WorldWideScience

Sample records for basolateral amygdala neurons

  1. Fear extinction deficits following acute stress associate with increased spine density and dendritic retraction in basolateral amygdala neurons.

    Science.gov (United States)

    Maroun, Mouna; Ioannides, Pericles J; Bergman, Krista L; Kavushansky, Alexandra; Holmes, Andrew; Wellman, Cara L

    2013-08-01

    Stress-sensitive psychopathologies such as post-traumatic stress disorder are characterized by deficits in fear extinction and dysfunction of corticolimbic circuits mediating extinction. Chronic stress facilitates fear conditioning, impairs extinction, and produces dendritic proliferation in the basolateral amygdala (BLA), a critical site of plasticity for extinction. Acute stress impairs extinction, alters plasticity in the medial prefrontal cortex-to-BLA circuit, and causes dendritic retraction in the medial prefrontal cortex. Here, we examined extinction learning and basolateral amygdala pyramidal neuron morphology in adult male rats following a single elevated platform stress. Acute stress impaired extinction acquisition and memory, and produced dendritic retraction and increased mushroom spine density in basolateral amygdala neurons in the right hemisphere. Unexpectedly, irrespective of stress, rats that underwent fear and extinction testing showed basolateral amygdala dendritic retraction and altered spine density relative to non-conditioned rats, particularly in the left hemisphere. Thus, extinction deficits produced by acute stress are associated with increased spine density and dendritic retraction in basolateral amygdala pyramidal neurons. Furthermore, the finding that conditioning and extinction as such was sufficient to alter basolateral amygdala morphology and spine density illustrates the sensitivity of basolateral amygdala morphology to behavioral manipulation. These findings may have implications for elucidating the role of the amygdala in the pathophysiology of stress-related disorders. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  2. Fear extinction deficits following acute stress associate with increased spine density and dendritic retraction in basolateral amygdala neurons

    Science.gov (United States)

    Maroun, Mouna; Ioannides, Pericles J.; Bergman, Krista L.; Kavushansky, Alexandra; Holmes, Andrew; Wellman, Cara L.

    2013-01-01

    Stress-sensitive psychopathologies such as post-traumatic stress disorder are characterized by deficits in fear extinction and dysfunction of corticolimbic circuits mediating extinction. Chronic stress facilitates fear conditioning, impairs extinction, and produces dendritic proliferation in the basolateral amygdala (BLA), a critical site of plasticity for extinction. Acute stress impairs extinction, alters plasticity in the medial prefrontal cortex-to-BLA circuit, and causes dendritic retraction in the medial prefrontal cortex. Here, we examined extinction learning and basolateral amygdala pyramidal neuron morphology in adult male rats following a single elevated platform stress. Acute stress impaired extinction acquisition and memory, and produced dendritic retraction and increased mushroom spine density in basolateral amygdala neurons in the right hemisphere. Unexpectedly, irrespective of stress, rats that underwent fear and extinction testing showed basolateral amygdala dendritic retraction and altered spine density relative to non-conditioned rats, particularly in the left hemisphere. Thus, extinction deficits produced by acute stress are associated with increased spine density and dendritic retraction in basolateral amygdala pyramidal neurons. Furthermore, the finding that conditioning and extinction as such was sufficient to alter basolateral amygdala morphology and spine density illustrates the sensitivity of basolateral amygdala morphology to behavioral manipulation. These findings may have implications for elucidating the role of the amygdala in the pathophysiology of stress-related disorders. PMID:23714419

  3. Organization of Valence-Encoding and Projection-Defined Neurons in the Basolateral Amygdala

    Directory of Open Access Journals (Sweden)

    Anna Beyeler

    2018-01-01

    Full Text Available The basolateral amygdala (BLA mediates associative learning for both fear and reward. Accumulating evidence supports the notion that different BLA projections distinctly alter motivated behavior, including projections to the nucleus accumbens (NAc, medial aspect of the central amygdala (CeM, and ventral hippocampus (vHPC. Although there is consensus regarding the existence of distinct subsets of BLA neurons encoding positive or negative valence, controversy remains regarding the anatomical arrangement of these populations. First, we map the location of more than 1,000 neurons distributed across the BLA and recorded during a Pavlovian discrimination task. Next, we determine the location of projection-defined neurons labeled with retrograde tracers and use CLARITY to reveal the axonal path in 3-dimensional space. Finally, we examine the local influence of each projection-defined populations within the BLA. Understanding the functional and topographical organization of circuits underlying valence assignment could reveal fundamental principles about emotional processing.

  4. GABAergic Synapses at the Axon Initial Segment of Basolateral Amygdala Projection Neurons Modulate Fear Extinction.

    Science.gov (United States)

    Saha, Rinki; Knapp, Stephanie; Chakraborty, Darpan; Horovitz, Omer; Albrecht, Anne; Kriebel, Martin; Kaphzan, Hanoch; Ehrlich, Ingrid; Volkmer, Hansjürgen; Richter-Levin, Gal

    2017-01-01

    Inhibitory synaptic transmission in the amygdala has a pivotal role in fear learning and its extinction. However, the local circuits formed by GABAergic inhibitory interneurons within the amygdala and their detailed function in shaping these behaviors are not well understood. Here we used lentiviral-mediated knockdown of the cell adhesion molecule neurofascin in the basolateral amygdala (BLA) to specifically remove inhibitory synapses at the axon initial segment (AIS) of BLA projection neurons. Quantitative analysis of GABAergic synapse markers and measurement of miniature inhibitory postsynaptic currents in BLA projection neurons after neurofascin knockdown ex vivo confirmed the loss of GABAergic input. We then studied the impact of this manipulation on anxiety-like behavior and auditory cued fear conditioning and its extinction as BLA related behavioral paradigms, as well as on long-term potentiation (LTP) in the ventral subiculum-BLA pathway in vivo. BLA knockdown of neurofascin impaired ventral subiculum-BLA-LTP. While this manipulation did not affect anxiety-like behavior and fear memory acquisition and consolidation, it specifically impaired extinction. Our findings indicate that modification of inhibitory synapses at the AIS of BLA projection neurons is sufficient to selectively impair extinction behavior. A better understanding of the role of distinct GABAergic synapses may provide novel and more specific targets for therapeutic interventions in extinction-based therapies.

  5. Serotonin gating of cortical and thalamic glutamate inputs onto principal neurons of the basolateral amygdala.

    Science.gov (United States)

    Guo, Ji-Dong; O'Flaherty, Brendan M; Rainnie, Donald G

    2017-11-01

    The basolateral amygdala (BLA) is a key site for crossmodal association of sensory stimuli and an important relay in the neural circuitry of emotion. Indeed, the BLA receives substantial glutamatergic inputs from multiple brain regions including the prefrontal cortex and thalamic nuclei. Modulation of glutamatergic transmission in the BLA regulates stress- and anxiety-related behaviors. Serotonin (5-HT) also plays an important role in regulating stress-related behavior through activation of both pre- and postsynaptic 5-HT receptors. Multiple 5-HT receptors are expressed in the BLA, where 5-HT has been reported to modulate glutamatergic transmission. However, the 5-HT receptor subtype mediating this effect is not yet clear. The aim of this study was to use patch-clamp recordings from BLA neurons in an ex vivo slice preparation to examine 1) the effect of 5-HT on extrinsic sensory inputs, and 2) to determine if any pathway specificity exists in 5-HT regulation of glutamatergic transmission. Two independent input pathways into the BLA were stimulated: the external capsule to mimic cortical input, and the internal capsule to mimic thalamic input. Bath application of 5-HT reversibly reduced the amplitude of evoked excitatory postsynaptic currents (eEPSCs) induced by stimulation of both pathways. The decrease was associated with an increase in the paired-pulse ratio and coefficient of variation of eEPSC amplitude, suggesting 5-HT acts presynaptically. Moreover, the effect of 5-HT in both pathways was mimicked by the selective 5-HT 1B receptor agonist CP93129, but not by the 5-HT 1A receptor agonist 8-OH DPAT. Similarly the effect of exogenous 5-HT was blocked by the 5-HT 1B receptor antagonist GR55562, but not affected by the 5-HT 1A receptor antagonist WAY 100635 or the 5-HT 2 receptor antagonists pirenperone and MDL 100907. Together these data suggest 5-HT gates cortical and thalamic glutamatergic inputs into the BLA by activating presynaptic 5-HT 1B receptors

  6. Auditory Tones and Foot-Shock Recapitulate Spontaneous Sub-Threshold Activity in Basolateral Amygdala Principal Neurons and Interneurons.

    Directory of Open Access Journals (Sweden)

    François Windels

    Full Text Available In quiescent states such as anesthesia and slow wave sleep, cortical networks show slow rhythmic synchronized activity. In sensory cortices this rhythmic activity shows a stereotypical pattern that is recapitulated by stimulation of the appropriate sensory modality. The amygdala receives sensory input from a variety of sources, and in anesthetized animals, neurons in the basolateral amygdala (BLA show slow rhythmic synchronized activity. Extracellular field potential recordings show that these oscillations are synchronized with sensory cortex and the thalamus, with both the thalamus and cortex leading the BLA. Using whole-cell recording in vivo we show that the membrane potential of principal neurons spontaneously oscillates between up- and down-states. Footshock and auditory stimulation delivered during down-states evokes an up-state that fully recapitulates those occurring spontaneously. These results suggest that neurons in the BLA receive convergent input from networks of cortical neurons with slow oscillatory activity and that somatosensory and auditory stimulation can trigger activity in these same networks.

  7. CRF1 receptor activation increases the response of neurons in the basolateral nucleus of the amygdala to afferent stimulation

    Directory of Open Access Journals (Sweden)

    2008-07-01

    Full Text Available The basolateral nucleus (BLA of the amygdala contributes to the consolidation of memories for emotional or stressful events. The nucleus contains a high density of CRF1 receptors that are activated by corticotropin-releasing factor (CRF. Modulation of the excitability of neurons in the BLA by CRF may regulate the immediate response to stressful events and the formation of associated memories. In the present study, CRF was found to increase the amplitude of field potentials recorded in the BLA following excitatory afferent stimulation, in vitro. The increase was mediated by CRF1 receptors, since it could be blocked by the selective, non-peptide antagonists, NBI30775 and NBI35583, but not by the CRF2-selective antagonist, astressin 2B. Furthermore, the CRF2-selective agonist, urocortin II had no effect on field potential amplitude. The increase induced by CRF was long-lasting, could not be reversed by subsequent administration of NBI35583, and required the activation of protein kinase C. This effect of CRF in the BLA may be important for increasing the salience of aversive stimuli under stressful conditions, and for enhancing the consolidation of associated memories. The results provide further justification for studying the efficacy of selective antagonists of the CRF1 receptor to reduce memory formation linked to emotional or traumatic events, and suggest that these compounds might be useful as prophylactic treatment for stress-related illness such as post-traumatic stress disorder.

  8. Fear extinction deficits following acute stress associate with increased spine density and dendritic retraction in basolateral amygdala neurons

    OpenAIRE

    Maroun, Mouna; Ioannides, Pericles J.; Bergman, Krista L.; Kavushansky, Alexandra; Holmes, Andrew; Wellman, Cara L.

    2013-01-01

    Stress-sensitive psychopathologies such as post-traumatic stress disorder are characterized by deficits in fear extinction and dysfunction of corticolimbic circuits mediating extinction. Chronic stress facilitates fear conditioning, impairs extinction, and produces dendritic proliferation in the basolateral amygdala (BLA), a critical site of plasticity for extinction. Acute stress impairs extinction, alters plasticity in the medial prefrontal cortex-to-BLA circuit, and causes dendritic retrac...

  9. Subpopulations of somatostatin-immunoreactive nonpyramidal neurons in the amygdala and adjacent external capsule project to the basal forebrain: evidence for the existence of GABAergic projection neurons in the cortical nuclei and basolateral nuclear complex

    Directory of Open Access Journals (Sweden)

    Alexander J. McDonald

    2012-07-01

    Full Text Available The hippocampus and amygdala are key structures of the limbic system whose connections include reciprocal interactions with the basal forebrain (BF. The hippocampus receives both cholinergic and GABAergic afferents from the medial septal area of the BF. Hippocampal projections back to the medial septal area arise from nonpyramidal GABAergic neurons that express somatostatin (SOM, calbindin (CB, and neuropeptide Y (NPY. Recent experiments in our lab have demonstrated that the basolateral amygdala, like the hippocampus, receives both cholinergic and GABAergic afferents from the BF. These projections arise from neurons in the substantia innominata and ventral pallidum. It remained to be determined, however, whether the amygdala has projections back to the BF that arise from GABAergic nonpyramidal neurons. This question was investigated in the present study by combining Fluorogold (FG retrograde tract tracing with immunohistochemistry for GABAergic nonpyramidal cell markers, including SOM, CB, NPY, parvalbumin, calretinin, and glutamic acid decarboxylase (GAD. FG injections into the basal forebrain produced a diffuse array of retrogradely labeled neurons in many nuclei of the amygdala. The great majority of amygdalar FG+ neurons did not express nonpyramidal cell markers. However, a subpopulation of nonpyramidal SOM+ neurons, termed long range nonpyramidal neurons (LRNP neurons, in the external capsule, basolateral amygdala, and cortical and medial amygdalar nuclei were FG+. About one-third of the SOM+ LRNP neurons were CB+ or NPY+, and one-half were GAD+. It remains to be determined if these inhibitory amygdalar projections to the BF, like those from the hippocampus, are important for regulating synchronous oscillations in the amygdalar-BF network.

  10. Trace Fear Conditioning Differentially Modulates Intrinsic Excitability of Medial Prefrontal Cortex-Basolateral Complex of Amygdala Projection Neurons in Infralimbic and Prelimbic Cortices.

    Science.gov (United States)

    Song, Chenghui; Ehlers, Vanessa L; Moyer, James R

    2015-09-30

    Neuronal activity in medial prefrontal cortex (mPFC) is critical for the formation of trace fear memory, yet the cellular mechanisms underlying these memories remain unclear. One possibility involves the modulation of intrinsic excitability within mPFC neurons that project to the basolateral complex of amygdala (BLA). The current study used a combination of retrograde labeling and in vitro whole-cell patch-clamp recordings to examine the effect of trace fear conditioning on the intrinsic excitability of layer 5 mPFC-BLA projection neurons in adult rats. Trace fear conditioning significantly enhanced the intrinsic excitability of regular spiking infralimbic (IL) projection neurons, as evidenced by an increase in the number of action potentials after current injection. These changes were also associated with a reduction in spike threshold and an increase in h current. In contrast, trace fear conditioning reduced the excitability of regular spiking prelimbic (PL) projection neurons, through a learning-related decrease of input resistance. Interestingly, the amount of conditioned freezing was (1) positively correlated with excitability of IL-BLA projection neurons after conditioning and (2) negatively correlated with excitability of PL-BLA projection neurons after extinction. Trace fear conditioning also significantly enhanced the excitability of burst spiking PL-BLA projection neurons. In both regions, conditioning-induced plasticity was learning specific (observed in conditioned but not in pseudoconditioned rats), flexible (reversed by extinction), and transient (lasted extinction of trace fear conditioning. Significance statement: Frontal lobe-related function is vital for a variety of important behaviors, some of which decline during aging. This study involves a novel combination of electrophysiological recordings from fluorescently labeled mPFC-to-amygdala projection neurons in rats with acquisition and extinction of trace fear conditioning to determine how

  11. Effects of the medial or basolateral amygdala upon social anxiety and social recognition in mice.

    Science.gov (United States)

    Wang, Yu; Zhao, Shanshan; Liu, Xu; Fu, Qunying

    2014-01-01

    Though social anxiety and social recognition have been studied extensively, the roles of the medial or basolateral amygdala in the control of social anxiety and social recognition remain to be determined. This study investigated the effects of excitotoxic bilateral medial or basolateral amygdala lesions upon social anxiety and social recognition in-mice. Animals at 9 weeks of age were given bilateral medial or basolateral amygdala lesions via infusion of N-methyl- D-aspartate and then were used for behavioral tests: anxiety-related tests (including open-field test, light-dark test, and elevated-plus maze test), social behavior test in a novel environment, social recognition test, and flavor recognition test. Medial or basolateral amygdala-lesioned mice showed lower levels of anxiety and increased social behaviors in a novel environment. Destruction of the medial or basolateral amygdala neurons impaired social recognition but not flavor recognition. The medial or basolateral amygdala is involved in the control of anxiety-related behavior (social anxiety and social behaviors) in mice. Moreover, both the medial and the basolateral amygdala are essential for social recognition but not flavor recognition in mice.

  12. Lateral/Basolateral Amygdala Serotonin Type-2 Receptors Modulate Operant Self-administration of a Sweetened Ethanol Solution via Inhibition of Principal Neuron Activity

    Directory of Open Access Journals (Sweden)

    Brian eMccool

    2014-01-01

    Full Text Available The lateral/basolateral amygdala (BLA forms an integral part of the neural circuitry controlling innate anxiety and learned fear. More recently, BLA dependent modulation of self-administration behaviors suggests a much broader role in the regulation of reward evaluation. To test this, we employed a self-administration paradigm that procedurally segregates ‘seeking’ (exemplified as lever-press behaviors from consumption (drinking directed at a sweetened ethanol solution. Microinjection of the nonselective serotonin type-2 receptor agonist, alpha-methyl-5-hydroxytryptamine (-m5HT into the BLA reduced lever pressing behaviors in a dose-dependent fashion. This was associated with a significant reduction in the number of response-bouts expressed during non-reinforced sessions without altering the size of a bout or the rate of responding. Conversely, intra-BLA -m5HT only modestly effected consumption-related behaviors; the highest dose reduced the total time spent consuming a sweetened ethanol solution but did not inhibit the total number of licks, number of lick bouts, or amount of solution consumed during a session. In vitro neurophysiological characterization of BLA synaptic responses showed that -m5HT significantly reduced extracellular field potentials. This was blocked by the 5-HT2A/C antagonist ketanserin suggesting that 5-HT2-like receptors mediate the behavioral effect of -m5HT. During whole-cell patch current-clamp recordings, we subsequently found that -m5HT increased action potential threshold and hyperpolarized the resting membrane potential of BLA pyramidal neurons. Together, our findings show that the activation of BLA 5-HT2A/C receptors inhibits behaviors related to reward-seeking by suppressing BLA principal neuron activity. These data are consistent with the hypothesis that the BLA modulates reward-related behaviors and provides specific insight into BLA contributions during operant self-administration of a

  13. Roles of the basolateral amygdala and hippocampus in social recognition

    NARCIS (Netherlands)

    Gispen, W.H.; Maaswinkel, H.; Baars, A.M.; Spruijt, B.M.

    1996-01-01

    Lesions of the amygdala or hippocampus have a large impact on social behavior of rats. In this study we investigated whether a social recognition test was also affected by those lesions. An NMDA-induced lesion of the basolateral amygdala did not impair the ability to distinguish a familiar from an

  14. Inhibitory Gating of Basolateral Amygdala Inputs to the Prefrontal Cortex.

    Science.gov (United States)

    McGarry, Laura M; Carter, Adam G

    2016-09-07

    Interactions between the prefrontal cortex (PFC) and basolateral amygdala (BLA) regulate emotional behaviors. However, a circuit-level understanding of functional connections between these brain regions remains incomplete. The BLA sends prominent glutamatergic projections to the PFC, but the overall influence of these inputs is predominantly inhibitory. Here we combine targeted recordings and optogenetics to examine the synaptic underpinnings of this inhibition in the mouse infralimbic PFC. We find that BLA inputs preferentially target layer 2 corticoamygdala over neighboring corticostriatal neurons. However, these inputs make even stronger connections onto neighboring parvalbumin and somatostatin expressing interneurons. Inhibitory connections from these two populations of interneurons are also much stronger onto corticoamygdala neurons. Consequently, BLA inputs are able to drive robust feedforward inhibition via two parallel interneuron pathways. Moreover, the contributions of these interneurons shift during repetitive activity, due to differences in short-term synaptic dynamics. Thus, parvalbumin interneurons are activated at the start of stimulus trains, whereas somatostatin interneuron activation builds during these trains. Together, these results reveal how the BLA impacts the PFC through a complex interplay of direct excitation and feedforward inhibition. They also highlight the roles of targeted connections onto multiple projection neurons and interneurons in this cortical circuit. Our findings provide a mechanistic understanding for how the BLA can influence the PFC circuit, with important implications for how this circuit participates in the regulation of emotion. The prefrontal cortex (PFC) and basolateral amygdala (BLA) interact to control emotional behaviors. Here we show that BLA inputs elicit direct excitation and feedforward inhibition of layer 2 projection neurons in infralimbic PFC. BLA inputs are much stronger at corticoamygdala neurons compared

  15. The basolateral amygdala modulates specific sensory memory representations in the cerebral cortex

    OpenAIRE

    Chavez, Candice M.; McGaugh, James L.; Weinberger, Norman M.

    2008-01-01

    Stress hormones released by an experience can modulate memory strength via the basolateral amygdala, which in turn acts on sites of memory storage such as the cerebral cortex [McGaugh, J. L. (2004). The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annual Review of Neuroscience, 27, 1–28]. Stimuli that acquire behavioral importance gain increased representation in the cortex. For example, learning shifts the tuning of neurons in the primary auditory cor...

  16. Fear extinction requires infralimbic cortex projections to the basolateral amygdala.

    Science.gov (United States)

    Bloodgood, Daniel W; Sugam, Jonathan A; Holmes, Andrew; Kash, Thomas L

    2018-03-06

    Fear extinction involves the formation of a new memory trace that attenuates fear responses to a conditioned aversive memory, and extinction impairments are implicated in trauma- and stress-related disorders. Previous studies in rodents have found that the infralimbic prefrontal cortex (IL) and its glutamatergic projections to the basolateral amygdala (BLA) and basomedial amygdala (BMA) instruct the formation of fear extinction memories. However, it is unclear whether these pathways are exclusively involved in extinction, or whether other major targets of the IL, such as the nucleus accumbens (NAc) also play a role. To address this outstanding issue, the current study employed a combination of electrophysiological and chemogenetic approaches in mice to interrogate the role of IL-BLA and IL-NAc pathways in extinction. Specifically, we used patch-clamp electrophysiology coupled with retrograde tracing to examine changes in neuronal activity of the IL and prelimbic cortex (PL) projections to both the BLA and NAc following fear extinction. We found that extinction produced a significant increase in the intrinsic excitability of IL-BLA projection neurons, while extinction appeared to reverse fear-induced changes in IL-NAc projection neurons. To establish a causal counterpart to these observations, we then used a pathway-specific Designer Receptors Exclusively Activated by Designer Drugs (DREADD) strategy to selectively inhibit PFC-BLA projection neurons during extinction acquisition. Using this approach, we found that DREADD-mediated inhibition of PFC-BLA neurons during extinction acquisition impaired subsequent extinction retrieval. Taken together, our findings provide further evidence for a critical contribution of the IL-BLA neural circuit to fear extinction.

  17. Basolateral amygdala lesions abolish mutual reward preferences in rats.

    Science.gov (United States)

    Hernandez-Lallement, Julen; van Wingerden, Marijn; Schäble, Sandra; Kalenscher, Tobias

    2016-01-01

    In a recent study, we demonstrated that rats prefer mutual rewards in a Prosocial Choice Task. Here, employing the same task, we show that the integrity of basolateral amygdala was necessary for the expression of mutual reward preferences. Actor rats received bilateral excitotoxic (n=12) or sham lesions (n=10) targeting the basolateral amygdala and were subsequently tested in a Prosocial Choice Task where they could decide between rewarding ("Both Reward") or not rewarding a partner rat ("Own Reward"), either choice yielding identical reward to the actors themselves. To manipulate the social context and control for secondary reinforcement sources, actor rats were paired with either a partner rat (partner condition) or with an inanimate rat toy (toy condition). Sham-operated animals revealed a significant preference for the Both-Reward-option in the partner condition, but not in the toy condition. Amygdala-lesioned animals exhibited significantly lower Both-Reward preferences than the sham group in the partner but not in the toy condition, suggesting that basolateral amygdala was required for the expression of mutual reward preferences. Critically, in a reward magnitude discrimination task in the same experimental setup, both sham-operated and amygdala-lesioned animals preferred large over small rewards, suggesting that amygdala lesion effects were restricted to decision making in social contexts, leaving self-oriented behavior unaffected. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Ex vivo dissection of optogenetically activated mPFC and hippocampal inputs to neurons in the basolateral amygdala: implications for fear and emotional memory

    Directory of Open Access Journals (Sweden)

    Cora eHübner

    2014-03-01

    Full Text Available Many lines of evidence suggest that a reciprocally interconnected network comprising the amygdala, ventral hippocampus (vHC, and medial prefrontal cortex (mPFC participates in different aspects of the acquisition and extinction of conditioned fear responses and fear behavior. This could at least in part be mediated by direct connections from mPFC or vHC to amygdala to control amygdala activity and output. However, currently the interactions between mPFC and vHC afferents and their specific targets in the amygdala are still poorly understood. Here, we use an ex-vivo optogenetic approach to dissect synaptic properties of inputs from mPFC and vHC to defined neuronal populations in the basal amygdala (BA, the area that we identify as a major target of these projections. We find that BA principal neurons (PNs and local BA interneurons (INs receive monosynaptic excitatory inputs from mPFC and vHC. In addition, both these inputs also recruit GABAergic feedforward inhibition in a substantial fraction of PNs, in some neurons this also comprises a slow GABAB-component. Amongst the innervated PNs we identify neurons that project back to subregions of the mPFC, indicating a loop between neurons in mPFC and BA, and a pathway from vHC to mPFC via BA. Interestingly, mPFC inputs also recruit feedforward inhibition in a fraction of INs, suggesting that these inputs can activate dis-inhibitory circuits in the BA. A general feature of both mPFC and vHC inputs to local INs is that excitatory inputs display faster rise and decay kinetics than in PNs, which would enable temporally precise signaling. However, mPFC and vHC inputs to both PNs and INs differ in their presynaptic release properties, in that vHC inputs are more depressing. In summary, our data describe novel wiring, and features of synaptic connections from mPFC and vHC to amygdala that could help to interpret functions of these interconnected brain areas at the network level.

  19. Ex vivo dissection of optogenetically activated mPFC and hippocampal inputs to neurons in the basolateral amygdala: implications for fear and emotional memory

    Science.gov (United States)

    Hübner, Cora; Bosch, Daniel; Gall, Andrea; Lüthi, Andreas; Ehrlich, Ingrid

    2014-01-01

    Many lines of evidence suggest that a reciprocally interconnected network comprising the amygdala, ventral hippocampus (vHC), and medial prefrontal cortex (mPFC) participates in different aspects of the acquisition and extinction of conditioned fear responses and fear behavior. This could at least in part be mediated by direct connections from mPFC or vHC to amygdala to control amygdala activity and output. However, currently the interactions between mPFC and vHC afferents and their specific targets in the amygdala are still poorly understood. Here, we use an ex-vivo optogenetic approach to dissect synaptic properties of inputs from mPFC and vHC to defined neuronal populations in the basal amygdala (BA), the area that we identify as a major target of these projections. We find that BA principal neurons (PNs) and local BA interneurons (INs) receive monosynaptic excitatory inputs from mPFC and vHC. In addition, both these inputs also recruit GABAergic feedforward inhibition in a substantial fraction of PNs, in some neurons this also comprises a slow GABAB-component. Amongst the innervated PNs we identify neurons that project back to subregions of the mPFC, indicating a loop between neurons in mPFC and BA, and a pathway from vHC to mPFC via BA. Interestingly, mPFC inputs also recruit feedforward inhibition in a fraction of INs, suggesting that these inputs can activate dis-inhibitory circuits in the BA. A general feature of both mPFC and vHC inputs to local INs is that excitatory inputs display faster rise and decay kinetics than in PNs, which would enable temporally precise signaling. However, mPFC and vHC inputs to both PNs and INs differ in their presynaptic release properties, in that vHC inputs are more depressing. In summary, our data describe novel wiring, and features of synaptic connections from mPFC and vHC to amygdala that could help to interpret functions of these interconnected brain areas at the network level. PMID:24634648

  20. The Role of the Basolateral Amygdala in Punishment

    Science.gov (United States)

    Dit-Bressel, Philip Jean-Richard; McNally, Gavan P.

    2015-01-01

    Aversive stimuli not only support fear conditioning to their environmental antecedents, they also punish behaviors that cause their occurrence. The amygdala, especially the basolateral nucleus (BLA), has been critically implicated in Pavlovian fear learning but its role in punishment remains poorly understood. Here, we used a within-subjects…

  1. Paradoxical facilitation of working memory after basolateral amygdala damage.

    Directory of Open Access Journals (Sweden)

    Barak Morgan

    Full Text Available Working memory is a vital cognitive capacity without which meaningful thinking and logical reasoning would be impossible. Working memory is integrally dependent upon prefrontal cortex and it has been suggested that voluntary control of working memory, enabling sustained emotion inhibition, was the crucial step in the evolution of modern humans. Consistent with this, recent fMRI studies suggest that working memory performance depends upon the capacity of prefrontal cortex to suppress bottom-up amygdala signals during emotional arousal. However fMRI is not well-suited to definitively resolve questions of causality. Moreover, the amygdala is neither structurally or functionally homogenous and fMRI studies do not resolve which amygdala sub-regions interfere with working memory. Lesion studies on the other hand can contribute unique causal evidence on aspects of brain-behaviour phenomena fMRI cannot "see". To address these questions we investigated working memory performance in three adult female subjects with bilateral basolateral amygdala calcification consequent to Urbach-Wiethe Disease and ten healthy controls. Amygdala lesion extent and functionality was determined by structural and functional MRI methods. Working memory performance was assessed using the Wechsler Adult Intelligence Scale-III digit span forward task. State and trait anxiety measures to control for possible emotional differences between patient and control groups were administered. Structural MRI showed bilateral selective basolateral amygdala damage in the three Urbach-Wiethe Disease subjects and fMRI confirmed intact functionality in the remaining amygdala sub-regions. The three Urbach-Wiethe Disease subjects showed significant working memory facilitation relative to controls. Control measures showed no group anxiety differences. Results are provisionally interpreted in terms of a 'cooperation through competition' networks model that may account for the observed paradoxical

  2. Toxoplasma gondii infection induces dendritic retraction in basolateral amygdala accompanied by reduced corticosterone secretion

    Directory of Open Access Journals (Sweden)

    Rupshi Mitra

    2013-03-01

    Pathological anxiety is thought to reflect a maladaptive state characterized by exaggerated fear. Naturally occurring perturbations that reduce fear can be crucial in the search for new treatments. The protozoan parasite Toxoplasma gondii invades rat brain and removes the fear that rats have of cat odors, a change believed to be parasitic manipulation of host behavior aimed at increasing parasite transmission. It is likely that mechanisms employed by T. gondii can be used as a heuristic tool to understand possible means of fear reduction in clinical settings. Male Long-Evans rats were infected with T. gondii and compared with sham-infected animals 8 weeks after infection. The amount of circulating plasma corticosterone and dendritic arborization of basolateral amygdala principal neurons were quantified. Previous studies have shown that corticosterone, acting within the basolateral amygdala, enhances the fear response to environmental stimuli. Here we show that T. gondii infection causes a dendritic retraction in basolateral amygdala neurons. Such dendritic retraction is accompanied by lower amounts of circulating corticosterone, both at baseline and when induced by an aversive cat odor. The concerted effects of parasitism on two pivotal physiological nodes of the fear response provide an animal model relevant to interactions between stress hormones and amygdalar plasticity.

  3. Basolateral amygdala and stress-induced hyperexcitability affect motivated behaviors and addiction.

    Science.gov (United States)

    Sharp, B M

    2017-08-08

    The amygdala integrates and processes incoming information pertinent to reward and to emotions such as fear and anxiety that promote survival by warning of potential danger. Basolateral amygdala (BLA) communicates bi-directionally with brain regions affecting cognition, motivation and stress responses including prefrontal cortex, hippocampus, nucleus accumbens and hindbrain regions that trigger norepinephrine-mediated stress responses. Disruption of intrinsic amygdala and BLA regulatory neurocircuits is often caused by dysfunctional neuroplasticity frequently due to molecular alterations in local GABAergic circuits and principal glutamatergic output neurons. Changes in local regulation of BLA excitability underlie behavioral disturbances characteristic of disorders including post-traumatic stress syndrome (PTSD), autism, attention-deficit hyperactivity disorder (ADHD) and stress-induced relapse to drug use. In this Review, we discuss molecular mechanisms and neural circuits that regulate physiological and stress-induced dysfunction of BLA/amygdala and its principal output neurons. We consider effects of stress on motivated behaviors that depend on BLA; these include drug taking and drug seeking, with emphasis on nicotine-dependent behaviors. Throughout, we take a translational approach by integrating decades of addiction research on animal models and human trials. We show that changes in BLA function identified in animal addiction models illuminate human brain imaging and behavioral studies by more precisely delineating BLA mechanisms. In summary, BLA is required to promote responding for natural reward and respond to second-order drug-conditioned cues; reinstate cue-dependent drug seeking; express stress-enhanced reacquisition of nicotine intake; and drive anxiety and fear. Converging evidence indicates that chronic stress causes BLA principal output neurons to become hyperexcitable.

  4. Extinction of relapsed fear does not require the basolateral amygdala.

    Science.gov (United States)

    Lingawi, Nura W; Westbrook, R Frederick; Laurent, Vincent

    2017-03-01

    It is well established that extinguished fears are restored with the passage of time or a change in physical context. These fear restoration phenomena are believed to mimic the conditions under which relapse occurs in patients that have been treated for anxiety disorders by means of cue-exposure therapy. Here, we used a rodent model to extinguish relapsed fear and assess whether this new extinction prevents further relapse. We found that activity in the basolateral amygdala (BLA) is required to initially extinguish conditioned fear, but this activity was not necessary to subsequently extinguish relapsed fear. That is, extinction of spontaneously recovered or renewed fear was spared by BLA inactivation. Yet, this BLA-independent learning of extinction did not protect against further relapse: extinction of relapsed fear conducted without BLA activity was still likely to return after the passage of time or a shift in physical context. These findings have important clinical implications. They indicate that pharmacological agents with anxiolytic properties may disrupt initial cue-exposure therapy but may be useful when therapy is again needed due to relapse. However, they also suggest that these agents will not protect against further relapse, implying the need for developing drugs that target other brain regions involved in fear inhibition. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Acute Stress Suppresses Synaptic Inhibition and Increases Anxiety via Endocannabinoid Release in the Basolateral Amygdala.

    Science.gov (United States)

    Di, Shi; Itoga, Christy A; Fisher, Marc O; Solomonow, Jonathan; Roltsch, Emily A; Gilpin, Nicholas W; Tasker, Jeffrey G

    2016-08-10

    Stress and glucocorticoids stimulate the rapid mobilization of endocannabinoids in the basolateral amygdala (BLA). Cannabinoid receptors in the BLA contribute to anxiogenesis and fear-memory formation. We tested for rapid glucocorticoid-induced endocannabinoid regulation of synaptic inhibition in the rat BLA. Glucocorticoid application to amygdala slices elicited a rapid, nonreversible suppression of spontaneous, but not evoked, GABAergic synaptic currents in BLA principal neurons; the effect was also seen with a membrane-impermeant glucocorticoid, but not with intracellular glucocorticoid application, implicating a membrane-associated glucocorticoid receptor. The glucocorticoid suppression of GABA currents was not blocked by antagonists of nuclear corticosteroid receptors, or by inhibitors of gene transcription or protein synthesis, but was blocked by inhibiting postsynaptic G-protein activity, suggesting a postsynaptic nongenomic steroid signaling mechanism that stimulates the release of a retrograde messenger. The rapid glucocorticoid-induced suppression of inhibition was prevented by blocking CB1 receptors and 2-arachidonoylglycerol (2-AG) synthesis, and it was mimicked and occluded by CB1 receptor agonists, indicating it was mediated by the retrograde release of the endocannabinoid 2-AG. The rapid glucocorticoid effect in BLA neurons in vitro was occluded by prior in vivo acute stress-induced, or prior in vitro glucocorticoid-induced, release of endocannabinoid. Acute stress also caused an increase in anxiety-like behavior that was attenuated by blocking CB1 receptor activation and inhibiting 2-AG synthesis in the BLA. Together, these findings suggest that acute stress causes a long-lasting suppression of synaptic inhibition in BLA neurons via a membrane glucocorticoid receptor-induced release of 2-AG at GABA synapses, which contributes to stress-induced anxiogenesis. We provide a cellular mechanism in the basolateral amygdala (BLA) for the rapid stress

  6. The role of human basolateral amygdala in ambiguous social threat perception

    NARCIS (Netherlands)

    de Gelder, B.; Terburg, D.; Morgan, B.; Hortensius, R.; Stein, D.J.; van Honk, J.

    2014-01-01

    Previous studies have shown that the amygdala (AMG) plays a role in how affective signals are processed. Animal research has allowed this role to be better understood and has assigned to the basolateral amygdala (BLA) an important role in threat perception. Here we show that, when passively exposed

  7. Basolateral amygdala and stress-induced hyperexcitability affect motivated behaviors and addiction

    OpenAIRE

    Sharp, B M

    2017-01-01

    The amygdala integrates and processes incoming information pertinent to reward and to emotions such as fear and anxiety that promote survival by warning of potential danger. Basolateral amygdala (BLA) communicates bi-directionally with brain regions affecting cognition, motivation and stress responses including prefrontal cortex, hippocampus, nucleus accumbens and hindbrain regions that trigger norepinephrine-mediated stress responses. Disruption of intrinsic amygdala and BLA regulatory neuro...

  8. Inactivation of basolateral amygdala specifically eliminates palatability-related information in cortical sensory responses.

    Science.gov (United States)

    Piette, Caitlin E; Baez-Santiago, Madelyn A; Reid, Emily E; Katz, Donald B; Moran, Anan

    2012-07-18

    Evidence indirectly implicates the amygdala as the primary processor of emotional information used by cortex to drive appropriate behavioral responses to stimuli. Taste provides an ideal system with which to test this hypothesis directly, as neurons in both basolateral amygdala (BLA) and gustatory cortex (GC)-anatomically interconnected nodes of the gustatory system-code the emotional valence of taste stimuli (i.e., palatability), in firing rate responses that progress similarly through "epochs." The fact that palatability-related firing appears one epoch earlier in BLA than GC is broadly consistent with the hypothesis that such information may propagate from the former to the latter. Here, we provide evidence supporting this hypothesis, assaying taste responses in small GC single-neuron ensembles before, during, and after temporarily inactivating BLA in awake rats. BLA inactivation (BLAx) changed responses in 98% of taste-responsive GC neurons, altering the entirety of every taste response in many neurons. Most changes involved reductions in firing rate, but regardless of the direction of change, the effect of BLAx was epoch-specific: while firing rates were changed, the taste specificity of responses remained stable; information about taste palatability, however, which normally resides in the "Late" epoch, was reduced in magnitude across the entire GC sample and outright eliminated in most neurons. Only in the specific minority of neurons for which BLAx enhanced responses did palatability specificity survive undiminished. Our data therefore provide direct evidence that BLA is a necessary component of GC gustatory processing, and that cortical palatability processing in particular is, in part, a function of BLA activity.

  9. Short-term environmental enrichment is sufficient to counter stress-induced anxiety and associated structural and molecular plasticity in basolateral amygdala.

    Science.gov (United States)

    Ashokan, Archana; Hegde, Akshaya; Mitra, Rupshi

    2016-07-01

    Moderate levels of anxiety enable individual animals to cope with stressors through avoidance, and could be an adaptive trait. However, repeated stress exacerbates anxiety to pathologically high levels. Dendritic remodeling in the basolateral amygdala is proposed to mediate potentiation of anxiety after stress. Similarly, modulation of brain-derived neurotrophic factor is thought to be important for the behavioral effects of stress. In the present study, we investigate if relatively short periods of environmental enrichment in adulthood can confer resilience against stress-induced anxiety and concomitant changes in neuronal arborisation and brain derived neurotrophic factor within basolateral amygdala. Two weeks of environmental enrichment countermanded the propensity of increased anxiety following chronic immobilization stress. Environmental enrichment concurrently reduced dendritic branching and spine density of projection neurons of the basolateral amygdala. Moreover, stress increased abundance of BDNF mRNA in the basolateral amygdala in agreement with the dendritic hypertrophy post-stress and role of BDNF in promoting dendritic arborisation. In contrast, environmental enrichment prevented stress-induced rise in the BDNF mRNA abundance. Gain in body weights and adrenal weights remained unaffected by exposure to environmental enrichment. These observations suggest that a short period of environmental enrichment can provide resilience against maladaptive effects of stress on hormonal, neuronal and molecular mediators of anxiogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The Basolateral Amygdala Is Necessary for the Encoding and the Expression of Odor Memory

    Science.gov (United States)

    Sevelinges, Yannick; Desgranges, Bertrand; Ferreira, Guillaume

    2009-01-01

    Conditioned odor avoidance (COA) results from the association between a novel odor and a delayed visceral illness. The present experiments investigated the role of the basolateral amygdala (BLA) in acquisition and retrieval of COA memory. To address this, we used the GABAA agonist muscimol to temporarily inactivate the BLA during COA acquisition…

  11. Endocannabinoid signaling within the basolateral amygdala integrates multiple stress hormone effects on memory consolidation

    NARCIS (Netherlands)

    Atsak, P.; Hauer, D.; Campolongo, P.; Schelling, G.; Fornari, R.V.; Roozendaal, B.

    2015-01-01

    Glucocorticoid hormones are known to act synergistically with other stress-activated neuromodulatory systems, such as norepinephrine and corticotropin-releasing factor (CRF), within the basolateral complex of the amygdala (BLA) to induce optimal strengthening of the consolidation of long-term memory

  12. Endocannabinoids in the rat basolateral amygdala enhance memory consolidation and enable glucocorticoid modulation of memory

    NARCIS (Netherlands)

    Campolongo, Patrizia; Roozendaal, Benno; Trezza, Viviana; Hauer, Daniela; Schelling, Gustav; McGaugh, James L.; Cuomo, Vincenzo

    2009-01-01

    Extensive evidence indicates that the basolateral complex of the amygdala (BLA) modulates the consolidation of memories for emotionally arousing experiences, an effect that involves the activation of the glucocorticoid system. Because the BLA expresses high densities of cannabinoid CB1 receptors,

  13. Noradrenergic activation of the basolateral amygdala modulates the consolidation of object-in-context recognition memory

    NARCIS (Netherlands)

    Barsegyan, Areg; McGaugh, James L.; Roozendaal, Benno

    2014-01-01

    Noradrenergic activation of the basolateral complex of the amygdala (BLA) is well known to enhance the consolidation of long-term memory of highly emotionally arousing training experiences. The present study investigated whether such noradrenergic activation of the BLA also influences the

  14. Reorganization of Basolateral Amygdala-Subiculum Circuitry in Mouse Epilepsy Model

    Directory of Open Access Journals (Sweden)

    Dongliang eMa

    2016-01-01

    Full Text Available In this study, we investigated the reorganized basolateral amygdala (BLA-subiculum pathway in a status epilepticus (SE mouse model with epileptic episodes induced by pilocarpine. We have previously observed a dramatic loss of neurons in the CA1-3 fields of the hippocampus in epileptic mice. Herein, we observed a 43-57 % reduction in the number of neurons in the BLA of epileptic mice. However, injection of an anterograde tracer, Phaseolus vulgaris leucoagglutinin (PHA-L into the BLA indicated 25.63 % increase in the number of PHA-L-immunopositive terminal-like structures in the ventral subiculum (v-Sub of epileptic mice as compared to control mice. These data suggest that the projections from the basal nucleus at BLA to the vSub in epileptic mice are resistant to epilepsy-induced damage. Consequently, these epileptic mice exhibit partially impairment but not total loss of context-dependent fear memory. Epileptic mice also show increased c-Fos expression in the BLA and vSub when subjected to contextual memory test, suggesting the participation of these 2 brain areas in foot shock-dependent fear conditioning. These results indicate the presence of functional neural connections between the BLA-vSub regions that participate in learning and memory in epileptic mice.

  15. Locus coeruleus to basolateral amygdala noradrenergic projections promote anxiety-like behavior.

    Science.gov (United States)

    McCall, Jordan G; Siuda, Edward R; Bhatti, Dionnet L; Lawson, Lamley A; McElligott, Zoe A; Stuber, Garret D; Bruchas, Michael R

    2017-07-14

    Increased tonic activity of locus coeruleus noradrenergic (LC-NE) neurons induces anxiety-like and aversive behavior. While some information is known about the afferent circuitry that endogenously drives this neural activity and behavior, the downstream receptors and anatomical projections that mediate these acute risk aversive behavioral states via the LC-NE system remain unresolved. Here we use a combination of retrograde tracing, fast-scan cyclic voltammetry, electrophysiology, and in vivo optogenetics with localized pharmacology to identify neural substrates downstream of increased tonic LC-NE activity in mice. We demonstrate that photostimulation of LC-NE fibers in the BLA evokes norepinephrine release in the basolateral amygdala (BLA), alters BLA neuronal activity, conditions aversion, and increases anxiety-like behavior. Additionally, we report that β-adrenergic receptors mediate the anxiety-like phenotype of increased NE release in the BLA. These studies begin to illustrate how the complex efferent system of the LC-NE system selectively mediates behavior through distinct receptor and projection-selective mechanisms.

  16. [Interneuronal relationships in the basolateral amygdala of cats trained for choice in the quality of food reinforcement].

    Science.gov (United States)

    Merzhanova, G Kh; Dolbakian, E E; Partev, A Z

    1997-01-01

    The alimentary instrumental conditioned bar-pressing reflex was elaborated in cats by the method of "active choice" of either short-delayed reinforcement with bread-meat mixture of delayed more valuable reinforcement with meat. The animals differed in behavior strategy: some animals preferred bar-pressing with the long delay (the so-called "self-control" group), other animals pressed the bar with short delay (the so-called "impulsive" group). The multiunit activity in the basolateral amygdala was recorded with chronically implanted nichrome microelectrodes. The interactions between the spike trains of the neighbouring neurons selected from the multiunit activity were evaluated by means of statistical crosscorrelation analysis. It was shown that the number of correlations between the discharges of neurons was significantly higher in the "impulsive" cats. In both groups the number of cross-correlations was maximal in cases of a difficult choice, i.e., during the omission of the conditioned bar-pressing response. In "impulsive" cats the number of interneuronal correlations was highest with the latencies in the range of 0-30 msec. We suggest that the basolateral amygdala is involved in the system of structures which determine the individual-typological characteristics of animals.

  17. Value encoding in single neurons in the human amygdala during decision making.

    Science.gov (United States)

    Jenison, Rick L; Rangel, Antonio; Oya, Hiroyuki; Kawasaki, Hiroto; Howard, Matthew A

    2011-01-05

    A growing consensus suggests that the brain makes simple choices by assigning values to the stimuli under consideration and then comparing these values to make a decision. However, the network involved in computing the values has not yet been fully characterized. Here, we investigated whether the human amygdala plays a role in the computation of stimulus values at the time of decision making. We recorded single neuron activity from the amygdala of awake patients while they made simple purchase decisions over food items. We found 16 amygdala neurons, located primarily in the basolateral nucleus that responded linearly to the values assigned to individual items.

  18. A neuroplasticity hypothesis of chronic stress in the basolateral amygdala.

    Science.gov (United States)

    Boyle, Lara M

    2013-06-01

    Chronic stress plays a role in the etiology of several affective and anxiety-related disorders. Despite this, its mechanistic effects on the brain are still unclear. Of particular interest is the effect of chronic stress on the amygdala, which plays a key role in the regulation of emotional responses and memory consolidation. This review proposes a neuroplasticity model for the effects of chronic stress in this region, emphasizing the roles of glutamate and BDNF signaling. This model provides a review of recent discoveries of the effects of chronic stress in the amygdala and reveals pathways for future research.

  19. Glucocorticoid Effects on Memory Consolidation Depend on Functional Interactions between the Medial Prefrontal Cortex and Basolateral Amygdala

    NARCIS (Netherlands)

    Roozendaal, Benno; McReynolds, Jayme R.; Van der Zee, Eddy A.; Lee, Sangkwan; McGaugh, James L.; McIntyre, Christa K.

    2009-01-01

    Considerable evidence indicates that the basolateral complex of the amygdala (BLA) interacts with efferent brain regions in mediating glucocorticoid effects on memory consolidation. Here, we investigated whether glucocorticoid influences on the consolidation of memory for emotionally arousing

  20. Glycogen synthase kinase 3β in the basolateral amygdala is critical for the reconsolidation of cocaine reward memory.

    Science.gov (United States)

    Wu, Ping; Xue, Yan-Xue; Ding, Zeng-Bo; Xue, Li-Fen; Xu, Chun-Mei; Lu, Lin

    2011-07-01

    Exposure to cocaine-associated conditioned stimuli elicits craving and increases the probability of cocaine relapse in cocaine users even after extended periods of abstinence. Recent evidence indicates that cocaine seeking can be inhibited by disrupting the reconsolidation of the cocaine cue memories and that basolateral amygdala (BLA) neuronal activity plays a role in this effect. Previous studies demonstrated that glycogen synthase kinase 3β (GSK-3β) plays a role in the reconsolidation of fear memory. Here, we used a conditioned place preference procedure to examine the role of GSK-3β in the BLA in the reconsolidation of cocaine cue memories. GSK-3β activity in the BLA, but not central amygdala (CeA), in rats that acquired cocaine (10 mg/kg)-induced conditioned place preference increased after re-exposure to a previously cocaine-paired chamber (i.e., a memory reactivation procedure). Systemic injections of the GSK-3β inhibitor lithium chloride after memory reactivation impaired the reconsolidation of cocaine cue memories and inhibited subsequent cue-induced GSK-3β activity in the BLA. Basolateral amygdala, but not central amygdala, injections of SB216763, a selective inhibitor of GSK-3β, immediately after the reactivation of cocaine cue memories also disrupted cocaine cue memory reconsolidation and prevented cue-induced increases in GSK-3β activity in the BLA. The effect of SB216763 on the reconsolidation of cocaine cue memories lasted at least 2 weeks and was not recovered by a cocaine priming injection. These results indicate that GSK-3β activity in the BLA mediates the reconsolidation of cocaine cue memories. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  1. Identification of distinct telencephalic progenitor pools for neuronal diversity in the amygdala.

    Science.gov (United States)

    Hirata, Tsutomu; Li, Peijun; Lanuza, Guillermo M; Cocas, Laura A; Huntsman, Molly M; Corbin, Joshua G

    2009-02-01

    The development of the amygdala, a central structure of the limbic system, remains poorly understood. We found that two spatially distinct and early-specified telencephalic progenitor pools marked by the homeodomain transcription factor Dbx1 are major sources of neuronal cell diversity in the mature mouse amygdala. We found that Dbx1-positive cells of the ventral pallium generate the excitatory neurons of the basolateral complex and cortical amygdala nuclei. Moreover, Dbx1-derived cells comprise a previously unknown migratory stream that emanates from the preoptic area (POA), a ventral telencephalic domain adjacent to the diencephalic border. The Dbx1-positive, POA-derived population migrated specifically to the amygdala and, as defined by both immunochemical and electrophysiological criteria, generated a unique subclass of inhibitory neurons in the medial amygdala nucleus. Thus, this POA-derived population represents a previously unknown progenitor pool dedicated to the limbic system.

  2. Noradrenergic activation of the basolateral amygdala modulates the consolidation of object-in-context recognition memory

    OpenAIRE

    Barsegyan, Areg; McGaugh, James L.; Roozendaal, Benno

    2014-01-01

    Noradrenergic activation of the basolateral complex of the amygdala (BLA) is well known to enhance the consolidation of long-term memory of highly emotionally arousing training experiences. The present study investigated whether such noradrenergic activation of the BLA also influences the consolidation of object-in-context recognition memory, a low-arousing training task assessing episodic-like memory. Male Sprague-Dawley rats were exposed to two identical objects in one context for either 3 ...

  3. Endocannabinoids in the rat basolateral amygdala enhance memory consolidation and enable glucocorticoid modulation of memory

    OpenAIRE

    Campolongo, Patrizia; Roozendaal, Benno; Trezza, Viviana; Hauer, Daniela; Schelling, Gustav; McGaugh, James L.; Cuomo, Vincenzo

    2009-01-01

    Extensive evidence indicates that the basolateral complex of the amygdala (BLA) modulates the consolidation of memories for emotionally arousing experiences, an effect that involves the activation of the glucocorticoid system. Because the BLA expresses high densities of cannabinoid CB1 receptors, the present experiments investigated whether the endocannabinoid system in the BLA influences memory consolidation and whether glucocorticoids interact with this system. The CB1 receptor agonist WIN5...

  4. Progressively Disrupted Intrinsic Functional Connectivity of Basolateral Amygdala in Very Early Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Marion Ortner

    2016-09-01

    Full Text Available Abstract:Very early Alzheimer’s disease (AD - i.e., AD at stages of mild cognitive impairment (MCI and mild dementia - is characterized by progressive structural and neuropathologic changes such as atrophy or tangle deposition in medial temporal lobes, including hippocampus and entorhinal cortex but also adjacent amygdala. While progressively disrupted intrinsic connectivity of hippocampus with other brain areas has been demonstrated by many studies, amygdala connectivity was rarely investigated in AD, notwithstanding its known relevance for emotion processing and mood disturbances, which are both important in early AD. Intrinsic functional connectivity (iFC patterns of hippocampus and amygdala overlap in healthy persons. Thus, we hypothesized that increased alteration of iFC patterns along AD is not limited to the hippocampus but also concerns the amygdala, independent from atrophy. To address this hypothesis, we applied structural and functional resting-state MRI in healthy controls (CON, n=33 and patients with AD in the stages of MCI (AD-MCI, n=38 and mild dementia (AD-D, n=36. Outcome measures were voxel-based morphometry (VBM values and region of interest-based intrinsic functional connectivity maps (iFC of basolateral amygdala, which has extended cortical connectivity. Amygdala VBM values were progressively reduced in patients (CON > AD-MCI and AD-D. Amygdala iFC was progressively reduced along impairment severity (CON > AD-MCI > AD-D, particularly for hippocampus, temporal lobes, and fronto-parietal areas. Notably, decreased iFC was independent of amygdala atrophy. Results demonstrate progressively impaired amygdala intrinsic connectivity in temporal and fronto-parietal lobes independent from increasing amygdala atrophy in very early AD. Data suggest that early AD disrupts intrinsic connectivity of medial temporal lobe key regions including that of amygdala.

  5. Neurofascin Knock Down in the Basolateral Amygdala Mediates Resilience of Memory and Plasticity in the Dorsal Dentate Gyrus Under Stress.

    Science.gov (United States)

    Saha, Rinki; Kriebel, Martin; Volkmer, Hansjürgen; Richter-Levin, Gal; Albrecht, Anne

    2018-02-05

    Activation of the amygdala is one of the hallmarks of acute stress reactions and a central element of the negative impact of stress on hippocampus-dependent memory and cognition. Stress-induced psychopathologies, such as posttraumatic stress disorder, exhibit a sustained hyperactivity of the amygdala, triggered at least in part by deficits in GABAergic inhibition that lead to shifts in amygdalo-hippocampal interaction. Here, we have utilized lentiviral knock down of neurofascin to reduce GABAergic inhibition specifically at the axon initial segment (AIS) of principal neurons within the basolateral amygdala (BLA) of rats. Metaplastic effects of such a BLA modulation on hippocampal synaptic function were assessed using BLA priming prior to the induction of long-term potentiation (LTP) on dentate gyrus synapses in anesthetized rats in vivo. The knock down of neurofascin in the BLA prevented a priming-induced impairment on LTP maintenance in the dentate gyrus. At the behavioral level, a similar effect was observable, with neurofascin knock down preventing the detrimental impact of acute traumatic stress on hippocampus-dependent spatial memory retrieval in a water maze task. These findings suggest that reducing GABAergic inhibition specifically at the AIS synapses of the BLA alters amygdalo-hippocampal interactions such that it attenuates the adverse impact of acute stress exposure on cognition-related hippocampal functions.

  6. Reward loss and the basolateral amygdala: A function in reward comparisons.

    Science.gov (United States)

    Kawasaki, Katsuyoshi; Annicchiarico, Iván; Glueck, Amanda C; Morón, Ignacio; Papini, Mauricio R

    2017-07-28

    The neural circuitry underlying behavior in reward loss situations is poorly understood. We considered two such situations: reward devaluation (from large to small rewards) and reward omission (from large rewards to no rewards). There is evidence that the central nucleus of the amygdala (CeA) plays a role in the negative emotion accompanying reward loss. However, little is known about the function of the basolateral nucleus (BLA) in reward loss. Two hypotheses of BLA function in reward loss, negative emotion and reward comparisons, were tested in an experiment involving pretraining excitotoxic BLA lesions followed by training in four tasks: consummatory successive negative contrast (cSNC), autoshaping (AS) acquisition and extinction, anticipatory negative contrast (ANC), and open field testing (OF). Cell counts in the BLA (but not in the CeA) were significantly lower in animals with lesions vs. shams. BLA lesions eliminated cSNC and ANC, and accelerated extinction of lever pressing in AS. BLA lesions had no effect on OF testing: higher activity in the periphery than in the central area. This pattern of results provides support for the hypothesis that BLA neurons are important for reward comparison. The three affected tasks (cSNC, ANC, and AS extinction) involve reward comparisons. However, ANC does not seem to involve negative emotions and it was affected, whereas OF activity is known to involve negative emotion, but it was not affected. It is hypothesized that a circuit involving the thalamus, insular cortex, and BLA is critically involved in the mechanism comparing current and expected rewards. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The basolateral amygdala modulates specific sensory memory representations in the cerebral cortex.

    Science.gov (United States)

    Chavez, Candice M; McGaugh, James L; Weinberger, Norman M

    2009-05-01

    Stress hormones released by an experience can modulate memory strength via the basolateral amygdala, which in turn acts on sites of memory storage such as the cerebral cortex [McGaugh, J. L. (2004). The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annual Review of Neuroscience, 27, 1-28]. Stimuli that acquire behavioral importance gain increased representation in the cortex. For example, learning shifts the tuning of neurons in the primary auditory cortex (A1) to the frequency of a conditioned stimulus (CS), and the greater the level of CS importance, the larger the area of representational gain [Weinberger, N. M. (2007). Associative representational plasticity in the auditory cortex: A synthesis of two disciplines. Learning & Memory, 14(1-2), 1-16]. The two lines of research suggest that BLA strengthening of memory might be accomplished in part by increasing the representation of an environmental stimulus. The present study investigated whether stimulation of the BLA can affect cortical memory representations. In male Sprague-Dawley rats studied under urethane general anesthesia, frequency receptive fields were obtained from A1 before and up to 75min after the pairing of a tone with BLA stimulation (BLAstm: 100 trials, 400ms, 100Hz, 400microA [+/-16.54]). Tone started before and continued after BLAstm. Group BLA/1.0 (n=16) had a 1s CS-BLAstm interval while Group BLA/1.6 (n=5) has a 1.6s interval. The BLA/1.0 group did develop specific tuning shifts toward and to the CS, which could change frequency tuning by as much as two octaves. Moreover, its shifts increased over time and were enduring, lasting 75min. However, group BLA/1.6 did not develop tuning shifts, indicating that precise CS-BLAstm timing is important in the anesthetized animal. Further, training in the BLA/1.0 paradigm but stimulating outside of the BLA did not produce tuning shifts. These findings demonstrate that the BLA is capable of exerting highly specific

  8. Rapid corticosteroid actions on synaptic plasticity in the mouse basolateral amygdala: relevance of recent stress history and β-adrenergic signaling.

    Science.gov (United States)

    Sarabdjitsingh, R A; Joëls, M

    2014-07-01

    The rodent stress hormone corticosterone rapidly enhances long-term potentiation in the CA1 hippocampal area, but leads to a suppression when acting in a more delayed fashion. Both actions are thought to contribute to stress effects on emotional memory. Emotional memory formation also involves the basolateral amygdala, an important target area for corticosteroid actions. We here (1) investigated the rapid effects of corticosterone on amygdalar synaptic potentiation, (2) determined to what extent these effects depend on the mouse's recent stress history or (3) on prior β-adrenoceptor activation; earlier studies at the single cell level showed that especially a recent history of stress changes the responsiveness of basolateral amygdala neurons to corticosterone. We report that, unlike the hippocampus, stress enhances amygdalar synaptic potentiation in a slow manner. In vitro exposure to 100 nM corticosterone quickly decreases synaptic potentiation, and causes only transient potentiation in tissue from stressed mice. This transient type of potentiation is also seen when β-adrenoceptors are blocked during stress and this is further exacerbated by subsequent in vitro administered corticosterone. We conclude that stress and corticosterone change synaptic potentiation in the basolateral amygdala in a manner opposite to that seen in the hippocampus and that renewed exposure to corticosterone only allows induction of non-persistent forms of synaptic potentiation. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Chemogenetic and Optogenetic Activation of Gαs Signaling in the Basolateral Amygdala Induces Acute and Social Anxiety-Like States.

    Science.gov (United States)

    Siuda, Edward R; Al-Hasani, Ream; McCall, Jordan G; Bhatti, Dionnet L; Bruchas, Michael R

    2016-07-01

    Anxiety disorders are debilitating psychiatric illnesses with detrimental effects on human health. These heightened states of arousal are often in the absence of obvious threatening cues and are difficult to treat owing to a lack of understanding of the neural circuitry and cellular machinery mediating these conditions. Activation of noradrenergic circuitry in the basolateral amygdala is thought to have a role in stress, fear, and anxiety, and the specific cell and receptor types responsible is an active area of investigation. Here we take advantage of two novel cellular approaches to dissect the contributions of G-protein signaling in acute and social anxiety-like states. We used a chemogenetic approach utilizing the Gαs DREADD (rM3Ds) receptor and show that selective activation of generic Gαs signaling is sufficient to induce acute and social anxiety-like behavioral states in mice. Second, we use a recently characterized chimeric receptor composed of rhodopsin and the β2-adrenergic receptor (Opto-β2AR) with in vivo optogenetic techniques to selectively activate Gαs β-adrenergic signaling exclusively within excitatory neurons of the basolateral amygdala. We found that optogenetic induction of β-adrenergic signaling in the basolateral amygdala is sufficient to induce acute and social anxiety-like behavior. These findings support the conclusion that activation of Gαs signaling in the basolateral amygdala has a role in anxiety. These data also suggest that acute and social anxiety-like states may be mediated through signaling pathways identical to β-adrenergic receptors, thus providing support that inhibition of this system may be an effective anxiolytic therapy.

  10. Stimulus Intensity-dependent Modulations of Hippocampal Long-term Potentiation by Basolateral Amygdala Priming

    Directory of Open Access Journals (Sweden)

    Zexuan eLi

    2012-05-01

    Full Text Available There is growing realization that the relationship between memory and stress/emotionality is complicated, and may include both memory enhancing and memory impairing aspects. It has been suggested that the underlying mechanisms involve amygdalar modulation of hippocampal synaptic plasticity, such as long-term potentiation (LTP. We recently reported that while in CA1 basolateral amygdala (BLA priming impaired theta stimulation induced LTP, it enhanced LTP in the dentate gyrus (DG. However, emotional and stressfull experiences were found to activate synaptic plasticity within the BLA, rasing the possibility that BLA modulation of other brain regions may be altered as well, as it may depend on the way the BLA is activated or is responding. In previous studies BLA priming stimulation was relatively weak (1V, 50 µs pulse duration. In the present study we assessed the effects of two stronger levels of BLA priming stimulation (1V or 2V, 100 µs pulse duration on LTP induction in hippocampal DG and CA1, in anesthetized rats. Results show that 1V-BLA priming stimulation enhanced but 2V-BLA priming stimulation impaired DG LTP; however, both levels of BLA priming stimulation impaired CA1 LTP, suggesting that modulation of hippocampal synaptic plasticity by amygdala is dependent on the degree of amygdala activation. These findings suggest that plasticity induced within the amygdala, by stressful experiences induces a form of metaplasticity that would alter the way the amygdala may modulate memory-related processes in other brain areas, such as the hippocampus.

  11. Activation of basolateral amygdala in juvenile C57BL/6J mice during social approach behavior.

    Science.gov (United States)

    Ferri, Sarah L; Kreibich, Arati S; Torre, Matthew; Piccoli, Cara T; Dow, Holly; Pallathra, Ashley A; Li, Hongzhe; Bilker, Warren B; Gur, Ruben C; Abel, Ted; Brodkin, Edward S

    2016-10-29

    There is a strong need to better understand the neurobiology of juvenile sociability (tendency to seek social interaction), a phenotype of central relevance to autism spectrum disorders (ASD). Although numerous genetic mouse models of ASD showing reduced sociability have been reported, and certain brain regions, such as the amygdala, have been implicated in sociability, there has been little emphasis on delineating brain structures and circuits activated during social interactions in the critical juvenile period of the mouse strain that serves as the most common genetic background for these models-the highly sociable C57BL/6J (B6) strain. We measured expression of the immediate early genes Fos and Egr-1 to map activation of brain regions following the Social Approach Test (SAT) in juvenile male B6 mice. We hypothesized that juvenile B6 mice would show activation of the amygdala during social interactions. The basolateral amygdala (BLA) was activated by social exposure in highly sociable, 4-week-old B6 mice. In light of these data, and the many lines of evidence indicating alteration of amygdala circuits in human ASD, future studies are warranted to assess structural and functional alterations in the BLA, particularly at BLA synapses, in various mouse models of ASD. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Low dose prenatal ethanol exposure induces anxiety-like behaviour and alters dendritic morphology in the basolateral amygdala of rat offspring.

    Directory of Open Access Journals (Sweden)

    Carlie L Cullen

    Full Text Available Prenatal exposure to high levels of alcohol is strongly associated with poor cognitive outcomes particularly in relation to learning and memory. It is also becoming more evident that anxiety disorders and anxiety-like behaviour can be associated with prenatal alcohol exposure. This study used a rat model to determine if prenatal exposure to a relatively small amount of alcohol would result in anxiety-like behaviour and to determine if this was associated with morphological changes in the basolateral amygdala. Pregnant Sprague Dawley rats were fed a liquid diet containing either no alcohol (Control or 6% (vol/vol ethanol (EtOH throughout gestation. Male and Female offspring underwent behavioural testing at 8 months (Adult or 15 months (Aged of age. Rats were perfusion fixed and brains were collected at the end of behavioural testing for morphological analysis of pyramidal neuron number and dendritic morphology within the basolateral amygdala. EtOH exposed offspring displayed anxiety-like behaviour in the elevated plus maze, holeboard and emergence tests. Although sexually dimorphic behaviour was apparent, sex did not impact anxiety-like behaviour induced by prenatal alcohol exposure. This increase in anxiety - like behaviour could not be attributed to a change in pyramidal cell number within the BLA but rather was associated with an increase in dendritic spines along the apical dendrite which is indicative of an increase in synaptic connectivity and activity within these neurons. This study is the first to link increases in anxiety like behaviour to structural changes within the basolateral amygdala in a model of prenatal ethanol exposure. In addition, this study has shown that exposure to even a relatively small amount of alcohol during development leads to long term alterations in anxiety-like behaviour.

  13. Developmental changes of morphology in the basolateral complex of the rabbit amygdala.

    Science.gov (United States)

    Jagalska-Majewska, Hanna; Luczyńska, Anna; Wójcik, Sławomir; Dziewiatkowski, Jerzy; Kurlapska, Renata; Moryś, Janusz

    2003-01-01

    The aim of the present study is to follow topographical and morphological changes in the development of the amygdaloid basolateral complex (BLC) in the rabbit. The material consists of 35 brains of New Zealand rabbits of both sexes, divided into 7 age groups (P2-P90). In cresyl violet preparations BLC is already well visible on P2 and is composed of the lateral (divided into dorsolateral and ventromedial divisions), basolateral and homogenous basomedial nuclei. On about the 7th postnatal day it is possible to divide the basomedial nucleus (BM) into dorsal (Bmd) and ventral (BMv) divisions. The topography and subdivisions set on P7 are maintained in further periods of life. The morphology of neurons (shape, dendrites, staining) changes significantly until P21 in all BLC nuclei. Our results indicate that BLC achieves morphological maturity relatively late, which is probably connected with a long creation of emotional memory and regulation of emotional behaviour.

  14. Higher-Order Sensory Cortex Drives Basolateral Amygdala Activity during the Recall of Remote, but Not Recently Learned Fearful Memories.

    Science.gov (United States)

    Cambiaghi, Marco; Grosso, Anna; Likhtik, Ekaterina; Mazziotti, Raffaele; Concina, Giulia; Renna, Annamaria; Sacco, Tiziana; Gordon, Joshua A; Sacchetti, Benedetto

    2016-02-03

    Negative experiences are quickly learned and long remembered. Key unresolved issues in the field of emotional memory include identifying the loci and dynamics of memory storage and retrieval. The present study examined neural activity in the higher-order auditory cortex Te2 and basolateral amygdala (BLA) and their crosstalk during the recall of recent and remote fear memories. To this end, we obtained local field potentials and multiunit activity recordings in Te2 and BLA of rats that underwent recall at 24 h and 30 d after the association of an acoustic conditioned (CS, tone) and an aversive unconditioned stimulus (US, electric shock). Here we show that, during the recall of remote auditory threat memories in rats, the activity of the Te2 and BLA is highly synchronized in the theta frequency range. This functional connectivity stems from memory consolidation processes because it is present during remote, but not recent, memory retrieval. Moreover, the observed increase in synchrony is cue and region specific. A preponderant Te2-to-BLA directionality characterizes this dialogue, and the percentage of time Te2 theta leads the BLA during remote memory recall correlates with a faster latency to freeze to the auditory conditioned stimulus. The blockade of this information transfer via Te2 inhibition with muscimol prevents any retrieval-evoked neuronal activity in the BLA and animals are unable to retrieve remote memories. We conclude that memories stored in higher-order sensory cortices drive BLA activity when distinguishing between learned threatening and neutral stimuli. How and where in the brain do we store the affective/motivational significance of sensory stimuli acquired through life experiences? Scientists have long investigated how "limbic" structures, such as the amygdala, process affective stimuli. Here we show that retrieval of well-established threat memories requires the functional interplay between higher-order components of the auditory cortex and the

  15. Preferential recruitment of the basolateral amygdala during memory encoding of negative scenes in posttraumatic stress disorder.

    Science.gov (United States)

    Patel, Ronak; Girard, Todd A; Pukay-Martin, Nicole; Monson, Candice

    2016-04-01

    The vast majority of functional neuroimaging studies in posttraumatic stress disorder (PTSD) have examined the amygdala as a unitary structure. However, an emerging body of studies indicates that separable functions are subserved by discrete amygdala subregions. The basolateral subdivision (BLA), as compared with the centromedial amygdala (CMA), plays a unique role in learning and memory-based processes for threatening events, and alterations to the BLA have been implicated in the pathogenesis of PTSD. We assessed whether PTSD is associated with differential involvement of the BLA versus the CMA during successful encoding of emotionally charged events. Participants with PTSD (n=11) and a trauma-exposed comparison (TEC) group (n=11) viewed a series of photos that varied in valence (negative versus positive) and arousal (high versus low) while undergoing functional magnetic resonance imaging (fMRI). Subsequently, participants completed an old/new recognition memory test. Using analytic methods based on probabilistic cytoarchitectonic mapping, PTSD was associated with greater activation of the BLA, as compared to the CMA, during successful encoding of negative scenes, a finding which was not observed in the TEC group. Moreover, this memory-related activity in the BLA independently predicted PTSD status. Contrary to hypotheses, there was no evidence of altered BLA activity during memory encoding of high arousing relative to low arousing scenes. Task-related brain activation in PTSD does not appear to be consistent across the entire amygdala. Importantly, memory-related processing of negative information in PTSD is associated with preferential recruitment of the BLA. Copyright © 2016. Published by Elsevier Inc.

  16. Neuropeptide S interacts with the basolateral amygdala noradrenergic system in facilitating object recognition memory consolidation.

    Science.gov (United States)

    Han, Ren-Wen; Xu, Hong-Jiao; Zhang, Rui-San; Wang, Pei; Chang, Min; Peng, Ya-Li; Deng, Ke-Yu; Wang, Rui

    2014-01-01

    The noradrenergic activity in the basolateral amygdala (BLA) was reported to be involved in the regulation of object recognition memory. As the BLA expresses high density of receptors for Neuropeptide S (NPS), we investigated whether the BLA is involved in mediating NPS's effects on object recognition memory consolidation and whether such effects require noradrenergic activity. Intracerebroventricular infusion of NPS (1nmol) post training facilitated 24-h memory in a mouse novel object recognition task. The memory-enhancing effect of NPS could be blocked by the β-adrenoceptor antagonist propranolol. Furthermore, post-training intra-BLA infusions of NPS (0.5nmol/side) improved 24-h memory for objects, which was impaired by co-administration of propranolol (0.5μg/side). Taken together, these results indicate that NPS interacts with the BLA noradrenergic system in improving object recognition memory during consolidation. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. The Effect of Reversible Abolition of Basolateral Amygdala on Hippocampal Dependent Spatial Memory Processes in Mice

    Directory of Open Access Journals (Sweden)

    A Rashidy-Pour

    2004-04-01

    Full Text Available Introduction: Many evidences have suggested that the Basolateral Amygdala (BLA are probably involved in emotional learning and modulation of spatial memory processes. The aim of this present study was assessment of the effect of reversible abolition of BLA on spatial memory processes in a place avoidance learning model in a stable environment. Methods and Materials: Long-Evans strain rats (280-320 gr. were selected and cannulae aimed at the BLA were surgically implanted bilaterally. The mice were trained to avoid a 60° segment of the arena by punishing with a mild foot shock upon entering the area. The punished sector was defined by room cues during the place avoidance training, which occurred in a single 30-min session and the avoidance memory was assessed during a 30-min extinction trial after 24 hours. The time of the first entry and the number of entrances into the punished sector during extinction were used to measure the place avoidance memory. Bilateral injections of Tetrodotoxin (5ng/0.6ml per side were used to inactivate the BLA 60 min before acquisition, immediately, 60 and 120 min after training, or 60 min before the retrieval test. Control mice were injected saline at the same time. Results : The results indicated that acquisition, consolidation (immediately, 60 min after training and retrieval of spatial memory in stable arena were impaired (p0.05. Conclusion: We conclude that the Basolateral Amygdala (BLA modulate spatial memory processes in place avoidance learning model in stable arena and this effect in regard to consolidation is time dependent.

  18. Role of beta1-adrenoceptor in the basolateral amygdala of rats with anxiety-like behavior.

    Science.gov (United States)

    Fu, Ailing; Li, Xiaorong; Zhao, Baoquan

    2008-05-23

    There are evidence suggesting that the function of adrenergic receptor is affected in the amygdala of animals with anxiety-like behavior. However, beta-adrenoceptor (beta-AR) subtypes, consisting of three subtypes, exert different effects on anxiety regulation. In order to determine the function of the beta1-AR subtype in anxiety-like behavior, we investigated the change of beta1-AR expression by immunostaining in the basolateral amygdala (BLA) of rats treated by conditional fear training. The results indicated that the level of beta1-AR was significantly increased in the BLA of fear-conditioned animals as compared that of controls. In animal behavioral tests, animals treated with selective beta1-AR antagonist metoprolol before conditional fear training exhibited a significant attenuation of anxiety-like behavior characterized by increased percentage of time spent and percentage of entries in the open arms, and increased number of head-dips in the elevated plus-maze (EPM) test compared with the animals treated with only saline. Furthermore, the rats pretreated with metoprolol in the conditional fear training significantly decreased the freezing behavior in the test compared with the controls. The results suggested that the beta1-AR played an important role in anxiety-like behavior, and inhibition of the beta1-AR in the BLA could produce anxiolytic effect.

  19. Repeated homotypic stress elevates 2-arachidonoylglycerol levels and enhances short-term endocannabinoid signaling at inhibitory synapses in basolateral amygdala.

    Science.gov (United States)

    Patel, Sachin; Kingsley, Philip J; Mackie, Ken; Marnett, Lawrence J; Winder, Danny G

    2009-12-01

    Psychosocial stress is a risk factor for development and exacerbation of neuropsychiatric illness. Repeated stress causes biochemical adaptations in endocannabinoid (eCB) signaling that contribute to stress-response habituation, however, the synaptic correlates of these adaptations have not been examined. Here, we show that the synthetic enzyme for the eCB 2-arachidonoylglycerol (2-AG), diacylglycerol (DAG) lipase alpha, is heterogeneously expressed in the amygdala, and that levels of 2-AG and precursor DAGs are increased in the basolateral amygdala (BLA) after 10 days, but not 1 day, of restraint stress. In contrast, arachidonic acid was decreased after both 1 and 10 days of restraint stress. To examine the synaptic correlates of these alterations in 2-AG metabolism, we used whole-cell electrophysiology to determine the effects of restraint stress on depolarization-induced suppression of inhibition (DSI) in the BLA. A single restraint stress exposure did not alter DSI compared with control mice. However, after 10 days of restraint stress, DSI duration, but not magnitude, was significantly prolonged. Inhibition of 2-AG degradation with MAFP also prolonged DSI duration; the effects of repeated restraint stress and MAFP were mutually occlusive. These data indicate that exposure to repeated, but not acute, stress produces neuroadaptations that confer BLA neurons with an enhanced capacity to elevate 2-AG content and engage in 2-AG-mediated short-term retrograde synaptic signaling. We suggest stress-induced enhancement of eCB-mediated suppression of inhibitory transmission in the BLA could contribute to affective dysregulation associated with chronic stress.

