exponential potential of the form V 0 r 2 exp(-r) and Lennard-Jones (12,6) potential. A straightforward method, based on the complex coordinate rotation technique, is described for the quantum calculation of complex eigenenergies. For singular potentials, the method involves an inward and outward integration of the radial Schroedinger equation, followed by matching of the logarithmic derivatives of the wave functions at an intermediate point. For regular potentials, the method is simpler, as only an inward integration is required. Attention is drawn to the World War II researches of Hartree and co-workers who anticipated later quantum mechanical work on the complex rotation method. Complex eigenenergies are also calculated from a uniform semiclassical three turning point quantization formula, which allows for the proximity of the outer pair of complex turning points. Limiting cases of this formula, which are valid for very narrow or very broad widths, are also used in the calculations. We obtain good agreement between the semiclassical and quantum results. For the Lennard-Jones (12,6) potential, we compare resonance energies and widths from the complex energy definition of a resonance with those obtained from the time delay definition

  9. Biliary Secretion of Quasi-Enveloped Human Hepatitis A Virus

    Directory of Open Access Journals (Sweden)

    Asuka Hirai-Yuki

    2016-12-01

    Full Text Available Hepatitis A virus (HAV is an unusual picornavirus that is released from cells cloaked in host-derived membranes. These quasi-enveloped virions (eHAV are the only particle type circulating in blood during infection, whereas only nonenveloped virions are shed in feces. The reason for this is uncertain. Hepatocytes, the only cell type known to support HAV replication in vivo, are highly polarized epithelial cells with basolateral membranes facing onto hepatic (blood sinusoids and apical membranes abutting biliary canaliculi from which bile is secreted to the gut. To assess whether eHAV and nonenveloped virus egress from cells via vectorially distinct pathways, we studied infected polarized cultures of Caco-2 and HepG2-N6 cells. Most (>99% progeny virions were released apically from Caco-2 cells, whereas basolateral (64% versus apical (36% release was more balanced with HepG2-N6 cells. Both apically and basolaterally released virions were predominantly enveloped, with no suggestion of differential vectorial release of eHAV versus naked virions. Basolateral to apical transcytosis of either particle type was minimal (<0.02%/h in HepG2-N6 cells, arguing against this as a mechanism for differences in membrane envelopment of serum versus fecal virus. High concentrations of human bile acids converted eHAV to nonenveloped virions, whereas virus present in bile from HAV-infected Ifnar1−/−Ifngr1−/− and Mavs−/− mice banded over a range of densities extending from that of eHAV to that of nonenveloped virions. We conclude that nonenveloped virions shed in feces are derived from eHAV released across the canalicular membrane and stripped of membranes by the detergent action of bile acids within the proximal biliary canaliculus.

  10. Inhibition of cAMP-activated intestinal chloride secretion by diclofenac: cellular mechanism and potential application in cholera.

    Science.gov (United States)

    Pongkorpsakol, Pawin; Pathomthongtaweechai, Nutthapoom; Srimanote, Potjanee; Soodvilai, Sunhapas; Chatsudthipong, Varanuj; Muanprasat, Chatchai

    2014-09-01

    Cyclic AMP-activated intestinal Cl- secretion plays an important role in pathogenesis of cholera. This study aimed to investigate the effect of diclofenac on cAMP-activated Cl- secretion, its underlying mechanisms, and possible application in the treatment of cholera. Diclofenac inhibited cAMP-activated Cl- secretion in human intestinal epithelial (T84) cells with IC50 of ∼ 20 µM. The effect required no cytochrome P450 enzyme-mediated metabolic activation. Interestingly, exposures of T84 cell monolayers to diclofenac, either in apical or basolateral solutions, produced similar degree of inhibitions. Analyses of the apical Cl- current showed that diclofenac reversibly inhibited CFTR Cl- channel activity (IC50 ∼ 10 µM) via mechanisms not involving either changes in intracellular cAMP levels or CFTR channel inactivation by AMP-activated protein kinase and protein phosphatase. Of interest, diclofenac had no effect on Na(+)-K(+) ATPases and Na(+)-K(+)-Cl- cotransporters, but inhibited cAMP-activated basolateral K(+) channels with IC50 of ∼ 3 µM. In addition, diclofenac suppressed Ca(2+)-activated Cl- channels, inwardly rectifying Cl- channels, and Ca(2+)-activated basolateral K(+) channels. Furthermore, diclofenac (up to 200 µM; 24 h of treatment) had no effect on cell viability and barrier function in T84 cells. Importantly, cholera toxin (CT)-induced Cl- secretion across T84 cell monolayers was effectively suppressed by diclofenac. Intraperitoneal administration of diclofenac (30 mg/kg) reduced both CT and Vibrio cholerae-induced intestinal fluid secretion by ∼ 70% without affecting intestinal fluid absorption in mice. Collectively, our results indicate that diclofenac inhibits both cAMP-activated and Ca(2+)-activated Cl- secretion by inhibiting both apical Cl- channels and basolateral K+ channels in intestinal epithelial cells. Diclofenac may be useful in the treatment of cholera and other types of secretory diarrheas resulting from intestinal

  11. Surface binding and uptake of cadmium (Cd2+) by LLC-PK1 cells on permeable membrane supports

    International Nuclear Information System (INIS)

    Prozialeck, W.C.; Lamar, P.C.

    1993-01-01

    Recent studies have shown that Cd 2+ has relatively specific damaging effects on cell-cell junctions in the renal epithelial cell line, LLC-PK 1 . The objective of the present studies was to examine the surface binding and uptake of Cd 2+ by LLC-PK 1 cells in relation to the disruption of cell-cell junctions. LLC-PK 1 cells on Falcon Cell Culture Inserts were exposed to CdCl 2 containing trace amounts of 109 Cd 2+ from either the apical or the basolateral compartments, and the accumulation of 109 Cd 2+ was monitored for up to 8 h. The integrity of cell-cell junctions was assessed by monitoring the transepithelial electrical resistance. The results showed that the cells accumulated 3-4 times more Cd 2+ from the basolateral compartment than from the apical compartment. The accumulation of Cd 2+ from the basolateral compartment occurred in two phases: a rapid, exponential phase that occurred in 1-2 h and coincided with a decrease in transepithelial resistance, and a slower, linear phase that continued for 6-8 h. The Cd 2+ that accumulated during the rapid phase was easily removed by washing the cells in EGTA, indicating that most of it was bound to sites on the cell surface. By contrast, most of the Cd 2+ that accumulated during the slower phase could not be removed by EGTA, indicating that it had been taken up by the cells. Additional studies showed that the rapid phase of Cd 2+ accumulation was enhanced when Ca 2+ was present at low concentrations (0.1 mM), and was greatly reduced when Ca 2+ was present at high concentrations (10 mM). These results suggest that ld 2+ damages the junctions between LLC-PK 1 cells by interacting with Ca 2+ -sensitive sites on the basolateral cell surface. (orig.)

  12. K+ channel openers restore verapamil-inhibited lung fluid resolution and transepithelial ion transport

    Directory of Open Access Journals (Sweden)

    Su Xue-Feng

    2010-05-01

    Full Text Available Abstract Background Lung epithelial Na+ channels (ENaC are regulated by cell Ca2+ signal, which may contribute to calcium antagonist-induced noncardiogenic lung edema. Although K+ channel modulators regulate ENaC activity in normal lungs, the therapeutical relevance and the underlying mechanisms have not been completely explored. We hypothesized that K+ channel openers may restore calcium channel blocker-inhibited alveolar fluid clearance (AFC by up-regulating both apical and basolateral ion transport. Methods Verapamil-induced depression of heterologously expressed human αβγ ENaC in Xenopus oocytes, apical and basolateral ion transport in monolayers of human lung epithelial cells (H441, and in vivo alveolar fluid clearance were measured, respectively, using the two-electrode voltage clamp, Ussing chamber, and BSA protein assays. Ca2+ signal in H441 cells was analyzed using Fluo 4AM. Results The rate of in vivo AFC was reduced significantly (40.6 ± 6.3% of control, P Ca3.1 (1-EBIO and KATP (minoxidil channel openers significantly recovered AFC. In addition to short-circuit current (Isc in intact H441 monolayers, both apical and basolateral Isc levels were reduced by verapamil in permeabilized monolayers. Moreover, verapamil significantly altered Ca2+ signal evoked by ionomycin in H441 cells. Depletion of cytosolic Ca2+ in αβγ ENaC-expressing oocytes completely abolished verapamil-induced inhibition. Intriguingly, KV (pyrithione-Na, K Ca3.1 (1-EBIO, and KATP (minoxidil channel openers almost completely restored the verapamil-induced decrease in Isc levels by diversely up-regulating apical and basolateral Na+ and K+ transport pathways. Conclusions Our observations demonstrate that K+ channel openers are capable of rescuing reduced vectorial Na+ transport across lung epithelial cells with impaired Ca2+ signal.

  13. Inhibition of cAMP-activated intestinal chloride secretion by diclofenac: cellular mechanism and potential application in cholera.

    Directory of Open Access Journals (Sweden)

    Pawin Pongkorpsakol

    2014-09-01

    Full Text Available Cyclic AMP-activated intestinal Cl- secretion plays an important role in pathogenesis of cholera. This study aimed to investigate the effect of diclofenac on cAMP-activated Cl- secretion, its underlying mechanisms, and possible application in the treatment of cholera. Diclofenac inhibited cAMP-activated Cl- secretion in human intestinal epithelial (T84 cells with IC50 of ∼ 20 µM. The effect required no cytochrome P450 enzyme-mediated metabolic activation. Interestingly, exposures of T84 cell monolayers to diclofenac, either in apical or basolateral solutions, produced similar degree of inhibitions. Analyses of the apical Cl- current showed that diclofenac reversibly inhibited CFTR Cl- channel activity (IC50 ∼ 10 µM via mechanisms not involving either changes in intracellular cAMP levels or CFTR channel inactivation by AMP-activated protein kinase and protein phosphatase. Of interest, diclofenac had no effect on Na(+-K(+ ATPases and Na(+-K(+-Cl- cotransporters, but inhibited cAMP-activated basolateral K(+ channels with IC50 of ∼ 3 µM. In addition, diclofenac suppressed Ca(2+-activated Cl- channels, inwardly rectifying Cl- channels, and Ca(2+-activated basolateral K(+ channels. Furthermore, diclofenac (up to 200 µM; 24 h of treatment had no effect on cell viability and barrier function in T84 cells. Importantly, cholera toxin (CT-induced Cl- secretion across T84 cell monolayers was effectively suppressed by diclofenac. Intraperitoneal administration of diclofenac (30 mg/kg reduced both CT and Vibrio cholerae-induced intestinal fluid secretion by ∼ 70% without affecting intestinal fluid absorption in mice. Collectively, our results indicate that diclofenac inhibits both cAMP-activated and Ca(2+-activated Cl- secretion by inhibiting both apical Cl- channels and basolateral K+ channels in intestinal epithelial cells. Diclofenac may be useful in the treatment of cholera and other types of secretory diarrheas resulting from intestinal

  14. Complex Constructivism: A Theoretical Model of Complexity and Cognition

    Science.gov (United States)

    Doolittle, Peter E.

    2014-01-01

    Education has long been driven by its metaphors for teaching and learning. These metaphors have influenced both educational research and educational practice. Complexity and constructivism are two theories that provide functional and robust metaphors. Complexity provides a metaphor for the structure of myriad phenomena, while constructivism…

  15. Complexity in phonology: The complex consonants of simple CV ...

    African Journals Online (AJOL)

    The main objective of this article is to investigate the interplay of simplicity and complexity in the phonological structure of Zezuru. The article argues that Zezuru affricates, prenasalised consonants (NCs) and velarised consonants (Cws) are subsegmentally complex segments which function as simple onsets. Treating them ...

  16. Cobalt(III) complex

    Indian Academy of Sciences (India)

    Administrator

    e, 40 µM complex, 10 hrs after dissolution, f, 40 µM complex, after irradiation dose 15 Gy. and H-atoms result in reduction of Co(III) to Co. (II). 6. It is interesting to see in complex containing multiple ligands what is the fate of electron adduct species formed by electron addition. Reduction to. Co(II) and intramolecular transfer ...

  17. Functional nanoparticles exploit the bile acid pathway to overcome multiple barriers of the intestinal epithelium for oral insulin delivery

    DEFF Research Database (Denmark)

    Fan, Weiwei; Xia, Dengning; Zhu, Quanlei

    2018-01-01

    , especially to avoid lysosomal degradation, and basolateral release. Here, the functional material, deoxycholic acid-conjugated chitosan, is synthesized and loaded with the model protein drug insulin into deoxycholic acid-modified nanoparticles (DNPs). The DNPs designed in this study are demonstrated......Oral absorption of protein/peptide-loaded nanoparticles is often limited by multiple barriers of the intestinal epithelium. In addition to mucus translocation and apical endocytosis, highly efficient transepithelial absorption of nanoparticles requires successful intracellular trafficking...... to endolysosomal escape of DNPs. Additionally, DNPs can interact with a cytosolic ileal bile acid-binding protein that facilitates the intracellular trafficking and basolateral release of insulin. In rats, intravital two-photon microscopy also reveals that the transport of DNPs into the intestinal villi...

  18. Nuclear weapons complex

    International Nuclear Information System (INIS)

    Rezendes, V.S.

    1991-03-01

    In this book, GAO characterizes DOE's January 1991 Nuclear Weapons Complex Reconfiguration Study as a starting point for reaching agreement on solutions to many of the complex's safety and environmental problems. Key decisions still need to be made about the size of the complex, where to relocate plutonium operations, what technologies to use for new tritium production, and what to do with excess plutonium. The total cost for reconfiguring and modernizing the complex is still uncertain, and some management issues remain unresolved. Congress faces a difficult task in making test decisions given the conflicting demands for scarce resources in a time of growing budget deficits and war in the Persian Gulf

  19. Morphology and putative function of the colon and cloaca of marine and freshwater snakes.

    Science.gov (United States)

    Babonis, Leslie S; Womack, Molly C; Evans, David H

    2012-01-01

    Among tetrapods, evidence for postrenal modification of the urine by the distal digestive tract (including the colon and cloaca) is highly variable. Birds and bladderless reptiles are of interest because the colon and cloaca represent the only sites from which water and ions can be reclaimed from the urine secreted by the kidney. For animals occupying desiccating environments (e.g., deserts and marine environments), postrenal modification of the urine may directly contribute to the maintenance of hypo-osmotic body fluids. We compared the morphology and distribution of key proteins in the colon, cloaca, and urogenital ducts of watersnakes from marine (Nerodia clarkii clarkii) and freshwater (Nerodia fasciata) habitats. Specifically, we examined the epithelia of each tissue for evidence of mucus production by examining the distribution of mucopolysaccharides, and for evidence of water/ion regulation by examining the distribution of Na(+) /K(+) -ATPase (NKA), Na(+) /K(+) /Cl(-) cotransporter (NKCC), and aquaporin 3 (AQP3). NKCC localized to the basolateral epithelium of the colon, urodeal sphincter, and proctodeum, consistent with a role in secretion of Na(+), Cl(-) , and K(+) from the tissue, but NKA was not detected in the colon or any compartment of the cloaca. Interestingly, NKA was detected in the basolateral epithelium of the ureters, suggesting the urothelium may play a role in active ion transport. AQP3 was detected in the ureters and coprodeal complex, consistent with a role in urinary and fecal dehydration or, potentially, in the production of the watery component of the mucus secreted by the coprodeal complex. Since no differences in general cloacal morphology, production of mucus, or the distribution of ion transporters/water channels were detected between the two species, cloacal osmoregulation may either be regulated by proteins not examined in this study or may not be responsible for the differential success of N. c. clarkii and N. fasciata in marine

  20. Complex Networks

    CERN Document Server

    Evsukoff, Alexandre; González, Marta

    2013-01-01

    In the last decade we have seen the emergence of a new inter-disciplinary field focusing on the understanding of networks which are dynamic, large, open, and have a structure sometimes called random-biased. The field of Complex Networks is helping us better understand many complex phenomena such as the spread of  deseases, protein interactions, social relationships, to name but a few. Studies in Complex Networks are gaining attention due to some major scientific breakthroughs proposed by network scientists helping us understand and model interactions contained in large datasets. In fact, if we could point to one event leading to the widespread use of complex network analysis is the availability of online databases. Theories of Random Graphs from Erdös and Rényi from the late 1950s led us to believe that most networks had random characteristics. The work on large online datasets told us otherwise. Starting with the work of Barabási and Albert as well as Watts and Strogatz in the late 1990s, we now know th...

  1. Syndapin/SDPN-1 is required for endocytic recycling and endosomal actin association in the Caenorhabditis elegans intestine

    Science.gov (United States)

    Gleason, Adenrele M.; Nguyen, Ken C. Q.; Hall, David H.; Grant, Barth D.

    2016-01-01

    Syndapin/pascin-family F-BAR domain proteins bind directly to membrane lipids and are associated with actin dynamics at the plasma membrane. Previous reports also implicated mammalian syndapin 2 in endosome function during receptor recycling, but precise analysis of a putative recycling function for syndapin in mammalian systems is difficult because of its effects on the earlier step of endocytic uptake and potential redundancy among the three separate genes that encode mammalian syndapin isoforms. Here we analyze the endocytic transport function of the only Caenorhabditis elegans syndapin, SDPN-1. We find that SDPN-1 is a resident protein of the early and basolateral recycling endosomes in the C. elegans intestinal epithelium, and sdpn-1 deletion mutants display phenotypes indicating a block in basolateral recycling transport. sdpn-1 mutants accumulate abnormal endosomes positive for early endosome and recycling endosome markers that are normally separate, and such endosomes accumulate high levels of basolateral recycling cargo. Furthermore, we observed strong colocalization of endosomal SDPN-1 with the F-actin biosensor Lifeact and found that loss of SDPN-1 greatly reduced Lifeact accumulation on early endosomes. Taken together, our results provide strong evidence for an in vivo function of syndapin in endocytic recycling and suggest that syndapin promotes transport via endosomal fission. PMID:27630264

  2. Chemical form of selenium affects its uptake, transport, and glutathione peroxidase activity in the human intestinal Caco-2 cell model.