  20. Hippocampal dendritic spines remodeling and fear memory are modulated by GABAergic signaling within the basolateral amygdala complex.

    Science.gov (United States)

    Giachero, Marcelo; Calfa, Gaston D; Molina, Victor A

    2015-05-01

    GABAergic signaling in the basolateral amygdala complex (BLA) plays a crucial role on the modulation of the stress influence on fear memory. Moreover, accumulating evidence suggests that the dorsal hippocampus (DH) is a downstream target of BLA neurons in contextual fear. Given that hippocampal structural plasticity is proposed to provide a substrate for the storage of long-term memories, the main aim of this study is to evaluate the modulation of GABA neurotransmission in the BLA on spine density in the DH following stress on contextual fear learning. The present findings show that prior stressful experience promoted contextual fear memory and enhanced spine density in the DH. Intra-BLA infusion of midazolam, a positive modulator of GABAa sites, prevented the facilitating influence of stress on both fear retention and hippocampal dendritic spine remodeling. Similarly to the stress-induced effects, the blockade of GABAa sites within the BLA ameliorated fear memory emergence and induced structural remodeling in the DH. These findings suggest that GABAergic transmission in BLA modulates the structural changes in DH associated to the influence of stress on fear memory. © 2015 Wiley Periodicals, Inc.

  1. Identification of a dopamine receptor-mediated opiate reward memory switch in the basolateral amygdala-nucleus accumbens circuit.

    Science.gov (United States)

    Lintas, Alessandra; Chi, Ning; Lauzon, Nicole M; Bishop, Stephanie F; Gholizadeh, Shervin; Sun, Ninglei; Tan, Huibing; Laviolette, Steven R

    2011-08-03

    The basolateral amygdala (BLA), ventral tegmental area (VTA), and nucleus accumbens (NAc) play central roles in the processing of opiate-related associative reward learning and memory. The BLA receives innervation from dopaminergic fibers originating in the VTA, and both dopamine (DA) D1 and D2 receptors are expressed in this region. Using a combination of in vivo single-unit extracellular recording in the NAc combined with behavioral pharmacology studies, we have identified a double dissociation in the functional roles of DA D1 versus D2 receptor transmission in the BLA, which depends on opiate exposure state; thus, in previously opiate-naive rats, blockade of intra-BLA D1, but not D2, receptor transmission blocked the acquisition of associative opiate reward memory, measured in an unbiased conditioned place preference procedure. In direct contrast, in rats made opiate dependent and conditioned in a state of withdrawal, intra-BLA D2, but not D1, receptor blockade blocked opiate reward encoding. This functional switch was dependent on cAMP signaling as comodulation of intra-BLA cAMP levels reversed or replicated the functional effects of intra-BLA D1 or D2 transmission during opiate reward processing. Single-unit in vivo extracellular recordings performed in neurons of the NAc confirmed an opiate-state-dependent role for BLA D1/D2 transmission in NAc neuronal response patterns to morphine. Our results characterize and identify a novel opiate addiction switching mechanism directly in the BLA that can control the processing of opiate reward information as a direct function of opiate exposure state via D1 or D2 receptor signaling substrates.

  2. Neurons in the Amygdala with Response-Selectivity for Anxiety in Two Ethologically Based Tests

    Science.gov (United States)

    Wang, Dong V.; Wang, Fang; Liu, Jun; Zhang, Lu; Wang, Zhiru; Lin, Longnian

    2011-01-01

    The amygdala is a key area in the brain for detecting potential threats or dangers, and further mediating anxiety. However, the neuronal mechanisms of anxiety in the amygdala have not been well characterized. Here we report that in freely-behaving mice, a group of neurons in the basolateral amygdala (BLA) fires tonically under anxiety conditions in both open-field and elevated plus-maze tests. The firing patterns of these neurons displayed a characteristic slow onset and progressively increased firing rates. Specifically, these firing patterns were correlated to a gradual development of anxiety-like behaviors in the open-field test. Moreover, these neurons could be activated by any impoverished environment similar to an open-field; and introduction of both comfortable and uncomfortable stimuli temporarily suppressed the activity of these BLA neurons. Importantly, the excitability of these BLA neurons correlated well with levels of anxiety. These results demonstrate that this type of BLA neuron is likely to represent anxiety and/or emotional values of anxiety elicited by anxiogenic environmental stressors. PMID:21494567

  3. Neurons in the amygdala with response-selectivity for anxiety in two ethologically based tests.

    Directory of Open Access Journals (Sweden)

    Dong V Wang

    Full Text Available The amygdala is a key area in the brain for detecting potential threats or dangers, and further mediating anxiety. However, the neuronal mechanisms of anxiety in the amygdala have not been well characterized. Here we report that in freely-behaving mice, a group of neurons in the basolateral amygdala (BLA fires tonically under anxiety conditions in both open-field and elevated plus-maze tests. The firing patterns of these neurons displayed a characteristic slow onset and progressively increased firing rates. Specifically, these firing patterns were correlated to a gradual development of anxiety-like behaviors in the open-field test. Moreover, these neurons could be activated by any impoverished environment similar to an open-field; and introduction of both comfortable and uncomfortable stimuli temporarily suppressed the activity of these BLA neurons. Importantly, the excitability of these BLA neurons correlated well with levels of anxiety. These results demonstrate that this type of BLA neuron is likely to represent anxiety and/or emotional values of anxiety elicited by anxiogenic environmental stressors.

  4. Stress impairs reconsolidation of drug memory via glucocorticoid receptors in the basolateral amygdala.

    Science.gov (United States)

    Wang, Xiao-Yi; Zhao, Mei; Ghitza, Udi E; Li, Yan-Qin; Lu, Lin

    2008-05-21

    Relapse to drug taking induced by exposure to cues associated with drugs of abuse is a major challenge to the treatment of drug addiction. Previous studies indicate that drug seeking can be inhibited by disrupting the reconsolidation of a drug-related memory. Stress plays an important role in modulating different stages of memory including reconsolidation, but its role in the reconsolidation of a drug-related memory has not been investigated. Here, we examined the effects of stress and corticosterone on reconsolidation of a drug-related memory using a conditioned place preference (CPP) procedure. We also determined the role of glucocorticoid receptors (GRs) in the basolateral amygdala (BLA) in modulating the effects of stress on reconsolidation of this memory. We found that rats acquired morphine CPP after conditioning, and that this CPP was inhibited by stress given immediately after re-exposure to a previously morphine-paired chamber (a reconsolidation procedure). The disruptive effect of stress on reconsolidation of morphine related memory was prevented by inhibition of corticosterone synthesis with metyrapone or BLA, but not central amygdala (CeA), injections of the glucocorticoid (GR) antagonist RU38486 [(11,17)-11-[4-(dimethylamino)phenyl]-17-hydroxy-17-(1-propynyl)estra-4,9-dien-3-one]. Finally, the effect of stress on drug related memory reconsolidation was mimicked by systemic injections of corticosterone or injections of RU28362 [11,17-dihydroxy-6-methyl-17-(1-propynyl)androsta-1,4,6-triene-3-one] (a GR agonist) into BLA, but not the CeA. These results show that stress blocks reconsolidation of a drug-related memory, and this effect is mediated by activation of GRs in the BLA.

  5. Enhancing second-order conditioning with lesions of the basolateral amygdala.

    Science.gov (United States)

    Holland, Peter C

    2016-04-01

    Because the occurrence of primary reinforcers in natural environments is relatively rare, conditioned reinforcement plays an important role in many accounts of behavior, including pathological behaviors such as the abuse of alcohol or drugs. As a result of pairing with natural or drug reinforcers, initially neutral cues acquire the ability to serve as reinforcers for subsequent learning. Accepting a major role for conditioned reinforcement in everyday learning is complicated by the often-evanescent nature of this phenomenon in the laboratory, especially when primary reinforcers are entirely absent from the test situation. Here, I found that under certain conditions, the impact of conditioned reinforcement could be extended by lesions of the basolateral amygdala (BLA). Rats received first-order Pavlovian conditioning pairings of 1 visual conditioned stimulus (CS) with food prior to receiving excitotoxic or sham lesions of the BLA, and first-order pairings of another visual CS with food after that surgery. Finally, each rat received second-order pairings of a different auditory cue with each visual first-order CS. As in prior studies, relative to sham-lesioned control rats, lesioned rats were impaired in their acquisition of second-order conditioning to the auditory cue paired with the first-order CS that was trained after surgery. However, lesioned rats showed enhanced and prolonged second-order conditioning to the auditory cue paired with the first-order CS that was trained before amygdala damage was made. Implications for an enhanced role for conditioned reinforcement by drug-related cues after drug-induced alterations in neural plasticity are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  6. Complementary contributions of basolateral amygdala and orbitofrontal cortex to value learning under uncertainty

    Science.gov (United States)

    Stolyarova, Alexandra; Izquierdo, Alicia

    2017-01-01

    We make choices based on the values of expected outcomes, informed by previous experience in similar settings. When the outcomes of our decisions consistently violate expectations, new learning is needed to maximize rewards. Yet not every surprising event indicates a meaningful change in the environment. Even when conditions are stable overall, outcomes of a single experience can still be unpredictable due to small fluctuations (i.e., expected uncertainty) in reward or costs. In the present work, we investigate causal contributions of the basolateral amygdala (BLA) and orbitofrontal cortex (OFC) in rats to learning under expected outcome uncertainty in a novel delay-based task that incorporates both predictable fluctuations and directional shifts in outcome values. We demonstrate that OFC is required to accurately represent the distribution of wait times to stabilize choice preferences despite trial-by-trial fluctuations in outcomes, whereas BLA is necessary for the facilitation of learning in response to surprising events. DOI: http://dx.doi.org/10.7554/eLife.27483.001 PMID:28682238

  7. Endocannabinoid signaling within the basolateral amygdala integrates multiple stress hormone effects on memory consolidation.

    Science.gov (United States)

    Atsak, Piray; Hauer, Daniela; Campolongo, Patrizia; Schelling, Gustav; Fornari, Raquel V; Roozendaal, Benno

    2015-05-01

    Glucocorticoid hormones are known to act synergistically with other stress-activated neuromodulatory systems, such as norepinephrine and corticotropin-releasing factor (CRF), within the basolateral complex of the amygdala (BLA) to induce optimal strengthening of the consolidation of long-term memory of emotionally arousing experiences. However, as the onset of these glucocorticoid actions appear often too rapid to be explained by genomic regulation, the neurobiological mechanism of how glucocorticoids could modify the memory-enhancing properties of norepinephrine and CRF remained elusive. Here, we show that the endocannabinoid system, a rapidly activated retrograde messenger system, is a primary route mediating the actions of glucocorticoids, via a glucocorticoid receptor on the cell surface, on BLA neural plasticity and memory consolidation. Furthermore, glucocorticoids recruit downstream endocannabinoid activity within the BLA to interact with both the norepinephrine and CRF systems in enhancing memory consolidation. These findings have important implications for understanding the fine-tuned crosstalk between multiple stress hormone systems in the coordination of (mal)adaptive stress and emotional arousal effects on neural plasticity and memory consolidation.

  8. Basolateral amygdala supports the maintenance of value and effortful choice of a preferred option.

    Science.gov (United States)

    Hart, Evan E; Izquierdo, Alicia

    2017-02-01

    The basolateral amygdala (BLA) is known to be involved in appetitive behavior, yet its role in cost-benefit choice of qualitatively different rewards (more/less preferred), beyond magnitude differences (larger/smaller), is poorly understood. We assessed the effects of BLA inactivations on effortful choice behavior. Rats were implanted with cannulae in BLA and trained to stable lever pressing for sucrose pellets on a progressive ratio schedule. Rats were then introduced to a choice: chow was concurrently available while they could work for the preferred sucrose pellets. Rats were infused with either vehicle control (aCSF) or baclofen/muscimol prior to test. BLA inactivations produced a significant decrease in lever presses for sucrose pellets compared to vehicle, and chow consumption was unaffected. Inactivation had no effect on sucrose pellet preference when both options were freely available. Critically, when lab chow was not concurrently available, BLA inactivations had no effect on the number of lever presses for sucrose pellets, indicating that primary motivation in the absence of choice remains intact with BLA offline. After a test under specific satiety for sucrose pellets, BLA inactivation rendered animals less sensitive to devaluation relative to control. The effects of BLA inactivations in our task are not mediated by decreased appetite, an inability to perform the task, a change in food preference, or decrements in primary motivation. Taken together, BLA supports the specific value and effortful choice of a preferred option. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Reconsolidation of a cocaine associated memory requires DNA methyltransferase activity in the basolateral amygdala

    Science.gov (United States)

    Shi, Hai-Shui; Luo, Yi-Xiao; Yin, Xi; Wu, Hong-Hai; Xue, Gai; Geng, Xu-Hong; Hou, Yan-Ning

    2015-01-01

    Drug addiction is considered an aberrant form of learning, and drug-associated memories evoked by the presence of associated stimuli (drug context or drug-related cues) contribute to recurrent craving and reinstatement. Epigenetic changes mediated by DNA methyltransferase (DNMT) have been implicated in the reconsolidation of fear memory. Here, we investigated the role of DNMT activity in the reconsolidation of cocaine-associated memories. Rats were trained over 10 days to intravenously self-administer cocaine by nosepokes. Each injection was paired with a light/tone conditioned stimulus (CS). After acquisition of stable self-administration behaviour, rats underwent nosepoke extinction (10 d) followed by cue-induced reactivation and subsequent cue-induced and cocaine-priming + cue-induced reinstatement tests or subsequently tested to assess the strength of the cocaine-associated cue as a conditioned reinforcer to drive cocaine seeking behaviour. Bilateral intra-basolateral amygdala (BLA) infusion of the DNMT inhibitor5-azacytidine (5-AZA, 1 μg per side) immediately following reactivation decreased subsequent reinstatement induced by cues or cocaine priming as well as cue-maintained cocaine-seeking behaviour. In contrast, delayed intra-BLA infusion of 5-AZA 6 h after reactivation or 5-AZA infusion without reactivation had no effect on subsequent cue-induced reinstatement. These findings indicate that memory reconsolidation for a cocaine-paired stimulus depends critically on DNMT activity in the BLA. PMID:26289919

  10. Basolateral amygdala inactivation impairs learning-induced long-term potentiation in the cerebellar cortex.

    Directory of Open Access Journals (Sweden)

    Lan Zhu

    Full Text Available Learning to fear dangerous situations requires the participation of basolateral amygdala (BLA. In the present study, we provide evidence that BLA is necessary for the synaptic strengthening occurring during memory formation in the cerebellum in rats. In the cerebellar vermis the parallel fibers (PF to Purkinje cell (PC synapse is potentiated one day following fear learning. Pretraining BLA inactivation impaired such a learning-induced long-term potentiation (LTP. Similarly, cerebellar LTP is affected when BLA is blocked shortly, but not 6 h, after training. The latter result shows that the effects of BLA inactivation on cerebellar plasticity, when present, are specifically related to memory processes and not due to an interference with sensory or motor functions. These data indicate that fear memory induces cerebellar LTP provided that a heterosynaptic input coming from BLA sets the proper local conditions. Therefore, in the cerebellum, learning-induced plasticity is a heterosynaptic phenomenon that requires inputs from other regions. Studies employing the electrically-induced LTP in order to clarify the cellular mechanisms of memory should therefore take into account the inputs arriving from other brain sites, considering them as integrative units. Based on previous and the present findings, we proposed that BLA enables learning-related plasticity to be formed in the cerebellum in order to respond appropriately to new stimuli or situations.

  11. Involvement of CRFR1 in the Basolateral Amygdala in the Immediate Fear Extinction Deficit.

    Science.gov (United States)

    Hollis, Fiona; Sevelinges, Yannick; Grosse, Jocelyn; Zanoletti, Olivia; Sandi, Carmen

    2016-01-01

    Several animal and clinical studies have highlighted the ineffectiveness of fear extinction sessions delivered shortly after trauma exposure. This phenomenon, termed the immediate extinction deficit, refers to situations in which extinction programs applied shortly after fear conditioning may result in the reduction of fear behaviors (in rodents, frequently measured as freezing responses to the conditioned cue) during extinction training, but failure to consolidate this reduction in the long term. The molecular mechanisms driving this immediate extinction resistance remain unclear. Here we present evidence for the involvement of the corticotropin releasing factor (CRF) system in the basolateral amygdala (BLA) in male Wistar rats. Intra-BLA microinfusion of the CRFR 1 antagonist NBI30775 enhances extinction recall, whereas administration of the CRF agonist CRF 6-33 before delayed extinction disrupts recall of extinction. We link the immediate fear extinction deficit with dephosphorylation of GluA1 glutamate receptors at Ser 845 and enhanced activity of the protein phosphatase calcineurin in the BLA. Their reversal after treatment with the CRFR 1 antagonist indicates their dependence on CRFR 1 actions. These findings can have important implications for the improvement of therapeutic approaches to trauma, as well as furthering our understanding of the neurobiological mechanisms underlying fear-related disorders.

  12. Post-training depletions of basolateral amygdala serotonin fail to disrupt discrimination, retention, or reversal learning

    Directory of Open Access Journals (Sweden)

    G. Jesus eOchoa

    2015-05-01

    Full Text Available In goal-directed pursuits, the basolateral amygdala (BLA is critical in learning about changes in the value of rewards. BLA-lesioned rats show enhanced reversal learning, a task employed to measure the flexibility of response to changes in reward. Similarly, there is a trend for enhanced discrimination learning, suggesting that BLA may modulate formation of stimulus-reward associations. There is a parallel literature on the importance of serotonin (5HT in new stimulus-reward and reversal learning. Recent postulations implicate 5HT in learning from punishment. Whereas dopaminergic involvement is critical in behavioral activation and reinforcement, 5HT may be most critical for aversive processing and behavioral inhibition, complementary cognitive processes. Given these findings, a 5HT-mediated mechanism in BLA may mediate the facilitated learning observed previously. The present study investigated the effects of selective 5HT lesions in BLA using 5,7-dihydroxytryptamine (5,7-DHT versus infusions of saline (Sham on discrimination, retention, and deterministic reversal learning. Rats were required to reach an 85% correct pairwise discrimination and single reversal criterion prior to surgery. Postoperatively, rats were then tested on the 1 retention of the pretreatment discrimination pair 2 discrimination of a novel pair and 3 reversal learning performance. We found statistically comparable preoperative learning rates between groups, intact postoperative retention, and unaltered novel discrimination and reversal learning in 5,7-DHT rats. These findings suggest that 5HT in BLA is not required for formation and flexible adjustment of new stimulus-reward associations when the strategy to efficiently solve the task has already been learned. Given the complementary role of orbitofrontal cortex in reward learning and its interconnectivity with BLA, these findings add to the list of dissociable mechanisms for BLA and orbitofrontal cortex in reward learning.

  13. Disconnection of basolateral amygdala and insular cortex disrupts conditioned approach in Pavlovian lever autoshaping.

    Science.gov (United States)

    Nasser, Helen M; Lafferty, Danielle S; Lesser, Ellen N; Bacharach, Sam Z; Calu, Donna J

    2018-01-01

    Previously established individual differences in appetitive approach and devaluation sensitivity observed in goal- and sign-trackers may be attributed to differences in the acquisition, modification, or use of associative information in basolateral amygdala (BLA) pathways. Here, we sought to determine the extent to which communication of associative information between BLA and anterior portions of insular cortex (IC) supports ongoing Pavlovian conditioned approach behaviors in sign- and goal-tracking rats, in the absence of manipulations to outcome value. We hypothesized that the BLA mediates goal-, but not sign- tracking approach through interactions with the IC, a brain region involved in supporting flexible behavior. We first trained rats in Pavlovian lever autoshaping to determine their sign- or goal-tracking tendency. During alternating test sessions, we gave unilateral intracranial injections of vehicle or a cocktail of gamma-aminobutyric acid (GABA) receptor agonists, baclofen and muscimol, unilaterally into the BLA and contralaterally or ipsilaterally into the IC prior to reinforced lever autoshaping sessions. Consistent with our hypothesis we found that contralateral inactivation of BLA and IC increased the latency to approach the food cup and decreased the number of food cup contacts in goal-trackers. While contralateral inactivation of BLA and IC did not affect the total number of lever contacts in sign-trackers, this manipulation increased the latency to approach the lever. Ipsilateral inactivation of BLA and IC did not impact approach behaviors in Pavlovian lever autoshaping. These findings, contrary to our hypothesis, suggest that communication between BLA and IC maintains a representation of initially learned appetitive associations that commonly support the initiation of Pavlovian conditioned approach behavior regardless of whether it is directed at the cue or the location of reward delivery. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Modulation of risk/reward decision making by dopaminergic transmission within the basolateral amygdala.

    Science.gov (United States)

    Larkin, Joshua D; Jenni, Nicole L; Floresco, Stan B

    2016-01-01

    Dopamine (DA) transmission within cortico-limbic-striatal circuitry is integral in modulating decisions involving reward uncertainty. The basolateral amygdala (BLA) also plays a role in these processes, yet how DA transmission within this nucleus regulates cost/benefit decision making is unknown. We investigated the contribution of DA transmission within the BLA to risk/reward decision making assessed with a probabilistic discounting task. Rats were well-trained to choose between a small/certain reward and a large/risky reward, with the probability of obtaining the larger reward decreasing (100-12.5 %) or increasing (12.5-100 %) over a session. We examined the effects of antagonizing BLA D1 (SCH 23390, 0.1-1 μg) or D2 (eticlopride, 0.1-1 μg) receptors, as well as intra-BLA infusions of agonists for D1 (SKF 81297, 0.1-1 μg) and D2 (quinpirole, 1-10 μg) receptors. We also assessed how DA receptor stimulation may induce differential effects related to baseline levels of risky choice. BLA D1 receptor antagonism reduced risky choice by decreasing reward sensitivity, whereas D2 antagonism did not affect overall choice patterns. Stimulation of BLA D1 receptors optimized decision making in a baseline-dependent manner: in risk-averse rats, infusions of a lower dose of SKF81297 increased risky choice when reward probabilities were high (50 %), whereas in risk-prone rats, this drug reduced risky choice when probabilities were low (12.5 %). Quinpirole reduced risky choice in risk-prone rats, enhancing lose-shift behavior. These data highlight previously uncharacterized roles for BLA DA D1 and D2 receptors in biasing choice during risk/reward decision making through mediation of reward/negative feedback sensitivity.

  15. Noradrenergic activation of the basolateral amygdala modulates the consolidation of object-in-context recognition memory

    Directory of Open Access Journals (Sweden)

    Areg eBarsegyan

    2014-05-01

    Full Text Available Noradrenergic activation of the basolateral complex of the amygdala (BLA is well known to enhance the consolidation of long-term memory of highly emotionally arousing training experiences. The present study investigated whether such noradrenergic activation of the BLA also influences the consolidation of object-in-context recognition memory, a low-arousing training task assessing episodic-like memory. Male Sprague–Dawley rats were exposed to two identical objects in one context for either 3 or 10 min, immediately followed by exposure to two other identical objects in a distinctly different context. Immediately after the training they received bilateral intra-BLA infusions of norepinephrine (0.3, 1.0 or 3.0 μg or the β-adrenoceptor antagonist propranolol (0.1, 0.3 or 1.0 μg. On the 24-h retention test, rats were placed back into one of the training contexts with one copy of each of the two training objects. Thus, although both objects were familiar, one of the objects had not previously been encountered in this particular test context. Hence, if the animal generated a long-term memory for the association between an object and its context, it would spend significantly more time exploring the object that was not previously experienced in this context. Saline-infused control rats exhibited poor 24-h retention when given 3 min of training and good retention when given 10 min of training. Norepinephrine administered after 3 min of object-in-context training induced a dose-dependent memory enhancement, whereas propranolol administered after 10 min of training produced memory impairment. These findings provide evidence that posttraining noradrenergic activation of the BLA also enhances the consolidation of memory of object-in-context recognition training, enabling accuracy of episodic-like memories.

  16. Administration of riluzole to the basolateral amygdala facilitates fear extinction in rats.

    Science.gov (United States)

    Sugiyama, Azusa; Yamada, Misa; Saitoh, Akiyoshi; Oka, Jun-Ichiro; Yamada, Mitsuhiko

    2018-01-15

    A general understanding exists that inhibition of glutamatergic neurotransmission in the basolateral amygdala (BLA) impairs fear extinction in rodents. Surprisingly, we recently found that systemic administration of riluzole, which has been shown to inhibit the glutamatergic system, facilitates extinction learning in rats with a preconditioned contextual fear response. However, the mechanisms underlying this paradoxical effect of riluzole remain unclear. In this study, adult male Wistar rats were bilaterally cannulated in the BLA to examine the effects of intra-BLA administration of riluzole. We also compared the effects of riluzole with those of d-cycloserine, a partial agonist at the glycine-binding region of the N-methyl-d-aspartate (NMDA) receptor. In this study, intra-BLA administration of either riluzole or d-cycloserine facilitated extinction learning of contextual fear in conditioned rats. In addition, both riluzole and d-cycloserine enhanced the acquisition of recognition memory in the same model. However, intra-BLA injections of riluzole, but not d-cycloserine, had a potent anxiolytic-like effect when investigated using an elevated plus-maze test. Our findings suggest that riluzole-induced facilitation of extinction learning in rats with a preconditioned contextual fear reflects an indirect effect, resulting from the intra-BLA administration of the drug, and might not be directly related to inhibition of glutamatergic signaling. Further research is needed to clarify the mechanisms underlying the paradoxical effect of riluzole on fear extinction learning observed in this study. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The role of basolateral amygdala adrenergic receptors in hippocampus dependent spatial memory in rat

    Directory of Open Access Journals (Sweden)

    Vafaei A.L.

    2008-03-01

    Full Text Available Background and the purpose of the study: There are extensive evidences indicating that the noradrenergic system of the basolateral nucleus of the amygdala (BLA is involved in memory processes. The present study investigated the role of the BLA adrenergic receptors (ARs in hippocampus dependent spatial memory in place avoidance task in male rat. Material and Methods: Long Evans rats (n=150 were trained to avoid footshock in a 60° segment while foraging for scattered food on a circular (80-cm diameter arena. The rats were injected bilaterally in the BLA specific ARS (Adrenergic receptors agonist norepinephrine (NE, 0.5 and 1 µg/µl and specific β-ARs antagonist propranolol (PRO, 0.5 and 1 µg/µl before acquisition, after training or before retrieval of the place avoidance task. Control rats received vehicle at the same volume. The learning in a single 30-min session was assessed 24h later by a 30-min extinction trial in which the time to first entrance and the number of entrances to the shocked area measured the avoidance memory. Results: Acquisition and consolidation were enhanced and impaired significantly by NE and PRO when the drugs were injected 10 min before or immediately after training, respectively. In contrast, neither NE nor PRO influenced animal performances when injected before retention testing. Conclusion: Findings of this study indicates that adrenergic system of the BLA plays an important role in regulation of memory storage and show further evidences for the opinion that the BLA plays an important role in integrating hormonal and neurotransmitter influences on memory storage.

  18. The Dissociative Subtype of Posttraumatic Stress Disorder: Unique Resting-State Functional Connectivity of Basolateral and Centromedial Amygdala Complexes.

    Science.gov (United States)

    Nicholson, Andrew A; Densmore, Maria; Frewen, Paul A; Théberge, Jean; Neufeld, Richard Wj; McKinnon, Margaret C; Lanius, Ruth A

    2015-09-01

    Previous studies point towards differential connectivity patterns among basolateral (BLA) and centromedial (CMA) amygdala regions in patients with posttraumatic stress disorder (PTSD) as compared with controls. Here we describe the first study to compare directly connectivity patterns of the BLA and CMA complexes between PTSD patients with and without the dissociative subtype (PTSD+DS and PTSD-DS, respectively). Amygdala connectivity to regulatory prefrontal regions and parietal regions involved in consciousness and proprioception were expected to differ between these two groups based on differential limbic regulation and behavioral symptoms. PTSD patients (n=49) with (n=13) and without (n=36) the dissociative subtype and age-matched healthy controls (n=40) underwent resting-state fMRI. Bilateral BLA and CMA connectivity patterns were compared using a seed-based approach via SPM Anatomy Toolbox. Among patients with PTSD, the PTSD+DS group exhibited greater amygdala functional connectivity to prefrontal regions involved in emotion regulation (bilateral BLA and left CMA to the middle frontal gyrus and bilateral CMA to the medial frontal gyrus) as compared with the PTSD-DS group. In addition, the PTSD+DS group showed greater amygdala connectivity to regions involved in consciousness, awareness, and proprioception-implicated in depersonalization and derealization (left BLA to superior parietal lobe and cerebellar culmen; left CMA to dorsal posterior cingulate and precuneus). Differences in amygdala complex connectivity to specific brain regions parallel the unique symptom profiles of the PTSD subgroups and point towards unique biological markers of the dissociative subtype of PTSD.

  19. Blockade of intracellular Zn2+ signaling in the basolateral amygdala affects object recognition memory via attenuation of dentate gyrus LTP.

    Science.gov (United States)

    Fujise, Yuki; Kubota, Mitsuyasu; Suzuki, Miki; Tamano, Haruna; Takeda, Atsushi

    2017-09-01

    Hippocampus-dependent memory is modulated by the amygdala. However, it is unknown whether intracellular Zn 2+ signaling in the amygdala is involved in hippocampus-dependent memory. On the basis of the evidence that intracellular Zn 2+ signaling in dentate granule cells (DGC) is necessary for object recognition memory via LTP at medial perforant pathway (PP)-DGC synapses, the present study examined whether intracellular Zn 2+ signaling in the amygdala influences object recognition memory via modulation of LTP at medial PP-DGC synapses. When ZnAF-2DA (100 μM, 2 μl) was injected into the basolateral amygdala (BLA), intracellular ZnAF-2 locally chelated intracellular Zn 2+ in the amygdala. Recognition memory was affected when training of object recognition test was performed 20 min after ZnAF-2DA injection into the BLA. Twenty minutes after injection of ZnAF-2DA into the BLA, LTP induction at medial PP-DGC synapses was attenuated, while LTP induction at PP-BLA synapses was potentiated and LTP induction at BLA-DGC synapses was attenuated. These results suggest that intracellular Zn 2+ signaling in the BLA is involved in BLA-associated LTP and modulates LTP at medial PP-DGC synapses, followed by modulation of object recognition memory. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Rearing in enriched environment increases parvalbumin-positive small neurons in the amygdala and decreases anxiety-like behavior of male rats.

    Science.gov (United States)

    Urakawa, Susumu; Takamoto, Kouich; Hori, Etsuro; Sakai, Natsuko; Ono, Taketoshi; Nishijo, Hisao

    2013-01-25

    Early life experiences including physical exercise, sensory stimulation, and social interaction can modulate development of the inhibitory neuronal network and modify various behaviors. In particular, alteration of parvalbumin-expressing neurons, a gamma-aminobutyric acid (GABA)ergic neuronal subpopulation, has been suggested to be associated with psychiatric disorders. Here we investigated whether rearing in enriched environment could modify the expression of parvalbumin-positive neurons in the basolateral amygdala and anxiety-like behavior. Three-week-old male rats were divided into two groups: those reared in an enriched environment (EE rats) and those reared in standard cages (SE rats). After 5 weeks of rearing, the EE rats showed decreased anxiety-like behavior in an open field than the SE rats. Under another anxiogenic situation, in a beam walking test, the EE rats more quickly traversed an elevated narrow beam. Anxiety-like behavior in the open field was significantly and negatively correlated with walking time in the beam-walking test. Immunohistochemical tests revealed that the number of parvalbumin-positive neurons significantly increased in the basolateral amygdala of the EE rats than that of the SE rats, while the number of calbindin-D28k-positive neurons did not change. These parvalbumin-positive neurons had small, rounded soma and co-expressed the glutamate decarboxylase (GAD67). Furthermore, the number of parvalbumin-positive small cells in the basolateral amygdala tended to positively correlate with emergence in the center arena of the open field and negatively correlated with walking time in the beam walking test. Rearing in the enriched environment augmented the number of parvalbumin-containing specific inhibitory neuron in the basolateral amygdala, but not that of calbindin-containing neuronal phenotype. Furthermore, the number of parvalbumin-positive small neurons in the basolateral amygdala was negatively correlated with walking time in the

  1. Neurons in the human amygdala selective for perceived emotion

    Science.gov (United States)

    Wang, Shuo; Tudusciuc, Oana; Mamelak, Adam N.; Ross, Ian B.; Adolphs, Ralph; Rutishauser, Ueli

    2014-01-01

    The human amygdala plays a key role in recognizing facial emotions and neurons in the monkey and human amygdala respond to the emotional expression of faces. However, it remains unknown whether these responses are driven primarily by properties of the stimulus or by the perceptual judgments of the perceiver. We investigated these questions by recording from over 200 single neurons in the amygdalae of 7 neurosurgical patients with implanted depth electrodes. We presented degraded fear and happy faces and asked subjects to discriminate their emotion by button press. During trials where subjects responded correctly, we found neurons that distinguished fear vs. happy emotions as expressed by the displayed faces. During incorrect trials, these neurons indicated the patients’ subjective judgment. Additional analysis revealed that, on average, all neuronal responses were modulated most by increases or decreases in response to happy faces, and driven predominantly by judgments about the eye region of the face stimuli. Following the same analyses, we showed that hippocampal neurons, unlike amygdala neurons, only encoded emotions but not subjective judgment. Our results suggest that the amygdala specifically encodes the subjective judgment of emotional faces, but that it plays less of a role in simply encoding aspects of the image array. The conscious percept of the emotion shown in a face may thus arise from interactions between the amygdala and its connections within a distributed cortical network, a scheme also consistent with the long response latencies observed in human amygdala recordings. PMID:24982200

  2. Basolateral amygdala GABA-A receptors mediate stress-induced memory retrieval impairment in rats.

    Science.gov (United States)

    Sardari, Maryam; Rezayof, Ameneh; Khodagholi, Fariba; Zarrindast, Mohammad-Reza

    2014-04-01

    The present study was designed to investigate the involvement of GABA-A receptors of the basolateral amygdala (BLA) in the impairing effect of acute stress on memory retrieval. The BLAs of adult male Wistar rats were bilaterally cannulated and memory retrieval was measured in a step-through type passive avoidance apparatus. Acute stress was evoked by placing the animals on an elevated platform for 10, 20 and 30 min. The results indicated that exposure to 20 and 30 min stress, but not 10 min, before memory retrieval testing (pre-test exposure to stress) decreased the step-through latency, indicating stress-induced memory retrieval impairment. Intra-BLA microinjection of a GABA-A receptor agonist, muscimol (0.005-0.02 μg/rat), 5 min before exposure to an ineffective stress (10 min exposure to stress) induced memory retrieval impairment. It is important to note that pre-test intra-BLA microinjection of the same doses of muscimol had no effect on memory retrieval in the rats unexposed to 10 min stress. The blockade of GABA-A receptors of the BLA by injecting an antagonist, bicuculline (0.4-0.5 μg/rat), 5 min before 20 min exposure to stress, prevented stress-induced memory retrieval. Pre-test intra-BLA microinjection of the same doses of bicuculline (0.4-0.5 μg/rat) in rats unexposed to 20 min stress had no effect on memory retrieval. In addition, pre-treatment with bicuculline (0.1-0.4 μg/rat, intra-BLA) reversed muscimol (0.02 μg/rat, intra-BLA)-induced potentiation on the effect of stress in passive avoidance learning. It can be concluded that pre-test exposure to stress can induce memory retrieval impairment and the BLA GABA-A receptors may be involved in stress-induced memory retrieval impairment.

  3. Activation of NF-κB in basolateral amygdala is required for memory reconsolidation in auditory fear conditioning.

    Science.gov (United States)

    Si, Jijian; Yang, Jianli; Xue, Lifen; Yang, Chenhao; Luo, Yixiao; Shi, Haishui; Lu, Lin

    2012-01-01

    Posttraumatic stress disorder (PTSD) is characterized by acute and chronic changes in the stress response, manifested as conditioned fear memory. Previously formed memories that are susceptible to disruption immediately after retrieval undergo a protein synthesis-dependent process to become persistent, termed reconsolidation, a process that is regulated by many distinct molecular mechanisms that control gene expression. Increasing evidence supports the participation of the transcription factor NF-κB in the different phases of memory. Here, we demonstrate that inhibition of NF-κB in the basolateral amygdala (BLA), but not central nucleus of the amygdala, after memory reactivation impairs the retention of amygdala-dependent auditory fear conditioning (AFC). We used two independent pharmacological strategies to disrupt the reconsolidation of AFC. Bilateral intra-BLA infusion of sulfasalazine, an inhibitor of IκB kinase that activates NF-κB, and bilateral intra-BLA infusion of SN50, a direct inhibitor of the NF-κB DNA-binding complex, immediately after retrieval disrupted the reconsolidation of AFC. We also found that systemic pretreatment with sodium butyrate, a histone deacetylase inhibitor that enhances histone acetylation, in the amygdala rescued the disruption of reconsolidation induced by NF-κB inhibition in the BLA. These findings indicate that NF-κB activity in the BLA is required for memory reconsolidation in AFC, suggesting that NF-κB might be a potential pharmacotherapy target for posttraumatic stress disorder.

  4. Activation of NF-κB in basolateral amygdala is required for memory reconsolidation in auditory fear conditioning.

    Directory of Open Access Journals (Sweden)

    Jijian Si

    Full Text Available Posttraumatic stress disorder (PTSD is characterized by acute and chronic changes in the stress response, manifested as conditioned fear memory. Previously formed memories that are susceptible to disruption immediately after retrieval undergo a protein synthesis-dependent process to become persistent, termed reconsolidation, a process that is regulated by many distinct molecular mechanisms that control gene expression. Increasing evidence supports the participation of the transcription factor NF-κB in the different phases of memory. Here, we demonstrate that inhibition of NF-κB in the basolateral amygdala (BLA, but not central nucleus of the amygdala, after memory reactivation impairs the retention of amygdala-dependent auditory fear conditioning (AFC. We used two independent pharmacological strategies to disrupt the reconsolidation of AFC. Bilateral intra-BLA infusion of sulfasalazine, an inhibitor of IκB kinase that activates NF-κB, and bilateral intra-BLA infusion of SN50, a direct inhibitor of the NF-κB DNA-binding complex, immediately after retrieval disrupted the reconsolidation of AFC. We also found that systemic pretreatment with sodium butyrate, a histone deacetylase inhibitor that enhances histone acetylation, in the amygdala rescued the disruption of reconsolidation induced by NF-κB inhibition in the BLA. These findings indicate that NF-κB activity in the BLA is required for memory reconsolidation in AFC, suggesting that NF-κB might be a potential pharmacotherapy target for posttraumatic stress disorder.

  5. Activation of the basolateral amygdala induces long-term enhancement of specific memory representations in the cerebral cortex.

    Science.gov (United States)

    Chavez, Candice M; McGaugh, James L; Weinberger, Norman M

    2013-03-01

    The basolateral amygdala (BLA) modulates memory, particularly for arousing or emotional events, during post-training periods of consolidation. It strengthens memories whose substrates in part or whole are stored remotely, in structures such as the hippocampus, striatum and cerebral cortex. However, the mechanisms by which the BLA influences distant memory traces are unknown, largely because of the need for identifiable target mnemonic representations. Associative tuning plasticity in the primary auditory cortex (A1) constitutes a well-characterized candidate specific memory substrate that is ubiquitous across species, tasks and motivational states. When tone predicts reinforcement, the tuning of cells in A1 shifts toward or to the signal frequency within its tonotopic map, producing an over-representation of behaviorally important sounds. Tuning shifts have the cardinal attributes of forms of memory, including associativity, specificity, rapid induction, consolidation and long-term retention and are therefore likely memory representations. We hypothesized that the BLA strengthens memories by increasing their cortical representations. We recorded multiple unit activity from A1 of rats that received a single discrimination training session in which two tones (2.0 s) separated by 1.25 octaves were either paired with brief electrical stimulation (400 ms) of the BLA (CS+) or not (CS-). Frequency response areas generated by presenting a matrix of test tones (0.5-53.82 kHz, 0-70 dB) were obtained before training and daily for 3 weeks post-training. Tuning both at threshold and above threshold shifted predominantly toward the CS+ beginning on day 1. Tuning shifts were maintained for the entire 3 weeks. Absolute threshold and bandwidth decreased, producing less enduring increases in sensitivity and selectivity. BLA-induced tuning shifts were associative, highly specific and long-lasting. We propose that the BLA strengthens memory for important experiences by increasing the

  6. Fear extinction learning can be impaired or enhanced by modulation of the CRF system in the basolateral nucleus of the amygdala

    OpenAIRE

    Abiri, Dina; Douglas, Christina E.; Calakos, Katina C.; Barbayannis, Georgia; Roberts, Andrea; Bauer, Elizabeth P.

    2014-01-01

    The neuropeptide corticotropin-releasing factor (CRF) is released during periods of anxiety and modulates learning and memory formation. One region with particularly dense concentrations of CRF receptors is the basolateral nucleus of the amygdala (BLA), a critical structure for both Pavlovian fear conditioning and fear extinction. While CRF has the potential to modify amygdala-dependent learning, its effect on fear extinction has not yet been assessed. In the present study, we examined the mo...

  7. Intracellular mechanisms of cocaine-memory reconsolidation in the basolateral amygdala and dorsal hippocampus

    Science.gov (United States)

    Wells, Audrey Marie

    The ability of cocaine-associated environmental contexts to promote relapse in abstinent humans and reinstatement of cocaine-seeking behavior in laboratory animals depends on the formation and maintenance of maladaptive context-response-cocaine associative memories, the latter of which can be disrupted by manipulations that interfere with memory reconsolidation. Memory reconsolidation refers to a protein synthesis-dependent phenomenon whereby memory traces are reincorporated back into long-term memory storage following their retrieval and subsequent destabilization. To elucidate the distinctive roles of the basolateral amygdala (BLA) and dorsal hippocampus (DH) in the reconsolidation of context-response-cocaine memories, Experiments 1-3 evaluated novel molecular mechanisms within each structure that control this phenomenon. Experiment 1 tested the hypothesis that activation of the extracellular signal-regulated kinase (ERK) in the BLA and nucleus accumbens core (NACc - a substrate for Pavlovian cocaine-memory reconsolidation) would critically control instrumental cocaine-memory reconsolidation. To determine this, rats were re-exposed to a context that had previously been used for cocaine self-administration (i.e., cocaine memory-reactivation) and immediately thereafter received bilateral intra-BLA or intra-NACc microinfusions of the ERK inhibitor U0126 or vehicle (VEH) and were subsequently tested for drug context-induced cocaine-seeking behavior (non-reinforced lever responding) ~72 h later. Re-exposure to the cocaine-paired context at test fully reinstated cocaine-seeking behavior, relative to responding in an alternate, extinction context, and post-reactivation U0126 treatment in the BLA, but not the NACc, impaired cocaine-seeking behavior, relative to VEH. This effect was associated with a temporary increase in ERK2, but not ERK1, phosphorylation in the BLA and required explicit reactivation of the target memory trace (i.e., did not similarly manifest when U

  8. Interaction between the Basolateral Amygdala and Dorsal Hippocampus Is Critical for Cocaine Memory Reconsolidation and Subsequent Drug Context-Induced Cocaine-Seeking Behaviorin Rats

    Science.gov (United States)

    Wells, Audrey M.; Lasseter, Heather C.; Xie, Xiaohu; Cowhey, Kate E.; Reittinger, Andrew M.; Fuchs, Rita A.

    2011-01-01

    Contextual stimulus control over instrumental drug-seeking behavior relies on the reconsolidation of context-response-drug associative memories into long-term memory storage following retrieval-induced destabilization. According to previous studies, the basolateral amygdala (BLA) and dorsal hippocampus (DH) regulate cocaine-related memory…

  9. Proteolytic Cleavage of ProBDNF into Mature BDNF in the Basolateral Amygdala Is Necessary for Defeat-Induced Social Avoidance

    Science.gov (United States)

    Dulka, Brooke N.; Ford, Ellen C.; Lee, Melissa A.; Donnell, Nathaniel J.; Goode, Travis D.; Prosser, Rebecca; Cooper, Matthew A.

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) is essential for memory processes. The present study tested whether proteolytic cleavage of proBDNF into mature BDNF (mBDNF) within the basolateral amygdala (BLA) regulates the consolidation of defeat-related memories. We found that acute social defeat increases the expression of mBDNF, but not proBDNF, in…

  10. Angiotensin II's role in sodium lactate-induced panic-like responses in rats with repeated urocortin 1 injections into the basolateral amygdala

    DEFF Research Database (Denmark)

    Johnson, Philip L; Sajdyk, Tammy J; Fitz, Stephanie D

    2013-01-01

    Rats treated with three daily urocortin 1 (UCN) injections into the basolateral amygdala (BLA; i.e., UCN/BLA-primed rats) develop prolonged anxiety-associated behavior and vulnerability to panic-like physiological responses (i.e., tachycardia, hypertension and tachypnea) following intravenous...

  11. Oxytocin Signaling in Basolateral and Central Amygdala Nuclei Differentially Regulates the Acquisition, Expression, and Extinction of Context-Conditioned Fear in Rats

    Science.gov (United States)

    Campbell-Smith, Emma J.; Holmes, Nathan M.; Lingawi, Nura W.; Panayi, Marios C.; Westbrook, R. Frederick

    2015-01-01

    The present study investigated how oxytocin (OT) signaling in the central (CeA) and basolateral (BLA) amygdala affects acquisition, expression, and extinction of context-conditioned fear (freezing) in rats. In the first set of experiments, acquisition of fear to a shocked context was impaired by a preconditioning infusion of synthetic OT into the…

  12. Amygdala TDP-43 Pathology in Frontotemporal Lobar Degeneration and Motor Neuron Disease.

    Science.gov (United States)

    Takeda, Takahiro; Seilhean, Danielle; Le Ber, Isabelle; Millecamps, Stéphanie; Sazdovitch, Véronique; Kitagawa, Kazuo; Uchihara, Toshiki; Duyckaerts, Charles

    2017-09-01

    TDP-43-positive inclusions are present in the amygdala in frontotemporal lobar degeneration (FTLD) and motor neuron disease (MND) including amyotrophic lateral sclerosis. Behavioral abnormalities, one of the chief symptoms of FTLD, could be, at least partly, related to amygdala pathology. We examined TDP-43 inclusions in the amygdala of patients with sporadic FTLD/MND (sFTLD/MND), FTLD/MND with mutation of the C9ORF72 (FTLD/MND-C9) and FTLD with mutation of the progranulin (FTLD-GRN). TDP-43 inclusions were common in each one of these subtypes, which can otherwise be distinguished on topographical and genetic grounds. Conventional and immunological stainings were performed and we quantified the numerical density of inclusions on a regional basis. TDP-43 inclusions in amygdala could be seen in 10 out of 26 sFTLD/MND cases, 5 out of 9 FTLD/MND-C9 cases, and all 4 FTLD-GRN cases. Their numerical density was lower in FTLD/MND-C9 than in sFTLD/MND and FTLD-GRN. TDP-43 inclusions were more numerous in the ventral region of the basolateral nucleus group in all subtypes. This contrast was apparent in sporadic and C9-mutated FTLD/MND, while it was less evident in FTLD-GRN. Such differences in subregional involvement of amygdala may be related to the region-specific neuronal connections that are differentially affected in FTLD/MND and FTLD-GRN. © 2017 American Association of Neuropathologists, Inc. All rights reserved.

  13. Dissociable effects of basolateral amygdala lesions on decision making biases in rats when loss or gain is emphasized.

    Science.gov (United States)

    Tremblay, Melanie; Cocker, Paul J; Hosking, Jay G; Zeeb, Fiona D; Rogers, Robert D; Winstanley, Catharine A

    2014-12-01

    Individuals switch from risk seeking to risk aversion when mathematically identical options are described in terms of loss versus gains, as exemplified in the reflection and framing effects. Determining the neurobiology underlying such cognitive biases could inform our understanding of decision making in health and disease. Although reports vary, data using human subjects have implicated the amygdala in such biases. Animal models enable more detailed investigation of neurobiological mechanisms. We therefore tested whether basolateral amygdala (BLA) lesions would affect risk preference for gains or losses in rats. Choices in both paradigms were always between options of equal expected value-a guaranteed outcome, or the 50:50 chance of double or nothing. In the loss-chasing task, most rats exhibited strong risk seeking preferences, gambling at the risk of incurring double the penalty, regardless of the size of the guaranteed loss. In the betting task, the majority of animals were equivocal in their choice, irrespective of bet size; however, a wager-sensitive subgroup progressively shifted away from the uncertain option as the bet size increased, which is reminiscent of risk aversion. BLA lesions increased preference for the smaller guaranteed loss in the loss-chasing task, without affecting choice on the betting task, which is indicative of reduced risk seeking for losses, but intact risk aversion for gains. These data support the hypothesis that the amygdala plays a more prominent role in choice biases related to losses. Given the importance of the amygdala in representing negative affect, the aversive emotional reaction to loss, rather than aberrant estimations of probability or loss magnitude, may underlie risk seeking for losses.

  14. The CB1 receptor antagonist AM251 impairs reconsolidation of pavlovian fear memory in the rat basolateral amygdala.

    Science.gov (United States)

    Ratano, Patrizia; Everitt, Barry J; Milton, Amy L

    2014-10-01

    We have investigated the requirement for signaling at CB1 receptors in the reconsolidation of a previously consolidated auditory fear memory, by infusing the CB1 receptor antagonist AM251, or the FAAH inhibitor URB597, directly into the basolateral amygdala (BLA) in conjunction with memory reactivation. AM251 disrupted memory restabilization, but only when administered after reactivation. URB597 produced a small, transient enhancement of memory restabilization when administered after reactivation. The amnestic effect of AM251 was rescued by coadministration of the GABAA receptor antagonist bicuculline at reactivation, indicating that the disruption of reconsolidation was mediated by altered GABAergic transmission in the BLA. These data show that the endocannabinoid system in the BLA is an important modulator of fear memory reconsolidation and that its effects on memory are mediated by an interaction with the GABAergic system. Thus, targeting the endocannabinoid system may have therapeutic potential to reduce the impact of maladaptive memories in neuropsychiatric disorders such as posttraumatic stress disorder.

  15. Unilateral inactivation of the basolateral amygdala attenuates context-induced renewal of Pavlovian-conditioned alcohol-seeking

    Science.gov (United States)

    Chaudhri, N.; Woods, C. A.; Sahuque, L.L.; Gill, T. M.; Janak, P.H.

    2014-01-01

    Environmental contexts associated with drug use promote craving in humans and drug-seeking in animals. We hypothesized that the basolateral amygdala (BLA) itself, as well as serial connectivity between the basolateral amygdala (BLA) and nucleus accumbens core (NAC core), were required for context-induced renewal of Pavlovian-conditioned alcohol-seeking. Male, Long-Evans rats were trained to discriminate between two conditioned stimuli (CS) - a CS+ that was paired with ethanol (EtOH, 20%, v/v) delivery into a fluid port (0.2 ml/CS+, 3.2 ml/session) and a CS− that was not. Entries into the port during each CS were measured. Next, rats received extinction in a different context where both cues were presented without EtOH. At test, responding to the CS+ and CS− without EtOH was evaluated in the prior training context. Control subjects showed a selective increase in CS+ responding relative to extinction, indicative of renewal. This effect was blocked by pre-test, bilateral inactivation of the BLA using a solution of gamma-amino-butyric-acid receptor agonists (0.1 mM muscimol and 1.0 mM baclofen; M/B; 0.3 µl/side). Renewal was also attenuated following unilateral injections of M/B into the BLA, combined with either M/B, the dopamine D1 receptor antagonist SCH 23390 (0.6 µg/side), or saline infusion in the contralateral NAC core. Hence, unilateral BLA inactivation was sufficient to disrupt renewal, highlighting a critical role for functional activity in the BLA in enabling the reinstatement of alcohol-seeking driven by an alcohol context. PMID:23758059

  16. Regulation of Alcohol Extinction and Cue-Induced Reinstatement by Specific Projections among Medial Prefrontal Cortex, Nucleus Accumbens, and Basolateral Amygdala.

    Science.gov (United States)

    Keistler, Colby R; Hammarlund, Emma; Barker, Jacqueline M; Bond, Colin W; DiLeone, Ralph J; Pittenger, Christopher; Taylor, Jane R

    2017-04-26

    The ability to inhibit drinking is a significant challenge for recovering alcoholics, especially in the presence of alcohol-associated cues. Previous studies have demonstrated that the regulation of cue-guided alcohol seeking is mediated by the basolateral amygdala (BLA), nucleus accumbens (NAc), and medial prefrontal cortex (mPFC). However, given the high interconnectivity between these structures, it is unclear how mPFC projections to each subcortical structure, as well as projections between BLA and NAc, mediate alcohol-seeking behaviors. Here, we evaluate how cortico-striatal, cortico-amygdalar, and amygdalo-striatal projections control extinction and relapse in a rat model of alcohol seeking. Specifically, we used a combinatorial viral technique to express diphtheria toxin receptors in specific neuron populations based on their projection targets. We then used this strategy to create directionally selective ablations of three distinct pathways after acquisition of ethanol self-administration but before extinction and reinstatement. We demonstrate that ablation of mPFC neurons projecting to NAc, but not BLA, blocks cue-induced reinstatement of alcohol seeking and neither pathway is necessary for extinction of responding. Further, we show that ablating BLA neurons that project to NAc disrupts extinction of alcohol approach behaviors and attenuates reinstatement. Together, these data provide evidence that the mPFC→NAc pathway is necessary for cue-induced reinstatement of alcohol seeking, expand our understanding of how the BLA→NAc pathway regulates alcohol behavior, and introduce a new methodology for the manipulation of target-specific neural projections. SIGNIFICANCE STATEMENT The vast majority of recovering alcoholics will relapse at least once and understanding how the brain regulates relapse will be key to developing more effective behavior and pharmacological therapies for alcoholism. Given the high interconnectivity of cortical, striatal, and limbic

  17. PKMζ maintains drug reward and aversion memory in the basolateral amygdala and extinction memory in the infralimbic cortex.

    Science.gov (United States)

    He, Ying-Ying; Xue, Yan-Xue; Wang, Ji-Shi; Fang, Qin; Liu, Jian-Feng; Xue, Li-Fen; Lu, Lin

    2011-09-01

    The intense associative memories that develop between drug-paired contextual cues and rewarding stimuli or the drug withdrawal-associated aversive feeling have been suggested to contribute to the high rate of relapse. Various studies have elucidated the mechanisms underlying the formation and expression of drug-related cue memories, but how this mechanism is maintained is unknown. Protein kinase M ζ (PKMζ) was recently shown to be necessary and sufficient for long-term potentiation maintenance and memory storage. In the present study, we used conditioned place preference (CPP) and aversion (CPA) to examine whether PKMζ maintains both morphine-associated reward memory and morphine withdrawal-associated aversive memory in the basolateral amygdala (BLA). We also investigate the role of PKMζ in the infralimbic cortex in the extinction memory of morphine reward-related cues and morphine withdrawal-related aversive cues. We found that intra-BLA but not central nucleus of the amygdala injection of the selective PKMζ inhibitor ZIP 1 day after CPP and CPA training impaired the expression of CPP and CPA 1 day later, and the effect of ZIP on memory lasted at least 2 weeks. Inhibiting PKMζ activity in the infralimbic cortex, but not prelimbic cortex, disrupted the expression of the extinction memory of CPP and CPA. These results indicate that PKMζ in the BLA is required for the maintenance of associative morphine reward memory and morphine withdrawal-associated aversion memory, and PKMζ in the infralimbic cortex is required for the maintenance of extinction memory of morphine reward-related cues and morphine withdrawal-related aversive cues.

  18. Impairment of decision making and disruption of synchrony between basolateral amygdala and anterior cingulate cortex in the maternally separated rat.

    Science.gov (United States)

    Cao, Bing; Wang, Jun; Zhang, Xu; Yang, Xiangwei; Poon, David Chun-Hei; Jelfs, Beth; Chan, Rosa H M; Wu, Justin Che-Yuen; Li, Ying

    2016-12-01

    There is considerable evidence to suggest early life experiences, such as maternal separation (MS), play a role in the prevalence of emotional dysregulation and cognitive impairment. At the same time, optimal decision making requires functional integrity between the amygdala and anterior cingulate cortex (ACC), and any dysfunction of this system is believed to induce decision-making deficits. However, the impact of MS on decision-making behavior and the underlying neurophysiological mechanisms have not been thoroughly studied. As such, we consider the impact of MS on the emotional and cognitive functions of rats by employing the open-field test, elevated plus-maze test, and rat gambling task (RGT). Using multi-channel recordings from freely behaving rats, we assessed the effects of MS on the large scale synchrony between the basolateral amygdala (BLA) and the ACC; while also characterizing the relationship between neural spiking activity and the ongoing oscillations in theta frequency band across the BLA and ACC. The results indicated that the MS rats demonstrated anxiety-like behavior. While the RGT showed a decrease in the percentage of good decision-makers, and an increase in the percentage of poor decision-makers. Electrophysiological data revealed an increase in the total power in the theta band of the LFP in the BLA and a decrease in theta power in the ACC in MS rats. MS was also found to disrupt the spike-field coherence of the ACC single unit spiking activity to the ongoing theta oscillations in the BLA and interrupt the synchrony in the BLA-ACC pathway. We provide specific evidence that MS leads to decision-making deficits that are accompanied by alteration of the theta band LFP in the BLA-ACC circuitries and disruption of the neural network integrity. These observations may help revise fundamental notions regarding neurophysiological biomarkers to treat cognitive impairment induced by early life stress. Copyright © 2016 Elsevier Inc. All rights

  19. Inactivation of basolateral amygdala prevents chronic immobilization stress-induced memory impairment and associated changes in corticosterone levels.

    Science.gov (United States)

    Tripathi, Sunil Jamuna; Chakraborty, Suwarna; Srikumar, B N; Raju, T R; Shankaranarayana Rao, B S

    2017-07-01

    Chronic stress causes detrimental effects on various forms of learning and memory. The basolateral amygdala (BLA) not only plays a crucial role in mediating certain forms of memory, but also in the modulation of the effects of stress. Chronic immobilization stress (CIS) results in hypertrophy of the BLA, which is believed to be one of the underlying causes for stress' effects on learning. Thus, it is plausible that preventing the effects of CIS on amygdala would preclude its deleterious cognitive effects. Accordingly, in the first part, we evaluated the effect of excitotoxic lesion of the BLA on chronic stress-induced hippocampal-dependent spatial learning using a partially baited radial arm maze task. The BLA was ablated bilaterally using ibotenic acid prior to CIS. Chronically stressed rats showed impairment in spatial learning with decreased percentage correct choice and increased reference memory errors. Excitotoxic lesion of the BLA prevented the impairment in spatial learning and reference memory. In the retention test, lesion of the BLA was able to rescue the chronic stress-induced impairment. Interestingly, stress-induced enhanced plasma corticosterone levels were partially prevented by the lesion of BLA. These results motivated us to evaluate if the same effects can be observed with temporary inactivation of BLA, only during stress. We found that chronic stress-induced spatial learning deficits were also prevented by temporary inactivation of the BLA. Additionally, temporary inactivation of BLA partially precluded the stress-induced increase in plasma corticosterone levels. Thus, inactivation of BLA precludes stress-induced spatial learning deficits, and enhanced plasma corticosterone levels. It is speculated that BLA inactivation-induced reduction in corticosterone levels during stress, might be crucial in restoring spatial learning impairments. Our study provides evidence that amygdalar modulation during stress might be beneficial for strategic

  20. TRH and TRH receptor system in the basolateral amygdala mediate stress-induced depression-like behaviors.

    Science.gov (United States)

    Choi, Juli; Kim, Ji-eun; Kim, Tae-Kyung; Park, Jin-Young; Lee, Jung-Eun; Kim, Hannah; Lee, Eun-Hwa; Han, Pyung-Lim

    2015-10-01

    Chronic stress is a potent risk factor for depression, but the mechanism by which stress causes depression is not fully understood. To investigate the molecular mechanism underlying stress-induced depression, C57BL/6 inbred mice were treated with repeated restraint to induce lasting depressive behavioral changes. Behavioral states of individual animals were evaluated using the forced swim test, which measures psychomotor withdrawals, and the U-field test, which measures sociability. From these behavioral analyses, individual mice that showed depression-like behaviors in both psychomotor withdrawal and sociability tests, and individuals that showed a resiliency to stress-induced depression in both tests were selected. Among the neuropeptides expressed in the amygdala, thyrotropin-releasing hormone (TRH) was identified as being persistently up-regulated in the basolateral amygdala (BLA) in individuals exhibiting severe depressive behaviors in the two behavior tests, but not in individuals displaying a stress resiliency. Activation of TRH receptors by local injection of TRH in the BLA in normal mice produced depressive behaviors, mimicking chronic stress effects, whereas siRNA-mediated suppression of either TRH or TRHR1 in the BLA completely blocked stress-induced depressive symptoms. The TRHR1 agonist, taltirelin, injection in the BLA increased the level of p-ERK, which mimicked the increased p-ERK level in the BLA that was induced by treatment with repeated stress. Stereotaxic injection of U0126, a potent inhibitor of the ERK pathway, within the BLA blocked stress-induced behavioral depression. These results suggest that repeated stress produces lasting depression-like behaviors via the up-regulation of TRH and TRH receptors in the BLA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Basolateral amygdala bidirectionally modulates stress-induced hippocampal learning and memory deficits through a p25/Cdk5-dependent pathway.

    Science.gov (United States)

    Rei, Damien; Mason, Xenos; Seo, Jinsoo; Gräff, Johannes; Rudenko, Andrii; Wang, Jun; Rueda, Richard; Siegert, Sandra; Cho, Sukhee; Canter, Rebecca G; Mungenast, Alison E; Deisseroth, Karl; Tsai, Li-Huei

    2015-06-09

    Repeated stress has been suggested to underlie learning and memory deficits via the basolateral amygdala (BLA) and the hippocampus; however, the functional contribution of BLA inputs to the hippocampus and their molecular repercussions are not well understood. Here we show that repeated stress is accompanied by generation of the Cdk5 (cyclin-dependent kinase 5)-activator p25, up-regulation and phosphorylation of glucocorticoid receptors, increased HDAC2 expression, and reduced expression of memory-related genes in the hippocampus. A combination of optogenetic and pharmacosynthetic approaches shows that BLA activation is both necessary and sufficient for stress-associated molecular changes and memory impairments. Furthermore, we show that this effect relies on direct glutamatergic projections from the BLA to the dorsal hippocampus. Finally, we show that p25 generation is necessary for the stress-induced memory dysfunction. Taken together, our data provide a neural circuit model for stress-induced hippocampal memory deficits through BLA activity-dependent p25 generation.

  2. Release of gliotransmitters through astroglial connexin 43 hemichannels is necessary for fear memory consolidation in the basolateral amygdala.

    Science.gov (United States)

    Stehberg, Jimmy; Moraga-Amaro, Rodrigo; Salazar, Christian; Becerra, Alvaro; Echeverría, Cesar; Orellana, Juan A; Bultynck, Geert; Ponsaerts, Raf; Leybaert, Luc; Simon, Felipe; Sáez, Juan C; Retamal, Mauricio A

    2012-09-01

    Recent in vitro evidence indicates that astrocytes can modulate synaptic plasticity by releasing neuroactive substances (gliotransmitters). However, whether gliotransmitter release from astrocytes is necessary for higher brain function in vivo, particularly for memory, as well as the contribution of connexin (Cx) hemichannels to gliotransmitter release, remain elusive. Here, we microinfused into the rat basolateral amygdala (BLA) TAT-Cx43L2, a peptide that selectively inhibits Cx43-hemichannel opening while maintaining synaptic transmission or interastrocyte gap junctional communication. In vivo blockade of Cx43 hemichannels during memory consolidation induced amnesia for auditory fear conditioning, as assessed 24 h after training, without affecting short-term memory, locomotion, or shock reactivity. The amnesic effect was transitory, specific for memory consolidation, and was confirmed after microinfusion of Gap27, another Cx43-hemichannel blocker. Learning capacity was recovered after coinfusion of TAT-Cx43L2 and a mixture of putative gliotransmitters (glutamate, glutamine, lactate, d-serine, glycine, and ATP). We propose that gliotransmitter release from astrocytes through Cx43 hemichannels is necessary for fear memory consolidation at the BLA. Thus, the present study is the first to demonstrate a physiological role for astroglial Cx43 hemichannels in brain function, making these channels a novel pharmacological target for the treatment of psychiatric disorders, including post-traumatic stress disorder.

  3. The effect of basolateral amygdala nucleus lesion on memory under acute,mid and chronic stress in male rats.

    Science.gov (United States)

    Ranjbar, Hoda; Radahmadi, Maryam; Alaei, Hojjatallah; Reisi, Parham; Karimi, Sara

    2016-12-20

    The basolateral amygdala (BLA) modulates memory for emotional events and is involved in both stress and memory. This study investigated different durations of stress and the role of BLA on serum corticosterone level and spatial and cognitive memory. Different durations of stress (acute, mid, and chronic stress), with and without BLA lesion were induced in rats by 6 h/day restraint stress for 1, 7, and 21 days. Memory functions were evaluated by novel object recognition (NOR) and object location test (OLT). The OLT findings showed locomotor activity and spatial memory slightly decreased with different durations of stress. The NOR findings significantly showed locomotor activity impairment in different durations of stress. Cognitive memory deficit was observed in mid stress. The corticosterone level significantly increased in the mid and chronic stress groups. Moreover, the mid stress was the strongest stress condition. There is a possibility that different stress durations act by different mechanisms. The recognition of a novel location decreased in all lesion groups. It was more severe in the NOR. The BLA lesion significantly decreased corticosterone level in the mid and chronic stress groups compared to similar groups without lesion. The BLA lesion caused more damage to cognitive than spatial memory in stressed groups.

  4. Fear Conditioning Downregulates Rac1 Activity in the Basolateral Amygdala Astrocytes to Facilitate the Formation of Fear Memory.

    Science.gov (United States)

    Liao, Zhaohui; Tao, Yezheng; Guo, Xiaomu; Cheng, Deqin; Wang, Feifei; Liu, Xing; Ma, Lan

    2017-01-01

    Astrocytes are well known to scale synaptic structural and functional plasticity, while the role in learning and memory, such as conditioned fear memory, is poorly elucidated. Here, using pharmacological approach, we find that fluorocitrate (FC) significantly inhibits the acquisition of fear memory, suggesting that astrocyte activity is required for fear memory formation. We further demonstrate that fear conditioning downregulates astrocytic Rac1 activity in basolateral amygdala (BLA) in mice and promotes astrocyte structural plasticity. Ablation of astrocytic Rac1 in BLA promotes fear memory acquisition, while overexpression or constitutive activation of astrocytic Rac1 attenuates fear memory acquisition. Furthermore, temporal activation of Rac1 by photoactivatable Rac1 (Rac1-PA) induces structural alterations in astrocytes and in vivo activation of Rac1 in BLA astrocytes during fear conditioning attenuates the formation of fear memory. Taken together, our study demonstrates that fear conditioning-induced suppression of BLA astrocytic Rac1 activity, associated with astrocyte structural plasticity, is required for the formation of conditioned fear memory.

  5. Inhibition of projections from the basolateral amygdala to the entorhinal cortex disrupts the acquisition of contextual fear

    Directory of Open Access Journals (Sweden)

    Dennis R. Sparta

    2014-05-01

    Full Text Available The development of excessive fear and/or stress responses to environmental cues such as contexts associated with a traumatic event is a hallmark of post-traumatic stress disorder (PTSD. The basolateral amygdala (BLA has been implicated as a key structure mediating contextual fear conditioning. In addition, the hippocampus has an integral role in the encoding and processing of contexts associated with strong, salient stimuli such as fear. Given that both the BLA and hippocampus play an important role in the regulation of contextual fear conditioning, examining the functional connectivity between these two structures may elucidate a role for this pathway in the development of PTSD. Here, we used optogenetic strategies to demonstrate that the BLA sends a strong glutamatergic projection to the hippocampal formation through the entorhinal cortex (EC. Next, we photoinhibited glutamatergic fibers from the BLA terminating in the EC during the acquisition or expression of contextual fear conditioning. In mice that received optical inhibition of the BLA-to-EC pathway during the acquisition session, we observed a significant decrease in freezing behavior in a context re-exposure session. In contrast, we observed no differences in freezing behavior in mice that were only photoinhibited during the context re-exposure session. These data demonstrate an important role for the BLA-to-EC glutamatergic pathway in the acquisition of contextual fear conditioning.

  6. Infusion of methylphenidate into the basolateral nucleus of amygdala or anterior cingulate cortex enhances fear memory consolidation in rats

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The psychostimulant methylphenidate (MPD; also called Ritalin) is a blocker of dopamine and norepi-nephrine transporter. It has been clinically used for treatment of Attention Deficit and Hyperactivity Disorder (ADHD). There have been inconsistent reports regarding the effects of systemically adminis-tered MPD on learning and memory, either in animals or humans. In the present study, we investigated the effect of direct infusion of MPD into the basolateral nucleus of amygdala (BLA) or the anterior cin-gulate cortex (ACC) on conditioned fear memory. Rats were trained on a one-trial step-through inhibi-tory avoidance task. MPD was infused bilaterally into the BLA or the ACC, either at ‘0’ or 6 h post-training. Saline was administered as control. Memory retention was tested 48 h post-training. In-tra-BLA or intra-ACC infusion of MPD ‘0’ h but not 6 h post-training significantly improved 48-h memory retention: the MPD-treated rats had significant longer step-through latency than controls. The present results indicate that action of MPD in the BLA or the ACC produces a beneficial effect on the consoli-dation of inhibitory avoidance memory.

  7. Basolateral amygdala bidirectionally modulates stress-induced hippocampal learning and memory deficits through a p25/Cdk5-dependent pathway

    Science.gov (United States)

    Rei, Damien; Mason, Xenos; Seo, Jinsoo; Gräff, Johannes; Rudenko, Andrii; Wang, Jun; Rueda, Richard; Siegert, Sandra; Cho, Sukhee; Canter, Rebecca G.; Mungenast, Alison E.; Deisseroth, Karl; Tsai, Li-Huei

    2015-01-01

    Repeated stress has been suggested to underlie learning and memory deficits via the basolateral amygdala (BLA) and the hippocampus; however, the functional contribution of BLA inputs to the hippocampus and their molecular repercussions are not well understood. Here we show that repeated stress is accompanied by generation of the Cdk5 (cyclin-dependent kinase 5)-activator p25, up-regulation and phosphorylation of glucocorticoid receptors, increased HDAC2 expression, and reduced expression of memory-related genes in the hippocampus. A combination of optogenetic and pharmacosynthetic approaches shows that BLA activation is both necessary and sufficient for stress-associated molecular changes and memory impairments. Furthermore, we show that this effect relies on direct glutamatergic projections from the BLA to the dorsal hippocampus. Finally, we show that p25 generation is necessary for the stress-induced memory dysfunction. Taken together, our data provide a neural circuit model for stress-induced hippocampal memory deficits through BLA activity-dependent p25 generation. PMID:25995364

  8. Exposure to predator odor influences the relative use of multiple memory systems: role of basolateral amygdala.

    Science.gov (United States)

    Leong, Kah-Chung; Packard, Mark G

    2014-03-01

    In a dual-solution plus-maze task in which both hippocampus-dependent place learning and dorsolateral striatal-dependent response learning provide an adequate solution, the relative use of multiple memory systems can be influenced by emotional state. Specifically, pre-training peripheral or intra-basolateral (BLA) administration of anxiogenic drugs result in the predominant use of response learning. The present experiments were designed to extend these findings by examining whether exposure to a putatively ethologically valid stressor would also produce a predominant use of response learning. In experiment 1, adult male Long-Evans rats were exposed to either a predator odor (trimethylthiazoline [TMT], a component of fox feces) or distilled water prior to training in a dual-solution water plus maze task. On a probe trial 24h following task acquisition, rats previously exposed to TMT predominantly displayed response learning relative to control animals. In experiment 2, rats trained on a single-solution plus maze task that required the use of response learning displayed enhanced acquisition following pre-training TMT exposure. In experiment 3, rats exposed to TMT or distilled water were trained in the dual-solution task and received post-training intra-BLA injections of the sodium channel blocker bupivacaine (1.0% solution, 0.5 μl) or saline. Relative to control animals, rats exposed to TMT predominantly displayed response learning on the probe trial, and this effect was blocked by neural inactivation of the BLA. The findings indicate that (1) the use of dorsal striatal-dependent habit memory produced by emotional arousal generalizes from anxiogenic drug administration to a putatively ecologically valid stressor (i.e. predator odor), and (2) the BLA mediates the modulatory effect of exposure to predator odor on the relative use of multiple memory systems. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Reversible Inactivation of the Higher Order Auditory Cortex during Fear Memory Consolidation Prevents Memory-Related Activity in the Basolateral Amygdala during Remote Memory Retrieval.

    Science.gov (United States)

    Cambiaghi, Marco; Renna, Annamaria; Milano, Luisella; Sacchetti, Benedetto

    2017-01-01

    Recent findings have shown that the auditory cortex, and specifically the higher order Te2 area, is necessary for the consolidation of long-term fearful memories and that it interacts with the amygdala during the retrieval of long-term fearful memories. Here, we tested whether the reversible blockade of Te2 during memory consolidation may affect the activity changes occurring in the amygdala during the retrieval of fearful memories. To address this issue, we blocked Te2 in a reversible manner during memory consolidation processes. After 4 weeks, we assessed the activity of Te2 and individual nuclei of the amygdala during the retrieval of long-term memories. Rats in which Te2 was inactivated upon memory encoding showed a decreased freezing and failed to show Te2-to-basolateral amygdala (BLA) synchrony during memory retrieval. In addition, the expression of the immediate early gene zif268 in the lateral, basal and central amygdala nuclei did not show memory-related enhancement. As all sites were intact upon memory retrieval, we propose that the auditory cortex represents a key node in the consolidation of fear memories and it is essential for amygdala nuclei to support memory retrieval process.

  10. Neuronal Adaptations during Amygdala-Dependent Learning and Memory : Neuronale aanpassingen tijdens Amygdala-afhankelijk leren en geheugen

    NARCIS (Netherlands)

    B.S. Hosseini (Behdokht)

    2016-01-01

    textabstractThe amygdala, a structure deep in the temporal lobe of the brain, is an essential region for emotional and fearful processing. Neuronal coding in the lateral nucleus of the amygdala (LA) endows the brain with the ability to acquire enduring aversive associations, physically represented

  11. Interaction of basolateral amygdala, ventral hippocampus and medial prefrontal cortex regulates the consolidation and extinction of social fear.

    Science.gov (United States)

    Qi, Chu-Chu; Wang, Qing-Jun; Ma, Xue-Zhu; Chen, Hai-Chao; Gao, Li-Ping; Yin, Jie; Jing, Yu-Hong

    2018-03-19

    Following a social defeat, the balanced establishment and extinction of aversive information is a beneficial strategy for individual survival. Abnormal establishment or extinction is implicated in the development of mental disorders. This study investigated the time course of the establishment and extinction of aversive information from acute social defeat and the temporal responsiveness of the basolateral amygdala (BLA), ventral hippocampus (vHIP) and medial prefrontal cortex (mPFC) in this process. Mouse models of acute social defeat were established by using the resident-intruder paradigm. To evaluate the engram of social defeat, the intruder mice were placed into the novel context at designated time to test the social behavior. Furthermore, responses of BLA, vHIP and mPFC were investigated by analyzing the expression of immediate early genes, such as zif268, arc, and c-fos. The results showed after an aggressive attack, aversive memory was maintained for approximately 7 days before gradually diminishing. The establishment and maintenance of aversive stimulation were consistently accompanied by BLA activity. By contrast, vHIP and mPFC response was inhibited from this process. Additionally, injecting muscimol (Mus), a GABA receptor agonist, into the BLA alleviated the freezing behavior and social fear and avoidance. Simultaneously, Mus treatment decreased the zif268 and arc expression in BLA, but it increased their expression in vHIP. Our data support and extend earlier findings that implicate BLA, vHIP and mPFC in social defeat. The time courses of the establishment and extinction of social defeat are particularly consistent with the contrasting BLA and vHIP responses involved in this process.

  12. β-Adrenoceptor Blockade in the Basolateral Amygdala, But Not the Medial Prefrontal Cortex, Rescues the Immediate Extinction Deficit.

    Science.gov (United States)

    Giustino, Thomas F; Seemann, Jocelyn R; Acca, Gillian M; Goode, Travis D; Fitzgerald, Paul J; Maren, Stephen

    2017-12-01

    Early psychological interventions, such as exposure therapy, rely on extinction learning to reduce the development of stress- and trauma-related disorders. However, recent research suggests that extinction often fails to reduce fear when administered soon after trauma. This immediate extinction deficit (IED) may be due to stress-induced dysregulation of neural circuits involved in extinction learning. We have shown that systemic β-adrenoceptor blockade with propranolol rescues the IED, but impairs delayed extinction. Here we sought to determine the neural locus of these effects. Rats underwent auditory fear conditioning and then received either immediate (30 min) or delayed (24 h) extinction training. We used bilateral intracranial infusions of propranolol into either the infralimbic division of the medial prefrontal cortex (mPFC) or the basolateral amygdala (BLA) to examine the effects of β-adrenoceptor blockade on immediate and delayed extinction learning. Interestingly, intra-BLA, but not intra-mPFC, propranolol rescued the IED; animals receiving intra-BLA propranolol prior to immediate extinction showed less spontaneous recovery of fear during extinction retrieval. Importantly, this was not due to impaired consolidation of the conditioning memory. In contrast, neither intra-BLA nor intra-mPFC propranolol affected delayed extinction learning. Overall, these data contribute to a growing literature suggesting dissociable roles for key nodes in the fear extinction circuit depending on the timing of extinction relative to conditioning. These data also suggest that heightened noradrenergic activity in the BLA underlies stress-induced extinction deficits. Propranolol may be a useful adjunct to behavioral therapeutic interventions in recently traumatized individuals who are at risk for developing trauma-related disorders.

  13. Prefrontal cortex or basolateral amygdala lesions blocked the stress-induced inversion of serial memory retrieval pattern in mice.

    Science.gov (United States)

    Chauveau, F; Piérard, C; Coutan, M; Drouet, I; Liscia, P; Béracochéa, D

    2008-09-01

    Previous data from our team have shown that pre-test stress in mice reversed the pattern of memory retrieval in a contextual serial spatial task (CSD; Celerier, A., Pierard, C., Rachbauer, D., Sarrieau, A., & Beracochea, D. (2004). Contextual and serial discriminations: A new learning paradigm to assess simultaneously the effects of acute stress on retrieval of flexible or stable information in mice. Learning and Memory, 11, 196-204). The present study is aimed at determining brain areas which might be critically involved in mediating the stress effect on memory retrieval in the CSD task. For that purpose, we studied hereby the effects of ibotenic acid lesions of either the prefrontal cortex (PFC) or the basolateral amygdala (BLA) in Stressed or Non-Stressed Balb/c mice on memory retrieval in the CSD task. In that task, mice learned two successive spatial discriminations (D1 and D2) within two different internal contexts in a four-hole board. The stressor (electric footshocks) was delivered 5 min before test, occurring 24 h after acquisition. During test, mice were relocated either on the floor of the first or of the second discrimination. Results showed that (i) spatial memory was substantial and remained unaffected both by lesions and stress; (ii) Non-Stressed controls as well as Non-Stressed or Stressed PFC and BLA-lesioned mice remembered accurately D1 but not D2; and (iii) in contrast, Stressed controls accurately remembered D2 but not D1. In parallel to behavioral experiments, we also showed that PFC and BLA lesions did not affect the stress-induced increase of plasma corticosterone levels. All together, PFC and BLA integrity are not necessary for retrieval processes per se; in contrast, the PFC and BLA are critically involved in the mediation of the deleterious stress effects on serial order memory retrieval.

  14. Prior stress promotes the generalization of contextual fear memories: Involvement of the gabaergic signaling within the basolateral amygdala complex.

    Science.gov (United States)

    Bender, C L; Otamendi, A; Calfa, G D; Molina, V A

    2018-04-20

    Fear generalization occurs when a response, previously acquired with a threatening stimulus, is transferred to a similar one. However, it could be maladaptive when stimuli that do not represent a real threat are appraised as dangerous, which is a hallmark of several anxiety disorders. Stress exposure is a major risk factor for the occurrence of anxiety disorders and it is well established that it influences different phases of fear memory; nevertheless, its impact on the generalization of contextual fear memories has been less studied. In the present work, we have characterized the impact of acute restraint stress prior to contextual fear conditioning on the generalization of this fear memory, and the role of the GABAergic signaling within the basolateral amygdala complex (BLA) on the stress modulatory effects. We have found that a single stress exposure promoted the generalization of this memory trace to a different context that was well discriminated in unstressed conditioned animals. Moreover, this effect was dependent on the formation of a contextual associative memory and on the testing order (i.e., conditioning context first vs generalization context first). Furthermore, we observed that increasing GABA-A signaling by intra-BLA midazolam administration prior to the stressful session exposure prevented the generalization of fear memory, whereas intra-BLA administration of the GABA-A antagonist (Bicuculline), prior to fear conditioning, induced the generalization of fear memory in unstressed rats. We concluded that stress exposure, prior to contextual fear conditioning, promotes the generalization of fear memory and that the GABAergic transmission within the BLA has a critical role in this phenomenon. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Noradrenergic Activation of the Basolateral Amygdala Enhances Object Recognition Memory and Induces Chromatin Remodeling in the Insular Cortex

    Directory of Open Access Journals (Sweden)

    Hassiba eBeldjoud

    2015-04-01

    Full Text Available It is well established that arousal-induced memory enhancement requires noradrenergic activation of the basolateral complex of the amygdala (BLA and modulatory influences on information storage processes in its many target regions. While this concept is well accepted, the molecular basis of such BLA effects on neural plasticity changes within other brain regions remains to be elucidated. The present study investigated whether noradrenergic activation of the BLA after object recognition training induces chromatin remodeling through histone post-translational modifications in the insular cortex (IC, a brain region that is importantly involved in object recognition memory. Male Sprague–Dawley rats were trained on an object recognition task, followed immediately by bilateral microinfusions of norepinephrine (1.0 µg or saline administered into the BLA. Saline-treated control rats exhibited poor 24-h retention, whereas norepinephrine treatment induced robust 24-h object recognition memory. Most importantly, this memory-enhancing dose of norepinephrine induced a global reduction in the acetylation levels of histone H3 at lysine 14, H2B and H4 in the IC 1 h later, whereas it had no effect on the phosphorylation of histone H3 at serine 10 or tri-methylation of histone H3 at lysine 27. Norepinephrine administered into the BLA of non-trained control rats did not induce any changes in the histone marks investigated in this study. These findings indicate that noradrenergic activation of the BLA induces training-specific effects on chromatin remodeling mechanisms, and presumably gene transcription, in its target regions, which may contribute to the understanding of the molecular mechanisms of stress and emotional arousal effects on memory consolidation.

  16. Enhancement of striatum-dependent memory by conditioned fear is mediated by beta-adrenergic receptors in the basolateral amygdala

    Directory of Open Access Journals (Sweden)

    Travis D. Goode

    2016-06-01

    Full Text Available Emotional arousal can have a profound impact on various learning and memory processes. For example, unconditioned emotional stimuli (e.g., predator odor or anxiogenic drugs enhance dorsolateral striatum (DLS-dependent habit memory. These effects critically depend on a modulatory role of the basolateral complex of the amygdala (BLA. Recent work indicates that, like unconditioned emotional stimuli, exposure to an aversive conditioned stimulus (CS (i.e., a tone previously paired with shock can also enhance consolidation of DLS-dependent habit memory. The present experiments examined whether noradrenergic activity, particularly within the BLA, is required for a fear CS to enhance habit memory consolidation. First, rats underwent a fear conditioning procedure in which a tone CS was paired with an aversive unconditioned stimulus. Over the course of the next five days, rats received training in a DLS-dependent water plus-maze task, in which rats were reinforced to make a consistent body-turn response to reach a hidden escape platform. Immediately after training on days 1–3, rats received post-training systemic (Experiment 1 or intra-BLA (Experiment 2 administration of the β-adrenoreceptor antagonist, propranolol. Immediately after drug administration, half of the rats were re-exposed to the tone CS in the conditioning context (without shock. Post-training CS exposure enhanced consolidation of habit memory in vehicle-treated rats, and this effect was blocked by peripheral (Experiment 1 or intra-BLA (Experiment 2 propranolol administration. The present findings reveal that noradrenergic activity within the BLA is critical for the enhancement of DLS-dependent habit memory as a result of exposure to conditioned emotional stimuli.

  17. Dissociable roles for the basolateral amygdala and orbitofrontal cortex in decision-making under risk of punishment.

    Science.gov (United States)

    Orsini, Caitlin A; Trotta, Rose T; Bizon, Jennifer L; Setlow, Barry

    2015-01-28

    Several neuropsychiatric disorders are associated with abnormal decision-making involving risk of punishment, but the neural basis of this association remains poorly understood. Altered activity in brain systems including the basolateral amygdala (BLA) and orbitofrontal cortex (OFC) can accompany these same disorders, and these structures are implicated in some forms of decision-making. The current study investigated the role of the BLA and OFC in decision-making under risk of explicit punishment. Rats were trained in the risky decision-making task (RDT), in which they chose between two levers, one that delivered a small safe reward, and the other that delivered a large reward accompanied by varying risks of footshock punishment. Following training, they received sham or neurotoxic lesions of BLA or OFC, followed by RDT retesting. BLA lesions increased choice of the large risky reward (greater risk-taking) compared to both prelesion performance and sham controls. When reward magnitudes were equated, both BLA lesion and control groups shifted their choice to the safe (no shock) reward lever, indicating that the lesions did not impair punishment sensitivity. In contrast to BLA lesions, OFC lesions significantly decreased risk-taking compared with sham controls, but did not impair discrimination between different reward magnitudes or alter baseline levels of anxiety. Finally, neither lesion significantly affected food-motivated lever pressing under various fixed ratio schedules, indicating that lesion-induced alterations in risk-taking were not secondary to changes in appetitive motivation. Together, these findings indicate distinct roles for the BLA and OFC in decision-making under risk of explicit punishment. Copyright © 2015 the authors 0270-6474/15/351368-12$15.00/0.

  18. Administration of riluzole into the basolateral amygdala has an anxiolytic-like effect and enhances recognition memory in the rat.

    Science.gov (United States)

    Sugiyama, Azusa; Saitoh, Akiyoshi; Yamada, Misa; Oka, Jun-Ichiro; Yamada, Mitsuhiko

    2017-06-01

    It is widely thought that inactivation of the glutamatergic system impairs recognition memory in rodents. However, we previously demonstrated that systemic administration of riluzole, which blocks the glutamatergic system, enhances recognition memory in the rat novel object recognition (NOR) test. The mechanisms underlying this paradoxical effect of riluzole on recognition memory remain unclear. In the present study, adult male Wistar rats were bilaterally cannulated in the basolateral amygdala (BLA) to examine the effects of intra-BLA administration of riluzole. We also compared the effects of riluzole with those of d-cycloserine, a partial agonist at the glycine binding site on the N-methyl-d-aspartate (NMDA) receptor. The BLA plays a critical role not only in recognition memory, but also in the regulation of anxiety. In the present study, intra-BLA administration of riluzole or d-cycloserine enhanced recognition memory in the NOR test. It was previously suggested that recognition memory can be strongly affected by the state of anxiety in rodents. Interestingly, intra-BLA administration of riluzole, but not d-cycloserine, produced a potent anxiolytic-like effect in the elevated plus-maze test. Thus, the enhancement of recognition memory by riluzole might be an indirect effect resulting from the anxiolytic-like action of the intra-BLA administration of the drug, and may not be directly related to inhibition of the glutamatergic system. Further studies are needed to clarify the mechanisms underlying the memory enhancing effect of riluzole. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Stress-induced resistance to the fear memory labilization/reconsolidation process. Involvement of the basolateral amygdala complex.

    Science.gov (United States)

    Espejo, Pablo Javier; Ortiz, Vanesa; Martijena, Irene Delia; Molina, Victor Alejandro

    2016-10-01

    Consolidated memories can enter into a labile state after reactivation followed by a restabilization process defined as reconsolidation. This process can be interfered with Midazolam (MDZ), a positive allosteric modulator of the GABA-A receptor. The present study has evaluated the influence of prior stress on MDZ's interfering effect. We also assessed the influence of both systemic and intra-basolateral amygdala (BLA) infusion of d-cycloserine (DCS), a partial agonist of the NMDA receptors, on the MDZ effect in previously stressed rats. Furthermore, we analyzed the effect of stress on the expression of Zif-268 and the GluN2B sites, two molecular markers of the labilization/reconsolidation process, following reactivation. The results revealed that prior stress resulted into a memory trace that was insensitive to the MDZ impairing effect. Both systemic and intra-BLA DCS administration previous to reactivation restored MDZ's disruptive effect on memory reconsolidation in stressed animals. Further, reactivation enhanced Zif-268 expression in the BLA in control unstressed rats, whereas no elevation was observed in stressed animals. In agreement with the behavioral findings, DCS restored the increased level of Zif-268 expression in the BLA in stressed animals. Moreover, memory reactivation in unstressed animals elevated GluN2B expression in the BLA, thus suggesting that this effect is involved in memory destabilization, whereas stressed animals did not reveal any changes. These findings are consistent with resistance to the MDZ effect in these rats, indicating that stress exposure prevents the onset of destabilization following reactivation. In summary, prior stress limited both the occurrence of the reactivation-induced destabilization and restabilization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Contribution of amygdala CRF neurons to chronic pain.

    Science.gov (United States)

    Andreoli, Matthew; Marketkar, Tanvi; Dimitrov, Eugene

    2017-12-01

    We investigated the role of amygdala corticotropin-releasing factor (CRF) neurons in the perturbations of descending pain inhibition caused by neuropathic pain. Forced swim increased the tail-flick response latency in uninjured mice, a phenomenon known as stress-induced analgesia (SIA) but did not change the tail-flick response latency in mice with neuropathic pain caused by sciatic nerve constriction. Neuropathic pain also increased the expression of CRF in the central amygdala (CeAmy) and ΔFosB in the dorsal horn of the spinal cord. Next, we injected the CeAmy of CRF-cre mice with cre activated AAV-DREADD (Designer Receptors Exclusively Activated by Designer Drugs) vectors. Activation of CRF neurons by DREADD/Gq did not affect the impaired SIA but inhibition of CRF neurons by DREADD/Gi restored SIA and decreased allodynia in mice with neuropathic pain. The possible downstream circuitry involved in the regulation of SIA was investigated by combined injections of retrograde cre-virus (CAV2-cre) into the locus ceruleus (LC) and cre activated AAV-diphtheria toxin (AAV-FLEX-DTX) virus into the CeAmy. The viral injections were followed by a sciatic nerve constriction ipsilateral or contralateral to the injections. Ablation of amygdala projections to the LC on the side of injury but not on the opposite side, completely restored SIA, decreased allodynia and decreased ΔFosB expression in the spinal cord in mice with neuropathic pain. The possible lateralization of SIA impairment to the side of injury was confirmed by an experiment in which unilateral inhibition of the LC decreased SIA even in uninjured mice. The current view in the field of pain research attributes the process of pain chronification to abnormal functioning of descending pain inhibition. Our results demonstrate that the continuous activity of CRF neurons brought about by persistent pain leads to impaired SIA, which is a symptom of dysregulation of descending pain inhibition. Therefore, an over

  1. The involvement of CRF1 receptor within the basolateral amygdala and dentate gyrus in the naloxone-induced conditioned place aversion in morphine-dependent mice.

    Science.gov (United States)

    Valero, E; Gómez-Milanés, I; Almela, P; Ribeiro Do Couto, B; Laorden, M L; Milanés, M V; Núñez, C

    2018-06-08

    Drug withdrawal-associated aversive memories trigger relapse to drug-seeking behavior. Corticotrophin-releasing factor (CRF) is an important mediator of the reinforcing properties of drugs of abuse. However, the involvement of CRF1 receptor (CRF1R) in aversive memory induced by opiate withdrawal has yet to be elucidated. We used the conditioned-place aversion (CPA) paradigm to evaluate the role of CRF1R on opiate withdrawal memory acquisition, along with plasticity-related processes that occur after CPA within the basolateral amygdala (BLA) and dentate gyrus (DG). Male mice were rendered dependent on morphine and injected acutely with naloxone before paired to confinement in a naloxone-associated compartment. The CPA scores as well as the number of TH-positive neurons (in the NTS-A2 noradrenergic cell group), and the expression of the transcription factors Arc and pCREB (in the BLA and DG) were measured with and without CRF1R blockade. Mice subjected to conditioned naloxone-induced morphine withdrawal robustly expressed CPA. Pre-treatment with the selective CRF1R antagonist CP-154,526 before naloxone conditioning session impaired morphine withdrawal-induced aversive memory acquisition. CP-154,526 also antagonized the enhanced number of TH-positive neurons in the NTS-A2 that was seen after CPA. Increased Arc expression and Arc-pCREB co-localization were seen in the BLA after CPA, which was not modified by CP-154,526. In the DG, CPA was accompanied by a decrease of Arc expression and no changes in Arc-pCREB co-localization, whereas pre-treatment with CP-154,526 induced an increase in both parameters. These results indicate that CRF-CRF1R pathway could be a critical factor governing opiate withdrawal memory storage and retrieval and might suggest a role for TH-NA pathway in the effects of withdrawal on memory. Our results might indicate that the blockade of CRF1R could represent a promising pharmacological treatment strategy approach for the attenuation of the relapse

  2. The basolateral amygdala determines the effects of fear memory on sleep in an animal model of PTSD.

    Science.gov (United States)

    Wellman, Laurie L; Fitzpatrick, Mairen E; Machida, Mayumi; Sanford, Larry D

    2014-05-01

    Fear conditioning [inescapable shock training (ST)] and fearful context re-exposure (CR) alone can produce significant fear indicated by increased freezing and reductions in subsequent rapid eye movement (REM) sleep. Damage to or inactivation of the basolateral nucleus of the amygdala (BLA) prior to or after ST or prior to CR generally has been found to attenuate freezing in the shock training context. However, no one has examined the impact of BLA inactivation on fear-induced changes in sleep. Here, we used the GABAA agonist, muscimol (MUS), to inactivate BLA prior to ST, the period when fear is learned, and assessed sleep after ST and sleep and freezing after two CR sessions. Wistar rats (n = 14) were implanted with electrodes for recording sleep and with cannulae aimed bilaterally into BLA. After recovery, the animals were habituated to the injection procedure (handling) over 2 consecutive days and baseline sleep following handling was recorded. On experimental day 1, the rats were injected (0.5 μl) into BLA with either MUS (1.0 μM; n = 7) or vehicle (distilled water, n = 7) 30 min prior to ST (20 footshocks, 0.8 mA, 0.5-s duration, 60-s interstimulus interval). On experimental days 7 and 21, the animals experienced CR (CR1 and CR2, respectively) alone. Electroencephalogram and electromyogram were recorded for 8 h on each day, and the recording was scored for non-rapid eye movement sleep, REM sleep, and wakefulness. Freezing was examined during CR1 and CR2. MUS microinjections into BLA prior to ST blocked the post-training reduction in REM sleep seen in vehicle-treated rats. Furthermore, in MUS-treated rats, REM sleep after CR1 and CR2 was at baseline levels and freezing was significantly attenuated. Thus, BLA inactivation prior to ST blocks the effects of footshock stress on sleep and reduces fear memory, as indicated by the lack of freezing and changes in sleep after CR. These data indicate that BLA is an important regulator of stress-induced alterations in

  3. Glucocorticoid receptors in the basolateral amygdala mediated the restraint stress-induced reinstatement of methamphetamine-seeking behaviors in rats.

    Science.gov (United States)

    Taslimi, Zahra; Sarihi, Abdolrahman; Haghparast, Abbas

    2018-04-21

    Methamphetamine (METH) addiction is a growing epidemic worldwide. It is a common psychiatric disease and stress has an important role in the drug seeking and relapse behaviors. The involvement of the basolateral amygdala (BLA) in effects of stress on the reward pathway has been discussed in several studies. In this study, we tried to find out the involvement of glucocorticoid receptors (GRs) in the BLA in stress-induced reinstatement of the extinguished METH-induced conditioned place preference (CPP) in rats. The CPP paradigm was done in eighty-one adult male Wistar rats weighing 220-250 g. The animals received a daily injection of methamphetamine (0.5 mg/kg), during the conditioning phase. In extinction phase, the rats were put in the CPP box for 30 min per day for 8 days. After the extinction, the animals were exposed to acute restraint stress (ARS), 3 h before subcutaneous administration of sub-threshold dose of methamphetamine (0.125 mg/kg), based on our previous study, in reinstatement phase. In separated groups, the rats were exposed to chronic restraint stress (CRS) for 1 h each day during the extinction phase. To block the GRs in BLA, the animals unilaterally received RU38486 as GRs antagonist (10, 30 and 90 ng/0.3 μl DMSO) in all ARS groups on reinstatement day. In separated experiments, RU38486 (3, 10 and 30 ng/0.3 μl DMSO) was microinjected into the BLA in CRS groups prior to exposure to stress every day in extinction phase. The results revealed that intra-BLA RU38486 in ARS (90 ng) and CRS (10 and 30 ng) groups significantly prevented the stress-induced reinstatement. It can be proposed that stress partially exerts its effect on the reward pathway via GRs in the BLA. This effect was not quite similar in acute and chronic stress conditions. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Optogenetic Inhibition Reveals Distinct Roles for Basolateral Amygdala Activity at Discrete Time Points during Risky Decision Making.

    Science.gov (United States)

    Orsini, Caitlin A; Hernandez, Caesar M; Singhal, Sarthak; Kelly, Kyle B; Frazier, Charles J; Bizon, Jennifer L; Setlow, Barry

    2017-11-29

    Decision making is a multifaceted process, consisting of several distinct phases that likely require different cognitive operations. Previous work showed that the basolateral amygdala (BLA) is a critical substrate for decision making involving risk of punishment; however, it is unclear how the BLA is recruited at different stages of the decision process. To this end, the current study used optogenetics to inhibit the BLA during specific task phases in a model of risky decision making (risky decision-making task) in which rats choose between a small, "safe" reward and a large reward accompanied by varying probabilities of footshock punishment. Male Long-Evans rats received intra-BLA microinjections of viral vectors carrying either halorhodopsin (eNpHR3.0-mCherry) or mCherry alone (control) followed by optic fiber implants and were trained in the risky decision-making task. Laser delivery during the task occurred during intertrial interval, deliberation, or reward outcome phases, the latter of which was further divided into the three possible outcomes (small, safe; large, unpunished; large, punished). Inhibition of the BLA selectively during the deliberation phase decreased choice of the large, risky outcome (decreased risky choice). In contrast, BLA inhibition selectively during delivery of the large, punished outcome increased risky choice. Inhibition had no effect during the other phases, nor did laser delivery affect performance in control rats. Collectively, these data indicate that the BLA can either inhibit or promote choice of risky options, depending on the phase of the decision process in which it is active. SIGNIFICANCE STATEMENT To date, most behavioral neuroscience research on neural mechanisms of decision making has used techniques that preclude assessment of distinct phases of the decision process. Here we show that optogenetic inhibition of the BLA has opposite effects on choice behavior in a rat model of risky decision making, depending on the phase

  5. Region-specific role of Rac in nucleus accumbens core and basolateral amygdala in consolidation and reconsolidation of cocaine-associated cue memory in rats.

    Science.gov (United States)

    Ding, Zeng-Bo; Wu, Ping; Luo, Yi-Xiao; Shi, Hai-Shui; Shen, Hao-Wei; Wang, Shen-Jun; Lu, Lin

    2013-08-01

    Drug reinforcement and the reinstatement of drug seeking are associated with the pathological processing of drug-associated cue memories that can be disrupted by manipulating memory consolidation and reconsolidation. Ras-related C3 botulinum toxin substrate (Rac) is involved in memory processing by regulating actin dynamics and neural structure plasticity. The nucleus accumbens (NAc) and amygdala have been implicated in the consolidation and reconsolidation of emotional memories. Therefore, we hypothesized that Rac in the NAc and amygdala plays a role in the consolidation and reconsolidation of cocaine-associated cue memory. Conditioned place preference (CPP) and microinjection of Rac inhibitor NSC23766 were used to determine the role of Rac in the NAc and amygdala in the consolidation and reconsolidation of cocaine-associated cue memory in rats. Microinjections of NSC23766 into the NAc core but not shell, basolateral (BLA), or central amygdala (CeA) after each cocaine-conditioning session inhibited the consolidation of cocaine-induced CPP. A microinjection of NSC23766 into the BLA but not CeA, NAc core, or NAc shell immediately after memory reactivation induced by exposure to a previously cocaine-paired context disrupted the reconsolidation of cocaine-induced CPP. The effect of memory disruption on cocaine reconsolidation was specific to reactivated memory, persisted at least 2 weeks, and was not reinstated by a cocaine-priming injection. Our findings indicate that Rac in the NAc core and BLA are required for the consolidation and reconsolidation of cocaine-associated cue memory, respectively.

  6. Primate amygdala neurons evaluate the progress of self-defined economic choice sequences.

    Science.gov (United States)

    Grabenhorst, Fabian; Hernadi, Istvan; Schultz, Wolfram

    2016-10-12

    The amygdala is a prime valuation structure yet its functions in advanced behaviors are poorly understood. We tested whether individual amygdala neurons encode a critical requirement for goal-directed behavior: the evaluation of progress during sequential choices. As monkeys progressed through choice sequences toward rewards, amygdala neurons showed phasic, gradually increasing responses over successive choice steps. These responses occurred in the absence of external progress cues or motor preplanning. They were often specific to self-defined sequences, typically disappearing during instructed control sequences with similar reward expectation. Their build-up rate reflected prospectively the forthcoming choice sequence, suggesting adaptation to an internal plan. Population decoding demonstrated a high-accuracy progress code. These findings indicate that amygdala neurons evaluate the progress of planned, self-defined behavioral sequences. Such progress signals seem essential for aligning stepwise choices with internal plans. Their presence in amygdala neurons may inform understanding of human conditions with amygdala dysfunction and deregulated reward pursuit.

  7. Activation of ERK2 in basolateral amygdala underlies the promoting influence of stress on fear memory and anxiety: influence of midazolam pretreatment.

    Science.gov (United States)

    Maldonado, N M; Espejo, P J; Martijena, I D; Molina, V A

    2014-02-01

    Exposure to emotionally arousing experiences elicits a robust and persistent memory and enhances anxiety. The amygdala complex plays a key role in stress-induced emotional processing and in the fear memory formation. It is well known that ERK activation in the amygdala is a prerequisite for fear memory consolidation. Moreover, stress elevates p-ERK2 levels in several areas of the brain stress circuitry. Therefore, given that the ERK1/2 cascade is activated following stress and that the role of this cascade is critical in the formation of fear memory, the present study investigated the potential involvement of p-ERK2 in amygdala subnuclei in the promoting influence of stress on fear memory formation and on anxiety-like behavior. A robust and persistent ERK2 activation was noted in the Basolateral amygdala (BLA), which was evident at 5min after restraint and lasted at least one day after the stressful experience. Midazolam, a short-acting benzodiazepine ligand, administered prior to stress prevented the increase in the p-ERK2 level in the BLA. Pretreatment with intra-BLA infusion of U0126 (MEK inhibitor), but not into the adjacent central nucleus of the amygdala, attenuated the stress-induced promoting influence on fear memory formation. Finally, U0126 intra-BLA infusion prevented the enhancement of anxiety-like behavior in stressed animals. These findings suggest that the selective ERK2 activation in BLA following stress exposure is an important mechanism for the occurrence of the promoting influence of stress on fear memory and on anxiety-like behavior. © 2013 Published by Elsevier B.V. and ECNP.

  8. Optogenetic dissection of amygdala functioning

    Directory of Open Access Journals (Sweden)

    Ryan eLalumiere

    2014-03-01

    Full Text Available Studies of amygdala functioning have occupied a significant place in the history of understanding how the brain controls behavior and cognition. Early work on the amygdala placed this small structure as a key component in the regulation of emotion and affective behavior. Over time, our understanding of its role in brain processes has expanded, as we have uncovered amygdala influences on memory, reward behavior, and overall functioning in many other brain regions. Studies have indicated that the amygdala has widespread connections with a variety of brain structures, from the prefrontal cortex to regions of the brainstem, that explain its powerful influence on other parts of the brain and behaviors mediated by those regions. Thus, many optogenetic studies have focused on harnessing the powers of this technique to elucidate the functioning of the amygdala in relation to motivation, fear, and memory as well as to determine how the amygdala regulates activity in other structures. For example, studies using optogenetics have examined how specific circuits within amygdala nuclei regulate anxiety. Other work has provided insight into how the basolateral and central amygdala nuclei regulate memory processing underlying aversive learning. Many experiments have taken advantage of optogenetics’ ability to target either genetically distinct subpopulations of neurons or the specific projections from the amygdala to other brain regions. Findings from such studies have provided evidence that particular patterns of activity in basolateral amygdala glutamatergic neurons are related to memory consolidation processes, while other work has indicated the critical nature of amygdala inputs to the prefrontal cortex and nucleus accumbens in regulating behavior dependent on those downstream structures. This review will examine the recent discoveries on amygdala functioning made through experiments using optogenetics, placing these findings in the context of the major

  9. Differential role of Rac in the basolateral amygdala and cornu ammonis 1 in the reconsolidation of auditory and contextual Pavlovian fear memory in rats.

    Science.gov (United States)

    Wu, Ping; Ding, Zeng-Bo; Meng, Shi-Qiu; Shen, Hao-Wei; Sun, Shi-Chao; Luo, Yi-Xiao; Liu, Jian-Feng; Lu, Lin; Zhu, Wei-Li; Shi, Jie

    2014-08-01

    A conditioned stimulus (CS) is associated with a fearful unconditioned stimulus (US) in the traditional fear conditioning model. After fear conditioning, the CS-US association memory undergoes the consolidation process to become stable. Consolidated memory enters an unstable state after retrieval and requires the reconsolidation process to stabilize again. Evidence indicates the important role of Rac (Ras-related C3 botulinum toxin substrate) in the acquisition and extinction of fear memory. In the present study, we hypothesized that Rac in the amygdala is crucial for the reconsolidation of auditory and contextual Pavlovian fear memory. Auditory and contextual fear conditioning and microinjections of the Rac inhibitor NSC23766 were used to explore the role of Rac in the reconsolidation of auditory and contextual Pavlovian fear memory in rats. A microinjection of NSC23766 into the basolateral amygdala (BLA) but not central amygdala (CeA) or cornu ammonis 1 (CA1) immediately after memory retrieval disrupted the reconsolidation of auditory Pavlovian fear memory. A microinjection of NSC23766 into the CA1 but not BLA or CeA after memory retrieval disrupted the reconsolidation of contextual Pavlovian fear memory. Our experiments demonstrate that Rac in the BLA is crucial for the reconsolidation of auditory Pavlovian fear memory, whereas Rac in the CA1 is critical for the reconsolidation of contextual Pavlovian fear memory.

  10. A Discrete Population of Neurons in the Lateral Amygdala Is Specifically Activated by Contextual Fear Conditioning

    Science.gov (United States)

    Wilson, Yvette M.; Murphy, Mark

    2009-01-01

    There is no clear identification of the neurons involved in fear conditioning in the amygdala. To search for these neurons, we have used a genetic approach, the "fos-tau-lacZ" (FTL) mouse, to map functionally activated expression in neurons following contextual fear conditioning. We have identified a discrete population of neurons in the lateral…

  11. DBS in the baso-lateral amygdala improves symptoms of autism and related self-injurious behaviourA case report and hypothesis on the pathogenesis of the disorder

    Directory of Open Access Journals (Sweden)

    Volker eSturm

    2013-01-01

    Full Text Available We treated a thirteen year old boy for life-threatening self-injurious behavior (SIB and severe Kanner’s autism with Deep Brain Stimulation (DBS in the amygdaloid complex as well as in the supra-amygdaloid projection system. Two DBS-electrodes were placed in both structures of each hemisphere. The stimulation contacts targeted the paralaminar, the basolateral, the central amygdala as well as the supra-amygdaloid projection system. DBS was applied to each of these structures, but only stimulation of the baso-lateral part proved effective in improving SIB and core symptoms of the autism spectrum in the emotional, social and even cognitive domains over a follow up of now 24 months. These results, which have been gained for the first time in a patient, support hypotheses, according to which the amygdala may be pivotal in the pathogeneses of autism and point to the special relevance of the baso-lateral part.

  12. Involvement of serotonin 2A receptor activation in modulating medial prefrontal cortex and amygdala neuronal activation during novelty-exposure.

    Science.gov (United States)

    Hervig, Mona El-Sayed; Jensen, Nadja Cecilie Hvid; Rasmussen, Nadja Bredo; Rydbirk, Rasmus; Olesen, Mikkel Vestergaard; Hay-Schmidt, Anders; Pakkenberg, Bente; Aznar, Susana

    2017-05-30

    The medial prefrontal cortex (PFC) plays a major role in executive function by exerting a top-down control onto subcortical areas. Novelty-induced frontal cortex activation is 5-HT 2A receptor (5-HT 2A R) dependent. Here, we further investigated how blockade of 5-HT 2A Rs in mice exposed to a novel open-field arena affects medial PFC activation and basolateral amygdala (BLA) reactivity. We used c-Fos immunoreactivity (IR) as a marker of neuronal activation and stereological quantification for obtaining the total number of c-Fos-IR neurons as a measure of regional activation. We further examined the impact of 5-HT 2A R blockade on the striatal-projecting BLA neurons. Systemic administration of ketanserin (0.5mg/kg) prior to novel open-field exposure resulted in reduced total numbers of c-Fos-IR cells in dorsomedial PFC areas and the BLA. Moreover, there was a positive correlation between the relative time spent in the centre of the open-field and BLA c-Fos-IR in the ketanserin-treated animals. Unilateral medial PFC lesions blocked this effect, ascertaining an involvement of this frontal cortex area. On the other hand, medial PFC lesioning exacerbated the more anxiogenic-like behaviour of the ketanserin-treated animals, upholding its involvement in modulating averseness. Ketanserin did not affect the number of activated striatal-projecting BLA neurons (measured by number of Cholera Toxin b (CTb) retrograde labelled neurons also being c-Fos-IR) following CTb injection in the ventral striatum. These results support a role of 5-HT 2A R activation in modulating mPFC and BLA activation during exposure to a novel environment, which may be interrelated. Conversely, 5-HT 2A R blockade does not seem to affect the amygdala-striatal projection. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Sonic hedgehog expressing and responding cells generate neuronal diversity in the medial amygdala

    Directory of Open Access Journals (Sweden)

    Machold Robert P

    2010-05-01

    Full Text Available Abstract Background The mammalian amygdala is composed of two primary functional subdivisions, classified according to whether the major output projection of each nucleus is excitatory or inhibitory. The posterior dorsal and ventral subdivisions of the medial amygdala, which primarily contain inhibitory output neurons, modulate specific aspects of innate socio-sexual and aggressive behaviors. However, the development of the neuronal diversity of this complex and important structure remains to be fully elucidated. Results Using a combination of genetic fate-mapping and loss-of-function analyses, we examined the contribution and function of Sonic hedgehog (Shh-expressing and Shh-responsive (Nkx2-1+ and Gli1+ neurons in the medial amygdala. Specifically, we found that Shh- and Nkx2-1-lineage cells contribute differentially to the dorsal and ventral subdivisions of the postnatal medial amygdala. These Shh- and Nkx2-1-lineage neurons express overlapping and non-overlapping inhibitory neuronal markers, such as Calbindin, FoxP2, nNOS and Somatostatin, revealing diverse fate contributions in discrete medial amygdala nuclear subdivisions. Electrophysiological analysis of the Shh-derived neurons additionally reveals an important functional diversity within this lineage in the medial amygdala. Moreover, inducible Gli1CreER(T2 temporal fate mapping shows that early-generated progenitors that respond to Shh signaling also contribute to medial amygdala neuronal diversity. Lastly, analysis of Nkx2-1 mutant mice demonstrates a genetic requirement for Nkx2-1 in inhibitory neuronal specification in the medial amygdala distinct from the requirement for Nkx2-1 in cerebral cortical development. Conclusions Taken together, these data reveal a differential contribution of Shh-expressing and Shh-responding cells to medial amygdala neuronal diversity as well as the function of Nkx2-1 in the development of this important limbic system structure.

  14. Electroconvulsive stimulations prevent chronic stress-induced increases in L-type calcium channel mRNAs in the hippocampus and basolateral amygdala

    DEFF Research Database (Denmark)

    Maigaard, Katrine; Pedersen, Ida Hageman; Jørgensen, Anders

    2012-01-01

    Although affective disorders have high prevalence, morbidity and mortality, we do not fully understand disease etiopathology, nor have we determined the exact mechanisms by which treatment works. Recent research indicates that intracellular calcium ion dysfunction might be involved. Here we use...... the chronic restraint stress model of affective disorder (6 h restraint per day for 21 days) in combination with electroconvulsive stimulations to examine the effects of stress and an effective antidepressive treatment modality on L-type voltage gated calcium channel subunit mRNA expression patterns...... in the brain. We find that stress tended to upregulate Ca(v)1.2 and Ca(v)1.3 channels in a brain region specific manner, while ECS tended to normalise this effect. This was more pronounced for Ca(v)1.2 channels, where stress clearly increased expression in both the basolateral amygdala, dentate gyrus and CA3...

  15. Learning Enhances Intrinsic Excitability in a Subset of Lateral Amygdala Neurons

    Science.gov (United States)

    Sehgal, Megha; Ehlers, Vanessa L.; Moyer, James R., Jr.

    2014-01-01

    Learning-induced modulation of neuronal intrinsic excitability is a metaplasticity mechanism that can impact the acquisition of new memories. Although the amygdala is important for emotional learning and other behaviors, including fear and anxiety, whether learning alters intrinsic excitability within the amygdala has received very little…

  16. Impact of Infralimbic Inputs on Intercalated Amygdale Neurons: A Biophysical Modeling Study

    Science.gov (United States)

    Li, Guoshi; Amano, Taiju; Pare, Denis; Nair, Satish S.

    2011-01-01

    Intercalated (ITC) amygdala neurons regulate fear expression by controlling impulse traffic between the input (basolateral amygdala; BLA) and output (central nucleus; Ce) stations of the amygdala for conditioned fear responses. Previously, stimulation of the infralimbic (IL) cortex was found to reduce fear expression and the responsiveness of Ce…

  17. Effects of Optogenetic inhibition of BLA on Sleep Brief Optogenetic Inhibition of the Basolateral Amygdala in Mice Alters Effects of Stressful Experiences on Rapid Eye Movement Sleep.

    Science.gov (United States)

    Machida, Mayumi; Wellman, Laurie L; Fitzpatrick Bs, Mairen E; Hallum Bs, Olga; Sutton Bs, Amy M; Lonart, György; Sanford, Larry D

    2017-04-01

    Stressful events can directly produce significant alterations in subsequent sleep, in particular rapid eye movement sleep (REM); however, the neural mechanisms underlying the process are not fully known. Here, we investigated the role of the basolateral nuclei of the amygdala (BLA) in regulating the effects of stressful experience on sleep. We used optogenetics to briefly inhibit glutamatergic cells in BLA during the presentation of inescapable footshock (IS) and assessed effects on sleep, the acute stress response, and fear memory. c-Fos expression was also assessed in the amygdala and the medial prefrontal cortex (mPFC), both regions involved in coping with stress, and in brain stem regions implicated in the regulation of REM. Compared to control mice, peri-shock inhibition of BLA attenuated an immediate reduction in REM after IS and produced a significant overall increase in REM. Moreover, upon exposure to the shock context alone, mice receiving peri-shock inhibition of BLA during training showed increased REM without altered freezing (an index of fear memory) or stress-induced hyperthermia (an index of acute stress response). Inhibition of BLA during REM under freely sleeping conditions enhanced REM only when body temperature was high, suggesting the effect was influenced by stress. Peri-shock inhibition of BLA also led to elevated c-Fos expression in the central nucleus of the amygdala and mPFC and differentially altered c-Fos activity in the selected brain stem regions. Glutamatergic cells in BLA can modulate the effects of stress on REM and can mediate effects of fear memory on sleep that can be independent of behavioral fear. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  18. Serotonin neurons in the dorsal raphe mediate the anticataplectic action of orexin neurons by reducing amygdala activity.

    Science.gov (United States)

    Hasegawa, Emi; Maejima, Takashi; Yoshida, Takayuki; Masseck, Olivia A; Herlitze, Stefan; Yoshioka, Mitsuhiro; Sakurai, Takeshi; Mieda, Michihiro

    2017-04-25

    Narcolepsy is a sleep disorder caused by the loss of orexin (hypocretin)-producing neurons and marked by excessive daytime sleepiness and a sudden weakening of muscle tone, or cataplexy, often triggered by strong emotions. In a mouse model for narcolepsy, we previously demonstrated that serotonin neurons of the dorsal raphe nucleus (DRN) mediate the suppression of cataplexy-like episodes (CLEs) by orexin neurons. Using an optogenetic tool, in this paper we show that the acute activation of DRN serotonin neuron terminals in the amygdala, but not in nuclei involved in regulating rapid eye-movement sleep and atonia, suppressed CLEs. Not only did stimulating serotonin nerve terminals reduce amygdala activity, but the chemogenetic inhibition of the amygdala using designer receptors exclusively activated by designer drugs also drastically decreased CLEs, whereas chemogenetic activation increased them. Moreover, the optogenetic inhibition of serotonin nerve terminals in the amygdala blocked the anticataplectic effects of orexin signaling in DRN serotonin neurons. Taken together, the results suggest that DRN serotonin neurons, as a downstream target of orexin neurons, inhibit cataplexy by reducing the activity of amygdala as a center for emotional processing.

  19. CRF1-R activation of the dynorphin/kappa opioid system in the mouse basolateral amygdala mediates anxiety-like behavior.

    Directory of Open Access Journals (Sweden)

    Michael R Bruchas

    2009-12-01

    Full Text Available Stress is a complex human experience and having both rewarding and aversive motivational properties. The adverse effects of stress are well documented, yet many of underlying mechanisms remain unclear and controversial. Here we report that the anxiogenic properties of stress are encoded by the endogenous opioid peptide dynorphin acting in the basolateral amygdala. Using pharmacological and genetic approaches, we found that the anxiogenic-like effects of Corticotropin Releasing Factor (CRF were triggered by CRF(1-R activation of the dynorphin/kappa opioid receptor (KOR system. Central CRF administration significantly reduced the percent open-arm time in the elevated plus maze (EPM. The reduction in open-arm time was blocked by pretreatment with the KOR antagonist norbinaltorphimine (norBNI, and was not evident in mice lacking the endogenous KOR ligand dynorphin. The CRF(1-R agonist stressin 1 also significantly reduced open-arm time in the EPM, and this decrease was blocked by norBNI. In contrast, the selective CRF(2-R agonist urocortin III did not affect open arm time, and mice lacking CRF(2-R still showed an increase in anxiety-like behavior in response to CRF injection. However, CRF(2-R knockout animals did not develop CRF conditioned place aversion, suggesting that CRF(1-R activation may mediate anxiety and CRF(2-R may encode aversion. Using a phosphoselective antibody (KORp to identify sites of dynorphin action, we found that CRF increased KORp-immunoreactivity in the basolateral amygdala (BLA of wildtype, but not in mice pretreated with the selective CRF(1-R antagonist, antalarmin. Consistent with the concept that acute stress or CRF injection-induced anxiety was mediated by dynorphin release in the BLA, local injection of norBNI blocked the stress or CRF-induced increase in anxiety-like behavior; whereas norBNI injection in a nearby thalamic nucleus did not. The intersection of stress-induced CRF and the dynorphin/KOR system in the BLA was

  20. Cell-specific expression of calcineurin immunoreactivity within the rat basolateral amygdala complex and colocalization with the neuropeptide Y Y1 receptor.

    Science.gov (United States)

    Leitermann, Randy J; Sajdyk, Tammy J; Urban, Janice H

    2012-10-01

    Neuropeptide Y (NPY) produces potent anxiolytic effects via activation of NPY Y1 receptors (Y1r) within the basolateral amygdaloid complex (BLA). The role of NPY in the BLA was recently expanded to include the ability to produce stress resilience and long-lasting reductions in anxiety-like behavior. These persistent behavioral effects are dependent upon activity of the protein phosphatase, calcineurin (CaN), which has long been associated with shaping long-term synaptic signaling. Furthermore, NPY-induced reductions in anxiety-like behavior persist months after intra-BLA delivery, which together indicate a form of neuronal plasticity had likely occurred. To define a site of action for NPY-induced CaN signaling within the BLA, we employed multi-label immunohistochemistry to determine which cell types express CaN and if CaN colocalizes with the Y1r. We have previously reported that both major neuronal cell populations in the BLA, pyramidal projection neurons and GABAergic interneurons, express the Y1r. Therefore, this current study evaluated CaN immunoreactivity in these cell types, along with Y1r immunoreactivity. Antibodies against calcium-calmodulin kinase II (CaMKII) and GABA were used to identify pyramidal neurons and GABAergic interneurons, respectively. A large population of CaN immunoreactive cells displayed Y1r immunoreactivity (90%). Nearly all (98%) pyramidal neurons displayed CaN immunoreactivity, while only a small percentage of interneurons (10%) contained CaN immunoreactivity. Overall, these anatomical findings provide a model whereby NPY could directly regulate CaN activity in the BLA via activation of the Y1r on CaN-expressing, pyramidal neurons. Importantly, they support BLA pyramidal neurons as prime targets for neuronal plasticity associated with the long-term reductions in anxiety-like behavior produced by NPY injections into the BLA. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Context Fear Learning Specifically Activates Distinct Populations of Neurons in Amygdala and Hypothalamus

    Science.gov (United States)

    Trogrlic, Lidia; Wilson, Yvette M.; Newman, Andrew G.; Murphy, Mark

    2011-01-01

    The identity and distribution of neurons that are involved in any learning or memory event is not known. In previous studies, we identified a discrete population of neurons in the lateral amygdala that show learning-specific activation of a c-"fos"-regulated transgene following context fear conditioning. Here, we have extended these studies to…

  2. Facilitation of Contextual Fear Extinction by Orexin-1 Receptor Antagonism Is Associated with the Activation of Specific Amygdala Cell Subpopulations.

    Science.gov (United States)

    Flores, África; Herry, Cyril; Maldonado, Rafael; Berrendero, Fernando

    2017-08-01

    Orexins are hypothalamic neuropeptides recently involved in the regulation of emotional memory. The basolateral amygdala, an area orchestrating fear memory processes, appears to be modulated by orexin transmission during fear extinction. However, the neuronal types within the basolateral amygdala involved in this modulation remain to be elucidated. We used retrograde tracing combined with immunofluorescence techniques in mice to identify basolateral amygdala projection neurons and cell subpopulations in this brain region influenced by orexin transmission during contextual fear extinction consolidation. Treatment with the orexin-1 receptor antagonist SB334867 increased the activity of basolateral amygdala neurons projecting to infralimbic medial prefrontal cortex during fear extinction. GABAergic interneurons expressing calbindin, but not parvalbumin, were also activated by orexin-1 receptor antagonism in the basolateral amygdala. These data identify neuronal circuits and cell populations of the amygdala associated with the facilitation of fear extinction consolidation induced by the orexin-1 receptor antagonist SB334867. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  3. Interaction between morphine and noradrenergic system of basolateral amygdala on anxiety and memory in the elevated plus-maze test based on a test-retest paradigm.

    Science.gov (United States)

    Valizadegan, Farhad; Oryan, Shahrbanoo; Nasehi, Mohammad; Zarrindast, Mohammad Reza

    2013-05-01

    The amygdala is the key brain structure for anxiety and emotional memory storage. We examined the involvement of β-adrenoreceptors in the basolateral amygdala (BLA) and their interaction with morphine in modulating these behaviors. The elevated plus-maze has been employed for investigating anxiety and memory. Male Wistar rats were used for this test. We injected morphine (4, 5, and 6 mg/kg) intraperitoneally, while salbutamol (albuterol) (1, 2, and 4 μg/rat) and propranolol (1, 2, and 4 μg/rat) were injected into the BLA. Open- arms time percentage (%OAT), open- arms entry percentage (%OAE), and locomotor activity were determined by this behavioral test. Retention was tested 24 hours later. Intraperitoneal injection of morphine (6 mg/kg) had an anxiolytic-like effect and improvement of memory. The highest dose of salbutamol decreased the anxiety parameters in test session and improved the memory in retest session. Coadministration of salbutamol and ineffective dose of morphine presenting anxiolytic response. In this case, the memory was improved. Intra-BLA administration of propranolol (4 μg/rat) decreased %OAT in the test session, while had no effect on memory formation. Coadministration of propranolol and morphine (6 mg/kg) showed an increase in %OAT. There was not any significant change in the above- mentioned parameter in the retest session. Coadministration of morphine and propranolol with the effective dose of salbutamol showed that propranolol could reverse anxiolytic-like effect. We found that opioidergic and β-adrenergic systems have the same effects on anxiety and memory in the BLA; but these effects are independent of each other.

  4. Dissociable contributions of anterior cingulate cortex and basolateral amygdala on a rodent cost/benefit decision-making task of cognitive effort.

    Science.gov (United States)

    Hosking, Jay G; Cocker, Paul J; Winstanley, Catharine A

    2014-06-01

    Personal success often requires the choice to expend greater effort for larger rewards, and deficits in such effortful decision making accompany a number of illnesses including depression, schizophrenia, and attention-deficit/hyperactivity disorder. Animal models have implicated brain regions such as the basolateral amygdala (BLA) and anterior cingulate cortex (ACC) in physical effort-based choice, but disentangling the unique contributions of these two regions has proven difficult, and effort demands in industrialized society are predominantly cognitive in nature. Here we utilize the rodent cognitive effort task (rCET), a modification of the five-choice serial reaction-time task, wherein animals can choose to expend greater visuospatial attention to obtain larger sucrose rewards. Temporary inactivation (via baclofen-muscimol) of BLA and ACC showed dissociable effects: BLA inactivation caused hard-working rats to 'slack off' and 'slacker' rats to work harder, whereas ACC inactivation caused all animals to reduce willingness to expend mental effort. Furthermore, BLA inactivation increased the time needed to make choices, whereas ACC inactivation increased motor impulsivity. These data illuminate unique contributions of BLA and ACC to effort-based decision making, and imply overlapping yet distinct circuitry for cognitive vs physical effort. Our understanding of effortful decision making may therefore require expanding our models beyond purely physical costs.

  5. Control of Amygdala Circuits by 5-HT Neurons via 5-HT and Glutamate Cotransmission.

    Science.gov (United States)

    Sengupta, Ayesha; Bocchio, Marco; Bannerman, David M; Sharp, Trevor; Capogna, Marco

    2017-02-15

    The serotonin (5-HT) system and the amygdala are key regulators of emotional behavior. Several lines of evidence suggest that 5-HT transmission in the amygdala is implicated in the susceptibility and drug treatment of mood disorders. Therefore, elucidating the physiological mechanisms through which midbrain 5-HT neurons modulate amygdala circuits could be pivotal in understanding emotional regulation in health and disease. To shed light on these mechanisms, we performed patch-clamp recordings from basal amygdala (BA) neurons in brain slices from mice with channelrhodopsin genetically targeted to 5-HT neurons. Optical stimulation of 5-HT terminals at low frequencies (≤1 Hz) evoked a short-latency excitation of BA interneurons (INs) that was depressed at higher frequencies. Pharmacological analysis revealed that this effect was mediated by glutamate and not 5-HT because it was abolished by ionotropic glutamate receptor antagonists. Optical stimulation of 5-HT terminals at higher frequencies (10-20 Hz) evoked both slow excitation and slow inhibition of INs. These effects were mediated by 5-HT because they were blocked by antagonists of 5-HT 2A and 5-HT 1A receptors, respectively. These fast glutamate- and slow 5-HT-mediated responses often coexisted in the same neuron. Interestingly, fast-spiking and non-fast-spiking INs displayed differential modulation by glutamate and 5-HT. Furthermore, optical stimulation of 5-HT terminals did not evoke glutamate release onto BA principal neurons, but inhibited these cells directly via activation of 5-HT 1A receptors and indirectly via enhanced GABA release. Collectively, these findings suggest that 5-HT neurons exert a frequency-dependent, cell-type-specific control over BA circuitry via 5-HT and glutamate co-release to inhibit the BA output. SIGNIFICANCE STATEMENT The modulation of the amygdala by serotonin (5-HT) is important for emotional regulation and is implicated in the pathogenesis and treatment of affective disorders

  6. Molecular and Neuronal Plasticity Mechanisms in the Amygdala-Prefrontal Cortical Circuit: Implications for Opiate Addiction Memory Formation

    Directory of Open Access Journals (Sweden)

    Laura G Rosen

    2015-11-01

    Full Text Available The persistence of associative memories linked to the rewarding properties of drugs of abuse is a core underlying feature of the addiction process. Opiate class drugs in particular, possess potent euphorigenic effects which, when linked to environmental cues, can produce drug-related ‘trigger’ memories that may persist for lengthy periods of time, even during abstinence, in both humans and other animals. Furthermore, the transitional switch from the drug-naïve, non-dependent state to states of dependence and withdrawal, represents a critical boundary between distinct neuronal and molecular substrates associated with opiate-reward memory formation. Identifying the functional molecular and neuronal mechanisms related to the acquisition, consolidation, recall and extinction phases of opiate-related reward memories is critical for understanding, and potentially reversing, addiction-related memory plasticity characteristic of compulsive drug-seeking behaviors. The mammalian prefrontal cortex (PFC and basolateral nucleus of the amygdala (BLA share important functional and anatomical connections that are involved importantly in the processing of associative memories linked to drug reward. In addition, both regions share interconnections with the mesolimbic pathway’s ventral tegmental area (VTA and nucleus accumbens (NAc and can modulate dopamine (DA transmission and neuronal activity associated with drug-related DAergic signaling dynamics. In this review, we will summarize research from both human and animal modelling studies highlighting the importance of neuronal and molecular plasticity mechanisms within this circuitry during critical phases of opiate addiction-related learning and memory processing. Specifically, we will focus on two molecular signaling pathways known to be involved in both drug-related neuroadaptations and in memory-related plasticity mechanisms; the extracellular-signal-regulated kinase system (ERK and the Ca2+/calmodulin

  7. Pathophysiological Alterations In The Basolateral Amygdala And Neurodegeneration Of Limbic Structures During Epileptogenesis Induced By Status Epilepticus

    Science.gov (United States)

    2009-02-05

    22 CHAPTER 2 TABLE 1 Stereological estimation of total Nissl - stained and GAD67-positive neurons in the BLA of sham control rats and KA-SE rats... Nissl - stained sections……………….... FIGURE 2 Counting site for stereological quantification of Nissl - stained neurons...FIGURE 3 Counting grid superimposed over tracing of BLA………………... 142 143 144 xii FIGURE 4 Disector height and guard zones in Nissl - stained

  8. Amygdala EphB2 Signaling Regulates Glutamatergic Neuron Maturation and Innate Fear.

    Science.gov (United States)

    Zhu, Xiao-Na; Liu, Xian-Dong; Zhuang, Hanyi; Henkemeyer, Mark; Yang, Jing-Yu; Xu, Nan-Jie

    2016-09-28

    The amygdala serves as emotional center to mediate innate fear behaviors that are reflected through neuronal responses to environmental aversive cues. However, the molecular mechanism underlying the initial neuron responses is poorly understood. In this study, we monitored the innate defensive responses to aversive stimuli of either elevated plus maze or predator odor in juvenile mice and found that glutamatergic neurons were activated in amygdala. Loss of EphB2, a receptor tyrosine kinase expressed in amygdala neurons, suppressed the reactions and led to defects in spine morphogenesis and fear behaviors. We further found a coupling of spinogenesis with these threat cues induced neuron activation in developing amygdala that was controlled by EphB2. A constitutively active form of EphB2 was sufficient to rescue the behavioral and morphological defects caused by ablation of ephrin-B3, a brain-enriched ligand to EphB2. These data suggest that kinase-dependent EphB2 intracellular signaling plays a major role for innate fear responses during the critical developing period, in which spinogenesis in amygdala glutamatergic neurons was involved. Generation of innate fear responses to threat as an evolutionally conserved brain feature relies on development of functional neural circuit in amygdala, but the molecular mechanism remains largely unknown. We here identify that EphB2 receptor tyrosine kinase, which is specifically expressed in glutamatergic neurons, is required for the innate fear responses in the neonatal brain. We further reveal that EphB2 mediates coordination of spinogenesis and neuron activation in amygdala during the critical period for the innate fear. EphB2 catalytic activity plays a major role for the behavior upon EphB-ephrin-B3 binding and transnucleus neuronal connections. Our work thus indicates an essential synaptic molecular signaling within amygdala that controls synapse development and helps bring about innate fear emotions in the postnatal

  9. Activation of exchange protein activated by cAMP in the rat basolateral amygdala impairs reconsolidation of a memory associated with self-administered cocaine.

    Science.gov (United States)

    Wan, Xun; Torregrossa, Mary M; Sanchez, Hayde; Nairn, Angus C; Taylor, Jane R

    2014-01-01

    The intracellular mechanisms underlying memory reconsolidation critically involve cAMP signaling. These events were originally attributed to PKA activation by cAMP, but the identification of Exchange Protein Activated by cAMP (Epac), as a distinct mediator of cAMP signaling, suggests that cAMP-regulated processes that subserve memory reconsolidation are more complex. Here we investigated how activation of Epac with 8-pCPT-cAMP (8-CPT) impacts reconsolidation of a memory that had been associated with cocaine self-administration. Rats were trained to lever press for cocaine on an FR-1 schedule, in which each cocaine delivery was paired with a tone+light cue. Lever pressing was then extinguished in the absence of cue presentations and cocaine delivery. Following the last day of extinction, rats were put in a novel context, in which the conditioned cue was presented to reactivate the cocaine-associated memory. Immediate bilateral infusions of 8-CPT into the basolateral amygdala (BLA) following reactivation disrupted subsequent cue-induced reinstatement in a dose-dependent manner, and modestly reduced responding for conditioned reinforcement. When 8-CPT infusions were delayed for 3 hours after the cue reactivation session or were given after a cue extinction session, no effect on cue-induced reinstatement was observed. Co-administration of 8-CPT and the PKA activator 6-Bnz-cAMP (10 nmol/side) rescued memory reconsolidation while 6-Bnz alone had no effect, suggesting an antagonizing interaction between the two cAMP signaling substrates. Taken together, these studies suggest that activation of Epac represents a parallel cAMP-dependent pathway that can inhibit reconsolidation of cocaine-cue memories and reduce the ability of the cue to produce reinstatement of cocaine-seeking behavior.

  10. Activation of exchange protein activated by cAMP in the rat basolateral amygdala impairs reconsolidation of a memory associated with self-administered cocaine.

    Directory of Open Access Journals (Sweden)

    Xun Wan

    Full Text Available The intracellular mechanisms underlying memory reconsolidation critically involve cAMP signaling. These events were originally attributed to PKA activation by cAMP, but the identification of Exchange Protein Activated by cAMP (Epac, as a distinct mediator of cAMP signaling, suggests that cAMP-regulated processes that subserve memory reconsolidation are more complex. Here we investigated how activation of Epac with 8-pCPT-cAMP (8-CPT impacts reconsolidation of a memory that had been associated with cocaine self-administration. Rats were trained to lever press for cocaine on an FR-1 schedule, in which each cocaine delivery was paired with a tone+light cue. Lever pressing was then extinguished in the absence of cue presentations and cocaine delivery. Following the last day of extinction, rats were put in a novel context, in which the conditioned cue was presented to reactivate the cocaine-associated memory. Immediate bilateral infusions of 8-CPT into the basolateral amygdala (BLA following reactivation disrupted subsequent cue-induced reinstatement in a dose-dependent manner, and modestly reduced responding for conditioned reinforcement. When 8-CPT infusions were delayed for 3 hours after the cue reactivation session or were given after a cue extinction session, no effect on cue-induced reinstatement was observed. Co-administration of 8-CPT and the PKA activator 6-Bnz-cAMP (10 nmol/side rescued memory reconsolidation while 6-Bnz alone had no effect, suggesting an antagonizing interaction between the two cAMP signaling substrates. Taken together, these studies suggest that activation of Epac represents a parallel cAMP-dependent pathway that can inhibit reconsolidation of cocaine-cue memories and reduce the ability of the cue to produce reinstatement of cocaine-seeking behavior.

  11. Opiate exposure state controls dopamine D3 receptor and cdk5/calcineurin signaling in the basolateral amygdala during reward and withdrawal aversion memory formation.

    Science.gov (United States)

    Rosen, Laura G; Rushlow, Walter J; Laviolette, Steven R

    2017-10-03

    The dopamine (DA) D3 receptor (D3R) is highly expressed in the basolateral nucleus of the amygdala (BLA), a neural region critical for processing opiate-related reward and withdrawal aversion-related memories. Functionally, D3R transmission is linked to downstream Cdk5 and calcineurin signaling, both of which regulate D3R activity states and play critical roles in memory-related synaptic plasticity. Previous evidence links D3R transmission to opiate-related memory processing, however little is known regarding how chronic opiate exposure may alter D3R-dependent memory mechanisms. Using conditioned place preference (CPP) and withdrawal aversion (conditioned place aversion; CPA) procedures in rats, combined with molecular analyses of BLA protein expression, we examined the effects of chronic opiate exposure on the functional role of intra-BLA D3R transmission during the acquisition of opiate reward or withdrawal aversion memories. Remarkably, we report that the state of opiate exposure during behavioural conditioning (opiate-naïve/non-dependent vs. chronically exposed and in withdrawal) controlled the functional role of intra-BLA D3R transmission during the acquisition of both opiate reward memories and withdrawal-aversion associative memories. Thus, whereas intra-BLA D3R blockade had no effect on opiate reward memory formation in the non-dependent state, blockade of intra-BLA D3R transmission prevented the formation of opiate reward and withdrawal aversion memory in the chronically exposed state. This switch in the functional role of D3R transmission corresponded to significant increases in Cdk5 phosphorylation and total expression levels of calcineurin, and a corresponding decrease in intra-BLA D3R expression. Inhibition of either intra-BLA Cdk5 or calcineurin reversed these effects, switching intra-BLA associative memory formation back to a D3R-independent mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. FKBP5 and specific microRNAs via glucocorticoid receptor in the basolateral amygdala involved in the susceptibility to depressive disorder in early adolescent stressed rats.

    Science.gov (United States)

    Xu, Jingjing; Wang, Rui; Liu, Yuan; Liu, Dexiang; Jiang, Hong; Pan, Fang

    2017-12-01

    Exposure to stressful events induces depressive-like symptoms and increases susceptibility to depression. However, the molecular mechanisms are not fully understood. Studies reported that FK506 binding protein51 (FKBP5), the co-chaperone protein of glucocorticoid receptors (GR), plays a crucial role. Further, miR-124a and miR-18a are involved in the regulation of FKBP5/GR function. However, few studies have referred to effects of early life stress on depressive-like behaviours, GR and FKBP5, as well as miR-124a and miR-18a in the basolateral amygdala (BLA) from adolescence to adulthood. This study aimed to examine the dynamic alternations of depressive-like behaviours, GR and FKBP5, as well as miR-124a and miR-18a expressions in the BLA of chronic unpredictable mild stress (CUMS) rats and dexamethasone administration rats during the adolescent period. Meanwhile, the GR antagonist, RU486, was used as a means of intervention. We found that CUMS and dexamethasone administration in the adolescent period induced permanent depressive-like behaviours and memory impairment, decreased GR expression, and increased FKBP5 and miR-124a expression in the BLA of both adolescent and adult rats. However, increased miR-18a expression in the BLA was found only in adolescent rats. Depressive-like behaviours were positively correlated with the level of miR-124a, whereas GR levels were negatively correlated with those in both adolescent and adult rats. Our results suggested FKBP5/GR and miR-124a in the BLA were associated with susceptibility to depressive disorder in the presence of stressful experiences in early life. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The basolateral amygdala can mediate the effects of fear memory on sleep independently of fear behavior and the peripheral stress response.

    Science.gov (United States)

    Wellman, Laurie L; Fitzpatrick, Mairen E; Hallum, Olga Y; Sutton, Amy M; Williams, Brook L; Sanford, Larry D

    2017-01-01

    Fear conditioning associated with inescapable shock training (ST) and fearful context re-exposure (CR) alone can produce significant behavioral fear, a stress response and alterations in subsequent REM sleep. These alterations may vary among animals and are mediated by the basolateral nucleus of the amygdala (BLA). Here, we used the GABA A agonist, muscimol (Mus), to inactivate BLA prior to CR and examined the effects on sleep, freezing and stress-induced hyperthermia (SIH). Wistar rats (n=28) were implanted with electrodes for recording sleep, data loggers for recording core body temperature, and with cannulae aimed bilaterally into BLA. After recovery, the animals were habituated to the injection procedure and baseline sleep was recorded. On experimental day 1, rats received ST (20 footshocks, 0.8mA, 0.5s duration, 60s interstimulus interval). On experimental day 7, the rats received microinjections (0.5μl) into BLA of either Mus (1.0μM; n=13) or vehicle (Veh; n=15) prior to CR (CR1). On experimental day 21, the animals experienced a second CR (CR2) without Mus. For analysis, the rats were separated into 4 groups: (Veh-vulnerable (Veh-Vul; n=8), Veh-resilient (Veh-Res; n=7), Mus-vulnerable (Mus-Vul; n=7), and Mus-resilient (Mus-Res; n=6)) based on whether or not REM was decreased, compared to baseline, during the first 4h following ST. Pre-CR1 inactivation of BLA did not alter freezing or SIH, but did block the reduction in REM in the Mus-Vul group compared to the Veh-Vul group. These data indicate that BLA is an important region for mediating the effects of fearful memories on sleep. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Early Adolescent MK-801 Exposure Impairs the Maturation of Ventral Hippocampal Control of Basolateral Amygdala Drive in the Adult Prefrontal Cortex

    Science.gov (United States)

    Thomases, Daniel R.; Cass, Daryn K.; Meyer, Jacqueline D.; Caballero, Adriana

    2014-01-01

    The adolescent susceptibility to the onset of psychiatric disorders is only beginning to be understood when factoring in the development of the prefrontal cortex (PFC). The functional maturation of the PFC is dependent upon proper integration of glutamatergic inputs from the ventral hippocampus (vHipp) and the basolateral amygdala (BLA). Here we assessed how transient NMDAR blockade during adolescence alters the functional interaction of vHipp–BLA inputs in regulating PFC plasticity. Local field potential recordings were used to determine changes in long-term depression (LTD) and long-term potentiation (LTP) of PFC responses resulting from vHipp and BLA high-frequency stimulation in adult rats that received repeated injections of saline or the NMDAR antagonist MK-801 from postnatal day 35 (P35) to P40. We found that early adolescent MK-801 exposure elicited an age- and input-specific dysregulation of vHipp–PFC plasticity, characterized by a shift from LTD to LTP without altering the BLA-induced LTP. Data also showed that the vHipp normally resets the LTP state of BLA transmission; however, this inhibitory regulation is absent following early adolescent MK-801 treatment. This deficit was reminiscent of PFC responses seen in drug-naive juveniles. Notably, local prefrontal upregulation of GABAAα1 function completely restored vHipp functionality and its regulation of BLA plasticity in MK-801-treated rats. Thus, NMDAR signaling is critical for the periadolescent acquisition of a GABA-dependent hippocampal control of PFC plasticity, which enables the inhibitory control of the prefrontal output by the vHipp. A dysregulation of this pathway can alter PFC processing of other converging afferents such as those from the BLA. PMID:24990926

  15. Estrogen receptor-a in medial amygdala neurons regulates body weight

    Science.gov (United States)

    Estrogen receptor–a (ERa) activity in the brain prevents obesity in both males and females. However, the ERa-expressing neural populations that regulate body weight remain to be fully elucidated. Here we showed that single-minded–1 (SIM1) neurons in the medial amygdala (MeA) express abundant levels ...

  16. Chronic alcohol exposure disrupts CB1 regulation of GABAergic transmission in the rat basolateral amygdala

    DEFF Research Database (Denmark)

    Varodayan, Florence P.; Bajo, Michal; Soni, Neeraj

    2017-01-01

    in BLA pyramidal neurons of rats exposed to 2–3 weeks intermittent ethanol. In the naïve rat BLA, the CB1 agonist WIN 55,212-2 (WIN) decreased GABA release, and this effect was prevented by the CB1 antagonist AM251. AM251 alone increased GABA release via a mechanism requiring postsynaptic calcium-dependent......1 influence on BLA GABAergic transmission that is dysregulated by chronic ethanol exposure and, thus, may contribute to the alcohol-dependent state....

  17. CREB regulates spine density of lateral amygdala neurons: implications for memory allocation

    Directory of Open Access Journals (Sweden)

    Derya eSargin

    2013-12-01

    Full Text Available Neurons may compete against one another for integration into a memory trace. Specifically, neurons in the lateral nucleus of the amygdala with relatively higher levels of CREB seem to be preferentially allocated to a fear memory trace, while neurons with relatively decreased CREB function seem to be excluded from a fear memory trace. CREB is a ubiquitous transcription factor that modulates many diverse cellular processes, raising the question as to which of these CREB-mediated processes underlie memory allocation. CREB is implicated in modulating dendritic spine number and morphology. As dendritic spines are intimately involved in memory formation, we investigated whether manipulations of CREB function alter spine number or morphology of neurons at the time of fear conditioning. We used viral vectors to manipulate CREB function in the lateral amygdala principal neurons in mice maintained in their homecages. At the time that fear conditioning normally occurs, we observed that neurons with high levels of CREB had more dendritic spines, while neurons with low CREB function had relatively fewer spines compared to control neurons. These results suggest that the modulation of spine density provides a potential mechanism for preferential allocation of a subset of neurons to the memory trace.

  18. β-Adrenergic enhancement of neuronal excitability in the lateral amygdala is developmentally gated.

    Science.gov (United States)

    Fink, Ann E; LeDoux, Joseph E

    2018-05-01

    Noradrenergic signaling in the amygdala is important for processing threats and other emotionally salient stimuli, and β-adrenergic receptor activation is known to enhance neuronal spiking in the lateral amygdala (LA) of juvenile animals. Nevertheless, intracellular recordings have not yet been conducted to determine the effect of β-adrenergic receptor activation on spike properties in the adult LA, despite the potential significance of developmental changes between adolescence and adulthood. Here we demonstrate that the β-adrenergic agonist isoproterenol (15 μM) enhances spike frequency in dorsal LA principal neurons of juvenile male C57BL/6 mice and fails to do so in strain- and sex-matched adults. Furthermore, we find that the age-dependent effect of isoproterenol on spike frequency is occluded by the GABA A receptor blocker picrotoxin (75 μM), suggesting that β-adrenergic receptors downregulate tonic inhibition specifically in juvenile animals. These findings indicate a significant shift during adolescence in the cellular mechanisms of β-adrenergic modulation in the amygdala. NEW & NOTEWORTHY β-Adrenergic receptors (β-ARs) in amygdala are important in processing emotionally salient stimuli. Most cellular recordings have examined juvenile animals, while behavioral data are often obtained from adults. We replicate findings showing that β-ARs enhance spiking of principal cells in the lateral amygdala of juveniles, but we fail to find this in adults. These findings have notable scientific and clinical implications regarding the noradrenergic modulation of threat processing, alterations of which underlie fear and anxiety disorders.

  19. Memory-enhancing intra-basolateral amygdala infusions of clenbuterol increase Arc and CaMKII-alpha protein expression in the rostral anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Crystal M Holloway-Erickson

    2012-04-01

    Full Text Available Activation of β-adrenoceptors in the basolateral complex of the amygdala (BLA modulates memory through interactions with multiple memory systems. The cellular mechanisms for this interaction remain unresolved. Memory-modulating BLA manipulations influence expression of the protein product of the immediate early gene activity-regulated cytoskeletal-associated protein (Arc in the dorsal hippocampus, and hippocampal expression of Arc protein is critically involved in memory consolidation and long-term potentiation. The present studies examined whether this influence of the BLA is specific to the hippocampus and to Arc protein. Like the hippocampus, the rostral portion of the anterior cingulate cortex (rACC is involved in the consolidation of inhibitory avoidance (IA memory, and IA training increases Arc protein in the rACC. Because the BLA interacts with the rACC in the consolidation of IA memory, the rACC is a potential candidate for further studies of BLA modulation of synaptic plasticity. The alpha isoform of the Calcium/Calmodulin-dependent protein kinase II (CaMKIIα and the immediate early gene c-Fos are involved in long-term potentiation and memory. Both Arc and CaMKIIα proteins can be translated in isolated synapses, where the mRNA is localized, but c-Fos protein remains in the soma. To examine the influence of memory-modulating manipulations of the BLA on expression of these memory and plasticity-associated proteins in the rACC, male Sprague-Dawley rats were trained on an IA task and given intra-BLA infusions of either clenbuterol or lidocaine immediately after training. Findings suggest that noradrenergic stimulation of the BLA may modulate memory consolidation through effects on both synaptic proteins Arc and CaMKIIα, but not the somatic protein c-Fos. Furthermore, protein changes observed in the rACC following BLA manipulations suggest that the influence of the BLA on synaptic proteins is not limited to those in the dorsal

  20. Corticotropin-releasing factor in the basolateral amygdala enhances memory consolidation via an interaction with the beta-adrenoceptor-cAMP pathway: dependence on glucocorticoid receptor activation.

    Science.gov (United States)

    Roozendaal, Benno; Schelling, Gustav; McGaugh, James L

    2008-06-25

    Extensive evidence indicates that stress hormone effects on the consolidation of emotionally influenced memory involve noradrenergic activation of the basolateral complex of the amygdala (BLA). The present experiments examined whether corticotropin-releasing factor (CRF) modulates memory consolidation via an interaction with the beta-adrenoceptor-cAMP system in the BLA. In a first experiment, male Sprague Dawley rats received bilateral infusions of the CRF-binding protein ligand inhibitor CRF(6-33) into the BLA either alone or together with the CRF receptor antagonist alpha-helical CRF(9-41) immediately after inhibitory avoidance training. CRF(6-33) induced dose-dependent enhancement of 48 h retention latencies, which was blocked by coadministration of alpha-helical CRF(9-41), suggesting that CRF(6-33) enhances memory consolidation by displacing CRF from its binding protein, thereby increasing "free" endogenous CRF concentrations. In a second experiment, intra-BLA infusions of atenolol (beta-adrenoceptor antagonist) and Rp-cAMPS (cAMP inhibitor), but not prazosin (alpha(1)-adrenoceptor antagonist), blocked CRF(6-33)-induced retention enhancement. In a third experiment, the CRF receptor antagonist alpha-helical CRF(9-41) administered into the BLA immediately after training attenuated the dose-response effects of concurrent intra-BLA infusions of clenbuterol (beta-adrenoceptor agonist). In contrast, alpha-helical CRF(9-41) did not alter retention enhancement induced by posttraining intra-BLA infusions of either cirazoline (alpha(1)-adrenoceptor agonist) or 8-br-cAMP (cAMP analog). These findings suggest that CRF facilitates the memory-modulatory effects of noradrenergic stimulation in the BLA via an interaction with the beta-adrenoceptor-cAMP cascade, at a locus between the membrane-bound beta-adrenoceptor and the intracellular cAMP formation site. Moreover, consistent with evidence that glucocorticoids enhance memory consolidation via a similar interaction with the

  1. 5-HT1A receptor blockade targeting the basolateral amygdala improved stress-induced impairment of memory consolidation and retrieval in rats.

    Science.gov (United States)

    Sardari, M; Rezayof, A; Zarrindast, M-R

    2015-08-06

    The aim of the present study was to investigate the possible role of basolateral amygdala (BLA) 5-HT1A receptors in memory formation under stress. We also examined whether the blockade of these receptors is involved in stress-induced state-dependent memory. Adult male Wistar rats received cannula implants that bilaterally targeted the BLA. Long-term memory was examined using the step-through type of passive avoidance task. Behavioral stress was evoked by exposure to an elevated platform (EP) for 10, 20 and 30min. Post-training exposure to acute stress (30min) impaired the memory consolidation. In addition, pre-test exposure to acute stress-(20 and 30min) induced the impairment of memory retrieval. Interestingly, the memory impairment induced by post-training exposure to stress was restored in the animals that received 20- or 30-min pre-test stress exposure, suggesting stress-induced state-dependent memory retrieval. Post-training BLA-targeted injection of a selective 5-HT1A receptor antagonist, (S)-WAY-100135 (2μg/rat), prevented the impairing effect of stress on memory consolidation. Pre-test injection of the same doses of (S)-WAY-100135 that was targeted to the BLA also reversed stress-induced memory retrieval impairment. It should be considered that post-training or pre-test BLA-targeted injection of (S)-WAY-100135 (0.5-2μg/rat) by itself had no effect on the memory formation. Moreover, pre-test injection of (S)-WAY-100135 (2μg/rat) that targeted the BLA inhibited the stress-induced state-dependent memory retrieval. Taken together, our findings suggest that post-training or pre-test exposure to acute stress induced the impairment of memory consolidation, retrieval and state-dependent learning. The BLA 5-HT1A receptors have a critical role in learning and memory under stress. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Hypothalamic vasopressinergic projections innervate central amygdala GABAergic neurons: implications for anxiety and stress coping

    Directory of Open Access Journals (Sweden)

    Vito Salvador Hernandez

    2016-11-01

    Full Text Available The arginine-vasopressin (AVP-containing hypothalamic magnocellular neurosecretory neurons (VPMNNs are known for their role in hydro-electrolytic balance control via their projections to neurohypophysis. Recently, projections from these same neurons to hippocampus, habenula, and other brain regions, in which vasopressin infusion modulates contingent social and emotionally-affected behaviors, have been reported. Here, we present evidence that VPMNN collaterals also project to the amygdaloid complex, and establish synaptic connections with neurons in central amygdala (CeA. The density of AVP innervation in amygdala was substantially increased in adult rats that had experienced neonatal maternal separation (MS, consistent with our previous observations that MS enhances VPMNN number in the paraventricular (PVN and supraoptic (SON nuclei of the hypothalamus. In the CeA, V1a AVP receptor mRNA was only observed in GABAergic neurons, demonstrated by complete co-localization of V1a transcripts in neurons expressing Gad1 and Gad2 transcripts in CeA using the RNAscope method. V1b and V2 receptors mRNA were not detected, using the same method. Water-deprivation for 24 hrs, which increased the metabolic activity of VPMNNs, also increased anxiety-like behavior measured using the elevated plus maze test, and this effect was mimicked by bilateral microinfusion of VP into the CeA. Anxious behavior induced by either water deprivation or VP infusion was reversed by CeA infusion of V1a antagonist. VPMNNs are thus a newly discovered source of central amygdala inhibitory circuit modulation, through which both early-life and adult stress coping signals are conveyed from the hypothalamus to the amygdala.