    Science.gov (United States)

    Zeng, Huawei; Jackson, Matthew I; Cheng, Wen-Hsing; Combs, Gerald F

    2011-11-01

    Determining the effect of selenium (Se) chemical form on uptake, transport, and glutathione peroxidase activity in human intestinal cells is critical to assess Se bioavailability at nutritional doses. In this study, we found that two sources of L-selenomethionine (SeMet) and Se-enriched yeast each increased intracellular Se content more effectively than selenite or methylselenocysteine (SeMSC) in the human intestinal Caco-2 cell model. Interestingly, SeMSC, SeMet, and digested Se-enriched yeast were transported at comparable efficacy from the apical to basolateral sides, each being about 3-fold that of selenite. In addition, these forms of Se, whether before or after traversing from apical side to basolateral side, did not change the potential to support glutathione peroxidase (GPx) activity. Although selenoprotein P has been postulated to be a key Se transport protein, its intracellular expression did not differ when selenite, SeMSC, SeMet, or digested Se-enriched yeast was added to serum-contained media. Taken together, our data show, for the first time, that the chemical form of Se at nutritional doses can affect the absorptive (apical to basolateral side) efficacy and retention of Se by intestinal cells; but that, these effects are not directly correlated to the potential to support GPx activity.

  3. Power grid complexity

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Shengwei; Zhang, Xuemin [Tsinghua Univ., Beijing, BJ (China). Dept. of Electrical Engineering; Cao, Ming [Groningen Univ. (Netherlands). Faculty of Mathematics and Natural Sciences

    2011-07-01

    ''Power Grid Complexity'' introduces the complex system theory known as self-organized criticality (SOC) theory and complex network theory, and their applications to power systems. It studies the network characteristics of power systems, such as their small-world properties, structural vulnerability, decomposition and coordination strategies, and simplification and equivalence methods. The book also establishes four blackout models based on SOC theory through which the SOC of power systems is studied at both the macroscopic and microscopic levels. Additionally, applications of complex system theory in power system planning and emergency management platforms are also discussed in depth. This book can serve as a useful reference for engineers and researchers working with power systems. (orig.)

  4. Coxeter-like complexes

    Directory of Open Access Journals (Sweden)

    Eric Babson

    2004-12-01

    Full Text Available Motivated by the Coxeter complex associated to a Coxeter system (W,S, we introduce a simplicial regular cell complex Δ(G,S with a G-action associated to any pair (G,S where G is a group and S is a finite set of generators for G which is minimal with respect to inclusion. We examine the topology of Δ(G,S, and in particular the representations of G on its homology groups. We look closely at the case of the symmetric group S n minimally generated by (not necessarily adjacent transpositions, and their type-selected subcomplexes. These include not only the Coxeter complexes of type A, but also the well-studied chessboard complexes.

  5. Technetium complexation by macrocyclic compounds

    International Nuclear Information System (INIS)

    Li Fan Yu.

    1983-01-01

    Research in nuclear medicine are directed towards the labelling of biological molecules, however, sup(99m)Tc does not show sufficient affinity for these molecules. The aim of this study was to evaluate the ability of macrocyclic compounds to bind strongly technetium in order to be used as complexation intermediate. The reducing agents used were a stannous complex and sodium dithionite. Cryptates and polyesters are not good complexing agents. They form two complexes: a 2:1 sandwich complex or 3:2 and a 1:1 complex. Cyclams are good complexing agents for technetium their complexations strength was determined by competition with pyrophosphate, gluconate and DTPA. Using the method of ligand exchange, the oxidation state of technetium in the Tc-cyclam complex was IV or V. They are 1:1 cationic complexes, the complex charge is +1. The biodistribution in rats of labelling solutions containing (cyclam 14 ane N 4 ) C 12 H 25 shows a good urinary excretion without intoxication risks [fr

  6. Characterization of active ion transport across primary rabbit corneal epithelial cell layers (RCrECL) cultured at an air-interface.

    Science.gov (United States)

    Chang-Lin, Joan-En; Kim, Kwang-Jin; Lee, Vincent H L

    2005-06-01

    Previously, we reported the development of a primary culture model of tight rabbit corneal epithelial cell layers (RCrECL) characterizing bioelectric parameters, morphology, cytokeratin, and passive permeability. In the present study, we specifically evaluated the active ion transport processes of RCrECL cultured from either pigmented or albino rabbits. Primary cultured RCrECL were grown at an air-interface on Clear-Snapwells precoated with collagen/fibronectin/laminin and mounted in a modified Ussing-type chamber for the evaluation of their active ion transport processes under short-circuited conditions. Contribution of active Na(+) and Cl(-) transport to overall short-circuit current (I(sc)) was evaluated by removing Na(+) and Cl(-), respectively, from bathing fluids of RCrECL and measurements of net fluxes of Na(+) and Cl(-) using (22)Na and (36)Cl, respectively. Amiloride and benzamil were used to determine the role of apical Na(+)-channel activities to net Na(+) fluxes. N-phenylanthranilic acid (NPAA), ouabain, BaCl(2) and bumetanide were used to determine the role of basolateral Na,K-ATPase, apical Cl(-)-channel, and basolateral K(+)-channel and Na(+)(K(+))2Cl(-)-cotransporter activities, respectively, in active ion transport across RCrECL. I(sc) of RCrECL derived from pigmented rabbits was comprised of 64+/-2% and 44+/-5% for active Na(+) and Cl(-) transport, respectively, consistent with net Na(+) absorption and Cl(-) secretion of 0.062+/-0.006 and 0.046+/-0.008 muEq/cm(2)/hr estimated from radionuclide fluxes. Apical amiloride and benzamil inhibited I(sc) by up to approximately 50% with an IC(50) of 1 and 0.1 microm, respectively, consistent with participation of apical epithelial Na(+)-channels to net Na(+) absorption across RCrECL cultured from pigmented rabbits. Addition of ouabain to the basolateral, NPAA to the apical, BaCl(2) to the basolateral and bumetanide to basolateral fluid decreased I(sc) by 86+/-1.5%, 53+/-3%, 18+/-1.8% and 13+/-1.9% in RCr

  7. [Tissue-specific nucleoprotein complexes].

    Science.gov (United States)

    Riadnova, I Iu; Shataeva, L K; Khavinson, V Kh

    2000-01-01

    A method of isolation of native nucleorprotein complexes from cattle cerebral cortex, thymus, and liver was developed. Compositions of these complexes were studied by means of gel-chromatography and ion-exchange chromatography. These preparations were shown to consist of several fractions of proteins and their complexes differ by molecular mass and electro-chemical properties. Native nucleoprotein complexes revealed high tissue specific activity, which was not species-specific.

  8. Complex analysis and geometry

    CERN Document Server

    Silva, Alessandro

    1993-01-01

    The papers in this wide-ranging collection report on the results of investigations from a number of linked disciplines, including complex algebraic geometry, complex analytic geometry of manifolds and spaces, and complex differential geometry.

  9. On Complex Random Variables

    Directory of Open Access Journals (Sweden)

    Anwer Khurshid

    2012-07-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE In this paper, it is shown that a complex multivariate random variable  is a complex multivariate normal random variable of dimensionality if and only if all nondegenerate complex linear combinations of  have a complex univariate normal distribution. The characteristic function of  has been derived, and simpler forms of some theorems have been given using this characterization theorem without assuming that the variance-covariance matrix of the vector  is Hermitian positive definite. Marginal distributions of  have been given. In addition, a complex multivariate t-distribution has been defined and the density derived. A characterization of the complex multivariate t-distribution is given. A few possible uses of this distribution have been suggested.

  10. Complex Systems: An Introduction

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 9. Complex Systems: An Introduction - Anthropic Principle, Terrestrial Complexity, Complex Materials. V K Wadhawan. General Article Volume 14 Issue 9 September 2009 pp 894-906 ...

  11. Simplicial complexes of graphs

    CERN Document Server

    Jonsson, Jakob

    2008-01-01

    A graph complex is a finite family of graphs closed under deletion of edges. Graph complexes show up naturally in many different areas of mathematics, including commutative algebra, geometry, and knot theory. Identifying each graph with its edge set, one may view a graph complex as a simplicial complex and hence interpret it as a geometric object. This volume examines topological properties of graph complexes, focusing on homotopy type and homology. Many of the proofs are based on Robin Forman's discrete version of Morse theory. As a byproduct, this volume also provides a loosely defined toolbox for attacking problems in topological combinatorics via discrete Morse theory. In terms of simplicity and power, arguably the most efficient tool is Forman's divide and conquer approach via decision trees; it is successfully applied to a large number of graph and digraph complexes.

  12. The amygdala as a neurobiological target for ghrelin in rats: neuroanatomical, electrophysiological and behavioral evidence.

    Directory of Open Access Journals (Sweden)

    Mayte Alvarez-Crespo

    Full Text Available Here, we sought to demonstrate that the orexigenic circulating hormone, ghrelin, is able to exert neurobiological effects (including those linked to feeding control at the level of the amygdala, involving neuroanatomical, electrophysiological and behavioural studies. We found that ghrelin receptors (GHS-R are densely expressed in several subnuclei of the amygdala, notably in ventrolateral (LaVL and ventromedial (LaVM parts of the lateral amygdaloid nucleus. Using whole-cell patch clamp electrophysiology to record from cells in the lateral amygdaloid nucleus, we found that ghrelin reduced the frequency of mEPSCs recorded from large pyramidal-like neurons, an effect that could be blocked by co-application of a ghrelin receptor antagonist. In ad libitum fed rats, intra-amygdala administration of ghrelin produced a large orexigenic response that lasted throughout the 4 hr of testing. Conversely, in hungry, fasted rats ghrelin receptor blockade in the amygdala significantly reduced food intake. Finally, we investigated a possible interaction between ghrelin's effects on feeding control and emotional reactivity exerted at the level of the amygdala. In rats allowed to feed during a 1-hour period between ghrelin injection and anxiety testing (elevated plus maze and open field, intra-amygdala ghrelin had no effect on anxiety-like behavior. By contrast, if the rats were not given access to food during this 1-hour period, a decrease in anxiety-like behavior was observed in both tests. Collectively, these data indicate that the amygdala is a valid target brain area for ghrelin where its neurobiological effects are important for food intake and for the suppression of emotional (anxiety-like behaviors if food is not available.

  13. Dementia syndrome and the onset of mind

    International Nuclear Information System (INIS)

    Matsuzawa, Taiju; Meguro, Kenichi; Ueda, Masamichi; Matsui, Hiroshige

    1988-01-01

    The present report is designed to make clear the mechanism of dementia syndrome and the onset area of the mind. The plan of the statistic studies with X-CT, MRI and PET to find out the focus of dementia in the cortex was an absolute failure. A large number of patients having infarction of varying numbers and sizes in the cortex was neuropsychologically normal. With MRI, quantitative changes of atrophy and destruction were observed in the amygdaloid and hippocampal system bilaterally in both multiinfarct dementia (MID) and Alzheimer disease (AD) patients. With PET, the activity or excitability of the cortices was estimated by measuring the glucose utilization with 18 F-2-fluorodeoxyglucose in response to musical stimulation (a Japanese popular song entitled Sakura, Sakura=cherry blossoms, cherry blossoms) while having the eyes closed, (1) Not only normal volunteers but also with cases of MID and AD, the primary sensory and motor areas were stimulated. (2) In cases of MID and AD, the glucose utilization, was reduced drastically in the bilateral temporal and parietal association cortices. The impulses from all the primary sensory areas drain into the amygdala. Furthermore the impulses from the amygdala drain directly or indirectly into the hippocampus, and the impulses flow into the temporal cortex. Recognition may take place in this temporal cortex. Then, the impulses come to the parietal cortex. Conception may be completed there. Any damage to the amygdaloid and hippocampal system would result in abnormalities in memory, recognition, conception and various emotions. This is a possible mechanism of dementia syndrome. In view of this data the system also can be said to be the onset area of the mind. (author)

  14. Dementia syndrome and the onset of mind

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzawa, Taiju; Meguro, Kenichi; Ueda, Masamichi; Matsui, Hiroshige

    1988-12-01

    The present report is designed to make clear the mechanism of dementia syndrome and the onset area of the mind. The plan of the statistic studies with X-CT, MRI and PET to find out the focus of dementia in the cortex was an absolute failure. A large number of patients having infarction of varying numbers and sizes in the cortex was neuropsychologically normal. With MRI, quantitative changes of atrophy and destruction were observed in the amygdaloid and hippocampal system bilaterally in both multiinfarct dementia (MID) and Alzheimer disease (AD) patients. With PET, the activity or excitability of the cortices was estimated by measuring the glucose utilization with /sup 18/F-2-fluorodeoxyglucose in response to musical stimulation (a Japanese popular song entitled Sakura, Sakura=cherry blossoms, cherry blossoms) while having the eyes closed, (1) Not only normal volunteers but also with cases of MID and AD, the primary sensory and motor areas were stimulated. (2) In cases of MID and AD, the glucose utilization, was reduced drastically in the bilateral temporal and parietal association cortices. The impulses from all the primary sensory areas drain into the amygdala. Furthermore the impulses from the amygdala drain directly or indirectly into the hippocampus, and the impulses flow into the temporal cortex. Recognition may take place in this temporal cortex. Then, the impulses come to the parietal cortex. Conception may be completed there. Any damage to the amygdaloid and hippocampal system would result in abnormalities in memory, recognition, conception and various emotions. This is a possible mechanism of dementia syndrome. In view of this data the system also can be said to be the onset area of the mind. (author).

  15. Facial paresis in patients with mesial temporal sclerosis: clinical and quantitative MRI-based evidence of widespread disease.

    Science.gov (United States)

    Lin, Katia; Carrete, Henrique; Lin, Jaime; de Oliveira, Pedro Alessandro Leite; Caboclo, Luis Otávio Sales Ferreira; Sakamoto, Américo Ceiki; Yacubian, Elza Márcia Targas

    2007-08-01

    To assess the frequency and significance of facial paresis (FP) in a well-defined cohort of mesial temporal lobe epilepsy (MTLE) patients. One hundred consecutive patients with MRI findings consistent with mesial temporal sclerosis (MTS) and concordant electroclinical data underwent facial motor examination at rest, with voluntary expression, and with spontaneous smiling. Hippocampal, amygdaloid, and temporopolar (TP) volumetric measures were acquired. Thirty healthy subjects, matched according to age and sex, were taken as controls. Central-type FP was found in 46 patients. In 41 (89%) of 46, it was visualized at rest, with voluntary and emotional expression characterizing true facial motor paresis. In 33 (72%) of 46 patients, FP was contralateral to the side of MTS. By using a 2-SD cutoff from the mean of normal controls, we found reduction in TP volume ipsilateral to MTS in 61% of patients with FP and in 33% of those without (p = 0.01). Febrile seizures as initial precipitating injury (IPI) were observed in 34% of the patients and were classified as complex in 12 (26%) of 46 of those with FP and in five (9%) of 54 of those without (p = 0.02). The presence of FP was significantly associated with a shorter latent period and younger age at onset of habitual seizures, in particular, with secondarily generalized tonic-clonic seizures. Facial paresis is a reliable lateralizing sign in MTLE and was associated with history of complex febrile seizures as IPI, younger age at onset of disease, and atrophy of temporal pole ipsilateral to MTS, indicating more widespread disease.

  16. Actinide cation-cation complexes

    International Nuclear Information System (INIS)

    Stoyer, N.J.; Seaborg, G.T.

    1994-12-01

    The +5 oxidation state of U, Np, Pu, and Am is a linear dioxo cation (AnO 2 + ) with a formal charge of +1. These cations form complexes with a variety of other cations, including actinide cations. Other oxidation states of actinides do not form these cation-cation complexes with any cation other than AnO 2 + ; therefore, cation-cation complexes indicate something unique about AnO 2 + cations compared to actinide cations in general. The first cation-cation complex, NpO 2 + ·UO 2 2+ , was reported by Sullivan, Hindman, and Zielen in 1961. Of the four actinides that form AnO 2 + species, the cation-cation complexes of NpO 2 + have been studied most extensively while the other actinides have not. The only PuO 2 + cation-cation complexes that have been studied are with Fe 3+ and Cr 3+ and neither one has had its equilibrium constant measured. Actinides have small molar absorptivities and cation-cation complexes have small equilibrium constants; therefore, to overcome these obstacles a sensitive technique is required. Spectroscopic techniques are used most often to study cation-cation complexes. Laser-Induced Photacoustic Spectroscopy equilibrium constants for the complexes NpO 2 + ·UO 2 2+ , NpO 2 + ·Th 4+ , PuO 2 + ·UO 2 2+ , and PuO 2 + ·Th 4+ at an ionic strength of 6 M using LIPAS are 2.4 ± 0.2, 1.8 ± 0.9, 2.2 ± 1.5, and ∼0.8 M -1

  17. Conducting metal dithiolate complexes

    DEFF Research Database (Denmark)

    Underhill, A. E.; Ahmad, M. M.; Turner, D. J.