  3. Fluoxetine pretreatment promotes neuronal survival and maturation after auditory fear conditioning in the rat amygdala.

    Directory of Open Access Journals (Sweden)

    Lizhu Jiang

    Full Text Available The amygdala is a critical brain region for auditory fear conditioning, which is a stressful condition for experimental rats. Adult neurogenesis in the dentate gyrus (DG of the hippocampus, known to be sensitive to behavioral stress and treatment of the antidepressant fluoxetine (FLX, is involved in the formation of hippocampus-dependent memories. Here, we investigated whether neurogenesis also occurs in the amygdala and contributes to auditory fear memory. In rats showing persistent auditory fear memory following fear conditioning, we found that the survival of new-born cells and the number of new-born cells that differentiated into mature neurons labeled by BrdU and NeuN decreased in the amygdala, but the number of cells that developed into astrocytes labeled by BrdU and GFAP increased. Chronic pretreatment with FLX partially rescued the reduction in neurogenesis in the amygdala and slightly suppressed the maintenance of the long-lasting auditory fear memory 30 days after the fear conditioning. The present results suggest that adult neurogenesis in the amygdala is sensitive to antidepressant treatment and may weaken long-lasting auditory fear memory.

  4. Activation of corticotropin-releasing factor receptors from the basolateral or central amygdala increases the tonic immobility response in guinea pigs: an innate fear behavior.

    Science.gov (United States)

    Donatti, Alberto Ferreira; Leite-Panissi, Christie Ramos Andrade

    2011-11-20

    The tonic immobility (TI) behavior is an innate response associated with extreme threat situations such as a predator attack. Several studies have provided evidence suggesting an important role for corticotropin-releasing factor (CRF) in the regulation of the endocrine system, defensive behaviors and behavioral responses to stress. TI has been shown to be positively correlated with the basal plasma levels of corticosterone. CRF receptors and neurons that are immunoreactive to CRF are found in many cerebral regions, especially in the amygdaloid complex. Previous reports have demonstrated the involvement of the basolateral amygdaloid (BLA) and central amygdaloid (CeA) nuclei in the TI response. In this study, we evaluated the CRF system of the BLA and the CeA in the modulation of the TI response in guinea pigs. The activation of CRF receptors in the BLA and in the CeA promoted an increase in the TI response. In contrast, the inhibition of these receptors via alpha-helical-CRF(9-41) decreased the duration of the TI response. Moreover, neither the activation nor inhibition of CRF receptors in the BLA or the CeA altered spontaneous motor activity in the open-field test. These data suggest that the activation of the CRF receptors in the BLA or the CeA probably potentiates fear and anxiety, which may be one of the factors that promote an increase in the TI behavior. Therefore, these data support the role of the CRF system in the control of emotional responses, particularly in the modulation of innate fear. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Tactile Stimulation of the Face and the Production of Facial Expressions Activate Neurons in the Primate Amygdala.

    Science.gov (United States)

    Mosher, Clayton P; Zimmerman, Prisca E; Fuglevand, Andrew J; Gothard, Katalin M

    2016-01-01

    The majority of neurophysiological studies that have explored the role of the primate amygdala in the evaluation of social signals have relied on visual stimuli such as images of facial expressions. Vision, however, is not the only sensory modality that carries social signals. Both humans and nonhuman primates exchange emotionally meaningful social signals through touch. Indeed, social grooming in nonhuman primates and caressing touch in humans is critical for building lasting and reassuring social bonds. To determine the role of the amygdala in processing touch, we recorded the responses of single neurons in the macaque amygdala while we applied tactile stimuli to the face. We found that one-third of the recorded neurons responded to tactile stimulation. Although we recorded exclusively from the right amygdala, the receptive fields of 98% of the neurons were bilateral. A fraction of these tactile neurons were monitored during the production of facial expressions and during facial movements elicited occasionally by touch stimuli. Firing rates arising during the production of facial expressions were similar to those elicited by tactile stimulation. In a subset of cells, combining tactile stimulation with facial movement further augmented the firing rates. This suggests that tactile neurons in the amygdala receive input from skin mechanoceptors that are activated by touch and by compressions and stretches of the facial skin during the contraction of the underlying muscles. Tactile neurons in the amygdala may play a role in extracting the valence of touch stimuli and/or monitoring the facial expressions of self during social interactions.

  6. Sensitivity to Temporal Reward Structure in Amygdala Neurons

    OpenAIRE

    Bermudez, Maria A.; Göbel, Carl; Schultz, Wolfram

    2012-01-01

    Summary The time of reward and the temporal structure of reward occurrence fundamentally influence behavioral reinforcement and decision processes [1–11]. However, despite knowledge about timing in sensory and motor systems [12–17], we know little about temporal mechanisms of neuronal reward processing. In this experiment, visual stimuli predicted different instantaneous probabilities of reward occurrence that resulted in specific temporal reward structures. Licking behavior demonstrated that...

  7. Synapse-specific astrocyte gating of amygdala-related behavior.

    Science.gov (United States)

    Martin-Fernandez, Mario; Jamison, Stephanie; Robin, Laurie M; Zhao, Zhe; Martin, Eduardo D; Aguilar, Juan; Benneyworth, Michael A; Marsicano, Giovanni; Araque, Alfonso

    2017-11-01

    The amygdala plays key roles in fear and anxiety. Studies of the amygdala have largely focused on neuronal function and connectivity. Astrocytes functionally interact with neurons, but their role in the amygdala remains largely unknown. We show that astrocytes in the medial subdivision of the central amygdala (CeM) determine the synaptic and behavioral outputs of amygdala circuits. To investigate the role of astrocytes in amygdala-related behavior and identify the underlying synaptic mechanisms, we used exogenous or endogenous signaling to selectively activate CeM astrocytes. Astrocytes depressed excitatory synapses from basolateral amygdala via A 1 adenosine receptor activation and enhanced inhibitory synapses from the lateral subdivision of the central amygdala via A 2A receptor activation. Furthermore, astrocytic activation decreased the firing rate of CeM neurons and reduced fear expression in a fear-conditioning paradigm. Therefore, we conclude that astrocyte activity determines fear responses by selectively regulating specific synapses, which indicates that animal behavior results from the coordinated activity of neurons and astrocytes.

  8. Neurons in the monkey amygdala detect eye-contact during naturalistic social interactions

    Science.gov (United States)

    Mosher, Clayton P.; Zimmerman, Prisca E.; Gothard, Katalin M.

    2014-01-01

    Summary Primates explore the visual world through eye-movement sequences. Saccades bring details of interest into the fovea while fixations stabilize the image [1]. During natural vision, social primates direct their gaze at the eyes of others to communicate their own emotions and intentions and to gather information about the mental states of others [2]. Direct gaze is an integral part of facial expressions that signals cooperation or conflict over resources and social status [3-6]. Despite the great importance of making and breaking eye contact in the behavioral repertoire of primates, little is known about the neural substrates that support these behaviors. Here we show that the monkey amygdala contains neurons that respond selectively to fixations at the eyes of others and to eye contact. These “eye cells” share several features with the canonical, visually responsive neurons in the monkey amygdala, however, they respond to the eyes only when they fall within the fovea of the viewer, either as a result of a deliberate saccade, or as eyes move into the fovea of the viewer during a fixation intended to explore a different feature. The presence of eyes in peripheral vision fails to activate the eye cells. These findings link the primate amygdala to eye-movements involved in the exploration and selection of details in visual scenes that contain socially and emotionally salient features. PMID:25283782

  9. Neurons in the monkey amygdala detect eye contact during naturalistic social interactions.

    Science.gov (United States)

    Mosher, Clayton P; Zimmerman, Prisca E; Gothard, Katalin M

    2014-10-20

    Primates explore the visual world through eye-movement sequences. Saccades bring details of interest into the fovea, while fixations stabilize the image. During natural vision, social primates direct their gaze at the eyes of others to communicate their own emotions and intentions and to gather information about the mental states of others. Direct gaze is an integral part of facial expressions that signals cooperation or conflict over resources and social status. Despite the great importance of making and breaking eye contact in the behavioral repertoire of primates, little is known about the neural substrates that support these behaviors. Here we show that the monkey amygdala contains neurons that respond selectively to fixations on the eyes of others and to eye contact. These "eye cells" share several features with the canonical, visually responsive neurons in the monkey amygdala; however, they respond to the eyes only when they fall within the fovea of the viewer, either as a result of a deliberate saccade or as eyes move into the fovea of the viewer during a fixation intended to explore a different feature. The presence of eyes in peripheral vision fails to activate the eye cells. These findings link the primate amygdala to eye movements involved in the exploration and selection of details in visual scenes that contain socially and emotionally salient features. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Comparative distribution of relaxin-3 inputs and calcium-binding protein-positive neurons in rat amygdala

    Directory of Open Access Journals (Sweden)

    Fabio N Santos

    2016-04-01

    Full Text Available The neural circuits involved in mediating complex behaviors are being rapidly elucidated using various newly developed and powerful anatomical and molecular techniques, providing insights into the neural basis for anxiety disorders, depression, addiction, and dysfunctional social behaviors. Many of these behaviors and associated physiological processes involve the activation of the amygdala in conjunction with cortical and hippocampal circuits. Ascending subcortical projections provide modulatory inputs to the extended amygdala and its related nodes (or ‘hubs’ within these key circuits. One such input arises from the nucleus incertus (NI in the tegmentum, which sends amino acid- and peptide-containing projections throughout the forebrain. Notably, a distinct population of GABAergic NI neurons expresses the highly-conserved neuropeptide, relaxin-3, and relaxin-3 signaling has been implicated in the modulation of reward/motivation and anxiety- and depressive-like behaviors in rodents via actions within the extended amygdala. Thus, a detailed description of the relaxin-3 innervation of the extended amygdala would provide an anatomical framework for an improved understanding of NI and relaxin-3 modulation of these and other specific amygdala-related functions. Therefore, in this study, we examined the distribution of NI projections and relaxin-3-positive elements (axons/fibers/terminals within the amygdala, relative to the distribution of neurons expressing the calcium-binding proteins, parvalbumin, calretinin and/or calbindin. Anterograde tracer injections into the NI revealed a topographic distribution of NI efferents within the amygdala that was near identical to the distribution of relaxin-3-immunoreactive fibers. Highest densities of anterogradely-labeled elements and relaxin-3-immunoreactive fibers were observed in the medial nucleus of the amygdala, medial divisions of the bed nucleus of the stria terminalis (BST and in the endopiriform

  11. Spiny Neurons of Amygdala, Striatum and Cortex Use Dendritic Plateau Potentials to Detect Network UP States

    Directory of Open Access Journals (Sweden)

    Katerina D Oikonomou

    2014-09-01

    Full Text Available Spiny neurons of amygdala, striatum, and cerebral cortex share four interesting features: [1] they are the most abundant cell type within their respective brain area, [2] covered by thousands of thorny protrusions (dendritic spines, [3] possess high levels of dendritic NMDA conductances, and [4] experience sustained somatic depolarizations in vivo and in vitro (UP states. In all spiny neurons of the forebrain, adequate glutamatergic inputs generate dendritic plateau potentials (dendritic UP states characterized by (i fast rise, (ii plateau phase lasting several hundred milliseconds and (iii abrupt decline at the end of the plateau phase. The dendritic plateau potential propagates towards the cell body decrementally to induce a long-lasting (longer than 100 ms, most often 200 – 800 ms steady depolarization (~20 mV amplitude, which resembles a neuronal UP state. Based on voltage-sensitive dye imaging, the plateau depolarization in the soma is precisely time-locked to the regenerative plateau potential taking place in the dendrite. The somatic plateau rises after the onset of the dendritic voltage transient and collapses with the breakdown of the dendritic plateau depolarization. We hypothesize that neuronal UP states in vivo reflect the occurrence of dendritic plateau potentials (dendritic UP states. We propose that the somatic voltage waveform during a neuronal UP state is determined by dendritic plateau potentials. A mammalian spiny neuron uses dendritic plateau potentials to detect and transform coherent network activity into a ubiquitous neuronal UP state. The biophysical properties of dendritic plateau potentials allow neurons to quickly attune to the ongoing network activity, as well as secure the stable amplitudes of successive UP states.

  12. Antagonistic control of social versus repetitive self-grooming behaviors by separable amygdala neuronal subsets.

    Science.gov (United States)

    Hong, Weizhe; Kim, Dong-Wook; Anderson, David J

    2014-09-11

    Animals display a range of innate social behaviors that play essential roles in survival and reproduction. While the medial amygdala (MeA) has been implicated in prototypic social behaviors such as aggression, the circuit-level mechanisms controlling such behaviors are not well understood. Using cell-type-specific functional manipulations, we find that distinct neuronal populations in the MeA control different social and asocial behaviors. A GABAergic subpopulation promotes aggression and two other social behaviors, while neighboring glutamatergic neurons promote repetitive self-grooming, an asocial behavior. Moreover, this glutamatergic subpopulation inhibits social interactions independently of its effect to promote self-grooming, while the GABAergic subpopulation inhibits self-grooming, even in a nonsocial context. These data suggest that social versus repetitive asocial behaviors are controlled in an antagonistic manner by inhibitory versus excitatory amygdala subpopulations, respectively. These findings provide a framework for understanding circuit-level mechanisms underlying opponency between innate behaviors, with implications for their perturbation in psychiatric disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Dorsal hippocampal NMDA receptor blockade impairs extinction of naloxone-precipitated conditioned place aversion in acute morphine-treated rats by suppressing ERK and CREB phosphorylation in the basolateral amygdala.

    Science.gov (United States)

    Wang, Wei-Sheng; Chen, Zhong-Guo; Liu, Wen-Tao; Chi, Zhi-Qiang; He, Ling; Liu, Jing-Gen

    2015-01-01

    Substantial evidence shows that negative reinforcement resulting from the aversive affective consequences of opiate withdrawal may play a crucial role in drug relapse. Understanding the mechanisms underlying the loss (extinction) of conditioned aversion of drug withdrawal could facilitate the treatment of drug addiction. Naloxone-induced conditioned place aversion (CPA) of Sprague-Dawley rats was used to measure conditioned aversion. An NMDA receptor antagonist and MAPK kinase inhibitor were applied through intracranial injections. The phosphorylation of ERK and cAMP response element-binding protein (CREB) was detected using Western blot. The extinction of CPA behaviour increased the phosphorylation of ERK and CREB in the dorsal hippocampus (DH) and basolateral amygdala (BLA), but not in the central amygdala (CeA). Intra-DH injection of AP5 or intra-BLA injection of AP-5 or U0126 before extinction training significantly attenuated ERK and CREB phosphorylation in the BLA and impaired the extinction of CPA behaviour. Although intra-DH injections of AP-5 attenuated extinction training-induced activation of the ERK-CREB pathway in the BLA, intra-BLA injection of AP5 had no effect on extinction training-induced activation of the ERK-CREB pathway in the DH. These results suggest that activation of ERK and CREB in the BLA and DH is involved in the extinction of CPA behaviour and that the DH, via a direct or indirect pathway, modulates the activity of ERK and CREB in the BLA through activation of NMDA receptors after extinction training. Understanding the mechanisms underlying the extinction of conditioned aversion could facilitate the treatment of drug addiction. This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2. © 2014 The British Pharmacological Society.

  14. GABAA receptor endocytosis in the basolateral amygdala is critical to the reinstatement of fear memory measured by fear-potentiated startle.

    Science.gov (United States)

    Lin, Hui-Ching; Tseng, Yu-Chou; Mao, Sheng-Chun; Chen, Po-See; Gean, Po-Wu

    2011-06-15

    Reinstatement represents a phenomenon that may be used to model the effects of retraumatization observed in patients with posttraumatic stress disorder (PTSD). In this study, we found intraperitoneal injection of the β-adrenergic receptor antagonist propranolol (10 mg/kg) 1 h before reinstatement training attenuated reinstatement of fear memory in rats. Conversely, reinstatement was facilitated by intra-amygdalar administration of β-adrenergic receptor agonist isoproterenol (Iso; 2 μg per side) 30 min before reinstatement training. The frequency and amplitude of the miniature IPSC (mIPSC) and the surface expression of the β3 and γ2 subunits of the GABA(A) receptor (GABA(A)R) were significantly lower in reinstated than in extinction rats, whereas the AMPA/NMDA ratio and the surface expression of GluR1 and GluR2 in the amygdala did not differ between groups. In amygdala slices, Iso-induced decrease in the surface β3 subunit of GABA(A) receptor was blocked by a Tat-conjugated dynamin function-blocking peptide (Tat-P4) pretreatment (10 μm for 30 min). By contrast, Tat-scramble peptide had no effect. Intravenous injection (3 μmol/kg) or intra-amygdalar infusion (30 pmol per side) of Tat-P4 interfered with reinstatement. Reinstatement increased the association between protein phosphatase 2A (PP2A) and the β3 subunit of the GABA(A)R, which was abolished by PP1/PP2A inhibitors okadaic acid and calyculin A. These results suggest the involvement of β-adrenergic receptor activation and GABA(A) receptor endocytosis in the amygdala for the reinstatement in fear memory.

  15. Post-training reversible inactivation of the rat’s basolateral amygdala interferes with hippocampus-dependent place avoidance memory in a time-dependent manner

    Czech Academy of Sciences Publication Activity Database

    Vafaei, A. A.; Ježek, Karel; Bureš, Jan; Fenton, André Antonio; Rashidy-Pour, A.

    2007-01-01

    Roč. 88, č. 1 (2007), s. 87-93 ISSN 1074-7427 R&D Projects: GA ČR(CZ) GA309/06/1231; GA MŠk(CZ) 1M0517; GA MŠk(CZ) LC554; GA ČR(CZ) GA309/97/0555; GA ČR(CZ) GA309/00/1656 Grant - others:-(XE) QLG3-CT-1999-00192; -(XE) 98-38 CNS-QUA.05 Institutional research plan: CEZ:AV0Z50110509 Keywords : avoidance * memory * amygdala Subject RIV: FH - Neurology Impact factor: 3.443, year: 2007

  16. Orexin 1 and orexin 2 receptor antagonism in the basolateral amygdala modulate long-term potentiation of the population spike in the perforant path-dentate gyrus-evoked field potential in rats.

    Science.gov (United States)

    Ardeshiri, Motahareh Rouhi; Hosseinmardi, Narges; Akbari, Esmaeil

    2018-03-01

    Involvement of amygdalo-hippocampal substructures in patients with narcolepsy due to deficiencies in the orexinergic system, and the presence of hippocampus-dependent memory impairments in this disorder, have led us to investigate the effects of orexin 1 and 2 receptor antagonism in the basolateral amygdala (BLA) on long-term potentiation (LTP) of dentate gyrus (DG) granular cells. We used a 200-Hz high-frequency stimulation protocol in anesthetized rats. We studied the long-term synaptic plasticity of perforant path-dentate gyrus granule cells following the inactivation of orexin receptors before and after tetanic stimulation. LTP of the DG population spike was attenuated in the presence of orexin 1 and 2 receptor antagonism (treatment with SB-334867-A and TCS-OX2-29, respectively) in the BLA when compared to that observed following treatment with dimethyl sulfoxide (DMSO). However, the population excitatory post-synaptic potentials were not affected. Moreover, when orexin 1 and 2 receptors in the BLA were blocked after LTP induction, there were no differences between the DMSO and treatment groups. Our findings suggest that the orexinergic system of the BLA plays a modulatory role in the regulation of hippocampal plasticity in rats. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Kisspeptin neurones in the posterodorsal medial amygdala modulate sexual partner preference and anxiety in male mice.

    Science.gov (United States)

    Adekunbi, D A; Li, X F; Lass, G; Shetty, K; Adegoke, O A; Yeo, S H; Colledge, W H; Lightman, S L; O'Byrne, K T

    2018-03-01

    The posterodorsal medial amygdala (MePD) is a neural site in the limbic brain involved in regulating emotional and sexual behaviours. There is, however, limited information available on the specific neuronal cell type in the MePD functionally mediating these behaviours in rodents. The recent discovery of a significant kisspeptin neurone population in the MePD has raised interest in the possible role of kisspeptin and its cognate receptor in sexual behaviour. The present study therefore tested the hypothesis that the MePD kisspeptin neurone population is involved in regulating attraction towards opposite sex conspecifics, sexual behaviour, social interaction and the anxiety response by selectively stimulating these neurones using the novel pharmacosynthetic DREADDs (designer receptors exclusively activated by designer drugs) technique. Adult male Kiss-Cre mice received bilateral stereotaxic injections of a stimulatory DREADD viral construct (AAV-hSyn-DIO-hM 3 D(Gq)-mCherry) targeted to the MePD, with subsequent activation by i.p. injection of clozapine-N-oxide (CNO). Socio-sexual behaviours were assessed in a counter-balanced fashion after i.p. injection of either saline or CNO (5 mg kg -1 ). Selective activation of MePD kisspeptin neurones by CNO significantly increased the time spent by male mice in investigating an oestrous female, as well as the duration of social interaction. Additionally, after CNO injection, the mice appeared less anxious, as indicated by a longer exploratory time in the open arms of the elevated plus maze. However, levels of copulatory behaviour were comparable between CNO and saline-treated controls. These data indicate that DREADD-induced activation of MePD kisspeptin neurones enhances both sexual partner preference in males and social interaction and also decreases anxiety, suggesting a key role played by MePD kisspeptin in sexual motivation and social behaviour. © 2018 The Authors. Journal of Neuroendocrinology published by John Wiley

  18. Early-stage reduction of the dendritic complexity in basolateral amygdala of a transgenic mouse model of Alzheimer's disease

    International Nuclear Information System (INIS)

    Guo, Congdi; Long, Ben; Hu, Yarong; Yuan, Jing; Gong, Hui; Li, Xiangning

    2017-01-01

    Alzheimer's disease is a representative age-related neurodegenerative disease that could result in loss of memory and cognitive deficiency. However, the precise onset time of Alzheimer's disease affecting neuronal circuits and the mechanisms underlying the changes are not clearly known. To address the neuroanatomical changes during the early pathologic developing process, we acquired the neuronal morphological characterization of AD in APP/PS1 double-transgenic mice using the Micro-Optical Sectioning Tomography system. We reconstructed the neurons in 3D datasets with a resolution of 0.32 × 0.32 × 1 μm and used the Sholl method to analyze the anatomical characterization of the dendritic branches. The results showed that, similar to the progressive change in amyloid plaques, the number of dendritic branches were significantly decreased in 9-month-old mice. In addition, a distinct reduction of dendritic complexity occurred in third and fourth-order dendritic branches of 9-month-old mice, while no significant changes were identified in these parameters in 6-month-old mice. At the branch-level, the density distribution of dendritic arbors in the radial direction decreased in the range of 40–90 μm from the neuron soma in 6-month-old mice. These changes in the dendritic complexity suggest that these reductions contribute to the progressive cognitive impairment seen in APP/PS1 mice. This work may yield insights into the early changes in dendritic abnormality and its relevance to dysfunctional mechanisms of learning, memory and emotion in Alzheimer's disease. - Highlights: • Neuron-level, reduction of dendritic complexity in BLA of 9-month-old AD mice. • Specific range of branch decrease in density of 6-month-old AD mice. • 3D imaging with high resolution will provide insights into brain aging.

  19. ASIC-dependent LTP at multiple glutamatergic synapses in amygdala network is required for fear memory.

    Science.gov (United States)

    Chiang, Po-Han; Chien, Ta-Chun; Chen, Chih-Cheng; Yanagawa, Yuchio; Lien, Cheng-Chang

    2015-05-19

    Genetic variants in the human ortholog of acid-sensing ion channel-1a subunit (ASIC1a) gene are associated with panic disorder and amygdala dysfunction. Both fear learning and activity-induced long-term potentiation (LTP) of cortico-basolateral amygdala (BLA) synapses are impaired in ASIC1a-null mice, suggesting a critical role of ASICs in fear memory formation. In this study, we found that ASICs were differentially expressed within the amygdala neuronal population, and the extent of LTP at various glutamatergic synapses correlated with the level of ASIC expression in postsynaptic neurons. Importantly, selective deletion of ASIC1a in GABAergic cells, including amygdala output neurons, eliminated LTP in these cells and reduced fear learning to the same extent as that found when ASIC1a was selectively abolished in BLA glutamatergic neurons. Thus, fear learning requires ASIC-dependent LTP at multiple amygdala synapses, including both cortico-BLA input synapses and intra-amygdala synapses on output neurons.

  20. Deep brain stimulation of the basolateral amygdala for treatment-refractory combat post-traumatic stress disorder (PTSD): study protocol for a pilot randomized controlled trial with blinded, staggered onset of stimulation.

    Science.gov (United States)

    Koek, Ralph J; Langevin, Jean-Philippe; Krahl, Scott E; Kosoyan, Hovsep J; Schwartz, Holly N; Chen, James W Y; Melrose, Rebecca; Mandelkern, Mark J; Sultzer, David

    2014-09-10

    Combat post-traumatic stress disorder (PTSD) involves significant suffering, impairments in social and occupational functioning, substance use and medical comorbidity, and increased mortality from suicide and other causes. Many veterans continue to suffer despite current treatments. Deep brain stimulation (DBS) has shown promise in refractory movement disorders, depression and obsessive-compulsive disorder, with deep brain targets chosen by integration of clinical and neuroimaging literature. The basolateral amygdala (BLn) is an optimal target for high-frequency DBS in PTSD based on neurocircuitry findings from a variety of perspectives. DBS of the BLn was validated in a rat model of PTSD by our group, and limited data from humans support the potential safety and effectiveness of BLn DBS. We describe the protocol design for a first-ever Phase I pilot study of bilateral BLn high-frequency DBS for six severely ill, functionally impaired combat veterans with PTSD refractory to conventional treatments. After implantation, patients are monitored for a month with stimulators off. An electroencephalographic (EEG) telemetry session will test safety of stimulation before randomization to staggered-onset, double-blind sham versus active stimulation for two months. Thereafter, patients will undergo an open-label stimulation for a total of 24 months. Primary efficacy outcome is a 30% decrease in the Clinician Administered PTSD Scale (CAPS) total score. Safety outcomes include extensive assessments of psychiatric and neurologic symptoms, psychosocial function, amygdala-specific and general neuropsychological functions, and EEG changes. The protocol requires the veteran to have a cohabiting significant other who is willing to assist in monitoring safety and effect on social functioning. At baseline and after approximately one year of stimulation, trauma script-provoked 18FDG PET metabolic changes in limbic circuitry will also be evaluated. While the rationale for studying DBS

  1. Antidepressant effects of exercise are produced via suppression of hypocretin/orexin and melanin-concentrating hormone in the basolateral amygdala.

    Science.gov (United States)

    Kim, Tae-Kyung; Kim, Ji-Eun; Park, Jin-Young; Lee, Jung-Eun; Choi, Juli; Kim, Hannah; Lee, Eun-Hwa; Kim, Seung-Woo; Lee, Ja-Kyeong; Kang, Hyun-Sik; Han, Pyung-Lim

    2015-07-01

    Physical exercise is considered beneficial in the treatment of depression, but the underlying mechanism is not clearly understood. In the present study, we investigated the mechanism regulating antidepressant effects of exercise by focusing on the role of the amygdala using a well-defined animal model of depression. C57BL/6 mice treated with repeated restraint showed depression-like behaviors, which was counteracted by post-stress treatment with physical exercise. The two neuropeptides hypocretin/orexin (Hcrt/Orx) and melanin-concentrating hormone (MCH) were transcriptionally upregulated in the BLA after repeated stress, and their enhanced expression was downregulated by treatment with exercise, mirroring stress-induced depression-like behaviors and their reversal by exercise. Stereotaxic injection of either Hcrt/Orx peptide or MCH peptide within the BLA commonly increased phospho-CaMKIIα level and produced depression-like behaviors, mimicking the neural states in the BLA of mice subjected to repeated stress. In contrast, siRNA-mediated suppression of Hcrt/Orx or MCH in the BLA blocked stress-induced depression-like behaviors. Furthermore, siRNA-mediated inhibition of CaMKIIα in the BLA also counteracted stress-induced depression-like behaviors. Local injection of Hcrt/Orx peptide or MCH peptide within the BLA in exercise-treated animals blocked antidepressant-like effects of exercise. Together these results suggest that exercise produces antidepressant effects via suppression of Hcrt/Orx and MCH neural systems in the BLA. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Functional disconnection of the orbitofrontal cortex and basolateral amygdala impairs acquisition of a rat gambling task and disrupts animals' ability to alter decision-making behavior after reinforcer devaluation.

    Science.gov (United States)

    Zeeb, Fiona D; Winstanley, Catharine A

    2013-04-10

    An inability to adjust choice preferences in response to changes in reward value may underlie key symptoms of many psychiatric disorders, including chemical and behavioral addictions. We developed the rat gambling task (rGT) to investigate the neurobiology underlying complex decision-making processes. As in the Iowa Gambling task, the optimal strategy is to avoid choosing larger, riskier rewards and to instead favor options associated with smaller rewards but less loss and, ultimately, greater long-term gain. Given the demonstrated importance of the orbitofrontal cortex (OFC) and basolateral amygdala (BLA) in acquisition of the rGT and Iowa Gambling task, we used a contralateral disconnection lesion procedure to assess whether functional connectivity between these regions is necessary for optimal decision-making. Disrupting the OFC-BLA pathway retarded acquisition of the rGT. Devaluing the reinforcer by inducing sensory-specific satiety altered decision-making in control groups. In contrast, disconnected rats did not update their choice preference following reward devaluation, either when the devalued reward was still delivered or when animals needed to rely on stored representations of reward value (i.e., during extinction). However, all rats exhibited decreased premature responding and slower response latencies after satiety manipulations. Hence, disconnecting the OFC and BLA did not affect general behavioral changes caused by reduced motivation, but instead prevented alterations in the value of a specific reward from contributing appropriately to cost-benefit decision-making. These results highlight the role of the OFC-BLA pathway in the decision-making process and suggest that communication between these areas is vital for the appropriate assessment of reward value to influence choice.

  3. The dosage of the neuroD2 transcription factor regulates amygdala development and emotional learning

    OpenAIRE

    Lin, Chin-Hsing; Hansen, Stacey; Wang, Zhenshan; Storm, Daniel R.; Tapscott, Stephen J.; Olson, James M.

    2005-01-01

    The amygdala is centrally involved in formation of emotional memory and response to fear or risk. We have demonstrated that the lateral and basolateral amygdala nuclei fail to form in neuroD2 null mice and neuroD2 heterozygotes have fewer neurons in this region. NeuroD2 heterozygous mice show profound deficits in emotional learning as assessed by fear conditioning. Unconditioned fear was also diminished in neuroD2 heterozygotes compared to wild-type controls. Several key molecular regulators ...

  4. Synaptic dysfunction in amygdala in intellectual disorder models.

    Science.gov (United States)

    Aincy, Marianne; Meziane, Hamid; Herault, Yann; Humeau, Yann

    2018-06-08

    The amygdala is a part of the limbic circuit that has been extensively studied in terms of synaptic connectivity, plasticity and cellular organization since decades (Ehrlich et al., 2009; Ledoux, 2000; Maren, 2001). Amygdala sub-nuclei, including lateral, basolateral and central amygdala appear now as "hubs" providing in parallel and in series neuronal processing enabling the animal to elicit freezing or escaping behavior in response to external threats. In rodents, these behaviors are easily observed and quantified following associative fear conditioning. Thus, studies on amygdala circuit in association with threat/fear behavior became very popular in laboratories and are often used among other behavioral tests to evaluate learning abilities of mouse models for various neuropsychiatric conditions including genetically encoded intellectual disabilities (ID). Yet, more than 100 human X-linked genes - and several hundreds of autosomal genes - have been associated with ID in humans. These mutations introduced in mice can generate social deficits, anxiety dysregulations and fear learning impairments (McNaughton et al., 2008; Houbaert et al., 2013; Jayachandran et al., 2014; Zhang et al., 2015). Noteworthy, a significant proportion of the coded ID gene products are synaptic proteins. It is postulated that the loss of function of these proteins could destabilize neuronal circuits by global changes of the balance between inhibitory and excitatory drives onto neurons. However, whereas amygdala related behavioral deficits are commonly observed in ID models, the role of most of these ID-genes in synaptic function and plasticity in the amygdala are only sparsely studied. We will here discuss some of the concepts that emerged from amygdala-targeted studies examining the role of syndromic and non-syndromic ID genes in fear-related behaviors and/or synaptic function. Along describing these cases, we will discuss how synaptic deficits observed in amygdala circuits could impact

  5. Social Isolation During Postweaning Development Causes Hypoactivity of Neurons in the Medial Nucleus of the Male Rat Amygdala

    Science.gov (United States)

    Adams, Thomas; Rosenkranz, J Amiel

    2016-01-01

    Children exposed to neglect or social deprivation are at heightened risk for psychiatric disorders and abnormal social patterns as adults. There is also evidence that prepubertal neglect in children causes abnormal metabolic activity in several brain regions, including the amygdala area. The medial nucleus of the amygdala (MeA) is a key region for performance of social behaviors and still undergoes maturation during the periadolescent period. As such, the normal development of this region may be disrupted by social deprivation. In rodents, postweaning social isolation causes a range of deficits in sexual and agonistic behaviors that normally rely on the posterior MeA (MeAp). However, little is known about the effects of social isolation on the function of MeA neurons. In this study, we tested whether postweaning social isolation caused abnormal activity of MeA neurons. We found that postweaning social isolation caused a decrease of in vivo firing activity of MeAp neurons, and reduced drive from excitatory afferents. In vitro electrophysiological studies found that postweaning social isolation caused a presynaptic impairment of excitatory input to the dorsal MeAp, but a progressive postsynaptic reduction of membrane excitability in the ventral MeAp. These results demonstrate discrete, subnucleus-specific effects of social deprivation on the physiology of MeAp neurons. This pathophysiology may contribute to the disruption of social behavior after developmental social deprivation, and may be a novel target to facilitate the treatment of social disorders. PMID:26677945

  6. Social Isolation During Postweaning Development Causes Hypoactivity of Neurons in the Medial Nucleus of the Male Rat Amygdala.

    Science.gov (United States)

    Adams, Thomas; Rosenkranz, J Amiel

    2016-06-01

    Children exposed to neglect or social deprivation are at heightened risk for psychiatric disorders and abnormal social patterns as adults. There is also evidence that prepubertal neglect in children causes abnormal metabolic activity in several brain regions, including the amygdala area. The medial nucleus of the amygdala (MeA) is a key region for performance of social behaviors and still undergoes maturation during the periadolescent period. As such, the normal development of this region may be disrupted by social deprivation. In rodents, postweaning social isolation causes a range of deficits in sexual and agonistic behaviors that normally rely on the posterior MeA (MeAp). However, little is known about the effects of social isolation on the function of MeA neurons. In this study, we tested whether postweaning social isolation caused abnormal activity of MeA neurons. We found that postweaning social isolation caused a decrease of in vivo firing activity of MeAp neurons, and reduced drive from excitatory afferents. In vitro electrophysiological studies found that postweaning social isolation caused a presynaptic impairment of excitatory input to the dorsal MeAp, but a progressive postsynaptic reduction of membrane excitability in the ventral MeAp. These results demonstrate discrete, subnucleus-specific effects of social deprivation on the physiology of MeAp neurons. This pathophysiology may contribute to the disruption of social behavior after developmental social deprivation, and may be a novel target to facilitate the treatment of social disorders.

  7. The effects of stimulus novelty and familiarity on neuronal activity in the amygdala of monkeys performing recognition memory tasks.

    Science.gov (United States)

    Wilson, F A; Rolls, E T

    1993-01-01

    The function of the amygdala in behavioural responses to novel stimuli and its possible function in recognition memory were investigated by recording the responses of 659 amygdaloid neurons in monkeys performing recognition memory and visual discrimination tasks. The aim was to determine the contribution of the amygdala in the encoding of familiarity and therefore its role in supporting memory-related neuronal mechanisms in the basal forebrain. The responses of three groups of neurons reflected different forms of memory. One group (n = 10) responded maximally to novel stimuli and significantly less so to the same stimuli when they were familiar. The calculated memory spans of these neurons were in the range of 2-10 intervening trials, and this short-term retention of information may reflect the operation of a neural mechanism encoding memory for the recency of stimulus presentation. Two other groups responded to the sight of particular categories of familiar stimuli: to foods (n = 6) or to faces (n = 10). The responses of some of these stimulus-selective neurons declined with repeated presentations of foods (3/4 tests) and faces (2/6 tests). The activity of these latter two groups of neurons may be involved in behavioural responses to familiar visual stimuli, particularly when such stimuli have affective or motivational significance. We conclude that the neurophysiological data provide evidence of amygdaloid mechanisms for the recognition of recently seen visual stimuli. However, these amygdaloid mechanisms do not appear to be sufficient to support the performance of long-term recognition memory tasks without additional and complementary functions carried out by other ventromedial temporal, prefrontal and diencephalic structures which also project to the basal forebrain.

  8. Integrated cannabinoid CB1 receptor transmission within the amygdala-prefrontal cortical pathway modulates neuronal plasticity and emotional memory encoding.

    Science.gov (United States)

    Tan, Huibing; Lauzon, Nicole M; Bishop, Stephanie F; Bechard, Melanie A; Laviolette, Steven R

    2010-06-01

    The cannabinoid CB1 receptor system is functionally involved in the processing and encoding of emotionally salient sensory information, learning and memory. The CB1 receptor is found in high concentrations in brain structures that are critical for emotional processing, including the basolateral amygdala (BLA) and the medial prefrontal cortex (mPFC). In addition, synaptic plasticity in the form of long-term potentiation (LTP) within the BLA > mPFC pathway is an established correlate of exposure to emotionally salient events. We performed a series of in vivo LTP studies by applying tetanic stimulation to the BLA combined with recordings of local field potentials within prelimbic cortical (PLC) region of the rat mPFC. Systemic pretreatment with AM-251 dose dependently blocked LTP along the BLA-PLC pathway and also the behavioral acquisition of conditioned fear memories. We next performed a series of microinfusion experiments wherein CB1 receptor transmission within the BLA > PLC circuit was pharmacologically blocked. Asymmetrical, interhemispheric blockade of CB1 receptor transmission along the BLA > PLC pathway prevented the acquisition of emotionally salient associative memory. Our results indicate that coordinated CB1 receptor transmission within the BLA > PLC pathway is critically involved in the encoding of emotional fear memories and modulates neural plasticity related to the encoding of emotionally salient associative learning.

  9. Tracking the fear memory engram: discrete populations of neurons within amygdala, hypothalamus, and lateral septum are specifically activated by auditory fear conditioning

    Science.gov (United States)

    Wilson, Yvette M.; Gunnersen, Jenny M.; Murphy, Mark

    2015-01-01

    Memory formation is thought to occur via enhanced synaptic connectivity between populations of neurons in the brain. However, it has been difficult to localize and identify the neurons that are directly involved in the formation of any specific memory. We have previously used fos-tau-lacZ (FTL) transgenic mice to identify discrete populations of neurons in amygdala and hypothalamus, which were specifically activated by fear conditioning to a context. Here we have examined neuronal activation due to fear conditioning to a more specific auditory cue. Discrete populations of learning-specific neurons were identified in only a small number of locations in the brain, including those previously found to be activated in amygdala and hypothalamus by context fear conditioning. These populations, each containing only a relatively small number of neurons, may be directly involved in fear learning and memory. PMID:26179231

  10. Fear conditioning leads to alteration in specific genes expression in cortical and thalamic neurons that project to the lateral amygdala.

    Science.gov (United States)

    Katz, Ira K; Lamprecht, Raphael

    2015-02-01

    RNA transcription is needed for memory formation. However, the ability to identify genes whose expression is altered by learning is greatly impaired because of methodological difficulties in profiling gene expression in specific neurons involved in memory formation. Here, we report a novel approach to monitor the expression of genes after learning in neurons in specific brain pathways needed for memory formation. In this study, we aimed to monitor gene expression after fear learning. We retrogradely labeled discrete thalamic neurons that project to the lateral amygdala (LA) of rats. The labeled neurons were dissected, using laser microdissection microscopy, after fear conditioning learning or unpaired training. The RNAs from the dissected neurons were subjected to microarray analysis. The levels of selected RNAs detected by the microarray analysis to be altered by fear conditioning were also assessed by nanostring analysis. We observed that the expression of genes involved in the regulation of translation, maturation and degradation of proteins was increased 6 h after fear conditioning compared to unpaired or naïve trained rats. These genes were not expressed 24 h after training or in cortical neurons that project to the LA. The expression of genes involved in transcription regulation and neuronal development was altered after fear conditioning learning in the cortical-LA pathway. The present study provides key information on the identity of genes expressed in discrete thalamic and cortical neurons that project to the LA after fear conditioning. Such an approach could also serve to identify gene products as targets for the development of a new generation of therapeutic agents that could be aimed to functionally identified brain circuits to treat memory-related disorders. © 2014 International Society for Neurochemistry.

  11. Sociability Deficits and Altered Amygdala Circuits in Mice Lacking Pcdh10, an Autism Associated Gene.

    Science.gov (United States)

    Schoch, Hannah; Kreibich, Arati S; Ferri, Sarah L; White, Rachel S; Bohorquez, Dominique; Banerjee, Anamika; Port, Russell G; Dow, Holly C; Cordero, Lucero; Pallathra, Ashley A; Kim, Hyong; Li, Hongzhe; Bilker, Warren B; Hirano, Shinji; Schultz, Robert T; Borgmann-Winter, Karin; Hahn, Chang-Gyu; Feldmeyer, Dirk; Carlson, Gregory C; Abel, Ted; Brodkin, Edward S

    2017-02-01

    Behavioral symptoms in individuals with autism spectrum disorder (ASD) have been attributed to abnormal neuronal connectivity, but the molecular bases of these behavioral and brain phenotypes are largely unknown. Human genetic studies have implicated PCDH10, a member of the δ2 subfamily of nonclustered protocadherin genes, in ASD. PCDH10 expression is enriched in the basolateral amygdala, a brain region implicated in the social deficits of ASD. Previous reports indicate that Pcdh10 plays a role in axon outgrowth and glutamatergic synapse elimination, but its roles in social behaviors and amygdala neuronal connectivity are unknown. We hypothesized that haploinsufficiency of Pcdh10 would reduce social approach behavior and alter the structure and function of amygdala circuits. Mice lacking one copy of Pcdh10 (Pcdh10 +/- ) and wild-type littermates were assessed for social approach and other behaviors. The lateral/basolateral amygdala was assessed for dendritic spine number and morphology, and amygdala circuit function was studied using voltage-sensitive dye imaging. Expression of Pcdh10 and N-methyl-D-aspartate receptor (NMDAR) subunits was assessed in postsynaptic density fractions of the amygdala. Male Pcdh10 +/- mice have reduced social approach behavior, as well as impaired gamma synchronization, abnormal spine morphology, and reduced levels of NMDAR subunits in the amygdala. Social approach deficits in Pcdh10 +/- male mice were rescued with acute treatment with the NMDAR partial agonist d-cycloserine. Our studies reveal that male Pcdh10 +/- mice have synaptic and behavioral deficits, and establish Pcdh10 +/- mice as a novel genetic model for investigating neural circuitry and behavioral changes relevant to ASD. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  12. Methamphetamine facilitates female sexual behavior and enhances neuronal activation in the medial amygdala and ventromedial nucleus of the hypothalamus.

    Science.gov (United States)

    Holder, Mary K; Hadjimarkou, Maria M; Zup, Susan L; Blutstein, Tamara; Benham, Rebecca S; McCarthy, Margaret M; Mong, Jessica A

    2010-02-01

    Methamphetamine (MA) abuse has reached epidemic proportions in the United States. Users of MA report dramatic increases in sexual drive that have been associated with increased engagement in risky sexual behavior leading to higher rates of sexually transmitted diseases and unplanned pregnancies. The ability of MA to enhance sexual drive in females is enigmatic since related psychostimulants like amphetamine and cocaine appear not to affect sexual drive in women, and in rodents models, amphetamine has been reported to be inhibitory to female sexual behavior. Examination of MA's effects on female sexual behavior in an animal model is lacking. Here, using a rodent model, we have demonstrated that MA enhanced female sexual behavior. MA (5mg/kg) or saline vehicle was administered once daily for 3 days to adult ovariectomized rats primed with ovarian steroids. MA treatment significantly increased the number of proceptive events and the lordosis response compared to hormonally primed, saline controls. The effect of MA on the neural circuitry underlying the motivation for sexual behavior was examined using Fos immunoreactivity. In the medial amygdala and the ventromedial nucleus of the hypothalamus, nuclei implicated in motivated behaviors, ovarian hormones and MA independently enhance the neuronal activation, but more striking was the significantly greater activation induced by their combined administration. Increases in dopamine neurotransmission may underlie the MA/hormone mediated increase in neuronal activation. In support of this possibility, ovarian hormones significantly increased tyrosine hydroxylase (the rate limiting enzyme in dopamine synthesis) immunoreactivity in the medial amygdala. Thus our present data suggest that the interactions of MA and ovarian hormones leads to changes in the neural substrate of key nuclei involved in mediating female sexual behaviors, and these changes may underlie MA's ability to enhance these behaviors. 2009 Elsevier Ltd. All

  13. 15. Amygdala pain mechanisms

    Science.gov (United States)

    Neugebauer, Volker

    2015-01-01

    A limbic brain area the amygdala plays a key role in emotional responses and affective states and disorders such as learned fear, anxiety and depression. The amygdala has also emerged as an important brain center for the emotional-affective dimension of pain and for pain modulation. Hyperactivity in the laterocapsular division of the central nucleus of the amygdala (CeLC, also termed the “nociceptive amygdala”) accounts for pain-related emotional responses and anxiety-like behavior. Abnormally enhanced output from the CeLC is the consequence of an imbalance between excitatory and inhibitory mechanisms. Impaired inhibitory control mediated by a cluster of GABAergic interneurons in the intercalated cell masses (ITC) allows the development of glutamate- and neuropeptide-driven synaptic plasticity of excitatory inputs from the brainstem (parabrachial area) and from the lateral-basolateral amygdala network (LA-BLA, site of integration of polymodal sensory information). BLA hyperactivity also generates abnormally enhanced feedforward inhibition of principal cells in the medial prefrontal cortex (mPFC), a limbic cortical area that is strongly interconnected with the amygdala. Pain-related mPFC deactivation results in cognitive deficits and failure to engage cortically driven ITC-mediated inhibitory control of amygdala processing. Impaired cortical control allows the uncontrolled persistence of amygdala pain mechanisms. PMID:25846623

  14. Functional effects of polymorphisms on glucocorticoid receptor modulation of human anxiogenic substance-P gene promoter activity in primary amygdala neurones

    OpenAIRE

    Hay, Colin W.; Shanley, Lynne; Davidson, Scott; Cowie, Philip; Lear, Marissa; McGuffin, Peter; Riedel, Gernot; McEwan, Iain J.; MacKenzie, Alasdair

    2014-01-01

    Summary Expression or introduction of the neuropeptide substance-P (SP; encoded by the TAC1 gene in humans and Tac1 in rodents) in the amygdala induces anxiety related behaviour in rodents. In addition, pharmacological antagonism of the main receptor of SP in humans; NK1, is anxiolytic. In the current study, we show that the Tac1 locus is up-regulated in primary rat amygdala neurones in response to activation of the glucocorticoid receptor (GR); a classic component of the stress response. Usi...

  15. Amygdala subnuclei connectivity in response to violence reveals unique influences of individual differences in psychopathic traits in a nonforensic sample.

    Science.gov (United States)

    Yoder, Keith J; Porges, Eric C; Decety, Jean

    2015-04-01

    Atypical amygdala function and connectivity have reliably been associated with psychopathy. However, the amygdala is not a unitary structure. To examine how psychopathic traits in a nonforensic sample are linked to amygdala response to violence, this study used probabilistic tractography to classify amygdala subnuclei based on anatomical projections to and from amygdala subnuclei in a group of 43 male participants. The segmentation identified the basolateral complex (BLA; lateral, basal, and accessory basal subnuclei) and the central subnucleus (CE), which were used as seeds in a functional connectivity analysis to identify differences in neuronal coupling specific to observed violence. While a full amygdala seed showed significant connectivity only to right middle occipital gyrus, subnuclei seeds revealed unique connectivity patterns. BLA showed enhanced coupling with anterior cingulate and prefrontal regions, while CE showed increased connectivity with the brainstem, but reduced connectivity with superior parietal and precentral gyrus. Further, psychopathic personality factors were related to specific patterns of connectivity. Fearless Dominance scores on the psychopathic personality inventory predicted increased coupling between the BLA seed and sensory integration cortices, and increased connectivity between the CE seed and posterior insula. Conversely, Self-Centered Impulsivity scores were negatively correlated with coupling between BLA and ventrolateral prefrontal cortex, and Coldheartedness scores predicted increased functional connectivity between BLA and dorsal anterior cingulate cortex. Taken together, these findings demonstrate how subnuclei segmentations reveal important functional connectivity differences that are otherwise inaccessible. Such an approach yields a better understanding of amygdala dysfunction in psychopathy. © 2014 Wiley Periodicals, Inc.

  16. Activity of human hippocampal formation and amygdala neurons during memory testing.

    Science.gov (United States)

    Halgren, E; Babb, T L; Crandall, P H

    1978-11-01

    Single and multiple unit recordings were made from fine wires stereotaxically implanted in the hippocampus (HC), hippocampal gyrus (HCG), and amygdala (Am) of psychomotor epileptics. During a series of memory and control tests presented on slides, 21 of 155 HCG units, 15 of 59 HC units, and 2 of 54 Am units showed what appeared to be simple phasic or tonic visual responses. Twenty-seven other units, found only in the HCG, changed firing only during slides requiring a choice ('choice units'). A given choice unit responded during choices indicated verbally or manually, and during tasks requiring recall of Recent Memory, various visual discriminations, and expressions of preference. Choice units were not affected by sensory stimulation or motor activity in contexts not requiring choice. Phasically inhibited choice units had higher firing rates and lower signal-to-noise ratios than tonically excited units. Whether an electrode recorded a choice unit was unrelated to if it recorded a response to hyperventilation, or was in an area of epileptic pathology. Recordings were also made during an interview lasting several hours and eliciting a wide range of behaviors. Five of the 131 HCG units fired in repeated extended bursts, at least 50 times background during recall of word pairs or of the patient's hospital room. The unit response did not occur during numerous control tasks possessing similar overt sensory, motor, and social concomitants, but not requiring Recent Memory.

  17. Exposure to an open-field arena increases c-Fos expression in a distributed anxiety-related system projecting to the basolateral amygdaloid complex.

    Science.gov (United States)

    Hale, M W; Hay-Schmidt, A; Mikkelsen, J D; Poulsen, B; Shekhar, A; Lowry, C A

    2008-08-26

    Anxiety states and anxiety-related behaviors appear to be regulated by a distributed and highly interconnected system of brain structures including the basolateral amygdala. Our previous studies demonstrate that exposure of rats to an open-field in high- and low-light conditions results in a marked increase in c-Fos expression in the anterior part of the basolateral amygdaloid nucleus (BLA) compared with controls. The neural mechanisms underlying the anatomically specific effects of open-field exposure on c-Fos expression in the BLA are not clear, however, it is likely that this reflects activation of specific afferent input to this region of the amygdala. In order to identify candidate brain regions mediating anxiety-induced activation of the basolateral amygdaloid complex in rats, we used cholera toxin B subunit (CTb) as a retrograde tracer to identify neurons with direct afferent projections to this region in combination with c-Fos immunostaining to identify cells responding to exposure to an open-field arena in low-light (8-13 lux) conditions (an anxiogenic stimulus in rats). Adult male Wistar rats received a unilateral microinjection of 4% CTb in phosphate-buffered saline into the basolateral amygdaloid complex. Rats were housed individually for 11 days after CTb injections and handled (HA) for 2 min each day. On the test day rats were either, 1) exposed to an open-field in low-light conditions (8-13 lux) for 15 min (OF); 2) briefly HA or 3) left undisturbed (control). We report that dual immunohistochemical staining for c-Fos and CTb revealed an increase in the percentage of c-Fos-immunopositive basolateral amygdaloid complex-projecting neurons in open-field-exposed rats compared with HA and control rats in the ipsilateral CA1 region of the ventral hippocampus, subiculum and lateral entorhinal cortex. These data are consistent with the hypothesis that exposure to the open-field arena activates an anxiety-related neuronal system with convergent input to the

  18. Lateral Orbitofrontal Cortical Modulation on the Medial Prefrontal Cortex-Amygdala Pathway: Differential Regulation of Intra-Amygdala GABAA and GABAB Receptors.

    Science.gov (United States)

    Chang, Chun-Hui

    2017-07-01

    The basolateral complex of the amygdala receives inputs from neocortical areas, including the medial prefrontal cortex and lateral orbitofrontal cortex. Earlier studies have shown that lateral orbitofrontal cortex activation exerts an inhibitory gating on medial prefrontal cortex-amygdala information flow. Here we examined the individual role of GABAA and GABAB receptors in this process. In vivo extracellular single-unit recordings were done in anesthetized rats. We searched amygdala neurons that fire in response to medial prefrontal cortex activation, tested lateral orbitofrontal cortex gating at different delays (lateral orbitofrontal cortex-medial prefrontal cortex delays: 25, 50, 100, 250, 500, and 1000 milliseconds), and examined differential contribution of GABAA and GABAB receptors with iontophoresis. Relative to baseline, lateral orbitofrontal cortex stimulation exerted an inhibitory modulatory gating on the medial prefrontal cortex-amygdala pathway and was effective up to a long delay of 500 ms (long-delay latencies at 100, 250, and 500 milliseconds). Moreover, blockade of intra-amygdala GABAA receptors with bicuculline abolished the lateral orbitofrontal cortex inhibitory gating at both short- (25 milliseconds) and long-delay (100 milliseconds) intervals, while blockade of GABAB receptors with saclofen reversed the inhibitory gating at long delay (100 milliseconds) only. Among the majority of the neurons examined (8 of 9), inactivation of either GABAA or GABAB receptors during baseline did not change evoked probability per se, suggesting that local feed-forward inhibitory mechanism is pathway specific. Our results suggest that the effect of lateral orbitofrontal cortex inhibitory modulatory gating was effective up to 500 milliseconds and that intra-amygdala GABAA and GABAB receptors differentially modulate the short- and long-delay lateral orbitofrontal cortex inhibitory gating on the medial prefrontal cortex-amygdala pathway. © The Author 2017

  19. Juvenile obesity enhances emotional memory and amygdala plasticity through glucocorticoids.

    Science.gov (United States)

    Boitard, Chloé; Maroun, Mouna; Tantot, Frédéric; Cavaroc, Amandine; Sauvant, Julie; Marchand, Alain; Layé, Sophie; Capuron, Lucile; Darnaudery, Muriel; Castanon, Nathalie; Coutureau, Etienne; Vouimba, Rose-Marie; Ferreira, Guillaume

    2015-03-04

    In addition to metabolic and cardiovascular disorders, obesity is associated with adverse cognitive and emotional outcomes. Its growing prevalence during adolescence is particularly alarming since recent evidence indicates that obesity can affect hippocampal function during this developmental period. Adolescence is a decisive period for maturation of the amygdala and the hypothalamic-pituitary-adrenal (HPA) stress axis, both required for lifelong cognitive and emotional processing. However, little data are available on the impact of obesity during adolescence on amygdala function. Herein, we therefore evaluate in rats whether juvenile high-fat diet (HFD)-induced obesity alters amygdala-dependent emotional memory and whether it depends on HPA axis deregulation. Exposure to HFD from weaning to adulthood, i.e., covering adolescence, enhances long-term emotional memories as assessed by odor-malaise and tone-shock associations. Juvenile HFD also enhances emotion-induced neuronal activation of the basolateral complex of the amygdala (BLA), which correlates with protracted plasma corticosterone release. HFD exposure restricted to adulthood does not modify all these parameters, indicating adolescence is a vulnerable period to the effects of HFD-induced obesity. Finally, exaggerated emotional memory and BLA synaptic plasticity after juvenile HFD are alleviated by a glucocorticoid receptor antagonist. Altogether, our results demonstrate that juvenile HFD alters HPA axis reactivity leading to an enhancement of amygdala-dependent synaptic and memory processes. Adolescence represents a period of increased susceptibility to the effects of diet-induced obesity on amygdala function. Copyright © 2015 the authors 0270-6474/15/354092-12$15.00/0.

  20. Functional effects of polymorphisms on glucocorticoid receptor modulation of human anxiogenic substance-P gene promoter activity in primary amygdala neurones.

    Science.gov (United States)

    Hay, Colin W; Shanley, Lynne; Davidson, Scott; Cowie, Philip; Lear, Marissa; McGuffin, Peter; Riedel, Gernot; McEwan, Iain J; MacKenzie, Alasdair

    2014-09-01

    Expression or introduction of the neuropeptide substance-P (SP; encoded by the TAC1 gene in humans and Tac1 in rodents) in the amygdala induces anxiety related behaviour in rodents. In addition, pharmacological antagonism of the main receptor of SP in humans; NK1, is anxiolytic. In the current study, we show that the Tac1 locus is up-regulated in primary rat amygdala neurones in response to activation of the glucocorticoid receptor (GR); a classic component of the stress response. Using a combination of bioinformatics, electrophoretic mobility shift assays (EMSA) and reporter plasmid magnetofection into rat primary amygdala neurones we identified a highly conserved GR response sequence (2GR) in the human TAC1 promoter that binds GR in response to dexamethasone (Dex) or forskolin. We also identified a second GR binding site in the human promoter that was polymorphic and whose T-allele is only found in Japanese and Chinese populations. We present evidence that the T-allele of SNPGR increases the activity of the TAC1 promoter through de-sequestration or de-repression of 2GR. The identification of Dex/forskolin response elements in the TAC1 promoter in amygdala neurones suggests a possible link in the chain of molecular events connecting GR activation and anxiety. In addition, the discovery of a SNP which can alter this response may have implications for our understanding of the role of regulatory variation in susceptibility to stress in specific populations. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Optogenetic Examination of Prefrontal-Amygdala Synaptic Development.

    Science.gov (United States)

    Arruda-Carvalho, Maithe; Wu, Wan-Chen; Cummings, Kirstie A; Clem, Roger L

    2017-03-15

    A brain network comprising the medial prefrontal cortex (mPFC) and amygdala plays important roles in developmentally regulated cognitive and emotional processes. However, very little is known about the maturation of mPFC-amygdala circuitry. We conducted anatomical tracing of mPFC projections and optogenetic interrogation of their synaptic connections with neurons in the basolateral amygdala (BLA) at neonatal to adult developmental stages in mice. Results indicate that mPFC-BLA projections exhibit delayed emergence relative to other mPFC pathways and establish synaptic transmission with BLA excitatory and inhibitory neurons in late infancy, events that coincide with a massive increase in overall synaptic drive. During subsequent adolescence, mPFC-BLA circuits are further modified by excitatory synaptic strengthening as well as a transient surge in feedforward inhibition. The latter was correlated with increased spontaneous inhibitory currents in excitatory neurons, suggesting that mPFC-BLA circuit maturation culminates in a period of exuberant GABAergic transmission. These findings establish a time course for the onset and refinement of mPFC-BLA transmission and point to potential sensitive periods in the development of this critical network. SIGNIFICANCE STATEMENT Human mPFC-amygdala functional connectivity is developmentally regulated and figures prominently in numerous psychiatric disorders with a high incidence of adolescent onset. However, it remains unclear when synaptic connections between these structures emerge or how their properties change with age. Our work establishes developmental windows and cellular substrates for synapse maturation in this pathway involving both excitatory and inhibitory circuits. The engagement of these substrates by early life experience may support the ontogeny of fundamental behaviors but could also lead to inappropriate circuit refinement and psychopathology in adverse situations. Copyright © 2017 the authors 0270-6474/17/372976-10$15.00/0.

  2. Zinc release in the lateral nucleus of the amygdala by stimulation of the entorhinal cortex.

    Science.gov (United States)

    Takeda, Atsushi; Imano, Sachie; Itoh, Hiromasa; Oku, Naoto

    2006-11-06

    Zinc release in the lateral nucleus of the amygdala was examined using rat brain slices. The lateral and basolateral nuclei in the amygdala were evidently stained by Timm's sulfide-silver staining method. When the amygdala including both the nuclei was stimulated with 100 mM KCl by means of in vivo microdialysis, extracellular zinc concentration was increased significantly. Zinc release in the lateral nucleus of the amygdala innervated by the entorhinal cortex was next examined in brain slices double-stained with zinc and calcium indicators. Extracellular zinc signal (ZnAF-2) in the lateral nucleus was increased with intracellular calcium signal (calcium orange) during delivery of tetanic stimuli to the entorhinal cortex. Both the increases were completely inhibited by addition of 1 micro M tetrodotoxin, a sodium channel blocker. Furthermore, calcium signal in the lateral nucleus during delivery of tetanic stimuli to the entorhinal cortex was increased in the presence of 10 micro M CNQX, an AMPA/KA receptor antagonist, and this increase was facilitated by addition of 1 mM CaEDTA, a membrane-impermeable zinc chelator. The present study suggested that zinc is released in the lateral nucleus of the amygdala by depolarization of the entorhinal neurons. In the lateral nucleus, zinc released may suppress the increase in presynaptic calcium signal.

  3. Amygdala and bed nucleus of the stria terminalis circuitry: Implications for addiction-related behaviors.

    Science.gov (United States)

    Stamatakis, Alice M; Sparta, Dennis R; Jennings, Joshua H; McElligott, Zoe A; Decot, Heather; Stuber, Garret D

    2014-01-01

    Complex motivated behavioral processes, such as those that can go awry following substance abuse and other neuropsychiatric disorders, are mediated by a distributive network of neurons that reside throughout the brain. Neural circuits within the amygdala regions, such as the basolateral amygdala (BLA), and downstream targets such as the bed nucleus of the stria terminalis (BNST), are critical neuroanatomical structures for orchestrating emotional behavioral responses that may influence motivated actions such as the reinstatement of drug seeking behavior. Here, we review the functional neurocircuitry of the BLA and the BNST, and discuss how these circuits may guide maladaptive behavioral processes such as those seen in addiction. Thus, further study of the functional connectivity within these brain regions and others may provide insight for the development of new treatment strategies for substance use disorders. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Reactivations of emotional memory in the hippocampus-amygdala system during sleep.

    Science.gov (United States)

    Girardeau, Gabrielle; Inema, Ingrid; Buzsáki, György

    2017-11-01

    The consolidation of context-dependent emotional memory requires communication between the hippocampus and the basolateral amygdala (BLA), but the mechanisms of this process are unknown. We recorded neuronal ensembles in the hippocampus and BLA while rats learned the location of an aversive air puff on a linear track, as well as during sleep before and after training. We found coordinated reactivations between the hippocampus and the BLA during non-REM sleep following training. These reactivations peaked during hippocampal sharp wave-ripples (SPW-Rs) and involved a subgroup of BLA cells positively modulated during hippocampal SPW-Rs. Notably, reactivation was stronger for the hippocampus-BLA correlation patterns representing the run direction that involved the air puff than for the 'safe' direction. These findings suggest that consolidation of contextual emotional memory occurs during ripple-reactivation of hippocampus-amygdala circuits.

  5. Sex-specific neuroanatomical correlates of fear expression in prefrontal-amygdala circuits.

    Science.gov (United States)

    Gruene, Tina M; Roberts, Elian; Thomas, Virginia; Ronzio, Ashley; Shansky, Rebecca M

    2015-08-01

    The neural projections from the infralimbic region of the prefrontal cortex to the amygdala are important for the maintenance of conditioned fear extinction. Neurons in this pathway exhibit a unique pattern of structural plasticity that is sex-dependent, but the relationship between the morphologic characteristics of these neurons and successful extinction in male and female subjects is unknown. Using classic cued fear conditioning and an extinction paradigm in large cohorts of male and female rats, we identified subpopulations of both sexes that exhibited high (HF) or low (LF) levels of freezing on an extinction retrieval test, representing failed or successful extinction maintenance, respectively. We combined retrograde tracing with fluorescent intracellular microinjections to perform three-dimensional reconstructions of infralimbic neurons that project to the basolateral amygdala in these groups. The HF and LF male rats exhibited neuroanatomical distinctions that were not observed in HF or LF female rats. A retrospective analysis of behavior during fear conditioning and extinction revealed that despite no overall sex differences in freezing behavior, HF and LF phenotypes emerged in male rats during extinction and in female rats during fear conditioning, which does not involve infralimbic-basolateral amygdala neurons. Our results suggest that the neural processes underlying successful or failed extinction maintenance may be sex-specific. These findings are relevant not only to future basic research on sex differences in fear conditioning and extinction but also to exposure-based clinical therapies, which are similar in premise to fear extinction and which are primarily used to treat disorders that are more common in women than in men. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  6. Stuttering interneurons generate fast and robust inhibition onto projection neurons with low capacity of short term modulation in mouse lateral amygdala.

    Directory of Open Access Journals (Sweden)

    Chen Song

    Full Text Available The stuttering interneurons (STi represent one minor subset of interneuron population and exhibit characteristic stuttering firing upon depolarization current injection. While it has been long held that the GABAergic inhibitory transmission largely varies with the subtype identity of presynaptic interneurons, whether such a rule also applies to STi is largely unknown. Here, by paired recording of interneuron and their neighboring projection neuron in lateral amygdala, we found that relative to the fast spiking and late spiking interneurons, the STi-evoked unitary postsynaptic currents onto the projection neurons had markedly larger amplitude, shorter onset latency and faster rising and decay kinetics. The quantal content and the number of vesicles in the readily releasable pool were also larger in synapses made by STi versus other interneurons. Moreover, the short-term plasticity, as reflected by the paired pulse depression and depolarization-induced suppression of inhibition, was the least prominent in the output synapses of STi. Thus, the fast and robust inhibition together with its low capacity of short term modulation may suggest an important role for STi in preventing the overexcitation of the projection neurons and thus gating the information traffic in amygdala.

  7. Noradrenergic enhancement of amygdala responses to fear

    NARCIS (Netherlands)

    Onur, Oezguer A; Walter, Henrik; Schlaepfer, Thomas E; Rehme, Anne K; Schmidt, Christoph; Keysers, Christian; Maier, Wolfgang; Hurlemann, René

    Multiple lines of evidence implicate the basolateral amygdala (BLA) and the noradrenergic (norepinephrine, NE) system in responding to stressful stimuli such as fear signals, suggesting hyperfunction of both in the development of stress-related pathologies including anxiety disorders. However, no

  8. Effects of Repeated Stress on Age-Dependent GABAergic Regulation of the Lateral Nucleus of the Amygdala.

    Science.gov (United States)

    Zhang, Wei; Rosenkranz, J Amiel

    2016-08-01

    The adolescent age is associated with lability of mood and emotion. The onset of depression and anxiety disorders peaks during adolescence and there are differences in symptomology during adolescence. This points to differences in the adolescent neural circuitry that underlies mood and emotion, such as the amygdala. The human adolescent amygdala is more responsive to evocative stimuli, hinting to less local inhibitory regulation of the amygdala, but this has not been explored in adolescents. The amygdala, including the lateral nucleus (LAT) of the basolateral amygdala complex, is sensitive to stress. The amygdala undergoes maturational processes during adolescence, and therefore may be more vulnerable to harmful effects of stress during this time period. However, little is known about the effects of stress on the LAT during adolescence. GABAergic inhibition is a key regulator of LAT activity. Therefore, the purpose of this study was to test whether there are differences in the local GABAergic regulation of the rat adolescent LAT, and differences in its sensitivity to repeated stress. We found that LAT projection neurons are subjected to weaker GABAergic inhibition during adolescence. Repeated stress reduced in vivo endogenous and exogenous GABAergic inhibition of LAT projection neurons in adolescent rats. Furthermore, repeated stress decreased measures of presynaptic GABA function and interneuron activity in adolescent rats. In contrast, repeated stress enhanced glutamatergic drive of LAT projection neurons in adult rats. These results demonstrate age differences in GABAergic regulation of the LAT, and age differences in the mechanism for the effects of repeated stress on LAT neuron activity. These findings provide a substrate for increased mood lability in adolescents, and provide a substrate by which adolescent repeated stress can induce distinct behavioral outcomes and psychiatric symptoms.

  9. Deconstructing white matter connectivity of human amygdala nuclei with thalamus and cortex subdivisions in vivo.

    Science.gov (United States)

    Abivardi, Aslan; Bach, Dominik R

    2017-08-01

    Structural alterations in long-range amygdala connections are proposed to crucially underlie several neuropsychiatric disorders. While progress has been made in elucidating the function of these connections, our understanding of their structure in humans remains sparse and non-systematic. Harnessing diffusion-weighted imaging and probabilistic tractography in humans, we investigate connections between two main amygdala nucleus groups, thalamic nuclei, and cortex. We first parcellated amygdala into deep (basolateral) and superficial (centrocortical) nucleus groups, and thalamus into six subregions, using previously established protocols based on connectivity. Cortex was parcellated based on T1-weighted images. We found substantial amygdala connections to thalamus, with different patterns for the two amygdala nuclei. Crucially, we describe direct subcortical connections between amygdala and paraventricular thalamus. Different from rodents but similar to non-human primates, these are more pronounced for basolateral than centrocortical amygdala. Substantial white-matter connectivity between amygdala and visual pulvinar is also more pronounced for basolateral amygdala. Furthermore, we establish detailed connectivity profiles for basolateral and centrocortical amygdala to cortical regions. These exhibit cascadic connections with sensory cortices as suggested previously based on tracer methods in non-human animals. We propose that the quantitative connectivity profiles provided here may guide future work on normal and pathological function of human amygdala. Hum Brain Mapp 38:3927-3940, 2017. © 2017 Wiley Periodicals, Inc. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  10. Amygdala Signaling during Foraging in a Hazardous Environment.

    Science.gov (United States)

    Amir, Alon; Lee, Seung-Chan; Headley, Drew B; Herzallah, Mohammad M; Pare, Denis

    2015-09-23

    We recorded basolateral amygdala (BL) neurons in a seminaturalistic foraging task. Rats had to leave their nest to retrieve food in an elongated arena inhabited by a mechanical predator. There were marked trial-to-trial variations in behavior. After poking their head into the foraging arena and waiting there for a while, rats either retreated to their nest or initiated foraging. Before initiating foraging, rats waited longer on trials that followed failed than successful trials indicating that prior experience influenced behavior. Upon foraging initiation, most principal cells (Type-1) reduced their firing rate, while in a minority (Type-2) it increased. When rats aborted foraging, Type-1 cells increased their firing rates, whereas in Type-2 cells it did not change. Surprisingly, the opposite activity profiles of Type-1 and Type-2 units were also seen in control tasks devoid of explicit threats or rewards. The common correlate of BL activity across these tasks was movement velocity, although an influence of position was also observed. Thus depending on whether rats initiated movement or not, the activity of BL neurons decreased or increased, regardless of whether threat or rewards were present. Therefore, BL activity not only encodes threats or rewards, but is closely related to behavioral output. We propose that higher order cortical areas determine task-related changes in BL activity as a function of reward/threat expectations and internal states. Because Type-1 and Type-2 cells likely form differential connections with the central amygdala (controlling freezing), this process would determine whether movement aimed at attaining food or exploration is suppressed or facilitated. Significance statement: For decades, amygdala research has been dominated by pavlovian and operant conditioning paradigms. This work has led to the view that amygdala neurons signal threats or rewards, in turn causing defensive or approach behaviors. However, the artificial circumstances of

  11. Memory-enhancing corticosterone treatment increases amygdala norepinephrine and Arc protein expression in hippocampal synaptic fractions

    NARCIS (Netherlands)

    McReynolds, Jayme R.; Donowho, Kyle; Abdi, Amin; McGaugh, James L.; Roozendaal, Benno; McIntyre, Christa K.

    Considerable evidence indicates that glucocorticoid hormones enhance the consolidation of memory for emotionally arousing events through interactions with the noradrenergic system of the basolateral complex of the amygdala (BLA). We previously reported that intra-BLA administration of a

  12. Auditory responses in the amygdala to social vocalizations

    Science.gov (United States)

    Gadziola, Marie A.

    The underlying goal of this dissertation is to understand how the amygdala, a brain region involved in establishing the emotional significance of sensory input, contributes to the processing of complex sounds. The general hypothesis is that communication calls of big brown bats (Eptesicus fuscus) transmit relevant information about social context that is reflected in the activity of amygdalar neurons. The first specific aim analyzed social vocalizations emitted under a variety of behavioral contexts, and related vocalizations to an objective measure of internal physiological state by monitoring the heart rate of vocalizing bats. These experiments revealed a complex acoustic communication system among big brown bats in which acoustic cues and call structure signal the emotional state of a sender. The second specific aim characterized the responsiveness of single neurons in the basolateral amygdala to a range of social syllables. Neurons typically respond to the majority of tested syllables, but effectively discriminate among vocalizations by varying the response duration. This novel coding strategy underscores the importance of persistent firing in the general functioning of the amygdala. The third specific aim examined the influence of acoustic context by characterizing both the behavioral and neurophysiological responses to natural vocal sequences. Vocal sequences differentially modify the internal affective state of a listening bat, with lower aggression vocalizations evoking the greatest change in heart rate. Amygdalar neurons employ two different coding strategies: low background neurons respond selectively to very few stimuli, whereas high background neurons respond broadly to stimuli but demonstrate variation in response magnitude and timing. Neurons appear to discriminate the valence of stimuli, with aggression sequences evoking robust population-level responses across all sound levels. Further, vocal sequences show improved discrimination among stimuli

  13. Genetic Deletion of Neuronal PPARγ Enhances the Emotional Response to Acute Stress and Exacerbates Anxiety: An Effect Reversed by Rescue of Amygdala PPARγ Function.

    Science.gov (United States)

    Domi, Esi; Uhrig, Stefanie; Soverchia, Laura; Spanagel, Rainer; Hansson, Anita C; Barbier, Estelle; Heilig, Markus; Ciccocioppo, Roberto; Ubaldi, Massimo

    2016-12-14

    PPARγ is one of the three isoforms of the Peroxisome Proliferator-Activated Receptors (PPARs). PPARγ is activated by thiazolidinediones such as pioglitazone and is targeted to treat insulin resistance. PPARγ is densely expressed in brain areas involved in regulation of motivational and emotional processes. Here, we investigated the role of PPARγ in the brain and explored its role in anxiety and stress responses in mice. The results show that stimulation of PPARγ by pioglitazone did not affect basal anxiety, but fully prevented the anxiogenic effect of acute stress. Using mice with genetic ablation of neuronal PPARγ (PPARγ NestinCre ), we demonstrated that a lack of receptors, specifically in neurons, exacerbated basal anxiety and enhanced stress sensitivity. The administration of GW9662, a selective PPARγ antagonist, elicited a marked anxiogenic response in PPARγ wild-type (WT), but not in PPARγ NestinCre knock-out (KO) mice. Using c-Fos immunohistochemistry, we observed that acute stress exposure resulted in a different pattern of neuronal activation in the amygdala (AMY) and the hippocampus (HIPP) of PPARγ NestinCre KO mice compared with WT mice. No differences were found between WT and KO mice in hypothalamic regions responsible for hormonal response to stress or in blood corticosterone levels. Microinjection of pioglitazone into the AMY, but not into the HIPP, abolished the anxiogenic response elicited by acute stress. Results also showed that, in both regions, PPARγ colocalizes with GABAergic cells. These findings demonstrate that neuronal PPARγ is involved the regulation of the stress response and that the AMY is a key substrate for the anxiolytic effect of PPARγ. Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) is a classical target for antidiabetic therapies with thiazolidinedione compounds. PPARγ agonists such as rosiglitazone and pioglitazone are in clinical use for the treatment of insulin resistance. PPARγ has recently attracted

  14. Effects of environmental enrichment on the activity of the amygdala in micrencephalic rats exposed to a novel open field.

    Science.gov (United States)

    Matsuda, Wakoto; Ehara, Ayuka; Nakadate, Kazuhiko; Yoshimoto, Kanji; Ueda, Shuichi

    2018-01-01

    Environmental enrichment (EE) mediates recovery from sensory, motor, and cognitive deficits and emotional abnormalities. In the present study, we examined the effects of EE on locomotor activity and neuronal activity in the amygdala in control and methylazoxymethanol acetate (MAM)-induced micrencephalic rats after challenge in a novel open field. Control rats housed in EE (CR) showed reduced locomotor activity compared to rats housed in a conventional cage (CC), whereas hyperactivity was seen in MAM rats housed in a conventional cage (MC) and in MAM rats housed in EE (MR). Novel open field exposure in both CC and MC resulted in a marked increase in Fos expression in the anterior and posterior parts of the basolateral amygdaloid nucleus, basomedial nucleus, and medial nucleus, whereas these increases in expression were not observed in CR. The effect of EE on Fos expression in the amygdala was different in MR exposed to a novel open field compared to CR. Furthermore, we observed a quite different pattern of Fos expression in the central nucleus of the amygdala between control and MAM rats. The present results suggest that neuronal activity in the amygdala that responds to anxiety is altered in MAM rats, especially when the rats are reared in EE. These alterations may cause behavioral differences between control and MAM rats. © 2017 Japanese Teratology Society.

  15. The amygdala, reward and emotion.

    Science.gov (United States)

    Murray, Elisabeth A

    2007-11-01

    Recent research provides new insights into amygdala contributions to positive emotion and reward. Studies of neuronal activity in the monkey amygdala and of autonomic responses mediated by the monkey amygdala show that, contrary to a widely held view, the amygdala is just as important for processing positive reward and reinforcement as it is for negative. In addition, neuropsychological studies reveal that the amygdala is essential for only a fraction of what might be considered 'stimulus-reward processing', and that the neural substrates for emotion and reward are partially nonoverlapping. Finally, evidence suggests that two systems within the amygdala, operating in parallel, enable reward-predicting cues to influence behavior; one mediates a general, arousing effect of reward and the other links the sensory properties of reward to emotion.

  16. Trauma exposure relates to heightened stress, altered amygdala morphology and deficient extinction learning: Implications for psychopathology.

    Science.gov (United States)

    Cacciaglia, Raffaele; Nees, Frauke; Grimm, Oliver; Ridder, Stephanie; Pohlack, Sebastian T; Diener, Slawomira J; Liebscher, Claudia; Flor, Herta

    2017-02-01

    Stress exposure causes a structural reorganization in neurons of the amygdala. In particular, animal models have repeatedly shown that both acute and chronic stress induce neuronal hypertrophy and volumetric increase in the lateral and basolateral nuclei of amygdala. These effects are visible on the behavioral level, where stress enhances anxiety behaviors and provokes greater fear learning. We assessed stress and anxiety levels in a group of 18 healthy human trauma-exposed individuals (TR group) compared to 18 non-exposed matched controls (HC group), and related these measurements to amygdala volume. Traumas included unexpected adverse experiences such as vehicle accidents or sudden loss of a loved one. As a measure of aversive learning, we implemented a cued fear conditioning paradigm. Additionally, to provide a biological marker of chronic stress, we measured the sensitivity of the hypothalamus-pituitary-adrenal (HPA) axis using a dexamethasone suppression test. Compared to the HC, the TR group showed significantly higher levels of chronic stress, current stress and trait anxiety, as well as increased volume of the left amygdala. Specifically, we observed a focal enlargement in its lateral portion, in line with previous animal data. Compared to HC, the TR group also showed enhanced late acquisition of conditioned fear and deficient extinction learning, as well as salivary cortisol hypo-suppression to dexamethasone. Left amygdala volumes positively correlated with suppressed morning salivary cortisol. Our results indicate differences in trauma-exposed individuals which resemble those previously reported in animals exposed to stress and in patients with post-traumatic stress disorder and depression. These data provide new insights into the mechanisms through which traumatic stress might prompt vulnerability for psychopathology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Impaired recruitment of seizure-generated neurons into functional memory networks of the adult dentate gyrus following long-term amygdala kindling.

    Science.gov (United States)

    Fournier, Neil M; Botterill, Justin J; Marks, Wendie N; Guskjolen, Axel J; Kalynchuk, Lisa E

    2013-06-01

    Epileptic seizures increase the birth of new neurons in the adult hippocampus. Although the consequences of aberrant neurogenesis on behavior are not fully understood, one hypothesis is that seizure-generated neurons might form faulty circuits that disrupt hippocampal functions, such as learning and memory. In the present study, we employed long-term amygdala kindling (i.e., rats receive 99-electrical stimulations) to examine the effect of repeated seizures on hippocampal neurogenesis and behavior. We labeled seizure-generated cells with the proliferation marker BrdU after 30-stimulations and continued kindling for an additional 4weeks to allow newborn neurons to mature under conditions of repeated seizures. After kindling was complete, rats were tested in a trace fear conditioning task and sacrificed 2h later to examine if 4-week old newborn cells were recruited into circuits involved in the retrieval of emotional memory. Compared to non-kindled controls, long-term kindled rats showed significant impairments in fear memory reflected in a decrease in conditioned freezing to both tone and contextual cues during testing. Moreover, long-term kindling also prevented the activation of 4-week old newborn cells in response to fear memory retrieval. These results indicate that the presence of seizure activity during cell maturation impedes the ability of new neurons to integrate properly into circuits important in memory formation. Together, our findings suggest that aberrant seizure-induced neurogenesis might contribute to the development of learning impairments in chronic epilepsy and raise the possibility that targeting the reduced activation of adult born neurons could represent a beneficial strategy to reverse cognitive deficits in some epileptic patients. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Post-Training Unilateral Amygdala Lesions Selectively Impair Contextual Fear Memories

    Science.gov (United States)

    Flavell, Charlotte R.; Lee, Jonathan L. C.

    2012-01-01

    The basolateral amygdala (BLA) and the dorsal hippocampus (dHPC) are both structures with key roles in contextual fear conditioning. During fear conditioning, it is postulated that contextual representations of the environment are formed in the hippocampus, which are then associated with foot shock in the amygdala. However, it is not known to what…

  19. The Amygdala Is Not Necessary for Unconditioned Stimulus Inflation after Pavlovian Fear Conditioning in Rats

    Science.gov (United States)

    Rabinak, Christine A.; Orsini, Caitlin A.; Zimmerman, Joshua M.; Maren, Stephen

    2009-01-01

    The basolateral complex (BLA) and central nucleus (CEA) of the amygdala play critical roles in associative learning, including Pavlovian conditioning. However, the precise role for these structures in Pavlovian conditioning is not clear. Recent work in appetitive conditioning paradigms suggests that the amygdala, particularly the BLA, has an…

  20. Differential Effects of Cannabinoid Receptor Agonist on Social Discrimination and Contextual Fear in Amygdala and Hippocampus

    Science.gov (United States)

    Segev, Amir; Akirav, Irit

    2011-01-01

    We examined whether the cannabinoid receptor agonist WIN55,212-2 (WIN; 5 [mu]g/side) microinjected into the hippocampus or the amygdala would differentially affect memory processes in a neutral vs. an aversive task. In the aversive contextual fear task, WIN into the basolateral amygdala impaired fear acquisition/consolidation, but not retrieval.…

  1. The interplay between the hippocampus and the amygdala in regulating aberrant hippocampal neurogenesis during protracted abstinence from alcohol dependence

    Directory of Open Access Journals (Sweden)

    Chitra D Mandyam

    2013-06-01

    Full Text Available The development of alcohol dependence involves elevated anxiety, low mood, and increased sensitivity to stress, collectively labeled negative affect. Particularly interesting is the recent accumulating evidence that sensitized extrahypothalamic stress systems (e.g., hyperglutamatergic activity, blunted hypothalamic-pituitary-adrenal [HPA] hormonal levels, altered corticotropin-releasing factor signaling, and altered glucocorticoid receptor signaling in the extended amygdala are evident in withdrawn dependent rats, supporting the hypothesis that pathological neuroadaptations in the extended amygdala contribute to the negative affective state. Notably, hippocampal neurotoxicity observed as aberrant dentate gyrus (DG neurogenesis (neurogenesis is a process where neural stem cells in the adult hippocampal subgranular zone generate DG granule cell neurons and DG neurodegeneration are observed in withdrawn dependent rats. These correlations between withdrawal and aberrant neurogenesis in dependent rats suggest that alterations in the DG could be hypothesized to be due to compromised HPA axis activity and associated hyperglutamatergic activity originating from the basolateral amygdala in withdrawn dependent rats. This review discusses a possible link between the neuroadaptations in the extended amygdala stress systems and the resulting pathological plasticity that could facilitate recruitment of new emotional memory circuits in the hippocampus as a function of aberrant DG neurogenesis.

  2. Exposure to an open-field arena increases c-Fos expression in a subpopulation of neurons in the dorsal raphe nucleus, including neurons projecting to the basolateral amygdaloid complex

    DEFF Research Database (Denmark)

    Hale, M.W.; Hay-Schmidt, A.; Mikkelsen, J.D.

    2008-01-01

    Serotonergic systems in the dorsal raphe nucleus are thought to play an important role in the regulation of anxiety states. To investigate responses of neurons in the dorsal raphe nucleus to a mild anxiety-related stimulus, we exposed rats to an open-field, under low-light or high-light conditions....... Treatment effects on c-Fos expression in serotonergic and non-serotonergic cells in the midbrain raphe nuclei were determined 2 h following open-field exposure or home cage control (CO) conditions. Rats tested under both light conditions responded with increases in c-Fos expression in serotonergic neurons...... within subdivisions of the midbrain raphe nuclei compared with CO rats. However, the total numbers of serotonergic neurons involved were small suggesting that exposure to the open-field may affect a subpopulation of serotonergic neurons. To determine if exposure to the open-field activates a subset...

  3. The influence of μ-opioid and noradrenaline reuptake inhibition in the modulation of pain responsive neurones in the central amygdala by tapentadol in rats with neuropathy

    Science.gov (United States)

    Gonçalves, Leonor; Friend, Lauren V.; Dickenson, Anthony H.

    2015-01-01

    Treatments for neuropathic pain are either not fully effective or have problematic side effects. Combinations of drugs are often used. Tapentadol is a newer molecule that produces analgesia in various pain models through two inhibitory mechanisms, namely central μ-opioid receptor (MOR) agonism and noradrenaline reuptake inhibition. These two components interact synergistically, resulting in levels of analgesia similar to opioid analgesics such as oxycodone and morphine, but with more tolerable side effects. The right central nucleus of the amygdala (CeA) is critical for the lateral spinal ascending pain pathway, regulates descending pain pathways and is key in the emotional-affective components of pain. Few studies have investigated the pharmacology of limbic brain areas in pain models. Here we determined the actions of systemic tapentadol on right CeA neurones of animals with neuropathy and which component of tapentadol contributes to its effect. Neuronal responses to multimodal peripheral stimulation of animals with spinal nerve ligation or sham surgery were recorded before and after two doses of tapentadol. After the higher dose of tapentadol either naloxone or yohimbine were administered. Systemic tapentadol resulted in dose-dependent decrease in right CeA neuronal activity only in neuropathy. Both naloxone and yohimbine reversed this effect to an extent that was modality selective. The interactions of the components of tapentadol are not limited to the synergy between the MOR and α2-adrenoceptors seen at spinal levels, but are seen at this supraspinal site where suppression of responses may relate to the ability of the drug to alter affective components of pain. PMID:25576174

  4. Circadian modulation of anxiety: a role for somatostatin in the amygdala.

    Directory of Open Access Journals (Sweden)

    Anne Albrecht

    Full Text Available Pharmacological evidence suggests that the neuropeptide somatostatin (SST exerts anxiolytic action via the amygdala, but findings concerning the putative role of endogenous SST in the regulation of emotional responses are contradictory. We hypothesized that an endogenous regulation of SST expression over the course of the day may determine its function and tested both SST gene expression and the behavior of SST knock out (SST⁻/⁻ mice in different aversive tests in relation to circadian rhythm. In an open field and a light/dark avoidance test, SST⁻/⁻ mice showed significant hyperactivity and anxiety-like behavior during the second, but not during the first half of the active phase, failing to show the circadian modulation of behavior that was evident in their wild type littermates. Behavioral differences occurred independently of changes of intrinsically motivated activity in the home cage. A circadian regulation of SST mRNA and protein expression that was evident in the basolateral complex of the amygdala of wild type mice may provide a neuronal substrate for the observed behavior. However, fear memory towards auditory cue or the conditioning context displayed neither a time- nor genotype-dependent modulation. Together this indicates that SST, in a circadian manner and putatively via its regulation of expression in the amygdala, modulates behavior responding to mildly aversive conditions in mice.

  5. Different types of exercise induce differential effects on neuronal adaptations and memory performance.

    Science.gov (United States)

    Lin, Tzu-Wei; Chen, Shean-Jen; Huang, Tung-Yi; Chang, Chia-Yuan; Chuang, Jih-Ing; Wu, Fong-Sen; Kuo, Yu-Min; Jen, Chauying J

    2012-01-01

    Different exercise paradigms show differential effects on various forms of memory. We hypothesize that the differential effects of exercises on memory performance are caused by different neuroplasticity changes in relevant brain regions in response to different exercise trainings. We examined the effects of treadmill running (TR) and wheel running (WR) on the Pavlovian fear conditioning task that assesses learning and memory performance associated with the amygdala (cued conditioning) and both the amygdala and hippocampus (contextual conditioning). The skeletal muscle citrate synthase activity, an indicator of aerobic capacity, was elevated in rats received 4 w of TR, but not WR. While both TR and WR elevated the contextual conditional response, only TR facilitated the cued conditional response. Using a single-neuron labeling technique, we found that while both TR and MR enlarged the dendritic field and increased the spine density in hippocampal CA3 neurons, only TR showed these effects in basolateral amygdalar neurons. Moreover, both types of exercise upregulated synaptic proteins (i.e., TrkB and SNAP-25) in the hippocampus; however only TR showed similar effects in the amygdala. Injection of K252a, a TrkB kinase inhibitor, in the dorsal hippocampus or basolateral amygdala abolished the exercise-facilitated contextual or cued fear learning and memory performance, respectively, regardless of the types of exercise. In summary, our results supported that different types of exercise affect the performance of learning and memory via BDNF-TrkB signaling and neuroplasticity in specific brain regions. The brain region-specific neuronal adaptations are possibly induced by various levels of intensity/stress elicited by different types of exercise. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Exposure to high- and low-light conditions in an open-field test of anxiety increases c-Fos expression in specific subdivisions of the rat basolateral amygdaloid complex.

    Science.gov (United States)

    Hale, Matthew W; Bouwknecht, J Adriaan; Spiga, Francesca; Shekhar, Anantha; Lowry, Christopher A

    2006-12-11

    Anxiety states and anxiety-related behaviors appear to be regulated by a distributed and highly interconnected system of forebrain structures including the basolateral amygdaloid complex (basolateral amygdala). Despite a wealth of research examining the role of the basolateral amygdala in anxiety-related behaviors and anxiety states, the specific subdivisions of the basolateral amygdala that are involved in responses to anxiogenic stimuli have not been examined. In this study, we investigated the effects of exposure to a novel open-field environment, with either low- or high-levels of illumination, on expression of the protein product of the immediate-early gene c-Fos in subdivisions of the rat basolateral amygdala. The subdivisions studied included the lateral, ventrolateral and ventromedial parts of the lateral amygdaloid nucleus, the anterior, posterior and ventral parts of the basolateral amygdaloid nucleus and the anterior and posterior part of the basomedial amygdaloid nucleus. Small increases in the number of c-Fos-immunoreactive cells were observed in several, but not all, of the subdivisions of the basolateral amygdala studied following exposure of rats to either the high- or low-light conditions, compared to home cage or handled control groups. Open-field exposure in both the high- and low-light conditions resulted in a marked increase in c-Fos expression in the anterior part of the basolateral amygdaloid nucleus compared to either home cage or handled control groups. These findings point toward anatomical and functional heterogeneity within the basolateral amygdaloid complex and an important role of the anterior part of the basolateral amygdaloid nucleus in the neural mechanisms underlying physiological or behavioral responses to this anxiety-related stimulus.

  7. Involvement of serotonin 2A receptor activation in modulating medial prefrontal cortex and amygdala neuronal activation during novelty-exposure

    DEFF Research Database (Denmark)

    Hervig, Mona El-Sayed; Jensen, Nadja Cecilie Hvid; Rasmussen, Nadja Bredo

    2017-01-01

    The medial prefrontal cortex (PFC) plays a major role in executive function by exerting a top-down control onto subcortical areas. Novelty-induced frontal cortex activation is 5-HT2A receptor (5-HT2AR) dependent. Here, we further investigated how blockade of 5-HT2ARs in mice exposed to a novel open-field...... of 5-HT2AR blockade on the striatal-projecting BLA neurons. Systemic administration of ketanserin (0.5 mg/kg) prior to novel open-field exposure resulted in reduced total numbers of c-Fos-IR cells in dorsomedial PFC areas and the BLA. Moreover, there was a positive correlation between the relative time...... spent in the centre of the open-field and BLA c-Fos-IR in the ketanserin-treated animals. Unilateral medial PFC lesions blocked this effect, ascertaining an involvement of this frontal cortex area. On the other hand, medial PFC lesioning exacerbated the more anxiogenic-like behaviour of the ketanserin...

  8. Pattern of distribution of serotonergic fibers to the amygdala and extended amygdala in the rat.

    Science.gov (United States)

    Linley, Stephanie B; Olucha-Bordonau, Francisco; Vertes, Robert P

    2017-01-01

    As is well recognized, serotonergic (5-HT) fibers distribute widely throughout the forebrain, including the amygdala. Although a few reports have examined the 5-HT innervation of select nuclei of the amygdala in the rat, no previous report has described overall 5-HT projections to the amygdala in the rat. Using immunostaining for the serotonin transporter, SERT, we describe the complete pattern of distribution of 5-HT fibers to the amygdala (proper) and to the extended amygdala in the rat. Based on its ontogenetic origins, the amygdala was subdivided into two major parts, pallial and subpallial components, with the pallial component further divided into superficial and deep nuclei (Olucha-Bordonau et al. 2015). SERT + fibers were shown to distributed moderately to densely to the deep and cortical pallial nuclei, but, by contrast, lightly to the subpallial nuclei. Specifically, 1) of the deep pallial nuclei, the lateral, basolateral, and basomedial nuclei contained a very dense concentration of 5-HT fibers; 2) of the cortical pallial nuclei, the anterior cortical and amygdala-cortical transition zone rostrally and the posteromedial and posterolateral nuclei caudally contained a moderate concentration of 5-HT fibers; and 3) of the subpallial nuclei, the anterior nuclei and the rostral part of the medial (Me) nuclei contained a moderate concentration of 5-HT fibers, whereas caudal regions of Me as well as the central nuclei and the intercalated nuclei contained a sparse/light concentration of 5-HT fibers. With regard to the extended amygdala (primarily the bed nucleus of stria terminalis; BST), on the whole, the BST contained moderate numbers of 5-HT fibers, spread fairly uniformly throughout BST. The findings are discussed with respect to a critical serotonergic influence on the amygdala, particularly on the basal complex, and on the extended amygdala in the control of states of fear and anxiety. J. Comp. Neurol. 525:116-139, 2017. © 2016 Wiley Periodicals, Inc.

  9. Murine GRPR and stathmin control in opposite directions both cued fear extinction and neural activities of the amygdala and prefrontal cortex.

    Directory of Open Access Journals (Sweden)

    Guillaume Martel

    Full Text Available Extinction is an integral part of normal healthy fear responses, while it is compromised in several fear-related mental conditions in humans, such as post-traumatic stress disorder (PTSD. Although much research has recently been focused on fear extinction, its molecular and cellular underpinnings are still unclear. The development of animal models for extinction will greatly enhance our approaches to studying its neural circuits and the mechanisms involved. Here, we describe two gene-knockout mouse lines, one with impaired and another with enhanced extinction of learned fear. These mutant mice are based on fear memory-related genes, stathmin and gastrin-releasing peptide receptor (GRPR. Remarkably, both mutant lines showed changes in fear extinction to the cue but not to the context. We performed indirect imaging of neuronal activity on the second day of cued extinction, using immediate-early gene c-Fos. GRPR knockout mice extinguished slower (impaired extinction than wildtype mice, which was accompanied by an increase in c-Fos activity in the basolateral amygdala and a decrease in the prefrontal cortex. By contrast, stathmin knockout mice extinguished faster (enhanced extinction and showed a decrease in c-Fos activity in the basolateral amygdala and an increase in the prefrontal cortex. At the same time, c-Fos activity in the dentate gyrus was increased in both mutant lines. These experiments provide genetic evidence that the balance between neuronal activities of the amygdala and prefrontal cortex defines an impairment or facilitation of extinction to the cue while the hippocampus is involved in the context-specificity of extinction.

  10. Repeated social stress leads to contrasting patterns of structural plasticity in the amygdala and hippocampus.

    Science.gov (United States)

    Patel, D; Anilkumar, S; Chattarji, S; Buwalda, B

    2018-03-23

    Previous studies have demonstrated that repeated immobilization and restraint stress cause contrasting patterns of dendritic reorganization as well as alterations in spine density in amygdalar and hippocampal neurons. Whether social and ethologically relevant stressors can induce similar patterns of morphological plasticity remains largely unexplored. Hence, we assessed the effects of repeated social defeat stress on neuronal morphology in basolateral amygdala (BLA), hippocampal CA1 and infralimbic medial prefrontal cortex (mPFC). Male Wistar rats experienced social defeat stress on 5 consecutive days during confrontation in the resident-intruder paradigm with larger and aggressive Wild-type Groningen rats. This resulted in clear social avoidance behavior one day after the last confrontation. To assess the morphological consequences of repeated social defeat, 2 weeks after the last defeat, animals were sacrificed and brains were stained using a Golgi-Cox procedure. Morphometric analyses revealed that, compared to controls, defeated Wistar rats showed apical dendritic decrease in spine density on CA1 but not BLA. Sholl analysis demonstrated a significant dendritic atrophy of CA1 basal dendrites in defeated animals. In contrast, basal dendrites of BLA pyramidal neurons exhibited enhanced dendritic arborization in defeated animals. Social stress failed to induce lasting structural changes in mPFC neurons. Our findings demonstrate for the first time that social defeat stress elicits divergent patterns of structural plasticity in the hippocampus versus amygdala, similar to what has previously been reported with repeated physical stressors. Therefore, brain region specific variations may be a universal feature of stress-induced plasticity that is shared by both physical and social stressors. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Functional Connectome Analysis of Dopamine Neuron Glutamatergic Connections in Forebrain Regions.

    Science.gov (United States)

    Mingote, Susana; Chuhma, Nao; Kusnoor, Sheila V; Field, Bianca; Deutch, Ariel Y; Rayport, Stephen

    2015-12-09

    In the ventral tegmental area (VTA), a subpopulation of dopamine neurons express vesicular glutamate transporter 2 and make glutamatergic connections to nucleus accumbens (NAc) and olfactory tubercle (OT) neurons. However, their glutamatergic connections across the forebrain have not been explored systematically. To visualize dopamine neuron forebrain projections and to enable photostimulation of their axons independent of transmitter status, we virally transfected VTA neurons with channelrhodopsin-2 fused to enhanced yellow fluorescent protein (ChR2-EYFP) and used DAT(IREScre) mice to restrict expression to dopamine neurons. ChR2-EYFP-expressing neurons almost invariably stained for tyrosine hydroxylase, identifying them as dopaminergic. Dopamine neuron axons visualized by ChR2-EYFP fluorescence projected most densely to the striatum, moderately to the amygdala and entorhinal cortex (ERC), sparsely to prefrontal and cingulate cortices, and rarely to the hippocampus. Guided by ChR2-EYFP fluorescence, we recorded systematically from putative principal neurons in target areas and determined the incidence and strength of glutamatergic connections by activating all dopamine neuron terminals impinging on recorded neurons with wide-field photostimulation. This revealed strong glutamatergic connections in the NAc, OT, and ERC; moderate strength connections in the central amygdala; and weak connections in the cingulate cortex. No glutamatergic connections were found in the dorsal striatum, hippocampus, basolateral amygdala, or prefrontal cortex. These results indicate that VTA dopamine neurons elicit widespread, but regionally distinct, glutamatergic signals in the forebrain and begin to define the dopamine neuron excitatory functional connectome. Dopamine neurons are important for the control of motivated behavior and are involved in the pathophysiology of several major neuropsychiatric disorders. Recent studies have shown that some ventral midbrain dopamine neurons are

  12. Optogenetic excitation of central amygdala amplifies and narrows incentive motivation to pursue one reward above another.

    Science.gov (United States)

    Robinson, Mike J F; Warlow, Shelley M; Berridge, Kent C

    2014-12-10

    Choosing one reward above another is important for achieving adaptive life goals. Yet hijacked into excessive intensity in disorders such as addiction, single-minded pursuit becomes maladaptive. Here, we report that optogenetic channelrhodopsin stimulation of neurons in central nucleus of amygdala (CeA), paired with earning a particular sucrose reward in rats, amplified and narrowed incentive motivation to that single reward target. Therefore, CeA rats chose and intensely pursued only the laser-paired sucrose reward while ignoring an equally good sucrose alternative. In contrast, reward-paired stimulation of basolateral amygdala did not hijack choice. In a separate measure of incentive motivation, CeA stimulation also increased the progressive ratio breakpoint or level of effort exerted to obtain sucrose reward. However, CeA stimulation by itself failed to support behavioral self-stimulation in the absence of any paired external food reward, suggesting that CeA photo-excitation specifically transformed the value of its external reward (rather than adding an internal reinforcement state). Nor did CeA stimulation by itself induce any aversive state that motivated escape. Finally, CeA stimulation also failed to enhance 'liking' reactions elicited by sucrose taste and did not simply increase the general motivation to eat. This pattern suggests that CeA photo-excitation specifically enhances and narrows incentive motivation to pursue an associated external reward at the expense of another comparable reward. Copyright © 2014 the authors 0270-6474/14/3416567-14$15.00/0.

  13. Amygdala subsystems and control of feeding behavior by learned cues.

    Science.gov (United States)

    Petrovich, Gorica D; Gallagher, Michela

    2003-04-01

    A combination of behavioral studies and a neural systems analysis approach has proven fruitful in defining the role of the amygdala complex and associated circuits in fear conditioning. The evidence presented in this chapter suggests that this approach is also informative in the study of other adaptive functions that involve the amygdala. In this chapter we present a novel model to study learning in an appetitive context. Furthermore, we demonstrate that long-recognized connections between the amygdala and the hypothalamus play a crucial role in allowing learning to modulate feeding behavior. In the first part we describe a behavioral model for motivational learning. In this model a cue that acquires motivational properties through pairings with food delivery when an animal is hungry can override satiety and promote eating in sated rats. Next, we present evidence that a specific amygdala subsystem (basolateral area) is responsible for allowing such learned cues to control eating (override satiety and promote eating in sated rats). We also show that basolateral amygdala mediates these actions via connectivity with the lateral hypothalamus. Lastly, we present evidence that the amygdalohypothalamic system is specific for the control of eating by learned motivational cues, as it does not mediate another function that depends on intact basolateral amygdala, namely, the ability of a conditioned cue to support new learning based on its acquired value. Knowledge about neural systems through which food-associated cues specifically control feeding behavior provides a defined model for the study of learning. In addition, this model may be informative for understanding mechanisms of maladaptive aspects of learned control of eating that contribute to eating disorders and more moderate forms of overeating.

  14. Amygdala Kindling Alters Estrus Cycle and Ovarian Morphology in the Rat

    OpenAIRE

    Pan, Juan; Zhang, Lingwu; Wang, Feng; Liu, Dan; Li, P. Andy; Sun, Tao

    2013-01-01

    The objective of this study is to explore the effects of amygdala kindling on estrus cycle and ovarian morphology. Thirty-five female rats at the age of 8 weeks were randomly designated to electrode kindled, sham-kindled, and normal controls. Kindled rats were implanted with kindling electrodes in the left basolateral amygdala and kindled by brief suprathreshold stimulations with a bipolar electrode. Estrous cycles were daily monitored through vaginal smears. Electrographic and behavioral sei...

  15. ALTERED HIPPOCAMPAL NEUROGENESIS AND AMYGDALAR NEURONAL ACTIVITY IN ADULT MICE WITH REPEATED EXPERIENCE OF AGGRESSION

    Directory of Open Access Journals (Sweden)

    Dmitriy eSmagin

    2015-12-01

    Full Text Available The repeated experience of winning in a social conflict setting elevates levels of aggression and may lead to violent behavioral patterns. Here we use a paradigm of repeated aggression and fighting deprivation to examine changes in behavior, neurogenesis, and neuronal activity in mice with positive fighting experience. We show that for males, repeated positive fighting experience induces persistent demonstration of aggression and stereotypic behaviors in daily agonistic interactions, enhances aggressive motivation, and elevates levels of anxiety. When winning males are deprived of opportunities to engage in further fights, they demonstrate increased levels of aggressiveness. Positive fighting experience results in increased levels of progenitor cell proliferation and production of young neurons in the hippocampus. This increase is not diminished after a fighting deprivation period. Furthermore, repeated winning experience decreases the number of activated (c-fos positive cells in the basolateral amygdala and increases the number of activated cells in the hippocampus; a subsequent no-fight period restores the number of c-fos-positive cells. Our results indicate that extended positive fighting experience in a social conflict heightens aggression, increases proliferation of neuronal progenitors and production of young neurons in the hippocampus, and decreases neuronal activity in the amygdala; these changes can be modified by depriving the winners of the opportunity for further fights.

  16. Post-Training Reversible Disconnection of the Ventral Hippocampal-Basolateral Amygdaloid Circuits Impairs Consolidation of Inhibitory Avoidance Memory in Rats

    Science.gov (United States)

    Wang, Gong-Wu; Liu, Jian; Wang, Xiao-Qin

    2017-01-01

    The ventral hippocampus (VH) and the basolateral amygdala (BLA) are both crucial in inhibitory avoidance (IA) memory. However, the exact role of the VH-BLA circuit in IA memory consolidation is unclear. This study investigated the effect of post-training reversible disconnection of the VH-BLA circuit in IA memory consolidation. Male Wistar rats…

  17. What, if anything, is the medial temporal lobe, and how can the amygdala be part of it if there is no such thing?

    Science.gov (United States)

    Murray, Elisabeth A; Wise, Steven P

    2004-11-01

    Should the medial temporal lobe (MTL) of primates--which includes allocortical structures such as the hippocampus, neocortical structures such as the parahippocampal cortex, and nuclear structures such as the basolateral amygdala--be considered a single "thing"? According to the prevailing view, here termed the reification theory, the answer is yes. According to this theory, the MTL functions as an amalgamated entity that provides the neuronal mechanisms for declarative memory; the greater the damage to the MTL or any of its components, the greater the deleterious effects on declarative memory. A countervailing view, here called the balkanization theory, holds that the various components of the MTL process and store different kinds of information. According to this theory, damage to each part of the MTL causes a unique set of behavioral deficits-some involving memory, others involving perception, and yet others involving response selection. The empirical neuropsychological evidence favors the balkanization theory, as do some new concepts in theoretical neuroanatomy.

  18. Tonic inhibition by orphanin FQ/nociceptin of noradrenaline neurotransmission in the amygdala

    NARCIS (Netherlands)

    Kawahara, Y; Hesselink, M.B.; van Scharrenburg, G; Westerink, B.H.C.

    2004-01-01

    The present microdialysis study investigated whether nociceptin/orphanin FQ exerts a tonic inhibition of the release of noradrenaline in the basolateral nucleus of the amygdala in awake rats. The non-peptide competitive nociceptin/orphanin FQ (N/OFQ) peptide receptor antagonist J-113397 (20 mg/kg

  19. Differential Involvement of Amygdala and Cortical NMDA Receptors Activation upon Encoding in Odor Fear Memory

    Science.gov (United States)

    Hegoburu, Chloé; Parrot, Sandrine; Ferreira, Guilaume; Mouly, Anne-Marie

    2014-01-01

    Although the basolateral amygdala (BLA) plays a crucial role for the acquisition of fear memories, sensory cortices are involved in their long-term storage in rats. However, the time course of their respective involvement has received little investigation. Here we assessed the role of the glutamatergic N-methyl-D-aspartate (NMDA) receptors in the…

  20. Human amygdala reactivity is diminished by the beta-noradrenergic antagonist propranolol

    NARCIS (Netherlands)

    Hurlemann, R.; Walter, H.; Rehme, A. K.; Kukolja, J.; Santoro, S. C.; Schmidt, C.; Schnell, K.; Musshoff, F.; Keysers, C.; Maier, W.; Kendrick, K. M.; Onur, O. A.

    Background. Animal models of anxiety disorders emphasize the crucial role of locus ceruleus-noradrenergic (norepinephrine, NE) signaling, the basolateral amygdala (BLA) and their interactions in the expression of anxiety-like behavioral responses to stress. Despite clinical evidence for the efficacy

  1. Basolateral BMP signaling in polarized epithelial cells.

    Directory of Open Access Journals (Sweden)

    Masao Saitoh

    Full Text Available Bone morphogenetic proteins (BMPs regulate various biological processes, mostly mediated by cells of mesenchymal origin. However, the roles of BMPs in epithelial cells are poorly understood. Here, we demonstrate that, in polarized epithelial cells, BMP signals are transmitted from BMP receptor complexes exclusively localized at the basolateral surface of the cell membrane. In addition, basolateral stimulation with BMP increased expression of components of tight junctions and enhanced the transepithelial resistance (TER, counteracting reduction of TER by treatment with TGF-β or an anti-tumor drug. We conclude that BMPs maintain epithelial polarity via intracellular signaling from basolaterally localized BMP receptors.

  2. Localization of deformations within the amygdala in individuals with psychopathy.

    Science.gov (United States)

    Yang, Yaling; Raine, Adrian; Narr, Katherine L; Colletti, Patrick; Toga, Arthur W

    2009-09-01

    Despite the repeated findings of impaired fear conditioning and affective recognition in psychopathic individuals, there has been a paucity of brain imaging research on the amygdala and no evidence suggesting which regions within the amygdala may be structurally compromised in individuals with psychopathy. To detect global and regional anatomical abnormalities in the amygdala in individuals with psychopathy. Cross-sectional design using structural magnetic resonance imaging. Participants were recruited from high-risk communities (temporary employment agencies) in the Los Angeles, California, area and underwent imaging at a hospital research facility at the University of Southern California. Twenty-seven psychopathic individuals as defined by the Hare Psychopathy Checklist-Revised and 32 normal controls matched on age, sex, and ethnicity. Amygdala volumes were examined using traditional volumetric analyses and surface-based mesh modeling methods were used to localize regional surface deformations. Individuals with psychopathy showed significant bilateral volume reductions in the amygdala compared with controls (left, 17.1%; right, 18.9%). Surface deformations were localized in regions in the approximate vicinity of the basolateral, lateral, cortical, and central nuclei of the amygdala. Significant correlations were found between reduced amygdala volumes and increased total and facet psychopathy scores, with correlations strongest for the affective and interpersonal facets of psychopathy. Results provide the first evidence, to our knowledge, of focal amygdala abnormalities in psychopathic individuals and corroborate findings from previous lesion studies. Findings support prior hypotheses of amygdala deficits in individuals with psychopathy and indicate that amygdala abnormalities contribute to emotional and behavioral symptoms of psychopathy.

  3. Resilience and amygdala function in older healthy and depressed adults.

    Science.gov (United States)

    Leaver, Amber M; Yang, Hongyu; Siddarth, Prabha; Vlasova, Roza M; Krause, Beatrix; St Cyr, Natalie; Narr, Katherine L; Lavretsky, Helen

    2018-04-25

    Previous studies suggest that low emotional resilience may correspond with increased or over-active amygdala function. Complementary studies suggest that emotional resilience increases with age; older adults tend to have decreased attentional bias to negative stimuli compared to younger adults. Amygdala nuclei and related brain circuits have been linked to negative affect, and depressed patients have been demonstrated to have abnormal amygdala function. In the current study, we correlated psychological resilience measures with amygdala function measured with resting-state arterial spin-labelled (ASL) and blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) in older adults with and without depression. Specifically, we targeted the basolateral, centromedial, and superficial nuclei groups of the amygdala, which have different functions and brain connections. High levels of psychological resilience correlated with lower basal levels of amygdala activity measured with ASL fMRI. High resilience also correlated with decreased connectivity between amygdala nuclei and the ventral default-mode network independent of depression status. Instead, lower depression symptoms were associated with higher connectivity between the amygdalae and dorsal frontal networks. Future multi-site studies with larger sample size and improved neuroimaging technologies are needed. Longitudinal studies that target resilience to naturalistic stressors will also be a powerful contribution to the field. Our results suggest that resilience in older adults is more closely related to function in ventral amygdala networks, while late-life depression is related to reduced connectivity between the amygdala and dorsal frontal regions. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Medial Amygdala and Aggressive Behavior : Interaction Between Testosterone and Vasopressin

    NARCIS (Netherlands)

    Koolhaas, J.M.; Roozendaal, B.; Boorsma, F.; Van Den Brink, T.H.C.

    1990-01-01

    This paper considers the functional significance of the testosterone-dependent vasopressinergic neurons of the medial amygdala (Ame) in intermale aggressive behavior of rats. Local microinfusion of vasopressin into the medial amygdala causes an increase in offensive behavior both in gonadally intact

  5. Rearing in enriched environment increases parvalbumin-positive small neurons in the amygdala and decreases anxiety-like behavior of male rats

    OpenAIRE

    Urakawa, Susumu; Takamoto, Kouich; Hori, Etsuro; Sakai, Natsuko; Ono, Taketoshi; Nishijo, Hisao

    2013-01-01

    Background Early life experiences including physical exercise, sensory stimulation, and social interaction can modulate development of the inhibitory neuronal network and modify various behaviors. In particular, alteration of parvalbumin-expressing neurons, a gamma-aminobutyric acid (GABA)ergic neuronal subpopulation, has been suggested to be associated with psychiatric disorders. Here we investigated whether rearing in enriched environment could modify the expression of parvalbumin-positive ...

  6. Tracking the Fear Memory Engram: Discrete Populations of Neurons within Amygdala, Hypothalamus, and Lateral Septum Are Specifically Activated by Auditory Fear Conditioning

    Science.gov (United States)

    Butler, Christopher W.; Wilson, Yvette M.; Gunnersen, Jenny M.; Murphy, Mark

    2015-01-01

    Memory formation is thought to occur via enhanced synaptic connectivity between populations of neurons in the brain. However, it has been difficult to localize and identify the neurons that are directly involved in the formation of any specific memory. We have previously used "fos-tau-lacZ" ("FTL") transgenic mice to identify…

  7. The central amygdala circuits in fear regulation

    Science.gov (United States)

    Li, Bo

    The amygdala is essential for fear learning and expression. The central amygdala (CeA), once viewed as a passive relay between the amygdala complex and downstream fear effectors, has emerged as an active participant in fear conditioning. However, how the CeA contributes to the learning and expression of fear remains unclear. Our recent studies in mice indicate that fear conditioning induces robust plasticity of excitatory synapses onto inhibitory neurons in the lateral subdivision of CeA (CeL). In particular, this plasticity is cell-type specific and is required for the formation of fear memory. In addition, sensory cues that predict threat can cause activation of the somatostatin-positive CeL neurons, which is sufficient to drive freezing behavior. Here I will report our recent findings regarding the circuit and cellular mechanisms underlying CeL function in fear processing.

  8. Growth hormone biases amygdala network activation after fear learning.

    Science.gov (United States)

    Gisabella, B; Farah, S; Peng, X; Burgos-Robles, A; Lim, S H; Goosens, K A

    2016-11-29

    Prolonged stress exposure is a risk factor for developing posttraumatic stress disorder, a disorder characterized by the 'over-encoding' of a traumatic experience. A potential mechanism by which this occurs is through upregulation of growth hormone (GH) in the amygdala. Here we test the hypotheses that GH promotes the over-encoding of fearful memories by increasing the number of neurons activated during memory encoding and biasing the allocation of neuronal activation, one aspect of the process by which neurons compete to encode memories, to favor neurons that have stronger inputs. Viral overexpression of GH in the amygdala increased the number of amygdala cells activated by fear memory formation. GH-overexpressing cells were especially biased to express the immediate early gene c-Fos after fear conditioning, revealing strong autocrine actions of GH in the amygdala. In addition, we observed dramatically enhanced dendritic spine density in GH-overexpressing neurons. These data elucidate a previously unrecognized autocrine role for GH in the regulation of amygdala neuron function and identify specific mechanisms by which chronic stress, by enhancing GH in the amygdala, may predispose an individual to excessive fear memory formation.

  9. Dissecting the role of amygdala reactivity in antisocial behavior in a sample of young, low-income, urban men

    Science.gov (United States)

    Hyde, Luke W.; Shaw, Daniel S.; Murray, Laura; Gard, Arianna; Hariri, Ahmad R.; Forbes, Erika E.

    2015-01-01

    Neuroimaging has suggested that amygdala reactivity to emotional facial expressions is associated with antisocial behavior (AB), particularly among those high on callous-unemotional (CU) traits. To investigate this association and potential moderators of this relationship, including task/stimuli effects, subregional anatomy of the amygdala, and participant race, we used fMRI in a sample of 167 racially diverse, 20 year-old men from low-income families. We found that AB, but not CU traits, was negatively related to amygdala reactivity to fearful faces. This result was specific to fearful faces and strongest in the centro-medial subregion of the amygdala. Arrest record was positively related to basolateral amygdala reactivity to fearful and angry faces. Results were strongest among those identified as African American and not present in those identified as European American. Our findings suggest substantial complexity in the relationship between amygdala function and AB reflecting moderating effects of task stimulus, subregional anatomy, and race. PMID:27429865

  10. Excitability of jcBNST neurons is reduced in alcohol-dependent animals during protracted alcohol withdrawal.

    Directory of Open Access Journals (Sweden)

    Attila Szücs

    Full Text Available Alcohol dependence and withdrawal has been shown to cause neuroadaptive changes at multiple levels of the nervous system. At the neuron level, adaptations of synaptic connections have been extensively studied in a number of brain areas and accumulating evidence also shows the importance of alcohol dependence-related changes in the intrinsic cellular properties of neurons. At the same time, it is still largely unknown how such neural adaptations impact the firing and integrative properties of neurons. To address these problems, here, we analyze physiological properties of neurons in the bed nucleus of stria terminalis (jcBNST in animals with a history of alcohol dependence. As a comprehensive approach, first we measure passive and active membrane properties of neurons using conventional current clamp protocols and then analyze their firing responses under the action of simulated synaptic bombardment via dynamic clamp. We find that most physiological properties as measured by DC current injection are barely affected during protracted withdrawal. However, neuronal excitability as measured from firing responses under simulated synaptic inputs with the dynamic clamp is markedly reduced in all 3 types of jcBNST neurons. These results support the importance of studying the effects of alcohol and drugs of abuse on the firing properties of neurons with dynamic clamp protocols designed to bring the neurons into a high conductance state. Since the jcBNST integrates excitatory inputs from the basolateral amygdala (BLA and cortical inputs from the infralimbic and the insular cortices and in turn is believed to contribute to the inhibitory input to the central nucleus of the amygdala (CeA the reduced excitability of the jcBNST during protracted withdrawal in alcohol-dependent animals will likely affect ability of the jcBNST to shape the activity and output of the CeA.

  11. Restoration of quinine-stimulated Fos-immunoreactive neurons in the central nucleus of the amygdala and gustatory cortex following reinnervation or cross-reinnervation of the lingual taste nerves in rats.

    Science.gov (United States)

    King, Camille Tessitore; Garcea, Mircea; Spector, Alan C

    2014-08-01

    Remarkably, when lingual gustatory nerves are surgically rerouted to inappropriate taste fields in the tongue, some taste functions recover. We previously demonstrated that quinine-stimulated oromotor rejection reflexes and neural activity (assessed by Fos immunoreactivity) in subregions of hindbrain gustatory nuclei were restored if the posterior tongue, which contains receptor cells that respond strongly to bitter compounds, was cross-reinnervated by the chorda tympani nerve. Such functional recovery was not seen if instead, the anterior tongue, where receptor cells are less responsive to bitter compounds, was cross-reinnervated by the glossopharyngeal nerve, even though this nerve typically responds robustly to bitter substances. Thus, recovery depended more on the taste field being reinnervated than on the nerve itself. Here, the distribution of quinine-stimulated Fos-immunoreactive neurons in two taste-associated forebrain areas was examined in these same rats. In the central nucleus of the amygdala (CeA), a rostrocaudal gradient characterized the normal quinine-stimulated Fos response, with the greatest number of labeled cells situated rostrally. Quinine-stimulated neurons were found throughout the gustatory cortex, but a "hot spot" was observed in its anterior-posterior center in subregions approximating the dysgranular/agranular layers. Fos neurons here and in the rostral CeA were highly correlated with quinine-elicited gapes. Denervation of the posterior tongue eliminated, and its reinnervation by either nerve restored, numbers of quinine-stimulated labeled cells in the rostralmost CeA and in the subregion approximating the dysgranular gustatory cortex. These results underscore the remarkable plasticity of the gustatory system and also help clarify the functional anatomy of neural circuits activated by bitter taste stimulation. © 2014 Wiley Periodicals, Inc.

  12. Unique insula subregion resting-state functional connectivity with amygdala complexes in posttraumatic stress disorder and its dissociative subtype.

    Science.gov (United States)

    Nicholson, Andrew A; Sapru, Iman; Densmore, Maria; Frewen, Paul A; Neufeld, Richard W J; Théberge, Jean; McKinnon, Margaret C; Lanius, Ruth A

    2016-04-30

    The insula and amygdala are implicated in the pathophysiology of posttraumatic stress disorder (PTSD), where both have been shown to be hyper/hypoactive in non-dissociative (PTSD-DS) and dissociative subtype (PTSD+DS) PTSD patients, respectively, during symptom provocation. However, the functional connectivity between individual insula subregions and the amygdala has not been investigated in persons with PTSD, with or without the dissociative subtype. We examined insula subregion (anterior, mid, and posterior) functional connectivity with the bilateral amygdala using a region-of-interest seed-based approach via PickAtlas and SPM8. Resting-state fMRI was conducted with (n=61) PTSD patients (n=44 PTSD-DS; n=17 PTSD+DS), and (n=40) age-matched healthy controls. When compared to controls, the PTSD-DS group displayed increased insula connectivity (bilateral anterior, bilateral mid, and left posterior) to basolateral amygdala clusters in both hemispheres, and the PTSD+DS group displayed increased insula connectivity (bilateral anterior, left mid, and left posterior) to the left basolateral amygdala complex. Moreover, as compared to PTSD-DS, increased insula subregion connectivity (bilateral anterior, left mid, and right posterior) to the left basolateral amygdala was found in PTSD+DS. Depersonalization/derealization symptoms and PTSD symptom severity correlated with insula subregion connectivity to the basolateral amygdala within PTSD patients. This study is an important first step in elucidating patterns of neural connectivity associated with unique symptoms of arousal/interoception, emotional processing, and awareness of bodily states, in PTSD and its dissociative subtype. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Differential efferent projections of the anterior, posteroventral and posterodorsal subdivisions of the medial amygdala in mice

    Directory of Open Access Journals (Sweden)

    Cecília ePardo-Bellver

    2012-08-01

    Full Text Available The medial amygdaloid nucleus (Me is a key structure in the control of sociosexual behaviour in mice. It receives direct projections from the main and accessory olfactory bulbs, as well as an important hormonal input. To better understand its behavioural role, in this work we investigate the structures receiving information from the Me, by analysing the efferent projections from its anterior (MeA, posterodorsal (MePD and posteroventral (MePV subdivisions, using anterograde neuronal tracing with biotinylated and tetrametylrhodamine-conjugated dextranamines.The Me is strongly interconnected with the rest of the chemosensory amygdala, but shows only moderate projections to the central nucleus and light projections to the associative nuclei of the basolateral amygdaloid complex. In addition, the MeA originates a strong feedback projection to the deep mitral cell layer of the accessory olfactory bulb, whereas the MePV projects to its granule cell layer. The medial amygdaloid nucleus (especially the MeA has also moderate projections to different olfactory structures, including the piriform cortex. The densest outputs of the Me target the bed nucleus of the stria terminalis (BST and the hypothalamus. The MeA and MePV project to key structures of the circuit involved in the defensive response against predators (medial posterointermediate BST, anterior hypothalamic area, dorsomedial aspect of the ventromedial hypothalamic nucleus, although less dense projections also innervate reproductive-related nuclei. In contrast, the MePD projects mainly to structures that control reproductive behaviours (medial posteromedial BST, medial preoptic nucleus, and ventrolateral aspect of the ventromedial hypothalamic nucleus, although less dense projections to defensive-related nuclei also exist. These results confirm and extend previous results in other rodents and suggest that the medial amygdala is anatomically and functionally compartmentalized.

  14. Differential efferent projections of the anterior, posteroventral, and posterodorsal subdivisions of the medial amygdala in mice.

    Science.gov (United States)

    Pardo-Bellver, Cecília; Cádiz-Moretti, Bernardita; Novejarque, Amparo; Martínez-García, Fernando; Lanuza, Enrique

    2012-01-01

    The medial amygdaloid nucleus (Me) is a key structure in the control of sociosexual behavior in mice. It receives direct projections from the main and accessory olfactory bulbs (AOB), as well as an important hormonal input. To better understand its behavioral role, in this work we investigate the structures receiving information from the Me, by analysing the efferent projections from its anterior (MeA), posterodorsal (MePD) and posteroventral (MePV) subdivisions, using anterograde neuronal tracing with biotinylated and tetrametylrhodamine-conjugated dextranamines. The Me is strongly interconnected with the rest of the chemosensory amygdala, but shows only moderate projections to the central nucleus and light projections to the associative nuclei of the basolateral amygdaloid complex. In addition, the MeA originates a strong feedback projection to the deep mitral cell layer of the AOB, whereas the MePV projects to its granule cell layer. The Me (especially the MeA) has also moderate projections to different olfactory structures, including the piriform cortex (Pir). The densest outputs of the Me target the bed nucleus of the stria terminalis (BST) and the hypothalamus. The MeA and MePV project to key structures of the circuit involved in the defensive response against predators (medial posterointermediate BST, anterior hypothalamic area, dorsomedial aspect of the ventromedial hypothalamic nucleus), although less dense projections also innervate reproductive-related nuclei. In contrast, the MePD projects mainly to structures that control reproductive behaviors [medial posteromedial BST, medial preoptic nucleus, and ventrolateral aspect of the ventromedial hypothalamic nucleus], although less dense projections to defensive-related nuclei also exist. These results confirm and extend previous results in other rodents and suggest that the medial amygdala is anatomically and functionally compartmentalized.

  15. Interaction between Thalamus and Hippocampus in Termination of Amygdala-Kindled Seizures in Mice

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2016-01-01

    Full Text Available The thalamus and hippocampus have been found both involved in the initiation, propagation, and termination of temporal lobe epilepsy. However, the interaction of these regions during seizures is not clear. The present study is to explore whether some regular patterns exist in their interaction during the termination of seizures. Multichannel in vivo recording techniques were used to record the neural activities from the cornu ammonis 1 (CA1 of hippocampus and mediodorsal thalamus (MDT in mice. The mice were kindled by electrically stimulating basolateral amygdala neurons, and Racine’s rank standard was employed to classify the stage of behavioral responses (stage 1~5. The coupling index and directionality index were used to investigate the synchronization and information flow direction between CA1 and MDT. Two main results were found in this study. (1 High levels of synchronization between the thalamus and hippocampus were observed before the termination of seizures at stage 4~5 but after the termination of seizures at stage 1~2. (2 In the end of seizures at stage 4~5, the information tended to flow from MDT to CA1. Those results indicate that the synchronization and information flow direction between the thalamus and the hippocampus may participate in the termination of seizures.

  16. Increased in vivo release of neuropeptide S in the amygdala of freely moving rats after local depolarisation and emotional stress.

    Science.gov (United States)

    Ebner, Karl; Rjabokon, Alesja; Pape, Hans-Christian; Singewald, Nicolas

    2011-10-01

    Intracerebral microdialysis in conjunction with a highly sensitive radioimmunoassay was used to study the in vivo release of neuropeptide S (NPS) within the amygdala of freely moving rats. NPS was consistently detected in basolateral amygdala dialysates and the release considerably enhanced in response to local depolarisation as well as exposure to forced swim stress. Thus, our data demonstrate for the first time emotional stress-induced release of NPS in the amygdala supporting a functional role of endogenous NPS in stress/anxiety-related phenomena.

  17. Exposure to an open-field arena increases c-Fos expression in a distributed anxiety-related system projecting to the basolateral amygdaloid complex

    DEFF Research Database (Denmark)

    Hale, M.W.; Hay-Schmidt, A.; Mikkelsen, J.D.

    2008-01-01

    Anxiety states and anxiety-related behaviors appear to be regulated by a distributed and highly interconnected system of brain structures including the basolateral amygdala. Our previous studies demonstrate that exposure of rats to an open-field in high- and low-light conditions results in a marked...... increase in c-Fos expression in the anterior part of the basolateral amygdaloid nucleus (BLA) compared with controls. The neural mechanisms underlying the anatomically specific effects of open-field exposure on c-Fos expression in the BLA are not clear, however, it is likely that this reflects activation...... to this region in combination with c-Fos immunostaining to identify cells responding to exposure to an open-field arena in low-light (8-13 lux) conditions (an anxiogenic stimulus in rats). Adult male Wistar rats received a unilateral microinjection of 4% CTb in phosphate-buffered saline into the basolateral...

  18. Amygdalar glutamatergic neuronal systems play a key role on the hibernating state of hamsters

    Directory of Open Access Journals (Sweden)

    Facciolo Rosa

    2011-01-01

    Full Text Available Abstract Background Excitatory transmitting mechanisms are proving to play a critical role on neuronal homeostasis conditions of facultative hibernators such as the Syrian golden hamster. Indeed works have shown that the glutamatergic system of the main olfactory brain station (amygdala is capable of controlling thermoregulatory responses, which are considered vital for the different hibernating states. In the present study the role of amygdalar glutamatergic circuits on non-hibernating (NHIB and hibernating (HIB hamsters were assessed on drinking stimuli and subsequently compared to expression variations of some glutamatergic subtype mRNA levels in limbic areas. For this study the two major glutamatergic antagonists and namely that of N-methyl-D-aspartate receptor (NMDAR, 3-(+-2-carboxypiperazin-4-yl-propyl-1-phosphonate (CPP plus that of the acid α-amine-3-hydroxy-5-metil-4-isoxazol-propionic receptor (AMPAR site, cyano-7-nitro-quinoxaline-2,3-dione (CNQX were infused into the basolateral amygdala nucleus. Attempts were made to establish the type of effects evoked by amygdalar glutamatergic cross-talking processes during drinking stimuli, a response that may corroborate their major role at least during some stages of this physiological activity in hibernators. Results From the behavioral results it appears that the two glutamatergic compounds exerted distinct effects. In the first case local infusion of basolateral complexes (BLA with NMDAR antagonist caused very great (p Conclusion We conclude that predominant drinking events evoked by glutamatergic mechanisms, in the presence of prevalently down regulated levels of NR1/2A of some telencephalic and hypothalamic areas appear to constitute an important neuronal switch at least during arousal stage of hibernation. The establishment of the type of glutamatergic subtypes that are linked to successful hibernating states, via drinking stimuli, may have useful bearings toward sleeping disorders.

  19. Disruption of Memory Reconsolidation Erases a Fear Memory Trace in the Human Amygdala: An 18-Month Follow-Up.

    Directory of Open Access Journals (Sweden)

    Johannes Björkstrand

    Full Text Available Fear memories can be attenuated by reactivation followed by disrupted reconsolidation. Using functional magnetic resonance imaging we recently showed that reactivation and reconsolidation of a conditioned fear memory trace in the basolateral amygdala predicts subsequent fear expression over two days, while reactivation followed by disrupted reconsolidation abolishes the memory trace and suppresses fear. In this follow-up study we demonstrate that the behavioral effect persists over 18 months reflected in superior reacquisition after undisrupted, as compared to disrupted reconsolidation, and that neural activity in the basolateral amygdala representing the initial fear memory predicts return of fear. We conclude that disrupting reconsolidation have long lasting behavioral effects and may permanently erase the fear component of an amygdala-dependent memory.

  20. Disrupting astrocyte–neuron lactate transfer persistently reduces conditioned responses to cocaine

    KAUST Repository

    Boury-Jamot, B

    2015-10-27

    A central problem in the treatment of drug addiction is the high risk of relapse often precipitated by drug-associated cues. The transfer of glycogen-derived lactate from astrocytes to neurons is required for long-term memory. Whereas blockade of drug memory reconsolidation represents a potential therapeutic strategy, the role of astrocyte–neuron lactate transport in long-term conditioning has received little attention. By infusing an inhibitor of glycogen phosphorylase into the basolateral amygdala of rats, we report that disruption of astrocyte-derived lactate not only transiently impaired the acquisition of a cocaine-induced conditioned place preference but also persistently disrupted an established conditioning. The drug memory was rescued by L-Lactate co-administration through a mechanism requiring the synaptic plasticity-related transcription factor Zif268 and extracellular signal-regulated kinase (ERK) signalling pathway but not the brain-derived neurotrophic factor (Bdnf). The long-term amnesia induced by glycogenolysis inhibition and the concomitant decreased expression of phospho-ERK were both restored with L-Lactate co-administration. These findings reveal a critical role for astrocyte-derived lactate in positive memory formation and highlight a novel amygdala-dependent reconsolidation process, whose disruption may offer a novel therapeutic target to reduce the long-lasting conditioned responses to cocaine.

  1. Disrupting astrocyte–neuron lactate transfer persistently reduces conditioned responses to cocaine

    KAUST Repository

    Boury-Jamot, B; Carrard, A; Martin, J L; Halfon, O; Magistretti, Pierre J.; Boutrel, B

    2015-01-01

    A central problem in the treatment of drug addiction is the high risk of relapse often precipitated by drug-associated cues. The transfer of glycogen-derived lactate from astrocytes to neurons is required for long-term memory. Whereas blockade of drug memory reconsolidation represents a potential therapeutic strategy, the role of astrocyte–neuron lactate transport in long-term conditioning has received little attention. By infusing an inhibitor of glycogen phosphorylase into the basolateral amygdala of rats, we report that disruption of astrocyte-derived lactate not only transiently impaired the acquisition of a cocaine-induced conditioned place preference but also persistently disrupted an established conditioning. The drug memory was rescued by L-Lactate co-administration through a mechanism requiring the synaptic plasticity-related transcription factor Zif268 and extracellular signal-regulated kinase (ERK) signalling pathway but not the brain-derived neurotrophic factor (Bdnf). The long-term amnesia induced by glycogenolysis inhibition and the concomitant decreased expression of phospho-ERK were both restored with L-Lactate co-administration. These findings reveal a critical role for astrocyte-derived lactate in positive memory formation and highlight a novel amygdala-dependent reconsolidation process, whose disruption may offer a novel therapeutic target to reduce the long-lasting conditioned responses to cocaine.

  2. Chronic stress exacerbates neuropathic pain via the integration of stress-affect-related information with nociceptive information in the central nucleus of the amygdala.

    Science.gov (United States)

    Li, Ming-Jia; Liu, Ling-Yu; Chen, Lin; Cai, Jie; Wan, You; Xing, Guo-Gang

    2017-04-01

    Exacerbation of pain by chronic stress and comorbidity of pain with stress-related psychiatric disorders, including anxiety and depression, represent significant clinical challenges. However, the underlying mechanisms still remain unclear. Here, we investigated whether chronic forced swim stress (CFSS)-induced exacerbation of neuropathic pain is mediated by the integration of stress-affect-related information with nociceptive information in the central nucleus of the amygdala (CeA). We first demonstrated that CFSS indeed produces both depressive-like behaviors and exacerbation of spared nerve injury (SNI)-induced mechanical allodynia in rats. Moreover, we revealed that CFSS induces both sensitization of basolateral amygdala (BLA) neurons and augmentation of long-term potentiation (LTP) at the BLA-CeA synapse and meanwhile, exaggerates both SNI-induced sensitization of CeA neurons and LTP at the parabrachial (PB)-CeA synapse. In addition, we discovered that CFSS elevates SNI-induced functional up-regulation of GluN2B-containing NMDA (GluN2B-NMDA) receptors in the CeA, which is proved to be necessary for CFSS-induced augmentation of LTP at the PB-CeA synapse and exacerbation of pain hypersensitivity in SNI rats. Suppression of CFSS-elicited depressive-like behaviors by antidepressants imipramine or ifenprodil inhibits the CFSS-induced exacerbation of neuropathic pain. Collectively, our findings suggest that CFSS potentiates synaptic efficiency of the BLA-CeA pathway, leading to the activation of GluN2B-NMDA receptors and sensitization of CeA neurons, which subsequently facilitate pain-related synaptic plasticity of the PB-CeA pathway, thereby exacerbating SNI-induced neuropathic pain. We conclude that chronic stress exacerbates neuropathic pain via the integration of stress-affect-related information with nociceptive information in the CeA.

  3. Priming stimulation of basal but not lateral amygdala affects long-term potentiation in the rat dentate gyrus in vivo.

    Science.gov (United States)

    Li, Z; Richter-Levin, G

    2013-08-29

    The amygdaloid complex, or amygdala, has been implicated in assigning emotional significance to sensory information and producing appropriate behavioral responses to external stimuli. The lateral and basal nuclei (lateral and basal amygdala), which are termed together as basolateral amygdala, play a critical role in emotional and motivational learning and memory. It has been established that the basolateral amygdala activation by behavioral manipulations or direct electrical stimulation can modulate hippocampal long-term potentiation (LTP), a putative cellular mechanism of memory. However, the specific functional role of each subnucleus in the modulation of hippocampal LTP has not been studied yet, even though studies have shown cytoarchitectural differences between the basal and lateral amygdala and differences in the connections of each one of them to other brain areas. In this study we have tested the effects of lateral or basal amygdala pre-stimulation on hippocampal dentate gyrus LTP, induced by theta burst stimulation of the perforant path, in anesthetized rats. We found that while priming stimulation of the lateral amygdala did not affect LTP of the dentate gyrus, priming stimulation of the basal amygdala enhanced the LTP response when the priming stimulation was relatively weak, but impaired it when it was relatively strong. These results show that the basal and lateral nuclei of the amygdala, which have been already shown to differ in their anatomy and connectivity, may also have different functional roles. These findings raise the possibility that the lateral and basal amygdala differentially modulate memory processes in the hippocampus under emotional and motivational situations. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. [Food-procuring stereotype movements is accompanied by changes of c-Fos gene expression in the amygdala and modulation of heart rate in rats].

    Science.gov (United States)

    Dovgan', O V; Vlasenko, O V; Buzyka, T V; Maĭs'kyĭ, V O; Piliavs'kyĭ, O I; Maznychenko, A V

    2012-01-01

    The distribution of Fos-immunoreactive (Fos-ir) and NADPH Diaphorase reactive (NADPH-dr-) neurons in the different subnuclei of amygdala and insular cortex (on the level -2,12 to -3,14 mm from bregma), and the associated changes of heart rate (HR) in intact, food-deprivated and executed food-procuring movements of rats were studied. In comparison with other groups of animals, the mean number of the Fos-ir neurons in the central nucleus of amygdala (Ce) and the insular cortex (GI/DI) at all studied levels was significantly greater in the executed food-procuring movements in rats. The main focus of localization of the Fos-ir neurons was found in lateral part of the Ce (58.5 +/- 1.9 units in 40-microm-thick section) at the level -2.56 mm. The mean number of Fos-ir neurons was significantly greater also in the lateral and capsular parts of the Ce. The mean number of Fos-ir neurons in the GI/DI was 165.5 +/- 3.2 cells in section. The number and density of NADPH-d reactive neurons was not significantly different in the brain structures of all animal groups studied. The double stained neurons (Fos-ir + NADPH-dr) were registered in medial, basolateral, anterior cortical amygdaloid nuclei and substantia innominata (SI) in rats after realization food-procuring movements. It was found that realization of food-procuring movements by the forelimb during repeated sessions was accompanied with the gradual decline of mean values of the HR (from 5% to 12% of control level) with subsequent renewal of them to the initial values (tonic component). The analysis of dynamics of the HR changes during realization of separate purposeful motion has shown the transient period of the HR suppression (500 ms), which coincided with the terminal phase of grasping of food pellet (phasic component). We suggest that the revealed focuses of localization of Fos-ir neurons in the lateral and medial subregions of amigdaloid Ce and also GI/DI, and SI testified that these structures of brain are involved

  5. Factors that Determine the Non-Linear Amygdala Influence on Hippocampus-Dependent Memory

    OpenAIRE

    Akirav, Irit; Richter-Levin, Gal

    2006-01-01

    Stressful experiences are known to either improve or impair hippocampal-dependent memory tasks and synaptic plasticity. These positive and negative effects of stress on the hippocampus have been largely documented, however little is known about the mechanism involved in the twofold influence of stress on hippocampal functioning and about what factors define an enhancing or inhibitory outcome. We have recently demonstrated that activation of the basolateral amygdala can produce a biphasic effe...

  6. Intra-Amygdala ZIP Injections Impair the Memory of Learned Active Avoidance Responses and Attenuate Conditioned Taste-Aversion Acquisition in Rats

    Science.gov (United States)

    Gamiz, Fernando; Gallo, Milagros

    2011-01-01

    We have investigated the effect of protein kinase Mzeta (PKM[zeta]) inhibition in the basolateral amygdala (BLA) upon the retention of a nonspatial learned active avoidance response and conditioned taste-aversion (CTA) acquisition in rats. ZIP (10 nmol/[mu]L) injected into the BLA 24 h after training impaired retention of a learned…

  7. The human amygdala parametrically encodes the intensity of specific facial emotions and their categorical ambiguity

    Science.gov (United States)

    Wang, Shuo; Yu, Rongjun; Tyszka, J. Michael; Zhen, Shanshan; Kovach, Christopher; Sun, Sai; Huang, Yi; Hurlemann, Rene; Ross, Ian B.; Chung, Jeffrey M.; Mamelak, Adam N.; Adolphs, Ralph; Rutishauser, Ueli

    2017-01-01

    The human amygdala is a key structure for processing emotional facial expressions, but it remains unclear what aspects of emotion are processed. We investigated this question with three different approaches: behavioural analysis of 3 amygdala lesion patients, neuroimaging of 19 healthy adults, and single-neuron recordings in 9 neurosurgical patients. The lesion patients showed a shift in behavioural sensitivity to fear, and amygdala BOLD responses were modulated by both fear and emotion ambiguity (the uncertainty that a facial expression is categorized as fearful or happy). We found two populations of neurons, one whose response correlated with increasing degree of fear, or happiness, and a second whose response primarily decreased as a linear function of emotion ambiguity. Together, our results indicate that the human amygdala processes both the degree of emotion in facial expressions and the categorical ambiguity of the emotion shown and that these two aspects of amygdala processing can be most clearly distinguished at the level of single neurons. PMID:28429707

  8. Mechanisms Contributing to the Induction and Storage of Pavlovian Fear Memories in the Lateral Amygdala

    Science.gov (United States)

    Kim, Dongbeom; Pare, Denis; Nair, Satish S.

    2013-01-01

    The relative contributions of plasticity in the amygdala vs. its afferent pathways to conditioned fear remain controversial. Some believe that thalamic and cortical neurons transmitting information about the conditioned stimulus (CS) to the lateral amygdala (LA) serve a relay function. Others maintain that thalamic and/or cortical plasticity is…

  9. The amygdala and basal forebrain as a pathway for motivationally guided attention.

    Science.gov (United States)

    Peck, Christopher J; Salzman, C Daniel

    2014-10-08

    Visual stimuli associated with rewards attract spatial attention. Neurophysiological mechanisms that mediate this process must register both the motivational significance and location of visual stimuli. Recent neurophysiological evidence indicates that the amygdala encodes information about both of these parameters. Furthermore, the firing rate of amygdala neurons predicts the allocation of spatial attention. One neural pathway through which the amygdala might influence attention involves the intimate and bidirectional connections between the amygdala and basal forebrain (BF), a brain area long implicated in attention. Neurons in the rhesus monkey amygdala and BF were therefore recorded simultaneously while subjects performed a detection task in which the stimulus-reward associations of visual stimuli modulated spatial attention. Neurons in BF were spatially selective for reward-predictive stimuli, much like the amygdala. The onset of reward-predictive signals in each brain area suggested different routes of processing for reward-predictive stimuli appearing in the ipsilateral and contralateral fields. Moreover, neurons in the amygdala, but not BF, tracked trial-to-trial fluctuations in spatial attention. These results suggest that the amygdala and BF could play distinct yet inter-related roles in influencing attention elicited by reward-predictive stimuli. Copyright © 2014 the authors 0270-6474/14/3413757-11$15.00/0.

  10. Stress Sensitive Healthy Females Show Less Left Amygdala Activation in Response to Withdrawal-Related Visual Stimuli under Passive Viewing Conditions

    Science.gov (United States)

    Baeken, Chris; Van Schuerbeek, Peter; De Raedt, Rudi; Vanderhasselt, Marie-Anne; De Mey, Johan; Bossuyt, Axel; Luypaert, Robert

    2012-01-01

    The amygdalae are key players in the processing of a variety of emotional stimuli. Especially aversive visual stimuli have been reported to attract attention and activate the amygdalae. However, as it has been argued that passively viewing withdrawal-related images could attenuate instead of activate amygdalae neuronal responses, its role under…

  11. Decreased expression of extracellular matrix proteins and trophic factors in the amygdala complex of depressed mice after chronic immobilization stress

    Directory of Open Access Journals (Sweden)

    Jung Soonwoong

    2012-06-01

    Full Text Available Abstract Background The amygdala plays an essential role in controlling emotional behaviors and has numerous connections to other brain regions. The functional role of the amygdala has been highlighted by various studies of stress-induced behavioral changes. Here we investigated gene expression changes in the amygdala in the chronic immobilization stress (CIS-induced depression model. Results Eight genes were decreased in the amygdala of CIS mice, including genes for neurotrophic factors and extracellular matrix proteins. Among these, osteoglycin, fibromodulin, insulin-like growth factor 2 (Igf2, and insulin-like growth factor binding protein 2 (Igfbp2 were further analyzed for histological expression changes. The expression of osteoglycin and fibromodulin simultaneously decreased in the medial, basolateral, and central amygdala regions. However, Igf2 and Igfbp2 decreased specifically in the central nucleus of the amygdala. Interestingly, this decrease was found only in the amygdala of mice showing higher immobility, but not in mice displaying lower immobility, although the CIS regimen was the same for both groups. Conclusions These results suggest that the responsiveness of the amygdala may play a role in the sensitivity of CIS-induced behavioral changes in mice.

  12. Chemosensory function of the amygdala.

    Science.gov (United States)

    Gutiérrez-Castellanos, Nicolás; Martínez-Marcos, Alino; Martínez-García, Fernando; Lanuza, Enrique

    2010-01-01

    The chemosensory amygdala has been traditionally divided into two divisions based on inputs from the main (olfactory amygdala) or accessory (vomeronasal amygdala) olfactory bulbs, supposedly playing different and independent functional roles detecting odors and pheromones, respectively. Recently, there has been increased anatomical evidence of convergence inputs from the main and accessory bulbs in some areas of the amygdala, and this is correlated with functional evidence of interrelationships between the olfactory and the vomeronasal systems. This has lead to the characterization of a third division of the chemosensory amygdala, the mixed chemosensory amygdala, providing a new perspective of how chemosensory information is processed in the amygdaloid complex, in particular in relation to emotional behaviors. In this chapter, we analyze the anatomical and functional organization of the chemosensory amygdala from this new perspective. Finally, the evolutionary changes of the chemosensory nuclei of the mammalian amygdala are discussed, paying special attention to the case of primates, including humans. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. A model of amygdala-hippocampal-prefrontal interaction in fear conditioning and extinction in animals

    Science.gov (United States)

    Moustafa, Ahmed A.; Gilbertson, Mark W.; Orr, Scott P.; Herzallah, Mohammad M.; Servatius, Richard. J.; Myers, Catherine E.

    2012-01-01

    Empirical research has shown that the amygdala, hippocampus, and ventromedial prefrontal cortex (vmPFC) are involved in fear conditioning. However, the functional contribution of each brain area and the nature of their interactions are not clearly understood. Here, we extend existing neural network models of the functional roles of the hippocampus in classical conditioning to include interactions with the amygdala and prefrontal cortex. We apply the model to fear conditioning, in which animals learn physiological (e.g. heart rate) and behavioral (e.g. freezing) responses to stimuli that have been paired with a highly aversive event (e.g. electrical shock). The key feature of our model is that learning of these conditioned responses in the central nucleus of the amygdala is modulated by two separate processes, one from basolateral amygdala and signaling a positive prediction error, and one from the vmPFC, via the intercalated cells of the amygdala, and signaling a negative prediction error. In addition, we propose that hippocampal input to both vmPFC and basolateral amygdala is essential for contextual modulation of fear acquisition and extinction. The model is sufficient to account for a body of data from various animal fear conditioning paradigms, including acquisition, extinction, reacquisition, and context specificity effects. Consistent with studies on lesioned animals, our model shows that damage to the vmPFC impairs extinction, while damage to the hippocampus impairs extinction in a different context (e.g., a different conditioning chamber from that used in initial training in animal experiments). We also discuss model limitations and predictions, including the effects of number of training trials on fear conditioning. PMID:23164732

  14. Morphine treatment enhances glutamatergic input onto neurons of the nucleus accumbens via both disinhibitory and stimulating effect.

    Science.gov (United States)

    Yuan, Kejing; Sheng, Huan; Song, Jiaojiao; Yang, Li; Cui, Dongyang; Ma, Qianqian; Zhang, Wen; Lai, Bin; Chen, Ming; Zheng, Ping

    2017-11-01

    Drug addiction is a chronic brain disorder characterized by the compulsive repeated use of drugs. The reinforcing effect of repeated use of drugs on reward plays an important role in morphine-induced addictive behaviors. The nucleus accumbens (NAc) is an important site where morphine treatment produces its reinforcing effect on reward. However, how morphine treatment produces its reinforcing effect on reward in the NAc remains to be clarified. In the present study, we studied the influence of morphine treatment on the effects of DA and observed whether morphine treatment could directly change glutamatergic synaptic transmission in the NAc. We also explored the functional significance of morphine-induced potentiation of glutamatergic synaptic transmission in the NAc at behavioral level. Our results show that (1) morphine treatment removes the inhibitory effect of DA on glutamatergic input onto NAc neurons; (2) morphine treatment potentiates glutamatergic input onto NAc neurons, especially the one from the basolateral amygdala (BLA) to the NAc; (3) blockade of glutamatergic synaptic transmission in the NAc or ablation of projection neurons from BLA to NAc significantly decreases morphine treatment-induced increase in locomotor activity. These results suggest that morphine treatment enhances glutamatergic input onto neurons of the NAc via both disinhibitory and stimulating effect and therefore increases locomotor activity. © 2016 Society for the Study of Addiction.

  15. Amygdala-prefrontal pathways and the dopamine system affect nociceptive responses in the prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Onozawa Kitaro

    2011-11-01

    Full Text Available Abstract Background We previously demonstrated nociceptive discharges to be evoked by mechanical noxious stimulation in the prefrontal cortex (PFC. The nociceptive responses recorded in the PFC are conceivably involved in the affective rather than the sensory-discriminative dimension of pain. The PFC receives dense projection from the limbic system. Monosynaptic projections from the basolateral nucleus of the amygdala (BLA to the PFC are known to produce long-lasting synaptic plasticity. We examined effects of high frequency stimulation (HFS delivered to the BLA on nociceptive responses in the rat PFC. Results HFS induced long lasting suppression (LLS of the specific high threshold responses of nociceptive neurons in the PFC. Microinjection of N-methyl-D-aspartic acid (NMDA receptor antagonists (2-amino-5-phosphonovaleric acid (APV, dizocilpine (MK-801 and also metabotropic glutamate receptor (mGluR group antagonists (α-methyl-4-carboxyphenylglycine (MCPG, and 2-[(1S,2S-2-carboxycyclopropyl]-3-(9H-xanthen-9-yl-D-alanine (LY341495, prevented the induction of LLS of nociceptive responses. We also examined modulatory effects of dopamine (DA on the LLS of nociceptive responses. With depletion of DA in response to 6-hydroxydopamine (6-OHDA injection into the ipsilateral forebrain bundle, LLS of nociceptive responses was decreased, while nociceptive responses were normally evoked. Antagonists of DA receptor subtypes D2 (sulpiride and D4 (3-{[4-(4-chlorophenyl piperazin-1-yl] methyl}-1H-pyrrolo [2, 3-b] pyridine (L-745,870, microinjected into the PFC, inhibited LLS of nociceptive responses. Conclusions Our results indicate that BLA-PFC pathways inhibited PFC nociceptive cell activities and that the DA system modifies the BLA-PFC regulatory function.

  16. Glucocorticoids Enhance Taste Aversion Memory via Actions in the Insular Cortex and Basolateral Amygdala

    Science.gov (United States)

    Miranda, Maria Isabel; Quirarte, Gina L.; Rodriguez-Garcia, Gabriela; McGaugh, James L.; Roozendaal, Benno

    2008-01-01

    It is well established that glucocorticoid hormones strengthen the consolidation of hippocampus-dependent spatial and contextual memory. The present experiments investigated glucocorticoid effects on the long-term formation of conditioned taste aversion (CTA), an associative learning task that does not depend critically on hippocampal function.…

  17. The Basolateral Amygdala and Nucleus Accumbens Core Mediate Dissociable Aspects of Drug Memory Reconsolidation

    Science.gov (United States)

    Theberge, Florence R. M.; Milton, Amy L.; Belin, David; Lee, Jonathan L. C.; Everitt, Barry J.

    2010-01-01

    A distributed limbic-corticostriatal circuitry is implicated in cue-induced drug craving and relapse. Exposure to drug-paired cues not only precipitates relapse, but also triggers the reactivation and reconsolidation of the cue-drug memory. However, the limbic cortical-striatal circuitry underlying drug memory reconsolidation is unclear. The aim…

  18. Translational neuroscience of basolateral amygdala lesions : Studies of Urbach-Wiethe disease

    NARCIS (Netherlands)

    Koen, N.; Fourie, J.; Terburg, D.; Stoop, R.; Morgan, B.; Stein, D. J.; van Honk, J.