    1985-01-01

    Further work on the chemical composition of the one-dimensional metallic metal dithiolene complex Li-Pt(mnt) is reported. The electrical conduction and thermopower properties of the nickel and palladium complexes are reported and compared with those of the platinum compound......Further work on the chemical composition of the one-dimensional metallic metal dithiolene complex Li-Pt(mnt) is reported. The electrical conduction and thermopower properties of the nickel and palladium complexes are reported and compared with those of the platinum compound...

  18. Curcumin complexation with cyclodextrins by the autoclave process: Method development and characterization of complex formation.

    Science.gov (United States)

    Hagbani, Turki Al; Nazzal, Sami

    2017-03-30

    One approach to enhance curcumin (CUR) aqueous solubility is to use cyclodextrins (CDs) to form inclusion complexes where CUR is encapsulated as a guest molecule within the internal cavity of the water-soluble CD. Several methods have been reported for the complexation of CUR with CDs. Limited information, however, is available on the use of the autoclave process (AU) in complex formation. The aims of this work were therefore to (1) investigate and evaluate the AU cycle as a complex formation method to enhance CUR solubility; (2) compare the efficacy of the AU process with the freeze-drying (FD) and evaporation (EV) processes in complex formation; and (3) confirm CUR stability by characterizing CUR:CD complexes by NMR, Raman spectroscopy, DSC, and XRD. Significant differences were found in the saturation solubility of CUR from its complexes with CD when prepared by the three complexation methods. The AU yielded a complex with expected chemical and physical fingerprints for a CUR:CD inclusion complex that maintained the chemical integrity and stability of CUR and provided the highest solubility of CUR in water. Physical and chemical characterizations of the AU complexes confirmed the encapsulated of CUR inside the CD cavity and the transformation of the crystalline CUR:CD inclusion complex to an amorphous form. It was concluded that the autoclave process with its short processing time could be used as an alternate and efficient methods for drug:CD complexation. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Complex analysis

    CERN Document Server

    Freitag, Eberhard

    2005-01-01

    The guiding principle of this presentation of ``Classical Complex Analysis'' is to proceed as quickly as possible to the central results while using a small number of notions and concepts from other fields. Thus the prerequisites for understanding this book are minimal; only elementary facts of calculus and algebra are required. The first four chapters cover the essential core of complex analysis: - differentiation in C (including elementary facts about conformal mappings) - integration in C (including complex line integrals, Cauchy's Integral Theorem, and the Integral Formulas) - sequences and series of analytic functions, (isolated) singularities, Laurent series, calculus of residues - construction of analytic functions: the gamma function, Weierstrass' Factorization Theorem, Mittag-Leffler Partial Fraction Decomposition, and -as a particular highlight- the Riemann Mapping Theorem, which characterizes the simply connected domains in C. Further topics included are: - the theory of elliptic functions based on...

  20. Complexes and imagination.

    Science.gov (United States)

    Kast, Verena

    2014-11-01

    Fantasies as imaginative activities are seen by Jung as expressions of psychic energy. In the various descriptions of active imagination the observation of the inner image and the dialogue with inner figures, if possible, are important. The model of symbol formation, as Jung describes it, can be experienced in doing active imagination. There is a correspondence between Jung's understanding of complexes and our imaginations: complexes develop a fantasy life. Complex episodes are narratives of difficult dysfunctional relationship episodes that have occurred repeatedly and are internalized with episodic memory. This means that the whole complex episode (the image for the child and the image for the aggressor, connected with emotions) is internalized and can get constellated in everyday relationship. Therefore inner dialogues do not necessarily qualify as active imaginations, often they are the expression of complex-episodes, very similar to fruitless soliloquies. If imaginations of this kind are repeated, new symbols and new possibilities of behaviour are not found. On the contrary, old patterns of behaviour and fantasies are perpetuated and become cemented. Imaginations of this kind need an intervention by the analyst. In clinical examples different kinds of imaginations are discussed. © 2014, The Society of Analytical Psychology.

  1. Reversible effects of acute hypertension on proximal tubule sodium transporters

    DEFF Research Database (Denmark)

    Zhang, Y; Magyar, C E; Norian, J M

    1998-01-01

    Acute hypertension provokes a rapid decrease in proximal tubule sodium reabsorption with a decrease in basolateral membrane sodium-potassium-ATPase activity and an increase in the density of membranes containing apical membrane sodium/hydrogen exchangers (NHE3) [Y. Zhang, A. K. Mircheff, C. B....... Renal cortex lysate was fractionated on sorbitol gradients. Basolateral membrane sodium-potassium-ATPase activity (but not subunit immunoreactivity) decreased one-third to one-half after BP was elevated and recovered after BP was normalized. After BP was elevated, 55% of the apical NHE3 immunoreactivity......, smaller fractions of sodium-phosphate cotransporter immunoreactivity, and apical alkaline phosphatase and dipeptidyl-peptidase redistributed to membranes of higher density enriched in markers of the intermicrovillar cleft (megalin) and endosomes (Rab 4 and Rab 5), whereas density distributions...

  2. Disruption of Memory Reconsolidation Erases a Fear Memory Trace in the Human Amygdala: An 18-Month Follow-Up.

    Directory of Open Access Journals (Sweden)

    Johannes Björkstrand

    Full Text Available Fear memories can be attenuated by reactivation followed by disrupted reconsolidation. Using functional magnetic resonance imaging we recently showed that reactivation and reconsolidation of a conditioned fear memory trace in the basolateral amygdala predicts subsequent fear expression over two days, while reactivation followed by disrupted reconsolidation abolishes the memory trace and suppresses fear. In this follow-up study we demonstrate that the behavioral effect persists over 18 months reflected in superior reacquisition after undisrupted, as compared to disrupted reconsolidation, and that neural activity in the basolateral amygdala representing the initial fear memory predicts return of fear. We conclude that disrupting reconsolidation have long lasting behavioral effects and may permanently erase the fear component of an amygdala-dependent memory.

  3. Transcytosis of immunoglobulin A in the mouse enterocyte occurs through glycolipid raft- and rab17-containing compartments

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Niels-Christiansen, L L; Immerdal, Lissi

    1999-01-01

    BACKGROUND & AIMS: Glycolipid "rafts" have been shown to play a role in apical membrane trafficking in the enterocyte. The present study characterized the membrane compartments of the enterocyte involved in transepithelial transport of small intestinal immunoglobulin A (IgA). Methods: Immunogold...... electron microscopy and radioactive labeling of mouse small intestinal explants were performed. RESULTS: IgA and the polymeric immunoglobulin receptor/secretory component were present in a raft compartment. Raft association occurred posttranslationally within 30 minutes, preceding secretion...... and were also frequently seen associated with the same vesicular profiles of glycolipid rafts. Colocalization of IgA and rab17, a small guanosine triphosphatase involved in transcytosis, was seen mainly along the basolateral plasma membrane and over basolateral endosomes and vesicles, but also...

  4. Infection of male rats with Toxoplasma gondii induces effort-aversion in a T-maze decision-making task.

    Science.gov (United States)

    Tan, Donna; Vyas, Ajai

    2016-03-01

    Rats chronically infected with protozoan Toxoplasma gondii exhibit greater delay aversion in an inter-temporal task. Moreover T. gondii infection also results in dendritic atrophy of basolateral amygdala neurons. Basolateral amygdala is reported to bias decision making towards greater effortful alternatives. In this context, we report that T. gondii increases effort aversion in infected male rats. This host-parasite association has been widely studied in the context of loss of innate fear in the infected males. It is suggested that reduced fear towards predators reflects a parasitic behavioral manipulation to enhance trophic transmission of T. gondii. Observations reported here extend this paradigm away from a monolithic change in fear and towards a multi-dimensional change in decision making. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Leading healthcare in complexity.

    Science.gov (United States)

    Cohn, Jeffrey

    2014-12-01

    Healthcare institutions and providers are in complexity. Networks of interconnections from relationships and technology create conditions in which interdependencies and non-linear dynamics lead to surprising, unpredictable outcomes. Previous effective approaches to leadership, focusing on top-down bureaucratic methods, are no longer effective. Leading in complexity requires leaders to accept the complexity, create an adaptive space in which innovation and creativity can flourish and then integrate the successful practices that emerge into the formal organizational structure. Several methods for doing adaptive space work will be discussed. Readers will be able to contrast traditional leadership approaches with leading in complexity. They will learn new behaviours that are required of complexity leaders, along with challenges they will face, often from other leaders within the organization.

  6. Analysis and control of complex dynamical systems robust bifurcation, dynamic attractors, and network complexity

    CERN Document Server

    Imura, Jun-ichi; Ueta, Tetsushi

    2015-01-01

    This book is the first to report on theoretical breakthroughs on control of complex dynamical systems developed by collaborative researchers in the two fields of dynamical systems theory and control theory. As well, its basic point of view is of three kinds of complexity: bifurcation phenomena subject to model uncertainty, complex behavior including periodic/quasi-periodic orbits as well as chaotic orbits, and network complexity emerging from dynamical interactions between subsystems. Analysis and Control of Complex Dynamical Systems offers a valuable resource for mathematicians, physicists, and biophysicists, as well as for researchers in nonlinear science and control engineering, allowing them to develop a better fundamental understanding of the analysis and control synthesis of such complex systems.

  7. Modified projective synchronization with complex scaling factors of uncertain real chaos and complex chaos

    International Nuclear Information System (INIS)

    Zhang Fang-Fang; Liu Shu-Tang; Yu Wei-Yong

    2013-01-01

    To increase the variety and security of communication, we present the definitions of modified projective synchronization with complex scaling factors (CMPS) of real chaotic systems and complex chaotic systems, where complex scaling factors establish a link between real chaos and complex chaos. Considering all situations of unknown parameters and pseudo-gradient condition, we design adaptive CMPS schemes based on the speed-gradient method for the real drive chaotic system and complex response chaotic system and for the complex drive chaotic system and the real response chaotic system, respectively. The convergence factors and dynamical control strength are added to regulate the convergence speed and increase robustness. Numerical simulations verify the feasibility and effectiveness of the presented schemes. (general)

  8. Selenophene transition metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    White, Carter James [Iowa State Univ., Ames, IA (United States)

    1994-07-27

    This research shows that selenophene transition metal complexes have a chemistry that is similar to their thiophene analogs. Selenophene coordination has been demonstrated and confirmed by molecular structure in both the η5- and the η1(Se)-coordination modes. The reaction chemistry of selenophene complexes closely resembles that of the analogous thiophene complexes. One major difference, however, is that selenophene is a better donor ligand than thiophene making the selenophene complexes more stable than the corresponding thiophene complexes. The 77Se NMR chemical shift values for selenophene complexes fall within distinct regions primarily depending on the coordination mode of the selenophene ligand. In the final paper, the C-H bond activation of η1(S)-bound thiophenes, η1(S)-benzothiophene and η1(Se)-bound selenophenes has been demonstrated. The deprotonation and rearrangement of the η1(E)-bound ligand to the carbon bound L-yl complex readily occurs in the presence of base. Reprotonation with a strong acid gives a carbene complex that is unreactive towards nucleophilic attack at the carbene carbon and is stable towards exposure to air. The molecular structure of [Cp(NO)(PPh3)Re(2-benzothioenylcarbene)]O3SCF3 was determined and contains a Re-C bond with substantial double bond character. Methyl substitution for the thienylcarbene or selenylcarbene gives a carbene that rearranges thermally to give back the η1(E)-bound complex. Based on these model reactions, a new mechanism for the H/D exchange of thiophene over the hydrodesulfurization catalyst has been proposed.

  9. Photocytotoxic lanthanide complexes

    Indian Academy of Sciences (India)

    Among many applications of lanthanides, gadolinium complexes are used as magnetic resonance imaging (MRI) contrast agents in clinical radiology and luminescent lanthanides for bioanalysis, imaging and sensing. The chemistry of photoactive lanthanide complexes showing biological applications is of recent origin.

  10. Physical Complexity and Cognitive Evolution

    Science.gov (United States)

    Jedlicka, Peter

    Our intuition tells us that there is a general trend in the evolution of nature, a trend towards greater complexity. However, there are several definitions of complexity and hence it is difficult to argue for or against the validity of this intuition. Christoph Adami has recently introduced a novel measure called physical complexity that assigns low complexity to both ordered and random systems and high complexity to those in between. Physical complexity measures the amount of information that an organism stores in its genome about the environment in which it evolves. The theory of physical complexity predicts that evolution increases the amount of `knowledge' an organism accumulates about its niche. It might be fruitful to generalize Adami's concept of complexity to the entire evolution (including the evolution of man). Physical complexity fits nicely into the philosophical framework of cognitive biology which considers biological evolution as a progressing process of accumulation of knowledge (as a gradual increase of epistemic complexity). According to this paradigm, evolution is a cognitive `ratchet' that pushes the organisms unidirectionally towards higher complexity. Dynamic environment continually creates problems to be solved. To survive in the environment means to solve the problem, and the solution is an embodied knowledge. Cognitive biology (as well as the theory of physical complexity) uses the concepts of information and entropy and views the evolution from both the information-theoretical and thermodynamical perspective. Concerning humans as conscious beings, it seems necessary to postulate an emergence of a new kind of knowledge - a self-aware and self-referential knowledge. Appearence of selfreflection in evolution indicates that the human brain reached a new qualitative level in the epistemic complexity.

  11. Functionalized active-nucleus complex sensor

    Science.gov (United States)

    Pines, Alexander; Wemmer, David E.; Spence, Megan; Rubin, Seth

    2003-11-25

    A functionalized active-nucleus complex sensor that selectively associates with one or more target species, and a method for assaying and screening for one or a plurality of target species utilizing one or a plurality of functionalized active-nucleus complexes with at least two of the functionalized active-nucleus complexes having an attraction affinity to different corresponding target species. The functionalized active-nucleus complex has an active-nucleus and a targeting carrier. The method involves functionalizing an active-nucleus, for each functionalized active-nucleus complex, by incorporating the active-nucleus into a macromolucular or molecular complex that is capable of binding one of the target species and then bringing the macromolecular or molecular complexes into contact with the target species and detecting the occurrence of or change in a nuclear magnetic resonance signal from each of the active-nuclei in each of the functionalized active-nucleus complexes.

  12. Complex Neutrosophic Subsemigroups and Ideals

    Directory of Open Access Journals (Sweden)

    Muhammad Gulistan

    2018-01-01

    Full Text Available In this article we study the idea of complex neutrosophic subsemigroups. We define the Cartesian product of complex neutrosophic subsemigroups, give some examples and study some of its related results. We also define complex neutrosophic (left, right, interior ideal in semigroup. Furthermore, we introduce the concept of characteristic function of complex neutrosophic sets, direct product of complex neutrosophic sets and study some results prove on its.

  13. Transition Complexity of Incomplete DFAs

    Directory of Open Access Journals (Sweden)

    Yuan Gao

    2010-08-01

    Full Text Available In this paper, we consider the transition complexity of regular languages based on the incomplete deterministic finite automata. A number of results on Boolean operations have been obtained. It is shown that the transition complexity results for union and complementation are very different from the state complexity results for the same operations. However, for intersection, the transition complexity result is similar to that of state complexity.

  14. Subsumed complexity: abiogenesis as a by-product of complex energy transduction

    Science.gov (United States)

    Adam, Z. R.; Zubarev, D.; Aono, M.; Cleaves, H. James

    2017-11-01

    The origins of life bring into stark relief the inadequacy of our current synthesis of thermodynamic, chemical, physical and information theory to predict the conditions under which complex, living states of organic matter can arise. Origins research has traditionally proceeded under an array of implicit or explicit guiding principles in lieu of a universal formalism for abiogenesis. Within the framework of a new guiding principle for prebiotic chemistry called subsumed complexity, organic compounds are viewed as by-products of energy transduction phenomena at different scales (subatomic, atomic, molecular and polymeric) that retain energy in the form of bonds that inhibit energy from reaching the ground state. There is evidence for an emergent level of complexity that is overlooked in most conceptualizations of abiogenesis that arises from populations of compounds formed from atomic energy input. We posit that different forms of energy input can exhibit different degrees of dissipation complexity within an identical chemical medium. By extension, the maximum capacity for organic chemical complexification across molecular and macromolecular scales subsumes, rather than emerges from, the underlying complexity of energy transduction processes that drive their production and modification. This article is part of the themed issue 'Reconceptualizing the origins of life'.

  15. Spectroscopy of plutonium-organic complexes

    International Nuclear Information System (INIS)

    Richmann, M.K.; Reed, D.T.

    1995-01-01

    Information on the spectroscopy of plutonium-organic complexes is needed to help establish the speciation of these complexes under environmentally relevant conditions. Laser photoacoustic spectroscopy (LPAS) and absorption spectrometry were used to characterize the Pu(IV)-citrate and Pu(IV)-nitrilotriacetic acid (NTA) complexes at concentrations of 10 -3 --10 -7 M in aqueous solution. Good agreement was observed between the band shape of the LPAS and absorption spectra for the Pu(IV)-NTA complex. Agreement for the Pu(IV)-citrate complex was not quite as good. In both cases, a linear dependence of the LPAS signal on laser power and total concentration of the complexes was noted. This work is part of an ongoing research effort to study key subsurface interactions of plutonium-organic complexes

  16. Complex Networks IX

    CERN Document Server

    Coronges, Kate; Gonçalves, Bruno; Sinatra, Roberta; Vespignani, Alessandro; Proceedings of the 9th Conference on Complex Networks; CompleNet 2018

    2018-01-01

    This book aims to bring together researchers and practitioners working across domains and research disciplines to measure, model, and visualize complex networks. It collects the works presented at the 9th International Conference on Complex Networks (CompleNet) 2018 in Boston, MA in March, 2018. With roots in physical, information and social science, the study of complex networks provides a formal set of mathematical methods, computational tools and theories to describe prescribe and predict dynamics and behaviors of complex systems. Despite their diversity, whether the systems are made up of physical, technological, informational, or social networks, they share many common organizing principles and thus can be studied with similar approaches. This book provides a view of the state-of-the-art in this dynamic field and covers topics such as group decision-making, brain and cellular connectivity, network controllability and resiliency, online activism, recommendation systems, and cyber security.