    2016-01-01

    Urbach-Wiethe disease (UWD) is an extremely rare autosomal recessive disorder characterized by mutations in the extracellular matrix protein 1 gene on chromosome 1. Typical clinical manifestations include voice hoarseness in early infancy and neuropsychiatric, laryngeal, and dermatological

  19. Accumbens Shell AMPA Receptors Mediate Expression of Extinguished Reward Seeking through Interactions with Basolateral Amygdala

    Science.gov (United States)

    Millan, E. Zayra; McNally, Gavan P.

    2011-01-01

    Extinction is the reduction in drug seeking when the contingency between drug seeking behavior and the delivery of drug reward is broken. Here, we investigated a role for the nucleus accumbens shell (AcbSh). Rats were trained to respond for 4% (v/v) alcoholic beer in one context (Context A) followed by extinction in a second context (Context B).…

  20. Growth hormone biases amygdala network activation after fear learning

    OpenAIRE

    Gisabella, Barbara; Farah, Shadia; Peng, Xiaoyu; Burgos-Robles, Anthony Noel; Lim, Seh Hong; Goosens, Ki Ann

    2016-01-01

    Prolonged stress exposure is a risk factor for developing posttraumatic stress disorder, a disorder characterized by the ?over-encoding' of a traumatic experience. A potential mechanism by which this occurs is through upregulation of growth hormone (GH) in the amygdala. Here we test the hypotheses that GH promotes the over-encoding of fearful memories by increasing the number of neurons activated during memory encoding and biasing the allocation of neuronal activation, one aspect of the proce...

  1. Connections of the corticomedial amygdala in the golden hamster. II. Efferents of the ''olfactory amygdala''

    International Nuclear Information System (INIS)

    Kevetter, G.A.; Winans, S.S.

    1981-01-01

    The anterior cortical (C1) and posterolateral cortical (C2) nuclei of the amygdala are designated the ''olfactory amygdala'' because they each receive direct projections from the main olfactory bulb. The efferents of these nuclei were traced after stereotaxic placement of 1-5 muCi tritiated proline in the corticomedial amygdala of the male golden hamsters. Following survival times of 12, 24, or 48 hours, 20 micron frozen sections of the brains were processed for light microscopic autoradiography. Efferents from C2 terminate in layers II and III of the olfactory tubercle and in layer Ib of pars ventralis and pars medialis of the anterior olfactory nucleus. Fibers from this nucleus also project to layers I and II of the infralimbic cortex and to the molecular layer of the agranular insular cortex. More posteriorly, fibers from C2 terminate in layer I of the dorsolateral entorhinal cortex, and in the endopiriform nucleus. From C1, efferent fibers travel in the stria terminalis and terminate in the precommissural bed nucleus of the stria terminalis and in the mediobasal hypothalamus. Efferents from C1 also innervate the molecular layer of C2, the amygdalo-hippocampal area, and the adjacent piriform cortex. Neurons in both C1 and C2 project to the molecular layer of the medial amygdaloid nucleus and the posteromedial cortical nucleus of the amygdala, the plexiform layer of the ventral subiculum, and the molecular layer of the lateral entorhinal cortex

  2. Distinct contributions of reactive oxygen species in amygdala to bee venom-induced spontaneous pain-related behaviors.

    Science.gov (United States)

    Lu, Yun-Fei; Neugebauer, Volker; Chen, Jun; Li, Zhen

    2016-04-21

    Reactive oxygen species (ROS), such as superoxide and hydrogen peroxide, play essential roles in physiological plasticity and are also involved in the pathogenesis of persistent pain. Roles of peripheral and spinal ROS in pain have been well established, but much less is known about ROS in the amygdala, a brain region that plays an important role in pain modulation. The present study explored the contribution of ROS in the amygdala to bee venom (BV)-induced pain behaviors. Our data show that the amygdala is activated following subcutaneous BV injection into the left hindpaw, which is reflected in the increased number of c-Fos positive cells in the central and basolateral amygdala nuclei in the right hemisphere. Stereotaxic administration of a ROS scavenger (tempol, 10mM), NADPH oxidase inhibitor (baicalein, 5mM) or lipoxygenase inhibitor (apocynin, 10mM) into the right amygdala attenuated the BV-induced spontaneous licking and lifting behaviors, but had no effect on BV-induced paw flinch reflexes. Our study provides further evidence for the involvement of the amygdala in nociceptive processing and pain behaviors, and that ROS in amygdala may be a potential target for treatment strategies to inhibit pain. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Aberrant Functional Connectivity of the Amygdala Complexes in PTSD during Conscious and Subconscious Processing of Trauma-Related Stimuli.

    Directory of Open Access Journals (Sweden)

    Daniela Rabellino

    Full Text Available Post-traumatic stress disorder (PTSD is characterized by altered functional connectivity of the amygdala complexes at rest. However, amygdala complex connectivity during conscious and subconscious threat processing remains to be elucidated. Here, we investigate specific connectivity of the centromedial amygdala (CMA and basolateral amygdala (BLA during conscious and subconscious processing of trauma-related words among individuals with PTSD (n = 26 as compared to non-trauma-exposed controls (n = 20. Psycho-physiological interaction analyses were performed using the right and left amygdala complexes as regions of interest during conscious and subconscious trauma word processing. These analyses revealed a differential, context-dependent responses by each amygdala seed during trauma processing in PTSD. Specifically, relative to controls, during subconscious processing, individuals with PTSD demonstrated increased connectivity of the CMA with the superior frontal gyrus, accompanied by a pattern of decreased connectivity between the BLA and the superior colliculus. During conscious processing, relative to controls, individuals with PTSD showed increased connectivity between the CMA and the pulvinar. These findings demonstrate alterations in amygdala subregion functional connectivity in PTSD and highlight the disruption of the innate alarm network during both conscious and subconscious trauma processing in this disorder.

  4. Amygdala activation and GABAergic gene expression in hippocampal sub-regions at the interplay of stress and spatial learning

    Directory of Open Access Journals (Sweden)

    Osnat eHadad-Ophir

    2014-01-01

    Full Text Available Molecular processes in GABAergic local circuit neurons critically contribute to information processing in the hippocampus and to stress-induced activation of the amygdala. In the current study, we determined expression changes in GABA-related factors induced in subregions of the dorsal hippocampus as well as in the BLA of rats 5h after spatial learning in a Morris Water maze, using laser microdissection and quantitative real-time PCR. Spatial learning resulted in highly selective pattern of changes in hippocampal subregions: gene expression levels of neuropeptide Y were reduced in the hilus of the dentate gyrus, whereas somatostatin was increased in the stratum oriens of CA3. The GABA-synthesizing enzymes GAD65 and GAD67 as well as the neuropeptide cholecystokinin were reduced in stratum oriens of CA1. In the BLA, expression of GAD65 and GAD67 were reduced compared to a handled Control group. These expression patterns were further compared to alterations in a group of rats that have been exposed to the water maze but were not provided with an invisible escape platform. In this Water Exposure group, no expression changes were observed in any of the hippocampal subregions, but a differential regulation of all selected target genes was evident in the BLA. These findings suggest that expression changes of GABAergic factors in the hippocampus are associated with spatial learning, while additional stress effects modulate expression alterations in the BLA. Indeed, while in both experimental groups plasma corticosterone levels were enhanced, only Water Exposure stress activated the basolateral amygdala, as indicated by increased levels of phosphorylated ERK1/2. Altered GABAergic function in the BLA may thus contribute to memory consolidation in the hippocampus, in relation to levels of stress and emotionality associated with the experience.

  5. Excitant amino acid projections from rat amygdala and thalamus to nucleus accumbens

    International Nuclear Information System (INIS)

    Robinson, T.G.; Beart, P.M.

    1988-01-01

    High affinity uptake of D-[ 3 H]aspartate, [ 3 H]choline and [ 3 H]GABA was examined in synaptosomal-containing preparations of rat nucleus accumbens septi 7 to 10 days after unilateral or bilateral N-methyl-D-aspartate lesions confined to the parataenial nucleus of the thalamus or the basolateral nucleus of the amygdala. Uptake of both D-[ 3 H]aspartate and [ 3 H]choline was significantly reduced (11% and 14% less than control, respectively) by unilateral lesion of the thalamus, whereas [ 3 H]GABA uptake was unaffected. Bilateral thalamic lesions significantly reduced D-[ 3 H]aspartate uptake (11% less than control) into homogenates of the nucleus accumbens, whilst [ 3 H]GABA uptake was unaltered. D-[ 3 H]aspartate uptake was significantly reduced (26% less than control) following unilateral lesion of the amygdala, whereas both [ 3 H]GABA and [ 3 H]choline uptake were unaffected. Bilateral amygdaloid lesions significantly increased D-[ 3 H]aspartate uptake (39% greater than control), whilst uptake of [ 3 H]GABA was not affected. The results implicate glutamate and/or aspartate as putative neurotransmitters in afferent projections from the basolateral amygdala and the parataenial thalamus to the nucleus accumbens. Thalamic afferents to the nucleus accumbens may also utilize acetylcholine as their transmitter

  6. Mesolimbic dopaminergic supersensitivity following electrical kindling of the amygdala

    International Nuclear Information System (INIS)

    Csernansky, J.G.; Mellentin, J.; Beauclair, L.; Lombrozo, L.

    1988-01-01

    Limbic seizures developed in rats following daily electrical stimulation of the basolateral nucleus of the amygdala. Animals were designated as kindled after five complete (stage 5) behavioral seizures were observed. A subgroup, designated as superkindled, received three additional weeks of electrical stimulations. Kindled rats were significantly subsensitive to the stereotypy-inducing effects of apomorphine, a direct dopamine agonist, compared to controls. Superkindled rats were supersensitive to the effects of apomorphine. However, both kindled and superkindled rats demonstrated an increase in 3 H-spiperone Bmax values, reflecting dopamine D2-receptor densities, in the nucleus accumbens ipsilateral to the stimulating electrode. The number of interictal spikes recorded from the stimulating amygdaloid electrode during the last week of kindling was correlated with changes in apomorphine sensitivity in individual animals

  7. Recurrent hypoglycemia increases anxiety and amygdala norepinephrine release during subsequent hypoglycemia

    Directory of Open Access Journals (Sweden)

    Ewan eMcNay

    2015-11-01

    Full Text Available Recurrent hypoglycemia (RH is a common and debilitating side effect of therapy in patients with both type 1 and, increasingly, type 2 diabetes. Previous studies in rats have shown marked effects of RH on subsequent hippocampal behavioral, metabolic, and synaptic processes. In addition to impaired memory, patients experiencing RH report alterations in cognitive processes that include mood and anxiety, suggesting that RH may also affect amygdala function. We tested the impact of RH on amygdala function using an elevated plus-maze test of anxiety together with in vivo amygdala microdialysis for norepinephrine (NEp, a widely used marker of basolateral amygdala cognitive processes. In contrast to findings in the hippocampus and pre-frontal cortex, neither RH nor acute hypoglycemia alone significantly affected plus-maze performance or NEp release. However, animals tested when hypoglycemic who had previously experienced RH had elevated amygdala NEp during plus-maze testing, accompanied by increased anxiety (i.e. less time spent in the open arms of the plus-maze. The results show that RH has widespread effects on subsequent brain function, which vary by neural system.

  8. Features of amygdala in patients with mesial temporal lobe epilepsy and hippocampal sclerosis: An MRI volumetric and histopathological study.

    Science.gov (United States)

    Nakayama, Yoko; Masuda, Hiroshi; Shirozu, Hiroshi; Ito, Yosuke; Higashijima, Takefumi; Kitaura, Hiroki; Fujii, Yukihiko; Kakita, Akiyoshi; Fukuda, Masafumi

    2017-09-01

    It is well-known that there is a correlation between the neuropathological grade of hippocampal sclerosis (HS) and neuroradiological atrophy of the hippocampus in mesial temporal lobe epilepsy (mTLE) patients. However, there is no strict definition or criterion regarding neuron loss and atrophy of the amygdala neighboring the hippocampus. We examined the relationship between HS and neuronal loss in the amygdala. Nineteen mTLE patients with neuropathological proof of HS were assigned to Group A, while seven mTLE patients without HS were assigned to Group B. We used FreeSurfer software to measure amygdala volume automatically based on pre-operation magnetic resonance images. Neurons observed using Klüver-Barrera (KB) staining in resected amygdala tissue were counted. and the extent of immunostaining with stress marker antibodies was semiquantitatively evaluated. There was no significant difference in amygdala volume between the two groups (Group A: 1.41±0.24; Group B: 1.41±0.29cm 3 ; p=0.98), nor in the neuron cellularity of resected amygdala specimens (Group A: 3.98±0.97; Group B: 3.67±0.67 10× -4 number of neurons/μm 2 ; p=0.40). However, the HSP70 level, representing acute stress against epilepsy, in Group A patients was significantly larger than that in Group B. There was no significant difference in the level of Bcl-2, which is known as a protein that inhibits cell death, between the two groups. Neuronal loss and volume loss in the amygdala may not necessarily follow hippocampal sclerosis. From the analysis of stress proteins, epileptic attacks are as likely to damage the amygdala as the hippocampus but do not lead to neuronal death in the amygdala. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Volumetric associations between uncinate fasciculus, amygdala, and trait anxiety

    Directory of Open Access Journals (Sweden)

    Baur Volker

    2012-01-01

    Full Text Available Abstract Background Recent investigations of white matter (WM connectivity suggest an important role of the uncinate fasciculus (UF, connecting anterior temporal areas including the amygdala with prefrontal-/orbitofrontal cortices, for anxiety-related processes. Volume of the UF, however, has rarely been investigated, but may be an important measure of structural connectivity underlying limbic neuronal circuits associated with anxiety. Since UF volumetric measures are newly applied measures, it is necessary to cross-validate them using further neural and behavioral indicators of anxiety. Results In a group of 32 subjects not reporting any history of psychiatric disorders, we identified a negative correlation between left UF volume and trait anxiety, a finding that is in line with previous results. On the other hand, volume of the left amygdala, which is strongly connected with the UF, was positively correlated with trait anxiety. In addition, volumes of the left UF and left amygdala were inversely associated. Conclusions The present study emphasizes the role of the left UF as candidate WM fiber bundle associated with anxiety-related processes and suggests that fiber bundle volume is a WM measure of particular interest. Moreover, these results substantiate the structural relatedness of UF and amygdala by a non-invasive imaging method. The UF-amygdala complex may be pivotal for the control of trait anxiety.

  10. Pain-related increase of excitatory transmission and decrease of inhibitory transmission in the central nucleus of the amygdala are mediated by mGluR1

    Directory of Open Access Journals (Sweden)

    Neugebauer Volker

    2010-12-01

    Full Text Available Abstract Neuroplasticity in the central nucleus of the amygdala (CeA, particularly its latero-capsular division (CeLC, is an important contributor to the emotional-affective aspects of pain. Previous studies showed synaptic plasticity of excitatory transmission to the CeLC in different pain models, but pain-related changes of inhibitory transmission remain to be determined. The CeLC receives convergent excitatory inputs from the parabrachial nucleus in the brainstem and from the basolateral amygdala (BLA. In addition, feedforward inhibition of CeA neurons is driven by glutamatergic projections from the BLA area to a cluster of GABAergic neurons in the intercalated cell masses (ITC. Using patch-clamp in rat brain slices we measured monosynaptic excitatory postsynaptic currents (EPSCs and polysynaptic inhibitory currents (IPSCs that were evoked by electrical stimulation in the BLA. In brain slices from arthritic rats, input-output functions of excitatory synaptic transmission were enhanced whereas inhibitory synaptic transmission was decreased compared to control slices from normal untreated rats. A non-NMDA receptor antagonist (NBQX blocked the EPSCs and reduced the IPSCs, suggesting that non-NMDA receptors mediate excitatory transmission and also contribute to glutamate-driven feed-forward inhibition of CeLC neurons. IPSCs were blocked by a GABAA receptor antagonist (bicuculline. Bicuculline increased EPSCs under normal conditions but not in slices from arthritic rats, which indicates a loss of GABAergic control of excitatory transmission. A metabotropic glutamate receptor subtype 1 (mGluR1 antagonist (LY367385 reversed both the increase of excitatory transmission and the decrease of inhibitory transmission in the arthritis pain model but had no effect on basal synaptic transmission in control slices from normal rats. The inhibitory effect of LY367385 on excitatory transmission was blocked by bicuculline suggesting the involvement of a GABAergic

  11. Intranasal Oxytocin Normalizes Amygdala Functional Connectivity in Posttraumatic Stress Disorder.

    Science.gov (United States)

    Koch, Saskia B J; van Zuiden, Mirjam; Nawijn, Laura; Frijling, Jessie L; Veltman, Dick J; Olff, Miranda

    2016-07-01

    The neuropeptide oxytocin (OT) has been suggested as a promising pharmacological agent for medication-enhanced psychotherapy in posttraumatic stress disorder (PTSD) because of its anxiolytic and prosocial properties. We therefore investigated the behavioral and neurobiological effects of a single intranasal OT administration (40 IU) in PTSD patients. We conducted a randomized, placebo-controlled, cross-over resting-state fMRI study in male and female police officers with (n=37, 21 males) and without PTSD (n=40, 20 males). We investigated OT administration effects on subjective anxiety and functional connectivity of basolateral (BLA) and centromedial (CeM) amygdala subregions with prefrontal and salience processing areas. In PTSD patients, OT administration resulted in decreased subjective anxiety and nervousness. Under placebo, male PTSD patients showed diminished right CeM to left ventromedial prefrontal cortex (vmPFC) connectivity compared with male trauma-exposed controls, which was reinstated after OT administration. Additionally, female PTSD patients showed enhanced right BLA to bilateral dorsal anterior cingulate cortex (dACC) connectivity compared with female trauma-exposed controls, which was dampened after OT administration. Although caution is warranted, our findings tentatively suggest that OT has the potential to diminish anxiety and fear expression of the amygdala in PTSD, either via increased control of the vmPFC over the CeM (males) or via decreased salience processing of the dACC and BLA (females). Our findings add to accumulating evidence that OT administration could potentially enhance treatment response in PTSD.

  12. Stress, memory and the amygdala.

    Science.gov (United States)

    Roozendaal, Benno; McEwen, Bruce S; Chattarji, Sumantra

    2009-06-01

    Emotionally significant experiences tend to be well remembered, and the amygdala has a pivotal role in this process. But the efficient encoding of emotional memories can become maladaptive - severe stress often turns them into a source of chronic anxiety. Here, we review studies that have identified neural correlates of stress-induced modulation of amygdala structure and function - from cellular mechanisms to their behavioural consequences. The unique features of stress-induced plasticity in the amygdala, in association with changes in other brain regions, could have long-term consequences for cognitive performance and pathological anxiety exhibited in people with affective disorders.

  13. Disorganized Amygdala Networks in Conduct-Disordered Juvenile Offenders With Callous-Unemotional Traits.

    Science.gov (United States)

    Aghajani, Moji; Klapwijk, Eduard T; van der Wee, Nic J; Veer, Ilya M; Rombouts, Serge A R B; Boon, Albert E; van Beelen, Peter; Popma, Arne; Vermeiren, Robert R J M; Colins, Olivier F

    2017-08-15

    The developmental trajectory of psychopathy seemingly begins early in life and includes the presence of callous-unemotional (CU) traits (e.g., deficient emotional reactivity, callousness) in conduct-disordered (CD) youth. Though subregion-specific anomalies in amygdala function have been suggested in CU pathophysiology among antisocial populations, system-level studies of CU traits have typically examined the amygdala as a unitary structure. Hence, nothing is yet known of how amygdala subregional network function may contribute to callous-unemotionality in severely antisocial people. We addressed this important issue by uniquely examining the intrinsic functional connectivity of basolateral amygdala (BLA) and centromedial amygdala (CMA) networks across three matched groups of juveniles: CD offenders with CU traits (CD/CU+; n = 25), CD offenders without CU traits (CD/CU-; n = 25), and healthy control subjects (n = 24). We additionally examined whether perturbed amygdala subregional connectivity coincides with altered volume and shape of the amygdaloid complex. Relative to CD/CU- and healthy control youths, CD/CU+ youths showed abnormally increased BLA connectivity with a cluster that included both dorsal and ventral portions of the anterior cingulate and medial prefrontal cortices, along with posterior cingulate, sensory associative, and striatal regions. In contrast, compared with CD/CU- and healthy control youths, CD/CU+ youths showed diminished CMA connectivity with ventromedial/orbitofrontal regions. Critically, these connectivity changes coincided with local hypotrophy of BLA and CMA subregions (without being statistically correlated) and were associated to more severe CU symptoms. These findings provide unique insights into a putative mechanism for perturbed attention-emotion interactions, which could bias salience processing and associative learning in youth with CD/CU+. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights

  14. Developmental exposure to an environmental PCB mixture delays the propagation of electrical kindling from the amygdala.

    Science.gov (United States)

    Bandara, Suren B; Sadowski, Renee N; Schantz, Susan L; Gilbert, Mary E

    2017-01-01

    Developmental PCB exposure impairs hearing and induces brainstem audiogenic seizures in adult offspring. The degree to which this enhanced susceptibility to seizure is manifest in other brain regions has not been examined. Thus, electrical kindling of the amygdala was used to evaluate the effect of developmental exposure to an environmentally relevant PCB mixture on seizure susceptibility in the rat. Female Long-Evans rats were dosed orally with 0 or 6mg/kg/day of the PCB mixture dissolved in corn oil vehicle 4 weeks prior to mating and continued through gestation and up until postnatal day (PND) 21. On PND 21, pups were weaned, and two males from each litter were randomly selected for the kindling study. As adults, the male rats were implanted bilaterally with electrodes in the basolateral amygdala. For each animal, afterdischarge (AD) thresholds in the amygdala were determined on the first day of testing followed by once daily stimulation at a standard 200μA stimulus intensity until three stage 5 generalized seizures (GS) ensued. Developmental PCB exposure did not affect the AD threshold or total cumulative AD duration, but PCB exposure did increase the latency to behavioral manifestations of seizure propagation. PCB exposed animals required significantly more stimulations to reach stage 2 seizures compared to control animals, indicating attenuated focal (amygdala) excitability. A delay in kindling progression in the amygdala stands in contrast to our previous finding of increased susceptibility to brainstem-mediated audiogenic seizures in PCB-exposed animals in response to a an intense auditory stimulus. These seemingly divergent results are not unexpected given the distinct source, type, and mechanistic underpinnings of these different seizure models. A delay in epileptogenesis following focal amygdala stimulation may reflect a decrease in neuroplasticity following developmental PCB exposure consistent with reductions in use-dependent synaptic plasticity that

  15. Afferent and Efferent Connections of the Cortex-Amygdala Transition Zone in Mice.

    Science.gov (United States)

    Cádiz-Moretti, Bernardita; Abellán-Álvaro, María; Pardo-Bellver, Cecília; Martínez-García, Fernando; Lanuza, Enrique

    2016-01-01

    The transitional zone between the ventral part of the piriform cortex and the anterior cortical nucleus of the amygdala, named the cortex-amygdala transition zone (CxA), shows two differential features that allow its identification as a particular structure. First, it receives dense cholinergic and dopaminergic innervations as compared to the adjacent piriform cortex and amygdala, and second, it receives projections from the main and accessory olfactory bulbs. In this work we have studied the pattern of afferent and efferent projections of the CxA, which are mainly unknown, by using the retrograde tracer Fluorogold and the anterograde tracer biotinylated dextranamine. The results show that the CxA receives a relatively restricted set of intratelencephalic connections, originated mainly by the olfactory system and basal forebrain, with minor afferents from the amygdala. The only relevant extratelencephalic afference originates in the ventral tegmental area (VTA). The efferent projections of the CxA reciprocate the inputs from the piriform cortex and olfactory amygdala. In addition, the CxA projects densely to the basolateral amygdaloid nucleus and the olfactory tubercle. The extratelencephalic projections of the CxA are very scarce, and target mainly hypothalamic structures. The pattern of connections of the CxA suggests that it is indeed a transitional area between the piriform cortex and the cortical amygdala. Double labeling with choline acetyltransferase indicates that the afferent projection from the basal forebrain is the origin of its distinctive cholinergic innervation, and double labeling with dopamine transporter shows that the projection from the VTA is the source of dopaminergic innervation. These connectivity and neurochemical features, together with the fact that it receives vomeronasal in addition to olfactory information, suggest that the CxA may be involved in processing olfactory information endowed with relevant biological meaning, such as odors

  16. Quantification of extracellular levels of corticosterone in the basolateral amygdaloid complex of freely-moving rats: a dialysis study of circadian variation and stress-induced modulation.

    Science.gov (United States)

    Bouchez, Gaëlle; Millan, Mark J; Rivet, Jean-Michel; Billiras, Rodolphe; Boulanger, Raphaël; Gobert, Alain

    2012-05-03

    Corticosterone influences emotion and cognition via actions in a diversity of corticolimbic structures, including the amygdala. Since extracellular levels of corticosterone in brain have rarely been studied, we characterized a specific and sensitive enzymatic immunoassay for microdialysis quantification of corticosterone in the basolateral amygdaloid complex of freely-moving rats. Corticosterone levels showed marked diurnal variation with an evening (dark phase) peak and stable, low levels during the day (light phase). The "anxiogenic agents", FG7142 (20 mg/kg) and yohimbine (10 mg/kg), and an environmental stressor, 15-min forced-swim, induced marked and sustained (1-3 h) increases in dialysis levels of corticosterone in basolateral amygdaloid complex. They likewise increased dialysis levels of dopamine and noradrenaline, but not serotonin and GABA. As compared to basal corticosterone levels of ~200-300 pg/ml, the elevation provoked by forced-swim was ca. 20-fold and this increase was abolished by adrenalectomy. Interestingly, stress-induced rises of corticosterone levels in basolateral amygdaloid complex were abrogated by combined but not separate administration of the corticotrophin releasing factor(1) (CRF(1)) receptor antagonist, CP154,526, and the vasopressin(1b) (V(1b)) receptor antagonist, SSR149,415. Underpinning their specificity, they did not block forced-swim-induced elevations in dopamine and noradrenaline. In conclusion, extracellular levels of corticosterone in the basolateral amygdaloid complex display marked diurnal variation. Further, they are markedly elevated by acute stressors, the effects of which are mediated (in contrast to concomitant elevations in levels of monoamines) by co-joint recruitment of CRF(1) and V(1b) receptors. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Reference frames for spatial frequency in face representation differ in the temporal visual cortex and amygdala.

    Science.gov (United States)

    Inagaki, Mikio; Fujita, Ichiro

    2011-07-13

    Social communication in nonhuman primates and humans is strongly affected by facial information from other individuals. Many cortical and subcortical brain areas are known to be involved in processing facial information. However, how the neural representation of faces differs across different brain areas remains unclear. Here, we demonstrate that the reference frame for spatial frequency (SF) tuning of face-responsive neurons differs in the temporal visual cortex and amygdala in monkeys. Consistent with psychophysical properties for face recognition, temporal cortex neurons were tuned to image-based SFs (cycles/image) and showed viewing distance-invariant representation of face patterns. On the other hand, many amygdala neurons were influenced by retina-based SFs (cycles/degree), a characteristic that is useful for social distance computation. The two brain areas also differed in the luminance contrast sensitivity of face-responsive neurons; amygdala neurons sharply reduced their responses to low luminance contrast images, while temporal cortex neurons maintained the level of their responses. From these results, we conclude that different types of visual processing in the temporal visual cortex and the amygdala contribute to the construction of the neural representations of faces.

  18. Basolateral Cl- channels in the larval bullfrog skin epithelium

    DEFF Research Database (Denmark)

    Hillyard, Stanley D.; Rios, K.; Larsen, Erik Hviid

    2002-01-01

    The addition of 150 U/ml nystatin to the mucosal surface of isolated skin from larval bullfrogs increases apical membrane permeability and allows a voltage clamp to be applied to the basolateral membrane. With identical Ringer's solutions bathing either side of the tissue the short-circuit curren...

  19. Development of White Matter Microstructure and Intrinsic Functional Connectivity Between the Amygdala and Ventromedial Prefrontal Cortex: Associations With Anxiety and Depression.

    Science.gov (United States)

    Jalbrzikowski, Maria; Larsen, Bart; Hallquist, Michael N; Foran, William; Calabro, Finnegan; Luna, Beatriz

    2017-10-01

    Connectivity between the amygdala and ventromedial prefrontal cortex (vmPFC) is compromised in multiple psychiatric disorders, many of which emerge during adolescence. To identify to what extent the deviations in amygdala-vmPFC maturation contribute to the onset of psychiatric disorders, it is essential to characterize amygdala-vmPFC connectivity changes during typical development. Using an accelerated cohort longitudinal design (1-3 time points, 10-25 years old, n = 246), we characterized developmental changes of the amygdala-vmPFC subregion functional and structural connectivity using resting-state functional magnetic resonance imaging and diffusion-weighted imaging. Functional connectivity between the centromedial amygdala and rostral anterior cingulate cortex (rACC), anterior vmPFC, and subgenual cingulate significantly decreased from late childhood to early adulthood in male and female subjects. Age-associated decreases were also observed between the basolateral amygdala and the rACC. Importantly, these findings were replicated in a separate cohort (10-22 years old, n = 327). Similarly, structural connectivity, as measured by quantitative anisotropy, significantly decreased with age in the same regions. Functional connectivity between the centromedial amygdala and the rACC was associated with structural connectivity in these same regions during early adulthood (22-25 years old). Finally, a novel time-varying coefficient analysis showed that increased centromedial amygdala-rACC functional connectivity was associated with greater anxiety and depression symptoms during early adulthood, while increased structural connectivity in centromedial amygdala-anterior vmPFC white matter was associated with greater anxiety/depression during late childhood. Specific developmental periods of functional and structural connectivity between the amygdala and the prefrontal systems may contribute to the emergence of anxiety and depressive symptoms and may play a critical role in

  20. Gastrin-releasing peptide signaling plays a limited and subtle role in amygdala physiology and aversive memory.

    Directory of Open Access Journals (Sweden)

    Frederique Chaperon

    Full Text Available Links between synaptic plasticity in the lateral amygdala (LA and Pavlovian fear learning are well established. Neuropeptides including gastrin-releasing peptide (GRP can modulate LA function. GRP increases inhibition in the LA and mice lacking the GRP receptor (GRPR KO show more pronounced and persistent fear after single-trial associative learning. Here, we confirmed these initial findings and examined whether they extrapolate to more aspects of amygdala physiology and to other forms of aversive associative learning. GRP application in brain slices from wildtype but not GRPR KO mice increased spontaneous inhibitory activity in LA pyramidal neurons. In amygdala slices from GRPR KO mice, GRP did not increase inhibitory activity. In comparison to wildtype, short- but not long-term plasticity was increased in the cortico-lateral amygdala (LA pathway of GRPR KO amygdala slices, whereas no changes were detected in the thalamo-LA pathway. In addition, GRPR KO mice showed enhanced fear evoked by single-trial conditioning and reduced spontaneous firing of neurons in the central nucleus of the amygdala (CeA. Altogether, these results are consistent with a potentially important modulatory role of GRP/GRPR signaling in the amygdala. However, administration of GRP or the GRPR antagonist (D-Phe(6, Leu-NHEt(13, des-Met(14-Bombesin (6-14 did not affect amygdala LTP in brain slices, nor did they affect the expression of conditioned fear following intra-amygdala administration. GRPR KO mice also failed to show differences in fear expression and extinction after multiple-trial fear conditioning, and there were no differences in conditioned taste aversion or gustatory neophobia. Collectively, our data indicate that GRP/GRPR signaling modulates amygdala physiology in a paradigm-specific fashion that likely is insufficient to generate therapeutic effects across amygdala-dependent disorders.

  1. Protracted dendritic growth in the typically developing human amygdala and increased spine density in young ASD brains.

    Science.gov (United States)

    Weir, R K; Bauman, M D; Jacobs, B; Schumann, C M

    2018-02-01

    The amygdala is a medial temporal lobe structure implicated in social and emotional regulation. In typical development (TD), the amygdala continues to increase volumetrically throughout childhood and into adulthood, while other brain structures are stable or decreasing in volume. In autism spectrum disorder (ASD), the amygdala undergoes rapid early growth, making it volumetrically larger in children with ASD compared to TD children. Here we explore: (a) if dendritic arborization in the amygdala follows the pattern of protracted growth in TD and early overgrowth in ASD and (b), if spine density in the amygdala in ASD cases differs from TD from youth to adulthood. The amygdala from 32 postmortem human brains (7-46 years of age) were stained using a Golgi-Kopsch impregnation. Ten principal neurons per case were selected in the lateral nucleus and traced using Neurolucida software in their entirety. We found that both ASD and TD individuals show a similar pattern of increasing dendritic length with age well into adulthood. However, spine density is (a) greater in young ASD cases compared to age-matched TD controls (ASD age into adulthood, a phenomenon not found in TD. Therefore, by adulthood, there is no observable difference in spine density in the amygdala between ASD and TD age-matched adults (≥18 years old). Our findings highlight the unique growth trajectory of the amygdala and suggest that spine density may contribute to aberrant development and function of the amygdala in children with ASD. © 2017 Wiley Periodicals, Inc.

  2. Subthalamic nucleus high-frequency stimulation modulates neuronal reactivity to cocaine within the reward circuit.

    Science.gov (United States)

    Hachem-Delaunay, Sabira; Fournier, Marie-Line; Cohen, Candie; Bonneau, Nicolas; Cador, Martine; Baunez, Christelle; Le Moine, Catherine

    2015-08-01

    The subthalamic nucleus (STN) is a critical component of a complex network controlling motor, associative and limbic functions. High-frequency stimulation (HFS) of the STN is an effective therapy for motor symptoms in Parkinsonian patients and can also reduce their treatment-induced addictive behaviors. Preclinical studies have shown that STN HFS decreases motivation for cocaine while increasing that for food, highlighting its influence on rewarding and motivational circuits. However, the cellular substrates of these effects remain unknown. Our objectives were to characterize the cellular consequences of STN HFS with a special focus on limbic structures and to elucidate how STN HFS may interfere with acute cocaine effects in these brain areas. Male Long-Evans rats were subjected to STN HFS (130 Hz, 60 μs, 50-150 μA) for 30 min before an acute cocaine injection (15 mg/kg) and sacrificed 10 min following the injection. Neuronal reactivity was analyzed through the expression of two immediate early genes (Arc and c-Fos) to decipher cellular responses to STN HFS and cocaine. STN HFS only activated c-Fos in the globus pallidus and the basolateral amygdala, highlighting a possible role on emotional processes via the amygdala, with a limited effect by itself in other structures. Interestingly, and despite some differential effects on Arc and c-Fos expression, STN HFS diminished the c-Fos response induced by acute cocaine in the striatum. By preventing the cellular effect of cocaine in the striatum, STN HFS might thus decrease the reinforcing properties of the drug, which is in line with the inhibitory effect of STN HFS on the rewarding and reinforcing properties of cocaine. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Preferential attention to animals and people is independent of the amygdala.

    Science.gov (United States)

    Wang, Shuo; Tsuchiya, Naotsugu; New, Joshua; Hurlemann, Rene; Adolphs, Ralph

    2015-03-01

    The amygdala is thought to play a critical role in detecting salient stimuli. Several studies have taken ecological approaches to investigating such saliency, and argue for domain-specific effects for processing certain natural stimulus categories, in particular faces and animals. Linking this to the amygdala, neurons in the human amygdala have been found to respond strongly to faces and also to animals. However, the amygdala's necessary role for such category-specific effects at the behavioral level remains untested. Here we tested four rare patients with bilateral amygdala lesions on an established change-detection protocol. Consistent with prior published studies, healthy controls showed reliably faster and more accurate detection of people and animals, as compared with artifacts and plants. So did all four amygdala patients: there were no differences in phenomenal change blindness, in behavioral reaction time to detect changes or in eye-tracking measures. The findings provide decisive evidence against a critical participation of the amygdala in rapid initial processing of attention to animate stimuli, suggesting that the necessary neural substrates for this phenomenon arise either in other subcortical structures (such as the pulvinar) or within the cortex itself. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  4. Optogenetic Central Amygdala Stimulation Intensifies and Narrows Motivation for Cocaine.

    Science.gov (United States)

    Warlow, Shelley M; Robinson, Mike J F; Berridge, Kent C

    2017-08-30

    Addiction is often characterized by intense motivation for a drug, which may be narrowly focused at the expense of other rewards. Here, we examined the role of amygdala-related circuitry in the amplification and narrowing of motivation focus for intravenous cocaine. We paired optogenetic channelrhodopsin (ChR2) stimulation in either central nucleus of amygdala (CeA) or basolateral amygdala (BLA) of female rats with one particular nose-poke porthole option for earning cocaine infusions (0.3 mg/kg, i.v.). A second alternative porthole earned identical cocaine but without ChR2 stimulation. Consequently, CeA rats quickly came to pursue their CeA ChR2-paired cocaine option intensely and exclusively, elevating cocaine intake while ignoring their alternative cocaine alone option. By comparison, BLA ChR2 pairing failed to enhance cocaine motivation. CeA rats also emitted consummatory bites toward their laser-paired porthole, suggesting that higher incentive salience made that cue more attractive. A separate progressive ratio test of incentive motivation confirmed that CeA ChR2 amplified rats' motivation, raising their breakpoint effort price for cocaine by 10-fold. However, CeA ChR2 laser on its own lacked any reinforcement value: laser by itself was never self-stimulated, not even by the same rats in which it amplified motivation for cocaine. Conversely, CeA inhibition by muscimol/baclofen microinjections prevented acquisition of cocaine self-administration and laser preference, whereas CeA inhibition by optogenetic halorhodopsin suppressed cocaine intake, indicating that CeA circuitry is needed for ordinary cocaine motivation. We conclude that CeA ChR2 excitation paired with a cocaine option specifically focuses and amplifies motivation to produce intense pursuit and consumption focused on that single target. SIGNIFICANCE STATEMENT In addiction, intense incentive motivation often becomes narrowly focused on a particular drug of abuse. Here we show that pairing central

  5. Calcitonin gene-related peptide erases the fear memory and facilitates long-term potentiation in the central nucleus of the amygdala in rats.

    Science.gov (United States)

    Wu, Xin; Zhang, Jie-Ting; Liu, Jue; Yang, Si; Chen, Tao; Chen, Jian-Guo; Wang, Fang

    2015-11-01

    Calcitonin gene-related peptide (CGRP) is a 37 amino acid neuropeptide, which plays a critical role in the central nervous system. CGRP binds to G protein-coupled receptors, including CGRP1, which couples positively to adenylyl cyclase (AC) and protein kinase A (PKA) activation. CGRP and CGRP1 receptors are enriched in central nucleus of the amygdala (CeA), the main part of the amygdala, which regulates conditioned fear memories. Here, we reported the importance of CGRP and CGRP1 receptor for synaptic plasticity in the CeA and the extinction of fear memory in rats. Our electrophysiological and behavioral in vitro and in vivo results showed exogenous application of CGRP induced an immediate and lasting long-term potentiation in the basolateral nucleus of amygdala-CeA pathway, but not in the lateral nucleus of amygdala-CeA pathway, while bilateral intra-CeA infusion CGRP (0, 5, 13 and 21 μM/side) dose dependently enhanced fear memory extinction. The effects were blocked by CGRP1 receptor antagonist (CGRP8-37 ), N-methyl-d-aspartate receptors antagonist MK801 and PKA inhibitor H89. These results demonstrate that CGRP can lead to long-term potentiation of basolateral nucleus of amygdala-CeA pathway through a PKA-dependent postsynaptic mechanism that involved N-methyl-d-aspartate receptors and enhance the extinction of fear memory in rats. Together, the results strongly support a pivotal role of CGRP in the synaptic plasticity of CeA and extinction of fear memory. Calcitonin gene-related peptide (CGRP) plays an essential role in synaptic plasticity in the amygdala and fear memory. We found that CGRP-induced chemical long-term potentiation (LTP) in a dose-dependent way in the BLA-CeA (basolateral and central nucleus of amygdala, respectively) pathway and enhanced fear memory extinction in rats through a protein kinase A (PKA)-dependent postsynaptic mechanism that involved NMDA receptors. These results support a pivotal role of CGRP in amygdala. © 2015 International

  6. Distinct Roles for the Amygdala and Orbitofrontal Cortex in Representing the Relative Amount of Expected Reward.

    Science.gov (United States)

    Saez, Rebecca A; Saez, Alexandre; Paton, Joseph J; Lau, Brian; Salzman, C Daniel

    2017-07-05

    The same reward can possess different motivational meaning depending upon its magnitude relative to other rewards. To study the neurophysiological mechanisms mediating assignment of motivational meaning, we recorded the activity of neurons in the amygdala and orbitofrontal cortex (OFC) of monkeys during a Pavlovian task in which the relative amount of liquid reward associated with one conditioned stimulus (CS) was manipulated by changing the reward amount associated with a second CS. Anticipatory licking tracked relative reward magnitude, implying that monkeys integrated information about recent rewards to adjust the motivational meaning of a CS. Upon changes in relative reward magnitude, neural responses to reward-predictive cues updated more rapidly in OFC than amygdala, and activity in OFC but not the amygdala was modulated by recent reward history. These results highlight a distinction between the amygdala and OFC in assessing reward history to support the flexible assignment of motivational meaning to sensory cues. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Prefrontal-amygdala fear networks come into focus

    Directory of Open Access Journals (Sweden)

    Maithe eArruda-Carvalho

    2015-10-01

    Full Text Available The ability to form associations between aversive threats and their predictors is fundamental to survival. However, fear and anxiety in excess are detrimental and are a hallmark of psychiatric diseases such as post-traumatic stress disorder (PTSD. PTSD symptomatology includes persistent and intrusive thoughts of an experienced trauma, suggesting an inability to downregulate fear when a corresponding threat has subsided. Convergent evidence from human and rodent studies supports a role for the medial prefrontal cortex (mPFC-amygdala network in both PTSD and the regulation of fear memory expression. In particular, current models stipulate that the prelimbic and infralimbic subdivisions of the rodent mPFC bidirectionally regulate fear expression via differential recruitment of amygdala neuronal subpopulations. However, an array of recent studies that employ new technical approaches has fundamentally challenged this interpretation. Here we explore how a new emphasis on the contribution of inhibitory neuronal populations, subcortical structures and the passage of time is reshaping our understanding of mPFC-amygdala circuits and their control over fear.

  8. [Neurons in NAc core and BLA are activated during cocaine context-associated reward memory retrieval in mice].

    Science.gov (United States)

    Wang, Jun-Jun; Yao, Wen-Qing; Chen, Yue-Jun; Ma, Lan; Tao, Ye-Zheng

    2014-10-25

    The intense associative memories that develop between cocaine-paired contexts and rewarding stimuli make addiction hard to cure by contributing to cocaine seeking and relapse. So it's of great importance to examine the neurobiological basis of addiction memory. Cocaine conditioned place preference (CPP) used in this study is a form of Pavlovian conditioning which can establish associations between drug and contextual factors. c-Fos and Zif268 are commonly used immediate early gene (IEG) makers to identify neurons that are activated after a stimulus or behavioral conditioning. This study was designed to reveal neuronal c-Fos, Zif268 expression pattern in 10 brain regions following cocaine context-associated reward memory retrieval in mice, combining animal behavioral study and immunofluorescence method. C57BL/6 mice were randomly divided into 3 groups: Saline retrieval, Cocaine retrieval, and No retrieval of cocaine groups. Cocaine retrieval and No retrieval of cocaine underwent CPP training (one side paired with cocaine, and the other side with saline) except that No retrieval of cocaine group didn't undergo CPP test. Saline retrieval group received saline injections (i.p) on both sides. The results showed that: Neuronal c-Fos, Zif268 protein expression levels in nucleus accumbens (NAc) core both were elevated in Cocaine retrieval group compared with those in Saline retrieval (Control) group during cocaine context-associated reward memory retrieval. Zif268 protein expression level in basolateral amygdala (BLA) was also elevated in Cocaine retrieval group compared with that in control mice. Elevation was not seen in other regions such as hippocampus, prefrontal cortex (PFC). Thus, NAc core and BLA were activated during cocaine context-associated reward memory retrieval. The results suggest that neurons that are activated in NAc core and BLA are crucial basis of cocaine context-associated reward memory.

  9. Curcuma treatment prevents cognitive deficit and alteration of neuronal morphology in the limbic system of aging rats.

    Science.gov (United States)

    Vidal, Blanca; Vázquez-Roque, Rubén A; Gnecco, Dino; Enríquez, Raúl G; Floran, Benjamin; Díaz, Alfonso; Flores, Gonzalo

    2017-03-01

    Curcuma is a natural compound that has shown neuroprotective properties, and has been reported to prevent aging and improve memory. While the mechanism(s) underlying these effects are unclear, they may be related to increases in neural plasticity. Morphological changes have been reported in neuronal dendrites in the limbic system in animals and elderly humans with cognitive impairment. In this regard, there is a need to use alternative therapies that delay the onset of morphologies and behavioral characteristics of aging. Therefore, the objective of this study was to evaluate the effect of curcuma on cognitive processes and dendritic morphology of neurons in the prefrontal cortex (PFC), the CA1 and CA3 regions of the dorsal hippocampus, the dentate gyrus, and the basolateral amygdala (BLA) of aged rats. 18-month-old rats were administered curcuma (100 mg/kg) daily for 60 days. After treatment, recognition memory was assessed using the novel object recognition test. Curcuma-treated rats showed a significant increase in the exploration quotient. Dendritic morphology was assessed by Golgi-Cox staining and followed by Sholl analysis. Curcuma-treated rats showed a significant increase in dendritic spine density and dendritic length in pyramidal neurons of the PFC, the CA1 and CA3, and the BLA. The preservation of dendritic morphology was positively correlated with cognitive improvements. Our results suggest that curcuma induces modification of dendritic morphology in the aforementioned regions. These changes may explain how curcuma slows the aging process that has already begun in these animals, preventing deterioration in neuronal morphology of the limbic system and recognition memory. © 2016 Wiley Periodicals, Inc.

  10. Mesencephalic basolateral domain specification is dependent on Sonic Hedgehog

    Directory of Open Access Journals (Sweden)

    Jesus E. Martinez-Lopez

    2015-02-01

    Full Text Available In the study of central nervous system morphogenesis, the identification of new molecular markers allows us to identify domains along the antero-posterior and dorso-ventral axes. In the past years, the alar and basal plates of the midbrain have been divided into different domains. The precise location of the alar-basal boundary is still under discussion. We have identified Barhl1, Nhlh1 and Six3 as appropriate molecular markers to the adjacent domains of this transition. The description of their expression patterns and the contribution to the different mesencephalic populations corroborated their role in the specification of these domains. We studied the influence of Sonic Hedgehog on these markers and therefore on the specification of these territories. The lack of this morphogen produced severe alterations in the expression pattern of Barhl1 and Nhlh1 with consequent misspecification of the basolateral domain. Six3 expression was apparently unaffected, however its distribution changed leading to altered basal domains. In this study we confirmed the localization of the alar-basal boundary dorsal to the basolateral domain and demonstrated that the development of the basolateral domain highly depends on Shh.

  11. From circuits to behaviour in the amygdala

    Science.gov (United States)

    Janak, Patricia H.; Tye, Kay M.

    2015-01-01

    The amygdala has long been associated with emotion and motivation, playing an essential part in processing both fearful and rewarding environmental stimuli. How can a single structure be crucial for such different functions? With recent technological advances that allow for causal investigations of specific neural circuit elements, we can now begin to map the complex anatomical connections of the amygdala onto behavioural function. Understanding how the amygdala contributes to a wide array of behaviours requires the study of distinct amygdala circuits. PMID:25592533

  12. MOLECULAR BASIS OF LEARNING IN THE HIPPOCAMPUS AND THE AMYGDALA

    Directory of Open Access Journals (Sweden)

    Łukasz BIJOCH

    2015-12-01

    Full Text Available The hippocampus and the amygdala are structures of mammalian brain both involved in memorizing. However, they are responsible for different types of memory: the hippocampus is involved in creating and storing declarative engrams and the amygdala is engaged in some of non-declarative learning. During memorization, changes of synapses appear and it is believed that they encode information. Long-Term Potentiation (LTP and Long-Term Depression (LTD are two processes which provide to these changes which are called synaptic plasticity. LTP strengthens connections between neurons and because of that it is traditionally linked with learning. LTD as an opposite state is usually treated as forgetting. However, there are some evidences that it is true only for few types of non-declarative engrams. More sophisticated learning (like declarative learning requires cooperation of these processes. Review is focused on functions and detailed signaling pathways of processes of synaptic plasticity.

  13. Zika Virus Persistently Infects and Is Basolaterally Released from Primary Human Brain Microvascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Megan C. Mladinich

    2017-07-01

    Full Text Available Zika virus (ZIKV is a mosquito-borne Flavivirus that has emerged as the cause of encephalitis and fetal microencephaly in the Americas. ZIKV uniquely persists in human bodily fluids for up to 6 months, is sexually transmitted, and traverses the placenta and the blood-brain barrier (BBB to damage neurons. Cells that support persistent ZIKV replication and mechanisms by which ZIKV establishes persistence remain enigmatic but central to ZIKV entry into protected neuronal compartments. The endothelial cell (EC lining of capillaries normally constrains transplacental transmission and forms the BBB, which selectively restricts access of blood constituents to neurons. We found that ZIKV (strain PRVABC59 persistently infects and continuously replicates in primary human brain microvascular ECs (hBMECs, without cytopathology, for >9 days and following hBMEC passage. ZIKV did not permeabilize hBMECs but was released basolaterally from polarized hBMECs, suggesting a direct mechanism for ZIKV to cross the BBB. ZIKV-infected hBMECs were rapidly resistant to alpha interferon (IFN-α and transiently induced, but failed to secrete, IFN-β and IFN-λ. Global transcriptome analysis determined that ZIKV constitutively induced IFN regulatory factor 7 (IRF7, IRF9, and IFN-stimulated genes (ISGs 1 to 9 days postinfection, despite persistently replicating in hBMECs. ZIKV constitutively induced ISG15, HERC5, and USP18, which are linked to hepatitis C virus (HCV persistence and IFN regulation, chemokine CCL5, which is associated with immunopathogenesis, as well as cell survival factors. Our results reveal that hBMECs act as a reservoir of persistent ZIKV replication, suggest routes for ZIKV to cross hBMECs into neuronal compartments, and define novel mechanisms of ZIKV persistence that can be targeted to restrict ZIKV spread.

  14. The Stressed Female Brain: Neuronal activity in the prelimbic but not infralimbic region of the medial prefrontal cortex suppresses learning after acute stress

    Directory of Open Access Journals (Sweden)

    Lisa Y. Maeng

    2013-12-01

    Full Text Available Women are nearly twice as likely as men to suffer from anxiety and post-traumatic stress disorder (PTSD, indicating that many females are especially vulnerable to stressful life experience. A profound sex difference in the response to stress is also observed in laboratory animals. Acute exposure to an uncontrollable stressful event disrupts associative learning during classical eyeblink conditioning in female rats but enhances this same type of learning process in males. These sex differences in response to stress are dependent on neuronal activity in similar but also different brain regions. Neuronal activity in the basolateral nucleus of the amygdala (BLA is necessary in both males and females. However, neuronal activity in the medial prefrontal cortex (mPFC during the stressor is necessary to modify learning in females but not in males. The mPFC is often divided into its prelimbic (PL and infralimbic (IL subregions, which differ both in structure and function. Through its connections to the BLA, we hypothesized that neuronal activity within the PL, but not IL, during the stressor is necessary to suppress learning in females. To test this hypothesis, either the PL or IL of adult female rats was bilaterally inactivated with GABAA agonist muscimol during acute inescapable swim stress. 24h later, all subjects were trained with classical eyeblink conditioning. Though stressed, females without neuronal activity in the PL learned well. In contrast, females with IL inactivation during the stressor did not learn well, behaving similar to stressed vehicle-treated females. These data suggest that exposure to a stressful event critically engages the PL, but not IL, to disrupt associative learning in females. Together with previous studies, these data indicate that the PL communicates with the BLA to suppress learning after a stressful experience in females. This circuit may be similarly engaged in women who become cognitively impaired after stressful

  15. Amygdala Kindling Alters Estrus Cycle and Ovarian Morphology in the Rat.

    Science.gov (United States)

    Pan, Juan; Zhang, Lingwu; Wang, Feng; Liu, Dan; Li, P Andy; Sun, Tao

    2013-11-01

    The objective of this study is to explore the effects of amygdala kindling on estrus cycle and ovarian morphology. Thirty-five female rats at the age of 8 weeks were randomly designated to electrode kindled, sham-kindled, and normal controls. Kindled rats were implanted with kindling electrodes in the left basolateral amygdala and kindled by brief suprathreshold stimulations with a bipolar electrode. Estrous cycles were daily monitored through vaginal smears. Electrographic and behavioral seizures were recorded and ovarian morphology was evaluated by light and electron microscopies. Our results showed that the kindled rats lost their ovarian periodicity displayed significant ovarian enlargement. H&E staining revealed increased number of growing follicles and total follicles, as well as polycysts in the ovaries of the kindled animals compared to sham and control animals. Ultrastructural study detected numerous apoptotic granulosa cells in growing follicles and thecal cell hyperplasia with secretary granules in the thecal cells in the kindled rats. The results suggest that amygdala kindling is a risk factor for the development of polycystic ovary syndrome.

  16. Activation of protein kinase A in the amygdala modulates anxiety-like behaviors in social defeat exposed mice.

    Science.gov (United States)

    Yang, Liu; Shi, Li-Jun; Yu, Jin; Zhang, Yu-Qiu

    2016-01-08

    Social defeat (SD) stress induces social avoidance and anxiety-like phenotypes. Amygdala is recognized as an emotion-related brain region such as fear, aversion and anxiety. It is conceivable to hypothesize that activation of amygdala is involved in SD-dependent behavioral defects. SD model was established using C57BL/6J mice that were physically defeated by different CD-1 mice for 10 days. Stressed mice exhibited decreased social interaction level in social interaction test and significant anxiety-like behaviors in elevated plus maze and open field tests. Meanwhile, a higher phosphorylation of PKA and CREB with a mutually linear correlation, and increased Fos labeled cells in the basolateral amygdala (BLA) were observed. Activation of PKA in the BLA by 8-Br-cAMP, a PKA activitor, significantly upregulated pCREB and Fos expression. To address the role of PKA activation on SD stress-induced social avoidance and anxiety-like behaviors, 8-Br-cAMP or H-89, a PKA inhibitor, was continuously administered into the bilateral BLA by a micro-osmotic pump system during the 10-day SD period. Neither H-89 nor 8-Br-cAMP affected the social behavior. Differently, 8-Br-cAMP significantly relieved anxiety-like behaviors in both general and moderate SD protocols. H-89 per se did not have anxiogenic effect in naïve mice, but aggravated moderate SD stress-induced anxiety-like behaviors. The antidepressant clomipramine reduced SD-induced anxiety and up-regulated pPKA level in the BLA. These results suggest that SD-driven PKA activation in the basolateral amygdala is actually a compensatory rather than pathogenic response in the homeostasis, and modulating amygdaloid PKA may exhibit potency in the therapy of social derived disorders.

  17. [Morphometric features of the structure of the central nucleus of the amygdala in men and women].

    Science.gov (United States)

    Antyukhov, A D

    2015-01-01

    To identify the interhemispheric asymmetry in the structure of the central nucleus of the amygdala in men and women. Morphometric features of the structure of neurons of the central nucleus amygdala complex were studied in histological sections of the brain of 6 men and 6 women (24 hemispheres), aged 19 to 55 years, with no lifetime diagnosis of mental or neurological disease. The value of the profile fields of neurons of the central nucleus amygdala complex in the left and right hemispheres of the brain were investigated. In women, the average value of neurons in the left hemisphere was somewhat greater than in the right hemisphere, while in men this value was greater in the right hemisphere. The interhemispheric morphometric differences were not significant regardless of gender. In addition, the quantity of relevant fields of neurons in the central nucleus of the amygdala in women was significantly larger than that of men in both hemispheres. The authors attempted to associate the results obtained in the study with emotional perception in men and women.

  18. Stress, memory and the amygdala

    NARCIS (Netherlands)

    Roozendaal, Benno; McEwen, Bruce S.; Chattarji, Sumantra

    Emotionally significant experiences tend to be well remembered, and the amygdala has a pivotal role in this process. But the efficient encoding of emotional memories can become maladaptive - severe stress often turns them into a source of chronic anxiety. Here, we review studies that have identified

  19. Central amygdala, stress and adaption

    NARCIS (Netherlands)

    Roozendaal, Benno

    1992-01-01

    In this thesis the results were presented of studies that were designed to provide more insight in the role of the central nucleus of the amygdala (CEA) in the adaptation to environmental demands. The experiments were performed in several situations, in which rats react either directly to aversive

  20. Beyond the Classic VTA: Extended Amygdala Projections to DA-Striatal Paths in the Primate.

    Science.gov (United States)

    Fudge, Julie L; Kelly, Emily A; Pal, Ria; Bedont, Joseph L; Park, Lydia; Ho, Brian

    2017-07-01

    The central extended amygdala (CEA) has been conceptualized as a 'macrosystem' that regulates various stress-induced behaviors. Consistent with this, the CEA highly expresses corticotropin-releasing factor (CRF), an important modulator of stress responses. Stress alters goal-directed responses associated with striatal paths, including maladaptive responses such as drug seeking, social withdrawal, and compulsive behavior. CEA inputs to the midbrain dopamine (DA) system are positioned to influence striatal functions through mesolimbic DA-striatal pathways. However, the structure of this amygdala-CEA-DA neuron path to the striatum has been poorly characterized in primates. In primates, we combined neuronal tracer injections into various arms of the circuit through specific DA subpopulations to assess: (1) whether the circuit connecting amygdala, CEA, and DA cells follows CEA intrinsic organization, or a more direct topography involving bed nucleus vs central nucleus divisions; (2) CRF content of the CEA-DA path; and (3) striatal subregions specifically involved in CEA-DA-striatal loops. We found that the amygdala-CEA-DA path follows macrostructural subdivisions, with the majority of input/outputs converging in the medial central nucleus, the sublenticular extended amygdala, and the posterior lateral bed nucleus of the stria terminalis. The proportion of CRF+ outputs is >50%, and mainly targets the A10 parabrachial pigmented nucleus (PBP) and A8 (retrorubal field, RRF) neuronal subpopulations, with additional inputs to the dorsal A9 neurons. CRF-enriched CEA-DA projections are positioned to influence outputs to the 'limbic-associative' striatum, which is distinct from striatal regions targeted by DA cells lacking CEA input. We conclude that the concept of the CEA is supported on connectional grounds, and that CEA termination over the PBP and RRF neuronal populations can influence striatal circuits involved in associative learning.

  1. Functionally distinct amygdala subregions identified using DTI and high-resolution fMRI

    Science.gov (United States)

    Balderston, Nicholas L.; Schultz, Douglas H.; Hopkins, Lauren

    2015-01-01

    Although the amygdala is often directly linked with fear and emotion, amygdala neurons are activated by a wide variety of emotional and non-emotional stimuli. Different subregions within the amygdala may be engaged preferentially by different aspects of emotional and non-emotional tasks. To test this hypothesis, we measured and compared the effects of novelty and fear on amygdala activity. We used high-resolution blood oxygenation level-dependent (BOLD) imaging and streamline tractography to subdivide the amygdala into three distinct functional subunits. We identified a laterobasal subregion connected with the visual cortex that responds generally to visual stimuli, a non-projecting region that responds to salient visual stimuli, and a centromedial subregion connected with the diencephalon that responds only when a visual stimulus predicts an aversive outcome. We provide anatomical and functional support for a model of amygdala function where information enters through the laterobasal subregion, is processed by intrinsic circuits in the interspersed tissue, and is then passed to the centromedial subregion, where activation leads to behavioral output. PMID:25969533

  2. Preferential attention to animals and people is independent of the amygdala

    Science.gov (United States)

    Tsuchiya, Naotsugu; New, Joshua; Hurlemann, Rene; Adolphs, Ralph

    2015-01-01

    The amygdala is thought to play a critical role in detecting salient stimuli. Several studies have taken ecological approaches to investigating such saliency, and argue for domain-specific effects for processing certain natural stimulus categories, in particular faces and animals. Linking this to the amygdala, neurons in the human amygdala have been found to respond strongly to faces and also to animals. However, the amygdala’s necessary role for such category-specific effects at the behavioral level remains untested. Here we tested four rare patients with bilateral amygdala lesions on an established change-detection protocol. Consistent with prior published studies, healthy controls showed reliably faster and more accurate detection of people and animals, as compared with artifacts and plants. So did all four amygdala patients: there were no differences in phenomenal change blindness, in behavioral reaction time to detect changes or in eye-tracking measures. The findings provide decisive evidence against a critical participation of the amygdala in rapid initial processing of attention to animate stimuli, suggesting that the necessary neural substrates for this phenomenon arise either in other subcortical structures (such as the pulvinar) or within the cortex itself. PMID:24795434

  3. Different patterns of amygdala priming differentially affect dentate gyrus plasticity and corticosterone, but not CA1 plasticity.

    Directory of Open Access Journals (Sweden)

    Rose-Marie eVouimba

    2013-05-01

    Full Text Available Stress-induced activation of the amygdala is involved in the modulation of memory processes in the hippocampus. However, stress effects on amygdala and memory remain complex. The activation of the basolateral amygdala (BLA was found to modulate plasticity in other brain areas, including the hippocampus. We previously demonstrated a differential effect of BLA priming on LTP in the CA1 and the dentate gyrus (DG. While BLA priming suppressed long term potentiation (LTP in CA1, it was found to enhance it in the DG. However, since the amygdala itself is amenable to experience-induced plasticity it is thus conceivable that when activity within the amygdala is modified this will have impact on the way the amygdala modulates activity and plasticity in other brain areas. In the current study we examined the effects of different patterns of BLA activation on the modulation of LTP in the DG and CA1, as well as on serum corticosterone (CORT. In CA1, BLA priming impaired LTP induction as was reported before. In contrast, in the DG, varying BLA stimulation intensity and frequency resulted in differential effects on LTP, ranging from no effect to strong impairment or enhancement. Varying BLA stimulation patterns resulted in also differential alterations in Serum CORT, leading to higher CORT levels being positively correlated with LTP magnitude in DG but not in CA1.The results support the notion of a differential role for the DG in aspects of memory, and add to this view the possibility that DG-associated aspects of memory will be enhanced under more emotional or stressful conditions. It is interesting to think of BLA patterns of activation and the differential levels of circulating CORT as two arms of the emotional and stress response that attempt to synchronize brain activity to best meet the challenge. It is foreseeable to think of abnormal such synchronization under extreme conditions, which would lead to the development of maladaptive behavior.

  4. Differential impact of Met receptor gene interaction with early-life stress on neuronal morphology and behavior in mice.

    Science.gov (United States)

    Heun-Johnson, Hanke; Levitt, Pat

    2018-02-01

    Early adversity in childhood increases the risk of anxiety, mood, and post-traumatic stress disorders in adulthood, and specific gene-by-environment interactions may increase risk further. A common functional variant in the promoter region of the gene encoding the human MET receptor tyrosine kinase (rs1858830 ' C' allele) reduces expression of MET and is associated with altered cortical circuit function and structural connectivity. Mice with reduced Met expression exhibit changes in anxiety-like and conditioned fear behavior, precocious synaptic maturation in the hippocampus, and reduced neuronal arbor complexity and synaptogenesis. These phenotypes also can be produced independently by early adversity in wild-type mice. The present study addresses the outcome of combining early-life stress and genetic influences that alter timing of maturation on enduring functional and structural phenotypes. Using a model of reduced Met expression ( Met +/- ) and early-life stress from postnatal day 2-9, social, anxiety-like, and contextual fear behaviors in later life were measured. Mice that experienced early-life stress exhibited impairments in social interaction, whereas alterations in anxiety-like behavior and fear learning were driven by Met haploinsufficiency, independent of rearing condition. Early-life stress or reduced Met expression decreased arbor complexity of ventral hippocampal CA1 pyramidal neurons projecting to basolateral amygdala. Paradoxically, arbor complexity in Met +/- mice was increased following early-life stress, and thus not different from arbors in wild-type mice raised in control conditions. The changes in dendritic morphology are consistent with the hypothesis that the physiological state of maturation of CA1 neurons in Met +/- mice influences their responsiveness to early-life stress. The dissociation of behavioral and structural changes suggests that there may be phenotype-specific sensitivities to early-life stress.

  5. Amygdala Contributions to Stimulus–Reward Encoding in the Macaque Medial and Orbital Frontal Cortex during Learning

    Science.gov (United States)

    Averbeck, Bruno B.

    2017-01-01

    Orbitofrontal cortex (OFC), medial frontal cortex (MFC), and amygdala mediate stimulus–reward learning, but the mechanisms through which they interact are unclear. Here, we investigated how neurons in macaque OFC and MFC signaled rewards and the stimuli that predicted them during learning with and without amygdala input. Macaques performed a task that required them to evaluate two stimuli and then choose one to receive the reward associated with that option. Four main findings emerged. First, amygdala lesions slowed the acquisition and use of stimulus–reward associations. Further analyses indicated that this impairment was due, at least in part, to ineffective use of negative feedback to guide subsequent decisions. Second, the activity of neurons in OFC and MFC rapidly evolved to encode the amount of reward associated with each stimulus. Third, amygdalectomy reduced encoding of stimulus–reward associations during the evaluation of different stimuli. Reward encoding of anticipated and received reward after choices were made was not altered. Fourth, amygdala lesions led to an increase in the proportion of neurons in MFC, but not OFC, that encoded the instrumental response that monkeys made on each trial. These correlated changes in behavior and neural activity after amygdala lesions strongly suggest that the amygdala contributes to the ability to learn stimulus–reward associations rapidly by shaping encoding within OFC and MFC. SIGNIFICANCE STATEMENT Altered functional interactions among orbital frontal cortex (OFC), medial frontal cortex (MFC), and amygdala are thought to underlie several psychiatric conditions, many related to reward learning. Here, we investigated the causal contribution of the amygdala to the development of neuronal activity in macaque OFC and MFC related to rewards and the stimuli that predict them during learning. Without amygdala inputs, neurons in both OFC and MFC showed decreased encoding of stimulus–reward associations. MFC also

  6. Amygdala Contributions to Stimulus-Reward Encoding in the Macaque Medial and Orbital Frontal Cortex during Learning.

    Science.gov (United States)

    Rudebeck, Peter H; Ripple, Joshua A; Mitz, Andrew R; Averbeck, Bruno B; Murray, Elisabeth A

    2017-02-22

    Orbitofrontal cortex (OFC), medial frontal cortex (MFC), and amygdala mediate stimulus-reward learning, but the mechanisms through which they interact are unclear. Here, we investigated how neurons in macaque OFC and MFC signaled rewards and the stimuli that predicted them during learning with and without amygdala input. Macaques performed a task that required them to evaluate two stimuli and then choose one to receive the reward associated with that option. Four main findings emerged. First, amygdala lesions slowed the acquisition and use of stimulus-reward associations. Further analyses indicated that this impairment was due, at least in part, to ineffective use of negative feedback to guide subsequent decisions. Second, the activity of neurons in OFC and MFC rapidly evolved to encode the amount of reward associated with each stimulus. Third, amygdalectomy reduced encoding of stimulus-reward associations during the evaluation of different stimuli. Reward encoding of anticipated and received reward after choices were made was not altered. Fourth, amygdala lesions led to an increase in the proportion of neurons in MFC, but not OFC, that encoded the instrumental response that monkeys made on each trial. These correlated changes in behavior and neural activity after amygdala lesions strongly suggest that the amygdala contributes to the ability to learn stimulus-reward associations rapidly by shaping encoding within OFC and MFC. SIGNIFICANCE STATEMENT Altered functional interactions among orbital frontal cortex (OFC), medial frontal cortex (MFC), and amygdala are thought to underlie several psychiatric conditions, many related to reward learning. Here, we investigated the causal contribution of the amygdala to the development of neuronal activity in macaque OFC and MFC related to rewards and the stimuli that predict them during learning. Without amygdala inputs, neurons in both OFC and MFC showed decreased encoding of stimulus-reward associations. MFC also showed

  7. Dissociable relations between amygdala subregional networks and psychopathy trait dimensions in conduct-disordered juvenile offenders.

    Science.gov (United States)

    Aghajani, Moji; Colins, Olivier F; Klapwijk, Eduard T; Veer, Ilya M; Andershed, Henrik; Popma, Arne; van der Wee, Nic J; Vermeiren, Robert R J M

    2016-11-01

    Psychopathy is a serious psychiatric phenomenon characterized by a pathological constellation of affective (e.g., callous, unemotional), interpersonal (e.g., manipulative, egocentric), and behavioral (e.g., impulsive, irresponsible) personality traits. Though amygdala subregional defects are suggested in psychopathy, the functionality and connectivity of different amygdala subnuclei is typically disregarded in neurocircuit-level analyses of psychopathic personality. Hence, little is known of how amygdala subregional networks may contribute to psychopathy and its underlying trait assemblies in severely antisocial people. We addressed this important issue by uniquely examining the intrinsic functional connectivity of basolateral (BLA) and centromedial (CMA) amygdala networks in relation to affective, interpersonal, and behavioral traits of psychopathy, in conduct-disordered juveniles with a history of serious delinquency (N = 50, mean age = 16.83 ± 1.32). As predicted, amygdalar connectivity profiles exhibited dissociable relations with different traits of psychopathy. Interpersonal psychopathic traits not only related to increased connectivity of BLA and CMA with a corticostriatal network formation accommodating reward processing, but also predicted stronger CMA connectivity with a network of cortical midline structures supporting sociocognitive processes. In contrast, affective psychopathic traits related to diminished CMA connectivity with a frontolimbic network serving salience processing and affective responding. Finally, behavioral psychopathic traits related to heightened BLA connectivity with a frontoparietal cluster implicated in regulatory executive functioning. We suggest that these trait-specific shifts in amygdalar connectivity could be particularly relevant to the psychopathic phenotype, as they may fuel a self-centered, emotionally cold, and behaviorally disinhibited profile. Hum Brain Mapp 37:4017-4033, 2016. © 2016 The Authors Human

  8. Dissociable relations between amygdala subregional networks and psychopathy trait dimensions in conduct‐disordered juvenile offenders

    Science.gov (United States)

    Colins, Olivier F.; Klapwijk, Eduard T.; Veer, Ilya M.; Andershed, Henrik; Popma, Arne; van der Wee, Nic J.; Vermeiren, Robert R.J.M.

    2016-01-01

    Abstract Psychopathy is a serious psychiatric phenomenon characterized by a pathological constellation of affective (e.g., callous, unemotional), interpersonal (e.g., manipulative, egocentric), and behavioral (e.g., impulsive, irresponsible) personality traits. Though amygdala subregional defects are suggested in psychopathy, the functionality and connectivity of different amygdala subnuclei is typically disregarded in neurocircuit‐level analyses of psychopathic personality. Hence, little is known of how amygdala subregional networks may contribute to psychopathy and its underlying trait assemblies in severely antisocial people. We addressed this important issue by uniquely examining the intrinsic functional connectivity of basolateral (BLA) and centromedial (CMA) amygdala networks in relation to affective, interpersonal, and behavioral traits of psychopathy, in conduct‐disordered juveniles with a history of serious delinquency (N = 50, mean age = 16.83 ± 1.32). As predicted, amygdalar connectivity profiles exhibited dissociable relations with different traits of psychopathy. Interpersonal psychopathic traits not only related to increased connectivity of BLA and CMA with a corticostriatal network formation accommodating reward processing, but also predicted stronger CMA connectivity with a network of cortical midline structures supporting sociocognitive processes. In contrast, affective psychopathic traits related to diminished CMA connectivity with a frontolimbic network serving salience processing and affective responding. Finally, behavioral psychopathic traits related to heightened BLA connectivity with a frontoparietal cluster implicated in regulatory executive functioning. We suggest that these trait‐specific shifts in amygdalar connectivity could be particularly relevant to the psychopathic phenotype, as they may fuel a self‐centered, emotionally cold, and behaviorally disinhibited profile. Hum Brain Mapp 37:4017–4033, 2016. © 2016

  9. Disruption of amygdala-entorhinal-hippocampal network in late-life depression.

    Science.gov (United States)

    Leal, Stephanie L; Noche, Jessica A; Murray, Elizabeth A; Yassa, Michael A

    2017-04-01

    Episodic memory deficits are evident in late-life depression (LLD) and are associated with subtle synaptic and neurochemical changes in the medial temporal lobes (MTL). However, the particular mechanisms by which memory impairment occurs in LLD are currently unknown. We tested older adults with (DS+) and without (DS-) depressive symptoms using high-resolution fMRI that is capable of discerning signals in hippocampal subfields and amygdala nuclei. Scanning was conducted during performance of an emotional discrimination task used previously to examine the relationship between depressive symptoms and amygdala-mediated emotional modulation of hippocampal pattern separation in young adults. We found that hippocampal dentate gyrus (DG)/CA3 activity was reduced during correct discrimination of negative stimuli and increased during correct discrimination of neutral items in DS+ compared to DS- adults. The extent of the latter increase was correlated with symptom severity. Furthermore, DG/CA3 and basolateral amygdala (BLA) activity predicted discrimination performance on negative trials, a relationship that depended on symptom severity. The impact of the BLA on depressive symptom severity was mediated by the DG/CA3 during discrimination of neutral items, and by the lateral entorhinal cortex (LEC) during false recognition of positive items. These results shed light on a novel mechanistic account for amygdala-hippocampal network changes and concurrent alterations in emotional episodic memory in LLD. The BLA-LEC-DG/CA3 network, which comprises a key pathway by which emotion modulates memory, is specifically implicated in LLD. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Abnormal functional architecture of amygdala-centered networks in adolescent posttraumatic stress disorder.

    Science.gov (United States)

    Aghajani, Moji; Veer, Ilya M; van Hoof, Marie-José; Rombouts, Serge A R B; van der Wee, Nic J; Vermeiren, Robert R J M

    2016-03-01

    Posttraumatic stress disorder (PTSD) is a prevalent, debilitating, and difficult to treat psychiatric disorder. Very little is known of how PTSD affects neuroplasticity in the developing adolescent brain. Whereas multiple lines of research implicate amygdala-centered network dysfunction in the pathophysiology of adult PTSD, no study has yet examined the functional architecture of amygdala subregional networks in adolescent PTSD. Using intrinsic functional connectivity analysis, we investigated functional connectivity of the basolateral (BLA) and centromedial (CMA) amygdala in 19 sexually abused adolescents with PTSD relative to 23 matched controls. Additionally, we examined whether altered amygdala subregional connectivity coincides with abnormal grey matter volume of the amygdaloid complex. Our analysis revealed abnormal amygdalar connectivity and morphology in adolescent PTSD patients. More specifically, PTSD patients showed diminished right BLA connectivity with a cluster including dorsal and ventral portions of the anterior cingulate and medial prefrontal cortices (p < 0.05, corrected). In contrast, PTSD patients showed increased left CMA connectivity with a cluster including the orbitofrontal and subcallosal cortices (p < 0.05, corrected). Critically, these connectivity changes coincided with diminished grey matter volume within BLA and CMA subnuclei (p < 0.05, corrected), with CMA connectivity shifts additionally relating to more severe symptoms of PTSD. These findings provide unique insights into how perturbations in major amygdalar circuits could hamper fear regulation and drive excessive acquisition and expression of fear in PTSD. As such, they represent an important step toward characterizing the neurocircuitry of adolescent PTSD, thereby informing the development of reliable biomarkers and potential therapeutic targets. © 2016 Wiley Periodicals, Inc.

  11. Neuromyelitis optica spectrum disorder presenting with repeated hypersomnia due to involvement of the hypothalamus and hypothalamus-amygdala linkage.

    Science.gov (United States)

    Kume, Kodai; Deguchi, Kazushi; Ikeda, Kazuyo; Takata, Tadayuki; Kokudo, Yohei; Kamada, Masaki; Touge, Tetsuo; Takahashi, Toshiyuki; Kanbayashi, Takashi; Masaki, Tsutomu

    2015-06-01

    We report the case of a 46-year-old Japanese woman with neuromyelitis optica spectrum disorder presenting with repeated hypersomnia accompanied by decreased CSF orexin level. First episode associated with hypothalamic-pituitary dysfunction showed bilateral hypothalamic lesions that can cause secondary damage to the orexin neurons. The second episode associated with impaired memory showed a left temporal lesion involving the amygdala. The mechanism remains unknown, but the reduced blood flow in the hypothalamus ipsilateral to the amygdala lesion suggested trans-synaptic hypothalamic dysfunction secondary to the impaired amygdala. A temporal lesion involving the amygdala and hypothalamus could be responsible for hypersomnia due to neuromyelitis optica spectrum disorder. © The Author(s), 2015.