  17. What is complex in the complex world? Niklas Luhmann and the theory of social systems

    Directory of Open Access Journals (Sweden)

    Clarissa Eckert Baeta Neves

    Full Text Available This paper discusses Niklas Luhmann's understanding of complexity, its function in the theory and the different ways of its use. It starts with the paradigmatic change that occurred in the field of general Science, with the rupture of the Newtonian model. In the 20th century, the paradigm of order, symmetry, regularity, regulation of the intellect to things, collapses.Based on new formulations of Physics, Chemistry, etc., a new universe is built on bases radically opposed to those of modern Science.Chaos, the procedural irreversibility, indeterminism, the observer and the complexity are rehabilitated.This new conceptual context served as substratum to Niklas Luhmann's theoretical reflection.With his Theory of Social Systems, he proposes the reduction of the world's complexity.Social systems have the function of reducing complexity because of their difference in relation to the environment.On the other hand, the reduction of complexity also creates its own complexity. Luhmann defines complexity as the moment when it is not possible anymore for each element to relate at any moment with all the others. Complexity forces the selection, what means contingency and risk. Luhmann expands the concept of complexity when he introduces the figure of the observer and the distinction of complexity as a unit of a multiplicity. He also deals with the limit of relations in connection, the time factor, the self-reference of operations and the representation of complexity in the form of sense. To conclude, the paper discusses the complexity in the system of science, the way it reduces internal and external complexity, in accordance in its own operative basis.

  18. Complexity Leadership: A Theoretical Perspective

    Science.gov (United States)

    Baltaci, Ali; Balci, Ali

    2017-01-01

    Complex systems are social networks composed of interactive employees interconnected through collaborative, dynamic ties such as shared goals, perspectives and needs. Complex systems are largely based on "the complex system theory". The complex system theory focuses mainly on finding out and developing strategies and behaviours that…

  19. Organotin complexes with phosphines

    International Nuclear Information System (INIS)

    Passos, B. de F.T.; Jesus Filho, M.F. de; Filgueiras, C.A.L.; Abras, A.

    1988-01-01

    A series of organotin complexes was prepared involving phosphines bonded to the organotin moiety. The series include derivatives of SnCl x Ph 4-x (where x varied from zero to four with the phosphines Ph 3 P, (Ph 2 P)CH 2 , (Ph 2 P) 2 (CH 2 ) 2 , cis-(Ph 2 P)CH 2 , and CH 3 C(CH 2 PPh 2 ) 3 . A host of new complexes was obtained, showing different stoichiometries, bonding modes, and coordination numbers around the tin atom. These complexes were characterized by several different chemical and physical methods. The 119 Sn Moessbauer parameters varied differently. Whereas isomer shift values did not great variation for each group of complexs with the same organotin parent (SnCl x Ph 4-x ), reflecting a small change in s charge distribution on the Sn atom upon complexation, quadrupole splitting results varied widely, however, when the parent organotin compound was wholly symmetric (SnCl 4 and SnPPh 4 ), the complexes also tended to show quadrupole splitting values approaching zero. (author)

  20. Nuclear weapons complex

    International Nuclear Information System (INIS)

    Rezendes, V.S.

    1992-04-01

    In addition to long-standing safety and environmental problems plaguing the nuclear weapons complex, this paper reports that the Department of Energy (DOE) faces a major new challenge-how to reconfigure the weapons complex to meet the nation's defense needs in the 21st century. Key decisions still need to be made about the size of the complex; where, if necessary, to relocate various operations; what technologies to use for new tritium production; and what to do with excess weapons-grade material. The choices confronting DOE and Congress are difficult given the conflicting demands for limited resources

  1. The Orion complex

    International Nuclear Information System (INIS)

    Goudis, C.

    1982-01-01

    This work deals with some of the most typical complexes of interstellar matter and presents a holistic view of the well studied complexes in Orion, built on information derived from various branches of modern astrophysics. A wealth of published data is presented in the form of photographs, contour maps, diagrams and numerous heavily annotated tables. Chapter 1, which is concerned with the large scale view of the Orion region, outlines the morphology of the area and examines in particular the nature of Barnard's Loop and the associated filamentary structure in addition to the origin of the I Orion OB association. Chapter 2 focuses on the Great Orion Nebula (M42 or NGC 1976) and the small H II region to the north (M43 or NGC 1982). Chapter 3 examines the Orion Complex as a whole, i.e. the H II regions M42 and M43, the associated molecular clouds OMC 1 and OMC 2 and their interrelations. Chapter 4 contains a discussion of the empirical models introduced to attempt to explain certain aspects of this very complex region, and chapter 5 investigates the second prominent H II region and molecular cloud complex, NGC 2024 (Orion B, W12). (Auth.)

  2. Algorithmic Relative Complexity

    Directory of Open Access Journals (Sweden)

    Daniele Cerra

    2011-04-01

    Full Text Available Information content and compression are tightly related concepts that can be addressed through both classical and algorithmic information theories, on the basis of Shannon entropy and Kolmogorov complexity, respectively. The definition of several entities in Kolmogorov’s framework relies upon ideas from classical information theory, and these two approaches share many common traits. In this work, we expand the relations between these two frameworks by introducing algorithmic cross-complexity and relative complexity, counterparts of the cross-entropy and relative entropy (or Kullback-Leibler divergence found in Shannon’s framework. We define the cross-complexity of an object x with respect to another object y as the amount of computational resources needed to specify x in terms of y, and the complexity of x related to y as the compression power which is lost when adopting such a description for x, compared to the shortest representation of x. Properties of analogous quantities in classical information theory hold for these new concepts. As these notions are incomputable, a suitable approximation based upon data compression is derived to enable the application to real data, yielding a divergence measure applicable to any pair of strings. Example applications are outlined, involving authorship attribution and satellite image classification, as well as a comparison to similar established techniques.

  3. Embracing uncertainty, managing complexity: applying complexity thinking principles to transformation efforts in healthcare systems.

    Science.gov (United States)

    Khan, Sobia; Vandermorris, Ashley; Shepherd, John; Begun, James W; Lanham, Holly Jordan; Uhl-Bien, Mary; Berta, Whitney

    2018-03-21

    Complexity thinking is increasingly being embraced in healthcare, which is often described as a complex adaptive system (CAS). Applying CAS to healthcare as an explanatory model for understanding the nature of the system, and to stimulate changes and transformations within the system, is valuable. A seminar series on systems and complexity thinking hosted at the University of Toronto in 2016 offered a number of insights on applications of CAS perspectives to healthcare that we explore here. We synthesized topics from this series into a set of six insights on how complexity thinking fosters a deeper understanding of accepted ideas in healthcare, applications of CAS to actors within the system, and paradoxes in applications of complexity thinking that may require further debate: 1) a complexity lens helps us better understand the nebulous term "context"; 2) concepts of CAS may be applied differently when actors are cognizant of the system in which they operate; 3) actor responses to uncertainty within a CAS is a mechanism for emergent and intentional adaptation; 4) acknowledging complexity supports patient-centred intersectional approaches to patient care; 5) complexity perspectives can support ways that leaders manage change (and transformation) in healthcare; and 6) complexity demands different ways of implementing ideas and assessing the system. To enhance our exploration of key insights, we augmented the knowledge gleaned from the series with key articles on complexity in the literature. Ultimately, complexity thinking acknowledges the "messiness" that we seek to control in healthcare and encourages us to embrace it. This means seeing challenges as opportunities for adaptation, stimulating innovative solutions to ensure positive adaptation, leveraging the social system to enable ideas to emerge and spread across the system, and even more important, acknowledging that these adaptive actions are part of system behaviour just as much as periods of stability are. By

  4. Impact Assessment of Cigarette Smoke Exposure on Organotypic Bronchial Epithelial Tissue Cultures: A Comparison of Mono-Culture and Coculture Model Containing Fibroblasts

    Science.gov (United States)

    Iskandar, Anita R.; Xiang, Yang; Frentzel, Stefan; Talikka, Marja; Leroy, Patrice; Kuehn, Diana; Guedj, Emmanuel; Martin, Florian; Mathis, Carole; Ivanov, Nikolai V.; Peitsch, Manuel C.; Hoeng, Julia

    2015-01-01

    Organotypic 3D cultures of epithelial cells are grown at the air–liquid interface (ALI) and resemble the in vivo counterparts. Although the complexity of in vivo cellular responses could be better manifested in coculture models in which additional cell types such as fibroblasts were incorporated, the presence of another cell type could mask the response of the other. This study reports the impact of whole cigarette smoke (CS) exposure on organotypic mono- and coculture models to evaluate the relevancy of organotypic models for toxicological assessment of aerosols. Two organotypic bronchial models were directly exposed to low and high concentrations of CS of the reference research cigarette 3R4F: monoculture of bronchial epithelial cells without fibroblasts (BR) and coculture with fibroblasts (BRF) models. Adenylate kinase (AK)-based cytotoxicity, cytochrome P450 (CYP) 1A1/1B1 activity, tissue histology, and concentrations of secreted mediators into the basolateral media, as well as transcriptomes were evaluated following the CS exposure. The results demonstrated similar impact of CS on the AK-based cytotoxicity, CYP1A1/1B1 activity, and tissue histology in both models. However, a greater number of secreted mediators was identified in the basolateral media of the monoculture than in the coculture models. Furthermore, annotation analysis and network-based systems biology analysis of the transcriptomic profiles indicated a more prominent cellular stress and tissue damage following CS in the monoculture epithelium model without fibroblasts. Finally, our results indicated that an in vivo smoking-induced xenobiotic metabolism response of bronchial epithelial cells was better reflected from the in vitro CS-exposed coculture model. PMID:26085348

  5. Complexity in practice: understanding primary care as a complex adaptive system

    Directory of Open Access Journals (Sweden)

    Beverley Ellis

    2010-06-01

    Conclusions The results are real-world exemplars of the emergent properties of complex adaptive systems. Improving clinical governance in primary care requires both complex social interactions and underpinning informatics. The socio-technical lessons learned from this research should inform future management approaches.

  6. Shapes of interacting RNA complexes

    DEFF Research Database (Denmark)

    Fu, Benjamin Mingming; Reidys, Christian

    2014-01-01

    Shapes of interacting RNA complexes are studied using a filtration via their topological genus. A shape of an RNA complex is obtained by (iteratively) collapsing stacks and eliminating hairpin loops.This shape-projection preserves the topological core of the RNA complex and for fixed topological...... genus there are only finitely many such shapes. Our main result is a new bijection that relates the shapes of RNA complexes with shapes of RNA structures. This allows to compute the shape polynomial of RNA complexes via the shape polynomial of RNA structures. We furthermore present a linear time uniform...... sampling algorithm for shapes of RNA complexes of fixed topological genus....

  7. Technetium-aspirin molecule complexes

    International Nuclear Information System (INIS)

    El-Shahawy, A.S.; Mahfouz, R.M.; Aly, A.A.M.; El-Zohry, M.

    1993-01-01

    Technetium-aspirin and technetium-aspirin-like molecule complexes were prepared. The structure of N-acetylanthranilic acid (NAA) has been decided through CNDO calculations. The ionization potential and electron affinity of the NAA molecule as well as the charge densities were calculated. The electronic absorption spectra of Tc(V)-Asp and Tc(V)-ATS complexes have two characteristic absorption bands at 450 and 600 nm, but the Tc(V)-NAA spectrum has one characteristic band at 450 nm. As a comparative study, Mo-ATS complex was prepared and its electronic absorption spectrum is comparable with the Tc-ATS complex spectrum. (author)

  8. The pervasive reach of resource-bounded Kolmogorov complexity in computational complexity theory

    Czech Academy of Sciences Publication Activity Database

    Allender, E.; Koucký, Michal; Ronneburger, D.; Roy, S.

    2011-01-01

    Roč. 77, č. 1 (2011), s. 14-40 ISSN 0022-0000 R&D Projects: GA ČR GAP202/10/0854; GA MŠk(CZ) 1M0545; GA AV ČR IAA100190902 Institutional research plan: CEZ:AV0Z10190503 Keywords : Circuit complexity * Distinguishing complexity * FewEXP * Formula size * Kolmogorov complexity Subject RIV: BA - General Mathematics Impact factor: 1.157, year: 2011 http://www.sciencedirect.com/science/article/pii/S0022000010000887

  9. Decreased expression of extracellular matrix proteins and trophic factors in the amygdala complex of depressed mice after chronic immobilization stress

    Directory of Open Access Journals (Sweden)

    Jung Soonwoong

    2012-06-01

    Full Text Available Abstract Background The amygdala plays an essential role in controlling emotional behaviors and has numerous connections to other brain regions. The functional role of the amygdala has been highlighted by various studies of stress-induced behavioral changes. Here we investigated gene expression changes in the amygdala in the chronic immobilization stress (CIS-induced depression model. Results Eight genes were decreased in the amygdala of CIS mice, including genes for neurotrophic factors and extracellular matrix proteins. Among these, osteoglycin, fibromodulin, insulin-like growth factor 2 (Igf2, and insulin-like growth factor binding protein 2 (Igfbp2 were further analyzed for histological expression changes. The expression of osteoglycin and fibromodulin simultaneously decreased in the medial, basolateral, and central amygdala regions. However, Igf2 and Igfbp2 decreased specifically in the central nucleus of the amygdala. Interestingly, this decrease was found only in the amygdala of mice showing higher immobility, but not in mice displaying lower immobility, although the CIS regimen was the same for both groups. Conclusions These results suggest that the responsiveness of the amygdala may play a role in the sensitivity of CIS-induced behavioral changes in mice.

  10. Spectral simplicity of apparent complexity. II. Exact complexities and complexity spectra

    Science.gov (United States)

    Riechers, Paul M.; Crutchfield, James P.

    2018-03-01

    The meromorphic functional calculus developed in Part I overcomes the nondiagonalizability of linear operators that arises often in the temporal evolution of complex systems and is generic to the metadynamics of predicting their behavior. Using the resulting spectral decomposition, we derive closed-form expressions for correlation functions, finite-length Shannon entropy-rate approximates, asymptotic entropy rate, excess entropy, transient information, transient and asymptotic state uncertainties, and synchronization information of stochastic processes generated by finite-state hidden Markov models. This introduces analytical tractability to investigating information processing in discrete-event stochastic processes, symbolic dynamics, and chaotic dynamical systems. Comparisons reveal mathematical similarities between complexity measures originally thought to capture distinct informational and computational properties. We also introduce a new kind of spectral analysis via coronal spectrograms and the frequency-dependent spectra of past-future mutual information. We analyze a number of examples to illustrate the methods, emphasizing processes with multivariate dependencies beyond pairwise correlation. This includes spectral decomposition calculations for one representative example in full detail.

  11. Facilitating influence of stress on the consolidation of fear memory induced by a weak training: reversal by midazolam pretreatment.

    Science.gov (United States)

    Maldonado, Noelia Martina; Martijena, Irene Delia; Molina, Víctor Alejandro

    2011-11-20

    It is well known that an emotionally arousing experience usually results in a robust and persistent memory trace. The present study explored the potential mechanisms involved in the influence of stress on the consolidation of a contextual fear memory in animals subjected to a weak fear training protocol, and whether pretreatment with intra-basolateral amygdala or systemic administration of midazolam (MDZ) prevents the potential stress-induced influence on fear memory formation. A previous restraint session facilitated fear retention, this effect was not due to a sensitized effect of restraint on the footshock experience. MDZ, both systemically or intra-basolateral amygdala infusion prior to the restraint, attenuated the stress-induced promoting influence on fear memory formation. In addition, stress exposure activated the ERK1/2 pathway in basolateral amygdala (BLA) after the weak training procedure but not after the immediate footshock protocol. Similar to our behavioral findings, MDZ attenuated stress-induced elevation of phospho-ERK2 (p-ERK2) in BLA following the acquisition session. Given that the activation of ERK1/2 pathway is essential for associative learning, we propose that stress-induced facilitation of p-ERK2 in BLA is an important mechanism for the promoting influence of stress on the consolidation of contextual fear memory. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Utilization of solid lipid nanoparticles for enhanced delivery of curcumin in cocultures of HT29-MTX and Caco-2 cells.

    Science.gov (United States)

    Guri, Anilda; Gülseren, Ibrahim; Corredig, Milena

    2013-09-01

    Solid lipid nanoparticles (SLN) have shown potential for encapsulation, protection and delivery of lipophilic functional components. In this study, we have investigated the capabilities of SLN to deliver a hydrophobic polyphenol compound, curcumin, in a coculture system of absorptive Caco-2 and mucus secreting HT29-MTX cells. The cells were grown on transport filters to mimic the human intestinal epithelium. Because of the hydrophobic nature of curcumin, its delivery to the basolateral compartment is expected to take place via a paracellular route. The changes in curcumin concentration in various compartments (i.e., apical, basolateral, mucus, and cell lysates) were evaluated using fluorescence spectroscopy. Two SLN systems were prepared with different emulsifying agents. The encapsulation of curcumin in SLN caused enhanced delivery compared to unencapsulated curcumin. In addition, SLN showed enhanced delivery compared to emulsion droplets containing liquid soy oil. The SLN were retained on the apical mucosal layer to a greater extent than emulsion droplets. The presence of SLN did not affect the integrity of the cellular junctions, as indicated by the TEER values, and the route of transport of the solid particles was simple diffusion, with permeability rates of about 7 × 10(-6) cm s(-1). Approximately 1% of total curcumin was delivered to the basolateral compartment, suggesting that most of the curcumin was absorbed and metabolized by the cell.

  13. Monoclonal antibody localization of Na+-K+-ATPase in the exocrine pancreas and parotid of the dog

    International Nuclear Information System (INIS)

    Smith, Z.D.J.; Caplan, M.J.; Forbush, B. III; Jamieson, J.D.

    1987-01-01

    A monoclonal antibody specific to the β-subunit of the canine 125 I-labeled-Na + -K + -ATPase has been characterized and used to directly localize the enzyme in thin frozen sections of dog pancreas and parotid. The antibody, 7-2M, recognizes only the β-subunit of the sodium pump as determined by immunoprecipitation and immunoblot and is not directed against an oligosaccharide determinant. 7-2M immunolocalizes to the same cellular and subcellular domains of renal tubular cells as do other, previously characterized, antibodies directed to the α-subunit of the sodium pump. In the pancreas the preponderance of the Na + -K + -ATPase is found on the basolateral membranes of centroacinar and intralobular duct cells. Interlobular duct cells also express a large component of basolaterally located enzyme, although comparatively little pump is seen on acinar cells. In the parotid a large amount of Na + -K + -ATPase is seen on the striated cut cells, with high levels also noted on cells of the intercalated ducts and serous demilunes. Again the acinar cells show comparatively low levels of Na + -K + -ATPase. In no instance is Na + -K + -ATPase found on the apical membranes of pancreas or parotid cells. These data suggest that Na + -K + -ATPase, located on the basolateral plasmalemma of duct-derived cells, may be involved in water and electrolyte secretion from the pancreas and parotid

  14. Transepithelial transport of flavanone in intestinal Caco-2 cell monolayers

    International Nuclear Information System (INIS)

    Kobayashi, Shoko; Konishi, Yutaka

    2008-01-01

    Our recent study [S. Kobayashi, S. Tanabe, M. Sugiyama, Y. Konishi, Transepithelial transport of hesperetin and hesperidin in intestinal Caco-2 cell monolayers, Biochim. Biophys. Acta, 1778 (2008) 33-41] shows that the mechanism of absorption of hesperetin involves both proton-coupled active transport and transcellular passive diffusion. Here, as well as analyzing the cell permeability of hesperetin, we also study the transport of other flavanones, naringenin and eriodictyol, using Caco-2 cell monolayers. Similar to hesperetin mentioned, naringenin and eriodictyol showed proton-coupled polarized transport in apical-to-basolateral direction in non-saturable manner, constant permeation in the apical-to-basolateral direction (J ap→bl ) irrespective of the transepithelial electrical resistance (TER), and preferable distribution into the basolateral side after apical loading in the presence of a proton gradient. Furthermore, the proton-coupled J ap→bl of hesperetin, naringenin and eriodictyol, were inhibited by substrates of the monocarboxylic acid transporter (MCT), such as benzoic acid, but not by ferulic acid. In contrast, both benzoic and ferulic acids have no stimulatory effect on J ap→bl of each flavanone by trans-stimulation analysis. These results indicates that proton-driven active transport is commonly participated in the absorption of flavanone in general, and that its transport is presumed to be unique other than MCT-mediated transport for absorption of phenolic acids (PAs), sodium-dependent MCT (SMCT) nor anion exchanger-mediated transport

  15. Complexity of formation in holography

    International Nuclear Information System (INIS)

    Chapman, Shira; Marrochio, Hugo; Myers, Robert C.

    2017-01-01

    It was recently conjectured that the quantum complexity of a holographic boundary state can be computed by evaluating the gravitational action on a bulk region known as the Wheeler-DeWitt patch. We apply this complexity=action duality to evaluate the ‘complexity of formation’ (DOI: 10.1103/PhysRevLett.116.191301; 10.1103/PhysRevD.93.086006), i.e. the additional complexity arising in preparing the entangled thermofield double state with two copies of the boundary CFT compared to preparing the individual vacuum states of the two copies. We find that for boundary dimensions d>2, the difference in the complexities grows linearly with the thermal entropy at high temperatures. For the special case d=2, the complexity of formation is a fixed constant, independent of the temperature. We compare these results to those found using the complexity=volume duality.

  16. Complexity of formation in holography

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Shira [Perimeter Institute for Theoretical Physics,Waterloo, ON N2L 2Y5 (Canada); Marrochio, Hugo [Perimeter Institute for Theoretical Physics,Waterloo, ON N2L 2Y5 (Canada); Department of Physics & Astronomy and Guelph-Waterloo Physics Institute,University of Waterloo, Waterloo, ON N2L 3G1 (Canada); Myers, Robert C. [Perimeter Institute for Theoretical Physics,Waterloo, ON N2L 2Y5 (Canada)

    2017-01-16

    It was recently conjectured that the quantum complexity of a holographic boundary state can be computed by evaluating the gravitational action on a bulk region known as the Wheeler-DeWitt patch. We apply this complexity=action duality to evaluate the ‘complexity of formation’ (DOI: 10.1103/PhysRevLett.116.191301; 10.1103/PhysRevD.93.086006), i.e. the additional complexity arising in preparing the entangled thermofield double state with two copies of the boundary CFT compared to preparing the individual vacuum states of the two copies. We find that for boundary dimensions d>2, the difference in the complexities grows linearly with the thermal entropy at high temperatures. For the special case d=2, the complexity of formation is a fixed constant, independent of the temperature. We compare these results to those found using the complexity=volume duality.

  17. Lanthanide complexes with pivaloylacetone

    International Nuclear Information System (INIS)

    Eliseeva, S.V.; Chugarov, N.V.; Kuz'mina, N.P.; Martynenko, L.I.; Nichiporuk, R.V.; Ivanov, S.A.

    2003-01-01

    Complexes Ln(pa) 3 ·2H 2 O (Ln=La, Gd, Lu, Hpa - pivaloylacetone) are synthesized and investigated by the methods of element, IR spectroscopic and thermal analyses. Behaviour of the complexes during heating in vacuum is compared with such one for acetylacetonates and dipivaloylmethanates. Structure of the complexes in solution is studied by 1 H NMR and MALDI-MS [ru

  18. Complexity Control of Fast Motion Estimation in H.264/MPEG-4 AVC with Rate-Distortion-Complexity optimization

    DEFF Research Database (Denmark)

    Wu, Mo; Forchhammer, Søren; Aghito, Shankar Manuel

    2007-01-01

    A complexity control algorithm for H.264 advanced video coding is proposed. The algorithm can control the complexity of integer inter motion estimation for a given target complexity. The Rate-Distortion-Complexity performance is improved by a complexity prediction model, simple analysis of the pa...... statistics and a control scheme. The algorithm also works well for scene change condition. Test results for coding interlaced video (720x576 PAL) are reported.......A complexity control algorithm for H.264 advanced video coding is proposed. The algorithm can control the complexity of integer inter motion estimation for a given target complexity. The Rate-Distortion-Complexity performance is improved by a complexity prediction model, simple analysis of the past...

  19. Aryldiazo complexes. Syntheses and reactions of new complexes of osmium and ruthenium

    International Nuclear Information System (INIS)

    Haymore, B.L.; Ibers, J.A.

    1975-01-01

    Aryldiazo complexes, [M(CO) 2 (NNPh)(PPh 3 ) 2 ][PF 6 ](M = Os, Ru; Ph = C 6 H 5 ), were prepared by allowing diazonium salts to react with M(CO) 3 (PPh 3 ) 2 . Infrared spectra of the Ru complex suggest the presence of two isomers both in solution and in the solid state. These complexes react with a variety of coordinating anions (X - ), to form MX(CO) 2 (NNPh)(PPh 3 ) 2 . The osmium derivatives have ν(NN) near 1455 cm -1 , which is the lowest value yet reported for a nonbridging aryldiazo ligand. The first aryldiazo--hydrido complexes, MH(CO) 2 (NNPh)(PPh 3 ) 2 and MH(CO)(NNPh)(PPh 3 ) 2 , were prepared by deprotonation of the respective phenyldiazene complexes, MH(CO) 2 (HNNPh)(PPh 3 ) 2 + and MH(CO)(HNNPh)(PPh 3 ) 3 + . The compound OsCl 3 (NNPh)(PPh 3 ) 2 was also prepared. A large number of the foregoing complexes were synthesized with selective 2 H and 15 N labels. Infrared and NMR spectra show MX(CO) 2 (NNPh)(PPh 3 ) 2 and the analogous hydrido complex to be pseudooctahedral with trans phosphine ligands, cis carbonyl ligands, and a doubly bent phenyldiazenido (NNPh - ) ligand. Similarly, MH(CO)(NNPh)(PPh 3 ) 2 possesses a trigonal-bipyramidal geometry with trans phosphine ligands and an equatorial, singly bent phenyldiazoniumato (NNPh + ) ligand. Isotopic substitution of the diazo ligand shows that ν(NN) is often vibrationally coupled with phenyl vibrational modes and that two or three bands sometimes shift upon 15 N substitution. Vibrational coupling was also observed in the higher energy region (1850 to 1900 cm -1 ) in the compound RuCl 3 (NNC 6 D 5 )(PPh 3 ) 2 . The wide range in the values of ν(NN), RuCl 3 (NNPh)(PPh 3 ) 2 (1882 cm -1 ) vs. RuCl(CO) 2 (NNPh)(PPh 3 ) 2 (1462 cm -1 ), indicates that the N--N stretching frequencies are sensitive to the electronic and steric environment of the diazo ligand. The aryldiazo complexes are compared with analogous, isoelectronic nitrosyl complexes of Os and Ru

  20. Visual Short-Term Memory Complexity

    DEFF Research Database (Denmark)

    Sørensen, Thomas Alrik

    of objective complexity, it seems that subjective complexity - which is dependent on the familiarity of the stimulus - plays a more important role than the objective visual complexity of the objects stored. In two studies, we explored how familiarity influences the capacity of VSTM. 1) In children learning...... and Cavanagh (2004) have raised the question that the capacity of VSTM is dependent on visual complexity rather than the number of objects. We hypothesise that VSTM capacity is dependent on both the objective and subjective complexity of visual stimuli. Contrary to Alvarez and Cavanagh, who argue for the role...... for letters and pictures remained similar. Our results indicate that VSTM capacity for familiar items is larger irrespective of visual complexity....

  1. Complexity: Outline of the NWO strategic theme Dynamics of complex systems

    NARCIS (Netherlands)

    Burgers, G.; Doelman, A.; Frenken, K.; Hogeweg, P.; Hommes, C.; van der Maas, H.; Mulder, B.; Stam, K.; van Steen, M.; Zandee, L.

    2008-01-01

    Dynamics of complex systems is one of the program 5 themes in the NWO (Netherlands Organisation for Scientific Research) strategy for the years 2007-2011. The ambition of the current proposal is to initiate integrated activities in the field of complex systems within the Netherlands, to provide

  2. Complexity : outline of the NWO strategic theme dynamics of complex systems

    NARCIS (Netherlands)

    Burgers, G.; Doelman, A.; Frenken, K.; Hogeweg, P.; Hommes, C.; Maas, van der H.; Mulder, B.; Stam, K.; Steen, van M.; Zandee, L.

    2008-01-01

    Dynamics of complex systems is one of the program 5 themes in the NWO (Netherlands Organisation for Scientific Research) strategy for the years 2007-2011. The ambition of the current proposal is to initiate integrated activities in the field of complex systems within the Netherlands, to provide

  3. Coopetition and Complexity : Exploring a Coopetitive Relationship with Complexity

    OpenAIRE

    Wennberg, Andreas; Persson, Emil

    2011-01-01

    Cooperation have in previous research been seen as a negative impact on competition and  vice versa. This thesis is building on a concept called coopetition in which cooperation and  competition is studied simultaneously. Coopetition have been studied in terms of the level of  cooperation and competition. However, we found a possible link between coopetition and  complexity in previous literature. Thus, the purpose of this study is to explore whether  complexity can develop an understanding f...

  4. Complexity and Control: Towards a Rigorous Behavioral Theory of Complex Dynamical Systems

    Science.gov (United States)

    Ivancevic, Vladimir G.; Reid, Darryn J.

    We introduce our motive for writing this book on complexity and control with a popular "complexity myth," which seems to be quite wide spread among chaos and complexity theory fashionistas: quote>Low-dimensional systems usually exhibit complex behaviours (which we know fromMay's studies of the Logisticmap), while high-dimensional systems usually exhibit simple behaviours (which we know from synchronisation studies of the Kuramoto model)...quote> We admit that this naive view on complex (e.g., human) systems versus simple (e.g., physical) systems might seem compelling to various technocratic managers and politicians; indeed, the idea makes for appealing sound-bites. However, it is enough to see both in the equations and computer simulations of pendula of various degree - (i) a single pendulum, (ii) a double pendulum, and (iii) a triple pendulum - that this popular myth is plain nonsense. The only thing that we can learn from it is what every tyrant already knows: by using force as a strong means of control, it is possible to effectively synchronise even hundreds of millions of people, at least for a while.

  5. Group 4 Metalloporphyrin diolato Complexes and Catalytic Application of Metalloporphyrins and Related Transition Metal Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Du, Guodong [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    In this work, the first examples of group 4 metalloporphyrin 1,2-diolato complexes were synthesized through a number of strategies. In general, treatment of imido metalloporphyrin complexes, (TTP)M=NR, (M = Ti, Zr, Hf), with vicinal diols led to the formation of a series of diolato complexes. Alternatively, the chelating pinacolate complexes could be prepared by metathesis of (TTP)MCl2 (M = Ti, Hf) with disodium pinacolate. These complexes were found to undergo C-C cleavage reactions to produce organic carbonyl compounds. For titanium porphyrins, treatment of a titanium(II) alkyne adduct, (TTP)Ti(η2-PhC≡CPh), with aromatic aldehydes or aryl ketones resulted in reductive coupling of the carbonyl groups to produce the corresponding diolato complexes. Aliphatic aldehydes or ketones were not reactive towards (TTP)Ti(η2-PhC≡CPh). However, these carbonyl compounds could be incorporated into a diolato complex on reaction with a reactive precursor, (TTP)Ti[O(Ph)2C(Ph)2O] to provide unsymmetrical diolato complexes via cross coupling reactions. In addition, an enediolato complex (TTP)Ti(OCPhCPhO) was obtained from the reaction of (TTP)Ti(η2-PhC≡CPh) with benzoin. Titanium porphyrin diolato complexes were found to be intermediates in the (TTP)Ti=O-catalyzed cleavage reactions of vicinal diols, in which atmospheric oxygen was the oxidant. Furthermore, (TTP)Ti=O was capable of catalyzing the oxidation of benzyl alcohol and α-hydroxy ketones to benzaldehyde and α-diketones, respectively. Other high valent metalloporphyrin complexes also can catalyze the oxidative diol cleavage and the benzyl alcohol oxidation reactions with dioxygen. A comparison of Ti(IV) and Sn(IV) porphyrin chemistry was undertaken. While chelated diolato complexes were invariably obtained for titanium porphyrins on treatment with 1,2-diols, the reaction of vicinal diols with tin porphyrins gave a number of products, including mono

  6. Thinking in complexity the complex dynamics of matter, mind, and mankind

    CERN Document Server

    Mainzer, Klaus

    1994-01-01

    The theory of nonlinear complex systems has become a successful and widely used problem-solving approach in the natural sciences - from laser physics, quantum chaos and meteorology to molecular modeling in chemistry and computer simulations of cell growth in biology In recent times it has been recognized that many of the social, ecological and political problems of mankind are also of a global, complex and nonlinear nature And one of the most exciting topics of present scientific and public interest is the idea that even the human mind is governed largely by the nonlinear dynamics of complex systems In this wide-ranging but concise treatment Prof Mainzer discusses, in nontechnical language, the common framework behind these endeavours Special emphasis is given to the evolution of new structures in natural and cultural systems and it is seen clearly how the new integrative approach of complexity theory can give new insights that were not available using traditional reductionistic methods

  7. Clearing the complexity: immune complexes and their treatment in lupus nephritis

    Directory of Open Access Journals (Sweden)

    Catherine Toong

    2011-01-01

    Full Text Available Catherine Toong1, Stephen Adelstein1, Tri Giang Phan21Department of Clinical Immunology, Royal Prince Alfred Hospital, Missenden Rd, Camperdown, NSW, Australia; 2Immunology Program, Garvan Institute of Medical Research and St. Vincent’s Clinical School, University of New South Wales, Darlinghurst, NSW, AustraliaAbstract: Systemic lupus erythematosus (SLE is a classic antibody-mediated systemic autoimmune disease characterised by the development of autoantibodies to ubiquitous self-antigens (such as antinuclear antibodies and antidouble-stranded DNA antibodies and widespread deposition of immune complexes in affected tissues. Deposition of immune complexes in the kidney results in glomerular damage and occurs in all forms of lupus nephritis. The development of nephritis carries a poor prognosis and high risk of developing end-stage renal failure despite recent therapeutic advances. Here we review the role of DNA-anti-DNA immune complexes in the pathogenesis of lupus nephritis and possible new treatment strategies aimed at their control.Keywords: immune complex, systemic lupus erythematosus, nephritis, therapy

  8. Fitting the elementary rate constants of the P-gp transporter network in the hMDR1-MDCK confluent cell monolayer using a particle swarm algorithm.