  12. The amygdala and decision-making.

    Science.gov (United States)

    Gupta, Rupa; Koscik, Timothy R; Bechara, Antoine; Tranel, Daniel

    2011-03-01

    Decision-making is a complex process that requires the orchestration of multiple neural systems. For example, decision-making is believed to involve areas of the brain involved in emotion (e.g., amygdala, ventromedial prefrontal cortex) and memory (e.g., hippocampus, dorsolateral prefrontal cortex). In this article, we will present findings related to the amygdala's role in decision-making, and differentiate the contributions of the amygdala from those of other structurally and functionally connected neural regions. Decades of research have shown that the amygdala is involved in associating a stimulus with its emotional value. This tradition has been extended in newer work, which has shown that the amygdala is especially important for decision-making, by triggering autonomic responses to emotional stimuli, including monetary reward and punishment. Patients with amygdala damage lack these autonomic responses to reward and punishment, and consequently, cannot utilize "somatic marker" type cues to guide future decision-making. Studies using laboratory decision-making tests have found deficient decision-making in patients with bilateral amygdala damage, which resembles their real-world difficulties with decision-making. Additionally, we have found evidence for an interaction between sex and laterality of amygdala functioning, such that unilateral damage to the right amygdala results in greater deficits in decision-making and social behavior in men, while left amygdala damage seems to be more detrimental for women. We have posited that the amygdala is part of an "impulsive," habit type system that triggers emotional responses to immediate outcomes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Fear processing and social networking in the absence of a functional amygdala.

    Science.gov (United States)

    Becker, Benjamin; Mihov, Yoan; Scheele, Dirk; Kendrick, Keith M; Feinstein, Justin S; Matusch, Andreas; Aydin, Merve; Reich, Harald; Urbach, Horst; Oros-Peusquens, Ana-Maria; Shah, Nadim J; Kunz, Wolfram S; Schlaepfer, Thomas E; Zilles, Karl; Maier, Wolfgang; Hurlemann, René

    2012-07-01

    The human amygdala plays a crucial role in processing social signals, such as face expressions, particularly fearful ones, and facilitates responses to them in face-sensitive cortical regions. This contributes to social competence and individual amygdala size correlates with that of social networks. While rare patients with focal bilateral amygdala lesion typically show impaired recognition of fearful faces, this deficit is variable, and an intriguing possibility is that other brain regions can compensate to support fear and social signal processing. To investigate the brain's functional compensation of selective bilateral amygdala damage, we performed a series of behavioral, psychophysiological, and functional magnetic resonance imaging experiments in two adult female monozygotic twins (patient 1 and patient 2) with equivalent, extensive bilateral amygdala pathology as a sequela of lipoid proteinosis due to Urbach-Wiethe disease. Patient 1, but not patient 2, showed preserved recognition of fearful faces, intact modulation of acoustic startle responses by fear-eliciting scenes, and a normal-sized social network. Functional magnetic resonance imaging revealed that patient 1 showed potentiated responses to fearful faces in her left premotor cortex face area and bilaterally in the inferior parietal lobule. The premotor cortex face area and inferior parietal lobule are both implicated in the cortical mirror-neuron system, which mediates learning of observed actions and may thereby promote both imitation and empathy. Taken together, our findings suggest that despite the pre-eminent role of the amygdala in processing social information, the cortical mirror-neuron system may sometimes adaptively compensate for its pathology. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  14. Amygdalar auditory neurons contribute to self-other distinction during ultrasonic social vocalization in rats

    Directory of Open Access Journals (Sweden)

    Jumpei Matsumoto

    2016-09-01

    Full Text Available Although clinical studies reported hyperactivation of the auditory system and amygdala in patients with auditory hallucinations (hearing others’ but not one’s own voice, independent of any external stimulus, neural mechanisms of self/other attribution is not well understood. We recorded neuronal responses in the dorsal amygdala including the lateral amygdaloid nucleus to ultrasonic vocalization (USVs emitted by subjects and conspecifics during free social interaction in 16 adult male rats. The animals emitting the USVs were identified by EMG recordings. One-quarter of the amygdalar neurons (15/60 responded to 50 kHz calls by the subject and/or conspecifics. Among the responsive neurons, most neurons (Type-Other neurons (73%, 11/15 responded only to calls by conspecifics but not subjects. Two Type-Self neurons (13%, 2/15 responded to calls by the subject but not those by conspecifics, although their response selectivity to subjects vs. conspecifics was lower than that of Type-Other neurons. The remaining two neurons (13% responded to calls by both the subject and conspecifics. Furthermore, population coding of the amygdalar neurons represented distinction of subject vs. conspecific calls. The present results provide the first neurophysiological evidence that the amygdala discriminately represents affective social calls by subject and conspecifics. These findings suggest that the amygdala is an important brain region for self/other attribution. Furthermore, pathological activation of the amygdala, where Type-Other neurons predominate, could induce external misattribution of percepts of vocalization.

  15. Electrogenic sulfate uptake by crustacean hepatopancreatic basolateral membrane vesicles

    International Nuclear Information System (INIS)

    Cattey, M.A.; Gerencser, G.A.; Aheam, G.A.

    1990-01-01

    Basolateral membrane vesicles (BLMV) were isolated from Atlantic lobster (Homarus americanus) hepatopancreas and purified by discontinuous sucrose gradient centrifugation. BLMV prepared in this fashion were osmotically reactive exhibiting linear dependence of vesicular 35 SO 4 -2 uptake to increasing external osmotic pressure with negligible non-specific isotope binding. Under short circuited conditions (valinomycin/K + ) BLMV responded to either a HCO 3 - gradient directed out or equilibrated HCO 3 - (10 mM) by displaying short term accumulation of sulfate above that of equilibrium. Uptake of divalent anion was unaffected by an inwardly directed transmembrane Na + or tetramethylammonium + gradient. 35 SO 4 -2 /HCO 3 - exchange in the presence of valinomycin was stimulated by transient inside positive K + diffusion potentials and inhibited by transient inside negative K + diffusion potentials. The role of electrogenic anion exchange by hepatopancreas BLMV in transcellular sulfate transport is discussed

  16. The amygdala as a neurobiological target for ghrelin in rats: neuroanatomical, electrophysiological and behavioral evidence.

    Directory of Open Access Journals (Sweden)

    Mayte Alvarez-Crespo

    Full Text Available Here, we sought to demonstrate that the orexigenic circulating hormone, ghrelin, is able to exert neurobiological effects (including those linked to feeding control at the level of the amygdala, involving neuroanatomical, electrophysiological and behavioural studies. We found that ghrelin receptors (GHS-R are densely expressed in several subnuclei of the amygdala, notably in ventrolateral (LaVL and ventromedial (LaVM parts of the lateral amygdaloid nucleus. Using whole-cell patch clamp electrophysiology to record from cells in the lateral amygdaloid nucleus, we found that ghrelin reduced the frequency of mEPSCs recorded from large pyramidal-like neurons, an effect that could be blocked by co-application of a ghrelin receptor antagonist. In ad libitum fed rats, intra-amygdala administration of ghrelin produced a large orexigenic response that lasted throughout the 4 hr of testing. Conversely, in hungry, fasted rats ghrelin receptor blockade in the amygdala significantly reduced food intake. Finally, we investigated a possible interaction between ghrelin's effects on feeding control and emotional reactivity exerted at the level of the amygdala. In rats allowed to feed during a 1-hour period between ghrelin injection and anxiety testing (elevated plus maze and open field, intra-amygdala ghrelin had no effect on anxiety-like behavior. By contrast, if the rats were not given access to food during this 1-hour period, a decrease in anxiety-like behavior was observed in both tests. Collectively, these data indicate that the amygdala is a valid target brain area for ghrelin where its neurobiological effects are important for food intake and for the suppression of emotional (anxiety-like behaviors if food is not available.

  17. Positive Facial Affect – An fMRI Study on the Involvement of Insula and Amygdala

    Science.gov (United States)

    Pohl, Anna; Anders, Silke; Schulte-Rüther, Martin; Mathiak, Klaus; Kircher, Tilo

    2013-01-01

    Imitation of facial expressions engages the putative human mirror neuron system as well as the insula and the amygdala as part of the limbic system. The specific function of the latter two regions during emotional actions is still under debate. The current study investigated brain responses during imitation of positive in comparison to non-emotional facial expressions. Differences in brain activation of the amygdala and insula were additionally examined during observation and execution of facial expressions. Participants imitated, executed and observed happy and non-emotional facial expressions, as well as neutral faces. During imitation, higher right hemispheric activation emerged in the happy compared to the non-emotional condition in the right anterior insula and the right amygdala, in addition to the pre-supplementary motor area, middle temporal gyrus and the inferior frontal gyrus. Region-of-interest analyses revealed that the right insula was more strongly recruited by (i) imitation and execution than by observation of facial expressions, that (ii) the insula was significantly stronger activated by happy than by non-emotional facial expressions during observation and imitation and that (iii) the activation differences in the right amygdala between happy and non-emotional facial expressions were increased during imitation and execution, in comparison to sole observation. We suggest that the insula and the amygdala contribute specifically to the happy emotional connotation of the facial expressions depending on the task. The pattern of the insula activity might reflect increased bodily awareness during active execution compared to passive observation and during visual processing of the happy compared to non-emotional facial expressions. The activation specific for the happy facial expression of the amygdala during motor tasks, but not in the observation condition, might reflect increased autonomic activity or feedback from facial muscles to the amygdala. PMID

  18. TOTAL NUMBER, DISTRIBUTION, AND PHENOTYPE OF CELLS EXPRESSING CHONDROITIN SULPHATE PROTEOGLYCANS IN THE NORMAL HUMAN AMYGDALA

    Science.gov (United States)

    Pantazopoulos, Harry; Murray, Elisabeth A.; Berretta, Sabina

    2009-01-01

    Chondroitin sulphate proteoglycans (CSPGs) are a key structural component of the brain extracellular matrix. They are involved in critical neurodevelopmental functions and are one of the main components of pericellular aggregates known as perineuronal nets. As a step toward investigating their functional and pathophysiological roles in the human amygdala, we assessed the pattern of CSPG expression in the normal human amygdala using wisteria floribunda agglutinin (WFA) lectin-histochemistry. Total numbers of WFA-labeled elements were measured in the lateral (LN), basal (BN), accessory basal (ABN) and cortical (CO) nuclei of the amygdala from 15 normal adult human subjects. For interspecies qualitative comparison, we also investigated the pattern of WFA labeling in the amygdala of naïve rats (n=32) and rhesus monkeys (Macaca mulatta; n=6). In human amygdala, WFA lectin-histochemistry resulted in labeling of perineuronal nets and cells with clear glial morphology, while neurons did not show WFA-labeling. Total numbers of WFA-labeled glial cells showed high interindividual variability. These cells aggregated in clusters with a consistent between-subjects spatial distribution. In a subset of human subjects (n=5), dual color fluorescence using an antibody raised against glial fibrillary acidic protein (GFAP) and WFA showed that the majority (93.7%) of WFA-labeled glial cells correspond to astrocytes. In rat and monkey amygdala, WFA histochemistry labeled perineuronal nets, but not glial cells. These results suggest that astrocytes are the main cell type expressing CSPGs in the adult human amygdala. Their highly segregated distribution pattern suggests that these cells serve specialized functions within human amygdalar nuclei. PMID:18374308

  19. Positive facial affect - an fMRI study on the involvement of insula and amygdala.

    Directory of Open Access Journals (Sweden)

    Anna Pohl

    Full Text Available Imitation of facial expressions engages the putative human mirror neuron system as well as the insula and the amygdala as part of the limbic system. The specific function of the latter two regions during emotional actions is still under debate. The current study investigated brain responses during imitation of positive in comparison to non-emotional facial expressions. Differences in brain activation of the amygdala and insula were additionally examined during observation and execution of facial expressions. Participants imitated, executed and observed happy and non-emotional facial expressions, as well as neutral faces. During imitation, higher right hemispheric activation emerged in the happy compared to the non-emotional condition in the right anterior insula and the right amygdala, in addition to the pre-supplementary motor area, middle temporal gyrus and the inferior frontal gyrus. Region-of-interest analyses revealed that the right insula was more strongly recruited by (i imitation and execution than by observation of facial expressions, that (ii the insula was significantly stronger activated by happy than by non-emotional facial expressions during observation and imitation and that (iii the activation differences in the right amygdala between happy and non-emotional facial expressions were increased during imitation and execution, in comparison to sole observation. We suggest that the insula and the amygdala contribute specifically to the happy emotional connotation of the facial expressions depending on the task. The pattern of the insula activity might reflect increased bodily awareness during active execution compared to passive observation and during visual processing of the happy compared to non-emotional facial expressions. The activation specific for the happy facial expression of the amygdala during motor tasks, but not in the observation condition, might reflect increased autonomic activity or feedback from facial muscles to the

  20. MRI Amygdala Volume in Williams Syndrome

    Science.gov (United States)

    Capitao, Liliana; Sampaio, Adriana; Sampaio, Cassandra; Vasconcelos, Cristiana; Fernandez, Montse; Garayzabal, Elena; Shenton, Martha E.; Goncalves, Oscar F.

    2011-01-01

    One of the most intriguing characteristics of Williams Syndrome individuals is their hypersociability. The amygdala has been consistently implicated in the etiology of this social profile, particularly given its role in emotional and social behavior. This study examined amygdala volume and symmetry in WS individuals and in age and sex matched…

  1. Human Neural Stem Cells Overexpressing Choline Acetyltransferase Restore Unconditioned Fear in Rats with Amygdala Injury

    Directory of Open Access Journals (Sweden)

    Kyungha Shin

    2016-01-01

    Full Text Available Amygdala is involved in the fear memory that recognizes certain environmental cues predicting threatening events. Manipulation of neurotransmission within the amygdala affects the expression of conditioned and unconditioned emotional memories such as fear freezing behaviour. We previously demonstrated that F3.ChAT human neural stem cells (NSCs overexpressing choline acetyltransferase (ChAT improve cognitive function of Alzheimer’s disease model rats with hippocampal or cholinergic nerve injuries by increasing acetylcholine (ACh level. In the present study, we examined the effect of F3.ChAT cells on the deficit of unconditioned fear freezing. Rats given N-methyl-d-aspartate (NMDA in their amygdala 2 weeks prior to cat odor exposure displayed very short resting (freezing time compared to normal animals. NMDA induced neuronal degeneration in the amygdala, leading to a decreased ACh concentration in cerebrospinal fluid. However, intracerebroventricular transplantation of F3.ChAT cells attenuated amygdala lesions 4 weeks after transplantation. The transplanted cells were found in the NMDA-injury sites and produced ChAT protein. In addition, F3.ChAT-receiving rats recuperated freezing time staying remote from the cat odor source, according to the recovery of brain ACh concentration. The results indicate that human NSCs overexpressing ChAT may facilitate retrieval of unconditioned fear memory by increasing ACh level.

  2. Comprehensive identification of age-related lipidome changes in rat amygdala during normal aging.

    Directory of Open Access Journals (Sweden)

    Roman Šmidák

    Full Text Available Brain lipids are integral components of brain structure and function. However, only recent advancements of chromatographic techniques together with mass spectrometry allow comprehensive identification of lipid species in complex brain tissue. Lipid composition varies between the individual areas and the majority of previous reports was focusing on individual lipids rather than a lipidome. Herein, a mass spectrometry-based approach was used to evaluate age-related changes in the lipidome of the rat amygdala obtained from young (3 months and old (20 months males of the Sprague-Dawley rat strain. A total number of 70 lipid species with significantly changed levels between the two animal groups were identified spanning four main lipid classes, i.e. glycerolipids, glycerophospholipids, sphingolipids and sterol lipids. These included phospholipids with pleiotropic brain function, such as derivatives of phosphatidylcholine, phosphatidylserine, and phosphatidylethanolamine. The analysis also revealed significant level changes of phosphatidic acid, diacylglycerol, sphingomyelin and ceramide that directly represent lipid signaling and affect amygdala neuronal activity. The amygdala is a crucial brain region for cognitive functions and former studies on rats and humans showed that this region changes its activity during normal aging. As the information on amygdala lipidome is very limited the results obtained in the present study represent a significant novelty and may contribute to further studies on the role of lipid molecules in age-associated changes of amygdala function.

  3. The participation of cortical amygdala in innate, odor-driven behavior

    Science.gov (United States)

    Root, Cory M.; Denny, Christine A.; Hen, René; Axel, Richard

    2014-01-01

    Innate behaviors are observed in naïve animals without prior learning or experience, suggesting that the neural circuits that mediate these behaviors are genetically determined and stereotyped. The neural circuits that convey olfactory information from the sense organ to the cortical and subcortical olfactory centers have been anatomically defined1-3 but the specific pathways responsible for innate responses to volatile odors have not been identified. We have devised genetic strategies that demonstrate that a stereotyped neural circuit that transmits information from the olfactory bulb to cortical amygdala is necessary for innate aversive and appetitive behaviors. Moreover, we have employed the promoter of the activity-dependent gene, arc, to express the photosensitive ion channel, channelrhodopsin, in neurons of the cortical amygdala activated by odors that elicit innate behaviors. Optical activation of these neurons leads to appropriate behaviors that recapitulate the responses to innate odors. These data indicate that the cortical amygdala plays a critical role in the generation of innate odor-driven behaviors but do not preclude the participation of cortical amygdala in learned olfactory behaviors. PMID:25383519

  4. Avoidant Responses to Interpersonal Provocation Are Associated with Increased Amygdala and Decreased Mentalizing Network Activity

    Science.gov (United States)

    Krämer, Ulrike M.

    2017-01-01

    When intentionally pushed or insulted, one can either flee from the provoker or retaliate. The implementation of such fight-or-flight decisions is a central aspect in the genesis and evolution of aggression episodes, yet it is usually investigated only indirectly or in nonsocial situations. In the present fMRI study, we aimed to distinguish brain regions associated with aggressive and avoidant responses to interpersonal provocation in humans. Participants (thirty-six healthy young women) could either avoid or face a highly (HP) and a lowly (LP) provoking opponent in a competitive reaction time task: the fight-or-escape (FOE) paradigm. Subjects avoided the HP more often, but retaliated when facing her. Moreover, they chose to fight the HP more quickly, and showed increased heart rate (HR) right before confronting her. Orbitofrontal cortex (OFC) and sensorimotor cortex were more active when participants decided to fight, whereas the mentalizing network was engaged when deciding to avoid. Importantly, avoiding the HP relative to the LP was associated with both higher activation in the right basolateral amygdala and lower relative activity in several mentalizing regions [e.g., medial and inferior frontal gyrus (IFG), temporal-parietal junction (TPJ)]. These results suggest that avoidant responses to provocation might result from heightened threat anticipation and are associated with reduced perspective taking. Furthermore, our study helps to reconcile conflicting findings on the role of the mentalizing network, the amygdala, and the OFC in aggression. PMID:28660251

  5. Adult-onset hypothyroidism enhances fear memory and upregulates mineralocorticoid and glucocorticoid receptors in the amygdala.

    Science.gov (United States)

    Montero-Pedrazuela, Ana; Fernández-Lamo, Iván; Alieva, María; Pereda-Pérez, Inmaculada; Venero, César; Guadaño-Ferraz, Ana

    2011-01-01

    Hypothyroidism is the most common hormonal disease in adults, which is frequently accompanied by learning and memory impairments and emotional disorders. However, the deleterious effects of thyroid hormones deficiency on emotional memory are poorly understood and often underestimated. To evaluate the consequences of hypothyroidism on emotional learning and memory, we have performed a classical Pavlovian fear conditioning paradigm in euthyroid and adult-thyroidectomized Wistar rats. In this experimental model, learning acquisition was not impaired, fear memory was enhanced, memory extinction was delayed and spontaneous recovery of fear memory was exacerbated in hypothyroid rats. The potentiation of emotional memory under hypothyroidism was associated with an increase of corticosterone release after fear conditioning and with higher expression of glucocorticoid and mineralocorticoid receptors in the lateral and basolateral nuclei of the amygdala, nuclei that are critically involved in the circuitry of fear memory. Our results demonstrate for the first time that adult-onset hypothyroidism potentiates fear memory and also increases vulnerability to develop emotional memories. Furthermore, our findings suggest that enhanced corticosterone signaling in the amygdala is involved in the pathophysiological mechanisms of fear memory potentiation. Therefore, we recommend evaluating whether inappropriate regulation of fear in patients with post-traumatic stress and other mental disorders is associated with abnormal levels of thyroid hormones, especially those patients refractory to treatment.

  6. Adult-onset hypothyroidism enhances fear memory and upregulates mineralocorticoid and glucocorticoid receptors in the amygdala.

    Directory of Open Access Journals (Sweden)

    Ana Montero-Pedrazuela

    Full Text Available Hypothyroidism is the most common hormonal disease in adults, which is frequently accompanied by learning and memory impairments and emotional disorders. However, the deleterious effects of thyroid hormones deficiency on emotional memory are poorly understood and often underestimated. To evaluate the consequences of hypothyroidism on emotional learning and memory, we have performed a classical Pavlovian fear conditioning paradigm in euthyroid and adult-thyroidectomized Wistar rats. In this experimental model, learning acquisition was not impaired, fear memory was enhanced, memory extinction was delayed and spontaneous recovery of fear memory was exacerbated in hypothyroid rats. The potentiation of emotional memory under hypothyroidism was associated with an increase of corticosterone release after fear conditioning and with higher expression of glucocorticoid and mineralocorticoid receptors in the lateral and basolateral nuclei of the amygdala, nuclei that are critically involved in the circuitry of fear memory. Our results demonstrate for the first time that adult-onset hypothyroidism potentiates fear memory and also increases vulnerability to develop emotional memories. Furthermore, our findings suggest that enhanced corticosterone signaling in the amygdala is involved in the pathophysiological mechanisms of fear memory potentiation. Therefore, we recommend evaluating whether inappropriate regulation of fear in patients with post-traumatic stress and other mental disorders is associated with abnormal levels of thyroid hormones, especially those patients refractory to treatment.

  7. Adult-Onset Hypothyroidism Enhances Fear Memory and Upregulates Mineralocorticoid and Glucocorticoid Receptors in the Amygdala

    Science.gov (United States)

    Montero-Pedrazuela, Ana; Fernández-Lamo, Iván; Alieva, María; Pereda-Pérez, Inmaculada; Venero, César; Guadaño-Ferraz, Ana

    2011-01-01

    Hypothyroidism is the most common hormonal disease in adults, which is frequently accompanied by learning and memory impairments and emotional disorders. However, the deleterious effects of thyroid hormones deficiency on emotional memory are poorly understood and often underestimated. To evaluate the consequences of hypothyroidism on emotional learning and memory, we have performed a classical Pavlovian fear conditioning paradigm in euthyroid and adult-thyroidectomized Wistar rats. In this experimental model, learning acquisition was not impaired, fear memory was enhanced, memory extinction was delayed and spontaneous recovery of fear memory was exacerbated in hypothyroid rats. The potentiation of emotional memory under hypothyroidism was associated with an increase of corticosterone release after fear conditioning and with higher expression of glucocorticoid and mineralocorticoid receptors in the lateral and basolateral nuclei of the amygdala, nuclei that are critically involved in the circuitry of fear memory. Our results demonstrate for the first time that adult-onset hypothyroidism potentiates fear memory and also increases vulnerability to develop emotional memories. Furthermore, our findings suggest that enhanced corticosterone signaling in the amygdala is involved in the pathophysiological mechanisms of fear memory potentiation. Therefore, we recommend evaluating whether inappropriate regulation of fear in patients with post-traumatic stress and other mental disorders is associated with abnormal levels of thyroid hormones, especially those patients refractory to treatment. PMID:22039511

  8. Hippocampal oscillations in the rodent model of schizophrenia induced by amygdala GABA receptor blockade

    Directory of Open Access Journals (Sweden)

    Tope eLanre-Amos

    2010-09-01

    Full Text Available Brain oscillations are critical for cognitive processes, and their alterations in schizophrenia have been proposed to contribute to cognitive impairments. Network oscillations rely upon GABAergic interneurons, which also show characteristic changes in schizophrenia. The aim of this study was to examine the capability of hippocampal networks to generate oscillations in a rat model previously shown to reproduce the stereotypic structural alterations of the hippocampal interneuron circuit seen in schizophrenic patients. This model uses injection of GABA-A receptor antagonist picrotoxin into the basolateral amygdala which causes cell-type specific disruption of interneuron signaling in the hippocampus. We found that after such treatment, hippocampal theta rhythm was still present during REM sleep, locomotion, and exploration of novel environment and could be elicited under urethane anesthesia. Subtle changes in theta and gamma parameters were observed in both preparations; specifically in the stimulus intensity—theta frequency relationship under urethane and in divergent reactions of oscillations at the two major theta dipoles in freely moving rats. Thus, theta power in the CA1 region was generally enhanced as compared with deep theta dipole which decreased or did not change. The results indicate that pathologic reorganization of interneurons that follows the over-activation of the amygdala-hippocampal pathway, as shown for this model of schizophrenia, does not lead to destruction of the oscillatory circuit but changes the normal balance of rhythmic activity in its various compartments.

  9. A Central Amygdala CRF Circuit Facilitates Learning about Weak Threats.

    Science.gov (United States)

    Sanford, Christina A; Soden, Marta E; Baird, Madison A; Miller, Samara M; Schulkin, Jay; Palmiter, Richard D; Clark, Michael; Zweifel, Larry S

    2017-01-04

    Fear is a graded central motive state ranging from mild to intense. As threat intensity increases, fear transitions from discriminative to generalized. The circuit mechanisms that process threats of different intensity are not well resolved. Here, we isolate a unique population of locally projecting neurons in the central nucleus of the amygdala (CeA) that produce the neuropeptide corticotropin-releasing factor (CRF). CRF-producing neurons and CRF in the CeA are required for discriminative fear, but both are dispensable for generalized fear at high US intensities. Consistent with a role in discriminative fear, CRF neurons undergo plasticity following threat conditioning and selectively respond to threat-predictive cues. We further show that excitability of genetically isolated CRF-receptive (CRFR1) neurons in the CeA is potently enhanced by CRF and that CRFR1 signaling in the CeA is critical for discriminative fear. These findings demonstrate a novel CRF gain-control circuit and show separable pathways for graded fear processing. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. The primate amygdala in social perception - insights from electrophysiological recordings and stimulation

    Science.gov (United States)

    Rutishauser, Ueli; Mamelak, Adam N.; Adolphs, Ralph

    2015-01-01

    The amygdala’s role in emotion and social perception has been intensively investigated primarily through studies using fMRI. Recently, this topic has been examined using single-unit recordings in both humans and monkeys, with a focus on face processing. The findings provide novel insights, including several surprises: amygdala neurons have very long response latencies, show highly nonlinear responses to whole faces, and can be exquisitely selective for very specific parts of faces such as the eyes. In humans, the responses of amygdala neurons correlate with internal states evoked by faces, rather than with their objective features. Current and future studies extend the investigations to psychiatric illnesses such as autism, in which atypical face processing is a hallmark of social dysfunction. PMID:25847686

  11. Metabolic activation of amygdala, lateral septum and accumbens circuits during food anticipatory behavior.

    Science.gov (United States)

    Olivo, Diana; Caba, Mario; Gonzalez-Lima, Francisco; Rodríguez-Landa, Juan F; Corona-Morales, Aleph A

    2017-01-01

    When food is restricted to a brief fixed period every day, animals show an increase in temperature, corticosterone concentration and locomotor activity for 2-3h before feeding time, termed food anticipatory activity. Mechanisms and neuroanatomical circuits responsible for food anticipatory activity remain unclear, and may involve both oscillators and networks related to temporal conditioning. Rabbit pups are nursed once-a-day so they represent a natural model of circadian food anticipatory activity. Food anticipatory behavior in pups may be associated with neural circuits that temporally anticipate feeding, while the nursing event may produce consummatory effects. Therefore, we used New Zealand white rabbit pups entrained to circadian feeding to investigate the hypothesis that structures related to reward expectation and conditioned emotional responses would show a metabolic rhythm anticipatory of the nursing event, different from that shown by structures related to reward delivery. Quantitative cytochrome oxidase histochemistry was used to measure regional brain metabolic activity at eight different times during the day. We found that neural metabolism peaked before nursing, during food anticipatory behavior, in nuclei of the extended amygdala (basolateral, medial and central nuclei, bed nucleus of the stria terminalis), lateral septum and accumbens core. After pups were fed, however, maximal metabolic activity was expressed in the accumbens shell, caudate, putamen and cortical amygdala. Neural and behavioral activation persisted when animals were fasted by two cycles, at the time of expected nursing. These findings suggest that metabolic activation of amygdala-septal-accumbens circuits involved in temporal conditioning may contribute to food anticipatory activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Oxytocin signaling in the medial amygdala is required for sex discrimination of social cues

    OpenAIRE

    Yao, Shenqin; Bergan, Joseph; Lanjuin, Anne; Dulac, Catherine

    2017-01-01

    The neural control of social behaviors in rodents requires the encoding of pheromonal cues by the vomeronasal system. Here we show that the typical preference of male mice for females is eliminated in mutants lacking oxytocin, a neuropeptide modulating social behaviors in many species. Ablation of the oxytocin receptor in aromatase-expressing neurons of the medial amygdala (MeA) fully recapitulates the elimination of female preference in males. Further, single-unit recording in the MeA uncove...

  13. Oxytocin Signaling in the Medial Amygdala is required for Sex Discrimination of Social Cues

    OpenAIRE

    Bergan, Joseph; Yao, Shenqin; Lanjuin, Anne; Dulac, Catherine

    2017-01-01

    The neural control of social behaviors in rodents requires the encoding of pheromonal cues by the vomeronasal system. Here we show that the typical preference of male mice for females is eliminated in mutants lacking oxytocin, a neuropeptide modulating social behaviors in many species. Ablation of the oxytocin receptor in aromatase expressing neurons of the medial amygdala (MeA) fully recapitulates the elimination of female preference in males. Further, single unit recording in the MeA uncove...

  14. Optogenetic Excitation of Central Amygdala Amplifies and Narrows Incentive Motivation to Pursue One Reward Above Another

    OpenAIRE

    Robinson, Mike J.F.; Warlow, Shelley M.; Berridge, Kent C.

    2014-01-01

    Choosing one reward above another is important for achieving adaptive life goals. Yet hijacked into excessive intensity in disorders such as addiction, single-minded pursuit becomes maladaptive. Here, we report that optogenetic channelrhodopsin stimulation of neurons in central nucleus of amygdala (CeA), paired with earning a particular sucrose reward in rats, amplified and narrowed incentive motivation to that single reward target. Therefore, CeA rats chose and intensely pursued only the las...

  15. AMYGDALA MICROCIRCUITS CONTROLLING LEARNED FEAR

    Science.gov (United States)

    Duvarci, Sevil; Pare, Denis

    2014-01-01

    We review recent work on the role of intrinsic amygdala networks in the regulation of classically conditioned defensive behaviors, commonly known as conditioned fear. These new developments highlight how conditioned fear depends on far more complex networks than initially envisioned. Indeed, multiple parallel inhibitory and excitatory circuits are differentially recruited during the expression versus extinction of conditioned fear. Moreover, shifts between expression and extinction circuits involve coordinated interactions with different regions of the medial prefrontal cortex. However, key areas of uncertainty remain, particularly with respect to the connectivity of the different cell types. Filling these gaps in our knowledge is important because much evidence indicates that human anxiety disorders results from an abnormal regulation of the networks supporting fear learning. PMID:24908482

  16. Binding of IGF I and IGF I-stimulated phosphorylation in canine renal basolateral membranes

    International Nuclear Information System (INIS)

    Hammerman, M.R.; Gavin, J.R. III.

    1986-01-01

    To characterize the interaction of the renal proximal tubular cell with insulin like growth factor I (IGF I), we measured binding of 125 I-IGF I to proximal tubular basolateral membranes from dog kidney and induced IGF I-stimulated phosphorylation of basolateral membranes. Specific binding of 125 I-IGF I to basolateral membranes was observed that was half-maximal at between 10(-9) and 10(-8) M IGF I. 125 I-IGF I was affinity cross-linked to a 135,000 Mr protein in basolateral membranes that was distinct from the alpha-subunit of the insulin receptor and from the IGF II receptor. IGF I-stimulated phosphorylation of a 92,000 Mr protein was effected in detergent-solubilized membranes incubated with 100 microM [gamma- 32 P]ATP. The 32 P-labeled protein was distinct from the beta-subunit of the insulin receptor, the 32 P phosphorylation of which was stimulated by insulin. We conclude that specific receptors for IGF I are present in the basolateral membrane of the renal proximal tubular cell. Physiological actions of IGF I at this nephron site may occur through the binding of this peptide circulating in plasma, to specific basolateral membrane receptors, followed by IGF I stimulated phosphorylation

  17. Electrogenic Na+-independent Pi transport in canine renal basolateral membrane vesicles

    International Nuclear Information System (INIS)

    Schwab, S.J.; Hammerman, M.R.

    1986-01-01

    To define the mechanism by which Pi exists from the renal proximal tubular cell across the basolateral membrane, we measured 32Pi uptake in basolateral membrane vesicles from dog kidney in the absence of Na+. Preloading of basolateral vesicles with 2 mM Pi transstimulated 32Pi uptake, which is consistent with counterflow. We used measurements of transstimulation to quantitate the transport component of 32Pi uptake. Transstimulation of 32Pi uptake was inhibited less than 30% by concentrations of probenecid as high as 50 mM. In contrast, transstimulation of 35SO4(2-) uptake by intravesicular SO4(2-) was inhibited 92% by 5 mM probenecid. Preloading basolateral vesicles with SO4(2-) did not result in transstimulation of 32Pi uptake. Accumulation of 32Pi in basolateral vesicles above steady state was driven by a membrane potential (intravesicular positive), consistent with Na+-independent Pi transport being accompanied by the net transfer of negative charge across the membrane. We conclude that carrier-mediated, electrogenic Na+-independent 32Pi transport can be demonstrated in basolateral vesicles from dog kidney. This process appears to be mediated, at least in part, via a mechanism different from that by which SO4(2-) is transported. Electrogenic Na+-independent Pi transport may reflect one means by which Pi reabsorbed across the luminal membrane exists from the proximal tubular cell down an electrochemical gradient

  18. Uncertainty-Dependent Extinction of Fear Memory in an Amygdala-mPFC Neural Circuit Model

    Science.gov (United States)

    Li, Yuzhe; Nakae, Ken; Ishii, Shin; Naoki, Honda

    2016-01-01

    Uncertainty of fear conditioning is crucial for the acquisition and extinction of fear memory. Fear memory acquired through partial pairings of a conditioned stimulus (CS) and an unconditioned stimulus (US) is more resistant to extinction than that acquired through full pairings; this effect is known as the partial reinforcement extinction effect (PREE). Although the PREE has been explained by psychological theories, the neural mechanisms underlying the PREE remain largely unclear. Here, we developed a neural circuit model based on three distinct types of neurons (fear, persistent and extinction neurons) in the amygdala and medial prefrontal cortex (mPFC). In the model, the fear, persistent and extinction neurons encode predictions of net severity, of unconditioned stimulus (US) intensity, and of net safety, respectively. Our simulation successfully reproduces the PREE. We revealed that unpredictability of the US during extinction was represented by the combined responses of the three types of neurons, which are critical for the PREE. In addition, we extended the model to include amygdala subregions and the mPFC to address a recent finding that the ventral mPFC (vmPFC) is required for consolidating extinction memory but not for memory retrieval. Furthermore, model simulations led us to propose a novel procedure to enhance extinction learning through re-conditioning with a stronger US; strengthened fear memory up-regulates the extinction neuron, which, in turn, further inhibits the fear neuron during re-extinction. Thus, our models increased the understanding of the functional roles of the amygdala and vmPFC in the processing of uncertainty in fear conditioning and extinction. PMID:27617747

  19. Uncertainty-Dependent Extinction of Fear Memory in an Amygdala-mPFC Neural Circuit Model.

    Science.gov (United States)

    Li, Yuzhe; Nakae, Ken; Ishii, Shin; Naoki, Honda

    2016-09-01

    Uncertainty of fear conditioning is crucial for the acquisition and extinction of fear memory. Fear memory acquired through partial pairings of a conditioned stimulus (CS) and an unconditioned stimulus (US) is more resistant to extinction than that acquired through full pairings; this effect is known as the partial reinforcement extinction effect (PREE). Although the PREE has been explained by psychological theories, the neural mechanisms underlying the PREE remain largely unclear. Here, we developed a neural circuit model based on three distinct types of neurons (fear, persistent and extinction neurons) in the amygdala and medial prefrontal cortex (mPFC). In the model, the fear, persistent and extinction neurons encode predictions of net severity, of unconditioned stimulus (US) intensity, and of net safety, respectively. Our simulation successfully reproduces the PREE. We revealed that unpredictability of the US during extinction was represented by the combined responses of the three types of neurons, which are critical for the PREE. In addition, we extended the model to include amygdala subregions and the mPFC to address a recent finding that the ventral mPFC (vmPFC) is required for consolidating extinction memory but not for memory retrieval. Furthermore, model simulations led us to propose a novel procedure to enhance extinction learning through re-conditioning with a stronger US; strengthened fear memory up-regulates the extinction neuron, which, in turn, further inhibits the fear neuron during re-extinction. Thus, our models increased the understanding of the functional roles of the amygdala and vmPFC in the processing of uncertainty in fear conditioning and extinction.

  20. Mesencephalic basolateral domain specification is dependent on Sonic Hedgehog

    Science.gov (United States)

    Martinez-Lopez, Jesus E.; Moreno-Bravo, Juan A.; Madrigal, M. Pilar; Martinez, Salvador; Puelles, Eduardo

    2015-01-01

    In the study of central nervous system morphogenesis, the identification of new molecular markers allows us to identify domains along the antero-posterior and dorso-ventral (DV) axes. In the past years, the alar and basal plates of the midbrain have been divided into different domains. The precise location of the alar-basal boundary is still under discussion. We have identified Barhl1, Nhlh1 and Six3 as appropriate molecular markers to the adjacent domains of this transition. The description of their expression patterns and the contribution to the different mesencephalic populations corroborated their role in the specification of these domains. We studied the influence of Sonic Hedgehog on these markers and therefore on the specification of these territories. The lack of this morphogen produced severe alterations in the expression pattern of Barhl1 and Nhlh1 with consequent misspecification of the basolateral (BL) domain. Six3 expression was apparently unaffected, however its distribution changed leading to altered basal domains. In this study we confirmed the localization of the alar-basal boundary dorsal to the BL domain and demonstrated that the development of the BL domain highly depends on Shh. PMID:25741244

  1. Prevention of stress-impaired fear extinction through neuropeptide s action in the lateral amygdala.

    Science.gov (United States)

    Chauveau, Frédéric; Lange, Maren Denise; Jüngling, Kay; Lesting, Jörg; Seidenbecher, Thomas; Pape, Hans-Christian

    2012-06-01

    Stressful and traumatic events can create aversive memories, which are a predisposing factor for anxiety disorders. The amygdala is critical for transforming such stressful events into anxiety, and the recently discovered neuropeptide S transmitter system represents a promising candidate apt to control these interactions. Here we test the hypothesis that neuropeptide S can regulate stress-induced hyperexcitability in the amygdala, and thereby can interact with stress-induced alterations of fear memory. Mice underwent acute immobilization stress (IS), and neuropeptide S and a receptor antagonist were locally injected into the lateral amygdala (LA) during stress exposure. Ten days later, anxiety-like behavior, fear acquisition, fear memory retrieval, and extinction were tested. Furthermore, patch-clamp recordings were performed in amygdala slices prepared ex vivo to identify synaptic substrates of stress-induced alterations in fear responsiveness. (1) IS increased anxiety-like behavior, and enhanced conditioned fear responses during extinction 10 days after stress, (2) neuropeptide S in the amygdala prevented, while an antagonist aggravated, these stress-induced changes of aversive behaviors, (3) excitatory synaptic activity in LA projection neurons was increased on fear conditioning and returned to pre-conditioning values on fear extinction, and (4) stress resulted in sustained high levels of excitatory synaptic activity during fear extinction, whereas neuropeptide S supported the return of synaptic activity during fear extinction to levels typical of non-stressed animals. Together these results suggest that the neuropeptide S system is capable of interfering with mechanisms in the amygdala that transform stressful events into anxiety and impaired fear extinction.

  2. Relation between Amygdala Structure and Function in Adolescents with Bipolar Disorder

    Science.gov (United States)

    Kalmar, Jessica H.; Wang, Fei; Chepenik, Lara G.; Womer, Fay Y.; Jones, Monique M.; Pittman, Brian; Shah, Maulik P.; Martin, Andres; Constable, R. Todd; Blumberg, Hilary P.

    2009-01-01

    Adolescents with bipolar disorder showed decreased amygdala volume and increased amygdala response to emotional faces. Amygdala volume is inversely related to activation during emotional face processing.

  3. Testosterone reduces amygdala-orbitofrontal cortex coupling

    NARCIS (Netherlands)

    van Wingen, Guido; Mattern, Claudia; Verkes, Robbert Jan; Buitelaar, Jan; Fernández, Guillén

    2010-01-01

    Testosterone influences various aspects of affective behavior, which is mediated by different brain regions within the emotion circuitry. Previous neuroimaging studies have demonstrated that testosterone increases neural activity in the amygdala. To investigate whether this could be due to altered

  4. Basolateral amygdalar D2 receptor activation is required for the companions-exerted suppressive effect on the cocaine conditioning.

    Science.gov (United States)

    Tzeng, Wen-Yu; Cherng, Chian-Fang G; Yu, Lung; Wang, Ching-Yi

    2017-01-01

    The presence of companions renders decreases in cocaine-stimulated dopamine release in the nucleus accumbens and cocaine-induced conditioned place preference (CPP) magnitude. Limbic systems are widely believed to underlie the modulation of accumbal dopamine release and cocaine conditioning. Thus, this study aimed to assess whether intact basolateral nucleus of amygdala (BLA), dorsal hippocampus (DH), and dorsolateral striatum (DLS) is required for the companions-exerted suppressive effect on the cocaine-induced CPP. Three cage mates, serving as companions, were arranged to house with the experimental mice in the cocaine conditioning compartment throughout the cocaine conditioning sessions. Approximately 1week before the conditioning procedure, intracranial ibotenic acid infusions were done in an attempt to cause excitotoxic lesions targeting bilateral BLA, DH and DLS. Albeit their BLA, DH, and DLS lesions, the lesioned mice exhibited comparable cocaine-induced CPP magnitudes compared to the intact and sham lesion controls. Bilateral BLA, but not DH or DLS, lesions abolished the companions-exerted suppressive effect on the cocaine-induced CPP. Intact mice receiving intra-BLA infusion of raclopride, a selective D2 antagonist, 30min prior to the cocaine conditioning did not exhibit the companions-exerted suppressive effect on the cocaine-induced CPP. Intra-BLA infusion of Sch23390, a selective D1 antagonist, did not affect the companions-exerted suppressive effect on the CPP. These results, taken together, prompt us to conclude that the intactness of BLA is required for the companions-exerted suppressive effect on the cocaine-induced CPP. Importantly, activation of D2 receptor in the BLA is required for such suppressive effect on the CPP. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. The amygdala: securing pleasure and avoiding pain

    Directory of Open Access Journals (Sweden)

    Anushka B P Fernando

    2013-12-01

    Full Text Available The amygdala has traditionally been associated with fear, mediating the impact of negative emotions on memory. However, this view does not fully encapsulate the function of the amygdala, nor the impact that processing in this structure has on the motivational limbic corticostriatal circuitry of which it is an important structure. Here we discuss the interactions between different amygdala nuclei with cortical and striatal regions involved in motivation; interconnections and parallel circuitries that have become increasingly understood in recent years. We review the evidence that the amygdala stores memories that allow initially motivationally neutral stimuli to become associated through pavlovian conditioning with motivationally relevant outcomes which, importantly, can be either appetitive (e.g. food or aversive (e.g. electric shock. We also consider how different psychological processes supported by the amygdala such as conditioned reinforcement and punishment, conditioned motivation and suppression, and conditioned approach and avoidance behavior, are not only psychologically but also neurobiologically dissociable, being mediated by distinct yet overlapping neural circuits within the limbic corticostriatal circuitry. Clearly the role of the amygdala goes beyond encoding aversive stimuli to also encode the appetitive, requiring an appreciation of the amygdala’s mediation of both appetitive and fearful behavior through diverse psychological processes.

  6. Structural Connectivity of the Developing Human Amygdala

    Science.gov (United States)

    Saygin, Zeynep M.; Osher, David E.; Koldewyn, Kami; Martin, Rebecca E.; Finn, Amy; Saxe, Rebecca; Gabrieli, John D.E.; Sheridan, Margaret

    2015-01-01

    A large corpus of research suggests that there are changes in the manner and degree to which the amygdala supports cognitive and emotional function across development. One possible basis for these developmental differences could be the maturation of amygdalar connections with the rest of the brain. Recent functional connectivity studies support this conclusion, but the structural connectivity of the developing amygdala and its different nuclei remains largely unstudied. We examined age related changes in the DWI connectivity fingerprints of the amygdala to the rest of the brain in 166 individuals of ages 5-30. We also developed a model to predict age based on individual-subject amygdala connectivity, and identified the connections that were most predictive of age. Finally, we segmented the amygdala into its four main nucleus groups, and examined the developmental changes in connectivity for each nucleus. We observed that with age, amygdalar connectivity becomes increasingly sparse and localized. Age related changes were largely localized to the subregions of the amygdala that are implicated in social inference and contextual memory (the basal and lateral nuclei). The central nucleus’ connectivity also showed differences with age but these differences affected fewer target regions than the basal and lateral nuclei. The medial nucleus did not exhibit any age related changes. These findings demonstrate increasing specificity in the connectivity patterns of amygdalar nuclei across age. PMID:25875758

  7. Anhedonic behavior in cryptochrome 2-deficient mice is paralleled by altered diurnal patterns of amygdala gene expression.

    Science.gov (United States)

    Savalli, Giorgia; Diao, Weifei; Berger, Stefanie; Ronovsky, Marianne; Partonen, Timo; Pollak, Daniela D

    2015-07-01

    Mood disorders are frequently paralleled by disturbances in circadian rhythm-related physiological and behavioral states and genetic variants of clock genes have been associated with depression. Cryptochrome 2 (Cry2) is one of the core components of the molecular circadian machinery which has been linked to depression, both, in patients suffering from the disease and animal models of the disorder. Despite this circumstantial evidence, a direct causal relationship between Cry2 expression and depression has not been established. Here, a genetic mouse model of Cry2 deficiency (Cry2 (-/-) mice) was employed to test the direct relevance of Cry2 for depression-like behavior. Augmented anhedonic behavior in the sucrose preference test, without alterations in behavioral despair, was observed in Cry2 (-/-) mice. The novelty suppressed feeding paradigm revealed reduced hyponeophagia in Cry2 (-/-) mice compared to wild-type littermates. Given the importance of the amygdala in the regulation of emotion and their relevance for the pathophysiology of depression, potential alterations in diurnal patterns of basolateral amygdala gene expression in Cry2 (-/-) mice were investigated focusing on core clock genes and neurotrophic factor systems implicated in the pathophysiology of depression. Differential expression of the clock gene Bhlhe40 and the neurotrophic factor Vegfb were found in the beginning of the active (dark) phase in Cry2 (-/-) compared to wild-type animals. Furthermore, amygdala tissue of Cry2 (-/-) mice contained lower levels of Bdnf-III. Collectively, these results indicate that Cry2 exerts a critical role in the control of depression-related emotional states and modulates the chronobiological gene expression profile in the mouse amygdala.

  8. Stress leads to contrasting effects on the levels of brain derived neurotrophic factor in the hippocampus and amygdala.

    Directory of Open Access Journals (Sweden)

    Harini Lakshminarasimhan

    Full Text Available Recent findings on stress induced structural plasticity in rodents have identified important differences between the hippocampus and amygdala. The same chronic immobilization stress (CIS, 2 h/day causes growth of dendrites and spines in the basolateral amygdala (BLA, but dendritic atrophy in hippocampal area CA3. CIS induced morphological changes also differ in their temporal longevity--BLA hypertrophy, unlike CA3 atrophy, persists even after 21 days of stress-free recovery. Furthermore, a single session of acute immobilization stress (AIS, 2 h leads to a significant increase in spine density 10 days, but not 1 day, later in the BLA. However, little is known about the molecular correlates of the differential effects of chronic and acute stress. Because BDNF is known to be a key regulator of dendritic architecture and spines, we investigated if the levels of BDNF expression reflect the divergent effects of stress on the hippocampus and amygdala. CIS reduces BDNF in area CA3, while it increases it in the BLA of male Wistar rats. CIS-induced increase in BDNF expression lasts for at least 21 days after the end of CIS in the BLA. But CIS-induced decrease in area CA3 BDNF levels, reverses to normal levels within the same period. Finally, BDNF is up regulated in the BLA 1 day after AIS and this increase persists even 10 days later. In contrast, AIS fails to elicit any significant change in area CA3 at either time points. Together, these findings demonstrate that both acute and chronic stress trigger opposite effects on BDNF levels in the BLA versus area CA3, and these divergent changes also follow distinct temporal profiles. These results point to a role for BDNF in stress-induced structural plasticity across both hippocampus and amygdala, two brain areas that have also been implicated in the cognitive and affective symptoms of stress-related psychiatric disorders.

  9. Context-dependent encoding of fear and extinction memories in a large-scale network model of the basal amygdala.

    Science.gov (United States)

    Vlachos, Ioannis; Herry, Cyril; Lüthi, Andreas; Aertsen, Ad; Kumar, Arvind

    2011-03-01

    The basal nucleus of the amygdala (BA) is involved in the formation of context-dependent conditioned fear and extinction memories. To understand the underlying neural mechanisms we developed a large-scale neuron network model of the BA, composed of excitatory and inhibitory leaky-integrate-and-fire neurons. Excitatory BA neurons received conditioned stimulus (CS)-related input from the adjacent lateral nucleus (LA) and contextual input from the hippocampus or medial prefrontal cortex (mPFC). We implemented a plasticity mechanism according to which CS and contextual synapses were potentiated if CS and contextual inputs temporally coincided on the afferents of the excitatory neurons. Our simulations revealed a differential recruitment of two distinct subpopulations of BA neurons during conditioning and extinction, mimicking the activation of experimentally observed cell populations. We propose that these two subgroups encode contextual specificity of fear and extinction memories, respectively. Mutual competition between them, mediated by feedback inhibition and driven by contextual inputs, regulates the activity in the central amygdala (CEA) thereby controlling amygdala output and fear behavior. The model makes multiple testable predictions that may advance our understanding of fear and extinction memories.

  10. Context-dependent encoding of fear and extinction memories in a large-scale network model of the basal amygdala.

    Directory of Open Access Journals (Sweden)

    Ioannis Vlachos

    2011-03-01

    Full Text Available The basal nucleus of the amygdala (BA is involved in the formation of context-dependent conditioned fear and extinction memories. To understand the underlying neural mechanisms we developed a large-scale neuron network model of the BA, composed of excitatory and inhibitory leaky-integrate-and-fire neurons. Excitatory BA neurons received conditioned stimulus (CS-related input from the adjacent lateral nucleus (LA and contextual input from the hippocampus or medial prefrontal cortex (mPFC. We implemented a plasticity mechanism according to which CS and contextual synapses were potentiated if CS and contextual inputs temporally coincided on the afferents of the excitatory neurons. Our simulations revealed a differential recruitment of two distinct subpopulations of BA neurons during conditioning and extinction, mimicking the activation of experimentally observed cell populations. We propose that these two subgroups encode contextual specificity of fear and extinction memories, respectively. Mutual competition between them, mediated by feedback inhibition and driven by contextual inputs, regulates the activity in the central amygdala (CEA thereby controlling amygdala output and fear behavior. The model makes multiple testable predictions that may advance our understanding of fear and extinction memories.

  11. Direct Neuronal Glucose Uptake Is Required for Contextual Fear Acquisition in the Dorsal Hippocampus

    Directory of Open Access Journals (Sweden)

    Liang Kong

    2017-11-01

    Full Text Available The metabolism of glucose is a nearly exclusive source of energy for maintaining neuronal survival, synaptic transmission and information processing in the brain. Two glucose metabolism pathways have been reported, direct neuronal glucose uptake and the astrocyte-neuron lactate shuttle (ANLS, which can be involved in these functions simultaneously or separately. Although ANLS in the dorsal hippocampus (DH has been proved to be required for memory consolidation, the specific metabolic pathway involved during memory acquisition remains unclear. The DH and amygdala are two key brain regions for acquisition of contextual fear conditioning (CFC. In 2-NBDG experiments, we observed that 2-NBDG-positive neurons were significantly increased during the acquisition of CFC in the DH. However, in the amygdala and cerebellum, 2-NBDG-positive neurons were not changed during CFC training. Strikingly, microinjection of a glucose transporter (GLUT inhibitor into the DH decreased freezing values during CFC training and 1 h later, while injection of a monocarboxylate transporter (MCT inhibitor into the amygdala also reduced freezing values. Therefore, we demonstrated that direct neuronal glucose uptake was the primary means of energy supply in the DH, while ANLS might supply energy in the amygdala during acquisition. Furthermore, knockdown of GLUT3 by a lentivirus in the DH impaired the acquisition of CFC. Taken together, the results indicated that there were two different glucose metabolism pathways in the DH and amygdala during acquisition of contextual fear memory and that direct neuronal glucose uptake in the DH may be regulated by GLUT3.

  12. Awareness of Emotional Stimuli Determines the Behavioral Consequences of Amygdala Activation and Amygdala-Prefrontal Connectivity

    Science.gov (United States)

    Lapate, R. C.; Rokers, B.; Tromp, D. P. M.; Orfali, N. S.; Oler, J. A.; Doran, S. T.; Adluru, N.; Alexander, A. L.; Davidson, R. J.

    2016-01-01

    Conscious awareness of negative cues is thought to enhance emotion-regulatory capacity, but the neural mechanisms underlying this effect are unknown. Using continuous flash suppression (CFS) in the MRI scanner, we manipulated visual awareness of fearful faces during an affect misattribution paradigm, in which preferences for neutral objects can be biased by the valence of a previously presented stimulus. The amygdala responded to fearful faces independently of awareness. However, when awareness of fearful faces was prevented, individuals with greater amygdala responses displayed a negative bias toward unrelated novel neutral faces. In contrast, during the aware condition, inverse coupling between the amygdala and prefrontal cortex reduced this bias, particularly among individuals with higher structural connectivity in the major white matter pathway connecting the prefrontal cortex and amygdala. Collectively, these results indicate that awareness promotes the function of a critical emotion-regulatory network targeting the amygdala, providing a mechanistic account for the role of awareness in emotion regulation. PMID:27181344

  13. Influence of CO2 on electrophysiology and ionic permeability of the basolateral membrane of frog skin

    International Nuclear Information System (INIS)

    Stoddard, J.S.

    1984-01-01

    When short-circuited epithelia of frog skin bathed in an alkaline Ringer solution equilibrated with room air, are exposed to a Ringer solution equilibrated with 5% CO 2 , inhibition of transepithelial Na + transport is observed accompanied by a marked depolarization of the basolateral membrane voltage as measured with intracellular microelectrodes. To study further the mechanisms involved, basolateral membrane influxes and effluxes of 24 Na, 42 K, and 36 Cl were measured in control and CO 2 -treated isolated epithelia. In control epithelia, studies of the bidirectional 24 Na fluxes confirmed the existence of an important basolateral membrane permeability to Na + . In control epithelia, the apical membranes of the cells were found to be virtually impermeable to Cl - , while basolateral membranes were highly permeable to Cl - . Although CO 2 caused a partial inhibition of pump activity as assessed from decreases of pump-mediated Na + efflux and K + influx, CO 2 caused little or no change of the leak influx of Na + or K + . K + efflux was increased markedly with CO 2 resulting in a net loss of K + from the cells. Cl - influx was increased and Cl - efflux was decreased by CO 2 leading to a net influx of Cl - . Analysis of the data according to criteria involving changes of flux, ionic equilibrium potentials, mass and charge balance restrictions indicated that the principle changes involve a transient decrease in electrical conductance to K + with a concurrent increase in electrical conductance to HCO 3 - (OH - or H + ) of the basolateral membranes of the cells

  14. Dynamics of neuronal circuits in addiction: reward, antireward, and emotional memory.

    Science.gov (United States)

    Koob, G F

    2009-05-01

    Drug addiction is conceptualized as chronic, relapsing compulsive use of drugs with significant dysregulation of brain hedonic systems. Compulsive drug use is accompanied by decreased function of brain substrates for drug positive reinforcement and recruitment of brain substrates mediating the negative reinforcement of motivational withdrawal. The neural substrates for motivational withdrawal ("dark side" of addiction) involve recruitment of elements of the extended amygdala and the brain stress systems, including corticotropin-releasing factor and norepinephrine. These changes, combined with decreased reward function, are hypothesized to persist in the form of an allostatic state that forms a powerful motivational background for relapse. Relapse also involves a key role for the basolateral amygdala in mediating the motivational effects of stimuli previously paired with drug seeking and drug motivational withdrawal. The basolateral amygdala has a key role in mediating emotional memories in general. The hypothesis argued here is that brain stress systems activated by the motivational consequences of drug withdrawal can not only form the basis for negative reinforcement that drives drug seeking, but also potentiate associative mechanisms that perpetuate the emotional state and help drive the allostatic state of addiction.

  15. Potentiation of amygdala AMPA receptor activity selectively promotes escalated alcohol self-administration in a CaMKII-dependent manner.

    Science.gov (United States)

    Cannady, Reginald; Fisher, Kristen R; Graham, Caitlin; Crayle, Jesse; Besheer, Joyce; Hodge, Clyde W

    2017-05-01

    Growing evidence indicates that drugs of abuse gain control over the individual by usurping glutamate-linked mechanisms of neuroplasticity in reward-related brain regions. Accordingly, we have shown that glutamate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) activity in the amygdala is required for the positive reinforcing effects of alcohol, which underlie the initial stages of addiction. It is unknown, however, if enhanced AMPAR activity in the amygdala facilitates alcohol self-administration, which is a kernel premise of glutamate hypotheses of addiction. Here, we show that low-dose alcohol (0.6 g/kg/30 minutes) self-administration increases phosphorylation (activation) of AMPAR subtype GluA1 S831 (pGluA1 S831) in the central amygdala (CeA), basolateral amygdala and nucleus accumbens core (AcbC) of selectively bred alcohol-preferring P-rats as compared with behavior-matched (non-drug) sucrose controls. The functional role of enhanced AMPAR activity was assessed via site-specific infusion of the AMPAR positive modulator, aniracetam, in the CeA and AcbC prior to alcohol self-administration. Intra-CeA aniracetam increased alcohol-reinforced but not sucrose-reinforced responding and was ineffective following intra-AcbC infusion. Because GluA1 S831 is a Ca2+/calmodulin-dependent protein kinase II (CaMKII) substrate, we sought to determine if AMPAR regulation of enhanced alcohol self-administration is dependent on CaMKII activity. Intra-CeA infusion of the cell-permeable CaMKII peptide inhibitor myristolated autocamtide-2-related inhibitory peptide (m-AIP) dose-dependently reduced alcohol self-administration. A subthreshold dose of m-AIP also blocked the aniracetam-induced escalation of alcohol self-administration, demonstrating that AMPAR-mediated potentiation of alcohol reinforcement requires CaMKII activity in the amygdala. Enhanced activity of plasticity-linked AMPAR-CaMKII signaling in the amygdala may promote escalated alcohol use

  16. Framing effect following bilateral amygdala lesion.

    Science.gov (United States)

    Talmi, Deborah; Hurlemann, René; Patin, Alexandra; Dolan, Raymond J

    2010-05-01

    A paradigmatic example of an emotional bias in decision making is the framing effect, where the manner in which a choice is posed--as a potential loss or a potential gain--systematically biases an ensuing decision. Two fMRI studies have shown that the activation in the amygdala is modulated by the framing effect. Here, contrary to an expectation based on these studies, we show that two patients with Urbach-Wiethe (UW) disease, a rare condition associated with congenital, complete bilateral amygdala degeneration, exhibit an intact framing effect. However, choice preference in these patients did show a qualitatively distinct pattern compared to controls evident in an increased propensity to gamble, indicating that loss of amygdala function does exert an overall influence on risk-taking. These findings suggest either that amygdala does contribute to decision making but does not play a causal role in framing, or that UW is not a pure lesion model of amygdala function. 2010 Elsevier Ltd. All rights reserved.

  17. Angiotensin II stimulates basolateral 50-pS K channels in the thick ascending limb.

    Science.gov (United States)

    Wang, Mingxiao; Luan, Haiyan; Wu, Peng; Fan, Lili; Wang, Lijun; Duan, Xinpeng; Zhang, Dandan; Wang, Wen-Hui; Gu, Ruimin

    2014-03-01

    We used the patch-clamp technique to examine the effect of angiotensin II (ANG II) on the basolateral K channels in the thick ascending limb (TAL) of the rat kidney. Application of ANG II increased the channel activity and the current amplitude of the basolateral 50-pS K channel. The stimulatory effect of ANG II on the K channels was completely abolished by losartan, an inhibitor of type 1 angiotensin receptor (AT1R), but not by PD123319, an AT2R antagonist. Moreover, inhibition of phospholipase C (PLC) and protein kinase C (PKC) also abrogated the stimulatory effect of ANG II on the basolateral K channels in the TAL. This suggests that the stimulatory effect of ANG II on the K channels was induced by activating PLC and PKC pathways. Western blotting demonstrated that ANG II increased the phosphorylation of c-Src at tyrosine residue 416, an indication of c-Src activation. This effect was mimicked by PKC stimulator but abolished by calphostin C. Moreover, inhibition of NADPH oxidase (NOX) also blocked the effect of ANG II on c-Src tyrosine phosphorylation. The role of Src-family protein tyrosine kinase (SFK) in mediating the effect of ANG II on the basolateral K channel was further suggested by the experiments in which inhibition of SFK abrogated the stimulatory effect of ANG II on the basolateral 50-pS K channel. We conclude that ANG II increases basolateral 50-pS K channel activity via AT1R and that activation of AT1R stimulates SFK by a PLC-PKC-NOX-dependent mechanism.

  18. Iron repletion relocalizes hephaestin to a proximal basolateral compartment in polarized MDCK and Caco2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Min [Department of Biological Sciences, University of Columbia, NY (United States); Department of Nutritional Science and Toxicology, University of California, Berkeley, CA (United States); Attieh, Zouhair K. [Department of Laboratory Science and Technology, American University of Science and Technology, Ashrafieh (Lebanon); Department of Nutritional Science and Toxicology, University of California, Berkeley, CA (United States); Son, Hee Sook [Department of Food Science and Human Nutrition, College of Human Ecology, Chonbuk National University (Korea, Republic of); Department of Nutritional Science and Toxicology, University of California, Berkeley, CA (United States); Chen, Huijun [Medical School, Nanjing University, Nanjing 210008, Jiangsu Province (China); Department of Nutritional Science and Toxicology, University of California, Berkeley, CA (United States); Bacouri-Haidar, Mhenia [Department of Biology, Faculty of Sciences (I), Lebanese University, Hadath (Lebanon); Department of Nutritional Science and Toxicology, University of California, Berkeley, CA (United States); Vulpe, Chris D., E-mail: vulpe@berkeley.edu [Department of Nutritional Science and Toxicology, University of California, Berkeley, CA (United States)

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer Hephaestin localizes in the perinuclear space in non-polarized cells. Black-Right-Pointing-Pointer Hephaestin localizes in the perinuclear space in iron deficient and polarized cells. Black-Right-Pointing-Pointer Hephaestin with apical iron moves near to basolateral membrane of polarized cells. Black-Right-Pointing-Pointer Peri-basolateral location of hephaestin is accessible to the extracellular space. Black-Right-Pointing-Pointer Hephaestin is involved in iron mobilization from the intestine to circulation. -- Abstract: While intestinal cellular iron entry in vertebrates employs multiple routes including heme and non-heme routes, iron egress from these cells is exclusively channeled through the only known transporter, ferroportin. Reduced intestinal iron export in sex-linked anemia mice implicates hephaestin, a ferroxidase, in this process. Polarized cells are exposed to two distinct environments. Enterocytes contact the gut lumen via the apical surface of the cell, and through the basolateral surface, to the body. Previous studies indicate both local and systemic control of iron uptake. We hypothesized that differences in iron availability at the apical and/or basolateral surface may modulate iron uptake via cellular localization of hephaestin. We therefore characterized the localization of hephaestin in two models of polarized epithelial cell lines, MDCK and Caco2, with varying iron availability at the apical and basolateral surfaces. Our results indicate that hephaestin is expressed in a supra-nuclear compartment in non-polarized cells regardless of the iron status of the cells and in iron deficient and polarized cells. In polarized cells, we found that both apical (as FeSO{sub 4}) and basolateral iron (as the ratio of apo-transferrin to holo-transferrin) affect mobilization of hephaestin from the supra-nuclear compartment. We find that the presence of apical iron is essential for relocalization of hephaestin to a

  19. Impaired Emotional Declarative Memory Following Unilateral Amygdala Damage

    OpenAIRE

    Adolphs, Ralph; Tranel, Daniel; Denburg, Natalie

    2000-01-01

    Case studies of patients with bilateral amygdala damage and functional imaging studies of normal individuals have demonstrated that the amygdala plays a critical role in encoding emotionally arousing stimuli into long-term declarative memory. However, several issues remain poorly understood: the separate roles of left and right amygdala, the time course over which the amygdala participates in memory consolidation, and the type of knowledge structures it helps consolidate. We investigated thes...

  20. The amygdala complex: multiple roles in associative learning and attention.

    OpenAIRE

    Gallagher, M; Holland, P C

    1994-01-01

    Although certain neurophysiological functions of the amygdala complex in learning seem well established, the purpose of this review is to propose that an additional conceptualization of amygdala function is now needed. The research we review provides evidence that a subsystem within the amygdala provides a coordinated regulation of attentional processes. An important aspect of this additional neuropsychology of the amygdala is that it may aid in understanding the importance of connections bet...

  1. Lhx6 delineates a pathway mediating innate reproductive behaviors from the amygdala to the hypothalamus.

    Science.gov (United States)

    Choi, Gloria B; Dong, Hong-Wei; Murphy, Andrew J; Valenzuela, David M; Yancopoulos, George D; Swanson, Larry W; Anderson, David J

    2005-05-19

    In mammals, innate reproductive and defensive behaviors are mediated by anatomically segregated connections between the amygdala and hypothalamus. This anatomic segregation poses the problem of how the brain integrates activity in these circuits when faced with conflicting stimuli eliciting such mutually exclusive behaviors. Using genetically encoded and conventional axonal tracers, we have found that the transcription factor Lhx6 delineates the reproductive branch of this pathway. Other Lhx proteins mark neurons in amygdalar nuclei implicated in defense. We have traced parallel projections from the posterior medial amygdala, activated by reproductive or defensive olfactory stimuli, respectively, to a point of convergence in the ventromedial hypothalamus. The opposite neurotransmitter phenotypes of these convergent projections suggest a "gate control" mechanism for the inhibition of reproductive behaviors by threatening stimuli. Our data therefore identify a potential neural substrate for integrating the influences of conflicting behavioral cues and a transcription factor family that may contribute to the development of this substrate.

  2. Shared neural coding for social hierarchy and reward value in primate amygdala.

    Science.gov (United States)

    Munuera, Jérôme; Rigotti, Mattia; Salzman, C Daniel

    2018-03-01

    The social brain hypothesis posits that dedicated neural systems process social information. In support of this, neurophysiological data have shown that some brain regions are specialized for representing faces. It remains unknown, however, whether distinct anatomical substrates also represent more complex social variables, such as the hierarchical rank of individuals within a social group. Here we show that the primate amygdala encodes the hierarchical rank of individuals in the same neuronal ensembles that encode the rewards associated with nonsocial stimuli. By contrast, orbitofrontal and anterior cingulate cortices lack strong representations of hierarchical rank while still representing reward values. These results challenge the conventional view that dedicated neural systems process social information. Instead, information about hierarchical rank-which contributes to the assessment of the social value of individuals within a group-is linked in the amygdala to representations of rewards associated with nonsocial stimuli.

  3. Toxoplasma gondii infection reduces predator aversion in rats through epigenetic modulation in the host medial amygdala.

    Science.gov (United States)

    Hari Dass, Shantala Arundhati; Vyas, Ajai

    2014-12-01

    Male rats (Rattus novergicus) infected with protozoan Toxoplasma gondii relinquish their innate aversion to the cat odours. This behavioural change is postulated to increase transmission of the parasite to its definitive felid hosts. Here, we show that the Toxoplasma gondii infection institutes an epigenetic change in the DNA methylation of the arginine vasopressin promoter in the medial amygdala of male rats. Infected animals exhibit hypomethylation of arginine vasopressin promoter, leading to greater expression of this nonapeptide. The infection also results in the greater activation of the vasopressinergic neurons after exposure to the cat odour. Furthermore, we show that loss of fear in the infected animals can be rescued by the systemic hypermethylation and recapitulated by directed hypomethylation in the medial amygdala. These results demonstrate an epigenetic proximate mechanism underlying the extended phenotype in the Rattus novergicus-Toxoplasma gondii association. © 2014 John Wiley & Sons Ltd.

  4. Input from the medial geniculate nucleus modulates amygdala encoding of fear memory discrimination.

    Science.gov (United States)

    Ferrara, Nicole C; Cullen, Patrick K; Pullins, Shane P; Rotondo, Elena K; Helmstetter, Fred J

    2017-09-01

    Generalization of fear can involve abnormal responding to cues that signal safety and is common in people diagnosed with post-traumatic stress disorder. Differential auditory fear conditioning can be used as a tool to measure changes in fear discrimination and generalization. Most prior work in this area has focused on elevated amygdala activity as a critical component underlying generalization. The amygdala receives input from auditory cortex as well as the medial geniculate nucleus (MgN) of the thalamus, and these synapses undergo plastic changes in response to fear conditioning and are major contributors to the formation of memory related to both safe and threatening cues. The requirement for MgN protein synthesis during auditory discrimination and generalization, as well as the role of MgN plasticity in amygdala encoding of discrimination or generalization, have not been directly tested. GluR1 and GluR2 containing AMPA receptors are found at synapses throughout the amygdala and their expression is persistently up-regulated after learning. Some of these receptors are postsynaptic to terminals from MgN neurons. We found that protein synthesis-dependent plasticity in MgN is necessary for elevated freezing to both aversive and safe auditory cues, and that this is accompanied by changes in the expressions of AMPA receptor and synaptic scaffolding proteins (e.g., SHANK) at amygdala synapses. This work contributes to understanding the neural mechanisms underlying increased fear to safety signals after stress. © 2017 Ferrara et al.; Published by Cold Spring Harbor Laboratory Press.

  5. Selective enhancement of main olfactory input to the medial amygdala by GnRH.

    Science.gov (United States)

    Blake, Camille Bond; Meredith, Michael

    2010-03-04

    In male hamsters mating behavior is dependent on chemosensory input from the main olfactory and vomeronasal systems, whose central pathways contain cell bodies and fibers of gonadotropin-releasing hormone (GnRH) neurons. In sexually naive males, vomeronasal organ removal (VNX), but not main olfactory lesions, impairs mating behavior. Intracerebroventricular (i.c.v.)-GnRH restores mating in sexually naive VNX males and enhances medial amygdala (Me) immediate-early gene activation by chemosensory stimulation. In sexually experienced males, VNX does not impair mating and i.c.v.-GnRH suppresses Me activation. Thus, the main olfactory system is sufficient for mating in experienced-VNX males, but not in naive-VNX males. We investigated the possibility that GnRH enhances main olfactory input to the amygdala in naive-VNX males using i.c.v.-GnRH and pharmacological stimulation (bicuculline/D,L-homocysteic acid mixture) of the main olfactory bulb (MOB). In sexually naive intact males there was a robust increase of Fos protein expression in the anteroventral medial amygdala (MeAv) with MOB stimulation, but no effect of GnRH. There was no effect of stimulation or GnRH in posterodorsal medial amygdala (MePd). In naive-VNX animals, GnRH increased Fos in MeAv and MePv. Only combined MOB stimulation and i.c.v.-GnRH produced a significant increase in Fos in the dorsal (reproduction-related) portion of MeP (MePd). When the animals were sexually experienced before VNX, a condition in which GnRH does not enhance mating, i.c.v.-GnRH combined with MOB stimulation suppressed Fos expression in MePd. This suggests a more selective effect of GnRH on olfactory input in MePd than elsewhere in medial amygdala of VNX males. 2009 Elsevier B.V. All rights reserved.

  6. Toxoplasma gondii Infection in Mice Impairs Long-Term Fear Memory Consolidation through Dysfunction of the Cortex and Amygdala.

    Science.gov (United States)

    Ihara, Fumiaki; Nishimura, Maki; Muroi, Yoshikage; Mahmoud, Motamed Elsayed; Yokoyama, Naoaki; Nagamune, Kisaburo; Nishikawa, Yoshifumi

    2016-10-01

    Chronic infection with Toxoplasma gondii becomes established in tissues of the central nervous system, where parasites may directly or indirectly modulate neuronal function. Epidemiological studies have revealed that chronic infection in humans is a risk factor for developing mental diseases. However, the mechanisms underlying parasite-induced neuronal dysfunction in the brain remain unclear. Here, we examined memory associated with conditioned fear in mice and found that T. gondii infection impairs consolidation of conditioned fear memory. To examine the brain pathology induced by T. gondii infection, we analyzed the parasite load and histopathological changes. T. gondii infects all brain areas, yet the cortex exhibits more severe tissue damage than other regions. We measured neurotransmitter levels in the cortex and amygdala because these regions are involved in fear memory expression. The levels of dopamine metabolites but not those of dopamine were increased in the cortex of infected mice compared with those in the cortex of uninfected mice. In contrast, serotonin levels were decreased in the amygdala and norepinephrine levels were decreased in the cortex and amygdala of infected mice. The levels of cortical dopamine metabolites were associated with the time spent freezing in the fear-conditioning test. These results suggest that T. gondii infection affects fear memory through dysfunction of the cortex and amygdala. Our findings provide insight into the mechanisms underlying the neurological changes seen during T. gondii infection. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. Mitochondrial Gene Expression Profiles and Metabolic Pathways in the Amygdala Associated with Exaggerated Fear in an Animal Model of PTSD.

    Science.gov (United States)

    Li, He; Li, Xin; Smerin, Stanley E; Zhang, Lei; Jia, Min; Xing, Guoqiang; Su, Yan A; Wen, Jillian; Benedek, David; Ursano, Robert

    2014-01-01

    The metabolic mechanisms underlying the development of exaggerated fear in post-traumatic stress disorder (PTSD) are not well defined. In the present study, alteration in the expression of genes associated with mitochondrial function in the amygdala of an animal model of PTSD was determined. Amygdala tissue samples were excised from 10 non-stressed control rats and 10 stressed rats, 14 days post-stress treatment. Total RNA was isolated, cDNA was synthesized, and gene expression levels were determined using a cDNA microarray. During the development of the exaggerated fear associated with PTSD, 48 genes were found to be significantly upregulated and 37 were significantly downregulated in the amygdala complex based on stringent criteria (p metabolism, one with transcriptional factors, and one with chromatin remodeling. Thus, informatics of a neuronal gene array allowed us to determine the expression profile of mitochondrial genes in the amygdala complex of an animal model of PTSD. The result is a further understanding of the metabolic and neuronal signaling mechanisms associated with delayed and exaggerated fear.

  8. Combined sub-threshold dosages of phenobarbital and low-frequency stimulation effectively reduce seizures in amygdala-kindled rats.

    Science.gov (United States)

    Asgari, Azam; Semnanian, Saeed; Atapour, Nafiseh; Shojaei, Amir; Moradi, Homeira; Mirnajafi-Zadeh, Javad

    2014-08-01

    Low-frequency stimulation (LFS) is a potential therapy utilized in patients who do not achieve satisfactory control of seizures with pharmacological treatments. Here, we investigated the interaction between anticonvulsant effects of LFS and phenobarbital (a commonly used medicine) on amygdala-kindled seizures in rats. Animals were kindled by electrical stimulation of basolateral amygdala in a rapid manner (12 stimulations/day). Fully kindled animals randomly received one of the three treatment choices: phenobarbital (1, 2, 3, 4 and 8 mg/kg; i.p.; 30 min before kindling stimulation), LFS (one or 4 packages contained 100 or 200 monophasic square wave pulses, 0.1-ms pulse duration at 1 Hz, immediately before kindling stimulation) or a combination of both (phenobarbital at 3 mg/kg and LFS). Phenobarbital alone at the doses of 1, 2 and 3 mg/kg had no significant effect on the main seizure parameters. LFS application always produced anticonvulsant effects unless applied with the pattern of one package of 100 pulses, which is considered as non-effective. All the seizure parameters were significantly reduced when phenobarbital (3 mg/kg) was administered prior to the application of the non-effective pattern of LFS. Phenobarbital (3 mg/kg) also increased the anticonvulsant actions of the effective LFS pattern. Our results provide an evidence of a positive cumulative anticonvulsant effect of LFS and phenobarbital, suggesting a potential combination therapy at sub-threshold dosages of phenobarbital and LFS to achieve a satisfactory clinical effect.