    Directory of Open Access Journals (Sweden)

    Deep Agnani

    Full Text Available P-glycoprotein, a human multidrug resistance transporter, has been extensively studied due to its importance to human health and disease. In order to understand transport kinetics via P-gp, confluent cell monolayers overexpressing P-gp are widely used. The purpose of this study is to obtain the mass action elementary rate constants for P-gp's transport and to functionally characterize members of P-gp's network, i.e., other transporters that transport P-gp substrates in hMDR1-MDCKII confluent cell monolayers and are essential to the net substrate flux. Transport of a range of concentrations of amprenavir, loperamide, quinidine and digoxin across the confluent monolayer of cells was measured in both directions, apical to basolateral and basolateral to apical. We developed a global optimization algorithm using the Particle Swarm method that can simultaneously fit all datasets to yield accurate and exhaustive fits of these elementary rate constants. The statistical sensitivity of the fitted values was determined by using 24 identical replicate fits, yielding simple averages and standard deviations for all of the kinetic parameters, including the efflux active P-gp surface density. Digoxin required additional basolateral and apical transporters, while loperamide required just a basolateral tranporter. The data were better fit by assuming bidirectional transporters, rather than active importers, suggesting that they are not MRP or active OATP transporters. The P-gp efflux rate constants for quinidine and digoxin were about 3-fold smaller than reported ATP hydrolysis rate constants from P-gp proteoliposomes. This suggests a roughly 3∶1 stoichiometry between ATP hydrolysis and P-gp transport for these two drugs. The fitted values of the elementary rate constants for these P-gp substrates support the hypotheses that the selective pressures on P-gp are to maintain a broad substrate range and to keep xenobiotics out of the cytosol, but not out of the

  9. Biliary Secretion of Quasi-Enveloped Human Hepatitis A Virus.

    Science.gov (United States)

    Hirai-Yuki, Asuka; Hensley, Lucinda; Whitmire, Jason K; Lemon, Stanley M

    2016-12-06

    Hepatitis A virus (HAV) is an unusual picornavirus that is released from cells cloaked in host-derived membranes. These quasi-enveloped virions (eHAV) are the only particle type circulating in blood during infection, whereas only nonenveloped virions are shed in feces. The reason for this is uncertain. Hepatocytes, the only cell type known to support HAV replication in vivo, are highly polarized epithelial cells with basolateral membranes facing onto hepatic (blood) sinusoids and apical membranes abutting biliary canaliculi from which bile is secreted to the gut. To assess whether eHAV and nonenveloped virus egress from cells via vectorially distinct pathways, we studied infected polarized cultures of Caco-2 and HepG2-N6 cells. Most (>99%) progeny virions were released apically from Caco-2 cells, whereas basolateral (64%) versus apical (36%) release was more balanced with HepG2-N6 cells. Both apically and basolaterally released virions were predominantly enveloped, with no suggestion of differential vectorial release of eHAV versus naked virions. Basolateral to apical transcytosis of either particle type was minimal (work reveals that it has an unusual life cycle. Virus is found in cell culture supernatant fluids in two mature, infectious forms: one wrapped in membranes (quasi-enveloped) and another that is nonenveloped. Membrane-wrapped virions circulate in blood during acute infection and are resistant to neutralizing antibodies, likely facilitating HAV dissemination within the liver. On the other hand, virus shed in feces is nonenveloped and highly stable, facilitating epidemic spread and transmission to naive hosts. Factors controlling the biogenesis of these two distinct forms of the virus in infected humans are not understood. Here we characterize vectorial release of quasi-enveloped virions from polarized epithelial cell cultures and provide evidence that bile acids strip membranes from eHAV following its secretion into the biliary tract. These results

  10. Subgroup complexes

    CERN Document Server

    Smith, Stephen D

    2011-01-01

    This book is intended as an overview of a research area that combines geometries for groups (such as Tits buildings and generalizations), topological aspects of simplicial complexes from p-subgroups of a group (in the spirit of Brown, Quillen, and Webb), and combinatorics of partially ordered sets. The material is intended to serve as an advanced graduate-level text and partly as a general reference on the research area. The treatment offers optional tracks for the reader interested in buildings, geometries for sporadic simple groups, and G-equivariant equivalences and homology for subgroup complexes.

  11. Adaptive control for a class of nonlinear complex dynamical systems with uncertain complex parameters and perturbations.

    Directory of Open Access Journals (Sweden)

    Jian Liu

    Full Text Available In this paper, adaptive control is extended from real space to complex space, resulting in a new control scheme for a class of n-dimensional time-dependent strict-feedback complex-variable chaotic (hyperchaotic systems (CVCSs in the presence of uncertain complex parameters and perturbations, which has not been previously reported in the literature. In detail, we have developed a unified framework for designing the adaptive complex scalar controller to ensure this type of CVCSs asymptotically stable and for selecting complex update laws to estimate unknown complex parameters. In particular, combining Lyapunov functions dependent on complex-valued vectors and back-stepping technique, sufficient criteria on stabilization of CVCSs are derived in the sense of Wirtinger calculus in complex space. Finally, numerical simulation is presented to validate our theoretical results.

  12. Adaptive control for a class of nonlinear complex dynamical systems with uncertain complex parameters and perturbations.

    Science.gov (United States)

    Liu, Jian; Liu, Kexin; Liu, Shutang

    2017-01-01

    In this paper, adaptive control is extended from real space to complex space, resulting in a new control scheme for a class of n-dimensional time-dependent strict-feedback complex-variable chaotic (hyperchaotic) systems (CVCSs) in the presence of uncertain complex parameters and perturbations, which has not been previously reported in the literature. In detail, we have developed a unified framework for designing the adaptive complex scalar controller to ensure this type of CVCSs asymptotically stable and for selecting complex update laws to estimate unknown complex parameters. In particular, combining Lyapunov functions dependent on complex-valued vectors and back-stepping technique, sufficient criteria on stabilization of CVCSs are derived in the sense of Wirtinger calculus in complex space. Finally, numerical simulation is presented to validate our theoretical results.

  13. Complexity a very short introduction

    CERN Document Server

    Holland, John H

    2014-01-01

    The importance of complexity is well-captured by Hawking's comment: "Complexity is the science of the 21st century". From the movement of flocks of birds to the Internet, environmental sustainability, and market regulation, the study and understanding of complex non-linear systems has become highly influential over the last 30 years. In this Very Short Introduction, one of the leading figures in the field, John Holland, introduces the key elements and conceptual framework of complexity. From complex physical systems such as fluid flow and the difficulties of predicting weather, to complex adaptive systems such as the highly diverse and interdependent ecosystems of rainforests, he combines simple, well-known examples - Adam Smith's pin factory, Darwin's comet orchid, and Simon's 'watchmaker' - with an account of the approaches, involving agents and urn models, taken by complexity theory. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost eve...

  14. Quantifying Complexity in Quantum Phase Transitions via Mutual Information Complex Networks.

    Science.gov (United States)

    Valdez, Marc Andrew; Jaschke, Daniel; Vargas, David L; Carr, Lincoln D

    2017-12-01

    We quantify the emergent complexity of quantum states near quantum critical points on regular 1D lattices, via complex network measures based on quantum mutual information as the adjacency matrix, in direct analogy to quantifying the complexity of electroencephalogram or functional magnetic resonance imaging measurements of the brain. Using matrix product state methods, we show that network density, clustering, disparity, and Pearson's correlation obtain the critical point for both quantum Ising and Bose-Hubbard models to a high degree of accuracy in finite-size scaling for three classes of quantum phase transitions, Z_{2}, mean field superfluid to Mott insulator, and a Berzinskii-Kosterlitz-Thouless crossover.

  15. Quantifying Complexity in Quantum Phase Transitions via Mutual Information Complex Networks

    Science.gov (United States)

    Valdez, Marc Andrew; Jaschke, Daniel; Vargas, David L.; Carr, Lincoln D.

    2017-12-01

    We quantify the emergent complexity of quantum states near quantum critical points on regular 1D lattices, via complex network measures based on quantum mutual information as the adjacency matrix, in direct analogy to quantifying the complexity of electroencephalogram or functional magnetic resonance imaging measurements of the brain. Using matrix product state methods, we show that network density, clustering, disparity, and Pearson's correlation obtain the critical point for both quantum Ising and Bose-Hubbard models to a high degree of accuracy in finite-size scaling for three classes of quantum phase transitions, Z2, mean field superfluid to Mott insulator, and a Berzinskii-Kosterlitz-Thouless crossover.

  16. Innovation in a complex environment

    Directory of Open Access Journals (Sweden)

    René Pellissier

    2012-11-01

    Objectives: The study objectives were, firstly, to establish the determinants for complexity and how these can be addressed from a design point of view in order to ensure innovation success and, secondly, to determine how this changes innovation forms and applications. Method: Two approaches were offered to deal with a complex environment – one allowing for complexity for organisational innovation and the other introducing reductionism to minimise complexity. These approaches were examined in a qualitative study involving case studies, open-ended interviews and content analysis between seven developing economy (South African organisations and seven developed economy (US organisations. Results: This study presented a proposed framework for (organisational innovation in a complex environment versus a framework that minimises complexity. The comparative organisational analysis demonstrated the importance of initiating organisational innovation to address internal and external complexity, with the focus being on the leadership actions, their selected operating models and resultant organisational innovations designs, rather than on technological innovations. Conclusion: This study cautioned the preference for technological innovation within organisations and suggested alternative innovation forms (such as organisational and management innovation be used to remain competitive in a complex environment.

  17. COMPLEX PROMOTIONSIN RETAIL

    Directory of Open Access Journals (Sweden)

    O. Yusupova

    2015-10-01

    Full Text Available Complex promotions used by retailers introduce to the consumers several rules that must be satisfied in order to get some benefits and usually refer to multiple products (e.g. “buy two, get one free”. Rules of complex promotions can be quite sophisticated and complicated themselves. Since diversity of complex promotions limited only by marketers’ imagination we can observe broad variety of promotions’ rules and representa¬tions of those rules in retailers’ commercials. Such diversification makes no good for fellow scientist who’s trying to sort all type of promotions into the neatly organized classification. Although we can simple add every single set of rules offered by retailers as a separate form of sales promotion it seems not to be the best way of dealing with such a problem. The better way is to realize that mechanisms underlying that variety of promotions are basically the same, namely changes in demand or quantity demanded. Those two concepts alone provide powerful insight into classification of complex promotions and allow us to comprehend the variety of promotions offered by marketers nowadays.

  18. Amygdala-enriched genes identified by microarray technology are restricted to specific amygdaloid subnuclei

    OpenAIRE

    Zirlinger, M.; Kreiman, Gabriel; Anderson, D. J.

    2001-01-01

    Microarray technology represents a potentially powerful method for identifying cell type- and regionally restricted genes expressed in the brain. Here we have combined a microarray analysis of differential gene expression among five selected brain regions, including the amygdala, cerebellum, hippocampus, olfactory bulb, and periaqueductal gray, with in situ hybridization. On average, 0.3% of the 34,000 genes interrogated were highly enriched in each of the five regions...

  19. Nuclear weapons complex

    International Nuclear Information System (INIS)

    Peach, J.D.

    1991-02-01

    In this paper, GAO provides its views on DOE's January 1991 Nuclear Weapons Complex Reconfiguration Study. GAO believes that DOE's new reconfiguration study provides a starting point for reaching agreement on solutions to many of the complex's problems. Key decisions still need to be made about the size of the complex, where to relocate plutonium operations, what technologies should be used for new tritium production, and what to do with excess plutonium. The total cost for reconfiguring and modernizing is still uncertain and some management issues remain unresolved. Congress faces a difficult task in making these decisions given the conflicting demands for scare resources in a time of growing budget deficits and war in the Persian Gulf

  20. The SEA complex – the beginning

    Directory of Open Access Journals (Sweden)

    Dokudovskaya S. S.

    2012-07-01

    Full Text Available The presence of distinctive internal membrane compartments, dynamically connected via selective transport pathways, is a hallmark of eukaryotic cells. Many of the proteins required for formation and maintenance of these compartments share an evolutionary history. We have recently identified a new conserved protein complex – the SEA complex – that possesses proteins with structural characteristics similar to the membrane coating complexes such as the nuclear pore complex (NPC, the COPII vesicle coating complex and HOPS/CORVET tethering complexes. The SEA complex in yeast is dynamically associated to the vacuole. The data on the function of the SEA complex remain extremely limited. Here we will discuss a possible role of the SEA complex based on the data from genetic assays and a number of functional studies in both yeast and other eukaryotes.

  1. Qubit Complexity of Continuous Problems

    National Research Council Canada - National Science Library

    Papageorgiou, A; Traub, J. F

    2005-01-01

    .... The authors show how to obtain the classical query complexity for continuous problems. They then establish a simple formula for a lower bound on the qubit complexity in terms of the classical query complexity...

  2. Innovation in a complex environment

    Directory of Open Access Journals (Sweden)

    René Pellissier

    2012-02-01

    Full Text Available Background: As our world becomes more global and competitive yet less predictable, the focus seems to be increasingly on looking to innovation activities to remain competitive. Although there is little doubt that a nation’s competitiveness is embedded in its innovativeness, the complex environment should not be ignored. Complexity is not accounted for in balance sheets or reported in reports; it becomes entrenched in every activity in the organisation. Innovation takes many forms and comes in different shapes.Objectives: The study objectives were, firstly, to establish the determinants for complexity and how these can be addressed from a design point of view in order to ensure innovation success and, secondly, to determine how this changes innovation forms and applications.Method: Two approaches were offered to deal with a complex environment – one allowing for complexity for organisational innovation and the other introducing reductionism to minimise complexity. These approaches were examined in a qualitative study involving case studies, open-ended interviews and content analysis between seven developing economy (South African organisations and seven developed economy (US organisations.Results: This study presented a proposed framework for (organisational innovation in a complex environment versus a framework that minimises complexity. The comparative organisational analysis demonstrated the importance of initiating organisational innovation to address internal and external complexity, with the focus being on the leadership actions, their selected operating models and resultant organisational innovations designs, rather than on technological innovations.Conclusion: This study cautioned the preference for technological innovation within organisations and suggested alternative innovation forms (such as organisational and management innovation be used to remain competitive in a complex environment. 

  3. SCAR/WAVE: A complex issue.

    Science.gov (United States)

    Davidson, Andrew J; Insall, Robert H

    2013-11-01

    The SCAR/WAVE complex drives the actin polymerisation that underlies protrusion of the front of the cell and thus drives migration. However, it is not understood how the activity of SCAR/WAVE is regulated to generate the infinite range of cellular shape changes observed during cell motility. What are the relative roles of the subunits of the SCAR/WAVE complex? What signaling molecules do they interact with? And how does the complex integrate all this information in order to control the temporal and spatial polymerisation of actin during protrusion formation? Unfortunately, the interdependence of SCAR complex members has made genetic dissection hard. In our recent paper,(1) we describe stabilization of the Dictyostelium SCAR complex by a small fragment of Abi. Here we summarize the main findings and discuss how this approach can help reveal the inner workings of this impenetrable complex.

  4. Complex manifolds

    CERN Document Server

    Morrow, James

    2006-01-01

    This book, a revision and organization of lectures given by Kodaira at Stanford University in 1965-66, is an excellent, well-written introduction to the study of abstract complex (analytic) manifolds-a subject that began in the late 1940's and early 1950's. It is largely self-contained, except for some standard results about elliptic partial differential equations, for which complete references are given. -D. C. Spencer, MathSciNet The book under review is the faithful reprint of the original edition of one of the most influential textbooks in modern complex analysis and geometry. The classic

  5. Hypoxia targeting copper complexes

    International Nuclear Information System (INIS)

    Dearling, J.L.

    1998-11-01

    The importance and incidence of tumour hypoxia, its measurement and current treatments available, including pharmacological and radiopharmacological methods of targeting hypoxia, are discussed. A variety of in vitro and in vivo methods for imposing hypoxia have been developed and are reviewed. Copper, its chemistry, biochemistry and radiochemistry, the potential for use of copper radionuclides and its use to date in this field is considered with particular reference to the thiosemicarbazones. Their biological activity, metal chelation, in vitro and in vivo studies of their radiocopper complexes and the potential for their use as hypoxia targeting radiopharmaceuticals is described. The reduction of the copper(II) complex to copper(l), its pivotal importance in their biological behaviour, and the potential for manipulation of this to effect hypoxia selectivity are described. An in vitro method for assessing the hypoxia selectivity of radiopharmaceuticals is reported. The rapid deoxygenation and high viability of a mammalian cell culture in this system is discussed and factors which may affect the cellular uptake of a radiopharmaceutical are described. The design, synthesis and complexation with copper and radiocopper of a range of bis(thiosemicarbazones) is reported. Synthesis of these compounds is simple giving high yields of pure products. The characteristics of the radiocopper complexes ( 64 Cu) including lipophilicity and redox activity are reported (reduction potentials in the range -0.314 - -0.590 V). High cellular uptakes of the radiocopper complexes of the ligands, in hypoxic and normoxic EMT6 and CHO320 cells, were observed. Extremes of selectivity are shown ranging from the hypoxia selective 64 Cu(II)ATSM to normoxic cell selective 64 Cu(II)GTS. The selectivities observed are compared with the physico chemical characteristics of the complexes. A good correlation exists between selectivity of the complex and its Cu(II)/Cu(I) reduction potential, with hypoxia

  6. Complex Systems and Dependability

    CERN Document Server

    Zamojski, Wojciech; Sugier, Jaroslaw

    2012-01-01

    Typical contemporary complex system is a multifaceted amalgamation of technical, information, organization, software and human (users, administrators and management) resources. Complexity of such a system comes not only from its involved technical and organizational structure but mainly from complexity of information processes that must be implemented in the operational environment (data processing, monitoring, management, etc.). In such case traditional methods of reliability analysis focused mainly on technical level are usually insufficient in performance evaluation and more innovative meth

  7. Complexity Management - A multiple case study analysis on control and reduction of complexity costs

    DEFF Research Database (Denmark)

    Myrodia, Anna

    of products, with features more custom-made to cover individual needs, both regarding characteristics of products and support services. This necessity leads to a considerable increase of the complexity in the company, which affects the product portfolio, production and supply chain, market segments......, IT systems, and business processes. In order to identify and eliminate complexity, several approaches are used, both by researchers and practitioners. The purpose of this thesis is to contribute to the existing knowledge of complexity management theory. This research focuses on the relationship between......Complexity tends to be arguably the biggest challenge of manufacturing companies. The motivation of further studying complexity is a combination between the existing literature and the practical experiences from the industry. Based on the latest trend companies are trying to supply a growing mix...

  8. On dependence of stability of lanthanum complexes with aminopolycarboxylic acids on the complex structure

    International Nuclear Information System (INIS)

    Poluehktov, N.S.; Meshkova, S.B.; Danilkovich, M.M.; Topilova, Z.M.

    1985-01-01

    Regularities in changes of stability constants of lanthanum complexes with aminopolycarboxylic acids (APA) versus their structure are studied, The stability of lathanum-APA complexes depends mainly on the number of carboxyl groups in a ligand molecule. At that, the highest stability constant is characteristic of a complex with a ligand, containing 3 nitrogen atoms and 5 carboxyl groups, in the presenoe of which the lanthanum ion coordination sphere gets satupated. The oxyethy group introduction into a ligand molecule also improves the lanthanum complex stability but to a lesser degree than during the introduction of a carboxyl group. The number of nitrogen atoms in a ligand polecule affects insignificantly the complex stability constant value, and the elongation of a chain of CH 2 groups, separating nitrogen atoms, reduces the constant to a -0.6 power

  9. Complex Projective Synchronization in Drive-Response Stochastic Complex Networks by Impulsive Pinning Control

    Directory of Open Access Journals (Sweden)

    Xuefei Wu

    2014-01-01

    Full Text Available The complex projective synchronization in drive-response stochastic coupled networks with complex-variable systems is considered. The impulsive pinning control scheme is adopted to achieve complex projective synchronization and several simple and practical sufficient conditions are obtained in a general drive-response network. In addition, the adaptive feedback algorithms are proposed to adjust the control strength. Several numerical simulations are provided to show the effectiveness and feasibility of the proposed methods.

  10. High-resolution magnetic resonance imaging reveals nuclei of the human amygdala: manual segmentation to automatic atlas.

    Science.gov (United States)

    Saygin, Z M; Kliemann, D; Iglesias, J E; van der Kouwe, A J W; Boyd, E; Reuter, M; Stevens, A; Van Leemput, K; McKee, A; Frosch, M P; Fischl, B; Augustinack, J C

    2017-07-15

    The amygdala is composed of multiple nuclei with unique functions and connections in the limbic system and to the rest of the brain. However, standard in vivo neuroimaging tools to automatically delineate the amygdala into its multiple nuclei are still rare. By scanning postmortem specimens at high resolution (100-150µm) at 7T field strength (n = 10), we were able to visualize and label nine amygdala nuclei (anterior amygdaloid, cortico-amygdaloid transition area; basal, lateral, accessory basal, central, cortical medial, paralaminar nuclei). We created an atlas from these labels using a recently developed atlas building algorithm based on Bayesian inference. This atlas, which will be released as part of FreeSurfer, can be used to automatically segment nine amygdala nuclei from a standard resolution structural MR image. We applied this atlas to two publicly available datasets (ADNI and ABIDE) with standard resolution T1 data, used individual volumetric data of the amygdala nuclei as the measure and found that our atlas i) discriminates between Alzheimer's disease participants and age-matched control participants with 84% accuracy (AUC=0.915), and ii) discriminates between individuals with autism and age-, sex- and IQ-matched neurotypically developed control participants with 59.5% accuracy (AUC=0.59). For both datasets, the new ex vivo atlas significantly outperformed (all p amygdala derived from the segmentation in FreeSurfer 5.1 (ADNI: 75%, ABIDE: 54% accuracy), as well as classification based on whole amygdala volume (using the sum of all amygdala nuclei volumes; ADNI: 81%, ABIDE: 55% accuracy). This new atlas and the segmentation tools that utilize it will provide neuroimaging researchers with the ability to explore the function and connectivity of the human amygdala nuclei with unprecedented detail in healthy adults as well as those with neurodevelopmental and neurodegenerative disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Connections of the corticomedial amygdala in the golden hamster. I. Efferents of the ''vomeronasal amygdala''

    International Nuclear Information System (INIS)

    Kevetter, G.A.; Winans, S.S.

    1981-01-01

    The medial (M) an posteromedial cortical (C3) amygdaloid nuclei and the nucleus of the accessory olfactory tract (NAOT) are designated the ''vomeronasal amygdala'' because they are the only components of the amygdala to receive a direct projection from the accessory olfactory bulb (AOB). The efferents of M and C3 were traced after injections of 3 H-proline into the amygdala in male golden hamsters. Frozen sections of the brains were processed for autoradiography. The efferents of the ''vomeronasal amygdala'' are largely to areas which are primary and secondary terminal areas along the vomeronasal pathway, although the efferents from C3 and M terminate in different layers in these areas than do the projections from the vomeronasal nerve or the AOB. Specifically, C3 projects ipsilaterally to the internal granule cell layer of the AOB, the cellular layer of NAOT, and layer Ib of M. Additional fibers from C3 terminate in a retrocommissural component of the bed nucleus of the strain terminalis (BNST) bilaterally, and in the cellular layers of the contralateral C3. The medial nucleus projects to the cellular layer of the ipsilateral NAOT, layer Ib of C3, and bilaterally to the medial component of BNST. Projections from M to non-vomeronasal areas terminate in the medial preoptic area-anterior hypothalamic junction, ventromedial nucleus of the hypothalamus, ventral premammillary nucleus and possibly in the ventral subiculum. These results demonstrate reciprocal connections between primary and secondary vomeronasal areas between the secondary areas themselves. They suggest that M, but not C3, projects to areas outside this vomeronasal network. The medial amygdaloid nucleus is therefore an important link between the vomeronasal organ and areas of the brain not receiving direct vomeronasal input

  12. Densidad y anatomia de la madera en familias mejoradas de sauces en Argentina

    Directory of Open Access Journals (Sweden)

    Silvia Monteoliva

    2013-12-01

    Full Text Available El objetivo del trabajo fue la evaluación de densidad y anatomía de la madera en siete familias de sauces, con vistas a seleccionar clones aptos para la producción de madera para usos sólidos y papel. Se cruzaron progenitores de cinco especies de sauces (S. babylonica, S. alba, S. nigra, S. amygdaloides y S. matsudana, obteniéndose 1800 individuos producto de cruzamientos controlados y polinización abierta, dentro del programa de mejoramiento de sauces del INTA. A los 34 meses se efectuó una primera selección por criterios de crecimiento, sanidad y forma. De esta primera fase de mejoramiento se seleccionaron 218 genotipos sobre los cuales se evaluaron las características anatómicas cuantitativas y la densidad de la madera. Los resultados indican que ninguna familia presenta buenos resultados en todas las propiedades. En una selección priorizando el vigor, la familia 08.09 presentó las siguientes características: buen crecimiento en diámetro (6,1 cm, fibras largas y de pared gruesa (850 µm y 2,22 µm, pocos vasos (94.mm-2 y densidad intermedia a baja (350 kg.m-3. Priorizando el rendimiento, material fibroso e indirectamente la resistencia, las familias 08.01 y 08.07 presentaron: densidad relativamente alta (403 - 397 kg.m-3, fibras largas (836 - 864 µm, vasos pequeños (46 - 45 µm y bajo crecimiento en diámetro (3 - 2,85 cm. Los cruzamientos donde intervienen las especies Salix nigra, S. amygdaloides y S. matsudana se destacaron ya que presentan buenos crecimientos y las mejores combinaciones xilológicas para diferentes destinos industriales.

  13. MANAGEMENT OF SPORT COMPLEXES

    Directory of Open Access Journals (Sweden)

    Marian STAN

    2015-07-01

    Full Text Available The actuality of the investigated theme. Nowadays, human evolution, including his intellectual development, proves the fact that especially the creation manpower and the employment was the solution of all life’s ambitions in society. So, the fact is that in reality, man is the most important capital of the society. Also, in an individual’s life, the practice of sport plays a significant role and that’s why the initiation, the launch and the management of sports complexes activity reveal the existence of specific management features that we will identify and explain in the current study. The aim of the research refers to the elaboration of a theoretical base of the management of the sport complexes, to the pointing of the factors that influence the efficient existence and function of a sport complex in our country and to the determination of the responsibilities that have a manager who directs successfully the activity of the sport complexes. The investigation is based on theoretical methods, such as: scientific documentation, analysis, synthesis, comparison and on empirical research methods, like: study of researched literature and observation. The results of the research indicate the fact that the profitability of a sport complex must assure a particular structure to avoid the bankruptcy risk and also, that the administration of the sport complexes activity must keep in view the reliable functions of the contemporaneous management.

  14. COMPLEXITY AND UNIVERSITY

    Directory of Open Access Journals (Sweden)

    Edna Lemes Martins Pereira

    2013-12-01

    Full Text Available Economic globalization affects different countries on the globe, has positive effects mainly related to access to communication, which promotes the exchange of ideas, information, products and quality of life. However, extends numerous negative aspects such as marginalization, economic dependencies, political, cultural, scientific, educational accentuate social inequalities and cultural conflicts and territorial. In this article it is a dialogue with authors (Cunha 2009; BARNETT 2005; MORIN 1999, 2006, among others, who understand these changes in society from the contemporary world as conceived as the "Complexity era" or "supercomplexity". To understand and cope with this reality, they propose a paradigm that is able to overcome the fragmentation and reductionism of knowledge and to relate the multiple approaches and visions to meet the complexity of reality. Although this paper presents proposals to the aforementioned authors point to education and the university found in this tangle of interconnected global transformations, given the need to be subject to act in a complex reality that requires critical and self-critical professionals, able to think about their own ability to think, understand and act within this complex context.

  15. Cooperativity of complex salt bridges

    OpenAIRE

    Gvritishvili, Anzor G.; Gribenko, Alexey V.; Makhatadze, George I.

    2008-01-01

    The energetic contribution of complex salt bridges, in which one charged residue (anchor residue) forms salt bridges with two or more residues simultaneously, has been suggested to have importance for protein stability. Detailed analysis of the net energetics of complex salt bridge formation using double- and triple-mutant cycle analysis revealed conflicting results. In two cases, it was shown that complex salt bridge formation is cooperative, i.e., the net strength of the complex salt bridge...

  16. Study of complex modes

    International Nuclear Information System (INIS)

    Pastrnak, J.W.

    1986-01-01

    This eighteen-month study has been successful in providing the designer and analyst with qualitative guidelines on the occurrence of complex modes in the dynamics of linear structures, and also in developing computer codes for determining quantitatively which vibration modes are complex and to what degree. The presence of complex modes in a test structure has been verified. Finite element analysis of a structure with non-proportional dumping has been performed. A partial differential equation has been formed to eliminate possible modeling errors

  17. Managing complexity insights, concepts, applications

    CERN Document Server

    Helbing, Dirk

    2007-01-01

    Each chapter in Managing Complexity focuses on analyzing real-world complex systems and transferring knowledge from the complex-systems sciences to applications in business, industry and society. The interdisciplinary contributions range from markets and production through logistics, traffic control, and critical infrastructures, up to network design, information systems, social conflicts and building consensus. They serve to raise readers' awareness concerning the often counter-intuitive behavior of complex systems and to help them integrate insights gained in complexity research into everyday planning, decision making, strategic optimization, and policy. Intended for a broad readership, the contributions have been kept largely non-technical and address a general, scientifically literate audience involved in corporate, academic, and public institutions.

  18. Complexation of buffer constituents with neutral complexation agents: part II. Practical impact in capillary zone electrophoresis.

    Science.gov (United States)

    Beneš, Martin; Riesová, Martina; Svobodová, Jana; Tesařová, Eva; Dubský, Pavel; Gaš, Bohuslav

    2013-09-17

    This article elucidates the practical impact of the complexation of buffer constituents with complexation agents on electrophoretic results, namely, complexation constant determination, system peak development, and proper separation of analytes. Several common buffers, which were selected based on the pH study in Part I of this paper series (Riesová, M.; Svobodová, J.; Tošner, Z.; Beneš, M.; Tesařová, E.; Gaš, B. Anal. Chem., 2013, DOI: 10.1021/ac4013804); e.g., CHES, MES, MOPS, Tricine were used to demonstrate behavior of such complex separation systems. We show that the value of a complexation constant determined in the interacting buffers environment depends not only on the analyte and complexation agent but it is also substantially affected by the type and concentration of buffer constituents. As a result, the complexation parameters determined in the interacting buffers cannot be regarded as thermodynamic ones and may provide misleading information about the strength of complexation of the compound of interest. We also demonstrate that the development of system peaks in interacting buffer systems significantly differs from the behavior known for noncomplexing systems, as the mobility of system peaks depends on the concentration and type of neutral complexation agent. Finally, we show that the use of interacting buffers can totally ruin the results of electrophoretic separation because the buffer properties change as the consequence of the buffer constituents' complexation. As a general conclusion, the interaction of buffer constituents with the complexation agent should always be considered in any method development procedures.

  19. Quantify the complexity of turbulence

    Science.gov (United States)

    Tao, Xingtian; Wu, Huixuan

    2017-11-01

    Many researchers have used Reynolds stress, power spectrum and Shannon entropy to characterize a turbulent flow, but few of them have measured the complexity of turbulence. Yet as this study shows, conventional turbulence statistics and Shannon entropy have limits when quantifying the flow complexity. Thus, it is necessary to introduce new complexity measures- such as topology complexity and excess information-to describe turbulence. Our test flow is a classic turbulent cylinder wake at Reynolds number 8100. Along the stream-wise direction, the flow becomes more isotropic and the magnitudes of normal Reynolds stresses decrease monotonically. These seem to indicate the flow dynamics becomes simpler downstream. However, the Shannon entropy keeps increasing along the flow direction and the dynamics seems to be more complex, because the large-scale vortices cascade to small eddies, the flow is less correlated and more unpredictable. In fact, these two contradictory observations partially describe the complexity of a turbulent wake. Our measurements (up to 40 diameters downstream the cylinder) show that the flow's degree-of-complexity actually increases firstly and then becomes a constant (or drops slightly) along the stream-wise direction. University of Kansas General Research Fund.

  20. An Appetitive Experience after Fear Memory Destabilization Attenuates Fear Retention: Involvement GluN2B-NMDA Receptors in the Basolateral Amygdala Complex

    Science.gov (United States)

    Ferrer Monti, Roque I.; Giachero, Marcelo; Alfei, Joaquín M.; Bueno, Adrián M.; Cuadra, Gabriel; Molina, Victor A.

    2016-01-01

    It is known that a consolidated memory can return to a labile state and become transiently malleable following reactivation. This instability is followed by a restabilization phase termed reconsolidation. In this work, we explored whether an unrelated appetitive experience (voluntary consumption of diluted sucrose) can affect a contextual fear…

  1. BRAND program complex

    International Nuclear Information System (INIS)

    Androsenko, A.A.; Androsenko, P.A.

    1983-01-01

    A description is given of the structure, input procedure and recording rules of initial data for the BRAND programme complex intended for the Monte Carlo simulation of neutron physics experiments. The BRAND complex ideology is based on non-analogous simulation of the neutron and photon transport process (statistic weights are used, absorption and escape of particles from the considered region is taken into account, shifted readouts from a coordinate part of transition nucleus density are applied, local estimations, etc. are used). The preparation of initial data for three sections is described in detail: general information for Monte Carlo calculation, source definition and data for describing the geometry of the system. The complex is to be processed with the BESM-6 computer, the basic programming lan-- guage is FORTRAN, volume - more than 8000 operators

  2. Identification of a small TAF complex and its role in the assembly of TAF-containing complexes.

    Science.gov (United States)

    Demény, Màté A; Soutoglou, Evi; Nagy, Zita; Scheer, Elisabeth; Jànoshàzi, Agnes; Richardot, Magalie; Argentini, Manuela; Kessler, Pascal; Tora, Laszlo

    2007-03-21

    TFIID plays a role in nucleating RNA polymerase II preinitiation complex assembly on protein-coding genes. TFIID is a multisubunit complex comprised of the TATA box binding protein (TBP) and 14 TBP-associated factors (TAFs). Another class of multiprotein transcriptional regulatory complexes having histone acetyl transferase (HAT) activity, and containing TAFs, includes TFTC, STAGA and the PCAF/GCN5 complex. Looking for as yet undiscovered subunits by a proteomic approach, we had identified TAF8 and SPT7L in human TFTC preparations. Subsequently, however, we demonstrated that TAF8 was not a stable component of TFTC, but that it is present in a small TAF complex (SMAT), containing TAF8, TAF10 and SPT7L, that co-purified with TFTC. Thus, TAF8 is a subunit of both TFIID and SMAT. The latter has to be involved in a pathway of complex formation distinct from the other known TAF complexes, since these three histone fold (HF)-containing proteins (TAF8, TAF10 and SPT7L) can never be found together either in TFIID or in STAGA/TFTC HAT complexes. Here we show that TAF8 is absolutely necessary for the integration of TAF10 in a higher order TFIID core complex containing seven TAFs. TAF8 forms a heterodimer with TAF10 through its HF and proline rich domains, and also interacts with SPT7L through its C-terminal region, and the three proteins form a complex in vitro and in vivo. Thus, the TAF8-TAF10 and TAF10-SPT7L HF pairs, and also the SMAT complex, seem to be important regulators of the composition of different TFIID and/or STAGA/TFTC complexes in the nucleus and consequently may play a role in gene regulation.