  9. Optogenetic stimulation of lateral amygdala input to posterior piriform cortex modulates single-unit and ensemble odor processing

    Directory of Open Access Journals (Sweden)

    Benjamin eSadrian

    2015-12-01

    Full Text Available Olfactory information is synthesized within the olfactory cortex to provide not only an odor percept, but also a contextual significance that supports appropriate behavioral response to specific odor cues. The piriform cortex serves as a communication hub within this circuit by sharing reciprocal connectivity with higher processing regions, such as the lateral entorhinal cortex and amygdala. The functional significance of these descending inputs on piriform cortical processing of odorants is currently not well understood. We have employed optogenetic methods to selectively stimulate lateral and basolateral amygdala (BLA afferent fibers innervating the posterior piriform cortex (pPCX to quantify BLA modulation of pPCX odor-evoked activity. Single unit odor-evoked activity of anaesthetized BLA-infected animals was significantly modulated compared with control animal recordings, with individual cells displaying either enhancement or suppression of odor-driven spiking. In addition, BLA activation induced a decorrelation of odor-evoked pPCX ensemble activity relative to odor alone. Together these results indicate a modulatory role in pPCX odor processing for the BLA complex, which could contribute to learned changes in PCX activity following associative conditioning.

  10. Nuclear protein phosphatase-1: an epigenetic regulator of fear memory and amygdala long-term potentiation.

    Science.gov (United States)

    Koshibu, K; Gräff, J; Mansuy, I M

    2011-01-26

    Complex brain diseases and neurological disorders in human generally result from the disturbance of multiple genes and signaling pathways. These disturbances may derive from mutations, deletions, translocations or rearrangements of specific gene(s). However, over the past years, it has become clear that such disturbances may also derive from alterations in the epigenome affecting several genes simultaneously. Our work recently demonstrated that epigenetic mechanisms in the adult brain are in part regulated by protein phosphatase 1 (PP1), a protein Ser/Thr phosphatase that negatively regulates hippocampus-dependent long-term memory (LTM) and synaptic plasticity. PP1 is abundant in brain structures involved in emotional processing like the amygdala, it may therefore be involved in the regulation of fear memory, a form of memory related to post-traumatic stress disorder (PTSD) in human. Here, we demonstrate that PP1 is a molecular suppressor of fear memory and synaptic plasticity in the amygdala that can control chromatin remodeling in neurons. We show that the selective inhibition of the nuclear pool of PP1 in amygdala neurons significantly alters posttranslational modifications (PTMs) of histones and the expression of several memory-associated genes. These alterations correlate with enhanced fear memory, and with an increase in long-term potentiation (LTP) that is transcription-dependent. Our results underscore the importance of nuclear PP1 in the amygdala as an epigenetic regulator of emotional memory, and the relevance of protein phosphatases as potential targets for therapeutic treatment of brain disorders like PTSD. © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Differential activation of amygdala, dorsal and ventral hippocampus following an exposure to a reminder ofunderwater trauma

    Directory of Open Access Journals (Sweden)

    Gilad eRitov

    2014-01-01

    Full Text Available Recollection of emotional memories is attributed in part to the activation of the amygdala and the hippocampus. Recent hypothesis suggest a pivotal role for the ventral hippocampus in traumatic stress processing and emotional memory retrieval. Persistent re-experiencing and intrusive recollections are core symptoms in acute and posttraumatic stress disorders (ASD; PTSD. Such intrusive recollections are often triggered by reminders associated with the trauma.We examined the impact of exposure to a trauma reminder (under water trauma on the activation of the basolateral amygdala (BLA, dorsal and ventral hippocampus. Rats were exposed to underwater trauma and 24 hours later were re-exposed to the context of the trauma. Phosphorylation of the extracellular signal-regulated kinase (ERK was used as a marker for level of activation of these regions. Significant increase in ERK activation was found in the ventral hippocampus and BLA. Such pattern of activation was not found in animals exposed only to the trauma or in animals exposed only to the trauma reminder. Additionally, the dissociative pattern of activation of the ventral hippocampus sub-regions positively correlated with the activation of the BLA.Our findings suggest a specific pattern of neural activation during recollection of a trauma reminder, with a unique contribution of the ventral hippocampus. Measured 24 hrs after the exposure to the traumatic experience, the current findings relate to relatively early stages of traumatic memory consolidation. Understanding the neural mechanisms underlying these initial stages may contribute to developing intervention strategies that could reduce the risk of eventually developing PTSD.

  12. Cortico-amygdala coupling as a marker of early relapse risk in cocaine-addicted individuals

    Directory of Open Access Journals (Sweden)

    Meredith J Mchugh

    2014-02-01

    Full Text Available Addiction to cocaine is a chronic condition characterized by high rates of early relapse. This study builds on efforts to identify neural markers of relapse risk by studying resting state functional connectivity (rsFC in neural circuits arising from the amygdala; a brain region implicated in relapse-related processes including craving and reactivity to stress following acute and protracted withdrawal from cocaine. Whole-brain resting-state fMRI connectivity (6 min was assessed in 45 cocaine-addicted individuals and 22 healthy controls. Cocaine-addicted individuals completed scans in the final week of a residential treatment episode. To approximate preclinical models of relapse-related circuitry separate seeds were derived for the left and right basolateral (BLA and corticomedial (CMA amygdala. Participants also completed the Iowa Gambling Task, Wisconsin Card Sorting Test, Cocaine Craving Questionnaire, Obsessive Compulsive Cocaine Use scale, Temperament and Character Inventory and the NEO-PI-R. Relapse within the first 30 days post-treatment (n = 24 was associated with reduced rsFC between the left CMA and ventromedial prefrontal cortex/rostral anterior cingulate cortex (vmPFC/rACC relative to cocaine-addicted individuals who remained abstinent (non-relapse, n = 21. Non-relapse participants evidenced reduced rsFC between the bilateral BLA and visual processing regions (lingual gyrus/cuneus compared to controls and relapsed participants. Early relapse was associated with fewer years of education but unrelated to trait reactivity to stress, neurocognitive and clinical characteristics or cocaine use history. Findings suggest that rsFC within neural circuits implicated in preclinical models of relapse may provide a promising marker of relapse risk in cocaine-addicted individuals. Future efforts to replicate the current findings and alter connectivity within these circuits may yield novel interventions and improve treatment outcomes.

  13. Afferent projections to the different medial amygdala subdivisions: a retrograde tracing study in the mouse.

    Science.gov (United States)

    Cádiz-Moretti, Bernardita; Otero-García, Marcos; Martínez-García, Fernando; Lanuza, Enrique

    2016-03-01

    The medial amygdaloid nucleus (Me) is a key node in the socio-sexual brain, composed of anterior (MeA), posteroventral (MePV) and posterodorsal (MePD) subdivisions. These subdivisions have been suggested to play a different role in reproductive and defensive behaviours. In the present work we analyse the afferents of the three Me subdivisions using restricted injections of fluorogold in female outbred CD1 mice. The results reveal that the MeA, MePV and MePD share a common pattern of afferents, with some differences in the density of retrograde labelling in several nuclei. Common afferents to Me subdivisions include: the accessory olfactory bulbs, piriform cortex and endopiriform nucleus, chemosensory amygdala (receiving direct inputs from the olfactory bulbs), posterior part of the medial bed nucleus of the stria terminalis (BSTM), CA1 in the ventral hippocampus and posterior intralaminar thalamus. Minor projections originate from the basolateral amygdala and amygdalo-hippocampal area, septum, ventral striatum, several allocortical and periallocortical areas, claustrum, several hypothalamic structures, raphe and parabrachial complex. MeA and MePV share minor inputs from the frontal cortex (medial orbital, prelimbic, infralimbic and dorsal peduncular cortices), but differ in the lack of main olfactory projections to the MePV. By contrast, the MePD receives preferential projections from the rostral accessory olfactory bulb, the posteromedial BSTM and the ventral premammillary nucleus. In summary, the common pattern of afferents to the Me subdivisions and their interconnections suggest that they play cooperative instead of differential roles in the various behaviours (e.g., sociosexual, defensive) in which the Me has been shown to be involved.

  14. Local injection of d-lys-3-GHRP-6 in the rat amygdala, dentate gyrus or ventral tegmental area impairs memory consolidation.

    Science.gov (United States)

    Beheshti, Siamak; Aslani, Neda

    2018-02-01

    It is well known that the hormone ghrelin affects learning and memory in different experimental models of learning. Though, the effect of antagonism of ghrelin receptor type 1a (GHS-R1a) in various regions of the brain and on different stages of learning has not been examined. In this study the effect of injection of a GHS-R1a selective antagonist (d-Lys-3-GHRP-6) into the basolateral amygdala, dentate gyrus or ventral tegmental area was examined on memory consolidation in the passive avoidance task. Adult male Wistar rats weighing 230-280g were used. Animals underwent stereotaxic surgery and cannulated in their amygdala, dentate gyrus or ventral tegmental area. One week after surgery, the rats received different doses of d-Lys-3-GHRP-6 (0.08, 0.8, and 8nM), immediately after training. The control groups received solvent of the drug. Twenty four hours later in the test day, memory retrieval was assessed. In all groups, post-training injection of d-Lys-3-GHRP-6 decreased step-through latency and increased entries into the dark compartment and time spent in the dark compartment, significantly and in a dose-dependent manner. The results indicate that antagonism of the GHS-R1a in the rat amygdala, dentate gyrus or ventral tegmental area impairs memory consolidation and show that the ghrelin signaling has a widespread influence on cognitive performance. Copyright © 2017. Published by Elsevier Ltd.

  15. Extending the amygdala in theories of threat processing

    Science.gov (United States)

    Fox, Andrew S.; Oler, Jonathan A.; Tromp, Do P.M.; Fudge, Julie L.; Kalin, Ned H.

    2015-01-01

    The central extended amygdala is an evolutionarily conserved set of interconnected brain regions that play an important role in threat processing to promote survival. Two core components of the central extended amygdala, the central nucleus of the amygdala (Ce) and the lateral bed nucleus of the stria terminalis (BST) are highly similar regions that serve complimentary roles by integrating fear- and anxiety-relevant information. Survival depends on the central extended amygdala's ability to rapidly integrate and respond to threats that vary in their immediacy, proximity, and characteristics. Future studies will benefit from understanding alterations in central extended amygdala function in relation to stress-related psychopathology. PMID:25851307

  16. Basolateral glycylsarcosine (Gly-Sar) transport in Caco-2 cell monolayers is pH dependent

    DEFF Research Database (Denmark)

    Berthelsen, Ragna; Nielsen, Carsten Uhd; Brodin, Birger

    2013-01-01

    Transepithelial di/tripeptide transport in enterocytes occurs via the apical proton-coupled peptide transporter, hPEPT1 (SLC15A1) and a basolateral peptide transporter, which has only been characterized functionally. In this study we examined the pH dependency, substrate uptake kinetics and subst...

  17. Basolateral cholesterol depletion alters Aquaporin-2 post-translational modifications and disrupts apical plasma membrane targeting.

    Science.gov (United States)

    Moeller, Hanne B; Fuglsang, Cecilia Hvitfeldt; Pedersen, Cecilie Nøhr; Fenton, Robert A

    2018-01-01

    Apical plasma membrane accumulation of the water channel Aquaporin-2 (AQP2) in kidney collecting duct principal cells is critical for body water homeostasis. Posttranslational modification (PTM) of AQP2 is important for regulating AQP2 trafficking. The aim of this study was to determine the role of cholesterol in regulation of AQP2 PTM and in apical plasma membrane targeting of AQP2. Cholesterol depletion from the basolateral plasma membrane of a collecting duct cell line (mpkCCD14) using methyl-beta-cyclodextrin (MBCD) increased AQP2 ubiquitylation. Forskolin, cAMP or dDAVP-mediated AQP2 phosphorylation at Ser269 (pS269-AQP2) was prevented by cholesterol depletion from the basolateral membrane. None of these effects on pS269-AQP2 were observed when cholesterol was depleted from the apical side of cells, or when MBCD was applied subsequent to dDAVP stimulation. Basolateral, but not apical, MBCD application prevented cAMP-induced apical plasma membrane accumulation of AQP2. These studies indicate that manipulation of the cholesterol content of the basolateral plasma membrane interferes with AQP2 PTM and subsequently regulated apical plasma membrane targeting of AQP2. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Oxytocin in the amygdala and not the prefrontal cortex enhances fear and impairs extinction in the juvenile rat.

    Science.gov (United States)

    Kritman, Milly; Lahoud, Nisrine; Maroun, Mouna

    2017-05-01

    A growing body of evidence suggests that the hypothalamic neuropeptide oxytocin (OT), aside from its central role in the regulation of social behavior, reduces fear and anxiety. The functional and opposing interactions of the medial prefrontal cortex (mPFC) and the amygdala in regulation of fear provide a unique experimental setting to examine the effects of OT on fear and extinction. Recent evidence suggests that in the adult animal OT can play a dual role in the regulation of fear leading to contrasting effects on fear depending on the manipulated brain region and the time of manipulations. The OT system is one of the systems that undergoes major changes throughout development, however, its role in regulating fear in young animals has not been widely explored. We recently showed that the mechanisms of extinction, and specifically engagement of the mPFC in extinction, are not identical in adult and juvenile animals. Thus, the purpose of this study was to elucidate the effects of OT on fear and extinction in juvenile animals. To that end, we determine extinction, by measuring freezing at different time points, following microinjection of the OT agonist, TGOT, into the mPFC, the basolateral and the central nuclei of the amygdala (BLA and CeA, respectively). The results show that whereas TGOT microinjections into the IL-mPFC did not affect extinction, microinjections into the amygdala were mainly associated with enhanced fear and impaired extinction. These results further emphasize the differences between adult and juvenile brains. Copyright © 2017. Published by Elsevier Inc.

  19. Pulvinar projections to the striatum and amygdala

    Directory of Open Access Journals (Sweden)

    Jonathan D Day-Brown

    2010-11-01

    Full Text Available Visually-guided movement is possible in the absence of conscious visual perception, a phenomenon referred to as blindsight. Similarly, fearful images can elicit emotional responses in the absence of their conscious perception. Both capabilities are thought to be mediated by pathways from the retina through the superior colliculus (SC and pulvinar nucleus. To define potential pathways that underlie behavioral responses to unperceived visual stimuli, we examined the projections from the pulvinar nucleus to the striatum and amygdala in the tree shrew (Tupaia belangeri, a species considered to be a protypical primate. The tree shrew brain has a large pulvinar nucleus that contains two SC-recipient subdivisions; the dorsal (Pd and central (Pc pulvinar both receive topographic (specific projections from SC, and Pd receives an additional nontopographic (diffuse projection from SC (Chomsung et al., 2008; JCN 510:24-46. Anterograde and retrograde tract tracing revealed that both Pd and Pc project to the caudate and putamen, and Pd, but not Pc, additionally projects to the lateral amygdala. Using immunocytochemical staining for substance P (SP and parvalbumin (PV to reveal the patch/matrix organization of tree shrew striatum, we found that SP-rich/PV-poor patches interlock with a PV-rich/SP-poor matrix. Confocal microscopy revealed that tracer-labeled pulvinostriatal terminals preferentially innervate the matrix. Electron microscopy revealed that the postsynaptic targets of tracer-labeled pulvino-striatal and pulvino-amygdala terminals are spines, demonstrating that the pulvinar nucleus projects to the spiny output cells of the striatum matrix and the lateral amygdala, potentially relaying: 1 topographic visual information from SC to striatum to aid in guiding precise movements, and 2 nontopographic visual information from SC to the amygdala alerting the animal to potentially dangerous visual images.

  20. Estrous cycle and food availability affect feeding induced by amygdala 5-HT receptor blockade.

    Science.gov (United States)

    Parker, Graham C; Bishop, Christopher; Coscina, Donald V

    2002-04-01

    We have recently reported that bilateral infusions of the 5-HT receptor antagonist metergoline (MET) into the posterior basolateral amygdala (pBLA) elicit feeding in female rats tested at mid-light cycle. The present study was performed to determine whether (1) testing at two different phases of the estrous cycle, and/or (2) the palatability of the food might modify this effect. Subjects were 18 adult females with bilateral pBLA cannulae. Following familiarization with Froot Loops cereal, a within-subjects design tested all animals for 1- and 2-h food intake under 2 Drug (0.3 nmol MET vs. Vehicle), 2 Estrous Cycle (diestrus vs. estrus) and 2 Food (lab chow vs. Froot Loops) conditions. Rats weighed more at diestrus than at proestrus (Pestrus (Pestrus. A three-way interaction (Pestrus than in diestrus to lab chow but not Froot Loops. These data suggest pBLA MET differentially affects feeding over the estrous cycle depending on the palatability of food available.

  1. Amygdala mu-opioid receptors mediate the motivating influence of cue-triggered reward expectations.

    Science.gov (United States)

    Lichtenberg, Nina T; Wassum, Kate M

    2017-02-01

    Environmental reward-predictive stimuli can retrieve from memory a specific reward expectation that allows them to motivate action and guide choice. This process requires the basolateral amygdala (BLA), but little is known about the signaling systems necessary within this structure. Here we examined the role of the neuromodulatory opioid receptor system in the BLA in such cue-directed action using the outcome-specific Pavlovian-to-instrumental transfer (PIT) test in rats. Inactivation of BLA mu-, but not delta-opioid receptors was found to dose-dependently attenuate the ability of a reward-predictive cue to selectively invigorate the performance of actions directed at the same unique predicted reward (i.e. to express outcome-specific PIT). BLA mu-opioid receptor inactivation did not affect the ability of a reward itself to similarly motivate action (outcome-specific reinstatement), suggesting a more selective role for the BLA mu-opioid receptor in the motivating influence of currently unobservable rewarding events. These data reveal a new role for BLA mu-opioid receptor activation in the cued recall of precise reward memories and the use of this information to motivate specific action plans. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  2. Ensemble coding of context-dependent fear memory in the amygdala.

    Science.gov (United States)

    Orsini, Caitlin A; Yan, Chen; Maren, Stephen

    2013-01-01

    After fear conditioning, presenting the conditioned stimulus (CS) alone yields a context-specific extinction memory; fear is suppressed in the extinction context, but renews in any other context. The context-dependence of extinction is mediated by a brain circuit consisting of the hippocampus, prefrontal cortex (PFC) and amygdala. In the present work, we sought to determine at what level of this circuit context-dependent representations of the CS emerge. To explore this question, we used cellular compartment analysis of temporal activity by fluorescent in situ hybridization (catFISH). This method exploits the intracellular expression profile of the immediate early gene (IEG), Arc, to visualize neuronal activation patterns to two different behavioral experiences. Rats were fear conditioned in one context and extinguished in another; 24 h later, they were sequentially exposed to the CS in the extinction context and another context. Control rats were also tested in each context, but were never extinguished. We assessed Arc mRNA expression within the basal amygdala (BA), lateral amygdala (LA), ventral hippocampus (VH), prelimbic cortex (PL) and infralimbic cortex (IL). We observed that the sequential retention tests induced context-dependent patterns of Arc expression in the BA, LA, and IL of extinguished rats; this was not observed in non-extinguished controls. In general, non-extinguished animals had proportionately greater numbers of non-selective (double-labeled) neurons than extinguished animals. Collectively, these findings suggest that extinction learning results in pattern separation, particularly within the BA, in which unique neuronal ensembles represent fear memories after extinction.

  3. Ensemble coding of context-dependent fear memory in the amygdala

    Directory of Open Access Journals (Sweden)

    Caitlin A Orsini

    2013-12-01

    Full Text Available After fear conditioning, presenting the conditioned stimulus (CS alone yields a context-specific extinction memory; fear is suppressed in the extinction context, but renews in any other context. The context-dependence of extinction is mediated by a brain circuit consisting of the hippocampus, prefrontal cortex and amygdala. In the present work, we sought to determine at what level of this circuit context-dependent representations of the CS emerge. To explore this question, we used cellular compartment analysis of temporal activity by fluorescent in situ hybridization (catFISH. This method exploits the intracellular expression profile of the immediate early gene, Arc, to visualize neuronal activation patterns to two different behavioral experiences. Rats were fear conditioned in one context and extinguished in another; twenty-four hours later, they were sequentially exposed to the CS in the extinction context and another context. Control rats were also tested in each context, but were never extinguished. We assessed Arc mRNA expression within the basal amygdala (BA, lateral amygdala (LA, ventral hippocampus (VH, prelimbic cortex (PL and infralimbic cortex (IL. We observed that the sequential retention tests induced context-dependent patterns of Arc expression in the BA, LA, and IL of extinguished rats; this was not observed in non-extinguished controls. In general, non-extinguished animals had proportionately greater numbers of non-selective (double-labeled neurons than extinguished animals. Collectively, these findings suggest that extinction learning results in pattern separation, particularly within the BA, in which unique neuronal ensembles represent fear memories after extinction.

  4. Cellular internalization, transcellular transport, and cellular effects of silver nanoparticles in polarized Caco-2 cells following apical or basolateral exposure

    International Nuclear Information System (INIS)

    Imai, Shunji; Morishita, Yuki; Hata, Tomoyuki; Kondoh, Masuo; Yagi, Kiyohito; Gao, Jian-Qing; Nagano, Kazuya; Higashisaka, Kazuma; Yoshioka, Yasuo; Tsutsumi, Yasuo

    2017-01-01

    When considering the safety of ingested nanomaterials, it is important to quantitate their transfer across intestinal cells; however, little information exists about the effects of nanomaterial size or exposure side (apical versus basolateral epithelial surface) on nanomaterial transfer. Here, we examined cellular internalization and transcellular transport, and the effects of nanomaterials on Caco-2 monolayers after apical or basolateral exposure to Ag or Au nanoparticles with various sizes. After apical treatment, both internalization and transfer to the basolateral side of the monolayers were greater for smaller Ag nanoparticles than for larger Ag nanoparticles. In contrast, after basolateral treatment, larger Ag nanoparticles were more internalized than smaller Ag nanoparticles, but the transfer to the apical side was greater for smaller Ag nanoparticles. Au nanoparticles showed different rules of internalization and transcellular transport compared with Ag nanoparticles. Furthermore, the paracellular permeability of the Caco-2 monolayers was temporarily increased by Ag nanoparticles (5 μg/mL; diameters, ≤10 nm) following basolateral but not apical exposure. We conclude that the internalization, transfer, and effects of nanomaterials in epithelial cell monolayers depend on the size and composition of nanomaterials, and the exposure side. - Highlights: • Ag and Au nanoparticles can transfer across Caco-2 monolayers. • Cellular uptake of nanoparticles change between apical and basolateral exposure. • Basolateral Ag nanoparticle exposure increases the permeability of Caco-2 monolayers.

  5. A study of 1H-MR spectroscopy in the prefrontal cortex and amygdala of heroine abusers

    International Nuclear Information System (INIS)

    Yang Lanying; Wang Yarong; Li Qiang; Xiong Xiaoshuang; Wang Wei; Zhao Wei; Bai Yunliang

    2009-01-01

    Objective: To explore the characteristic findings of 1 H-MR spectroscopy ( 1 H-MRS) in the prefrontal cortex and amygdala of patients with heroine dependence (HD), and the relationship to total cumulative dose of inhaled heroine. Methods: Fourteen male HD patients and 12 healthy controls (HC) underwent 1 H-MRS at the prefrontal cortex and amygdala regions. The total cumulative in haled heroin dose was (852±341) g in HD. Ratios of N-acetylaspartate/creatine(NAA/Cr) and choline/creatine (Cho/Cr) were respectively measured in the prefrontal cortex and bilateral amygdale regions. The student's t test and the linear correlation were employed for statistical analysis. Results: Compared to HC group, HD patients had a significant lower ratio of NAA/Cr in the prefrontal cortex (1.44±0.46 vs 1.50±0.75, t=1.77, P< 0.05), left amygdala region (1.32±0.08 vs 1.42±0.08, t=3.41, P<0.05), and right amygdala region (1.34±0.09 vs 1.44±0.10, t=2.63, P<0.05), the HD patients had a significant increased ratio of Cho/Cr in the prefrontal cortex (0.92±0.06 vs 0.86±0.08, t=2.31, P<0.05), left amygdala region (1.20±0.12 vs 1.07±0.04, t=3.60, P<0.05) and right amygdala region(1.26±0.15 vs 1.12±0.11, t=2.60, P<0.05). There was a negative linear correlation between the total cumulative inhaled heroine dose and the ratio of NAA/Cr in the prefrontal cortex (r=-0.9159, P<0.01), left amygdala region( r= -0.8756, P<0.01), and right amygdala region (r=-0.9399, P<0.01) respectively. Conclusions: The study indicates that neuronal damage and glial proliferation may occur in the prefrontal cortex and amygdala region, which suggests the abnormalities of executive function and emotion in patients with HD. A relationship exists between the heroin-induced metabolic abnormality and the total cumulative dose of inhaled heroine. (authors)

  6. Cannabinoids prevent the differential long-term effects of exposure to severe stress on hippocampal- and amygdala-dependent memory and plasticity.

    Science.gov (United States)

    Shoshan, Noa; Segev, Amir; Abush, Hila; Mizrachi Zer-Aviv, Tomer; Akirav, Irit

    2017-10-01

    Exposure to excessive or uncontrolled stress is a major factor associated with various diseases including posttraumatic stress disorder (PTSD). The consequences of exposure to trauma are affected not only by aspects of the event itself, but also by the frequency and severity of trauma reminders. It was suggested that in PTSD, hippocampal-dependent memory is compromised while amygdala-dependent memory is strengthened. Several lines of evidence support the role of the endocannabinoid (eCB) system as a modulator of the stress response. In this study we aimed to examine cannabinoids modulation of the long-term effects (i.e., 1 month) of exposure to a traumatic event on memory and plasticity in the hippocampus and amygdala. Following exposure to the shock and reminders model of PTSD in an inhibitory avoidance light-dark apparatus rats demonstrated: (i) enhanced fear retrieval and impaired inhibitory extinction (Ext), (ii) no long-term potentiation (LTP) in the CA1, (iii) impaired hippocampal-dependent short-term memory in the object location task, (iv) enhanced LTP in the amygdala, and (v) enhanced amygdala-dependent conditioned taste aversion memory. The cannabinoid CB1/2 receptor agonist WIN55-212,2 (0.5mg/kg, i.p.) and the fatty acid amide hydrolase (FAAH) inhibitor URB597 (0.3mg/kg, i.p.), administered 2 hr after shock exposure prevented these opposing effects on hippocampal- and amygdala-dependent processes. Moreover, the effects of WIN55-212,2 and URB597 on Ext and acoustic startle were prevented by co-administration of a low dose of the CB1 receptor antagonist AM251 (0.5mg/kg, i.p.), suggesting that the preventing effects of both drugs are mediated by CB1 receptors. Exposure to shock and reminders increased CB1 receptor levels in the CA1 and basolateral amygdala 1 month after shock exposure and this increase was also prevented by administering WIN55-212,2 or URB597. Taken together, these findings suggest the involvement of the eCB system, and specifically CB1

  7. Stress enhances fear by forming new synapses with greater capacity for long-term potentiation in the amygdala.

    Science.gov (United States)

    Suvrathan, Aparna; Bennur, Sharath; Ghosh, Supriya; Tomar, Anupratap; Anilkumar, Shobha; Chattarji, Sumantra

    2014-01-05

    Prolonged and severe stress leads to cognitive deficits, but facilitates emotional behaviour. Little is known about the synaptic basis for this contrast. Here, we report that in rats subjected to chronic immobilization stress, long-term potentiation (LTP) and NMDA receptor (NMDAR)-mediated synaptic responses are enhanced in principal neurons of the lateral amygdala, a brain area involved in fear memory formation. This is accompanied by electrophysiological and morphological changes consistent with the formation of 'silent synapses', containing only NMDARs. In parallel, chronic stress also reduces synaptic inhibition. Together, these synaptic changes would enable amygdalar neurons to undergo further experience-dependent modifications, leading to stronger fear memories. Consistent with this prediction, stressed animals exhibit enhanced conditioned fear. Hence, stress may leave its mark in the amygdala by generating new synapses with greater capacity for plasticity, thereby creating an ideal neuronal substrate for affective disorders. These findings also highlight the unique features of stress-induced plasticity in the amygdala that are strikingly different from the stress-induced impairment of structure and function in the hippocampus.

  8. Structure and function of the amygdaloid NPY system: NPY Y2 receptors regulate excitatory and inhibitory synaptic transmission in the centromedial amygdala.

    Science.gov (United States)

    Wood, J; Verma, D; Lach, G; Bonaventure, P; Herzog, H; Sperk, G; Tasan, R O

    2016-09-01

    The amygdala is essential for generating emotional-affective behaviors. It consists of several nuclei with highly selective, elaborate functions. In particular, the central extended amygdala, consisting of the central amygdala (CEA) and the bed nucleus of the stria terminalis (BNST) is an essential component actively controlling efferent connections to downstream effectors like hypothalamus and brain stem. Both, CEA and BNST contain high amounts of different neuropeptides that significantly contribute to synaptic transmission. Among these, neuropeptide Y (NPY) has emerged as an important anxiolytic and fear-reducing neuromodulator. Here, we characterized the expression, connectivity and electrophysiological function of NPY and Y2 receptors within the CEA. We identified several NPY-expressing neuronal populations, including somatostatin- and calretinin-expressing neurons. Furthermore, in the main intercalated nucleus, NPY is expressed primarily in dopamine D1 receptor-expressing neurons but also in interspersed somatostatin-expressing neurons. Interestingly, NPY neurons did not co-localize with the Y2 receptor. Retrograde tract tracing experiments revealed that NPY neurons reciprocally connect the CEA and BNST. Functionally, the Y2 receptor agonist PYY3-36, reduced both, inhibitory as well as excitatory synaptic transmission in the centromedial amygdala (CEm). However, we also provide evidence that lack of NPY or Y2 receptors results in increased GABA release specifically at inhibitory synapses in the CEm. Taken together, our findings suggest that NPY expressed by distinct populations of neurons can modulate afferent and efferent projections of the CEA via presynaptic Y2 receptors located at inhibitory and excitatory synapses.

  9. Computational search for hypotheses concerning the endocannabinoid contribution to the extinction of fear conditioning

    OpenAIRE

    Anastasio, Thomas J.

    2013-01-01

    Fear conditioning, in which a cue is conditioned to elicit a fear response, and extinction, in which a previously conditioned cue no longer elicits a fear response, depend on neural plasticity occurring within the amygdala. Projection neurons in the basolateral amygdala (BLA) learn to respond to the cue during fear conditioning, and they mediate fear responding by transferring cue signals to the output stage of the amygdala. Some BLA projection neurons retain their cue responses after extinct...

  10. Gender differences in human single neuron responses to male emotional faces.

    Science.gov (United States)

    Newhoff, Morgan; Treiman, David M; Smith, Kris A; Steinmetz, Peter N

    2015-01-01

    Well-documented differences in the psychology and behavior of men and women have spurred extensive exploration of gender's role within the brain, particularly regarding emotional processing. While neuroanatomical studies clearly show differences between the sexes, the functional effects of these differences are less understood. Neuroimaging studies have shown inconsistent locations and magnitudes of gender differences in brain hemodynamic responses to emotion. To better understand the neurophysiology of these gender differences, we analyzed recordings of single neuron activity in the human brain as subjects of both genders viewed emotional expressions. This study included recordings of single-neuron activity of 14 (6 male) epileptic patients in four brain areas: amygdala (236 neurons), hippocampus (n = 270), anterior cingulate cortex (n = 256), and ventromedial prefrontal cortex (n = 174). Neural activity was recorded while participants viewed a series of avatar male faces portraying positive, negative or neutral expressions. Significant gender differences were found in the left amygdala, where 23% (n = 15∕66) of neurons in men were significantly affected by facial emotion, vs. 8% (n = 6∕76) of neurons in women. A Fisher's exact test comparing the two ratios found a highly significant difference between the two (p differences between genders at the single-neuron level in the human amygdala. These differences may reflect gender-based distinctions in evolved capacities for emotional processing and also demonstrate the importance of including subject gender as an independent factor in future studies of emotional processing by single neurons in the human amygdala.

  11. Adolescent alcohol exposure alters lysine demethylase 1 (LSD1) expression and histone methylation in the amygdala during adulthood.

    Science.gov (United States)

    Kyzar, Evan J; Zhang, Huaibo; Sakharkar, Amul J; Pandey, Subhash C

    2017-09-01

    Alcohol exposure in adolescence is an important risk factor for the development of alcoholism in adulthood. Epigenetic processes are implicated in the persistence of adolescent alcohol exposure-related changes, specifically in the amygdala. We investigated the role of histone methylation mechanisms in the persistent effects of adolescent intermittent ethanol (AIE) exposure in adulthood. Adolescent rats were exposed to 2 g/kg ethanol (2 days on/off) or intermittent n-saline (AIS) during postnatal days (PND) 28-41 and used for behavioral and epigenetic studies. We found that AIE exposure caused a long-lasting decrease in mRNA and protein levels of lysine demethylase 1(Lsd1) and mRNA levels of Lsd1 + 8a (a neuron-specific splice variant) in specific amygdaloid structures compared with AIS-exposed rats when measured at adulthood. Interestingly, AIE increased histone H3 lysine 9 dimethylation (H3K9me2) levels in the central nucleus of the amygdala (CeA) and medial nucleus of the amygdala (MeA) in adulthood without producing any change in H3K4me2 protein levels. Acute ethanol challenge (2 g/kg) in adulthood attenuated anxiety-like behaviors and the decrease in Lsd1 + 8a mRNA levels in the amygdala induced by AIE. AIE caused an increase in H3K9me2 occupancy at the brain-derived neurotrophic factor exon IV promoter in the amygdala that returned to baseline after acute ethanol challenge in adulthood. These results indicate that AIE specifically modulates epizymes involved in H3K9 dimethylation in the amygdala in adulthood, which are possibly responsible for AIE-induced chromatin remodeling and adult psychopathology such as anxiety. © Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  12. cAMP response element-binding protein in the amygdala is required for long- but not short-term conditioned taste aversion memory.

    Science.gov (United States)

    Lamprecht, R; Hazvi, S; Dudai, Y

    1997-11-01

    In conditioned taste aversion (CTA) organisms learn to avoid a taste if the first encounter with that taste is followed by transient poisoning. The neural mechanisms that subserve this robust and long-lasting association of taste and malaise have not yet been elucidated, but several brain areas have been implicated in the process, including the amygdala. In this study we investigated the role of amygdala in general, and the cAMP response element-binding protein (CREB) in the amygdala in particular, in CTA learning and memory. Toward that end, we combined antisense technology in vivo with behavioral, molecular, and histochemical analysis. Local microinjection of phosphorothioate-modified oligodeoxynucleotides (ODNs) antisense to CREB into the rat amygdala several hours before CTA training transiently reduced the level of CREB protein during training and impaired CTA memory when tested 3-5 d later. In comparison, sense ODNs had no effect on memory. The effect of antisense was not attributable to differential tissue damage and was site-specific. CREB antisense in the amygdala had no effect on retrieval of CTA memory once it had been formed, and did not affect short-term CTA memory. We propose that the amygdala, specifically the central nucleus, is required for the establishment of long-term CTA memory in the behaving rat; that the process involves long-term changes, subserved by CRE-regulated gene expression, in amygdala neurons; and that the amygdala may retain some CTA-relevant information over time rather than merely modulating the gustatory trace during acquisition of CTA.

  13. An organization of visual and auditory fear conditioning in the lateral amygdala.

    Science.gov (United States)

    Bergstrom, Hadley C; Johnson, Luke R

    2014-12-01

    Pavlovian fear conditioning is an evolutionary conserved and extensively studied form of associative learning and memory. In mammals, the lateral amygdala (LA) is an essential locus for Pavlovian fear learning and memory. Despite significant progress unraveling the cellular mechanisms responsible for fear conditioning, very little is known about the anatomical organization of neurons encoding fear conditioning in the LA. One key question is how fear conditioning to different sensory stimuli is organized in LA neuronal ensembles. Here we show that Pavlovian fear conditioning, formed through either the auditory or visual sensory modality, activates a similar density of LA neurons expressing a learning-induced phosphorylated extracellular signal-regulated kinase (p-ERK1/2). While the size of the neuron population specific to either memory was similar, the anatomical distribution differed. Several discrete sites in the LA contained a small but significant number of p-ERK1/2-expressing neurons specific to either sensory modality. The sites were anatomically localized to different levels of the longitudinal plane and were independent of both memory strength and the relative size of the activated neuronal population, suggesting some portion of the memory trace for auditory and visually cued fear conditioning is allocated differently in the LA. Presenting the visual stimulus by itself did not activate the same p-ERK1/2 neuron density or pattern, confirming the novelty of light alone cannot account for the specific pattern of activated neurons after visual fear conditioning. Together, these findings reveal an anatomical distribution of visual and auditory fear conditioning at the level of neuronal ensembles in the LA. Copyright © 2014. Published by Elsevier Inc.

  14. Social instability stress differentially affects amygdalar neuron adaptations and memory performance in adolescent and adult rats

    Directory of Open Access Journals (Sweden)

    Sheng-Feng eTsai

    2014-02-01

    Full Text Available Adolescence is a time of developmental changes and reorganization in the brain. It has been hypothesized that stress has a greater neurological impact on adolescents than on adults. However, scientific evidence in support of this hypothesis is still limited. We treated adolescent (4-week-old and adult (8-week-old rats with social instability stress for five weeks and compared the subsequent structural and functional changes to amygdala neurons. In the stress-free control condition, the adolescent group showed higher fear-potentiated startle responses, larger dendritic arborization, more proximal dendritic spine distribution and lower levels of truncated TrkB than the adult rats. Social instability stress exerted opposite effects on fear-potentiated startle responses in these two groups, i.e., the stress period appeared to hamper the performance in adolescents but improved it in adult rats. Furthermore, whilst the chronic social stress applied to adolescent rats reduced their dendritic field and spine density in basal and lateral amygdala neurons, the opposite stress effects on neuron morphology were observed in the adult rats. Moreover, stress in adolescence suppressed the amygdala expression of synaptic proteins, i.e., full-length TrkB and SNAP-25, whereas, in the adult rats, chronic stress enhanced full-length and truncated TrkB expressions in the amygdala. In summary, chronic social instability stress hinders amygdala neuron development in the adolescent brain, while mature neurons in the amygdala are capable of adapting to the stress. The stress induced age-dependent effects on the fear-potentiated memory may occur by altering the BDNF-TrkB signaling and neuroplasticity in the amygdala.

  15. Age-dependent changes in autophosphorylation of alpha calcium/calmodulin dependent kinase II in hippocampus and amygdala after contextual fear conditioning.

    Science.gov (United States)

    Fang, Ton; Kasbi, Kamillia; Rothe, Stephanie; Aziz, Wajeeha; Giese, K Peter

    2017-09-01

    The hippocampus and amygdala are essential brain regions responsible for contextual fear conditioning (CFC). The autophosphorylation of alpha calcium-calmodulin kinase II (αCaMKII) at threonine-286 (T286) is a critical step implicated in long-term potentiation (LTP), learning and memory. However, the changes in αCaMKII levels with aging and training in associated brain regions are not fully understood. Here, we studied how aging and training affect the levels of phosphorylated (T286) and proportion of phosphorylated:total αCaMKII in the hippocampus and amygdala. Young and aged mice, naïve (untrained) and trained in CFC, were analysed by immunohistochemistry for the levels of total and phosphorylated αCaMKII in the hippocampus and amygdala. We found that two hours after CFC training, young mice exhibited a higher level of phosphorylated and increased ratio of phosphorylated:total αCaMKII in hippocampal CA3 stratum radiatum. Furthermore, aged untrained mice showed a higher ratio of phosphorylated:total αCaMKII in the CA3 region of the hippocampus when compared to the young untrained group. No effect of training or aging were seen in the central, lateral and basolateral amygdala regions, for both phosphorylated and ratio of phosphorylated:total αCaMKII. These results show that aging impairs the training-induced upregulation of autophosphorylated (T286) αCaMKII in the CA3 stratum radiatum of the hippocampus. This indicates that distinct age-related mechanisms underlie CFC that may rely more heavily on NMDA receptor-dependent plasticity in young age. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Single-neuron correlates of subjective vision in the human medial temporal lobe

    OpenAIRE

    Kreiman, Gabriel; Fried, Itzhak; Koch, Christof

    2002-01-01

    Visual information from the environment is transformed into perceptual sensations through several stages of neuronal processing. Flash suppression constitutes a striking example in which the same retinal input can give rise to two different conscious visual percepts. We directly recorded the responses of individual neurons during flash suppression in the human amygdala, entorhinal cortex, hippocampus, and parahippocampal gyrus, allowing us to explore the neuronal responses in untrained subjec...

  17. Framing effect following bilateral amygdala lesion

    OpenAIRE

    Talmi, Deborah; Hurlemann, Ren?; Patin, Alexandra; Dolan, Raymond J.

    2010-01-01

    A paradigmatic example of an emotional bias in decision making is the framing effect, where the manner in which a choice is posed ? as a potential loss or a potential gain ? systematically biases an ensuing decision. Two fMRI studies have shown that the activation in the amygdala is modulated by the framing effect. Here, contrary to an expectation based on these studies, we show that two patients with Urbach-Wiethe (UW) disease, a rare condition associated with congenital, complete bilateral ...

  18. [MR spectroscopy of amygdala: investigation of methodology].

    Science.gov (United States)

    Tang, Hehan; Yue, Qiang; Gong, Qiyong

    2013-08-01

    This study was aimed to optimize the methods of magnetic resonance spectroscopy (MRS) to improve its quality in amygdala. Forty-three volunteers were examined at right and left amygdala using stimulated-echo acquisition mode (STEAM), and point-resolved spectroscopy series (PRESS) with and without saturation bands. The Cr-SNR, water-suppression level, water full width at half maximum (FWHM) and RMS noise of three sequences were compared. The results showed that (1) the Cr-SNR and water-suppression lelvel of PRESS with saturation bands were better than that of PRESS without saturation bands and STEAM (P<0.001); (2) the left and right RMS noise was significantly different both using PRESS with saturation bands and using STEAM (P<0.05); (3) there was a positive, significant correlation between Cr-SNR and voxel size (P<0.05). Therefore, PRESS with saturation bands is better than PRESS without saturation bands or STEAM for the spectroscopy of amygdala. It is also useful to make the voxel as big as possible to improve the spectral quality.

  19. Amygdala damage eliminates monetary loss aversion.

    Science.gov (United States)

    De Martino, Benedetto; Camerer, Colin F; Adolphs, Ralph

    2010-02-23

    Losses are a possibility in many risky decisions, and organisms have evolved mechanisms to evaluate and avoid them. Laboratory and field evidence suggests that people often avoid risks with losses even when they might earn a substantially larger gain, a behavioral preference termed "loss aversion." The cautionary brake on behavior known to rely on the amygdala is a plausible candidate mechanism for loss aversion, yet evidence for this idea has so far not been found. We studied two rare individuals with focal bilateral amygdala lesions using a series of experimental economics tasks. To measure individual sensitivity to financial losses we asked participants to play a variety of monetary gambles with possible gains and losses. Although both participants retained a normal ability to respond to changes in the gambles' expected value and risk, they showed a dramatic reduction in loss aversion compared to matched controls. The findings suggest that the amygdala plays a key role in generating loss aversion by inhibiting actions with potentially deleterious outcomes.

  20. Carrier-mediated ¿-aminobutyric acid transport across the basolateral membrane of human intestinal Caco-2 cell monolayers

    DEFF Research Database (Denmark)

    Nielsen, Carsten Uhd; Carstensen, Mette; Brodin, Birger

    2012-01-01

    and the anticancer prodrug d-aminolevulinic acid across the apical membrane of small intestinal enterocytes. Little is however known about the basolateral transport of these substances. We investigated basolateral transport of GABA in mature Caco-2 cell monolayers using isotope studies. Here we report that, at least...... two transporters seem to be involved in the basolateral transport of GABA. The basolateral uptake consisted of a high-affinity system with a K(m) of 290µM and V(max) of 75pmolcm(-2)min(-1) and a low affinity system with a K(m) of approximately 64mM and V(max) of 1.6nmolcm(-2)min(-1). The high...

  1. Amygdala lesions in rhesus macaques decrease attention to threat

    Science.gov (United States)

    Dal Monte, Olga; Costa, Vincent D.; Noble, Pamela L.; Murray, Elisabeth A.; Averbeck, Bruno B.

    2015-01-01

    Evidence from animal and human studies has suggested that the amygdala plays a role in detecting threat and in directing attention to the eyes. Nevertheless, there has been no systematic investigation of whether the amygdala specifically facilitates attention to the eyes or whether other features can also drive attention via amygdala processing. The goal of the present study was to examine the effects of amygdala lesions in rhesus monkeys on attentional capture by specific facial features, as well as gaze patterns and changes in pupil dilation during free viewing. Here we show reduced attentional capture by threat stimuli, specifically the mouth, and reduced exploration of the eyes in free viewing in monkeys with amygdala lesions. Our findings support a role for the amygdala in detecting threat signals and in directing attention to the eye region of faces when freely viewing different expressions. PMID:26658670

  2. Carrier-mediated γ-aminobutyric acid transport across the basolateral membrane of human intestinal Caco-2 cell monolayers.

    Science.gov (United States)

    Nielsen, Carsten Uhd; Carstensen, Mette; Brodin, Birger

    2012-06-01

    The aim of the present study was to investigate the transport of γ-aminobutyric acid (GABA) across the basolateral membrane of intestinal cells. The proton-coupled amino acid transporter, hPAT1, mediates the influx of GABA and GABA mimetic drug substances such as vigabatrin and gaboxadol and the anticancer prodrug δ-aminolevulinic acid across the apical membrane of small intestinal enterocytes. Little is however known about the basolateral transport of these substances. We investigated basolateral transport of GABA in mature Caco-2 cell monolayers using isotope studies. Here we report that, at least two transporters seem to be involved in the basolateral transport of GABA. The basolateral uptake consisted of a high-affinity system with a K(m) of 290 μM and V(max) of 75 pmol cm(-2) min(-1) and a low affinity system with a K(m) of approximately 64 mM and V(max) of 1.6 nmol cm(-2) min(-1). The high-affinity transporter is Na(+) and Cl(-) dependent. The substrate specificity of the high-affinity transporter was further studied and Gly-Sar, Leucine, gaboxadol, sarcosine, lysine, betaine, 5-hydroxythryptophan, proline and glycine reduced the GABA uptake to approximately 44-70% of the GABA uptake in the absence of inhibitor. Other substances such as β-alanine, GABA, 5-aminovaleric acid, taurine and δ-aminolevulinic acid reduced the basolateral GABA uptake to 6-25% of the uptake in the absence of inhibitor. Our results indicate that the distance between the charged amino- and acid-groups is particular important for inhibition of basolateral GABA uptake. Thus, there seems to be a partial substrate overlap between the basolateral GABA transporter and hPAT1, which may prove important for understanding drug interactions at the level of intestinal transport. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. An adeno-associated viral vector transduces the rat hypothalamus and amygdala more efficient than a lentiviral vector

    Directory of Open Access Journals (Sweden)

    Vreugdenhil Erno

    2010-07-01

    Full Text Available Abstract Background This study compared the transduction efficiencies of an adeno-associated viral (AAV vector, which was pseudotyped with an AAV1 capsid and encoded the green fluorescent protein (GFP, with a lentiviral (LV vector, which was pseudotyped with a VSV-G envelop and encoded the discosoma red fluorescent protein (dsRed, to investigate which viral vector transduced the lateral hypothalamus or the amygdala more efficiently. The LV-dsRed and AAV1-GFP vector were mixed and injected into the lateral hypothalamus or into the amygdala of adult rats. The titers that were injected were 1 × 108 or 1 × 109 genomic copies of AAV1-GFP and 1 × 105 transducing units of LV-dsRed. Results Immunostaining for GFP and dsRed showed that AAV1-GFP transduced significantly more cells than LV-dsRed in both the lateral hypothalamus and the amygdala. In addition, the number of LV particles that were injected can not easily be increased, while the number of AAV1 particles can be increased easily with a factor 100 to 1000. Both viral vectors appear to predominantly transduce neurons. Conclusions This study showed that AAV1 vectors are better tools to overexpress or knockdown genes in the lateral hypothalamus and amygdala of adult rats, since more cells can be transduced with AAV1 than with LV vectors and the titer of AAV1 vectors can easily be increased to transduce the area of interest.

  4. Bicarbonate-dependent transport of acetate and butyrate across the basolateral membrane of sheep rumen epithelium.

    Science.gov (United States)

    Dengler, F; Rackwitz, R; Benesch, F; Pfannkuche, H; Gäbel, G

    2014-02-01

    This study aimed to assess the role of HCO₃⁻ in the transport of acetate and butyrate across the basolateral membrane of rumen epithelium and to identify transport proteins involved. The effects of basolateral variation in HCO₃⁻ concentrations on acetate and butyrate efflux out of the epithelium and the transepithelial flux of these short-chain fatty acids were tested in Ussing chamber experiments using (14)C-labelled substrates. HCO₃⁻-dependent transport mechanisms were characterized by adding specific inhibitors of candidate proteins to the serosal side. Effluxes of acetate and butyrate out of the epithelium were higher to the serosal side than to the mucosal side. Acetate and butyrate effluxes to both sides of rumen epithelium consisted of HCO₃⁻-independent and -dependent parts. HCO₃⁻-dependent transport across the basolateral membrane was confirmed in studies of transepithelial fluxes. Mucosal to serosal fluxes of acetate and butyrate decreased with lowering serosal HCO₃⁻ concentrations. In the presence of 25 mm HCO₃⁻, transepithelial flux of acetate was inhibited effectively by p-hydroxymercuribenzoic acid or α-cyano-4-hydroxycinnamic acid, while butyrate flux was unaffected by the blockers. Fluxes of both acetate and butyrate from the serosal to the mucosal side were diminished largely by the addition of NO₃⁻ to the serosal side, with this effect being more pronounced for acetate. Our results indicate the existence of a basolateral short-chain fatty acid/HCO₃⁻ exchanger, with monocarboxylate transporter 1 as a primary candidate for acetate transfer. © 2013 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  5. Surface morphology of amygdala is associated with trait anxiety.

    Directory of Open Access Journals (Sweden)

    Shuyu Li

    Full Text Available Previous neuroimaging studies have suggested a role of amygdala in trait anxiety level, in which amygdala was typically treated as a whole. To date, it remains unknown whether the morphology of specific subregions of amygdala are associated with trait anxiety. Here, we employed a shape analysis approach to locate the association between its morphology and trait anxiety on the surface of amygdala. 24 healthy young participants were included. The boundary of amygdala for each subject was first manually outlined using high-resolution magnetic resonance (MR image, followed by 3D surface reconstruction and parameterization using spherical harmonic description. Two point-wise metrics, direct displacement between the individual surface and atlas surface and its normal projection, were used to quantify the surface morphology of amygdala. Statistical analysis revealed significant correlations between the two surface metrics and trait anxiety levels, which were located around the lateral and central nucleus of right amygdala. Our results provided localized information for the association between amygdala and trait anxiety, and suggested a central role of the lateral and central nucleus of right amygdala on trait anxiety.

  6. Impact of family history and depression on amygdala volume.

    LENUS (Irish Health Repository)

    Saleh, Karim

    2012-07-30

    Family history of depression significantly impacts life-long depression risk. Family history could impact the stress and emotion regulation system that involves the amygdala. This study\\'s purpose was to investigate family history\\'s effect on amygdala volumes, and differences in first degree relatives with and without major depressive disorder (MDD). Participants, aged 18-65, were healthy volunteers (N=52) with (n=26) and without (n=26) first degree family history, and patients with MDD (N=48) with (n=27) and without (n=21)first-degree family history recruited for structural magnetic resonance imaging (MRI). Participants underwent clinical assessment followed by manual amygdala tracing. Patients with MDD without family history showed significantly larger right amygdala without a family history of MDD. These effects had larger right amygdala than healthy controls without MDD family history. These effects were pronounced in females. Family history and gender impacted amygdala volumes in all participants, providing a rationale for the inconsistent results in MDD amygdala studies. Higher familial risk in depression seems to be associated with smaller amygdala volumes, whereas depression alone is associated with larger amygdala volumes. Ultimately, these findings highlight consideration of family history and gender in research and treatment strategies.

  7. Amygdala Functional Connectivity is Reduced After the Cold Pressor Task

    Science.gov (United States)

    Clewett, David; Schoeke, Andrej; Mather, Mara

    2013-01-01

    The amygdala forms a crucial link between central pain and stress systems. There is much evidence that psychological stress affects amygdala activity, but it is less clear how painful stressors influence subsequent amygdala functional connectivity. In the present study, we used pulsed arterial spin labeling (PASL) to investigate differences in healthy male adults’ resting-state amygdala functional connectivity following a cold pressor versus control task, with the stressor and control conditions conducted on different days. During the period of peak cortisol response to acute stress (approximately fifteen to thirty minutes after stressor onset), participants were asked to rest for six minutes with their eyes closed during a PASL scanning sequence. The cold pressor task led to reduced resting-state functional connectivity between the amygdalae and orbitofrontal cortex (OFC) and ventromedial prefrontal cortex (VMPFC), which occurred irrespective of cortisol release. The stressor also induced greater inverse connectivity between the left amygdala and dorsal anterior cingulate cortex (dACC), a brain region implicated in the down-regulation of amygdala responsivity. Furthermore, the degree of post-stressor left amygdala decoupling with the lateral OFC varied according to self-reported pain intensity during the cold pressor task. These findings indicate that the cold pressor task alters amygdala interactions with prefrontal and ACC regions 15–30 minutes after the stressor, and that these altered functional connectivity patterns are related to pain perception rather than cortisol feedback. PMID:23645370

  8. Amygdala Hyperactivity at Rest in Paranoid Individuals With Schizophrenia.

    Science.gov (United States)

    Pinkham, Amy E; Liu, Peiying; Lu, Hanzhang; Kriegsman, Michael; Simpson, Claire; Tamminga, Carol

    2015-08-01

    The amygdala's role in threat perception suggests that increased activation of this region may be related to paranoid ideation. However, investigations of amygdala function in paranoid individuals with schizophrenia, compared with both healthy individuals and nonparanoid individuals with schizophrenia, have consistently reported reduced task-related activation. The reliance of blood-oxygen-level-dependent functional MRI on a contrast between events and baseline, and the inability to quantitatively measure this baseline, may account for these counterintuitive findings. The present study tested for differences in baseline levels of amygdala activity in paranoid and nonparanoid individuals with schizophrenia using arterial spin labeling perfusion MRI. Resting cerebral blood flow (CBF) and task-related activation of the amygdala were measured in 25 healthy individuals, 16 individuals with schizophrenia who were actively paranoid at the time of scanning, and 16 individuals with schizophrenia who were not paranoid. Analysis of relative CBF values extracted from the amygdala bilaterally revealed significantly increased activity in the left amygdala in paranoid patient volunteers compared with healthy comparison subjects and nonparanoid patient volunteers. Increased CBF was also evident in the right amygdala but did not reach the level of statistical significance. Paranoid volunteers also showed significantly decreased task-related activation of the amygdala compared with the two other groups. These findings suggest that amygdala hyperactivation may underlie paranoia in schizophrenia. Additionally, the reported differences between paranoid and nonparanoid patient volunteers emphasize the importance of considering symptom-based subgroups and baseline levels of activity in future investigations of neural activation in schizophrenia.

  9. Electrophysiological study of transport systems in isolated perfused pancreatic ducts: properties of the basolateral membrane

    DEFF Research Database (Denmark)

    Novak, I; Greger, R

    1988-01-01

    - concentration from 0 to 25 mmol/l produced fast and sustained depolarization of PDbl by 8.5 +/- 1.0 mV (n = 149). It was investigated whether the effect of HCO3- was due to a Na+-dependent transport mechanism on the basolateral membrane, where the ion complex transferred into the cell would be positively...... was monitored by electrophysiological techniques. In this report some properties of the basolateral membrane of pancreatic duct cells are described. The transepithelial potential difference (PDte) in ducts bathed in HCO3(-)-free and HCO3(-)-containing solution was -0.8 and -2.6 mV, respectively. The equivalent...... short circuit current (Isc) under similar conditions was 26 and 50 microA . cm-2. The specific transepithelial resistance (Rte) was 88 omega cm2. In control solutions the PD across the basolateral membrane (PDbl) was -63 +/- 1 mV (n = 314). Ouabain (3 mmol/l) depolarized PDbl by 4.8 +/- 1.1 mV (n = 6...

  10. Indirect coupling to Na+ of p-aminohippuric acid uptake into rat renal basolateral membrane vesicles

    International Nuclear Information System (INIS)

    Shimada, H.; Moewes, B.; Burckhardt, G.

    1987-01-01

    Experiments with basolateral membrane vesicles prepared from rat kidney cortex were performed to study the mechanism by which p-aminohippuric acid (PAH) is taken up across the contraluminal membrane and is concentrated in proximal tubule cells. An inward Na + gradient failed to stimulate [ 3 H]PAH uptake compared with K + or Li + and did not cause intravesicular PAH accumulation above equilibrium distribution. In the absence of Na + , the dicarboxylates glutarate and suberate cis-inhibited and trans-stimulated [ 3 H]PAH uptake, indicating a common transport system. In the presence of Na + , 10 μM glutarate in the incubation medium did not cis-inhibit, but rather stimulated [ 3 H]PAH uptake and caused PAH accumulation above equilibrium distribution (over-shoot). Li + diminished this stimulation, but was without effect on [ 3 H]PAH/PAH- and [ 3 H]PAH/glutarate exchange. The data indicate the coexistence of a Na + -sensitive transport system for dicarboxylates and a Li + -insensitive PAH/dicarboxylate exchanger in the basolateral membrane. The authors propose that dicarboxylates are cotransported with Na + into the cell and subsequently exchange for extracellular PAH at the basolateral membrane. PAH uptake is thereby indirectly coupled to Na + via the Na + /dicarboxylate cotransporter

  11. The MARVEL transmembrane motif of occludin mediates oligomerization and targeting to the basolateral surface in epithelia.

    Science.gov (United States)

    Yaffe, Yakey; Shepshelovitch, Jeanne; Nevo-Yassaf, Inbar; Yeheskel, Adva; Shmerling, Hedva; Kwiatek, Joanna M; Gaus, Katharina; Pasmanik-Chor, Metsada; Hirschberg, Koret

    2012-08-01

    Occludin (Ocln), a MARVEL-motif-containing protein, is found in all tight junctions. MARVEL motifs are comprised of four transmembrane helices associated with the localization to or formation of diverse membrane subdomains by interacting with the proximal lipid environment. The functions of the Ocln MARVEL motif are unknown. Bioinformatics sequence- and structure-based analyses demonstrated that the MARVEL domain of Ocln family proteins has distinct evolutionarily conserved sequence features that are consistent with its basolateral membrane localization. Live-cell microscopy, fluorescence resonance energy transfer (FRET) and bimolecular fluorescence complementation (BiFC) were used to analyze the intracellular distribution and self-association of fluorescent-protein-tagged full-length human Ocln or the Ocln MARVEL motif excluding the cytosolic C- and N-termini (amino acids 60-269, FP-MARVEL-Ocln). FP-MARVEL-Ocln efficiently arrived at the plasma membrane (PM) and was sorted to the basolateral PM in filter-grown polarized MDCK cells. A series of conserved aromatic amino acids within the MARVEL domain were found to be associated with Ocln dimerization using BiFC. FP-MARVEL-Ocln inhibited membrane pore growth during Triton-X-100-induced solubilization and was shown to increase the membrane-ordered state using Laurdan, a lipid dye. These data demonstrate that the Ocln MARVEL domain mediates self-association and correct sorting to the basolateral membrane.

  12. Luminal and basolateral uptake of insulin in isolated perfused, proximal tubules

    International Nuclear Information System (INIS)

    Nielsen, S.; Nielsen, J.T.; Christensen, E.I.

    1987-01-01

    The present study was performed to quantitate compare the luminal and the peritubular uptake of 125 I-insulin in isolated, perfused, proximal tubules from rabbit kidneys. 125 I-insulin was added in physiological concentrations to either the perfusate or the bath fluid for 30 min. The luminal uptake in 30 min averaged 0.76 pg/mm at physiological concentrations and 18.0 pg/mm at high insulin concentrations. About 15-41% of the absorbed insulin was digested and 125 I-insulin at physiological and high concentrations in the bath was 0.136 and 0.318 pg, respectively. The data indicates that insulin is bound/absorbed at the basolateral membranes both by a saturable specific mechanism and a nonspecific, nonsaturable mechanism. The basolateral absorption constituted 15.2 and 1.8% of the total tubular extraction of insulin at physiological and high insulin concentrations, respectively. Electron microscope autoradiography showed that, after luminal as well as basolateral endocytosis, insulin was exclusively accumulated in endocytic vacuoles and lysosomes

  13. Dysfunctional amygdala activation and connectivity with the prefrontal cortex in current cocaine users

    NARCIS (Netherlands)

    Crunelle, C.L.; Kaag, A.M.; van den Munkhof, H.E.; Reneman, L.; Homberg, J.R.; Sabbe, B.; van den Brink, W.; van Wingen, G.

    2015-01-01

    OBJECTIVES: Stimulant use is associated with increased anxiety and a single administration of dexamphetamine increases amygdala activation to biologically salient stimuli in healthy individuals. Here, we investigate how current cocaine use affects amygdala activity and amygdala connectivity with the

  14. Dysfunctional amygdala activation and connectivity with the prefrontal cortex in current cocaine users

    NARCIS (Netherlands)

    Crunelle, Cleo L.; Kaag, Anne Marije; van den Munkhof, Hanna E.; Reneman, Liesbeth; Homberg, Judith R.; Sabbe, Bernard; van den Brink, Wim; van Wingen, Guido

    2015-01-01

    Stimulant use is associated with increased anxiety and a single administration of dexamphetamine increases amygdala activation to biologically salient stimuli in healthy individuals. Here, we investigate how current cocaine use affects amygdala activity and amygdala connectivity with the prefrontal

  15. Combining D-cycloserine with appetitive extinction learning modulates amygdala activity during recall.

    Science.gov (United States)

    Ebrahimi, Claudia; Koch, Stefan P; Friedel, Eva; Crespo, Ilsoray; Fydrich, Thomas; Ströhle, Andreas; Heinz, Andreas; Schlagenhauf, Florian

    2017-07-01

    Appetitive Pavlovian conditioning plays a crucial role in the pathogenesis of drug addiction and conditioned reward cues can trigger craving and relapse even after long phases of abstinence. Promising preclinical work showed that the NMDA-receptor partial agonist D-cycloserine (DCS) facilitates Pavlovian extinction learning of fear and drug cues. Furthermore, DCS-augmented exposure therapy seems to be beneficial in various anxiety disorders, while the supposed working mechanism of DCS during human appetitive or aversive extinction learning is still not confirmed. To test the hypothesis that DCS administration before extinction training improves extinction learning, healthy adults (n=32) underwent conditioning, extinction, and extinction recall on three successive days in a randomized, double-blind, placebo-controlled fMRI design. Monetary wins and losses served as unconditioned stimuli during conditioning to probe appetitive and aversive learning. An oral dose of 50mg of DCS or placebo was administered 1h before extinction training and DCS effects during extinction recall were evaluated on a behavioral and neuronal level. We found attenuated amygdala activation in the DCS compared to the placebo group during recall of the extinguished appetitive cue, along with evidence for enhanced functional amygdala-vmPFC coupling in the DCS group. While the absence of additional physiological measures of conditioned responses during recall in this study prevent the evaluation of a behavioral DCS effect, our neuronal findings are in accordance with recent theories linking successful extinction recall in humans to modulatory top-down influences from the vmPFC that inhibit amygdala activation. Our results should encourage further translational studies concerning the usefulness of DCS to target maladaptive Pavlovian reward associations. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Channel properties of Nax expressed in neurons.

    Directory of Open Access Journals (Sweden)

    Masahito Matsumoto

    Full Text Available Nax is a sodium-concentration ([Na+]-sensitive Na channel with a gating threshold of ~150 mM for extracellular [Na+] ([Na+]o in vitro. We previously reported that Nax was preferentially expressed in the glial cells of sensory circumventricular organs including the subfornical organ, and was involved in [Na+] sensing for the control of salt-intake behavior. Although Nax was also suggested to be expressed in the neurons of some brain regions including the amygdala and cerebral cortex, the channel properties of Nax have not yet been adequately characterized in neurons. We herein verified that Nax was expressed in neurons in the lateral amygdala of mice using an antibody that was newly generated against mouse Nax. To investigate the channel properties of Nax expressed in neurons, we established an inducible cell line of Nax using the mouse neuroblastoma cell line, Neuro-2a, which is endogenously devoid of the expression of Nax. Functional analyses of this cell line revealed that the [Na+]-sensitivity of Nax in neuronal cells was similar to that expressed in glial cells. The cation selectivity sequence of the Nax channel in cations was revealed to be Na+ ≈ Li+ > Rb+ > Cs+ for the first time. Furthermore, we demonstrated that Nax bound to postsynaptic density protein 95 (PSD95 through its PSD95/Disc-large/ZO-1 (PDZ-binding motif at the C-terminus in neurons. The interaction between Nax and PSD95 may be involved in promoting the surface expression of Nax channels because the depletion of endogenous PSD95 resulted in a decrease in Nax at the plasma membrane. These results indicated, for the first time, that Nax functions as a [Na+]-sensitive Na channel in neurons as well as in glial cells.

  17. Disorganized Attachment in Infancy Predicts Greater Amygdala Volume in Adulthood

    Science.gov (United States)

    Lyons-Ruth, K.; Pechtel, P.; Yoon, S.A.; Anderson, C.M.; Teicher, M.H.

    2016-01-01

    Early life stress in rodents is associated with increased amygdala volume in adulthood. In humans, the amygdala develops rapidly during the first two years of life. Thus, disturbed care during this period may be particularly important to amygdala development. In the context of a 30-year longitudinal study of impoverished, highly stressed families, we assessed whether disorganization of the attachment relationship in infancy was related to amygdala volume in adulthood. Amygdala volumes were assessed among 18 low-income young adults (8M/10F, 29.33±0.49 years) first observed in infancy (8.5±5.6 months) and followed longitudinally to age 29. In infancy (18.58±1.02 mos), both disorganized infant attachment behavior and disrupted maternal communication were assessed in the standard Strange Situation Procedure (SSP). Increased left amygdala volume in adulthood was associated with both maternal and infant components of disorganized attachment interactions at 18 months of age (overall r = .679, p attachment disturbance in adolescence, were not significantly related to left amygdala volume. Left amygdala volume was further associated with dissociation and limbic irritability in adulthood. Finally, left amygdala volume mediated the prediction from attachment disturbance in infancy to limbic irritability in adulthood. Results point to the likely importance of quality of early care for amygdala development in human children as well as in rodents. The long-term prediction found here suggests that the first two years of life may be an early sensitive period for amygdala development during which clinical intervention could have particularly important consequences for later child outcomes. PMID:27060720

  18. Lifespan anxiety is reflected in human amygdala cortical connectivity

    Science.gov (United States)

    He, Ye; Xu, Ting; Zhang, Wei

    2016-01-01

    Abstract The amygdala plays a pivotal role in processing anxiety and connects to large‐scale brain networks. However, intrinsic functional connectivity (iFC) between amygdala and these networks has rarely been examined in relation to anxiety, especially across the lifespan. We employed resting‐state functional MRI data from 280 healthy adults (18–83.5 yrs) to elucidate the relationship between anxiety and amygdala iFC with common cortical networks including the visual network, somatomotor network, dorsal attention network, ventral attention network, limbic network, frontoparietal network, and default network. Global and network‐specific iFC were separately computed as mean iFC of amygdala with the entire cerebral cortex and each cortical network. We detected negative correlation between global positive amygdala iFC and trait anxiety. Network‐specific associations between amygdala iFC and anxiety were also detectable. Specifically, the higher iFC strength between the left amygdala and the limbic network predicted lower state anxiety. For the trait anxiety, left amygdala anxiety–connectivity correlation was observed in both somatomotor and dorsal attention networks, whereas the right amygdala anxiety–connectivity correlation was primarily distributed in the frontoparietal and ventral attention networks. Ventral attention network exhibited significant anxiety–gender interactions on its iFC with amygdala. Together with findings from additional vertex‐wise analysis, these data clearly indicated that both low‐level sensory networks and high‐level associative networks could contribute to detectable predictions of anxiety behaviors by their iFC profiles with the amygdala. This set of systems neuroscience findings could lead to novel functional network models on neural correlates of human anxiety and provide targets for novel treatment strategies on anxiety disorders. Hum Brain Mapp 37:1178–1193, 2016. © 2015 The Authors Human Brain Mapping

  19. Amygdala temporal dynamics: temperamental differences in the timing of amygdala response to familiar and novel faces

    Directory of Open Access Journals (Sweden)

    Shelton Richard C

    2009-12-01

    Full Text Available Abstract Background Inhibited temperament - the predisposition to respond to new people, places or things with wariness or avoidance behaviors - is associated with increased risk for social anxiety disorder and major depression. Although the magnitude of the amygdala's response to novelty has been identified as a neural substrate of inhibited temperament, there may also be differences in temporal dynamics (latency, duration, and peak. We hypothesized that persons with inhibited temperament would have faster responses to novel relative to familiar neutral faces compared to persons with uninhibited temperament. We used event-related functional magnetic resonance imaging to measure the temporal dynamics of the blood oxygen level dependent (BOLD response to both novel and familiar neutral faces in participants with inhibited or uninhibited temperament. Results Inhibited participants had faster amygdala responses to novel compared with familiar faces, and both longer and greater amygdala response to all faces. There were no differences in peak response. Conclusion Faster amygdala response to novelty may reflect a computational bias that leads to greater neophobic responses and represents a mechanism for the development of social anxiety.

  20. An Appetitive Experience after Fear Memory Destabilization Attenuates Fear Retention: Involvement GluN2B-NMDA Receptors in the Basolateral Amygdala Complex

    Science.gov (United States)

    Ferrer Monti, Roque I.; Giachero, Marcelo; Alfei, Joaquín M.; Bueno, Adrián M.; Cuadra, Gabriel; Molina, Victor A.

    2016-01-01

    It is known that a consolidated memory can return to a labile state and become transiently malleable following reactivation. This instability is followed by a restabilization phase termed reconsolidation. In this work, we explored whether an unrelated appetitive experience (voluntary consumption of diluted sucrose) can affect a contextual fear…

  1. Neural hyperactivity in the amygdala induced by chronic treatment of rats with analgesics may elucidate the mechanisms underlying psychiatric comorbidities associated with medication-overuse headache.

    Science.gov (United States)

    Wanasuntronwong, Aree; Jansri, Ukkrit; Srikiatkhachorn, Anan

    2017-01-03

    Patients with medication-overuse headache suffer not only from chronic headache, but often from psychiatric comorbidities, such as anxiety and depression. The mechanisms underlying these comorbidities are unclear, but the amygdala is likely to be involved in their pathogenesis. To investigate the mechanisms underlying the comorbidities we used elevated plus maze and open field tests to assess anxiety-like behavior in rats chronically treated with analgesics. We measured the electrical properties of neurons in the amygdala, and examined the cortical spreading depression (CSD)-evoked expression of Fos in the trigeminal nucleus caudalis (TNC) and amygdala of rats chronically treated with analgesics. CSD, an analog of aura, evokes Fos expression in the TNC of rodents suggesting trigeminal nociception, considered to be a model of migraine. Increased anxiety-like behavior was seen both in elevated plus maze and open field tests in a model of medication overuse produced in male rats by chronic treatment with aspirin or acetaminophen. The time spent in the open arms of the maze by aspirin- or acetaminophen-treated rats (53 ± 36.1 and 37 ± 29.5 s, respectively) was significantly shorter than that spent by saline-treated vehicle control rats (138 ± 22.6 s, P amygdala as indicated by their more negative threshold for action potential generation (-54.6 ± 5.01 mV for aspirin-treated, -55.2 ± 0.97 mV for acetaminophen-treated, and -31.50 ± 5.34 mV for saline-treated rats, P amygdala [18 ± 10.2 Fos-immunoreactive (IR) neurons per slide in the amygdala of rats treated with aspirin, 11 ± 5.4 IR neurons per slide in rats treated with acetaminophen, and 4 ± 3.7 IR neurons per slide in saline-treated control rats, P amygdala, which could underlie the anxiety seen in patients with medication-overuse headache.

  2. Amygdala and hippocampus enlargement during adolescence in autism.

    NARCIS (Netherlands)

    Groen, W.B.; Teluij, M.; Buitelaar, J.K.; Tendolkar, I.

    2010-01-01

    OBJECTIVE: The amygdala and hippocampus are key components of the neural system mediating emotion perception and regulation and are thought to be involved in the pathophysiology of autism. Although some studies in children with autism suggest that there is an enlargement of amygdala and hippocampal

  3. Amygdala reactivity to fearful faces correlates positively with impulsive aggression

    DEFF Research Database (Denmark)

    da Cunha-Bang, Sofi; Fisher, Patrick M; Hjordt, Liv V

    2018-01-01

    Facial expressions robustly activate the amygdala, a brain structure playing a critical role in aggression. Whereas previous studies suggest that amygdala reactivity is related to various measures of impulsive aggression, we here estimate a composite measure of impulsive aggression and evaluate...

  4. Amygdala and Hippocampus Enlargement during Adolescence in Autism

    Science.gov (United States)

    Groen, Wouter; Teluij, Michelle; Buitelaar, Jan; Tendolkar, Indira

    2010-01-01

    Objective: The amygdala and hippocampus are key components of the neural system mediating emotion perception and regulation and are thought to be involved in the pathophysiology of autism. Although some studies in children with autism suggest that there is an enlargement of amygdala and hippocampal volume, findings in adolescence are sparse.…

  5. Time-dependent effects of corticosteroids on human amygdala processing

    NARCIS (Netherlands)

    Henckens, M.J.A.G.; van Wingen, G.A.; Joëls, M.; Fernández, G.

    2010-01-01

    Acute stress is associated with a sensitized amygdala. Corticosteroids, released in response to stress, are suggested to restore homeostasis by normalizing/desensitizing brain processing in the aftermath of stress. Here, we investigated the effects of corticosteroids on amygdala processing using

  6. Delta Subunit-Containing Gamma-Aminobutyric Acid A Receptor Disinhibits Lateral Amygdala and Facilitates Fear Expression in Mice.

    Science.gov (United States)

    Liu, Zhi-Peng; He, Qing-Hai; Pan, Han-Qing; Xu, Xiao-Bin; Chen, Wen-Bing; He, Ye; Zhou, Jin; Zhang, Wen-Hua; Zhang, Jun-Yu; Ying, Xiao-Ping; Han, Ren-Wen; Li, Bao-Ming; Gao, Tian-Ming; Pan, Bing-Xing

    2017-06-15

    Maintaining gamma-aminobutyric acidergic (GABAergic) inhibition in the amygdala within a physiological range is critical for the appropriate expression of emotions such as fear and anxiety. The synaptic GABA type A receptor (GABA A R) is generally known to mediate the primary component of amygdala inhibition and prevent inappropriate expression of fear. However, little is known about the contribution of the extrasynaptic GABA A R to amygdala inhibition and fear. By using mice expressing green fluorescent protein in interneurons (INs) and lacking the δ subunit-containing GABA A R (GABA A (δ)R), which is exclusively situated in the extrasynaptic membrane, we systematically investigated the role of GABA A (δ)R in regulating inhibition in the lateral amygdala (LA) and fear learning using the combined approaches of immunohistochemistry, electrophysiology, and behavior. In sharp contrast to the established role of synaptic GABA A R in mediating LA inhibition, we found that either pharmacological or physiological recruitment of GABA A (δ)R resulted in the weakening of GABAergic transmission onto projection neurons in LA while leaving the glutamatergic transmission unaltered, suggesting disinhibition by GABA A (δ)R. The disinhibition arose from IN-specific expression of GABA A (δ)R with its activation decreasing the input resistance of local INs and suppressing their activation. Genetic deletion of GABA A (δ)R attenuated its role in suppressing LA INs and disinhibiting LA. Importantly, the GABA A (δ)R facilitated long-term potentiation in sensory afferents to LA and permitted the expression of learned fear. Our findings suggest that GABA A (δ)R serves as a brake rather than a mediator of GABAergic inhibition in LA. The disinhibition by GABA A (δ)R may help to prevent excessive suppression of amygdala activity and thus ensure the expression of emotion. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  7. Opposing effects of traumatic brain injury on excitatory synaptic function in the lateral amygdala in the absence and presence of preinjury stress.

    Science.gov (United States)

    Klein, Rebecca C; Acheson, Shawn K; Qadri, Laura H; Dawson, Alina A; Rodriguiz, Ramona M; Wetsel, William C; Moore, Scott D; Laskowitz, Daniel T; Dawson, Hana N

    2016-06-01

    Traumatic brain injury (TBI) is a leading cause of death and disability among young adults and is highly prevalent among recently deployed military personnel. Survivors of TBI often experience cognitive and emotional deficits, suggesting that long-term effects of injury may disrupt neuronal function in critical brain regions, including the amygdala, which is involved in emotion and fear memory. Amygdala hyperexcitability has been reported in both TBI and posttraumatic stress disorder patients, yet little is known regarding the effects of combined stress and TBI on amygdala structure and function at the neuronal level. The present study seeks to determine how the long-term effects of preinjury foot-shock stress and TBI interact to influence synaptic plasticity in the lateral amygdala (LA) of adult male C57BL/6J mice by using whole-cell patch clamp electrophysiology 2-3 months postinjury. In the absence of stress, TBI resulted in a significant increase in membrane excitability and spontaneous excitatory postsynaptic currents (sEPSCs) in LA pyramidal-like neurons. Foot-shock stress in the absence of TBI also resulted in increased sEPSC activity. In contrast, when preinjury stress and TBI occurred in combination, sEPSC activity was significantly decreased compared with either condition alone. There were no significant differences in inhibitory activity or total dendritic length among any of the treatment groups. These results demo