  3. Complexity science and leadership in healthcare.

    Science.gov (United States)

    Burns, J P

    2001-10-01

    The emerging field of complexity science offers an alternative leadership strategy for the chaotic, complex healthcare environment. A survey revealed that healthcare leaders intuitively support principles of complexity science. Leadership that uses complexity principles offers opportunities in the chaotic healthcare environment to focus less on prediction and control and more on fostering relationships and creating conditions in which complex adaptive systems can evolve to produce creative outcomes.

  4. Complex Functions with GeoGebra

    Science.gov (United States)

    Breda, Ana Maria D'azevedo; Dos Santos, José Manuel Dos Santos

    2016-01-01

    Complex functions, generally feature some interesting peculiarities, seen as extensions of real functions. The visualization of complex functions properties usually requires the simultaneous visualization of two-dimensional spaces. The multiple Windows of GeoGebra, combined with its ability of algebraic computation with complex numbers, allow the…

  5. Complex DNA structures and structures of DNA complexes

    International Nuclear Information System (INIS)

    Chazin, W.J.; Carlstroem, G.; Shiow-Meei Chen; Miick, S.; Gomez-Paloma, L.; Smith, J.; Rydzewski, J.

    1994-01-01

    Complex DNA structures (for example, triplexes, quadruplexes, junctions) and DNA-ligand complexes are more difficult to study by NMR than standard DNA duplexes are because they have high molecular weights, show nonstandard or distorted local conformations, and exhibit large resonance linewidths and severe 1 H spectral overlap. These systems also tend to have limited solubility and may require specialized solution conditions to maintain favorable spectral characteristics, which adds to the spectroscopic difficulties. Furthermore, with more atoms in the system, both assignment and structure calculation become more challenging. In this article, we focus on demonstrating the current status of NMR studies of such systems and the limitations to further progress; we also indicate in what ways isotopic enrichment can be useful

  6. Complex DNA structures and structures of DNA complexes

    Energy Technology Data Exchange (ETDEWEB)

    Chazin, W.J.; Carlstroem, G.; Shiow-Meei Chen; Miick, S.; Gomez-Paloma, L.; Smith, J.; Rydzewski, J. [Scripps Research Institute, La Jolla, CA (United States)

    1994-12-01

    Complex DNA structures (for example, triplexes, quadruplexes, junctions) and DNA-ligand complexes are more difficult to study by NMR than standard DNA duplexes are because they have high molecular weights, show nonstandard or distorted local conformations, and exhibit large resonance linewidths and severe {sup 1}H spectral overlap. These systems also tend to have limited solubility and may require specialized solution conditions to maintain favorable spectral characteristics, which adds to the spectroscopic difficulties. Furthermore, with more atoms in the system, both assignment and structure calculation become more challenging. In this article, we focus on demonstrating the current status of NMR studies of such systems and the limitations to further progress; we also indicate in what ways isotopic enrichment can be useful.

  7. Oligocyclopentadienyl transition metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    de Azevedo, Cristina G.; Vollhardt, K. Peter C.

    2002-01-18

    Synthesis, characterization, and reactivity studies of oligocyclopentadienyl transition metal complexes, namely those of fulvalene, tercyclopentadienyl, quatercyclopentadienyl, and pentacyclopentadienyl(cyclopentadienyl) are the subject of this account. Thermal-, photo-, and redox chemistries of homo- and heteropolynuclear complexes are described.

  8. Measuring Complexity of SAP Systems

    Directory of Open Access Journals (Sweden)

    Ilja Holub

    2016-10-01

    Full Text Available The paper discusses the reasons of complexity rise in ERP system SAP R/3. It proposes a method for measuring complexity of SAP. Based on this method, the computer program in ABAP for measuring complexity of particular SAP implementation is proposed as a tool for keeping ERP complexity under control. The main principle of the measurement method is counting the number of items or relations in the system. The proposed computer program is based on counting of records in organization tables in SAP.

  9. Receptors for GRP/bombesin-like peptides in the rat forebrain

    International Nuclear Information System (INIS)

    Wolf, S.S.; Moody, T.W.

    1985-01-01

    Binding sites in the rat forebrain were characterized using ( 125 I-Tyr4)bombesin as a receptor probe. Pharmacology experiments indicate that gastrin releasing peptide (GRP) and the GRP fragments GRP as well as Ac-GRP inhibited radiolabeled (Tyr4)bombesin binding with high affinity. Biochemistry experiments indicated that heat, N-ethyl maleimide or trypsin greatly reduced radiolabeled (Tyr4)bombesin binding. Also, autoradiographic studies indicated that highest grain densities were present in the stria terminalis, periventricular and suprachiasmatic nucleus of the hypothalamus, dorsomedial and rhomboid thalamus, dentate gyrus, hippocampus and medial amygdaloid nucleus. The data suggest that CNS protein receptors, which are discretely distributed in the rat forebrain, may mediate the action of endogenous GRP/bombesin-like peptides

  10. An autoradiographic study of the projections of the central nucleus of the monkey amygdala

    International Nuclear Information System (INIS)

    Price, J.L.; Amaral, D.G.

    1981-01-01

    The efferent connections of the central nucleus of the monkey amygdala have been studied using the autoradiographic method for tracing axonal projections. Small injections of 3H-amino-acids which are largely confined to the central nucleus lead to the labeling of several brainstem nuclei as far caudally as the spinomedullary junction. A number of intra-amygdaloid connections between the basal and lateral nuclei of the amygdala and the central nucleus are also described. The present findings, taken together with recently reported widespread projections from the temporal association cortex to the amygdala, point out a potentially trisynaptic route between neocortical association regions and a variety of brainstem nuclei, many of which are related to autonomic function

  11. Exotic plant species around Jeongeup Research Complex and RFT industrial complex

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Cha, Min Kyoung; Ryu, Tae Ho; Lee, Yun Jong; Kim, Jin Hong

    2015-01-01

    In Shinjeong-dong of Jeongeup, there are three government-supported research institutes and an RFT industrial complex which is currently being established. Increased human activities can affect flora and fauna as a man-made pressure onto the region. As a baseline study, status of exotic plants was investigated prior to a full operation of the RFT industrial complex. A total of 54 species and 1 variety of naturalized or introduced plants were found in the study area. Among them, three species (Ambrosia artemisifolia var. elatior, Rumex acetocella and Aster pilosus) belong to 'nuisance species', and four species (Phytolacca americana, Iopomoea hederacea, Ereechtites hieracifolia and Rudbeckia laciniata) to ‘monitor species’ designated by the ministry of Environment. Some of naturalized trees and plants were intentionally introduced in this area, while others naturally immigrated. Physalis angulata seems to immigrate in the study area in the form of mixture with animal feeds as its distribution coincided with the transportation route of the animal feeds. Liquidambar styraciflua is amenable to the ecological investigation on the possible expansion of the species to the nearby Naejang National Park as its leave shape and autumn color are very similar to those of maple trees. The number of naturalized plants around the RFT industrial complex will increase with an increase in floating population, in human activities in association with constructions of factories and operations of the complex. The result of this study provides baseline data for assessing the ecological change of the region according to the operation of the RFT industrial complex

  12. Exotic plant species around Jeongeup Research Complex and RFT industrial complex

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Kyu; Cha, Min Kyoung; Ryu, Tae Ho; Lee, Yun Jong; Kim, Jin Hong [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup(Korea, Republic of)

    2015-08-15

    In Shinjeong-dong of Jeongeup, there are three government-supported research institutes and an RFT industrial complex which is currently being established. Increased human activities can affect flora and fauna as a man-made pressure onto the region. As a baseline study, status of exotic plants was investigated prior to a full operation of the RFT industrial complex. A total of 54 species and 1 variety of naturalized or introduced plants were found in the study area. Among them, three species (Ambrosia artemisifolia var. elatior, Rumex acetocella and Aster pilosus) belong to 'nuisance species', and four species (Phytolacca americana, Iopomoea hederacea, Ereechtites hieracifolia and Rudbeckia laciniata) to ‘monitor species’ designated by the ministry of Environment. Some of naturalized trees and plants were intentionally introduced in this area, while others naturally immigrated. Physalis angulata seems to immigrate in the study area in the form of mixture with animal feeds as its distribution coincided with the transportation route of the animal feeds. Liquidambar styraciflua is amenable to the ecological investigation on the possible expansion of the species to the nearby Naejang National Park as its leave shape and autumn color are very similar to those of maple trees. The number of naturalized plants around the RFT industrial complex will increase with an increase in floating population, in human activities in association with constructions of factories and operations of the complex. The result of this study provides baseline data for assessing the ecological change of the region according to the operation of the RFT industrial complex.

  13. A Memristor-Based Hyperchaotic Complex Lü System and Its Adaptive Complex Generalized Synchronization

    Directory of Open Access Journals (Sweden)

    Shibing Wang

    2016-02-01

    Full Text Available This paper introduces a new memristor-based hyperchaotic complex Lü system (MHCLS and investigates its adaptive complex generalized synchronization (ACGS. Firstly, the complex system is constructed based on a memristor-based hyperchaotic real Lü system, and its properties are analyzed theoretically. Secondly, its dynamical behaviors, including hyperchaos, chaos, transient phenomena, as well as periodic behaviors, are explored numerically by means of bifurcation diagrams, Lyapunov exponents, phase portraits, and time history diagrams. Thirdly, an adaptive controller and a parameter estimator are proposed to realize complex generalized synchronization and parameter identification of two identical MHCLSs with unknown parameters based on Lyapunov stability theory. Finally, the numerical simulation results of ACGS and its applications to secure communication are presented to verify the feasibility and effectiveness of the proposed method.

  14. Complexity of Economical Systems

    Directory of Open Access Journals (Sweden)

    G. P. Pavlos

    2015-01-01

    Full Text Available In this study new theoretical concepts are described concerning the interpretation of economical complex dynamics. In addition a summary of an extended algorithm of nonlinear time series analysis is provided which is applied not only in economical time series but also in other physical complex systems (e.g. [22, 24]. In general, Economy is a vast and complicated set of arrangements and actions wherein agents—consumers, firms, banks, investors, government agencies—buy and sell, speculate, trade, oversee, bring products into being, offer services, invest in companies, strategize, explore, forecast, compete, learn, innovate, and adapt. As a result the economic and financial variables such as foreign exchange rates, gross domestic product, interest rates, production, stock market prices and unemployment exhibit large-amplitude and aperiodic fluctuations evident in complex systems. Thus, the Economics can be considered as spatially distributed non-equilibrium complex system, for which new theoretical concepts, such as Tsallis non extensive statistical mechanics and strange dynamics, percolation, nonGaussian, multifractal and multiscale dynamics related to fractional Langevin equations can be used for modeling and understanding of the economical complexity locally or globally.

  15. Complexity and Dynamical Depth

    Directory of Open Access Journals (Sweden)

    Terrence Deacon

    2014-07-01

    Full Text Available We argue that a critical difference distinguishing machines from organisms and computers from brains is not complexity in a structural sense, but a difference in dynamical organization that is not well accounted for by current complexity measures. We propose a measure of the complexity of a system that is largely orthogonal to computational, information theoretic, or thermodynamic conceptions of structural complexity. What we call a system’s dynamical depth is a separate dimension of system complexity that measures the degree to which it exhibits discrete levels of nonlinear dynamical organization in which successive levels are distinguished by local entropy reduction and constraint generation. A system with greater dynamical depth than another consists of a greater number of such nested dynamical levels. Thus, a mechanical or linear thermodynamic system has less dynamical depth than an inorganic self-organized system, which has less dynamical depth than a living system. Including an assessment of dynamical depth can provide a more precise and systematic account of the fundamental difference between inorganic systems (low dynamical depth and living systems (high dynamical depth, irrespective of the number of their parts and the causal relations between them.

  16. The neural circuitry of visual artistic production and appreciation: A proposition

    Directory of Open Access Journals (Sweden)

    Ambar Chakravarty

    2012-01-01

    Full Text Available The nondominant inferior parietal lobule is probably a major "store house" of artistic creativity. The ventromedial prefrontal lobe (VMPFL is supposed to be involved in creative cognition and the dorsolateral prefrontal lobe (DLPFL in creative output. The conceptual ventral and dorsal visual system pathways likely represent the inferior and superior longitudinal fasciculi. During artistic production, conceptualization is conceived in the VMPFL and the executive part is operated through the DLFPL. The latter transfers the concept to the visual brain through the superior longitudinal fasciculus (SLF, relaying on its path to the parietal cortex. The conceptualization at VMPFL is influenced by activity from the anterior temporal lobe through the uncinate fasciculus and limbic system pathways. The final visual image formed in the visual brain is subsequently transferred back to the DLPFL through the SLF and then handed over to the motor cortex for execution. During art appreciation, the image at the visual brain is transferred to the frontal lobe through the SLF and there it is matched with emotional and memory inputs from the anterior temporal lobe transmitted through the uncinate fasiculus. Beauty is perceived at the VMPFL and transferred through the uncinate fasciculus to the hippocampo-amygdaloid complex in the anterior temporal lobe. The limbic system (Papez circuit is activated and emotion of appreciation is evoked. It is postulated that in practice the entire circuitry is activated simultaneously.

  17. Quantitative Measurements in the Human Hippocampus and Related Areas: Correspondence between Ex-Vivo MRI and Histological Preparations.

    Directory of Open Access Journals (Sweden)

    José Carlos Delgado-González

    Full Text Available The decrease of volume estimates in different structures of the medial temporal lobe related to memory correlate with the decline of cognitive functions in neurodegenerative diseases. This study presents data on the association between MRI quantitative parameters of medial temporal lobe structures and their quantitative estimate in microscopic examination. Twelve control cases had ex-vivo MRI, and thereafter, the temporal lobe of both hemispheres was sectioned from the pole as far as the level of the splenium of the corpus callosum. Nissl stain was used to establish anatomical boundaries between structures in the medial temporal lobe. The study included morphometrical and stereological estimates of the amygdaloid complex, hippocampus, and temporal horn of the lateral ventricle, as well as different regions of grey and white matter in the temporal lobe. Data showed a close association between morphometric MRI images values and those based on the histological determination of boundaries. Only values in perimeter and circularity of the piamater were different. This correspondence is also revealed by the stereological study, although irregular compartments resulted in a lesser agreement. Neither age ( 65 yr nor hemisphere had any effect. Our results indicate that ex-vivo MRI is highly associated with quantitative information gathered by histological examination, and these data could be used as structural MRI biomarker in neurodegenerative diseases.

  18. The neural circuitry of visual artistic production and appreciation: A proposition.

    Science.gov (United States)

    Chakravarty, Ambar

    2012-04-01

    The nondominant inferior parietal lobule is probably a major "store house" of artistic creativity. The ventromedial prefrontal lobe (VMPFL) is supposed to be involved in creative cognition and the dorsolateral prefrontal lobe (DLPFL) in creative output. The conceptual ventral and dorsal visual system pathways likely represent the inferior and superior longitudinal fasciculi. During artistic production, conceptualization is conceived in the VMPFL and the executive part is operated through the DLFPL. The latter transfers the concept to the visual brain through the superior longitudinal fasciculus (SLF), relaying on its path to the parietal cortex. The conceptualization at VMPFL is influenced by activity from the anterior temporal lobe through the uncinate fasciculus and limbic system pathways. The final visual image formed in the visual brain is subsequently transferred back to the DLPFL through the SLF and then handed over to the motor cortex for execution. During art appreciation, the image at the visual brain is transferred to the frontal lobe through the SLF and there it is matched with emotional and memory inputs from the anterior temporal lobe transmitted through the uncinate fasiculus. Beauty is perceived at the VMPFL and transferred through the uncinate fasciculus to the hippocampo-amygdaloid complex in the anterior temporal lobe. The limbic system (Papez circuit) is activated and emotion of appreciation is evoked. It is postulated that in practice the entire circuitry is activated simultaneously.

  19. Automated technological equipment-robot complexes

    International Nuclear Information System (INIS)

    Zhitomirskii, S.V.; Samorodskikh, B.L.

    1984-01-01

    This paper surveys the types of automated technological equipment robot complexes. The principal elements of such complexes are described. Complexes are divided into two principal groups: those using simultaneously acting robots, and those using successively acting robots. The great variety of types of robots using successive action is then described

  20. Managing complex child law

    DEFF Research Database (Denmark)

    Svendsen, Idamarie Leth

    2017-01-01

    The article reports the findings of a qualitative study of Danish legal regulation of the public initial assessment of children and young persons and municipal practitioners’ decision-making under this regulation. The regulation mirrors new and complex relations between families and society...... in the form of 7 individual vignette interviews with municipal mid-level managers and professional consultants in five Danish municipalities. The study finds that the regulation is more complex than it looks, and that the complexity is handled through simplifying decision-making patterns that can be seen...